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SUMMARY 
 

Motivation:  

Knowledge of protein-protein interaction is useful in elucidating protein function via 

the concept of ‘guilt-by-association’. It is not yet feasible to construct complete 

protein interaction maps by exhaustive experimental studies. Thus efforts have been 

directed at development of computational methods for facilitating the prediction of 

protein-protein interactions. One recently explored method is Support Vector 

Machines (SVM). A SVM statistical learning system, trained from datasets of real 

sequences of interacting proteins and artificial shuffled sequences of hypothetical 

non-interacting proteins, has shown promising capability for prediction of protein-

protein interactions (Bock, J.R. and Gough, D.A. Predicting protein-protein 

interactions from primary structure. 2001. Bioinformatics, 17, 455-460). It remains 

unclear how the prediction accuracy is affected if real protein sequences are used to 

represent non-interacting proteins.  

 

Method: 

In this work, protein function prediction using protein-protein interaction data is 

assessed by comparison of the results derived from the use of real protein sequences 

with that derived from the use of shuffled sequences in the non-interactive dataset. 

Three SVM systems are constructed using three types of negative datasets (i.e., the 

hypothetical non-interacting proteins) which consists of real protein; 1-let shuffled 

sequence protein and 2-let shuffled sequence protein respectively together with 

validated dataset from Database of Interacting Proteins (DIP) as the positive dataset. 

The real protein sequences of hypothetical non-interacting proteins are generated from 

an exclusion analysis in combination with subcellular localization information of 
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interacting proteins found in the DIP. The amino acid sequence of each interacting 

proteins complex is converted to the feature vectors for SVM training and testing. 

These vectors are assembled from encoded representation of amino acid residue 

properties including amino acids composition, hydrophobicity, Van der Waals 

volume, polarity, polarizability, charge and surface tension. 

 

Results: 

Prediction accuracy using shuffled sequences as hypothetical non-interacting proteins 

yields 94.1%, which is comparable to that obtained by Bock and Gough (2001). In 

contrast, prediction accuracy using real protein sequences is only 76.9%. The factors 

that might contribute to the reduced accuracy include limited diversity of dataset and 

the expected higher level of classification difficulty using two sets of real protein 

sequences as compared to that of one set of real protein sequences and one set of 

artificial sequences. The potential of the SVM as a prediction tool for putative protein 

interacting partners is further evaluated by applying all the three SVM classification 

systems to the prediction of protein partners of a set of thioredoxin related proteins 

and D. melanogaster high-throughput interaction dataset. The classification system 

using real protein sequences gives better prediction results that are consistent with 

observations, indicating that it is more practically useful in facilitating protein-protein 

interaction prediction than those using artificial/shuffled sequences. 
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CHAPTER 1   LITERATURE REVIEW 
 
Protein function prediction is very important in this post-genomics era as there are 

many hypothetical and/or novel proteins with unknown functions arising from many 

sequencing projects. Often time, these are the proteins that play interesting roles, be it 

in cancer or other diseases. Hence understanding protein function and its exact role is 

vital for human health and for any living organisms to function properly.  

 

Besides the experimental means of investigating the function of proteins, there is 

increasing need to engage in computational or in silico methods to aid in designing 

and planning the detailed experimental steps in order to decipher the true biological 

meaning of the protein of interest. The focus of this literature review is on the current 

publicly available in silico protein function and protein-protein interaction prediction 

methods. The study of protein-protein interaction is chosen as it is probably one of the 

best ways to understand the function of a novel or un-annotated protein. In addition to 

inferring the functions from its partner proteins, protein-protein interaction data also 

offer pathway information which will aid in understanding the overall role of the 

protein in the larger biological context. However knowing the interacting partners 

may not be sufficient as we still need to grasp the exact interacting mechanism 

between the proteins so as to do any rational drug design and analyze the detailed 

metabolic and signal transduction network. As the result, it is necessary to understand 

the characteristics of the protein interaction sites in order to develop a better protein-

protein interaction method.  

 
1.1 Protein function prediction 
 
The function of proteins include building, supporting, recognizing, transporting and 

transforming cellular activities with incredible speed and accuracy and in many cases 
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are subject to multiple regulatory mechanisms. The development of high-throughput 

methods and their applications have generated a large amount of data that are useful 

for the study of protein functions. Several attempts have been made to predict protein 

functions using data from sequence homology, protein-protein interactions, protein 

structural information and gene expression. 

 

A common method used in protein function prediction is sequence homology. This 

'homology method' is used widely to extend knowledge of protein function from one 

protein to other proteins on the basis of sequence similarity, which are presumably 

descended from the same common ancestral protein. One of the publicly available 

methods is the suite of BLAST programs1 which are used to extend experimental 

knowledge of protein function to new sequences. By using such homology methods, 

roughly 40–70% of new genome sequences can be assigned to some functions2,3. The 

functional assignments by homology usually involve identification of some molecular 

functions of the protein, but they do not place the protein in its context of cellular 

function. For example, thioredoxin, which contains an active reduction and oxidation 

(redox) disulfide/dithiol domain, is an endogenous multifunctional protein with 

numerous cellular functions including defense against oxidative stress, control of 

growth and apoptosis and chemokine activities4. Besides that if a protein has multiple 

domains, this approach may not be able to provide a good prediction of the cellular 

roles. Hence it is important to determine the function of a protein in cellular context to 

fully understand its role. 

 

The specialized functions of proteins can be understood in terms of how proteins bind 

to and interact with other components of living systems, e.g., small molecules, 
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proteins and much larger entities such as nucleic acids.  As such, approaches based on 

derived protein-protein interaction databases such as Yeast Protein Database (YPD)5 

and Database of Interacting Protein (DIP)6 are gaining popularity. Besides that, there 

are also integrated interaction map methods which attempt to address the 

completeness of protein-protein interaction relationships in order to deduce a 

particular function of a protein in the map7. 

 

In order to fully understand the functional properties of a protein, it is necessary to 

deduce or predict the three-dimensional (3D) protein structure from amino acids to 

identify the domain that either serve as module(s) for building up large assemblies or 

provide specific catalytic or binding sites. However, to date, the protein folding 

problem still remains unsolved. Since the 3D structures of individual proteins cannot 

be predicted computationally, they must, instead, be determined experimentally by x-

ray crystallography, cryo-electron microscopy or nuclear magnetic resonance (NMR) 

techniques. These experimentally obtained results can be used in developing protein 

structure prediction methods. One of the protein structure prediction methods, 

homology modeling, can be adopted to deduce an unknown protein function if the 

protein has sequence identity of more than 30% 8 with that of a known protein 

structure. 

 

Clustering analysis of gene expression data can also be used to predict functions of 

un-annotated proteins based on the idea that genes with similar functions are likely to 

be co-expressed 9,10.  
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1.2 Protein-protein interaction prediction 

Currently there are many approaches to determine protein-protein interaction 

experimentally but most of the methods are complementary to each other and none of 

the methods stand out as a definitive way to identify protein interaction partner(s)11. 

Hence it will be helpful if experimental data can be collated and analyzed 

computationally to discover underlying rules or relationships of protein interaction. 

The recent protein-protein interaction data generated from many high-throughput 

methods12,13,14 is useful to derive computational methods to predict the possible 

function of an unknown protein and also to understand the mechanism of interaction, 

for example, the interaction site of the interacting partners. This set of data is far from 

being complete and should only be used as a method for development and possible 

prediction of function. Nevertheless, there is no doubt that with more information, 

computational prediction will be able to achieve reasonably accurate results which 

can complement experimental determination of protein-protein interaction and the 

protein-protein interaction site. Computational methods of predicting possible 

interacting partners and interacting siyttes are listed in Table 1. 
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Table 1 Computational methods in predicting protein-protein interaction and interacting site. 
 
 Methods used in prediction of protein-protein 

interaction 
 

Databases or training data used Remarks Ref 

Protein-protein interaction prediction – protein sequence based 

1. A method based on the assumption that proteins that 

function together in a pathway or structural complex are 

likely to evolve in a correlated fashion, i.e., phylogenetic 

profiles of the presence and absence of genes in related 

species 

Computed phylogenetic profiles for the 

4,290 proteins encoded by the genome of 

Escherichia coli by aligning each protein 

sequence with the proteins from 16 other 

fully sequenced genomes (listed at the 

web site of The Institute for Genome 

Research: www.tigr.org) 

This method finds pairs of 

functionally linked proteins by 

their  phylogenetic profiles 

which cannot be linked by 

conventional sequence-

alignment techniques 

15 

2. Observation that gene order in different species is 

conserved and the proteins encoded by conserved gene 

pairs appear to interact physically. This comparison 

among species is used for interaction prediction 

Nine bacterial and archaeal genomes  Work is done on prokaryotic 

gene products. It may not be 

applicable to eukaryotes as 

their genome structures are 

16 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

more complicated.  

3. Based on the observation that some pairs of interacting 

proteins have homologues in another organism fused 

into a single protein chain. Two methods used in 

confirming the protein pairs are functionally related: 

1. Using annotation given in the SWISS-PROT : 3950 E. 

coli pairs of known function, 68% share at least one 

keyword in their annotations. For yeast, 32% correctly 

predicted from 9857 pairs of known function 

2. Using phylogenetic profiles which detect functional 

interactions by analyzing correlated evolution of 

proteins. 5% predicted correctly from 6809 E. coli pairs 

1. 6809 protein-protein interactions in 

Escherichia coli from 4290 protein 

sequence in the genome 

2. 45,502 protein pairs in yeast from 

yeast genome (total number of 

proteins used was not specified) 

The domain fusion analysis 

cannot distinguish between 

homologs that bind and those 

that do not, i.e., the inability to 

distinguish homologs. Hence 

cannot handle the 

‘promiscuous’ domains such as 

SH3  

17 

4. Protein interaction maps based on gene fusion events, 215 genes or proteins in the complete Only applicable to completely 18 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

solely using sequence alignment in comparison. Each of 

the three complete genomes of Escherichia coli, 

Haemophilus influenzae and Methanococcus jannaschii 

are used in turn as the query genome Q; Q is compared 

with the other two genomes, plus the genome of the 

yeast Saccharomyces cerevisiae, as reference genome to 

detect `orthologous' proteins across species 

genomes of Escherichia coli, 

Haemophilus influenzae and 

Methanococcus jannaschii – 64 unique 

fusion events 

 

sequenced genome and proteins 

that occurs in gene fusion 

event. However it has potential 

in identifying interacting 

proteins regardless of distance 

within the gene fusion event 

5. Method based on conserved gene neighbouring idea, i.e., 

there is a correlation between the spatial proximity of 

genes on the genome and the directness of the 

interaction between the encoded protein  

Mycoplasma genitalium database This method may not be 

applicable to eukaryotes 

because their co-regulation of 

genes is not imposed at genome 

structure level 

19 

6. The study is based on correlated mutations in multiple multiple sequence alignments were The limitation of this method is 20 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

sequence alignments. The method, in silico two-hybrid, 

i2h, directly addresses the detection of physically 

interacting protein pairs and identifies the most likely 

sequence regions involved in the interactions 

obtained by searching for homologous 

proteins with BLAST and aligning them 

with Clustalw in the Escherichia coli test 

sets, or taken from the HSSP database in 

the cases of the structural domains and 

the interacting proteins of known 

structure 

in obtaining large multiple 

sequence alignments of 

corresponding sequences for 

each possible pair of proteins 

due to the inadequate amount 

of currently known interacting 

protein pairs 

7. Support Vector Machine (SVM) learning system using 

feature vectors of residue properties including charge, 

hydrophobicity and surface tension and shuffled 

sequences for non-interacting protein pairs 

Database of Interacting Proteins (DIP; 

http://www.dip.doe-mbi.ucla.edu/ ) 

The use of hypothetical 

shuffled proteins as negative 

dataset may not be applicable 

to the real world situation  

6 

8. SVM feature vector for each protein is constructed by 

concatenation of functional domains with amino acid 

Saccharomyces cerevisiae interaction 

data from DIP and MIPS as positive data. 

This method may not be able to 

handle proteins with multiple 

21 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

composition, sequential amino acid usage, 

hydrophobicity, surface tension, and the localization. It 

is found that feature vector containing domain and 

localization has the highest accuracy – 77.63% 

 

All possible pair of proteins that are not 

recognized as positive in the above 

databases as negative data. Only consider 

positive/negative pairs where both 

proteins have functional domains 

domains and ‘promiscuous’ 

domains such as SH3 

9. Using sequence-signatures that appear together in 

interacting protein pairs more often than expected at 

random (from InterPro), to predict putative pairs of 

interacting partners in the cell 

• Munich Information Center for 

Protein Sequence, Germany (MIPS) – 

MYGD (yeast database) 

• Data based on large-scale 2-hybrid 

analysis in Saccharomyces cerevisiae  

• DIP 

Sequence-signature generation 

is limited by the classification 

from InterPro. There is a need 

to search for new common 

motifs among the interacting 

proteins or use structural 

domains 

22 

10. A multimeric threading algorithm based on protein • Yeast proteome from KEGG database The main limitation is due to 23 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

structure but without using the query protein structure - 

Each possible pairwise interaction among more than 

6000 encoded proteins is evaluated against a dimer 

database of 768 complex structures by using a 

confidence estimate of the fold assignment and the 

magnitude of the statistical interfacial potentials  

(http://www.genome.ad.jp/kegg/ ) 

• Subcellular localizations of yeast 

proteins from the MIPS 

(http://mips.gsf.de/proj/yeast/CYGD/

db/index.html ), the TRIPLES 

database 

(http://ygac.med.yale.edu/triples/ ), 

and Mark Gerstein’s Lab Web site 

(http://bioinfo.mbb.yale.edu ) 

the small amount of protein 

structures solved and the 

difficulties in improving the 

accuracy of threading. However 

this method has an advantage 

of identifying the interaction 

site 

11. Used a reference interaction map to predict interaction 

map in another organism. Sequence similarity searches 

with clustering based on interaction patterns and 

interaction domain 

Reference map – Escherichia coli 

Predict – human gastric pathogen 

(Helicobacter pylori) 

This method relies heavily on 

the completeness, accuracy and 

level of detail (definition of 

protein domains) of the 

24 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

reference dataset 

Protein-protein interaction prediction – protein structure based 

12. Protein-protein docking refinement techniques based on 

modified molecular mechanics force fields and empirical 

measures of desolvation, combined with minimisations 

that switch on the short-range interactions gradually 

PDB database This approach still needs to 

address issues like interaction 

sites prediction, promiscuity of 

interactions, the occurrence of 

weak interactions and the role 

of water in interfaces 

25 

13. Structure based prediction in studying interactions 

between protein domains in terms of the interactions 

between structural families 

• PDB database 

• SCOP 

• Yeast genome 

Homology modeling is used to 

address the problem of limited 

known structure. However this 

approach may not be able to 

handle situation where 

26 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

members of two families 

interact in different ways, using 

different interfaces  

14. Created position-specific scoring matrices or virtual 

interaction profiles (VIPs) for a protein. This was 

generated via sequence prediction algorithm and a novel 

ensemble averaging calculation to find peptide 

sequences that have significant affinity for a protein 

PDB database This method performs well in 

selecting the partners where the 

structure is already solved but 

improvement still needed for 

predicting biological partners 

27 

Protein-protein interaction site prediction 

15. Protein–protein interaction sites 

are predicted from neural network with sequence 

profiles of neighboring residues and solvent exposure as 

input 

The network was trained on 615 pairs of 

nonhomologous complex-forming 

proteins from PDB. 

 

This approach is insensitive to 

structural changes 

accompanying complex 

formation. However only 

28 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

interfaces with extensive 

interfacial contacts (at least 20 

residues from each side) and 

dimer interfaces are considered 

in this study. 

