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Abstract

Multi-modal biometric verification is gaining more and matention recently be-
cause of the high security level it provides and the non-ensility of uni-modal bio-
metrics. Multi-modal biometrics decision fusion can besidared as a classification
task since the output is either a genuine user or an impo$tus treatment allows
many available classifiers to be applied in the field. In thissts, two problems re-
lated to multi-modal biometrics decision fusion are coasgdl. The first problem is
new user registration. Frequent registration not only iregustoring of new patterns
into the biometric database but also requires updating ¢tihebmation module effi-
ciently. The second problem is related to sensor decay wigshlts in change of
matching scores with time. The performance of a fixed classifiay be affected
for such case. In this thesis, an adaptive algorithm to sthigse problems has been
proposed. This algorithm can update the combination modhknever new training
patterns are available without having to retrain the modden scratch. The new
algorithm is demonstrated using experiments on physigaliGgiion data to address
both the registration and matching scores distributiomglray problems using three
biometrics, namely fingerprint, speech and hand-geometry.

Keywords: Multi-modal biometrics, decision fusion, biometrics Yeation,
recursive least squares, parameter estimation.
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Summary

Multi-modal biometric verification is gaining more and matention recently be-
cause of the high security level it provides and the nonemsility of uni-modal bio-
metrics. Multi-modal biometrics decision fusion can besidared as a classification
task since the output is either a genuine user or an impo$tus treatment allows
many available classifiers to be applied in the field. In thésts, two problems related
to multi-modal biometrics decision fusion have been cosrgd. The first problem
is new user registration. Frequent registration not ontyuines storing of new pat-
terns into the biometric database but also requires upglétiem combination module
efficiently. The second problem is related to sensor decaghwiesults in change of
matching scores with time, thereby affecting the perforoeanf a fixed classifier.

In order to choose a suitable classifier for multi-modal ketmas decision fusion,
extensive empirical comparison of several classifiersgusgal world data sets was
conducted in this research. These experiments focussethssifier training time,
memory storage requirements, and classification accurBlog. experimental results
are reported in detail along with a discussion on selectirsgiitable classifier as a
basis for an efficient multi-modal biometric verificatiorsggm.

After carefully selecting a suitable classifier, main foaighis thesis is the de-
velopment of an adaptive algorithm for multi-modal bionetrdecision fusion. This
adaptive algorithm has been proposed to solve the regstrand sensor decay prob-
lems mentioned above. The algorithm can update the condamnatodule whenever
new training patterns are available without having to rettae module all over from
scratch.

Finally, the new algorithm was evaluated using experimenishysical application
data to address both the registration and sensor decayeprsblTemporal biometric
data sets for a reasonably long period were collected fardhaluation. The data

sets consist of three biometrics, namely fingerprint, Speex hand-geometry. The

Vi



experimental results showed that the new algorithm is soiperthe original algorithm

in the registration process and when there are changes e¢himgtscores with time.
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Chapter 1

Introduction

Security systems are widely implemented in office builditggprevent fraudulent ac-
cess. These security systems can be either manual or awdonmaboth cases, such
systems must rely on certain means to identify or verify huiip@ngs. The study on
the use of such means is central to the development and ireptation of an efficient
a security system.

Let us begin with a typical example. John is an employee waork the Singapore
Airport. Every morning, when he goes to office, the securitargl asks him "Good
morning, please show your badge”. John says ‘hi’ to him amavshis badge. After
checking, the guard let John go inside the building. Thigtstanversation happens
everyday in office buildings. In fact, similar schemes appeather activities like
security system access, business transactions, and dtereAlelated to a common
security issue - identification or verification of human lggin

Let us examine the example a little more. When the guard askstdoshow his
badge, in fact, he asks John to show him some proof that Jamirsside person and
has the right to go in. If John shows him the correct badge wisi¢he proof, he is
allowed to go in, otherwise, he is not allowed. One may ardpa¢, sometimes the
security guard, having known John for a long time, lets himrgaithout asking for

the badge. So where is the proof? Strictly speaking, Joho&ik his proof. The guard



recognizes John as an inside person through his face artdriets.

The above example shows that identification and verificadgidmuman beings re-
late to some kind of proof. The proof dictates that a certaiman being has the right
to access the system or to do some specific job. So far, maulg kihsuch proof
have been developed [78]. For example, identity cards wiass, personal identi-
fication numbers (PIN) are very common. Recently, human phlsind behavioral
characteristics, such as fingerprint, face, speech, signaand etc. have been uti-
lized for automatic identification and verification purpes@hese characteristics are
calledhuman biometric§24]. This research focusses on use of multiple biometncs i

verification of human beings.

1.1 Need for Biometric Verification

The classical verification techniques based on “what yow’hav “what you know”
like ID cards, passwords, PINs have many drawbacks [24, P8sswords and PIN
can be forgotten and uncovered due to users’ carelessdessity cards can be lost or
stolen. Strictly speaking, these techniques cannot trelly tihe system to distinguish a
registered user from an impostor because they give augtiottihe 1D cards, passwords
or PIN, but not to the user himself. Anyone who has the cargssswords is given
the right to access. Thus, stolen cards, passwords or PHe eaiserious problem
especially in highly secure systems and in business tréiosac Another discomfort
when utilizing these techniques is that people have to rdmeetens of passwords and
PINs, and store tens of cards in their pocket for differentiggy systems.

Perhaps, biometric is the most promising type of proof tlat circumvent the
problems mentioned above. Biometric identification is basedhuman physical or
behavioral characteristics (i.e. “what you are”) which bedieved to be unique for
each person. Because of this uniqueness, biometric idextitircand verification sys-

tems are less prone to fraud. Also, human biometrics suchmgsrfirint and speech



are difficult to be lost or forgotten. Nowadays, electrongwides are capable of cap-
turing human biometrics in a very convenient way. For exanphgerprint can be
captured with a press on the sensor. Speech can be recordegchicyophone. Facial
images can be shot by a CCD camera. As a result, people aregatiflicooperate
when biometric-based security systems are implementedid&esthe “September
11th” incident has affected the public view on privacy andusiy. Before the inci-
dent, privacy was preferred. However, after the inciddmg, requirement for tighter
security than before has desperately raised the needs fereract identification and
verification methods. This is why biometrics have gainedenadceptance nowadays.
In the field of security technologies, biometrics are defiagtheasurable physical
or behavioral characteristics of human beings order to be applied to identify or
verify human beings, the following criteria of a biometriave to be justified [24, 44,

78]:
¢ Universalitymeans every person should have or can produce the biometric.

¢ Uniguenessneans the difference between any two persons should besuifiyc

distinguishable.

e Permanenceneans the biometric should not change drastically undaramnv

ment or with time.
e Collectabilitymeans the biometric should be quantitatively measurable.
e Acceptabilitymeans people should be willing to use the biometric system.

¢ Performancespecifies the achievable identification (verification) aacy and

resources needed to achieve acceptable accuracy.
e Circumventiormeans how easy it is to fraud the biometric system.

So far, many biometrics have been utilized for identificatmd verification. Physical

characteristics include iris, fingerprint, hand-geomepgim-print, hand veins, and

3



etc. [24]. Behavioral characteristics include signatupeesh, gesture, and etc. [78].
In this thesis, due to the availability of capturing equipmenly fingerprint, hand-

geometry and speech are used for performance evaluation.

1.2 General Concepts in Biometric Systems

1.2.1 Identification versus verification

A distinction between identification and verification shebbk made clear. An identifi-
cation system, sometimes called a recognition system,enssve question “Who am
I?”, and a verification system answers the question "Am | thespn | claim to be?”
[24, 78].

In an identification process, a ‘one-to-many’ comparisaroisducted via a search
through the database of registered persons to identifycmgraze a claimed person.

Typical biometric identification process often consistshef following steps:
e Biometric data of the claimed person is captured.

e A search is conducted through the biometric database ofteggd persons to

find out whether there are similar biometric data stored éndthitabase.

e A decision upon whether the claimed person iegisteredperson (i.e. genuine

user) or not (i.e. impostor) is made (like “Yes, he is Mr. X™dlo, he is not”).

However, in a verification process, there is no need for susdaach because the
registered biometric data to be compared is provided whemp#rson claimed the
access. Only a ‘one-to-one’ comparison is conducted indise. Typical biometric

verification process follows the following steps:
e The person claims access by keying in a password or showiig eard.

e Biometric data of the claimed person is captured.



e A comparison is carried out between the captured biomeatie and the biomet-
ric data specified by the password or ID card. In this stepallysua matching

scorethat represents the similarity between two patterns is igeee.

e A decision upon whether the claimed person is who he clainisetor not is
made (like “Yes, he is” or “No, he is not”) by making companmnsioetween the

matching score and a predefintdeshold

Identification problem is harder than verification probleecéuse of the search
process. However, one can easily convert the identificgioblem into multiple ver-
ification problems by making a comparison between the cagtbirometric data and
all registered biometric data in the database. Hence, ea&tin problem is the basic

problem, and the focus of this research.

1.2.2 Performance measures of a verification system

The effectiveness of a verification system is always the fjugstion:is it possible
that the system allows access to an unregistered person? Itew @oes the system
reject a truly registered person?n this section, some performance measures of a
verification system are discussed. A truly registered useeferred to as genuine
userand unregistered person asiarpostorthroughout the thesis.

Let s be the matching score afdde a predefined threshold. Assume that the state
of nature of the claimant is known (i.e. genuine user or in@Ysand assume that
if s > 0, the final decision of the system is to accept the claimante driteria of a

verification system are based on four probabilities:

e FAR = P(s > flimpostor): False Acceptance Rate - the probability that the
system accepts a user given that he is an impostor. In thés easintruder is
allowed to access the system. It is desirable that this jitityas restricted to
be less than a certain value (s&y, > means only one over one hundred thousand

impostor trials may be accepted).
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p(s|registered user)
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Figure 1.1: The hypothetic matching score distributiongerfuine user and impostor,
the arrows point to areas that represent four probabil#feR, AAR, FRR and CRR.

e AAR = P(s > 0|genuine user): Authentic Acceptance Rate - the probability
that the system accepts a user given that he is a genuine Asethe FAR
is restricted to a certain level, the AAR is expected to beaagel as possible,
because AAR shows the friendliness of the system. Oftesgtheo objectives

contradict each other.

e FRR = P(s < 0|genuine user) = 1 — AAR: False Rejection Rate - the

probability that the system rejects a user given that he enaiige user.

e CRR = P(s < flimpostor) = 1 — FAR: Correct Rejection Rate - the proba-

bility that the system rejects a user given that he is an ingpos

Although the four probabilities cannot be calculated eyatitey can be estimated
experimentally when a large number of trials is conductdd. E.1 shows the areas
that represent these four probabilities in a hypothetie ealsere the score distribu-
tions are normal with separated means. At each value of tleslibld, the FAR and
AAR specify a point in a two-dimensional graph. As the valddah® threshold is

changed, the FAR and AAR also change and the point moves alengve which is
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Figure 1.2: The ROC curves — thick line — corresponds to tlewabypothetic case,
dotted line — when two score distributions are moved fardpart, dashed line — when
two score distributions are moved nearer with more oveddpegion.

called the Receiver Operating Characteristics (ROC) of thi#iceion system. Fig.

1.2 shows the ROC curves of the above hypothetic case anésles ehen two score
distributions (see Fig. 1.1) are moved farther apart (edsielassify) and nearer to-
wards overlapping (more difficult to classify). As shown iigF1.2, the thick line is

below the dotted line and is above the dashed line. This mémtthe more accu-
rately the system distinguishes genuine users and imgoster higher the ROC curve
is. Thus, ROC curve is an important measure showing the pediace of a biometric

verification system, and is used in this thesis.



1.3 Overview of Uni-Modal Biometric Verification Sys-
tems

Uni-modal biometric verification is a process involving reegement of a claimant’s
single biometric trait, and comparison with biometric téat@s of registered users.
The outcome of this process is either an acceptance or diogjelepending on the de-
gree of similarity between the claimant’s biometric andtdraplates. The underlying
steps of this process are shown in Fig. 1.3, and describeullaw$.

Biometric capture. First, biometric measurement of the claimant is measured us
ing a specific biometric device. The biometric templateshefriegistered user can be
achieved in the same way, except that they are usually megswich more carefully.
Nowadays, fingerprints can be captured by electronic ds\iw# are much more con-
venient than using black ink. Speech can be recorded usiagptiones. Faces and
palm prints are sampled by video cameras. Often, theseafegan be directly con-
nected to a computer, which makes the data acquisition gsaoere convenient than
before [24, 78].

Feature extraction. Although raw data obtained as above can be fed into the
database for future processing, usually a feature extragtiocess is performed and
only some key features of the biometric are stored in thebdat to speed up the
matching process. Feature extraction has two advantages.itfeduces the space re-
quired to store biometrics of the registered users, i.ediices the size of the database,
and hence increases the speed to process the data. Secefd sedection of key fea-
tures can, in fact, enhance the performance of the matchoweps [34]. Fingerprint
features can be special points in the fingerprint image @¢afieutia, which are, for
example, endpoints, bifurcations, and etc. [22]. For spekmear Prediction Co-
efficients (LPC) is a powerful tool to extract the features][3Bor faces, Principal
Component Analysis (PCA) has been used very effectively taaedhe storage size

as well for as extracting useful features [10]. This techaigs also called ‘eigen-



face’ technique. Certainly, these are only representatiaeeles of feature extraction

techniques. In chapter 2, more techniques are cited andsdied.

Biometric sensor

Eiometric
teasurement

¥

Feature extraction

maodule
EBiometric >
features —%
¥
Watching module |« Templates
Matching

SCore

¥

Decizion module

accept | reject

Figure 1.3: Uni-modal biometric verification

Feature matching. Once the key features in biometric measurement of the claima
are extracted, they are compared with those extracted tiemegistered users. Often,
a similarity measure is defined between two sets of featlinebe matching process,
this similarity measure between biometrics of a claimarmt amegistered user is cal-
culated. The outcome of this process is often a number wahittteisimilarity measure
itself or certain transformation of it. This outcome is atedled thematching score

Decision. At the final stage, the computed matching score is used in igidec

module to give a final decision which is either an acceptamce rejection (i.e. de-

9



cision that the claimant is a genuine user or not). In the kstgcheme, matching
scores are compared with a certain threshold. If the majddore is greater (smaller)
than the threshold, the final decision is an acceptancevoiges it is a rejection. The
threshold is determined according to a certain error measkor example, in high
security systems, a threshold that results in small FARs&raele (see Fig. 1.1). This
threshold-based decision scheme is widely used in sinigilemetric verification sys-
tems [21]. However, simple comparison may not be the bestirsehwhen multiple

biometrics are used for verification purpose.

1.4 Overview of Multi-Modal Biometric Verification Sys-
tems

Multi-modal biometric verification is a process involvingnalltaneous measurement
of several biometrics of the claimant to decide whether thiemant is a genuine user or
an impostor. Multi-modal biometric verification is introcked due to limitations of uni-
modal biometric systems [24,44,78]. First, individual roetric measurement may
not be always in good condition. Fingerprints can be wet.sBonay interfere with
speech recording. Sometimes, the users do not feel corlea even refuse to use
certain biometric capturing device. For example, crimsraale not usually willing to
have their fingerprints or faces recorded. The handicapmgdhave lost their fingers
or hands. Second, as performance of verification usingrdiftdbiometrics is different,
there is hope that it is better to combine different bionastto enhance the verification
performance. In fact, multi-modal biometrics decisionidasfor accurate identity
verification has gained a lot more attention over recentsydae to its performance

improvement over uni-modal biometric verification (see 4,41, 64]).

We use interchangeably between the terms ‘single biomsystem’ and ‘uni-modal biometric
system’.

10



Sensor 1 Hensor 2 Hensorn
biometric 1 biometric 2 biometric » ¢
C inati AcCE
> ombination at T
y L 4 L 4 sensor level .
reject
Feature Feature Feature
extraction extraction extraction
Combination at | accept
hiometric 1 biometric 2 hiometric » 7| feature lewel reject >
features features t T features
Templates - (K] +—
Matching Ml atching Mlatching
module 1 module 2 module »
matching matching matching
soote 1 soore 2 Tt soOre ¥ "
[ i i ACCE
» ombination at P
r h 4 h 4 score level .
. .. L reject
Derision Derision Derision
madule 1 module 2 module »
accept accept accept
reject reject Tt reject .
r - - | Combination at accept

decision level

reject

Figure 1.4: Multi-modal biometric verification

1.4.1 Approaches to multi-modal biometric verification

The process of combining multiple biometrics for verificatis described in Fig. 1.4
[78]. The modules that process each biometric are as deskciibthe previous sec-
tion. The main difference between single and multiple bitsioeverification is the
combination module. As shown in the figure, the combinati@duate can be placed
either before the matching phase or after it [24]. This risdaldifferent approaches to
multiple biometric verification.

Before matching:

e Sensor level combination. The outputs of all biometric sensors are directly
integrated for the decision process. No feature extragtsults in very high
dimensional input vector. Besides, information coming frdifferent sensors is

often incompatible. Thus, this approach is rarely used.

e Feature level combination. This approach treats all sets of features obtained
from different biometrics as one single set of features. gitedlem of combin-

ing many biometrics at this level is similar to that aboveatsor level but with
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better compatible information.
After matching:

e Score level combination.The combination module takes in all matching scores
generated by every biometric matching module as its inpliteese matching
scores often form a real value input vector whose dimensoequal to the

number of biometric modules.

e Decision level combination. The combination module takes in all decisions
generated by every biometric decision module as its inpiitsese decisions
form a binary vector (‘1’ for genuine user, ‘0’ for imposteice versa) for com-

bined decision.

This research focusses on score level combination sincertipination in feature
level does not utilize the matching modules which were dged for each biometric,
(i) the output at decision level is too simplified (i.e. ‘0’ 4") and crucial information

may be lost. Combination in score level may overcome thedaqmre [50].

1.4.2 Multi-modal biometric verification as a classification prob-

lem

In biometric authentication, a user when presented to theByis classified as either
agenuine useor animpostor Thus, the problem of combining the outputs of different
biometric verification systems can be considered as a tagsdlassification problem.
It has been observed that, even when each classifier (i.dn lBaenodal biometric
verification system) is trained well, the misclassified @ats from different classifiers
could be different [31]. This observation has fuelled hopgraling methods that can
exploit the strength of each classifier. There are two difieapproaches to combine

the outputs of classifierglassifier selectiomndclassifier fusiorj37].
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Classifier selection.In this approach, the outputs of different biometric module
(i.e. matching score) form ladimensional vector wherks the number of such mod-
ules. Thel-dimensional space of such score vectors is, by some meamedlin to
many regions. Each region is associated with a biometricuteoathich is believed to
perform better than other modules in that region. The decis made in two steps:
first, for each score vector the region and the biometric Heodssociated with it are
found; then a decision regarding the particular biometradaie is taken to be the
decision of the whole system in that particular operatirggae.

Classifier fusion. In this approach, the combination module takes the scor®ewrec
as its input and produces a new matching score that is the teeithe decision of the
whole system. From this point of view, the combination medtdn be trained from
the observations of scores produced by each biometric ra@hd the corresponding
labels (i.e. genuine user or impostor). This learning tasklze performed by applying
any classifier that has been developed so far, ranging frerolé#ssical Bayesian clas-
sifier to decision trees, neural networks, support vectarmmes, and etc. Therefore
classifier fusion is more flexible than classifier selectiod this thesis concentrates
on classifier fusion. Prior to multi-modal biometrics démmsfusion, empirical com-
parison of several classifiers in terms of their classifisaticcuracy, training time and
storage requirement was conducted. A suitable classifisrthen chosen for multi-

modal biometrics decision fusion.

1.5 Motivation and Problem Statement

In [31-34,41, 42,64-66], it has been shown that combiningirmodal biometrics
for verification purpose possesses higher accuracy thamthadividual biometrics.
However, there remain some problems when applying a paesized classifier on
multi-modal biometric verification system.

First, as new user registration can be a frequent processenifecation system,
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it would be wise to develop an updating scheme that can eaddyt the system to
new observations (i.e. data coming from new users) rattear tatraining the entire

system using old and new data whenever the enrolment professew user takes

place. Therefore, an adaptive updating scheme for theeapplassifier can enhance
the model's performance in terms of time and memory storalgemwit is used in a

multi-modal biometric verification system.

