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Summary

It is found that speech recognition can be made more accurate if other than audio

information is also taken into consideration. Such additional information includes

visual information of the lip movement, emotional contents and syntax information.

In this thesis, studies on lip movement are presented.

Classifiers based on Hidden Markov Model (HMM) are first explored for modeling

and identifying the basic visual speech elements. The visual speech elements are

confusable and easily distorted by their contexts, and a classifier to distinguish

the minute difference among the different categories is desirable. For this purpose,

new methods are developed that focus on improving the discriminative power and

robustness of the HMM classifiers. Three training strategies for HMM, referred

to as two-channel training strategy, Maximum Separable Distance (MSD) training

strategy and HMM Adaptive Boosting (AdaBoosting) strategy, are proposed. The

two-channel training strategy and the MSD training strategy adopt a criterion

function called separable distance to improve the discriminative power of an HMM

while HMM AdaBoosting strategy applies AdaBoost technique to HMM modeling

to build a multi-HMM classifier to improve the robustness of HMM. The proposed

ix



Summary x

training methods are applied to identify context-independent, context-dependent

visual speech units and confusable visual words. The results indicate that higher

recognition accuracy can be attained than using traditional training approaches.

The thesis also covers the investigation of recognition of words and phrases in

visual speech. The approach is to partition words and phrases into the basic visual

speech models. Level building on AdaBoost-HMM classifiers is studied for this

purpose. The proposed method employs a specially designed probability trellis to

decode a sequence of best-matched AdaBoost-HMM classifiers. A Viterbi matching

algorithm is also presented, which facilitates the process of sequence partition

with the application of specially tailored recognition units and transition units.

These methods, together with the traditional level building method, are applied

to recognize/decompose words, phrases and connected digits. The comparative

results indicate that the proposed approaches outperform the traditional approach

in recognition accuracy and processing speed.

Two other research topics covered in the thesis are strategies of extending the

applicability of a visual speech processing system to unfavorable conditions such

as when the head of the speaker moves during speech or the visual features of

the speaker are greatly unknown. A 3D lip tracking method is proposed that 3D

deformable templates and a template trellis are adopted to capture lip dynamics.

Compared with the traditional 2D deformable template method, this approach can

well compensate the deformation caused by the movement of the speaker’s head

during speech. The strategy of mapping visual speech between a source speaker

and a destination speaker is also proposed with exploration of HMMs with special

mapping terms. The mapped visual speech elements can be accurately identified by

the speech models of the destination speaker. This approach may be further studied

for eliminating the speaker-dependency of a visual speech recognition system.
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Chapter 1
Introduction

Visual speech processing, which is more generally referred to as automatic lip

reading, is the technique of decoding speech content from visual clues such as the

movement of the lip, tongue and facial muscles. In recent years, investigation

in this area has become an attractive aspect of multimedia. The experience of

lip reading, however, is not new to us. When language came into being, speech

perception by lip reading had also started. In our daily communication, lip reading

is widely used whether consciously or unconsciously. In noisy environments such

as bus stop, stock market or office, much of the speech information is retrieved

from the visual clues. For the hearing-impaired people, lip reading plays an even

more important role for them to understand conversation.

1.1 Human lip reading

The time of the first study on human lip reading cannot be traced. It is believed

that the ability of lip reading is mastered when a man begins to learn a language.

Scientific studies on human lip reading have been carried out since 1900s. Sumby

and Pollack [1] found that visual information can lead to significant improvement

1
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of human’s perception of speech especially in a noisy environment. They also

showed that the incorporation of visual signals gives rise to 12dB gain in SNR.

In 1956, Neely et al [2] studied the factors that affect human lip reading, which

include illumination, distance from the speaker, detection of teeth and tongue.

They also found that the accuracy of lip reading using frontal views of the speaker

is better than that using other view angles. The contribution of visual information

to speech perception has been demonstrated in a wide variety of conditions: in noisy

environments [3], with highly complex sentences [4], with conflicting auditory and

visual speech [5][6], and with asynchronous auditory and visual speech information

[7]. Under all these conditions, improvement to speech perception was observed.

The reasons that underlie the improvement of speech perception by lip reading

were also investigated. Visual speech predominantly provides information about

the place of articulation of the spoken sounds. Human observers may thus pay at-

tention to the correct signal source [3]. Besides this, movements of the articulators

naturally accompany the production of speech sound. Human observers use these

two sources of speech information from an early age and thus they can fuse the

two types of information quickly and accurately [8][9].

A comprehensive study on the relationship between visual speech and acoustic

speech was carried out by McGurk and his colleagues [10]. The famous “McGurk

effect” indicates that human perception of speech is bimodal in nature. When

human observers were presented with conflicting audio and visual stimuli, the

perceived sound may exist in either modality. For example, when a person heard

the sound /ba/ but saw the speaker saying /ga/, the person might not perceive

either /ga/ or /ba/. Instead, what he perceived was /da/. Table 1.1 gives some

examples of the McGurk effect.

The McGurk effect stimulated further investigations on the relationship between

visual speech and acoustic speech. Psychologists studied the McGurk effect that
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Table 1.1: Examples of the McGurk effect

Audio Visual Perceived

ba ga da

pa ga ta

ma ga na

occurred across different languages [11] and the robustness of the McGurk effect

[12]. They also proposed the “reverse McGurk effect” [13], i.e. the results of visual

speech perception can be affected by the dubbed audio speech.

Since 1980s, the developments on human lip reading have attracted the attention

of researchers on multimedia. Since then, computed-based visual speech processing

became a branch of speech processing and much research work has been carried

out.

1.2 Machine-based lip reading

The ability to perform lip reading was long regarded as the privilege of human

beings because of the complexity of machine recognition. To convert the captured

videos to speech information, the following processing must be undertaken: image

processing, feature extraction, sequence modelling/identification, speech segmen-

tation, grammar analysis and context analysis. If any of the composite processing

modules malfunctions, the overall performance of lip reading becomes unreliable.

In addition, the above mentioned processing units are inter-dependent. The in-

dividual processing units should have the ability to respond to the feedback from

the other units. The difficulties involved in machine-based lip reading are even

more enormous if the distinct features of lip dynamics are considered. First, the
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movement of the lip is slow compared with the corresponding acoustic speech sig-

nal. The low frequency feature of the lip motion indicates that the amount of

information conveyed by the visual speech is very much smaller than that by the

speech sound. Second, the variation between consecutive frames of visual images

is small while such variation is important for recognition because they serve as the

discriminative temporal features of visual speech. Third, the visual representations

of some phonemes are confusable. For example, phonemes /f/ and /v/ are visually

confusable as both of them have very similar sequence of mouth shapes where the

upper teeth are touching the lower lip. It is commonly agreed that the basic visual

speech elements in English, which are called visemes (the concepts about viseme

are explained in detail in Section 2.2), can be categorized into 14 groups, while

there are 48 phonemes used in acoustic speech. For example, phonemes /s/ and

/z/ belong to the same viseme group. As a result, even if a word is partitioned

into the correct viseme combination, it is still not guaranteed that the correct word

can be decoded. Fourth, the visemes are easily distorted by the prior viseme and

posterior viseme. The temporal features of a viseme can be very different under

different contexts. As a result, the viseme classifiers have stricter requirement on

the robustness than the phoneme classifiers.

Although there are many difficulties in machine-based lip reading, it does not mean

that efforts made in this area are not worthwhile. First, many experiments proved

that even if a slight effort was made toward incorporation of visual signal, the

combined audio-visual recognizer would outperform the audio-only recognizer [14]-

[17]. Second, some speech sounds which are easily confused in the audio domain

such as “b” and “v”, “m” and “n”, are distinct in the visual domain [18]. These

facts indicate that the information hidden in visual speech is valuable. In addi-

tion, the many potential applications of visual speech such as in computer-aided

dubbing, speech-driven face animation, visual conferencing and tele-eavesdropping
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stimulate the interest of researchers. With the aid of modern signal processing

technologies and computing tools, lip reading became a feasible research area and

much inspiring work has been done on the theoretical aspects and applications of

automatic lip reading. According to the order of the implementation of lip reading,

the previous work concentrated on the following three aspects: 1) Lip tracking, 2)

Visual features processing, 3) Language processing. These are elaborated in the

following sections.

1.2.1 Lip tracking

The purpose of lip tracking is to provide an informative description of the lip

motion. The raw input data to the lip reading system are usually video clips that

indicate the production of a phoneme, word or sentence. The most direct means is

to gather the color information of all the pixels of the image and feed them into the

recognition modules. Actually, this was done by Yuhas et al [19]. The advantage

of this approach is that there is no information loss during recognition. However,

the disadvantage of the method is evident. First, the computations involved in

processing the entire frame are intolerable. Second, this method is very sensitive

to the change of illumination, position of the speaker’s lips and camera settings.

The initial attempts on lip feature extraction were chiefly individual-image-oriented

methods. By analyzing the color distribution of the image, the lip area was seg-

mented by some image processing techniques. To improve the accuracy of image

segmentation, image smoothing, Bayes thresholding, morphological image process-

ing and “eigenlip” method were all used [20]-[22]. These approaches treated the

video as a series of independent images. The geometric measures extracted from

one frame were not relevant to the other frames. The individual-image-oriented

approaches had the advantage of easy implementation and many mature image

processing techniques could be adopted. However, the features obtained in this
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way might not be accurate enough and the continuity was not good.

Much of the recent work in visual analysis has centered on deformable models.

The snake-based methods fit into this category. Snake was first proposed by Kass

et al [23]. It allows one to parameterize a closed contour by minimizing an energy

function that is the sum of the internal energy and external energy. The internal

energy acts to keep the contour smooth while the external energy acts to attract

the snake to the edges of the image. The curves used as “snakes” can be B-

splines [24][25], single-span quadratics and cubic splines, e.g. Bezier curves [26][27].

Further researches were carried out to improve the performance of the snakes such

as the robustness, continuity or viscosity. For example, surface learning [28][29]

and flexible appearance models [30] were adopted in snake-fitting.

Deformable template algorithm is another deformable model approach. The method

was proposed by Yuille et al [31] and was applied to capture lip dynamics by Hen-

necke et al [32]. Like snakes, the deformable templates also give an energy function

for parameter adjustment. Besides this, it provides a parameterized model that

imposes some constraints on the tracking process. The prior knowledge about the

tracked object is revealed by the initial settings of the template. When applied to

lip tracking, the templates that describe the lip contour may be simple, e.g. several

parabolas [33]. Many researchers have used deformable templates to achieve good

results in visual speech recognition. Several extensions to the method have also

been studied. Kervrann et al suggested incorporating Kalman filtering techniques

into deformable templates [34]. The method was also extended from 2D to 3D by

Lee et al [35].

The two deformable model approaches mentioned above are continuous-image-

oriented methods. In the tracking process, the relation between continuous frames

is taken into consideration. As a result, the geometric features obtained demon-

strate good continuity for continuous flow of images.
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Other lip tracking approaches include Active Shape Models (ASMs) and Active

Appearance Models (AAMs). The ASM was first formulated in 1994 [36] and was

introduced to lip reading by Luettin et al [37]. The ASM is a shape-constrained

iterative fitting algorithm. The shape constraint comes from the use of a statistical

shape model which is called point distribution model. In the ASM tracking process,

the conventional iterative algorithm [36], simplex algorithm [38] or multi-resolution

image pyramid algorithm [39] could be applied. The AAM was proposed by Cootes

et al [40]. It is a statistical model of both shape and gray-level appearance. The

fitting process of AAM is largely similar to that of the ASM where iterations were

implemented to minimize the difference between the target image and the image

synthesized by the current model parameters.

Like the deformable models, ASM and AAM approaches also focus on the changes

between consecutive images. As a result, the features extracted also demonstrate

good continuity.

The ultimate goal of visual speech processing is to decode speech content from the

lip motion. Lip tracking accomplishes the first half of the task, in which the raw

image sequence is converted into tractable feature vector sequence. Subsequent

processing will be carried out to extract the information conveyed by the decoded

feature vectors.

1.2.2 Visual features processing

The literature on automatic lip reading is fairly limited compared with that on

speech recognition. However, because visual speech and acoustic speech have much

in common, some techniques that have achieved success in acoustic speech recog-

nition can be applied to visual speech recognition with some modifications. These

techniques/tools include Time Warping, Neural Network, Fuzzy Logic and Hidden
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Markov Models. Early lip reading systems only used some simple pattern recog-

nition strategies as the designer might face severe hardware speed limitations. In

some cases, a major goal of the research was simply to demonstrate the feasibil-

ity of the concept. Some scholars consider Petajan as the first researcher that

systematically investigated machine-based lip reading. In his design, linear time

warping and some distance measures were used for recognition [20]. Later, Mase

and Pentland also applied linear time warping approach to process the feature

vector sequences [41]. Although these studies laid emphasis on the time warping

aspect of visual speech, the linear time warping is not an appropriate technique

to process natural speech because the temporal features of natural speech are far

from linear.

Dynamical time warping was used in a later version of Petajan’s lip reading system

[42]. With further consideration on the non-linear features of visual speech, some

improvement on the recognition accuracy was observed.

The Neural Network (multi-layer perceptron, MLP) was first applied to lip reading

by Yuhas et al [43]. However, the MLP is not flexible enough for processing time

sequences. In 1992, Time-Delayed Neural Network (TDNN) was explored by Stork

et al [44]. The inputs to Stork’s system were dots of the raw image as introduced

in Section 1.2.1. Such a design made full use of the information conveyed by

the video and was computationally expensive. The recognition results of Stork’s

system were better than that of time warping but were sensitive to the changes

of the environment. Some improved TDNN designs were proposed and further

experiments were conducted by Cosi et al [45] and Movellan [46].

Neural Network (NN) is a classical tool of pattern recognition. It has been in-

tensively studied for more than half a century. From primitive McCulloch-Pitts’s

neuron model to today’s MLP with millions of neurons, the theoretical aspects and
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applications of NN developed very fast. There are many types of NN and train-

ing strategies available for various requirements such as MLP [51][65], Support

Vector Machines [49][50], Radial Basis Function (RBF) [54], TDNN [47][48] and

Self-Organizing Feature Maps (SOFMs) [53]. As a result, NN-based lip reading is

also a promising research area.

Another powerful tool for visual speech recognition is Hidden Markov Models

(HMMs). The basic theory of HMM was published in a series of papers by Baum

and his colleagues in the late 1960s and early 1970s. The process generated by

HMMs has been widely studied in statistics. It is basically a discrete-time bivari-

ate parametric process: the underlying process is a finite-state Markov chain; the

explicit process is a sequence of conditionally independent random variables for a

given state chain. HMM was first applied to lip reading by Goldschen in 1993 [55].

In Goldschen’s system, HMM classifiers were explored for recognizing a closed set

of TIMIT sentences. Because of its good performance and speed of computation,

HMM was extensively applied to the subsequent lip reading systems for recogniz-

ing isolated words or non-sense words, consonant-vowel-consonant (CVC) syllables

[56], digit set [57][58] and AVletters [59]. In the mean time, HMM-related tech-

niques have advanced greatly. Tomlinson et al suggested a cross-product HMM

topology, which allows asynchronous processing of visual signals and acoustic sig-

nals [60]. Luettin et al used HMMs with an early integration strategy for both

isolated digit recognition and connected digit recognition [61]. In recent years,

coupled HMM, product HMM and factorial HMM are explored for audio-visual in-

tegration [62]-[65]. Details of the HMM-based visual speech processing techniques

can be found in [66] and [67].

In addition to the techniques mentioned above, fuzzy logic was also applied to

visual speech processing. In 1996, Silsbee presented a system that combined an

acoustic speech recognizer and a visual speech recognizer with fuzzy logic [57].
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Another example is the Boltzmann zippers that were used in Stork’s lip reading

system [68]. The recognition results indicated that fuzzy logic is a practical tool

for processing visual speech and works well for small-vocabulary cases.

There are more mathematical and computational techniques/tools that can be ap-

plied to automatic lip reading than those listed above. In summary, the prospective

techniques for visual speech processing should have the following characteristics in

common: 1) Being sensitive to the temporal features of the investigated sequences.

2) Offering time-warping to the investigated sequences and 3) Showing tolerance

to the erratic observations (good generalization).

1.2.3 Language processing

Language processing is the last stage of visual speech processing. It is considered

the most intelligent part of a lip reading system because it imitates the complex

mechanism of language perception of the human brain. In this step, lexical, syntac-

tic, semantic and pragmatic information is incorporated to interpret the captured

image sequences. Some preliminary knowledge of the machine-based language pro-

cessing can be obtained if we observe what our brain does when we attempt to

lipread: when we see the lip motion of a speaker, we will first check our memory

to find the words that correspond to the lip shapes. Usually, there are many pos-

sible words that match a particular lip shape. Next, the brain selects the optimal

word combination based on the context and syntax rules. This “optimal” word se-

quence is the one that has meaning in a certain linguistic environment. The micro-

processing of lip reading is principally the interactions and information-exchanges

among neurons. However, after decades of research, modern neuroethology and

neurophysiology still cannot reveal the underlying mechanism of the interaction

among neurons.
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In the field of speech processing, language analysis chiefly focuses on the macro-

scopic process of the human brain rather than the behavior of the individual neu-

rons. From the linguistic perspective, scientists have found that there are three

factors that determine the performance of a language analyzer. One is linguistic

rule, which governs how a word is built and how a sentence is constructed. For

example, the adj.-ly morphology and the Subject + Predicate + Object sentence

frame are valid in English. The second is the context, by which a listener can

conclude the meaning of new language information and evaluate the previous in-

terpretations. For example, if we hear the sentence “A ??g is barking”, we can

deduce that the uncertain part is “dog” even if the sound is ambiguous. The third

factor is vocabulary. A poor vocabulary greatly limits the number of word combi-

nations that match the input speech. For example, we cannot understand what a

Japanese speaks if we have not learnt the language before.

To date, some advanced artificial intelligence systems can make simple sentences

and correct syntax errors for an input sentence. These techniques was applied

to acoustic speech processing such as the Dragon system and the IBM large-

vocabulary speech processing system [69][70][71] with high degree of success. Re-

gretfully, language analysis is not intensively used in visual speech processing be-

cause some problems involving lip tracking and visual feature processing still re-

main unresolved. In the experimental lip reading systems developed so far, the

language processing was either neglected or very simple algorithm is used. For

example, the visual speech processing system proposed by Matthews et al can rec-

ognize a number of AVletters [59]. Luettin’s HMM-based classifier can identify

digits [61]. In such small vocabulary cases and when the individual words are the

targets of recognition, the use of language analysis is not warranted. Some simple

language processing is adopted when there is only minor consideration given to
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the relationship between consecutive words. For example, Cosi’s recognizer ap-

plied some grammar rules on the identification of continuous digits such as post

codes or telephone numbers [72]. Cisar’s limited-vocabulary lip reading system

could recognize some sentences whose structures observed a set of predefined laws

[73].

In brief, to apply the language processing techniques to visual speech processing,

the lip tracking module and visual feature processing module should provide ac-

curate word combinations for language processing. Only when the problems in

lip tracking and visual features processing are solved, will language processing in

automatic lip reading be fully developed.

1.2.4 Other research directions

The success of a lip reading system relies on, but is not limited to, the solutions

of lip tracking, visual features processing and language processing. Other factors

can also influence the robustness, accuracy and application scope of a lip read-

ing machine. The researches carried out on audio-visual signal incorporation and

speaker-dependency elimination may extend the applicability of a lip reading sys-

tem.

Since human speech is bimodal, it is natural to associate the acoustic informa-

tion and visual information while interpreting the speech. Classical approaches of

audio-visual speech processing include early integration and late integration. In an

early-integration design, the acoustic features, which are extracted from an acoustic

decoder, are synthesized with visual features to build a macro feature vector. The

macro feature vectors that indicate certain audio-visual production are processed

by a joint-feature classifier. The early integration is so called because the infor-

mation comprising visual and audio channels is integrated before identification.

Methods described in [17][61][74][75] are all examples of early integration.
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Late integration strategy, on the other hand, applies two independent recognition

engines to identify the audio signals and video signals of the same audio-visual

production, respectively. The identity of the input production is formulated by

synthesizing the decisions from the two engines according to certain rules. The

name “Late integration” is used because the decisions from the visual recognition

channel and audio recognition channel are integrated after identification is imple-

mented on both channels. Designs given in [66][75][76][77] are based on the late

integration approach.

Most of the proposed lip reading designs are speaker-dependent. These systems can

only be trained to analyze the visual speech of certain speaker(s). It is well-known

that the shape and the movement of the lip can be very different across genders,

races and ages. If a different speaker uses such a speaker-dependent system, the

recognition accuracy will drop drastically. Literature on speaker-dependency of au-

tomatic lip reading is very limited. Only some preliminary studies were conducted

in this area. For example, Luettin developed an HMM-based lip reading system

with an early integration strategy for both speaker-independent digits recognition

and speaker-independent connected-digit recognition in 1996 [61].

The problems involved in automatic lip reading are more than those enumerated

above. Since lip reading is essentially a video-to-text conversion, some work has

been carried out on the video end to provide smooth video streams or easy-to-

tackle image sequences. The researches on this aspect include video capture [78],

video sampling [79] and lip synchronization [80][81].

1.3 Contributions of the thesis

From the above discussion on the development of machine-based lip reading, it can

be seen that some basic problems in lip tracking and visual features processing
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still exist. In this thesis, we focused on classifier design and training, sequence

decomposition, lip tracking and speaker-dependency elimination.

1.) Viseme recognition: Studies on viseme recognition were first carried out.

To achieve this goal, conventional single-HMM classifier was first constructed. The

single-HMM classifiers were configured according to the temporal features of the

visemes and were trained using the Baum-Welch method. This approach has the

advantage of easy implementation. However, as the visemes are confusable and

distorted by their contexts, the single-HMM classifiers sometimes cannot identify

them with sufficient accuracy. To improve the discriminative power of the HMMs to

separate similar observations and to enhance the robustness of the HMMs to better

cover the erratic observations, the following three kinds of HMM-based classifiers:

two-channel HMM classifiers, maximum separable distance (MSD) HMM classifiers

and adaptively boosted (AdaBoost) HMM classifiers were adopted.

The two-channel HMM classifier and MSD HMM classifier were specially trained

to improve the discriminative power of the HMMs. Both classifiers adopted a novel

criterion function called separable distance for parameter adjusting. The separable

distance indicates the difference between a pair of confusable sequences measured

by an HMM. Greater value of separable distance means better chances of dis-

criminating the confusable sequences. For the two-channel training strategy, the

separable distance was adjusted by dividing the symbol output matrix of the HMM

into two channels: one static channel to maintain the validity of the HMM and one

dynamic channel to be modified to maximize the separable distance between the

training pair. Because the static channel is usually obtained from a pre-trained

HMM of the target process, such management might improve the discriminative

power of the HMM and at the same time, maintain the goodness-of-fit of the trained

two-channel HMM. The MSD training method, on the other hand, does not work

on a pre-trained HMM. The parameters in the symbol output matrix were updated
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directly to maximize the separable distance. This approach is much simplified com-

pared with the two-channel training strategy. The two-channel HMM classifiers

were applied to identify the visemes and a hierarchical multi-HMM classifier was

proposed for the application. The MSD HMM classifiers were applied to separate

confusable words in visual speech. The decisions made by the respective HMMs

were synthesized with eliminating series strategy. In both experiments, the dis-

criminative power of the proposed HMM classifiers was improved compared with

that of the conventional single-HMM classifier. The recognition rates of visemes

and selected words were also higher than that by using single-HMM classifiers.

The improvement made to the HMM-based classifiers for identification of visemes

in various contexts was also studied. Because the visemes demonstrate polymor-

phism under different contexts, traditional single-HMM classifiers may lack the

ability to cover the erratic samples of a viseme. In the proposed design, adaptive

boosting (AdaBoosting) was applied to HMMs. By calling the biased Baum-Welch

estimation and weight adjusting strategy in the boosting iterations, a multi-HMM

classifier was trained with the composite HMMs highlighting different groups of

samples. Such a system was employed to identify the visemes in various contexts

and the recognition accuracy was compared with that of the single-HMM classi-

fiers. The comparative results showed that the AdaBoost HMM classifiers might

better cover the spread-out samples of the visemes than single-HMM classifiers,

and the recognition accuracy improved by about 16%.

2.) Recognition of continuous visual speech: This is a higher-level recogni-

tion because connected viseme units such as words, phrases, connected-digits are

to be identified. In the field of HMM-based continuous speech processing, level

building strategy is commonly adopted to link different HMMs to model words

and sentences. The strategy of level building on single-HMM classifiers was pre-

sented first. Following that, the strategy of level building on AdaBoost HMM
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classifiers was proposed. Both approaches were applied to decompose selected

word and phrase productions into visemes and the results were compared with

one another. It was observed that the connected AdaBoost HMM classifiers could

better recognize/decompose the target words and phrases than connected single-

HMM classifiers. Because the computations involved in level building are enormous

and sometimes intolerable, a Viterbi matching algorithm was also proposed in this

study to facilitate the process of sequence partition. This method employed spe-

cially tailored recognition units and transition units to decode the target sequence

into a chain of component units. The Viterbi approach had been applied to de-

code words, phrases and connected digits in visual speech. The results indicated

that the recognition/decomposition accuracy using the proposed Viterbi matching

algorithm was close to that using the conventional level building method while the

computational load was less than one fourth of the latter.

3.) 3D lip tracking: In the lip tracking stage, a 3D deformable template algo-

rithm was proposed to capture lip dynamics from natural speech. This method

employed 3D templates to compensate for the variations caused by the rotation

of the speaker’s head and maintained a template trellis to track the movement of

the lips. The tracking results of the 3D approach were compared with those using

the 2D template tracking method and it was found that the deformation to the lip

shapes caused by the movement of the speaker’s head was better recovered with

the proposed 3D template approach.

4.) Cross-speaker viseme mapping: The problems associated with speaker-

dependency were also addressed in the thesis. HMM classifiers with mapping

terms were proposed to mapping viseme productions among different speakers.

This method provides an indirect approach of eliminating speaker-dependency of

a visual speech processing system because the viseme production of an unknown

speaker could be generated using the samples of a known speaker. Experiments
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conducted in the thesis indicated that the mapped visemes could be accurately

identified by the true models of the unknown speaker.

The studies reported in the thesis followed a bottom-to-top thread for the con-

struction of a visual speech processing system, in which the recognition of the

basic visual speech elements (visemes) was first performed, and then the recogni-

tion of the continuous visual speech units (words and phrases) was investigated.

Viseme classifiers/models, which would be the core recognition engine for future lip

reading machine, were highlighted in the thesis and three training methods were

proposed to improve their discriminative power and robustness. Recognition of

words and phrases in visual speech was realized by partitioning them into viseme

models. The proposed strategies were based on exhaustive searching methods such

as level building and Viterbi matching. These approaches played an important role

on associating the recognition of visemes and the recognition of connected viseme

units in visual speech. The 3D template lip tracking method and the strategy of

mapping visemes across speakers were two minor research topics covered in the

thesis. These approaches extended the applicability of a visual speech processing

system to unfavorable conditions such as when the head of the speaker was moving

during speech or when the visual features of a speaker, e.g. the shape of the lips,

remained greatly unknown.

1.4 Organization of the thesis

The reminder of the thesis is organized as follows. An introduction of the pre-

processing of visual speech signals and the structure of a single-HMM classifier

are given in Chapter 2. Training strategies based on separable-distance, which in-

clude two-channel training strategy and the MSD training strategy, are presented

in Chapter 3. This is followed by discussion of HMM AdaBoosting technique in
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Chapter 4. The level building strategy on HMM-based classifiers and the Viterbi

matching algorithm for sequence partition are detailed in Chapter 5. The lip track-

ing strategy based on 3D deformable template and the method of mapping visual

speech among different speakers are described in Chapter 6. The last chapter,

Chapter 7, is the concluding chapter. Recommendations for future research are

also presented in this chapter.



Chapter 2
Pre-processing of Visual Speech Signals

and the Construction of Single-HMM

Classifier

Some preliminary knowledge about visual speech processing is presented in this

chapter, which include data acquisition, definition of the basic visual speech ele-

ments, image processing, feature extraction and the construction of HMM classi-

fiers. The results of identifying visual speech elements under various experimental

conditions are presented. These results demonstrate the power of the single-HMM

classifier and are also used for comparison with other approaches that will be dis-

cussed in later chapters.