16. It is observed that correlated sequence changes can be 

used to predict protein-protein contact regions. The 

assumption is that the sequence changes accumulated 

during the evolution of one of the interacting proteins 

must be compensated by changes in the other 

1. A and B haemoglobin to test inter-

protein and inter-domain contacts 

2. Heat-shock protein Hsp70 to predict 

contacting residues 

Given two examples show 

promising results but more test 

cases are needed 

29 

17. Predictive method to identify protein-protein interaction 

sites based on the observation that proline is the most 

common residue in the flanking segments of interaction 

Fibrin fibre 

Prediction of a fibrin polymerization site 

This method only tested on 

proteins where the short 

segments (3-7 residues) is 

30 
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 Methods used in prediction of protein-protein 
interaction 
 

Databases or training data used Remarks Ref 

sites flanked by proline residues.  

18. Developed a simple physical model to measure free 

energy changes brought about by alanine mutation at 

protein-protein interfaces and predicted the energy hot 

spot as interacting site by alanine scanning 

Datasets for single mutations from 

ProTherm database 

(http://www.rtc.riken.go.jp/jouhou/prothe

rm/protherm.html) 

Mutational data for protein complexes 

from the Alanine Scanning Energetics 

database 

(http://mullinslab.ucsf.edu/~kurt/hotspot/i

ndex.php) 

The preformance of this simple 

model is affected by the effect 

of water molecules in the 

interface and the side-chain 

conformational changes 

31 
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1.3 Characteristic of protein-protein interaction interfaces 

Knowing that two proteins are interacting is not sufficient to decipher the interaction 

mechanism and to predict the interaction sites on the protein surface which has direct 

relevance to the design of drugs for blocking or modifying the interactions. Hence, 

understanding the characteristic of the interacting interface is of much interest. 

Various studies have been done32,33 and they have helped in differentiating many 

types of interaction but thus far, we are still not clear of the exact rules governing the 

interaction of proteins. Having said this, it is likely that no single rule can be derived 

but it is of interest to investigate all possible underlying rules or patterns that exist in 

interaction between protein families or certain domain-domain interaction in order to 

better understand protein-protein interaction.  

 

Currently there are three approaches in characterizing the protein-protein interaction 

sites. The first is based on surface or interface study on protein complexes; the second 

is through the study of protein sequences with known structures and the third is based 

on residue frequencies and pairing preferences at protein-protein interfaces. The three 

approaches are examplied by three studies; details of each are listed below:  

• The first study involves surface patch analysis of protein using six parameters 

– solvation potential, residue interface propensity, hydrophobicity, planarity, 

protrusion and accessible surface area on three types of complexes - homo-

dimer; hetero-complexes and antibody-antigen complexes32. Even though in 

general the parameters reveal the following observations on the interacting 

site, none of the parameters is definitive in distinguishing each type of 

complex. 

1. RMS of least-squares plane – more planar; 
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2. Residue propensities – higher propensity; 

3. Protrusion – higher protrusion; 

4. Hydrophobicity – more hydrophobic; 

5. Accessible surface area (ASA) – higher ASA 

 

This study also uncovers the different trends for different type of complexes: 

1. Hydrophobicity : homodimer interface is the most hydrophobic while 

antigen has most polar interface. No trend for hetero-complexes.  

2. Solvation potential : lowest for homodimer and highest for antigens. No 

trend for hetero-complexes 

3. Protrusion : most interfaces are protruding except for big hetero-

complexes which are the least protruding patches;  enzyme interfaces tend 

to be those surface patches that are folded into clefts, so the residues 

involved will be among the least protruding 

 

• The second study is a review on interfaces difference between complexes 

composed of two components, namely, homodimeric proteins, heterodimeric 

proteins, enzyme-inhibitor complexes and antibody-protein complexes33. The 

summary of the findings are listed below and this study highlights that there is 

a need to take into account the type of protein-protein complexes when 

characterizing the interfaces within them. 

1. Size and shape 

a. Heterocomplexes have interfaces that are more planar than the 

homodimer 
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b. Heterodimer that occurs only as heterodimer are less planar 

compared to the nonpermanent counterparts (can occur as both 

heterocomplexes and monomers) 

c. Homodimer – general trend is to favor protrusion 

2. Complementarity between surfaces 

a. Homodimers, the enzyme-inhibitor complexes and the permanent 

heterocomplexes are the most complementary 

b. Antibody-antigen complexes and the nonobligatory 

heterocomplexes are the least complementary 

3. Residue interface propensities 

a. Hydrophobic residues show a greater preference for the interfaces 

of homodimers than heterocomplexes 

b. Lower propensities for hydrophobic residues in the heterocomplex 

interfaces is balanced by an increased propensity for the polar 

residues 

4. Hydrophobicity including hydrogen bonding 

a. Homodimers’ hydrophobic surfaces are permanently buried within 

a protein-protein complex 

b. Heterocomplexes that occur as both monomers and complexes 

have relatively more intermolecular hydrogen bonds per ASA. 

5. Segmentation and Secondary structure 

a. Interfaces are highly segmented except for enzyme-inhibitor 

complexes 

b. Most interfaces have mixed secondary structure 
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6. Conformational Changes on complex formation 

a. Enzyme complexes – domain movement 

b. Antibody-protein recognition – wide range of variation 

 

• The third study is on residue frequencies and pairing preferences at protein-

protein interfaces28. This study unveils that hydrophobic residues (Trp and 

Leu) are abundant in large interfaces while polar residues (Gly and Ala)  are 

more abundant in small interfaces. The exception was Arg (charged aa), which 

is more common in large than small contact surfaces.  

 

The surface study on protein-protein interaction sites seem to agree that complexes 

that can exist as independent entities, have interfaces that are less hydrophobic while 

complexes that are bound permanently, or residues that are at the binding sites, are 

more closely packed and have fewer inter-subunit hydrogen bonds.  

 

In addition, the second approach, a detailed analysis on amino acids sequence of 

known protein structure, yields the following findings: 

• It is observed that proline is the most common residue found in the flanking 

segments of interaction sites.  As such the interaction sites of proteins might 

be predicted directly from the amino acid sequence based on the presence of 

proline brackets30. 

• The analysis of hydrophobicity distribution on linear stretches of amino acid 

sequences can help to identify “receptor-binding domains” with arginine being 

the most frequently occurring residue34.   
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Hence it is important to take into consideration the amino acid composition; 

hydrophobicity, charge, polarity distribution of the individual protein in protein-

protein interaction study. 

 

Even though none of the above research is able to have a conclusive finding to define 

a method to identify protein interaction sites of every type of complexes, especially 

when most complexes studied are two components while the important biological 

functions involve huge multi-component complexes (e.g. ribosome), it has certainly 

shed some lights in better understanding the underlying principle of protein-protein 

interaction. 
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CHAPTER 2   INTRODUCTION 
 
 
2.1 Objectives of the study 
 
Protein-protein interactions play important roles in various biological events35 and are 

the bases for assemblies of molecular machines, such as RNA polymerase II. The 

‘guilt-by-association’36 concept has been used for elucidating functional roles from 

pairs of interacting proteins. Identification of its partner of known function may 

provide a useful clue to the possible role(s) for a protein of unknown function.   

 

Even though knowledge of protein-protein interactions is useful for probing biological 

pathways and regulation of signaling, metabolic, gene expression and replication 

processes, it is not yet feasible to construct complete protein interaction maps by 

exhaustive experimental studies. Current experimental methods include yeast two-

hybrid systems37, protein complex purification techniques using mass 

spectrometry12,13, protein chip38, correlated messenger RNA expression profiles39 and 

genetic interaction data40. However each method has its own strength and weakness or 

biases in identifying certain group of proteins. For example, yeast two-hybrid 

technology detects more proteins that are involved in translation than by other 

methods. Recently, a large-scale comparative assessment of protein-protein 

interactions data11 has shown that the highest accuracy is achieved for interactions 

supported by more than one methods, including in silico prediction methods.   

 

As such, there is a growing interest in the exploration of computational methods for 

the prediction of protein-protein interactions. This method of complementing 

experimental with computational approach have certainly achieved useful insight in 
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understanding and predicting protein-protein interaction41,42. So far, two different 

computational approaches have been explored for the prediction of protein-protein 

interactions. The first is based on pure sequence-based methods such as, co-

occurrence of genes15, conservation of gene order in different species16, protein 

fusion17,18, conserved gene neighboring19, in silico two-hybrid system20, machine 

learning using sequence residues’ associated physicochemical properties6, correlated 

sequence-signatures that recur in concert in various pairs of interacting proteins22, 

threading23 and reference interaction map24. The second is concerned with the study 

of protein structure, these includes docking25, interaction protein domain between 

structural families26 and virtual interaction profiles27. The details of each method have 

been summerised in section 1.2.  

 

Because of the limited availability of protein 3D structures, methods that derive 

information directly from protein primary structure are of particular interest. A 

statistical learning method, support vector machines (SVM), has recently been 

explored for the prediction of protein-protein interactions6,21 as well as protein 

structural class prediction43, protein secondary structure prediction44, protein fold 

recognition45, analysis of protein solvent accessibility46 and other biological research, 

including microarray gene expression data analysis10 and cancer diagnosis47. These 

studies have consistently shown that SVM is usually superior to traditional supervised 

learning methods. For example, when predicting protein-protein interaction using 

domain information, the accuracy using SVM is about 25% higher than that of 

previous result by Deng et al.48 The difference is mainly caused by the difference in 

the methods used for prediction. Deng et al. used Maximum Likelihood Estimation, 

while Dohkan et al.21 used SVM, which is known to show better performance in two-



 

  24  

class classification problems. In addition, it is easier for SVM training to find globally 

optimized solution because of the fewer parameters it uses, and it has the potential to 

deal with a large number of feature vectors. On the other hand, it is more difficult to 

use Neural Networks (NN), which is in theory a more sophisticated method than 

SVM, to find a global solution because of the higher number of parameters it uses. 

Various examples also highlight that SVM performs with comparable accuracy, if not 

better than NN 49,50. 

 

SVM is a relatively new and very promising type of supervised learning algorithm for 

two-class or multi-class classification, which was originally developed by Vapnik and 

his collaborators at the AT & T laboratory51,52. Firmly grounded in the framework of 

statistical learning theory, the SV algorithms generalize well even to unseen data. One 

attractive property of SVM is that SVM is capable of extracting essential information 

from a very large number of training samples to provide a condensed representation 

of these samples by using a relatively small number of support vectors (SVs). Besides 

that it also have the ability to handle large feature spaces (by using kernel mapping) 

and can have excellent generalization performance (by maximizing minimum 

margin). In addition to the work on proteins and biological research mentioned 

previously, SVM have also been successfully employed in a wide range of real-world 

problems such as text categorization53, hand-written digit recognition54, tone 

recognition55, image classification and object detection56.  

 

Like other statistical learning methods, the accuracy of SVM classification depends 

on the relevance of training dataset to a particular biological problem. Thus it is 

important to use a reliable training dataset to achieve a better classification. Since 
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experimental conditions and, in some cases, types of proteins are known to affect the 

accuracy of some of the experimental methods11, caution needs to be exercised in the 

interpretation of experimental data. Hence, to ensure their high quality, the dataset of 

interacting proteins (positive dataset) used in this work is from a subset of the data in 

the Database of Interacting Proteins (DIP)57 whose reliability has been assessed58. 

Since non-interacting proteins are not readily available, artificially shuffled sequences 

resembling realistic proteins have been used to construct the dataset of hypothetical 

non-interacting proteins (negative dataset) for the prediction of protein-protein 

interactions. Bock and Gough (2001) has shown that it gives an average accuracy of 

80.9%6. However, shuffling sequences artificially may result in sequences with no 

specific sequence patterns like motifs or domains while real protein sequences are 

known to contain these conserved sequences patterns that play important functional 

roles. It is unclear whether a classification system derived from artificial sequences is 

sufficiently effective in prediction of protein-protein interactions since artificial 

shuffled sequences, having the possibility of not containing any motifs or domains, 

are unlikely to be functional proteins. It is thus desirable to use only real protein 

sequences for developing a SVM classification system which might be more relevant 

to the prediction of protein-protein interactions.  

 

It is of interest to evaluate how the prediction accuracy can be affected by using 

realistic sequences as negative dataset. For such a purpose, real protein sequences are 

used to construct a negative dataset. This negative dataset of hypothetical non-

interacting proteins is derived from an exclusion analysis in combination with 

subcellular localization information of interacting proteins in DIP. The prediction 

accuracy of a SVM system trained from this dataset is compared with those from 
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shuffled sequences generated from the same principle as described in the literature6. 

The prediction performance of both systems is further evaluated by using them for the 

identification of putative interacting partners of a set of thioredoxin related proteins 

and the high-throughput D. melanogaster interaction dataset59. 
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CHAPTER 3   MATERIALS AND METHODS 
 
 
3.1 Data collection and dataset construction 
 
The positive dataset is from Saccharomyces cerevisiae core subset of DIP database58. 

This dataset is validated by two methods described by Deane and colleagues58. The 

first is to use the expression profile reliability (EPR) index to estimate the biologically 

relevant fraction of protein interactions by comparing the RNA expression profiles of 

the proteins with expression profiles of known interacting and non-interacting pairs of 

proteins. The second is to use the paralogous verification method (PVM) to test the 

reliability of a putative interaction pair by examining whether there is a known 

paralog that also interacts with its partner protein. 

 

Since a non-interacting proteins dataset is not readily available, a hypothetical non-

interacting proteins dataset is generated based on subcellular localization information 

and it consists of protein pairs that do not co-localize together. The subcellular 

localization source is retrieved from MIPS60 and only the four main types of 

localization are considered in this study – cytoplasm, nucleus, mitochondria and 

endoplasmic reticulum. The yeast proteins used in the positive dataset are assigned 

with the four types of localization information and those with multiple localizations 

are removed to minimize the introduction of possible noise in the training process. 

Four sets of proteins with respect to the four types of localization are generated and 

proteins from each set are subsequently paired with proteins from a different 

localization. Due to the enormous number of possible pairings, 4,810 protein pairs 

have been randomly selected and used in this work. After removing duplication and 

performing exclusion analysis of the whole DIP yeast interacting proteins, a total of 

4,662 protein pairs are used as the hypothetical non-interacting dataset.     
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As a comparison, a second type of negative dataset composed of artificial protein 

sequences of the hypothetical non-interacting dataset are derived by using the Shufflet 

program61 with k-let (k = [1,2]) counts. The k-let (the exact words equal to or shorter 

than a given length k) are kept conserved in generating random shuffled sequences. In 

addition to preserving the amino acid composition which correlates with protein-

protein interfaces62, such a shuffling61,63 also maintains the frequencies of di-peptides, 

tri-peptides etc. The algorithm ensures that every expected occurrence of each 

possible k-let has the same probability, which is expected to generate datasets with 

conserved properties that are closer to real protein sequences than pure randomly 

generated sequences. In general, a k-let works well for sequences up to 20k amino 

acids in length. Hence in order to maintain the random uniform permutation, only 1-

let and 2-let shuffled protein sequences are considered in this study. 

 

Each dataset is further divided in a random fashion into a training set and a testing set 

while maintaining representatives of distinct protein pairs in each set whenever 

possible. For example, if the positive dataset has four interacting protein pairs of 

‘protein D’, then each of the two pairs will be randomly distributed to positive 

training and testing set respectively. The training dataset is evaluated to remove 

homologous sequences using BLASTCLUST1,64 with identity threshold of 30% and 

length coverage threshold of 90% to ensure the classifier is not biased to homologous 

sequences. This gives a positive training set of 2,080 interacting proteins, a negative 

training set of 2,331 non-interacting proteins, a positive testing set of 2,208 

interacting proteins and a negative testing set of 2,331 non-interacting proteins.  
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As such, three SVM systems are constructed using the same positive training dataset 

together with three types of negative datasets (i.e., the hypothetical non-interacting 

proteins) which consists of real protein; 1-let shuffled sequence protein and 2-let 

shuffled sequence protein respectively. Similarly for the testing dataset, the same 

positive testing dataset is used together with three types of negative datasets to form 

three testing datasets. The diagrammatic dataset construction steps is shown in Figure 

1. 