Second, from results reported in literature [29] and froendhta collection process
used in this research over a reasonably long period, sonmggekan biometrics data,
especially the matching scores were noticed. These olismrséndicated that biomet-
rics data should be considered as a sequence of data whiels eaer time. Scores
drift over time can affect the performance of the verificatsystem, especially if the
system is trained only once and never gets updated from theetzeived from its day-
to-day operation. Hence, an adaptive updating scheme valiicthe system adapt to
changes, and therefore maintains or even enhances theatoifi performance.
Problem statement and scope

This thesis focusses on developing an adaptive updatirenseiio track the per-
formance of a multi-modal biometric verification system. Wesv observations may
come from day-to-day operation of the system, the probleto igopdate the system’s
parameters so that it incorporates the new information itosystem in an optimal
manner. The updating formulation can be tuned so that thersysan follow changes

in the biometric data and maintains its verification perfance.

1.6 Contributions of the Thesis

Main contributions of this work are listed as follows:

1. Empirical evaluation of 9 classifiers [70] including RM model[63], its vari-

ants, KNN [77], SVM [45] and MLP [4] was conducted
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e Comparison of 9 classifiers on 31 data sets obtained from UChMac
Learning Repository [72] in terms of training time, storagguirement

and classification accuracy was carried out.

e Unified selection of hyper-parameters in every classifieough 10-fold
stratified cross validation was conducted. It was found timainal data
that have many discrete features are more difficult to diaslsan other

data.

¢ A classifier that possesses good performance which is sitabmulti-

modal biometrics decision fusion was selected.

2. An adaptive updating scheme for multi-modal biometric verification was

proposed.

e A recursive formulation to adapt the parameters of the ayste newly

registered patterns was proposed.

¢ A stability limit of the algorithm was obtained.

3. Empirical evaluation of the adaptive formulation using multi-modal bio-

metrics data which varies over time was carried out.

e Collection of two fingerprint image data sets (one obtainezt @@ weeks,

the other over 30 weeks) was conducted.

e Experiments on combination of fingerprint, speech and rgeaimetry for

user verification were conducted.

e Evaluation of verification performance along with time, amith added

noise was conducted.

15



1.7 Thesis Organization

The thesis is organized as follows. In chapter 2, a liteeataview on related works
is presented. Firstly, different matching algorithms foigirprint, speech and hand-
geometry are discussed. Then, previous works on combmafimultiple biometrics
are briefly described in two categories: training based odtland non-training based
methods. In chapter 3, extensive comparative experimenteweral classifiers are
reported. The experiments focus on performance of theifitzssn order to choose
a suitable classifier for integrating different biometrits chapter 4, an adaptive up-
dating scheme for a selected classifier is formulated foitirmddal biometric veri-
fication. Along with the formulation, other aspects suchraplementation, stability
of the algorithm are discussed as well. In chapter 5, exparimon two reasonably
large biometric data sets which consist of fingerprint, shesnd hand-geometry bio-
metrics are reported. Discussion on the performance ofdaptare algorithm follows
the experimental results. Finally, chapter 6 presents sooneluding remarks and

suggestions for future work.
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Chapter 2

Literature Review

In this chapter, current research literature on biome#itfication is discussed. First,
representative works on uni-modal biometric verificati@tated to this research’s
scope (fingerprint, speech and hand-geometry) will be ealerSecond, previous
works to combine different biometrics are discussed andléd, categorically into
non-training based methods and training based methods.nénie training-based
methods, an important approach is the treatment of bioonedmbination problem as
a two-class classification problem. From this point of vievany existing classifiers
can be applied. Possible use of these classifiers for maitiatbiometrics application

will be discussed in section 2.3.

2.1 Uni-modal Biometric Verification

2.1.1 Fingerprint verification

Among the various human biometrics, fingerprint is the mostimonly used biomet-
ric for verification purposes. Due to the uniqueness of fipget, different identities
can be distinguished with high accuracy (see e.g. S. Pankantl. [48]). Besides,
fingerprints can be easily acquired via a simple finger presthe sensor. This has

gained much user acceptability in adequate environmekgoffices.
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Two fingerprint image samples can be matched manually by-twatied finger-
print experts, but this is a very slow process. To speed upvéhi@cation process,
automatic fingerprint matching systems have been develdpexeral approaches are
reported in literature and can be divided into two categoneinutia-based matching
and non-minutia based matching (see e.g. D. Maltoni et. 4], [D. Zhang et. al.

[78]).

e Minutia-based matching: In this approach, features like ridge endings and
ridge bifurcations are extracted and their positions (do@tes in planar or polar
system), their directions (the direction of the associaigges) and the associ-
ated ridges are recorded. To compensate with deformatitisas translation
and rotation, A. K. Jain [22] performed an alignment stepveetn two minu-
tiae’s ridges. Then, using elastic string matching algonitthe corresponding
minutia pairs were found, on which the matching score waedhalleanwhile,
X. D. Jiang [27], by using the minutia in the neighborhoodnpaoited the local
features which consist of the position and direction of eahutia relatively
to its k-nearest neighbors in order to obtain feature vectors waiehnvariant
to translation and rotation. Also, global features consisbf the position in
polar coordinates and the direction of each minutia witlpees to the refer-
ence points were computed. The similarity of local featamd global features
between the input fingerprint and pre-stored templatesddrthe basis of the
matching score. A. K. Hrechak [15] proposed that not onlyntive features
like ridge ending or bifurcation but also the compound feadwsuch as island,
spur, crossover, bridge and short ridge be extracted. Otm@rovements in
minutia-based matching algorithms used local alignmeet (3. Lee, et. al.

[40]), and orientation-improved minutiae (see L. Sha andafg [59]).

Although minutia-based matching is most commonly useddtbadvantage of

this approach is that minutia (e.g ridge endings and bifiona) are difficult to
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be extracted reliably, especially from poor quality fingerpimages [29, 44]. In
order to overcome these problems, robust methods whichdelyamn minutia

extraction have been implemented [44].

Non-minutia-based matching : Optical correlation may be the earliest finger-
print matching approach (see e.g. F. Gamble, et. al. [12}dfkataramani and
B. V. K. Vijaya Kumar [74]). This approach involves compansof two finger-
print images pixel-wise or window-wise. Although many irapements have
been introduced, comparison of images is still very timescomng. In [19],

a framework, callegyraph matchingto convert a fingerprint image to a graph
was proposed by D. K. Isenor and S. G. Zaky. The nodes of thEhgepresent
ridges while the edges represent the joining points betwidges, and whether
two ridges are neighbors of each other. Then a graph matcigayithm is
performed in three steps: partitioning, refinement andisgoin another work
[21], A. K. Jain claimed that minutia-based methods faced@ms such as dif-
ferent minutia’s list length, and minutia’s incapability tompletely represent
local ridge structures, and proposed that features can tb@&ceed by applying
Gabor filter to the input image in a sector-by-sector mannaured a reference
point defined as where the maximum curvature in concave siggebtained.
This has provided equal length feature lists and simpliffeal hatching step

which involved only an Euclidean distance calculation.

2.1.2 Speech (Voice) verification

Speech verification is also easily accepted in normal wgrkinvironment. The user

is simply required to utter a word or a sentence to a micraaptand the correspond-

ing analog signal is sampled into digital version. If thetsane is fixed, it is called

text-dependergpeech verification. Otherwise, it is callext-independergpeech ver-

ification.
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Feature extraction in speech verification often involvasgotation of the Linear
Predictor Coefficients (LPC). Other features like Reflectionfftwents (RC), Log-
Area Ratios (LAR), and etc. can be computed from LPCs. Anothpulao feature
which does not require LPC computation but utilizes Founiansform is the Mel-
Warp cepstrum [30]. This set of features can be reduced wimgiple Component
Analysis (PCA). As a result, a sequence of feature vec®rs= (x,xs,...,Ty)
are extracted from the speech sample through window (fraam@pling. Finally, the
matching score is computed through comparison between égoesices of feature
vectorsX = (xy,x,...,xy) andY = (y,, Yy, ..., Ypn)-

While the dissimilarityd(zx;), y,)) between two feature vectors can be simply
computed using Euclidean distance, Mahalanobis distanB&attacharyya distance
[30], computing dissimilarity between two sequences ofueavectors requires map-
ping between two sequences, and is hard to implement. Sopnesentative ap-
proaches to compute the matching score between two sequehdeature vectors
reported in literature are: Dynamic Time Warping algorit@TW), Vector Quanti-
zation source modeling (VQ), Nearest Neighbors method (AiN) Hidden Markov
Models (HMM).

e DTW algorithm [56]: A so-called warp functiorF’ = (¢(1),...,¢(K)) where
c(k) = (i(k),j(k)) (i.e. the mapping function maps;y, ontoy; ) is com-
puted through dynamic programming technique in order tetetror function
E = Z,ﬁil d(xir), Y;y) achieves its possible minimum. This warping error

function is the basis of the matching score.

e VQ source modeling [61]: From each registered user’s training data, a VQ
codeboolC' is generated through standard clustering technique suthreesan
clustering. The codebook’ contains the centroids of these generated clusters.
The matching score is computed based on distance betweenpiltevector

and the nearest code word@ as followsE = 3™, min,ce d(x;, y), where
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(x1, o, ..., 2 ) is the input sequence of feature vectayds the nearest code

word in C' with respect ta;.

¢ Nearest Neighbors method [14]:This method is an attempt to combine DTW
matching and VQ modeling. It stores all the registered udesming data
and computes the nearest distances between the claimaatiersce and all se-
qguences stored in the database. The distances are thegeddoaform the
matching scores. This method is one of the most memory angei@tion in-

tensive methods.

¢ HMM method [51]: Generally, HMM models each registered user by a number
of states and the probability to move from one state to amo@igen the models
(computed from the training data), the probability that ¢tkmant’s speech is
generated by each model is computed and used for obtairérmgdkching score.

Details of application of HMM on speech recognition can benfdin [51].

Recently, speech verification based on Gaussian Mixture M¢@4&1M) has been
proposed. S. Z. Li used AdaBoost to enhance the GMM approaeh3sZ. Li et.
al. [62] for more details). In a survey [30] on speech recbignj HMM-based meth-
ods are reported to be comparable to VQ methods in text-gmmt testing and are

recognized to be superior to other methods in text-depédndsting.

2.1.3 Hand-geometry verification

Among several factors that raised the applicability of daiarbiometric, user accept-
ability seems to be the most important ones. Hand-geonadthgugh its verification
performance is average, is generally more acceptable ts aseghe image collection
and sensing process are very simple. Besides, in some @gitgati is an advantage
that hand-geometry is not very distinctive because a vestynditive biometric like fin-

gerprint may raise the problem of revealing users’ privaey linked to criminal and
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identity records. In such cases, hand-geometry is a goadehdhere have been rel-
atively few reports on hand-geometry verification even gioit is among the earliest

automated biometrics. Followings are some of the most teqgiroaches:

e Prototype hand-geometry basedin [26], an image of sizé40 x 480 that con-
sists of top-view and side-view of the hand is used. The setetions between
sixteen predefined lines and the edges of the hand imagdsusgatad as the ex-
tracted features. A matching score between two hand imageddulated based

on Euclidean or weighted Euclidean distances.

e Deformable matching: In [25], before the matching score is calculated, two
hand edge contours are aligned. By running an exhaustiversearcorrespon-
dence points between two images, a transformation matrixoeacomputed.
Using this transformation matrix to match every point in atoar with those
on the other image results in a matching score (in the paipsrcalled mean

alignment error).

e Hand-geometry measurementin [53], similar to [26], images are taken from
the top-view and side view of the hand. However, a differehts features con-
sisting of the width of each finger at various positions, teight of the palm, etc.
is computed. For the matching process, either Euclidedardie or Hamming
distance can be applied. Meanwhile for identification, easér is modelled
using Gaussian Mixture Model or a Radial Basis Function nekw®dhe exper-
iments showed that Gaussian Mixture Model achieves highesiracy but it

requires high computational cost and storage for the tetlemla

Although the verification accuracy of hand-geometry is ratphigh, it is expected
that by including it in a multi-modal biometric verificati@ystem, good performance

can be achieved.
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2.2 Multi-modal Biometric Verification

2.2.1 Different implementations in multi-modal biometric verifi-

cation

A multi-modal biometric verification systems can be impleteel in various ways.
The purpose of such implementation can be either for higbriggor for better con-
venience. These two objectives often contradict each .othall biometrics must be
verified concurrently, high security can be reached alligihe expense of user con-
venience. According to S. Prabhakar, et. al. [50], variowslable implementation

schemes in multi-modal biometric verification can be clasdias follows:

e Multiple sensors system: This system consists of different capturing devices
for the same biometric, such as optical sensors, ultraseandors, and solid-

state sensors to capture fingerprint images [44].

¢ Multiple matchers system: There are many matching algorithms for a certain
biometric (see previous section). Each algorithm can ggeex matching score
(i.e. similarity measure) and confidence level. This sysiaplements several
matching algorithms for a biometric (for example, fingempriand combines the

outputs of these algorithms following certain rules to aghia final decision.

e Multiple units system: Multiple biometric parts of the same biometric type
are captured (for example, index and middle fingers, or Iedt @ght iris) and

matched simultaneously.

e Multiple impressions system:This system allows several enroliments and sev-
eral inputs for verification. The purpose is to extract thestreliable features

from the user’s biometric. As a result, the verification isrenceliable.

e Multiple biometrics system: In this system, different biometrics are captured

(for example, fingerprint, speech and hand-geometry) andhed using dif-
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ferent matching algorithms. The difference between th&esy and multiple
matchers system is that multiple biometrics system uses roemmetrics si-
multaneously rather than a single biometric. This theswp#lthis multiple

biometrics system.

In order to build a multiple biometrics system, the combgynodule has to imple-
ment a combination method. The combination methods can plemented at various
levels: sensor level, feature extraction level, decisewel, and matching score level

(see e.g. [23)]).

e Sensor level The raw data obtained from different sensors can be cordlime
make the final decision. For example, face images recordddfleyent cameras
have been combined to form a single face image [20]. Howeoeenbination at
sensor level require that the raw data obtained from theosemsust be com-
patible. Since this may not always be possible, in this rebe@ombination at

sensor level was not considered.

e Feature extraction level It is difficult to combine features extracted from dif-
ferent biometrics and different feature extraction altjons as they are often ei-
ther inaccessible or incompatible. Especially, in comma¢tmometric systems,
access to the features extracted by the built-in algorithroften not allowed

[23].

e Matching score level Combination at matching score level can overcome prob-
lems of combination at other levels. The matching scoresecessible as out-
puts of different biometric matching algorithms are oftka tlegree of certainty
that the biometric patterns belong to ‘genuine’ class ompastor’ class [31—
34,41, 42]. Additionally, the matching scores can be noizedl to avoid the

incompatibility between them [23].

¢ Decision level Combination at decision level is too rigid because the dudpu
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decision level is too simplified (i.e. ‘0’ or ‘1’) and crucialiformation may be
lost. Major combination approaches at this level are migjonting (L. Lam and
C. Y. Suen [38]), AND and OR rule (J. Daugman [9]), and BehavinoWledge
Space (Y. S. Huang and C. Y. Suen [18]).

Generally, combining methods can be divided into two types-training based
methods and training-based methods. In non-training basetods, it is often as-
sumed that the outputs of individual classifiers are the gdodities that the input pat-
tern belongs to a certain class. The training based methitels do not require this
assumption and can operate directly on the matching scemsrgted by biometric

verification modules.

2.2.2 Non-training based methods

An intuitive approach to combine multiple biometrics is g tuse of simple combi-
nation rule based on the matching scores generated byatiffbrometric classifiers to
make the final decision. J. Kittler, et. al. [31] states thatdroduct ruleis originated
from the optimal Bayes classification rule under the assumsptihat (i) the matching
scores are estimates of the a-posteriori probabilities ttie provided claimant be-
longs to each class (i.e. ‘genuine user’ or ‘impostor’), @ijdhere is independence
between the classifiers. This provided the theoreticakldasiother combination rules
like sum minandmaxrules. Under these assumptions, the simple combinati@s rul
can be formulated as follows

Product rule find classvy, that maximizesP(wy, )~ Hle P(wg|z;).

Sum rule find classv;, that maximizeg1 — L) P(wy) + o5, P(wi|z:).

Max rule find classwyy, that maximizeg1 — L) P(wy) + Lmax?” | P(wg|x;).

Min rule: find classv, that maximizesP(w;)!~* mink, P(wy|z:),
where L is the number of classifiersy =‘genuine user’w, =‘impostor’, P(w|z;)

is the output of the-th classifier (i.e. the estimated a-posteriori probabgithat the
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provided claimant belongs to each class).

Supporting this approach, L. Hong, et. al. [42] proved thettar the independency
of individual classifiers assumption, there is always a doation rule which results
in smaller error rate than that of individual classifiers.

Other non-training based approaches are: majority votingggm and C. Y. Suen
[38]), AND and OR rule (J. Daugman [9]), highest rank, BordardqT. K. Ho, et. al
[16]). L. I. Kuncheva, et. al. [37] has studied the limits ojority voting rule. She
showed that majority voting can improve the performancenevben the classifiers

are dependent.

2.2.3 Training based methods

Under this approach, the combination module exploits thmitng data to learn the
behavior of each biometric classifier, and therefore, cdmese better performance
than non-training based methods when the data are repatisent

S. Prabhakar and A. K. Jain [50] argued that the independass@mption may
not be true when different matching algorithms of the sanoenleitric trait are com-
bined. This suggests a combination method that can lealvetievior of the biometric
classifiers from training data. S. Prabhakar and A. K. Jaip@sed a scheme based
on non-parametric density estimation of the scores. Thewst that the method is
optimal in the Neyman-Person decision sense.

J. Kittler and K. Messer [32] applied two trainable classifiession methods, namely
the Decision Templates of L. I. Kuncheva, et. al. [36] andBedavior Knowledge
Space of Y. S. Huang and C. Y. Suen [18], to combine face ancbksdta for verifi-
cation purpose.

Decision Templates [36] tries to distinguish the classfieesponses to ‘genuine
user’ and ‘impostor’ under the assumption that the supportes of ‘genuine user’ and

‘impostor’ classes will form two clusters with separatedam& The support scores
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of individual classifiers can be the a-posteriori prob#bsi (i.e. P(genuine|z) and
P(impostor|x)) or more directly, the matching scores. The support scéres torm

a decision profile matrix as follows:

S11 S12

S21 S22

D(x) = , (2.1)

| SL1 Sr2 |
where L is the number of biometric classifiet;; ands;, are the support scores for
‘genuine user’ and ‘impostor’, respectively. By averagihg tlecision profile matrices
of ‘genuine user’ and ‘impostor’ samples, the decision tiatgs for each class can be
calculated. Any claimant’s decision profile is comparedhese decision templates
using some similarity distance (in [32], Euclidean distam@s used) to generate the
soft class labels.

Behavior Knowledge Space method, like its name, builds aesgizat indicates
the behavior of individual biometric classifiers accordinghe training data. In this
method, each classifier generates the exact class of thaintpuser (i.e. ‘1’ for
‘genuine user’ and ‘0’ for ‘impostor’) L classifiers therefore generate a binary vector
x € {0,1}~F. Each binary vector will index a bin in the discrete spggel }~. Each
bin is associated to the class that has more samples fromaiheng set falling in it.
The space with this association is called Behavior KnowleSgace. Any claiming
user’s binary vector will be classified as the class thatssasated to the bin in which
it falls.

In the survey [32], J. Kittler and K. Messer compared Decisiemplates, Behav-
ior Knowledge Space and other combination rules like prgditam, min, max rules
in an application that combines face and speech verificalibe survey showed that
these fusion methods give better performance than eackedimgmetric classifier.

However, the experiments also showed that no significamteede has been found
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that trainable methods like Decision Templates and Behd&mwledge Space can
outperform simple combination rules (i.e. product, sunm,mmax) in all test cases.
A. Ross and A. K. Jain [54] observed that sum rule’s performrasbetter than that of
decision trees and linear discriminant function while camny face, fingerprint and
hand-geometry. This suggests that it is nessesary to skgntiore powerful trainable
combination methods for possible nonlinear decision hygoefaces.

As mentioned in chapter 1, multiple biometric verificaticemcbe considered as
a two-class classification task. From this point of view, gnalassifiers proposed in
literature can be applied to build the combination module.néxt section, several

methods which follow this point of view will be discussed.

2.3 Multi-modal Biometric Verification as a Classifica-

tion Task: Related Works

An important aspect of this approach is the normalizatiomafching scores from dif-
ferent biometric classifiers. As seen in chapter 1, once $ee claimed his identity, a
score vector of sizeL x 1, whereL is the number of classifiers, is generated and pre-
sented to the combination module as a feature vector. Theeals of this vector may
have different ranges, means and deviations due to diffgererating mechanisms of
these classifiers. To make sensible decision and benefibthbination performance,
these scores should be normalized before being presentieel tombination module.
R. Brunelli and D. Falavigna [5] normalized the score to theyeg, 1) by means of
hyperbolic tangent function. In [43], C. L. Liu et. al. everassified different out-
put functions of classifier (i.e. linear, log-likelihoodkponential, sigmoid) and gave
each output function type a special way to transform theesc@or ‘confidence’ in the
paper).

