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Summary

In this thesis, electromagnetic scattering by large and complex objects is stud-

ied. We have considered the large-scale electromagnetic problems of three types

of scatterers, i.e., perfectly electric conducting (PEC) objects, dielectric objects,

and composite conducting and dielectric objects. The electromagnetic problems of

these objects are formulated using the integral equation method and solved by us-

ing the method of moments (MoM) accelerated using the adaptive integral method

(AIM).

The electromagnetic analysis of PEC object is performed using the surface inte-

gral equation (SIE). The MoM is applied to convert the resultant integral equations

into a matrix equation and solved by an iterative solver. The adaptive integral

method is implemented to reduce memory requirement for the matrix storage and

to accelerate the matrix-vector multiplications in the iterative solver. Numerical

examples are presented to demonstrate the accuracy of the solver. The fast solu-

tions to electromagnetic scattering and radiation problems of real-life electrically

large metallic objects are also presented.

Next, the electromagnetic scattering by dielectric object is considered. The

problem is formulated by using the SIE and the volume integral equation (VIE),

respectively. The integral equations are converted into matrix equations in the

MoM procedure. The AIM is modified to cope with the additional material infor-

mation. Numerical examples are presented to demonstrate the applicability of the

modified AIM to characterize scattering by large-scale dielectric objects.

vi



For the electromagnetic scattering by composite conducting and dielectric ob-

jects, it is described using the SIE and the hybrid volume-surface integral equation,

respectively. The MoM is used to discretize the integral equations and convert them

into matrix equations. The AIM is altered in order to consider the interaction be-

tween different materials, i.e., conductor and dielectric object. Several examples are

presented to demonstrate again the capability of the modified AIM for scattering

by large-scale composite conducting and dielectric objects.

In addition to the AIM, preconditioning techniques such as diagonal precondi-

tioner, block-diagonal preconditioner, zero fill-in ILU preconditioner and ILU with

threshold preconditioner have also been used to further accelerate the solution of

the scattering problems. These preconditioners are constructed by using the near-

zone matrix generated by the AIM. By using these preconditioners, the number of

iterations and the overall solution time have been effectively reduced.
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Chapter 1

Introduction

1.1 Background and Motivation

The study of electromagnetic scattering is a challenging field in science and engi-

neering. It has a wide range of engineering applications, such as tracking aircraft

using radar, observing the Earth using remote sensing satellites, etc. Electromag-

netic scattering can be considered as the disturbance caused by an obstacle or

scatterer to the original field configurations. It is desirable to solve the scattering

problems using an analytical method and obtain closed-form or approximate solu-

tions. However, only a limited number of electromagnetic scattering problems can

be solved exactly using an analytical method. Tedious experiments and measure-

ments must be carried out for those problems which cannot be solved by analytical

methods.

In order to tackle the electromagnetic scattering problems of real life applica-

tions, which normally have no simple solutions, one can use numerical methods

to obtain an approximate solution. By using a digital computer, one can solve

the complicated scattering problems numerically and obtain solutions with accept-

able accuracy. Method of moments (MoM) is a numerical method that has been

widely used in solving electromagnetic problems. The MoM discretizes the integral

1



2

equations and converts them into a dense matrix equation. The matrix storage re-

quirement for the matrix is of O(N2). The matrix equation can be solved by using

either a direct solver or an iterative solver. A direct solver, such as the Gaussian

Elimination, solves the matrix equation in O(N3) floating-point operations. On

the other hand, all iterative solvers require matrix-vector multiplications at every

iteration, where the operation is in the order of O(N2). Hence the total computa-

tional cost of an iterative solver is of O(NiterN
2) where the Niter is the number of

iterations to achieve convergence. It is obviously advantageous to solve the matrix

equation using an iterative solver.

The matrix-vector multiplication is normally the bottleneck of iterative solvers.

The O(N2) computational complexity is prohibitively high for a large value of N .

Moreover, the O(N2) matrix storage requirement has also prevented the iterative

solver from solving a matrix equation with a large number of unknowns. These

stringent computational requirements have prevented the MoM from solving scat-

tering problems of electrically large objects. The complexity increase if the object

is made of complex material since additional unknowns are required to properly

characterize the material properties. Hence the large-scale electromagnetic prob-

lems can only be solved by expensive supercomputer or workstation. Large-scale

electromagnetic problems are unlikely to be solved on a personal computer, which

has only limited computing resources.

The shortcomings of MoM have motivated the work in this thesis. The objec-

tive of this thesis is to develop a numerical method that is able to solve large-scale

electromagnetic scattering problems in a fast and efficient manner through the use

of a personal computer. This method is based on the MoM, where the scattering

problems are characterized by the integral equation method, and a fast algorithm

technique is applied to reduce the memory requirement and to accelerate the so-

lution time. We have first focused on the fast solution to the electromagnetic

scattering problems involved perfect electric conductors. Then the method is mod-

ified and is applied to analyze electromagnetic scattering by objects with complex
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material properties.

1.2 Literature Review

The analysis of electromagnetic problems using the integral equation method is

a rather classical method in the field of electromagnetic wave theory. Before the

computer era, the work on integral equation method was focused on getting good

approximate or asymptotic solutions. With the advancement of digital computer,

numerical methods have been developed to obtain approximate solutions for the

Maxwell’s equations. The numerical treatments of various electromagnetic prob-

lems using an integral equation method can be traced back to 1960s [1–10]. Several

papers were presented to deal with two-dimensional (2-D) electromagnetic prob-

lems such as the scattering problems of infinitely long cylinders [1, 3, 5, 7]. The

three dimensional (3-D) electromagnetic problems for wire antennas and surface

scatterers have also been studied extensively [2, 6, 8–10].

In 1968, R. F. Harrington published a book on obtaining numerical solutions

of electromagnetic problems formulated by the integral equation method [11]. In

his book, he used the reaction concept and integral equations to develop a sys-

tematic and functional-space method for solving electromagnetic problems. This

technique was later named as the method of moments, whose name was adopted

from the related works published by other researchers during that period of time

[12, 13]. The MoM is a general method for solving linear operator equations and it

approximates the solution of the unknown quantities by using a finite series of basis

functions. The MoM can be applied to solve electromagnetic problems of arbitrary

linear structures. However, the capability of the MoM is dependent on the speed

and available storage of a digital computer.
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1.2.1 Methods for the Analysis of Metallic Structures

In 1966, Richmond presented a method for the analysis of an arbitrarily shaped

metallic structure with the surface modeled by wire grids [8]. It is simple to model

the metallic surface with wire grids and easy to implement it into computer codes.

However, this method is not suitable for the computation of near fields and its

accuracy has also been questioned [14].

The direct modeling of metallic surfaces has been used to overcome the weakness

of wire girds method. Andreasen was the first person who applied the electric

field integral equation (EFIE) to analyze the 3-D metallic structure of bodies of

revolution (BoR) [4], but the MoM solution of the BoR was given by Mautz and

Harrington in 1969 [15]. Mautz and Harrington also showed that the EFIE and

magnetic field integral equation (MFIE) do not have an unique solution due to the

interior resonance of BoR. They proposed a remedy, the combined field integral

equation (CFIE), to eliminate the interior resonance problem and produce accurate

an solution [16].

Oshiro proposed a method called Source Distribution Technique to analyze

scattering problems of general 3-D metallic structures [9]. He discretized the surface

into small cells and the current is assumed to be constant over each of the small

cells. The unknown currents are determined by using point matching to the integral

equations. Knepp and Goldhirsh had used the second-order quadrilateral patches

to the metallic surface and applied point matching to the MFIE [17]. Wang et. al.

used the quadrilateral patches to model rectangular plate and applied the Galerkin

method to solve the EFIE [18]. The analysis of structures consisting of both wires

and metallic surface has been reported by Newman and Pozar [19].

In 1980, the rooftop basis functions that are defined over a pair of rectangular

patches were proposed by Glisson and Wilton to solve EFIE [20]. These basis func-

tions have eliminated the fictitious line charges that exist in the EFIE. Rao et. al.

implemented the basis functions on triangular patches, which provide better model-

ing capability [21]. This method has been widely used in electromagnetic simulation
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for surface scatterers.

1.2.2 Methods for the Analysis of Dielectric Structures

The numerical analysis of dielectric objects is more complicated than the analysis

of metallic objects. The analysis of 2-D object was reported by Richmond [5, 7]. In

his papers, he presented numerical treatment to the infinitely long inhomogeneous

cylinder illuminated by TM and TE waves. The unknown currents are assumed

constant over the discretized cells and point matching is applied to the volume

EFIE.

In 1973, Poggio and Miller formulated the integral equations for piecewise homo-

geneous dielectric objects [22]. Chang and Harrington adopted the formulation to

analyze material cylinders [23] while Wu and Tsai used the formulation to analyze

lossy dielectric BoR [24]. This formulation is commonly referred as the PMCHWT

formulation. Later, Mautz and Harrington presented a more general equation for

the analysis of dielectric BoR [25]. The analysis of an arbitrarily shaped 3-D dielec-

tric object was given by Umashankar et. al. [26]. They used the triangular patches

to model the dielectric surface and performed the analysis using PMCHWT for-

mulation. Sarkar et. al. extended this method to analyze lossy dielectric objects

[27]. In 1994, Medgyesi-Mitschang et. al. generalized the method by considering

the junction problems of dielectric objects [28].

In 1984, Schaubert et. al. used the rooftop basis functions that are defined on

a pair of tetrahedral elements to the analysis of 3-D dielectric object [29]. These

basis functions are used together with the Galerkin procedure of moment method

for solving the volume EFIE. This method is best suitable for the analysis of an

inhomogeneous dielectric object.
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1.2.3 Methods for the Analysis of Composite Conducting

and Dielectric Structures

The analysis of composite conducting and dielectric objects is the combination of

the analysis of metallic and dielectric structures. In 1979, Medgyesi-Mitschang

and Eftimiu reported the analysis of metallic BoR coated with dielectric material

[30]. In their method, they applied the EFIE to the metallic structure and PM-

CHWT formulation to the dielectric structure. The analysis of BoR with metal-

lic and dielectric junctions was carried out by Medgyesi-Mitschang and Putnam

[31, 32]. Rao et. al. applied the rooftop basis functions and Garlekin procedure

moment method to the analysis of conducting bodies coated with lossy materials

[33]. Medgyesi-Mitschang et. al. used the same method except that the CFIE was

applied to the closed metallic structure [28].

In 1988, Jin et. al. formulated the hybrid volume-surface integral equations

(VSIE) to analyze the composite conducting and dielectric structures [34]. Lu

and Chew discretized the dielectric region and surface of the conductor using the

tetrahedral elements and triangular patches, respectively and applied rooftop basis

functions to solve the resultant VSIE [35].

1.2.4 Fast Algorithms

The method of moments (MoM) was developed to discretize the integral equation

and convert it into a matrix equation. Solving the matrix equation generated by

MoM using a direct solver requires O(N3) operations. On the other hand, solv-

ing the matrix equation using iterative solver in straightforward manner requires

computational complexity of O(N2) per iteration.

Many fast solutions have been proposed to speed up the matrix-vector multipli-

cation of the iterative solver. Greengard and Rokhlin had devised a fast multipole

algorithm to solve static problems [36]. This algorithm has been extended to solve

the integral equation for electromagnetic scattering problems and it is commonly
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known as fast multipole method (FMM) [37–40]. The computational complexity

and storage requirement of the FMM are O(N1.5) and O(N1.5 log N), respectively.

The FMM makes use of the addition theorem for the Bessel function to translate

it from one coordinate system to another one. By doing this, one just needs to

discretize the scatterer and place the sub-scatterers into groups. The aggregate

radiation pattern of the sub-scatterers of every group is calculated and translated

to non-neighbor groups with the aid of addition theorem. This reduces the com-

putational complexity as one just needs to compute the direct interaction between

the elements within same group and its neighboring groups, and approximates the

far-field interactions using the FMM. Later, the multilevel version of FMM, Mul-

tilevel FMM Algorithm (MLFMA), was proposed to further reduce the computa-

tional complexity and storage requirement to O(N log N) and O(N), respectively

[41–45]. Even the MLFMA exhibits O(N log N) complexity, however the large con-

stant factor in this asymptotic bound make it incompetent to other fast algorithms

in certain cases.

