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SUMMMARY 

 

This study involved invasive ductal breast cancers from 137 female patients with no 

distant metastasis on diagnosis and no neo-adjuvant chemotherapy prior to surgery.  

Focus was placed on the expression of glutathione S-transferase pi (GST-pi), a Phase II 

detoxification enzyme that has recently been implicated in protection against apoptosis.  

GST-pi expression was evaluated in conjunction with the expression of biological markers, 

namely Bcl-2, metallothionein (MT), p-glycoprotein (Pgp) and Y-box binding protein-1 

(YB-1), as well as apoptosis detected by the TUNEL method.  It was further correlated 

with measurements of total GST activity and levels of oxidative stress by quantification of 

TBARS.  Clinical significance of the expression of the biological markers was examined 

using known clinico-pathological parameters and early recurrence on follow-up.   

GST-pi expression was detected in 58%, Bcl-2 expression in 37%, MT expression 

in 88%, and Pgp expression in 43% of the breast cancers.  YB-1 expression was detected 

in 95% and 100% of tumours, using 2 different antibodies, Frgy-1 and Ckyb-1, 

respectively.  In most GST-pi positive/Bcl-2 positive tumours, there was a distinct 

accumulation of GST-pi within the nucleus of cancer cells when examined by double 

immunofluorescence labeling under confocal microscopy.  GST-pi expression was 

associated with Pgp expression (p=0.033) and higher levels of YB-1 immunoreactivity 

(p=0.048).  A direct interaction between YB-1 and Pgp was demonstrated using the 

computer-based Resonant Recognition Model. 

Univariate analysis revealed that GST-pi positive, Bcl-2 positive, and lower 

histological grade tumours had decreased levels of apoptosis (p=0.024, p=0.011, and 
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p=0.029, respectively).  However, multivariate analysis showed that histological grade 

and Bcl-2, but not GST-pi immunoreactivity, were correlated with apoptotic status.  

Apoptosis in GST-pi negative tumours was not correlated with GST activity but GST-pi 

positive tumours within the same range of oxidative stress showed a reduction in 

apoptosis with increased GST activity.  This correlation was absent in GST-pi positive 

tumours experiencing higher oxidative stress.  It appeared that GST-pi expression may 

influence the level of GST activity and delay apoptosis in breast cancer, although its 

expression in tumours with higher levels of oxidative stress may not be sufficient in 

abrogating the deleterious effects.  Whilst GST-pi immunoreactivity was not significantly 

correlated with any of the traditional histologic factors known to influence prognosis, 

multivariate analysis showed that GST-pi expression, higher MT expression and Bcl-2 

negative tumours have significantly increased recurrence risk. 

Considering the group of patients who received adjuvant chemotherapy, disease-

free survival in patients with GST-pi–positive tumours was worse than that in patients 

with GST-pi–negative tumours (p=0.04). It was also worse in patients with higher MT 

expression compared to those with lower MT expression (p=0.048).  Interestingly, we 

found that patients who were on  a chemotherapy regime which contained an 

anthracycline (a PGP substrate) and subsequently developed recurrence, had a higher YB-

1 score compared to patients on the Cyclophosphamide/Methotrexate/5 Fluorouracil 

regime (p=0.024). 

In conclusion, GST-pi expression is associated with more aggressive tumours and 

this effect may be partly explained by protection against oxidative stress and apoptosis.  

Further, MT and YB-1 show promise as biological markers of chemotherapy resistance.  
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Breast cancer commonly refers to the uncontrolled and malignant proliferation of 

epithelial cells from ducts or lobules of the breast.  It typically presents in a woman with a 

painless breast lump of variable duration.  In the pre-menstrual woman, the lump will 

persist through the menstrual cycle.  Symptoms of pain, nipple retraction, nipple discharge, 

skin retraction, axillary mass (due to axillary lymph node enlargement from metastasis) 

may be present.  With breast cancer screening, many breast cancers are discovered in the 

form of abnormal mammography in an asymptomatic woman.   

 

 

1.1 History of breast cancer 

 

  We have come a long way since the earliest records of its diagnosis in the ancient 

Egyptian era of about 2500 BC.  Over time, ideas about its pathogenesis and treatment 

have evolved. 

The first known description of breast cancer was recorded in the Edwin Smith 

papyrus where a male patient had features characteristic of breast cancer (Breasted, 1930).  

Surgeons then recognized that little could be done for these tumours.  Hippocrates (460-

370 BC) felt that breast cancer was due to the cessation of menstrual flow, leading to the 

subsequent imbalance and engorgement of the breast.  He was of the opinion that 

“treatment causes speedy death, but to omit treatment is to prolong life”.  Later, Caudius 

Galen (129-c.200 AD), a Greek physician and philosopher, suggested that melancholia 

was the chief factor in the development of breast cancer.  He felt that excision could not 

correct the physical imbalance, and it was to be treated with special diets and concoctions. 
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In spite of these medical theories, breast surgery was still being performed and 

progress was made.  As early as the first century AD, Aulus Cornelius Celsus suggested 

that early cases of breast cancer would respond to intervention.  (De Moulin, 1983).   

In the 1600s, surgeons began to attempt the removal of axillary lymph nodes with 

the understanding that breast cancer could spread to the lymph nodes and subsequently to 

other organs.  Henry Francois LeDran (1685-1770) noted that poor prognosis was 

associated with metastatic lymph node deposits.  Throughout the 1800s, breast cancer 

surgery with axillary clearance slowly evolved, helped by developments in anaesthesia 

and anti-sepsis.  In 1894, William Halsted (1852 - 1922) of Johns Hopkins Hospital 

reported a substantial survival improvement with a radical mastectomy that involved the 

removal of the pectoralis major (Halsted, 1894).  Subsequently, David Patey (1899 - 1977) 

devised a modified technique that preserved the pectoralis major; the pectoralis minor was 

instead resected to facilitate lymph node dissection (Patey, 1948).  This method, still 

widely practiced currently, reduced the mobidity experienced by women after radical 

mastectomy, with no compromise in survival (Maddox et al., 1983). 

At about the same time in 1895, X-rays were discovered by Wilhelm Conrad 

Rontgen (1845-1923) and Hermann Gocht (1860-1983) first reported its successful use in 

2 cases of locally advanced breast cancer in 1897.   

Later, it became evident that surgery could be coupled with other adjuvant 

treatments for greater benefit.  The concept that breast cancer is a systemic disease and 

cure depends on systemic anti-cancer treatment in addition to local treatment became 

more widely accepted.   
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Hormonal treatment became popular after surgical and radiation castration 

improved the clinical course of breast cancer patients in the late 1800s to early 1900s 

(Beatson, 1896).  Eventually, tamoxifen, an anti-estrogenic drug and the mainstay of 

hormonal treatment for breast cancer today, emerged in the 1970s (Ward, 1973).  

Experiments on cytotoxic chemotherapy for breast cancer only began in the 1960s, 

initially with single agents, subsequently with various drug combinations.   

Today, surgery, radiotherapy, cytotoxic chemotherapy and hormonal drugs are 

well established treatment modalities for breast cancer.  Yet, the story of breast cancer is 

still not complete.  Since the turn of the century, more than 7000 papers on breast cancer 

are added to the Medline, reflecting the intense activity of scientists all over the world, 

trying to understand breast cancer and fine-tune its treatment. 

 

 

1.2 Epidemiology 

 

 Breast cancer is the most common cancer and the second leading cause of cancer 

deaths in women around the world.  It is predominantly a female disease, occurring more 

frequently in women than in men in the ratio of 130:1.  The older a woman is, the greater 

her chances of developing breast cancer - approximately three quarters of breast cancer 

cases occur in women over 50 years of age (Feuer et al., 1999).   

 One in 8 American women will have breast cancer in her lifetime.  The World 

Health Organisation estimated that 55,900 new cases of breast cancer were diagnosed in 

Southeast Asia alone in the year 2000 and was responsible for 25,000 deaths in the same 
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region during that time (Ferlay et al., 2001).  Breast cancer constitutes 23% of all cancers 

diagnosed in women in Singapore and its incidence is rising.  In the years 1993 to 1996, 

the incidence rate of breast cancer in Singapore increased by an average of 3.68% per year 

(Chia et al., 2000). 

Breast cancer incidence varies across geographic regions and ethnic groups.  

Populations of the same ethnic origin living in different countries have different breast 

cancer risks, suggesting that environmental and lifestyle factors affect breast cancer 

incidence (Figure 1).  In general, Western developed countries have higher incidence rates 

compared to Asian countries, and Singapore has rates higher than most other parts of Asia.  

In Singapore, Chinese women are at the highest risk, compared to Malays and Indians.   
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Figure 1. International comparisons of breast cancer incidence - age-standardized rates 
(per 100 000 per year), 1988-1992 (adapted with permission from Chia et al., 2000), 
showing differences in breast cancer rates between Chinese people in different countries 
and between ethnic groups in the same country, reflecting the complex interaction 
between genetic heritage and environmental influences. 
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Hereditary factors affect the risk of developing breast cancer.  A woman's risk of 

breast cancer is doubled if she has a first degree relative (mother, sister, or daughter) who 

developed the disease before the age of 50, and the younger the relative when she 

developed breast cancer, the greater the risk.  Several inherited genetic alterations 

associated with increased risk of breast cancer are well known.  Li-Fraumani syndrome is 

caused by germline mutations in the tumour suppressor gene p53.  BRCA-1 and BRCA-2 

are two other tumour suppressor genes in which mutations give increased chance of breast 

and ovarian cancer, and carriers have a lifetime breast cancer risk of 40 to 85% 

(Blackwood et al., 1998).   The ataxia-telangiectasia gene causes radiation sensitivity in 

the heterozygous state and increases risk of breast cancer from screening mammography 

(Lippman, 1998).  However, not all familial clusters of breast cancers have defined 

germline mutations:  the search for other breast-cancer-susceptibility genes, especially 

low-penetrance polymorphisms, is on-going (Meijers-Heijboer et al., 2002). 

Breast cancer is also a hormone-dependent disease.  There is a dose-dependant 

relationship between female sex hormone exposure and breast cancer risk.  Four events in 

a woman’s life that determine hormonal exposure, affect breast cancer risk:   

(1) menarche – each year delay in menarche decreases breast cancer risk by 5% 

(Hunter et al., 1997);  

(2) childbearing – women who have their first full-term pregnancy before 20 years 

have 30% the risk and women with 5 or more children have half the risk of breast cancer, 

compared with nulliparous women (Ewertz et al., 1990);  

(3) breastfeeding – women who breastfed 25 months or more in their lifetime have 

33% decrease in risk of breast cancer compared to those who never breastfed (Layde et al., 
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1989).  A recent meta-analysis revealed that the relative risk for breast cancer decreases 

by 4.3% for every 12 months of breastfeeding in addition to a decrease of 7.0% from each 

birth; and the size of decline was no different in developed and developing countries 

(Collaborative Group on Hormonal Factors in Breast Cancer, 2002); and 

(4) menopause – breast cancer risk increases by 3% for each year older at 

menopause (Collaborative Group on Hormonal Factors in Breast Cancer, 1997).  In fact, 

the larger the number of menstrual cycles during a woman’s lifetime, the higher the risk 

for breast cancer (Clairel-Chapelon et al., 2002).  Interestingly, there is also a positive 

correlation between post-menopausal estradiol levels and breast cancer risk (Key et al., 

1999).   

Exogenous estrogen exposure also adds to breast cancer risk.  Use of hormone 

replacement therapy in healthy post-menopausal women over a 5 year period will cause 

an increase of 3.2 cases per 1000 users of age 50-59 years and 4 per 1000 aged 60-69 

years (Berai et al. 2002).  The increase in risk is most pronounced in the continuous 

combined hormone replacement regimen, in which progesterone and estrogen are given 

continuously (Weiss et al., 2002).  Combined oral contraceptives increase breast cancer 

risk of current users by 25% (Collaborative Group on Hormonal Factors in Breast Cancer, 

1996).  This excess risk for both hormonal therapy falls after cessation of use, such that 10 

or more years after use stops, no significant increase in risk is evident. 

In contrast, use of tamoxifen, an estrogen receptor antagonist, reduces the 

incidence of breast cancer by 38% in healthy women with high risk of developing the 

disease (Cuzick et al., 2003). 
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Other non-hormonal iatrogenic sources of breast cancer risk have also been 

identified.  Exposure to ionizing radiation, especially in women less than 40 years of age, 

increases the relative risk of breast cancer to between 1.1 and 2.7 if the exposure exceeds 

1 Gy; it is estimated that about 1% of breast cancers in the USA is attributable to 

diagnostic radiology (Evans et al., 1986).  Breast cancer incidence increases by about 75 

times in women who were successfully treated for Hodgkin’s disease, compared to the 

general population.  This effect is attributed to thoracic irradiation and possibly, 

chemotherapy (Deniz et al., 2003). 

 Other factors that are associated with increased breast cancer risk include:  

(1) presence of proliferative benign breast disease, especially with atypia - four 

fold increase risk compared to women without benign breast disease (Bodian, 1993);  

(2) radiodense breast tissue (Boyd et al., 1998);  

(3) alcohol intake - 10% risk increase for every 10g of alcohol consumed per day 

(Smith-Warner et al., 1998);  

(4) obesity in post-menopausal women - 50% increased risk for women with BMI 

more than equal to 30kg/m2 compared to lean women (Hunter et al., 1993); and  

(5) low level of physical activity (Friedenreich et al., 1998). 

Interestingly, possible dietary modulators of cancer risk, such as fat content, meat, 

fibre, fruit and vegetable, and phyto-estrogen were not consistently associated with breast 

cancer risk.  Exposure to carcinogens, such as smoking and environmental estrogens (e.g. 

the insecticide DDT), was not found to significantly affect breast cancer incidence (Key et 

al., 2002). 
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Clearly, a complex interaction between genetic, physiologic, lifestyle and 

environmental forces affects the risk of breast cancer in women. 

 

 

1.3 Anatomy and physiology of the breast 

 

The human breast is one of a pair of accessory reproductive glands that lies on the 

anterior surface of the chest wall.  Its base stretches from the 2nd to the 6th rib along the 

mid-clavicular line, with the medial two thirds lying on the pectoralis major and lateral 

one third on the serratus anterior and external oblique, and an axillary tail extending 

laterally upwards into the axilla.  Superficially, it is covered by skin, with a pigmented 

region, the areola, surrounding the nipple.   

Nerves to the breast are derived from the anterior and lateral cutaneous branches 

of the 4th, 5th and 6th thoracic nerve.  Blood supply is from the lateral pectoral and 

acromiothoracic branches of the axillary artery, the intercostal arteries, and the internal 

mammary artery, forming an anastomosing network.  Venous blood returns through the 

deep veins that run with the main arteries.  Some drainage through the posterior 

intercostal vein enters the vertebral veins – a pathway for metastatic spread to the spine.   

The lymphatic drainage is of great importance with regards to the spread of breast 

cancer.  Lymph vessels that drain the lateral part of the breast pass to the pectoral group of 

axillary lymph nodes, whereas those from the medial part of the breast perforate the 

thoracic wall, ending in the internal mammary lymph node.  Occasionally, lymphatics 

from the superior part of the breast drain into the infraclavicular lymph nodes.  When the 
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usual channel of lymph drainage is obstructed by malignant cells especially in advanced 

tumours, there can be lymph flow between the medial and lateral part of the breast, across 

to the opposite side of the body, to the supraclavicular lymph nodes, and to the cervical 

lymph nodes.    

 

 

Figure 2. Schematic diagram of sagittal section of a female breast. 

 

 

The breast parenchyma is made up of fibrous, fatty and glandular tissue.  The 

fibrous strands, known as the Cooper’s ligaments, attach the breast to the chest wall.  A 

layer of fat surrounds the breast glands and occupies the space between the glands.  The 

glandular tissue is organized into 15 to 20 lobes, each lobe containing numerous branches 

of lactiferous ducts.  These ducts unite to form larger ducts, ending in one of 15 to 20 

excretory ducts that converge towards the nipple, dilating to form sinuses at the base of 
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the nipple, before opening individually at the tip of the nipple (Figure 2).  It was once 

thought that ductal breast cancers originate from the ducts, whereas lobular breast cancers 

arise from the lobules.  However, it is now known that both arise from the terminal duct 

lobular unit (Sainsbury et al., 1994).  Near the base of the nipple, on the surface of the 

areola, are numerous sebaceous glands (Montgomery glands) that enlarge during lactation 

and appear as small tubercles.   

The development of the breast is unlike most mammalian organs: a linear 

developmental phase is followed by a cyclical phase.  The mammary epithelium is 

derived from the ectoderm.  At about 5 weeks of gestation, the epidermis forms 2 lines of 

thickened epithelium (mammary ridges) running cranio-caudally on the ventral aspect of 

the embryo.  The mammary epithelium thickens to form a lens-shaped disc that grows to 

form a mammary bud.  The mammary bud grows into the surrounding mesenchyme and 

begins to branch to form the rudimentary gland of the neonate.  The surrounding dermis 

differentiates to form the stroma by 32 weeks.  The lactiferous ducts emerge at the 

mammary pit – a depression that evaginates near birth to form the nipple.   

Initially, the breast structure appears to develop independently of steroid hormones.  

After the fifteenth week, testosterone plays an important role.  Estrogen and progesterone 

receptors only appear at about the 30th week of gestation (Keeling et al., 2000).  The gland 

remains in a quiescent state until puberty when ovarian hormones, estrogen and 

progesterone, stimulate the growth of the terminal end bud.  Ducts elongate and cells 

differentiate into luminal epithelial cells and myoepithelial cells.  This continues until the 

limits of the fat pad is reached, after which duct elongation ceases.  It has been suggested 
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that the duct epithelium is most susceptible to carcinogens (e.g. from smoking) during this 

period (Russo et al., 1982). 

The cyclical phase of breast development begins once pregnancy ensues.  Estrogen 

stimulates the proliferation of lobuloalveolar progenitor cells within the ducts resulting in 

alveolar formation.  Initially, the alveolus is made up of a mass of granular polyhedral 

cells.  Under the influence of prolactin, an anterior pituitary gland hormone whose 

secretion increases after 8 weeks of pregnancy and rises throughout, they acquire the 

capacity to produce milk proteins, but secretory function is inhibited.     

At parturition, the inhibitory effect of estrogen and progesterone on lactation is 

lifted by the delivery of the placenta, causing a drop of their levels in the blood.  Suckling 

inhibits the secretion of prolactin inhibitory hormone from the hypopituitary, causing a 

more rapid rise in prolactin secretion.  The central alveolar cells undergo fatty 

degeneration and are passed out as colostrum, whilst the peripheral cells form oil-laden 

secretory vacuoles, the contents of which are emptied into the alveolar lumen by 

exocytosis.  Myoepithelial cells that surround the alveoli, contract to express milk upon 

stimulation by oxytocin, secreted by the posterior pituitary in response to suckling.  On 

weaning, milk secretion stops and the alveolar cells undergo apoptosis; and the rest of the 

epithelial cells remodels into a ductal gland morphology, awaiting the next pregnancy.  It 

is thought that differentiation of the lobuloalveolar progenitor cells during pregnancy 

reduces the number of cells susceptible to malignant change, thereby lowering the long-

term breast cancer risk of the multi-parous woman (Russo et al., 1999).   
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1.4 Histopathology 

 

Because of the different cell types in the breast, several rare malignancies occur in 

the breast, including cystosarcoma phyllodes, angiosarcoma, primary lymphoma.  These 

are not epithelial malignancies and are therefore not considered typical breast cancers and 

will not be further discussed.  The bulk of breast cancers is of epithelial origin and present 

with distinctive histology under the light microscope. 

The American Joint Committee on Cancer (AJCC) classifies the histological types 

into 5 main groups: (1) carcinoma, NOS (not otherwise specified); (2) ductal; (3) lobular; 

(4) nipple (Paget’s disease); and (5) others (undifferentiated carcinoma).  Each group is 

further divided into subgroups, for example, the ductal group of breast cancers, consists of 

intraductal (in situ), invasive with predominant intraductal component, invasive (NOS), 

comedo, inflammatory, medullary with lymphocytic infiltrate, mucinous (colloid), 

papillary, scirrhous, tubular and “other” cancers (AJCC, 2002).  In Singapore, like the rest 

of the world, the invasive ductal breast cancer is by far the most common type of breast 

cancer (79% of all cases in Singapore from 1993 to 1997), followed by invasive lobular 

cancer (4.4%) (Chia et al., 2000).   

Biological characteristics differ between the histological types.  Papillary and 

mucinous carcinomas tend to occur in older patients compared to those with other types of 

carcinoma.  On the other hand, medullary carcinomas occur in the relatively young, and 

they have poorly differentiated histology, lymphocytic infiltration and absence of 

hormone receptors.  Lobular cancer tends to have contra-lateral recurrence (Broet et al., 
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1995).  Histological types associated with favourable prognosis include tubular (>97% 5-

year disease free survival), mucinous (84%), medullary (78%) carcinomas. 

Breast cancers are also classified according to tumour grade – an estimate of 

differentiation by light microscopy.  It is significantly related to frequency of recurrence 

and death, disease-free interval and overall length of survival after treatment, regardless of 

clinical stage (Yoshimoto et al., 1993).  Histologic grading of invasive ductal breast 

cancer is commonly based on the Bloom and Richardson criteria: (a) the extent of tubule 

formation, (b) nuclear pleomorphism, and (c) mitotic rate, are assigned a score of 1 to 3.  

The total score determines the final grade with well-differentiated (grade I) scoring 3 to 5, 

intermediate (grade II) scoring 6 to 7 and poorly differentiated (grade III) cancers scoring 

8 to 9 (Figure 3).   

Other microscopic features that may be useful in predicting poor prognosis include:  

(1) necrosis – presence of which reflects rapid tumour growth;  

(2) lymphoplasmacytic infiltrate – often associated with medullary carcinoma 

which has favorable prognosis, however, its occurrence in non-medullary ductal 

carcinomas are associated with poor differentiation and hormone receptor negativity;  

(3) vascular invasion – penetration of lymphatic and blood vessels by tumour cells 

detected microscopically predicted higher frequency of local recurrence and lower 

survival rate; lymphatic tumour emboli, in particular, was unfavourable especially in node 

negative patients, with a 3 times increased risk of recurrence if found in a T1N0M0 cancer;  

(4) angiogenesis – high tumoral micro-vessel density has shown promise as a 

negative prognostic marker, but a standardized method of assessing vascular density has 

not been established; 
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 (A) 

 (B) 

Figure 3. (A) Grade 1 invasive ductal breast cancer showing well formed tubules with 
lining cells exhibiting minimal nuclear pleomorphism; (B) Grade 3 invasive ductal breast 
cancer with increased nuclear size and pleomorphism (magnification 160x). 
 

  

The role of stromal characteristics and extent of intraductal carcinoma in 

prognostication remains controversial (Rosen, 2001). 

Other than cellular and structural characteristics under light microscopy, the 

expression of certain molecular markers in breast cancers is also of histological interest.  

Immunohistochemical detection of estrogen receptors (ER) and progesterone receptors 
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(PR) is used to determine the possibility of benefit of hormonal therapeutic agents and in 

the risk stratification of node negative breast cancer patients.  More recently, tumour 

proliferative (S-phase) fraction (Hutchins et al., 1999) and level of HER2/neu expression 

(Thor et al., 1998) are used to guide the selection of adjuvant chemotherapy treatment.  

The advent of a humanized monoclonal antibody that binds HER2/neu receptor 

(Herceptin) for treatment of metastatic breast cancers makes HER2/neu 

immunohistochemistry useful in predicting response to treatment (Burstein et al., 2001).   

Molecules that have been extensively studied as immunohistochemical markers, 

but presently have not found widespread clinical use in breast cancers include MUC 1 (a 

glycosylated mucin protein), peptide growth factors and their receptor (eg. EGF, EGFR, 

TGF-α, TGF-β), other oncogenes (eg. ras, c-myc), p53 tumour suppressor gene, cell 

proliferation markers (eg. Ki67, PCNA) and other molecules (eg. metalloproteases, 

intermediate filament proteins, basement membrane components, CEA, cathepsin D). 

 

 

1.5 Staging and treatment 

 

Staging is based on a TNM classification (AJCC, 2002).  Tumour size (T), 

regional lymph node involvement (N) and presence of distant metastasis (M) are used in 

the staging system.  Stage grouping is used to predict survival and as a guide for treatment. 

For ductal carcinoma-in-situ, treatment is with total mastectomy, or breast-

conserving surgery and radiation therapy.  On the other hand, lobular carcinoma-in-situ 
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may be observed after diagnostic biopsy.  In both cancer types, tamoxifen may be added 

to reduce risk of subsequent cancer progression. 

Invasive breast cancers are treated more aggressively.  Treatment modalities are 

chosen bearing in mind the side-effects of treatment and the risk of recurrent disease after 

treatment.   

For operable breast cancers, initial loco-regional treatment may be either modified 

radical mastectomy, or breast-conserving surgery (lumpectomy) and axillary clearance 

with breast irradiation.   

Adjuvant radiotherapy to the chest wall and lymph node is advised for selected 

patients with higher risk for loco-regional recurrence after mastectomy, such as those with 

primary tumours more than 5cm in diameter or having more than 4 lymph nodes, or extra-

nodal involvement (Fowble et al., 1988).      

Systemic treatment includes cytotoxic chemotherapy and hormone antagonists.  

For ER or PR positive tumours, tamoxifen (an estrogen receptor antagonist) may be given.  

A recent trial showed improvements in disease-free survival if letrazole, an aromatase 

inhibitor, were given after about 5 years of treatment with tamoxifen (Goss et al., 2003), 

but more detailed analyses of possible bone, lipid, and cardiovascular side effects with the 

new regime is pending.  Medical ovarian ablation using a gonadotropin-releasing 

hormone analogue in place of, or in combination with tamoxifen is still the subject of 

clinical evaluation.  Popular adjuvant chemotherapy regimes for breast cancer are either 

anthracycline-based or cyclophosphamide/methotrexate/5-fluorouracil (CMF) based.  

They are usually given to patients with lymph node positive, or intermediate to high risk 

node negative tumours, unless age or physical condition does not permit.   
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The treatment of inoperable, metastatic and recurrent breast cancer will depend on 

the clinical situation.  Often, it involves combined modality treatment, with the goals of 

improving quality of life and prolongation of life (National Cancer Institute, 2002). 

  

 

1.6 Apoptosis in breast cancer 

  

The development of cancer is a multi-step process.  Aided by genomic instability, the cell 

undergoes a succession of genetic changes.  Those that confer the cell a survival 

advantage, will be selected by a “Darwinian” process and propagated as the cell 

progresses from a pre-malignant state to cancer.  It is believed that, no matter which genes 

are modified, virtually all cancers eventually manifest six “hallmark” capabilities: (1) self-

sufficiency in growth signals; (2) insensitivity to anti-growth signals; (3) evasion of 

apoptosis; (4) limitless replicative potential; (5) sustained angiogenesis; and (6) tissue 

invasion and metastasis (Hanahan et al., 2000).  Acquisition of the “hallmark capabilities” 

sets the scene for tumour expansion.   

Apoptosis is a process of physiologically programmed cell death manifested by 

cell shrinkage, formation of blebs, breakdown of nucleus, and fragmentation of DNA and 

chromatin condensation.   

By exploiting its characteristic physical and biochemical changes, apoptosis can be 

readily detected in tissues.  Electron microscopy is able to detail the ultrastructural 

changes and surface blebbing of apoptotic cells.  The characteristic DNA fragmentation 

can be shown using agarose gel electrophoresis or ELISA: the internucleosomal cleavage 
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of DNA during apoptosis results in a typical “ladder” fragmentation pattern after DNA 

electrophoresis; and the nucleosomal complex of histone proteins and double-stranded 

DNA (dsDNA) are selectively identified with ELISA using an antibody to a histone 

protein and another to dsDNA.  The terminal deoxynucleotidyl transferase-mediated, 

dUTP-biotin nick end-labeling (TUNEL) method amplifies and detects the binding of 

dUTP-biotin to terminal 3’-hydroxyl ends of single or double stranded DNA exposed 

during DNA breakdown.  Flow cytometric determination of apoptosis can be performed 

using propidium iodide and FITC-labelled annexin V simultaneously.  Propidium iodide 

binds to DNA and enters necrotic cells but is excluded from apoptotic cells whilst annexin 

V binds to phosphatidylserine, which translocates to the outer leaflet of the plasma 

membrane early in apoptosis (Allen et al., 1997). 

Figure 4 illustrates the many possible pathways that lead to apoptosis.  Because of 

the multitude of pathways triggering this self-destructive mechanism, the prevention of 

cell death is a complicated process.  

At the most proximal level, a group of proteins, the IAPs (inhibitor of apoptosis 

proteins), bind and inhibit the effector caspases, and may also promote their degradation 

through ubiquitination.  During apoptosis, the inhibitory effect of IAPs is lifted by the 

release of an IAP-binding protein, SMAC (second mitochondria-derived activator of 

caspase), from the mitochondria.  Of the nine IAP family members, XIAP, cIAP1, cIAP2 

and survivin have been found to be involved in apoptotic regulation in breast cancer cells.  

Survivin is over-expressed in 60% to 70% of breast cancers and is associated with 

reduced apoptotic index in these tumours (Tanaka et al., 2000).   
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Figure 4. Some of the many pathways to apoptosis.  Two major routes are evident: one 
through activation of death receptors, such as TNF, TRAIL and Fas ligand; another 
through the mitochondria.  These two routes may interact through caspase 8.  (MAPKK = 
mitogen activated kinase kinase; MAPKKK = MAPKK kinase) 

 

 

Further upstream of the effector caspases, a plethora of anti-apoptotic and pro-

apoptotic proteins serve to regulate apoptosis tightly.   

Over-expression of anti-apoptotic proteins is a common feature of breast cancer.  

For example, Bcl-2 and Bcl-xL, when up-regulated, confer resistance to apoptosis in 

breast cancer.  Although both proteins inhibit apoptosis primarily through the 

mitochondria mediated pathway, over-expression of either protein was shown to be 
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operative in the resistance of breast cancer cells to apoptosis after activation of the death-

receptor apoptotic pathway (Srinivasan et al., 1998 and Fulda et al., 2002), as well as 

when p53 is up-regulated (Schott et al., 1995).  Treatment of a breast cancer cell line with 

anti-sense oligonucleotide to Bcl-xL induces cytochrome c release and mitochondrial 

membrane permeability change (Simoes-Wust et al., 2000) and inhibiting Bcl-2 

expression in a similar way also promotes apoptosis in breast cancer cells (Chi et al., 

2000). 