 

 
Figure 1 Diagrammatic dataset construction in the three SVM used for 
protein-protein interaction assessment 
 
 
3.2 Features extraction and representation 
 
The feature vector extraction is a key technique to a successful classification. For each 

protein sequence, feature vectors are assembled from encoded representations of 

tabulated residue properties including amino acids composition, hydrophobicity65, 

Van der Waals volume66, polarity67, polarizability68, charge69 and surface tension70,71 

for each residue in sequence. Each protein sequence is converted to feature vector 

using amino acids composition percentage and the feature extraction method45 based 

on three descriptors. The first is ‘Composition’ (C), percent composition of three 



 

  31  

constituents (e.g. polar, neutral and hydrophobic residues in hydrophobicity). The 

second is ‘Transition’ (T), which describes the transition frequencies (polar to neutral, 

neutral to hydrophobic, etc.). The third is ‘Distribution’ (D), which represents the 

distribution pattern of constituents (where the first residue of a given constituent is 

located, and where 25, 50, 75 and 100% of that constituent are contained).  

 

As an example to illustrate the feature representation of a protein, a hypothetical 

protein sequence AKAAAKAKKAAAAAKAKKKAAKKAKKKAAK is adopted for 

the purpose. As shown in Figure 2, the protein has 16 Alanines [A] (n1=16) and 14 

Lysines [K] (n2=14). The composition for these two amino acids are n1*100.00/(n1 + 

n2)=53.33 and n2*100.00/(n1 + n2)=46.67 respectively. There are 15 transitions from 

A to K or from K to A in this sequence and the percent frequency of these transitions 

is (15/29)*100.00=51.72. The first, 25, 50, 75 and 100% of As are located within the 

first 1, 5, 12, 20 and 29 residues, respectively. The D descriptor for As is thus 

(1/30)*100.00=3.33, (5/30)*100.00=16.67, (12/30)*100.00=40.0, (20/30)*100.00= 

66.67, (29/30)*100.00=96.67. Likewise, the D descriptor for Ks is 6.67, 26.67, 60.0, 

76.67, 100.0. Overall, the amino acid composition descriptors for this sequence are 

C=(53.33, 46.67), T=(51.72) and D=(3.33, 16.67, 40.0, 66.67, 96.67, 6.67, 26.67, 

60.0, 76.67, 100.0), respectively.  

 

Figure 2 Hypothetical sequence for illustration of derivation of the feature 
vector of a protein 
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Descriptors for other properties can be computed by a similar procedure and all the 

descriptors are combined to form the feature vector. In most studies, amino acids are 

divided into three groups for each feature and thus the three descriptors for each 

feature consist of twenty-one elements: three for C, three for T and fifteen for D44,45,46. 

The similar approach is adopted in this study and the three groups of each feature, 

except for amino acid composition (which is the percentage composition of each 

amino acid), are listed in Table 2. As such, the total dimension of each vector 

representing a protein is 146 (Table 3). The formulas for calculating the twenty-one 

elements for each feature are shown in Table 4. Thus the feature vector of an 

interacting protein pairs is a concatenation of the feature vector of the two interacting 

proteins which is 292 in total dimension. 

Table 2 Representative amino acids in three classes of each feature 

Feature Group1 (G1) Group2 (G2) Group3 (G3) 
Hydrophobicity Polar 

R, K, E, D, Q, N 
Neutral 
G, A, S, T, P, H, Y 

Hydrophobic 
C, V, L, I, M, F, W 

Van der Waals 
volume 

0-2.78 
G, A, S, C, T, P, D 

2.95-4.0 
N, V, E, Q, I, L 

4.43-8.08 
M, H, K, F, R, Y, W 

Polarity 4.9-6.2 
L, I, F, W, C, M, V, 
Y 

8.0-9.2 
P, A, T, G, S 

10.4-13.0 
H, Q, R, K, N, E, D 

Polarizability 0-0.108 
G, A, S, D, T 

0.128-0.186 
C, P, N, V, E, Q, I, 
L 

0.219-0.409 
K, M, H, F, R, Y, W 

Charge Positive 
K 

Neutral 
R, A, N, C, Q, G, H, 
I, L, M, F, P, S, T, 
W, Y, V 

Negative 
D, E 

Surface Tension G, Q, D, N, A, H, R K, T, S, E, C I, L, M, F, P, W, Y, 
V 

 
 

Table 3 Dimension of feature vector representing a protein 

Feature No Feature Dimension 
1 Amino acids composition 20 
2 Hydrophobicity 21 
3 Van der Waals volume 21 
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Feature No Feature Dimension 
4 Polarity 21 
5 Polarizability 21 
6 Charge 21 
7 Surface Tension 21 
Total  146 
 
 

Table 4 Formulas for calculating descriptors for a feature 
The following table contains the formula for calculating the feature vector of a protein 
for features 2 to 7 in Table 3 while feature 1 – amino acids composition, is the 
percentage composition of each amino acid in the protein. G1, G2 and G3 can be 
referenced from Table 2. Dim stands for Dimension from Table 3. 
 
Dim Descriptor Calculation Remarks 
1 1st composition G1/(G1+G2+G3) * 

100% 
 

2 2nd composition G2/(G1+G2+G3) * 
100% 

 

3 3rd composition G3/(G1+G2+G3) * 
100% 

 

4 1st transition F1/(G1+G2+G3-1) * 
100% 

F1=Frequency[(G1 to G2) or (G2 
to G1)]  

5 2nd transition F2/(G1+G2+G3-1) * 
100% 

F2=Frequency[(G1 to G3) or (G3 
to G1)] 

6 3rd transition F3/(G1+G2+G3-1) * 
100% 

F3=Frequency[(G2 to G3) or (G3 
to G2)] 

7 1st distribution – 
1% 

P1,1/(G1+G2+G3) 
*100% 

8 1st distribution – 
25% 

P1,25/(G1+G2+G3) 
*100% 

9 1st distribution – 
50% 

P1,50/(G1+G2+G3) 
*100% 

10 1st distribution – 
75% 

P1,75/(G1+G2+G3) 
*100% 

11 1st distribution – 
100% 

P1,100/(G1+G2+G3) 
*100% 

12 2nd distribution – 
1% 

P2,1/(G1+G2+G3) 
*100% 

13 2nd distribution – 
25% 

P2,25/(G1+G2+G3) 
*100% 

14 2nd distribution – 
50% 

P2,50/(G1+G2+G3) 
*100% 

15 2nd distribution – 
75% 

P2,75/(G1+G2+G3) 
*100% 

16 2nd distribution – 
100% 

P2,100/(G1+G2+G3) 
*100% 

Dy = total distribution number at y 
percentage, e.g.  
if Gx = 10, y = 50% distribution 
then Dy = 5 
 
Pxy = position where the total 
distribution number of amino acid 
representative of the Gx (Dy) is 
found in the whole protein 
 
If the first residue of Gx coincides 
with the beginning of the chain, 
the first number of the D 
descriptor equals 0.0 
Else the above rule follows 
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Dim Descriptor Calculation Remarks 
17 3rd distribution – 

1% 
P3,1/(G1+G2+G3) 
*100% 

18 3rd distribution – 
25% 

P3,25/(G1+G2+G3) 
*100% 

19 3rd distribution – 
50% 

P3,50/(G1+G2+G3) 
*100% 

20 3rd distribution – 
75% 

P3,75/(G1+G2+G3) 
*100% 

21 3rd distribution – 
100% 

P3,100/(G1+G2+G3) 
*100% 

 

 
 
3.3 Support Vector Machine 
 
In this work, we employed SVMLight (http://svmlight.joachims.org)72 for the 

classification. SVM is based on the structural risk minimization (SRM) principle from 

statistical learning theory52. In linearly separable cases, SVMs separate two different 

groups of feature vectors (a given known set of {+1, -1} labeled training data) via a 

hyperplane that is maximally distant from the positive and negative samples (known 

as Optimal Separating Hyperplane, OSH), then ‘plot’ the test data at the high 

dimensional space, distinguishing whether it belongs to positive or negative according 

to the OSH (Figure 3).  
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Figure 3 The definition of Hyperplane and Margin 
The circular dots and square dots represent samples of class -1 and class +1, 
respectively. 
 

A feature vector is represented by xi with physicochemical descriptors of a protein as 

its components. The hyperplane is constructed by finding another vector w and a 

parameter b that minimizes ||w||2 and satisfies the following conditions: 

 w · xi  + b ≥ +1,  for yi = +1  Group 1 (positive) ………… 1 

w · xi  + b ≤ -1,  for yi = -1  Group 2 (negative) ………… 2 

where yi  is the group index, w is a vector normal to the hyperplane, |b|/||w|| is the 

perpendicular distance from the hyperplane to the origin and ||w||2 is the Euclidean 

norm of w. After the determination of w and b, a given vector x can be classified by: 

   sign[(w · x) + b] …………………………………………….. 3 

As most of real-world problems is not linearly separable, SVM can work in 

combination with the technique of ‘kernel’ or kernel function, K(xi, xj), that 

automatically realizes a nonlinear mapping onto a feature space (Figure 4). The OSH 
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found by the SVM in feature space corresponds to a nonlinear decision boundary in 

the input space. An example of a kernel function is the Gaussian kernel : 

   K(xi, xj) = e-γ|| xj – xi||2 …………………………………………. 4 

This kernel is commonly used by many other reseachers73,74,75 and often performed 

with higher accuracy than other kernel functions in biological research. As such, we 

chose Gaussian function for the prediction of protein-protein interaction from DIP.  

 

OO O
O

O
XX 

X 

X

X
X 

 F 
φ(x)

φ(x)

φ(x)

φ(x) 

φ(x) 
φ(o)

φ(o) φ(o) 

φ(o)
φ(o) 

φ

 

Figure 4 The idea of SV machines 

Project the training data nonlinearly into a higher-dimensional feature space via φ , 
and construct a separating hyperplane with maximum margin there. 
 

Linear SVM is applied to this feature space and then the decision function is given by: 

   f (x) = sign(∑ α0
i yi K(xi, xj) + b) …………………………. 5 

where the coefficients α0
i and b are determined by maximizing the following 

Langrangian expression: 

   ∑ αi – ½ ∑∑ αi αj yi yj K(xi, xj) …………………………….. 6 

under conditions: 

   αi ≥ 0   and  ∑ αi yi = 0 ………………………………. 7 

A positive or negative value from Eq. 3 or Eq. 5 indicates that the vector x belongs to 

the positive or negative group respectively. 
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As in other statistical learning studies, SVM prediction accuracy can be described by 

means of the overall classification accuracy Q, precision and recall.    

                                            
FNFPTNTP

TNTPQ
+++

+
=                                         

 )/(),/( FNTPTPrecallFPTPTPprecision +=+=      

where TP, TN, FP and FN represents true positive, true negative, false positive, and 

false negative respectively. 

 

Scoring of SVM classification of proteins is estimated by a reliability index (RI) and 

the RI is defined as: 

  0 if  d < 0.2 

 RI = (d/0.2)  if 0.2 <= d < 1.8 

  
{ 

9 if d >= 1.8 

where d is the distance between the position of the vector of the classified protein and 

the optimal separating hyperplane in the hyperspace.  The relationship between RI 

value and accuracy percentage or statistical P-value is shown in Table 4 and Figure 5 

while the Receiver Operator Characteristic (ROC) plot of each RI value can be found 

in Figure 6. In general, the absolute value of d is in the interval [0,2] and RI is a value 

range from 0 to 9 with RI=9 corresponding to a rather reliable prediction. 

 

Table 5 Details of RI value calculation.  

The total number of interactions predicted for each RI range (where P-Positive; N-
Negative; TP-True Positive; FN-False Negative; TN-True Negative; FP-False 
Positive): 
 
RI  Total P Total N TP FN TN FP Total Correct % 
0-<1 558 384 320 238 218 166 942 538 57.1
1-<2 484 405 308 176 308 97 889 616 69.3
2-<3 394 448 267 127 395 53 842 662 78.6
3-<4 313 439 240 73 412 27 752 652 86.7
4-<5 223 334 182 41 320 14 557 502 90.1
5-<6 144 193 126 18 185 8 337 311 92.3
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RI  Total P Total N TP FN TN FP Total Correct % 
6-<7 67 85 61 6 82 3 152 143 94.1
7-<8 11 36 11 0 36 0 47 47 100
8-<9 10 6 10 0 6 0 16 16 100
9-<10 4 1 4 0 1 0 5 5 100
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Figure 5 Statistical relationship between RI value and P-value  
Statistical relationship between the RI value and P-value (probability of correct 
classification) derived from analysis of 2208 positive and 2331 negative protein-
protein interaction dataset. 
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Figure 6  ROC plot of RI value 
The legend indicate the range of RI value and its corresponding ROC curve. TPR is 
True Positive Rate (Sensitivity) and FPR is False Positive Rate (1-Specificity). 
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3.4 Implementation 
 
MySQL database is used to store the downloaded DIP, MIPS, Swiss-Prot76 and 

InterPro77 databases for further processing.  The database structure can be referenced 

from Appendix A. Swiss-Prot and NCBI databases are also used for extraction of 

protein sequence and associated features/functions. Java programs are created to parse 

the various downloaded databases, construct dataset, derive hypothetical negative 

datasets, generate feature vectors and analyze results. The list of programs and its 

description can be found in Appendix B. The detailed implementation steps are listed 

in Appendix C.  
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CHAPTER 4  RESULTS 
 
 
4.1 Prediction accuracy of three SVMs 
 
Table 5 gives the accuracy of SVM prediction of interacting proteins using both 

artificial shuffled protein sequences and real protein sequences as the negative 

datasets. It is found that the prediction accuracy using 1-let shuffled protein sequences 

as negative dataset is 94.1% while 2-let shuffled protein sequences yields 89.3%, 

which is comparable to the accuracy of 80.9% from an earlier work6. The slight 

improvement is probably due to the different feature representation and dataset 

construction methods. In contrast, the prediction accuracy using real protein 

sequences as negative datasets is 76.9%, which is substantially lower than that derived 

from the use of shuffled protein sequences as negative datasets.  

Table 6 Prediction accuracy of SVM classification of interacting proteins 
Prediction accuracy of SVM classification of interacting proteins using shuffled 
sequences and real protein sequences as negative dataset (dataset for non-interacting 
proteins). TP, TN, FP and FN represents true positive, true negative, false positive, 
and false negative respectively. Details of the negative datasets construction are given 
in the text. A total of 2208 interacting proteins are used as positive testing dataset 
while 2331 non-interacting proteins are in negative testing dataset. Combined results 
of five-fold cross validation are shown. The numbers in parentheses under Prediction 
Accuracy column are corresponding to the standard deviations with five-fold cross 
validation (Detailed calculation is shown in Appendix D). 
 
 
Negative dataset TP FN TN FP Precision 

(%) 
Recall 
(%) 

Prediction 
Accuracy 
(%) 

 
2039 

 
169 

 
2233

 
98 

 
95.4 

 
92.3 

 
94.1 (1.3) 

Shuffled sequences  
(1-let) 
(2-let) 1935 273 2117 212 90.1 87.6 89.3 (0.7) 
Real protein sequences 1527 679 1963 368 80.6 69.2 76.9 (1.7) 
 
 

This result seems to indicate a correlation between the degree of random shuffling of 

protein sequences in the negative datasets and the computed classification accuracy. 
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The increasing randomness of the negative dataset tends to give better prediction 

accuracy, which is expected as increasingly artificial random shuffled sequences are 

likely to be more easily distinguished from real protein sequences. As shown in 

Figure 7, even though classifiers trained by shuffled sequences achieve a higher 

accuracy on shuffled sequences testing datasets, they are not able to perform as well 

when applied on real sequences testing dataset. This is understandable as the level of 

difficulty for classifying two datasets of real protein sequences is expected to be 

higher than that of one set of real protein sequences and one set of shuffled sequences, 

which partly contributes to the lower classification accuracy derived from the use of 

real protein sequences. In order to determine the effect of sequence randomness on the 

performance of the SVM classification, the average distance of support vectors to the 

respective optimal separating hyperplane for each of the three models is computed. 