Fast algorithms based on the fast Fourier transform (FFT) algorithm have also

been proposed to reduce the computational complexity of the iterative solvers [46–

68]. By exploiting the translation invariance of the Green’s function, the con-

volution in the integral equation can be computed by using the FFT and mul-

tiplication in the Fourier space. When the FFT is incorporated into the conju-

gate gradient (CG) algorithm, the resulting method is called the CG-FFT method

[46, 61–68]. The computational complexity and storage requirements of CG-FFT

are O(N log N) and O(N), respectively. However, the CG-FFT requires the inte-

gral equation to be discretized on uniform rectangular grids and this has limited

its usage to complex 3-D objects. The staircase approximation due to the ap-

proximation of curved boundaries by using uniform grids will produce error in the

final solution. To overcome the weakness of the CG-FFT, Bleszynski et. al. have

presented another grid-based solver, adaptive integral method (AIM) to solve elec-

tromagnetic scattering problems [47, 48]. This method retains the advantages of

CG-FFT and offers excellent modeling capability and flexibility by using triangular
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patches. Similar approaches have been also used by the precorrected-FFT method

[58–60].

Among these three types of fast algorithms we have discussed, only MLFMA and

AIM are suitable for the electromagnetic analysis of arbitrarily shaped geometries.

After considering the project requirements and the advantages of the AIM (such

as less memory requirement for the setup and relatively simple implementation on

personal computer as compared to the FMM), we have chosen the AIM as the fast

algorithm to be used and further enhanced in this thesis.

1.3 Outline of Thesis

This thesis contains eight chapters. Chapter 2 presents the derivation of integral

equations for the electromagnetic scattering problems, which will be used in the

subsequent chapters. Method of moments, the numerical method for solving the

electromagnetic problems formulated by an integral equation method, will also be

given.

Chapter 3 introduces the Adaptive Integral Method, which will be used to ac-

celerate the matrix-vector multiplication in iterative solver and to reduce storage

requirement. The accuracy, computational complexity and matrix storage require-

ment issues in our AIM implementation will also be discussed.

The AIM analysis of electromagnetic scattering problem of metallic structures

will be presented in Chapter 4. Chapter 5 analyzes the scattering problem of di-

electric objects based on the use of the AIM. Chapter 6 presents the application

of the AIM to analyze the scattering problem of composite conducting and di-

electric objects. The research work in these chapters will focus on the accuracy

and applicability of the AIM in solving the scattering problems of different type of

scatterers.

In Chapter 7, preconditioning techniques will be presented to accelerate the

convergence rate of the iterative solver. Numerical examples will be presented to
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demonstrate the performance of the preconditioners on solving scattering problems

formulated using integral equations.

Finally, the conclusion and suggestions for future works will be given in Chap-

ter 8.

1.4 Some Original Contributions

In consideration of the earlier proposed integral equations which were established

based on surface meshes only, the new contributions of the present thesis in the

course of research are:

1. Development of fast algorithms for full wave analysis of horn antenna and

parabolic reflector.

2. Further development of fast algorithms based on the AIM for solving electro-

magnetic scattering problem of dielectric objects and composite dielectric and

conducting objects characterized using the surface integral equation method.

3. New development of fast algorithms based on the AIM for solving electro-

magnetic scattering problem of composite dielectric and conducting objects

characterized using the hybrid volume-surface integral equation method.

4. Development of preconditioning algorithms for the iterative solver. Simple

and efficient preconditioning algorithms based on the incomplete lower-upper

(ILU) decomposition have been developed to accelerate the convergence of

the iterative solution.

The contributions of our research have resulted in the following publications:

1.4.1 Article in Monograph Series

1. W. B. Ewe, L. W. Li and M. S. Leong, “Solving mixed dielectric/conducting

scattering problem using adaptive integral method,” Progress In Electromag-
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netics Research, vol. 46, pp. 143–163, 2004, EMW Publishing: Boston, MA.

1.4.2 Journal Articles

1. W. B. Ewe, L. W. Li and M. S. Leong, “Fast solution of mixed dielec-

tric/conducting scattering problem using volume-surface adaptive integral

method,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 11,

pp. 3071–3077, November 2004.

2. W. B. Ewe, L. W. Li, Q. Wu and M. S. Leong, “Preconditioners for adap-

tive integral method implementation,” IEEE Transactions on Antennas and

Propagation, accepted for publication, January 2005.

3. W. B. Ewe, L. W. Li, Q. Wu and M. S. Leong, “AIM solution to electromag-

netic scattering using parametric geometry,” IEEE Antennas and Wireless

Propagation Letters, accepted for publication, January 2005.

4. W. B. Ewe, L. W. Li, Q. Wu and M. S. Leong, “Analysis of reflector and horn

antennas using adaptive integral method,” IEICE Transactions on Commu-

nications: Special Section on 2004 International Symposium on Antennas

and Propagation, vol. E88-B, no. 6, June 2005.

1.4.3 Conference Presentations

1. W. B. Ewe, Y. J. Wang, L. W. Li and E. P. Li, “Solution of scattering by

homogeneous dielectric bodies using parallel pre-corrected FFT algorithm,”

in Proc. of International Conference on Scientific and Engineering Compu-

tation, Singapore, December 2002, pp. 348–352.

2. W. B. Ewe, L. W. Li, and M. S. Leong, “Solving electromagnetic scattering

of mixed dielectric conducting object using volume-surface adaptive integral

method,” in Proc. of 2003 Progress In Electromagnetics Research Symposium

(PIERS’03), Singapore, October 2003, pp. 164.
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3. W. B. Ewe, L. W. Li and M. S. Leong, “Solution to scattering problem of

composite conducting/dielectric body using Adaptive Integral Method,” in

Proc. of 2003 International Symposium on Antennas, Propagation, and EM

Theory, Beijing, China, October 2003, pp. 445–447.

4. W. B. Ewe, L. W. Li and M. S. Leong, “Solving mixed dielectric scattering

problem using Adaptive Integral Method,” in Proc. of 2003 Asia Pacific

Microwave Conference, vol. 2, Seoul, Korea, November 2003, pp. 732–734.

5. W. B. Ewe, L. W. Li and M. S. Leong, “A novel preconditioner (ILU) for

Adaptive Integral Method implementation in solving large-scale electromag-

netic scattering problem of composite dielectric and conducting objects,”

Proc. of 5th ARPU Doctoral Student Conference (in CD format and web-

database), Sydney, Australia, August 2004.

6. W. B. Ewe, L. W. Li and M. S. Leong, “Analysis of reflector and horn anten-

nas using Adaptive Integral Method,” in Proc. of 2004 International Sym-

posium on Antennas and Propagation, Sendai, Japan, August 2004, pp. 229–

232.

7. W. B. Ewe, L. W. Li and M. S. Leong, “Preconditioning techniques for Adap-

tive Integral Method implementation in fast codes,” in Proc. of 2004 Progress

In Electromagnetics Research Symposium (PIERS’04), Nanjing, China, Au-

gust 2004, p. 29.



Chapter 2

Integral Equation Method In

Computational Electromagnetics

2.1 Introduction

The integral equation method has been used in computational electromagnetics to

solve for the unknown source distribution of an electromagnetic problem. It is in

contrast to the differential equation method which emphasizes on solving the elec-

tromagnetic field. By using the integral equation method, the relationship between

the field and source can be established using the integro-differential equation. And

together with equivalence principles, one can formulate integral equations to de-

scribe the electromagnetic scattering problem of a scatterer. The resultant integral

equations can be solved by using numerical methods. The method of moments

(MoM) is the most popular numerical method for solving the integral equation of

electromagnetic problems [69–76]. By employing the MoM, the unknown source

distribution is discretized by using a set of known functions and converted into a

matrix equation which can be solved by various type of matrix solvers.

In this chapter, we will derive the integral equations that will be used in the

subsequent chapters. Next, we will also explain the use of MoM in solving the

12
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integral equations of electromagnetic problems.

2.2 Integral Equations

In this section, we will first derive the relationship between a source and its resultant

field. Then we will carry out the derivation of integral equations for electromagnetic

problems by using two equivalence principles, i.e., surface equivalence principle and

volume equivalence principle. In the following derivation and throughout the thesis,

the time factor ejwt is assumed and suppressed.

2.2.1 Source-Field Relationship

We need to establish a relationship between a source and the field radiated by the

source so that the relationship can be used to formulate integral equations of elec-

tromagnetic problems. The source we have mentioned is not necessarily a physical

source but it can also be a mathematically equivalent source. By considering two

types of sources, the electric and magnetic current densities, we are able to ex-

press the radiating fields due to these current densities in a homogeneous medium

by using the magnetic vector potential A and the electric vector potential F . If

the current densities are resided in a volume V , the magnetic and electric vector

potentials are expressed as

A(r) = µ
∫

V
JV (r′)G(r, r′) dV ′ (2.1a)

F (r) = ε
∫

V
KV (r′)G(r, r′) dV ′ (2.1b)

where JV and MV denote the electric and magnetic volume current densities, re-

spectively; while ε and µ are the permittivity and permeability of the homogeneous

medium, respectively. The G(r, r′) is the 3-D scalar Green’s function

G(r, r′) =
e−jk|r−r′|

4π|r − r′| , (2.2)
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where k = ω
√

µε is the wavenumber and ω is the angular frequency. Primed

coordinates r′ are used to denote the points in the source region, and unprimed

coordinates r denote the observation point. If the current densities are confined to

a surface S, the magnetic and electric vector potentials are

A(r) = µ
∫

S
JS(r′)G(r, r′) dS ′ (2.3a)

F (r) = ε
∫

S
KS(r′)G(r, r′) dS ′ (2.3b)

where JS and MS are the electric and magnetic surface current densities, respec-

tively.

The electric and magnetic fields can be then expressed in term of the vector

potentials as

E = −jωA − jω

k2
∇(∇ · A) − 1

ε
∇ × F (2.4a)

H =
1

µ
∇ × A − jωF − jω

k2
∇(∇ · F ). (2.4b)

By defining the following operators

LX = jk
∫
Ω

XG +
1

k2
∇∇ · (XG) dΩ′ (2.5a)

MX = ∇ ×
∫
Ω

XG dΩ′ (2.5b)

with Ω = S or V , we can rewrite the electric and magnetic fields in a more compact

form as

E = −ηLJ −MK (2.6a)

H = MJ − 1

η
LK (2.6b)

where η =
√

µ/ε is the intrinsic impedance.

We can also express the electric field using the mixed-potential form in which

both vector and scalar potentials are used. In the mixed-potential form, the electric
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field is given as

E = −jωµA − ∇Φ − ∇ × F (2.7)

where the scalar potential

Φ(r) =
jη

k

∫
Ω

ρe(r
′)g(r, r′) dΩ′. (2.8)

The ρe denotes the electric charge density and it satisfies the continuity equation

∇ · JΩ = −jωρe (2.9)

2.2.2 Surface Equivalence Principle

It is possible that different kinds of source distributions outside a given region

can produce the same field inside the region. Two sources producing the same

field within a region of interest are said to be equivalent within that region. By

using the surface equivalence principle (SEP), the sources inside a volume can be

replaced with suitable electric and magnetic current densities flowing on the closed

surface of the volume. It is a more rigorous formulation of the Huygen’s principle,

and it is based on the Uniqueness Theorem which requires either the tangential

components of the electric field over the boundary, or the tangential components

of the magnetic field over the boundary, or the former over part of the boundary

and the latter over the rest of the boundary, to uniquely specify a field in a lossy

region or lossless region [77, 78].

To derive the SEP, we first consider a closed surface S as shown in Fig. 2.1.