On the other hand, down regulation or mutation of pro-apoptotic molecules confer 

apoptotic resistance.  Pro-apoptotic members of the Bcl-2 family include Bax, Bak, Bad, 

Bid and Bim.  Of these, Bax has been most actively studied in breast cancer patients 

(Jager et al., 2002).  Bax may be mutated, resulting in loss of function in breast cancer 

(Seitz et al., 2003).  In transgenic mouse models, partial loss of Bax expression resulted in 

accelerated progression of mammary tumours (Shibata et al., 1999), whilst induction of 

Bax expression restored sensitivity to apoptosis and reduced breast tumour growth 

(Bargou et al., 1996). 

Amplification of c-myc is a common occurrence in breast carcinogenesis, but it 

promotes programmed cell death through the adaptor protein, Bin1.  This protein is 

expressed in normal breast epithelium, and is frequently missing or inactivated in 

malignant breast cancer cells.  In most cases, the down-regulation is attributed to 

epigenetic causes (Ge et al., 2000), suggesting the importance of suppressing pro-

apoptotic factors during tumour growth in breast cancer.  

P53 is another pro-apoptotic protein of interest in breast cancer.  In addition to 

causing cell cycle arrest, p53 induces transcriptional activation of pro-apoptotic genes 
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such as that of Bax, Apaf-1 and DR5.  More recently, it is suggested that p53 also binds 

directly to Bcl-xL and Bcl-2, liberating Bax and Bak from inhibition, thereby causing 

changes in the mitochondrial membrane that leads to the caspase cascade towards 

apoptosis (Manfredi, 2003).  Inactivating mutations of p53 has been found to worsen 

prognosis in human breast cancers (Liu et al., 2002).   

In many tumours, death receptors are the target of modification to reduce their 

sensitivity to apoptotic signals.  The death receptors may be downregulated, inactivated, 

or mutated.  Breast cancer cells are frequently resistant to Fas mediated apoptosis.  The 

expression of Fas is down-regulated in more breast cancers compared to benign tumours 

(Mottolese et al., 2000). However, somatic mutation in Fas could not be found in a 

sample of 48 breast cancer cases (Muschen et al., 2001).  Functionally significant 

mutations of DR4 and DR5 are found only in metastatic breast cancers, suggesting that 

these genetic adaptations occur late in breast carcinogenesis (Puiu et al., 2003).   

Some malignancies secrete decoy molecules that bind death-receptor ligands 

without initiating any apoptotic signaling cascade.   Soluble Fas and DcR3 (decoy 

receptor 3) compete with trans-membrane Fas for binding with the Fas ligand (FasL).  

Soluble Fas is transcribed in breast cancers and can be detected in the serum of breast 

cancer patients.  Higher levels of soluble Fas are associated with breast cancers of higher 

TMN stage (Sheen-Chen et al., 2003).  DcR3 may play a lesser role in breast cancers.  

Serum levels of DcR3 in breast cancer patients are not significantly higher compared to 

healthy patients, in contrast with that of patients with cancers of gastrointestinal origin 

(Wu et al., 2003). 
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1.6.1 Resisting intrinsic pressures for apoptosis 

 

Apoptotic restraint in breast cancer is further enhanced by molecular adaptations to the 

“sensory” signaling pathways that are set off by environmental and cellular apoptotic 

pressures.  The cellular impetus for apoptosis may arise from the disturbances to such 

cellular processes as growth and DNA repair.   

Deregulated cell proliferation often results in increased apoptotic pressures.  

Proliferative oncogene, Ras can be detected immunohistochemically in about 60% of 

breast cancers (Gohring et al., 1999).  It acts synergistically with E2F1 (E2 promoter 

binding factor 1) to activate ARF expression, which in turn stabilizes p53, thereby 

sensitizing the cell to apoptosis (Berkovich et al., 2003).  E2F1 also acts as a counterpoise 

to the loss of function of tumour suppressor Rb.  Rb regulates the G1 cell cycle 

checkpoint, and the loss of which results in cell proliferation and E2F1-mediated 

apoptosis (Ginsberg, 2002).  In addition to inducing apoptosis through the 

ARF/Mdm2/p53 pathway, alternative pathways of apoptotic induction may be possible at 

the same time as E2F1 also upregulates transcription of p73, Apaf-1, pro-apoptotic 

members of the Bcl-2 protein family, and caspases 3 and 7.  Whilst functional loss of 

E2F1 is not documented in human breast cancers, it is possible that inactivation of other 

essential pro-apoptotic proteins or increased expression of anti-apoptotic proteins will be 

required for breast cancer development in the presence of such proliferative stimuli.   

Cells defective in DNA repair accumulate DNA mutations, and those defective in 

apoptosis survive with the mutations, and proliferate.  Polymorphisms of one of several 

proteins involved in DNA repair, such as MLH1, MSH2, ATM, BRCA1 or BRCA2, 
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occur in some sporadic breast cancers and are frequently associated with familial cancers.  

These proteins involved in DNA repair, also play a role in initiating apoptosis in the 

presence of excess DNA damage (Rich et al., 2000).  As an illustration, BRCA1 acts in a 

multi-protein BRCA1-associated genome surveillance complex to sense DNA damage 

and participate in homologous recombinational repair of double stranded breaks.  It also 

acts as a transcriptional activator for the gene coding for GADD45, which is known to 

trigger apoptosis through JNK (c-Jun N-terminal kinase).  Alternatively, BRCA1 may act 

through H-Ras proto-oncogene to involve the same JNK pathway (Thangaraju et al., 

2000).  As a result, carriers of BRCA1 mutations are at a substantially higher risk of 

developing breast cancer in their life-time compared to the general population.  Evasion of 

apoptosis in the face of DNA damage leads to propagation of mutation and the resulting 

chromosomal aberrations can be the cause of genomic instability promoting further 

malignant change. 

Further, cells are sensitive to external environmental conditions for “survival 

signals”.  Signaling molecules such as cytokines, hormones, growth factors and adhesion 

molecules, bind to cellular receptors that activate downstream signaling pathways.  A lack 

of these signals usually triggers apoptosis via the PI3K/PDK1/Akt pathway, but the 

molecular pathway may be modified in breast cancers to inhibit the initiation of the 

apoptotic process.   

Normally, the binding of integrins to the extra-cellular matrix is communicated to 

the PI3K/PDK1/Akt pathway via integrin-linked kinases, focal adhesion kinases or Shc, 

resulting in cell survival and proliferation (Grossmann, 2002).  Breast epithelial cells will 

undergo a special form of cell death (anoikis) when cell anchorage is inadequate.  This 
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process is disrupted in breast cancers, facilitating detachment from matrix, hence tumour 

growth and metastasis (Streuli et al., 1999).  

In addition to the regulation of growth and proliferation, growth factor receptors 

have the ability to trigger/prevent apoptosis.  The epidermal growth factor receptors 

(EGFR), particularly HER2 (or EGFR-2, encoded by gene c-erbB2), plays an important 

role in breast cancer development.  On binding with EGF, the EGFR oligomerizes and 

exhibits tyrosine kinase activity.  Through adaptor protein, Shc, signaling cascades down 

the Raf/MEK/ERK and PI3K/PDK1/Akt pathways are initiated.  Akt phosphorylates and 

inactivates pro-apoptotic proteins Bad and caspase 9, as well as transcription factors (eg. 

Forkhead factors) which are responsible for expression of pro-apoptotic genes.  The 

PI3K/PDK1/Akt pathway is negatively regulated by PTEN.  Female patients with 

Cowden syndrome, a disease associated with germline PTEN mutation, have an increased 

(25-50%) risk of developing breast cancer during their lifetime compared to the general 

population.  The breast cancer may also exhibit EGF independent survival and elude 

apoptosis by gene amplification of c-erbB2, a phenomenon found in about 25% of breast 

cancers (Navolanic et al., 2003).   

 

1.6.2 Resisting extrinsic pressures for apoptosis 

 

Even when cells manage to circumvent the intrinsic tendencies to undergo apoptosis, the 

immune system serves as a watchdog against cancer formation.  Immunosurveillance 

against transformed cells are mainly performed by NK cells and T cells, by inducing 

apoptosis (Henkart et al., 1997).  Histological sections often reveal lymphocytes 
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surrounding nests of breast cancer cells; and T cell response against breast cancer specific 

tumour associated antigens, eg. Her2 and MUC1, can be detected in breast cancer patients 

but not in normal controls (Nagorsen et al., 2003).   In order to grow to such clinically 

significant size in the face of such immune response, the cancer cells will have developed 

resistance to such targeted cell killing, or develop mechanisms to avoid immune detection.   

Lymphocytes secrete perforin and proteolytic enzymes, known as granzymes 

towards target cells.  Perforin causes an increase in plasma membrane permeability, 

allowing the granzymes to penetrate the target cell cytoplasm.  Granzymes, being serine 

proteases, may cause cell death by cleaving and activating caspases and pro-apoptotic Bid 

(Barry et al., 2002).  Breast cell lines has been shown to express serine protease inhibitor 

PI-9/SPI-6, which inhibits granzyme B, resulting in immune escape (Medema et al., 2001).  

It is not known if human breast tumours behave in the same way.   

The lymphocytes may also express FasL, which binds to Fas on the cancer cell 

surface, initiating the death-receptor apoptotic pathway.  As described in the previous 

section, many breast cancers have developed mechanisms to elude Fas activation.  In 

reverse, tumours may over-express FasL to cause Fas-dependent apoptosis in susceptible 

lymphocytes.  This was demonstrated when breast cancer, hepatoblastoma and colonic 

adenocarcinoma cells caused destruction of co-cultured Fas-positive Jurkat lymphocytes 

(Muschen et al., 2000).  Higher transcription of FasL relative to Fas in breast cancers is 

associated with poorer prognosis (Reimer et al., 2000). Interestingly, tamoxifen binding to 

estrogen receptors on breast cancer cells inhibits FasL expression, possibly explaining the 

protective effect of tamoxifen against breast cancer (Mor et al., 2000).  
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1.6.3 Chemotherapy resistance 

 

Therapeutic induction of apoptosis is another stress that breast cancers have to contend 

with.  Measurable increases in apoptosis occur in breast tumours within 24 hours of 

starting chemotherapy (Archer et al., 2003).  From the 1980s till presently, the use of 

chemotherapy has become more prevalent and its application is gradually extended to 

breast cancers of lower risk groups than before (Mariotto et al., 2002).  Cytotoxic drugs in 

common use for adjuvant treatment of breast cancer patients employ a variety of 

mechanisms to disturb cell processes.  They include DNA-damaging agents such as 

cyclophosphamide and anthracyclines (eg. doxorubicin), anti-metabolites such as 

methotrexate and 5-fluorouracil, as well as, mitotic inhibitors such as taxanes (eg. 

docetaxel and paclitaxel). 

Exposing breast cancer cells to agents that affect nucleic acid metabolism results 

in p53 induction through the activation of DNA-repair pathways.  Doxorubicin, 

methotrexate and 5-fluorouracil have all been shown to induce Fas by a transcriptionally 

regulated p53 mechanism, rendering the cell sensitive to FasL-mediated apoptosis (Muller 

et al., 1998).  At the same time, the stress activated protein kinase, JNK, pathway 

signaling appears to influence doxorubicin-induced cell cycle withdrawal and control of 

apoptosis (Kim et al., 2003).  On the other hand, micro-tubule active drugs had no effect 

on p53 expression in breast cancer, but brought about Bcl-2 hyperphosphorylation and 

inactivation as well as reduced Bax-Bcl-2 dimerization, resulting in apoptosis (Srivastava 

et al., 1998). 
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It is not surprising, therefore, that many apoptosis-related markers, such as bcl-2, 

bax, bcl-xL, bag-1, fas, and fasL have been investigated for their ability to confer 

chemotherapy resistance in breast cancers (Sjostrom et al., 2002).  Inhibition of pro-

apoptotic proteins, such as Bim (Sunters et al., 2003) resulted in resistance against 

chemotherapy agents, whilst inhibition of anti-apoptotic markers, such as Bcl-2 and Bcl-

xL increased sensitivity.  In fact, the inhibition of these proteins is being studied actively 

as a potential adjunct treatment to increase sensitivity of breast cancer to chemotherapy 

(Simoes-Wust et al., 2002). 

The over-activation of growth factor receptors, such as from the over-expression 

of HER2, results in broad spectrum chemo-resistance against both groups of cytotoxic 

drugs (Knuefermann et al., 2003).  It was demonstrated that the resultant activation of the 

PI3K/PDK1/Akt signalling pathway is primarily responsible for abrogating the apoptotic 

pressures generated by these drugs (Jin et al., 2003), resulting in reduced survival in Her-2 

positive breast cancer patients compared to Her-2 negative patients after exposure to 

chemotherapy (Walker, 2000).   

Other survival strategies that may be employed by the cancer cell include 

mechanisms that reduce intra-cellular drug accumulation (such as by regulating drug 

influx and efflux, and drug detoxification) and those that limit the damage caused (such as 

by altering the drug target and by damage repair).  For example, resistance to 

cyclophosphamide is primarily mediated by increased rates of inactivation of active 

metabolites through conjugation with glutathione or metabolism to its inactive keto and 

carboxy metabolites.  Methotrexate resistance, in contrast, is probably a complex 

multifactorial phenomenon – impaired transport of methothrexate into cells, increased 
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expression of the drug target dihydrofolate reductase or production of altered forms with 

decreased affinity for the drug, as well as decreased ability to synthesize active 

metabolites have been reported  (Chabner et al., 2001).   

In addition to specific resistance mechanisms, there is also a group of 

detoxification enzymes and drug transporters that may confer resistance to a broad 

spectrum of chemotherapy drugs.  Cytochrome P450, aldehyde dehydrogenase (Sreerama 

et al., 1997), NAD(P)H:quinone oxidoreductase 1 (Begleiter et al., 1997), glutathione S-

tranferase (Salinas et al., 1999), metallothionein (Cherian et al., 2003), cytosolic 

sulfotransferase (Coughtrie, 2003) all represent major detoxification enzyme systems that 

play a part in xenobiotic metabolism in breast cancers.  Membrane transporter proteins, 

such as p-glycoprotein (Pgp), multidrug resistance protein 1 and breast cancer resistance 

protein (Allen et al., 2002), that actively remove multiple substrates from the cell 

cytoplasm, are operative many breast cancers.  The clinical importance of these proteins 

in the protection of breast cancer from cell death during chemotherapeutic treatment is 

currently an area of active study and debate. 

 

From the above review of the apoptotic pressures faced by the breast cancer cell, 

the redundancy of apoptotic pathways makes potentially malignant cells vulnerable to 

apoptosis.  The cancer cell is practically under siege (Figure 5).  Acquiring critical 

molecular adaptations allows it to modulate the severity of the onslaught and survive. 
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Figure 5. Defence against apoptosis.   

 

 

1.7 Glutathione S-transferase pi (GST-pi) 

 

Glutathione S-transferases (GSTs) are a family of phase II detoxification enzymes 

comprising cytosolic and membrane-bound microsomal members.  Membrane-bound 

members trimerize, rather than dimerize to form a single active site, hence constitute a 

distinct group.  Cytosolic GSTs are divided into 6 classes, designated α (alpha), ξ (zeta), θ 

(theta), µ (mu), π (pi) and ω (omega); the most abundant in mammals being the alpha, mu 
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and pi classes.  They have probably risen from single ancestors, and through mutation, 

gene duplication and recombination, resulted in broad substrate specificity.   

The primary function of GST is to catalyze the conjugation of glutathione to a 

variety of electrophilic compounds.  Substrates include potentially toxic substances such 

as carcinogens (eg. aflatoxin B, benzo[a]pyrene), pesticides (eg. DDT, parathion), 

products of oxidative damage (eg. fatty acid hydroperoxides, cholesterol-5,6-oxide, 

nucleic acid base propenals) and cytotoxic chemotherapy (eg. cyclophosphamide, 

melphalan).  In general, conjugation to glutathione inactivates the parent compound, 

makes hydrophobic substrates more soluble and facilitates excretion through efflux pumps. 

Some members of the GST family, such as GST-pi, have glutathione peroxidase 

activity (Batist et al., 1986) and catalyze the reduction of organic hydroperoxides (fatty 

acid, phospholipids, and DNA hydroperoxides) to their corresponding alcohols.   

Another interesting feature of GSTs is the ability to act as “ligandin” by binding 

(sometimes covalently) to various compounds that are not substrates for enzymatic 

activity, such as steroid and thyroid hormones, bile acids and bilirubin (Litowsky, 1993).  

This may perform a regulatory function by sequestering the molecules to form an intra-

cellular pool or serve a protective function by preventing toxic compounds from 

interacting with target molecules.     

Because of their importance in inactivating potential carcinogens, cytosolic GST 

expression has been studied as a possible marker that may modify breast cancer risk.  

Large studies (with more than 400 patients) studying the breast cancer risk of subjects 

with GST-mu and GST-theta null genotypes have consistently shown no significant 

increase in risk compared to that of their GST-mu or GST-theta expressing counterparts 
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(Maugard et al., 1998; Garcia-Closas et al., 1999; and Gudmundsdottir et al., 2001); and 

research analyzing the polymorphisms of GST-zeta (Smith et al., 2001) and GST-pi 

(Maugard et al., 2001 and Gudmundsdottir et al., 2001) could not show any correlation 

between catalytic activity and breast cancer risk. 

Also of interest, is the role of GSTs in cancer progression.  In breast cancers, the 

expression of alpha class of GST in breast cancer is low, whilst the expression of GST-mu 

is consistent with the presence of germ-line polymorphism of the GST-mu gene, hence 

not likely a factor regulated to promote the persistence of the disease (Shea et al., 1990).  

GST-pi expression, on the other hand, is widely variable in breast cancers (Kelley et al., 

1994). 

GST-pi, originally isolated in the human placenta (Guthenberg et al., 1979), is a 

210 amino acid sized anionic protein.  It is characteristic for high activity against base 

propenals and other aldehyde products of oxidative stress (Berhane et al., 1994).  

Although GST-pi null mice appeared healthy, had no obvious signs of distress or illness, 

and normally developed organs on histopathological examination (Henderson et al., 1998), 

the importance of GST-pi in cancer cell survival is reflected by the induction of potent 

apoptosis when GST-pi activity is suppressed by a specific inhibitor (Asakura et al., 

2001).  Further, GST-pi is up-regulated in breast cancer cells resistant to doxorubicin 

(Kim et al., 1991), vincristine (Whelan et al., 1992) and cyclophosphamide (Chen et al., 

1995), suggesting a role in chemotherapy resistance. 
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1.8 Scope of study 

 

Assessing the susceptibility of breast cancer to cell death is important as it reveals the 

potential of the cancer to become more malignant, to colonize potentially hostile 

environments in distant sites and to survive cytotoxic chemotherapy.  Identifying tumour 

markers associated with these clinically pertinent biological characteristics will allow 

oncologists to stratify recurrence risk and provide more specific treatment regimes and 

directed counseling for patients. 

 In an earlier study (Huang et al., 2000), it was shown that there were differences in 

nuclear shape and size between GST-pi positive and GST-pi negative breast cancer cells 

within human breast cancer tissues, suggesting that GST-pi may affect nuclear processes 

in breast cancer.  It was felt that GST-pi might be able to inhibit apoptosis in the breast 

cancers, allowing the accumulation of potentially lethal mutations and chromosomal 

changes, thereby causing the changes in nuclear morphology. 

Based on the observations of the above study, it was hypothesized that GST-pi 

expression in breast cancers result in clinically significant effects on the disease history 

with or without chemotherapy.  The possibility that this effect is due to inhibition of 

apoptosis or concomitant expression of other biological markers is further examined. 

 As such, the following have been evaluated: 

1. expression of GST-pi in breast cancer and its association with common clinico-

pathological features; 

2. relationship of GST-pi expression with total GST activity, lipid peroxidation and 

apoptosis; 
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3. clinical significance of GST-pi expression in terms of recurrence-free survival 

with or without adjuvant chemotherapy; 

4. association of GST-pi expression with Bcl-2 and metallothionein (MT) that may 

provide the breast cancer a “survival” phenotype; and 

5. association of GST-pi expression with Y-box binding protein-1 (YB-1) and p-

glycoprotein (Pgp) expression, as well as, assessment of their clinical significance 

especially in patients who received adjuvant chemotherapy. 



 
 
 
 
 
 
 
 
 
 

Materials and Methods
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2.1 Patients 

 

This study included 137 women diagnosed with infiltrative ductal breast 

carcinomas.  These patients had no distant metastasis at the time of diagnosis and 

underwent mastectomy or lumpectomy without neoadjuvant treatment between 1998 and 

1999 in the Singapore General Hospital.  The study was approved by the instiutional 

ethics committee.  Data on tumour size and grade, lymph node involvement, estrogen and 

progesterone receptor status were obtained from histopathological records.     

Paraffin embedded breast cancer sections from 116 patients were used in terminal 

deoxynucleotidyl transferase-mediated, dUTP-biotin nick end-labeling (TUNEL) 

technique, as well as glutathione S-transferase pi (GST-pi) and Bcl-2 

immunohistochemistry.   

 

2.1.1 Clinico-pathological characteristics 

 

The age of the patients ranged from 33 to 86 years, with a median age of 52 years; 66 

(57%) of the patients were more than 50 years of age.  Twenty-one (18%) of the tumours 

were stage T1 (≤ 2cm in greatest dimension), 82 (71%) were stage T2 (more than 2cm to 

5cm in greatest dimension), whilst the rest of the tumours were stage T3 (more than 5cm 

in size) or T4 (local extension into chest wall or skin); 11 (9%) were histologically grade I, 

43 (37%) were grade II and the majority of the tumours were grade III; 74 (64%) of the 

primary tumours were estrogen receptor positive, 40 (34%) were estrogen receptor 

negative whilst estrogen receptor status was not analyzed for 2 patients at the time of 
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diagnosis;  63 (54%) had lymph node metastasis at diagnosis, 51 (44%) did not whilst 2 

other patients did not undergo axillary lymph node dissection. 

A more detailed study of the biological associations of GST-pi was conducted in 

tumour samples from 32 different patients for whom the tissues could be collected in cold 

0.9% saline solution immediately after surgery.  After macroscopic examination, a section 

of at least 1 cm3 was rapidly frozen in liquid nitrogen and stored until further use in the 

measurement of total glutathione S-transferase (GST) activity and quantitation of 

thiobarbituric acid reactive substances (TBARS) for each of the tumours.  The remaining 

tissues were fixed in formalin and embedded in paraffin for histological analyses. 

Further immunohistochemical studies of Y-box binding protein-1 (YB-1), 

metallothionein (MT) and p-glycoprotein (Pgp) were performed on a random sample of 

99 tumours from the set of 116 tumours.  The clinico-pathological characteristics of this 

sample are comparable with the parent set of tumours (see Table 1). 

 

2.1.2 Patient treatment 

 

Chemotherapy treatment was prescribed for 71 (61%) of the 116 patients.  The regimes 

were noted from the case records and confirmed with attendance records from the 

National Cancer Centre, Singapore.  Thirty-six (51%) patients received the 

cyclophosphamide/methotrexate/5-fluorouracil (CMF) regime, whereas the rest received 

doxorubicin-based regimes such as doxorubicin/cyclophosphamide, doxorubicin/taxol, 

and cyclophosphamide/doxorubicin/5-fluorouracil.   
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Table 1. Summary of clinico-pathological characteristics 
 
Clinico-pathological factors Number of tumours 
    
Total number of  
tumours in study group 

116 99 32 

    
Median Patient age (range) 52 (33-86) 52 (33-86) 55.5 (44-85) 
  50 years and below 50 (43%) 43 (43%) 10 (31%) 
  More than 50 years 66 56 22 
    
Primary tumour    
  T1 21 (18%) 18 (18%) 7 (22%) 
  T2 82 (71%) 70 (71%) 21 (66%) 
  T3 and T4 13 11 4 
    
Regional lymph nodes    
  0 51 (44%) 47 (48%) 12 (38%) 
  1-3 32 (28%) 26 (26%) 10 (31%) 
  >3 31 (26%) 24 (24%) 10 
  Unknown 2 2 0 
    
Hormonal receptors    
  Positive 74 (64%) 64 (65%) 21 (66%) 
  Negative 40 (34%) 33 (33%) 11 
  Unknown 2 2 0 
    
Histologic grade    
  I 11 (9%) 10 (10%) 4 (13%) 
  II 43 (37%) 37 (37%) 13 (41%) 
  III 62 52 15 
 

 

2.1.3 Patient follow-up 

 

Patients were followed up for recurrence over durations ranging from 33 to 1464 days 

with a median follow-up of 1117 days.   
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2.2 Cell culture 

 

Breast cancer MCF7 (American Type Culture Collection Catalogue Number HTB-22) 

were routinely maintained in Dulbecco's modified Eagle's medium (DMEM, Sigma) 

supplemented with 5% fetal calf serum, 2 mmol/L glutamine, 100 units/ml penicillin and 

100 micrograms/ml streptomycin.  Cells were grown in a humidified atmosphere of 5% 

carbon dioxide at 37°C. 

 HeLa cervical cells (American Type Culture Collection Number CCL-2) were 

cultured in Dulbecco's modified Eagle's medium supplemented with 10% calf serum at 

37ºC. 

Chicken DT40 cells were cultured in a 5% CO2 incubator in growth medium 

(RPMI 1640 medium supplemented with 10% fetal calf serum, 1% chicken serum and 

0.1mM 2-mercaptoethanol) at 39.5ºC. 

 

 

2.3 Immunohistochemistry 

 

Sections were cut from paraffin-embedded tissue at a thickness of 4µm and mounted on 

APES (3-aminopropyl-tri-ethoxysilane, Sigma-3648) slides.  They were then prepared 

for immunohistochemistry by dewaxing in 2 changes of xylene and rehydrating to water 

through a series of alcohol of decreasing concentration.  Details of subsequent steps for 

the detection of each protein are elaborated individually below. 
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2.3.1 Bcl-2 

 

Sections were pre-heated in 10mM citrate buffer at pH 6.0 before incubation with 

primary antibody for antigen retrieval.  Buffer solution, phosphate buffered saline (pH 

7.4) solution was used to remove excess reagents in between each step.  The sections 

were immersed in 0.1% hydrogen peroxide for 30min and 4% normal horse serum for 1h 

to block endogenous peroxidase and non-specific antibody binding, respectively.  A 

mouse monoclonal to human Bcl-2 (Cymbus Biotechnology) was applied at 1:20 

dilution for 90 min. After washing, and incubation with the appropriate secondary 

antibodies for 1h, avidin-biotin-peroxidase complex was applied for 1 hr at room 

temperature to amplify the specific binding of primary antibody.  Visualization was 

achieved by incubating with 3,3’-diaminobenzidine tetrachloride (Sigma) as the 

peroxidase substrate. The sections were then counterstained with hematoxylin.  Buffer 

solution was substituted for the primary antibody in the negative control.  Normal ductal 

epithelium on the same slide was used as internal positive controls as Bcl-2 is known to 

be expressed in the epithelium of normal breast tissue, ductal hyperplasia and atypical 

ductal hyperplasia (Siziopikou et al., 1996).   

 

2.3.2 Glutathione S-transferase pi (GST-pi)  

 

Without pre-treatment for antigen retrieval, endogenous peroxidase was blocked by 0.1% 

hydrogen peroxide in methanol for 30 min, followed by blocking of non-specific binding 

of antibodies in 5% normal goat serum for 1h, before sections were incubated at room 
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temperature with primary antibody (Dako, USA) at 1:200 dilution for 2h.  Conditions 

were optimised to ensure minimal stromal staining.  For negative control, buffer (Tris 

buffer pH 7.4) was substituted for the primary antibody.   

Secondary antibody biotinylated anti-rabbit immunoglobulin (Dako, 1:200 dilution) 

was then applied for 30 min, followed by a 30-min incubation with biotin and avidin-

peroxidase complex (Dako).  The immunostaining was demonstrated using 

diaminobenzidine and hydrogen peroxide for 10 min.  The sections were counterstained 

with methyl green.   

 

2.3.3 Metallothionein (MT)  

 

Commercially available murine anti-human monoclonal E9 antibody (Dako) raised 

against a conserved epitope of MT-1 and MT-2 isoforms was used as the primary 

antibody.  Endogenous peroxidase was blocked by 0.5% hydrogen peroxide in methanol 

for 15min, followed by blocking of non-specific binding of antibodies in 5% normal 

horse serum for 1h, before sections were incubated at 4°C overnight.  For negative 

control, buffer (Tris buffer pH7.4) was substituted for the primary antibody.   

Secondary antibody biotinylated anti-mouse immunoglobulin (Dako, 1:200 

dilution) was then applied for 30 min, followed by a 30-min incubation with biotin and 

avidin-peroxidase complex (Dako).  The immunostaining was demonstrated using 

diaminobenzidine and hydrogen peroxide for 10 min.  The sections were counterstained 

with methyl green. 
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2.3.4 P-glycoprotein (Pgp) 

 

P-glycoprotein was detected using a mouse anti-human monoclonal JSB-1 antibody 

(Chemicon, 250µg/ml) which reacts with a conserved cytoplasmic epitope of the protein.  

The immunohistochemical method used was optimized from that described in Faneyte et 

al., 2001.  Dewaxed sections were microwave-heated for 25min from cold.  Endogenous 

peroxidase was blocked in 3% hydrogen peroxide for 10min and non-specific antibody 

binding blocked in 4% normal horse serum for 30min.  Primary antibody was then applied 

at a 1:20 dilution for 1 hour.  In the negative control, buffer solution (0.5M Tris-buffered 

saline pH 7.4) replaced the primary antibody.  A normal liver section was used as positive 

control.    

Detection and amplification of primary antibody binding was performed using 

anti-murine secondary antibodies (Dako) at 1:200 dilution for 30min and a 10-min 

incubation with biotin and avidin-peroxidase complex (Dako).  Visualization was 

achieved by the usual method described above with hematoxylin used as the counterstain.     