2.1 Raw data of visual speech

In visual speech domain, the raw data of visual speech are video clips that capture

the movement of the lips, facial muscles, tongue and teeth during the productions of

visual speech elements, words and sentences. It is proved by previous experiments

19
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Figure 2.1: The video clip indicating the production of the word hot

that the frontal view of the speaker reveals much information of visual speech [2].

As a result, the frontal view of the speakers is adopted in our system. The speakers

are asked to articulate the given text for a number of times. The movement of the

facial area is captured as avi files at 25 frames per second and the video clips that

indicate speech productions are manually segmented out of the video. The frames

of the video clips are saved as 24-bit bitmap images, which are depicted in Fig.2.1.

It should note that for the segmented video clips, the prior and posterior images

corresponding to the long silence of word productions are cut so that the main

portion of the image sequence corresponds with the voiced phase.

In the acoustic domain, a number of speech databases such as TIMIT, YOHO,

Switchboard, ELRA have been developed. These databases are widely used in

speech recognition and become the benchmark for measuring the performance of a

speech recognizer. In visual speech processing, although some audio-visual speech

databases have been proposed [82][83][84], they are not widely accepted by the

multimedia community. The data used in most visual speech experiments are in-

dependently recorded as visual speech recognition is very much speaker-dependent.

The samples used in our experiments are also self-recorded video clips. Several
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English speakers (native and non-native English speakers, females and males) are

invited to visually clearly produce some given texts for a number of times. The

distance between the speaker and camera is fixed at 1 meter; white background

is used; illumination condition is six fluorescent light sources fixed at the ceiling

and the viewing angle is a frontal view. The heads of the speakers are fixed with

props during speech. The video clips filmed under such controlled conditions are

collected to build a database. Studies on the video clips in the database reveals

the following features of visual speech:

1.) The movement of the lips varies slowly over time. Compared with the speech

signal, which has significant frequency components up to 4kHz, the lip motion is a

very low-frequency signal. Information conveyed by lip movement is thus limited.

2.) Visual speech is context-sensitive. The same sound may have different visual

representations when it appears in different contexts. In statistical jargon, samples

of certain sound production demonstrate spread-out distribution.

3.) Visual speech is also speaker-dependent. The facial features of speakers demon-

strate great difference across race, sex, skin color, etc. Adaptation to such variance

should also be considered while building a recognition system.

The properties mentioned above are actually the difficulties that may be encoun-

tered while carrying out visual speech recognition. To solve these problems, a

bottom-to-top study is carried out in this thesis.

2.2 Viseme

In visual speech domain, the smallest visibly distinguishable unit is commonly re-

ferred to as viseme. A viseme is a short period of lip movement that can be used to

describe a particular sound. Like phonemes which are the basic building blocks of
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Table 2.1: Visemes defined in MPEG-4 Multimedia Standards

Viseme Phonemes Examples Viseme Phonemes Examples
No. No.

1 p, b, m push, bike, milk 8 n, l note, lose

2 f, v find, voice 9 r read

3 T, D think, that 10 A: jar

4 t, d teach, dog 11 e bed

5 k, g call, guess 12 I tip

6 tS, dZ, S check, join, shrine 13 Q shock

7 s, z set, zeal 14 U good

sound of a language, visemes are the basic constituents for the visual representa-

tions of words. The relationship between phonemes and visemes is a many-to-one

mapping. For example, although phonemes /b/, /m/, /p/ are acoustically distin-

guishable sounds, they are grouped into one viseme category as they are visually

confusable, i.e. all are produced by similar sequence of mouth shapes.

An early viseme grouping was suggested by Binnied et al in 1974 [85] and was

applied to some identification experiments such as [86]. Viseme groupings in [87]

are obtained by analyzing the stimulus-response matrices of the perceived visual

signals. The recent MPEG-4 Multimedia Standards adopted the same viseme

grouping strategy for face animation, in which fourteen viseme groups are included

[88]. Unlike the 48 phonemes in English [100], the definition of viseme is not

uniform in visual speech. In the respective researches conducted so far, different

groupings may be adopted to fulfill specific requirements [89]. This fact may cause

some confusion on evaluating the performance of viseme classifiers.

MPEG-4 is an object-based multimedia compression standard and plays an im-

portant role in the development of multimedia techniques. As a result, the viseme
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Figure 2.2: Segmentation of a viseme out of word production

(a) video clip and (b) acoustic waveform of the production of the word hot

categorization proposed in MPEG-4 is adopted in our experiments. The four-

teen visemes defined in MPEG-4 are illustrated in Table 2.1. It is observed that

each viseme corresponds to several phonemes or phoneme-like productions. Note

that some consonants are not included in the table as their visual representations

are chiefly determined by their adjoining phonemes and diphthongs are also not

included as their visual representations are assumed to be combinations of the

visemes illustrated in the table.

The visemes are liable to be distorted by their context. For example, the visual

representations of the vowel /ai/ are very different when extracted from the words

hide and right. A viseme thus demonstrates polymorphism under different con-

texts. For this reason, the samples of visemes are obtained in two approaches.

1.) The speaker is asked to produce an isolated viseme, starting with closed mouth

and ending with closed mouth too. This kind of samples is referred to as context-

independent viseme sample because the temporal features of a viseme are not

affected by the context factors.

2.) The speaker is asked to produce some words that contain the target viseme. The
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video clips of the viseme are segmented from the word productions using the image

sequences and the corresponding acoustic waveform, which is exemplified in Fig.2.2.

The samples obtained in this way are referred to as context-dependent viseme

samples because the adjoining sounds/visemes may greatly affect the temporal

features of the viseme.

For each viseme, 140 text-dependent samples and 200 text-independent samples

are collected for training and testing the viseme classifiers.

2.3 Image processing and feature extraction of

visual speech

Most classifiers can only take feature vectors of visual speech as the input patterns

rather than the video clips (however, there are exceptions such as [43][44][90]).

Geometric features of the lips are commonly adopted because they may reveal the

physical aspects of the mouth and are also invariant to the changes of the view-

ing angle, position and illumination. The procedures of extracting the geometric

features include lip segmentation, template matching and feature extraction.

2.3.1 Lip segmentation

The position of the lips is first located and the approximate lip region is segmented

from the image. Human lips are of darker color than the color of the other part

of the facial area. There are distinguishable borders between the lips and the

surrounding skin. A proper threshold can therefore be set for segmentation based

on, say the red, green, blue (RGB) factors or the hue, saturation, value (HSV)

factors of the image. Hue-saturation factors are used in our system because they

are relatively insensitive to changes in the absolute brightness. The RGB to HSV
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Figure 2.3: (a) original image (b) lip localization (c) segmented lip area

conversion algorithms for lip region detection proposed by [90][92] are adopted.

First, the red-dominant area of the image is detected by means of red exclusion [92].

The approximate lip region is located as illustrated in Fig.2.3(b). Next, the raw

image is transformed to a modified hue image with RGB to HSV transformation

proposed in [90][91]. As depicted in Fig.2.4, the hue factors of the lip region and

the remaining lip-excluded image account for different portions of the histogram.

A proper threshold is extracted from the hue histogram of the entire image, which

usually corresponds to a local minimum point (valley) in the histogram. The hue

image is then compared with the chosen threshold and a binary image is obtained.

Finally, logical AND operation of the binary image and the approximate lip region

is performed. The lip region is then segmented as shown in Fig.2.3(c).

2.3.2 Edge detection using deformable template

Further processing is based on the deformable templates algorithm [31][32][93].

This approach maintains a geometric template with dynamic contours to fit an

elastic object. The template is controlled by some parameters and is drawn near

to the boundaries of the target in the tracking process. The contours of the lips
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E 
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Figure 2.4: Separation of the lip region out of the image using hue distribution.

(a) Histogram of the hue component of the entire image

(b) Histogram of the hue component of the lip region

(c) Histogram of the hue component of the lip-excluded image

are simple compared with other moving objects such as human body or sign lan-

guage. Many polynomial curves such as parabolas or elliptical curves can well

match the boundaries of the lip [31][66]. In our experiments, the parameterized

template is built up with ten Bezier curves and is proved effective. As depicted

in Fig.2.5(a), eight curves characterize the lip contours and the other two curves

describe the tongue when it is visible. The process of fitting the template to the

lip image is to adjust the parameters (usually the control points) of the template

to minimize certain energy function [26][27]. As depicted in Fig.2.5(a), the points

in the small circles are control points of the template. The energy function takes

four components as defined in Eq.(2.1)-(2.4).

Elip = − 1

R1

∫

R1

H(z)dz (2.1)

Eedge = − 1

C1 + C2

∫

C1+C2

|H+(z)−H(z)|+ |H−(z)−H(z)|dz (2.2)

Ehole = − 1

R2 −R3

∫

R2−R3

H(z)dz (2.3)
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 (a) (b) 

Figure 2.5: Deformable lip template for edge detection

(a) Parameterized lip template and the control points (b) Geometric measures

extracted from the template. Thickness of the 1) upper bow, 2) lower bow, 3) lip

corner. Position of the 4) lip corner, 5) upper lip, 6) lower bow. Curvature of the 7)

upper-exterior boundary, 8) lower-exterior boundary, 9) upper-interior boundary,

10) the lower-interior boundary. 11) Width of the tongue (when it is visible).

Einertia = ||Γt+1 − Γt||2 (2.4)

where R1, R2, R3, C1 and C2 are areas and contours as illustrated in Fig.2.5(a).

H(z) is a function of the hue of a given pixel z; H+(z) is the hue function of the

closest right-hand side pixel and H−(z) is that of the closest left-hand side pixel of

z. Γt+1 and Γt are the matched templates at time t+1 and t. ||Γt+1−Γt|| indicates

the Euclidean distance between the two templates. Mathematically,

||Γt+1 − Γt|| =
√√√√

n∑
i=1

[(xt+1
i − xt

i)
2 + (yt+1

i − yt
i)

2] (2.5)

where (xt+1
i , yt+1

i ) is the coordinate of the i-th control point of template Γt+1,

(xt
i, y

t
i) is that of template Γt, n is the number of control points and n = 16 for the

lip template used in our experiments, The overall energy of the template E is the

linear combination of the components as defined in Eq.(2.6).

E = c1Elip + c2Eedge + c3Ehole + c4Einertia (2.6)



2.4 Single-HMM viseme classifier 28

The energy terms of the tongue template are defined in a similar manner.

The template is matched against the lip region of the image sequence by adopt-

ing different values of the parameters ci(i = 1, 2, · · · , 7) in a number of searching

epochs (a detailed discussion is given in [31][32][93]). An example of the matched

lip template and tongue template is given in Fig.2.5(b). It is manifested that the

matched template is symmetric and smooth, and is therefore easy to process.

Eleven geometric measures are finally extracted from the matched template to build

the feature vector of a specific lip shape. As depicted in Fig.2.5(b), these measures

indicate the thickness of various parts of the lips, the positions of some key points

and the curvatures of the lips. They are chosen as they uniquely determine the

shape of the lips and best characterize the movement of the lips.

The collected feature vectors of different lip shapes are put through Principal Com-

ponent Analysis (PCA) to reduce the dimensionality from 11D to 7D and are clus-

tered into groups using the K-means algorithm. In the experiments conducted, 128

clusters (code words) are used in the vector database (code book). The means of

the clusters compose the symbol set O128 = {O1, O2, · · · , O128} of the HMM. They

are also applied to encode the vector sequences that are presented to the system.

2.4 Single-HMM viseme classifier

The basic visual speech elements such as visemes are to be identified in this section.

For HMM-based classifiers, a viseme is usually modelled by one HMM. The flow

chart of the proposed viseme recognition system is depicted in Fig.2.6.

The input image sequence indicating certain viseme production is converted into

vector sequence with the processing mentioned in Section 2.3. The subsequent

model matching and viseme indexing are realized by HMM classifiers.
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Figure 2.6: Flow chart of the viseme recognition system

2.4.1 Principles of Hidden Markov Model (HMM)

Hidden Markov Model (HMM) is more technically referred to as Hidden Markov

Process (HMP) as the latter emphasizes the stochastic process rather than the

model itself. HMM was first introduced by Baum et al in 1966 [94]. The basic

theories/properties of HMM were introduced in full generality in a series of papers

by Baum and his colleagues [95]-[98], which included the convergence of the entropy

function of an HMM, the computation of the conditional probability, and the local

convergence of the Maximal Likelihood (ML) parameter estimation of HMM. HMM

is essentially a division of a process into a number of discrete states. While using

an HMM to analyze a stochastic process, the observation sequence, say xT =

(o1, o2, · · · , ot, · · · , oT ) where ot is the t-th symbol appearing in the sequence, is

assumed to be output from a sequence of hidden states sT = (s1, s2, · · · , sT ),

where si ∈ SN and SN = {S1, S2, · · · , SN} is the state set of the HMM. Each

state maintains a probability function or probability density function to indicate

the likelihood of emitting certain symbols. The states are interconnected with

each other by some state transition coefficients, which indicate the likelihood of

a state repeating itself or transiting to another state. The relationship between

the explicit process (observations), the hidden process (states) and the HMM is
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Figure 2.7: The relation between the observation sequence and the state sequence

of an HMM with N states

depicted in Fig.2.7, where P (Sj|Si)(i, j = 1, 2, · · · , N) is the likelihood of transition

from Si to Sj and P (ot|Si)(t = 1, 2, · · · , T ) is the likelihood of emitting ot in state

Si. If the output of an HMM takes discrete and finite values, e.g. from a finite

symbol set OM = {O1, O2, · · · , OM}, the HMM is called discrete; if the output

takes continuous values, the HMM is called continuous.

Assume that OM = {O1, O2, · · · , OM} is the set of discrete symbol alphabet and

SN = {S1, S2, · · · , SN} is the set of states. An N -state M -symbol HMM θ(π, A, B)

is determined with the following three components [99][100]:

1.) π = [π1, π2, · · · , πN ]1×N , where πi = P (s1 = Si) indicates the probability that

the first state s1 is Si.

2.) A =




a11 a12 · · · a1N

a12 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN




N×N

, where aij = P (st+1 = Sj|st = Si) is the
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probability of transition from state Si to Sj.

3.) B =




b11 b12 · · · b1M

b12 b22 · · · b2M
...

...
. . .

...

bN1 bN2 · · · bNM




N×M

, where bij = P (ot = Oj|st = Si) denotes

the probability of outputting symbol Oj at state Si.

If the observation space is continuous, the symbol emission matrix can be modeled

using Gaussian mixtures [99], i.e.

bi(o) =

Q∑
q=1

ciqG(o, µiq, σiq),

Q∑
q=1

ciq = 1 (2.7)

where G(o, µiq, σiq) is a Gaussian distribution function with mean vector µiq and

variance σiq, Q is the number of the Gaussian mixtures and ciq(q = 1, 2, · · · , Q) is

a non-negative coefficient.

For the input sequence xT , the likelihood P (xT |θ) can be computed by summing up

all the states at each moment or can be more easily computed using the forward

variables and backward variables [99][100]. The forward variables αt(i) and the

backward variables βt(i) for xT , are defined in Eq.(2.8) and (2.9). For simplifica-

tion, θ is assumed a discrete HMM in this section.

αt(i) = P (o1, o2, · · · , ot, st = Si|θ) (2.8)

βt(i) = P (ot+1, ot+2, · · · , oT |st = Si, θ) (2.9)

where st is the t-th state variable of the state sequence sT . αt(i) and βt(i) are com-

puted in a recursive manner, which is referred to as the forward process and back-

ward process [99]. Given αt(i) and βt(i), P (xT |θ) can be computed via Eq.(2.10),

P (xT |θ) =
N∑

i=1

αT (i) =
N∑

i=1

β1(i)bi(o1) (2.10)

Given an observation sequence, the optimal state sequence sT is revealed using

the Viterbi searching algorithm [99][100]. The key issue of HMM is the training
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strategy, which is the process of updating the parameters of an HMM to optimize

the performance that is measured by certain objective function. The most popular

objective function adopted in the training strategies is the one given in Eq.(2.11).

θML = arg max
θ

[P (xT |θ)] (2.11)

θML is the maximum likelihood (ML) estimation as it has the largest likelihood

of generating the observation xT . Eq.(2.11) leads to the well-known Baum-Welch

estimation, which is detailed in [98][99].

For the Baum-Welch estimation, the goodness-of-fit of the HMM has much to do

with the initial values. For the discrete HMM, parameters in Matrix A can take

arbitrary or uniform values subject to the probability constraints given below.

N∑
j=1

aij = 1 and aij ≥ 0, i, j = 1, 2, · · · , N (2.12)

The initial values of the elements in Matrix B can also take arbitrary or uniform

non-negative values as they satisfy Eq.(2.13).

M∑
m=1

bjm = 1 and bjm ≥ 0, j = 1, 2, · · · , N, m = 1, 2, · · · ,M (2.13)

In specific identification task, however, the parameters of an HMM should be set

according to the statistical/temporal features of the training samples. In Section

2.4.2, parameters of Matrices A and B are configured in a special manner so that

the states of the HMM are segmented and physically associated with the phases

of visemes production. In continuous case, such initialization is essential for the

performance of the trained HMM. The detailed initialization steps will also be

discussed in Section 2.4.2.

The decision about the identity of an input sequence is made by comparing the

probabilities scored by different HMMs. In a K-class recognition problem, assume

that d1, d2, · · · , dK are class labels and θ1, θ2, · · · , θK are HMMs trained for the
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Figure 2.8: The three phases of viseme production

(a) initial phase (b) articulation phase (c) end phase (d) waveform of the sound

produced

K classes. For an unknown input yT , the probabilities scored by the K HMMs

are compared with one another. The one that gives the maximum probability is

chosen as the identity of yT . Mathematically,

ID(yT ) = arg max
k

P (yT |θk), 1 ≤ k ≤ K (2.14)

2.4.2 Configuration of the viseme models

Both discrete HMMs and continuous HMMs are applied to model and identify the

visemes. Because each viseme is modeled by one HMM, the viseme models are also

referred to as single-HMM classifiers or ML HMM classifiers. For our experiments,

the motion of the lips is partitioned into three phases during viseme production:

the first is initial phase, starting from a closed mouth or the end of the last viseme

production to the beginning of sound production of the viseme investigated. During

this interval, the sound of the target viseme is not fully produced and the lips are

characterized with sharp changes. The next phase is the articulation phase, which

is the time when sound is produced. The change of the lip shape is not so abrupt
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Figure 2.9: The three-state left-right viseme model

during this phase compared with the change in the other phases, and there is

usually a short stable moment. The third phase is the end phase when the mouth

restores to the relaxed state or transits to the production of the next viseme. The

three phases and the corresponding acoustic waveform are depicted in Fig.2.8 when

the phonetic sound /o/ is uttered. Among the three phases, the articulation phase

is the most important for recognition because the difference among visemes chiefly

lies there and it is relatively independent to the context. The initial phase and

end phase are transitional phases and may be greatly distorted by their contexts.

To align the states of an HMM with the phases of viseme production, three-state

left-right HMM as shown in Fig.2.9 is adopted as the viseme model.

With this frame, the state transition matrix A has the form of Eq.(2.15),

A =




a11 a12 0 0

0 a22 a23 0

0 0 a33 a34

0 0 0 1




(2.15)

where the 4th state, S4, is a null state indicating the end of the viseme production.

Given the video clip of a viseme, the approximate initial phase, articulation phase

and end phase are manually segmented from the image sequence and the acoustic

waveform, which is exemplified in Fig.2.8. The number of the frames (durations)

of the three phases are also counted. If the duration of the i-th phase is Ti, the

initial value of ai,i is T
Ti+1

and the initial value of ai,i+1 is 1
Ti+1

as they maximize

the probability aTl
i,iai,i+1. In discrete case, the parameters in Matrix B are also
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Figure 2.10: (a) Gaussian mixtures are matched against the actual symbol output

pdf of State Si. (b) The matched Gaussian mixtures

initialized according to the number of the frames of each phase. For example, if

symbol Oj appears T (Oj) times in the i-th phase, the initial value of bij is
T (Oj)

Ti
.

In continuous case, the symbol output pdf of certain state is obtained by averaging

the observed symbols within the state. The Gaussian mixtures (smooth contour)

are matched against the actual symbol output pdf (jagged contour) as depicted in

Fig.2.10. This process is carried out in a similar manner as that of the discrete

case mentioned above. It is easy to prove that with such arrangement, the i-th

phase of the viseme production is physically associated with State Si of the HMM.

The three states of the HMM are therefore referred to as initial state, articulation

state and end state.

2.4.3 Training of the viseme classifiers

The 140 context-independent samples and 200 context-dependent samples of a

viseme as mentioned in Section 2.2 are divided into two groups: 40 context-

independent samples or 100 context-dependent samples are used for training the

HMMs and the left 100 samples are applied to test the performance of the obtained
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HMMs. For each viseme, four kinds of single-HMM classifiers with different initial

settings are trained using the Baum-Welch algorithm.

Classifier 1 (θ1): The symbol set of θ1 is discrete, say OM . The training samples

and testing samples are also encoded by OM . Matrix A of θ1 is initialized accord-

ing to the procedures given in Section 2.4.2 while the elements in Matrix B are

initialized with uniform values, i.e.

bij =
1

M
, i = 1, 2, · · · , N, j = 1, 2, · · · ,M (2.16)

Classifier 2 (θ2): θ2 is also a discrete HMM as θ1 while both Matrix A and Matrix

B are configured according to the procedures given in Section 2.4.2.

Classifier 3 (θ3): The symbol set of θ3 is continuous. For each state, only one

Gaussian mixture is applied to model its symbol output pdf. Matrices A and B of

θ3 are configured according to the procedures mentioned in Section 2.4.2.

Classifier 4 (θ4): θ4 is also a continuous HMM as θ3. However, the symbol output

pdf of each state is modeled by three or four Gaussian mixtures. Matrices A and

B of θ4 are also configured according to the procedures given in Section 2.4.2.

After implementing the Baum-Welch training, the HMMs are put through param-

eter smoothing to prevent the occurrence of zero probability while measuring an

input sequence. Parameter smoothing is the simple management that bij is set

to be equal to some minimum value, e.g. ε = 10−3, if the estimated conditional

probability bij = 0 [99]. In this way, even though symbol Oj never appears in the

training samples, there is still a non-zero probability of its occurrence in the HMM

when scoring an unknown observation.

The performance of a single-HMM classifier is evaluated by its recognition rate. By

counting the number of correct and incorrect classifications of the testing samples,

the recognition rate of a classifier, say θi, is computed via Eq.(2.17).

Rr(θi) =
number of the correctly identified samples of Class di

number of the testing samples of Class di

(2.17)
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The recognition rate is associated with the false rejection rate (FRR) by Eq.(2.18).

FRR(θi) = 1−Rr(θi) (2.18)

FRR is also referred to as Type II error. It indicates the samples of Class di being

misclassified into some wrong category dj(j 6= i). Another source of error indicates

the samples of other classes dj(j 6= i) are erroneously accepted by θi. This portion

of error is referred to as false acceptance rate (FAR) or Type I error. However,

FAR is not an important performance indicator of the HMM classifiers proposed in

this thesis (the reason will be given in Section 4.3.5). As a result, the recognition

rate computed via Eq.(2.18), which is directly associated with FRR, is computed

for the viseme classifiers in this section.

2.4.4 Experimental results

Experiments of viseme recognition are conducted on two speakers to verify the

performance of the single-HMM classifiers θ1, θ2, θ3 and θ4. Speaker 1 is a female

native English speaker and Speaker 2 is a male non-native English speaker. In

the first experiment, the training data and testing data are context-independent

samples. The recognition rates of the 100 testing samples are given in Table 2.2.

For the context-independent samples, the average classification accuracy is usually

above 60%, especially for the vowels, where the average accuracy is nearly 90%.

Both continuous HMM classifiers and discrete HMM classifiers can well identify

the target visemes. In discrete case, the recognition rate of θ2 is normally higher

than that of θ1. It indicates that the configuration of HMM based on the three

phases of viseme production may improve the performance of an HMM classifier.

In continuous case, the HMMs with multiple Gaussian mixtures (θ4) provide better

accuracy than those with only one mixture (θ3). It manifests that a complex symbol

output pdf (composed by several mixtures) may also improve the performance of
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Table 2.2: Recognition rates of the context-independent viseme samples

Viseme Number Speaker 1 Speaker 2

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

1 p, b, m 65% 87% 54% 82% 55% 63% 60% 72%

2 f, v 90% 96% 87% 82% 76% 72% 43% 67%

3 T, D 48% 89% 56% 85% 72% 81% 55% 68%

4 t, d 70% 85% 71% 74% 68% 66% 69% 78%

5 k, g 73% 85% 71% 72% 54% 60% 62% 74%

6 tS, dZ, S 87% 90% 76% 92% 73% 75% 62% 63%

7 s, z 94% 96% 80% 98% 75% 81% 88% 85%

8 n, l 61% 81% 69% 82% 37% 46% 15% 50%

9 r 59% 82% 24% 85% 26% 36% 8% 16%

10 A: 84% 99% 80% 89% 78% 78% 47% 79%

11 e 87% 92% 74% 88% 58% 70% 66% 73%

12 I 92% 99% 93% 90% 89% 90% 74% 75%

13 Q 91% 93% 93% 96% 89% 89% 79% 88%

14 U 97% 93% 69% 96% 91% 93% 83% 89%

the HMM classifier.

In the second experiment, the training data are 40 context-dependent samples and

the testing data are the remaining 100 context-dependent samples of a viseme. The

recognition rates of the four HMMs of the two speakers are given in Table 2.3.

It is observed the recognition rates of identifying context-dependent samples are

much lower than that of the context-independent samples as depicted in Table

2.2. For the vowels, the average accuracy is below 60% for Speaker 2. For the

consonants, the accuracy is discouragingly low, e.g. less than 30%. Although the

recognition accuracy can be raised by selecting better initial values for the HMM,

the improvement is limited. For further improvement of the ability of the HMM

classifiers, especially to identify visemes under various contexts, the use of novel
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Table 2.3: Recognition rates of the context-dependent viseme samples

Viseme Number Speaker 1 Speaker 2

θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

1 p, b, m 65% 80% 72% 70% 21% 29% 30% 43%

2 f, v 54% 73% 47% 58% 23% 32% 33% 42%

3 T, D 38% 66% 30% 56% 19% 35% 18% 30%

4 t, d 52% 50% 29% 30% 3% 10% 10% 14%

5 k, g 66% 83% 54% 60% 7% 10% 15% 4%

6 tS, dZ, S 72% 79% 70% 80% 27% 25% 33% 60%

7 s, z 61% 55% 66% 68% 56% 51% 28% 25%

8 n, l 22% 21% 7% 9% 5% 32% 0% 31%

9 r 25% 44% 12% 19% 5% 14% 0% 0%

10 A: 71% 78% 66% 63% 58% 70% 46% 66%

11 e 53% 66% 43% 42% 19% 48% 56% 69%

12 I 80% 90% 85% 88% 66% 66% 68% 71%

13 Q 79% 65% 55% 79% 69% 62% 49% 55%

14 U 78% 91% 60% 80% 62% 69% 73% 77%

training strategy or complex HMM classifier would be explored.



Chapter 3
Discriminative Training of HMM Based

on Separable Distance

The Baum-Welch training strategy mentioned in Chapter 2 optimizes an HMM to

maximize the a priori probability P (xT |θ). The trained HMM may stand better

chance of generating the true samples of the stochastic process investigated. In this

chapter, the performance of an HMM is evaluated by its discriminative power. An

HMM (θ1) is assumed “better” than another HMM (θ2) if θ1 can separate the true

samples of a class out of the samples of another class with higher credibility than

θ2 does. To improve the discriminative power of an HMM, two training strategies,

which are based on a novel separable distance function, are proposed.

3.1 Separable distance

In the K-class identification problem mentioned in Section 2.4.1, decision about

the identity of an input sequence is made by comparing the probabilities scored by

the K HMMs. If the samples of different class are confusable, the HMMs must have

40
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good discriminative power so as to separate them. The maximum mutual infor-

mation (MMI) estimation is a popular discriminative training strategy for HMM.