The volume enclosed by S is denoted by V and outside S by V∞. The current

densities J and K are residing on S and are radiating in V ∪ V∞. In Fig. 2.1(a),

the current densities produce E1 and H1 throughout the V and V∞. By using the

boundary conditions, there exist no surface currents flowing on the surface S. In

the Fig. 2.1(b), if the fields in V are allowed to be different from the V∞, say, E2

and H2, then the surface current densities must exist to support the discontinuity.
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(a) (b)

Figure 2.1: Surface Equivalence Principle. (a) Medium V same as medium V∞. (b)
Medium V different from medium V∞

The surface electric and magnetic current densities are respectively defined as

JS = n̂ × (H1 − H2) (2.10a)

KS = (E1 − E2) × n̂, (2.10b)

where the n̂ is the normal vector on the surface S pointing out of V . By using Love’s

equivalence principle, we let these equivalent surface current densities produce null

fields in V , i.e. E2 = 0 and H2 = 0, and Eq. (2.10) becomes

JS = n̂ × H1 (2.11a)

KS = E1 × n̂. (2.11b)

Now we assume that the volume V is source free and the entire volume (V ∪V∞)

is illuminated by incident waves Einc and H inc, which are generated by impressed

sources in medium V∞. The fields in V∞ are given by

E1 = Einc + Esca (2.12a)

H1 = H inc + Hsca, (2.12b)

where Esca and Hsca are the scattered fields produced by the equivalent current
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densities given in Eq. (2.11). By using the source-field relationship that we obtain

in Eq. (2.6), Eq. (2.12) can be written as

Einc − η1LJS −MKS =

⎧⎪⎨⎪⎩ E1(r), r ∈ V∞

0, r ∈ V ;
(2.13)

H inc + MJS − 1

η1

LKS =

⎧⎪⎨⎪⎩ H1(r), r ∈ V∞

0, r ∈ V.
(2.14)

By letting the r approach the artificial surface S and taking the cross product

of n̂ with Eqs. (2.13)–(2.14),

− KS + n̂ × η1LJS + n̂ ×MKS = n̂ × Einc (2.15)

JS − n̂ ×MJS + n̂ × 1

η1

LKS = n̂ × H inc. (2.16)

Eqs. (2.15) and (2.16) are commonly known as electric field integral equation

(EFIE) and magnetic field integral equation (MFIE), respectively. In general,

Eqs. (2.15) and (2.16) belong to the class of surface integral equations (SIEs) as

the unknown functions, JS and KS, are distributed on the surface of a structure.

2.2.3 Volume Equivalence Principle

The volume equivalence principle (VEP) can be used to replace the inhomogeneous

dielectric and magnetic materials present in electromagnetic problems with equiv-

alent volume current densities. To derive the VEP, we consider a homogeneous

background medium which is characterized by permeability µ1 and permittivity

ε1 and contains primary sources J and K. Let a region of inhomogeneity char-

acterized by permittivity ε and permeability µ, both of which may be a function

of position, presence in the space. The fields E and H in the vicinity of the

inhomogeneity must satisfy Maxwell’s equations

∇ × E = −jωµH − K (2.17a)
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∇ × H = jωεE + J . (2.17b)

By introducing the equivalent volume electric and magnetic current densities

which are respectively defined as

KV = jω(µ − µ1)H (2.18a)

JV = jω(ε − ε1)E, (2.18b)

we can rewrite Eq. (2.17) as

∇ × E = −jωµ1H − KV − K (2.19a)

∇ × H = jωε1E + JV + J . (2.19b)

If we denote the Einc and H inc as the fields generated by the primary sources

in the absence of the inhomogeneity, then they satisfy the Maxwell’s equations

∇ × Einc = −jωµ1H
inc − K (2.20a)

∇ × H inc = jωε1E
inc + J . (2.20b)

Hence the scattered fields Esca and Hsca, i.e. the differences between the fields E

and Einc, and H and H inc, will satisfy

∇ × Esca = −jωµ1H
sca − KV (2.21a)

∇ × Hsca = jωε1E
sca + JV . (2.21b)

The equivalent volume current densities have replaced the inhomogeneity and they

only exist within the inhomogeneity. Since the inhomogeneity has been removed,

hence these equivalent volume current densities are radiating in the homogeneous

background medium.



19

By using Eq. (2.6), the total fields E and H can be expressed as

E = Einc − η1LJV −MKV (2.22)

H = H inc + MJV − 1

η1

LKV . (2.23)

Substituting Eq. (2.18) into these equations, we obtain

j

ω(ε − ε1)
JV − η1LJV −MKV = Einc (2.24)

j

ω(µ − µ1)
KV + MJV − 1

η1

LKV = H inc. (2.25)

In general, Eqs. (2.25) and (2.24) belong to the class of volume integral equations

(VIEs) as the unknown functions JV and KV are distributed over the volume of a

material object.

2.3 Method of Moments

The MoM is a numerical method for solving boundary-value problems in electro-

magnetics [11]. The principal idea of MoM is to reduce a functional equation into a

matrix equation, and then solve the matrix equation on a computer. To illustrate

the MoM’s procedures, we consider the inhomogeneous equation

Lf = g (2.26)

where L is a linear operator, f is the unknown function to be determined, and g

is the known source or excitation. It is assumed that the solution to Eq. (2.26)

is unique; that is, only one f is associated with a given g. Let f̃ be the approx-

imate solution of Eq. (2.26) and can be expanded in a series of known functions

f1, f2, ..., fN in the domain of L, as follows:

f � f̃ =
N∑

n=1

cnfn (2.27)
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where the cn denote the unknown expansion coefficients to be determined. The fn

is normally referred as basis function or expansion function. For an exact solution,

the N in Eq. (2.27) should be infinite. However for a practical problem, the solution

f is normally approximated by a finite value of N . Since the f̃ is an approximate

solution to Eq. (2.26), we can define the non-zero residual,

r = Lf̃ − Lf =
N∑

n=1

cnLfn − g, (2.28)

where the linearity of L is used. The residual is then forced to be orthogonal with

a set functions, t1, t2, ..., tN . And using the inner product, which is defined as

〈a, b〉 =
∫

a · b∗ dΩ, (2.29)

the above criteria can be expressed as

〈tm, r〉 = 0, m = 1, 2, ..., N. (2.30)

The tm is known as testing function or weighting function. If the Galerkin’s testing

procedure is used, then the testing functions are chosen to be the same as the basis

functions. Substituting Eq. (2.28) into Eq. (2.30), we obtain

N∑
n=1

cn 〈tm, Lfn〉 = 〈tm, g〉 , m = 1, 2, ..., N ; (2.31)

or in matrix form

Ax = b (2.32)

where

A =

⎛⎜⎜⎜⎜⎜⎝
〈t1, Lf1〉 · · · 〈t1, LfN〉

...
. . .

...

〈tN , Lf1〉 · · · 〈tN , LfN〉

⎞⎟⎟⎟⎟⎟⎠ (2.33)
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x =

⎛⎜⎜⎜⎜⎜⎝
c1

...

cN

⎞⎟⎟⎟⎟⎟⎠ , (2.34)

and

b =

⎛⎜⎜⎜⎜⎜⎝
〈t1, g〉

...

〈tN , g〉

⎞⎟⎟⎟⎟⎟⎠ . (2.35)

If the A is a nonsingular matrix, then A
–1

exists. The x can be obtained by

x = A
–1

b (2.36)

and the solution to f̃ can be obtained from Eq. (2.26). It is noted that the fn

should be linearly independent and be chosen such that the f̃ can approximate f

reasonably well.

In order to apply the MoM to solve the electromagnetic problems, the geome-

try of the scatterer is modeled using simple polygons. For surface scatterer, it is

common to model the surface using triangular or quadrilateral patches. For vol-

ume scatterer, polygons such as tetrahedrons and cubes have been used. When

modeling an arbitrarily shaped object, it is advantageous to use triangular patches

for surface scatterer and tetrahedron cells for volume scatterer. Planar triangular

patches have been widely used to model the geometry of the object. Curved tri-

angular patches have also been used with the aim of reducing modeling error but

additional processing time and memory are needed to process the curved geometry

and the associated basis functions.

The basis functions can be mainly categorized into two types, entire domain

basis functions and subdomain basis functions. The entire domain basis functions,

as the name suggests, are defined on the entire computational domain. Using these

basis functions to expand the unknown functions is analogous to a Fourier expan-

sion or to a modal expansion. These types of functions yield a good convergence
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of the method but are not versatile since the geometry needs to be regular in

order to have the modes defined. It is not practical to apply the entire domain

basis functions to solve 3-D problems but it does deliver good results in solving

one-dimensional problems [79].

By dividing the computational domain into smaller subdomains, the subdomain

basis functions are defined on each of the subdomains. The subdomain basis func-

tions are relied on the proper meshing of the geometry, which can be triangular

and rectangular (for surface scatterer), or tetrahedron and hexahedron (for volume

scatterer). The term “elements” is used to denote a general type of subdomain,

e.g. a wire segment, a surface patch, or a volumetric cell. For surfaces, we refer

the subdomains as patches while for volumes, we call it cells. The subdomain basis

functions are widely used in solving 3-D problems.

When using subdomain basis functions, it is also preferable that the basis func-

tions are divergence-conforming. The divergence-conforming basis functions have

been used to discretize the unknown equivalent current densities in solving elec-

tromagnetic scattering problems using the MoM. The divergence-conforming basis

functions impose normal continuity of a vector quantity between neighboring ele-

ments and the enforced continuity avoids buildup of line charges at the boundary

between adjacent patches.

In this thesis, the geometry of the scatterer will be discretized using triangular

patches (for surface scatterer) and tetrahedron cells (for volume scatterer). In the

following subsection, we will discuss the suitable divergence-conforming subdomain

basis functions for triangular patches and tetrahedron cells.

2.3.1 Basis Functions For Planar Triangular Patches

Rao-Wilton-Glisson (RWG) basis functions [21] have been widely used as the basis

functions for planar triangular patches. These surface vector basis functions are

commonly used to expand the unknown surface current density of the surface inte-
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Figure 2.2: A Rao-Wilton-Glisson (RWG) basis function

gral equations. The RWG basis functions are derived from the famous rooftop basis

functions which are defined on rectangular patches [20]. A RWG basis function is

defined on the common edge of a pair of triangular patches as

fn(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln
2A+

n

ρ+
n , r in T+

n

ln
2A−

n

ρ−
n , r in T−

n

0, otherwise

, (2.37)

where ln is the length of the nth edge, A± represents the area of the triangles T±,

and ρ+ and ρ− are vectors pointing away and toward the free vertex. An example

of RWG basis functions is shown in Fig. 2.2. On every patch, only a maximum

of three basis functions will exist, corresponding to the three edges. If any of the

edges is used to define an open structure, then no basis functions will be defined

on it.

Some of the features of these vector basis functions include those below.

• The fn has no component normal to the boundary edges (excludes the com-

mon edge) of the surface formed by triangle pair T+ and T− and hence no

line charges exist along the boundary edges.

• Constant normal component on the common edge because the normal com-
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ponent of ρ±
n is just the height h of T±

n with nth edge as the base. The ρ±
n is

normalized by the h such that fn normal to the nth edge is unity. This has

ensured the continuity of current density normal to the edge.

• The surface divergence of fn,

∇S · fn = ± 1

ρ±
n

∂

∂ρ±
n

(
ρ±

n

ln
2A±

n

ρ±
n

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ln
A+

n

, r in T+
n

− ln
A−

n

, r in T−
n

0, otherwise.

(2.38)

The surface charge density is related to the ∇S ·fn through Eq. (2.9). Hence

the charge density within each triangular patch is constant and the total

charge associated with the triangle pair T±
n is zero.

In using the RWG basis function to solve the EFIE, Rao et. al. have applied

the approximate Galerkin’s procedure where the integral equation is tested at the

centroid of the patches [21]. This method has been adopted in our implementation.

2.3.2 Basis Functions For Curved Triangular Patches

Figure 2.3: Mapping a curved triangular patch in r space (x, y, z) into ξ space
(ξ1, ξ2).