 

2.3.5 Y-box binding protein-1 (YB-1) 

 

Two different anti-YB-1 antibodies (gifts from Dr Ken Matsumoto, Institute of Physical 

and Chemical Research, Japan) were used for detection of YB-1 expression.  They are 

rabbit polyclonal antibodies separately raised against frog YB-1 protein and a novel 

chicken N-terminus deleted YB-1 protein (Figure 6), designated Frgyb-1 and Ckyb-1, 

respectively.      
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 Dewaxed sections were first heated in 10mM citrate buffer at pH 6.0 for antigen 

retrieval.  Endogenous peroxidase was blocked by immersion of slides in 0.3% hydrogen 

peroxide in methanol for 15min, followed by blocking of non-specific antibody binding, 

using 5% normal goat serum over 1hr.  Frgyb-1 IgG was used at an IgG concentration of 

45µl/ml, whilst anti-serum containing Ckyb-1 was used at dilution of 1:200 in buffer 

solution, 0.5M Tris-buffered saline pH 7.4.  They are applied at room temperature 

overnight. Secondary antibody - biotinylated anti-rabbit immunoglobulin (Dako, 1:200 

dilution) - was then applied for 30 min, followed by a 30-min incubation with biotin and 

avidin-peroxidase complex (Dako).  The immunostaining was demonstrated using 

diaminobenzidine and hydrogen peroxide for 10min.  The sections were counterstained 

with hematoxylin.   

 

 

Figure 6. Structure of novel chicken N-terminus deleted YB-1 protein used against which, 
rabbit polyclonal antibodies (Ckyb-1) are raised. 
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2.3.5.1  Immunoblotting 

MCF7 breast cancer cell line were washed 3 times with ice cold phosphate-buffered saline 

and lysed with boiling lysis buffer containing 10mM Tris, pH 7.4 and 1% SDS (sodium 

dodecyl sulfate).   

HeLa and chicken DT40 cells were washed with phosphate-buffered saline and 

lysed by sonication in 5mM Tris HCl pH 7.5, 1.5mM MgCl2, 10mM KCl, 0.5mM 

dithiothreitol and 0.25mM phenylmethylsulfonyl fluoride.  

The lysates were passed through a 27 gauge needle to shear nucleic acids and 

boiled for a further 5 min. Lysates were centrifuged at 14,000 g for 10 min and the clear 

supernate transferred to a new tube. Protein estimations were carried out using the BCA 

kit (Pierce, Rockford Il., USA). 20µg of protein were separated on a 10% SDS-

polyacrylamide gel and transferred to nitrocellulose.  Nitrocellulose membranes were 

blocked for 2 hours with 5% milk in TBST (10mM Tris pH8.0, 100mM NaCl and 1% 

Tween-20) buffer.  Membranes were then separately probed with Frgyb-1 and Ckyb-1 

antibodies in 5% milk in TBST overnight at 4°C.  The membranes were washed with 

TBST and incubated with a goat anti-rabbit peroxidase conjugated antibody (Pierce, 

Rockford Il., USA) for 2 hours at room temperature. Excess antibody was removed by 

further washes with TBST. The bound antibodies were visualized by chemiluminescense.  

Membranes were stripped and reprobed with anti-actin antibodies (Chemicon Int. Inc., 

Temecula, CA, USA). 
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2.4 Quantification of immunohistochemical staining 

 

The stained slides were viewed using a 40x objective of a light microscope, and 10 

random fields were selected and scored.   

Bcl-2 expression was classified as positive when more than 30% of tumour cells 

exhibited cytoplasmic staining, based on levels found previously to be clinically 

discriminating (Silvestrini et al., 1994).   

GST-pi expression was considered to be positive when more than 10% of tumours 

cells exhibited cytoplasmic or nuclear staining (Molina et al., 1993).   

Pgp over-expression was classified as positive when cancer cells exhibited 

cytoplasmic or plasma membrane staining patterns (Filipits et al., 1996).   

As MT was expressed in a large proportion of breast cancers (88% in this study), 

MT immunopositivity is ranked based on an immunoreactive score devised in an earlier 

study from the same laboratory (Jin et al., 2001).  The immunoreactive score is the 

product of staining intensity (graded 0 to 3) and percentage of immunopositive cells. 

Similarly, semi-quantitative determination of YB-1 expression was performed 

using a different immunoreactive score (ranging from 0 to 15) modified from Janz et al. 

(2002).  It is derived from the product of intensity of staining score and percentage score.  

Intensity of staining was scored from 0 (no detectable immunoreactivity) to 3 (strong 

immunoreactivity).  The percentage of cancer cells expressing YB-1 is divided into 5 

groups and scored as such: 1, <20%; 2, 21-40%; 3, 41-60%; 4, 61-80%; 5, 81-100%. 
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2.5 Immunofluorescence 

 

Co-localization of GST-pi and Bcl-2 were visualized using confocal microscopy after 

double immunolabelling with fluorescent antibodies.  Paraffin embedded, 4µm sections 

were dewaxed in xylene and rehydrated to water through a series of alcohol of decreasing 

concentration.  They were blocked in 1% bovine serum albumin (BSA) (Sigma) in 

phosphate buffered saline (PBS) for 1 hour at room temperature.  Next, the sections were 

incubated with anti-Bcl-2 antibody (1:20 dilution) overnight at 4°C.  FITC-conjugated 

goat anti-mouse secondary antibody (to detect the Bcl-2 antibody) at a dilution of 1:200 

was then applied for 1 hr at room temperature.  The sections were then washed with PBS 

before incubating with the second primary antibody - anti-GST-pi antibody (1:200) – 

overnight at 4°C.  This was then detected with Cy3-conjugated sheep anti-rabbit 

secondary antibody (1:800 dilution) for 1 hour at room temperature.  In the negative 

control, BSA was used instead of the primary antibodies.  After washing in PBS, the 

sections were mounted with fluorescence mounting media (DAKO).  Stained sections 

were viewed and photographed using the LSM 510 Carl Zeiss confocal laser scanning 

microscope (equipped with an argon laser) under a Plan Apo 63 x 1.4 NA (oil) objective.  

Excitation wavelength for Cy3 was at 543 nm and for FITC at 488nm. 

 

2.6 Detection of apoptosis by TUNEL technique 

 

Apoptosis in tissue sections was identified by the detection of DNA fragmentation using 

the terminal deoxynucleotidyl transferase-mediated, dUTP-biotin nick end-labeling 
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(TUNEL) technique with the commercially available TdT-FragELTM DNA 

Fragmentation Detection kit (Oncogene Research Products, USA).  After 

deparaffinization and rehydration, slides were permeabilized in 20mg/ml of proteinase K 

in 10mM Tris pH 8 at room temperature for 20 minutes.  Endogenous peroxidase was 

inactivated by treating with 3% hydrogen peroxide.  Equilibration buffer is then applied, 

afterwhich the sections were end-labeled with biotinylated deoxy-neucleotide triphosphate 

by terminal deoxynucleotidyl transferase for 2 hours at 37°C.  The reaction was stopped 

by a stop buffer. Labeled cells were detected using a steptavidin-horseradish peroxidase 

conjugate followed by diaminobenzidine staining.  The sections were counterstained with 

methyl green, dehydrated and mounted. 

The stained sections were then evaluated by examining cancer cells in 10 random 

fields of a 40x objective of a light microscope (Zeiss Axioplan).  The apoptotic index was 

defined as the number of apoptotic nuclei per 100 cancer nuclei.  3 tumours were not 

included in analysis as there was insufficient invasive tumour in the sections for accurate 

quantitation of apoptotic index. 

 

 

2.7 Total glutathione S-transferase (GST) activity 

 

Frozen breast cancer tissues were thawed on ice, blotted with filter paper and weighed.  

They were then homogenized in sufficient 50mM phosphate buffer pH 7.4 solution under 

standard conditions to make a 10% homogenate.  The homogenate was centrifuged at 40 

000 rpm at 0 degree Celsius, to obtain a cell-free supernatant.  Total GST activity was 



Materials and Methods 
 

48

determined by measuring the rate of conjugation of glutathione and 1,2-chloro-2,4-

dinitrobenzene (CDNB).  10µl cell-free tissue homogenate was added to a mixture of 

950µl of 0.1M phosphate buffer pH 6.5, 20µl of 50mM CDNB in ethanol, and 20µl of 

50mM glutathione in phosphate buffer.  The reaction at ambient temperature of 25°C was 

monitored by the rise in optical density at 340nm.  Correction for non-catalyzed reaction 

was made by subtracting the rate of change of optical density without enzyme from that 

with tissue homogenate.  One unit of GST activity is defined as the amount of enzyme 

necessary to conjugate 1nmol of CDNB with 1nmol of glutathione per min.   

 

 

2.8  Quantitation of lipid peroxidation 

 

Breakdown products of lipid peroxidation react with 2-thiobarbituric acid to form an 

easily detectable chromogen.  Quantifying thiobarbituric acid reactive substances 

(TBARS) from tissue extract is a standard assay for lipid peroxidation (Ohkawa et al, 

1979).   Briefly, a reaction mixture of total volume 3ml was constituted from 0.2ml of 

cell-free tissue homogenate, 0.2ml of 8.1% sodium dodecylsulfate, 1.5ml of 1% 

phosphoric acid, 0.1ml of distilled water and 1ml of 0.6% thiobarbituric acid, was heated 

for 45min at 100 degrees Celsius. 4.0ml of n-butanol was then added to extract the pink 

chromogen obtained at room temperature.  The fraction dissolved in n-butanol was 

separated from the rest of the reaction mixture by centrifugation at 1000g for 5min.  The 

optical density of the n-butanol layer was determined at 535nm. 
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2.9 Computational analysis 

 

The Resonant Recognition Model (RRM) was used for computational analysis of direct 

interaction between YB-1 and the Y-box region of the MDR1 gene promoter.  RRM is 

based on the theory that protein-protein or protein-DNA interaction depends on the 

resonant electromagnetic energy transfer at a specific frequency for each interaction 

(Cosic, 1994).  The sequences of seven Y-box proteins (Kloks et al., 2002) were obtained 

from the National Centre for Biotechnology Information (NCBI) database (Table 2). 

Three promoter sequences of MDR1 genes were retrieved from the Eukaryotic Promoter 

Database (EPD ID: EP35012, EP35017 and EP35016).   

 

Table 2. Accession numbers of Y-box proteins (NCBI database) 
 

YB proteins Accession Number 
YB-1 human 
DbpA human 
YB-1 mouse 
EF1 human 
mRNP3 frog 
mRNP4 frog 
YB-1 frog 

P16991 
P16989 
P27817 

AAA30497.1 
P45441 
P21574 
P21573 

 

 

The RRM power spectra were then calculated for each of the sequences. 

“Consensus” cross-power spectra were calculated for the seven power spectra of the Y-

box proteins, as well as for the three spectra of MDR-1 promoter sequences.  The two 

spectra were then analyzed for any common frequency component. 
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2.10 Statistical analysis   

 

For statistical analysis, SPSS software Windows release 11.5.0 was used.  Associations 

between categorical variables were studied using either Chi-squared or Fisher exact test.  

The immunoreactive scores of MT, Frgy-1 and Ckyb-1 were treated as non-parametric 

variables since their distribution were non-normal, and were hence analyzed using non-

parametric statistical tests, such as Mann-Whitney test, Wilcoxon signed-ranks test and 

Spearman rank correlation.  The Student t test was used to compare the mean apoptotic 

index for different groups of breast tumours.  

Logistic regression was used for multivariate analysis of tumour factors associated 

with GST-pi expression.  For multivariate analysis of factors associated with apoptosis, 

log transformation and multiple linear regression was used. Survival curves were plotted 

by the Kaplan-Meier method and the differences between the curves were evaluated by 

log-rank test.  To assess the factors influencing recurrence, multivariate analysis using 

Cox’s proportional hazard models was performed.  A p value of less than 0.05 was 

considered statistically significant. 

 



 
 
 
 
 
 
 
 
 
 

Results 
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3.1 Glutathione S-transferase pi (GST-pi) expression   

 

GST-pi expression was found to be present in 58% (67) and negative in 42% (49 cases) of 

the breast tumours.  GST-pi immunostaining was usually observed in the cytoplasm of the 

breast cancer cells, but was also localized in the nuclei of 15 of the breast tumour samples.  

Amongst the GST-pi positive tumours, intensity of immunohistochemical staining was 

variable: 13 (19%) with high expression (Figure 7B), 23 (34%) with moderate expression 

and 31 (46%) with low expression (Figure 7C).  The mean percentage of cancer cells 

stained in each of the tumours was 45% (standard deviation 32%), with 50% of the GST-

pi positive tumours having less than 36% of cancer cells expressing detectable levels of 

GST-pi.   

Peri-tumoral ductal epithelium could be found in 43 of the breast cancer sections.   

74% (32) of them had GST-pi positive ductal epithelium (Figure 8).  There was no clear 

association between GST-pi status of the cancer tissue and that of its surrounding normal 

ductal epithelium (p = 0.728).  14 of the sections with GST-pi positive ductal epithelium 

were found to be associated with GST-pi positive cancers, whilst in the other 18 samples, 

GST-pi negative cancers were observed in close proximity.  In 6 of the 11 sections with 

GST-pi negative peri-tumoral breast epithelium, the nearby cancer tissues were found to 

be GST-pi positive (Table 3). 

Using the Chi-squared test, GST-pi expression status in the breast cancers was not 

associated with age, size of primary tumour, histologic grade, estrogen receptor status and 

the presence of lymph node metastasis (Table 4).   
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 (A) 

 (B) 

 (C) 

Figure 7. (A) Negative control for GST-pi immunochemistry; (B) GST-pi positive breast 
cancer showing strong diffused cytoplasmic staining in contrast with (C) showing a 
tumour with low GST-pi expression (magnification 250x) 



Results 
 

54

 

 

 

 

 

Figure 8. GST-pi expression was detected in the peri-tumoral ductal epithelium 
(magnification 100x). 
 

 
Table 3. Lack of association between GST-pi positive breast cancers and GST-pi 
positivity in their peri-tumoral ductal epithelium. 
 

GST-pi expression status of breast cancers  GST-pi expression status 
in peri-tumoral normal 
breast epithelium 

Number GST-pi 
positive 

Number GST-pi 
negative 

Number GST-pi positive 14 18 
Number GST-pi negative 6 5 
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Table 4. Association between GST-pi expression and clinico-pathological factors 

 
Clinicopathological 
factors 

Number 
GST-pi 
positive 

Number 
GST-pi 
negative 

 
 
p value 

    
Patient age    
  50 years and below 31 19  
  More than 50 years 36 30 0.453 
Primary tumour    
  T1 12 9  
  T2 47 35  
  T3 and T4 8 5 0.613 
Histologic grade    
  I 7 4  
  II 24 19  
  III 36 26 0.894 
Estrogen receptor    
  Positive 44 30  
  Negative 23 17 0.845 
Regional Lymph nodes    
  Positive 35 28  
  Negative 30 21 1.000 
    

 

 

3.2 Total Glutathione S-transferase (GST) activity   

 

Total GST activity ranged from 76 to 317 nmol/min/mg protein with a median value of 

163 nmol/min/mg protein.  The activity in GST-pi positive tumours was significantly 

higher than that of GST-pi negative tumours (p = 0.041, Table 5). 

As shown in the box-plots in Figure 9, there were no significant differences in 

GST activity between subgroups of cancers based on age at diagnosis, lymph node status, 
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hormone receptor status, size and grade of tumour analyzed. The Mann-Whitney test was 

used to derive the p values due to sample size. 

 

Table 5. Total GST activity in GST-pi positive compared with GST-pi negative cancers 

 GST-pi positive cancers 
(nmol/min/mg protein) 

GST-pi negative cancers 
(nmol/min/mg protein) 

Minimum 76 80 
25th percentile 138 84 
Median 194 131 
75th percentile 237 159 
Maximum 317 271 
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Figure 9. Box-plots indicating the difference in total GST activity between breast cancers 
divided into groups based on clinico-pathological characteristics, viz. (A) age, (B) tumour 
size, (C) tumour grade, (D) estrogen receptor status and (E) lymph node metastasis. 
 

 

3.3 Bcl-2 expression   

 

Bcl-2 expression was present in 43 (37%) and negative in 72 (63%) of the tumours 

studied.  Immunostaining was localized in the cytoplasm of the cancer cells (Figure 10).   

Bcl-2 expressing tumours were generally smaller compared to their Bcl-2 negative 

counterparts.  The mean and standard error of the mean of largest tumour diameter for 

Bcl-2 positive tumours were 3.02cm and 0.19cm, respectively, whereas that for Bcl-2 

negative tumours were 3.85cm and 0.23cm.  When compared using the t-test, a 

statistically significant p value of 0.013 was obtained.   
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 (A) 
 

 (B) 
 
Figure 10. (A) Negative control for Bcl-2 immunohistochemistry with primary 
monoclonal antibody replaced by buffer solution after boiling in citrate buffer for antigen 
unmasking; (B) Bcl-2 positive breast tumour with typical Bcl-2 expression in the 
cytoplasm of the cancer cell (magnification 100x) 
 

 

This result was probably not due to outliers in tumour size within both groups of 

tumours as the proportion of Bcl-2 positive tumours was highest in stage T1 tomours 

(62%). The proportion of Bcl-2 positive tumours gradually decreased in the groups of 

stage T2 tumours (33%), and stage T3 and T4 tumours (23%). 
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Table 6. Association between Bcl-2 expression and clinico-pathological factors 

 
Clinicopathological 
factors 

Number 
Bcl-2 
positive 

Number 
Bcl-2 
negative 

 
 
p value 

    
Patient age    
  50 years and below 23 27  
  More than 50 years 20 46 0.120 
Primary tumour    
  T1 13 8  
  T2 27 55  
  T3 and T4 3 10 0.021 
Histologic grade    
  I 6 5  
  II 16 27  
  III 21 41 0.425 
Estrogen receptor    
  Positive 35 39  
  Negative 6 34 0.001 
Regional Lymph nodes    
  Positive 21 42  
  Negative 21 30 0.560 
    

 

 

Bcl-2 expression was associated with the expression of estrogen receptor in breast 

cancers (Table 6).  47% (35 out of 74 tumours) of estrogen receptor positive tumours were 

Bcl-2 positive as compared to 15% (6 out of 40 tumours) for estrogen receptor negative 

tumours.  This difference in proportion was statistically significant (p = 0.001) using the 

Chi-squared test. 

There was no statistical association between Bcl-2 expression and age (p = 0.120), 

histological grade (p = 0.425) and presence of lymph node metastasis (p = 0.560). 
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3.4 Association between GST-pi and Bcl-2 expression  

 

In all, there were 33 GST-pi negative/Bcl-2 negative tumours, 40 GST-pi positive/Bcl-2 

negative tumours, 16 GST-pi negative/Bcl-2 positive tumours and 27 GST-pi 

positive/Bcl-2 positive tumours.  There appears to be no association between the 

expression of both proteins (p = 0.441). 

 However, it was noticed that tumours with nuclear localization of GST-pi were 

generally Bcl-2 positive.  Of the 15 GST-pi positive tumour with nuclear localization, 13 

were Bcl-2 positive (Table 7).   

 

Table 7. Asssociation between breast cancers with GST-pi localization in the nucleus and 
Bcl-2 expression (p < 0.001). 
 

GST-pi positive breast cancers   
 
Bcl-2 expression 

Number with nuclear 
localization 

Number with only 
cytoplasmic expression 

Number Bcl-2 positive 13 14 
Number Bcl-2 negative 2 38 

 

 

As an example, Figure 11 demonstrates a GST-pi positive tumour with GST-pi 

immunostaining in the cancer cell nuclei and the presence of Bcl-2 expression in the same 

tumour.   
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 (A) 
 

 (B) 
 

Figure 11. GST-pi positive breast cancer exhibiting nuclear localization of GST-pi 
detected by immunohistochemistry (A) and section from the same tumour showing Bcl-2 
immunopositivity (B). (magnification 400x) 
 

 

Bcl-2 expression and nuclear localization of GST-pi in the same cancer cells was 

demonstrated by double immunofluorescence study.  In the tumour section used for 

Figure 12, GST-pi (red) was expressed in both the cytoplasm and nucleus, whereas Bcl-2 

(green) was expressed in the cytoplasm only.   The cytoplasmic co-localization of Bcl-2 
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and GST-pi in the same cells resulted in orange (red + green) fluorescence, and this was 

associated with red fluorescence (GST-pi detection) in the nuclear regions. 

 

 

Figure 12. Composite figures of double immunofluorescence staining of GST-pi (A, B, 
and C). (A) Breast cancer cells staining positively with red fluorescence for positive GST-
pi immunoreactivity. (B) Breast cancer cells staining positively with green fluorescence 
for positive bcl-2 immunoreactivity. (C) Co-localization of GST-pi and bcl-2 in the 
cytoplasm of the breast cancer cells (orange fluorescence). Nuclear localization of GST-pi 
is indicated by the red fluorescence. (A, B and C, Bar = 20 µm).  
 

 

3.5 Y-box binding protein-1 (YB-1) expression 

 

Two different antibodies were used separately to detect YB-1 expression in breast cancer.  

One was raised against frog YB-1 protein and the other, against a novel chicken N-

terminus deleted YB-1 protein.  Western blots were performed on human cancer cell 

lysates to demonstrate the ability of the antibodies to detect human YB-1 (Figure 13 and 

14).  Both antibodies were able to react specifically to the protein in the lysates. 

 

 

A B C
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Figure 13 Detection of YB-1 with Ckyb-1 antibody showing single band on Western blot 
of human (HeLa) cell lysate in lane 1. A similar band is detected in chicken cell lysate in 
lane 2.  Lane 3 shows Western blot of a breast cancer cell line (MCF7) using the same 
antibody.  
 

 

Figure 14. Frgyb-1 antibody detects 2 bands in the region of 49.5 kD in Western blot of 
HeLa cell lysate. 
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When Ckyb-1 was used, YB-1 expression was detected in all 99 breast cancer 

samples, whereas Frgyb-1 demonstrated YB-1 expression in 94 of the breast cancers.  The 

statistical distribution of Frgy-1 and Ckyb-1 immunoreactive scores are shown in Table 8.  

Although the median scores are the same, Ckyb-1 scores are generally higher than Frgy-1 

scores.  The Wilcoxon signed-ranks test revealed that Ckyb-1 score was higher than Frgy-

1 score in 41% of the tumours and the same score was obtained using either of the 

antibodies in 37% of tumours (p = 0.030).   

However, there was significant correlation between immunoreactive scores 

obtained using Frgy-1 and Ckyb-1.  Using simple linear regression, Frgy-1 

immunoreactive score was 0.91 times that of Ckyb-1, with 95% confidence interval 

between 0.77 and 1.04 (p < 0.001).  Figure 15 is a series of box-plots illustrating how 

Ckyb-1 immunoreactive score varies for each level of Frgy-1 immunoreactivity.  

 

Table 8. Statistical distribution of Frgy-1 and Ckyb-1 immunoreactive scores 

 Frgy-1 immunoreactive 
score 

Ckyb-1 immunoreactive 
score 

Minimum 0 1 
25th percentile 1 2 
Median 4 4 
75th percentile 6 8 
Maximum 15 15 
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Figure 15. Significant correlation between immunoreactive scores determined using the 
two antibodies Ckyb-1 and Frgy-1 (p < 0.001) 
 

 

For the purpose of statistical analysis, the immunoreactive scores were classified 

into 3 groups: low, moderate and high levels of expression.  The 25th percentile of the 

scores was taken as the lower cut-off, whilst the 60th percentile was used as the higher cut-

off.  For Ckyb-1 immunoreactive scores, immunoreactive scores 0 to 2 were considered 

low; immunoreactive scores 3 to 5, moderate; immunoreactive scores 6 to 15, high.  Since 

Frgy-1 scores were generally lower, immunoreactive scores 0 to 1 were classified as low; 

immunoreactive scores 2 to 4 as moderate; and immunoreactive scores 5 to 15 as high. 

Using this classification, Ckyb-1 classified 27 as having low levels, 40 having 

moderate levels, and 32 having high levels of expression.  Twenty-eight had low levels, 

34 had moderate levels, and 37 had high levels of expression with Frgy-1. 
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YB-1 expression was most commonly observed in the cytoplasm of the cancer 

cells.   Figure 16C and 16D illustrate predominant cytoplasmic localization of YB-1 

expression in an estrogen receptor negative breast cancer from a 64 year old patient with 

no lymph node metastasis.  The more intense staining using Ckyb-1 could be discerned in 

Figure 16D.   

Of the 36 samples for which peri-tumoral benign breast tissues were available, 29 

(81%) exhibited YB-1 expression.  The expression in such tissues was not associated with 

the immunoreactive score in the corresponding cancer sections.    

In a small group of tumours, YB-1 expression may be localized in the nucleus.  

Figure 16B is an example of such a case from estrogen receptor positive, lymph node 

negative breast cancer of a 57 year old patient.   

Eleven samples exhibited nuclear localization of the protein when antibody Ckyb-

1 was used, whilst immunohistochemical detection with Frgy-1 revealed 4 of such 

tumours.  One tumour was common to both groups.  Approximately 2-10% of YB-1 

positive cancer cells exhibited nuclear expression in each of the samples.   
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 (A) 
 

 (B) 

 (C) 
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 (D) 
 
Figure 16.  Detection of YB-1 expression: (A) negative control; (B) breast cancer section 
exhibiting nuclear localization of YB-1 detected with Ckyb-1 antibody; (C) and (D) are 
sections from the same breast tumour, showing similar expression of YB-1 in the 
cytoplasm when different antibodies (Frgy-1 or Ckyb-1, respectively) are applied to each 
section. (magnification 250x) 
 

 

 The level of expression of YB-1 was not associated with individual 

clinicopathological factors (Table 9).  Interestingly, (using Frgy-1 immunoreactive score) 

it was found that the group of breast cancers of poorest prognostic characteristics (lymph 

node positive and estrogen receptor negative), has the highest proportion (11 of 18 

tumours, or 55%) of breast cancers with high YB-1 expression, compared to that of the 

group with intermediate prognosis (lymph node positive/estrogen receptor positive or 

lymph node negative/estrogen receptor negative, 39%) and that of the group with the best 

prognosis (lymph node negative and estrogen receptor positive, 26%).  There is a 

significant difference in proportion between the extreme groups (p = 0.035), as well as a 

statistically significant trend (p = 0.037).   
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Table 9. YB-1 protein expression levels in different subgroups of breast cancers.   
 

 
 

Factors 

Ckyb-1 
immunoreactive 
score (median) 

Frgyb-1 
immunoreactive 
score (median) 

Patient’s age   
  50 years and below 5 3 
  More than 50 years 4 4 
p value 0.77 0.11 
   
Primary tumour   
  T1 and T2 4.5 4 
  T3 and T4 4 4 
p value 0.87 0.75 
   
Regional lymph node 
metastasis 

  

  Negative 4 3 
  Positive 5 4 
p value 0.11 0.33 
   
Estrogen receptor   
  Positive 4 3 
  Negative 5 5 
p value 0.14 0.22 
   
Histological grade   
  I and II 5 4 
  III 4 3 
p value 0.42 0.83 

 

 

Using Ckyb-1 immunoreactive score also revealed the same trend (Table 10). The 

group of breast cancers with poorest prognostic characteristics (lymph node positive and 

estrogen receptor negative), had the highest proportion of breast cancers with high YB-1 

expression (9 of 18 tumours, or 50%), compared to that of the group with intermediate 

prognosis (lymph node positive/estrogen receptor positive or lymph node 

negative/estrogen receptor negative; 16 of 45 tumours, or 36%) and that of the group with 
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the best prognostic parameters (lymph node negative and estrogen receptor positive; 7 of 

32 tumours, or 22%) (p = 0.017). 

 

Table 10. Increasing proportion of tumours with high YB-1 expression in breast cancers 
of  poorer prognostic category  
 

Prognostic category  
 

Ln -/ER + 
Ln -/ER - 

or Ln +/ER+ 
 

Ln +/ER - 
Number of 
tumours 

32 45 18 

Number with high 
Ckyb-1 score 

7 (22%) 16 (36%) 9 (50%) 

Number with high 
Frgy-1 score 

8 (25%) 17 (39%) 11 (55%) 

Ln = Lymph node; ER = estrogen receptor 

 

 

3.6 P-glycoprotein (Pgp) expression  

 

Fifty-seven of the group of 99 breast cancer patients underwent chemotherapy and their 

Pgp expression was further studied immunohistochemically.  43% (24) of these 57 

tumours exhibited Pgp immunopositivity.   

Normal liver tissue was used as positive control for the experiment.  Figure 17A 

shows Pgp detected in both the cytoplasmic membrane and cytoplasm of the hepatocytes.  

A similar pattern of Pgp expression was demonstrable in breast cancer (Figure 17C), 

although the level of expression (intensity of staining) was generally lower than the liver 

control. 
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 (A) 
 

 (B) 
 

 (C)   
 
Figure 17. Sections of (A) a normal liver acting as positive control, (B) negative control 
and (C) a typical breast cancer section exhibiting cytoplasmic and plasma membrane 
patterns of Pgp expression. (magnification 250x) 
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Table 11. Association between Pgp expression and clinico-pathological factors 

 
Clinicopathological 
factors 

Number 
Pgp 
positive 

Number 
Pgp 
negative 

 
 
p value 

    
Patient age    
  50 years and below 19 16  
  More than 50 years 5 17 0.028 
Primary tumour    
  T1 and T2 21 30  
  T3 and T4 3 3 0.689 
Histologic grade    
  I and II 10 18  
  III 14 15 0.424 
Estrogen receptor    
  Positive 19 17  
  Negative 5 15 0.044 
Regional Lymph nodes    
  Positive 14 16  
  Negative 9 17 0.560 
    

 

 
In this group of patients who received chemotherapy post-operatively, Pgp 

expression in breast cancer was found to be more common in patients who are 50 years of 

age and below, compared to those more than 50 years old (Table 11).  In the former 

group of patients, 54% (19) were Pgp positive, whereas only 23% were Pgp positive in 

the latter group (p = 0.028).   

Pgp expression appeared to be less common in estrogen receptor negative 

tumours (25%), compared to their estrogen receptor positive counterparts (53%).  This 

association was statistically significant (p = 0.044) by the Chi-squared test.  Pgp 
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expression was not associated with the size of the primary tumour (p = 0.689), tumour 

grade (p = 0.424) and the presence of lymph node metastasis (p = 0.560). 