It leads to the largest a posteriori probability corresponding to the training data

and thus has good overall discriminative power[102]. However, the MMI estima-

tion is difficult to implement as the analytical solutions to its criterion function are

difficult to realize [102].

To improve the discriminative ability of HMM over confusable samples, and at

the same time, facilitate the training of the HMM, a new metric is proposed to

measure the difference between the samples given an HMM. Assume that in a two-

class identification problem, {xT
1 : d1} and {xT

2 : d2} are a pair of training samples,

where xT
1 = (o1

1, o
1
2, · · · , o1

T ) and xT
2 = (o2

1, o
2
2, · · · , o2

T ) are T -length observation

sequences and d1 and d2 are their identity labels. The observed symbols in xT
1

and xT
2 are encoded by the symbol set OM . P (xT

1 |θ) and P (xT
2 |θ) are the scored

likelihood for xT
1 and xT

2 given θ, respectively. The pair of training samples xT
1 and

xT
2 must be of the same length so that their probabilities P (xT

1 |θ) and P (xT
2 |θ) can

be suitably compared (because the shorter sequence may give larger probability

than the longer one even if it is not the true sample of θ). Define a new function

I(xT
1 , xT

2 , θ), called the separable-distance function, as follows.

I(xT
1 , xT

2 , θ) = log P (xT
1 |θ)− log P (xT

2 |θ) (3.1)

A large value of I(xT
1 , xT

2 , θ) would mean that xT
1 and xT

2 are more distinct and

separable. The strategy then is to determine the HMM θMSD (MSD for maximum

separable-distance) that maximizes I(xT
1 , xT

2 , θ). Mathematically,

θMSD = arg max
θ

I(xT
1 , xT

2 , θ) (3.2)

For the proposed training strategy, the parameters in matrix B are adjusted to

maximize the separable-distance while matrix A and π are kept unchanged. With

this assumption and if only the probability constraint
∑M

j=1 bij = 1(i = 1, 2, · · · , N)



3.1 Separable distance 42

is considered, maximizing Eq.(3.1) is equivalent to maximizing the auxiliary func-

tion F (xT
1 , xT

2 , θ, λ), which is defined in Eq.(3.3),

F (xT
1 , xT

2 , θ, λ) = I(xT
1 , xT

2 , θ) +
N∑

i=1

λi(1−
M∑

j=1

bij) (3.3)

where λi is the Lagrange multiplier for State Si. Differentiate F (xT
1 , xT

2 , θ, λ) with

respect to bij and set the result to 0, we have,

∂ log P (xT
1 |θ)

∂bij

− ∂ log P (xT
2 |θ)

∂bij

= λi (3.4)

Since λi is positive, the optimum value obtained for I(xT
1 , xT

2 , θ) is a maximum as

solutions for bij must be positive. In Eq.(3.4), log P (xT
1 |θ) and log P (xT

2 |θ) may be

computed by summing up all the probabilities over time T as follows.

log P (xT
1 |θ) =

T∑
τ=1

log
N∑

i=1

P (sT
τ = Si)bi(o

1
τ ) (3.5)

where sT
τ is the τ -th state of the state sequence decoded for xT

1 . Note that the state

transition coefficients aij do not appear explicitly in Eq.(3.5), they are included

in the term P (sT
τ = Si). The partial derivatives in Eq.(3.4) may be evaluated

separately as follows,

log P (xT
1 |θ)

∂bij

=
T∑

τ=1,o1
τ=Oj

P (sT
τ = Si|θ, xT

1 ) =
T∑

τ=1

P (sT
τ = Si, o

1
τ = Oj|θ, xT

1 )

bij

(3.6)

By defining

E(Si, Oj|θ, xT
1 ) =

T∑
τ=1

P (sT
τ = Si, o

1
τ = Oj|θ, xT

1 ) (3.7)

Dij(x
T
1 , xT

2 , θ) = E(Si, Oj|θ, xT
1 )− E(Si, Oj|θ, xT

2 ) (3.8)

where E(Si, Oj|θ, xT
2 ) is obtained in the same way as in Eq.3.7, we have,

E(Si, Oj|θ, xT
1 )− E(Si, Oj|θ, xT

2 )

bij

=
Dij(x

T
1 , xT

2 , θ)

bij

= λi, 1 ≤ j ≤ M (3.9)
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By making use of the fact that
∑M

j=1 bij = 1, it can be shown that

bij =
Dij(x

T
1 , xT

2 , θ)∑M
j=1 Dij(xT

1 , xT
2 , θ)

(3.10)

The set {bij}(i = 1, 2, · · · , N, j = 1, 2, · · · ,M) so obtained gives the maximum

value of I(xT
1 , xT

2 , θ).

An algorithm for the computation of the values may be developed by using standard

Expectation-Maximization (EM) technique [101]. By considering xT
1 and xT

2 as

the observed data and the state sequence sT = (sT
1 , sT

2 , · · · , sT
T ) as the hidden

or unobserved data, the estimation of Eθ(I) = E[I(xT
1 , xT

2 , sT |θ̃)|xT
1 , xT

2 , θ] from

incomplete data xT
1 and xT

2 is then given by Eq.(3.11):

Eθ(I) =
∑

sT∈S

I(xT
1 , xT

2 , sT |θ̃)P (xT
1 , xT

2 , sT |θ)

=
∑

sT∈S

[log P (xT
1 , sT |θ̃)− log P (xT

2 , sT |θ̃)]P (xT
1 , xT

2 , sT |θ) (3.11)

where θ and θ̃ are the HMM before training and the HMM after training respec-

tively, and S denotes all the state combinations with length T . The purpose of the

E-step of the EM estimation is to calculate Eθ(I). By using the auxiliary function

Qx(θ̃, θ) proposed in [102] and defined as follows,

Qx(θ̃, θ) =
∑

sT∈S

log P (xT
1 , sT |θ̃)P (xT

1 , sT |θ) (3.12)

Eq.(3.11) can be written as

Eθ(I) = Qx(θ̃, θ)P (xT
2 |sT , θ)−Qy(θ̃, θ)P (xT

1 |sT , θ) (3.13)

Qx(θ̃, θ) and Qy(θ̃, θ) may be further analyzed by breaking up the probability

P (xT
1 , sT |θ) as in Eq.(3.14) below,

P (xT
1 , sT |θ̃) = π̃(s0)

T∏
τ=1

ãsτ−1,sτ b̃sτ (o
1
τ ) (3.14)
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where π̃, ã and b̃ are parameters of θ̃. Here, we assume that the initial distribution

starts at τ = 0 instead of τ = 1 for notational convenience. Qx(θ̃, θ) then becomes

Qx(θ̃, θ) = P (xT
1 , sT |θ)

∑

sT∈S

[log π̃(s0) +
T∑

τ=1

log ãτ−1,τ +
T∑

τ=1

log b̃τ (o
1
τ )] (3.15)

The parameters to be optimized are now separated into three independent terms.

From Eq.(3.13) and (3.15), Eθ(I) can also be divided into the following three terms,

Eθ(I) = Eθ(π̃, I) + Eθ(ã, I) + Eθ(b̃, I) (3.16)

where

Eθ(π̃, I) =
∑

sT∈S

log π̃(s0)[P (xT
1 , xT

2 , sT |θ)− P (xT
1 , xT

2 , sT |θ)] = 0 (3.17)

Eθ(ã, I) =
∑

sT∈S

T∑
τ=1

log ãτ−1,τ [P (xT
1 , xT

2 , sT |θ)− P (xT
1 , xT

2 , sT |θ)] = 0 (3.18)

Eθ(b̃, I) =
∑

sT∈S

[
T∑

τ=1

log b̃τ (o
1
τ )−

T∑
τ=1

log b̃τ (o
2
τ )]P (xT

1 , xT
2 , sT |θ) (3.19)

Eθ(π̃, I) and Eθ(ã, I) are associated with the hidden state sequence sT . It is as-

sumed that xT
1 and xT

2 are drawn independently and emitted from the same state

sequence sT , hence both Eθ(π̃, I) and Eθ(ã, I) become 0. Eθ(b̃, I), on the other

hand, is related to the symbols that appear in xT
1 and xT

2 and contributes to Eθ(I).

By enumerating all the state combinations, we have,

Eθ(b̃, I) =
N∑

i=1

T∑
τ=1

[log b̃τ (o
1
τ )− log b̃τ (o

2
τ )]P (xT

1 , xT
2 , sτ = Si|θ) (3.20)

If
∑T

τ=1[log b̃τ (o
1
τ )− log b̃τ (o

2
τ )] is arranged according to the order of appearance of

the symbols (Oj) within xT
1 and xT

2 , we have,

Eθ(b̃, I) =
N∑

i=1

M∑
j=1

log b̃ij[E(Si, Oj|θ, xT
1 )− E(Si, Oj|θ, xT

2 )]P (xT
1 , xT

2 |θ) (3.21)
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where E(Si, Oj|θ, xT
1 ) =

∑T
τ=1,s.t.o1

τ=o2
τ=Oj

P (o1
τ = Oj, sτ = Si|θ, xT

1 ). In the M-step

of the EM estimation, bij is adjusted to maximize Eθ(b̃, I) or Eθ(I). Since
∑

b̃ij = 1

and Eq.(3.21) has the form K
∑M

j=1 wj log vj, which attains a global maximum at

the point vj =
wjPM

j=1 wj
(j = 1, 2, · · · , M), the re-estimated value of b̃ij of θ̃ that lead

to the maximum Eθ(I) is given by

b̃ij =
E(Si, Oj|θ, xT

1 )− E(Si, Oj|θ, xT
2 )∑M

j=1[E(Si, Oj|θ, xT
1 )− E(Si, Oj|θ, xT

2 )]
(3.22)

This equation, compared with Eq.(3.10), enables the re-estimation of the sym-

bol emission coefficients b̃ij from expectations of the existing HMM. The above

derivations strictly observe the standard optimization strategy [101], where the

expectation of the value of the separable-distance function, Eθ(I), is computed in

the E-step and the coefficients bij are adjusted to maximize Eθ(I) in the M-step.

The convergence of the method is therefore guaranteed. However, bij may not be

estimated by applying Eq.(3.22) alone, other considerations shall be taken into

account such as when Dij(x
T , yT , θ) is less than or equal to 0. Further discussion

on the determination of values of bij is given in the subsequent sections.

3.2 Two-channel discriminative training

The training strategy discussed in this section is essentially an HMM structure that

the symbol output matrix of the HMM is split into two channels (sub-matrices): a

static channel to maintain the validity of the HMM and a dynamic channel that is

modified to maximize the separable distance. For the specific application to viseme

recognition, a hierarchical identification system is designed as depicted in Fig.3.1.

For the K visemes to be recognized, R (usually R < K) ML HMM classifiers are

employed for preliminary recognition. The output of the preliminary recognition

is a coarse identity, which may include L (usually 1 < L < K) viseme classes. Fine

recognition is then performed using a bank of two-channel HMMs.
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Figure 3.1: System architecture

3.2.1 Structure of the two-channel HMM

To modify the parameters according to Eq.(3.22) and simultaneously ensure the

validity of the model, a two-channel structure as depicted in Fig.3.2 is proposed.

The elements (bij) of Matrix B of the HMM are decomposed into two parts as

bij = bs
ij + bd

ij, ∀i = 1, 2, · · · , N, j = 1, 2, · · · ,M (3.23)

bs
ij for the static-channel and bd

ij for the dynamic-channel. The symbol output

coefficients of State Si in Fig.3.2, {bi1 bi2 · · · biM}, are decomposed as in Eq.(3.23).

{bi1 bi2 · · · biM} = {bs
i1 bs

i2 · · · bs
iM}︸ ︷︷ ︸

static channel

+ {bd
i1 bd

i2 · · · bd
iM}︸ ︷︷ ︸

dynamic channel

(3.24)

The dynamic-channel coefficients bd
ij are the key source of the discriminative power

and is estimated via Eq.(3.22) while the static-channel coefficients bs
ij are computed

using parameter-smoothed ML HMM and weighted. To avoid the occurrence of

zero or negative probability, bs
ij should be kept greater than 0 and at the same time,
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Figure 3.2: The two-channel structure of the i-th state of a left-right HMM

the dynamic-channel coefficient bd
ij should be non-negative. Thus the probability

constraint bij = bs
ij + bd

ij ≥ bs
ij > 0 is met. In addition, the relative weightage of

the static-channel and the dynamic-channel may be controlled by the credibility

weighing factor ωi. The scaling of the coefficients in dynamic-channel and static-

channel are subject to the weightage constraint given in Eq.(3.25).

N∑
j=1

bd
ij = ωi or

N∑
j=1

bs
ij = 1−ωi, 0 ≤ ωi < 1, ∀i = 1, 2, · · · , N (3.25)

3.2.2 Step 1: Parameter initialization

The parameter-smoothed ML HMM of xT
1 , θ̃1

ML, which is trained using the Baum-

Welch estimation, is referred to as the base HMM. bs
ij of the static-channel HMM

is derived from the base HMM after applying the scaling factor as follows.

{bs
i1 bs

i2 · · · bs
iM} = (1− ωi){b̃i1 b̃i2 · · · b̃iM}, i = 1, 2, · · · , N, 0 ≤ ωi < 1 (3.26)

where b̃ij is the symbol output probability of θ̃1
ML. As for the dynamic-channel

coefficients bd
ij, uniform values equal to ωi/M are assigned to bd

ijs as initial values.
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The selection of credibility weighing factor of the i-th state, ωi, is flexible and

problem-dependent. A large value of ωi means large weightage is assigned to the

dynamic-channel and the discriminative power is enhanced. However, the proba-

bility of the correct observation P (xT
1 |θ) will normally decrease. It is undesirable

because the HMM obtained is unlikely to generate even the correct samples.

A guideline for the determination of the value of ωi is as follows. Given the base

HMM θ̃1
ML, the optimal state chains are searched for xT

1 and xT
2 using the Viterbi

algorithm [99]. If θ̃1
ML is a left-right model and the expected (optimal) duration of

State Si of xT
1 is from ti to ti + τi, P (xT

1 |θ̃1
ML) is then written as Eq.(3.27).

P (xT
1 |θ̃1

ML) =
N∏

i=1

P (o1
ti
, o1

ti+1, · · · , o1
ti+τi

|θ̃1
ML) (3.27)

Let Pdur(x
T
1 , Si, θ̃

1
ML) = P (o1

ti
, o1

ti+1, · · · , o1
ti+τi

|θ̃1
ML). It may be computed using the

forward variables α1
t (i) and backward variables β1

t (i) [99]. In case that θ̃1
ML is not

a left-right model but an ergodic model, the expected duration of a state will be

the multiplication of a number of separated time slices as manifested in Eq.(3.28),

Pdur(x
T
1 , Si, θ̃

1
ML) =

k∏
j=1

P (o1
tij

, o1
tij+1, · · · , o1

tij+τij
|θ̃1

ML) (3.28)

where the jth slice is from tij to tij + τij. The value of ωi is derived by comparing

the corresponding Pdur(x
T
1 , Si, θ̃

1
ML) and Pdur(x

T
2 , Si, θ̃

1
ML). If Pdur(x

T
1 , Si, θ̃

1
ML) À

Pdur(x
T
2 , Si, θ̃

1
ML), ωi should be set to a small value to preserve the original ML

configurations. If Pdur(x
T
1 , Si, θ̃

1
ML) < Pdur(x

T
2 , Si, θ̃

1
ML) or Pdur(x

T
1 , Si, θ̃

1
ML) ≈

Pdur(x
T
2 , Si, θ̃

1
ML), ωi must be set to a large value. In practice, ωi can be man-

ually selected according to the conditions mentioned above (which is preferred), or

they can be computed using the following expression.

ωi =
1

1 + CvD
(3.29)

where v =
Pdur(xT

1 ,Si,θ̃
1
ML)

Pdur(xT
2 ,Si,θ̃1

ML)
. C(C > 0) and D are constants that jointly control the

smoothness of ωi with respect to v. For example, if the range of v is 10−3 ∼ 105,
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a typical setting is C = 1.0 and D = 0.1. Once the values of ωi are determined,

they shall not be changed in the training process.

3.2.3 Step 2: Partition of the observation symbol set

Let θ denote the HMM with the above initial configurations. E(Si, Oj|θ, xT
1 ) is

computed via the counting process [100]. Mathematically,

E(Si, Oj|θ, xT
1 ) =

T∑

τ=1,s.t.o1
τ=Oj

N∑
j=1

α1
τ (i)aijbj(o

1
τ+1)β

1
τ+1(j)∑N

m=1

∑N
n=1 α1

τ (m)amnbn(o1
τ+1)β

1
τ+1(n)

(3.30)

E(Si, Oj|θ, xT
2 ) is computed in a similar manner. For certain symbol, e.g. Op,

the expectation Dip(x
T
1 , xT

2 , θ) may be less than 0. To find out these symbols,

the symbol set OM is partitioned into the subset V = {V1, V2, · · · , VK} and its

complement set U = {U1, U2, · · · , UM−K}(OM = U ∪ V ) according to Eq.(3.31).

{V1, V2, · · · , VK} = argOj
[
E(Si, Oj|θ, xT

1 )

E(Si, Oj|θ, xT
2 )

> η], (η ≥ 1,∀j = 1, 2, · · · , M) (3.31)

where η is the threshold. With η ≥ 1, E(Si, Oj|θ, xT
1 )−E(Si, Oj|θ, xT

2 ) > 0. As an

illustration, the distributions of the values of E(Si, Oj|θ, xT
1 ) and E(Si, Oj|θ, xT

2 )

for different symbol labels are shown in Fig.3.3(a). The filtered symbols in set V

when η is set l are shown in Fig.3.3(b).

3.2.4 Step 3: Modification to the dynamic-channel

The symbol set is partitioned for each state in Step 2. Consider State Si, for

symbols in the set U , the coefficient bi(Uj)(Uj ∈ U) should be set as small as

possible. Let bd
i (Uj) = 0, and so bi(Uj) = bs

i (Uj). For symbols in the set V ,

the corresponding dynamic-channel coefficient bd
i (Vk) is computed according to

Eq.(3.32), which is derived from Eq.(3.22).

bd
i (Vk) = PD(Si, Vk, x

T
1 , xT

2 )[ωi +
k∑

j=1

bs
i (Vj)]− bs

i (Vk), k = 1, 2, · · · , K (3.32)
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Figure 3.3: (a) Distributions of E(Si, Oj|θ, xT
1 ) and E(Si, Oj|θ, xT

2 ) for various sym-

bols (b) Distribution of E(Si, Oj|θ, xT
1 ) for the symbols in V

where PD(Si, Vk, x
T
1 , xT

2 ) =
E(Si,Oj |θ,xT

1 )−E(Si,Oj |θ,xT
2 )PK

j=1[E(Si,Oj |θ,xT
1 )−E(Si,Oj |θ,xT

2 )]
. However, some coeffi-

cients obtained may still be negative, e.g. bd
i (Vl) < 0 because of large value of

bs
i (Vl). In this case, the symbol Vl is transferred from V to U and bd

i (Vl) is set to 0.

The coefficients of the remaining symbols in V are re-estimated using Eq.(3.32) un-

til all bd
i (Vk)s are greater than 0. This situation (some bd

i (Vl) < 0) usually happens

at the first few epochs of training and it is not conducive to convergence because

there is steep jump in the surface of I(xT
1 , xT

2 , θ). To relieve this problem, a larger

value of η in Eq.(3.31) shall be used.

Optimization is done through repeating the training epoch described in Sections

3.2.3 and 3.2.4. After each epoch, the separable distance I(xT
1 , xT

2 , θ̃) of the HMM

θ̃ obtained, is calculated and compared with that obtained in the last epoch. If

I(xT
1 , xT

2 , θ̃) does not change more than a predefined value, training is terminated

and the target two-channel HMM is established.
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3.3 Properties of the two-channel training

3.3.1 State alignment

One of the requirements for the proposed training strategy is that the state dura-

tions of the training pair, say xT
1 and xT

2 , are comparable. Otherwise, Dij(x
T
1 , xT

2 , θ)

will become meaningless. For example, if E(Si|θ, xT
1 ) ¿ E(Si|θ, xT

2 ), even symbol

Oj takes much greater portion in E(Si|θ, xT
1 ) than in E(Si|θ, xT

2 ), the computed

Dij(x
T
1 , xT

2 , θ) may also be less than 0. The outcome is that bij is always set to

bs
ij rather than adjusted to increase I(xT

1 , xT
2 , θ). As a result, the following state

duration validation procedure is added to make the training strategy complete.

After each training epoch, E(Si|θ, xT
1 ) is obtained as follows.

E(Si|θ, xT
1 ) =

T∑
τ=1

α1
τ (i)β

1
τ (i)∑N

i=1 α1
τ (i)β

1
τ (i)

, i = 1, 2, · · · , N (3.33)

E(Si|θ, xT
2 ) is computed in the same way. If E(Si|θ, xT

1 ) ≈ E(Si|θ, xT
2 ), e.g.

1.2E(Si|θ, xT
2 ) > E(Si|θ, xT

1 ) > 0.8E(Si|θ, xT
2 ), training continues; otherwise, train-

ing stops even I(xT
1 , xT

2 , θ̃) keeps on increasing. If the I(xT
1 , xT

2 , θ̃) of the final HMM

θ̃ does not meet certain discriminative requirement, i.e. I(xT
1 , xT

2 , θ̃) is less than a

desired value, a new base HMM or smaller ωi should be used instead.

3.3.2 Speed of convergence

The convergence of the training strategy proposed in Eq.(3.22) is discussed in Sec-

tion 3.1. For the two-channel training, only some of the symbol output coefficients

in the dynamic-channel are modified according to Eq.(3.22) while the others remain

unchanged. However, the convergence is still assured because firstly the surface

of I(xT
1 , xT

2 , θ) with respect to bij is continuous, and also adjusting the dynamic-

channel elements according to the two-channel training strategy leads to increased
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Figure 3.4: The surface of I and the direction of parameter adjustment.

Eθ(I). A conceptual illustration is given in Fig.3.4 on how bij is modified when the

symbol set is divided into subsets V and U . For ease of explanation, we assume

that the symbol set contains only three symbols O1, O2 and O3 with O1, O2 ∈ V

and O3 ∈ U for State Si. Let θt denote the HMM trained at the t-th round and

θt+1 denote the HMM obtained at the t+1-th round. The surface of the separable

distance (I surface) is denoted as I ′ = I(xT
1 , xT

2 , θt+1) for θt+1 and I = I(xT
1 , xT

2 , θt)

for θt. Clearly I ′ > I. The I surface is mapped to bi1 − bi2 plane [Fig.3.4(a)] and

bi1− bi3 plane [Fig.3.4(b)]. In the training phase, bi1 and bi2 are modified along the

line bd
i1 +bd

i2 = ωi to reach a better estimation θt+1, which is shown in Fig.3.4(a). In

the bi1 − bi3 plane, bi3 is set to the constant bs
i3 while bi1 is modified along the line

bi3 = bs
i3 with the direction ~d as shown in Fig. 3.4(b). The direction of parameter

adjustment given by Eq.(3.22) is denoted by ~d′. In the two-channel approach, since

only bi1 and bi2 are modified according to Eq.(3.22) while bi3 remains unchanged,

~d may lead to lower speed of convergence than ~d′ does.
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3.3.3 Improvement to the discriminative power

The improvement to the discriminative power is estimated as follows. Assume that

θ̃ is the two-channel HMM obtained. The lower bound of P (xT
2 |θ̃) is given by

P (xT
2 |θ̃) ≥ (1− ωmax)

T P (xT
2 |θ̃1

ML) (3.34)

where ωmax = max(ω1, ω2, · · · , ωN). Because the base HMM is the parameter-

smoothed ML HMM of xT
1 , it is reasonable to assume that P (xT

1 |θ̃1
ML) ≥ P (xT

2 |θ̃1
ML).

The upper bound of the separable distance is given by the following expression

I(xT
1 , xT

2 , θ̃) ≤ P (xT
1 |θ̃1

ML)

(1− ωmax)T P (xT
2 |θ̃1

ML)
= −T log(1−ωmax) + I(xT

1 , xT
2 , θ̃1

ML) (3.35)

In practice, the gain of I(xT
1 , xT

2 , θ̃) is much smaller than the theoretical upper

bound. It depends on the resemblance between xT
1 and xT

2 , and the setting of ωi.

3.4 Extensions of the two-channel training algo-

rithm

3.4.1 Training samples with different lengths

Up to this point, the training sequences are assumed to be of equal length. This is

necessary as we cannot properly compare the probability scores of two sequences of

different lengths. To extend the training strategy to sequences of different lengths,

linear adjustment is carried out as follows. Given the training pair xT1
1 of length

T1 and xT2
2 of length T2, the objective function Eq.(3.9) is modified as follows.

1

bij

[

T1∑
τ=1

P (sT1
τ = Si, o

1
τ = Oj|θ, xT1

1 )−T1

T2

T2∑
τ=1

P (sT2
τ = Si, o

2
τ = Oj|θ, xT2

2 )] = λi (3.36)
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Because E(Si, Oj|θ, xT1
1 ) =

∑T1

τ=1 P (sT1
τ = Si, o

1
τ = Oj|θ, xT1

1 ), parameter estimation

is then carried out as follows.

bij =
E(Si, Oj|θ, xT1

1 )− T1

T2
E(Si, Oj|θ, xT2

2 )
∑M

j=1[E(Si, Oj|θ, xT1
1 )− T1

T2
E(Si, Oj|θ, xT2

2 )]
(3.37)

E(Si, Oj|θ, xT2
2 ) is normalized using the scale factor T1

T2
. This approach is easy to

implement, however, it does not consider the nonlinear variance of signal such as

local stretch or squash. If the training sequences demonstrate obvious nonlinear

variance, some nonlinear processing such as sequence truncation or symbol prune

may be carried out to adjust the training sequences to the same length [103].

To verify the state durations in the training process, the duration of state Si for xT1
1 ,

E(Si|θ, xT1
1 ),is then compared with T1

T2
E(Si|θ, xT2

2 ). If E(Si|θ, xT1
1 ) ≈ T1

T2
E(Si|θ, xT2

2 ),

the training continues; otherwise, the training terminates.

3.4.2 Multiple training samples

In order to obtain a reliable model, multiple observations must be used to train the

HMM. The extension of the proposed method to include multiple training samples

may be carried out as follows. Consider two labeled sets: X1 = {x(1)
1 , x

(1)
2 , · · · , x

(1)
R1

:

d1} and X2 = {x(2)
1 , x

(2)
2 , · · · , x

(2)
R2

: d2}, where X1 has R1 number of samples and

X2 has R2 number of samples, the separable distance function that takes care of

all these samples is given by

I(X1, X2, θ) =
1

R1

R1∑
i=1

log P (x
(1)
i |θ)− 1

R2

R2∑
i=1

log P (x
(2)
i |θ) (3.38)

For simplicity, if we assume that the observation sequences in X1 and X2 have the

same length T , then Eq.(3.9) may be rewritten as

1

bij

[
1

R1

R1∑
m=1

E(Si, Oj|θ, x(1)
m )− 1

R2

R2∑
n=1

E(Si, Oj|θ, x(2)
m )] = λi (3.39)
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Table 3.1: The 18 visemes selected for recognition

/a:/, /ai/, /ae/, /ei/, /i/, /j/, /ie/, /o/, /oi/

/th/, /sh/, /tZ/, /dZ/, /eu/, /au/, /p/, /m/, /b/

The probability coefficients are then estimated using Eq.(3.40).

bij =
1

R1

∑R1

m=1 E(Si, Oj|θ, x(1)
m )− 1

R2

∑R2

n=1 E(Si, Oj|θ, x(2)
n )

∑M
j=1[

1
R1

∑R1

m=1 E(Si, Oj|θ, x(1)
m )− 1

R2

∑R2

n=1 E(Si, Oj|θ, x(2)
n )]

(3.40)

While validating the state durations, the term 1
R1

∑R1

m=1 E(Si, Oj|θ, x(1)
m ) is com-

puted and compared with 1
R2

∑R2

n=1 E(Si, Oj|θ, x(2)
n ). If

1

R1

R1∑
m=1

E(Si, Oj|θ, x(1)
m ) ≈ 1

R2

R2∑
n=1

E(Si, Oj|θ, x(2)
n ) (3.41)

the training cycle is repeated; otherwise, the training terminates. In a more com-

plex situation where the samples in X1 and X2 have different lengths, they can be

first linearly scaled using Eq.(3.36) and then put through parameter estimation.