In order to minimize the modeling error, the geometry of the scatterer is mod-

eled using curved triangular patches. By using the second-order parametric trans-
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formation, a curved triangular patch with six nodes can be mapped onto a planar

right-angle triangular patch using the transformation [69]

r =
6∑

i=1

Li (ξ1, ξ2, ξ3) ri, (2.39)

where ξ1, ξ2 and ξ3 are parametric coordinates and they satisfy the relation of

ξ1 + ξ2 + ξ3 = 1. The shape functions Li (i = 1, · · · , 6) are given as

Li = ξi(2ξi − 1), i = 1, 2, 3

L4 = 4ξ1ξ2,

L5 = 4ξ2ξ3,

L6 = 4ξ3ξ1.

(2.40)

The divergence-conforming basis functions Λn defined on the curvilinear trian-

gular patches are given by [80] as

Λβ =
|lβ|
J (ξβ+1lβ−1 − ξβ−1lβ+1) , β = 1, 2, 3 (2.41)

where the indexing is performed in modulus of three and the Jacobian is defined

as

J = n̂ · ∂r

∂ξ1

× ∂r

∂ξ2

. (2.42)

The edge vectors, l1, l2 and l3, are shown in Fig. 2.3 and they are defined as

l1 = − ∂r

∂ξ2

,

l2 =
∂r

∂ξ1

,

l3 =
∂r

∂ξ2

− ∂r

∂ξ1

.

(2.43)

It is noted that an adjustment of sign is necessary to ensure the continuity of the

normal components across adjacent elements.
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2.3.3 Basis Functions For Tetrahedron Cells

Figure 2.4: A Schaubert-Wilton-Glisson (SWG) basis function

The divergence-conforming vector basis functions for tetrahedron cells were

introduced by Schaubert, Wilton and Glisson [29]. These vector basis functions

can be considered as the 3-D extension of the 2-D surface vector basis functions

[20, 21]. The Schaubert-Wilton-Glisson (SWG) basis functions have been used to

expand the unknown electric flux density of the volume integral equation. A SWG

basis function is defined on the common face of a pair of tetrahedron cells as shown

below

fn(r) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

An

3V +
n

ρ+
n , r in T+

n

An

3V −
n

ρ−
n , r in T−

n

0, otherwise

(2.44)

where An is the area of the nth face, V ± represents the volume of the tetrahedron

T±, and ρ+ and ρ− are vectors pointing away and toward the free vertex. An

example of SWG basis functions is shown in Fig. 2.4. On every tetrahedral cell,

only a maximum of four basis functions will exist, corresponding to the four faces

of the cell. If any of the faces is used as the interface between the background

medium and dielectric material, then a half basis function will be defined on it. A

half SWG basis function is having zero height in one of the tetrahedron cells.

The features of these 3-D vector basis functions include:

• The fn has no component normal to the boundary surfaces (excludes the

common surface) of the volume formed by a tetrahedron pair T+ and T−.
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• Constant normal component on the common surface because the normal com-

ponent of ρ±
n is just the height h of T±

n with nth face as the base. The ρ±
n is

normalized by the h such that fn normal to the nth face is unity. This has

ensured the continuity of electric flux density normal to the face.

• The divergence of fn,

∇ · fn = ± 1

(ρ±
n )2

∂

∂ρ±
n

(
(ρ±

n )2 An

3V +
n

ρ±
n

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

An

V +
n

, r in T+
n

−An

V −
n

, r in T−
n

0, otherwise.

(2.45)

The charge density in the cell is proportional to ∇ · fn through Eqs. (2.9)

and (2.18b). Hence the charge density within each tetrahedron is constant.

Schaubert et. al. have used the SWG basis functions to solve the electromag-

netic scattering by dielectric scatterers formulated by volume EFIE [29]. They have

applied approximate Galerkin’s procedure where the integral equation is tested at

the centroid of the tetrahedral cells.



Chapter 3

Adaptive Integral Method – A

Fast Algorithm for Computational

Electromagnetics

3.1 Introduction

The matrix equation generated by the conventional MoM can be solved by either

a direct solver or an iterative solver. Direct solvers such as Gaussian elimination

and lower-upper decomposition (LUD) methods have the computational complex-

ity and storage requirement of O(N3) and O(N2), respectively. Alternatively, the

matrix equation can be solved by iterative solvers such as Gauss-Seidal and con-

jugate gradient (CG) methods. All iterative solvers need to perform matrix-vector

multiplication which requires O(N2) operations. Hence the total computation cost

of an iterative solver is proportional to O(NiterN
2), where Niter is the number of

iterations and it is normally much smaller than N . The storage requirement for

the iterative solver is also of O(N2). The computational complexity and storage

requirement of the conventional MoM have made it prohibitively expensive to solve

large-scale electromagnetic problems.

28
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Adaptive Integral Method (AIM) is a grid based fast algorithm introduced by

Bleszynski et. al. [47, 48] to overcome the weakness of the conjugate gradient-

fast Fourier transform (CG-FFT) method. It has been successfully implemented

in solving various large-scale electromagnetic problems [49–57]. It is implemented

in the iterative solver to accelerate matrix-vector multiplication and to compress

the dense impedance matrix in order to reduce the matrix storage requirement.

Unlike the CG-FFT method, AIM can be applied to deal with arbitrarily shaped

objects. In principle, the AIM can be applied to solve the problems which exhibit

convolutional property. In this chapter, we will first explain the basis idea and

follow by the detailed description of AIM in solving electromagnetic scattering

problems. Next, the accuracy of the AIM will be examined and then the complexity

of the AIM will also be investigated.

3.2 Basic Ideas

AIM accomplishes the reduction in computational complexity and matrix storage

requirement by computing the far-zone interaction using a more effective method.

The method is based on the physical considerations that the fields at a distance far

away from the sources can be computed by using reduced amount of information

on the source current distribution. Hence by satisfying certain criterion, the poten-

tials at observation points distant away from a source currents distribution can be

computed using a small number of weighted point sources. If the grid currents all

lie on a uniform grid, then the computation of the potentials at the grid points due

to grid currents is a discrete convolution which can be computed efficiently using

the FFT.

In following the idea, thus the matrix vector multiplication, ZI, can be accel-

erated using the following procedure of

1. projecting the basis function to the surrounding grid points,

2. computing the far-zone interaction or potentials using the fast Fourier trans-
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form (FFT),

3. interpolating the potentials back to the basis functions, and

4. directly computing the near-zone interaction.

This process is summarized in Fig. 3.1.

Figure 3.1: Pictorial representation of AIM to accelerate the matrix-vector multi-
plication. Near-zone interaction (within the grey area) are computed
directly, while far-zone interaction are computed using the grids.

The AIM splits the matrix-vector multiplication into two parts, i.e. near-zone

interaction and far-zone interaction, and mathematically

ZI = Z
near

I + Z
far

I (3.1)

where Z
near

denotes the near-zone interaction among the nearby elements within

a threshold distance and Z
far

represents the far-zone interaction of the elements.

3.3 Detailed Description

The geometry of an arbitrarily shaped object has prevented the direct use of FFT

to compute the convolution in the operators L and M. In order to utilize FFT to
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evaluate the convolution, it is imperative to transform or project the basis functions

to the uniform rectangular grids.

We first enclose the arbitrarily shaped object in a rectangular region and then

recursively subdivides it into a total of W small rectangular cells with every cell

contains (M + 1)3 points. Fig. 3.2 illustrates two elements enclosed by cells with

(M + 1)3 = 27 and (M + 1)3 = 64 grids, respectively. Each of the elements will

only be assigned to one cell and we denote the Ncell(p) as the total number of basis

functions bounded by the p-th cell. The current density on each element will be

projected to the grid points of its associated cell. If we denote γn(r) to represent

Figure 3.2: Projection of RWG basis functions to surrounding rectangular grids.
The highlighted triangular basis function on the left is approximated
by (M+1)3 = 27 rectangular. The highlighted triangular basis function
on the right is approximated by (M + 1)3 = 64.

any one the components of fn and its derivatives (∇·fn and ∇×fn), we note that

all the matrix elements discussed in Chapter 2 can be expressed in the following

unified form

Zmn =
∫
Ωm

∫
Ωn

γm(r) G(r, r′) γn(r) dΩ′ dΩ. (3.2)

The transformation function, γn(r) can be approximated as a linear combination
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of Dirac delta functions,

γn(r) � γ̂n(r) =
(M+1)3∑

u=1

Λnuδ(r − r′) (3.3)

where M is the expansion order and Λnu denote the expansion coefficients of γ̂n(r).

Λnu can be determined by using the multipole expansion which is based on the

criterion that the coefficients Λnu produce the same multipole moments of the

original basis function [48]. The expansion coefficients can be calculated using the

following equation:

∫
αn

γn(r)(x − x0)
m1(y − y0)

m2(z − z0)
m3 dr

=
(M+1)3∑

u=1

(xnu − x0)
m1(ynu − y0)

m2(znu − z0)
m3Λnu,

for 0 ≤ {m1,m2,m3} ≤ M (3.4)

where the reference point r0 = (x0, y0, z0) is chosen as the center of the basis

function. However the choice of the reference point is irrelevant as the expansion

in Eq. (3.4) is valid for other points.

Once the transformation function has been determined, the matrix elements

can be approximated as

Zmn � Ẑmn =
(M+1)3∑

v=1

(M+1)3∑
u=1

ΛmvG(rv, r
′
u)Λnu (3.5)

and the far-zone interaction of the matrix-vector multiplication in Eq. (3.1) can be

written as

Z
far

= Λ G Λ
T
. (3.6)

The Λ represents the sparse basis transformation matrix of the elements which

contains at most (M + 1)3 non-zero elements in every row. The G is the Toeplitz

matrix whose elements are the free-space Green’s function evaluated at grid points.

The Toeplitz property has enabled the use of FFT to compute the matrix-vector
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multiplication efficiently. Hence we can represent the far-zone interaction by

Z
far

I = ΛF−1
{
F

{
G
}
· F

{
Λ

T
I
}}

(3.7)

where F{•} and F−1{•} are the FFT and the inverse FFT, respectively.

The Z
far

has provided good approximation for the interaction among the ele-

ments that are far apart, but the grid currents cannot accurately approximate the

near-zone interaction. However, we have included the inaccurate approximation of

the near-zone interaction in Eq. (3.6). Hence the inaccurate contribution from grid

currents needs to be removed from the near-zone interactions. The Z
near

can be

constructed such that the inaccurate contribution from Z
far

will be removed and

replaced with correct contribution. The elements of Z
near

can be computed with

Znear
mn =

⎧⎪⎨⎪⎩ Zmn − Ẑmn, if dmn ≤ dnear

0, otherwise,
(3.8)

where dmn is the distance between the element m and n, and dnear is the near-zone

range. Since an element has only a limited number of nearby neighbor elements,

Z
near

is a sparse matrix.

By using the Z
far

and Z
near

obtained in Eqs. (3.7) and (3.8), the matrix-vector

multiplication in (3.1) can be represented as

ZI = Z
near

I + ΛF−1
{
F

{
G
}
· F

{
Λ

T
I
}}

. (3.9)

3.4 Accuracy and Complexity of the AIM

In order to investigate the accuracy of the AIM to approximate the far-zone inter-

action, a simple experiment has been conducted. Fig. 3.3 shows an infinitesimal

thin ring used in this experiment where the surface of the ring is modeled using

triangular patches. The radius of the ring is 3λ and the length of the isosceles
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triangle is 0.071λ. The RWG basis functions have been used to expand the sur-

face currents and to discretize the integral equation. By defining the relative error

between matrix element Zmn and the approximation Ẑmn as

� Zmn =
|Zmn − Ẑmn|

|Zmn| , (3.10)

we compute the �Zmn for the operators L and M discussed in Chapter 2. The

�Zmn is plotted as a function of the arc distance between elements for different

expansion orders and grid sizes are shown in Fig. 3.4 and Fig. 3.5.