 

 

3.7 Association between YB-1 and Pgp expression 

 

The possible interaction between YB-1 and the Y-box promoter element of the MDR1 

gene (coding for Pgp) was explored by computational analysis using the resonant 

recognition model (RRM).  Figure 18 shows the RRM power spectra and cross power 

spectrum of seven Y-box binding proteins listed in Table 2.  The first seven plots are the 

respective power spectra for each of the proteins.  The last plot is the cross power spectra.  

There is a prominent peak around 0.0215 ± 0.0066, which represents the characteristic 

frequency.  According to the RRM theory, it may assumed that 0.0215±0.0066 is the 

characteristic frequency representing the binding between YB-1 and Y-box sequence, 

since the major common feature among the seven Y-box proteins is their ability to bind 

the Y-box DNA sequence.   
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Figure 18. The RRM power spectra and the cross power spectrum of the seven proteins 
listed in Table 2. The first seven plots are the power spectra for each of the seven Y-box 
binding proteins. The last plot is the cross power spectra. The prominent peak around 
0.0215 ± 0.0066 is the characteristic frequency. The digital resolution was computed as 
1/151=0:0066 since the length of the shortest protein is 151. 
 
 
 

Similarly, the RRM power spectra and the cross power spectrum of the three 

promoter sequences of MDR1 genes are shown in Figure 19.  A prominent peak appears 

at 0.0258 ± 0.0033 in the cross power spectrum (the last plot). For the sequences tested, 

the YB-1 proteins and MDR1 promoters share a common characteristic frequency around 

0.0215, suggesting a possible direct interaction between the protein and the promoter 

sequence. 
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Figure 19. The RRM power spectra and the cross power spectrum of the three promoter 
sequences of MDR1 genes. The first three plots are the respective power spectra for the 
three promoters. The last plot is their cross power spectrum. One prominent peak appears 
at 0.0258 ± 0.0033 in the last plot. The digital resolution is 0.0033. 
 

 

On the other hand, there was no association between the level of YB-1 expression 

and Pgp expression status.  The median Ckyb-1 immunoreactive score for Pgp negative 

tumours is 4.0 (interquartile range 2.0 to 5.5) and that for Pgp positive tumours is 5.0 (2.0 

to 5.75).  There was no statistically significant difference between the two groups when 

compared with the Mann-Whitney test (p = 0.446).  The median Frgy-1 immunoreactive 

score for Pgp negative tumours is 4.0 (interquartile range 1.0 to 5.0) and that for Pgp 

positive tumours is 3.5 (1.25 to 5.0).  Again, there was no difference between the two 
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groups when compared with the Mann-Whitney test (p = 0.647).  The proportion of Pgp 

positive tumours appear to be greater in higher levels of YB-1 expression (Table 12), but 

the trend was not large enough for significance. 

  

Table 12. Pgp expression in breast cancers with different levels of YB-1 expression.  

YB-1 expression level  
Low Moderate High 

Frgy-1 immunoreactive score (p =  0.555)  
Pgp negative 10 13 10 
Pgp positive 6 (38%) 9 (41%) 9 (47%) 

Ckyb-1 immunoreactive score (p = 0.807)  
Pgp negative 11 14 8 
Pgp positive 7 (39%) 11 (44%) 6 (43%) 

 

 

Of the 11 tumours with nuclear localization of YB-1, 5 were in this group of 

tumours for which Pgp immunohistochemistry was performed.  All 5 were Pgp positive (p 

= 0.011); 37% of tumours (19 of 52) without nuclear localization of YB-1 were Pgp 

positive as well. 

 

 

3.8 Association between GST-pi and YB-1 expression 

 

It was noticed that the proportion of GST-pi positive tumours was larger with increased 

YB-1 expression level (Table 13).  Using Frgy-1 antibody, 43% of tumours with low YB-

1 expression were GST-pi positive compared to 56% and 68% of those with moderate and 

high YB-1 expression, respectively.  There was a statistically significant trend with p 



Results 
 

79

value of 0.048.  A similar trend could be seen using the Ckyb-1 immunoreactive scores.  

However, the trend was of borderline statistical significance (p = 0.060).   

 

Table 13. GST-pi expression in breast cancers with different levels of YB-1 expression.  

YB-1 expression level  
Low Moderate High 

Frgy-1 immunoreactive score (p =  0.048)  
GST-pi negative 16 15 12 
GST-pi positive 12 (43%) 19 (56%) 25 (68%) 

Ckyb-1 immunoreactive score (p = 0.060)  
GST-pi negative 15 18 10 
GST-pi positive 12 (44%) 22 (55%) 22 (69%) 
    

 

 

3.9 Association between GST-pi and Pgp expression 

 

It was also found that Pgp expression was associated with GST-pi positivity in the same 

tumour (Table 14).  Seventeen (30%) tumours are both GST-pi positive and Pgp positive 

and 19 (33%) tumours are both GST-pi negative and Pgp negative (p = 0.033).      

 

Table 14. Association between Pgp positivity and expression of GST-pi but not Bcl-2 
 

 Number 
Pgp 
positive 

Number 
Pgp 
negative 

 
 
p value 

GST-pi expression    
  Positive 17 14  
  Negative 7 19 0.033 
Bcl-2 expression    
  Positive 11 10  
  Negative 13 23 0.274 

 
 



Results 
 

80

When analyzed by multivariate analysis using logistic regression, only Pgp 

expression was found to be associated with GST-pi positivity (p = 0.041), whereas there 

was no association with Frgy-1 or Ckyb-1 immunoreactive score. 

 

 

3.10 Evaluation of Bcl-2 expression with YB-1 and Pgp expression 

 

Possible association between YB-1 and Bcl-2 expression was also explored, but 

there was no significant trend in the proportion of Bcl-2 tumours with increasing levels of 

YB-1 expression (p = 0.284 and 0.166 for Ckyb-1 and Frgy-1 immunorective scores, 

respectively).  Bcl-2 expression was not associated with Pgp positivity (p = 0.274). 

 

 

3.11 Metallothionein (MT) expression 

 

MT was positive in 87 tumours.  Amongst the MT positive tumours, the percentage of 

positive cells had a mean of 30.0% with standard deviation of 25.7%.  The MT 

immunoreactive score ranged from 0 to 285 with a median of 49.8 (Table 15), indicating a 

positive skew in the distribution of immunoreactive scores. 

There were two different patterns of MT expression: predominantly cytoplasmic 

and predominantly nuclear.  21% (21) of the tumours had the latter pattern of MT 

localization.  Figure 20 illustrates the contrast between these two staining patterns. 
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Table 15. Statistical distribution of MT immunoreactive score 

 MT immunoreactive 
score 

Minimum 0 
25th percentile 10 
Median 49.8 
75th percentile 90 
Maximum 285 

 

 

 Higher levels of MT protein expression was associated with a poorer histological 

grade (p = 0.009).  The level of MT expression was not different between the groups of 

breast cancers with different tumour size, estrogen receptor status, regional lymph node 

status and patient age (Table 16).  There were also no significant associations between the 

protein localization pattern and any of the clinicopathological factors.  Further, MT 

protein expression levels was not significantly different between GST-pi positive and 

negative (p = 0.88), Bcl-2 positive and negative (p = 0.92), and Pgp positive and negative 

breast cancers (p = 0.83).  There was also no correlation between MT immunoreactive 

score and Frgy-1 or Ckyb-1 immunoreactive scores (p = 0.67 and p = 0.55, respectively).  

Figure 21 shows scatter plots revealing the distribution of MT scores with Frgy-1 and 

Ckyb-1 scores 
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 (A) 
 

 (B) 

 (C) 

Figure 20. Two different patterns of MT expression detected immunohistochemically: (A) 
negative control, (B) predominantly cytoplasmic, and (C) predominantly nuclear 
localization (magnification 160x) 
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 Table 16. MT protein expression levels in different subgroups of breast cancers.  

  
 
 

Factors 

MT 
immunoreactive 
score (median) 

Number with 
cytoplasmic 
localization 

Number with 
nuclear 

localization 
Patient’s age    
  50 years and below 35 34 9 
  More than 50 years 56 44 12 
p value 0.36  1.00 
    
Primary tumour    
  T1 and T2 44 68 20 
  T3 and T4 70 10 1 
p value 0.27  0.449 
    
Regional lymph node 
metastasis 

   

  Negative 51 35 12 
  Positive 38 41 9 
p value 0.27  0.461 
    
Estrogen receptor    
  Positive 50 28 5 
  Negative 60 50 14 
p value 0.36  0.591 
    
Histological grade    
  I and II 28 34 13 
  III 57 44 8 
p value 0.009  0.149 

    
GST-pi expression    
  Negative 50 31 12 
  Positive 45 47 9 
p value 0.88  0.215 
    
Bcl-2 expression    
  Negative 45 48 12 
  Positive 50 30 9 
p value 0.92  0.803 
    
Pgp expression    
  Negative 60 23 10 
  Positive 38 20 4 
p valute 0.83  0.149 
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Ckyb-1 immunoreactive score
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  Figure 21. No linear correlation between MT immunoreactive scores and (A) Frgy-1 
immunoreactive score (p = 0.67) and (B) Ckyb-1 immunoreactive score (p = 0.55) 
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3.12 Apoptosis 

 

Apoptotic nuclei were detected using the TUNEL method (Figure 22) and the frequency 

of apoptosis is quantified by the apoptotic index.  Apoptotic index ranged from 0 to 9 with 

a mean of 1.32 ± 0.15.  The statistical distribution is shown in Table 17. 

 

 (A) 

 (B) 

Figure 22. Apoptotic cells detected by TUNEL (A) Positive control of apoptotic HL60 
promyelocytic leukemia cells, alongside (B) apoptosis detected in breast cancer tissue. 
(magnification 250x) 
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Table 17. Statistical distribution of apoptotic index 

 Apoptotic index 
Minimum 0 
25th percentile 0.34 
Median 0.94 
Mean 1.32 
  Standard error  0.15 
  Standard deviation 1.59 
75th percentile 1.51 
Maximum 9.00 

 

Table 18. Mean apoptotic index in relation to clinicopathological factors 
 

 
Factors 

Apoptotic index 
(mean ± SEM) 

Patient’s age  
  50 years and below 1.22 ± 0.22 
  More than 50 years 1.40 ± 0.20 
p value 0.547 
  
Primary tumour  
  T1 0.94 ± 0.29 
  T2, T3 and T4 1.40 ± 0.17 
p value 0.236 
  
Regional lymph node 
metastasis 

 

  Negative 1.21 ± 0.20 
  Positive 1.42 ± 0.22 
p value 0.439 
  
Estrogen receptor  
  Positive 1.27 ± 0.21 
  Negative 1.49 ± 0.20 
p value 0.486 
  
Histological grade  
  I and II 0.97 ± 0.17 
  III 1.62 ± 0.23 
p value 0.029 
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 Histological grade I and II tumours had lower apoptotic indices as compared to the 

case of Grade III tumours (p = 0.029).  There was no correlation of the apoptotic index 

with tumour size, axillary lymph node positivity or estrogen receptor status (Table 18).   

Apoptotic index was not correlated with the immunoreactive scores of MT (p = 

0.311), Ckyb-1 (p = 0.897) and Frgy-l (p = 0.059).  Interestingly, GST-pi–positive 

tumours and Bcl-2–positive tumours had significantly lower apoptotic indices compared 

with the case of their negative counterparts (Table 19).  However, when analyzed by 

multivariate analysis, only histological grade and Bcl-2 immunoreactivity were found to 

be correlated with apoptosis (p = 0.008 and p = 0.015, respectively), whereas there was no 

association between GST-pi immunoreactivity and apoptosis (p = 0.18). 
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Figure 23. Scatterplots showing distribution of apoptotic index in tumours of different (A) 
Frgy-1, (B) Ckyb-1 and (C) MT immunoreactive scores.  No linear correlation was found. 
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Table 19. Mean apoptotic index in relation to protein expressions 
 

 
Factors 

Apoptotic index 
(mean ± SEM) 

GST-pi  
  Positive 1.05 ± 0.14 
  Negative 1.72 ± 0.30 
p value 0.024 
  
Bcl-2  
  Positive 0.82 ± 0.12 
  Negative 1.60 ± 0.22 
p value 0.011 
  
Pgp  
  Positive 0.76 ± 0.12 
  Negative 1.25 ± 0.23 
p value 0.092 
  
MT   
  Nuclear 1.21 ± 0.44 
  Cytoplasmic 1.20 ± 0.14 
p value 0.951 

 

 

3.13 Lipid peroxidation 

 

TBARS assay was used to quantify the level of lipid peroxidation, the effect of oxidative 

stress on cellular lipids.  In the breast cancer tissues, median TBARS level was 116.5 

nmol/g wet weight with a range of 18 – 298 nmol/g wet weight.  The median TBARS 

level for breast cancers from older patients more than 50 years of age were significantly 

higher compared to that of the younger patients (p = 0.006).  There were no differences in 

the level of TBARS between the subgroups of breast cancer stratified according to the 

other common clinico-pathological characteristics (Table 20). 
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Table 20. Median TBARS level in relation to protein expressions 
 

Clinicopathological 
characteristics 

N TBARS level 
(median) 

p value 

    
Age    
  50 years or less 5 78  
  51 years or more 27 164 0.006 
 
Lymph node 
metastasis 

   

  Absent 12 85  
  Present 20 124 0.654 
 
Estrogen receptor 

   

  Absent 11 131  
  Present 21 98 0.184 
 
Grade 

   

  I and II 17 97  
  III 15 154 0.113 
 
Size of tumour 

   

  2cm or less 7 130  
  More than 2cm 25 116 0.802 

 
 

 

TBARS levels in breast cancers were actually positively correlated with patient 

age (rho = 0.407, p = 0.021).  The scatter-plot of patient age against TBARS level is 

shown in Figure 24. 

 The median level of TBARS was also higher in GST-pi positive tumours (180 

nmol/g wet weight; inter-quartile range 103 to 217) as compared to GST-pi negative 

tumours (58 nmol/g wet weight, inter-quartile range 39 to 130).  The difference is 

statistically significant (p = 0.009). 
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For GST-pi positive tumours, higher GST activity was linearly correlated with 

lower TBARS level (rho = -0.535, p = 0.012; Figure 25A).  There was no significant 

correlation between GST activity and TBARS level in GST-pi negative tumours (p = 

0.06). 
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Figure 24.  Increased level of oxidative stress (TBARS level) experienced by breast 
cancer occurring at older ages (rho = 0.407, p = 0.021) 
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Figure 25. (A) TBARS level decreases with increasing GST activity in GST-pi positive 
breast cancers  (rho = -0.535, p = 0.012), but not in GST-pi negative breast cancers (B). 
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3.14 Effect of lipid peroxidation on association between GST activity and 

apoptosis 

 

Overall, GST activity in breast cancer was not correlated with apoptotic index (p = 0.419).  

The analysis was followed up by dividing breast cancers into two groups based on the 

TBARS level.  The cut-off level of TBARS was taken to be 175 nmol/g wet weight.  

In the group with lower TBARS level, reflecting a lower degree of oxidative stress 

experienced by the tumours, higher GST activity in breast cancer was associated with a 

decrease in apoptosis in the subgroup of 11 GST-pi positive tumours (rho = -0.607, p = 

0.048).  As illustrated in Figure 26, apoptotic rates in GST-pi positive tumours with 

higher levels of oxidative stress and GST-pi negative tumours varied independently of 

GST activity (p =  0.840 and 0.066, respectively). 
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Figure 26. (A) Higher GST activity correlates with lower apoptotic index in subgroup of 
GST-pi positive tumours with lower oxidative stress, TBARS < 175 nmol/g wet weight 
(rho = -0.607, p = 0.048).  (B) No correlation between apoptotic index and GST activity 
in GST-pi negative tumours as well as in GST-pi positive tumours with higher oxidative 
stress experience (C). 
 

 

 

3.15 Recurrence-free survival 

 

The patients were followed up for periods ranging from 33 to 1464 days, with a median 

follow-up of 1117 days.  This allowed us to identify aggressive tumours that resulted in 

early recurrences.  Twenty-one patients suffered recurrences, and mean disease-free 

interval was 981 days. 

Just analyzing the established clinico-pathological factors for breast cancer, the 

number of lymph node metastasis (p = 0.002) and tumour size (p = 0.012) were 
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significant independent determinants of recurrence, taking into consideration the effects of 

estrogen receptor status, tumour grade and patient age (Table 21).  With all the factors 

included in the model held equal, every increase in size of tumour by 1cm raises the 

relative risk of recurrence by 30% (95% confidence interval 5% to 60%) and recurrence 

risk increases by 9% (95% confidence interval 3% to 16%) for each additional axillary 

lymph node found to have metastatic tumour.   

 
Table 21.  Cox regression analysis of disease free survival of breast cancer patients with 
common clinico-pathological factors entered into model. 
 

Factors p value Hazard ratio 
Lymph node metastasis 0.002 1.09 
Tumour size 0.012 1.30 
Patient age   0.404 - 
Grade 0.563 - 
Estrogen receptor status 0.402 - 

 

 

3.15.1 GST-pi 

 

The time to recurrence was significantly affected by GST-pi immunoreactivity (p = 0.007), 

with GST-pi immunopositive tumours having a shorter recurrence-free interval.  The 

Kaplan-Meier survival curves (Figure 27) revealed a significant difference between GST-

pi positive and GST-pi negative cases (p = 0.002). 
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Figure 27.  Disease-free survival in patients with GST-pi positive tumours was worse 
than that of GST-pi negative tumours 

 

 

Even though the mean number of positive axillary lymph nodes in GST-pi–

positive and GST-pi–negative cases was not significantly different (4.0 ± 0.7 versus 6.0 ± 

1.1 respectively; p = 0.134), GST-pi immunoreactivity was observed to influence disease-

free survival in lymph node–positive cases. (p = 0.004; Figure 28A).  Details of this 

subset of patients with respect to other clinicopathologic parameters are shown in Table 

22, suggesting that the prognostic variables were evenly divided amongst the two groups. 
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(A) 
 

(B) 
 
Figure 28.  Disease-free survival in node-positive patients (A) was significantly 
associated with GST-pi immunoreactivity (p = 0.004), but (B) the difference is not 
statistically significant in node-negative patients (p = 0.214). 
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Table 22. Relation of GST-pi expression with clinico-pathological factors in axillary 
lymph node positive cases. 
 
Clinicopathological 
characteristics 

Number of 
patients 

GST-pi 
positive 

GST-pi 
negative 

 
p value 

Estrogen receptor    0.434 
  Present 39 18 21  
  Absent 23 8 15  
Histologic grade    0.285 
  I 8 2 6  
  II 24 13 11  
  III 31 12 19  
Primary tumour    0.652 
  T1 9 5 4  
  T2 42 17 25  
  T3 and T4 12 5 7  
 
 

3.15.2 Bcl-2 

 

There was no association between Bcl-2 immunoreactivity and recurrence-free survival (p 

= 0.08).  Figure 29 shows the Kaplan-Meier survival curves. 

 

Figure 29. Disease free survival not affected by Bcl-2 status. 
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3.15.3 YB-1 

 

As can be seen in Figure 30, tumours with higher Ckyb-1 immunoreactive score tended to 

have a higher recurrence risk compared to those with low expression (nevertheless, p = 

0.39).  A similar trend could be discerned (Figure 31) if the tumours were grouped 

according to Frgy-1 immunoreactive score (but p = 0.28).  When the tumours with low 

scores with the other tumours with higher scores are compared, the difference was not 

statistically significant when the tumours were grouped according to Ckyb-1 score (p = 

0.17) and Frgy-1 score (p = 0.11). 

 

 
 

Figure 30.  Kaplan-Meier survival curves showing differences in disease free survival 
between tumours grouped according to Ckyb-1 immunoreactive score. 
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Figure 31.  Kaplan-Meier survival curves showing differences in disease free survival 
between tumours grouped according to Frgy-1 immunoreactive score. 
 

 

3.15.4 MT 

 

The study of how MT expression affects disease free survival was performed by dividing 

the breast cancers into two groups based on MT immunoreactive score.  The cut-off was 

selected by entering different cut-offs into a Cox regression model and choosing the most 

discriminatory cut-off using backward elimination.  With this method, MT score of 80 

was picked as the cut-off.   

Higher MT expression levels in the primary breast tumour resulted in increased 

recurrence risk (p = 0.037).  The Kaplan-Meier disease-free survival curve illustrates the 

difference (Figure 32A).   
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Tumours with predominantly nuclear expression were associated with reduced risk 

of recurrence (p = 0.046) by univariate analysis.  Taking into consideration MT 

expression levels in Cox’s proportional hazards model, this association was only of 

marginal statistical significance (p = 0.078).  MT immunoreactive scores between the two 

groups of tumours were not significantly different (p = 0.23) by Mann-Whitney test.  The 

statistical distribution of MT score of those with predominantly nuclear localization 

compared to the tumours with cytoplasmic expression is shown in Table 23.   

 
 
Table 23. Comparing the statistical distribution of MT immunoreactive score between 
those with predominantly cytoplasmic expression of MT and those with predominantly 
nuclear localization. 
 

 MT immunoreactive score 
 Cytoplasmic MT Nuclear MT 
Minimum 0 3 
25th percentile 9.8 32 
Median 37.5 60 
75th percentile 86.3 90 
Maximum 285 169 
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(A) 
 

(B) 
 
Figure 32.  Disease free survival of breast cancers increased by (A) reduced level of MT 
expression (p = 0.037) and (B) predominantly nuclear expression of MT (p = 0.046) 
 
 

3.15.5 Multivariate analysis 

 

When clinico-pathological factors influencing recurrence were analyzed with the 

expression of the protein markers of interest by multivariate analysis, GST-pi status, Bcl-2 

status and MT expression level were found to significantly influence disease-free survival 
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(p =  0.015, 0.038 and 0.030, respectively).  Tumour size and the number of metastatic 

lymph nodes remained independent prognostic factors (Table 24). 

The relative risk of tumour recurrence was 9.1 times as high (95% confidence 

interval 1.56 to 52.7) in patients with GST-pi positive breast tumours as compared to 

GST-pi negative tumours.  Higher MT expression was associated with a relative risk of 

recurrence of about 3.6 times (95% confidence interval 1.13 to 11.2) that of tumours with 

lower MT expression.   

Conversely, Bcl-2 expression reduced the risk of recurrence in breast cancer 

patients to about a quarter of that of Bcl-2 negative tumours (95% confidence interval 

0.069 to 0.93). 

 

Table 24. Cox’s multivariate analysis of disease free survival and relative risk of 
recurrence in breast cancer patients 
 

Factors P value Hazard ratio 
Lymph node metastasis 0.012 1.08 
Tumour size 0.045 1.32 
GST-pi expression 0.014 9.08 
Bcl-2 expression 0.038 0.25 
Frgy-1 score 0.486 - 
Ckyb-1 score 0.883 - 
MT localization 0.187 - 
MT score 0.030 3.57 

 

 

3.16 Adjuvant chemotherapy and recurrence 

 

Table 25 shows the treatment regime prescribed for the group of breast cancer patients 

after surgery stratified according to protein marker expression.  Adjuvant chemotherapy 
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regimes could be broadly divided into two groups: the cyclophosphamide/methotrexate/5-

fluorouracil (CMF) regime, and the doxorubicin-based regimes such as 

doxorubicin/cyclophosphamide, doxorubicin/taxol, and cyclophosphamide/doxorubicin/5-

fluorouracil. 

 

Table 25. Treatment regime of breast cancer patients after surgery stratified according to 
protein marker expression. 
 

 
Biomarker status 

No 
chemotherapy

With adjuvant 
chemotherapy 

Number on 
CMF 

GST-pi positive 27 40 22 
GST-pi negative 18 31 14 
    
Bcl-2 positive 19 24 12 
Bcl-2 negative 26 47 24 
    
Pgp positive 0 24 14 
Pgp negative 0 33 19 
    
MT high (score > 80) 11 17 7 
MT low 31 40 26 
    
Ckyb-1 high (score > 2) 33 39 22 
Ckyb-1 low 9 18 11 
    
Frgy-1 high (score >1) 30 41 24 
Frgy-1 low 12 16 9 
    

CMF = cyclophosphamide/methtrexate/5-fluorouracil regime 
  

 

It was then determined if different expression of the various proteins was 

associated with differences in recurrence-free survival in the group of patients receiving 

adjuvant chemotherapy.  The difference is compared with that of the group of patients 

who did not receive adjuvant chemotherapy. 
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3.16.1 GST-pi 

 

GST-pi expression resulted in poorer disease free survival in both groups of patients who 

were surgically treated only (p = 0.02) versus those who received adjuvant chemotherapy 

in addition to surgery (p = 0.04).  The Kaplan-Meier survival curves for GST-pi are 

illustrated in Figure 33. 

 
 
3.16.2 Bcl-2 

 

In contrast, the difference in disease free survival was not significantly different in both 

groups of patients if they were stratified by Bcl-2 expression (p = 0.14 and p = 0.21 for 

surgery alone and surgery with adjuvant chemotherapy respectively).  The Kaplan-Meier 

survival curves for Bcl-2 are illustrated in Figure 34. 
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(A) 
 

(B) 
 
Figure 33.  Disease-free survival with GST-pi positive tumours was inferior to GST-pi 
negative tumours in both (A) patients who received surgery only and (B) surgery with 
adjuvant chemotherapy. 
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(A) 
 

(B) 
 

Figure 34.  Disease-free survival with Bcl-2 positive tumours was no different from Bcl-2 
negative tumours in both (A) patients who received surgery only and (B) surgery with 
adjuvant chemotherapy. 
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3.16.3 YB-1 

 

In the group of patients who did not receive adjuvant chemotherapy, only 1 of 8 patients 

(13%) with low Ckyb-1 immunoreactive score in the primary tumour experienced disease 

recurrence, whilst 5 of 18 patients (28%) with high Ckyb-1 score recurred.  The difference 

in recurrence-free survival between the breast cancers of low YB-1 expression and that of 

higher (moderate to high) expression was significant (p = 0.034; Figure 35A) in this group 

of patients.  YB-1 expression did not affect disease-free survival in the patients who 

received adjuvant chemotherapy (p = 0.70). 

A similar association with disease free survival could be seen using Frgy-1 score.  

In the group of patients who did not receive adjuvant chemotherapy, only one of 12 

patients (8.3%) with low Frgy-1 score in the primary tumour experienced disease 

recurrence, compared to 4 of 18 patients (22%) with high Frgy-1 score.  However, the 

difference in recurrence-free survival between the breast cancers of lower YB-1 

expression and that of higher expression was only statistically significant if the Frgy-1 

score cut-off was defined as 3, instead of using the 25th percentile cut-off as in previous 

analyses (p = 0.048, Figure 36).  YB-1 expression did not affect disease-free survival in 

the group of patients who received adjuvant chemotherapy (p = 0.21, comparing patients 

with low Frgy-1 score against those patients with moderate or high Frgy-1 score). 
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(A) 

 

(B) 

Figure 35.  Disease-free survival of tumours with higher Ckyb-1 scores was poorer than 
those of low Ckyb-1 scores in (A) patients who received surgery only, but (B) not in 
patients who received both surgery and adjuvant chemotherapy. 
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Figure 36.  Disease-free survival of tumours with higher Frgy-1 scores was poorer than 
those of lower Frgy-1 scores in patients who did not receive adjuvant chemotherapy.  
Statistical significance only if a score cut-off of 3 was used to separate the two groups. 
 

 

Among the 14 patients with high Ckyb-1 immunoreactive score and administered 

chemotherapy, 2 of 7 (29%) receiving anthracycline-based chemotherapy recurred 

compared to no recurrence amongst patients receiving the CMF regime.  While there was 

no difference in Ckyb-1 score between all patients receiving CMF compared to 

anthracycline based regimes (p = 0.96), patients who developed recurrence despite being 

on the  CMF regime,  have a lower YB-1 score (range 2 to 5) compared to that of patients 

with recurrence after receiving anthracycline-based therapy (YB-1 score range 5 to 10; p 

= 0.024).  Table 26 shows the details illustrating the point.  A similar pattern was seen if 

Frgy-1 scores were considered, although it did not reach statistical significance.  Amongst 

the 19 patients with high Frgy-1 score, 3 of 9 (33%) receiving anthracycline-based 
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chemotherapy recurred compared to 1 recurrence out of 10 (10%) patients receiving the 

CMF regime. 

 

3.16.4 Pgp 

 

Similarly, Pgp over-expression was not significantly associated with disease-free survival 

(p = 0.34) in the group of patients who received adjuvant chemotherapy.  Considering just 

the patients who received anthracycline-based chemotherapy regimes, 1 of 14 (7%) Pgp 

negative tumours recurred compared to 3 of 10 (30%) tumours in the Pgp positive group.  

The difference was not statistically significant (p = 0.27).  Table 26 shows how Pgp 

expression relates to type of chemotherapy treatment in patients who developed 

recurrence during follow-up.    The Kaplan-Meier survival curves for Pgp expression are 

illustrated in Figure 37.   

 

Table 26. YB-1 and Pgp status of breast cancer patients with recurrence after 
chemotherapy.  
  

Patient’s 
Serial no. 

 

Chemotherapy 
regime 

Ckyb-1 
immunoreactivity 

score 

Pgp over-
expression 

23768 C 2 - 
30071 C 2 - 
5204 C 4 + 
31674 C 4 - 
23471 C 5 + 
7840 A 5 + 
21936 A 5 + 
16048 A 8 + 
19001 A 10 - 

C = CMF chemotherapy 
A = Anthracycline-based chemotherapy 
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Figure 37. Kaplan-Meier survival curve showing no statistical significance in the 
difference in disease-free survival of patients having Pgp positive tumours compared to 
those having Pgp negative tumours (p = 0.31) 
 

 

3.16.5 MT 

 

MT expression had a different effect on disease free survival in the two treatment groups 

compared to Bcl-2 and GST-pi expression.   