3.5 Application of two-channel HMM classifiers

to lip reading

The proposed two-channel HMM method is applied to speaker-dependent viseme

recognition. To highlight the discriminative power of the two-channel HMMs, 18

context-independent phonemes in Table 3.1 are chosen for recognition as some of

them bear close similarity to another. For notational convenience, we still use the

term “viseme” to indicate the visual representation of these phonemes. Note that

the visemes used in this chapter are the one-to-one mappings of the phonemes.
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Figure 3.5: Flow chart of the hierarchical viseme classifier

3.5.1 Viseme classifier

The block diagram of the proposed hierarchical viseme classifier is given in Fig.3.5.

The similarity between the visemes is measured first. Assume that Xi = {xi
1, x

i
2, · · · , xi

li
:

di} are the training samples of viseme di and li is the number of the samples, the

joint probability scored by an HMM θj is computed as follows.

P (Xi|θj) =

li∏

l=1

P (xi
l|θj) (3.42)
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A viseme model θi is able to separate visemes di and dj if Eq.(3.43) applies,

log P (Xi|θi)− log P (Xi|θj) ≥ ρli, ∀j 6= i (3.43)

where ρ is a positive threshold. Otherwise, visemes di and dj are categorized into

a macro class and the training samples of di and dj are jointly used to train the

ML HMM of the macro class. In our experiments, the length of training samples is

25 and we set ρ = 2. In this way, the 18 visemes are clustered into 6 macro classes

and the HMMs are denoted as θMac1, θMac2, · · · , θMacR with R = 6 in Fig.3.5.

For an input viseme yT to be identified, the probabilities P (yT |θMac1), P (yT |θMac2),

· · · , P (yT |θMacR) are computed and compared with one another. The macro iden-

tity of yT is determined by the HMM that gives the largest probability.

A macro class may consist of several similar visemes. Fine recognition within a

macro class is carried out at the second layer. Assume that Macro Class i comprises

L visemes: V1, V2, · · · , VL, L(L−1) two-channel HMMs are trained to separate each

pair of them, denoted as θj∧k, (j, k = 1, 2, · · · , L, j 6= k) in Fig.3.5. Note that the

parameter-smoothed ML HMM of V1 is adopted as the base HMM for θj∧k with

viseme Vj being the true class and viseme Vk being the false class.

For an input viseme yT to be identified, the following hypothesis is made,

Hi∧j =





i, if log P (yT |θi∧j)− log P (yT |θj∧i) > ρ

0, otherwise
(3.44)

where ρ is defined in Eq.(3.43) and ρ = 2 in this instance. Hi∧j = i indicates a

vote for Vi. The decision about the identity of yT is made by majority vote of all

the two-channel HMMs. The viseme class that has the maximum number of votes

is chosen as the identity of yT , denoted by ID(yT ). Mathematically,

ID(yT ) = max
i

[number of Hi∧j = i], ∀i, j = 1, 2, · · · , L, i 6= j (3.45)

If visemes Vi and Vj receive the same number of votes, the decision about the
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Figure 3.6: Viseme boundaries formed by the two-channel HMMs

identity of yT is made by comparing P (yT |θi∧j) and P (yT |θj∧i) via Eq.(3.46).

ID(yT ) =





i, if log P (yT |θi∧j) > log P (yT |θj∧i)

j, otherwise
(3.46)

The decision is based on pairwise comparisons of the hypotheses. It may greatly

reduce the computational load because pairwise comparisons are carried out within

each macro class, which comprises much fewer candidate classes than the entire

set. If coarse identification is not performed, the number of classes increases and

the number of pairwise comparisons goes up rapidly.

The two-channel HMMs act as the boundary functions for the viseme they represent

as they serve to separate the correct samples from the samples of another viseme.

A conceptual illustration is given in Fig.3.6 where the macro class comprises five

visemes V1, V2, · · · , V5. θ1∧2, θ1∧3, · · · , θ1∧5 build the decision boundaries for V1 to

delimit it from the similar visemes. The proposed two-channel HMM model is

specially tailored for the target viseme and its “surroundings”. As a result, it is

more accurate than the traditional modeling method that uses single ML HMM.
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Table 3.2: The macro classes for coarse identification

Macro classes Visemes Macro classes Visemes

1 /a:/, /ai/, /ae/ 4 /o/, /oi/

2 /ei/, /i/, /j/, /ie/ 5 /th/, /sh/, /tZ/, /dZ/

3 /eu/, /au/ 6 /p/, /m/, /b/

Table 3.3: The average values of probability and separable distance function of the

ML HMMs and two-channel HMMs

Viseme pair θ̃ML θ1 θ2

x1 x2 P̄ Ī P̄ Ī P̄ Ī ω1 ω2 ω3

/a:/ /ai/ -14.1 1.196 -17.1 5.571 -18.3 6.589 0.5 0.5 0.5

/ei/ /i/ -14.7 2.162 -19.3 5.977 -20.9 7.008 0.6 0.8 0.6

/au/ /eu/ -15.6 2.990 -18.1 5.872 -18.5 6.555 0.6 0.5 0.6

/o/ /oi/ -13.9 0.830 -17.5 2.508 -18.7 3.296 0.5 0.5 0.5

/th/ /sh/ -15.7 0.602 -19.0 2.809 -18.5 2.732 0.4 0.4 0.4

/p/ /m/ -16.3 1.144 -19.0 3.102 -17.1 2.233 0.4 0.5 0.4

3.5.2 Experimental results

Experiments are carried out to assess the performance of the proposed system.

For each viseme in Table 3.1, 100 samples are drawn with 50 for training and the

remaining 50 for testing. The samples have uniform length of 25 frames. The 6

macro classes obtained in Section 3.5.1 are illustrated in Table 3.2.

The results of fine recognition of some confusable visemes are listed in Table 3.3.

Each row in Table 3.3 shows the two similar visemes that belong to the same macro

class. x1 (in boldface) is the target (correct) viseme and x2 is the incorrect viseme.

θ̃ML denotes the parameter-smoothed ML HMMs of x1. θ1 and θ2 are two-channel

HMMs with different credibility factors (ω1, ω2, ω3 for the three states). For θ1,
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ω1, ω2 and ω3 are set according to Eq.(3.29), with C = 1.0 and D = 0.1. For

θ2, ω1, ω2 and ω3 are manually selected. P̄ is the average log probability that is

computed via Eq.(3.47).

P̄ =
1

l

l∑
i=1

log P (x1
i |θ) (3.47)

where x1
i is the i-th testing sample of viseme x1 and l is the number of the testing

samples. Ī is the average separable distance that is computed via Eq.(3.48).

Ī =
1

l2

l∑
i=1

l∑
j=1

I(x1
i , x

2
i , θ) (3.48)

It is seen that θ1 and θ2 give a much larger value of Ī than θ̃ML, which indicates

that better discrimination capability is attained with the two-channel approach.

In addition, Ī can be adjusted by tuning the credibility factors. However, θ1 and

θ2 score smaller P̄ than θ̃ML does. It indicates that the two-channel HMMs are

not good at modeling the visemes.

The change of I(x1, x2, θ) with respect to the training epochs in the two-channel

training is depicted in Fig.3.7. For the three-state left-right HMMs and 25-frame-

length training samples adopted in the experiment, the separable distance may

become stable after 10∼20 epochs. Such speed of convergence shows that the

two-channel training is not computationally intensive for viseme recognition. It

is also observed that I(x1, x2, θ) may drop at the first few training epochs. This

is because that some symbols in subset V are transferred to U during training,

which is explained in Section 3.3.2. Fig.3.7(d) also illustrates the situation of early

termination. The training process stops because the state alignment condition

mentioned in Section 3.3.1.is violated.

The performance of the proposed hierarchical system is compared with that of the

traditional recognition system where ML HMMs (parameter-smoothed) are used

as the viseme classifiers. The False Rejection Rates (FRR) of the two types of
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Figure 3.7: Change of I(x1, x2, θ) during the training process.

classifiers are computed for the 50 testing samples of each of the 18 visemes. Among

them, 6 visemes can be accurately identified by the ML HMMs with FRRs less than

10%. To highlight the improvement resulting from the two-channel training, only

the FRRs of the left 12 visemes are listed in Table 3.4.

Compared with the conventional ML HMM classifier, the classification error of the

proposed hierarchical viseme classifier is reduced by about 20%. Thus the two-

channel training algorithm is able to increase the discriminative ability of HMM

significantly for identifying confusable visemes.



3.6 The MSD training strategy 62

Table 3.4: Classification error ε1 of the conventional classifier and classification

error ε2 of the two-channel classifier

Visemes ε1 ε2 Visemes ε1 ε2

/a:/ 64% 12% /o/ 46% 28%

/ai/ 60% 40% /oi/ 36% 8%

/ei/ 46% 22% /th/ 18% 16%

/i/ 52% 32% /sh/ 20% 12%

/au/ 30% 18% /p/ 36% 12%

/eu/ 26% 16% /m/ 32% 32%

3.6 The MSD training strategy

The two-channel training strategy mentioned in previous sections employs an ML

model as the base model. This arrangement maintains the validity of the HMM

but may be computationally expensive. The maximum separable distance (MSD)

training presented in this section is an approach that training is performed on a

non-demanding base model rather than a pre-trained ML HMM. For the training

set {xT
1 : d1} and {xT

2 : d2} as mentioned in Section 3.1 and for the N -state

M -symbol discrete HMM θ1,2, the steps of MSD estimation are given below.

3.6.1 Step 1: Parameter initialization

The selection of the initial values of MSD estimation is much easier than that in

the two-channel training algorithm. Parameters in Matrix A and Matrix B can

take arbitrary or uniform values provided that the probability constraints given in

Eq.(2.12) and (2.13) are met. For the viseme classifiers discussed in this section,

the parameters are initialized according to the procedures given in Section 2.4.2.
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3.6.2 Step 2: Compute the expectations

The expectations E(Si, Oj|θ1,2, x
T
1 ) and E(Si, Oj|θ1,2, x

T
2 ) are computed in the same

manner as mentioned in Section 3.2.3. By counting the states with designated

output, we have,

E(Si, Oj|θ1,2, x
T
1 ) =

T∑

τ=1,s.t.o1
τ=Oj

N∑
j=1

α1
τ (i)aijbj(o

1
τ+1)β

1
τ+1(j)∑N

m=1

∑N
n=1 α1

τ (m)amnbn(o1
τ+1)β

1
τ+1(n)

(3.49)

E(Si, Oj|θ1,2, x
T
2 ) =

T∑

τ=1,s.t.o2
τ=Oj

N∑
j=1

α2
τ (i)aijbj(o

2
τ+1)β

2
τ+1(j)∑N

m=1

∑N
n=1 α2

τ (m)amnbn(o2
τ+1)β

2
τ+1(n)

(3.50)

and

Dij(x
T
1 , xT

2 , θ1,2) = E(Si, Oj|θ1,2, x
T
1 )− E(Si, Oj|θ1,2, x

T
2 ) (3.51)

where α1
τ (i) and β1

τ+1(j) are forward and backward variables of xT
1 , α2

τ (i) and

β2
τ+1(j) are forward and backward variables of xT

2 .

3.6.3 Step 3: Parameter modification

For symbol Oj, if the corresponding Dij(x
T
1 , xT

2 , θ1,2) > 0, bij is set proportional

to Dij(x
T
1 , xT

2 , θ1,2) using Eq.(3.10). For certain symbol, say Op, if the expectation

Dip(x
T
1 , xT

2 , θ1,2) ≤ 0, a small value ε, e.g. ε = 10−3, is assigned to the corresponding

bip. As a result, if there are L occurrences of Dip(x
T
1 , xT

2 , θ1,2) ≤ 0, i.e.

L = number of [Dip(x
T
1 , xT

2 , θ1,2) ≤ 0], p = 1, 2, · · · ,M (3.52)

bij is then estimated as via Eq.(3.53).

b̃ij =





Dij(x
T
1 ,xT

2 ,θ1,2)

ΣD
(1− Lε), if Dij(x

T
1 , xT

2 , θ1,2) > 0

ε, otherwise
(3.53)

where ΣD is the sum of Dij(x
T
1 , xT

2 , θ1,2) provided that Dij(x
T
1 , xT

2 , θ1,2) > 0.

ΣD =
M∑

j=1

Dij(x
T
1 , xT

2 , θ1,2), if Dij(x
T
1 , xT

2 , θ1,2) > 0 (3.54)



3.6 The MSD training strategy 64

Parameter smoothing is automatically considered in Eq.(3.53). As a result, θ1,2

trained in this way will not generate zero probability for a non-zero input sequence.

3.6.4 Step 4: Verification of state duration

The proposed MSD estimation also requires that the state durations of the train-

ing pair xT
1 and xT

2 are comparable. The expected durations E(Si|θ1,2, x
T
1 ) and

E(Si|θ1,2, x
T
2 ) are computed using the method mentioned in Section 3.3.1. The

MSD training continues if E(Si|θ1,2, x
T
1 ) ≈ E(Si|θ1,2, x

T
2 ), for example,

1.2 > E(Si|θ1,2, x
T
1 )/E(Si|θ1,2, x

T
2 ) > 0.8, i = 1, 2, · · · , N (3.55)

otherwise training stops even I(xT
1 , xT

2 , θ1,2) still shows the trend of increasing.

Step 2 and 3 are repeated in each training cycle. After that, Step 4 is implemented

to verify the state durations. The procedures are repeated until either premature

termination occurs, i.e. E(Si|θ1,2, x
T
1 ) and E(Si|θ1,2, x

T
2 ) differ too much, or the

difference of I(xT
1 , xT

2 , θ1,2) between consecutive training cycles is smaller than a

predefined threshold, or the specified number of training cycles is met.

The MSD training can also be extended to the cases of non-uniform training sam-

ples and multiple training samples. If the training pair has different lengths, linear

scaling is performed as discussed in Section 3.4.1. If the training data are two

sample sets with each of them consisting multiple samples, the symbol output

coefficients are then estimated via the approach presented in Section 3.4.2.

3.6.5 Decision strategy

In a two-class identification problem, say Class d1 vs. Class d2, the identity of an

unknown input yT can be relatively easily determined by comparing the probabil-

ities P (yT |θ1,2) and P (yT |θ2,1) using Eq.(3.56), where θ2,1 is the MSD estimation
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Figure 3.8: The eliminating series for determining the identity of the input sample

in multi-class identification

of the HMM (abbreviated as MSD HMM) with Class d2 being the true class and

Class d1 being the false class.

ID(yT ) =





d1, if P (yT |θ1,2) > P (yT |θ2,1)

d2, otherwise
(3.56)

In a multi-class case, say Class d1, d2, · · · , dK , K(K−1) MSD HMMs, θi,1, θi,2, · · · ,

θi,j, · · · , θi,K(i, j = 1, 2, · · · , K, i 6= j), are trained using the MSD estimation, where

θi,j indicates Class di is the true class and Class dj is the false class. For an input

sequence yT that belongs to one of the K classes, its identity is determined by an
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elimination series described below:

1.) 2K MSD HMMs θ1,2, θ2,1, θ2,3, θ3,2, θ3,4, θ4,3, · · · , θK,1, θ1,K are grouped into K

pairs and the probabilities of yT are computed, i.e. P (yT |θ1,2) and P (yT |θ2,1),

P (yT |θ2,3) and P (yT |θ3,2),· · · , P (yT |θi,j) and P (yT |θj,i),· · · , P (yT |θK,1) and P (yT |θ1,K).

They are denoted as Pi,j = P (yT |θi,j) in Fig.3.8.

2.) The probabilities P (yT |θi,j) and P (yT |θj,i) are compared. If P (yT |θi,j) >

P (yT |θj,i), Class di is more likely to be the identity of yT than Class dj and di is

selected as the winning class; otherwise, Class dj is selected as the winning class.

3.) The MSD HMMs of the winning classes are regrouped. If the winning classes

of two neighboring groups are Class di and Class dp, respectively, θi,p and θp,i are

then chosen as the HMMs for the next round of comparison.

The number of winning classes halves after each decision round. Step 1 − 3 are

repeated until only one winning class remains. Under such management, it is

usually unnecessary to compute all the probabilities that are scored by the K(K−1)

MSD HMMs.

3.7 Application of MSD HMM classifiers to lip

reading

The proposed MSD estimation is applied to recognize several groups of words. The

performance is compared with that of the ML HMM mentioned in Section 2.4.

3.7.1 Data acquisition for word recognition

Five groups of words are selected for recognition, which are shown in Table 3.5.

Each group consists of one true word and five false words. The false words may not

have meaning in English and they are denoted by sequences of phonemes that build
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Table 3.5: The words to be identified by the HMM classifiers

Group True False False False False False
No. word word 1 word 2 word 3 word 4 word 5

1 zoo /z/+/U/ /h/+/U/ /l/+/o/ /tr/+/ue/ /s/+/ue/ /zh/+/U/

2 hot /r/+/o/ /l/+/oi/ /n/+/eu/ /l/+/u/ /m/+/u/
/h/+/o/+/t/ +/t/ +/d/ +/t/ +/k/ +/d/

3 deck /h/+/A/ /n/+/e/ /t/+/e/ /d/+/ei/ /l/+/ei/
/d/+/e/+/k/ +/k/ +/g/ +/d/ +/t/ +/k/

4 sleep /s/+ /s/+/n/ /sh/+/l/ /s/+/k/ /z/+/l/ /ch/+/r/
/l/+/I/+/p/ +/ei/+/b/ +/e/+/p/ +/I/+/p/ +/I/+/k/ +/ei/+/b/

5 transit /tr/+/A/ /dr/+/A/ /ch/+/an/ /tr/+/o/ /dr/+/an/
/tr/+/an/+ +/z/+/i/ +/s/+/ei/ + /sh/+/i/ +/s/+/i/ +/sh/+/e/
/s/+/i/+/t/ +/t/ +/d/ +/d/ +/k/ +/t/

them. The true word and the false words in each group are visually similar with

each other such that they are difficult to be separated with normal ML HMMs.

The speaker is asked to clearly articulate each true word for 100 times and each

false word for 50 times. The samples (video clips) of the words in the same group

are manually truncated so that they have the same length (number of frames). 50

samples of a true word are used for training the HMM while the left 50 samples

for testing. The 50 samples of the false word are all applied for training.

3.7.2 Experimental results

Decision strategy proposed in Section 3.6.5 is adopted to identify the words. Note

that each group consists of K = 6 words, thus 6 × (6 − 1) = 30 MSD HMMs are

trained using the 50 training samples, denoted as θ1,2, · · · , θ1,6, θ2,1, · · · , θ2,6, · · · ,

θ6,1, · · · , θ6,5. Take θ1,2 as an example, it indicates that hot is the true class while

/r/+/o/+/t/ is the false class. At the mean time, for each true/false word in

Table 3.5, an ML HMM is also trained using the 50 training samples.
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Figure 3.9: The change of the separable distance with respect to the training cycles

(a) θ1,2: true class - hot, false class - /r/+/o/+/t/ (b) θ1,3: true class - hot, false

class - /l/+/oi/+/d/ (c) θ1,4: true class - hot, false class - /n/+/eu/+/t/ (d) θ1,5:

true class - hot, false class - /l/+/u/+/k/

The separable distance varies while implementing the MSD estimation. In Fig.3.9,

the separable distances defined in Eq.(3.38) of four MSD HMMs with respect to

the training cycles are depicted. It is observed that the separable distance shows

the trend of increasing in the process of MSD estimation and becomes stable after

about 20 cycles, i.e. the difference of the separable distances between consecutive

cycles is less than 0.05. The case of early termination is also depicted in Fig.3.9(b)
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Table 3.6: The separable distances measured by the two types of HMMs

Model Separable distance (true word vs. false word)

type hot vs. hot vs. hot vs. hot vs.
/r/+/o/+/t/ /l/+/oi/+/d/ /n/+/eu/+/t/ /l/+/u/+/k/

ML HMMs 1.27 0.74 1.05 1.79

MSD HMMs 6.13 4.09 4.71 5.77

Table 3.7: Classification rates of the ML HMMs and the MSD HMMs

Group 1 Group 2 Group 3 Group 4 Group 5

ML HMMs 48% 36% 60% 64% 72%

MSD HMMs 70% 54% 68% 82% 82%

and (c), where the state alignment condition discussed in Section 3.6.4 is violated.

The separable distances measured for the same training samples by the ML HMMs

are given in Table 3.6, together with those scored by the MSD HMMs. It is seen

that the separable distances scored by the MSD HMMs are much greater than

those scored by the ML HMMs. As a result, the MSD HMMs can tell apart the

true word out of the confusable false words more easily than the ML HMMs do.

The 50 testing samples of each true word are identified by ML HMMs and MSD

HMMs, respectively. Note that recognition is carried on a closed set, i.e. six

words in each group. For the ML HMMs, the classification rates are computed via

Eq.(2.17) while for the MSD HMMs, the rates are computed by counting the true

decisions made by the eliminating series described in Section 3.6.5.

The classification rates depicted in Table 3.7 show that the MSD HMMs improve

the classification accuracy by about 15% than the ML HMMs. It further proves

that the MSD estimation is able to improve the discriminative ability of HMM.
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3.8 Summary

The two-channel training strategy and the MSD estimation discussed in this chap-

ter are discriminative training methods of HMM. Both approaches employ the

separable distance as the criterion function while they differ in implementation.

The two-channel training algorithm applies a static-channel to maintain the valid-

ity of the HMM. If the static-channel is derived from an ML estimation of HMM,

the two-channel training algorithm can be looked as a one-step improvement to

the conventional Baum-Welch estimation. Compared with the two-channel train-

ing, the MSD training is more easily implementable because the requirement on

the base model is not stringent, and the parameter estimation process of the MSD

training is based on some simple manipulations to the criterion function.

In the application to visual speech processing, both two-channel HMMs and MSD

HMMs can improve classification rates by about 20% (for visemes) or 15% (for

words) over the ML HMMs after 10∼20 training epochs. It manifests that both

approaches excels the traditional Baum-Welch estimation while identifying confus-

able observations and also has fast speed of convergence.

On the other hand, being discriminative training for HMM, two-channel method

and MSD estimation have some limitations in common. First, the trained classifiers

are not good models of the target sequence. They should be used in conjunction

with other classifiers for fine recognition after coarse recognition is performed.

Second, both classifiers principally work on the individual recognition units rather

than long sequences. Third, the state alignment condition of the training strategies

is a rather strict condition that is sometimes impractical for real world scenarios.

Fourth, the individual two-channel HMM classifier and MSD HMM classifier can

only perform binary classification. To extend the approaches to multi-class case,

the implementation of the recognition may be based on the decision tree strategy,

majority vote or the eliminating series that are adopted in this chapter.



Chapter 4
Recognition of Visual Speech Elements

Using Adaptively Boosted HMMs

Traditional approaches for optimizing an HMM classifier focuses on improving

the performance of the individual HMM, e.g. setting proper HMM parameters,

maximizing the probabilities of specific samples, minimizing the cross-entropy and

so on. The separable-distance-based training strategies presented in Chapter 3

also belong to the class of traditional training approaches. On the other hand,

an HMM-based classifier is more than a single HMM. It may be a multiple-HMM

classifier, a hybrid neural network/HMM classifier and so on. For such a complex

classifier, configuring and training of the individual HMM is not so critical as in the

single-HMM classifier. The key point of designing a complex HMM-based classifier

is usually the incorporative application of multiple identification techniques. The

AdaBoost-HMM classifier presented in this chapter is a kind of multiple-HMM

classifier and the highlight of the classifier is the incorporation of the Adaptive

Boosting technique and HMM modeling.

71
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Figure 4.1: Block diagram of an Adaptively Boosted multiple-HMM sub-classifier.

4.1 An overview of the proposed system

The proposed system employs a bank of HMMs that are connected in parallel as the

basic recognition units. For the K-class identification problem, the block diagram

of the structure of a typical sub-classifier of the proposed system is presented in

Fig.4.1. The sub-classifier of the k-th class, Θk, is comprised of Lk HMMs, where Lk

is the number of Boosting rounds (or the number of the composite HMMs). Each

composite HMM computes the probability for an input sequence xT . The outputs

from the Lk HMMs, P (xT |θ1), P (xT |θ2), · · · , P (xT |θLk
) are processed according to

a desired probability synthesis rule. The synthesized likelihood P̄ (xT |Θk) is then

submitted to the decision module to determine the identity of the input xT .

A conceptual interpretation of the proposed multi-HMM classifier is given in Fig.4.2.

It is expected that by synthesizing the decisions made by the multiple HMMs, a

more complex decision boundary can be formulated than using single HMM.
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Figure 4.2: A conceptual illustration: the decision boundaries formed by single

HMM (left) and multiple HMMs (right)

4.2 Review of Adaptive Boosting

Adaptive Boosting (AdaBoost) algorithm is a method for converting a weak clas-

sifier into a strong one. This method maintains a distribution of weights over the

training set. A new classifier is trained by weighted samples and the final decision

is made by summing up the sub-decisions of all the sub-classifiers. Assume that in

the two-class identification problem (Class 1 vs. Class 2), the training set is com-

prised of R samples {y1, d1}, {y2, d2}, · · · , {yR, dR}. yi is the observed data and

di = {−1, +1} is the label identifier where di = −1 denotes Class 1 and di = +1

denotes Class 2. The process of Adaptive Boosting involves of a series of rounds

(t = 1, 2, · · · , T ) of weight-adjusting and classifier-training [104]. Let Dt(i) stand

for the weight that is assigned to the i-th training sample in the t-th Boosting

round and Dt denote the set of the weights {Dt(1), Dt(2), · · · , Dt(R)} . The steps

of Adaptive Boosting are presented below:

1. Initially, assign the weight D1(i) = 1/R, (i = 1, 2, · · · , R) to the R training
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samples {y1, d1}, {y2, d2}, · · · , {yR, dR}. Note that D1(i) follows a uniform distri-

bution.

2. Train the t-th classifier θt in the t-th Boosting round using the distribution Dt,

starting with t = 1.

3. Formulate the hypothesis, ht(yi) → {−1, +1}, (i = 1, 2, · · · , R) and calculate

the error εt = P [ht(yi) 6= di] for θt.

4. Calculate wt = 1
2
ln(1−εt

εt
) , which weights the importance of the classifier θt.

5. Update the distribution: Dt+1(i) = Dt(i)
Zt

×
{

e−wt , if ht(yi) = di

ewt , if ht(yi) 6= di

, where Zt is

a normalization factor to make Dt+1 a distribution.

The procedures of Adaptive Boosting are also presented as a flowchart in Fig.4.3.

Step 2 to Step 5 are repeated until the error rate of the classifier exceeds 0.5 or

after a given number of training epochs. A series of classifiers θ1, θ2, · · · , θT and

weights w1, w2, · · · , wT are obtained at the end of the above procedures. In this

paper, the T sub-classifiers, together with the weights assigned to them, are looked

as an integral entity and are referred to as an AdaBoost-classifier. For an unknown

input y, the sub-decisions made by the T composite classifiers are synthesized using

H(y) = sign[
∑T

t=1 wtht(y)]. If H(y) < 0, y ∈Class 1, otherwise y ∈Class 2.

The objective of boosting is to minimize the training error ε(H) = 1
R

∑R
i=1[i :

H(yi) 6= di] of the final hypothesis. Schapire and Singer proved that ε(H) is

bounded as follows [105]:

ε(H) ≤ 1

R

R∑
i=1

exp[−dif(yi)] (4.1)

where f(yi) =
∑T

t=1 wtht(yi). By unraveling the recursive definition of Dt, we have

1

R

R∑
i=1

exp[−dif(yi)] =
T∏

t=1

Zt (4.2)
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Figure 4.3: Steps of Adaptive Boosting algorithm.

where

Zt =
R∑

i=1

Dt(yi) exp[−wtdiht(yi)] (4.3)

Eq.(4.1) suggests that the training error can be reduced most rapidly by choosing

wt and ht at each round to minimize Zt. In the case of binary hypotheses, this leads

to the choice of wt in Eq.(4.4), which is adopted in Step 4 of the above mentioned

boosting steps [106].

wt =
1

2
ln(

1− εt

εt

) (4.4)
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If the training error of θt (the classifier obtained at the t-th Boosting round) is less

than 0.5, say εt = 1
2
− γt(γt > 0), it is also proved in [107] that the training error

is bounded as in Eq.(4.5).