Figure 3.3: Experiment setup for the accuracy of AIM. The ring has a radius of 3λ
and it is divided into 704 segments with a = 0.071λ

In both Fig. 3.4 and Fig. 3.5, we observe that the Ẑmn offers a good approxima-

tion to Zmn when the current sources are far apart. The results also show that the

expansion orders M = 2 and M = 3 produce approximation with a relative error

≤ 1%. The expansion M = 3 gives the best approximation however it also requires

more CPU time and more storage compared to expansion M = 2. Throughout

this thesis, we will use the expansion order M = 2 as the accuracy of 1% error

is good enough for engineering applications. Besides, we also like to reserve the

scarce computing resources for other purposes.

Now we will investigate the computational complexity and storage requirement

of our AIM implementation. We will first consider the complexity of our AIM

implementation in solving the surface integral equation (SIE). The matrix storage

requirement and CPU time for matrix filling and matrix-vector multiplication are

plotted in Fig. 3.6 and Fig. 3.7, respectively.

The asymptotic computational complexity and matrix storage requirement of
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Figure 3.4: The relative error of AIM for matrix elements of operator L using dif-
ferent expansion orders (M = 1, 2 and 3) and grid sizes.

AIM in solving SIE have been given by [48] without proof as of O(N1.5) and

O(N1.5 log N), respectively. In our implementation on a PC, the AIM exhibits

O(N1.15), O(N) and O(N1.5 log N) patterns for the matrix storage, matrix filling

times and matrix vector multiplication, respectively. The difference between our

AIM implementation and the estimation given in [48] are most likely due to the

size of the triangular patches being used, which is highly dependent on the mesher.

In addition, the geometry of the structure will also produce different patterns and

in this example, we have used a metallic sphere.

Next, we consider the complexity of our AIM implementation in solving the
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Figure 3.5: The relative error of AIM for matrix elements of operator M using
different expansion orders (M = 1, 2 and 3) and grid sizes.

volume integral equation (VIE). The matrix storage requirement and CPU time for

matrix filling and matrix-vector multiplication are plotted in Fig. 3.8 and Fig. 3.9,

respectively.

The asymptotic computational complexity and matrix storage requirement of

AIM in solving VIE have been estimated as of O(N) and O(N log N), respectively

[48]. In our AIM implementation on PC, the matrix storage, matrix fill times

and matrix-vector multiplication have exhibited O(N1.2 log N), O(N1.2 log N) and

O(N log N), respectively. The difference between the our results with the estima-

tion are most probably due to the sizes of the tetrahedron cells, which are highly
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Figure 3.6: AIM memory requirement versus the number of unknowns for the sur-
face integral equation.

dependent on the mesher being used. In this example, our test object is a dielectric

sphere which is discretized by using the GiD [81].
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Figure 3.7: AIM CPU time versus the number of unknowns for the surface integral
equation. (a) Matrix filling. (b) Matrix-vector multiplication.
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Figure 3.8: AIM memory requirement versus the number of unknowns for the vol-
ume integral equation.
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Figure 3.9: AIM CPU time versus the number of unknowns for the volume integral
equation. (a) Matrix filling. (b) Matrix-vector multiplication.



Chapter 4

Fast Solution to Scattering and

Radiation Problems of Metallic

Structures

4.1 Introduction

The most common material encountered in engineering application is metal. Met-

als are good conductors of electricity and have been used to construct antennas,

transmission line, etc. The presence of metallic object will generate disturbance

to the original field distributions, hence it is important to understand and analyze

the electromagnetic scattering by metallic objects. In this chapter, we will first de-

rive the integral equation that describes the electromagnetic problems of metallic

structure. Then, we will use the MoM and AIM to analyze the electromagnetic

scattering and radiation problems of electrically large metallic structures.
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Figure 4.1: A perfect electric conductor embedded in an isotropic and homogeneous
background and illuminated by incident plane waves

4.2 Formulation

Consider an arbitrarily shaped 3-D scatterer embedded in an isotropic homoge-

neous background medium with permittivity ε and permeability µ as shown in

Fig. 4.1. We assume the scatterer is made of perfect electric conductor (PEC),

whose conductivity σ = ∞. The scatterer is illuminated by an incident wave Einc,

which is excited by impressed sources in the background media.

If we construct an artificial closed surface S outside the scatterer, we can invoke

the surface equivalence principle and let the equivalent current densities flow on

the surface S. Then we allow the artificial surface to shrink until it coincides with

the surface of the PEC. By considering the boundary conditions on the surface of

PEC, we have

• The tangential components of total electric field vanish on the surface; and

• The tangential components of total magnetic field are equal to the surface

current density.
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Mathematically the boundary conditions can be expressed as

n̂ × E = 0 (4.1)

n̂ × H = JS, (4.2)

where the E and H are the total electric and magnetic fields on the surface S. From

Eq. (2.11), the equivalent magnetic current density, KS, is equal to the tangential

components of total electrical field, hence

KS = 0. (4.3)

Since the fields inside the metallic structure are zero, we can remove the metallic

structure and fill the region with the background medium. Hence the JS is radi-

ating in the unbounded background medium. The scattered electric and magnetic

fields can be determined from Eq. (2.4) as

Esca = −ηLJS (4.4)

Hsca = MJS. (4.5)

The total fields in Eqs. (4.1) and (4.2) comprise the incident and scattered fields.

Hence substituting Eqs. (4.4) and (4.5) into Eqs. (4.1) and (4.2), we obtain

n̂ × Einc = n̂ × ηLJS (4.6)

n̂ × H inc = JS − n̂ ×MJS. (4.7)

Eqs. (4.6) and (4.7) are commonly referred to as electric field integral equation

(EFIE) and magnetic field integral equation (MFIE), respectively, for PEC. It is

noted that either EFIE or MFIE can be applied to solve the scattering problem of

a closed surface PEC but the MFIE cannot be applied to treat an infinitesimally

thin open structure object.
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Using the EFIE or MFIE alone to solve the scattering problem of a closed

surface structure will encounter interior resonance problem at specific resonance

frequencies [82, 83]. The interior resonance problem will cause slow convergence

and normally lead to incorrect solutions. This problem can be alleviated by using

the combined field integral equation (CFIE) formulation [16]. The CFIE produces

an unique solution at all frequencies and also produces better condition matrix

equation compared to EFIE or MFIE. The CFIE can be obtained by linearly com-

bining the EFIE and MFIE such that

CFIE = αEFIE + (1 − α)ηMFIE, (4.8)

where α is a real number and 0 ≤ α ≤ 1. Notice that when α = 1 and α = 0, the

Eq. (4.8) is reduced to the EFIE and the MFIE , respectively. Hence both EFIE

and MFIE can be considered as the special cases of CFIE.

4.3 Method of Moments

The geometry of the PEC can be modeled using triangular or rectangular patches.

The divergence-conforming subdomain basis functions are suitable for approximat-

ing the unknown surface current density. Here, we have discretized the surface of

the metallic structure using triangular patches. If we denote the basis functions as

fn, then the surface current density, JS, can be expanded as

JS =
N∑

n=1

Infn, (4.9)

where the In denotes the unknown current coefficients. By using the Galerkin’s

testing procedure, the integral equation can be converted into a matrix equation

ZI = V , (4.10)
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where Z, I and V denote the impedance matrix, the vector of current coefficients,

and the excitation vector, respectively. The excitation vector can be evaluated by

Vm =
∫

Sm

fm ·
[
αEinc(r) + (1 − α)ηH inc(r)

]
dS (4.11)

while the elements of the impedance matrix can be computed using

Zmn =
∫

Sm

fm·
[
αjkη

∫
Sn

(
fn +

∇∇′ · fn

k2

)
G(r, r′) dS ′+

(1 − α) η
(

1

2
fn − ∇ ×

∫
−

Sn

fnG(r, r′)dS ′
)]

dS (4.12)

where
∫
−

S
is the Cauchy principal value.

4.4 AIM Implementation

We will use the AIM that has been discussed in Chapter 3 to accelerate the matrix-

vector multiplication in the iterative solver. In order to use the AIM, the scatterer

is first placed in a rectangular region and recursively subdivided into a total of

W cells and each of the basis functions fn is bounded by a cell which comprises

(M +1)3 = 27 grids. Let Nt denotes the total number of basis functions and Nc(w)

denote the number of basis functions enclosed by the w-th cell. In the initialization

stage, the projection matrix of the current densities Λ and the Green’s function

matrix G are computed and stored. During the matrix-vector multiplication, the

current density is first projected onto the grid points. Then the Fourier transform of

the far-zone interactions is computed and subsequently transferred to the respective

testing functions. Lastly, the corrections to the near-zone interactions are added to

the output. The complete AIM algorithm for PEC objects is given in Algorithm 1

in pseudocode form.
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/*Initialization */
Compute G̃ = FFT(G)

Compute ∆ = Z − Λ G Λ
T

/* Projection step */
Set Î = 0
for each cell p = 1 to W do

for each basis function fq in cell p, q = 1 to Nc(p) do
Î(p) = Î(p) + [Λ(p, q)]T Iq(p)

end
end
/* Far-zone interaction */
Compute Ĩ = FFT(Î)
Compute P̃ = G̃ · Ĩ
Compute P̂ = FFT−1(P̃ )
Set V = 0
for each cell p = 1 to W do

for each basis function fq in cell p, q = 1 to Nc(p) do
Vq(p) = Vq(p) + Λ(p, q)P̂ (p)

end
end
/* Near-zone interaction */
for each basis function fp with p = 1 to Nt do

for each basis function fq with, q = 1 to Nnz(p) do
Vq(p) = Vq(p) + ∆(p, q)Iq(p)

end
end

Algorithm 1: AIM algorithm for solving electromagnetic scattering problems
of PEC objects.

By using the AIM, the impedance matrix Z is mathematically split into two

components, i.e. Z
near

and Z
far

. The far-zone interaction Z
far

I is approximated

with the aid of FFT while the sparse near-zone matrix, Z
near

is computed and

stored in memory. An example of Z
near

is shown in Fig. 4.2. It is generated by a

metallic sphere having a radius of 1λ at 150 MHz. The total number of unknowns

for this problem is 630 and the total non-zero entries of Z
near

is 41,454. Hence the

matrix storage requirement of Z
near

is just about 10% of the full MoM matrix.
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Figure 4.2: Sparsity pattern of Z
near

for a closed surface metallic object.

4.5 Numerical Examples

In this section, we will provide several examples to demonstrate the accuracy and

the capability of our AIM implementation to solve electromagnetic problems of

perfectly electric conducting objects. All the computations in this section are

carried out on a general Pentium IV personal computer and the generalized minimal

residual (GMRES) [84] iterative solver is used.

The first example we present is to serve as validation of the accuracy of our code.

The first example is the scattering of a conducting sphere with a radius of 1 m. The

bistatic radar cross sections (RCSs) of VV− and HH−polarizations at 500 MHz are

computed using 11,172 unknowns and shown in Fig. 4.3. The solutions obtained

by the Mie series are also shown for comparison. A good agreement is observed

between the results. Next we show the convergence plot of EFIE, MFIE, and CFIE

methods for solving the Example 1 in Fig. 4.4. We observe that the CFIE converges

faster than both EFIE and MFIE. In the following examples, we will apply CFIE

formulation to a closed surface scatterer and apply EFIE formulation to an open

structure scatterer.

The second example we consider is the scattering of a NASA almond [85]. The
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Figure 4.3: Bistatic RCSs of a metallic sphere with a radius of 1 m at 500 MHz.
(a) VV−polarization. (b) HH−polarization.
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Figure 4.4: The convergence plot of EFIE, MFIE and CFIE with AIM for comput-
ing the bistatic RCS of a metallic sphere of 1 m radius at 500 MHz.

mathematical description of the almond surface is as follows:

for − 0.41667 < t < 0 and − π < φ < π

x = 0.2523744t m

y = 0.0487923

√
1 −

(
t

0.46667

)2
cos φ m

z = 0.0162640

√
1 −

(
t

0.46667

)2
sin φ m;

for 0 < t < 0.58333 and − π < φ < π

x = 0.2523744t m

y = 1.2198390

(√
1 −

(
t

2.08335

)2 − 0.96

)
cos φ m

z = 0.4066130

(√
1 −

(
t

2.08335

)2 − 0.96

)
sin φ m.