In [3], J. Bigun, under an assumption of normal distributiontbe bias of each
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classifier opinion and via Bayes theory, estimated the méans = 1... L and the

varianced/;,i = 1... L of the biases of the classifiers’ matching scores with rdspec
the true matching scores (‘Yes’ or ‘No’) using the trainingtal After the classifiers’
matching scores have been normalized by adding the meansdadces of the bias,
these normalized matching scores form the basis of the ec@tibn matching score

following the equation:

L M
SEL
Yiiw

i=1V]

where M/ and V/ are the normalized matching score and variance. Equati@) (2

M = (2.2)

shows that the final matching score will be calculated as thighted average of all
classifiers’ matching scores. This computation preferssifi@r's matching scores to
be with high accuracy i.e. classifiers having small varia¥iteln a recent study [49]

on the relation between the Equal Error Rate (EER), and thelation cum variance

of classifiers, N. Poh Hoon Thian and S. Bengio showed that Hf® &n be modeled
as a function of correlation, variance and difference betwgenuine and impostor
means. As a result, in order to achieve a low EER, small cdimalasmall variance,

and a large mean difference are needed.

In [7], V. Chatzis, et. al. used many classical classificatemhniques to combine
the matching scores of five biometric modules: four are oa faification and one on
speech verification. The studied techniques incladeeans clustering (KM), fuzzy
k-means clustering (FKM), fuzzy vector quantization (FV@yanedian radial basis
network (MRBF). The experiments showed that MRBF achieved begoinance
(i.e. lowest FAR and FRR) when combining 2 modalities consistif face and speech.
The structure of MRBF network suggests that network-typesdias with sigmoidal
kernel function can be used for multi-modal biometrics duasi In chapter 3, many
other types of kernel function that can be used for classidicdave been investigated.

S. B. Yacoub, et. al. [76] applied Support Vector MachinesNgMminimum cost

Bayesian classifier, Fisher’s linear discriminant, C4.5 sleai trees and Multi-Layer
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Perceptron (MLP) to combine face and speech biometricsdofieation. In their ex-
periments, SVM with polynomial kernel and Bayesian classgave the best results.
The Bayesian classifier requires data modeling (i.e assampti the parametric dis-
tribution) while SVM does not require so. Besides, for low Faes (say, less than
1%), MLP has the lowest FR rates. This again suggests thatetweork-type clas-
sifier can be applied with good performance. A disadvantddéld is its iterative
training process, especially when the network has manympetexs and when high test
accuracy is required [63].

An approach to bypass the iterative training process is ¢olinear formulation,
because a system of linear equations can be solved effigctiire [63], a reduced
multivariate polynomial model (RM) was introduced. The mlodensists of a re-
duced number of polynomial terms and a single-step regadrsolution. In [64],
the RM model has been used to combine three biometrics nafimgigrprint, speech
and hand-geometry for verification and many common classifi€he combination
outperformed individual biometrics. However, one disadage of RM model is that
when new training samples arrive (new user registratidnmjequires retraining the
model using the entire data set. This suggests that if antimddprmulation can be
derived, RM model can be a very effective tool in the field of tipl# biometrics
fusion.

None of the discussed combination methods have consideeesituation where
the system needs to be updated according to biometric dagnetd from day-to-
day operations or where any change in the matching scoreafient the verification
performance. In uni-modal biometrics, regarding a studyhenusage of online fin-
gerprint verification system, X.D. Jiang [29] suggested tha extracted fingerprint
features should be considered as a sequence of data whiels vaer time. As a
result, he proposed an adaptive method that can update skensyrom fingerprint
samples obtained from day-to-day usage in order to enhéweceetrification perfor-

mance. Hence, it is expected that, in a multi-modal bioroeferification system, an
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adaptive updating scheme can maintain or enhance the a@infigperformance of the

system over time.

2.4 Summary

In this chapter, many biometric verification techniquedudmg fingerprint, speech
and hand-geometry are discussed. For multi-modal biooegrification, the idea of
considering the problem as a two-class classification proliias opened the door for
many classifiers to be applied in this field. To choose a sigitelassifier, it is nec-
essary to evaluate and justify the classifiers in terms af th&ning time, memory
storage and classification accuracy. Training time refetke speed at which the reg-
istration process can be performed. Memory storage meamdange the space for
the combination module is. Most importantly, classificataccuracy specifies how
reliable the multi-modal biometric verification systemliznext chapter, several clas-
sifiers are evaluated on real-life data sets. The experswatitbe reported along with
a discussion to choose a suitable classifier as a basis fanatiemodal biometrics

decision fusion algorithm developed in this thesis.
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Chapter 3

Evaluation of Classification Tools

Considering the problem of multi-modal biometric verificatias a classification prob-
lem, an intuitive question arises: which classifier showddibed among many classi-
fiers available? To answer this question, an evaluation adsifiers in two aspects
which are accuracy and efficiency is needed. Accuracy meansiaell each classi-
fier distinguishes members of ‘genuine’ and ‘impostor’ sks Efficiency means how
costly in term of time and storage each classifier needs tonperts task. Besides,
as this research’s purpose is to find an efficient adaptivatinpgl scheme for multi-
modal biometric verification, the classifier of choice shiblbé able to be formulated
in adaptive form. Those aggregated classifiers like bogstitd bagging [2] are thus
not considered in this research.

In this chapter, three important classifiers:nearest neighbor, neural networks
and support vector machines are discussed along with athecmveloped polyno-
mial classifier, the RM model [63]. Beside the original RM modgher extensions
using hyperbolic basis functions likenh(z), sinh(z), cosh(z) are also introduced
and discussed.

Based on the theory of optimal classifier (i.e. Bayes claskifiee statistical ap-
proach in pattern classification has received significaehtion (see e.g. [10]). Gen-

erally, under this approach, the statistical propertieg. (@obability distributions) are
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first recovered from the training set. Then a decision rulgeisved using Bayes law
in order to minimize the overall risk. A classical algorittapplying this approach is
the k-nearest neighbors algorithmaNIN). This algorithm, which will be included in
the experiments, is widely used due to its simplicity anddsvergence to an optimal
classifier ag: increases [10].

Different from the neural network models, the Support Vedtiachines (SVM)
apply the structural risk minimization principle [73]. By wimizing the margin be-
tween pattern classes, SVM minimizes the bound on the gkzatran error. The
SVM training process is performed through solving a quacl@bgramming problem
which is an iterative process. SVM has shown its very gootbp@ance on many ap-
plications. For example, in digits recognition, SVM withlypaaomial kernel is reported
to achieve highest accuracy rate on NIST database [73].

Recently, a reduced multivariate polynomial model (RM) hasnbproposed by
K. A. Toh [63, 66] for classification. The model reduces thenber of parameters in
the full multivariate polynomial while still preserves thiassification capability. It is
reported that RM model possesses better average accura@/d@lddata sets than
other classifiers including SVM. The RM model has also beetiegpmp multi-modal
biometric verification [64, 65].

In next section, a brief review of the classifiers mentionbdva is given. Then
in section 3.2, extensive experiments on these classifiersaried out to compare
classification performance of these classifiers [70]. Theearments used 31 data sets

(different from the 42 data sets in [63]) taken from the UCadbatse [72].
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3.1 Commonly Used Classification Tools

3.1.1 Support Vector Machines (SVM)

While conventional classifiers follow the empirical risk nmrization principle (i.e.
an error measure based on the training set), Support Veaohives [73] follow the
principle of structural risk minimization. This principsates that good generalization
ability can be achieved by minimizing the bound on the gdieat#on error.

Let the data seD, which consists ofV data points, be divided into two classes
labelled as+1 and —1 respectively. The function that maps the data points ta thei

class labels can be expressed as:

N
fsvm(a, ) = sgn (Z iy K (2, ) + b) , (3.1)

=1
where K (x,y) is a positive definite symmetric function called the kerneidtion.
sgn(-) is the sign function andis a bias estimated from the training set. The parameter

a is the solution of the following quadratic programming (Q@Pgblem:

mazad (@) = S0 @ — 3 00, Y0 iy K (@i, @),
with the constraints: : (3.2)

SN awyi=0and0 < o; <Ci=1,2,...,N.

In non separable case, the const@nnust be set to a given value. Choosing a value
for C' can be done through an empirical search like cross-vatidati

The kernel functionk'(x, y) defines the nature of the decision surface that sepa-
rates the data. This function should satisfy some conssrairorder to be applicable
(Mercer’s conditions [57]). A typical and commonly used k&ris the polynomial
kernel K (z,y) = (yxTy + 1)¢, whered is a positive integer defining the order of
the polynomial,y is a real number that normalize the inputs. In applying SVNhwi

polynomial kernel, the parameteds v, C (so called ‘*hyper parameters’) should be
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defined (e.g. via cross-validation) before classifyingnown data.

The modification of SVM for multi-class case is done througtegrating many
single-output SVM classifiers in one-versus-the-rest sehfb7] or pairwise scheme
[35]. In our experiments, a SVM Matlab toolbox [45] which reseady implemented
SVM with polynomial kernel for multi-class case is used. SVNh the polynomial
kernel was chosen in the experiments because (i) in [73]dly@mpmial kernel showed
good performance as compared to other kernels and (ii) RM tanekiensions also

applied multivariate polynomials in their implementation

3.1.2 k-Nearest Neighbor classifier {NN)

The k-nearest neighbor decision rule states that an incomingrmpat is assigned
to the class which most frequently appeared among:thearest samples (i.e. data
points in the training set) [10]. This decision rule is basedhek-nearest neighbor
estimation of the a posteriori probability. Asgoes to infinity, thecNN estimation
approaches the true probability [10]. Therefore, iNN error rate approaches the
Bayes error rate which is optimal. Analysis/dfIN has shown that even whén= 1,
the error rate is less than twice the optimal (Bayes) erra fHd]. Because of this
behavior and the simplicity of the method (i.e. voting amaegrest neighborshNN
decision rule is widely used.

Let D = {(x;,vi)|v; € {1,...,N.},i = 1,..., N} be the training set of a clas-
sification problem withVV, classes and let be a pattern to be classified. ThaIN
decision rule requires selection, from the Betof £ samples which are nearestaton
the sense of distance. These nearest samples form a ailéctt (y,,,[i = 1,...,k)
of class labels that appear nearest to the patteirhe final decision for the class label
of x is to choose amon§ the class label that appears most frequently. The measure-
ment of distance can be carried out by any distance funetfeny) which satisfies

conditions of a metric distance (i.e. non-negativity, rafldy, symmetry and trian-
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gle inequality [10]). However, for simplicity, one oftenassthe Euclidean distance
even though this distance can be strongly affected whenningts are scaled. The
Euclidean distance is defined@sc, y) = ||« — y||» where|| - || is the L, norm. The
ENN decision rule was included in the experiments using a atainplementation

from [77].

3.1.3 Multi-Layer Perceptron (MLP)

Multi-layer perceptron (MLP) is an important class of ndurg@tworks [4]. Generally,
a MLP consists of basic computational elements (nodes)waie named as input
layer, hidden layers and output layer. As the activatiorcioms in each computa-
tional nodes are smooth (e.g. a logistic function), MLP cartrained by the error
back-propagation algorithm [55], a very well known traigialgorithm. According
to the universal approximation theorem (see e.g. [13, 1], B8P possesses the
capability to perform nonlinear input-output mapping upatyy degree of accuracy
(uniform approximation) provided that it has enough hiddedes. However, this is
only an existence theorem meaning that so far, there is nlicgxpay to determine
this number of hidden nodes. With this background of appnaxion capability, MLP
is widely used for pattern classification. In our experinseat MLP with one hidden

layer from Matlab’s Neural Network toolbox [46] was used.

3.1.4 Reduced Multivariate polynomials (RM)

Grounded on Weierstrass’s approximation theorem, theiwiate Polynomial (MP)
possesses the universal approximation capability (se¢le.gb8]). A general form of
MP is a linear combination of all possible polynomial (progjuermszy*z5? - - - ;"

with ny,n,,...my vary such tha~\_, n; < r. The number is the degree of the
polynomial andk is the total number of weighting parameters(i.e. the number of

product terms). However, a full multivariate polynomiatés the problem of parame-
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ter explosion. The number of parametgr[58] is given by

[+
K= , (3.3)

r

which grows exponentially asandr increase. In [63,66], a reduced multivariate
polynomial model, which has much less parameters whileikgepucial polynomial

terms, was proposed as follows:

r l
fru(a, ) = ap+ Z Z aij? + (3.4)
k=1 j=1
r l r l l
3 a2+ 300 @ i) (3 )
k=1 j=1 k=2 i=1 J=1

The number of polynomial terms in (3.4) now grows linearlgnthe degree and
the number of inputs under the relationstiip= 1 + r + [(2r — 1). To stabilize the
solution for least squares error, a regularization can b®peed [63]. The criterion

function to be minimized is thus:

J = lly — Flall; +blalf;, (3.5)

wherey = [y1,v2,--- ,yn]" is the target output vector arld = [f7, f2,--- , fal”
with £, being the row vector of all polynomial terms in (3.4) whichaisplied to the
i-th (i = 1, ..., N) training sample. The estimated outpugis= F'« and the solution
for a that minimizeJ is

a= (FT'F 40l 'FTy, (3.6)

whereb is a regularization parametérig usually chosen to be a small value, say*
[63], for stability and not introducing much bias).

As an example, consider the case where 2 and/ = 2, we have
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Figure 3.1: Basis functionsinh(z), cosh(zx) — 1, tanh(x), ramp(x) andstep(x)
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(3.7)
where the first and the second index9f.(j = 1,2,k = 1,..., N) specify the number
of inputs and the number of samples, respectively. The owgxetor,y, is known as
the class label vector. For 2-class problems, the outptt,= 1,..., N), is set to be
‘0’ for a class and ‘1’ for the other. Extension of this reddeaodel to multi-class case
can be done through winner-take-all scheme [63] which isrilesd shortly. LetV,
be the number of classes, then each training sample thatdseto class is associated
to a target vector of sizé x . consisting of all zeros but an ‘1’ at theth element.
Stacking the target vectors will form a target maf¥ix The solution for the weighting
parameters is

A=(F'F+bI) 'FY, (3.8)

which is still similar to equation (3.6) except that the paedersA is a matrix of size
K x N, rather than a vector. The estimated output’is= F'A where the maximum

values in each row indicate the class label of each pattern.
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3.1.5 Hyperbolic function networks (SINH, COSH and TANH)

The sigmoidal, hyperbolic and Gaussian functions have beég#ly used in neural net-
work structures as nonlinear discriminant or activationctions. It has been shown
that linear combination of perceptron basis functions Eatée of approximating any
function of interest to any desired accuracy provided thdficsently many hidden
variables are available (see e.g. [17]). The good appraidmand classification
capabilities of these networks are usually impaired by #wBous iterative training
procedure due to the nonlinear formulation of learning pet@rs. Moreover, the iter-
ative search does not guarantee convergence to desireshbptlution. In [65], linear
combination of hyperbolic function network was shown to keful for multi-modal
biometrics decision fusion. It is shown briefly below howelar combination of hy-
perbolic functions can approximate those nonlinear patarsevithin the perceptron
basis function for pattern classification.

Equations (3.9) - (3.14) show observations on some baspepties of product and
power terms of the following hyperbolic functionsinh(x), cosh(xz) andtanh(x).
From (3.9)-(3.11), it can be seen that functions with smghal width or period can
be expressed in terms of the sum of product and power terrh®sé twith large signal
width. Sincesinh(z) andcosh(z) are related byosh?(x) — sinh?*(x) = 1, these
hyperbolic functions can all be expressed in terms of theim original larger signal

width functions. For cases with non-integer multiples gnsil widths, (3.12)-(3.14)
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can be applied for further dilation or contraction of signal

sinh(2x) = 2sinh(z)cosh(z)
sinh(3x) = 3sinh(z) + 4sinh®(z) (3.9)
sinh(4z) = 8sinh3(x)cosh(x) + sinh(x)cosh(z)
cosh(2z) = 2cosh?(z) — 1
cosh(3z) = 3cosh®(x) — 3cosh(x) (3.10)
cosh(4z) = 8cosh*(z) — Scosh?(x) + 1

tanh(2x) = %
tanh(3z) = H4EEE (3.11)
ani(ar) = sl
sinh(x + y) = sinh(x)cosh(y) £ cosh(x)sinh(y), (3.12)
cosh(x £ y) = cosh(x)cosh(y) £ sinh(x)sinh(y), (3.13)
tanh(x +y) = tanh(x) + tanh(y) : (3.14)

1+ tanh(z)tanh(y)

The above observations show that the phase and width pagewéthin the non-
linear activation functions could be approximated usingdr combination of power
and product terms. Itis possible to use these observatarsistruct a network model
as an extension of the above reduced model which provideffextiee linear com-
bination of power and product terms for approximating thoealinear parameters
within the hyperbolic basis function.

On top of the properties observed so far, there are certéivaton characteristics
which deserve some attention before the function can beechas the basis function
for the combination. Essentially, the output of each basmction should not be in-
finitely large at the origin as it gives rise to unstable zeqits. Also, the output range
is preferably free from any value offset which results ingblke biased approxima-
tion. A plot on these functions shows that theh function needs to be offset byl

in order to have a zero origin. Sinceth andcsch functions have functional values
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at infinity at the origin, they were not included in experirtgemhesech function was
also excluded as it gives rise to matrices which are closengukar or badly scaled.

The remaining hyperbolic function networks under constlen are then labelled as

follows [65]:
SINH:  Jsinn = fru (e, sinh(x)), (3.15)
COSH: Geosh = frum (e, cosh(x) — 1), (3.16)
TANH:  §iunn = fru(a, tanh(x)). (3.17)

3.1.6 Ramp and step networks (RAMP and STEP)

In addition to above hyperbolic functions as seen in [65this thesis, two new basis

functions,ramp andstep , are included. They are defined as:

1, z2>1
ramp(x) ={ 2, —l<a<l . (3.18)
-1, r< —1
1, >0
step(x) = : (3.19)
-1, O<z

and the corresponding networks are written as:

RAMP: gramp - fRM(a7 ramp(w)), (320)

STEP: fiuep = frar(cv, step(x)). (3.21)
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3.2 Experimental Setup

3.2.1 The University of California at Irvine (UCI) data sets

The data sets used in our experiments are all obtained fretd@i Machine Learning
Repository [72]. These data sets constitute a large porfitimearemaining UCI data
which are different from the data sets used in [63]. The psepuf choosing these data
sets is to carry out further experiments on the reduced vauidite polynomial model
(RM) mentioned above. Different from [63], standardizedaxdtive tuning has been
performed to all studied classifiers running on the same machith these results,
it is possible to have a better understanding regarding ¢hedor of the model and
its extensions on a wider range of data sets. The data setsgaeized according to
the number of classes into three groups: 2-class proble#nsgis), 3-class problems
(11 sets) and multi-class problems (6 sets). The purpod@asdivision is to observe
possible trends related to the number of classes. Tabler@vides a summary of the
data sets used in our experiments including the numberssées, attributes, nominal
attributes, instances and missing values of each data &et.rebders are advised to

refer to the web-site [72] for more detalils.

3.2.2 Performance criteria

Average classification accuracyln all the experiments, the classification test errors
are estimated using 10-fold stratified cross validation gl cross validation is re-
peated ten times using different random re-ordering of dingdes in the data SetThe
same sets of re-orderings have been used for all classiberpared. The minimum
(min), average (ave), maximum (max) and standard devidstaf) of the classifica-
tion accuracy (i.e. one minus the error rate) of these tes ofin0-fold validations are

recorded and the average accuracy along with the variancge as basis for com-

IMost reported literatures use a single run of 10-fold credlation.
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Table 3.1: Summary of UCI data sets used

o | Data set name abbreviation| #instance| #attribute | #nomial | #class| #miss
1 | Pittsburgh bridges version 1 TORD pbrilt 80 7 4 2 28
2 | Pittsburgh bridges version 2 TORD pbri2t 80 7 7 2 28
3 | Chess End-Game: King+Rook versus King+Pawn  ckrp 3196 36 36 2 0
4 | Chess End-Game: Knight Pin ckrk 100 16 16 2 0
5 | Cylinder bands cyba 399 23 12 2 142
6 | Echocardiogram echo 61 11 0 2 71
7 | Haberman’s survival hasu 306 3 0 2 0
8 | Horse colic: surgical hosl 246 8 8 2 122
9 | E. Coli promoter gene sequences mpgs 106 57 57 2 0
Musk database 1 musk1 476 166 0 2 0
Musk database 2 musk?2 6598 166 0 2 0
Spam e-mail database spam 4601 57 0 2 0
SPECT heart sphe 267 22 0 2 0
SPECT heart sphf 349 44 0 2 0
Pittsburgh bridges version 1 MATERIAL pbrilm 80 7 4 3 28
Pittsburgh bridges version 1 SPAN pbrils 80 7 4 3 28
Pittsburgh bridges version 1 REL-L pbrilr 80 7 4 3 28
Pittsburgh bridges version 2 MATERIAL pbri2m 80 7 7 3 28
Pittsburgh bridges version 2 SPAN pbri2s 80 7 7 3 28
Pittsburgh bridges version 2 REL-L pbri2r 80 7 7 3 28
Horse colic: outcome hooc 246 8 8 3 122
Hayes-Roth haro 150 3 0 3 0
Iris plants iris 150 4 0 3 0
Primate splice-junction gene sequences msgs 3190 60 60 3 0
Postoperative patient popa 90 8 7 3 3
Blocks classification bicl 5473 10 0 5 0
Pittsburgh bridges version 1 TYPE pbrily 80 7 4 6 28
Pittsburgh bridges version 2 TYPE pbri2y 80 7 7 6 28
Dermatology derm 358 34 1 6 8
Flags database flag 194 28 18 8 0
Cardiac arrhythmia caar 420 226 40 16 32
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parison. This average value is believed to provide a lesseHdiaepresentation of the
classifier performance as compared to that from a single run.