ε(H) ≤ 2T

T∏
t=1

√
εt(1− εt) =

T∏
t=1

√
1− 4γ2

t ≤ exp(−2
T∑

t=1

γ2
t ) (4.5)

Eq.(4.5) shows that if the individual classifier has a classification error less than 0.5

(or equivalently a classification rate greater than 0.5), the overall error rate should

decrease exponentially [107]. The boosted classifier may generate a hypothesis with

an arbitrary low rate of error as boosting continues.

4.3 AdaBoosting HMM

Boosting is carried out during the training phase of the composite HMMs. For the

K class identification problem, the purpose of HMM AdaBoosting is to train a set

of HMMs that represent or span the distribution of the training samples. In the

application of AdaBoosting strategy to the construction of a multi-HMM classifier,

the following two important issues arise: 1) The choice of base training algorithm

and 2) the measurement of classification error. These are discussed in detail in the

following paragraphs.

4.3.1 Base training algorithm

The most popular training algorithm for HMM is the Baum-Welch algorithm men-

tioned in Section 2.4.1. The Baum-Welch method makes use of Maximum Like-

lihood (ML) estimation. The parameters are adjusted toward the direction of

maximizing the probability P (xT |θ) where xT is the training sample. Since the

Expectation-Maximization (EM) iterations are applied in the training procedures,

the method has the advantage of ease of implementation and speed of convergence.
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However, the parameters of the HMM obtained from the Baum-Welch estimation

are solely determined by the “correct” samples. The trained HMM is therefore not

guaranteed to discriminate similar samples well.

An alternative to the Baum-Welch training algorithm is the Maximum Mutual

Information (MMI) estimation mentioned in Section 3.1. This method is a dis-

criminative training method because it increases the a posteriori probabilities of

the model corresponding to the training data. However, the analytical solution

to the MMI criterion function is difficult to realize, the implementation of MMI

estimation is hence tedious.

As mentioned in Section 4.2, Adaptive Boosting has loose requirements on the

selection of base classifiers. As long as the training error of the individual classifier

is less than 0.5, the training error of the AdaBoost-classifier will drop. The same

requirements apply to HMMs. If the training error of the composite HMMs is

forced to be less than 0.5, the error rate of the AdaBoost-HMM classifier will also

decrease as boosting continues. Besides this, since each of the multiple HMMs

has to be individually trained, reduction of the computational load per HMM is

also an important consideration. Considering these two factors, the Baum-Welch

algorithm, which is less computationally intensive, is adopted.

Assume that Xk = {xk
1, x

k
2, · · · , xk

Rk
: dk} are Rk training samples (sequences)

of Class dk, where xk
l = (ok,l

1 , ok,l
2 , · · · , ok,l

Tl
), (l = 1, 2, · · · , Rk) is a Tl-length ob-

servation sequence and ok,l
i (i = 1, 2, · · · , Tl) is the i-th symbol appeared in the

sequence. For the N -state M -symbol HMM θ(π, A, B), we define the forward

variables αk,l
t (i) = P (ok,l

1 , ok,l
2 , · · · , ok,l

t , st = Si|θ) and backward variables βk,l
t (i) =

P (ok,l
t+1, o

k,l
t+2, · · · , ok,l

Tk
|st = Si, θ) for xk

l , the parameters of the HMM are then esti-

mated through the following EM recursion [99].

āij =

∑Rk

l=1
1

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (i)aijbj(o
k,l
t+1)β

k,l
t+1(j)

∑Rk

l=1
1

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (i)βk,l
t+1(j)

(4.6)
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b̄jm =

∑Rk

l=1
1

P (xk
l |θ)

∑Tl−1

t=1,s.t.ok,l
t =Om

αk,l
t (j)βk,l

t (j)
∑R

l=1
1

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (j)βk,l
t (j)

(4.7)

where Om is the m-th symbol in the symbol set. The terms used in Eq.(4.6)

and (4.7) are discussed in Section 2.4.1. In the above mentioned strategy, all the

samples are treated equally. If weight Dl is assigned to the l-th sample xk
l , then

Eq.(4.6) and (4.7) become,

āij =

∑Rk

l=1
Dl

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (i)aijbj(o
k,l
t+1)β

k,l
t+1(j)

∑Rk

l=1
Dl

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (i)βk,l
t+1(j)

(4.8)

b̄jm =

∑Rk

l=1
Dl

P (xk
l |θ)

∑Tl−1

t=1,s.t.ok,l
t =Om

αk,l
t (j)βk,l

t (j)
∑R

l=1
Dl

P (xk
l |θ)

∑Tl−1
t=1 αk,l

t (j)βk,l
t (j)

(4.9)

For the above equations, Arslan and Hansen proved that weighting of the train-

ing samples does not violate the convergence property of the maximum likelihood

training [108]. A local maximum point of P (Xk|θ) will be attained after a suffi-

cient number of training epochs. Since different samples are treated differently in

estimating the parameters, Eq.(4.8) and (4.9) have the potential to be applied to

HMM AdaBoosting. In this thesis, the above mentioned training strategy shall be

referred to as the biased Baum-Welch estimation.

4.3.2 Cross-validation for error estimation

Unlike Neural Network or other classifiers, HMM gives a probabilistic measure

rather than a definite Boolean result. The decision about the identity of the input

is usually obtained by comparing the probabilities measured of all HMMs.

Assume that at a certain Boosting round, Class dl(l = 1, 2, · · · , K) has Ll sub-

classifiers (HMMs) - Θl = {θl
1, θ

l
2, · · · , θl

Ll
}. As mentioned in Section 2.4.1, for a

given training sample xk
i ∈ Xk, the identity of xk

i is determined via Eq.(4.10).

θ∗ = arg max
θ

P (xk
i |θl

j), ∀l = 1, 2, · · · , K, j = 1, 2, · · · , Ll (4.10)
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The decision made in this way is a one versus the rest classification. If the correct

model scores greater likelihood than the others, the result is correct; otherwise, an

error occurs. As a result, the following hypothesis is made upon an HMM classifier

in Class dk, e.g. θk
p , (1 ≤ p ≤ Lk):

hk
p(x

k
i ) =





1, if P (xk
i |θk

p) > P (xk
i |θj

q), ∀j 6= k, q = 1, 2, · · · , Lj

−1, otherwise
(4.11)

The training error of θk
p is estimated by summarizing the weighted hypotheses over

all the training samples in Xk.

εk
p = D(xk

i )E(hk
p(x

k
i ) = −1) =

Rk∑

i=1,s.t.hk
p(xk

i )=−1

D(xk
i ) (4.12)

It is shown in Eq.(4.11) that the error rate not only depends on the classifier itself

but also relates to the other classifiers. The HMM obtained at Boosting round t,

θk
t , will influence the error rate of all the HMMs trained at the previous Boosting

rounds, e.g. θj
τ (j = 1, 2, · · · , K, τ < t). AdaBoosting requires that the composite

classifiers have an error rate less than 0.5. As a result, not only the recently

boosted HMM but also all the existing HMMs have to be validated. Clearly the

computations involved in calculating and comparing the probabilities are intensive.

In our system, the following measures are taken to facilitate the processing.

As illustrated in Fig.4.4, each class, say dk, maintains a maximum probability array.

The elements in the array are the Rk greatest probabilities of the training samples

Xk = {xk
1, x

k
2, · · · , xk

Rk
} that are scored by the HMMs of Class dj(∀j 6= k) . These

maximum probabilities are denoted as Pmax(x
k
1|θ̄), Pmax(x

k
2|θ̄), · · · , Pmax(x

k
Rk
|θ̄) in

the figure, where θ̄ denotes any HMM of the class other than dk.

At Boosting round Lk + 1, after a new HMM of Class dk is trained, say θk
Lk+1,

the probabilities of all the training samples of Classes d1, d2, · · · , dK , given θk
Lk+1

are computed. For Class dl as an example, if P (xl
i|θk

Lk+1) > Pmax(x
l
i|θ̄), (i =
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Figure 4.4: Data structure for implementing error estimation.

1, 2, · · · , Rl), Pmax(x
l
i|θ̄) is replaced with P (xl

i|θk
Ll+1). The following hypothesis,

which is concluded from Eq.(4.11), is made for a training sample of Class dk,

hk
Lk+1(x

k
i ) =





1, if P (xk
i |θk

Lk+1) > Pmax(x
k
i |θ̄), i = 1, 2, · · · , Rk

−1, otherwise
(4.13)

The training error of θk
Lk+1 is then computed using Eq.(4.12). In this way, the

training error of any composite HMM, say θl
t, (t = 1, 2, · · · , Ll), can be easily

obtained by comparing with the corresponding value in its maximum likelihood

array - Pmax(x
l
i|θ̄).

If the error rates of θk
Lk+1 and the existing HMMs are all less than 0.5, θk

Lk+1 is

retained as a qualified boosted classifier; otherwise, θk
Lk+1 is discarded. The above

mentioned strategy provides an easily programmable approach for evaluating and

computing the training error of the AdaBoost-HMM classifiers. Because the error

rates are computed by comparing the probabilities scored by the individual HMMs,

the above mentioned procedure shall be referred to as cross-validation.
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4.3.3 Steps of the HMM AdaBoosting algorithm

The step-by-step procedures of HMM AdaBoosting for a K-class problem are given

below:

1. For training set of Class dk with Rk samples Xk = {xk
1, x

k
2, · · · , xk

Rk
}, initially,

assign a uniform distribution D1(x
k
j ) = 1/Rk, (∀k = 1, 2, · · · , K, j = 1, 2, · · · , Rk)

to xk
1, x

k
2, · · · , xk

Rk
. The boosting token k is initialized to be equal to 1.

2. Train a new HMM for the k-th class θk
t using the biased Baum-Welch algorithm

with the distribution Dt(x
k
j ).

3. Formulate the binary hypothesis hk
t (x

k
j ) → {−1, +1} for θk

t using Eq.(4.11).

The error rate of θk
t - εk

t , and the error rates of all the existing HMMs of other

classes θj
l , (j = 1, 2, · · · , K, j 6= k, l = 1, 2, · · · , Rj) are estimated and verified using

the cross-validation and Eq.(4.12). If the new model is valid, go on to Step 4;

otherwise, the boosting token is passed to the next class k =

{
k + 1, if k < K

1, if k = K

and then Step 2 is repeated.

4. Calculate wk
t = 1

2
ln(

1−εk
t

εk
t

) for θk
t , where εk

t is the error rate. If the error rate

of some existing HMM, say θj
l , changes, the corresponding wj

l = 1
2
ln(

1−εj
l

εj
l

) is also

recomputed.

5. Update the distribution: Dt+1(x
k
j ) =

Dt(xk
j )

Zt
e−wk

t hk
t (xk

j )(hk
t (x

k
j ) = 1 or − 1), where

Zt is the normalization factor.

The above procedures terminate if the HMMs obtained for every class are invalid

(see Step 3) or after a given number of boosting rounds. The convergence rate of

an AdaBoost-HMM classifier is thus set equal to the number of boosting rounds.

It should be noted that for different applications, the convergence rate may be

very different, which depends on the distribution of the training samples and the

similarities between different classes.

It can be seen from Step 4 that the smaller the value of εk
t , the larger the classifier
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weight wk
t . Thus the AdaBoosting algorithm places more importance or weight on

decisions made by more accurate HMMs. It is also observed in Step 5 that for a

correctly classified sample, the sample weight Dt+1(x
k
j ) is reduced by a factor of

e−wk
t where as for an incorrectly classified sample, the sample weight increase by

a factor of ewk
t . The “hard” samples are thus highlighted in the AdaBoost-HMM

classifier.

4.3.4 Decision formulation

For an unknown input sequence yT , its identity is determined by summing up

the sub-decisions made by the composite HMMs of an AdaBoost-HMM classifier.

Assume that Θk is the AdaBoost HMM classifier for Class dk, (k = 1, 2, · · · , K) that

has been “boosted” for Lk rounds. Then Θk consists of Lk HMMs - θk
1 , θ

k
2 , · · · , θk

Lk

and Lk weights - wk
1 , w

k
2 , · · · , wk

Lk
. The decision is formulated with one of the

following three strategies:

Decision strategy 1: The hypothesis made on the identity of yT : hk
t (y

T ) →
{+1,−1}, (t = 1, 2, · · · , Lk) is formulated by each composite HMM using Eq.(4.13).

The hypotheses are synthesized via Eq.(4.14).

H(yT |Θk) =
1

Lk

Lk∑
t=1

wk
t h

k
t (t

T ) (4.14)

The decision is made by comparing H(yT |Θk) for all the classes dk, (k = 1, 2, · · · , K).

The one that gives the maximum value is chosen as the identity of yT .

ID(yT ) = arg max
k

H(yT |Θk), 1 ≤ k ≤ K (4.15)

The hypothesis hk
t (y

T ) → {+1,−1} is based on the one versus the rest dichotomy.

This approach is featured with ease of implementation and is able to be applied to

most recognition tasks. However, the {+1,−1} hypothesis adopted in the strategy

is not a fuzzy indicator. Sometimes we not only want to know the decision about
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a candidate pattern, but also hope to know the credibility of the decision made.

To provide such information, decisions should be based on probabilities.

Decision strategy 2: The normalized log probability of yT given Θk is defined

as follows:

P̄ (yT |Θk) =
1

Lk

Lk∑
t=1

log[wk
t P (yT |θk

t )] (4.16)

where LK is a normalization factor as different AdaBoost-HMM classifiers may have

different number of composite HMMs. The final decision is made by comparing the

P̄ (yT |Θk) for all the classes (k = 1, 2, · · · , K). The one that gives the maximum

probability is chosen as the identity of yT .

ID(yT ) = arg max
k

P̄ (yT |Θk), 1 ≤ k ≤ K (4.17)

This decision strategy synthesizes the probabilities scored by the composite HMMs

rather than the sub-decisions as adopted in Strategy 1. As a result, the probability

metric P̄ (yT |Θk) can better indicate the credibility of the decision made. This

decision strategy can be applied to most recognition tasks and is adopted in our

viseme recognition experiments. An important property of the approach is that the

synthesized probability can be accumulated to analyze a process that is modeled by

a sequence of AdaBoost-HMM classifiers. The continuous visual speech modeling

discussed in Chapter 5 is based on this decision strategy.

Decision strategy 3: The probabilities of yT scored by the composite HMMs of

Θk can also be synthesized using Eq.(4.18).

P̄ ′(yT |Θk) =
1

Σk

Lk∑
t=1

[wk
t P (yT |θk

t )] (4.18)

where Σk =
∑Lk

t=1 wk
t . The identity of yT is obtained by comparing P̄ ′(yT |Θk) for

all the classes (k = 1, 2, · · · , K).

ID(yT ) = arg max
k

P̄ ′(yT |Θk), 1 ≤ k ≤ K (4.19)
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P 

Figure 4.5: Change of the composite probabilities of Strategy 2 and Strategy 3

This decision strategy differs from Strategy 2 in two aspects. First, the log op-

eration is not carried out in Eq.(4.18). Because wk
t > 0 (which corresponds to

εk
t < 0.5) and P (yT |θk

t ) ¿ 1, P̄ (yT |Θk) may increase more sharply with respect to

wk
t than P̄ ′(yT |Θk) does, which is depicted in Fig.4.5. It thus concludes that in

Strategy 3, the composite HMM with smaller weight (wk
t ) takes larger portion in

the final decision than that in Strategy 2. In applications, the composite HMMs

with smaller weights are usually trained by the “hard” samples. Strategy 3 thus

highlights the hard samples and works better than Strategy 2 in the situation when

the distribution of the samples is very much spread-out. Strategy 2, on the other

hand, outperforms Strategy 3 when the samples are relatively clustered.

Second, the normalization factor adopted in Strategy 3 is Σk while Lk is used in

Strategy 2. If boosting is carried out for only one round, the decision made by

Strategy 3 is the same as that made by the single-HMM classifier, while this is not

applicable to Strategy 2.

Strategy 3 also generates a probability P̄ ′(yT |Θk) for the input yT . Like Strategy
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2, it can also be applied to analyze a long process that is modeled by connected

AdaBoost-HMM classifiers. In our other experiments concerning AdaBoost-HMM,

Strategy 1 and Strategy 3 have been applied to speaker verification and acoustic

speech recognition with some success. However, studies on these topics are not

presented in this chapter as they are beyond the scope of this thesis.

4.3.5 Properties of HMM AdaBoosting

The principal idea of AdaBoosting is the improvement to the recognition accuracy

of the “hard” samples or “outlier” samples of a class. For the proposed HMM

AdaBoosting strategy, the probability scored for such hard samples increases as

boosting continues, which in turn improves the acceptance rate of the hard samples.

Because the hard samples usually indicate the decision boundaries of the classier,

it may conclude that the AdaBoost-HMM classifiers can formulate more complex

decision boundaries than using single-HMM classifiers.

While boosting HMMs, the decrease in error rate after each round may not be

as fast as that of boosting other types of classifiers such as Neural Network. The

reason is that the error rate of an HMM is obtained by comparing the likelihood

value determined by HMM in the current round of boosting and those in the

previous rounds, as explained in Section 4.3.2. With the propagation of HMMs,

the classification error of the composite HMM will normally increase and hence

the error of the AdaBoost-HMMs decreases at a low speed. Our experiments also

reveal that the error surface with respect to the boosting round is generally smooth

but sometimes may have bumps on it. The error rate, however, demonstrates the

tendency to decrease as boosting continues.

For the AdaBoost-HMM classifiers of different classes, the number of the composite

HMMs may be different because boosting for one class may terminate earlier than

another class due to the cross-validation. However, such inequality does not affect
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the final decision because H(yT |Θk), P̄ (yT |Θk) and P̄ ′(yT |Θk) in Eq.(4.14), (4.16)

and (4.18) are normalized with the number of HMMs in a class.

Another aspect of the proposed strategy that should be stressed is that the error

rate computed by Eq.(4.12) only accounts for part of the classification error. It

is the False Rejection Rate (FRR) that is discussed in Section 2.4.3, which indi-

cates the samples in Xk being misclassified into some wrong category dj(j 6= k).

Another source of the error is referred to as False Acceptance Rate (FAR), which

indicates the samples of other classes Xj(j 6= k) are erroneously accepted by Θk.

However, FAR is not used in the proposed HMM AdaBoosting algorithm because

it cannot work with the biased Baum-Welch estimation. As illustrated in Eq.(4.8)

and (4.9), the biased Baum-Welch algorithm only uses the correct training samples

for parameter estimation. An erroneously accepted sample cannot be applied to

train the parameters of the HMMs. FRR can weight the correct training samples

in the parameter estimation equations as it is an indicator of the goodness-of-fit

of the correct samples, while FAR, which is a statistical measure for the incorrect

samples (irrelevant to the correct samples), cannot be applied for the proposed

method. This is why FAR is not computed in the boosting steps given in Sec-

tion 4.3.3. If other base training algorithm, such as MMI estimation, is applied in

HMM boosting, where the erroneously accepted samples are also used to train the

parameters of the HMM, both FRR and FAR may be considered.

4.4 Performance of the AdaBoost-HMM classi-

fier

Experiments are carried out to access the performance of the AdaBoost-HMM

classifier in recognition of visemes defined in MPEG-4. Comparison is also made

with the performance of the single-HMM classifiers.
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4.4.1 Experiment 1

In the first experiment, 40 context-independent samples of a viseme are used as the

training samples and the left 100 are used as the testing samples. Note that the

training samples and testing samples are the same as those used in the single-HMM

classifier discussed in Section 2.4.4. The HMMs are initialized with the approach

given in Section 2.4.3. For each context-independent viseme, an AdaBoost-HMM

classifier that consists of 15 to 20 HMMs is trained with the strategy given in

Section 4.3.3. According to Eq.(4.17), for a testing sample yT of Class dk, a cor-

rect classification is made if ID(yT ) = dk. The classification error (FRR) of the

AdaBoost-HMM classifier Θk is then computed using Eq.(4.20), which is originated

from Eq.(2.17) and (2.18).

FRR(Θk) = 1− number of correctly classified samples of dk

number of all the testing samples of dk

(4.20)

The classification errors of the AdaBoost viseme classifiers are listed in Table 4.1.

The FRRs of the single-HMM classifiers (θ2 of Speaker 1) trained in Section 2.4.4

are also listed in Table 4.1 for comparison.

From Table 4.1, it can be seen that both the single-HMM classifiers and AdaBoost-

HMM classifiers can identify the context-independent visemes with reasonable ac-

curacy. An average classification error below 20% is obtained with either approach.

The classification error is lower for the vowels as the movement of the lips is more.

The performance of the AdaBoost-HMM classifiers and that of the single-HMM

classifiers are not significantly different. The samples obtained for the context-

independent visemes demonstrate good homogeneity as they are independently

produced.
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Table 4.1: Classification errors (FRR) of the single-HMM classifier and the

AdaBoost-HMM classifier in recognition of context-independent visemes

Viseme Classification Error Viseme Classification Error

No. Single- AdaBoost- No. Single- AdaBoost-
HMM HMM HMM HMM

1 p, b, m 13% 8% 2 f, v 4% 5%

3 T, D 11% 4% 4 t, d 35% 17%

5 k, g 24% 9% 6 tS, dZ, S 10% 10%

7 s, z 4% 4% 8 n, l 19% 20%

9 r 18% 7% 10 A: 1% 4%

11 e 8% 11% 12 I 1% 4%

13 Q 7% 10% 14 U 7% 9%

Average 11.6% 8.7%

4.4.2 Experiment 2

In the second experiment, 100 context-dependent samples of a viseme are used to

train the AdaBoost-HMM classifier and the left 100 context-dependent samples

are used to test the performance of the classifier.

As mentioned in Section 4.3.5, the training error of an AdaBoost-HMM classifier

[which is computed via Eq.(4.12)] shows tendency of decreasing during boosting.

To illustrate such change, the training errors of four AdaBoost-HMM classifiers

and the t-th HMM (the HMM trained in the t-th Boosting round) of the classifiers

are depicted in Fig.4.6. Take Fig.4.6(a) as an example, the training error of the

AdaBoost-HMM classifier decreases from 0.27 to 0.13 for the 20 rounds while the

training error of the t-th HMM increases from 0.27 to 0.45. This is so as the com-

posite HMM biases more and more to the outlier samples as boosting continues.

For the experiments carried out, the error rate of the composite HMM increases
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Figure 4.6: Rate of training error versus boosting round.

Viseme classifiers of (a) /e/ (b) /s, z/ (c) /T, D/ (d) /t, d/

to 0.5 after about 12 to 20 Boosting rounds. It may thus conclude that AdaBoost

viseme classifier converge after 12∼20 rounds. Such speed of convergence is ac-

ceptable as the biased Baum-Welch estimation is carried out for 12∼20 times.

The training errors and classification errors (FRR) of the testing samples computed
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Table 4.2: Training errors and classification errors (FRR) of the single-HMM clas-

sifiers and the AdaBoost-HMM classifiers

Single-HMM Classifier AdaBoost-HMM Classifier

Viseme No. Training Classification Training Classification
Error Error Error Error

1 p, b, m 14% 20% 6% 15%

2 f, v 15% 27% 11% 25%

3 T, D 24% 34% 10% 18%

4 t, d 39% 50% 17% 19%

5 k, g 17% 17% 16% 16%

6 tS, dZ, S 17% 21% 5% 9%

7 s, z 39% 45% 13% 17%

8 n, l 40% 79% 22% 33%

9 r 21% 54% 22% 37%

10 A: 14% 18% 5% 5%

11 e 27% 33% 13% 7%

12 I 9% 10% 0% 2%

13 Q 10% 35% 4% 11%

14 U 4% 9% 1% 7%

Average 21% 32% 10% 16%

for the AdaBoost-HMM classifiers are listed in Table 4.2 together with the corre-

sponding errors using the single-HMM classifiers (θ2 of Speaker 1 as mentioned in

Table 2.3). It is observed that the accuracy of recognition is significantly improved

(smaller error rate) using AdaBoost-HMM classifier.

Compared with the classification errors listed in Table 4.1, the classification accu-

racy of the single-HMM classifiers decreases dramatically in identifying context-

dependent visemes. The classification rates of some consonants are even less than

50%. The reason underlying the high identification error is the distribution of the
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samples. As the samples of a context-dependent viseme are extracted from var-

ious words (contexts), the “shapes” of the samples of even the same viseme are

different. In statistics jargon, the samples of a context-dependent viseme demon-

strate a spread-out distribution. The traditional single-HMM classifiers cannot

cover such a distribution well. However, the classification accuracy can be greatly

improved with the application of AdaBoost-HMM classifiers. As illustrated in Ta-

ble 4.2, although the classification errors are larger compared with those listed in

Table 4.1, an average recognition accuracy of 70%∼80% is still attainable, which

is about 16% better than the single-HMM classifiers. The improvement can be

attributed to the fact that a more complex decision boundary is formulated using

the AdaBoost-HMM classifier than using the single-HMM classifier. Therefore, the

AdaBoost-HMM classifiers can better cover the spread-out distribution for both

the testing samples and the training samples. This is validated by the experimental

results. If the context-dependent visemes are looked as isolated visemes distorted

by adjoining visemes, it is concluded that the AdaBoost-HMM classifiers provide

better robustness on identifying visemes than single-HMM classifiers.

4.4.3 Computational load

The complexity of computation of the HMM AdaBoosting strategy is closely as-

sociated with the number of boosting rounds. If an AdaBoost-HMM classifier is

boosted for t rounds, the computations involved are approximately t-times of that

training a ML HMM classifier.

Take the 3-state 128-symbol discrete HMM applied in the experiments as an ex-

ample. If the number of training samples for each viseme is 100 and the samples

range from 15∼50 frames, about 106 computations (computations include mul-

tiply and division) are required to train an HMM with the biased Baum-Welch

estimation. Most of the computations are for calculating the forward variables and
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backward variables. For example, if the length of a training sample is 30 frames

(average length), about 1200 multiplies are required to build a probability trellis

to compute the forward variables and backward variables. Assume that all the

100 training samples have the same length of 30 frames, about 1.2× 105 computa-

tions are required to compute these variables. The forward variables and backward

variables have to be computed more than once because EM iterations are taken

in the Baum-Welch estimation. If ten iterations are used (in our experiments, the

probability scored for the training samples becomes stable after about 10 itera-

tions), 1.2×106 computations are required. The number of computations involved

in estimating the state transition coefficients and symbol emission probabilities is

small compared with this quantity. As a result, it is reasonable to conclude that

computations of the order of 106 are required to train a single-HMM classifier. The

computations can be completed in less than 10 seconds using Pentium III-900MHz.

For AdaBoost-HMM classifier comprising 20 HMMs, approximately 2 × 107 com-

putations are required for training the classifier. The additional number of compu-

tations including error estimation using cross-validation and calculation of weights

is small compared with the number of computations required for the Baum-Welch

estimation. The total number of computations is thus approximately 2×107. This

is a modest amount of computations for the modern computers or signal proces-

sor chips. The average time for training the AdaBoost-HMM classifier is about 2

minutes using Pentium III-900MHz.

The computational load in the recognition phase is far less than that in the train-

ing phase. For the single-HMM classifiers, the likelihood of an input sequence is

computed using the forward process. If the input sequence is 30-frame in length,

about 1200 multiplies are performed. As the identity of the input sequence is de-

termined out of fourteen viseme categories, the total number of computations will

be approximately 1.7×104. It only takes 1 second using Pentium III-900MHz. For
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the AdaBoost-HMM classifiers, the input sequence is evaluated by a total of 280

(20× 14) HMMs, where about 3.4× 105 multiplies are carried out. The number of

computations involved in probability synthesis is small compared with this quan-

tity. It takes 4∼5 seconds to determine the identity of the input sequence using

the Pentium III 900 computer.