The average distance generated from the negative dataset of real sequence (dr) is 

0.54, while that of the shuffled 1-let sequences (ds1) and shuffled 2-let sequences 

(ds2) is 0.73 and 0.70 respectively. The classification system of the 1-let shuffled 

protein sequences gives the largest average distance while that of the real protein 

sequence gives the smallest average distance. Figure 8 explains the effect of using 

different negative datasets in a simplified two-dimensional diagram. The larger 

margin in between the two classes of dataset implies that the model is capable of 

classifying a given test data better than those with a smaller margin. For example, 

assuming that the ‘data point A’ is a positive test data, ‘data point A’ will be classified 

correctly when 1-let shuffled sequence model is used but this is not the case when it is 

classified using the real sequence model.  
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Figure 7 ROC plot of various SVM classifications 
s1, s2 and real represents training or testing dataset containing shuffled 1-let, 2-let 
sequences and real protein sequences as negative dataset respectively while train and 
test in the legend indicates SVM training and testing dataset. For example, s2 train – 
real test in the legend means the ROC curve of the  classification using SVM model 
trained with shuffled 2-let protein sequences as negative dataset on real sequences 
testing dataset.  
 
 

 

 

 

 

 

 

Figure 8 Effect of using different negative datasets 
The effect of using different negative datasets in simplified two-dimensional diagram. 
The larger margin or the distance (ds > dr) between the position of the support vector 
and the optimal separating hyperplane (OSH) in the hyperspace implies that it is able 
to distinguish positive real sequence dataset (P) and the shuffled sequence negative 
dataset (Ns) better than real sequence negative dataset (Nr). 

P 

Nr Ns 

ds 

dr 

x Data point A. Using Nr 
model will classify A as 
negative while Ns model 
will classify it as positive. 

OSH 
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4.2 Putative protein partners prediction 
 
4.2.1  Thioredoxin related proteins 
 

To further evaluate the performance of SVM classification systems trained by using 

different types of negative datasets, a set of thioredoxin related proteins are used as a 

preliminary test of the prediction capability of these systems in real case studies. 

Thioredoxins play a critical role in redox regulation of protein function and signaling 

via thiol redox control. Moreover, they are also known to facilitate DNA binding and 

to be involved in a number of functions in defense against oxidative stress, control of 

growth and apoptosis and if secreted, has chemokine activities4. Several human 

thioredoxin related proteins from the Swiss-Prot database76 are used in this study. The 

details of the proteins are listed in Table 6.  

Table 7 Details of human thioredoxin related proteins from Swiss-Prot 

 
Entry Name Accession 

Number 
Protein Name Annotated Functions 

PDI_HUMAN P07237 Protein disulfide 
isomerase precursor 

procollagen-proline 4-
dioxygenase activity; protein 
disulfide isomerase activity 

TXN1_HUMAN Q16881 Thioredoxin 
reductase 

thioreodxin-disulfide reductase 
activity 

TXN5_HUMAN Q8NBS9 Thioredoxin domain 
containing 5 

potential redox activity 

TXNL_HUMAN O43396 Thioredoxin-like 
protein 1 

plays a role in apoptosis; protein-
disulfide reduction and signal 
transduction 

 

A total of 7,985 human proteins are extracted from Swiss-Prot database as the 

candidates of potential interacting partners of each of these thioredoxin related 

proteins. Each of the 7,985 candidate proteins is paired with each thioredoxin related 

protein to generate feature vectors which are submitted to the three SVM 

classification systems by the procedure outlined in the Materials and Methods section.  
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The results in Table 7 suggests that the SVM classification system using artificial 

shuffled protein sequences (both 1-let and 2-let shuffling) as the negative training 

datasets may not be practically useful as their ability in identifying potential 

interacting protein partners seems limited. For example, the dual specificity mitogen-

activated protein kinase kinase 4 (P45985), which is involved in signal transduction, 

is predicted as a putative partner of TXNL_HUMAN by the SVM system of the 1-let 

shuffled sequences. However, this prediction result maybe questionable as the same 

protein is also predicted as a partner of TXN1_HUMAN and TXN5_HUMAN which 

are not known to be involved in signal transduction. On the other hand, the SVM 

system of the 2-let shuffled sequences predicts a probable ATP-dependent RNA 

helicase p54 (P26196) as a potential partner of PDI_HUMAN, which appears to be 

consistent with the entry12097 of the BIND78 database. This entry describes a protein-

protein complex between Saccharomyces cerevisiae PDI1 and DBP2 ATP-dependent 

RNA helicase.  Besides that, Sepiapterin reductase (P35270) is also shown to be a 

possible partner of TXN1_HUMAN79. To further assess these prediction results, the 

two sets of putative protein partners are ranked by the reliability index. As shown in 

Table 7, the reliability index for the top five protein partners of these two sets is low 

and thus they may not be confidently predicted as potential partners.  

 

Table 8 Top five prediction results from SVM classifiers trained by 
shuffled sequences 

Top five prediction results (in descending order) from SVM classification of putative 
interacting protein partners of thioredoxin proteins when shuffled 1-let and 2-let 
sequences are used as negative dataset. Underlined proteins have evidences of being 
the putative protein partners or having similar function. 
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Prediction results using shuffled 1-let sequences as negative dataset 

Thioredoxin 
proteins 
(Swissprot ID) 

Putative protein partner                                                   (Swissprot ID)   [RI ] 

PDI_HUMAN 
Protein disulfide 
isomerase 
precursor 
(P07237) 

Leucine carboxyl methyltransferase                                       (Q9UIC8) [4.87] 
Desmin                                                                                  (P17661)  [3.84] 
Oxysterols receptor LXR-alpha  (Q13133)  [3.78] 
ATP-dependent CLP protease ATP-binding subunit ClpX-
like (O76031) [3.59] 
Replication protein A 30 kDa subunit  (Q13156)  [3.56]  

TXN1_HUMAN 
Thioredoxin 
reductase 
(Q16881) 

Leucine carboxyl methyltransferase (Q9UIC8) [2.87] 
Dual specificity mitogen-activated protein kinase kinase 4    (P45985) [2.86] 
Keratin, type I cytoskeletal 17 (Q04695) [2.70] 
Oxysterols receptor LXR-alpha                                              (Q13133) [2.56] 
Replication protein A 30 kDa subunit (Q13156) [2.27]  

TXN5_HUMAN 
Thioredoxin 
domain 
containing 5 
(Q8NBS9) 

Leucine carboxyl methyltransferase  (Q9UIC8) [3.65] 
Oxysterols receptor LXR-alpha                                              (Q13133) [3.41] 
Dual specificity mitogen-activated protein kinase kinase 4 (P45985) [3.16] 
Replication protein A 30 kDa subunit (Q13156) [3.07] 
Desmin                                                                                   (P17661) [2.99]  

TXNL_HUMAN 
Thioredoxin-like 
protein 1 
(O43396) 

Leucine carboxyl methyltransferase (Q9UIC8) [5.16] 
Oxysterols receptor LXR-alpha                                              (Q13133) [4.13] 
Desmin                                                                                   (P17661)  [3.98] 
Dual specificity mitogen-activated protein kinase kinase 4  (P45985) [3.93] 
Replication protein A 30 kDa subunit (Q13156) [3.84]  

 
Prediction results using shuffled 2-let sequences as negative dataset 

Thioredoxin 
proteins 
(Swissprot ID) 

Putative protein partner                                                  (Swissprot ID)    [RI] 

PDI_HUMAN 
Protein disulfide 
isomerase 
precursor 
(P07237) 

Probable ATP-dependent RNA helicase p54                         (P26196) [2.60] 
MutS protein homolog 4                                                         (O15457) [2.20] 
Short transient receptor potential channel 6 (TrpC6)             (Q9Y210) [2.16] 
High-affinity cGMP-specific 3,5-cyclic phosphodiesterase 
9A                                                                                          (O76083) [2.15] 
Protein-arginine deiminase type II (Peptidylarginine 
deiminase II)  (Q9Y2J8) [1.96]  

TXN1_HUMAN 
Thioredoxin 
reductase 
(Q16881) 

Torsin A precursor (Dystonia 1 protein)                                 (O14656) [1.15] 
Ethanolamine kinase (EKI)                                                     (Q9HBU6) [1.02] 
Pendrin (Sodium-independent chloride/iodide transporter)    (O43511) [0.34] 
Sepiapterin reductase (SPR)                                                 (P35270) [0.32] 
MutS protein homolog 4                                                         (O15457) [0.84]  

TXN5_HUMAN 
Thioredoxin 
domain 
containing 5  
(Q8NBS9) 

MutS protein homolog 4                                                         (O15457) [1.91] 
Torsin A precursor (Dystonia 1 protein)                                 (O14656) [1.51] 
Ethanolamine kinase (EKI)                                                     (Q9HBU6) [1.31] 
Cholinesterase precursor  (P06276) [1.11] 
Polycystin 2  (Q13563) [1.10]  

TXNL_HUMAN 
Thioredoxin-like 
protein 1 
(O43396) 

MutS protein homolog 4                                                        (O15457) [2.47] 
Probable ATP-dependent RNA helicase p54  (P26196) [2.41] 
Ethanolamine kinase (EKI)                                                     (Q9HBU6) [2.21] 
Polycystin 2  (Q13563) [2.21] 
Torsin A precursor (Dystonia 1 protein)                                 (O14656)  [1.93]  
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In contrast, the SVM system trained by real protein sequences as the negative training 

dataset appears to be more capable in identifying potential partners (Table 8). For 

instance, the proto-oncogene serine/threonine-protein kinase pim-1 (P11309) is 

predicted as one of the top-five potential partners for each of the three thioredoxin 

related proteins TXN1_HUMAN, TXN5_HUMAN, TXNL_HUMAN and the top 

potential partner for TXN1_HUMAN. While there is no direct evidence showing 

thioredoxin-related proteins interacts with Pim-1 kinase, recent research findings have 

revealed both proteins are regulated via the NF-kB pathway80,81,82. Another protein, 

mitogen-activated protein kinase 1 (P28482), is also predicted as a potential 

interacting candidate for TXNL_HUMAN which is consistent with its functional roles 

in signal transduction and apoptosis83. In addition, the 26S proteasome non-ATPase 

regulatory protein (Q15008) is identified as a putative partner of PDI_HUMAN. It is 

noted that the same complex has been found in Saccharomyces cerevisiae (entry 

12123 in BIND database). Besides that, several proteins with redox functions such as 

pyruvate dehydrogenase (P08559); 24-dehydrocholesterol reductase (Q15392) and 

soluble epoxide hydrolase (P34913) are also identified. Pyruvate dehydogenase 

(P08559) is known to play a role together with thioredoxin in the redox regulation of 

mitochondria84 while 24-dehydrocholesterol reductase (Q15392), which is involved in 

cholesterol biosynthesis, regulates mitochondria initiated apoptotic pathways that is 

sensitive to the redox environment85. Although there may not be a direct interaction 

between soluble epoxide hydrolase (P34913) and TXN1_HUMAN, a recent 

publication has shown that the expression of both proteins in the prostate apoptosis 

pathway may be correlated86.  
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Table 9 Top five prediction results from SVM classifiers trained by real 
sequence 
Top five prediction results (in descending order) from SVM classification of putative 
interacting protein partners of thioredoxin proteins when real sequences are used as 
negative dataset. Underlined proteins have evidences of being the putative protein 
partners. * proteins are most probably false positive as they are currently not known 
to be interacting with thioredoxin related proteins. 
 
Prediction results using real sequences as negative dataset 

Thioredoxin 
proteins 
(Swissprot ID) 

Putative protein partner                                                      (Swissprot ID)   [RI] 

PDI_HUMAN 
Protein disulfide 
isomerase 
precursor 
(P07237) 

Alpha-2,8-polysialyltransferase*                                                 (Q92187) [7.77] 
24-dehydrocholesterol reductase precursor  (Q15392) [7.34] 
Pyruvate dehydrogenase E1 component alpha subunit (P08559) [7.15] 
Beta-parvin (Affixin) (CGI-56)*                                                   (Q9HBI1) [7.08] 
26S proteasome non-ATPase regulatory subunit 6 (Q15008) [7.02]  

TXN1_HUMAN 
Thioredoxin 
reductase 
(Q16881) 

Proto-oncogene serine/threonine-protein kinase pim-1             (P11309) [9.72] 
Exostosin-like 3 (Putative tumor suppressor protein EXTL3)* (O43909) [9.50] 
Soluble epoxide hydrolase  (P34913) [9.24] 
Brain mitochondrial carrier protein-1* (O95258) [9.20] 
Alpha-2,8-polysialyltransferase* (Q92187) [9.04]  

TXN5_HUMAN 
Thioredoxin 
domain 
containing 5 
(Q8NBS9) 

24-dehydrocholesterol reductase precursor (Q15392) [7.17]
Pyruvate dehydrogenase E1 component alpha subunit  (P08559) [7.16]
cAMP-dependent 3,5-cyclic phosphodiesterase 4C*  (Q08493) [6.78]
Proto-oncogene serine/threonine-protein kinase pim-1             (P11309) [6.77]
Angiotensinogen precursor*                                                      (P01019)  [6.75] 

TXNL_HUMAN 
Thioredoxin-like 
protein 1 
(O43396) 

Alpha-2,8-polysialyltransferase*  (Q92187) [7.93] 
Proto-oncogene serine/threonine-protein kinase pim-1             (P11309) [7.61] 
24-dehydrocholesterol reductase precursor  (Q15392) [7.42] 
Acidic fibroblast growth factor intracellular binding protein*  (O43427) [7.17] 
Mitogen-activated protein kinase 1(MAP kinase 2) (P28482) [6.91]  

 

These results show that the predicted protein interaction pairs derived from the SVM 

system of real sequences are more consistent with experimental findings than those 

from artificial sequences, which suggest that SVM classification systems trained by 

using real protein sequences may be more practically useful in facilitating the 

prediction of putative potential interacting partners. Moreover, through the concept of 

‘guilt-by-association’, such systems may also find potential application in facilitating 

protein function prediction of a novel protein by probing its interaction with other 

proteins of known function.  

 



 

  49  

It is of interest to note that the four thioredoxin related proteins used in this study have 

less than 30% sequence identity with each other. The ability of the SVM system 

trained by the real sequences to predict protein with redox function for all of the four 

proteins and identify putative protein partners having specific functions for individual 

protein can be partially attributed to the use of feature vectors which are based on 

physicochemical property of amino acids sequences rather than sequence similarity. 

From Table 8, one can see that the false positive rate is not small (indicated by *), 

which is likely due in part to the limited diversity of the negative datasets used for 

training the SVM systems. 

 
4.2.2  D. melanogaster interaction dataset 
 

While the thioredoxin examples have shown the potential of SVM classification 

system trained using real protein sequences as the negative training dataset, it may be 

more realistic to apply the three classification systems on a larger and more 

comprehensive dataset. The D. melanogaster interaction dataset from DIP which 

consists of 20988 interactions from 7052 proteins is selected as it is the biggest 

interaction dataset in DIP at the time of writing. Out of the 20988 interactions, 99.7% 

are extracted from high-throughput yeast two-hybrid approach59. The real sequences 

classifier predicts 64% as possible interacting protein pairs which is much lower than 

the shuffled sequences trained classifiers (91.2% and 85.5% for shuffled 1-let and 

shuffled 2-let sequences respectively). However, the recent quality check on DIP 

yeast dataset (about 8000 interactions) indicates that only 50% of the dataset is 

reliable58 while Sprinzak et al.22 has shown that the reliability of high-throughput 

yeast two-hybrid assays is about 50% which may imply that the false positive rate in 

the D. melanogaster dataset can be close to 50%. This result suggests classifiers 
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trained by shuffled sequences are not very capable in differentiating the true positive 

or real interacting protein pairs from a false positive, a non-interacting protein pairs 

when applying in real testing dataset. Nevertheless, there is a need to include 

reliability check, as suggested by Deane et al.58, in addition to the RI value generated 

by classifer trained by real protein sequences in order to minimize the false positive 

rate. 
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CHAPTER 5  DISCUSSION 
 
 
5.1 Significance of results 
 
Our results suggest that the ability of SVM in prediction of putative protein partners is 

improved when real protein sequences instead of shuffled sequences are used as 

negative dataset when applied in real life situation. Even though the accuracy of the 

three SVM systems tested seem to imply that the shuffled sequences trained SVM is 

the better classifier, it is clearly shown in the results that the higher accuracy is due to 

the ability of the shuffled sequences classifiers differentiating between real sequences 

and shuffled sequences rather than between true positive (interacting real protein 

pairs) and false positive (non-interacting real protein pairs) (refer to Figure 7). Hence 

in order to develop a SVM system that can be applicable to the real world, it is 

essential to train the system using real protein sequences. 