Computational efforts. The computing effort is recorded for the training time
of the reduced model in terms of standard CPU time unit whech stndard time
unit is the CPU time taken to evaluate 1000 times the Shekahétibn at the point
(4,4,4,4) [69]. In our experimental setup on a Pentium I83Hz computer, each
standard CPU time unit is equivalent to 0.0569 seconds. Aghdhe standard CPU
time unit is machine independence, it nevertheless depandhk on efficiency of im-
plementation and computer architecture even using the samehine’ The purpose
of the standard CPU time unit is to provide some hints abouttneputing effort for
the Matlab implementation under the commonly used Windawgenment using the
same machine since the difference between the comparedtiahge can be up to few
hundred times.

Memory storage. The number of learning parameters to be stored for future pat
tern classification tasks can be an important issue espefoalstand-alone applica-
tions where only limited memory is available. For model lohakyorithms (i.e RM
and its extensions), the number of weighting parameteretedtimated for the re-
duced polynomial expansion is tabulated for each data £tS¥M, the parameters
are the support vectors and their Lagrange multiplierseviat NN, the parameters
are exactly the whole training set. For MLP, the trainingghs are the parameters to

be stored.

3.2.3 Classifier settings

As good training accuracy does not mean good accuracy orownrkdata, it is very
necessary that the learning algorithms to be well tunedderaio avoid problems like

“over-fitting” and “under-fitting”. For the algorithms dedged in section 3.1, this can

2Computing resource with vectorization can create mucledifice among different implementa-
tions of matrix multiplications.

44



be done through tuning the hyper parameters of each algorflor RM model and its
extensions, the hyper parameter is the degrdeor SVM (using polynomial kernel),
the hyper parameters are the degdeaf the polynomial kernel, the cost and the
normalization factoty. ForkNN, itis k, the number of nearest neighbors. For MLP, an
important hyper parameter is the number of hidden layer siddedifferent problems,
good hyper parameters would be different and finding swetalgper parameters can
be done through cross-validation.

In all our experiments, the hyper parameters are found uflrigld cross-validation
as follows. While the test set is kept aside from the procedheetraining set is di-
vided into 10 parts. The division is stratified such that thepprtion of classes in all
parts is roughly the same. Every part is chosen one-by-ofogroa validation set, the
rest of corresponding 9 parts are used for training. For paskible value of the hyper
parameters, the model (i.e. RM and its extensions, SKMN\ and MLP) is trained
using 9 parts and test on the validation set which gives aaracg rate. By choos-
ing every part one-by-one to form the validation set, theegalization accuracy can
be estimated by averaging the accuracies of those validaéts. The value of hyper
parameters which gives best generalization accuracy widdected for the final 10
runs of test accuracy computation.

In tuning the SVM classifiey] is found from integers between 1 and 10s found
from the set{0.01,0.1,1} andC'is found from{1, 10,100}. C'is chosen from rela-
tively low values because physical data sets are likely tadreseparable and much
validation time can be saved from exhaustive search wittsmall hyper-parameter
set. Finding ofy andC' in geometric sequences is due to the observation that when
theses parameters are small, a small change in the valuesd fharameters had a
large effect on the performance than when they are big [60]tuhing RM and its
extensions, the orderis varied within[1, 10]. In tuning kNN, the number of nearest
neighborsk, is varied from integers between 1 and 10. For MLP, let the lmemof

input attributes bé, then the number of hidden nodes in MLP is chosen among the fol
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lowing three valuesl, |[/2], 2. These ranges of search provide a sufficient coverage

of possible optimal solution for the compared algorithms.

3.3 Comparison of Classifiers - Experimental Results

3.3.1 CPUtime

Table 3.2 lists the standard CPU time needed for training glesiiold of the 10-fold
cross validation. The time iRNN column is the test time as there is no training in
ENN. The table gave some hints regarding the computing speddferent classi-
fiers. The median and the mean training time in standard CPld ahthe classifiers
are: RM (0.0193, 4.0161), RAMP (0.0209, 5.3867), SINH (0.0228553), STEP
(0.0288, 39.7847), COSH (0.0424, 19.5415), TANH (0.05242@3), SVM (0.3639,
168.3742), MLP (42.4712,258.9337) abdN (0.0176, 32.0237). Itis seen that RM,
SINH and TANH are faster than the rest in terms of the mediahtlh@ mean training
times among the 31 data sets. The very high average trainiegof SVM is attributed
to the data sefblcl)  where the best parameters found &teC, v) = (7,100, 1).
Without this data set, the mean training time of SVM is only0BA0 standard CPU
units. Among those RM-based classifiers, COSH and STEP ardaivest. This is
due to the order of the polynomial needed by these two classifieing higher than
by other RM-based classifiers for some data sets. For examphes data setnusk2,
the polynomial degree required by COSH and STEP are 4 anddeatagely whereas
other classifiers only require the polynomial degree of 1.o0M&thout musk2, the
average training time of COSH and STEP are 1.3476 and 3.6@80atd CPU units

respectively.
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Table 3.2: Running CPU Time (Standard CPU Unit: 1,000 Evalnataf Shekel-5 at

(4,4,4,4)).

No. | Dataset RM SINH COSH TANH RAMP STEP SVM kNN MLP
1 | pbrilt 0.0105| 0.0228 0.0196 0.0000 0.0000 0.0052 0.2016 0.0105 38.8429
2 | pbri2t 0.0193| 0.0196 0.0000 0.0079 0.0026 0.1073 0.0419 0.0070 38.3298
3 | ckrp 8.3197 | 6.0757 6.6792 3.4921 8.6937 0.6414 28.8168 | 41.0773 94.0524
4 | ckrk 0.0476 | 0.0467 0.0273 0.0576 0.0524 0.0131 0.0785 0.0264 8.8927
5 | cyba 0.2323 | 0.1400 0.1471 0.1990 0.2277 0.2120 3.3063 0.3040 | 132.3534
6 | echo 0.0053 | 0.0159 0.0074 0.0524 0.0079 0.0000 0.0209 0.0053 6.9241
7 | hasu 0.0211| 0.0233 0.0429 0.0288 0.0236 0.0236 4.5864 0.1476 39.8770
8 | hosl 0.0000 | 0.0000 0.3970 0.1387 0.0052 0.1047 5.1309 0.0000 47.4136
9 | mpgs 0.0439 | 0.0467 0.0501 0.0576 0.0497 0.0497 0.1754 0.0633 9.0209

10 | muskl 1.2531| 1.0112 1.0124 1.1728 1.2513 1.1806 2.6806 4.0492 28.5576
11 | musk2 | 19.3954 | 97.4340 | 565.1328| 131.7539| 130.9241| 1123.0759| 132.6859| 716.5149 79.3168
12 | spam 32.3322 | 21.8568 8.0943 | 30.9555| 12.3115 93.4476 | 197.8272| 124.4077| 3644.0707
13 | sphe 0.0011| 0.0013 0.0016 0.0288 0.0209 0.0288 0.0147 0.0048 | 101.4110
14 | sphf 0.0653 | 0.0022 0.1460 0.0890 0.0864 0.0890 1.6152 0.0122 | 143.0916
15 | pbrilm 0.0053 | 0.0074 0.0040 0.0052 0.0079 0.0052 0.0419 0.0123 44.3979
16 | pbrils 0.0404 | 0.0233 0.0154 0.0026 0.0052 0.0131 0.0785 0.0141 40.6571
17 | pbrilr 0.0018 | 0.0154 0.0037 0.0052 0.0000 0.1178 0.3639 0.0176 41.4346
18 | pbri2m 0.0000 | 0.0000 0.0117 0.0052 0.0079 0.0079 0.0471 0.0141 41.9188
19 | pbri2s 0.0035| 0.0037 0.0156 0.0000 0.0026 0.0052 0.0812 0.0105 42.4267
20 | pbri2r 0.0035| 0.0233 0.0040 0.0236 0.0209 0.0000 0.9921 0.0123 42.4712
21 | hooc 0.0000 | 0.0000 0.3970 0.0942 0.0733 0.0079 0.3194 0.1757 71.1152
22 | haro 0.0000 | 0.0000 0.0000 0.0079 0.0157 0.0131 0.2304 0.0000 49.3063
23 | iris 0.0105| 0.0040 0.0424 0.0157 0.0157 0.0079 0.0628 0.0316 49.3953
24 | msgs 42.1845| 35.0529 | 18.9667 | 101.2513 8.1047 8.7565 36.4293 | 65.0422| 1660.4503
25 | popa 0.0123 | 0.0040 0.0079 0.0000 0.0079 0.0000 0.1152 0.0105 42.3743
26 | blcl 17.5975| 8.1816 2.0707 4.5157 2.9031 2.9372 | 4797.7827| 36.5624| 813.3194
27 | pbrily 0.0088 | 0.0040 0.0119 0.0000 0.0000 0.0000 0.5497 0.0123 42.0995
28 | pbri2y 0.0035| 0.0000 0.0077 0.0026 0.0052 0.0026 0.1204 0.0123 41.5759
29 | derm 0.0617 | 0.3022 0.2993 0.3639 0.0707 0.3770 0.4607 0.3199 9.5314
30 | flag 0.2076 | 0.1280 0.1471 0.1597 0.0471 0.0524 0.9660 0.0492 54.0000
31 | caar 2.5012 | 1.7672 1.7990 2.0419 2.0419 2.0419 3.7906 3.8067 | 528.3168

Median 0.0193 | 0.0228 0.0424 0.0524 0.0209 0.0288 0.3639 0.0176 42.4712

Mean 4.0125| 55553 | 19.5343 8.9203 5.3867 39.7847| 168.3747| 32.0237| 258.9337
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3.3.2 Required memory storage

The hyper parameter settings and the number of paramefeneéped for the nine
classifiers are tabulated in Table 3.3 and Table 3.4. Nextaacblumns of polyno-
mial orders (r) are the ranking (labelled as ‘rk’) of polyniahorder of each classifier
compared to other classifiers. The classifier with loweseisl assigned as rank 1
and so on, the classifier with highest order is assigned &s#ain cases of ties, an
average rank will be assigned for those algorithms whichieshasimilar rank. The
purpose of this ranking is to see whether any algorithm ptemsily needs higher or
lower polynomial order (e.g:k — 1 orrk — 7). As can be seen in Table 3.4, RAMP
often uses lower order (avé: = 3.3, aver = 1.6) while SVM uses higher order than
other classifiers (avek = 4.8. aver = 3.0). No classifier is found to persistently use
high order.

From Table 3.4, it is easy to see th&N is the most storage demanding classifier
as it has to remember all the training samples provided. Mb#@®, in most of the
cases, RM and its extensions using hyperbolic functionsessedtorage than SVM.
However, in some highly nonlinear pattern classificatioolbpgms which have high
input dimension and requires high order approximation,réteiced models are ex-
pected to have more weight parameters than those of othezlmads shown in Table
3.3, in some data setmggs, caar ), RM and its extensions require much more stor-
age than in other data sets. The gain from paying the pricéasfia number of weight
parameters is its single step training that is also leas&ss optimal [63]. Also, the
number of weight parameters needed by RM and its extensiaeisto be relatively

large for high dimensional multi-class problems.

3.3.3 Classification accuracy statistics

The average accuracy of all 9 classifiers over 31 data sefg@sented in Table 3.5.

In the last row of the table, the means taken across all dé&ansth respect to each
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Table 3.3: Hyper parameter settings and number of parameté&M, SINH, COSH,
TANH classifiers on 31 data sets.

No. | Data set RM SINH COSH TANH

r rk p r rk p r rk p r rk p

1 | pbrilt 3 55 34 3 55 34 3 55 34 1 15 8
2 | pbri2t 3 55 34 3 55 34 1 1 8 2 3 21
3 | ckrp 3 45 184| 3 45 184| 3 45 184 2 2 111
4 | ckrk 2 5 51 2 5 51 2 5 51 2 5 51
5 | cyba 2 4 72 2 4 72 2 4 72 2 4 72
6 | echo 1 35 13 1 35 13 1 35 13 4 7 82
7 | hasu 3 35 19 3 35 19 6 7 40 3 35 19
8 | hosl 1 25 10 1 25 10 1 25 10 5 65 78
9 | mpgs 1 35 60 1 35 60 1 35 60 1 35 60
10 | muskl 1 35 170 1 35 170 1 35 170 1 35 170
11 | musk2 1 15 170| 2 4 507 4 6 1181 2 4 507
12 | spam 3 5 290 3 5 289 2 2 174 3 5 289
13 | sphe 1 35 24 1 35 24 1 35 24 1 35 24
14 | sphf 3 5 224 1 25 46 4 6 313 1 25 46
15 | pbrilm 1 4 24 1 4 24 1 4 24 1 4 24
16 | pbrils 4 7 141 2 45 63 2 45 63 1 15 24
17 | pbrilr 1 25 24 2 5 63 1 25 24 1 25 24
18 | pbri2m 1 35 24 1 35 24 2 7 63 1 35 24
19 | pbri2s 1 25 24 1 25 24 2 6 63 1 25 24
20 | pbri2r 1 2 24 3 55 102 1 2 24 3 55 102
21 | hooc 1 15 30 2 3 81 3 45 132| 4 65 183
22 | haro 3 45 57 2 15 36 4 7 78 3 45 57
23 | iris 2 25 45 3 5 72 4 7 99 3 5 72
24 | msgs 5 6 1670 4 5 1296 3 4 927 6 7 2034
25 | popa 1 35 30 1 35 30 1 35 30 1 35 30
26 | blcl 8 65 795| 8 6.5 795| 4 35 375| 4 35 375
27 | pbrily 1 35 48 1 35 48 1 35 48 1 35 48
28 | pbri2y 1 35 48 1 35 48 1 35 48 1 35 48
29 | derm 1 2 216 2 55 630 2 55 630 2 55 630
30 | flag 2 5 696 2 5 696 2 5 696 2 5 696
31 | caar 1 35 3648 1 35 3648 1 35 3648 1 35 3648
Mean 20 39 287.1| 21 41 296522 43 3002 21 40 309.1

r: polynomial order, rk: ranking, p: number of parameters.

classifier is tabulated. For a more detailed accuracy 8tatig.e. in terms of min, max,
ave and std) across the 10 runs of 10-fold cross validatioedoh data set, the readers
can refer to Tables A.1, A.2, A.3 in the appendix. In Table, 3t bold numbers
indicate the classifiers that achieve best accuracy in eatzhskt. It is shown that
SVM s the best classifier in 12 data sets. Besides, RM is theitikxrghat achieves the
highest average accuracy among 31 data sets and SVM and Talli fwvith small
difference. It is also noted that other extensions of RM (SIKDSH and RAMP
nets) also achieve good average accuracy compared to t8at\éf(the differences is
less than 1%).

Table 3.6 shows the average accuracy of the classifiers eggpect to different
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Table 3.4: Hyper parameter settings and number of paraset®AMP, STEP, SVM,
KNN, MLP classifiers on 31 data sets.

No. | Data set RAMP STEP SVM KNN MLP
r rk p r rk p d rk p k p nh p
1 | pbrilt 1 15 8 2 3 21 3 55 161 7 438 3 21
2 | pbri2t 2 3 21 7 7 86 2 3 182 5 438 3 21
3 | ckrp 3 45 184 1 1 38 4 7 9768 4 103608| 18 666
4 | ckrk 2 5 51 1 15 18 1 15 986| 8 1456 32 544
5 | cyba 2 4 72 2 4 72 2 4 5400 3 8280 23 552
6 | echo 1 35 13 1 35 13 1 35 96 1 176 5 60
7 | hasu 3 35 19 5 6 33 2 1 580 | 10 828 1 4
8 | hosl 1 25 10 4 5 61 5 65 855| 9 15.92 4 36
9 | mpgs 1 35 60 1 35 60 3 7 3481 5 5568 29 1711
10 | muskl 1 35 170 1 35 170 2 7 11999 1 72240 84 14196
11 | musk2 2 4 507 5 7 1518 1 15 49348| 1 997752| 84 14196
12 | spam 2 2 174 5 7 519 2 2 42978 1 236094| 57 3306
13 | sphe 1 35 24 1 35 24 2 7 2254 2 5302 22 506
14 | sphf 1 25 46 1 25 46| 10 7 4950| 1 13860 22 990
15 | pbrilm 1 4 24 1 4 24 1 4 210 5 438 6 54
16 | pbrils 1 15 24 2 45 63 2 45 427| 5 444 3 27
17 | pbrilr 1 25 24 8 7 297 6 6 329 7 438 6 54
18 | pbri2m 1 35 24 1 35 24 1 35 203| 5 438 6 54
19 | pbri2s 1 25 24 2 6 63 2 6 448 5 444 6 54
20 | pbri2r 3 55 102 1 2 24 3 55 322 4 438 6 54
21 | hooc 3 45 132 1 15 30 4 65 1296| 2 1592 16 176
22 | haro 3 45 57 2 15 36 3 45 276| 3 396 6 36
23 | iris 3 5 72 1 1 18 2 25 190| 4 540 8 56
24 | msgs 2 2 558 2 2 558 2 2 19654| 4  175250| 122 7808
25 | popa 1 35 30 1 35 30 2 7 540 | 10 632 8 88
26 | blcl 3 15 270 3 15 270 7 5 3916 3 49290 10 150
27 | pbrily 1 35 48 1 35 48 4 7 343 2 438 6 72
28 | pbri2y 1 35 48 1 35 48 2 7 413 2 438 6 72
29 | derm 1 2 216 2 55 630 1 2 2590 4 11016 17 680
30 | flag 1 15 240 1 15 240 2 5 4379 9 3976 56 2016
31 | caar 1 35 3648 1 35 3648| 8 7 70143| 4 86784 | 113 27346
Mean 16 33 2226 22 37 2816| 30 48 77005/ 44 57388.6| 254 2438.9

r:'polynomial order, rk: ranking, p: number of parameters.

number of classes. It can be seen that, the average accuesylgwn as the number
of classes increases for every classifier. Among these 31 bit@lsets, the multi-class
problems not only require more training time and memoryagjer but also they are

harder to be classified than 2-class problems.