4.5 Summary

The Adaptively Boosted HMM classifier proposed in this chapter is a type of multi-

HMM classifiers. It is specially suited to improve the accuracy of identifying time

series with spread-out distribution. The Adaptively Boosting technique serves to

train a group of undemanding HMMs, in which the training error is less than 0.5.

The decisions made by the composite HMMs are synthesized and a more complex

decision boundary is formulated than using single HMM.

In this thesis, the AdaBoost-HMM classifier is applied to identify visemes in visual

speech processing. Experimental results show that such a classifier is able to achieve

an average improvement of 16% on recognition accuracy over the traditional single

HMM classifier in identifying context-dependent visemes. The complexity of com-

putational load to train the boosted viseme classifier is approximately twenty times

that of the load of training a single-HMM viseme classifier when the Baum-Welch

estimation is used.

The proposed method can readily be extended to many other situations especially

when the observed data have spread-out distribution, for example, speech recogni-

tion, handwriting recognition and speaker identification.



Chapter 5
Visual Speech Modeling Using Connected

Viseme Models

Visual speech processing can be considered at two levels: the first level processing

is to identify the basic visual speech elements such as visemes; the second level

processing is to recognize connected-viseme units. The approaches mentioned in

Chapter 2, 3 and 4 are first level processing where the individual visemes are

recognized. In this chapter, the strategies of connecting HMM-based classifiers are

proposed to model connected-viseme units in visual speech.

5.1 Constituent element and continuous process

Recall the properties of HMM modeling presented in Chapter 2, it is seen that an

HMM can be trained to model a stochastic process of arbitrary length. For our

system, however, an HMM is trained to model relatively short sequence such as a

viseme. The long sequences, on the other hand, are to be modeled by connected-

HMM models. For ease of description, the short sequences that may be repeated in

the long sequences are referred to as constituent elements, and the long sequences

94
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are referred to as continuous processes in this thesis.

For the specific application of visual speech processing, the visemes are looked

as the constituent elements while words, phrases and sentences are treated as

continuous processes. In visual speech processing, it is also desirable to model the

constituent elements (visemes) that may be repeated in the continuous processes

(words, phrases and sentences) using HMM rather than modeling the continuous

processes directly. The advantages of such management are described below:

1.) The number of constituent elements is usually limited while the number of

continuous processes may be large because the possible number of combinations of

the constituent elements is large. It thus takes many more classifiers to model the

continuous processes than the constituent elements. For example, in speech, the

subword elements such as phonemes, consonant-vowel-consonant syllables (CVC)

and vowel-consonant-vowel syllables (VCV) are usually treated as the constituent

elements [65]. The number of these speech elements is of the order of hundred

while the vocabulary of the spoken words and phrases that are made up of these

constituent elements is huge.

2.) It is impractical to find sufficient number of training samples for the continuous

processes while it is much easier to do so for the constituent elements. For example,

in some speech recognition systems, the speaker is asked to read the training text

that contains hundreds of words, several times. The samples drawn from the text

may be insufficient to train the word models appearing in the text but are usually

sufficient to train models of the constituent elements such as phonemes.

3.) In HMM-based speech processing, building models for the constituent elements

is also necessary for text-independent applications and applications involving a

large vocabulary. By modeling the subword elements, the speech recognition sys-

tem is able to make a good assessment of any words that the systems were not

previously trained.
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For the proposed methods, the constituent elements are modeled by HMM-based

classifiers and continuous processes are modeled by connected classifiers.

The approaches proposed in this chapter are chiefly based on the level building al-

gorithm and the classifiers adopted to model the constituent elements include the

ML HMM classifiers mentioned in Chapter 2 and the AdaBoost-HMM classifiers

mentioned in Chapter 4. The two-channel HMM classifier and the MSD HMM

classifier, however, are not studied for modeling continuous processes because both

classifiers are specially tailored to differentiate confusable samples. While dealing

with a long sequence in visual speech, it is difficult to model the sequence using

a chain of two-channel HMMs or MSD HMMs. For this reason, the discussion of

HMM-based continuous visual speech processing focuses on the ML HMM classi-

fiers and AdaBoost-HMM classifiers.

5.2 Level building on ML HMM classifiers

The approaches of connecting HMMs are based on dynamic programming, which

include level-building algorithm [99] and frame-synchronous search algorithm [109].

Level building on HMM is a traditional method of searching/determining a se-

quence of HMMs to model a long process. It employs a probability trellis to

synchronize the HMMs with the segments of the target sequence. In the his-

tory of dynamic time warping technique for speech processing, the level building

method plays an important role because it is theoretically sound and easily pro-

grammable. In recent years, however, the level building method is gradually sub-

stituted by frame-synchronous method. The frame-synchronous approach applies

a grammar network to search for the best-matched paths/models that account for

sub-sequences terminating at any frame. This method is capable of synthesizing
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complex syntactic constrains (grammar) to the statistical framework of HMM mod-

eling and is thus more efficient at realizing large-vocabulary speech recognition than

the level building method. However, the implementation of frame-synchronous

searching is tedious because some cost measures such as distances, likelihood and

penalty terms have to be computed. In this thesis, the discussion is focused on

the level building method since only a small vocabulary is involved in the recogni-

tion task and grammatical rules are not mandatory. The probability accumulation

strategy of level building method is also fundamental to frame-synchronous ap-

proaches. In the paragraphs that follow, the principles of level building are given.

Let Θ = {θ1, θ2, · · · , θK} denote the set of HMMs of K constituent elements (one

constituent element is modeled by one HMM). For T -length observation sequence

of a continuous process, say yT = (o1, o2, · · · , oT ), the purpose of level building is

to decode an η-HMM chain Θη = (θ1,t1 , θ2,t2 , · · · , θη,tη), θi,ti ∈ Θ(i = 1, 2, · · · , η)

to maximize the likelihood P (yT |Θη), where θi,ti is the i-th sequence with starting

frame ti, (i = 1, 2, · · · , η). The number of constituent elements in an observation

sequence is usually unknown. In level building algorithm, this problem is solved

by partitioning the target sequence into different “levels”. The level corresponds

with the location of the constituent element in the sequence and the number of

the levels equals to the number of constituent elements. Level building on HMM

is carried out with the following steps.

5.2.1 Step 1: Construct the probability trellis

From Level 1 to Level ηmax(the maximum number of the levels that may appear

in yT ), a probability trellis is built as illustrated in Fig.5.1. At the node at Frame

t on Level η, denoted as Node(t, η), Pa(tη, t, η, θk), the accumulated probability

along the best path (also called Viterbi path, which will be discussed in Step 2)
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for reference model θk, (k = 1, 2, · · · , K), is computed.

Pa(tη, t, η, θk) = Pbest(tη − 1, η − 1)× P (otη , otη+1, · · · , ot|θk) (5.1)

where tη is the starting frame of Level η, Pbest(tη − 1, η − 1) is the accumu-

lated probability of the previous η − 1 levels, terminating at Frame tη − 1, and

P (otη , otη+1, · · · , ot|θk) is the probability of the sub-sequence (otη , otη+1, · · · , ot)

scored by θk at Level η. Because tη is the starting frame of Level η, tη − 1 is

the end frame of Level η − 1. The computation of Pbest(tη − 1, η − 1) is given in

Step 2. The starting frame of Pa(tη, t, η, θk) is retained as F (t, η, θk) = tη for back-

tracking the HMMs. The probability P (otη , otη+1, · · · , ot|θk) can be computed via

the standard forward process [99]. If η = 1 in Eq.(5.1), which means no previous

level accounts for the accumulated probability, we have,

Pa(t1 = 1, t, η = 1, θk) = P (o1, o2, · · · , ot|θk) (5.2)

This term is also computed via the forward process.

5.2.2 Step 2: Accumulate the probabilities

If Frame t is the end frame of Level η, maximization over Θ is performed to get the

best-matched HMM at Level η, starting from Frame tη and terminating at Frame

t.

Pbest(tη, t, η) = max
θk∈Θ

Pa(tη, t, η, θk), k = 1, 2, · · · , K (5.3)

The starting frame tη is also a variable. For Level η, it ranges within the scope

tη−1 < tη < t, where tη−1 is the starting frame of Level η − 1. Maximization over

all the possible starting frames tη is performed to obtain Pbest(t, η), which indicates

the largest probability accumulated to Frame t, Level η, regardless of what the

composite HMMs θ1,t1 , θ2,t2 , · · · , θη,tη are and where the starting frames are.

Pbest(tη, η) = max
∀tη

Pbest(tη, t, η), tη−1 < tη < t (5.4)
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Figure 5.1: The probability trellis in level building on HMM

The index of the best-matched HMM is also computed as in Eq.(5.5).

θbest(t, η) = arg max
∀θk∈Θ

Pbest(t, η), k = 1, 2, · · · , K (5.5)

And the starting frame of the best-matched HMM is

Fbest(t, η) = F (t, η, θbest(t, η)) (5.6)

While at Level 1, Pbest(t, η = 1) is obtained via Eq.(5.7) because t1 = 1 is a constant

value.

Pbest(t, 1) = max
∀θk∈θ

Pa(1, t, 1, θk), k = 1, 2, · · · , K (5.7)

In the probability trellis given in Fig.5.1, the indexes and the starting frames of

the best-matched HMMs build the best path, which is referred to as Viterbi path.

In Step 1 mentioned above, Pbest(tη − 1, η − 1), (η ≥ 2) that appears in Eq.(5.1) is

computed using Eq.(5.4).
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5.2.3 Step 3: Backtrack the HMM sequence

If the observation sequence yT is decomposed into η, (η ≤ ηmax) levels, Pbest(T, η)

is the greatest probability for the HMM chain with η reference HMMs. The best-

matched HMM θη,tη = θbest(T, η) at Level η is determined using Eq.(5.5), and the

starting frame of θη,tη , Fbest(T, η), is located using Eq.(5.5). Thus the end frame of

Level η− 1 is Fbest(T, η)− 1. By repeating Eq.(5.5) and Eq.(5.6) until Level 1, the

optimal HMM chain Θη = (θ1,t1 , θ2,t2 , · · · θη,tη) with η HMMs is decoded and the

positions of the HMMs are located.

The level building on HMM method has been applied to identify a selected number

of words and phrases in visual speech. The experimental results are presented later

in Section 5.4.3 and are compared with the connected AdaBoost-HMM classifiers.

5.3 Level building on AdaBoost-HMM classifiers

The experiments conducted in Chapter 3 indicate that AdaBoost-HMM classifiers

provide better accuracy than the conventional ML HMM classifiers on recognizing

individual visemes. In this section, the application of AdaBoost-HMM classifier is

extended by means of level building algorithm to model continuous processes. It is

expected that the connected AdaBoost-HMM classifiers may outperform connected

ML HMM classifiers while modeling and identifying connected-viseme units in

visual speech. Before going into the details of the proposed method, the process

of computing the probability of a sub-sequence by an AdaBoost-HMM classifier is

briefed.

For an AdaBoost-HMM classifier Θk that comprises Lk composite HMMs, the

underlying process of computing the probabilities is depicted in Fig.5.2, where

xτ = (ot+1, ot+2, · · · ot+τ ) is a sub-segment of the sequence yT = (o1, o2, · · · oT ). Note

that yT is an observation of a continuous process and xτ is looked as an observation
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of a constituent element of yT . S0 is a null state indicating the beginning of

xτ and Se is another null state indicating the end of xτ . The composite HMMs

θk
1 , θ

k
2 , · · · θk

Lk
, which are affiliated to Class dk, are connected in parallel as illustrated

in Fig.5.2. For θk
l , the probability scored from Frame t + 1 to t + t′, say P k

l (t′) =

P (ot+1, ot+2, · · · ot+t′|θk
l ), is computed using the forward variables.

P k
l (t′) =

N∑
i=1

αt′(i) (5.8)

where αt′(i) = P (ot+1, ot+2, · · · ot+t′ , st+t′ = Si|θk
l ) and st+t′ is the t′-th state in

(st+1, st+2, · · · st+τ ), which is the state sequence decoded for xτ . The probability of

the sub-sequence xτ given the HMM θk
l is computed by

P (xτ |θk
l ) = P k

l (τ + 1) =
N∑

i=1

ατ (i)P (Se|Si) (5.9)

where P (Se|Si) is the probability of transiting from State Si to the end state Se. To

connect the AdaBoost HMM classifiers to model a continuous process, the critical

problem is to align the composite HMMs so that they begin and end at the same

frame.

Level building of HMMs is carried out to search a chain of AdaBoost-HMM clas-

sifiers Θη = (Θ1,t1 , Θ2,t2 , · · ·Θη,tη) to match the target sequence yT , where Θi,ti ∈
{Θ1, Θ2, · · ·ΘK}. The composite HMMs of an AdaBoost HMM classifier are syn-

chronized with some special processing. Before implementing level building, the

number of constituent elements that appear in yT , or equivalently the number of

levels, denoted by η , is first estimated. We assume that ηmin ≤ η ≤ ηmax. In

addition to η, the durations of the constituent elements are also estimated. For

the constituent element of Class dk, which is modeled by an AdaBoost HMM clas-

sifier Θk, the duration (or number of frames) is assumed to be within the range

[dk
min, d

k
max]. Such an assumption is reasonable in most applications. For example,

if a phoneme is treated as a constituent element, its duration is most likely to be
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Figure 5.2: The underlying process of computing the probabilities by the composite

HMMs of an AdaBoost-HMM classifier

within [0.2s, 0.8s]. It is observed that some prior knowledge about the number

of the levels and the durations of the constituent elements greatly facilitates the

computation.

5.3.1 Step 1: Probabilities computed at the nodes

A probability trellis as shown in Fig.5.3 is constructed. The topological lattice

of the trellis is similar to that given in Fig.5.1. However, the underlying process

of computing the probabilities is different from level building on single HMM. In

Fig.5.3, the nodes at the end of a level are called end nodes because some additional

processing is performed at these locations. The probability trellis is constructed

as follows: starting from Node(1, 1), the accumulated log probabilities of each

composite HMM are computed at each node (including end node). For example,

at Node(t, η), the probability Pa(tη, t, η, θk
l ) is computed for θk

l , where tη is the
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starting frame of Level η. Pa(tη, t, η, θk
l ) is the sum of two entries as follows.

Pa(tη, t, η, θk
l ) = P̄best(tη − 1, η − 1) + log P (tη, t, η, θk

l ) (5.10)

where P̄best(tη − 1, η − 1) is the optimal synthesized accumulated log probability

of the previous η − 1 levels, terminating at Frame tη − 1. Note that the term

“synthesized” is applied to describe P̄best(tη − 1, η − 1), which is different from

Pbest(tη − 1, η − 1) in the level building on single HMMs discussed in Section 5.2.

Computation of P̄best(tη−1, η−1) is given in Step 2. The second term in Eq.(5.10),

P (tη, t, η, θk
l ), is the probability of the sub-sequence (otη , otη+1, · · · ot) scored by θk

l .

P (tη, t, η, θk
l ) = P (otη , otη+1, · · · ot|θk

l ), t− dk
max ≤ tη ≤ t− dk

min (5.11)

P (tη, t, η, θk
l ) is computed using Eq.(5.8). The starting frame of the sub-sequence

tη may vary between t−dk
max to t−dk

min. As a result, (dk
max−dk

min+1) probabilities

have to be computed for θk
l at Node(t, η).

5.3.2 Step 2: Probability synthesizing and HMM synchro-

nizing at the end nodes

If Node(t, η) corresponds to an end node, the probabilities scored by the composite

HMMs are synthesized using Eq.(5.12), which is similar to Decision Strategy 2

presented in Section 4.3.4.

P̄ (tη, t, η, Θk) =
1

Lk

Lk∑

l=1

log (wk
l P (tη, t, η, θk

l )), t− dk
max ≤ tη ≤ t− dk

min (5.12)

where wk
l is the weight assigned to θk

l . In Eq.(5.12), tη also ranges from t − dk
max

to t− dk
min. As a result, (dk

max − dk
min + 1) synthesized log probabilities for Θk are

computed at Node(t, η). The composite HMMs thus start from the same frame

tη and terminate at the same frame t. For each AdaBoost HMM classifier, say

Θk, (k = 1, 2, · · · , K), such an array of probabilities are retained.
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Figure 5.3: Topological lattice of level building on AdaBoost-HMM classifiers

Let P̄a(t, η, Θk) denote the accumulated synthesized log likelihood at Node(t, η),

with the reference model Θk. This entry is computed using Eq.(5.13).

P̄a(t, η, Θk) = max
tη

(P̄best(tη − 1, η − 1) + P̄ (tη, t, η, Θk)) (5.13)

where t − dk
max ≤ tη ≤ t − dk

min. P̄best(tη − 1, η − 1) is the optimal synthesized

log likelihood accumulated to Node(tη − 1, η − 1), regardless of what the decoded

AdaBoost-HMM classifiers are and where the starting frames of the classifiers are.

A general method for computing P̄best(t, η), which is the largest synthesized log

likelihood accumulated to Node(t, η), is the maximization of P̄a(t, η, Θk) over all
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the reference models {Θ1, Θ2, · · ·ΘK}.

P̄best(t, η) = max
Θk

P̄a(t, η, Θk), k = 1, 2, · · · , K (5.14)

At Level 1, we have

P̄best(t, 1) = max
Θk

(P̄ (1, t, η = 1, Θk)), k = 1, 2, · · · , K (5.15)

At any node, P̄a(t, η, Θk) and P̄best(t, η) can be computed in a recursive manner

using Eq.(5.10),(5.13),(5.14),(5.15). Let F (t, η, Θk) denote the starting frame of

P̄a(t, η, Θk) at Level η, we have,

F (t, η, Θk) = arg max
tη

(P̄best(tη−1, η−1)+P̄ (tη, t, η, Θk)), tmin ≤ tη ≤ tmax (5.16)

F (t, η, Θk) is retained as the backpointer for path finding in Step 3. The index of

the best-matched reference model is also retained at Node(t, η).

Θη,tη = Θbest(t, η) = arg max
Θk

P̄a(t, η, Θk), Θk ∈ {Θ1, Θ2, · · · , ΘK} (5.17)

5.3.3 Step 3: Path backtracking

With the above probability trellis, backpointers and classifier indices, the opti-

mal sequence of the AdaBoost-HMM classifiers is backtracked for yT with some

simple processing. At a possible level number η, (ηmin ≤ η ≤ ηmax) and Frame

T being the end frame of Level η, the best-matched reference model at Level η,

Θη,tη = Θbest(T, η), is decoded from Eq.(5.17). Using Eq.(5.16), the optimal start-

ing frame of Level η, F (T, η, Θbest(T, η)) is obtained. The end frame of Level η− 1

thus is F (T, η, Θbest(T, η))−1 and the best-matched reference model at Level η−1,

Θη−1,tη−1 , is decoded by applying Eq.(5.17) again. The above backtracking iter-

ation continues until Level 1, Frame 1 is reached. A sequence of best-matched

AdaBoost HMM classifiers Θη = (Θ1,t1 , Θ2,t2 , · · ·Θη,tη) is determined for yT . The
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log probability of yT scored by this best sequence of classifiers is computed using

Eq.(5.14) and denoted as P̄best(T, η).

Because the number of levels η varies within the range [ηmin, ηmax], a sequence of

reference models Θη = (Θ1,t1 , Θ2,t2 , · · ·Θη,tη) is decoded at every possible value of

η. Thus (ηmax − ηmin + 1) sequences are obtained. Some systems take all these

sequences as the possible pattern candidates while others only require one sequence.

The best sequence of AdaBoost HMM classifiers is obtained by maximizing over

all the possible level numbers as in Eq.(5.18),

Θη
best = arg max

Θη
P̄best(T, η), ηmin ≤ η ≤ ηmax (5.18)

And the optimal number of levels ηbest is obtained from Eq.(5.19)

ηbest = arg max
η

Θη
best (5.19)

5.3.4 Simplifications on building the probability trellis

It is observed from the above steps that only the accumulated probabilities at the

end nodes are necessary for the construction of the optimal reference models. As a

result, the procedures of constructing the probability trellis can be simplified if we

focus on the properties of the end nodes. For example, at the end node Node(t, η),

the probability of the sub-sequence (otη , otη+1, · · · ot) given the composite HMM

θk
l ∈ Θk can be computed using the backward variables. For θk

l , the backward

variable at Frame tη is defined in Eq.(5.20).

βtη(i) = P (otη , otη+1, · · · ot|stη = Si, θ
k
l ) (5.20)

Thus we have,

P (tη, t, η, θk
l ) =

N∑
i=1

(P (stη = Si|stη−1 = S0)bi(otη)βtη(i)) (5.21)
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Figure 5.4: Computation of accumulated probabilities using the backward variables

where S0 is a null state that indicates the start of the sub-sequence. The starting

frame tη of Level η ranges within [t− dk
max, t− dk

min]. The probabilities of the sub-

sequences terminating at Frame t, starting at t − dk
max,t − dk

max + 1, · · · , t − dk
min

given θk
l are computed as depicted in Fig.5.4. In the figure, Se is another null

state indicating the end of the sub-sequence and βτ (i) is abbreviated as βτ , (τ =

t− dmax, t− dmax + 1, · · · , t− dmin).

This approach facilitates the computation of the probability trellis in two aspects:

1.) Instead of computing (dk
max − dk

min + 1) probabilities for each node, it is only

necessary to compute the same number of accumulated probabilities at the end

nodes.

2.) The computational load of getting P (tη, t, η, θk
l ) in Step 1 is greatly lessened as
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the backward variable βtη(i) is computed in a recursive manner [99]. As manifested

in Eq.(5.22),

βtη−1(i) =
N∑

j=1

P (stη = Sj|stη−1 = Si)bj(otη)βtη(j) (5.22)

βtη(j) is used in the computation of βtη−1(i). Only a small number of additional

computations are necessary to obtain βtη−1(i).

The application of the backward variables facilitates the computation of P (tη, t, η, θk
l )

at the end nodes. Other probabilities, such as P̄a(t, η, Θk
l ) and P̄best(t, η), are com-

puted in a similar manner as in Step 2, and the optimal sequence of AdaBoost

classifiers is decoded using the strategy given in Step 3.

The probability synthesizing rule applied to the proposed method is Decision Strat-

egy 2 presented in Section 4.3.4. Decision Strategy 3 can also be adopted to build

the probability trellis. The procedures of level building using Strategy 3 are similar

to those using Strategy 2, and are thus not reiterated in the thesis.

5.4 Word/phrase modeling using connected viseme

models

5.4.1 Connected viseme models

Theoretically speaking, a word, phrase and sentence can be partitioned into a

sequence of visemes. However, it is not easy to automate the process because the

transitions between the visemes are always ambiguous in natural speech and the

durations of the composite visemes of a word are difficult to determine. For the

proposed level building methods, some probabilistic measures are applied to deal

with the uncertainties such as the durations of the constituent elements and the

transitions between the constituent elements. It thus provides a fuzzy approach of
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decomposing the words in visual speech.

The viseme models applied to analyze the target words/phrases are the ML viseme

models (θ2 of Speaker 1) mentioned in Section 2.4.3 and the AdaBoost viseme mod-

els trained in Section 4.4.2. For both kinds of viseme models, context-dependent

samples are adopted as the training samples. Note that the state transition matrix

of a composite HMM if of the form that given in Eq.(2.15) and State S4 indicates

the end of viseme production. While level building the HMMs, S4 is replaced with

the initial state (S1) of another HMM. The underlying assumption is that every

HMM has equal probability, a34 = P (S4|S3), to transit to any other HMMs. For the

limited number of words/phrases to be identified in our experiments, this assump-

tion does not add much error to the recognition results. In natural visual speech,

however, this assumption does not hold because some viseme transitions, e.g. /b/

to /A:/ and /k/ to /e/, are more likely to occur than other viseme transitions

such as /b/ to /b/ and /s/ to /tS/. The transitions between the viseme models in

large-vocabulary cases should thus be adjusted according to the phonetic, lexical

and semantic rules.

For the experiment, ten words and phrases listed in Table 5.1 are selected for recog-

nition/decomposition. These words/phrases consist of different visemes, which are

also given in the table. The same speaker (Speaker 1) as mentioned in Section 2.4 is

asked to produce each word/phrase 100 times. RGB to HSV conversion, template

matching, feature extraction and vector quantization as mentioned in Section 2.3

are carried out for the videos to obtain the corresponding sequence of codes.

The number of the composite visemes, or equivalently the level number, of a word or

phrase can be estimated based on the duration of the word/phrase and the probable

duration of visemes shown in Table 5.1. For example, if a word production lasts

for 1.2 second, empirically the number of the composite visemes, η, is assumed to

be from 2 to 5. Level building on the AdaBoost viseme models is then carried
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Table 5.1: Words and phrases selected for recognition

Words/ Viseme Spelling Level No.
Phrases [ηmin, ηmax]

zoo /z/+/U/ [1, 5]

right /r/+/A:/+/t/ [2, 5]

deck /d/+/e/+/k/ [1, 5]

smith /s/+/m/+/I/+/T/ [2, 7]

banana /b/+/e/+/n/+/A:/+/n/+/A:/ [3, 9]

we are /w/+/I/+/A:/ [1, 6]

use up /U/+/z/+/A:/+/p/ [2, 7]

on my way /Q/+/m/+/A:/+/w/+/e/ [3, 9]

around the world /A/+/r/+/Q/+/z/+/U/+/e/+/d/ [4, 10]

Table 5.2: The estimated durations of the visemes

Viseme No. Duration(sec.) Viseme No. Duration(sec.)
[dmin, dmax] [dmin, dmax]

1 p, b, m [0.1, 0.6] 2 f, v [0.1, 0.7]

3 T, D [0.2, 0.8] 4 t, d [0.1, 0.7]

5 k, g [0.1, 0.7] 6 tS, dZ, S [0.3, 0.8]

7 s, z [0.2, 0.8] 8 n, l [0.1, 0.6]

9 r [0.1, 0.6] 10 A: [0.2, 0.8]

11 e [0.1, 0.6] 12 I [0.1, 0.8]

13 Q [0.2, 0.8] 14 U [0.2, 0.8]

out within the range ηmin ≤ η ≤ ηmax. In addition to the level number η, the

durations of the constituent elements (visemes) are also used in the computation

of the accumulated probabilities. They are estimated and presented in Table 5.2.
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Using the above information, a sequence of vectors indicating word/phrase pro-

duction is decomposed into several sequences of visemes .

5.4.2 Performance measures

The accuracy of recognition is evaluated using the following two performance mea-

sures:

Measure 1 (µ1): It is assumed that the number of visemes appearing in the

target word/phrase is known, say η. A correct decomposition is made if the de-

coded viseme sequence Θη
best is identical to the actual viseme spelling of the target

word/phrase. For the 100 samples of a given word/phrase, the number of correct

decomposition is counted, say U1. The accuracy rate is computed as in Eq.(5.23).

µ1 =
U1

100
(5.23)

Measure 2 (µ2): This measure is used when the number of visemes appearing

in the target word/phrase is not known. As the level number η ranges from ηmin

to ηmax, (ηmax-ηmin+1) sequences of visemes are decoded by selecting different

values for η. The best Θη
best is then identified using Eq.(5.18). Θη

best is regarded as

a correct decomposition if it is identical to the true viseme spelling of the target

word/phrase. The number of correct decomposition is counted for the 100 samples,

say U2, and the accuracy rate µ2 is computed using Eq.(5.24).

µ2 =
U2

100
(5.24)

Clearly, the information available for the second performance measure is less than

that for the first measure. In practice, both measures are useful. Some systems

require only one definite decomposition result while others may require several

decoded sequences, i.e. the sequences of visemes that are decoded with different

level numbers.
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Table 5.3: Decomposition accuracy of the two viseme models

ML AdaBoost
Word/Phrases viseme model viseme model

µ1 µ2 µ1 µ2

zoo 63% 35% 67% 57%

right 39% 28% 43% 40%

deck 27% 17% 31% 17%

smith 32% 20% 30% 25%

transit 25% 15% 33% 26%

banana 34% 24% 42% 25%

we are 59% 40% 58% 51%

use up 32% 26% 41% 30%

on my way 18% 15% 24% 18%

around the world 10% 4% 16% 8%

5.4.3 Experimental results

Comparison of the performance of level building on AdaBoost viseme models and

lon ML viseme models (traditional approach) is made. The accuracies of the two

approaches using Measure 1 and Measure 2 are summarized in Table 5.3.