 

However it is important to recognize that the SVM classifier trained using real 

sequences, while providing some predictive power, it is not performing well enough 

to be used on its own due to a high level of false positives. The main limiting factor is 

probably due to the amount and quality of the currently available interaction dataset, 

in additional to the dataset selection and representation. While effort can be applied in 

improving the later, the accuracy of the SVM classification system in protein-protein 

interaction is still clearly limited by the reliability of the training dataset. Hence there 

is a need to include reliability check, as suggested by Deane et al.58, in combination 

with the verification of subcellular localization and the interaction sequence signature 

of interacting proteins (method 9 in Table 1), so as to complement the RI value (Table 

5) in minimizing the false positive rate. 
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5.2 Dataset selection  
 

Since the negative dataset is obtained from exclusion study of currently published 

yeast interaction dataset in combination of subcellular localization information as the 

addition verification, the possible representatives of the protein pairs are enormous. 

As the result, the dataset is acquired via random sampling and steps have been taken 

to ensure that representatives are selected (negative datasets have been verified with 

both positive dataset and negative dataset to ensure only those less than 30% identity 

with 90% sequence length are chosen). This is done in order to select a manageable 

set that at least more or less evenly distributed in the protein-pair space. However it is 

understandable that density of representatives has been reduced, but they are still 

representative of the protein-pair space. As SVM classifies proteins by a hyperplane 

(border line), the reduction in the density of representatives likely introduce errors for 

protein-pairs near the border line as a fine-detailed border line is more difficult to 

draw without more details. But overall, a rough border line is still useful for 

distinguishing a majority of protein pairs that are away from the border line. Thus the 

reduction of overall accuracies may be limited.  

 

The main aim is to minimize the error or noise of the SVM training process by 

keeping the ratio between the positive and negative dataset close to 1:1 in order not to 

introduce any overfitting or bias into the classification.  

 

In addition to the selection of the negative dataset, it is of equal importance to have a 

quality positive dataset as well. As currently the only publicly available and validated 

positive interacting protein pairs were extracted from yeast interaction data of DIP, 

this set of positive training dataset may not be representative of all interacting 
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proteins. Hence further improvement in the prediction capability is expected if a more 

comprehensive training data is used.  

 
5.3 Data representation 
 

Besides the dataset selection, the feature vector representation also plays important 

role in improving the classification. Previous approach6 has represented protein 

sequence using three features: charge, hydrophobicity and surface tension to achieve 

80.96% accuracy when shuffled sequences are used to train the SVM. A different 

feature representation method has been adopted in this study to assess if it can 

increase SVM accuracy. Seven features which include amino acids composition, 

hydrophobicity, Van der Waals volume, polarity, polarizability, charge and surface 

tension and a more comprehensive feature extraction method25 has been used. As 

shown in the result, the accuracy for 1-let hypothetical shuffled sequence dataset is 

much better at 94.1%. The different dataset representation may have improved the 

ability of SVM to classify the dataset as similar approach has been successfully 

applied to various protein structural prediction including protein secondary 

structure44, protein fold45 and protein structural class43.  

 
 
5.4 Possible improvement on SVM model 
 
Recursive feature elimination (RFE) has been successfully used in SVM gene 

selection and classification47. However RFE has relatively high computational cost as 

it constructs a pair (classifier, ranked gene set) from samples in a training set and 

evaluated on a test set at each model building step. The contribution of each variable 

is defined through a function of the corresponding weight coefficient that appears in 

the formula defining the SVM model. The elimination of a single variable at each step 
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is inefficient. Recently Furlanello et al.87 introduce entropy-based recursive feature 

elimination (E-RFE) as a non-parametric procedure for gene ranking, which 

eliminates chunks of genes at every loop without reducing accuracy.  This method 

may be able to assist in selecting representative protein pairs for building a more 

suitable training dataset. 

 
Since the support vectors generated are solely based on the training dataset, it will be 

useful to explore both training and testing dataset to identify possible support vectors 

to train for the best SVM system. An independent dataset can then be introduced to 

assess the accuracy of the system. 

 

5.5 Multi-class SVM for InterPro groups prediction 
 
In order to address a possible way to predict protein-protein interaction without the 

completeness of interaction data, the focus is narrowed to analyze protein interaction 

data of individual protein domain. Three InterPro groups are selected for their basic 

function in interacting with DNA/RNA [IPR001163 small nuclear ribonucleoprotein; 

IPR000504 RNA-binding region RNP-1; IPR001138 Fungal transcriptional 

regulatory protein]. SVMlight is then used to differentiate the groups based on the 

derived feature sets from the protein and its partner. The encouraging result shown in 

Table 9 confirmed that SVM can indeed classify the various InterPro groups even 

though their underlying basic function is similar. This preliminary assessment of 

Interpro groups classification complement the observation that the usage of real 

protein sequence in machine learning application of protein-protein interaction play a 

significant role in improving the prediction. 
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Table 10 Prediction result for InterPro groups 

Dataset type InterPro  Number of records Accuracy 
Positive  IPR000504  131 
Negative  IPR001163  126  

86.03%  

Positive  IPR000504  131  
Negative  IPR001138  140  

94.57%  

Positive  IPR001163 126 93.98%  
Negative  IPR001138  140   
 

The binary classification method in the protein-protein interaction prediction using 

InterPro groups can be extended to address a multi-class problem by using one-

versus-others technique15. Given the positive results shown in Table 9, we can include 

more InterPro groups to classify and differentiate among the different groups. Besides 

that we maybe able to use this approach to predict the possible interacting partner or 

ligand of a given protein based on the domain, such as WW and SH3 domain which 

both bind proline rich ligands88. As WW and SH3 domains play significant role in 

signal transduction, it is of interest to understand the ligand recognition by the two 

domains in order to design drug or ligand to selectively targeting these interactions.  

 
 
5.6 Prediction and experimental proof 
 
The SVM based protein-protein prediction method has certainly shown its value in 

predicting putative protein partners of an unknown protein by merely using its amino 

acids sequence. However as it is a machine learning system trained from a set of input 

data, its accuracy fully depends on the quality and amount of training data that is 

currently available. It is essential to have experimental proof of the putative 

interaction data before a conclusion can be made.  

 

Recently, cluster analysis of gene expression data has shown that genes with similar 

functions are likely to be co-expressed10, hence prediction of protein-protein 
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interactions by combining computer classification with additional information such as 

protein cellular localization and co-expression profile will definitely help in building a 

better prediction tool, not only as a tool to predict putative interacting partners but 

also provides a valuable clue to the role of a novel or un-annotated protein. 
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CHAPTER 6  CONCLUSION 
 
 
6.1 Concluding remarks 
 
Our study shows that the SVM classification system trained using real protein 

sequences as the negative training dataset performs better in real testing cases than 

that using artificial shuffled sequences. Even though the computed prediction 

accuracy of the former appears to be lower than the later, the later may not adequately 

reflect the true prediction capability because of the intrinsically higher level of 

difficulty for distinguishing real protein sequences than that for separating real protein 

sequences from artificial ones. This suggests the importance of using real protein 

sequences in developing SVM classification systems into a practical tool for protein 

analysis. Further improvement in the diversity and quality of datasets and 

classification algorithm may be useful in increasing the prediction accuracy of SVM. 

These, combined with the analysis of additional information such as co-expression 

profile, may be of help in developing SVM and other classification methods into a 

useful tool for the protein-protein interaction and protein function prediction.  
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APPENDICES 
 
Appendix A Database structure 
Appendix B List of Programs 
Appendix C Implementation details 
Appendix D Calculation details 
Appendix E List of Datasets and models 
 
 
All softcopy of the database creation script; database content; programs and datasets 
are available in a CD upon request. 
 
 
 
 
Appendix A:  Database structure 
 
 
Entity-Relation diagram: 
 

 
 
 
 
# The core table containing the validated positive dataset mentioned in 3.4 
Implementation Step 1, has the same structure as interact hence its detailed table 
structure is not listed in the next section. As DIP_fasta data was downloaded earlier 
(05/09/2001), it does not correspond well with the core table which has dataset 
version 04/04/2003, hence a newer DIP dataset (01/06/2003) was downloaded to 
dip_all. The structure of dip_all is similar with DIP_fasta except that dip_all does not 
have the link to swissprot and interpro tables. 
 
 
 

DIP_fasta 

interpro* 

swissprot* sp* ipr_name*

interact# 
DIP_ac 

gi_ac

protein_ac 

IPR_ac 

sp_ac 

protA 
protB 

sp_ac

sp_ac 

* main supporting tables 
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List of tables and its structure 
 
Protein-protein interaction: 
Main tables are DIP_fasta, interact, dip_all. 
Supporting tables includes interpro; IPR_name; swissport; sp, pfamseed for DIP 
dataset analysis. 
 
 
DIP_fasta  
Table that stores data from DIP database (version05/09/2001) with its DIP_ac and 
sequence information together with flag to identify type of record for program 
processing and InterPro information.  
Field name Type Remarks 
ID int(7) primary key (unique) to identify each record 
DIP_ac1 varchar(10) DIP accession no in text (‘N’ suffix in 

fasta.txt is removed) 
sp_ac varchar(10) Swiss-Prot accession no – manually 

generated using sp_name 
sp_name varchar(250) Swiss-Prot name – from DIP-fasta.txt 
pir_ac varchar(10) PIR accession no – from DIP-fasta.txt 
gi_ac varchar(10) GI accession no – from DIP-fasta.txt 
seq text Amino acids sequence – from DIP-fasta.txt 
flag varchar(4) Type of records –  

TM1: Testing set with unique InterPro but 
having > 1 protein from the same InterPro 
TM2: Testing set with multiple InterPro but 
having >1 one protein from the same 
InterPro 
RM1: Training set with unique InterPro but 
having >1 protein from the same InterPro 
RM2: Training set with multiple InterPro 
but having >1 protein from the same 
InterPro 
RU1: Training set with unique InterPro and 
only one in the grp 
RU2: Training set with multiple InterPro 
and only one in the grp 

interpro_count int(2) Total number of InterPro domains found 
interpro varchar(12) The last InterPro accession no [note: this 

approach is not good enough as the last 
InterPro is not a domain representative. 
Should keep all InterPro domains for future 
work] 

DIP_ac int(5) unsigned DIP accession no in integer (currently used) 
random_seq text Randomly generated sequence based on seq 
random_seq2 text Partial randomly generated sequence (only 

50-100 positions are randomly changed) 
based on seq 
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Interact 
Table that stores DIP interact pairs information. 
Field name Type Remarks 
ID int(7) primary key (unique) to identify each record 
protA int(5) 1st protein in the interaction pair 
protB int(5) 2nd protein in the interaction pair 
 
interpro 
Table that stores the internet downloaded InterPro database. 
Field name Type Remarks 
ID int(7) primary key (unique) to identify each record 
protein_ac varchar(10) Swiss-Prot accession no 
method_ac varchar(10) Method to derive the InterPro information 
pos_from int(7) Protein sequence start position 
pos_to int(7) Protein sequence end position 
IPR_ac varchar(12) InterPro accession no 
IPR_name text InterPro name 
 
IPR_name (concise version of Table InterPro) 
Table that stores InterPro accession no and name. 
Field name Type Remarks 
ipr_ac varchar(12) InterPro accession no 
ipr_name text InterPro name 
 
swissprot 
Table that stores the internet downloaded Swiss-Prot database. 
Field name Type Remarks 
ID int(7) primary key (unique) to identify each record 
gi_ac varchar(10) GI (genbank) accession no 
sp_ac varchar(10) Swiss-Prot accession no 
sp_desc text Swiss-Prot description 
 
sp 
Table that stores the internet downloaded Swiss-Prot database with sequence 
information. 
Field name Type Remarks 
sp_ac varchar(10) Swiss-Prot accession no 
name text Swiss-Prot description 
seq text Protein sequence 
 
dip_all 
Table that stores data downloaded from DIP database version 01/06/2003.  
Field name Type Remarks 
ID int(7) primary key (unique) to identify each record 
name varchar(250) DIP information of the protein including 

Swiss-Prot, PIR and GI accession no 
seq text Amino acids sequence 
dip_ac varchar(10) DIP accession no  
shuffled_seq text shuffled 1-let sequence based on seq 
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Field name Type Remarks 
shuffled_seq2 text shuffled 2-let sequence based on seq 
shuffled_seq3 text shuffled 3-let sequence based on seq (no 

sequence as 3-let is too big to generate any 
meaningful shuffling) 

 
pfamseed 
Table that stores the seed protein from Pfam-A.seed version 30/09/2003 database.  
Field name Type Remarks 
sp_ac varchar(10) Swiss-Prot accession no. primary key 

(unique) to identify each record 
name varchar(250) Swiss-Prot accession no and its description 
seq text Amino acids sequence 
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Appendix B : List of programs 
 
List of programs are sorted by directory and its function. Some of the programs are 
utility or common module that are used to support the function of the programs or 
simplify activities mentioned in 3.4 Implemention. 
 
Main directory Program name Brief Description 
java\common convertFasta.java convert fasta file(s) to database 
 Database.java  common module for database connection 

and processing 
 evenProt.java extract interact pairs and evenly distributed 

them to 
training and testing file based on input file 
with info of protA/protB and total count. 
Uniquely found record is extract to single 
file 

 extractS.java take in single ac and extract interacting 
partners from interact table in database.  

 format.java convert the comma-delimited in a file to a 8 
characters long separator (including the 
item). i.e., A,B will become A<7 spaces>B. 
This is to align with Cai’s SVM input file 
format 

 genInfo.java generate info or seq (fasta) using input file 
which contains the list of input dip_ac no 

 genStat.java generate statistics of the svmlight output for 
analysis and publication 

 getFasta.java extract all the sequences in interact database 
in Fasta format 

 getFasta2.java extract interaction pair sequences from input 
file and database in Fasta format. 

 getRand.java extract the random fixed no of records (set at 
3500) from a list of records 

 getRep.java extract the representative of training dataset 
using BLASTCLUST output 

 getSV.java extract the SV and nonSV of training set 
using generated alpha file from svm_learn 

 ioFasta.java get sequence from database and generate 
output in Fasta format or get the sequences 
from a Fasta file to insert into database 
depending on input type 

 randomSeq.java generate a random string based on an input 
string from database with few type of 
randomness generation 

 randomStr.java randomize position of amino acids 
 randomStr2.java internal randomise the amino acids position 

- i.e., the aa composition is the same 
 randomStr3.java randomize amino acids according to the 

length 
 readFasta.java read from Fasta file 
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Main directory Program name Brief Description 
 readLine.java output number of line of the input file 
 Splitfile.java/ 

Splitfile5.java 
will split a file 'filename (without .txt)' 
content to 2 or 3 files depending on no. 
entered in the second argument 

   
java\database DIP_interpro.java fill up interpro (IPR_ac) and interpro in 

DIP_fasta table under SVM dataset database 
 EvenType.java take records from a table which is generated 

from DIP_fasta and make training and test 
records even in number 

 getSeed.java This program will select the 1st 
representative proteins from pfamA seed file 

 IPRname.java extract ipr_name info from internet 
INTERPRO record and write to database 

 Match.java match.java is an implementation on MS 
Access. Matchsp.java is using MySQL 

 Matchsp.java fill up sp_ac (Swiss-Prot accession no) in 
DIP_fasta table 

 Negfile2.java similar algorithm as Negfile.java but the 
output are split to Train and Test based on 
the type in DIP_fasta ‘RM1’ and ‘TM1’ 

 Negfile3.java use all RM1 and TM1 from DIP_fasta to 
generate all possible negative set instead of 
checking on every record in interact table 

 Negfile.java generate negative training set output file in 
format that is recognised by cai’s SVM 

 Negfile_i.java written to handle another type – Independent 
data type ‘IM1’ 

 QCneg2.java second quality check on the negative record 
to handle duplicated records in the negative 
set 

 QCneg.java quality check (QC) the negative dataset with 
the positive dataset 

 SetType.java assign training set (R) and test set (T) and 
INTERPRO count to DIP_fasta on field 
'flag' 

 SetType_i.java similar as SetType.java but handle I’ 
(independent) type 

 Splittype.java will split a file 'filename (without .txt)' 
content to 2 files and ensurely training file 
has all representatives. 