The difference in recurrence-free survival was more prominent amongst the group 

of patients who underwent chemotherapy (p = 0.048), whereas in the group of patients not 

prescribed chemotherapy, recurrence-free survival of patients with low MT expression 

were not substantially more favourable compared to their high MT expressing 

counterparts (p = 0.28).  Figure 38 illustrates the survival curves. 
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(A) 
 

(B) 
 
Figure 38.  Disease-free survival of tumours with high levels of MT expression was no 
different from those of low levels of MT expression in (A) patients who received surgery 
only, but (B) was associated with poorer prognosis in patients who received both surgery 
and adjuvant chemotherapy. 
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4.1 GST-pi expression in breast cancer 

 

Tumour aggressiveness is an important issue in breast cancer.  Even when the 

tumour can be removed surgically from the breast and axillary lymph nodes, 

micrometastasis may remain in the body and give rise to overt disease after a period of 

time, possibly years (Ozbas et al., 2003).  With clinically detectable breast cancers just 

localized to the breast, about 30 to 35% of patients will suffer from recurrence after 5 

years of follow-up.  Use of adjuvant chemotherapy in these patients will reduce the rate of 

recurrence to about 25% (Early Breast Cancer Trialists’ Collaborative Group, 2003). 

The substantial percentage of recurrence even after adjuvant chemotherapy 

highlights the critical role in identifying breast cancer patients at high risk of such events.  

Whilst hundreds of oncogenic changes occur in breast cancers (Liu, 2003), there remains 

a need to identify suitable tumour markers.  

GST-pi expression was detected in 58% of breast cancers in this group of Asian 

breast cancer patients.  The frequency of expression is comparable to Caucasian 

populations where 40 to 56% of breast cancers have been reported to be GST-pi positive 

(Murray et al., 1993 and Silvestrini et al., 1997).  In the present study, tumours over-

expressing GST-pi had higher total GST activity, suggesting that GST-pi contributes 

significantly to variation of GST activity in breast cancer. 

The control of GST-pi expression is through a number of cis-acting regulatory 

elements located 5’ to the gene: an anti-oxidant responsive element (ARE) mediating 

responsiveness to phenolic antioxidants; a TPA response element (TRE) that is activated 
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by AP-1 (the c-Fos/c-Jun containing transcription factor complex); and a GC box 

providing basal promoter activity (Jhaveri et al., 1998[a]).   

Up-regulation of GST-pi is mediated by a TRE-like enhancer in mouse 

hepatocarcinogenesis (Sakai, 1990).  More recently, 2 cAMP responsive elements (CRE) 

were found, one distal and the other proximal to the transcriptional start site.  It appears 

that GSTP1 (gene coding for GST-pi) regulation in MCF-7 breast cancer cell lines is 

mediated by cAMP via the TRE and proximal CRE sites (Lo et al., 2001).   

In a significant proportion of human breast (30%) and renal (20%) cancers, GST-

pi expression is suppressed by hypermethylation of the GC promoter (Esteller, 2000).  

Indeed, most of the peri-tumoral benign breast epithelium in this study sample shows 

GST-pi expression (74%), and 56% of those are associated with GST-pi negative breast 

cancers. The reason for this epigenetic change to suppress GST-pi expression in breast 

cancers is still a subject of speculation.  It was theorized that the suppression of GST-pi 

expression actually promoted tumour formation:  estrogens may be metabolized into 

electrophilic intermediates (GST-pi substrates) that covalently bind DNA, resulting in 

mutations.  Reduced GST-pi expression might lead to accumulation of these genotoxic 

metabolites.  However, correlation between the presence of estrogen-related adducts and 

the GST-pi epigenetic lesion has not been demonstrated. 

On the contrary, the results suggest that GST-pi expression is associated with 

more aggressive breast cancers with significantly poorer prognosis.  Although in the study 

population, GST-pi expression is not associated with larger primary tumours, poorer 

histologic differentiation or increased lymph node metastasis, patients with GST-pi 

positive tumours have an 8-fold higher risk of recurrence and shorter disease-free survival 
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compared to their GST-pi negative counterparts.  Earlier on, Gilbert et al. (1993) 

suggested that increased GST-pi expression could be an important predictor of recurrence 

and death in node negative breast cancer patients.  In this study, it was found that in node 

positive tumours, GST-pi expression was also associated with higher risk of recurrence 

compared to GST-pi negative tumours.  

 In addition, GST-pi expression in the primary tumour increases recurrence risk 

after adjuvant treatment.  Silvestrini and co-workers (1997) found that the risk of local 

recurrence after loco-regional radiotherapy was higher for patients with tumours 

exhibiting elevated levels of GST-pi protein.  Focusing on patients receiving systemic 

chemotherapy, this study showed a similar increase in the risk of early recurrence in the 

group of such patients with GST-pi positive primary tumours, compared to those with 

GST-pi negative tumours.. 

 

 

4.2 GST-pi and apoptosis 

 

One of the functions of GST-pi in the normal cell is to provide protection against reactive 

oxygen species (ROS).   

ROS includes toxic molecules such as hydroxyl radicals, superoxide anions and 

hydrogen peroxide.  These molecules are produced during cellular metabolism, for 

example: in the mitochondria, from the partial reduction of oxygen by the electron 

transport chain; in the endoplasmic reticulum, from NADPH-cytochrome P450 reductase; 

and in the peroxisome, from the production of hydrogen peroxide that leaks into the 
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cytoplasm, subsequently reacting with iron(II) or copper(I) to form hydroxyl radicals via 

Fenton reaction.  ROS is also formed from the decomposition of oxyhemoglobin, auto-

oxidation of catecholamines, ultra-violet irradiation of tryptophan and breakdown of water 

in cells by infra-red radiation.  ROS may also arise from exogenous sources: leukocytes 

release ROS in inflammatory reactions and can cause DNA damage of cells nearby 

(Shacter et al., 1988).   

At the biochemical level, ROS reacts with nucleic acids, proteins and lipids.  8-

oxo-2’-(de)oxyguanosine is a well-known DNA oxidative product.  ROS have also been 

found to induce single and double-stranded DNA breaks, modifications of the sugar 

moiety, DNA-protein crosslinks, depurination and depyrimidination.  Chemical 

modification of nucleic acids alters hydrogen bonding specificity, resulting in errors in 

translation, transcription and DNA replication.   

Protein function and membrane integrity are also affected by the reaction of 

proteins and lipids with ROS (Tamarit et al., 1998).  Many proteins contain cysteines that 

can be oxidized to form inter- and intra-molecular disulfide bonds.  Changes in redox 

conditions in the cell will cause variations in the oxidative state of these amino acids, 

consequently affecting protein structure, protein-protein and protein-DNA interactions.  

Some transcription factors interact with DNA via a “zinc finger” motif, consisting of four 

cysteine or histidine surrounding a zinc atom.  The cysteine residues are sensitive to redox 

state variation in the nucleus, resulting in modification of the activity of the transcription 

factors.  For example, the OxyR response element, a DNA transcription regulatory 

element involved in oxidative stress response, is activated by a transcription factor which 

can be reversibly inhibited by reduction of a disulfide bond by glutaredoxin I (Zheng et al., 
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1998).  The tumour suppressor protein, p53, has 9 cysteine residues, 4 of which are 

present in the DNA binding domain.  Thiol oxidation is thought to change the structural 

organization p53, abolishing its interaction with its specific DNA target sequence, but not 

its non-specific binding to DNA (Parks et al., 1997). 

Quantitative analysis of TBARS, breakdown products of lipid peroxidation, was 

used in the study as a measure of oxidative stress.  Amongst breast cancers, there is a 

substantial variation in oxidative stress experience.  The results showed that tissues 

obtained from older patients had higher levels of TBARS.  This may be partly explained 

by increased exposure to oxidants in the systemic circulation, since assays of markers of 

oxidative stress in the sera of normal human subjects aged 20 to 70 years showed the 

same trend (Kasapoglu, 2001).    On the other hand, levels of oxidative stress were not 

influenced by traditional pathological markers of tumour differentiation, such as tumour 

grade and hormone receptor status. 

With its glutathione peroxidase activity and ability to inactivate by conjugation, 

carbonyl-, peroxide-, and epoxide-containing metabolites produced within the cell by 

oxidative stress, GST-pi complements the activity of a number of anti-oxidant defences.  

Biochemical anti-oxidants, such as glutathione, ascorbic acid (Vitamin C) and α-

tocopherol (Vitamin E) form the first level of protection.  For example, vitamin E 

scavenges hydroxyl radicals and reacts with peroxy and alkoxy radicals to stop radical 

chain reactions.  Binders, such as transferrin and ferritin for iron, and caeruloplasmin for 

copper, sequester these ions so that they are not able to catalyze radical forming reactions.  

Intra-cellular enzymes form the third level of anti-oxidant protection.  Such enzymes 

include superoxide dismutase, glutathione peroxidase, catalase and thioredoxin reductase.  
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Superoxide dismutase converts superoxide to the less reactive hydrogen peroxide.  

Catalase breaks down hydrogen peroxide to form oxygen.  Glutathione peroxidase 

catalyzes the reduction of a variety of organic hydroperoxides (such as lipid 

hydroperoxides) and hydrogen peroxide, using glutathione as the reducing agent. 

The cell is dependent on these protective mechanisms to maintain ROS at a 

tolerable level.  Consistent with the fact that GSTP1 expression is regulated by an anti-

oxidant responsive element (ARE), it was observed that tumours with up-regulation of 

GST-pi expression appear to be those that have experienced higher levels of oxidative 

stress (higher TBARS level).   

When the cell experiences excessive oxidative stress, deleterious effects on cell 

function and survival will result. 

ROS has been shown to trigger cell cycle checkpoint responses.  Peroxides induce 

G1 and G2 checkpoint responses that can be attenuated by application of anti-oxidants 

(Clopton et al., 1995, and Flattery-O’Brien et al., 1998).  It was suggested pATM 

mediates in both responses as a sensor of oxidative stress (Rotman et al., 1997) and that 

the inhibition of cyclin E/Cdk2 activity and induction of p53 play roles in the G1 

checkpoint arrest by ROS (Shackelford  et al., 2001). 

ROS also affects the two induction pathways immediately upstream of the effector 

processes of apoptosis – the receptor-mediated death-signalling pathway and the 

mitochondrial pathway.  Lethal levels of oxidative stress trigger apoptosis via the 

mitochondrial pathway.  However, the generation of ROS is central to the progress 

through both induction pathways.  ROS is generated during the Fas-mediated death 

receptor apoptosis pathway (Suzuki et al., 1998) and over-expression of glutathione 
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peroxidase 1 appears to provide protection against it (Gouaze et al., 2002).  Tumour 

necrosis factor (TNF)-induced caspase-3 activation, in the TNF-receptor death pathway, is 

suppressed by transfection of cells with superoxide dismutase (Kizaki et al., 1993).  Anti-

oxidants, such as ascorbate, glutathione and other thiol reducing agents, prevent apoptosis 

via the mitochondrial pathway by regulating mitochondrial permeability transition 

(Custodo et al., 2002), thereby preventing the release of cytochrome c and consequent 

activation of caspase 9 and 3.  Anti-CD95 antibodies triggered an early generation of ROS 

in human breast cancer T47D cells that was blocked by overexpression of glutathione 

peroxidase 1 and inhibition of initiator caspase activation. Enforced expression of 

glutathione peroxidase also resulted in inhibition of CD95-induced effector caspase 

activation, DNA fragmentation, and apoptotic cell death (Gouaze et al., 2002).  In 

addition, it also prevents superoxide production after the release of cytochrome c from the 

mitochondria during the induction of apoptosis (Cai et al., 1998).  In an experiment 

involving a T-cell line, partial deactivation of GST-pi favors apoptosis (Bernardini et al., 

2000).  These observations suggest that anti-oxidant enzymes play a critical role 

preventing the induction of apoptosis via both apoptotic pathways. 

Oxidative stress experienced by a malignant cell is often greater than its benign 

counterpart.  Because of genetic mutations and abnormal protein expression, the 

malignant cell experiences threats to cell survival.  Activated macrophages release ROS, 

such as nitric oxide, to kill tumour cells (Cui et al., 1994).  T cells and macrophages 

release TNF against tumour cells, inducing apoptosis.  Indeed, markers of oxidative stress 

have been reported to be higher in breast cancers compared to their surrounding normal 

breast tissue (Kumaragurupara et al., 2002).   
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Furthermore, the intrinsic genetic mutations of the cancer cell exert a pressure for 

the termination of cell cycle and apoptosis.  In fact, cancer cells are more susceptible to 

the inhibition of anti-oxidant enzymes compared to their normal counterparts, such that 
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Figure 39. Up-regulation of anti-oxidant defences in the cancer cell protects it against 
the deleterious effects of ROS, allowing tumour growth and progression. 
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inhibition of superoxide dismutase by certain estrogen derivatives selectively kill human 

leukemia cells, but not normal lymphocytes (Huang et al., 2000). 

Conversely, up-regulating cellular anti-oxidant defences allows cancer cells to 

survive longer, facilitating tumour progression (Figure 39). 

Interestingly, the role of GST-pi in breast cancer extends beyond its ability to 

scavenge and ameliorate the effects of reactive oxidative species.  GST-pi has been shown 

to inhibit the function of c-Jun N-terminal kinase (JNK) only recently.   

JNK, also known as stress-activated MAP kinase (SAPK), is a group of proteins 

belonging to the mitogen activated protein kinase (MAPK) family.  The signal cascade to 

JNK activation after a stress stimulus is not clear.  What is known is that, a diverse group 

of MAPK kinase kinase (MAPKKK), such as ASK1, MEKK, MLK, TAK1 and TPL-2, is 

responsible for the subsequent activation of two known MAPK kinase (MAPKK) that 

activate JNK.  These MAPKKs (MKK4 and MKK7) have been shown to be activated and 

accumulate in the nucleus in response to environmental stress, and these activate JNK in 

turn.  JNK triggers apoptosis primarily through Bcl-2 and Bcl-xL phsophorylation, 

resulting in inhibition of their anti-apoptotic function (Davis, 2000). 

In low stress states, it was shown that monomeric GST-pi binds to JNK and 

prevents it from interacting with its target proteins (Wang et al., 2001).  Oxidative stress 

causes the dissociation of the GST-pi/JNK complex and oligomerization of GST-pi;  and 

addition of purified GST-pi caused a dose-dependent inhibition of JNK activity (Adler et 

al., 1999). 

Results showed that increased GST-pi expression, without considering other 

clinico-pathological factors, was associated with lower apoptotic index in breast cancers. 



Discussion 
 

126

Further, there was no correlation between apoptotic index with GST activity in GST-pi 

negative tumours.  In contrast, GST-pi positive tumours within the same range of 

oxidative stress showed a reduction in apoptosis with increased GST activity. 

However, at higher levels of oxidative stress, GST activity in GST-pi positive 

tumours was no longer associated with reduced apoptosis.  It is recognized that cellular 

response to extremes of oxidative stress experienced may not be dose-dependent 

(Halliwell, 2000).  Probably the increase in GST activity in response to the higher 

oxidative stress was not sufficient to reduce apoptosis significantly.     

 

 

4.3 GST-pi and Bcl-2 

 

The possibility that GST-pi interacts with another apoptosis-related protein, Bcl-2 is 

raised in this study. 

 Bcl-2 is an important anti-apoptotic protein, originally identified by the 

translocation [t(14,18)] in follicular lymphomas.  Induction of apoptosis by such external 

stimuli as radiation, hyperthermia, growth factor withdrawal, glucocorticoids and many 

classes of chemotherapeutic agents is inhibited by Bcl-2 in vitro.    

Only 37% of the breast cancers exhibited Bcl-2 over-expression, compared with 

49% (Sierra et al., 1998) and 63% (Le et al., 1999) in two studies that used the same 

cutoff to define Bcl-2 over-expression.  Whether such variations were due to population 

differences await further confirmatory studies.  Nevertheless, consistent with those studies, 

a higher proportion of Bcl-2 over-expressing tumours remains associated with estrogen 
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receptor–positive tumours and tumours with better prognostic characteristics such as 

smaller size.  A higher Bcl-2 immunoreactivity was also associated with a lower extent of 

apoptosis, a finding which is similar to that reported by Vakkala et al., 1999. 

Several mechanisms have been put forward to explain how Bcl-2 inhibits 

apoptosis.  It has been suggested that Bcl-2 plays a part in regulating cellular redox 

potential in response to oxidative stress (Hockenbery, 1993). Bcl-2 is known to block 

lipid peroxidation and generation of reactive oxygen species and cellular redox potentials.   

Moreover, Bcl-2 has been reported to alter intracellular ion fluxes that occur 

during apoptosis, including changes in the partitioning of Ca(II) in the cellular organelles 

such as endoplasmic reticulum, nucleus, and mitochondria (Marin, 1996).  Bcl-2 has a C-

terminal membrane anchor and is capable of forming ion channels in the mitochondria, as 

well as in the nucleus.  The release of cytochrome c and apoptosis initiating factor from 

the mitochondria into the cytoplasm is an essential step in the induction of apoptosis via 

the mitochondrial pathway.  Bcl-2 blocks mitochondrial permeability to these proteins 

(Yang et al., 1997).  On the nuclear membrane, Bcl-2 acts as a gate-keeper, regulating 

nuclear localization of p53 and NF-κB (Hermann et al., 1996).  More recently, Bcl-2 

over-expression was shown to cause redistribution of glutathione from cytosol to the 

nucleus and glutathione depletion resulted in sensitization to apoptosis even in Bcl-2 over-

expressing cells (Voehringer et al., 1998).  It has been suggested that nuclear glutathione 

plays a role in regulating transcription, through redox modification of the DNA binding 

regions of such proteins as p53, AP-1 and NF-κB (Sun et al., 1996), which are important 

mediators of apoptosis. 
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There appeared to be an increased nuclear localization of the GST-pi protein in 

Bcl-2 overexpressing tumours, as clearly demonstrated by two-color immunofluorescence 

with confocal microscopy, whilst GST-pi immunoreactivity was observed to be diffusely 

located in the cytoplasm in most of the Bcl-2 negative tumours.  Could GST-pi 

localization in the nucleus be mediated by Bcl-2 protein?  GST-pi, which has a molecular 

weight of 22 kDa, has the potential to gain entry into the nucleus through the nuclear pore 

complex.   

Coincidentally, nuclear expression of GST-pi has been reported under different 

circumstances.   When cancer cells were exposed to doxorubicin and cisplatin, the cells 

which exhibited nuclear localization of GST-pi were resistant to apoptosis (Goto, 2001) 

and this protection was removed by application of an inhibitor of transport through the 

nuclear pore.  GST-pi appeared to prevent the DNA damage caused by these cytotoxic 

drugs in in vitro experiments.  In some way, localization of GST-pi in the nucleus 

protected against cell death. 

The expression of Bcl-2 in cancers has been associated with increased mutation 

frequency (Cherbonnel-Lasserre et al., 1996) and accumulation of oncogenes (Sierra et al., 

2000).  By delaying cell death, the Bcl-2 protein may help to promote the accumulation of 

mutations, allowing cancer cells to acquire a more malignant phenotype. Other forms of 

apoptotic dysregulation are known to play an important role in breast cancer metastasis 

(Shin et al., 2001). 

However, Bcl-2 expression was not only not associated with increased lymph node 

metastasis, but was associated with significantly improved recurrence-free survival in the 

breast cancer patients.  Indeed, Bcl-2 is known to be a favourable prognostic marker in 
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breast carcinoma (Fitzgibbons et al., 2000).  This raises the possibility that protection 

against apoptosis may not be sufficient explanation for the association of GST-pi 

expression with early recurrence. 

 

 

4.4 GST-pi in association with MT expression 

 

Whilst the significance of the association between GST-pi nuclear localization and Bcl-2 

expression remains to be elucidated, other mechanisms may be operative to explain the 

association of GST-pi expression with aggressive breast cancers of high recurrence risk.  

It may be possible that GST-pi expression is associated incidentally with the concomitant 

dysregulation of a certain set of oncogenes in the breast cancers that result in an 

“aggressive phenotype” 

This possibility has been suggested in early studies on GST-pi expression.  Higher 

GST-pi expression was associated with reduced estrogen receptor level in the breast 

cancer (Howie et al., 1988).  This appears to be mediated by increased methylation of the 

GC box promoter of the GST-pi gene with estrogen receptor expression (Jhaveri et al., 

1998[b]) and decreased GST-pi mRNA stability in the estrogen receptor positive breast 

cancer cells (Jhaveri et al., 1997).   

The expression of metallothionein (MT), which has the potential to be of clinical 

importance in breast cancer, was investigated.  Similar to GST-pi, MT is a protein marker 

in breast cancer that is associated with decreased estrogen receptor immunoreactivity 

when expressed, but (as in GST-pi) its immunopositive status is not necessarily associated 
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with estrogen receptor negative breast tumours (Oyama et al., 1996).  In contrast with 

GST-pi expression, MT immunopositivity (detected by antibody that binds to both MT-1 

and MT-2 isoforms) is strongly associated with breast cancers of high histologic grade.  

This relation is present even when isoforms 2A and 1F are studied separately (Jin et al., 

2001 and 2002).  Unfortunately, there was no correlation between GST-pi expression and 

MT immunoreactive score. 

Metallothionein is a group of small metal-binding proteins (<7 kD) with 18-23 

cysteine residues that bind metal ions, such as zinc, copper or cadmium in thiolate clusters.  

The major isoforms expressed in mammalian tissues are MT-1 and MT-2, and they are 

implicated in sequestration or storage of essential transition metal ions during processes of 

rapid cell proliferation such as fetal development and inflammation.  They are also 

involved in the protection against metal toxicity (such as Cd), in protection against 

oxidative stress by binding to transition metals displaying Fenton reactivity (Fe and Cu), 

and possibly in protection against xenobiotics (Viarengo et al., 2000).   

Its involvement in processes of rapid cell growth and protection against oxidative 

stress suggests a role in carcinogenesis.  This may be mediated through direct interaction 

with transcriptional activator, NFκB and modulation of p53, DNA and RNA polymerase 

activity by its effects on zinc homeostasis (Jin et al., 2002).  Down-regulation of 

metallothionein induces apoptosis and growth arrest in human breast cancer cells (Abdel-

Mageed et al., 1997).  Increase in MT expression in human breast cancer tissues is 

primarily associated with an increase in proliferative markers.  There was, however, no 

association between MT expression and apoptotic index. 
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Indeed, higher level of MT expression was associated with shorter disease-free 

survival and the 3 fold increase in risk of recurrence was independent of common 

clinicopathological factors (especially tumour grade) and GST-pi expression.  The fact 

that this difference in disease-free survival was more apparent in the group of patients 

receiving adjuvant chemotherapy compared to the group which did not, suggests that MT 

plays a major role in protecting the cell from toxic insults (Kimura et al., 2000). 

Nuclear localization of MT is a more commonly reported phenomenon compared 

to that of GST-pi.  It is believed that nuclear translocation of MT is an ATP-dependent 

process and the sub-cellular localization of MT is associated with the resistance to the 

toxicity of different metal containing compounds (Woo et al., 1997).  Interestingly, 

nuclear localization of MT is associated with improved disease-free survival, although the 

statistical significance of this association is only of marginal significance after taking into 

account the effects of the level of MT expression by multivariate analysis.   

 

   

4.5 GST-pi and chemotherapy 

 

The GST family of enzymes has long been implicated in chemotherapeutic drug 

resistance.  Chemoresistance is a major cause of treatment failure, and modulation of 

cellular proteins such as GST-pi involved in detoxification has been suggested as one of 

the mechanisms that contribute to drug resistance (el-Deiry, 1997).  Indeed, in human 

breast cancer tissues, GST-pi expressing tumours exhibited reduced cell death after neo-
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adjuvant chemotherapy of 5-fluorouracil/doxorubin/mitomycin C compared to the GST-pi 

negative counterparts (Su et al., 2003). 

In this study, it is found that GST-pi expressing breast cancers had poorer disease-

free survival after chemotherapy compared to the GST-pi negative tumours. 

Of the common chemotherapeutic agents used as first-line treatment for breast 

cancer, cyclophosphamide is a known substrate of GST-pi and is inactivated to form 

glutathione s-conjugates.  On the other hand, doxorubicin was found not to form similar 

conjugates in breast cancer cells selected for resistance against it (Gaudiano et al, 2000).  

In spite of this, it was observed that in many doxorubin resistance-selected breast cancer 

cell lines, GST-pi activity was consistently upregulated by as much as up to 45 times 

(Batist et al., 1986, Whelan et al., 1989, Gaudiano et al, 2000). 

Interestingly, there is concomitant upregulation of GST-pi and p-glycoprotein 

(Pgp) in many of the breast cancer cell lines selected for resistance against doxorubicin 

(Whelan et al., 1992).  Parallel changes in Pgp and GST-pi expression was also observed 

in doxorubicin resistant breast cancer cells after exposure to nomegestrol (Li et al., 2001).  

In fact, it was suggested in transfection studies that Pgp expression, not GST-pi, was the 

primary factor in determining resistance against chemotherapy (Fairchild et al., 1990). 

Pgp is one of several ATP-binding cassette transporters that are able to translocate 

multiple substrates across the cell membranes (Schwab et al., 2003).  It is distinct from 

the ATP dependent glutathione S-conjugate (GS-X) pump, the multi-drug resistance 

associated protein 1 (MRP1) and the multispecific organic anion transporter (MOAT) 

responsible for the transport of glutathione S-conjugates.  Chemotherapeutic agents, 

anthracyclines (eg. doxorubicin and epirubicin) and taxanes (eg. paclitaxel and docetaxel), 



Discussion 
 

133

are known substrates of Pgp and in vitro studies have shown that resistance to these drugs 

are associated with Pgp expression in breast cancer (Mechetner et al., 1998).  

The results of this study indicated that Pgp immunopositivity was associated with 

younger patients and estrogen receptor positive tumours, as well as GST-pi positive 

tumours.  In fact, Pgp positivity was the only factor found to be significantly associated 

with GST-pi expression after multivariate analysis.   

However, Pgp expression was not associated with worse disease-free survival after 

chemotherapy in the group of patients receiving adjuvant chemotherapy.  Pooled studies 

of Pgp expression on the response of locally advanced breast cancer to neo-adjuvant 

chemotherapy showed an association with poorer complete response rate, but not overall 

response rate (Leonessa et al., 2003).  On the other hand, a study involving 85 node 

positive breast cancer patients receiving anthracycline-based adjuvant chemotherapy 

showed no difference in recurrence rates (Ferrero et al., 2000). 

Also studied, was the expression of Y-box binding protein-1 (YB-1), a protein that 

may be associated with Pgp expression. 

YB-1 has been stated as “the most evolutionary conserved nucleic-acid-binding 

protein currently known” (Kohno et al., 2003). YB-1 belongs to a group of DNA and 

RNA binding proteins that has a conserved cold shock domain which interacts with 

inverted CCAAT boxes (Y-boxes) (Izumi et al., 1991).  It is found to regulate gene 

expression through both transcription and translation (Matsumoto et al, 1998). Hence, this 

protein is believed to play an important role in the cell cycle (Jurchott et al., 2003). YB-1 

has also been linked to a number of cellular responses to stress and carcinogenic stimuli.  

It has been reported to have an affinity for depurinated and cisplatin modified DNA 
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(Boulikas, 1996 and Ise et al., 1999), as well as RNA damaged by reactive oxygen species 

(Hayakawa et al, 2002).  YB-1 has been found to translocate to the nucleus when the cell 

is exposed to UV irradiation (Koike et al., 1997) and heat (Stein et al., 2001) and is 

involved in redox-dependent transcription activation (Duh et al., 1995). In addition, YB-1 

is known to be up-regulated in cell-lines which are resistant to genotoxic agents 

(Levenson et al., 2000 and Ohga et al., 1996).  

The role of YB-1 in cancer progression has attracted attention in recent years.   

Increased YB-1 expression has been correlated with DNA topoisomerase IIα and 

proliferating cell nuclear antigen expression in human lung cancer (Gu et al., 2001) and 

colorectal cancer (Shibao et al., 1999) and linked to markers of cellular proliferation in 

osteosarcoma (Oda et al., 1998).  In addition, YB-1 is thought to promote metastasis by 

promoting the transcription of gelatinase A, a matrix proteinase that facilitates cell 

migration (Cheng et al., 2002).  Moreover, expression of YB-1 protein has been reported 

to reflect chemosensitivity of ovarian serous adenocarcinoma (Kamura et al., 1999). In 

this context, YB-1 expression has also been shown to be associated with Pgp expression 

in breast cancer cells, resulting in multi-drug resistance (Bargou et al., 1997). 

In this study, two different antibodies to detect the expression of YB-1 in breast 

cancers were used.  The immunoreactive scores obtained for each of the antibodies 

correlated well and the conclusions obtained from the results were similar.  

The results show that high YB-1 expression was associated with breast cancers of 

an aggressive phenotype (lymph node positive/hormone receptor negative).  And 

differences in YB-1 expression resulted in a measurable effect on the clinical course of 

breast cancer.  Without chemotherapy, primary breast cancers with higher YB-1 
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expression have a higher recurrent risk compared to those with lower expression.  This 

result is consistent with a separate study involving primarily Caucasian breast cancer 

patients (Janz et al., 2002).  Interestingly, GST-pi positive tumours tended to have a 

higher YB-1 scores but statistical significance for the association was lost on multivariate 

analysis with other pathological factors. 

The significance of nuclear localization of YB-1 in breast cancer is yet unclear.  

Nuclear localization of YB-1 was found to affect prognosis in squamous cell lung cancer, 

ovarian serous adenocarcinoma and synovial sarcoma, but not in lung adenocarcinoma 

(Shibahara et al., 2001; Oda et al., 2003; and Yahata et al., 2002).  It has also been 

reported that nuclear localization of the YB-1 protein was found to be associated with 

high levels of Pgp expression in human breast cancer (Bargou et al, 1997) and 

osteosarcoma (Oda et al., 1998), but not in lung (Gu et al., 2001) and colorectal cancer 

(Shibao et al., 1999).  Similarly, this study showed that nuclear localization of YB-1 is 

associated with a propensity for Pgp expression.  However, the proportion of breast 

cancers with nuclear localization of YB-1 appears to be low as evidenced by 11% in this 

present study and 13% of 86 patients in that reported by Janz et al. (2002) as compared to 

other cancers, such as non-small cell lung cancer (45% of 196 patients) (Oda et al., 2003) 

and ovarian cancer (45% of 35 patients) (Yahata et al., 2002).   

Using a computational approach based on the Resonant Recognition Model, it is 

also shown that direct binding between the YB-1 protein and the MDR1 gene promoter is 

indeed possible, further verifying experimental evidence that YB-1 is involved in the 

regulation of MDR1 gene in cancer cells (Bargou et al., 1997 and Ohga et al., 1998).  