The results indicate that words/phrases decomposition using connected AdaBoost

HMMs gives better accuracy than that using connected single HMMs for both

measures. An AdaBoost viseme model is capable of better covering the distribution

of a viseme than an ML viseme model. When applying level building algorithm

to model words/phrases, the connected AdaBoost viseme models may also better

cover the samples of a given word/phrase than the connected ML viseme models.

It is shown in Table 5.3, even the correct level number is selected, the accuracy

of recognition is still low, the highest accuracy attained is 67%. The accuracy of
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recognition also decreases with increasing duration of the word/phrase to be recog-

nized. This is due to the accumulation of error of viseme decoding. The accuracy of

recognition may be increased by using a combination of methods including natural

language processing.

5.4.4 Computational load

The computational load involved is estimated as a measure of complexity of the

proposed method. An estimate is made based on the following set of parameter

values. The composite viseme models are assumed to be 3-state 128-symbol left-

right HMMs. Typical length of target words are assumed to be 70 frames (or 1.4s

of duration), level number of words are within 2 to 7, and length of visemes within

5 to 35 frames (or equivalently 0.1-0.7s of duration).

The 14 visemes listed in Table 5.2 are modeled by AdaBoost HMM classifiers. If

each AdaBoost viseme model comprises 20 HMMs, level building is carried out

with a total of 20 × 14 = 280 HMMs. At a possible end node, say Node(t, η),

2 × 4 = 8, (2×state number) multiplications are carried out to compute the

backward variable βtη(i) using Eq.(5.22). Note that the state number is 4 be-

cause a null state S0 indicating the beginning of the sub-sequence is also in-

volved. The starting frame of the sub-sequence may range from t − dmax to

t − dmin. Therefore, about 8 × (35 − 5 + 1) = 248, (8 × (dmax − dmin + 1))

multiplications are carried out to compute the probabilities of the sub-sequences

given a composite HMM using the simplified approach as mentioned in Section

5.3.4. Thus, about 248 × 280(total number of HMMs) ≈ 7.0 × 104 multiplica-

tions are needed for all the composite HMMs. Computational loads required for

other processes such as tracking the best path, matching the reference models and

finding the starting frames are light compared to this number and they are ne-

glected. The computational load of building the probability trellis is thus about
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70(frame number) × 7.0 × 104 ≈ 4.9 × 106 multiplications. Such computational

load can be considered as modest for modern processors.

It should be noted that the computational load is very much dependent on the

duration of the target word/phrase. A target sequence of longer duration requires

more computation as a larger probability trellis has to be built. For a long sequence,

such as the production of a sentence, it is a good practice to partition the long

sequence into several short sequences with each of them comprising fewer visemes.

Level building is then performed on the short sequences. This proves to be faster

and more accurate than level building on the long sequence. Another factor that

influences the computational load is the durations of the constituent elements. In

the example mentioned above, if the lengths of the visemes are assumed to have a

range of 1-70 frames (or equivalently 0.02-1.4s of duration) instead of 5-35 frames,

approximately 8× (70−1+1) = 560 multiplications would be required to compute

the probabilities of the sub-sequences given a composite HMM. The computational

load of building the probability trellis is then about 560 × 280 × 70 ≈ 1.1 × 107

multiplications, which is twice the number of computations for the example given

above. As such, a good estimation of the durations of the constituent elements will

greatly lessen the computational load.

5.5 The Viterbi Matching Algorithm for Sequence

Partition

For the level building algorithms presented in Section 5.2 and 5.3, a longer sequence

is decompose into a chain of constituent elements and each constituent element is

modeled by an ML HMM classifier or an AdaBoost-HMM classifier. Such process-

ing may be computationally expensive if an HMM consists of several states. In this

section, a simplified approach for sequence partition is proposed with exploration



5.5 The Viterbi Matching Algorithm for Sequence Partition 115

of the Viterbi method.

5.5.1 Recognition units and transition units

Recall the training of the viseme models presented in Section 2.4.2 and 2.4.3,

the states of an HMM are configured to align with the initial phase, articulation

phase and end phase of viseme production. After implementing the Baum-Welch

estimation, the states of the trained ML viseme model also demonstrate good

consistency with the three phases. As mentioned in Section 2.4.2, the articulation

state of an HMM, which corresponds to the articulation phase of the viseme it

models, is the key factor for recognition because the discriminative features of the

viseme chiefly lie here. On the other hand, the initial state and the end state of an

HMM, which correspond to the initial phase and end phase of the target viseme, are

not so prominent for discrimination because they are transitional states and may

be distorted by adjoining visemes. For the strategy presented in this section, the

articulation states of the HMMs of fourteen visemes are referred to as recognition

units and are segmented out of the ML viseme models.

The ML viseme models mentioned in Section 2.4.3 are 3-state 128-symbol discrete

HMMs and the second state (S2) is the articulation state. A recognition unit is

thus built up with the following components:

1.) The symbol output array:

B = [b1 b2 · · · bM ]1×M (5.25)

where bi, (i = 1, 2, · · · ,M) is the probability of outputting symbol Oi in the artic-

ulation state and M is the number of symbols. In this instance, bi = P (Oi|S2) and

M = 128.
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Table 5.4: Transitions between the visemes

Mouth shapes Mouth shapes (end with)

(starting with) mouth opened mouth closed lips stretched mouth stretched
forward

mouth opened /h/+/ai/ /ai/+/k/ /h/+/I/ /A:/+/u/

mouth closed /t/+/A:/ /d/+/e/ /t/+/ei/ /d/+/au/

lips stretched /l/+/ai/ /ei/+/t/ /l/+/I/ /th/+/o/

mouth stretched /p/+/A:/ /u/+/k/ /o/+/I/ /b/+/u/
forward

2.) The state transition matrix:

A =


 a 0

0 1− a




2×2

, 0 ≤ a ≤ 1 (5.26)

A recognition unit has the probability a to repeat itself and the probability 1− a

to transit to another unit. Because the state transition matrix of an ML viseme

model has the form A =




a11 a12 0 0

0 a22 a23 0

0 0 a33 a34

0 0 0 1




, thus a = a22.

The transitions between visemes are also studied for the proposed strategy. A num-

ber of adjoining visemes are segmented from the word productions. For example,

/l/+/I/ is extracted from the production of lip. The approximate transition phase

is manually extracted from the image sequence in the same manner as viseme seg-

mentation mentioned in Section 2.4.2. The transitions between visemes are roughly

clustered into 16 categories as illustrated in Table 5.4.

Four basic mouth shapes are used to describe the viseme productions. As a result,

there are totally 16 transitions between them. The examples given in Table 5.4
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indicate the transitions between two visemes with designated lip features. For ex-

ample, /l/+/ai/ in column 2, row 4, is the transition from /l/ (with lips stretched)

to /ai/ (with mouth opened). For each transition state, a number of samples are

collected to learn its statistical features. For example, the training samples of the

transition from state mouth-opened to state lips-stretched include the transition

phases between /l/ and /ai/, /n/ and /au/, /l/ and /A:/. The statistical features

of the transitions are obtained by counting and averaging the symbols appeared in

the training samples. If there are a total number of M ′ symbols appeared in the

training samples and symbol Oj appears T (Oj) times, the probability distribution

coefficient of Oj is computed via Eq.(5.27).

b′j =
T (Oj)∑M ′
j=1 T (Oj)

(5.27)

The probability function obtained in this way is applied to model the transition

between visemes and are referred to as transition units. In addition to b′j, a param-

eter a′ is also employed to describe the probability of the transition unit repeats

itself and 1− a′ indicates the probability of the transition unit transits to another

unit. Like the recognition unit mentioned above, a transition unit is also comprised

of two components.

1.) The symbol output matrix:

B′ = [b′1 b′2 · · · b′M ]1×M (5.28)

where b′i, (i = 1, 2, · · · , M) is the probability of outputting symbol Oi in the tran-

sition unit and M = 128 in this instance.

2.) The state transition matrix:

A =


 a′ 0

0 1− a′




2×2

, 0 ≤ a′ ≤ 1 (5.29)

The entries a′ and 1− a′ are introduced to build state chains to model continuous

processes. Setting of the value of a′ is problem-dependent. If the duration of the
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Figure 5.5: The recognition units set and transition units set of the database Θ

transition state of the target process is long, greater value of a′ should be used,

otherwise, smaller value is chosen. For the experiments conducted in this thesis,

we set a′ = 0.5 ∼ 0.8.

The K recognition units are collected to build the recognition unit set and the K ′

transition units are collected to build the transition unit set as depicted in Fig.5.5.

The two sets build the database Θ. The recognition units in Θ are numbered as

θ1 to θK and the transition units are numbered as θK+1 to θK+K′ . With such a

database, recognition of a continuous process is the process of decoding a chain of

states for the target process that the recognition units and transition units appear

alternately, which is depicted in Fig. 5.6.

Assume that xT = (o1, o2, · · · , oT ) is a T -length observation sequence indicates the

production of an unknown word or phrase in visual speech. A probability trellis

as depicted in Fig. 5.7 is built for xT with the approach described below.
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Figure 5.6: The state chain decoded for the target process
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Figure 5.7: The probability trellis for implementing the Viterbi matching algorithm

5.5.2 Initialization

Assume that the sequence starts from a transition state, e.g. from the mouth

is closed, the first column of the probability trellis, Node(1,1), Node(1,2), . . . ,

Node(1, K + K ′), is computed via Eq.(5.30),

Pa(1, i) =





0, 1 ≤ i ≤ K

πib
′
i(o1), K < i ≤ K + K ′

(5.30)

where b′i(o1), (1 < i ≤ K + K ′) is the probability of outputting o1 given the i-th

transition unit and πi is the probability that the i-th unit (recognition unit or

transition unit) is the first state in the state chain. Because xT is assumed to start
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from a transition state, values of uniform distribution are applied to configure πi

for the transition units. Thus,

πi =





0, 1 ≤ i ≤ K

1/K ′, K < i ≤ K + K ′
(5.31)

5.5.3 Forward process

In such a probability trellis, a unit will either repeats itself or transits to a unit

of another set. If the unit at Node(t, i) is a recognition unit θi, (1 ≤ i ≤ K), the

(t− 1)-th state is either the same recognition unit or a transition unit. In the case

of recognition unit, the accumulated probability to Node(t, i), P 1
a (t, i), is computed

via Eq.(5.32).

P 1
a (t, i) = Pbest(t− 1, i)aibi(ot), 1 ≤ i ≤ K (5.32)

where Pbest(t − 1, i) is the largest accumulated probability to Node(t − 1, i) and

bi(ot) is the probability of outputting ot given θi, (1 ≤ i ≤ K). The (t− 1)-th state

can also be a transition unit θj, (K < j ≤ K + K ′). In this case, the accumulated

probability P 2
a (t, j) is computed via Eq.(5.33).

P 2
a (t, i) = Pbest(t− 1, j)(1− a′j)bi(ot), K < j ≤ K + K ′ (5.33)

where Pbest(t − 1, j) has the same meaning as in Eq.(5.32) and a′j is the state

transition coefficient of θj, (K < j ≤ K + K ′). Maximization over θi and θj is

performed to get the largest accumulated probability at Node(t, i).

Pbest(t, i) = max[P 1
a (t, i), P 2

a (t, j)], 1 ≤ i ≤ K, K < j ≤ K + K ′ (5.34)

Similarly, if the unit at Node(t, i) is a transition unit θi, (K < i ≤ K + K ′), the

(t − 1)-th state may be a recognition unit θj and the accumulated probability is

computed via Eq.(5.35).

P 1
a (t, j) = Pbest(t− 1, j)(1− aj)b

′
i(ot), 1 ≤ j ≤ K (5.35)
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where b′i(ot) is the probability of outputting ot given θi, (K < i ≤ K + K ′) . The

(t−1)-th state may also be the same transition unit. In this case, the accumulated

probability is computed via Eq.(5.36).

P 2
a (t, i) = Pbest(t− 1, i)a′ib

′
i(ot), K < i ≤ K + K ′ (5.36)

The largest accumulated probability at Node(t, i) is obtained via Eq.(5.37).

Pbest(t, i) = max[P 1
a (t, j), P 2

a (t, i)], 1 ≤ j ≤ K, K < i ≤ K + K ′ (5.37)

At each node of the probability trellis, the accumulated probabilities are computed

by repeating Eq.(5.32)-(5.37). This process is referred to as the forward process.

5.5.4 Unit backtracking

The probability trellis is finalized at Node(T, 1), Node(T, 2), . . . , Node(T,K +K ′).

The best-matched state sequence is obtained by backtracking the probability trellis.

At time T , the optimal unit is decoded using Eq.(5.38).

θbest(T ) = arg max
θi

[Pbest(T, i)], 1 ≤ i ≤ K + K ′ (5.38)

where θbest(T ) ∈ {θ1, θ2, · · · , θK+K′}. If the target sequence is assumed to end with

a transition unit, the reference unit is decoded within the range of K < i ≤ K+K ′,

i.e.

θbest(T ) = arg max
θi

[Pbest(T, i)], K ≤ i ≤ K + K ′ (5.39)

Similarly, if the target sequence is assumed to end with a recognition unit, the ref-

erence unit θbest(T ) is searched within the set of recognition units {θ1, θ2, · · · , θK}.
If the decoded unit at time T is a recognition unit, i.e. θbest(T ) = θi(1 ≤ i ≤ K), at

time T−1, the reference unit θbest(T−1) is searched within {θi, θK+1, θK+2, · · · , θK+K′}.
Let

Pmax(T − 1, j) = max
j

[Pbest(T − 1, j)], K < j ≤ K + K ′ (5.40)
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we have,

θbest(T − 1) =





θi, if Pbest(T − 1, i) > Pmax(T − 1, j)

argθj
[Pmax(T − 1, j)], otherwise

(5.41)

If the decoded unit at time T is a transition unit, i.e. θbest(T ) = θi, (K < i ≤
K + K ′),the reference unit at time T − 1, θbest(T − 1), is searched within the set

{θ1, θ2, · · · , θK , θi}. Similarly, we define

Pmax(T − 1, j) = max
j

[Pbest(T − 1, j)], 1 ≤ j ≤ K (5.42)

The optimal unit is also decoded using Eq.(5.42). Note that K < i ≤ K + K ′ and

1 ≤ j ≤ K in this case.

The above backtracking process iterates until the first column of the probabil-

ity trellis is reached and a sequence of transition units and recognition units

θbest(T ), θbest(T − 1), · · · , θbest(1) are decoded. If two adjoining units are the same,

they are combined into one unit as they model the same viseme or transition state.

In this way, η units (θ1,t1 , θ2,t2 , · · · , θη,tη), (θi,ti ∈ {θ1, θ2, · · · , θK+K′}), as depicted

in Fig.5.6 are decoded for xT .

For the proposed method, the recognition units and transition units are accumu-

lated to build the probability trellis. The process is similar to the Viterbi algorithm

for decoding hidden states of HMM [99]. As a result, this method is referred to as

Viterbi matching algorithm for sequence partition. The approach differs from the

level building algorithm in two aspects. First, in level building algorithm, “level”

is employed to delimit a viseme, i.e. to determine where a viseme production

starts and where it stops, while in Viterbi algorithm, there is no “level” defined

for the probability trellis. The start and end of viseme production are identified

by the transitions between recognition units and transition units. Second, in the

level building algorithm, several HMM chains can be decoded by selecting different

level numbers, while in the proposed algorithm, only one sequence of speech units
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are decoded. The number of visemes of the target sequence is determined by the

number of recognition units that appear in the decoded sequence. As a result,

the proposed Viterbi algorithm should not be applied to the situation when the

number of composite visemes of the target sequence is known.

The Viterbi algorithm has the advantages of simplification of computation and

economy of data storage. At Node(t, i), for example, only 1+K ′ (if θi is a recogni-

tion unit) or 1 + K (if θi is a transition unit) probabilities are computed with the

proposed Viterbi approach while N×K probabilities, where N is the state number

of the ML HMM classifiers, have to be computed with the level building method.

In addition, the starting frames and model indices of the best-matched model are

not necessary to be stored at each node for the proposed Viterbi method, while

these values have to be saved for the level building method as they are used for

the computation of the probabilities of subsequent nodes.

5.6 Application of the Viterbi approach to visual

speech processing

The performance of the proposed Viterbi method is first assessed with experiments

on word/phrase partition. A number of words/phrases as illustrated in Table 5.5

are selected for recognition/decomposition. While decoding the speech units with

the Viterbi approach, the target word/phrase is assumed to start and end with

transition units. Thus the recognition units are (θ2,t2 , θ4,t4 , · · · , θη−1,tη−1) and η is

an odd number. If the target word consists of k visemes, a correct decomposition

is made if it satisfies: 1.) the number of the recognition units η−1
2

= k and

2.) the recognition units (θ2,t2 , θ4,t4 , · · · , θη−1,tη−1) are identical to the k composite

visemes of the target word. For the samples of the selected words and phrases, the

number of correct recognition/decomposition is counted and the accuracy rate µ2
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Table 5.5: Recognition/decomposition accuracy of the words and phrases

Words/Phrases Accuracy rate

Level building method: µ2 Viterbi method: µ2

zoo 35% 17%

lip 31% 32%

with 41% 35%

black 22% 27%

transit 15% 6%

use up 26% 33%

on my way 15% 3%

around the world 4% 0%

is computed via Eq.(5.24).

5.6.1 Experiment 1

In the first experiment, 100 samples are drawn for each testing word/phrase in

Table 5.5. The accuracy rate (µ2) is computed via Eq.(5.24). The accuracy rates

of the ML viseme classifiers (µ2) are also listed in Table 5.5 for comparison.

The experimental results indicate that the accuracy of the proposed Viterbi algo-

rithm is lower than that of the level building on ML HMMs. The Viterbi approach

focuses on the transitions between visemes, while for the word or phrase produc-

tions given in Table 5.5, the transition phases are usually ambiguous. Therefore,

the recognition units are difficult to detect from the target words using the Viterbi

method. The level building algorithm, on the other hand, is not so much depen-

dent on the transitions for recognition/decomposition, and thus performs better

than the proposed Viterbi approach.
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Table 5.6: Recognition/decomposition accuracy of connected digits

Connected digits Accuracy rate

Level building method: µ2 Viterbi method: µ2

1-3 88% 80%

2-4-6 74% 74%

5-9-7-9 62% 66%

0-0-8-8 70% 74%

1-2-3-4-5 42% 56%

9-8-7-6-5-4 28% 22%

5.6.2 Experiment 2

In the second experiment, the visual speech units to be identified are connected dig-

its as illustrated in Table 5.6. The speaker is asked to produce each digit-sequence

with clear intervals between adjoining digits. For example, 0-3-5 is articulated as

“zero, three, five”. 50 samples of each digit-sequence are drawn to be partitioned

into a sequence of digit models using the level building algorithm and the proposed

Viterbi algorithm.

Like the viseme models, the digit models used in the experiment are 3-state 128-

symbol left-right discrete HMMs and are configured according the initial phase,

articulation phase and end phase of digit productions. The training data are a

number of context-dependent digit samples. After training the HMMs with the

Baum-Welch estimation, the articulation phases are segmented to build the set of

recognition units. For the closed-set of ten digits, it consists of ten recognition

units. The set of the transition units comprises 16 units as given in Table 5.4.

The accuracy rates of the Viterbi algorithm and level building method, which are

computed via Eq.(5.24), are given in Table 5.6.
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It is observed that the Viterbi approach performs almost equally well for digit

partition as the level building approach. The sequences of digits, unlike the

words/phrases in Experiment 1, have clear intervals between component digits.

And the intervals may be well modeled by the transition units. As a result, the

recognition accuracy in Experiment 2 is higher than that in Experiment 1 when

the number of composite recognition units is the same for the target sequences.

The accuracy of recognition/decomposition decreases as the number of digits in

the target sequence increases. This situation applies to both the level building ap-

proach and the Viterbi approach because the error accumulates with the increment

of the length of the target sequence.

5.6.3 Computational load

The computational load of the Viterbi approach is also compared with that of

the level building approach. If a sample of the production of “2-4-6” lasts for

2.5sec and the video clip is sampled at 50 frames per second, the probability trellis

has 125(frames) × 26(number of units) = 3250 nodes. At each node, 11 (for a

recognition unit) or 17 (for a transition unit) probabilities are computed. About

(11 + 17)/2 × 3250 = 4.55 × 104 probabilities have to be computed to build such

a probability trellis. For the level building on HMMs approach, the probability

trellis is comprised of 125(frames) × 4(state number) = 500 nodes. At each node,

4(state number) × 10(number of HMMs) × 10(state duration) = 400 probabilities

have to be computed. The total number of probabilities is 400 × 500 = 2 × 105.

The computational load of the Viterbi approach is less than one-fourth of the level

building approach. As a result, the implementation of Viterbi matching is much

faster than that of the level building method.
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5.7 Summary

The approaches discussed in this chapter serve as a link between the recognition of

constituent elements and the recognition of continuous processes. The level build-

ing strategy is studied for this purpose. Level building on HMM is an exhaustive

means of searching a sequence of HMMs to match a target sequence. The key point

of this method is the construction of a probability trellis that reveals the develop-

ment of HMM modeling. In this chapter, level building on ML HMM classifiers is

discussed first; following that, the procedures of level building on AdaBoost-HMM

classifiers are given in detail.

The level building on ML HMM classifiers and AdaBoost-HMM classifiers have

been applied to word/phrase partition in visual speech. For the experiments per-

formed in this chapter, a number of word/phrases are decomposed into sequences of

ML viseme models or AdaBoost viseme models with the proposed strategies. The

accuracy of the two approaches is compared and the results indicate that the target

word/phrases can be more accurately recognized/decomposed with the connected

AdaBoost-HMM classifiers than using the connected ML HMM classifiers.

A simplified approach for partitioning continuous process called Viterbi matching

algorithm is also presented in this chapter. This method employs some specially

configured recognition units and transition units to decode the target sequence.

If the transition units and recognition units are looked as HMMs with only one

state, the Viterbi approach is essentially level building on these special HMMs. The

Viterbi approach is featured with economy of computational load and data storage.

The experiments of recognizing/decomposing connected digits indicate that this

approach is almost equal effective as level building on ML HMM classifiers.



Chapter 6
Other Aspects of Visual Speech

Processing

In previous chapters, the approaches of recognizing visemes and words/phrases in

visual speech are presented. These are the main parts of our study. In this chapter,

other problems of visual speech processing are discussed, which include tracking

of lip features in 3D surface and mapping of viseme productions between different

speakers. The solution to these problems may extend the applicability of a visual

speech recognition system to unfavorable conditions.

6.1 Capture lip dynamics using 3D deformable

template

The performance of a visual speech processing system relies heavily on the ex-

tracted features of visual speech. For the viseme classifiers mentioned in Chapter

2, 3 and 4, if the extracted geometric features cannot well reveal the actual lip

shape, the performance of the classifiers will degrade greatly. In our experiment,

128
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Figure 6.1: The head of the speaker may rotate during speech.

the video clips are processed by means of RGB to HSV conversion, image thresh-

olding and template matching as mentioned in Section 2.3. In most cases, the lip

area can be accurately segmented with these strategies and the extracted features

can well indicate the lip shapes recorded in the video clips. However, as these

approaches only attempt to extract information out of the raw images, they can-

not correct the error caused by the raw image, such as the changes of the filming

condition or the variations of the filming objects. In real world scenario, the head

of the speaker may shift or rotate during speech, which is depicted in Fig.6.1.

To guarantee the performance of a visual speech processing system, the influence

caused by such variations should be eliminated.

Recall the data acquisition strategy mentioned in Section 2.1, the filming condition

is under control such that the positions of the camera and the speaker are kept

fixed and the head of the speaker is stable either. The speaker in this situation

is a cooperative target/speaker and the data collected in this way are referred to

as ideal data. The viseme classifiers and word classifiers presented in Chapter 2,

3, 4 and 5 can only work on such ideal data. The filming restrictions imposed

to the speaker can eliminate the error caused by the relative movement between

camera and the speaker. However, these measures are not realistic for real-world

visual speech processing. The desired approach is to convert video samples that are

filmed in any condition into ideal data. In this chapter, the approach for solving

this problem is presented.
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Figure 6.2: The 3D lip templates adopted in the system

For the proposed strategy, the filming condition is not as strict as that in filming

a cooperative speaker. Only the distance between the camera and speaker is kept

unchangeable while the head of the speaker is free to rotate during speech. The

speaker in this situation is referred to as a non-cooperative target/speaker. The

viseme productions of the non-cooperative speaker are recorded as video clips. The

video clips are partitioned into sequences of images, the approximate lip region is

segmented and the RGB factors of the image are converted to HSV factors following

the strategies given in Section 2.3.

6.1.1 3D deformable template

In Section 2.3.2, deformable template is adopted to capture lip dynamics from the

processed hue images. However, this is a 2D approach such that the images to

be processed should be the exact frontal projection of the speaker. If the head

positions are not uniform in the images, the 2D template is not effective even if

the lip region is properly located and segmented. To solve this problem, 3D lip

tracking approaches have been carried out as reported in [35][59][89]. In this thesis,

a 3D deformable template and a novel tracking strategy are proposed.

As shown in Fig.6.2, the lip template is affixed to a 3D ball surface. The frontal
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(a) (b) 

Figure 6.3: (a) Frontal view of the 3D lip template (standard template) (b) The

rotation angles of the 3D lip template

projection of the 3D template is exactly the 2D template used in Section 2.3.2,

which is also comprised of eight Bezier curves as shown in Fig.6.3(a). Note that

the points in the small circles are the control points of the template. The 3D lip

template may rotate around three axes. If the frontal view of the lip [Fig.6.3(a)]

is defined as the standard template, the rotation angles of a template are defined

as the angles between the axes of the target template with respect to the planes of

the standard template. For example, θ1 in Fig.6.3(b) is the angle between x-axis

(target template) and x′−o−z′ plane (standard template), θ2 is the angle between

y-axis and x′−o−y′ plane and θ3 is the angle between z-axis and y′−o− z′ plane.

For the 3D lip template discussed in this section, θ1, θ2 and θ3 are used as the

position parameters of the template.

A 3D lip template thus consists of a 2D template, which is determined by 16

control points, and three rotation angles θ1, θ2 and θ3. For simplification, the
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tongue template mentioned in Section 2.3.2 is not used in the 3D templates. The

processed hue images indicating certain viseme production are put through the

following lip tracking strategy to extract geometric features.

6.1.2 Lip tracking strategy

The energy function of the 3D template is defined the same as the energy function

of the component 2D template. Mathematically,

E3D = E2D = c1Elip + c2Eedge + c3Ehole + c4Einertia (6.1)

where Elip, Eedge, Ehole and Einertia are component energy functions defined in

Eq.(2.1)∼(2.4). By selecting different values for c1, c2, c3 and c4, the control points

of the template are adjusted to minimize the energy function E3D. This template

matching strategy is discussed in detail in [93] and is applied to 2D lip tracking in

Section 2.3.2. To apply this algorithm to 3D lip tracking, the coordinates of the

control points of 3D template are mapped to 2D plane using Eq.(6.2).


 x2D

y2D


 =


 − cos θ1 cos θ3 sin θ2 − sin θ1 cos θ3 sin θ2 sin θ3 sin θ2

cos θ1 sin θ3 sin θ1 sin θ3 cos θ3







x

y

z




(6.2)

where (x, y, z) is the coordinates in 3D template and (x2D, y2D) is the corresponding

coordinates in the frontal-view plane. Note that the frontal-view is defined as the

plane parallel to y−o− z plane of the standard template as depicted in Fig.6.3(a),

the y-axis of the 3D template corresponds to the x2D-axis and the z-axis of the

3D template corresponds to the y2D-axis of the 2D template mentioned in Section

2.3.2. After carrying out coordinate transformation, the base template match-

ing algorithm for lip tracking is then performed on the mapped 2D coordinates

(x2D, y2D).
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(a) (b) 

Figure 6.4: (a) The segmented lip region (b) A standard 3D template is configured

to match the lip region.

The input hue image sequence is numbered as Frame 1, Frame 2, . . . , Frame T.