 SVMfile.java generate 3 output files in format that is 
recognised by cai’s SVM input 

 SVMfile_i.java SVMfile_i.java is an enhancement version 
that handles ‘I’ (independent) type 

   
java\feature genfeature.java The main purpose of this program is to 

generate the feature vectors of a test protein 
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Main directory Program name Brief Description 
given in a file and pair it with every protein 
(in feature vectors form) in another input file 
(protfile) to form the feature vector file for 
classifying purpose.  

 qc.java use original data file to counter check 
database 

 qcdata.java compare original data file and generated 
feature vector file to find missing protein id 
from original data file 

 qcdata2.java check feature vector file and extract those 
with full record to filename_ok file and 
those that is not alright to filename_nok file 

 sp_feature.java This program converts ‘seq’ field from table 
specified to feature vector. The generated 
file will be used as protfile in 
genfeature.java. 

 svm_feature.java This program converts generated SVM files 
(protA<>protB<>type) to SVM light format 
- <class> <feature>:<value>  ... 
<feature>:<value> where <class> is +1;-1 
<feature> is no of feature (integer)  
<value> is a real number which represents 
the calculated value of each features 

   
java\shuffleSeq exFasta.java extract the shufflet generated Fasta 

sequences (with many trials) to individual 
file containing each trial 

 shuffleSeq.java generate a shuffled sequence conserving the 
exact k-let counts for a given k (self written, 
not comprehensive to be used as it is may 
not have uniformed permutation) 

   
java\weight distance.java calculate the distance of  a given point to the 

OSH,  
optimal separating hyperplane. The distance 
can then be used to rank the reliability of the 
prediction 

   
java\appendix* genSource.java This program will generate the source 

information for train.txt and test.txt file by 
using used='Y' field in DIP_fasta. the format 
is ID<>sp_ac|gi_ac|pir_ac where  total 
length of ID<> is 8 characters. 

 insertName.java This program is used to fill up sp_desc 
(swissprot description or name) in 
DIP_fasta. It used sp_ac to check in sp first 
and later gi_ac to check in swissprot. 

 insertUsed.java This program will check the interaction pairs 
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Main directory Program name Brief Description 
in format id1<>id2<>type  
(where id1<> and id2<> are each 8 
characters long) and extract id1 and id2 to 
indicate in DIP_fasta - used field as 'Y' 
i.e.,the corresponding DIP_ac is used. The 
default of used is 'N'. The main reason of 
doing this is to extract only proteins that are 
used in  training and testing interaction pairs 
by using used field in DIP_fasta. 

 
* detailed explanation is not included in this document as the program under this 
directory is mainly for generating information for publication purposes. However the 
source files are included in the softcopy distribution CD. 
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The details of directory: java\database 

This directory contains programs that are related to manipulate data in database and to 
populate and massage data into format that can be used for analysis. 
 
The relationship of each programs under this directory: 

o To generate positive (SVMfile.java) and negative (Negfile.java) dataset for 
SVM testing: 
Matchsp.java   DIP_interpro.java  SetType.java  SVMfile.java and 
Negfile.java 

 
o To quality check the negatibe dataset generated: 

Negfile.java  QCneg.java  QCneg2.java 
 

o For supporting and formating purposes: 
o EvenType.java 
o IPRname.java 
o Splittype.java 

 
 
DIP_interpro.java  
 
Program  DIP_interpro.java 
Usage This program is used to fill up interpro (IPR_ac) and interpro in 

DIP_fasta table under SVM dataset database 
These 2 data are important for assignment of training and testing set for 
SVM. 

Algorithm o connect to database 
o For each record in DIP_fasta, get Swiss-Prot acc no (sp_ac_dip) 
o get distinct IPR_ac from interpro table where the Swiss-Prot acc no 

is found 
o get the total count and assign the last IPR_ac to DIP_fasta fields, 

interpro_count and interpro respectively. 
Remark This approach has simplified method but has also truncated important 

data as for protein with multiple INTERPRO records, only one is 
recorded. It is necessary to consider keeping the complete INTERPRO 
domains information with each protein. 

 
 
EvenType.java  
 
Program  EvenType.java 
Usage This program takes records from a table which is generated from 

DIP_fasta and make training and test records even in number. 
The table contains count of training and test set from each interpro type. 
The aim is to make sure all test set must have a training set and have 
examples 
more than test set. 
 

Algorithm o connect to database 
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o create a temporary table ‘data’ to keep records for TM1, RM1 and 
RU1 (refer to Remark) 

o get the train and test set count and find the mean 
o for each record of the same INTERPRO, assign ‘RM1’ to the first 

half of records before reaching mean and the rest are assigned at 
‘TM1’. 

Remark Program is written to consider unique INTERPRO only. Proteins with 
multiple INTERPRO identified are not considered. It is necessary to 
address this groups of proteins too. 
TM1: Testing set from protein with unique interpro but having more 
than one protein from the same interpro 
RM1: Training set from protein with unique interpro but having more 
than one protein from the same interpro 
RU1: Training set from protein with unique interpro and only one in the 
grp 

 
 
getSeed.java  
 
Program  getSeed.java 
Usage This program will select the 1st representative proteins from pfamA 

seed file (from pfam ftp site). 
 
The index file is created using UNIX script 'grep' function on "#=Gf 
SQ" to get the no of proteins from each family. Then this no is import 
into Excel to find  
the 1st no for each group. This no is used as an index. 
 
The list of AC (protein accession no) can be extracted from pfamA seed 
file 
using UNIX script 'grep' on " AC ". 
 
usage: java getSeed index_file ac_file 

Algorithm o read the input file containing index of the 1st seed protein (row no) 
o read the file containing the Swiss-Prot no of all the seed protein 
o match the 2 arrays, if the row no is found then the Swiss-Prot no is 

output to output file, indicating that it is the 1st seed protein of the 
family 

Remark • only the 1st representative is used from the PfamA seed file to pair 
with the test protein of interest to find the putative interacting 
partner. 

• The generated output file containing Swiss-Prot accession no and 
this no is then used to link with swissprot table in database to extract 
the protein sequence 

• For those that is not found, the accession no is used to extract 
sequence from internet using Entrez. 
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IPRname.java  
 
Program  IPRname.java 
Usage Extract ipr_name info from INTERPRO record using 

http://www.ebi.ac.uk/interpro/ISimpleSearch?query= 
write the ipr_name to database table IPR_name so that all records can 
be analysed 

Algorithm o read each line of the input file (containing INTERPRO accession 
no) 

o For each INTERPRO accession no, go to INTERPRO internet site 
to get description (IEntry). If found, update database table 
IPR_name with the accession no, ipr_ac and the description, 
ipr_name 

Remark Input file is ‘input.txt’. Output file method was commented. If not, 
output file will contain IPR_ac and IPR_name 

 
          
matchsp.java (and its variant match.java) 
 
Program  Matchsp.java 
Usage This program is used to fill up sp_ac (Swiss-Prot accession no) in 

DIP_fasta table. The main reason is without sp_ac, we cannot link 
InterPro data to DIP data. InterPro data is necessary so that the dataset 
can be split meaningfully into 2 datasets – training and testing set with 
relevent domains for testing. 

Algorithm o connect to database 
o get sp_name from DIP_fasta 
o get sp_ac from swissprot where sp_desc has part of sp_name 
o if found, update sp_ac to DIP_fasta 

Remark match.java is an implementation on MS Access. Matchsp.java is using 
MySQL 

 
 
Negfile.java (and its variant – Negfile2.java; Negfile3.java; Negfile_i.java) 
 
Program  Negfile.java  
Usage This program will generate negative training set output file in format 

that is recognised by cai’s SVM. 
negativeddMMyy.txt  : interaction eg used as training set. e.g. 
ID1<>ID2<>P (positive set); N (negative) 
ID*<> is 8 characters long. 

Algorithm o Connect to database 
o Select distinct protB from interact table 
o For each protB, get interacting protA 
o Using the protA, get all protB but it should not equal to original 

protB 
o Output result to output file ‘negativeddmmyy.txt’ 
The concept is based on idea that if A-B and B-C but no A-C then A-C 
is considered as negative dataset 

Remark Negfile.java program is used on interact table to retrieve hypothetical 
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non-interacting protein pairs based on concept that if A-B and B-C but 
no A-C is found then A-C is considered as negative dataset. This 
concept is not used in the latest version as subcellular localization is 
used for negative dataset selection instead. 
 
Negfile2.java : similar algorithm as Negfile.java but the output are split 
to Train and Test based on the type in DIP_fasta ‘RM1’ and ‘TM1’. 
Negfile3.java : This version will use all RM1 and TM1 from DIP_fasta 
to generate all possible negative set instead of checking on every record 
in interact table. Outfile will be Negfileddmmyy.txt 
Negfile_i.java : This version is written to handle another type – 
Independent data type ‘IM1’. Output files are created under a 
subdirectory ‘file’ with filenames as trainNddmmyy.txt, 
testNddmmyy.txt, indNddmmyy.txt 
 
Need to do a quality check on the list of records to ensure that 

• no match is found in positive dataset (done in QCneg.java 
program) 

• no duplication (done in Qcneg2.java program) 
• apply to both combinations (protAB; protBA) 

 
 
 
QCneg.java  
 
Program  QCneg.java  
Usage This program will quality check (QC) the negative dataset with the 

positive dataset. 
The input is the the negative data set where each line is a record. 
If the record (protAB or protBA) is found in the database (protAB or 
protBA), 
the record is output to filename_f.txt. The 'not found' record is output to 
filename_qc.txt. Positive dataset is stored in 'positive' table in 'interact' 
database in MySQL. 
 
Usage java QCneg filename(without .txt [original has .txt]) 

Algorithm o connect to database 
o read each record from input file (file generated by Negfile.java and 

its variant) and concatenate protA and protB (both protAB and 
protBA) to compare with positive dataset 

o assign a flag as ‘N’, if the same record is found in positive dataset 
(protAB and protBA. 4 comparisons protAB-protAB; protAB-
protBA; protBA-protAB; protBA-protBA) 

o output found to filename_f.txt and not found to filename_qc.txt 
Remark A temporary table –positive table is created to contain protAB and 

protBA generated from positive dataset. 
(defunct – used in exclusion study) 
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QCneg2.java 
 
Program  Qcneg2.java  
Usage This program is the second quality check on the negative record. There 

are duplication records in the negative set. Identify negative record in 
Access database for comparison.  
The negative record that is found in the database will be output to  
filename_f.txt.  
The 'not found' record is output to filename_qc.txt. 
Duplicate dataset is stored in 'DupAB2' table in 'duplicate' database in 
MySQL. 
 
Use database to check file. Access database - cannot handle too many 
transaction 
 
Usage java QCneg2 filename(without .txt [original has .txt]) 

Algorithm o connect to database 
o get each record from a temporary table DupAB2 which have all the 

records of duplicate interacting pairs 
o read each record from input file (file generated by Negfile.java) and 

concatenate protA and protB (protAB) to compare with each record 
with DupAB2 – write the matched record, i.e., duplicated record, to 
filename_f.txt 

o read each line of filename_f.txt to check with input file, for each 
record that is not found, output the record to filename_qc.txt 

Remark A temporary table –DupAB2 table is created in another database 
‘duplicate’ which contains all the duplicates 
(defunct – used in exclusion study) 

 
 
SetType.java (and its variant SetType_i.java) 
 
Program  SetType.java 
Usage This program assigned training set (R) and test set (T) to DIP_fasta on 

field 'flag'. As there are records which has unique INTERPRO record, 
these set of data will be assigned as R1 and T1. For those who more 
than one INTERPRO records, the data will be assigned as R2 and T2. 
Currently for multiple INTERPRO records, only the last is stored.  
 
TM1: Testing set from protein with unique interpro but having more 
than one protein from the same interpro 
TM2: Testing set from protein with multiple interpro but having more 
than one protein from the same interpro 
RM1: Training set from protein with unique interpro but having more 
than one protein from the same interpro 
RM2: Training set from protein with multiple interpro but having more 
than one protein from the same interpro 
RU1: Training set from protein with unique interpro and only one in the 
grp 
RU2: Training set from protein with multiple interpro and only one in 
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the grp 
Algorithm o connect to database 

o create 2 temp tables – testset and testset2 where testset contains 
record with single INTERPRO and testset2 contains record with 
multiple INTERPRO 

o join both testset and testset2 with DIP_fasta using INTERPRO 
accession no so that we can find out how many records can be 
found with the INTERPRO no and separate the types. 

o update DIP_fasta with appropriate types and assign even no record 
as R (train) and odd no as T (test). However if only one INTERPRO 
is found then the record is assigned as RU1 or RU2 (training 
dataset). 

Remark A separate database update program is built for updating the different 
types after the identification using SQL join and grouping. 
SetType_i.java is another version  

• that will assign Independent dataset – I’ to another field ‘type2’. 
• The dataset is evenly divided to 3 portions where (mod)%3 =0 is 

R (train); %3=1 is T (test) and the rest is assigned as I 
(independent). 

• All first record is assigned to R (train) to ensure all INTERPRO 
has a representative in R 

 
 
Splittype.java 
 
Program  Splittype.java 
Usage This program will split a file 'filename (without .txt)' content to 2 files. 

'filename'_r.txt'-training set and 'filename'_t.txt-test set 
 
Usage java Splittype filename(without .txt [original has .txt]) 

Algorithm o Read in file 
o Ensure unique record will be written to traning set but duplicate 

record to testing set 
o Using protA to check if the record is a new record 
o Count the total no of records and store the content to an 

ArrayList 
o Divide the total in half and get the first half to training and 

the rest to test 
Remark  
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SVMfile.java (and its variant SVMfile_i.java) 
 
Program  SVMfile.java 
Usage This program will generate 3 output files in format that is recognised by 

cai’s SVM input. 
sourceddMMyy.txt  : source file with ID and sequence,  
e.g.  ID1<>seq1 
 ID2<>seq2 
trainddMMyy.txt  : interaction eg used as training set. e.g. 
ID1<>ID2<>P (positive set); N (negative) 
testddMMyy.txt : interaction eg used as test set. same format as 
training.txt 
ID*<> is 8 characters long. 