However, the present study also shows that the absence of nuclear localization of YB-1 



Discussion 
 

136

does not necessarily preclude Pgp expression.  In those tumour samples, it is possible that 

nuclear localization of YB-1 may not have been prominent enough to be detected by 

immunohistochemistry, or that other promoters are also operative (Hu et al., 2000). 

The possible effect of YB-1 on Pgp expression and the association between the 

level of YB-1 expression and GST-pi positivity in breast cancers suggest that YB-1 may 

confer multi-drug resistance in breast cancer.  In addition, YB-1 may affect chemotherapy 

resistance in many other ways, possibly through DNA repair (Izumi et al., 1991), or 

transcriptional or translational control of other proteins conferring drug resistance.   

Taking all the patients receiving chemotherapy as a group, there was no 

statistically significant difference in recurrence risk between patients with low YB-1 

expression and higher YB-1 expression who received adjuvant chemotherapy.  However, 

it is interesting that although most of the patients received CMF chemotherapy, 80% of 

those patients who suffered tumour recurrence and had YB-1 scores of 5 or more, 

received anthracycline-based (eg. doxorubicin) chemotherapy regimes.  This suggests that 

YB-1 expression in breast cancer may possibly predict tumour resistance to different 

chemotherapy regimes, providing a marker that aids in the choice of adjuvant 

chemotherapy for breast cancers.  As CMF and anthracycline-based regimes are 

mainstays of breast chemotherapy, larger clinical studies will be useful to verify if YB-1 

expression would be useful in determining the choice of chemotherapeutic regimes for 

breast cancer patients.   
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4.6 Conclusion 

 

GST-pi appears to be a promising prognostic marker for early breast cancers.  In this 

study, it was found that: 

1. GST-pi may have a role in ameliorating the effects of oxidative stress on apoptosis; 

2. Nuclear localization of GST-pi is associated with Bcl-2 expression; 

3. GST-pi expression in the tumours, together with Bcl-2 expression and  low tumour 

grade, is associated with lower apoptotic index, but the effect was not statistically 

significant if all clinicopathological factors are considered in multivariate analysis; 

4. Amongst the biological markers examined with GST-pi, MT expression is not 

associated with GST-pi expression, but is associated with high grade tumours.   

5. On the other hand, YB-1 and Pgp expression are associated with GST-pi 

expression, but only the association with Pgp expression remained statistically 

significant by multivariate analysis; 

6. GST-pi expression is associated with poorer disease-free survival; and 

7. GST-pi expression is also associated with poorer prognosis in the group of patients 

who received adjuvant chemotherapy, whilst difference in disease-free survival 

was not seen in this group of patients when stratified according to Pgp or YB-1 

expression. 

 

Indeed, GST-pi expression is associated with more aggressive tumours and this 

effect may be partly explained by protection against oxidative stress and apoptosis, 

supporting our initial hypothesis. 
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At the same time, the study developed further understanding with regards to the 

clinical importance of several other tumour markers: 

1. Bcl-2 expression, although associated with increased apoptosis, was associated 

with estrogen receptor positive and smaller sized tumours, and is an independent 

favourable prognostic factor; 

2. Nuclear expression of MT is associated with lower recurrence risk; 

3. High level of MT expression is associated with poorer disease-free survival and 

this effect is more evident in the group of patients who received adjuvant 

chemotherapy; 

4. High level of YB-1 expression is associated with poorer disease-free survival in 

patients who did not receive adjuvant chemotherapy; 

5. High level of YB-1 expression is associated with recurrence in patients who have 

received anthracycline-based chemotherapy; whilst lower levels of YB-1 

expression is associated with recurrence in patients who were given the CMF 

regime. 

 

 

4.7 Future studies 

 

This study has provided insights into the biological role of GST-pi in breast cancer and 

the clinical importance of GST-pi, MT, Pgp and YB-1 as potential prognostic markers for 

early recurrence.  The observations regarding the nuclear localization of GST-pi and MT 
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could be further explored by studies examining how sub-cellular localization affects gene 

expression, possibly through the use of micro-array technology. 

With recent interest in pharmacogenetics, several polymorphisms of the GST-pi 

gene have been identified with different stability and varying activity towards 

electrophilic substrates (Lin et al., 2003).  These polymorphisms have different allelic 

frequencies in different racial groups.  For example, the allelic frequency for the less 

active Ile105Val variant is 0.43 for whites, 0.28 for African-Americans and 0.17 in a 

Chinese population (Wang et al., 2003).  This may explain the varying response to 

chemotherapy amongst patients (Sweeney et al., 2000).  Of further interest will be how 

these polymorphisms modify the phenotype of breast cancer in the subgroup of breast 

cancer patients who do not receive adjuvant chemotherapy. 

The high frequency of GST-pi expression in breast cancer and its strong 

association with recurrence risk suggests it as a likely therapeutic target.  Apoptosis-based 

anticancer drugs are an attractive area of development as they are potentially selective 

against cancer cells (Zhang, 2002).  Cancer cells, under higher apoptotic stress compared 

to normal cells, are more sensitive to perturbation to part of their apoptotic defence. 

 In addition, as more patients with early stage breast cancers are recommended 

chemotherapy, the usefulness of GST-pi, MT and YB-1 in identifying patients at higher 

risk of recurrence after chemotherapy is promising.  Of particular interest is YB-1 

expression.  Larger clinical studies will be needed to verify if YB-1 expression could help 

in determining the choice of chemotherapeutic regimes for breast cancer patients.  
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LIST OF PATIENTS 
 

 

patient 
no. 

age 
(years) 

Tumour 
size 
(cm) 

grade nodal 
status 

estrogen 
receptor 

adjuvant 
chemotherapy 

days to 
recurrence 

         
1 1072 40 4.0 3 Pos Neg No 262 
2 1146 45 3.0 3 Pos Pos Yes  
3 1518 58 6.0 3 Pos Neg Yes 523 
4 1558 61 2.0 3 Neg Pos Unk Unk 
5 1579 33 2.0 3 Pos Pos Yes  
6 1583 49 1.6 3 Neg Pos No  
7 1584 79 3.0 2 Neg Pos No 694 
8 1588 40 1.0 2 Neg Pos No  
9 1937 72 4.0 3 Neg Pos No  

10 1995 39 2.8 2 Pos Neg Yes  
11 2102 58 1.4 2 Neg Pos No  
12 2242 53 3 3 Pos Neg Unk Unk 
13 2324 65 5 1 Pos Pos Unk Unk 
14 2684 63 3 2 Neg Pos Unk Unk 
15 2703 85 4.5 3 Pos Neg Unk Unk 
16 2763 47 2.5 2 Neg Pos Unk Unk 
17 2832 49 6 3 Pos Neg Unk Unk 
18 3117 49 2.0 3 Pos Pos Yes  
19 3143 64 2.8 2 Pos Pos No  
20 3204 58 4.0 1 Pos Pos No  
21 3347 76 2.5 3 Neg Neg No  
22 3528 51 2.5 2 Pos Pos Yes  
23 4412 44 3.5 3 Neg Pos Yes  
24 4430 33 2.0 2 Pos Pos Yes  
25 4434 44 4.0 1 Neg Pos Yes  
26 4644 47 3.5 1 Pos Pos Yes  
27 4746 53 1.4 2 Pos Neg Unk Unk 
28 4794 52 3.5 3 Neg Pos Yes  
29 4795 67 4.0 2 Pos Pos No  
30 5088 64 4.5 1 Pos Pos Yes  
31 5168 47 1.3 3 Pos Neg Yes  
32 5204 62 5.0 2 Neg Neg Yes 678 
33 5339 59 3.0 2 Neg Pos No  
34 5353 50 3.0 2 Neg Pos Yes  
35 5482 44 6.0 3 Pos Pos Yes  
36 5535 43 2.2 3 Neg Neg No  
37 5797 49 3.4 2 Pos Pos No  
38 5820 86 5.0 3 Pos Neg No  
39 6114 52 2.0 3 Neg Neg Yes  
40 6210 41 2.0 3 Neg Neg Yes  
41 6218 40 4.5 3 Pos Pos Yes  
42 6471 44 3.0 2 Pos Pos Yes  
43 6473 68 3.0 2 Pos Pos No  
44 6683 72 4.5 3 Neg Pos No  
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45 6794 58 7.0 2 Neg Pos Yes  
46 6834 52 4.5 3 Pos Pos No  
47 6964 59 3.3 3 Pos Pos Yes  
48 7031 51 1.7 3 Neg Pos Yes  
49 7151 51 3.0 3 Pos Pos No  
50 7179 42 3.0 2 Pos Pos Yes  
51 7423 63 6.0 3 Pos Neg No  
52 7425 46 2.3 1 Pos Pos Yes  
53 7440 34 4.5 3 Neg Neg Yes  
54 7838 56 2.5 3 Pos Pos No 1206 
55 7839 57 3.5 2 Neg Pos Yes  
56 7840 35 2.3 3 Pos Neg Yes 489 
57 7847 48 2.2 2 Pos Pos Yes  
58 8097 54 3.0 3 Unk Neg No  
59 8183 47 3.5 3 Neg Pos Yes  
60 8461 71 2.5 3 Neg Pos Unk Unk 
61 9164 59 4.5 3 Neg Pos No 717 
62 9167 64 3.5 2 Neg Neg Yes  
63 9786 56 3.0 1 Pos Pos Yes  
64 11042 55 2.8 1 Pos Pos   
65 11046 66 4.5 3 Neg Neg Unk Unk 
66 11898 58 1.5 2 Neg Pos Unk Unk 
67 12337 64 4.5 3 Pos Pos Unk Unk 
68 13482 81 2.5 3 Neg Neg No  
69 13714 46 7.5 2 Pos Neg No 646 
70 13750 57 3.5 3 Neg Neg Yes  
71 16016 41 2.0 3 Neg Neg Yes  
72 16048 58 5.0 3 Pos Neg Yes 458 
73 16067 48 2.7 3 Pos Pos Yes  
74 16068 55 3.0 3 Pos Pos Yes  
75 16343 48 2.5 2 Neg Pos Yes  
76 16494 49 2.2 3 Neg Pos Yes  
77 16934 49 6.0 2 Pos Pos Yes 649 
78 16999 65 4.5 2 Pos Neg Yes  
79 17621 58 2.5 3 Neg Pos No  
80 17626 43 4.5 3 Neg Neg Yes  
81 17813 52 1.8 2 Neg Pos No  
82 18074 57 3.0 3 Pos Neg Yes  
83 19001 56 3.5 2 Pos Neg Yes 1055 
84 19116 78 5.0 2 Neg Neg Yes  
85 19128 38 4.7 2 Pos Neg Yes  
86 19420 49 1.3 1 Pos Pos Yes  
87 19486 60 2.5 3 Pos Neg Yes  
88 19488 35 4.5 3 Pos Neg Yes  
89 20067 80 11.0 3 Pos Neg No  
90 20669 61 5.0 2 Pos Neg Yes  
91 21345 52 2.0 2 Pos Neg Yes  
92 21357 64 4.0 3 Pos Pos Yes  
93 21752 55 2.1 2 Pos Pos Unk Unk 
94 21780 51 2.5 3 Neg Pos Yes  
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95 21796 54 4.8 3 Pos Pos Unk Unk 
96 21936 45 6.0 3 Pos Pos Yes 371 
97 22003 57 2.0 2 Pos Pos No  
98 23103 70 12.0 2 Pos Neg No  
99 23233 55 4.0 3 Pos Neg Yes  

100 23341 46 3.0 2 Pos Unk Yes  
101 23383 56 3.5 3 Neg Pos No  
102 23471 36 2.0 3 Unk Pos Yes 798 
103 23768 59 4.5 3 Neg Neg Yes 1116 
104 24025 75 4.5 3 Pos Pos No 282 
105 25286 33 4.0 3 Pos Neg Yes 419 
106 25398 48 5.0 2 Pos Pos Yes  
107 25400 55 3.0 3 Neg Neg Yes  
108 25841 44 2.0 3 Neg Unk No  
109 26974 40 6.0 2 Pos Pos Yes  
110 26976 64 3.0 1 Pos Pos No  
111 27230 45 2 3 Neg Neg Unk Unk 
112 27642 77 3.0 3 Neg Neg No  
113 27839 57 1.8 2 Neg Pos No  
114 27840 77 3.0 1 Pos Pos No  
115 27844 61 1.4 2 Neg Neg No  
116 27919 63 2.2 1 Neg Pos No  
117 27952 56 1.2 2 Neg Pos Unk Unk 
118 28305 64 3.0 2 Neg Pos No 883 
119 28954 68 3.0 3 Pos Neg Yes  
120 30071 35 2.5 2 Neg Pos Yes 750 
121 30388 38 2.0 3 Pos Pos Yes  
122 30531 48 2.0 2 Pos Pos No  
123 30640 53 3.5 3 Neg Neg Unk Unk 
124 30642 49 4.8 3 Pos Neg Unk Unk 
125 31077 75 7.0 3 Pos Neg No 603 
126 31082 79 3.0 3 Pos Neg No 747 
127 31148 51 2.5 1 Neg Pos Yes  
128 31152 46 4.5 2 Neg Pos Yes  
129 31153 38 2.8 3 Neg Pos Yes  
130 31333 73 3.0 3 Neg Pos No  
131 31366 58 2.1 2 Neg Pos No  
132 31389 79 4.0 3 Neg Pos No  
133 31467 43 4.0 3 Neg Pos Yes  
134 31674 48 8.5 2 Pos Pos Yes 367 
135 32453 46 3.5 2 Neg Pos Yes  
136 34349 60 2.4 2 Pos Pos Unk Unk 
137 34435 47 2.9 3 Neg Pos Unk Unk 

 
Neg = negative; Pos = positive; Unk = unknown 
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SOLUTIONS AND REAGENTS 
 
 

APES coated slides 

Acid washed slides coated with 2% 3-aminopropyl-tri-ethoxysilane (Sigma-3648) in 

acetone 

 

Citrate buffer 

0.01M sodium citrate adjusted to pH 6 by 0.01M citrate acid. 

 

Diaminobenzidine (DAB) reaction solution 

3.3’-diaminobenzidine tetrachloride  50mg 

Tris buffer or Tris buffered saline  100ml 

H2O2      33µl 

 

Eosin staining solution 

1% Eosin in deionised H2O 

 

Harris Haematoxylin 

Haematoxylin     1g 

Absolute alcohol    10ml 

Ammonium alum (or potassium alum) 20g 

Mercuric oxide    0.5g 

Deionised H2O    200ml 

 

Lysis buffer 

10mM Tris, pH 7.4 

1% SDS (sodium dodecyl sulfate) 

 

Methyl green staining solution 

0.5% methyl green in 0.1M acetate buffer pH 4.8 
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50mM Phosphate buffer pH 7.4 

K2HPO4 (0.87g/100ml)   74ml 

NaH2PO4  (0.6g/100ml)   27ml 

 

0.1M Phosphate buffer pH 6.5 

K2HPO4 (1.74g/100ml)   30ml 

NaH2PO4  (1.2g/100ml)   78ml 

 

50mM Phosphate buffered saline (PBS) 

Na2HPO4.7H2O    13.4g 

NaCl      8g 

H2O      made up to 1L 

Adjusted to pH 7.4 with dilute HCl 

 

50mM Tris buffer (TB) pH7.4 

tris(Hydroxymethyl)aminomethane  6g 

H2O      made up to 1L 

Adjusted to pH 7.4 with dilute HCl 

 

50mM Tris buffered saline (TBS) pH7.4 

tris(Hydroxymethyl)aminomethane  6g 

NaCl      8g 

H2O      made up to 1L 

Adjusted to pH 7.4 with dilute HCl 

 

TBST buffer 

10mM Tris pH8.0 

100mM NaCl 

1% Tween-20 
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Prognostic Significance of Glutathione S-Transferase-Pi
in Invasive Breast Cancer
Jingxiang Huang, M.B.B.S., Puay-Hoon Tan, F.R.C.P.A., Jayabaskar Thiyagarajan. M.B.B.S.,
Boon-Huat Bay, Ph.D.

Department of Medical Oncology (JH), National Cancer Centre; Department of Pathology (P-HT),
Singapore General Hospital; and Departments of Physiology (JB) and Anatomy (B-HB), National
University of Singapore, Singapore

Glutathione S-transferase pi (GST-pi), a Phase II
detoxification enzyme, has recently been implicated
in protection against apoptosis. Expression of
GST-pi and Bcl-2 protein, an established apoptosis
marker, was analyzed by immunohistochemistry in
116 cases of infiltrative ductal breast carcinomas in
Singapore women. The markers were correlated
with apoptosis detected by the TUNEL method and
clinico-pathological parameters. There were 67
(58%) GST-pi–positive breast tumors and 43 (37%)
Bcl-2–positive tumors. In a large proportion of GST-
pi–positive/Bcl-2–positive tumors, there was a dis-
tinct accumulation of the GST-pi enzyme within the
nucleus of cancer cells when examined by double
immunofluorescence labeling under confocal mi-
croscopy. GST-pi immunoreactivity was not signifi-
cantly correlated with any of the traditional histo-
logic factors known to influence prognosis, whereas
Bcl-2 overexpression was associated with reduced
size of primary tumor (P � .021) and positive estro-
gen receptor status (P � .001). Univariate analysis
revealed that GST-pi–positive, Bcl-2–positive, and
lower histological grade tumors had decreased lev-
els of apoptosis (P � .024, P � .011, and P � .029,
respectively). However, multivariate analysis
showed that histological grade and Bcl-2, but not
GST-pi, immunoreactivity were correlated with ap-
optotic status. The Kaplan-Meier disease-free sur-
vival curves showed a significant difference between
GST-pi–positive and GST-pi–negative breast cancer
cases (P � .002). Disease-free survival in patients
with GST-pi–positive tumors was also worse than

that in patients with GST-pi–negative tumors in the
group who had adjuvant chemotherapy (P � .04). In
patients who were lymph node positive, GST-pi im-
munopositivity was found to influence disease-free
survival. Recurrence of tumors was also signifi-
cantly affected by GST-pi immunoreactivity (rela-
tive risk of 8.1). The findings indicate that GST-pi–
positive tumors are more aggressive and have a
poorer prognosis than do corresponding GST-pi–
negative breast cancers.

KEY WORDS: Apoptosis, Bcl-2, Breast carcinoma,
Confocal microscopy, Glutathione S-transferase,
Immunohistochemistry, Survival.

Mod Pathol 2003;16(6):558–565

Glutathione S-transferase-pi (GST-pi) belongs to a
major group of detoxification enzymes that is
widely distributed in the human body (1). In nor-
mal human tissues, the enzyme protects cells
against noxious compounds by catalyzing conju-
gating reactions with glutathione and protects
against reactive oxygen species by reducing organic
hydroperoxides via glutathione peroxidase activity
(2). The role of GST-pi in tumor growth and pro-
gression is less well known. It is reported to be
variably expressed in breast cancer (3) and is asso-
ciated with estrogen receptor level expressed by the
tumor (4, 5). Down-regulation of GST-pi activity in
a T-cell line study appears to favor apoptosis (6)
and inhibition of GST-pi function induces apopto-
sis in rat hepatoma cells (7).

The Bcl-2 protein is known to block apoptosis
and prolong the life span of cells (8). It has been
suggested that Bcl-2 plays a part in regulating cel-
lular redox potential in response to oxidative stress
(9). Bcl-2 is known to block lipid peroxidation and
generation of reactive oxygen species and cellular
redox potentials. Moreover, Bcl-2 has been re-
ported to alter intracellular ion fluxes that occur
during apoptosis, including changes in the parti-
tioning of Ca2�in the cellular organelles such as
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endoplasmic reticulum, nucleus, and mitochondria
(10). The ability of the Bcl-2 protein to suppress
apoptosis has also been linked with glutathione
(11).

In the present study, the expression of GST-pi
was analyzed by immunohistochemistry in breast
cancer in relationship with Bcl-2 expression, apo-
ptosis, and clinical outcome. The aim of this study
was to determine the prognostic roles of GST-pi
and Bcl-2 in patients with invasive ductal breast
cancer. The results were correlated with clinico-
pathological parameters and disease-free survival.

MATERIAL AND METHODS

Patients, Tumors, Pathological Evaluation, and
Clinical Follow-Up

The study population comprised 116 women diag-
nosed with infiltrative ductal breast carcinomas who
had undergone mastectomy or lumpectomy without
neoadjuvant treatment between 1998 and 1999 in the
Singapore General Hospital. The tissues were fixed in
10% buffered formaldehyde (pH 7.0). The age of the
patients ranged from 33 to 86 years, with a median
age of 52 years. There was no distant metastasis at the
time of diagnosis. The tumor size, estrogen receptor
status, and axillary lymph node positivity were deter-
mined. Histologic grade of the tumors was estab-
lished according to the criteria described by Sloane et
al. (12). Information was not available on the estrogen
receptor status of two patients because they were not
analyzed at the time of diagnosis. Lymph node status
in two patients was unknown because they did not
undergo axillary lymph node dissection. Seventy-one
(61%) patients received cytotoxic chemotherapy in
addition to surgical removal of the tumors. Thirty-
six (51%) patients received the cyclophosphamide/
methotrexate/5-fluorouracil (CMF) regime, whereas
the rest received adriamycin-based regimes such as
adriamycin/cyclophosphamide, adriamycin/taxol,
and cyclophosphamide/adriamycin/5-fluorouracil.
Patient follow-up ranged from 33 to 1464 days, with
a median follow-up of 1117 days. Twenty-one pa-
tients suffered recurrences, and mean disease-free
interval was 981 days.

Immunohistochemistry
Paraffin-embedded sections were stained immu-

nohistochemically for GST-pi using the polyclonal
antibody anti-GST-pi antibody (Dako) at 1:200 di-
lution as described in detail previously (13). For
Bcl-2 expression, sections were preheated in 10
mmol/L citrate buffer at pH 6.0 before incubation
with a mouse monoclonal to human Bcl-2 (Cymbus
Biotechnology) at 1:20 dilution for 90 minutes. After
washing and incubation with the appropriate sec-

ondary antibodies, avidin-biotin-peroxidase com-
plex was applied for 1 hour at room temperature to
amplify the specific binding of primary antibody.
Visualization was achieved by incubating with 3,3'
diaminobenzidine tetrachloride (Sigma) as the per-
oxidase substrate. The sections were then counter-
stained with hematoxylin. GST-pi expression was
considered to be positive when �10% of tumor cells
exhibited cytoplasmic or nuclear staining. Bcl-2 ex-
pression was classified as positive when �30% of
tumor cells exhibited cytoplasmic staining (14).

Double Immunofluorescence Labeling
Co-localization of GST-pi and Bcl-2 was per-

formed on paraffin-embedded samples as previ-
ously described (15). The primary antibodies were
incubated in the same medium with the tissue sec-
tions at the same concentrations as when they were
used singly for immunohistochemistry. Cy3-
conjugated secondary anti-rabbit antibody (to de-
tect the GST-pi antibody) at a dilution of 1:800 and
FITC-conjugated secondary anti-mouse antibody
(to detect the Bcl-2 antibody) at a dilution of 1:200
were then applied for 1 hour at room temperature.
After washing in PBS, the sections were mounted
with fluorescence mounting media (DAKO).
Stained sections were viewed and photographed
using the LSM 510 Carl Zeiss confocal laser scan-
ning microscope (equipped with an argon laser)
under a Plan Apo 63 � 1.4 NA (oil) objective. Exci-
tation wavelength for Cy3 was at 543 nm, and for
FITC, at 488 nm.

TUNEL Method
For the detection of apoptosis in tissue sections,

DNA fragmentation was identified using the termi-
nal deoxynucleotidyl transferase–mediated, dUTP-
biotin nick end-labeling (TUNEL) technique with
the commercially available TdT-FragELTM DNA
Fragmentation Detection kit (Oncogene Research
Products) (16) in 113 tumor sections. After depar-
affinization and rehydration, slides were perme-
abilized in 20 mg/mL of proteinase K. Endogenous
peroxidase was inactivated by treating with 3% hy-
drogen peroxide. Subsequently, the sections were
end-labeled with biotinylated dNTP by TdT for 2
hours at 37° C, and labeled cells were detected
using streptavidin-horseradish peroxidase conju-
gate followed by diaminobenzidine staining. The
apoptotic index was defined as the number of ap-
optotic nuclei per 100 cancer cell nuclei.

Statistical Analysis
For statistical analysis, SPSS software for Win-

dows, Release 10.0, was used. Clinicopathological
data was compared between groups of breast tu-
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mors with different protein expression, using either
�2 or Fisher’s exact test. The Student’s t test was
used to compare the mean apoptotic index for dif-
ferent groups of breast tumors. For multivariate
analysis of factors associated with apoptosis, log
transformation and multiple linear regression was
used. Survival curves were plotted by the Kaplan-
Meier method, and the differences between the
curves were evaluated by log-rank test. To assess
the factors influencing recurrence, multivariate
analysis using Cox’s proportional hazard models
was performed. A P value of �.05 was considered
significant.

RESULTS

There were 67 (58%) GST-pi–positive breast tu-
mors with the GST-pi protein being expressed in
the cytoplasm, the nucleus, or both (Fig. 1A). Forty-
three (37%) tumors were found to be bcl-2 positive
(Fig. 1B). Thirty-three (28%) tumors were both Bcl-2
and GST-pi negative, and 27 (23%) were both Bcl-2
and GST-pi positive. Although there was no corre-
lation between GST-pi and Bcl-2 expression (P �
.441), Bcl-2 expression appeared to affect the local-

ization of GST-pi. In a large proportion of GST-pi–
positive/Bcl-2–positive tumors examined, there
was a distinct accumulation of the GST-pi enzyme
within the nuclei of cancer cells in addition to the
cytoplasmic staining when observed by double im-
munofluorescence labeling under confocal micros-
copy (Fig. 1, C–E). Localization of Bcl-2 in the cy-
toplasm is represented by green fluorescence, and
GST-pi expression in the cytoplasm/nucleus, by red
fluorescence, whereas co-localization of cytoplas-
mic GST-pi with Bcl-2 is shown by orange
fluorescence.

Table 1 shows the distribution of patients accord-
ing to clinical and histopathological variables. The
proportion of GST-pi–positive tumors was not sig-
nificantly correlated with any of the histologic fac-
tors traditionally used for prognosis. In contrast,
Bcl-2 overexpression was associated with reduced
size of primary tumor (P � .021) and positive estro-
gen receptor status (P � .001).

Interestingly, GST-pi–positive tumors and Bcl-2–
positive tumors had significantly lower apoptotic
indices compared with the case of their negative
counterparts (Table 2). Histological Grade I and II
tumors also had lower apoptotic indices as com-

FIGURE 1. Composite figures of immunohistochemical stains of GST-pi (A) and Bcl-2 (B) and double immunofluorescence staining of GST-pi (C–
E). A, cytoplasmic staining of GST-pi protein in a few breast cancer cells. Immunoperoxidase stain; original magnification, 200�. B, Bcl-2–positive
immunoreactivity in breast cancer showing cytoplasmic staining. Immunoperoxidase stain; original magnification, 400�. C, breast cancer cells
staining positively with red fluorescence for GST-pi immunoreactivity. D, breast cancer cells staining positively with green fluorescence for bcl-2
immunoreactivity. E, co-localization of GST-pi and bcl-2 in the cytoplasm of the breast cancer cells (orange fluorescence). Nuclear localization of
GST-pi is indicated by the red fluorescence. (C, D, and E, bar � 20 �m).
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pared with the case of the Grade III tumors. There
was no correlation of the apoptotic index with tu-
mor size, axillary lymph node positivity, or estrogen
receptor status. However, when analyzed by multi-
variate analysis, only histological grade and Bcl-2
immunoreactivity were found to be correlated with
apoptosis (P � .008 and P � .015, respectively),
whereas there was no association between GST-pi
immunoreactivity and apoptosis (P � .177).

The Kaplan-Meier survival curves revealed a sig-
nificant difference between GST-pi–positive and
GST-pi–negative cases (P � .002; Fig. 2) but not
between Bcl-2–positive and Bcl-2 negative ones (P
� .08; Fig. 3). The time to recurrence was also
significantly affected by GST-pi immunoreactivity
(P � .007), with GST-pi immunopositive tumors
having a shorter recurrence-free interval, whereas
there was no association with Bcl-2 immunoreac-
tivity (P � .09). Surgically treated breast cancer
patients who received adjuvant chemotherapy and
are categorized by GST-pi and Bcl-2 status are
shown in Table 3. Although there was no significant
difference in disease-free survival between Bcl-2
status and the treatment regime after surgery (P �
.14 and P � .21 for surgery alone and surgery with
adjuvant chemotherapy respectively), GST-pi–pos-
itive cases had significantly poorer survival in both
groups of patients (Fig. 4 and Fig. 5).

Even though the mean number of positive axil-
lary lymph nodes in GST-pi–positive and GST-pi–
negative cases was not significantly different (4.0 �
0.7 versus 6.0 � 1.1 respectively; P � .134), GST-pi
immunoreactivity was observed to influence
disease-free survival in lymph node–positive cases.
(P � .002; Fig. 6). Details of this subset of patients
with respect to other clinicopathologic parameters
are shown in Table 4.

When factors influencing recurrence were ana-
lyzed by multivariate analysis, GST-pi status was
found to significantly influence disease-free sur-
vival (P � .006), with Bcl-2 status having a marginal
influence over disease-free survival (P � .067; Table
5). The risk of tumor recurrence was eight times
higher in patients with GST-pi–positive breast tu-
mors, as the relative risk was 8.1. Conversely, Bcl-2
expression reduced the risk of recurrence in breast
cancer patients (relative risk of .31).