3.3.4 Accuracy versus efficiency

One often wants to know the classification accuracy of thesdiars along with their
efficiency. In this context, the efficiency refers to CPU tirodrain a classifier and
the amount of memory storage required for parameters. E&faBplots the average

accuracy of each classifier versus its median training tithe.median training time is
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Table 3.5: Classification accuracies of the compared algost

No. | Dataset RM | SINHnet | COSH net| TANH net | RAMP STEP | SVM KNN MLP
1 | pbrilt 0.8829 0.8786 0.8700 0.8771| 0.8571| 0.8671 | 0.8986 | 0.8514 | 0.8529
2 | pbri2t 0.8529 0.8600 0.8714 0.8586 | 0.8500| 0.8314 | 0.8757 | 0.8943 | 0.8571
3 | ckrp 0.9450 0.9447 0.9453 0.9440 | 0.9453 | 0.9381 | 0.9940 | 0.9568 | 0.9920
4 | ckrk 0.9756 0.9778 0.9833 0.9756 | 0.9756 | 0.9411| 0.9322 | 0.8767 | 0.9344
5 | cyba 0.7195 0.7221 0.7369 0.7154 | 0.7049| 0.6410 | 0.7587 | 0.6708 | 0.6951
6 | echo 0.9140 0.9140 0.9140 0.8640 | 0.9240| 0.9060 | 0.9800 | 1.0000 | 0.9820
7 | hasu 0.7547 0.7550 0.7377 0.7523 | 0.7520| 0.7233 | 0.7340 | 0.7217 | 0.7170
8 | hosl 0.8085 0.8085 0.8085 0.8146 | 0.8167 | 0.8013 | 0.8200 | 0.7234 | 0.8308
9 | mpgs 0.9200 0.9120 0.8820 0.9170 | 0.8890| 1.0000 | 0.9140 | 0.7600 | 0.8880

10 | muskl | 0.9415 0.9398 0.9470 0.9476 | 0.9463 | 0.9870 | 0.9952 | 0.9380 | 0.6948
11 | musk2 | 0.9947 0.9999 0.9814 1.0000 | 1.0000 | 0.9891| 1.0000 | 0.9834 | 0.8544
12 | spam 0.9291 0.9281 0.8137 0.9040 | 0.7176| 0.6281 | 0.9372 | 0.9095 | 0.9402
13 | sphe 0.8458 0.8458 0.8458 0.8458 | 0.8458 | 0.8458 | 0.8254 | 0.8050 | 0.8108
14 | sphf 0.7718 0.7759 0.7900 0.7779 | 0.7521| 0.7159 | 0.8841 | 0.8479 | 0.8171
15 | pbrilm | 0.9714 0.9714 0.9543 0.9714 | 0.9700| 0.9829 | 0.8571 | 0.9257 | 0.9000
16 | pbrils | 0.8033 0.7850 0.8017 0.8017 | 0.8050| 0.7900 | 0.8100 | 0.8417 | 0.7883
17 | pbrilr 0.7086 0.6757 0.7014 0.7114 | 0.7000| 0.7100 | 0.6771 | 0.7043 | 0.6814
18 | pbriam | 0.9714 0.9714 0.9500 0.9714 | 0.9714 | 0.9571 | 0.8571 | 0.9300 | 0.8943
19 | pbri2s | 0.8000 0.7883 0.8067 0.8133 | 0.8183| 0.7967 | 0.7983 | 0.8367 | 0.7500
20 | pbri2r 0.6986 0.6814 0.7014 0.6886 | 0.6800 | 0.7086 | 0.7014 | 0.6914 | 0.6557
21 | hooc 0.6809 0.6809 0.6596 0.6867 | 0.6496 | 0.6575| 0.6604 | 0.6596 | 0.6200
22 | haro 0.8571 0.7500 0.8214 0.8687 | 0.8673 | 0.4187 | 0.8660 | 0.6071 | 0.7587
23 | iris 0.9680 0.9653 0.9693 0.9693 | 0.9733| 0.7687 | 0.9640 | 0.9593 | 0.9520
24 | msgs 0.9934 0.9890 0.9909 0.9803 | 0.9763| 0.7907 | 0.9881 | 0.8028 | 0.9912
25 | popa 0.7337 0.7325 0.7300 0.7325| 0.7325| 0.7312 | 0.7537 | 0.7112 | 0.6188
26 | blcl 0.9574 0.9571 0.9324 0.9554 | 0.9283| 0.9094 | 0.9701 | 0.9616 | 0.9733
27 | pbrily | 0.6814 0.6786 0.7171 0.6900 | 0.7214| 0.6771 | 0.6186 | 0.6071 | 0.6443
28 | pbrizy | 0.6986 0.7143 0.6814 0.6871 | 0.6986 | 0.6429 | 0.5886 | 0.5957 | 0.6343
29 | derm 0.9721 0.9676 0.9550 0.9709 | 0.9726 | 0.9091 | 0.9759 | 0.9682 | 0.9729
30 | flag 0.5625 0.5738 0.6094 0.5687 | 0.5475| 0.4788 | 0.5294 | 0.6358 | 0.5475
31 | caar 0.7694 0.7639 0.7333 0.7556 | 0.7694 | 0.7500 | 0.7778 | 0.6703 | 0.6475

Average 0.8414 0.8358 0.8336 0.8393 | 0.8309| 0.7901 | 0.8369 | 0.8080 | 0.8031

Variance 0.0141 0.0145 0.0124 0.0137 | 0.0146 | 0.0216 | 0.0172 | 0.0167 | 0.0179

Table 3.6: Classification accuracy and variance with resgedifferent number of
classes

RM | SINHnet | COSH net| TANH net | RAMP STEP SVM KNN MLP
2-class| 0.8754 0.8759 0.8662 0.8710 | 0.8555| 0.8439 | 0.8964 | 0.8528 | 0.8476
0.0073 0.0072 0.0068 0.0072 | 0.0094 | 0.0161 | 0.0075| 0.0108 | 0.0095
3-class| 0.8453 0.8258 0.8357 0.8463 | 0.8411| 0.7581 | 0.8180 | 0.7959 | 0.7992
0.0151 0.0170 0.0149 0.0148 | 0.0165| 0.0225| 0.0118 | 0.0145| 0.0180
multi-class | 0.7679 0.7697 0.7655 0.7657 | 0.7672| 0.7284 | 0.7449 | 0.7357 | 0.7198
0.0264 0.0248 0.0197 0.0257 | 0.0246 | 0.0276 | 0.0384 | 0.0311 | 0.0349
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Figure 3.2: (a) Average accuracy versus median training {imstandard CPU unit).
For kNN, the test time is included since it requires no trainingraining time of MLP
(42.4712) is too high to be displayed, (b) Average accuracgus average number of
parameters
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Figure 3.3: Average accuracy according to different propos of nominal attributes

used instead of the average training time because the a/&eaging time is strongly
affected by some data sets that require exceptionally loaiging time (e.g. when
SVM is applied to data sdilcl ). It is seen from Fig. 3.2(a) that, although SVM
possesses the highest accuracy in many data sets, RM andeisiex use much
less training time. Fig. 3.2(b) plots the average classibioaaccuracy versus the
required memory storage. This figure shows that SVM /aNtl requires much more
storage than other classifiers while RM and its extensionsaigghly similar number

of parameters.

3.3.5 Effect of nominal attributes

Another aspect that may affect the classification accuratlyecclassifiers is the nom-
inal or categorical attributes. This is because these ralnaittributes has to be con-

verted into numerical values before being used in the dlassi Letp be the propor-
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tion of the nominal attributes with respect to the total nemd attributes in each data
set. For example, the data sgba has 23 attributes and among them 12 are nominal
(Table 3.1), thup = 12/23 ~ 0.52. Fig. 3.3 plots the average accuracy over each al-
gorithm (indexed). This figure shows how the classificatiocuaacy of each classifier
may be affected by the nominal attributes. Fig. 3.3(a) shtvsaverage accuracy of
the classifiers among data sets witkess than 0.5 and Fig. 3.3(b) fprgreater than
0.5. These figures show that the studied classifiers hawr Ipettformance on data sets
which have small proportion of nominal attributes (izeless than 50%). Especially,
SVM is affected tremendously when the data sets have morenabattributes (ave
accuracy drops from 90.91% down to 79.12%). For STEP, itas $& be least affected
as the accuracy drops only 2%. This shows that although SBEP bt possess high

accuracy, it is more tolerant to the nominal attributes tbder classifiers.

3.3.6 Learning with varying data size and noise

Having chosen the parameters for each classifier using-gedgation, in order to see
the robustness of the classifiers, learning data of varyzessvere used. The size of
the training data is varied from 25% to 75% of the total aldédadata points and the
test data consists of the remaining samples. In additiaseneas added by randomly
changing 10% of the class labels of the training samplesaXaikping the class labels
of the test samples unchanged. This is to observe the rassstri the classifiers when
they are trained with 10% of the data having wrong class fabEble 3.7 shows the
average classification accuracy on all the 31 data sets forSR¥, KNN and MLP. It
can be seen from the table that as more samples are addelddrttaibing set, a better
classification performance is observed. However, therdiffee between the 50% and
75% columns is not significant. For RM, SVM, KNN, and MLP, th&etiences are
all less than 3%. Besides, as shown in the table, noise doasadhle classification

accuracy but not significantly. The deterioration of accyrdue to noise is less than
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Table 3.7: Average accuracy with varying learning data armnoise added

Classifiers| 25% | 25% +| 50% | 50% +| 75% | 75% +
RM 0.7320| 0.7043| 0.7790| 0.7535| 0.7995| 0.7822
SVM 0.7512| 0.7294| 0.7780| 0.7531| 0.7982| 0.7717
KNN 0.7408| 0.7276| 0.7649| 0.7489| 0.7767| 0.7568
MLP 0.7207| 0.7040| 0.7576| 0.7324| 0.7773| 0.7486
% : without noise, 2%+ : with 10% noise added into target class labels
x = 25,50,75

3% in most cases. Also, when the number of training samptrsases (i.e. 50% or

more), RM performs slightly better than other algorithmgwat without noise added

to the class labels.

3.3.7 Summary of results

The above results are summarized in Table 3.8. As seen frenatile, SVM has
largest best count which is well above all other classifi€re original RM model pos-
sesses the highest average classification accuracy witumedquirement of poly-
nomial degree. Among the hyperbolic extensions of the RM hdeNH has the

highest classification performance. RAMP has close perfoce# TANH but it re-

qguires much less polynomial degree than TANH. Combining goadiracy rate, low
requirement of memory storage and simple implementatisicda be seen in the Ap-
pendix of [63]), the reduced model and its extensions usypgefbolic functions are

shown to be good candidates for pattern classification.

3.4 Selection of Classifier for Multiple Biometric Veri-

fication

In this chapter, extensive experiments were performed edaced multivariate poly-

nomial, its extensions using hyperbolic and nonlineardfsictions, a support vector
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Table 3.8: Summary of results for 9 classifiers

Classifiers| Average | Best Average Median Average Average no. of Affected by

accuracy | count | training time | training time | polynomial degree| parameters | nominal attributes
RM 0.8414 4 4.0125 0.0193 2.0 287.1 X X
TANH 0.8393 1 8.9203 0.0524 21 309.1 X X
SVM 0.8369 9 168.3747 0.3639 3.0 7700.5 X X X
SINH 0.8358 2 5.5553 0.0228 2.1 296.5 X X
COSH 0.8336 1 19.5343 0.0424 2.2 300.2 X X
RAMP 0.8309 4 5.3867 0.0209 1.6 222.6 X X
KNN 0.8080 5 N/A N/A N/A 57388.6 X X X
STEP 0.7901 3 39.7847 0.0288 22 281.6 X
MLP 0.8031 3 258.9337 42.4712 N/A 2438.9 X X

x: least affected, x x:medium, x x x:most affected

machine, thek-nearest neighbor and a multi-layer perceptron based orai sgts

from UCI machine learning repository. Ten runs of 10-folasfred cross validation

were performed on these data sets to provide a good undairsganregarding the per-

formance statistics of these classifiers. The empiricallteshow that RM and its

extensions are comparable to SVM, MLP aidN in terms of average accuracy while

having significantly faster computing speed. Also, theajerrequirement of RM and

its extensions is less than those of SVM a&IN. Additionally, the linear formulation

of RM is very simple to implement and is possible to be formedah adaptive form

easier than other classifiers. In next chapter, an adappietating scheme for multi-

modal biometric verification which utilizes these charastes of the RM model will

be presented.
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Chapter 4

Adaptive Multi-modal Biometrics

Fusion

In previous chapter, experimental results have shown thainfitidel possesses very
good classification performance in real world data setsrmgeof training time, mem-
ory storage and average accuracy rate. These results lthtedelection of the RM
model as the classifier for multi-modal biometric verifioati However, there remain
two issues to be resolved when applying the RM model for dayatp operations.
These issues include new user registration and sensor gemlalgm. In this research,
an approach to solve these problems is to formulate thangaalgorithm in an adap-
tive fashion. In next section, these problems are discugsddtail. In section 4.2,
an adaptive formulation of the RM model is derived. Followarg sections 4.3 and
4.4 which discuss the algorithm in different aspects. Bnalsummary section shall

conclude the chapter.
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4.1 Issues Pertaining to Daily Operation

4.1.1 New user registration

In a security system, new user registration is likely to beegudent process. As a
new user arrives, the system have to be able to record thedeity and to adapt
itself so that the new user is able to access the system. In-maohal biometric
verification system, templates of the new user’s biometiresmeasured and stored
in the database for using in the later matching process. lulé-modal biometric
verification system, not only the biometrics are recordad,also the combination
module has to be updated so that it can recognize the new user.

From the pool of registered users, the training samplesisiookthe matching
score vectorse;,i = 1,..., N and their labelg;;,i = 1,..., N (i.e. genuine or ‘1’
and impostor or ‘0’), wheréV is the number of training samples. From these training
samples, the matri¥'y is calculated from the reduced model (3.4) and the optimal
parametetxy is calculated from (3.6). Now, a new user comes and getsteegs Let
{x,y} be one of these new training samples. The paraneaetehave to be updated so
as to adapt the system to the new observations. It is esisthiatighe updating process
is fast and, if possible, requires less storage. Othenlasge database will accumulate
over time and this slows down the registration.

The solution fora in (3.6) is a single-step process. This is desirable when the
training set is rich, the environment does not change wittetii.e. a static problem.
Of course, (3.6) can be used again to updateHowever, for problems where the
training set grows with time, re-training the system usi8¢) might be very time
costly. If that is the case, a recursive updating schemeefeped as in this kind of
scheme, the new parametey; . is updated using the old parameter; and the new

training samplgx, y} only.
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4.1.2 Sequence of biometric data

From results reported in literature [29] and from our owredatllection process over a
reasonably long period of time, some changes in biometets especially the match-
ing scores were noticed. Thus, the biometrics data can =d=wred as a sequence of
data which varies over time. Consider those biometrics tleaewliscussed in chapter

2, the followings are noted:

e Fingerprint. Although the biological characteristics of fingerprintsynsaggest
minutia features to be permanent and unchanging for a gingej acquisition
of minutiae information is affected by the skin and imagimpditions at time
of measurement and the exact manner the finger was makingatamth the
sensor. As a result, the measured minutia parameter ibgvithanges with
time and the measurements can thus be seen as a sequeneerdiidhtchanges
over time. These changes maintain for quite a long time dulkeskin nature

and human'’s habits.

e Speech.Speech recognition or verification is much affected by nolses in-
evitably that the working condition of the microphone canvieey unexpected
and often different from the condition in which the speeahptate of the users
are recorded for the first time. Although there are featuhes &re quite in-
sensitive to noise [30], other features may changes draatigtias noise ap-
peared. Besides, sickness, cough and aging do contribueghhslowly, to

these changes.

An obvious advantage of recursive learning is that the pattassifier, starting
from some default initialization, is able to improve on tiob jand to follow changes
according to statistical properties of the pattern soudcethe context of biometric
verification, the pattern sources are the biometric serfsams which data may suffer
from noise, decay due to long-term usage or other factotsmhg discussed above. In

such case, a recursive formulation would enhance the \agrdit performance when
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combining multi-modal biometrics. In the following sectica recursive formulation

will be derived for the RM model.

4.1.3 Recursive learning

Recursive learning (or online learning) is different fromtdbalearning (or off-line
learning) in the way it accumulates knowledge. In batchriegy, the total training
set is required to be available in order to train the systeMeanwhile, recursive
learning changes the accumulated settings (i.e. parashetethe system whenever
new evidence (training sample) becomes available. By thys tha system is updated
with every incoming element of the training set.

Online learning is well applied in the field of Neural NetwsrKL3]. For each
type of neural networks such as multi layer perceptron (MLBgurrent networks,
radial basis function networks, there is an online learsicitteme developed. However,
online learning in neural networks only achieves the sanhgtisa as that of batch
learning in asymptotical manner [13].

Fortunately, if a system uses linear formulation to calieulgs parameters, then
there exists a recursive learning scheme that will providesame parameters as the
batch learning scheme [58]. At first glance, it may seem thatré¢cursive learning is
different from batch learning. Yet, Recursive Least Squaftgsrithm (RLS) enables
us to compute the same parameters as batch learning doesniyjtthe knowledge
of the new training sample. For example, it is well known ttiet mean of a random
vectoru = E{z} and the moment matrix of that vectdWl = E{xz”} can be

accumulated as more and more samples afe drawn from its distribution:

1 1
Ky = (1 - _)u’n—l + — L, (41)
n n

1 1,

M, = (1 - _)Mn—l + =TT, (42)
n n

The above equations also imply that, not only the mean anchtmeent matrix can
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be accumulated, but any mathematical expression invotiegy can also be accumu-
lated. At this point, it is necessary to quote J. Schurmasih [:Recursive learning is
an attractive technique capable of keeping pace with tleastrof incoming observa-
tions. This feature can be easily combined with patterrsdiaation. The recognition
systems works with its already accumulated knowledge andlg&neously improves
itself by recursive learning”. This is true especially iraptice where one can never be

sure whether the statistics of the data are stationary or not

4.2 Recursive Reduced Multivariate Polynomials

4.2.1 Recursive formulation (RM-RLS)

Let f, € R™,i =1,2,... be the row vector of all polynomial terms in (3.4) which is

applied to the-th training sample. All training samples can be packed uhég-th

iteration as:
f1 U1
f F,_ Y Y
Ft = 2 = =1 andyt = 2 = =1
ft : Yt
i .ft | i Y |

Let M, = FI'F, + bI, equation (3.6) becomes

oy = M;lnyt. (4.3)

When all training samples are considered equally imporfafitand F y, can be

rewritten in terms of their past and present instances &sifsi

M,=F'F,+0I =F \F,_,+ fl'f, +bI =M, + f! f,, (4.4)
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FtTyt = FtT—1yt—1 + f;[yt (4.5)

If it is desirable that the system can forget the old trairsagples, (4.4) and (4.5) can

be modified as follows:

M;=(1-\M, , +\f/ f, (4.6)

FtTyt =(1- )‘)FtT—ﬂJt—l + )‘f;ryta (4.7)

where) (0 < A < 1) is called the forgetting factor.

Sherman-Morrison-Woodbury matrix inversion formula. In the following ma-
trix manipulation, the Sherman-Morrison-Woodbury matnxersion formula is used
to inverse the matrixV1,.

Let the matricesA, B, C, D satisfy

A=B+C"DcC, (4.8)

then the inverse ofl is

A" =B '-B'CT(CB™'C"+D)"'CB™". (4.9)

Apply (4.9) in (4.4) withA =M, B=M, ,,C = f,,D = 1, we have

M fl M

M;'=M; - : 4.10
t o aM (440
Substitute (4.10) and (4.5) into (4.3), we have
o M f M
o = Mt—ll — ettt [Ff_lytfl + ftTyt]- (4.11)

fMfl+1

By definition,a,_, = M, FT |y, , and with some straightforward matrix manipu-
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lations, we finally arrive at

M;jlff(yt — frou1)

oy = 1 + — (412)

ftMtjlf? + 1

By multiplying both sides of (4.10) by, , we have:

_ M f!

M f = T (4.13)

ftMtflft + 1

Substitute the foregoing equation into (4.12), we have gknequation:

Oy = O ‘l— M;lf;r(yt — ftat_l). (414)

If we use the forgetting factox as in (4.6) and (4.7) and follow the similar matrix

manipulations, we have:

Mt1:< 1 Mt_11>_ (M) fidfo (M) g

1=A fo(5MD) fi+5

Substitute (4.15) and (4.7) into (4.3), we have:

1 - =M f S M
o= [gpat - NI (e ast)

1—=A ftﬁMt:ﬂftT‘i‘%
(4.16)
which leads to
=M f (g — frous
o= ey + T 1“) fulv — fros) (4.17)
XftMtflft +1
Multiply both sides of (4.15) byf? , we have:
(L prt T
Mt—lfz — A (17/\ t*1> ft (418)

MO+
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Substitute the foregoing equation into (4.17), we have knequation:
o= oy +AM; ] (v — froui), (4.19)

which is similar to equation (4.14) where no forgetting éags used.
In (4.12) and (4.17), the new estimaig is calculated using the previous estimate
a,_1, the inversion ofM,_; and the new training datgf,, v, }. Thus, these equations

are recursive solution for the optimal parametens (3.6).

4.2.2 Summary of RM-RLS algorithm

Input Training setD = {x;,y;},i =1,2,..., N

Output Parameter vectat
1. Initialization: M ;" = 1I,t =1, o is random.
2. Attimet, calculatef, in (3.4) from{x;, v; }.
3. UpdateM ;' ande, using (4.10) and (4.12) (or (4.15), (4.17))

4. Assignt «— t + 1.
If t > N thena +— a and stop,

otherwise repeat from step 2.