The geometry of the almond is shown in Fig. 4.5. The monostatic RCSs for

VV−polarization at 7 GHz are computed and shown in Fig. 4.5. The corresponding

maximum dimensions of the almond are 5.89λ× 1.14λ× 0.38λ and the discretiza-

tion using triangular patches results in 9,750 unknowns. The computed results
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agree well with the measured results especially at the tips.
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Figure 4.5: Monostatic RCSs for VV−polarization of a NASA almond at 7 GHz.

The third example is the scattering of a generic airplane1. The induced surface

current is shown in Fig. 4.6. The monostatic RCSs for the VV− and HH−polarizations

at 300 MHz and 1 GHz are computed with 6,459 and 62,619 unknowns, respectively.

The results are shown in Fig. 4.7.

In the following examples, we will consider the application of AIM in computing

the radiation patterns of antennas [57, 86]. The fourth examples is a metallic horn

antenna. The dimensions of the pyramidal horn antenna are shown in Fig. 4.8.

In this example, the pyramidal horn antenna is excited by an infinitesimal dipole

placed inside the waveguide. The induced surface current is shown in Fig. 4.9. The

radiation patterns in E− and H−planes are shown in Fig. 4.10(a) and Fig. 4.10(b),

respectively. We have observed a good agreement between the computed results

and the measured results [87].

Next we consider the radiation patterns of a parabolic reflector. The parabolic

1The mesh of the generic airplane is provided by Dr. Li Er-Ping, Institute of High Performance
Computing, Singapore.
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Figure 4.6: The normalized induced surface current on a generic airplane. The
airplane is illuminated by a plane wave incident from the direction
indicated by the arrow.

reflector is having a diameter of 5λ and the focus-to-diameter (F/D) ratio of the

reflector is 0.375. The reflector is excited by an ideal dipole placed at the focus and

backed by a circular disk. The induced surface current is shown in Fig. 4.11 and

the respectively radiation patterns in E− and H−planes are shown in Fig. 4.12(a)

and Fig. 4.12(b). The computed results are compared with the measured results

[87] and a good agreement is observed.

The sixth example we consider is a rectangular horn-fed parabolic reflector with

different F/D ratios. The parabolic reflector is assumed to have the F/D ratios

of 0.3, 0.375 and 0.4, and their respective diameters are 21λ, 17λ and 16λ. The

aperture dimensions and height of the rectangular horn for feeding are 1.2λ× 1.6λ

and 3.5λ, respectively. The discretizations of these configurations have resulted

in 126,948, 78,975 and 69,379 unknowns, respectively. The computed E− and

H−planes radiation patterns are shown in Fig. 4.13 for different F/D ratios.

The last example we present here is the radiation of a dipole on top of a generic

car. The dipole is placed on top of the car, the induced current are shown in
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Figure 4.7: Monostatic RCSs of a generic airplane in XY plane. (a) 300 MHz. (b)
1 GHz.
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Figure 4.8: Dimension of the example pyramidal horn antenna.

Figure 4.9: The normalized induced surface current on the pyramidal horn antenna
excited by an infinitesimal dipole.
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Figure 4.10: Radiation patterns of the pyramidal horn antenna. (a) E−plane. (b)
H−plane.
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Figure 4.11: The normalized induced surface current on the parabolic reflector ex-
cited by an infinitesimal dipole backed with a circular plate.

Fig. 4.14. The radiation pattern in XZ− and Y Z−planes are shown in Fig. 4.15(a)

and Fig. 4.15(b), respectively.

In Table 4.1, we compare the total memory consumed by the AIM and the

estimated memory for the conventional MoM in computing these examples. From

Table 4.1, we observe that the saving in memory requirement due to the AIM

is more than 95%. We also find that although the memory requirement for the

conventional MoM in some examples is far beyond the capability of a PC, but

these examples could be easily handled by the AIM.

The CPU time consumed by AIM to compute these examples is shown in Ta-

ble 4.2 and the estimated CPU time for MoM is also given for comparison purpose.

We find that the saving in time is significant especially for electromagnetic prob-

lems with a large number of unknowns. Through these examples, we observe that

the AIM has effectively reduced the CPU time needed for solving electromagnetic

scattering problems of large-scale metallic structures.
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Figure 4.12: Radiation patterns of the parabolic reflector. (a) E−plane. (b)
H−plane.
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Figure 4.13: Radiation patterns of the horn fed parabolic reflector with different
F/D ratios. (a) E−plane. (b) H−plane.
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Figure 4.14: The normalized surface current induced on the generic car excited by
an infinitesimal dipole placed on top of the car.

Table 4.1: Comparison of memory requirement between the AIM and the MoM in
solving electromagnetic problems of metallic structures.

Example Unknowns, AIM, MoM, MAIM/MMoM

N MAIM(MB) MMoM(GB)

Metallic sphere 11,172 15.33 0.93 1.61%

NASA almond 9,750 21.50 0.71 2.97%

Generic airplane (300 MHz) 6,459 13.95 0.31 4.38%

Generic airplane (1 GHz) 62,619 199.98 29.21 0.67%

Horn antenna 15,101 32.78 1.70 1.88%

Reflector 7,157 12.76 0.38 3.28%

Reflector F/D = 0.4 69,379 175.26 35.86 0.48%

Reflector F/D = 0.375 78,975 198.61 46.47 0.42%

Reflector F/D = 0.3 126,948 318.85 120.07 0.26%

Generic car 30,336 63.14 6.86 0.90%

Note: 1 KB = 1,024 Bytes, 1 MB = 1,024 KB and 1 GB = 1,024 MB
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Figure 4.15: Radiation patterns of a dipole placed on top of a generic car. (a)
XZ−plane. (b) Y Z−plane.
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Table 4.2: Comparison of CPU time between the AIM and the MoM in solving
electromagnetic problems of metallic structures.

Example Unknowns, AIM, Estimated MoM,

N TAIM(sec) TMoM(sec)

Metallic sphere 11,172 41 120

NASA almond 9,750 106 334

Generic airplane (300 MHz) 6,459 53 77

Generic airplane (1 GHz) 62,619 3,137 7,670

Horn antenna 15,101 702 1,032

Reflector 7,157 148 161

Reflector F/D = 0.4 69,379 15,426 21,777

Reflector F/D = 0.375 78,975 19,800 31,136

Reflector F/D = 0.3 126,948 30,189 78,516

Generic car 30,336 6,025 8,813



Chapter 5

Fast Solution to Scattering

Problems of Dielectric Objects

5.1 Introduction

The scattering problem of dielectric scatterer can be formulated using the surface

integral equation (SIE) method [26, 27] or the volume integral equation (VIE)

method [5, 7, 29]. The choice of the type of integral equations to be used is nor-

mally dependent on the inhomogeneity of the dielectric material. For a piecewise

homogeneous dielectric material, it is advantageous to formulate the scattering

problem using surface integral equation as the discretization process will produce

less unknowns. However if the inhomogeneity of the dielectric material is com-

plex, then the VIE is preferred as the SIE is required to be formulated in every

inhomogeneous region.

In this chapter, the scattering problem of dielectric scatterer will be first solved

by using the SIE method. The AIM algorithm will be modified to solve the re-

sultant matrix equation [54]. Next, we will use the VIE method to characterize

the scattering problem of dielectric scatterers with complex inhomogeneity. The

original AIM algorithm will be modified in order to cope with the volume source.

61
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5.2 Surface Integral Equation Method

By using the surface equivalence principle, it is possible to establish a set of integral

equations to describe the scattering problem of dielectric objects in an unbounded

medium. In this section, we will first carry out the formulation for piecewise di-

electric object and then follow by the formulation for mixed dielectric objects.

5.2.1 Formulation for Piecewise Dielectric Object

Figure 5.1: Geometry of a dielectric scatterer embedded in an isotropic homoge-
neous medium.

Consider the electromagnetic scattering problem of a 3-D arbitrarily shaped

piecewise homogeneous dielectric object as shown in Fig. 5.1. The dielectric ma-

terial of the object is characterized by the permeability, µ2, and permittivity, ε2.

The scatterer is embedded in an unbounded medium characterized by (µ1, ε1), and

is illuminated by an incident wave Einc.

We first construct an artificial closed surface S21 which is coincident with the

surface of the scatterer. By using the surface equivalence principle, the equivalent

electric and magnetic current densities flow on the surface are given by Eq. (2.11),

J1 = n̂ × H1 (5.1)

K1 = E1 × n̂, (5.2)
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where the E1 and H1 are the respective total electric and magnetic fields in

medium 1. The scattered fields produced by the equivalent current densities are

Esca = −η1L1J1 −M1K1 (5.3)

Hsca = M1J1 − 1

η1

L1K1, (5.4)

where ηi =
√

µi/εi. The operators Li and Mi are defined as

LiX = jki

∫
Ω

XGi +
1

k2
i

∇∇ · (XGi) dΩ′ (5.5)

MiX = ∇ ×
∫
Ω

XGi dΩ′ (5.6)

where ki = ω
√

µiεi and the Green’s function is given by

Gi =
e−jki|r−r′|

4π|r − r′| . (5.7)

Knowing that the total fields comprise incident and scattered fields, we substi-

tute Eqs. (5.3)–(5.4) into the Eqs. (5.1)–(5.2) to obtain the respective EFIE and

MFIE below:

− K1 + n̂ × η1L1J1 + n̂ ×M1K1 = n̂ × Einc (5.8)

J1 − n̂ ×M1J1 + n̂ × 1

η1

L1K1 = n̂ × H inc. (5.9)

Next, we can setup a second equivalence relationship inside the dielectric scat-

terer. The mathematical surface is coincident with the interior surface of the scat-

terer and the equivalent current densities are given by

J2 = (−n̂) × H2 (5.10)

K2 = E2 × (−n̂) (5.11)

where n̂ is the normal vector pointing into medium 1. The second equivalence
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replicates the original fields in medium 2 and produce null fields throughout the

medium 1. By considering the scattered fields produced by the second set of equiv-

alent current densities, we can obtain the EFIE and MFIE for the interior region

− K2 − n̂ × η2L2J2 − n̂ ×M2K2 = 0 (5.12)

J2 + n̂ ×M2J2 − n̂ × 1

η2

L2K2 = 0. (5.13)

By considering the continuity of the tangential components of total electric field

and magnetic field across the boundary, the two sets of equivalent current densities

are related by

J2 = −J1 (5.14)

K2 = −K1. (5.15)

If we denote

J21 = J1 = −J2 (5.16)

K21 = K1 = −K2, (5.17)

we can combine the two sets of equivalence and produce the coupled field integral

equation. The coupled EFIE and MFIE are

n̂ × (η1L1 + η2L2)J21 + n̂ × (M1 + M2)K21 = n̂ × Einc (5.18)

−n̂ × (M1 + M2)J21 + n̂ × (
1

η1

L1 +
1

η2

L2)K21 = n̂ × H inc. (5.19)

This formulation is commonly known as Poggio-Miller-Chang-Harrington-Wu-Tsai

(PMCHWT) formulation [22–24]. This formulation is free of interior resonance and

thus yields accurate and stable solutions.
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(a) Coated dielectric object (b) Discrete dielectric objects

Figure 5.2: Geometry of two dielectric scatterers in an isotropic homogeneous
medium.

5.2.2 Formulation for Mixed Dielectric Objects

In this section, we can use the results obtained earlier to characterize the electro-

magnetic scattering problem for mixed dielectric objects. For this problem, we will

consider two sets of configuration, i.e. coated object and discrete objects, as shown

in Fig. 5.2(a) and Fig. 5.2(b). We will only derive the formulation for the coated

object and the formulation for the discrete objects can be easily deduced from it.