TABLE 1. Relation between Over-Expression of GST-pi

and Bcl-2 with Clinico-Pathological Factors

Clinico-Pathological
Factors

Number of
Patients

GST
pi-Positive

Bcl2-Positive

Patient age
50 years and below 50 31 23
More than 50 years 66 36 20
P .453 .120

Primary tumor
T1 21 12 13
T2 82 47 26
T3 and T4 13 8 3
P .613 .021

Regional Lymph nodes
Positive 63 35 21
Negative 51 30 21
P 1.000 .560

Estrogen receptor
Positive 74 44 35
Negative 40 23 6
P .845 .001

Histologic grade
I 11 7 6
II 43 24 16
III 62 36 21
P .894 .425

TABLE 2. Mean Apoptotic Index in Relation to Clinico-

Pathological Factors

Clinico-Pathological
Factors

Apoptotic Index
(Mean � SEM)

Patient age
50 years and below 1.22 � 0.22
More than 50 years 1.40 � 0.20
P .547

Primary tumor
T1 0.94 � 0.29
T2, T3 and T4 1.40 � 0.17
P .236

Regional lymph nodes
Positive 1.42 � 0.22
Negative 1.21 � 0.20
P .439

Estrogen receptor
Positive 1.27 � 0.21
Negative 1.49 � 0.20
P .486

Histologic grade
I and II 0.97 � 0.17
III 1.62 � 0.23
P .029

GST-pi expression
Positive 1.05 � 0.14
Negative 1.72 � 0.30
P .024

Bcl-2 expression
Positive 0.82 � 0.12
Negative 1.60 � 0.22
P .011

FIGURE 2. Disease-free survival in patients with GST-pi–positive
tumors was worse than that of patients with GST-pi–negative tumors (P
� .002).
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DISCUSSION

In the present study, GST-pi overexpression was
detected in 58% of the breast cancer tissues exam-
ined. This finding is similar to that reported in
Caucasian populations (17, 18). We observed that
GST-pi expression was not associated with estrogen
receptor status with a larger sample, although in a
previous smaller study, we found that GST-pi ex-
pression was associated with estrogen receptor
negativity (13). This may be due to subtle differ-
ences in tumor characteristics between the two

samples, as differences in patient selection could
result in the presence or absence of this association.

Only 37% of the breast cancers exhibited Bcl-2
overexpression, compared with 49% (19) and 63%
(20) in two studies that used the same cutoff to
define Bcl-2 overexpression. Whether such varia-

FIGURE 3. Disease-free survival in patients was not affected by Bcl-2
status (P � .08).

TABLE 3. Treatment Regime of Breast Cancer Patients

after Surgery as Stratified By Bcl-2 and GST-pi Status

Biomarker
Status

No
Chemotherapy

With Adjuvant
Chemotherapy

GST-pi positive 27 40 (22 on CMF)
GST-pi negative 18 31 (14 on CMF)
Bcl-2 positive 19 24 (12 on CMF)
Bcl-2 negative 26 47 (24 on CMF)

CMF � cyclophosphamide/methotrexate/5-fluorouracil regime.

FIGURE 4. Disease-free survival in patients with GST-pi–positive
tumors was inferior to that in patients with GST-pi–negative tumors
who underwent surgery without chemotherapy (P � .02).

FIGURE 5. Disease-free survival in patients with GST-pi–positive
tumors was worse than that of patients with GST-pi–negative tumors in
the group who had adjuvant chemotherapy (P � .04).

FIGURE 6. Disease-free survival in node-positive patients was
significantly correlated with GST-pi immunoreactivity (P � .002).

TABLE 4. Relation of GST-pi Expression with Clinico-

Pathological Factors in Axillary Lymph Node Positive

Cases

Clinico-Pathological
Factors

Number of
Patients

GST pi-
Positive

GST pi-
Negative

P Value

Primary tumor .652
T1 9 5 4
T2 42 17 25
T3 and T4 12 5 7

Estrogen receptor .434
Positive 39 18 21
Negative 23 8 15

Histologic grade .285
I 8 2 6
II 24 13 11
III 31 12 19
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tions were due to population differences await fur-
ther confirmatory studies. Nevertheless, consistent
with those studies, a higher proportion of Bcl-2–
overexpressing tumors remains associated with es-
trogen receptor–positive tumors and tumors with
better prognostic characteristics such as smaller
size.

GST-pi immunoreactivity was observed to be dif-
fusely located in the cytoplasm in most of the Bcl-
2–negative tumors. In contrast, there appeared to
be an increased nuclear localization of the GST-pi
protein in Bcl-2– overexpressing tumors, as clearly
demonstrated by two-color immunofluorescence
with confocal microscopy. One plausible explana-
tion for this observed phenomenon is that the Bcl-2
protein has been implicated as a regulator of trans-
port through the nuclear pore (21). GST-pi, which
has a molecular weight of 22 kDa, has the potential
to gain entry into the nucleus through the nuclear
pore complex (22). The precise role of GST-pi in the
nucleus has not been ascertained, although an in-
creased amount of nuclear GST-pi expression has
been observed in breast cancer cells resistant to
doxorubicin and cis-diamminedichloroplatinum
(II; 23). The findings of that study showed that
GST-pi was transferred to the nucleus when cells
were exposed to the anticancer drugs, thus prevent-
ing DNA damage by inhibiting DNA intercalation
and DNA cross-linking.

Apoptosis is a fundamental biological process
that plays an important role in carcinogenesis (24).
It is well established that this process could be
triggered by a variety of agents, including oxidants
(25). Oxidative damage to cells is known to be
blocked by antioxidants, which have the capacity to
scavenge reactive oxygen species (26). GST-pi is an
antioxidant that is known to inhibit c-Jun
N-terminal kinases that are required for maximal
induction of apoptosis by DNA damaging agents, a
pathway which is mediated by Bcl-2 (27). In addi-
tion, the GST family of enzymes has the capacity to
prevent oxidative damage by catalyzing conjuga-
tion of electrophiles (28). However, we did not find
a significant correlation of GST-pi expression with
apoptosis when evaluated by multivariate analysis.

On the other hand, a higher Bcl-2 immunoreac-
tivity was associated with a lower extent of apopto-
sis, a finding which is similar to that reported by
Vakkala et al. (29). Suppression of apoptosis is re-

ported to increase mutation frequency (30), and
loss of apoptosis is associated with accumulation of
oncogenes (31). By delaying cell death, the Bcl-2
protein may help to promote the accumulation of
mutations, allowing cancer cells to acquire a more
malignant phenotype. In view of its anti-apoptotic
effects, Bcl-2 expression would apparently promote
tumorigenesis. However, Bcl-2 is generally ac-
cepted as a favorable prognostic marker in breast
carcinoma (32). In our study, Bcl-2-positive cases
appeared to have improved disease-free survival
(though not statistically significant). This is under-
standable, as prognosis is influenced by a host of
other factors besides apoptosis. Although dysregu-
lation of apoptosis is known to play an important
role in metastasis (33), yet we observed no correla-
tion of lymph node metastasis with Bcl-2.

It has also been demonstrated that the more ag-
gressive infiltrative ductal carcinoma has a lower
degree of apoptosis and higher proliferative activity
compared with the case of intraductal carcinoma
(34). This contrasts with our finding, in which a
higher histological grade was observed to be asso-
ciated with a raised apoptotic index. In his review,
Lipponen (35) stated that increased apoptotic val-
ues in breast cancer are related to high histological
grade and that the apoptotic index shows a positive
correlation with indicators of cell proliferation such
as mitotic index. Mitotic activity is one of the fac-
tors used in determining histological grade (12),
and this could explain why histological Grade III
tumors had higher apoptotic values than Grade I
and II breast tumors.

The GST family of enzymes has long been impli-
cated in chemotherapeutic drug resistance (36).
Chemoresistance is a major cause for failure in
cancer therapy, and modulation of cellular proteins
such as GST-pi involved in detoxification has been
suggested as one of the mechanisms that contrib-
ute to drug resistance (37). GST-pi expression has
been reported to be related to clinical drug resis-
tance (38). In our study, we found a significantly
poorer disease-free survival in patients with GST-
pi–positive breast tumors who received adjuvant
chemotherapy after surgery, as compared with pa-
tients who had GST-pi–negative tumors.

Earlier on, Gilbert et al. (5) suggested that in-
creased GST-pi expression could be an important
predictor of early recurrence and death in node-
negative breast cancer patients. We observed that
patients with GST-pi immunopositivity had a
higher relative risk of recurrence (8 times) when
compared with their GST-pi–negative counterparts.
This finding is in accord with that reported by Sil-
verstrini and co-workers (18), who found that the
risk of local recurrence at 6 years was higher for
patients with tumors exhibiting elevated levels of
GST-pi protein. On the other hand, our finding of a

TABLE 5. Cox’s Multivariate Analysis of Disease Free

Survival in Breast Cancer Patients

Clinico-Pathological Factors P Value

Lymph node status .307
Estrogen receptor status .374
Bcl-2 status .067
GST-pi status .006
Tumor stage .971
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reduced risk of recurrence in breast cancer patients
with Bcl-2 expression (although the P value was
marginally significant) is in concert with that re-
ported by Castiglione and colleagues (39). They ob-
served that a positive Bcl-2 status had a favorable
impact on recurrence-free survival in European pa-
tients with breast cancer.

In conclusion, GST-pi expression appears to be
an independent predictor of poor prognosis in
breast cancer patients. Disease-free survival was
worse in patients with GST-pi–positive breast tu-
mors, and the relative risk of tumor recurrence was
higher. GST-pi was linked with unfavorable disease
outcome in node-positive breast cancer patients. It
would appear that GST-pi can be added to the list
of new and promising prognostic factors, such as
tumor angiogenesis, epidermal growth factor re-
ceptor, and transforming growth factor alpha, that
provide significant information in the clinical man-
agement of breast cancer patients (40).
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Introduction

Metallothioneins (MTs) are low molecular weight pro-
teins of 6 to 7 kDa, with about 30% consisting of cysteine
residues and no aromatic amino acids. The nomenclature
for MT proposed by Kagi et al, define MTs as “polypep-
tides resembling equine renal metallothionein in several of
their features”.1 They contain conserved sequences of cys-
teine residues juxtaposed with basic amino acids, such as
lysine and arginine,2 and these form metal-binding tetra-
hedral thiolate structures with special affinity for transi-
tion metals.3

The classification of MTs into families, subfamilies,
subgroups and isoforms are based on sequence similarities
and phylogenetic relationships.4 In humans, MTs are
encoded by a family of genes consisting of 10 functional
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Metallothioneins (MTs) are a family of metal bind-
ing proteins that play an important role in maintain-
ing transition metal ion homoeostasis, redox balance
in the cell and fundamental cellular processes such
as proliferation and apoptosis. In humans, there are
4 groups of MT proteins which are encoded by 10
functional MT isoforms. In breast tissues, MT is pri-
marily expressed in myoepithelial and malignant
epithelial cells. Immunohistochemical studies have
revealed that 26% to 100% of invasive ductal breast
cancers express the MT protein. The MT-1F and MT-

2A isoforms have been reported to be  associated
with higher histological grade in breast cancer,
whereas higher MT-1E mRNA expression was found
in estrogen receptor-negative tumors compared to
their estrogen receptor-positive counterparts. A
number of studies have shown that MT expression
in breast cancer is associated with poorer prognosis.
In addition, metallothionein expression may have a
potential role in protecting the breast cancer cell
from chemotherapeutic threats to survival. (Patho-
logy Oncology Research Vol 10, No 2, 74–79)

Keywords: MT isoforms, biochemistry, biomarker, prognosis, chemoresistance, carcinogenesis

MT isoforms which are located on chromosome 11q13.5

The encoded proteins are classified into four groups, MT-1,
MT-2, MT-3 and MT-4 proteins.6,7 The functional genes of
MT-1 encode MT-1A, MT-1B, MT-1E, MT-1F, MT-1G, 
MT-1H and MT-1X isoforms, whilst only one of the MT-2
genes, MT-2A, is functional. MT-3 is preferentially
expressed in neural tissues8 and MT-4 expression appears
to be limited to squamous epithelial cells.9

Biochemical properties of MT

All MTs have characteristic cys-x-cys, cys-x-y-cys, and
cys-cys sequences, where x and y represent non-cysteine
amino acids. Mammalian MTs are believed to bind a total
of seven bivalent metal ions through thiolate coordination
in two separate clusters.10 To date, complete three-dimen-
sional structures which have been elucidated for rabbit
and rat MT-2,11-13 confirmed the presence of two separate
clusters, viz, beta-domain comprising amino acid residues
1 to 30 and three metal ions, and alpha-domain containing
amino acid  residues 31 to 61 and four metal ions. Because
of its metal binding properties, metallothionein has been
postulated to be involved in cellular homoeostatic control
and regulation of trace elements. In mammals, zinc-metal-
lothionein complexes appear to be the predominant
form.14 However, the ways in which zinc distribution in



the cell is regulated and the mechanisms of zinc transfer
from protein to protein are currently not well known.15 It
has been shown that zinc is easily displaced by other met-
als ions, such as lead and cadmium, by virtue of its low
binding affinity with the apoenzyme.16 Yet, the binding
affinity in vivo appears to vary depending on the nature of
stress experienced by the cell,17 suggesting that transition
metal ion homoeostasis is actively modulated, rather than
a passive chemical process. It is also believed that the cys-
teine sulfur forming ligands to zinc can be reduced or oxi-
dized with concomitant binding or release of zinc, respec-
tively, and such oxidoreductive mechanisms may link
metallothionein function with specific cellular signals.18

Metallothioneins can also serve as a redox buffer. The
metal binding thiolate clusters have a low redox potential
and are readily oxidized by cellular oxidants.19 It has been
shown that MTs can scavenge superoxide and hydroxyl
radicals in a manner similar to thiol containing molecules,
such as N-acetylcysteine and glutathione.20,21 The binding
of transition metals displaying Fenton reactivity (Fe and
Cu) can also reduce oxidative stress. As a result, MT over-
expression confers protection against free radical induced
DNA damage,22 and lipid peroxidation.23,24

The specific functional roles of each of the MT isoforms
are not precisely known. Whereas mRNA of MT-1A, MT-
1E, MT-1X, and MT-2A genes are expressed in normal
prostate,25 MT-1F, MT-1G and MT-1H mRNAs are addi-
tionally expressed in breast myoepithelial cells.26 Interest-
ingly, although metal response elements are present in the
promoters of all MT genes,27 not all MT genes are respon-
sive to metal induction. MT-1A and MT-1E isoforms are
up-regulated after exposure to cadmium and zinc,28 where-
as MT-1A and MT-1X are induced by arsenic29 in the same
cell line, and a different MT expression pattern is seen
when different cell lines experience similar heavy metal
exposure.30 MT-1E, MT-1X and MT-2A isoforms were
increased in PMC42 breast cancer cells that were resistant
to copper and zinc toxicity.31 Recently, a significant vari-
ant MT-1H isoform with amino acid replacements and
notable changes in the secondary protein structure was
reported in breast cancer cells.26

MT expression in human breast cancer

MT expression is routinely visualized immunohisto-
chemically using antibodies raised against the E9 epitope,
which is conserved in both MT-1 and MT-2 isoforms. In a
normal breast lobule that typically comprises bilayered
ductules/acini (an inner epithelial layer and outer myoep-
ithelial cells), strong nuclear and cytoplasmic MT
immunopositivity was observed in myoepithelial cells and
only rarely, in epithelial cells lining the large ducts.32,33

Similarly, in other benign breast lesions such as adenosis,
sclerosing adenosis and papilloma, only myoepithelial

cells were shown to express MT.34 Lobular cancer cells
from in-situ or invasive tumors, showed weak to no
expression of MT as well.34,35 In contrast, a significant pro-
portion of ductal breast cancers exhibited MT immunopos-
itivity. Studies revealed that 26% to 100% of invasive duc-
tal breast cancers express MT.36-39 If a component of duc-
tal carcinoma-in-situ was found in tumor tissues, the
retained myoepithelial cells around these in situ islands
were strongly highlighted immunohistochemically. In
addition, MT expression was present in the in-situ cancer
cells, with similar staining distribution and intensity to the
surrounding invasive elements.33

The expression of different isoforms of MT mRNA in
the breast cancer cell cytoplasm could also be demonstrat-
ed by in-situ hybridization on paraffin sections.  Using RT-
PCR on MT-expressing breast cancer tissues, the average
quantity of MT-2A mRNA was found to be highest
amongst the MT-1 and MT-2 isoforms and MT-1B mRNA
was not detectable in all the samples.38,40 Interestingly,
MT-3 was also found to be expressed in 73% of breast can-
cers,41 although it is not expressed in normal breast tissue.

Role of MT in breast carcinogenesis

The potential role of MT in carcinogenesis has been
well appraised by Cherian and co-workers, who were
also the first research group to establish MT expression
in human tumors.42-45 As MT is known to influence tumor
growth by affecting both cell proliferation and death,
which are fundamental processes in carcinogenesis,46,47

its role in tumors has attracted a lot of attention in recent
years. 

MT expression in many tissues of fetal mammals is
higher than that seen in adults.48 In human colonic cancer
cells, it has been demonstrated that metallothionein
expression is increased 2-3 fold in proliferating cell com-
partments compared to growth inhibited cells, and peak
expression occurs during late G1 and G1/S transition phas-
es.49 The level of combined MT-1 and MT-2 expression in
breast cancer tissue, and more specifically, the MT-2A iso-
form, correlate with increased proliferation indicated by
Ki-67 immunopositivity.38 It was demonstrated that over-
expression of MT-2A in breast MCF-7 cells resulted in a 
2-fold increase in cell multiplication,50 whilst over-expres-
sion of MT-1E and MT-3 in breast cancer cell lines did not
affect proliferative rate. In fact, in two cell lines studied,
MT-3 over-expression resulted in growth inhibition.51

MT expression has been linked to reduced apoptosis in
hepatocellular carcinoma52 and nasopharyngeal carcino-
ma.53 Although the relationship is not seen in breast cancer
tissues,38 interestingly, anti-sense down-regulation of MT-
2A in MCF-7 cells was associated with both reduced cell
growth and increased apoptosis with lower bcl-2 protein
levels and decreased expression of c-myc mRNA tran-
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scripts compared to controls.51 It is possible that whilst MT
expression may influence both proliferation and apoptosis,
there are other more important factors that are called into
play when apoptosis is triggered in breast cancer.54

The mechanism by which MT exerts its effects is not
precisely known. MT was found to interact specifically
with the p50 subunit of NF-κB in MCF-7 cells,55 and to
inhibit the binding of NF-κB to DNA following TNF acti-
vation.56 The effect appears to be mediated by both MT-1
and MT-2 isoforms.57,58 The possibility that MT might be
able to interact with other proteins involved in cell prolif-
eration and apoptosis was raised when MT-2A was also
found to interact with esophageal cancer related gene 2
(ECRG2).59

There also appears to be a functional link between MT
and the p53 tumor suppressor gene.60 In the presence of
zinc, MT facilitates normal functional p53 activity by zinc
transfer between MT and p53, resulting in the mainte-
nance of a DNA-binding conformation.61 However, the
transfer may be in the reverse direction under conditions
of zinc depletion,62 resulting in the disruption of the con-
formation of the DNA-binding domain and a phenotype
similar to many mutant forms of p53. It has also been sug-
gested that p53 and oestrogen-receptor may play a part in
the expression and induction of metallothionein in human
epithelial breast cancer cells.

Association of MT with pathological parameters 
and molecular markers of breast cancer

MT expression in breast cancers has been studied in
association with common clinico-pathological parameters
used in breast cancer prognosis and other common onco-
genes. High overall MT expression was consistently asso-
ciated with increased tumor grade and more severe nuclear
pleomorphism compared to the low MT expressing coun-
terparts.32,36,38,63,64 Some studies have also shown an
inverse correlation between MT expression with estrogen
receptor32,64 and progesterone receptor content.63,65 On the
other hand, most studies showed no statistically significant

association of MT expression with tumor size and with
presence of lymph node metastasis at diagnosis,38,39,64,66

although there is a numerical tendency for breast tumors of
poorer stage to be more highly MT expressing.38,39

In breast cancer tissues, MT expression has also been
studied in relation to the expression of tumor suppressor
proteins (p53, pRb, Bcl-2), extracellular matrix compo-
nents (type IV collagen, laminin), invasion- and tissue
modeling-related genes (fibronectin, cathepsin D, CD44,
matrix metalloproteinase-3), as well as growth factor
receptors (c-erbB2, EGFR).37,39,65,67 However, none of
these biomarkers were associated with MT expression.

Looking into specific MT isoforms, Bay et al found that
increased MT-1F and MT-2A mRNA were separately asso-
ciated with higher histological grade, but not with patient
age and lymph node status.38,40 Higher MT-1E mRNA
expression was found in estrogen receptor negative tumors
compared to estrogen receptor positive ones.68 However,
there was no significant difference in MT-1E expression
between progesterone receptor positive and progesterone
receptor negative tumors.

MT as a marker of prognostication in breast cancer

Higher MT expression in breast cancers has generally
been shown to predict worse survival for patients (Table
1). Fresno et al.32 found that patients with MT expressing
breast cancers had decreased overall survival and shorter
disease-free survival if the cancers were also estrogen
receptor negative or lymph node negative. Other studies
that included 72 to 478 patients,36,37,39,63,66 have found
worse prognosis associated with MT expression with the
entire study population included in the analyses. A single
study consisting of 92 patients found no statistically sig-
nificant different in survival when the patients were strat-
ified according to MT expression levels by univariate
analysis.64

Multivariate analysis, including other clinico-pathologi-
cal parameters, were reported only in a few studies,37,63 and
these showed that MT expression did not provide addi-
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Table 1. MT as a prognostic marker in breast cancer

Reference Country Prognosis in relation to to high MT expression

Ioachim et al., 200339 Greece Limited prognostic value
Vazquez-Ramirez et al., 200037 Spain Poor prognosis
Zhang et al., 200036 China Poor prognosis and higher histological grade
Oyama et al., 199664 Japan No correlation with prognosis
Goulding et al., 199566 UK Poor prognosis
Haerslev et al., 199563 Denmark Poor prognosis, axillary lymph node involvement, negative

progesterone receptor status and higher histological grade
Fresno et al., 199332 Spain Poor prognosis, negative estrogen receptor status and higher

histological grade



tional prognostic information with all other factors consid-
ered. This was probably due to the strong association of
MT expression with other factors predicting poor progno-
sis (such as tumor grade) in the studies.

MT and chemoresistance

Metallothionein has been extensively studied as a possi-
ble mediator of chemotherapy resistance.69 In solid tumors
treated uniformly with cisplatin-based chemotherapy, such
as esophageal squamous cell carcinoma,70 urothelial tran-
sitional cell carcinoma,71 and small cell lung cancer,72 met-
allothionein expression in the tumors have been associat-
ed with improved survival.  It was felt that chemotherapy
resistance to cisplatin is mediated, in part, by transfer of
platinum from cisplatin to metallothionein, resulting in
inactivation.73 However, when ovarian cancer patients
were treated with several chemotherapy regimes (some
cisplatin-based), such a protective effect was not obser-
ved.74,75 This suggests that the chemoprotective effect of
metallothionein is probably regime specific.

Recent evidence suggests that metallothionein also
reduces etoposide-induced apoptosis in lung and liver cancer
cell lines, and the effect was increased with higher MT lev-
els induced by pre-treatment with zinc or cadmium.76 The
mechanism by which metallothionein defer cell death from
etoposide exposure is still not fully elucidated. However, lit-
tle is known about the effect of metallothionein expression
on the sensitivity of breast cancer cells to common
chemotherapeutic agents used in the treatment of breast can-
cer.  As drug resistance is a multifactorial phenomenon, the
provision of direct and compelling evidence on the role of
MT in chemoresistance in tumors is a difficult task.77

Conclusion

Much remains to be learnt about the function of metal-
lothionein in breast carcinogenesis and chemotherapy resis-
tance, especially with regard to what role each of the iso-
forms performs in these processes. This may help in the
development of a specific therapeutic agent that aims to cor-
rect the abnormal expression of metallothionein in breast
cancers.  Selective up-regulation of metallothionein in non-
cancer tissues can also be explored further, so that existing
treatment options may be utilized to greater effect.
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Abstract.

 

Glutathione S-transferase (GST) is known to play
a key role in the detoxification and reduction of reactive
oxygen species (ROS). Thus, we assessed GST activity and
GST-pi expression in relation to oxidative stress and apoptosis
in breast cancer. Tumor tissues from 32 breast cancer patients
were evaluated for GST activity and thiobarbituric acid reactive
substances (TBARS) that are by-products of oxidative stress.
Four-micron sections of formalin-fixed, paraffin embedded
tumors were stained immunohistochemically with anti-GST-pi.
Apoptotic cells were detected by 

 

in situ end labeling of DNA
fragments using a commercial kit. TBARS levels were
significantly higher in breast cancers of older patients. GST-pi
expression was up-regulated in breast cancers that exhibited
higher oxidative stress and associated with higher GST activity.
Apoptosis in GST-pi negative tumors was not correlated with
GST activity, but GST-pi positive tumors within the same
range of oxidative stress showed a reduction in apoptosis as
well as an increased GST activity. This correlation was absent
in GST-pi positive tumors experiencing higher oxidative stress.
GST-pi expression may influence the level of GST activity and
delay apoptosis in breast cancer. However, GST-pi expression
in tumors with higher levels of oxidative stress may not be
sufficient to abrogate the deleterious effects of ROS.

Introduction

Oxidative stress arises when the production of reactive
oxygen species (ROS) exceeds the scavenging capacity of
cellular enzymatic and non-enzymatic anti-oxidant defense.
Accumulation of ROS causes lipid peroxidation, protein
modification and genetic mutations (1). Higher levels of

oxidative stress may trigger apoptosis via the mitochondrial
pathway (2). In this death receptor-independent pathway, ROS
induces the release of cytochrome C and changes in mito-
chondrial membrane permeabilization. Release of cytochrome C
initiates a cascade of enzymatic events resulting in the activation
of caspase 3 and culminating in apoptosis. Modulation of
anti-oxidant defense against ROS appears to be important in
cancer cells. For instance, inhibition of superoxide dismutase
in human leukemia cells by certain estrogen derivatives has
resulted in reduced cell survival (3).

The glutathione S-transferases (GST) are a super-family
of enzymes, with 8 distinct gene families (namely, alpha, mu,
theta, pi, sigma, zeta, kappa and chi) encoding the cytosolic
form of the enzyme found in human beings. Among its
activities, these enzymes confer anti-oxidant protection through
the neutralization of the toxic carbonyl-, peroxide- and
epoxide-containing metabolites produced within the cell by
oxidative stress via conjugation with glutathione (4). They are
also responsible for a substantial proportion of total glutathione
peroxidase activity in human tissues (5). In particular,
glutathione S-transferase P1-1 (GST-pi) is associated with
altered and variable expression in liver, renal, prostate and
breast cancers (6) and linked with nasopharyngeal and breast
cancers of a more aggressive phenotype (7-9).

Apoptosis has been investigated as a possible pathway
that could be manipulated for the treatment of breast cancer
(10). However, modulation of apoptosis by varying levels of
anti-oxidant enzyme expression in breast cancer has not been
extensively documented. In this study, we investigated the
association between GST activity and GST-pi expression in
relation to oxidative stress and apoptosis in breast cancer.

Materials and methods

Patients. Thirty-two breast cancer samples were obtained from
patients who underwent mastectomy without neo-adjuvant
treatment at the Singapore General Hospital. Their ages
ranged from 44-85 years, with a median of 55.5 years. All the
tumors were classified histopathologically as invasive breast
ductal cancers. Table I summarizes the clinico-pathological
characteristics of the cases. Immediately after surgery and
gross pathological examination, sections of at least 1 cm3 were
rapidly frozen in liquid nitrogen and stored until further use
for the measurement of total GST activity and quantitation of
thiobarbituric acid reactive substances (TBARS) for each of
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the tumors. The remaining tissues were fixed in formalin and
embedded in paraffin for histological examination.

Tissue homogenate. Frozen breast cancer tissues were thawed
on ice, blotted with filter paper and weighed. They were then
homogenized in sufficient 50 mM phosphate buffer at pH
7.4, under standard conditions to make a 10% homogenate.
The homogenate was centrifuged at 40,000 rpm at 0˚C, to
obtain a cell-free supernatant.

GST activity assay. Total GST activity was determined by
measuring the rate of conjugation of glutathione (GSH) and
1,2-chloro-2,4-dinitrobenzene (CDNB). Cell-free tissue
homogenate (10 µl) was added to a mixture of 950 µl of 0.1 M
phosphate buffer pH 6.5, 20 µl of 50 mM CDNB in ethanol
and 20 µl of 50 mM GSH in phosphate buffer. The reaction
at ambient temperature of 25˚C was monitored by the rise in
optical density at 340 nm. Correction for non-catalyzed reaction
was made by subtracting the rate of change of optical density
without enzyme from that with tissue homogenate. One unit
of GST activity is defined as the amount of enzyme necessary
to conjugate 1 nmol of CDNB with 1 nmol of GSH per min. 

TBARS analysis. Quantifying thiobarbituric acid reactive
substances (TBARS) from tissue extract is a standard assay
for lipid peroxidation. Breakdown products of lipid peroxidation
react with 2-thiobarbituric acid to form an easily detectable
chromogen. Briefly, a reaction mixture of total volume 3 ml
was constituted from 0.2 ml of cell-free tissue homogenate,

0.2 ml of 8.1% sodium dodecylsulfate, 1.5 ml of 1% phosphoric
acid, 0.1 ml of distilled water and 1 ml of 0.6% thiobarbituric
acid, was heated for 45 min at 100˚C, and 4.0 ml of n-butanol
was then added to extract the pink chromogen obtained at
room temperature (RT). The fraction dissolved in n-butanol
was separated from the rest of the reaction mixture by
centrifugation at 1000 g for 5 min. The optical density of the
n-butanol layer was determined at 535 nm.

GST-pi immunohistochemistry. Paraffin-embedded sections
were stained immunohistochemically for GST-pi using the
polyclonal antibody anti-GST-pi antibody (Dako, USA) at
1:200 dilution. After washing and incubation with the
appropriate secondary antibody, avidin-biotin-peroxidase
complex was applied for 1 h at RT to amplify the specific
binding of primary antibody. Visualization was achieved by
incubating with 3,3' diaminobenzidine tetrachloride (Sigma)
as the peroxidase substrate. The sections were then counter-
stained with methyl green. GST-pi expression was considered
to be positive when >10% of tumor cells exhibited cytoplasmic
or nuclear staining.

In situ detection of apoptosis. For the detection of apoptosis
in tissue sections, the commercially available TdT-FragEL
DNA Fragmentation Detection kit (Oncogene Research
Products, USA) was used. Briefly, tissue sections were
incubated with 20 µg/ml proteinase K for 20 min at RT,
followed by quenching of endogenous peroxidase with 3%
H2O2. Subsequently, sections were incubated with TdT enzyme
containing biotin labeled and unlabeled at 37˚C for 90 min.
The rest of procedure was carried out as in the manufacturer's
instructions. The apoptotic index was defined as the number
of apoptotic nuclei per 100 cancer cell nuclei. 