Algorithm o Connect to database 
o Extract DIP_ac and seq from DIP_fasta and protA, protB from 

interact where type is R (train) or T (test). However here it is 
restricted to RM1 and TM1 only 

o Format (ID*<> as 8 characters long) DIP_ac and seq to output to 
sourceddMMyy.txt 

o Format protA and protB and type to train and test output file (type is 
hardcoded. Only ‘P’ (positive) is handled, negative file is generated 
by Negfile.java) 

Remark SVMfile_i.java is an enhancement version that handles ‘I’ 
(independent) type so after SetType_i.java has assigned the appropriate 
type, this program can be used to generate positive dataset for 
independent dataset testing. 
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The details of directory: java\common 

This directory is used to store programs that is mainly a utility tool or data 
manipulation tool 
 
 
convertFasta.java  
 
Program  convertFasta.java 
Usage This program will convert fasta file(s) to database. It will take each files 

from subdirectory 'fasta' and extract the data from each file (must have 
the word as the first column of table.txt file in order to corresponding to 
the setting to table.txt for the database). It works for 2 types – DIP 
format or just no. 
o Database configuration is found in config.txt. 
o It will read table name from table.txt where the format: file 

identifier|table1 name|columns 
 
Usage java convertFasta file [dip/no] 

Algorithm o Connect to database via Database.class 
o Extract the seq from fasta file using tokenization method.  
o Format extracted data based on type and insert into database 

Remark  
 
 
Database.java  
 
Program  Database.java 
Usage generic database program which will handle connection; update; delete; 

insert data 
Algorithm o Database(driver, url) or Database(driver, url, username, password) 

module for connection  
o dataExist(table, condition) module 
o selectData(sqlstmt) 
o updateData(table, values, condition) 
o insertData(table, columns, values) 
o deleteData(table) 
o closeConnection() 

Remark DatabaseException class will report error message via 
DatabaseException(message) 

 
 
evenProt.java  
 
Program  evenProt.java 
Usage This program will extract interact pairs and evenly distributed them to 

training and testing file based on input file with info of protA/protB  
and total count.  
Odd number line to 'train' output file 
Even number line to 'test' output file 
Single records to another file - 'single' output file 
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Usage java evenProt filename [protA/protB] type table 

where filename is the file that contains proteinID and count 
protA/protB is the column in interact table for proteinID 
type is the [P/N] 

Algorithm o connect to database 
o if uniquely found, write to single file 
o else if ((count%2)==1) odd number, write to train output file 
o the rest to test output file 

Remark  
 
 
extractS.java  
 
Program  extractS.java 
Usage This program will take in single ac and extract interacting partners from 

interact table in database. These data is then converted to the comma-
delimited format in a file with a 8 characters long separator (including 
the item). i.e., A,B will become A<7 spaces>B. This is to align with 
SVM output file format. 
Output file will be filename_ex.txt 
 
Usage java extractS filename(without .txt [original has .txt]) type 

Algorithm o connect to database 
o take each of the ac from input file 
o extract interacting partners from interact table where protA=ac and 

protB=ac and output to output file 
Remark  
 
 
format.java  
 
Program  format.java 
Usage This program convert the comma-delimited in a file to a 8 characters 

long separator (including the item). i.e., A,B will become A<7 
spaces>B. 
This is to align with Cai’s SVM input file format. 
 
Usage java format filename(without .txt [original has .txt]) 
Output file will be filename_ok.txt 

Algorithm o read each line of the input file 
o convert the comma to the space and ensure that the total character 

count is 8 before the second item. 
o Output the converted format to output file 

Remark  
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genInfo.java  
 
Program  genInfo.java 
Usage This program will generate the information using input file which 

contains  
the list of input dip_ac no from DIP_fasta database table. The output 
file has options of either data or fasta 
input_file  - list of dip_ac 
output_file - list of dip_ac|sp_ac|pir_ac|gi_ac|sp_name or fasta file 
 
usage: java genInfo input_file type(f/d) – fasta and data 

Algorithm o connect to database 
o get dip_ac from input file 
o extract info (dip_ac|sp_ac|pir_ac|gi_ac|sp_name) and seq and 

depending on the type entered (f/d) and output relevent info to 
output file 

Remark  
 
 
genStat.java  
 
Program  genStat.java 
Usage This program generates statistics of the svmlight output (based on 

selected or best parameter generated output file). The main purpose of 
this info is used for publication and also analysis. 
Input:  
original protein file, i.e. A<>B<>P/N 
svmlight out file 
 
output: 
result file (orginal protein file with "_out.txt" appended)containing and 
details of TP/FN/TN/FP and non SV of original protein file 
 
usage: java genStat org_protein_file svmlight_outfile 

Algorithm o getInput – get the total no of record and number of positive and 
negative records from org_protein_file. Output the details. 

o countPN - extract details using information from ‘getInput’ function 
and svmlight output i.e., true positive(TP); false negative(FN); true 
negative(TN); false positive(FP) and output the details together with 
calculate of accuracy [(TP+TN)*100/total]; precision 
[TP*100/(TP+FP)] and recall [TP*100/(TP+FN)]. 

o getXSV - extract the line of test records that is not a support vector 
in order to build up the training set for independent test. The line no 
is then used to extract the list of not SV from org_protein_file to 
output result file for further training. 

Remark This program is a merge of countPN.java and getXSV.java programs. 
Those two programs are now defunct 
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getFasta.java  
 
Program  getFasta.java 
Usage This program will extract all the sequences in Fasta format according to 

the seq_column, table name given.  
 
Usage java getFasta seq_column table_name outfile 

Algorithm o connect to database 
o extract dip_ac and seq from database 
o format to Fasta format to outfile 

Remark Main purpose - for generating shuffled sequences using shufflet and 
preparation of source files for sharing and reporting 

 
 
getFasta2.java  
 
Program  getFasta2.java 
Usage This program will extract interaction pair sequences from database 

in Fasta format. The program will read from file to get protA and protB 
and use them to retrieve seq from database. 
 
usage java getFasta2 inputfile outfile seq_column 

Algorithm o read protA and protB from inputfile 
o connect to database 
o extract seq_column from dip_all using dip_ac with protA and protB 
o append both sequences 
o format to Fasta format to outfile 

Remark Main purpose - for checking if the interacting pairs are homologous. 
 
 
getRand.java  
 
Program  getRand.java 
Usage This program is used to extract the random fixed no of records (set at 

3500) from a list of records. This is because the total possible number  
generated is too big so it is necessary to get random sampling. 
This is for generating negative dataset from cytoplasm and nucleus 
subcellular types. 
 
Input:  
input file containing total number of records 
 
output: 
output file with randomly selected fixed no of records 
 
usage: java getRand total_file fixed_no 

Algorithm o Read in input file and store in array 
o Use java random function to random select 3500 records 
o Output to getRand.txt 

Remark  
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getRep.java  
 
Program  getRep.java 
Usage This program is used to extract the representative of training dataset. 

 
input: 
blastclust output file and either vector or src file as another input. 
output:  
2 files that contain representative seq (appended with _rep) and 
homologuous seq (appended with _xrep) files 
 
usage: java getRep org_protein_file (svmlight vector or original 
sequence) blastclust_out 

Algorithm o read blastclust_out file and get representing seq no. For the list of 
homologous seq, only the first seq no is selected as representative. 

o Read the org_protein_file and extract row no the same as the seq no 
o Output match row to _rep file and unmatch to _xrep file 

Remark Main purpose is to improve the classification and remove redundancy in 
sequences 

 
 
getSV.java  
 
Program  getSV.java 
Usage This program is used to extract the SV and nonSV of training set. The 

program will take the 'alpha' file after svm_learn and compare with the 
source file. The line no that is not zero is SV and zero is not.  
Input:  
original protein file, i.e. A<>B<>P/N 
svmlight alpha 
 
output:result file containing SV and nonSV of original protein file 
 
usage: java getSV org_protein_file svmlight_alpha 

Algorithm o read in svmlight alpha file and store the line no that is ‘zero’ in 
array. Keep the other value in another array 

o read in original profile file – line no found output to nonSV file. 
Line no not found to be output together with alpha value to SV file 

Remark Main purpose is to improve the classification and independent test 
 
 
ioFasta.java  
 
Program  ioFasta.java 
Usage This program will either get sequence from database and generate 

output in Fasta format or get the sequences from a Fasta file to insert 
into database. 
The Fasta file format is >id followed by sequence. 
 
usage java ioFasta type column <input_file> 
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where  
1. type (mandatory): 
 i : input  - need input_file to get sequences to b inserted into 
database 
 o : output - generate fasta out file from database 
2. column (mandatory when type is 'i') 
 column name to insert the seq 
3. input_file (mandatory when type is 'i') 

Algorithm o connect to database 
o depending on type – ‘I’ – readFasta module to read fasta file and 

update column in dip_all 
o ‘O’ – extract all the sequence (when not null) from dip_all and 

output into Fasta file format 
Remark Mainly used in managing shuffled sequences dataset (currently table is 

hard-coded as dip_all. To be enhanced to any table) 
 
 
randomSeq.java (and is variant randomSeq2.java) 
 
Program  randomSeq.java 
Usage This program generates a random string based on an input string from 

database. The randomness is within the position of the string (type 1). 
The result will be of same length but it is not really a random of amino 
acids seq.  
3 type of random seqs generation: 
1). randomStr  - randomized position of amino acids 
2). randomStr2 - internal randomised the amino acids position - i.e., the 
aa composition is the same. 
3). (not implement) randomized amino acids according to the length 

Algorithm o Connect to database 
o Get seq, ID from DIP_fasta where seq is not null 
o Randomize the seq and update the new seq to random_seq (using 

randomStr) and random_seq2 (using randomStr2) 
o randomStr – for the whole length, get a random number in between 

and substring the position from the original. It is possible to have 
the same position appearing again so the aa composition is not the 
same. 

o randomStr2 – store the whole sequence in an array and swap the 
position of the seq x times. Getting x from rand function (between 
50-100). The swapping is also done by finding 2 random numbers 
using rand function and swapping with these 2 positions. 

o Rand – this function is using java – rn.nextInt()%n to find the 
random number between a hi and lo with n=hi-lo+1. After getting 
the random number i, return lo+i as the final random number 
between the hi and lo. 

Remark Implement to get database configuration from config.txt 
randomSeq2.java is the precursor which generates a random string 
based on an input string. The randomness is swapping the position of 
the character in the string so composition of the string remains the 
same. The minimum swapping chance is 50 and max is 100. 
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readFasta.java 
 
Program  readFasta.java 
Usage This program will read in Fasta file using input stream reader instead of 

buffer reader. This will improve performance. 
Algorithm o Read in file using InputStreamReader 

o Convert the buffer to string and access the string via ‘toString()’ 
function 

Remark This program is an embedded program for any main program which has 
Fasta file processing . 

 
 
readLine.java 
 
Program  readLine.java 
Usage This program output number of line of the input file 

Usage java Splitfile filename 
Algorithm o Read in file 

o Count the no of lines and output the result to the screen 
Remark  
 
 
Splitfile.java (and its variant Splitfile5.java) 
 
Program  Splitfile.java 
Usage This program will split a file 'filename (without .txt)' content to 2 or 3 

files depending on no. entered in the second argument. 
If 2 is entered, 2 files created, 'filename'a.txt and 'filename'b.txt 
If 3 is entered, 3 files created, ‘filename’a.txt, ‘filename’b.txt, 
‘filename’c.txt 
 
Usage java Splitfile filename(without .txt [original has .txt]) no (split to 
2 or 3) 
 
Usage java Splitfile5 filename [no split number is required. Will split 
the input file equally to 5 portions] 

Algorithm o Read in file 
o If the args[1] is 2, Even number line (linecount%2=0) content to 

filename’a.txt and odd number line (linecount%2=1)  content to 
filename’b.txt 

o If the args[1] is 3, (linecount%3=0) content to ‘filename’a.txt; 
(linecount%3=1)  content to ‘filename’b.txt; (linecount%3=2) 
content to ‘filename’c.txt 

Remark  
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The details of directory: java\feature 

This directory is used to generate SVM feature. 
 
 
genfeature.java 
 
Program  genfeature.java 
Usage The main purpose of this program is to generate the feature vectors of a 

test protein given in a file to pair with all proteins (in feature vectors 
form) from another input file to form the feature vector file for 
classifying purpose.  
This program will read in 2 files: 
1. seqfile - file that stores the seq of test protein 
2. protfile - file that contains the feature vector of all the proteins 
 
program will convert the seq in seqfile to feature vector and attach it to 
every proteins in the protfile. 
Since the protfile will contain feature from 1 to 145, the newly 
calculated seq will be from 146-290. 
 
USAGE : java genfeature seqfile protfile feature outfile 

Algorithm o Read in file 
o Connect to database 
o Generate seq from seqfile to feature vector (similar algorithm as 

svm_feature.java) 
o Create outfile 
o Get each feature vector from protfile and pair it with the newly 

generate feature vector of the given protein and output to outfile 
Remark This program is written to generate the SVM input file to test how good 

the system can identify the potential partners of a given protein. 
 

 
qc.java 
 
Program  qc.java 
Usage This program will quality check the input file of svmlight (original data 

file) to ensure that all the protein ID is valid so that svm_feature will 
generate correct vector file 
input : input file of svmlight 
output: valid file  
 invalid file with comments 
 
java qc inputfile table column 

Algorithm o Read in file 
o Connect to database 
o Extract both protA and protB from input file 
o Check if both existed in the database, if so, write to valid file; if not, 

write to invalid file. 
Remark  
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qcdata.java 
 
Program  qcdata.java 
Usage This program compares original data file and generated feature vector 

file  
to find missing protein id from original data file. Each line of the  
feature vector file is searched and those without "146:" are treated as 
incomplete line. Complete line has 290 features. 
Input:  
original protein file, i.e. A<>B<>P/N 
feature vector file 
 
output: original protein file  - valid and invalid files 
 
usage: java qcdata original_protein_file feature_vector_file 

Algorithm o Read in feature vector file 
o Find any line that does not contain “146:” and store in array.  
o If the line found in original protein file, write to invalid file; if not, 

write to valid file. 
Remark  
 
 
qcdata2.java 
 
Program  qcdata2.java 
Usage The program is used to quality check the feature vector file to 

ensure that only complete record is found. some records are incomplete, 
only until 145 as the other protein is missing. (due to new table used -
dip_all 
instead of the old table - dip_fasta) 
 
usage: java qcdata2 svmlight_feature_file 

Algorithm o Read in feature vector file 
o Find any line that does not contain “146:”. If the line found, write to 

_ok file; if not, write to _nok file. 
Remark This program is written to avoid the need to run svm_feature again for 

the original protein file.  
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sp_feature.java 
 
Program  sp_feature.java 
Usage This program converts ‘seq’ field from table specified to feature vector. 

If there is a need to selectively convert part of the seq in the table, then 
the list of protein_id (most likely sp_ac) can be provided in infile. The 
feature generation is similar to svm_feature.java. 
 
USAGE : java svm_feature infile table feature outfile 

Algorithm o Read infile and parameter (table) 
o Connect to database 
o Extract both seq from specified table based on infile selection 
o Convert the selected seq to feature vector and prefix each feature 

vector generated with ‘+1’ to test whether the generated protein pair 
is interacting before output to outfile 

Remark Outfile is the input file (protfile) of genfeature.java 
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svm_feature.java 
 
Program  svm_feature.java 
Usage This program converts generated SVM files (in cai’s SVM format, 

protA<>protB<>type) - train and test to fit in to SVM light format - 
<class> <feature>:<value>  ... <feature>:<value> where <class> is +1;-
1 
<feature> is integer which represents the amino acid (aa) composition 
based 
on Ding and Dubchak using frequency; distribution of both sequences 
in database. 
<value> is a real number which represents the calculated value of each 
features 
 
USAGE : java svm_feature file table id type feature table2 id2 ntype 
 
where file - contains interaction pairs file [without .txt] 
table - database table that contain the seq information 
id - the unique database field 
type - to identify if the id is a int or string - 'i' or 'c' 
feature -  
1: aa composition 
2: hydrophobicity 
3: Van der Waals 
4: Polarity 
5: Polariability 
6: Charge 
7: Surface Tension 
 
table2 - additional databse table for negative dataset 
id2 - additional database field for negative dataset 
ntype - if the negative dataset should be randomized - used 'r' else using 
'n' as normal 

Algorithm o Read in file 
o Extract seq from database (depending on ntype, if ‘n’ then get seq 

else if ‘r’, get random_seq or random_seq2 from DIP_fasta) 
o Calculate aa composition of each seq using writeAACom 
o Calculate feature using writeFeature 
o Convert P/N to +1/-1 and add count to each feature depending to 

number of features entered using addCount. This is to format the 
feature list to fit SVMlight format 

o writeAACom – get each AA and count its total appearance and 
calculate its percentage 

o writeFeature – each feature is separated into 3 groups. Each group 
percentage distribution in 1%, 25%, 50%, 75% and 100% of the seq 
is calculated as the feature distribution. Percentage of group 
transition with each other is calculated as the feature transition. 