Fig. 5.2(a) depicts an arbitrarily shaped 3-D dielectric scatterer coated by an-

other dielectric material immersed in a homogeneous medium with permittivity ε1

and permeability µ1. The scatterer and coating material have different material

properties characterized respectively by (µ2, ε2) and (µ3, ε3). The interface between

media i and j is denoted as Sji. The unit vector normal to Sji and pointing toward

the medium i is denoted as n̂ji.

Unlike the single dielectric scatterer, we need to apply the surface equivalence

principle on every surface. Hence the equivalent surface electric and magnetic

current densities are defined as

J ji = n̂ji × H i on Sji (5.20)

Kji = Ei × n̂ji on Sji. (5.21)
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Here we do not define the corresponding second set of equivalent current densities,

as they are identical to the first set of equivalent current densities, except that they

differ by a sign.

By using the PMCHWT formulation, the coupled EFIE and MFIE on the

surface S21 can be written as

n̂21 × Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 + M2)K21

−n̂21 × η2L2J32 − n̂21 ×M2K32 (5.22)

n̂21 × H inc = −n̂21 × (M1 + M2)J21 + n̂21 × (
1

η1

L1 +
1

η2

L2)K21

+n̂21 ×M2J32 − n̂21 × 1

η2

L2K32. (5.23)

Similarly, the coupled EFIE and MFIE on the surface S32 can be written as

0 = n̂32 × (η2L2 + η3L3)J32 + n̂32 × (M2 + M3)K32

−n̂32 × η2L2J21 − n̂32 ×M2K21 (5.24)

0 = −n̂32 × (M2 + M3)J32 + n̂32 × (
1

η2

L2 +
1

η3

L3)K32

+n̂32 ×M2J21 − n̂32 × 1

η2

L2K21. (5.25)

If we repeat the same procedure for the discrete scatterers as shown in Fig. 5.2(b),

we can obtain

n̂21 × Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 + M2)K21

+n̂21 × η1L1J31 + n̂21 ×M1K31 (5.26)

n̂21 × H inc = −n̂21 × (M1 + M2)J21 + n̂21 × (
1

η1

L1 +
1

η2

L2)K21

−n̂21 ×M1J31 + n̂21 × 1

η1

L1K31 (5.27)

n̂31 × Einc = n̂31 × (η1L1 + η3L3)J31 + n̂31 × (M1 + M1)K31

+n̂31 × η1L1J21 + n̂31 ×M1K21 (5.28)

n̂31 × H inc = −n̂31 × (M1 + M3)J31 + n̂31 × (
1

η1

L1 +
1

η3

L3)K31
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−n̂31 ×M1J21 + n̂31 × 1

η1

L1K21. (5.29)

5.2.3 Method of Moments

In this section, we will only discuss the discretization of mixed dielectric scatterer

as it is a more general case compared to the single dielectric scatterer. The coupled

integral equations derived in the previous sections are discretized using the RWG

basis functions. The equivalent surface electric and magnetic current densities J ji

and Kji (j = 2 or 3) are expanded as follows:

J ji =
∑

Inj−1
fnj−1

(5.30)

Kji =
∑

Mnj−1
fnj−1

. (5.31)

Substituting Eqs. (5.30–5.31) into Eqs. (5.22–5.25) and (5.26–5.29), and applying

the Galerkin’s testing procedure, we convert the integral equations to a linear

equation system written as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z
E1I1 C

E1M1 θZ
E1I2 θC

E1M2

D
H1I1 Y

H1M1 θD
H1I2 θY

H1M2

θZ
E2I1 θC

E2M1 Z
E2I2 C

E2M2

θD
H2I1 θY

H2M1 D
H2I2 Y

H2M2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1

M 1

I2

M 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1

H1

δE2

δH2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.32)

where the (I1, M 1) and (I2,M 2) are the coefficients of the equivalent electric

and magnetic current densities on S2i and S3i, respectively. The elements of the

sub-matrices, for u 
= v, are defined as

ZEuIv
mn = −

∫
Tmu

fmu
(r)·

(
jωµaP

a
nv

+
j

ωεa

Qa
nv

)
dSmu (5.33a)

Y HuMv
mn = −

∫
Tmu

fmu
(r)·

(
jωεaP

a
nv

+
j

ωµa

Qa
nv

)
dSmu (5.33b)

CEuMv
mn = −

∫
Tmu

fmu
(r)·

(
∇ × P a

nv

)
dSmu (5.33c)
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DHuIv
mn = − CEuMv

mn ; (5.33d)

and for u = v, as:

ZEuIu
mn =

∫
Tmu

fmu
(r)·

(
jωµbP

b
nu

+
j

ωεb

Qb
nu

+jωµu+1P
u+1
nu

+ j
ωεu+1

Qu+1
nu

)
dSmu (5.34a)

Y HuMu
mn =

∫
Tmu

fmu
(r)·

(
jωεbP

b
nu

+
j

ωµb

Qb
nu

+jωεu+1P
u+1
nu

+ j
ωµu+1

Qu+1
nu

)
dSmu (5.34b)

CEuMu
mn =

∫
Tmu

fmu
(r)·

(
∇ × P b

nu
+ ∇ × P u+1

nu

)
dSmu (5.34c)

DHuIu
mn = −CEuMu

mn ; (5.34d)

where

P u
nv

=
∫

Tnv

fnv
(r′)Gu (r, r′) dSnv (5.35)

Qu
nv

= ∇
∫

Tnv

∇′
s · fnv

(r′)Gu (r, r′) dSnv ; (5.36)

while the symbols, µa and εa, denote the permeability and permittivity in medium

a, respectively. The elements of the excitation electric and magnetic fields are

expressed as

Eu,m =
∫

Tmu

fmu
· EincdSmu (5.37a)

Hu,m =
∫

Tmu

fmu
· H incdSmu . (5.37b)

For cases shown in Fig. 5.2(a) and Fig. 5.2(b), we let (δ = 0, θ = 1, a = 2, b = u)

and (δ = 1, θ = −1, a = 1, b = 1) , respectively.

The scattering by the single dielectric scatterer can be considered as the special

case of mixed dielectric scatterer. The matrix equation can be directly obtained
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from Eq. (5.32) as

⎛⎜⎝ Z
E1I1 C

E1M1

D
H1I1 Y

H1M1

⎞⎟⎠
⎛⎜⎝ I1

M 1

⎞⎟⎠ =

⎛⎜⎝ E1

H1

⎞⎟⎠ . (5.38)

5.2.4 AIM Implementation

The AIM algorithm given in Chapter 2 needs some modifications in order to solve

the scattering problems of dielectric objects. Additional FFTs have to be carried

out to account for the equivalent current densities radiating in different media. We

first assume that there are a total of R media containing current densities. The

dielectric scatterer is placed in a rectangular region in every medium, which will

be recursively subdivided into smaller cells. A total number of Wr cells will be

generated if the subdivision of the rectangular region is taken place in medium r.

Each of the basis functions fn is bounded by a cell which comprises (M +1)3 = 27

grid points. Let Nt,r denote the total number of unknowns in medium r and Nc,r(w)

denote the number of basis functions enclosed by the wr-th cell.

In the initialization stage, the projection matrices of the current densities in all

media, Λr, are computed and stored. The Green’s function matrices for all media,

Gr, are also computed and stored. During the matrix-vector multiplication, the

current densities contained in the same medium will be projected onto the same grid

points. The projection procedure is repeated for the current densities radiating in

other medium. The Fourier transform of the far-zone interactions for all media are

computed and subsequently transferred to the respective testing functions. Lastly,

the corrected near-zone interactions of different media are added to the output.

The complete algorithm is shown in Algorithm 2 in pseudocode form.
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/*Initialization */

for each medium r = 1 to R do

Compute G̃r = FFT(Gr)

Compute ∆r = Z − Λr Gr Λ
T

r

end

/* Projection step */

for each medium r = 1 to R do

Set Îr = 0

for each cell p = 1 to Wr do

for each basis function q in cell p, q = 1 to Nc,r(p) do

Îr(p) = Îr(p) + [Λr(p, q)]
T Iq,r(p)

end
end

end

/* Far-zone interaction */

for each medium r = 1 to R do

Compute Ĩr = FFT(Îr)

Compute P̃ r = G̃r · Ĩr

Compute P̂ r = FFT−1(P̃ r)
end

for each medium r = 1 to R do

Set V r = 0

for each cell p = 1 to Wr do

for each basis function q in cell p, q = 1 to Nc,r(p) do

Vq,r(p) = Vq,r(p) + Λr(p, q)P̂r(p)

end
end

end

/* Near-zone interaction */

for each medium r = 1 to R do

for each basis function p = 1 to Nt,r do

for each basis function q with, q = 1 to Nnz,r(p) do

Vq,r(p) = Vq,r(p) + ∆r(p, q)Iq,r(p)

end
end

end

Algorithm 2: AIM algorithm for solving electromagnetic scattering problems

of dielectric objects characterized using the SIE.

By using the modified AIM algorithm, we can generate the near-zone matrix

Z
near

with sparsity pattern as shown in Fig. 5.3. The sparsity patterns shown in

Fig. 5.3(a) and Fig. 5.3(b) are generated using a dielectric sphere and a coated
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(a) Single dielectric object (b) Mixed dielectric objects

Figure 5.3: Sparsity patterns of Z
near

for dielectric scatterer using SIE – direct
implementation.

(a) Single dielectric object (b) Mixed dielectric objects

Figure 5.4: Sparsity patterns of Z
near

for dielectric scatterer using SIE – efficient
implementation.
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dielectric sphere, respectively. However, by inspecting the matrix again, we find

that the sub-matrices Y HuMv
mn and DHuIv

mn need not be stored as they can be computed

using sub-matrices ZEuIv
mn and CEuMv

mn , respectively. Hence some savings in memory

can be achieved. Fig. 5.4 shows the sparsity patterns of Z
near

using a more efficient

implementation.

5.2.5 Numerical Results

In this section, we will present several examples to demonstrate the applicability

of our AIM implementation to solve the scattering problems of mixed dielectric

objects formulated using the SIE method. The first two examples are considered to

validate the accuracy of AIM in solving single dielectric object and mixed dielectric

objects.

The first example we consider is a dielectric sphere. The sphere has a radius

of 1 m and a relative permittivity of εr = 1.6 − j0.4. The bistatic RCSs of VV−
and HH−polarizations are computed with 30,360 unknowns and shown in Fig. 5.5.

The solutions obtained from the Mie series are also plotted for comparison. A good

agreement is observed between the results.

The second example is a coated dielectric sphere. The radius of the core is 0.9 m

and the thickness of the coating material is 0.1 m. The relative permittivity for the

core and coating material are respectively εr1 = 1.4−j0.3 and εr2 = 1.6−j0.8. The

bistatic RCSs for VV− and HH−polarizations are computed with 60,720 unknowns

and shown in Fig. 5.6. A good agreement is also observed between our results and

the solutions obtained from the Mie series.

The third example analyzed is the scattering by two dielectric spheres with

different radii. The spheres are only radiatively closely coupled and the relative

permittivities of the spheres are respectively 1.75 − j0.3 and 2.25 − j0.5. The

bistatic RCSs for VV− and HH−polarizations are shown in Fig. 5.7. The RCSs

of the spheres with radius of 0.4λ are compared with those in [28] and a good
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Figure 5.5: Bistatic RCSs of a dielectric sphere of radius 1 m at 700 MHz. (a)
VV−polarization. (b) HH−polarization.
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Figure 5.6: Bistatic RCSs of a coated dielectric sphere (a1 = 0.9 m, εr1 = 1.4−j0.3;
a2 = 1 m, εr2 = 1.6 − j0.8) at 750 MHz. (a) VV−polarization. (b)
HH−polarization.
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Figure 5.7: Bistatic RCSs of two dielectric spheres (εr1 = 1.75 − j0.3, and
εr2 = 2.25 − j0.5) with different radii. (a) VV−polarization. (b)
HH−polarization.
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agreement is observed.