4.3 An Upper Bound of the Forgetting Factor

The adaptive algorithm, which based on equation (4.19gg@n the forgetting factor
A. If Nistoo large, the learning process may not converge anditbsigfs in undesired
solution of the coefficientx. In this section, an upper bound farwhich specifies a

“safe” range, over which can vary, is estimated.
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Let Ad; and Ad; be the errors before and after updating the coefficieratt the

t-iteration, we have:

Adt =Yt — ftat,l, (420)

Ady =y — frou. (4.21)
Substitute (4.19) into (4.21):

Ad; =y — filaw s+ AM L (g — Froun))
= y— flowa = MM (g — Frousa)
= Ad, — M\f,M ;' fT Ad,

= (1= Xf,M;'fI)Ad,. (4.22)

Equation (4.22) shows how the error is updated during eatiidual iteration of
updating the coefficientx. For the learning process to converge (see e.g. [58]), the

error after updating should be smaller than the error befpdating which leads to:
1= \f,M;'f] < 1. (4.23)

As a result, the forgetting factor should be smaller than

1

P (24

)\mact =

Using the property thai”b = trace[ba’], and by takinga” = f,,b = M ;' fT,
we have

ftMt_lftT = trace[Mt_lftTft]. (4.25)
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From (4.4), asVI,_, and f] f, are positive definite, we have
trace[E[M,]] = trace[E[M,_1]] + trace|E[f] f,]] > trace|E[f] f.]l, (4.26)

which leads to

trace[E[M )7 < trace[E[f] £, (4.27)

and the expectation of the denominator of equation (4.24) is
trace[E[M; " i f,]] < trace[BIf{ f|'E[f/ fi]] = trace(I) = K,  (4.28)

whereK is the number of polynomial terms used in equation (3.4).

Thus, a practical limit of\ is:

1 1

>\max = — > —.
trace EIM ' f{ )]~ K

(4.29)

Equation (4.29) gives a rough estimation of the limit for fbegetting factor).
In practice, a value\ smaller than this limit is a sufficient condition for the |rargy

process to converge.

4.4 Remarks and Summary

4.4.1 Remarks on RM-RLS algorithm

e From mathematical point of view, it should be made clear ithdéhe foregoing
derivation, no fundamental difference exists betweentbagtimates in (3.6)

and recursive estimates as those given by (4.12) and (4.17).

e The time characteristic of the learning process can be tedjus/ proper use of
a constant\, called the forgetting factor. Large makes the system forget old

training samples faster while smallallows old training samples to contribute
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more in the calculation ofx.

e With M "' being initiated deterministically, RM-RLS requires no matriver-
sion like the original RM algorithm. Although RM-RLS still regjas the inverse
of a scalar, the inverse d¥Z, in equation (4.10) is exact. Thus, RM-RLS and

RM share the numerical stability that regularization methodg about.

e The storage size of RM-RLS consists of of the inversioidf (K x K) and
the current data/{ x 1) which is smaller than the storage size of RW, x K)

where N is the number of training samples.

e The RM-RLS can be easily implemented in common programminguages
like C or Matlab. In appendix B, an implementation of the aition in Matlab

is attached.

4.4.2 Summary

In this chapter, two issues in multi-modal biometric vertion are discussed. New
user registration and sensor decay problems motivate trebfoean efficient adaptive
updating scheme. Such updating algorithm was derived R model in section
4.2. Without the forgetting factok, the RM-RLS algorithm would give the same
solution ofa as the original RM model. However, for a more flexible learrpnocess,
the forgetting facton is introduced to indicate how fast the system forgets oliditng
samples. In order to achieve a stable learning processfatgstting factor should
be smaller than a limit given in equation (4.29). RM-RLS alsguiees no matrix
inversion, less memory storage than RM and can be implemeatgity in common
programming languages. In next chapter, the usefulness oRRSI algorithm in

multi-modal biometric verification will be demonstratedngsvarious experiments.
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Chapter 5

Experimental Results and Discussions

In this chapter, experiments on real data sets are repartgeinhonstrate that (i) RM-
RLS algorithm (see chapter 4) can be applied to speed up newegsgstration process,
and (ii) RM-RLS algorithm is capable of enhancing the verifmaiperformance and
adapting the biometric verification system to changes inchmag scores. The new
RM-RLS algorithm shall be evaluated in a few aspects: its watibn performance
(i.e. accuracy and speed), its robustness to differentéioosensors, and its adaptive
characteristics.

In order to carry out the experiments, biometric data setsfdifferent sensors
have been collected over a reasonably long period. For taptiad estimation case,
biometric data collected in the first week is used as the eafsr templates. Biometric
data collected in the later weeks are matched with theselét@spo generate subse-
guent genuine scores and impostor scores in order to bailing and test sets. For
consistency in terms of data size, biometric data sets thkem the first two weeks
are used in the experiments for static estimation case nlitisd that results on larger
data sets have been available in the literature for statimason case [64—66]. The
purpose of carrying out experiments on the static estimatese here is to have a
baseline for comparing the case in which the sequence olvdéats over time.

Organization of this chapter is as follows: biometric datglasition and single
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biometric verification performance are reported in secbdn The verification per-
formance of combining of two and three biometrics is rembitesection 5.2. The
adaptive characteristics of RM-RLS are investigated in eadi3. Finally, a discus-

sion on the main findings shall conclude the chapter.

5.1 Single Biometric Verification: Experimental Setup

5.1.1 Fingerprint verification

The representation for fingerprint consists of a globalcttme and a local structure.
The global structure consists of positional and directiomi@rmation of ridge end-

ings and ridge bifurcations. The local structure consisteetative information of

each detected minutia with other neighboring minutiae. g€iprint verification is

then performed by comparing the minutia information betwago templates [27].

The interested readers are referred to [27] and [28] forildedd minutiae detection

and matching.

Data acquisition. In order to observe any change in the matching score over time
the fingerprint data sets were collected over a reasonatdyderiod of time using two
type of sensors: Veridicom sensor (20 weeks) and Secugeonrs@ weeks). Based
on visible changes detected in empirical observation, vie\wethat such changes lies
within this time window. The resolution of a fingerprint ineagbtained by Veridicom
sensor and Secugen sensd(8 x 300 and248 x 292, respectively. Fig. 5.1 and Fig.
5.2 show some fingerprint image samples obtained by thessamsnrs during the first
10 weeks. In this section, the verification performance efttho sensors, Veridicom
sensor which is a CMOS sensor and Secugen sensor which is iaal ggnsor, are
compared.

Veridicom sensor data set12 different fingers (left and right thumb, index, mid-

dle fingers) from 2 individuals were sampled every week (Eisesper week) for 20
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Figure 5.1: Veridicom sensor’s fingerprint image samples

70



weeks. Since all fingers from the same individual have diffiefingerprints, we can
treat these 12 fingers as those come from 12 different inggd In each session, 10
samples were collected from each finger. A total of 24QXihgersx 10 samples<20
weeks) fingerprint images were collected.

Secugen sensor data se®4 different fingers (left and right thumb, index, mid-
dle fingers) from 4 individuals were sampled every week (Bisesper week) for 30
weeks. In each session, 10 samples were collected from ewysr.fiA total of 7200

(24 fingersx 10 samplesx 30 weeks) fingerprint images were collected.

5.1.2 Speech verification

The speech data set was taken from the commercially availBliR?IGIT database
[67]. This database consists of speech from both 10 maled @feimales. Each per-
son is required to say digits from ‘zero’ to ‘nine’, 10 timeach. In this application,
the fixed-text mode and the template matching method aretedldpr speaker verifi-
cation [6]. Comparison of two utterances is performed byratig the two templates at
corresponding points in time. To cater for difference inadiom of the two utterances,
the Dynamic Time Warping (DTW) method is adopted when miningza distance
metric between two feature sets extracted from the spedah Hay. 5.3 shows some
samples of speech data uttering the word “zero”. More detdibut the system (see

also [47, 51] for similar matching designs) can be found in [6

5.1.3 Hand-geometry verification

In current application, the width and length informatioe ased. First, the hand con-
tour is analyzed and dominant points are located. Thesdsaie further identified
as finger tips and valleys based on the convex or concavetauevaf the contour.
The principal axis of each finger is then found by using a seoflly separated grid

points starting from respective finger tips. The widths asasured perpendicular to
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Figure 5.2: Secugen sensor’s fingerprint image samples
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(@) (b)

Figure 5.4: (a) A hand image sample, (b) Extracted hand gggme

the axes at the grid points. The features used were simitaote in [26] except that a
fixed interval was used for the width measurements. A totabatio 30 width features
are collected for each hand image depending on the fingethleige length is found
using the finger tip and its neighboring valleys informatiorhese features of each
finger from both the query image and the template image argawed separately.
Their absolute matching differences are summed up and tiagadas the matching
score. Fig. 5.4 shows a sample captured hand image andriésext hand-geometry
including width/length features in our application. Thader is referred to [68] for

more details.
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Figure 5.5: Hand image samples

5.1.4 \Verification performance

Score normalization. The score is normalized before going on to the final step of
combining different biometrics. Reasons behind this noizatibn step are many.
First, scores without normalization can make the final decibiased. Second, scores
with high magnitude affect the stability of polynomial-leasmethods like RM since
they may use polynomials with high order. In the followingpexments, as there is no
assumption on the type of the output function in each biometatcher as described

in [43], a traditional method [23] callegtscoreis adopted. The matching scores are
transformed so that they hasro mean value andnit standard deviation. The fol-
lowing normalization steps are performed: first, find the gitgd meanm and the
standard deviatior; second, subtract the mean from the scores and then divde th

scores by the standard deviation:
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Figure 5.6: Matching scores distributions: (a) Fingerp(®ecugen), (b) Fingerprint
(Veridicom), (c) Speech, (d) Hand geometry

: score—m
normalized score= ——. (5.1)
S

Score distribution. The matching scores for static fingerprint verification were
generated by matching fingerprint samples from the secorek wath those from
the first week. To generate genuine scores, fingerprint sargfl the same finger
were matched among themselves. To generate impostor séiogerprint samples
of different fingers were cross matched. Note that there arengjers (representing
12 different identities) in Veridicom dataset and 24 fingeepresenting 24 different

identities) in Secugen dataset and 10 fingerprint samplese@adiected for each finger.
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Figure 5.7: ROC curves - single biometric verification

Thus, there ard2 x 10 x 10 = 1200 genuine scores ant2 x 11 x 10 x 10 =
13200 impostor scores for the Veridicom data set. For the Secugengt, there are
24x10x10 = 2400 genuine scores arid x 23 x 10x 10 = 55200 impostor scores. The
genuine scores and impostor scores of speech and hand-ggamefication were
generated such that the number of matching scores for eantebic are equal.

Fig. 5.6 shows the matching scores distributions of fingetg¥eridicom and Se-
cugen), speech and hand geometry for each class of usersngersers and impos-
tors. The distributions shown were obtained after the nbra#on step. The figure
shows that scores distributions of genuine users and iraogverlap only in the tail
(small) area of them. According to the theory of patterngifasation [10], this means
that for single biometric verification, a simple classifioatrule based on comparison
of the scores with a threshold can be used.

ROC curves. By varying the threshold to various values within the rapg#0, 10]

(as the scores are now normalizedt@o mean andinit standard deviation), for each
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biometric, performance criteria like FRR, AAR, FAR are calteth Fig. 5.7 shows
the ROC curves (AAR versus FAR) of each biometric using theeedaita set. As can
be seen in the figure, fingerprint verification (especialy$ecugen data set) has AAR
much better than that of speech and hand geometry when thesRAdRy small. This
means that in a highly secure system, that is, when the thickghchosen such that
a small FAR can be obtained, fingerprint verification withicgltfingerprint sensor
will be much more reliable than the other two biometrics. Deauine users have
higher chance to be accepted by the system. However, it ecéaq that, combination
of many biometrics for verification can have better perfanoeathan each biometric

alone.

5.2 Multiple Biometric Verification: Experimental Re-
sults

In this section, results obtained from two experiments omlwoation of two and
three biometrics for verification are presented. In the &rsgieriment, the data sets
are collected using Veridicom sensor, and in the secondriemeet, the data sets are
from Secugen data set. It is noted that, the multi-modal da&l in the following
experiments are considered “virtual” since the modalitiesiot come from the same
person. The verification performances of RM, SVM (polynorkerhel), and MLP are
compared in term of error rates. ROC curves, FRR, EER are ugbe aerformance

measures to demonstrate the combination results.

5.2.1 Combination of fingerprint and speech verification

In this experiment, the matching scores are generated dsitagcollected during the
first two weeks. This is because the first week collection rsmered as the registra-

tion process and the second week is considered as day-topaagtion. Fingerprint
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images from the same finger are matched to generate genuiaeinggscores. Finger-
print images from different fingers are matched to genempmstor matching scores.
The Veridicom data set consists of 12 different fingers whiggresent 12 different
identities. Thus, the number of genuine matching scoré20ig(= 12 x 10 x 10) and
the number of impostor matching scored3200(= 12 x 11 x 10 x 10). This set of
matching scores is divided into two equal parts: trainingasel test set. The training
set was used to train the RM model on different polynomial mrde = 1,2, 3). All
performance criteria like FAR, FRR, AAR and the ROC curves aremged from the
test set.

Fig. 5.8 shows the ROC curves on the test set when combiniggrfanint (Veridi-
com) and speech using different polynomial orders alonf thi¢ ROC curves of each
biometric. The ROC curves of SVM and MLP are also shown in tiperé. Note that
the ROC curves of SVM and MLP are not as long as that of eachdtitetras only
test set was used instead of the entire data set (i.e. tgag@hand test set). At the
operating pointF AR = 0.0001, the AARs of the RM model of the first, second and
third order are 86%, 91%, and 96% respectively while thatrajdrprint and speech
are 80%, and 78%. As can be seen in the figure, the first order Riiélnscapable of
enhancing the verification performance. The second andl ¢dindler RM model further
enhance the performance.

Table 5.1 shows the FRRs and EERs of RM, SVM and MLP at differetingst
It can be seen that RM with 3rd order, SVM with 2nd order and ML o hidden
nodes perform best among their types of classifiers. SVM @iitth order performs

best with smallest FRR (2.1667%) and smallest EER(0.9848%).
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Figure 5.8: ROC curves on test set - combination of fingetpua speech for verifi-
cation using Veridicom data set. C1: 1st order RM, C2: 2nd order &84 3rd order

RM.

Table 5.1: Error rates of RM, SVM, MLP - combination of fingenprand speech.

Classifiers FRR (%) | EER (%) | AAR (%)
RM (r = 1) 13.6667 | 5.1667 | 86.3333
RM (r =2) 9.0000 | 3.3333 | 91.0000
RM (r = 3) 3.6667 | 1.3333 | 96.3333
RM (r = 4) 5.1667 | 1.3182 | 94.8333
RM (r = 5) 5.1667 | 1.3182 | 94.8333
SVM (d = 2) 2.1667 | 0.9848 | 97.8333
SVM (d = 3) 2.1667 | 1.5000 | 97.8333
MLP (nh =2) | 3.8333 | 1.3333 | 96.1667
MLP (nh =3) | 5.1667 | 1.4848 | 94.8333

r, d: polynomial ordernh: number of hidden nodes.
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5.2.2 Combination of fingerprint, speech and hand-geometry ver-
ification

A similar experiment to the above experiment was carriedhaue. However, the

data set collected from Secugen sensor and another biemgitich is hand-geometry

was used. The Secugen data set consists of 24 differentdingéws, the number

of genuine matching scores $400(= 24 x 10 x 10) and the number of impostor

matching scores i55200(= 24 x 23 x 10 x 10).

Fig. 5.9 shows the ROC curves when combining fingerprinti{§ec), speech and
hand geometry using different polynomial orders along i ROC curves of each
biometric. Only 5th order RM is shown in the figure as the linesteo close. Table
5.2 shows the FRRs and EERs of RM, SVM and MLP at different settihgsn be
seen that RM with 5th order, SVM with 2nd order and MLP with twdden nodes
perform best among their types of classifiers. RM with 5th ppforms best with
smallest FRR (0.0833%) and smallest EER(0.0362%). At theatipgrpoint”"AR =
0.0001, the AARs of RM models are more than 98% while that of fingerpspeech
and hand-geometry are 94%, 78%, 72%, respectively. As capdrein the table, the
first order RM model is capable of enhancing the verificatiafiggenance. The higher

order RM models (i.e. 2nd, 3rd, 4th, 5th) can further enhahegerfomance.

5.3 Adaptive Multiple Biometric Verification: Experi-

mental Results

5.3.1 Veridicom data set

Fingerpint: As mentioned, 12 fingerprint identities were collectedravperiod of 20
weeks using Veridicom sensor. For each fingerprint ideritysamples were collected

weekly. The total number of fingerprints is thi&s x 10 x 20 = 2400. All fingerprint
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Figure 5.9: ROC curves on test set — combination of fingetpsipeech and hand-
geometry for verification using Secugen data set.

Table 5.2: Error rates of RM, SVM, MLP - combination of fingenty speech and

hand-geometry.

Classifiers FRR (%) | EER (%) | AAR (%)
RM (r = 1) 1.7500 | 0.4928 | 98.2500
RM (r = 2) 0.4167 | 0.1522 | 99.5833
RM (r = 3) 0.2500 | 0.1123 | 99.7500
RM (r = 4) 0.1667 | 0.0362 | 99.8333
RM (r = 5) 0.0833 | 0.0362 | 99.9167
SVM (d = 2) 0.1667 | 0.0362 | 99.8333
SVM (d = 3) 0.1667 | 0.0362 | 99.8333
MLP (nh =2) | 0.3333 | 0.1123 | 99.6667
MLP (nh =3) | 0.5000 | 0.2283 | 99.5000

r,d: polynomial ordernh: number of hidden nodes.
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Table 5.3: CPU times (in sec.) of RM and RM-RLS

No of users 2 4 6 8 10 12
RM 0.01| 0.02| 0.08| 0.30| 0.69]| 1.32
RM-RLS 0.02| 0.02| 0.04| 0.06| 0.07| 0.08

images collected from the second week and later are matcitbdive fingerprints
collected in the first week to generate the genuine user nmgtcltores and impostor
matching scores (see [27] for the minutia matching algon)thilrhe number of genuine
scores generated in each week3s< 10 x 10 = 1200. The number of impostor scores
generated in each weeklig x 11 x 10 x 10 = 13200.

Speech The spech data was obtained from six persons (3 males anudeds)
taken from TIDIGIT database. Each person was required to2seyprds. Thus,
for text-dependent speech verification, there Gre 2 = 12 identities in total. For
each identity, 10 samples were collected. The total numbgp@&ech samples is thus
12 x 10 = 120. In order to form pairs with the fingerprint identities, aaobdf 1200
genuine-user matching scores and a total of 13200 imposttainmg scores were also
generated (see [6] for the speech matching algorithm).

New user registration speedIf the system had/ users and a new identity is regis-
tered, then the number of genuine user scores and impostassadded aré);—g =45
and100 x N, respectively. Suppose, at the beginning, the system haseroregis-
tered. Each identity is then registered to the system gtgdusing RM and RM-RLS
algorithms. As can be seen in Fig. 5.10 and table 5.3, the GR&needed to find the
final parameter vectax for all 12 identities of RM-RLS (without forgetting) is much
less than that of RM as time goes by.

Choice of forgetting factor. In previous section, the RM model with 3rd order
(r = 3) performs better than the RM model with 1st and 2nd order. Thughis
experiment, RM-RLS with 3rd order was used. As shown in chaftdre forgetting

factor should be smaller than a lim\f,,. ~ % whereK is the number of polynomial
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Figure 5.10: CPU times (in sec.) required to find the paraneet®RM and RM-RLS
algorithms

terms. With two biometrics/(= 2) and 3rd order« = 3), we haveK = 1+ r +
[(2r — 1) = 14. Thus, we have,,,,, ~ % ~ 0.07. Fig. 5.11 shows the mean squared
error of the RM-RLS algorithm over 20 weeks with differergettings that are smaller
than),,... It can be seen that, with = 0.003 and\ = 0.01, the mean squared error
increases dramatically. As a result, the settingg @fhich lie between 0.0003 and
0.003 were used for a stable learning process.

Classification performance.The data set (matching scores) obtained in each week
is divided into two equal sets, one for training and the ofbetest. As the purpose
was to show the adaptive capability of the RM-RLS algorithre,ftillowing updating
scheme which was used in [29] has been applied. The datafi®firgét week was used
to find the parametar as a initial value. Then in each subsequent week, the cusrent
was used to classify the training set into genuine samplésmapostor samples. Only

the genuine samples were used to update the parameter weasing either RM or
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Figure 5.11: Weekly mean squared errors of RM-RLS with difiedesettings (Veridi-
com data set).

RM-RLS (with forgetting factor). For RM-RLS, the following vada for the forgetting
factor,\ € {0.0005,0.0010} which fall within [0.0003, 0.003], were chosen to see its
effect on the training process. Finally, the test sets oivaktks were used to calculate
the AARs, the FRRs, the FARs and the ROC curves. The changes efdbastities
over time will be observed.