Statistical analysis. The Mann-Whitney test was used to
compare the mean GST activity, TBARS level and apoptotic
index for different groups of breast tumors. Correlation between
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Table I. Clinicopathologic characteristics of 32 breast cancer
tissues in relation to GST activity, TBARS level and apoptotic
index (p-values).
–––––––––––––––––––––––––––––––––––––––––––––––––
Clinico-
pathological GST TBARS Apoptotic
characteristics N activity index
–––––––––––––––––––––––––––––––––––––––––––––––––
Age
≤50 years 5
>50 years 27 0.617 0.006 0.305

Lymph node
metastasis

Absent 12
Present 20 0.460 0.654 0.626

Hormone 
receptor status

Absent 11
Present 21 0.370 0.184 0.905

Grade
I and II 17
III 15 0.748 0.113 0.806

Size of tumour
≤2cm 7
>2cm 25 0.327 0.802 0.236

–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Positive correlation between age of patients and TBARS levels in
cancer tissues (rho=0.407, p=0.021). Higher TBARS levels were found in
breast cancer tissues from older women.



two continuous variables were investigated using the Pearson's
test for bivariate correlations. The software used was SPSS
software for Windows version 11.0. p<0.05 was considered to
be statistically significant.

Results

There was marked variation in the GST activity among the
32 breast cancers analyzed. GST activity ranged from 76-317
nmol/min/mg protein with a mean value of 170 nmol/min/mg
protein. There were no significant differences in GST activity
between subgroups of cancers based on age at diagnosis,
lymph node status, hormone receptor status, size and grade of
tumor (Table I). 

The mean TBARS level was 129 nmol/g wet weight with
a range of 18-298 nmol/g wet weight. Interestingly, TBARS
levels were higher in breast cancers of older patients
(rho=0.407, p=0.021; Fig. 1). However, there were also no
significant differences in the level of TBARS between
subgroups of breast cancer stratified according to common
clinicopathological characteristics (Table I). 

Positive GST-pi staining was observed in 21 tumors. Fig. 2A
illustrates the typical immunostaining pattern in GST-pi positive
breast cancer cells and Fig. 2B is representative of a GST-pi
negative breast tumor section. GST activity in GST-pi positive
tumors was higher than that of GST-pi negative tumors
(187±15 nmol/min/mg vs. 137±17 nmol/min/mg, respectively,
p=0.041). The mean level of TBARS was also higher in
GST-pi positive tumors (155±17 nmol/g) as compared to
GST-pi negative tumors (80±16 nmol/g, p=0.003). For GST-
pi positive tumors, higher GST activity was linearly correlated
with lower TBARS level (rho= -0.535, p=0.012; Fig. 3), but
there was no significant correlation between GST activity
and TBARS level in GST-pi negative tumors (p=0.06). 

Apoptotic breast cancer cells detected by in situ end
labeling of DNA fragments are shown in Fig. 4. Higher GST
activity in breast cancer was associated with a decrease in
apoptosis only in the subgroup of 11 GST-pi positive tumors
with TBARS <175 nmol/g (rho= -0.607, p=0.048; Fig. 5).
The cut-off level of TBARS was taken to be 175 nmol/g so
that all GST-pi negative tumors could be categorized into one
subgroup. Apoptotic rates in GST-pi positive tumors with
higher levels of oxidative stress and GST-pi negative tumors
varied independently of GST activity (p=0.840 and p=0.066;
respectively).

Discussion

Oxidative stress experienced by a malignant cell is often
greater than its benign counterpart. In addition to that produced
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Figure 2. Detection of GST-pi expression in breast cancer by immunohistochemical staining with GST-pi antibody. Methyl green counterstain. A, Positive GST-pi
immunostaining, original magnification x180; B, negative GST-pi immunostaining, original magnification x240.

Figure 3. Inverse correlation between GST activity and TBARS level in
GST-pi positive breast cancers (rho= -0.535, p=0.012). Higher TBARS levels
in GST-pi positive tumors was associated with lower GST activity.

Figure 4. Detection of apoptosis by in situ end labeling of DNA fragments in
breast cancer tissues. Positive cells are stained brown by diaminobenzidine, a
chromogen substrate which reacts with the labeled cells at the site of DNA
fragmentation. An apoptotic cell (arrow) is observed in this tissue section.
Original magnification x240.



during aerobic cellular metabolism, the malignant cell
experiences additional pressures on cell survival because of
genetic mutations, abnormal protein expression and extrinsic
factors in the microenvironment. Activated leukocytes release
ROS, such as nitric oxide which kills tumor cells (11). T-cells
and macrophages release tumor necrosis factor (TNF) against
tumor cells, inducing apoptosis, a process which may involve
ROS. However, it is also known that TNF-induced caspase-3
activation in the TNF-receptor death pathway, is suppressed
by transfection of cells with superoxide dismutase (12).

Indeed, markers of oxidative stress have been reported to be
higher in breast cancers compared to their surrounding normal
breast tissue (13). Substantial variation in oxidative stress
levels in breast cancer, may be partly explained by increased
exposure to oxidants in the systemic circulation. Assays of
markers of oxidative stress in the sera of normal human
subjects aged 20-70 years showed higher oxidative stress in
older individuals (14). A similar trend was present in breast
cancer tissues analyzed in our study, where tissues obtained
from older patients had higher levels of TBARS. Although
levels of oxidative stress were found to not be influenced by
traditional pathological markers of tumor differentiation,
including tumor grade and hormone receptor status, this
would have to be confirmed with a larger sample size.

To protect against the deleterious effects of ROS (Fig. 6),
the cell possesses a number of anti-oxidant defences, viz.,
biochemical anti-oxidants, metal ion binders and intra-cellular
enzymes (including superoxide dismutase, glutathione
peroxidase, catalase, thioredoxin reductase and GST). Mean
activities of such enzymes have been found to be higher in
breast cancer tissues compared to adjacent normal breast
tissues (13) and benign breast tumors (15). In fact, the entire
glutathione detoxification pathway was found to be up-
regulated in untreated breast cancers compared to normal
tissues and provided greater redox protection in the cancer
cells as reflected in the reduced glutathione/oxidized
glutathione (GSH/GSSG) ratio (16).

Because of their broad specificity and key role in the
detoxification and reduction of cytotoxic agents, GST has

important constitutive function in tissues. Dysregulation and
genetic polymorphisms in GST subfamilies are actively studied
in many types of cancers (17,18). Amongst the members of
the GST family, the expression of alpha class of GST in breast
cancer is low, whilst the expression of GST-mu is consistent
with the presence of germ-line polymorphism of the GST-mu
gene. GST-pi expression, on the other hand, is widely variable
in breast cancers (19,20). In the present study, tumors over-
expressing GST-pi had higher total GST activity, suggesting
that among the GST isoforms, GST-pi contributes significantly
to variations in GST activity in breast cancer. The inverse
correlation observed between TBARS and GST activity in
GST-pi expressing tumors might also indicate a limited level
of protection against (or reversal of) stress by GST-pi. Tumors
with up-regulation of GST-pi expression appear to be those
exposed to more oxidative stress (higher TBARS level).

However, the relationship between apoptosis and GST
activity appears to be more complicated. The drive towards
apoptosis is a complex process, involving other stimuli in
addition to the balance between oxidative stress and anti-
oxidant protection. It is also recognized that cellular response
to extremes of oxidative stress may not be dose-dependent
(21). Although we observed that apoptosis in GST-pi negative
tumors was not correlated with GST activity, GST-pi positive
tumors within the same range of oxidative stress showed a
reduction in apoptosis with increased GST activity. This
finding is consistent with that reported in the Jurkat T-cell
line where partial inactivation of GST-pi was shown to favor
apoptosis (22). 

In conclusion, our findings suggest that GST-pi, an anti-
oxidant enzyme, may have a role in delaying apoptosis in
breast cancers. Interestingly, in GST-pi positive tumors
experiencing higher oxidative stress, apoptotic rates varied
independently of GST activity. Presumably, up-regulation of
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Figure 5. Inverse correlation between GST activity and apoptosis in GST-pi
positive tumors with lower oxidative stress which is arbitrarily defined as
TBARS <175 nmol/g (rho= -0.607, p=0.048).

Figure 6. Effects of ROS and anti-oxidant defense against ROS.



GST activity in breast cancers experiencing higher levels of
oxidative stress may not be sufficient to inhibit the deleterious
effects of ROS.
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Abstract.

 

The Y-box binding protein 1 (YB-1) regulates
gene expression through transcription and translation. YB-1
has been shown to be associated with up-regulation of P-
glycoprotein (Pgp), an ATP-binding transporter involved
in multi-drug resistance. In this study, we determined the
prognostic significance of YB-1 and its relationship with Pgp
in patients with breast cancer. YB-1 and Pgp expression
were evaluated by immunohistochemistry in resected
specimens of infiltrative ductal breast cancers from 99 patients
and 57 patients respectively and correlated with clinico-
pathological parameters and adjuvant chemotherapy regimes.
The antibody for the YB-1 protein was prepared by injecting
a rabbit with a purified recombinant chicken YB1 protein.
The relationship between YB-1 and Pgp was also evaluated
by a computational approach using the Resonant Recognition
Model (RRM). We found that breast tumors which were both
estrogen receptor-negative and lymph node positive were
associated with high YB-1 expression (P=0.017). In patients
who did not receive adjuvant chemotherapy, recurrence risk
was reduced in breast cancers having lower YB-1 expression
(P=0.034), suggesting that high levels of YB-1 expression in
breast cancer is associated with tumor aggressiveness. We
were able to demonstrate a direct interaction between YB-1
and Pgp using the computer-based RRM. Interestingly, we
found that patients who were on a chemotherapy regime which
contained an anthracycline (a Pgp substrate) and subsequently
developed recurrence, had a higher YB-1 score compared to

patients on the Cyclophosphamide/Methotrexate/5-Fluorouracil
regime (P=0.024). YB-1 expression in breast cancer may be a
potential marker of chemoresistance and could possibly aid
in selection of the appropriate adjuvant chemotherapy regime
for breast cancers.

Introduction

Y-box binding protein 1 (YB-1) has been stated as ‘the most
evolutionary conserved nucleic-acid-binding protein currently
known’ (1). YB-1 belongs to a group of DNA and RNA
binding proteins that has a conserved cold-shock domain
which interacts with inverted CCAAT boxes (Y-boxes) (1,2).
As YB-1 regulates gene expression via transcription and
translation (3), it is believed to play an important role in the
cell cycle (4). YB-1 has also been linked to a number of
cellular responses to stress and carcinogenic stimuli. It has
been reported to have an affinity for depurinated and cisplatin
modified DNA (5,6), as well as RNA damaged by reactive
oxygen species (7). YB-1 has been found to translocate to
the nucleus when the cell is exposed to UV irradiation (8)
and heat (9). The protein is involved in redox-dependent
transcription activation (10) and known to be up-regulated in
cell-lines which are resistant to genotoxic agents (11,12).

The role of YB-1 in cancer progression has attracted
attention in recent years. Increased YB-1 expression has been
correlated with DNA topoisomerase II

 

· and proliferating
cell nuclear antigen expression in human lung cancer (13)
and colorectal cancer (14) and linked to markers of cellular
proliferation in osteosarcoma (15). In addition, YB-1 is
thought to promote metastasis by enhancing the transcription
of gelatinase A, a matrix proteinase that facilitates cell
migration (16). Moreover, expression of YB-1 protein has
been reported to reflect chemosensitivity of ovarian serous
adenocarcinoma (17). In this context, YB-1 expression has
also been shown to be associated with Pgp expression in
breast cancer cells, resulting in multi-drug resistance (18).
Pgp is a member of the ATP-binding transporter family
which is involved in the transport of potentially toxic xeno-
biotics (19).

Breast cancer is the second most common cause of cancer
deaths in women around the world. Identifying aggressive
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breast tumors with a high risk of distant metastasis is important
for the institution of appropriate adjuvant treatment after
surgery, thereby enhancing patient survival. Because of the
association of YB-1 with biological processes which affect
carcinogenesis and chemotherapeutic response, we have
investigated the prognostic significance of YB-1 in human
breast cancer tissues. The possible interaction between YB-1
and the CCAAT box in the promoter region of the multi-drug
resistance gene MDR1 which encodes Pgp was also evaluated
by computational tools.

Patients and methods

Patients and tumor samples. Resected specimens were obtained
from 99 patients with infiltrative ductal breast carcinomas
who had undergone mastectomy or lumpectomy without
neoadjuvant treatment in the Singapore General Hospital
between 1998 and 1999. The study was approved by the
Institutional Ethics Committee. The age of the patients
ranged from 33 to 86 years with a median age of 52 years.
The patients had no distant metastasis at the time of diagnosis.
Treatment decisions after surgery were based solely on
established recommendations. Fifty-seven of the patients
received adjuvant chemotherapy, of which the Cyclo-
phosphamide/Methotrexate/5-Fluorouracil (CMF) regime
was most commonly used (32 patients). The other patients
received some form of anthracycline-based chemotherapy such
as the Adriamycin/Cyclophosphamide regime (10 patients).
Patient follow-up ranged from 33 to 1464 days with a median
follow-up of 1112 days.

Cell culture. HeLa cells (American Type Culture Collection)
were routinely maintained in Dulbecco's modified Eagle's
medium (DMEM, Sigma) supplemented with 5% fetal calf-
serum, 2 mM glutamine, 100 units/ml penicillin and 100 µg/ml
streptomycin.

YB-1 antibody. Antiserum against YB-1 protein was prepared
by injecting a rabbit with the purified recombinant chicken
YB1 protein with N-terminal deletion (amino acids 50-326,
Matsumoto et al, unpublished data). The IgG fraction of the
antiserum was purified by protein G Sepharose column
chromatography (Amersham Pharmacia).

Immunoblotting. HeLa cells were washed with phosphate-
buffered saline and lysed by sonication in 5 mM Tris-HCl
pH 7.5, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol
and 0.25 mM phenylmethylsulfonyl fluoride. Cell lysate
(10 µg) was separated on a 10% SDS-polyacrylamide gel
and transferred to nitrocellulose. Nitrocellulose membranes
were blocked for 2 h with 5% milk in TBST (10 mM Tris
pH 8.0, 100 mM NaCl and 1% Tween-20) buffer. Membranes
were then probed with a rabbit polyclonal antibody to
recombinant chicken YB-1 protein (as described above) in
5% milk in TBST overnight at 4˚C. The membranes were
washed with TBST and incubated with a goat anti-rabbit
peroxidase conjugated antibody (Pierce, Rockford IL, USA)
for 2 h at room temperature. Excess antibody was removed
by further washes with TBST. The bound antibodies were
visualized by chemiluminescense.

Immunohistochemistry. For detection of YB-1 expression,
sections were pre-heated in 10 mM citrate-buffer at pH 6.0
before incubation with rabbit polyclonal antibody to
recombinant chicken YB-1 protein. The antibody was used at
a dilution of 1:200 and applied at room temperature overnight.
Secondary antibody biotinylated anti-rabbit immunoglobulin
(Dako, CA, USA; 1:200 dilution) was then applied for 30 min,
followed by a 30-min incubation with biotin and avidin-
peroxidase complex (Dako). The immunostaining was
demonstrated using diaminobenzidine and hydrogen peroxide
for 10 min. The sections were counterstained with hematoxylin.
Pgp immunohistochemistry was performed for the 57 patients
who underwent chemotherapy. It was detected using a mouse
anti-human monoclonal JSB-1 antibody (Chemicon, CA,
USA; 1:20 dilution) which reacts with a conserved cytoplasmic
epitope of the protein. The immunohistochemical method
used was optimized from that described by Faneyte et al
(20). Dewaxed sections were microwave-heated for 25 min
from cold. Endogenous peroxidase was blocked in 3%
hydrogen peroxide for 10 min and non-specific antibody
binding blocked in 4% normal horse serum for 30 min.
Primary antibody was then applied for 1 h. In the negative
control, buffer solution (0.5 M Tris-buffered saline, pH 7.4)
replaced the primary antibody. A normal liver section was
used as positive control. Visualization was achieved by the
usual method described above with hematoxylin as the
counterstain.

Quantification of immunohistochemical staining. The stained
slides were viewed using a x40 objective of a light microscope,
and 10 random fields were selected and scored. Semi-
quantitative determination of YB-1 expression was performed
using an immunoreactive score modified from Janz et al (21).
The immunoreactive score (range 0-15) is derived from the
product of intensity of staining and percentage score. The
intensity of staining was scored from 0 (no detectable immuno-
reactivity) to 3 (strong immunoreactivity). The percentage
score which is the percentage of cancer cells expressing
YB-1 was scored as such: i, <20%; ii, 21-40%; iii, 41-60%;
iv, 61-80%; v, 81-100%. Pgp over-expression was classified
as positive when cancer cells exhibited cytoplasmic or plasma
membrane staining patterns (22).

Computational analysis. The Resonant Recognition Model
(RRM) was used for computational analysis of direct inter-
action between YB-1 and the Y-box region of the MDR1
gene promoter. RRM is based on the theory that protein-
protein or protein-DNA interaction depends on the resonant
electromagnetic energy transfer at a specific frequency for
each interaction (23). The sequences of seven YB proteins
(24) were obtained from the National Centre for Bio-
technology Information (NCBI) database (Table I). Three
promoter sequences of MDR1 genes were retrieved from the
Eukaryotic Promoter Database (EPD ID: EP35012, EP35017
and EP35016). The RRM power spectra were then calculated
for each of the sequences. ‘Consensus’ cross-power spectra
were calculated for the seven power spectra of the YB
proteins, as well as for the three spectra of MDR-1 promoter
sequences. The two spectra were then analyzed for any
common frequency component.
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Statistical analysis. For statistical analysis, the SPSS software
for Windows Release 11.0 was used. YB-1 scores were
compared by non-parametric, Mann-Whitney U test. For the
purpose of statistical analysis, the immunoreactive scores
were classified into 3 groups: low, moderate and high levels
of expression. The 25th percentile of the scores was taken
as the lower cut-off, whilst the 60th percentile was used as
the higher cut-off. As a result, immunoreactive scores 0-2
were considered low; immunoreactive scores 3-5, moderate;
immunoreactive scores 6-15, high. For prognostication, the
patients were divided into 3 discrete groups with lymph node
status and estrogen receptor status as the parameters. The
categorical variables were analyzed with the Fisher's exact
test. Disease-free survival curves were plotted by the Kaplan-
Meier method and the curves were examined by means of
log-rank test.

Results

Specificity of YB-1 antibody for human YB-1 protein. The
specificity of the anti-serum against purified recombinant
chicken YB1 protein for human YB-1 protein in HeLa cells
is shown in Fig. 1.

Expression of YB-1 and Pgp in breast cancer samples. YB-1
expression was detected in all 99 breast cancer samples, with
27 having low levels, 40 having moderate levels, and 32
having high levels of expression (Figs. 2A and B). Eleven

samples exhibited nuclear localization of the protein (Fig. 2B).
Approximately 2-10% of YB-1 positive cancer cells exhibited
nuclear expression in each of the samples. Of the 36 samples
for which peri-tumoral benign breast tissues were available,
29 (81%) exhibited YB-1 expression. The expression in such
tissues was not associated with the immunoreactive score in
the corresponding cancer sections, 43% of tumors exhibited
Pgp immunopositivity (Fig. 2C).

Relationship of YB-1 and PgP immunoreactivity with prognostic
variables. There was no significant association between YB-1
scores in breast cancer tissue and tumor size, lymph node
metastasis, histologic grade and estrogen receptor status,
when analyzed individually (Table II). However, we observed
that the group of breast cancers with poorest prognostic
characteristics (lymph node positive and estrogen receptor
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Table I. Accession numbers of YB proteins (NCBI database).
–––––––––––––––––––––––––––––––––––––––––––––––––
YB-1 proteins Accession no.
–––––––––––––––––––––––––––––––––––––––––––––––––
YB-1 human P16991

DbpA human P16989

YB-1 mouse P27817

EF1 human AAA30497.1

mRNP3 frog P45441

mRNP4 frog P21574

YB-1 frog P21573
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 1. Western blot analysis of YB-1 protein in cell lysate from HeLa
cells.

Figure 2. Immunohistochemical analysis of YB-1 and Pgp. (A), Cytoplasmic
staining of YB-1. (B), Nuclear and cytoplasmic staining of YB-1. (C), Cyto-
plasmic and membrane staining of Pgp. (A and B, x250; C, x400; counter-
stained with haematoxylin).



negative), had the highest proportion of breast cancers with
high YB-1 expression (50%), compared to that of the group
with intermediate prognosis (lymph node positive/estrogen

receptor positive or lymph node negative/estrogen receptor
negative; 36%) and that of the group with the best prognostic
parameters (lymph node negative and estrogen receptor
positive, 22%) (P=0.017) (Table III). On the other hand, Pgp
expression did not show any correlation with any of the
clinicopathological factors. There was no association detected
between YB-1 scores with Pgp immunopositivity (P=0.369).
Tumors with nuclear localization of YB-1 (5 in the group of
tumors for which Pgp immunohistochemistry was performed)
appeared to be Pgp positive (P=0.011), although 37% of
tumors (19 of 52) without nuclear localization were Pgp
positive as well.

Association of YB-1 expression with recurrence and disease-
free survival without adjuvant chemotherapy. Tumors with
moderate to high YB-1 expression (scores 3-15) had a higher
recurrence risk compared to those with low expression, even
though the observation was not statistically significant
(P=0.1718). In the group of 42 patients who did not receive
adjuvant chemotherapy, only one of 8 patients (13%) with
low expression (scores 0-2) of YB-1 in the primary tumor
experienced disease recurrence, whilst 5 of 18 patients (28%)
with high expression (scores 6 to 15) of YB-1 recurred. The
difference in recurrence-free survival between the breast
cancers of low YB-1 expression and that of higher (scores 3-15)
expression was significant (P=0.034; Fig. 3) in this group of
patients.

Association of YB-1 and Pgp expression with recurrence and
disease free survival with adjuvant chemotherapy. YB-1
expression did not affect disease-free survival in the group of
patients who received adjuvant chemotherapy (P=0.70;
comparing 18 patients with low YB-1 score against 39 patients
with moderate to high YB-1 score). However, among the
14 patients with high YB-1 expression (scores 6-15) and
receiving chemotherapy, 2 of 7 (29%) receiving anthracycline-
based chemotherapy recurred compared to no recurrence
amongst patients receiving the CMF regime. While there was
no difference in YB-1 score between all patients receiving
CMF compared to anthracycline based regimes (P=0.961),
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Table II. YB-1 protein expression levels in different sub-
groups of breast cancers.
–––––––––––––––––––––––––––––––––––––––––––––––––
Factors Total no. YB-1 median immuno- 

of patients reactive score
–––––––––––––––––––––––––––––––––––––––––––––––––
Patient's age (years)

<50 43 5

>50 56 4

P-value 0.77

Primary tumor

T1 and T2 88 4.5

T3 and T4 11 4

P-value 0.87

Regional lymph

node metastasisa

Negative 47 4

Positive 50 5

P-value 0.11

Estrogen receptorb

Positive 64 4

Negative 33 5

P-value 0.14

Histological grade

I and II 47 5

III 52 4

P-value 0.42
–––––––––––––––––––––––––––––––––––––––––––––––––
aLymph node status for two other patients were not available.
bEstrogen receptor status were not tested for two patients at diagnosis.
–––––––––––––––––––––––––––––––––––––––––––––––––

Table III. Increasing proportion of tumors with high YB-1
expression in breast cancers of poorer prognostic category.
–––––––––––––––––––––––––––––––––––––––––––––––––

Prognostic category
Ln-/ER+ Ln-/ER- or Ln+/ER+ Ln+/ER-

–––––––––––––––––––––––––––––––––––––––––––––––––
No. of tumors 32 45 18

No. with high 7 (22%) 16 (36%) 9 (50%)

YB-1 score (6-15)
–––––––––––––––––––––––––––––––––––––––––––––––––
Ln, lymph node; ER, estrogen receptor.
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 3. Higher expression levels of YB-1 protein (YB-1 scores 3-15) is
associated with increased tumor recurrence in the group of breast cancer
patients who did not receive adjuvant chemotherapy.



patients who developed recurrence despite being on the CMF
regime, have a lower YB-1 score (range 2-5) compared to
that of those patients receiving anthracycline-based therapy
with recurrence (YB-1 score range 5-10; P=0.024) (Table IV).
On the other hand, Pgp over-expression was not significantly
associated with disease-free survival (P=0.34) or with
recurrence after adjuvant chemotherapy (P=0.524).

Direct interaction of the YB-protein and promoter sequences of
MDR1 genes. Fig. 4 shows the RRM power spectra and cross
power spectrum of seven YB proteins. The first seven plots are
the respective power spectra for each of the proteins. The last

plot is the cross power spectra. There is a prominent peak
around 0.0215±0.0066, which represents the characteristic
frequency. According to the RRM theory, we may assume
that 0.0215±0.0066 is the characteristic frequency representing
the binding between YB and Y-box sequence, since the
major common feature among the seven YB proteins is their
ability to bind the Y-box DNA sequence. Similarly, the RRM
power spectra and the cross power spectrum of the three
promoter sequences of MDR1 genes are shown in Fig. 5. A
prominent peak appears at 0.0258±0.0033 in the cross power
spectrum (the last plot). For the sequences tested, the YB
proteins and MDR1 promoters share a common characteristic
frequency around 0.0215, suggesting a possible direct inter-
action between the protein and the promoter sequence.

Discussion

In this study, we have correlated YB-1 expression in breast
cancer with established prognostic factors. We have shown
that high YB-1 expression was associated with breast cancers
of an aggressive phenotype (lymph node positive/hormone
receptor negative). Differences in YB-1 expression resulted
in a measurable effect on the clinical course of breast cancer.
Without chemotherapy, primary breast cancers with higher
YB-1 expression have a higher recurrent risk compared to
those with lower expression. This result is consistent with a
separate study involving primarily Caucasian breast cancer
patients (21). 

The significance of nuclear localization of YB-1 is yet
unclear. Nuclear localization of YB-1 was found to affect
prognosis in squamous cell lung cancer, ovarian serous
adenocarcinoma and synovial sarcoma, but not in lung
adenocarcinoma (25-27). It has also been reported that
nuclear localization of the YB-1 protein was found to be
associated with high levels of Pgp expression in human
breast cancer (18) and osteosarcoma (15), but not in lung (13)
and colorectal cancer (14). Similarly, we have found that
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Table IV. YB-1 and Pgp status of breast cancer patients with
recurrence after chemotherapy.
–––––––––––––––––––––––––––––––––––––––––––––––––
Patient's Chemotherapy YB-1 immuno- Pgp over-
serial no. regime reactivity score expression
–––––––––––––––––––––––––––––––––––––––––––––––––
23768 C 2 -

30071 C 2 -

23471 C 5 +

5204 C 4 +

31674 C 4 -

7840 A 5 +

21936 A 5 +

19001 A 10 -

16048 A 8 +
–––––––––––––––––––––––––––––––––––––––––––––––––
C, CMF chemotherapy. A, Anthracycline based chemotherapy.
–––––––––––––––––––––––––––––––––––––––––––––––––

Figure 4. The RRM power spectra and the cross power spectrum of the
seven proteins listed in Table I. The first seven plots are the power spectra
for each of the seven YB-1 proteins. The last plot is the cross power spectra.
The prominent peak around 0.0215±0.0066 is the characteristic frequency.
The digital resolution was computed as 1/151=0:0066 since the length of the
shortest protein is 151.

Figure 5. The RRM power spectra and the cross power spectrum of the three
promoter sequences of MDR1 genes. The first three plots are the respective
power spectra for the three promoters. The last plot is their cross power
spectrum. One prominent peak appears at 0.0258±0.0033 in the last plot.
The digital resolution is 0.0033.



nuclear localization of YB-1 is associated with a propensity
for Pgp expression. However, the proportion of breast
cancers with nuclear localization of YB-1 appears to be low
as evidenced by 11% in our present study and 13% of 86
patients in that reported by Janz et al (21) as compared to
other cancers, such as non-small cell lung cancer (45% of
196 patients) (26) and ovarian cancer (45% of 35 patients) (28).

Using a computational approach based on the Resonant
Recognition Model, we have also shown that direct binding
between the YB-1 protein and the MDR1 gene promoter is
indeed possible, further verifying experimental evidence that
YB-1 is involved in the regulation of MDR1 gene in cancer
cells (18,29). However, the present study also shows that the
absence of nuclear localization of YB-1 does not necessarily
preclude Pgp expression. In those tumor samples, it is
possible that nuclear localization of YB-1 may not have been
prominent enough to be detected by immunohistochemistry,
or that other promoters are also operative (30).

The association between YB-1 and Pgp suggests that
YB-1 may confer multi-drug resistance in breast cancer.
Anthracyclines and taxanes are Pgp substrates and in vitro
studies have shown that resistance to these drugs are associated
with Pgp expression in breast cancer (31). On the other hand,
there are clinical studies which did not show a better prognosis
for patients with Pgp negative breast cancers (32,33). Our
study has also shown a lack of correlation between disease-free
survival and Pgp expression. Nevertheless, YB-1 may affect
chemotherapy resistance in many other ways, possibly through
DNA repair (2), or transcriptional or translational control of
other proteins conferring drug resistance, even though there
was no statistically significant difference in recurrence risk
between patients with low YB-1 expression and higher YB-1
expression who received adjuvant chemotherapy.

However, it is interesting that although most of the patients
received CMF chemotherapy, 80% of those patients who
suffered tumor recurrence and had YB-1 scores of 5 or more,
received anthracycline-based (e.g., Adriamycin) chemotherapy
regimes. This suggests that YB-1 expression in breast cancer
may possibly predict tumor resistance to different chemo-
therapy regimes, providing a marker that aids in the choice
of adjuvant chemotherapy for breast cancers. As CMF and
anthracycline-based regimes are mainstays of breast chemo-
therapy, larger clinical studies will be useful to verify if
YB-1 expression would be useful in determining the choice
of chemotherapeutic regimes for breast cancer patients.
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