Initially, a 3D template with randomly configured rotation angles θ1, θ2 and θ3 is

selected to fit the segmented lip region at Frame 1 [see Fig.6.4(a)]. The control

points of the template are adjusted to minimize the energy function E3D using the

base template matching algorithm. In Fig.6.4(b), for example, a standard template

(θ1 = θ2 = θ3 = 0) is matched against the lip region. The initial rotation angle

settings may not be correct but will be updated in subsequent tracking procedures.

Step 1: Compute the distance between 3D templates

The rotation angles of the 3D template take discrete values, for example, θ1, θ2, θ3 =

N × ∆θ(N = 0,±1,±2, · · · ). At time t, if Γi
t is one of the fitted templates with

rotation angles Θi
t = (θ1, θ2, θ3). At time t + 1, K closest angle settings Θ1

t+1 =

(θ1
1, θ

1
2, θ

1
3), Θ2

t+1 = (θ2
1, θ

2
2, θ

2
3),. . . , ΘK

t+1 = (θK
1 , θK

2 , θK
3 ) are obtained from Eq.(6.3).

Θi
t+1 = argΘ[‖Θi

t+1 −Θt‖ < D0] (6.3)

where ‖Θi
t+1 − Θt‖ indicates the Euclidean distance between Θi

t+1 and Θt, and

D0 is a predefined threshold. For each of the K angle settings at time t + 1,

the corresponding template is matched against the (t + 1)-th hue image using the
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base template matching algorithm. At time t, if K matched templates are Γ1
t ,

Γ2
t , . . . , ΓK

t that have different rotation angles Θ1
t , Θ2

t , . . . , ΘK
t , there will be K2

templates at time t+1 obtained via Eq.(6.3) (while some of the templates may have

same rotation angles), denoted as Γ̄1
t+1, Γ̄2

t+1, . . . , Γ̄K2

t+1. The Euclidean distance of

rotation angles between one of the K2 templates at time t + 1, say Γ̄j
t+1, and Θi

t is

given in Eq.(6.4).

‖Θj
t+1 −Θi

t‖ =

√
(θj

1 − θ1)2 + (θj
2 − θ2)2 + (θj

3 − θ3)2 (6.4)

where Θj
t+1 = (θj

1, θ
j
2, θ

j
3) is the rotation angles of Γ̄j

t+1 and Θi
t = (θ1, θ2, θ3). The

Euclidean distances between Θj
t+1 and Θi

t, (i = 1, 2, · · · , K) are summed up via

Eq.(6.5).

D(i, j, t + 1, Θ) =
K∑

i=1

‖Θj
t+1 −Θi

t‖, j = 1, 2, · · · , K2 (6.5)

The Euclidean distance between the 2D templates of Γ̄j
t+1 and that of Γi

t is also

computed and summed up via Eq.(6.6).

D(i, j, t + 1, Γ2D) =
K∑

i=1

‖Γ̄j
t+1 − Γi

t‖, j = 1, 2, · · · , K2 (6.6)

The computation of the Euclidean distance ‖Γ̄j
t+1−Γi

t‖ is given in Eq.(2.5) in Sec-

tion 2.3.2. The overall distance between 3D templates Γ̄j
t+1 and Γi

t, (i = 1, 2, · · · , K),

which is called 3D distance, is given in Eq.(6.7).

D(i, j, t + 1, Γ3D) = D(i, j, t + 1, Γ2D) + µD(i, j, t + 1, Θ) (6.7)

where µ is a positive constant that weight the two portion of distances.

Step 2: Build the template trellis

The K2 3D distances D(i, j, t + 1, Γ3D), (j = 1, 2, · · · , K2) are computed for Γ̄1
t+1,

Γ̄2
t+1, . . . , Γ̄K2

t+1 and are compared with one another. The K templates that have

the smallest 3D distances and with different rotation angles are selected as the
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Figure 6.5: The trellis for searching the best-matched 3D templates

candidate templates at t+1. If two templates both have the distances within the K

smallest 3D distances but their rotation angles are the same, only the template with

smaller distance is selected as a candidate template. The K templates selected from

Γ̄1
t+1, Γ̄2

t+1, . . . , Γ̄K2

t+1 are denoted as Γ1
t+1, Γ2

t+1, . . . , ΓK
t+1. In this way, a template

trellis is built as depicted in Fig.6.5. Note that at t = 1, only one template is used

in the trellis.

For each template at each time slot, the 3D distance is accumulated. For Γj
t , the

accumulated 3D distance is computed via Eq.(6.8).

Da(j, t) = min[Da(i, t− 1)×D(i, j, t, Γ3D)], i = 1, 2, · · · , K (6.8)

At t = 2, we have

Da(j, 2) = D(1, j, 2, Γ3D) (6.9)

By repeating Eq.(6.8) from t = 2 to t = T , the accumulated 3D distance are

computed for each matched template of the trellis.

Step 3: Search the best-matched templates

The path that leads to the smallest accumulated 3D distance is searched. For
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example, at t = T , the best-matched template Γbest(T ) is obtained via Eq.(6.10).

Γbest(T ) = arg min
Γj

T

Da(j, T ), j = 1, 2, · · · , K (6.10)

At time t, if Γbest(t) = Γj
t , the best matched template at t − 1 is searched via

Eq.(6.11).

Γbest(t− 1) = arg min
Γi

t−1

[Da(i, t− 1)×D(i, j, t, Γ3D)], i = 1, 2, · · · , K (6.11)

The procedures mentioned above are repeated until Frame 2 and a sequence of

templates are decoded, denoted as Γbest(T ), Γbest(T−1), . . . , Γbest(2), Γ1
1. However,

the decoded templates may not be a good estimation for the lip movement because

the rotation angles of Γ1
1 are randomly set. To solve this problem, the template

trellis is built again but in inverse order, i.e. the trellis starts from Frame T ,

Γbest(T ), and ends at Frame 1, Γ1
1, Γ2

1,. . . , ΓK
1 . The best-matched sequence of

templates is searched from Frame 1 to Frame T following the procedures given in

Step 3. If the initial position of the head does not bias too much from the standard

position (θ1 = θ2 = θ3 = 0), such management may draw the rotation angles of

the templates of the first several frames to the actual head positions.

6.1.3 Properties of the tracking strategy

For the proposed strategy, the distance between consecutive 3D templates is min-

imized. Because the 3D distance indicates the difference between the lip shapes

and head positions of the speaker in consecutive frames, the strategy is in favor of

slow change of lip shape and slow movement of head. The video clips used in our

experiments are sampled at 50 frames per second, the movement of the lips and

the rotation of the head are minor in consecutive frames. As a result, the objective

of the tracking strategy conforms to the dynamics of the captured lip motion.

In Eq.(6.7), the distance between 2D templates and rotation angles are balanced by

a positive constant µ. Setting of the value of µ is problem-dependent. If greater µ



6.1 Capture lip dynamics using 3D deformable template 137

is chosen, the distance between rotation angles, say D(i, j, t + 1, Θ), takes greater

portion in the overall distance D(i, j, t + 1, Γ3D). The decoded sequence of lip

templates may have smooth change of rotation angles, i.e. the rotation angles of

consecutive frames do not vary too much, but the component 2D templates may

change relatively abruptly. If smaller value of µ is chosen, the tracking algorithm

allows relatively rapid variation of the rotation angles but smooth variation of the

2D templates (lip shapes). As a result, the value of µ is empirically selected for the

speaker. If the head of the speaker rotates slightly during speech, greater value of

µ should be adopted; otherwise, smaller value of µ is used. In our experiments, the

value of the distance between the rotation angles, D(i, j, t + 1, Θ), is of the order

of 10−3, while the Euclidean distance between the 2D templates, D(i, j, t+1, Γ2D),

is of the order of 103, µ is set to be equal to 1.0× 105 for the speaker.

For the proposed tracking strategy, even if the rotation angles of template Γ1
1 are

not correctly initialized, the 3D templates of subsequent frames can still be “drawn”

to the correct rotation angles with the development of the template trellis. This is

validated by our experimental results. However, the rotation angles of Γ1
1 cannot

deviate too much from the true values. Otherwise the lip templates obtained may

diverge. In our experiments, standard lip templates (θ1 = θ2 = θ3 = 0) are applied

to match the lip shape at Frame 1 and the starting frame of the investigated speech

is approximately a frontal view of the speaker, i.e. θ1, θ2, θ3 < 3◦.

6.1.4 Experiments

The lip tracking algorithm based on 3D lip template is applied to capture lip

dynamics from video clips of visual speech. The rotation angles take discrete values

θ1, θ2, θ3 = N ×∆θ,(N = 0,±1,±2, · · · ), where ∆θ is the quantization unit (step).

In the experiments conducted in this thesis, we select ∆θ = 3.49× 10−3rad = 0.2◦.

Our experimental results show that such a step value can describe head rotation
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(a) 

(b) 

(c) 

Figure 6.6: (a) Raw images (b) lip shapes decoded using the 3D template (c) lip

shapes decoded using the 2D template

with good accuracy. If the rotation angle θ1 = θ at Frame t, the selection of θ1 at

Frame t + 1 is θ − ∆θ, θ or θ + ∆θ. The same increments are also applicable to

θ2 and θ3. As a result, for each frame, 3× 3 = 9 templates with different rotation

angles are searched with the approach proposed in Section 6.1.2.

The lip shapes extracted by means of 3D lip templates are depicted in Fig.6.6(b).

The lip tracking results using the 2D method mentioned in Section 2.3.2 are also

given in Fig.6.6(c) for comparison. Note that the frames depicted in Fig.6.6(a) are

not consecutive frames but with intervals of about 5-20 frames. It can be observed

that the deformation to the lip shapes caused by the rotation of the speaker’s head

is well compensated with the proposed 3D method. Take the second frame as an

example. The head of the speaker rotates to the left side, which causes the width of

2D lip template to be shortened. However, such deformation is compensated with

the application of the proposed 3D tracking algorithm. The width of the mouth is

thus more accurately detected than using 2D template.

The lip tracking strategy based on 3D deformable template extends the applicabil-

ity of the conventional 2D template method. A prominent feature of the strategy
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is the ease of implementation. The 2D template affiliated to the 3D template is

the same as the one discussed in Section 2.3.2. As a result, the base 2D template

matching algorithm can be adopted in 3D template matching without modifica-

tion. Because the proposed tracking algorithm minimizes the accumulated distance

between consecutive templates, this approach can be applied to the situation when

the movement of the target is smooth over time, for example, gesture recognition,

traffic monitoring and so on.

6.2 Cross-speaker viseme mapping using Hidden

Markov Models

The viseme classifiers and word/phrase classifiers presented in Chapter 2, 3, 4 and

5 are speaker-dependent recognition systems. That is to say, such classifiers only

work well for a specific speaker. If the visual speech of another speaker is pre-

sented to the system, the recognition accuracy will drop drastically. The reason

underlying the speaker-dependency of the visual speech processing systems is the

difference of facial features between different speakers. As mentioned in Section

1.2.4, the facial features demonstrate great variation from person to person. A

system trained with the data of a specific speaker cannot be applied to process the

visual speech data of another speaker. In visual speech processing domain, elimina-

tion of the speaker-dependency is an important aspect of building universal visual

speech processing system. However, research on this topic is still fresh and only

a very limited number of experiments have been conducted [112]. In this section,

some preliminary research towards the goal of eliminating speaker dependency is

reported. Our approach is to map the viseme produced by one speaker (referred to

as the source speaker) to another speaker (referred to as the destination speaker).

HMM is once again adopted as the viseme model. The proposed strategy is not
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sufficient to eliminate speaker-dependency of a visual speech processing system but

may give an indirect approach for solving this problem.

6.2.1 HMM with mapping terms

The viseme models used in this section are HMMs described in Section 2.4.2. The

HMMs have discrete symbol set and are trained with the Baum-Welch method. For

ease of subsequent explanation, the viseme models (HMMs) of the source speaker

are referred to as the source models and the viseme models of the destination

speaker are referred to as the destination models.

Assume that {Os
1, O

s
2, · · · , Os

M} and {Ss
1, S

s
2, · · · , Ss

N} are the symbol set and state

set of the source models, and {Od
1, O

d
2, · · · , Od

M ′} and {Sd
1 , S

d
2 , · · · , Sd

N ′} are the

symbol set and state set of the destination models, where N is the state number

and M is the symbol number of the source models, and N ′ and M ′ are those of

the destination models. For a viseme in Table 2.1, say viseme k, (k = 1, 2, · · · , 14),

a destination model θd
k (θ2 as mentioned in Section 2.4.3) is trained using the

context-independent samples of the destination speaker.

For the source model of viseme k, θs
k, some mapping terms are introduced to

maintain relationship between the states of the source model and the states of

the destination model. Assume that xT
s = (os

1, o
s
2, · · · , os

T ) is a context-independent

sample of viseme k of the source speaker, where os
i denotes the i-th observed symbol

in the sequence. The source model θs
k is configured according to the three phases

of viseme production (see Section 2.4.2). Given θs
k and xT

s , the optimal state chain

sT
s = (ss

1, s
s
2, · · · , ss

T ) is decoded using the Viterbi algorithm [99], where ss
i stands

for the i-th state in the decoded state chain. The source model is not trained by

xT
s alone but is also tuned to be related to the destination model. For this purpose,

an observation sequence xT
d = (od

1, o
d
2, · · · , od

T ) with the same length T is selected

from the training samples of viseme k of the destination speaker. The optimal
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Figure 6.7: Mapping between the source model and the destination model

state chain given θd
k, denoted as sT

d = (sd
1, s

d
2, · · · , sd

T ), is decoded for xT
d using the

Viterbi algorithm, where od
i and sd

i have the same meaning as in the source model.

Note that θd
k is trained using the Baum-Welch method while θs

k is not trained. The

states of the source model and destination model are associated with each other

by the mapping terms c(1), c(2), · · · , c(T ) as depicted in Fig.6.7.

These mapping terms come from the mapping matrix C =




c1,1 c1,2 · · · c1,N ′

c2,1 c2,2 · · · c2,N ′
...

...
. . .

...

cN,1 cN,2 · · · cN,N ′




,

where ci,j = P (Sd
j |Ss

i ). The coefficients in Matrix C are initialized with uniform

values as given in Eq.(6.12).

ci,j = 1/N, i = 1, 2, · · · , N, j = 1, 2, · · · , N ′ (6.12)

The state chain sT
d = (sd

1, s
d
2, · · · , sd

T ) can be looked as the symbols output by

sT
s = (ss

1, s
s
2, · · · , ss

T ). By combining os
t and sd

t as the t-th observation symbol of the

source sequence, training of the source model thus becomes the process of adjusting

the parameters of θs
k to maximize the likelihood P (sd

1 + os
1, s

d
2 + os

2, · · · , sd
T + os

T |θs
k).
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Matrix B of θs
k is expanded from dimension N ×M to dimension N × (M + N ′)

as illustrated in Eq.(6.13).

B =




b11 b12 · · · b1M b1,M+1 b1,M+2 · · · b1,M+N ′

b12 b22 · · · b2M b2,M+1 b2,M+2 · · · b2,M+N ′
...

...
. . .

...
...

...
. . .

...

bN1 bN2 · · · bNM bN,M+1 bN,M+2 · · · bN,M+N ′




N×(M+N ′)

(6.13)

where bi,j+M = cij = P (Sd
j |Ss

i ), (i = 1, 2, · · · , N, j = 1, 2, · · · , N ′). The Baum-

Welch estimation is carried out again to train the parameters in θs
k (see Section

2.4.1). After a number of EM iterations, the ML source model for dk, θs
k, is

obtained.

6.2.2 Viseme generation

A viseme production can be mapped from the source speaker to the destination

speaker with the HMMs obtained in Section 6.2.1. Assume that y = (ys
1, y

s
2, · · · , ys

T )

is a T -length sequence indicating the production of viseme k by the source speaker.

An observation sequence y′ = (yd
1 , y

d
2 , · · · , yd

T ) indicating the production of the

same viseme by the destination speaker is generated with the following steps. For

simplification, y is referred to as the source sequence and y′ is referred to as the

destination sequence.

1.) Given y and θs
k, the optimal state chain sT

s = (ss
1, s

s
2, · · · , ss

T ) is decoded for the

source speaker using the Viterbi search.

2.) Using sT
s and Matrix C, a state chain sT

d = (sd
1, s

d
2, · · · , sd

T ) for the destination

speaker is generated that maximizes the probability P (sT
d |sT

s ), which is defined in

Eq.(6.14).

P (sT
d |sT

s ) =
T∏

t=1

P (sd
t |ss

t) (6.14)
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3.) An observation sequence y′ = (yd
1 , y

d
2 , · · · , yd

T ) for the destination speaker is

then generated by the state chain sT
d and the symbol output matrix of θd

k.

The mapping of the source sequence to the destination sequence is thus realized.

However, the approach mentioned above may generate lip shapes with abrupt

change in consecutive frames. To solve this problem, some restrictions are imposed

to the destination model. For θd
k, if the decoded state at time t is st = Si, (i =

1, 2, · · · , N ′) and the symbol ot−1 is generated at time t − 1, the symbol output

coefficient is modified using Eq.(6.15).

b′ij =
bije

−λD(ot−1,Oj)

ω
(6.15)

where bij = P (Oj|Si) is the actual symbol output probability of θd
k, D(ot−1, Oj) in-

dicates the Euclidean distance between ot−1 and Oj, ω is a normalization factor to

make b′ij, (j = 1, 2, · · · ,M ′) a distribution. For the discrete symbol set used to char-

acterize the lip shapes during viseme production, ot−1 and Oj are code words of the

code book mentioned in Section 2.3.2, i.e. ot−1, Oj ∈ O128 = {O1, O2, · · · , O128}.
A viseme production is then generated for the destination speaker using the new

symbol output coefficient b′ij.

In Eq.(6.15), λ is a positive constant that controls the contribution of D(ot−1, Oj) to

b′ij. If greater value is selected for λ, b′ij will be smaller and the generated sequence

will be smoother. However, the modified value b′ij will deviate further from the

original value bij. The setting of θd
k is thus violated to some extent. If smaller

λ is adopted, the setting of θd
k is better kept. However, the generated sequence

may not be smooth. If the sequence of codes is mapped back into video frames,

the movement of the lips may demonstrate sudden changes in consecutive frames.

In application, the selection of λ is a tradeoff between the requested smoothness

of the generated sequences and the fidelity of the destination process. For the

experiments conducted in this section, the distance D(ot−1, Oj) in Eq.(6.15) is of

the order of 103. λ is chosen within the range of 10−3 ∼ 10−4.
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Table 6.1: The recognition rates of the mapped visemes

Viseme Source speaker True samples of the

Speaker 1 Speaker 2 Speaker 3 destination speaker

p, b, m 0.75 0.75 0.65 87%

tS, dZ, S 1 1 0.80 90%

f, v 0.80 0.55 0.75 96%

A: 0.85 1 1 99%

U 1 0.95 0.95 93%

6.2.3 Experimental results

Experiments are conducted to test the performance of the proposed viseme map-

ping strategy. A selected number of context-independent visemes produced by

three speakers are mapped to a destination speaker. The accuracy of such mapping

is studied. According to the decision strategy given in Section 2.4.3, if the mapped

destination viseme can be correctly identified by the true destination viseme model,

a correct classification is made; otherwise, an error occurs. For each source speaker

(Speaker 1, Speaker 2 and Speaker 3), twenty samples are drawn for each viseme

given in Table 6.1, and twenty mapped samples are obtained and identified by the

viseme model of the destination speaker. The recognition rates of the mapped

samples and the recognition rates of the true samples of the destination speaker

(see Table 2.2, θ2 of Speaker 1) are listed in Table 6.1 for comparison.

The recognition results indicate that the mapped viseme productions can be rec-

ognized by the viseme models of the destination speaker. The average recognition

rate is about 85%, which is slightly lower than that of the true samples. It thus

concludes that the mapped samples demonstrate similar temporal and statistical

features as the true samples of the destination speaker.
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6.2.4 Summary

The strategy proposed in this section is a simple method of mapping visemes

between two speakers. By training some mapping terms for the HMM, the state

chain of the source model is associated with that of the destination model. A

viseme produced by a source speaker can then be mapped to a destination speaker

with these mapping terms. The proposed method cannot eliminate the speaker-

dependency of a visual speech processing system. However, it may give some useful

clues for further research. To analyze the visual speech of an unknown speaker, a

possible approach is to map the acquired visual speech signal to a known speaker.

For HMM-based classifiers, such mapping can be performed on the states of the

HMM. By bounding the states of the viseme models of the unknown speaker to

those of a known speaker, much information about the unknown speaker can be

learned. The proposed viseme mapping approach is only the first step toward

the elimination of speaker-dependency, where a viseme is generated by the viseme

models of both the source speaker and the destination speaker. In the next step,

we attempt to analyze the connected viseme units of an unknown speaker using

the HMMs with mapping terms.



Chapter 7
Conclusions and Future Directions

The studies reported in this thesis attempt to solve some basic problems of visual

speech processing, which include the construction and training of HMM classifiers,

recognition of the basic visual speech elements, and modeling and recognition of the

continuous visual speech units. Two minor research topics about 3D lip tracking

and mapping visual speech between different speakers are also covered in the thesis.

From an overall standpoint, the proposed visual speech processing system follows

a bottom-to-top scheme, i.e. recognition of the basic visual speech elements is first

performed; following that, recognition of the connected-viseme units such as words

and phrases are implemented.

The approaches for recognizing the basic visual speech elements are based on Hid-

den Markov Model (HMM). Traditional single-HMM classifier that is trained using

the Baum-Welch method is explored first. This kind of HMM classifier can be easily

obtained and is able to identify context-independent visemes defined in MPEG-4

Standards with good accuracy. However, single-HMM classifiers cannot distinguish

confusable visual speech units such as the visual representations of phonemes that

are categorized into the same viseme group. To improve the discriminative power

of the HMM, a new metric called separable distance is proposed to describe the

146
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discriminative power of an HMM. Based on the separable distance, two discrimina-

tive training strategies, referred to as two-channel training strategy and maximum

separable distance (MSD) training strategy are proposed. These two approaches

employ expectation-maximization (EM) iterations to modify the parameters of an

HMM for greater separable distance. The experimental results on identifying con-

fusable visual speech units and confusable words in visual speech indicate that the

approaches can effectively improve the discriminative power of an HMM classifier.

However, the proposed training strategies may decrease the probability of the true

samples given the HMM. It indicates that the HMMs obtained in these ways may

not provide a good fit for the models of the target signals. In application, the two-

channel HMM classifiers or MSD HMM classifiers have to be used in conjunction

with other classifiers and principally conduct fine recognition within a group of

confusable patterns.

The single-HMM classifier is also not robust enough for identifying samples with

spread-out distribution. This is validated by our experiments of identifying context-

dependent visemes, where the temporal features of a viseme are distorted by its

contexts. To improve the robustness of HMM classifiers, an adaptive boosting

(AdaBoost) technique is applied to HMM modeling to construct a multi-HMM

classifier. The composite HMMs of the multi-HMM classifier are trained using

the biased Baum-Welch estimation, and the weights assigned to the training sam-

ples and the composite HMMs are modified with AdaBoost iterations. Such a

multi-HMM classifier, which is referred to as AdaBoost-HMM classifier, is able to

cover the erratic samples of a viseme by synthesizing the sub-decisions made by

the composite HMMs. For the experiments carried out in the thesis, the samples

of context-independent visemes, which are similar with one another, and context-

dependent visemes, which demonstrate spread-out distribution, are recognized by
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AdaBoost-HMM classifiers and traditional single-HMM classifiers. The compara-

tive results indicate that the recognition accuracy of context-independent visemes

using AdaBoost-HMM classifiers are close to that using the single-HMM classifiers,

while for the context-dependent visemes, the average recognition rate of AdaBoost-

HMM classifiers is 16% higher than that of the single-HMM classifiers. The cost

for the improvement to the robustness is the increased computational load. Be-

cause multiple HMMs have to be trained in the HMM AdaBoosting strategy, the

computations involved are many times that of building a single-HMM classifier.

The viseme classifiers mentioned above have laid a basis for further studies of visual

speech recognition, based on which, recognition of connected viseme units such as

words, phrases or connected digits in visual speech are carried out. The approaches

reported in the thesis are to decompose the sequence indicating the production of

a connected viseme unit into visemes. For this purpose, level building on single-

HMM classifiers is first explored. The level building method applies a probability

trellis to store the accumulated probabilities and positions of the reference models.

The best-matched sequence of HMMs is searched by backtracking the probabil-

ity trellis. For the AdaBoost-HMM classifiers, level building strategy faces the

difficulty of synchronizing the composite HMMs of an AdaBoost-HMM classifier.

This problem is solved by introducing special end nodes to the probability trellis,

where the composite HMMs are aligned and the scored probabilities are synthe-

sized. The strategies of level building on single-HMM classifiers and level building

on AdaBoost-HMM classifiers are applied to recognize/decompose a number of

words and phrases in visual speech. The experimental results indicate that the

approach using AdaBoost-HMM classifiers has higher recognition/decomposition

accuracy than that using single-HMM classifiers.

Level building method is an exhaustive searching algorithm to match the states

of each reference models against each node of the probability trellis. As a result,



149

the computational load is heavy whether the reference models are single-HMM

classifiers or AdaBoost-HMM classifiers. To facilitate the process of sequence de-

composition, a Viterbi matching algorithm is proposed in the thesis. This ap-

proach applies specially tailored recognition units and transition units to model

the viseme productions and transitions between viseme productions. A sequence

of recognition units and transition units are decoded using Viterbi algorithm for

the target sequence. Although this approach does not work well for decomposing

words/phrases in visual speech, where the transitions between visemes are am-

biguous, it performs almost equally well as level building method for decomposing

connected digits in visual speech, where the intervals between the productions of

digits are distinct. Furthermore, the computational load of the Viterbi approach

is less than one fourth of the level building method.

The ultimate goal of visual speech processing is to recognize continuous visual

speech such as sentences or paragraphs. In this thesis, however, only the recognition

of the basic visual speech elements and connected viseme units are realized. The

extension of the proposed HMM techniques to process continuous visual speech

is one of the important directions of our future research. For this purpose, the

application of phonetic, lexical and semantic rules to HMM modeling should be

explored. The prospective approaches may include frame synchronized methods

that are popular in modern acoustic speech processing systems.

The development of visual speech processing is still at the early stage. As a result,

much work has to be carried out to meet the requirement of building universal

visual speech processing system. In this thesis, studies on lip tracking and elimi-

nating speaker-dependency are presented. The proposed 3D lip tracking method

applies 3D deformable template and template trellis to capture the movement of

the lips. This approach excels the traditional 2D deformable template method as

it can well compensate the deformation caused by the movement of the speaker’s
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head. The proposed visual speech mapping strategy adopts HMMs with special

mapping terms to map the viseme productions from a source speaker to a des-

tination speaker. Experiments show that the mapped visemes can be accurately

recognized by the true models of the destination speaker. These two approaches

hold the potential of extending the applicability of a visual speech recognition

system to unfavorable environments such as when the speaker’s head is moving

during speech or when the visual features, e.g. the shape of the lips, of a speaker

are unknown. In this thesis, however, only preliminary researches are conducted.

The proposed visual speech processing system has limited applications by itself

as only the visual aspect of speech is processed while the acoustic aspect is not

considered. In most automatic lip reading systems reported in the literature and

also the system proposed in this thesis, a huge amount of image data have to be

processed first. Real-time recognition may then be a problem. Acoustic speech

signals, on the other hand, do not involve pre-processing of such a huge amount of

data and real-time acoustic speech recognition is already possible for some speech

processing systems. To jointly process audio and visual signals, lip synchronization

has to be investigated. Lip synchronization problem was put forward during 1990s

and was considered partially solved with the “talking head” approaches that are

included in MPEG-4 [88][110][111]. However, it is inadequate for automated lip

reading and mapping between visual speech and acoustic speech at real time. Study

on lip synchronization should be further carried out.

The speech information conveyed by the movement of the lips is far less than that

of the acoustic signals. As a result, a reliable speech processing system cannot rely

solely on the visual aspect of speech. Incorporation of audio recognition engine to

the visual speech processing system is necessary. In our future work, the develop-

ment of bimodal audio-visual speech recognition system will also be an important

research direction.
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