Fig. 5.12 shows the weekly trend of FRR variation for both RM &M-RLS
algorithms at the operating poidtAR = 0.0001 for 20 weeks. Also, as shown in the
figure, in the first few weeks, the performance of RM and that of RME are similar.
From week 10 onwards, RM-RLS with forgetting factor startséoigrm better. This
shows that there are some changes in the scores. RM-RLS céarthese changes
and therefore its performance is more steady and bettethiaanf RM (the curves of

RM-RLS is below that of RM after week 10).

84



0.11

0.09F

|
2 4 6 8 10 12 14 16 18 20
weeks

Figure 5.12: FR rates in 20 weeks: combination of fingergketidicom) and speech.

5.3.2 Secugen data set

Fingerpint: 24 fingerprint identities were collected over a period ofvBfeks using
Secugen sensor. For each fingerprint identity, 10 samples eadlected weekly. The
total number of fingerprints is thugl x 10 x 30 = 7200. All fingerprints collected
from the second week and later are matched with the fingespoilected in the first
week to generate the genuine user matching scores and onpagtching scores (see
[27] for the minutia matching algorithm). The number of ger@uscores generated in
each week i24 x 10 x 10 = 2400. The number of impostor scores generated in each
week is24 x 23 x 10 x 10 = 55200.

Speech The speech data was obtained from eight people (4 males tamdales)
taken from TIDIGIT database. Each person was required t@Bsagrds. Thus, for
text-dependent speech verification, there wenre 3 = 24 identities in total. For
each identity, 10 samples were collected. The total numbgp@ech samples is thus

24 x 10 = 240. In order to form pairs with the fingerprint identities, aaloof 2400
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genuine-user matching scores and a total of 55200 imposabchimg scores were
generated.

Hand-geometry. For each hand identity, 10 samples were collected. Thé tota
number of hand-geometry samples is tBds< 10 = 240. In order to form pairs with
the fingerprint identities, a total of 2400 genuine-useraiaig scores and a total of
55200 impostor matching scores were generated.

Choice of forgetting factor. In previous section, the RM model with 5th order
(r = b) performs better than than RM model with other orders. Thushis experi-
ment, RM-RLS with 5th order was used. With three biometrics @) and 5th order
(r = 3), we haveX = 1+r+1(2r — 1) = 33. Thus, we have\,,., ~ % ~ 0.03. Fig.
5.13 shows the mean squared error of RM-RLS algorithm over 2&sweith different
A settings that are smaller thap,... It can be seen that, with= 0.003 and\ = 0.01,
the mean squared errors are not stable as thatw4th).0003. As a result, the settings

of A which lie between 0.0003 and 0.003 have been used for a $¢aibleng process.

Classification performance.The same updating scheme described in the previous
section was followed here, except that for RM-RLS, the follmywalues for the for-
getting factor\ € {0.0003,0.0005,0.0007,0.0009,0.0010,0.0011} which fall within
[0.0003, 0.003], were chosen to see its effect on the training process. Iitlaé test
sets of all weeks were used to calculate the AARs, the FRRs, tRs BAd the ROC
curves. The changes of these quantities over time have lisened.

Fig. 5.14 shows the weekly trend of FRR variation for both RM &M-RLS
algorithms at the operating poiftAR = 0.0001 for 30 weeks. Only results with
A € {0.0005,0.0010} are shown since lines are too close. As shown in the figure, in
the first few weeks, the performance of RM and RM-RLS are simitesm week 10,
RM-RLS with forgetting factor starts to perform better. AgeRM-RLS can track the
changes in the matching scores and therefore its perforenameore steady and better

than that of RM (the curves of RM-RLS is below that of RM after we8k 1
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Figure 5.13: Weekly mean squared errors of RM-RLS with difiepesettings (Secu-
gen data set).

5.3.3 Data set with artificial noise

This experiment was carried out using the same data setiloedaén the previous sec-
tion except that noise was added to the speech matchingsscloreormal working
environment, speech verification may be affected by noike.nbise added has Gaus-
sian distribution withzero mean and the standard deviationd) which is increased
as time goes by. In the first week, is 0.01 and is added by.01 every week. Thus,
by the end of 30 weekstd is 0.3.

Fig. 5.15 shows the weekly trend of FRR variation for both RM &M-RLS
algorithms at the operating poifAR = 0.0001 for 30 weeks. As shown in the
figure, in the first few weeks, the performance of RM and that RMBRite similar.
From week 15, the FRR of the RM model starts to increase draatigtiwhile the
FRR of RM-RLS with forgetting factor keeps relatively steadfisTshows that RM-

RLS can track changes in the matching scores, especially tieemoise added, and
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Figure 5.14: FR rates in 30 weeks: combination of fingerfd@&tcugen), speech and
hand geometry.

therefore its performance is relatively steady and bettin that of RM.

5.4 Summary of Results

Main experimental findings in this chapter are:

e Single biometric verification: It has been shown that the fingerprint verifica-
tion performance is better with Secugen (optical) sensan thith Veridicom
(CMOS) sensor. According to Fig. 5.7, the ROC curve of Seclsggrsor is
much higher than that of Veridicom and other two biometriitss further no-
ticed that fingerprint images obtained from Secugen sessdearer than that
from Veridicom sensor. Thus, the minutia information canel&acted more

accurately in Secugen sensor than in Veridicom sensor.

e Speeding up of new user registration processtig. 5.10 shows that RM-RLS
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registration time is being kept steadily as the number ofsusereases while
RM registration time grows very fast. From this result, it d@generalized
that when the number of users in the system is huge, the RM-RUi8 save up

considerable time for computation of learning parameters.

Improving verification performance: Experiments on two data sets (Veridi-
comm and Secugen) have shown RM-RLS has the ability to keepvpttéhe
incoming matching scores and improve the performance. Rie &f RM-RLS
becomes smaller or it is kept more steadily over the lateke/@é a reasonable
operating point” AR = 0.0001. Itis concluded that when there may be changes
in the score distributions due to sensor decay or noise appeBRM-RLS can

track those changes to maintain and even improve the veidiicperformance

of the system.
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Chapter 6

Conclusion

Multi-modal biometric verification is gaining more and ma#ention recently be-
cause of the high security level it provides and the nonenmsality of uni-modal bio-
metrics. Combination of multiple biometrics using classifion techniques is an im-
portant approach in multi-modal biometric verification. w&yer, for parameterized
classifiers, new user registration and adaptation to clsa(dye to sensor decay or
user’s habit) could be problematic. New user registrateaquires retraining the com-
bination module while sensor decay could affect the vetioaperformance. The
proposed recursive formulation can solve these probleroause (i) it can adapt the
combination module efficiently whenever new training sasrrive and (ii) a recur-
sive formulation allows the system to follow changes ofistizal properties of the
matching scores.

Prior to multi-modal biometrics decision fusion, an engaticomparison of sev-
eral classifiers including SVM, KNN, MLP, RM and its variantassconducted in this
research. Extensive experiments have shown that RM is a gasslfecation tool com-
paring with other classical techniques like SVM, KNN and MBe@sides, the single
step computation needed to train the RM model allows the isoltb be formulated
in a recursive fashion. This supported the decision to us&ktt! model as a basis of

the RM-RLS algorithm.
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The main focus of this thesis is the development of the RM-RIgdrithm, an
advancement of the RM model using Recursive Least Square®dethe proposed
algorithm requires only a simple implementation in commoogpamming language
like C or Matlab. A short implementation of the algorithm iralab is provided in the
appendix. It was also shown by experiments that this approan be very efficient
in terms of training time and memory storage needed to findbptenmal parameter.
The recursive formulation allows the parameters to be aatated along with new
knowledge of incoming training samples instead of beingalkeulated using the entire
training set.

The RM model and the RM-RLS algorithm have been experimenteduti-m
modal biometrics decision fusion. The experimental dateeveellected over a rea-
sonably long period using two types of fingerprint sensotish &wnd without noise
added to the speech data. Three biometrics: fingerpringcépand hand-geometry

were combined for identity verification. The results shoatth

1. Multi-modal biometrics decision fusion proposed in tt@search, using the RM
model and RM-RLS algorithm outperforms uni-modal biometreeification.
The results are comparable to other classification teclesiquch as SVIVKNN

and MLP.

2. The RM-RLS algorithm has shown the ability to maintain a gpedormance

even when there are changes in the data, such as new uséatemnis

3. RM-RLS algorithm performs better than RM when there are casumgmatch-
ing scores due to variations in sensor performance. Iniaddib using finger-
print data which varies over time, two cases have been ceresid (i) without
noise and (i) with noise added to the speech matching scdreboth cases,
RM-RLS can maintain or improve (as in case (i)) the verificap@nformance

of the system over time.
An immediate challenge in multi-modal biometric verificatisystem is to deal
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with the situation where not all biometric measurementsaaeglable. This situation
may arise in the registration phase as well as in day-to-gayations. The immediate
future work would thus be improvement of the RM-RLS algorithacts that it can
adapt the verification system in cases where not enoughmiratbion is available (e.g.
missing matching scores). Such algorithm would be veryulsefpractical multi-

modal biometric verification system.

92



Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

F. M. Alkoot, and J. Kittler. “Experimental Evaluatiorf &xpert Fusion Strate-
gies”. Pattern Recognition Letter20: pp. 1361-1369, 1999.

E. Bauer, and R. Kohavi. “An Empirical Comparison of VotingaSsification
Algorithms: Bagging, Boosting, and Variantd¥lachine Learning36(1-2): pp.
105-139, 1999.

J. Bigun, B. Duc, F. Smeraldi, S. Fischer, and A. MakarovuftModal Person
Authentication”. Proceedings Face Recognition: From Theory to Applications
Nato Advanced Study Institute Programme, 1997.

C. M. Bishop. Neural Networks for Pattern RecognitiorNew York: Oxford
University Press Inc., 1995.

R. Brunelli, and D. Falavigna. “Person ldentification UgiMultiple Cues”.
IEEE Transactions on Pattern Analysis and Machine Inteltige 17(10): pp.
955-966, 1999.

C. Li and R. Venkateswarlu. “High Accuracy Connected DigRecognition
System with Less Computation6th World Multiconference on Systemics, Cy-
bernetics and Informatics (SCI 20Q2)uly, Orlando, 2002.

[7] Vassilios Chatzis, Adrian G. Bors, and loannis Pitas. “NMuobdal Decision-

[8]

Leval Fusion for Person AuthenticationTEEE Transactions on Systems, Man
and Cybernetics29(6): pp. 674—680, 1999.

G. W. Cottrell and M. Fleming. “Face Recognition Using Upswised Feature
Extraction”. Proceedings of the International Neural Network Conferedcep.
322-325, 1990.

[9]1 J. Daughman, “Combining  Multiple  Biometrics”, in

[10]

[11]

http://www.cl.cam.ac.uk/users/jgd1000/combine/combtnd

Richard O. Duda, Peter E. Hart, and David G. Stétattern ClassificationJohn
Wiley & Sons, Inc, New York, 2001. (2nd Edition).

S. Dzeroski and B. Zenko. “Is Combining Classifiers Bettantl$electing the
Best One?”Proceedings of the Nineteenth International Conference ochihe
Learning pp. 123-130, 2002.

93



[12] F. Gamble, L. Frye, and D. Grieser. “Real-Time Fingerp¥erification System”.
Applied Optics31(5): pp. 652—-655, 1992.

[13] S. Haykin.Neural Networks: A Comprehensive Foundati®mentice Hall, New
Jersey, 1999. (2nd Edition).

[14] A. L. Higgins, and J.E. Porter. “Voice Identification idg Nearest-Neighbor
Distance MeasureProceeding of the IEER: pp. 375-378, 1993.

[15] A. K. Hrechak and J. A. McHugh. “Automatich FingerpriRecognition Using
Structural Matching” Pattern Recognition23(8): pp. 893-904, 1990.

[16] T.K.Ho, J.J. Hull,and S. N. Srihari. “Decision Combiiwattin Multiple Classi-
fier Systems”IEEE Transactions on Pattern Analysis and Machine Inteltige
16(1): pp. 66—75, 1994.

[17] K. Hornik, M. Stinchcombe, and H. White, “Multi-Layer Edforward Networks
are Universal Approximators'Neural Networks2(5): pp. 359-366, 1989.

[18] Y. S. Huang and C. Y. Suen. “A Method of Combining Multiplggerts for the
Recognition of Unconstrained Handwriten NumeraldEEE Transactions on
Pattern Analysis and Machine Intelligende/(1): pp. 90-94, 1995.

[19] D. K. lIsenor and S. G. Zaky. “Fingerprint Identificatibising Graph Matching”.
Pattern Recognition19(2): pp. 113-122, 1986.

[20] S.S.lyengar, L. Prasad, and H. Midvances in Distributed Sensor Technology
Prentice Hall, 1995.

[21] A. K. Jain, S. Prabhakar, L. Hong and S. Pankanti. “Hiléank-based Fingerprint
Matching”. IEEE Transactions on Image Processi®g5): pp. 846—859, 2000.

[22] A. K. Jain, L. Hong and R. Bolle. “On-Line Fingerprint V&dation”. |IEEE
Transactions on Pattern Analysis and Machine Intelligeri®&£4): pp. 302—-313,
1997.

[23] A. K. Jain, K. Nandakumar and A. Ross. “Score Normali@atin Multimodal
Biometric Systems”. to appear Pattern Recognition2005.

[24] A. K. Jain, R. Bolle and S. PankantiBiometrics : Personal Identification in
Networked SocietyKluwer, Boston, c1999.

[25] A. K. Jain and N. Duta. “Deformable Matching of Hand Skagor User Veri-
fication”. IEEE International Conference on Image Processitigpp. 857-861,
1999.

[26] A. K. Jain, A. Ross and Sharath Pankanti. “A Prototype ¢H&eometry-based
Verification System”. IEEE International Conference on Image Processihg
pp. 857-861, 1999.

94



[27] X.Jiang and W. -Y. Yau. “Fingerprint Minutiae Matchifased on the Local and
Global Structures” Proceedings of International Conference on Pattern Recog-
nition, 2: pp. 1038-1041, 2000.

[28] X.Jiang, W. -Y. Yau and W. Ser. “Detecting the FingenpiMinutiae by Adaptive
Tracing the Gray-Level RidgePattern Recognitioj34(5): pp. 999-1013, 2001.

[29] X. Jiang and W. Ser. “Online Fingerprint Template ImpEment”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligen2d(8): pp. 1121-1126,
2002.

[30] Joseph P. Campbell, Jr.. “Speaker Recognition: A Tuori@roceedings of the
IEEE, 85(9): pp. 1437-1462, 2000.

[31] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. “On Comibiy Classifiers”.
IEEE Transactions on Pattern Analysis and Machine Intelige 20(3): pp.
226-239, 1998.

[32] J. Kittler and K. Messer. “Fusion of Multiple Experts Multimodal Biometric
Personal Identity Verification Systems”Proceedings of the 2002 12th IEEE
Workshop on Neural Networks for Signal Processpg 3—-12, 2002.

[33] J. Kittler, and F. M. Alkoot. “Sum versus Vote Fusion inuliple Classifier
Systems”. IEEE Transactions on Pattern Analysis and Machine Intelige
25(1):pp. 110-115, 2003.

[34] J. Kittler. “A Framework for Classifier Fusion: Is it dtfleeded?”Lecture during
the joint Statistical Pattern Recognition and SPRR WorkgsB000.

[35] U. Kressel, “Pairwise Classification and Support Vedttaichines”. Advances
in Kernel Methods - Support Vector Learniflg C. Jain and et. al., eds.), ch. 5,
(Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Caméyiti999.

[36] L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. “Decision péates for Mul-
tiple Classifier Fusion: An Experimental ComparsioRattern Recognition34:
pp. 299-314, 2001.

[37] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duihinits on the
Majority Vote Accuracy in Classifier FusionPattern Analysis Applicatigr6:
pp. 22-31, 2003.

[38] L.Lam, and C. Y. Suen. “Application of Majority Voting t®attern Recognition”.
IEEE Transactions on Systems, Man and Cybernetics - pa27£5): pp. 553—
568, 1997.

[39] M. Lades, J Vorbruggen, J. Buhmann, J.Lange, C. V. D. Mgllausnd R. Wurtz.
“Distortion Invariant Object Recognition in The Dynamic kirArchitecture”.
IEEE Transactions on Computer2(3):pp. 300-311, 1998.

95



[40] D. Lee, K. Choi, and J. Kim. “A Robust Fingerprint Matchidgorithm Us-
ing Local Alignment”. 16 th International Conference on Pattern Recognition
(ICPR’02), 3: pp. 30803-30806, 2002.

[41] L. Hong and A. K. Jain. “Integrating Faces and Fingerfwifor Personal Iden-
tification”. IEEE Transactions on Pattern Analysis and Machine Inteltige
20(12): pp. 1295-1307, 1998.

[42] L. Hong, A. K. Jain, and S. Pankanti. “Can Multibiomesritmprove Perfor-
mance?,” inrProceedings AutolD’99p. 59—-64, 1999.

[43] C. L. Liu, H. Hao, and H. Sako. “Confidence Transformation €ombining
Classifiers”.Pattern Analysis Applicatiarv: pp. 2—17, 2004.

[44] D. Maltoni, Dario Maio, A. K. Jain and Salil Prabhak&tandbook of fingerprint
recognition Springer, 2003.

[45] J. Ma, Y. Zhao, and S. Ahalt, OSU SVM classifier Matlab Gmx (ver 3.00) in
http://www.eleceng.ohio-state.edunhaj/osu-svm/ Ohio State University, Dept.
of Electrical and Computer Engineering.

[46] The MathWorks, Matlab and Simulink, ttp://www.mathworks.com2005.

[47] J. M. Naik. “Speaker Verification: A TutorialEEE Communications Magazine
January: pp. 42—-48, 1990.

[48] S. Pankanti, S. Prabhakar, and A. K. Jain. “On the Imtligdity of Fingerprints”.
IEEE Transactions on Pattern Analysis and Machine Intelige 24(8): pp.
1010-1024, 2002.

[49] N. Poh Hoon Thian, and S. Bengio. “How do Correlation andarece of Base-
Experts Affect Fusion in Biometric Authentication Task?§ dppear inEEE
Transactions on Signal ProcessirgZp05.

[50] S. Prabhakar, and A. K. Jain. “Decision-Level FusiorFingerprint Verifica-
tion”. Pattern Recognition35(4): pp. 861-874, 2002.

[51] L. R. Rabiner. “A Tutorial on Hidden Markove Models and &sgtkd Applications
in Speech Recognition’Proceedings of the IEEE7(2): pp. 257-286, 1989.

[52] Sarunas Raudys. “Experts’ Boasting in Trainable Fusiole&u IEEE Trans-
actions on Pattern Analysis and Machine Intelligen2&(9): pp. 1178-1182,
2003.

[53] S. R. Raul, S.A Carmen and G. M. Ana. “Biometric Identificattbrough Hand
Geometry MeasurementdEEE Transactions on Pattern Analysis and Machine
Intelligence 22(10): pp. 1168-1171, 1989.

[54] A.Ross, and A. K. Jain. “Information Fusion in BiometficBattern Recognition
Letters 24: pp. 2115-2125, 2003.

96



[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learmimternal Represen-
tations by Backpropagating Errordtature 323(99): pp. 533-536, 1986.

[56] H. Sakoe and S. Chiba. “Dynamic Programming Algorithmti@jzation for
Spoken Word RecognitionlEEE Transactions on Acoustic, Speech, Signal Pro-
cessing26(1): pp. 43-49, 1978.

[57] Bernhard Scholkopf and Alex Smolaearning with Kernels MIT Press, Cam-
bridge, MA, 2002.

[58] Jurgen SchurmannPattern Classification: A Unified View of Statistical and
Neural ApproachesJohn Wiley & Sons, Inc, New York, 1996.

[59] L. Sha, and X. Tang. “Orientation-Improved Minutiae fangerprint Matching”.
16 th International Conference on Pattern Recognition (ICRR’ 4: pp. 432—
435, 2004.

[60] C. Soares, P. B. Brazdil, and P. Kuba, “A Meta-Learning Methto Select the
Kernel Width in Support Vector RegressiomMachine Learning54(3): pp. 195—
209, 2004.

[61] F. K. Soong, A.E. Rosenberg, L. R. Rabiner and B. H. Juang. €&t Quanti-
zation Approach to Speaker Recognition,” in Proceeding el HEE.