 



 

  96  

The details of directory: java\shuffleSeq 

This directory contains the programs to manipulate the shuffled sequence generated 
by shufflet program before inserting the sequences into the database. 
 
exFasta.java 
 
Program  exFasta.java 
Usage This program will extract the shuffled sequences to individual file. 

The input file is the Fasta formated file generated from shufflet 
program. 
There are many times to shuffle a sequence and each shuffled seq is  
represented by '_SHF?' (where ? is the no of time the seq is shuffled or 
no of trials) after the key. For example, all _SHF1 will be extracted to 
inputfile_1.txt. 
 
usage java -Xms256m -Xmx256m exFasta inputfile no 
where 
inputfile : file that contains the shuffled seq 
no  : total no of times shuffled 

Algorithm o Read in shufflet generated file using readFasta and tokenization 
o Based on the no of shuffling (x), extract sequences of each shuffling 

by finding name where “_SHF” x is found in the id_no. 
o Output the id_no and sequence of the same shuffling to each 

individual file  
Remark must use the -X option or else will hit out of memory 
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shuffleSeq.java 
 
Program  shuffleSeq.java 
Usage This program generates a shuffled sequence conserving the exact k-let 

counts for a given k. It is sampled uniformly from all the valid 
permutations. 
 
java shuffleSeq k 

Algorithm o Connect to database 
o Get every sequence from dip_fasta 
o For k-let shuffling of each sequence, find 2 segments of sequence 

where aa_start=aa_end where aa_end is k+1+aa_start position.  
o Swap the 2 segments 
o Move on to next segment after aa_end 

Remark Not advisable to use the program as it is not comprehensive enough. 
There is no need for aa_start=aa_end but as long as first k-1 = aa_start 
and last k-1 = aa_end.The main reason of writing the program is 
because the Shufflet program was not available after a few attempts to 
get from the author. This is an attempt to generate shuffled seq using 
the algorithm published in Kandel et. al.55 . However the program may 
not have considered all situation like Shufflet56 and hence it is better to 
use Shufflet (author responsed after 3 weeks) as it has been used in the 
original protein-protein interaction paper using SVM18 
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The details of directory: java\weight 

This directory and programs created to introduce reliability index (RI) into predicted 
result so that the system can be applicable to the real world. The RI can be calculated 
from distance of  a given point to the OSH, optimal separating hyperplane. 
 
distance.java 
 
Program  distance.java 
Usage This program is used to calculate the distance of  a given point to the 

OSH,  
optimal separating hyperplane. The distance can then be used to rank 
the reliability of the prediction. 
         d=∑αiyiK(x,xi) + b 
where K(xi,xj) [kernel] = gamma*e(-||xj-xi||2) 
The reliability index (RI) is calculated as (distance/0.2). However this is 
not ready calculated in the program. The program output list of distance 
together with its identifier in filename of sv_file with ‘_w’ as suffix. 
 
usage: java -Xms64m -Xmx128m distance model_file sv_file no_of_sv 
no_of_feature predicted_no_sv b gamma 
where 
model_file : model file generated by svmlight training dataset 
(containing the feature vectors of all the support vectors) 
sv_file : feature vectors dataset of proteins for prediction 
no_of_sv : number of support vectors from learn output file 
no_of_feature :  total dimension of feature vector 
predicted_no_sv : total number of correctly predicted dataset 
b : threshold generated by svm_learn 
gamma : one of the parameter in Gaussian kernel (the one that 
generated the best accuracy) 

Algorithm o Read in all files 
o Extract alpha and feature from model file and store in x_i array 
o Extract feature value from sv file and store in x array 
o Calculate the kernel value (gamma*e(-||xj-xi||2)) using x and x_i and 

gamma for each point 
o Calculate distance for each point using the formula  d=∑αiyiK(x,xi) 

+ b 
Remark must use the -X option to solve OutOfMemoryError 

To run program with an initial heap size of 64Mb and allow this to 
increase to 128Mb if needed. The mx option actually sets the maximum 
heap memory (not stack) while the associated ms option sets the initial 
heap size. 
The idea is extracted from JMB (2001) 308, 397-407 by Sujun Hua & 
Zhirong Sun: p. 400 - the absolute value of distance(I) is in the interval 
[0,2].  
RI (reliability index) is  
0 when distance(I) < 0.2 
INTEGER(distance(I)/0.2) if 0.2 <= distance(I) < 1.8 
9 if distance(I) > 1.8 
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Appendix C:  Implementation details 
 

The italicized word represents table name in database and details of table can be 

referenced in Appendix A while word with suffix ‘.java’ representing java program 

used (Appendix B): 

 

1. Build the interaction database : Get DIP core database from http://dip.doe-

mbi.ucla.edu/dip/Download.cgi?SM=4 version 04/04/2003 and store it in core. 

The interaction dataset in this database has been validated by Expression Profile 

Reliability (EPR) index and Paralogous Verification Method (PVM).  

 

2. Build the protein database 1 – basic sequence database : Get DIP database from 

http://dip.doe-mbi.ucla.edu/dip version 01/06/2003. This data file is used to create 

tables dip_all (protein information) and Interact (interaction information) so as to 

correspond to the validated dataset (core) in step 1. The data file to database 

conversion is done by convertFasta.java. 

 

3. Build the protein database 2 – merge InterPro protein domain information to DIP 

data for protein function reference:  

o Check BIND database78 but no readily available domain data with interaction 

information as at 30/08/2001 

o As Pfam89 dataset format is harder to extract and InterPro is a more complete 

resource for domain information, InterPro data protein2ipr.dat from 

ftp://ftp.ebi.ac.uk/pub/databases/InterPro version 05/12/2001 is downloaded to 

a table - interpro. 
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o As InterPro can be linked using Swiss-Prot accession no but DIP data is 

mainly represented by PIR and GI accession no, there is a need to update the 

DIP data with Swiss-Prot accession no before it can link with InterPro.  

a. Download Swiss-Prot data from 

ftp://ncbi.nlm.nih.gov/blast/db/swissprot.z (swissprot.021201 version) 

to table swissprot.  

b. However since not all gi_ac in DIP_fasta (same structure as dip_all 

but downloaded on 05/09/2001) can be found in swissprot table. For 

those that can be found, a program is written to match the record – 

matchsp.java. 

c. As the result, for all the unmatched record – use Swiss-Prot name 

available in DIP_fasta to get from online database, i.e., 

http://tw.expasy.org/cgi-bin/sprot-search-de?sp_name where sp_name 

is the field data in DIP_fasta. 

d. After the above processing, out of the 5943 records in DIP_fasta, 4135 

records has sp_ac (Swiss-Prot accession no) while 1808 records cannot 

be further processed as there is no link between the InterPro database 

and the protein.  

e. DIP_interpro.java is written to fill up interpro and interpro_count field 

in DIP_fasta table by using sp_ac as a link between DIP_fasta and 

interpro table. SetType.java and EvenType.java are used in assigned 

proteins with ‘R’ (training) and ‘T’ (testing) type in ‘flag’ field of 

DIP_fasta in order to aid in dataset construction previously. This 

dataset construction method is aborted  later because it is only limited 

to protein with InterPro assignment. 
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4. Construct positive dataset : The interacting proteins pairs in core dataset are 

extracted for further validation to remove homologous sequence. The list of 

protein pairs are checked using qc.java and the combined protein sequences 

(sequence of protA + sequence of protB) are retrieved using getFasta2.java 

program. The fasta file generated is then used as an input to 

BLASTCLUST1,86 to retrieve list of proteins pairs with identity 30% and 

sequence coverage of 90% (blastclust -i train_fasta2.txt -o train2_out30.txt -p 

T -S 30).  The output file of BLASTCLUST is then used to extract the 

representative for training dataset using getRep.java which select the first pair 

of the homologous matched group as the representative. The protA from the 

resulting protein pairs list is used to find all proteins with multiple partners 

and evenProt.java is used to split the protein pairs to training and testing 

dataset. The unique protA (without multiple partners) are selected to retrieve 

list of protB with multiple partners. This set of protB is split similarly using 

evenProt.java to obtain a training and testing dataset. The two set of training 

and testing datasets generated are used to form the final training and testing 

positive dataset after eliminating the duplicate. 

 

5. Construct negative dataset : The generated positive dataset is used as the basis 

for negative interaction dataset construction. The idea is based on subcellular 

localization exclusion as proteins which localize in different areas of the cell 

are unlikely to interact together. Proteins with multiple localization are 

omitted in this study. The yeast subcellular localization data is extracted from 

MIPS60  (downloaded on 21-04-2004) 

(http://mips.gsf.de/genre/proj/yeast/searchCatalogFirstAction.do;jsessionid=D
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FA24BA3FA8167B5AAE843F08D6A074B?db=CYGD). Four types of 

localizations are considered – nucleus; cytoplasm, endoplasmic reticulum 

(ER), mitochondria. Out of the positive dataset, a total of 718 proteins are 

found with unique subcellular localization (nucleus – 304; cytoplasm – 318; 

ER – 30; mitochondria – 66). As the combination for negative dataset is huge, 

getRand.java is used to randomly pair up the following : 

protA protB Total 
ER cytoplasm + nucleus 304 + 318 
mitochondria cytoplasm + nucleus 304 + 318 
ER mitochondria 66 
cytoplasm nucleus 3500 

 

As the result, there are 4810 records. This set of record is quality checked to 

remove duplication within the group and from all the available DIP yeast 

interaction dataset (using dip_all). The resulting dataset has 4662 records and 

the file is evenly split using Splitfile.java to a training and testing negative 

dataset of 2331 records each. 

 

6. Construct training and testing dataset :  The generated negative and positive 

dataset are split according to Step 4 and 5 above before forming the training 

and testing dataset with a positive and a negative components. The training 

dataset is further quality check by removing homologous sequences with 30% 

identity. The training dataset is first extracted using getFasta2.java to append 

two sequences of the protein pairs of each record into Fasta format. The 

resulting Fasta file containing combined sequences of the protein pairs are 

checked using BLASTCLUST to remove protein pairs with identity 30% and 

sequence coverage of 90%.  
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7. Generate shuffled sequence : Shufflet program61 is used to generate shuffled 

protein sequences for construction of negative dataset. The program is 

installed in Linux and the same set of sequences in the negative dataset, as 

mentioned in Step 5, is shuffled in two modes. Command ‘shufflet 1 1 < 

fasta.txt > 1let.txt’ is used to generate 1-let shuffled sequences and ‘shufflet 1 

2 < fasta.txt > 2let.txt’ is used to generate 2-let shuffled sequences where 

fasta.txt is the negative dataset sequence in FASTA format. The 1let.txt and 

2let.txt files generated are inserted to DIP_fasta and dip_all table using 

ioFasta.java program.  

 

8. Generate feature vectors : svm_feature.java is written to generate the feature 

vector of each protein sequence based on feature representation method 

mentioned in section 3.2. The output file format is catered to SVMlight input 

format. qc.java and qcdata.java are used to quality check the generated feature 

vector file to ensure that feature vectors of the protein pairs is generated 

successfully. 

 

9. Train SVMs : The same set of positive dataset constructed in Step 4 are 

matched with 3 set negative training and testing dataset generated in Step 5 

and Step 7 to train three SVMs using SVMlight program – svm_learn. The list 

of datasets and generated models can be found in Appendix E. The output 

generated by SVM is analysed using genStat.java. 

 

10. Generate putative interaction protein partners : As our research main focus in 

on human protein, a total of 7,985 Swiss-Prot human proteins (extracted from 

swissprot and sp tables) are used to pair with the protein of interest.  
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genfeature.java and sp_feature.java are used to convert the protein pairs to 

corresponding feature vectors. 

 

11. D. melanogaster interaction dataset: The dataset is downloaded from DIP 

website on 23-09-2004. The total interaction protein pairs are 20,988. 

format.java, qc.java, qcdata2.java are used to quality check the dataset with 

dip_all table. Svm_feature.java is then used to generate feature vectors for the 

list of protein pairs. 

 

12. Analyze prediction result : Even though SVMlight provides prediction 

accuracy; recall and precision measure as the output result, it is of interest to 

understand which are the support vectors; which are the correctly or wrongly 

predicted and lastly, how reliable is the prediction. A set of java programs are 

written for the purposes, they are getSV.java, genInfo.java, distance.java 

respectively. In order to validate the result, five-fold cross validation is used. 

The training dataset of the three classification systems is split to 5 portions 

using Splitfile5.java, each portion are used as the testing dataset to the 

remaining four combined dataset. Besides that, ROC graph is used to compare 

the classifiers. The performance is measured by calculating the area under the 

ROC curve.  
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 Appendix D:  Calculation details 
 
Cross validation is calculated based on standard deviation (sd) sampled from five 
portions of training dataset. Each training dataset are split to five portions – a, b, c, d 
and e. 

sd = [∑(xi-u)^2/N]^1/2 
Where xi is the accuracy from each test; u is the average of the accuracy and N is the 
total number of test, i.e., 5. 
 
Table D-1 Five–fold cross validation results (Shuffled sequence (1-let)): 
Train dataset Test dataset Accuracy (%) Gamma xi-u (xi-u)^2 
train abcd train e 96.42 0.00045 0.29 0.08 
train abce train d 96.09 0.00035 0.04 0.002 
train abde train c 97.04 0.00045 0.91 0.83 
train acde train b 95.31 0.00025 0.82 0.67 
train bcde train a 95.81 0.00035 0.32 0.1 
Total : 480.67; Average : 96.13 
sd = [1.682/5]^1/2 = 1.3 
 
Table D-2 Five–fold cross validation results (Shuffled sequence (2-let)): 
Train dataset Test dataset Accuracy (%) Gamma xi-u (xi-u)^2 
train abcd train e 91.95 0.00045 0.1 0.01 
train abce train d 91.68 0.00035 -0.17 0.41 
train abde train c 92.69 0.00055 0.84 0.71 
train acde train b 92.13 0.00055 0.28 0.08 
train bcde train a 90.78 0.00045 -1.01 1.14 
Total : 459.23; Average : 91.85 
sd = [2.35/5]^1/2 = 0.68 
 
Table D-3 Five–fold cross validation results (Real sequence): 
Train dataset Test dataset Accuracy (%) Gamma xi-u (xi-u)^2 
train abcd train e 79.88 0.00055 1.26 1.59 
train abce train d 82.29 0.00055 1.15 1.32 
train abde train c 81.02 0.00045 0.12 0.01 
train acde train b 81.46 0.00045 0.32 0.1 
train bcde train a 81.05 0.00055 0.09 0.01 
Total : 405.7; Average : 81.14 
sd = [3.03/5]^1/2 = 1.74 
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Appendix E:  List of datasets and models 
 
 
Dataset type Filename Source 

directory 
Database 
table 

protein-protein 
interaction – source 
file 
 

train_subloc.txt 
test_subloc.txt 

Material_M
ethods\ 
model 

table : dip_all 
field : dip_ac 

protein-protein 
interaction 
(real sequence) – 
feature vectors file 

train_subloc_1234567.dat 
test_subloc_1234567.dat 

Material_M
ethods\ 
model 

table : dip_all 
field : dip_ac, 
seq 

protein-protein 
interaction 
(shuffled sequence) 
– feature vectors 
file 

train_subloc_1234567_s1.dat 
test_subloc_1234567_s1.dat 
train_subloc_1234567_s2.dat 
test_subloc_1234567_s2.dat 
 

Material_M
ethods\ 
model 

table : dip_all  
field : dip_ac, 
shuffled_seq1 
(s1), 
shuffled_seq2 
(s2)  
 

SVMlight generated 
model 

model_t00035_real 
model_t00035_s1 
model_t00055_s2 

Material_M
ethods\ 
model\ 
svm_model 

NA 

Thioredoxin dataset thioredoxin.zip Results NA 
D. melanogaster 
dataset 

species.zip – check for all 
files with ‘fly’ 

Results NA 
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