[62] S. Z. Li, D. Zhang, C. Ma, H. Shum, and E. Chang. “Learnin@@tmst GMM
Based Speaker VerificationEurospeech, Geneva, Switzerland, 2003

[63] K.-A. Toh, Q.-L. Tran, and D. Srinivasan. “BenchmarkiagReduced Multivari-
ate Polynomial Pattern ClassifierTEEE Transactions on Pattern Analysis and
Machine Intelligencg26(6): pp. 740-755, 2004.

[64] K. A.Toh, W.Y. Yau, and X. Jiang. “A Reduced Multivarig@®lynomials Model
for Multi-modal Biometrics And Classifiers FusionfEEE Transactions on Cir-
cuits and Systems for Video Technolot@(2):pp. 224—-233, 2004.

[65] K. A.TohandW.Y. Yau, “Combination of Hyperbolic Funetis for Multimodal
Biometrics Data Fusion”|EEE Transactions on Systems, Man and Cybernetics
- part B, 34(2): pp. 1196-1209, 2004.

[66] K. A. Toh, “Fingerprint and Speaker Verification Dea@ss Fusion,” inint.
Conf. on Image Analysis and Processing, Mantova, Italy, (F208), pp. 626—
631, 2003.

[67] K. A. Toh, W. Y. Yau, and X. Jiang. “Exploiting Global ariabcal Decisions for
Multi-Modal Biometrics Verification”.IEEE Transactions on Signal processjng
52(10): pp. 3059-3072, 2004.

[68] K. A. Toh, W. Xiong, W. Y. Yau, and X. Jiang. “Combining Fgerprint and
Hand-Geometry Verification Decisions,” #ith International Conference on
Audio-and Video-Based Biometric Person AuthenticatiorBRA'03 pp. 688—
696, 2003.

97



[69] A. Torn and A. Zilinskas, “Global Optimization,” ihectures Notes in Compter
ScienceBerlin: Springer-Verlag, 1989.

[70] Q.-L. Tran, K.-A. Toh, and D. Srinivasan. “An Empiric&lomparison of Nine
Pattern ClassifierslEEE Transactions on Systems, Man and Cybernetics - part
B (under revision), 2005.

[71] M. A. Turk and A. P. Pentland. “Face Recognition Usingdfig-aces”.IEEE
Computer Society Conference on Computer Vision and PatterogRéimon pp.
84-91, 1994.

[72] C. L. Blake and C.J. Merz (1998). UCI Repository of Machine roéag
Databases http://www.ics.uci.edu/ mlearn/MLRepositaml. Irvine, CA: Uni-
versity of California, Department of Information and Compi8eience.

[73] V. N. Vapnik, Statistical Learning Theory New York: John Wiley and sons,
1998.

[74] K. Venkataramani and B. V. K. Vijaya Kumar. “Fingerprixerification Using
Correlation Filters”. 4th International Conference on Audio-and Video-Based
Biometric Person Authentication, AVBPAQ%. 886—894, 2003.

[75] W. P. Kegelmeyer Jr, and K. Bowyer. “Combination of MuléiClassifiers Using
Local Accuracy EstimatesTEEE Transactions on Pattern Analysis and Machine
Intelligence 19(4):pp. 405-410, 1997.

[76] S. B. Yacoub, Y. Abdekjaoued, and E. Mayoraz. “Fusion at€and Speech
Data for Person Identity Verification”lEEE Transactions on Neural Networks
10(5): pp. 1065-1074, 1999.

[771 Y. H. Hu, “K  Nearest Neighbor Classifier, in
http://www.cae.wisc.edufece539/matlab/knn.m  University of Wisconsin-
Madison, Computer-Aided Engineering Center.

[78] J. Zhang, Y. Yan, and M. Lades. “Face Recognition: Eigea$, Elastic Match-
ing, and Neural Nets, iRroceedings of the IEEB5(9):pp. 1423-1435, 1997.

98



Appendix A

Benchmark Experiments on the RM

Model

Table A.1: Classification statistics of RM, SINH and COSH

No Dataset RM SINH net COSH net
min ave max std min ave max std min ave max std
1 pbrilt 0.8286 0.8829 0.9286 0.0294 0.8143 0.8786 0.9429 0.0352 0.8429 0.8700 0.9000 0.0207
2 pbri2t 0.8286 0.8529 0.9000 0.0213 0.8286 0.8600 0.9000 0.0221 0.8429 0.8714 0.8857 0.0117
3 ckrp 0.9425 0.9450 0.9465 0.0013 0.9418 0.9447 0.9465 0.0014 0.9428 0.9453 0.9478 0.0017
4 ckrk 0.9556 0.9756 0.9889 0.0102 0.9667 0.9778 0.9889 0.0091 0.9667 0.9833 1.0000 0.010:
5 cyba 0.7103 0.7195 0.7333 0.0068 0.7128 0.7221 0.7333 0.0071 0.7231 0.7369 0.7538 0.0104
6 echo | 0.9000 0.9140 0.9400 0.013% 0.9000 0.9140 0.9400 0.013% 0.9000 0.9140 0.9400 0.013!
7 hasu | 0.7367 0.7547 0.7667 0.0089 0.7433 0.7550 0.7667 0.0081 0.7233 0.7377 0.7500 0.009¢
8 hosl | 0.8085 0.8085 0.8085 0.0000 0.8085 0.8085 0.8085 0.0000 0.8085 0.8085 0.8085 0.000
9 mpgs | 0.9000 0.9200 0.9500 0.015¢ 0.8900 0.9120 0.9300 0.015% 0.8400 0.8820 0.9300 0.026
10 muskl | 0.9348 0.9415 0.9478 0.0044 0.9348 0.9398 0.9435 0.002% 0.9283 0.9470 0.9609 0.0091
11 musk2 | 0.9945 0.9947 0.9950 0.0002 0.9997 0.9999 1.0000 0.0001 0.9150 0.9814 1.0000 0.0357
12 spam | 0.9264 0.9291 0.9314 0.001% 0.9261 0.9281 0.9298 0.0011 0.8111 0.8137 0.8163 0.0014
13 sphe | 0.8346 0.8458 0.8538 0.0078 0.8346 0.8458 0.8538 0.0078 0.8346 0.8458 0.8538 0.007
14 sphf | 0.7235 0.7718 0.8000 0.0203 0.7676 0.7759 0.7882 0.0060 0.7618 0.7900 0.8176 0.020
15 pbrilm | 0.9714 0.9714 0.9714 0.0000 0.9714 0.9714 0.9714 0.0000 0.9429 0.9543 0.9714 0.009
16 pbrils | 0.7667 0.8033 0.8500 0.0281 0.7500 0.7850 0.8167 0.0228 0.7667 0.8017 0.8500 0.0266
17 pbrilr 0.6714 0.7086 0.7429 0.0254 0.6143 0.6757 0.7143 0.0323 0.6714 0.7014 0.7429 0.027.
18 pbri2m 0.9714 0.9714 0.9714 0.0000 0.9714 0.9714 0.9714 0.0000 0.9286 0.9500 0.9714 0.012
19 pbri2s 0.7667 0.8000 0.8333 0.0222 0.7500 0.7883 0.8167 0.0209 0.7667 0.8067 0.8333 0.026:
20 pbri2r 0.6571 0.6986 0.7286 0.0218 0.6143 0.6814 0.7429 0.0381 0.6857 0.7014 0.7286 0.0144%
21 hooc 0.6809 0.6809 0.6809 0.0000 0.6809 0.6809 0.6809 0.0000 0.6596 0.6596 0.6596 0.000
22 haro 0.8571 0.8571 0.8571 0.0000 0.7500 0.7500 0.7500 0.0000 0.8214 0.8214 0.8214 0.000
23 iris 0.9667 0.9680 0.9733 0.0028 0.9600 0.9653 0.9733 0.0042 0.9533 0.9693 0.9733 0.0064
24 msgs | 0.9909 0.9934 0.9946 0.0012 0.9826 0.9890 0.9918 0.0029 0.9849 0.9909 0.9924 0.0021
25 popa | 0.7125 0.7337 0.7500 0.0119 0.7125 0.7325 0.7500 0.0134 0.7125 0.7300 0.7500 0.010!
26 blcl 0.9555 0.9574 0.9590 0.0008 0.9559 0.9571 0.9583 0.0008 0.9289 0.9324 0.9338 0.001
27 pbrily | 0.6571 0.6814 0.7143 0.016¢ 0.6571 0.6786 0.7000 0.0154 0.6857 0.7171 0.7429 0.017
28 pbrizy | 0.6714 0.6986 0.7429 0.0218 0.6857 0.7143 0.7429 0.0190 0.6571 0.6814 0.7000 0.015
29 derm | 0.9618 0.9721 0.9794 0.0044 0.9647 0.9676 0.9765 0.0034 0.9441 0.9550 0.9618 0.006
30 flag | 0.5313 0.5625 0.6250 0.0257 0.5500 0.5738 0.6125 0.0228 0.5687 0.6094 0.6375 0.020
31 caar | 0.7558 0.7694 0.7789 0.0124 0.7517 0.7639 0.7622 0.0108 0.7228 0.7333 0.7438 0.015
Average 0.8248 0.8414  0.8595 0.0108| 0.8191 0.8358 0.8517 0.0108| 0.8143 0.8336  0.8509 0.0126
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Table A.2: Classification statistics of TANH, RAMP and STEP

No Dataset TANH RAMP STEP
min ave max std min ave max std min ave max std
1 pbrilt 0.8429 0.8771 0.9143 0.021% 0.8286 0.8571 0.8857 0.0213 0.8286 0.8671 0.8857 0.017
2 pbri2t 0.8143 0.8586 0.8857 0.0207 0.8143 0.8500 0.8857 0.0181 0.7857 0.8314 0.8857 0.0321%
3 ckrp 0.9425 0.9440 0.9459 0.0011 0.9440 0.9453 0.9472 0.0009 0.9365 0.9381 0.9403 0.001.
4 ckrk 0.9556 0.9756 0.9889 0.0102 0.9556 0.9756 0.9889 0.0102 0.9333 0.9411 0.9556 0.007
5 cyba 0.7051 0.7154 0.7308 0.007¢ 0.6821 0.7049 0.7256 0.013% 0.6256 0.6410 0.6667 0.0114
6 echo 0.8000 0.8640 0.9400 0.0450 0.9200 0.9240 0.9400 0.0084 0.8800 0.9060 0.9200 0.013
7 hasu | 0.7333 0.7523 0.7667 0.0089 0.7367 0.7520 0.7600 0.0074 0.7233 0.7233 0.7233 0.000
8 hosl 0.7917 0.8146 0.8250 0.012% 0.8083 0.8167 0.8292 0.0059 0.7875 0.8013 0.8250 0.010¢
9 mpgs | 0.8900 0.9170 0.9500 0.0206 0.8600 0.8890 0.9200 0.0223 1.0000 1.0000 1.0000 0.000
10 muskl | 0.9391 0.9476 0.9609 0.0067 0.9391 0.9463 0.9565 0.0057 0.9848 0.9870 0.9891 0.001
11 musk2 | 0.9997 1.0000 1.0000 0.0001 1.0000 1.0000 1.0000 0.0000 0.9879 0.9891 0.9898 0.0007
12 spam | 0.8357 0.9040 0.9222 0.0294 0.7163 0.7176 0.7198 0.0010 0.6277 0.6281 0.6290 0.000!
13 sphe | 0.8346 0.8458 0.8538 0.0078 0.8346 0.8458 0.8538 0.0078 0.8346 0.8458 0.8538 0.007
14 sphf 0.7647 0.7779 0.8000 0.0110 0.7353 0.7521 0.7706 0.0103 0.7088 0.7159 0.7235 0.004
15 pbrilm 0.9714 0.9714 0.9714 0.0000 0.9571 0.9700 0.9714 0.004% 0.9714 0.9829 0.9857 0.006
16 pbrils 0.7667 0.8017 0.8500 0.0319 0.7667 0.8050 0.8667 0.0334 0.7500 0.7900 0.8333 0.0274
17 pbrilr 0.6857 0.7114 0.7429 0.0200 0.6857 0.7000 0.7143 0.0151 0.6571 0.7100 0.7714 0.0344
18 pbri2m 0.9714 0.9714 0.9714 0.0000 0.9714 0.9714 0.9714 0.0000 0.9429 0.9571 0.9714 0.0067
19 pbri2s 0.7833 0.8133 0.8500 0.0233 0.7833 0.8183 0.8500 0.0254 0.7667 0.7967 0.8333 0.021
20 pbri2r 0.6429 0.6886 0.7286 0.0250 0.6429 0.6800 0.7143 0.0204 0.6857 0.7086 0.7429 0.0204
21 hooc 0.6583 0.6867 0.7208 0.0211 0.6208 0.6496 0.6667 0.015% 0.6500 0.6575 0.6667 0.007.
22 haro 0.8467 0.8687 0.8933 0.0144 0.8533 0.8673 0.8867 0.0111 0.3800 0.4187 0.4533 0.0247
23 iris 0.9667 0.9693 0.9733 0.0034 0.9667 0.9733 0.9800 0.0044 0.7400 0.7687 0.7867 0.012%
24 msgs | 0.9498 0.9803 0.9934 0.0141 0.9751 0.9763 0.9776 0.0008 0.7861 0.7907 0.7950 0.002
25 popa | 0.7125 0.7325 0.7500 0.0134 0.7125 0.7325 0.7500 0.0134 0.7250 0.7312 0.7500 0.008
26 blcl 0.9540 0.9554 0.9575 0.0012 0.9278 0.9283 0.9287 0.0003 0.9088 0.9094 0.9101 0.0004
27 pbrily 0.6714 0.6900 0.7143 0.013¢ 0.6857 0.7214 0.7429 0.0181 0.6714 0.6771 0.6857 0.0074
28 pbri2y 0.6714 0.6871 0.7000 0.010% 0.6857 0.6986 0.7143 0.012% 0.6143 0.6429 0.6714 0.017
29 derm 0.9647 0.9709 0.9765 0.0040 0.9647 0.9726 0.9794 0.0037 0.9000 0.9091 0.9176 0.006:
30 flag 0.5313 0.5687 0.6312 0.0262 0.5125 0.5475 0.5687 0.0200 0.4313 0.4788 0.5125 0.023
31 caar | 0.7489 0.7556 0.7622 0.0101 0.7589 0.7694 0.7722 0.0101 0.7389 0.7500 0.7622 0.010
Average 0.8176  0.8393  0.8604 0.0140 | 0.8144 0.8309 0.8464 0.0110| 0.7730 0.7901  0.8076 0.0112

Table A.3: Classification statistics of SVM, KNN and MLP

No Dataset SVM KNN MLP
min ave max std min ave max std min ave max std
1 pbrilt 0.8571 0.8986 0.9429 0.0265 0.8429 0.8514 0.8714 0.0100 0.8286 0.8529 0.9000 0.021.
2 pbri2t 0.8429 0.8757 0.9000 0.0191 0.8714 0.8943 0.9143 0.0133 0.8143 0.8571 0.9000 0.027
3 ckrp 0.9918 0.9940 0.9959 0.0011 0.9535 0.9568 0.9597 0.0018 0.9906 0.9920 0.9940 0.001
4 ckrk 0.9111 0.9322 0.9444 0.0110 0.8556 0.8767 0.8889 0.0122 0.9222 0.9344 0.9556 0.011
5 cyba | 0.7385 0.7587 0.7795 0.013% 0.6410 0.6708 0.6974 0.0186 0.6667 0.6951 0.7179 0.0177
6 echo | 0.9800 0.9800 0.9800 0.0000 1.0000 1.0000 1.0000 0.0000 0.9400 0.9820 1.0000 0.022
7 hasu 0.7233 0.7340 0.7433 0.0060 0.7033 0.7217 0.7300 0.008% 0.7067 0.7170 0.7333 0.009
8 hosl 0.8000 0.8200 0.8333 0.0094 0.7234 0.7234 0.7234 0.0000 0.8083 0.8308 0.8583 0.015!
9 mpgs 0.9000 0.9140 0.9300 0.0107 0.7200 0.7600 0.8000 0.0291 0.8600 0.8880 0.9300 0.0244
10 musk1 0.9913 0.9952 0.9978 0.0022 0.9283 0.9380 0.9500 0.0071 0.5826 0.6948 0.7696 0.058
11 musk2 1.0000 1.0000 1.0000 0.0000 0.9819 0.9834 0.9844 0.0009 0.8467 0.8544 0.8774 0.010
12 spam | 0.9351 0.9372 0.9392 0.001% 0.9070 0.9095 0.9115 0.0014 0.9338 0.9402 0.9453 0.003:
13 sphe | 0.8000 0.8254 0.8538 0.0167 0.7846 0.8050 0.8192 0.0106 0.7846 0.8108 0.8385 0.0154
14 sphf 0.8588 0.8841 0.9000 0.013% 0.8324 0.8479 0.8559 0.0088 0.7941 0.8171 0.8353 0.0137
15 pbrilm 0.8571 0.8571 0.8571 0.0000 0.9000 0.9257 0.9429 0.0148 0.8857 0.9000 0.9286 0.015
16 pbrils 0.7667 0.8100 0.8333 0.0211 0.8000 0.8417 0.8667 0.0212 0.7500 0.7883 0.8333 0.031.
17 pbrilr 0.6429 0.6771 0.7286 0.0271 0.6857 0.7043 0.7571 0.0224 0.6429 0.6814 0.7286 0.027
18 pbri2m 0.8571 0.8571 0.8571 0.0000 0.9286 0.9300 0.9429 0.004% 0.8429 0.8943 0.9286 0.024
19 pbri2s 0.7667 0.7983 0.8333 0.0183 0.8000 0.8367 0.8667 0.020% 0.7000 0.7500 0.8000 0.043
20 pbri2r 0.6286 0.7014 0.7429 0.0389 0.6714 0.6914 0.7143 0.0120 0.6000 0.6557 0.7000 0.033.
21 hooc | 0.6542 0.6604 0.6708 0.0049 0.6596 0.6596 0.6596 0.0000 0.5875 0.6200 0.6542 0.022
22 haro 0.8467 0.8660 0.8867 0.0131 0.6071 0.6071 0.6071 0.0000 0.7067 0.7587 0.8267 0.0372
23 iris 0.9533 0.9640 0.9733 0.0056 0.9467 0.9593 0.9667 0.0073 0.9333 0.9520 0.9667 0.010:
24 msgs | 0.9864 0.9881 0.9899 0.0011 0.7962 0.8028 0.8088 0.0033 0.9893 0.9912 0.9940 0.001¢
25 popa | 0.7250 0.7537 0.7750 0.0145% 0.6750 0.7112 0.7375 0.0232 0.5250 0.6188 0.6500 0.038:
26 blcl 0.9693 0.9701 0.9708 0.000% 0.9599 0.9616 0.9632 0.0010 0.9721 0.9733 0.9743 0.000:
27 pbrily 0.5857 0.6186 0.6429 0.0191 0.6000 0.6071 0.6143 0.007% 0.5857 0.6443 0.7286 0.0474
28 pbri2y 0.5571 0.5886 0.6143 0.0200 0.5857 0.5957 0.6143 0.0096 0.5857 0.6343 0.6857 0.031
29 derm 0.9676 0.9759 0.9824 0.0041 0.9647 0.9682 0.9765 0.0043 0.9618 0.9729 0.9824 0.006
30 flag 0.5000 0.5294 0.5687 0.0247 0.6167 0.6358 0.6667 0.0171 0.5000 0.5475 0.5750 0.0277
31 caar | 0.7722 0.7778 0.7861 0.005¢ 0.6611 0.6703 0.6750 0.0039 0.6222 0.6475 0.6750 0.016!
Average 0.8183 0.8369 0.8533 0.0113| 0.7937 0.8080 0.8221 0.0095| 0.7700 0.8031 0.8351 0.0215
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Appendix B

RM-RLS Algorithm Implementation
In Matlab Code

function [F,K] = RMmodel(x,r)
[m,]] = size(x);
K = 1+r+*(2*r-1);
F = zeros(m, K);
F(:,1) = ones(m,l);
for k=1:r,
F(,(K-1)*1+2:k*[+1)=x."k;
end
for j=1:r,
F(,re+1+))=sum(x,2).7j;
end
for j=2r,
FCr(+1)+2+(-2)*r (1+1)+1+(-1)*)=...
X.*((sum(x,2).”(j-1))*ones(1,D));
end

function [alpha,invM]=e2_RLStrain(old_alpha,old_invM,x,y,r,b,a)

all=1/(1-a);

al=1/a;

[F,K]=RM3model(x,r);

alpha=old_alpha;

invM=old_invM,;

for k=1:size(F,1)
invM=invM*all-all*all*invM*F(k,:)*F(k,:)...*

invM/(al11*F(k,:)*invM*F(k,:)'+al);

invM=(a*invM+eye(K)\invM;
alpha=alpha+a*invM*F(k,:)*(y(k)-F(k,:)*alpha);

end
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