The fourth example is the scattering by nine agglomerated spheres, of which five

spheres have relative permittivity εr1 = 1.75 − j0.3 and four spheres have relative

permittivity εr2 = 2.25 − j0.5. Resulted from 90,060 unknowns, the bistatic RCSs

for VV− and HH−polarizations are obtained and shown in Fig. 5.8.

Figure 5.8: Bistatic RCSs of nine dielectric spheres, each of diameter 2λ (εr1 =
1.75 − j0.3, and εr2 = 2.25 − j0.5).

The last example we consider here is a dielectric airplane. The generic airplane

model used in this example is identical to the one used in Chapter 4, except the rel-

ative permittivity εr = 1.44. The monostatic RCSs for VV− and HH−polarizations

are computed with 12,918 unknowns and shown in Fig. 5.9.

The comparisons between the memory used by the AIM and the estimated mem-

ory for the conventional MoM in computing the numerical examples are tabulated

in Table 5.1. We find that the saving of memory is more than 90%. We also notice

that more savings can be achieved when we deal with the problems with a large

number of unknowns such as in Examples 2, 3 and 4. The comparisons between

the CPU time used by the AIM and the estimated CPU time for the conventional
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Figure 5.9: Monostatic RCSs of a generic dielectric airplane (εr = 1.6 − j0.4). (a)
VV−polarization. (b) HH−polarization.
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MoM in computing the examples are shown in Table 5.2. The AIM used less CPU

time to obtain the solutions of the examples and the time saving is significant for

examples with a large number of unknowns such as in Examples 3 and 4.

Table 5.1: Comparison of memory requirement between the AIM and the MoM in
solving electromagnetic scattering problems of dielectric objects charac-
terized using the SIE.

Example Unknowns, AIM, MoM, MAIM/MMoM

N MAIM(MB) MMoM(GB)

Dielectric sphere 30,360 145.44 6.87 2.07%

Coated dielectric sphere 60,720 164.38 27.47 0.58%

2 dielectric spheres (r = 2λ) 90,144 297.02 60.54 0.48%

9 dielectric spheres 90,060 277.49 60.43 0.45%

Dielectric airplane 12,918 114.34 1.24 8.98%

Note: 1 KB = 1,024 Bytes, 1 MB = 1,024 KB and 1 GB = 1,024 MB

Table 5.2: Comparison of CPU times between the AIM and the MoM in solving
electromagnetic scattering problems of dielectric objects characterized
using the SIE.

Example Unknowns, AIM, Estimated MoM,

N TAIM(sec.) TMoM(sec)

Dielectric sphere 30,360 929 1,250

Coated dielectric sphere 60,720 3,885 5,174

2 dielectric spheres (r = 2λ) 90,144 5,050 19,112

9 dielectric spheres 90,060 6,881 17,617

Dielectric airplane 12,918 1,062 1,109

5.3 Volume Integral Equation Method

The alternative method to solve the scattering problem of dielectric scatterer is to

formulate the problem using the VIE method. The formulation of VIE is simple

but it requires more computing resources to solve the formulated equation. The

VIE is recommended when the target is a dielectric scatterer with complex material

properties.
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5.3.1 Formulation

Let us consider again the arbitrarily shaped 3-D dielectric scatterer in Fig. 5.1.

We denote the volume enclosed by S21 as V and assume that it is inhomogeneous.

To simplify the problem, the volume V is assumed to be non-magnetic, i.e. the

permeability µ2 = µ1. The inhomogeneity of the dielectric material in V is described

by the complex dielectric constant ε2 = ε(r) − jσ(r)/ω where ε(r) and σ(r̄) are

permittivity and conductivity, respectively, at r.

By invoking the volume equivalence principle in the dielectric region V , the

equivalent volume current densities

JV = jω (ε2 − ε1) E (5.39)

KV = jω (µ2 − µ1) H = 0, (5.40)

where E and H are the total electric and magnetic fields, respectively. The scat-

tered electric field Esca produced by the induced volume current density are given

by

Esca(r) = −η1L1JV . (5.41)

Substituting Eq. (5.41) into (5.39), we obtain

Einc (r) =
1

jω(ε2 − ε1)
JV + η1L1JV . (5.42)

5.3.2 Method of Moments

In solving the VIE using the MoM, the equivalent current density is not directly

used as the unknown quantity to be determined. Instead, the electric flux density

D is used as the unknown quantity. It is used because the continuity of the normal

components of D can be ensured by using proper basis functions.

The volume of dielectric material is discretized into tetrahedral elements. Tetra-
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hedral elements are used because of their flexibility to model arbitrarily shaped 3-D

object. In addition, it is convenient to use tetrahedral elements to represent the

inhomogeneity of the volume. The basis functions suitable for tetrahedral elements

are the SWG basis functions [29]. The features of SWG basis functions, such as

the continuity of the electric flux density normal to the interior face, make them

suitable to be implemented in the volume integral equation.

In the volume, the electric flux density D is expanded using the SWG basis

functions fn as

D = ε2 (r) E =
NV∑
n=1

Infn (5.43)

where the In denotes the coefficients for the basis functions. By use of Eq. (5.39),

the induced volume current is expressed below:

JV = jω
NV∑
n=1

ε2 (r) − ε1

ε2 (r)
Infn = jω

NV∑
n=1

κ (r) Infn (5.44)

where κ(r) = (ε2(r) − ε1)/ε2(r) is the contrast ratio [29].

By applying the Galerkin’s testing procedure, the discretized integral equation

can be converted into a matrix equation as

ZI = V (5.45)

where the vectors I represents the coefficients of volume current density. The

excitation vector V can be computed using

Vm =
∫

Vm

fm · Einc (r′) dV ′ (5.46)

while the elements of the impedance matrix Z can be computed using

Zmn =
∫

Vm

fm · fn

ε2

dV − ωk1η1

∫
Vm

fm ·
[∫

Vn

κfng(r, r′)dV ′ +

∇
k2

1

∫
Vn

∇′ · (κfn) g(r, r′)dV ′
]
dV. (5.47)
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The κ is a constant value within the tetrahedron and it can be taken out from the

integration. Besides, we can also rewrite

∇ · (κfn) = κ∇ · fn + ∇κ · fn (5.48)

and the second term is given by [29] as

∇κ · fn =

⎧⎪⎨⎪⎩ In (κ+
n − κ−

n ) , on the common facet;

0, elsewhere.
(5.49)

5.3.3 AIM Implementation

In the VIE formulation, the coefficients of the electric flux density (or the related

equivalent volume current density) are the unknowns to be determined. The volume

scatterer is first contained in a rectangular region and then recursively subdivided

into a total of W cells. Every basis function is bounded by a cell which comprises

(M + 1)3 = 27 grid points. Let NV
t denotes the total number of volume basis

functions, and NV
c (w) denote the total number of volume basis functions contained

in the w-th cell.

In the initialization stage, the projection matrix of equivalent volume current

density, Λ, is computed and stored. However it is noted that the projection scheme

for VIE is different from the projection scheme for SIE, which the equivalent volume

current density is projected together with the contrast ratio, κ. Since the equivalent

current density radiates only in the background medium, only one Green’s function

matrix is required. During the matrix-vector multiplication, the current density will

be first projected to the surrounding grid points. Then the far-zone interactions

are computed by convolving the grid currents with the Green’s function matrix

and subsequently transferred back to the respective testing functions. Lastly, the

corrected near-zone interactions are added to the output. The complete modified

AIM algorithm for the VIE is shown in Algorithm 3.
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/*Initialization */

Compute G̃ = FFT(G)

Compute ∆ = Z − Λ G Λ
T

/* Projection step */

Set Î = 0

for each cell p = 1 to W do

for each basis function fq in cell p, q = 1 to Nc(p) do

Î(p) = Î(p) + [Λ(p, q)]T Iq(p)

end
end

/* Far-zone interaction */

Compute Ĩ = FFT(Î)

Compute P̃ = G̃ · Ĩ
Compute P̂ = FFT−1(P̃ )

Set V = 0

for each cell p = 1 to W do

for each basis function fq in cell p, q = 1 to Nc(p) do

Vq(p) = Vq(p) + Λ(p, q)P̂ (p)

end
end

/* Near-zone interaction */

for each basis function fp = 1 to Nt do

for each basis function fV
q with, q = 1 to Nnz(p) do

Vq(p) = Vq(p) + ∆(p, q)IV
q (p)

end
end

Algorithm 3: AIM algorithm for solving electromagnetic scattering problems

of dielectric objects characterized using the VIE.

Fig. 5.10(a) depicts the near-zone matrix Z
near

generated by the modified AIM

for the scattering problem formulated characterized using the VIE method. The

sparsity pattern is generated using a dielectric sphere. In order to clearly show

the saving achieved by the AIM, we show the reordered Z
near

in Fig. 5.10(b). We

observe that the Z
near

for the VIE method is more densely populated than the

Z
near

generated by the SIE method.
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(a) Actual sparsity pattern (b) Reordered sparsity pattern

Figure 5.10: Sparsity patterns of Z
near

for dielectric scatterer using the VIE.

5.3.4 Numerical Results

In this section, three numerical examples will be presented to demonstrate the ap-

plicability of our AIM implementation to solve the scattering problem of dielectric

objects formulated using the VIE method. The first example is to validate the ac-

curacy of our AIM code in solving scattering problems of dielectric objects. Thus

we consider a dielectric spherical shell. The spherical shell has an inner radius of

0.8 m and a thickness of 0.2 m. The relative permittivity of the dielectric material

is εr = 1.6−j0.8. The bistatic RCSs of VV−polarization are computed with 28,498

unknowns and shown in Fig. 5.11. The solutions obtained from the Mie series are

also plotted for comparison. A good agreement is observed between the results.

The second example is a dielectric sphere consisting of four dielectric materials.

The dielectric sphere is shown in Fig. 5.12 where the radius of the core, ri = 1.0

m and the thickness of the coating material is 0.2 m. The relative permittivities of

the dielectric materials are εr1 = 4.0 − j1.0, εr2 = 2.0 − j1.0, εr3 = 2.0 and εr4 =

1.44− j0.6. The bistatic RCSs of VV− and HH− polarizations are computed with

18,528 unknowns and shown in Fig. 5.13. The bistatic RCSs of VV−polarization

are compared with the result in [88] and a good agreement is observed.
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Figure 5.11: Bistatic RCSs of a dielectric spherical shell with inner radius 0.8 m
and thickness of 0.2 m at 300 MHz.

Figure 5.12: A coated dielectric sphere with four different dielectric materials (ri =
0.8 m, ro = 1.0 m, εr1 = 4.0 − j1.0, εr2 = 2.0 − j1.0, εr3 = 2.0 and
εr4 = 1.44 − j0.6).
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(a) VV−polarization
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Figure 5.13: Bistatic RCSs of a coated dielectric sphere with four different dielectric
materials at 300 MHz. (a) VV−polarization. (b) HH−polarization.
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The last example analyzed is the scattering of a periodic dielectric slab. The

geometry of the dielectric slab is shown in Fig. 5.14 where h = 1.4324 m, d1 =

d2 = 0.4181 m and L = 5.02 m. The relative permittivities are εr1 = 2.56 and

εr2 = 1.44. The bistatic RCSs for VV− and HH−polarizations are computed with

176,187 unknowns and shown in Fig. 5.15. The bistatic RCSs of HH−polarization

are compared with the result published in [89] and a good agreement is observed.

Figure 5.14: A five-period periodic dielectric slab (h = 1.4324 m, d1 = d2 =
0.4181 m, L = 5.02 m, εr1 = 2.56 and εr2 = 1.44).

The comparisons between the memory used by the AIM and the estimated

memory for the conventional MoM in computing the numerical examples are tab-

ulated in Table 5.3. We find that the saving of memory is more than 90%. We

observe that without the AIM, it is almost impossible to solve scattering problem

of dielectric objects characterized using the VIE due to the huge memory require-

ment. We also observe that solving the scattering problem by using the VIE will

involve a huge number of unknowns, even for a simple structure such as Example 1.

Hence we shall avoid to use VIE for piecewise homogeneous material objects as the

VIE requires more matrix storage as compared to the SIE.

The comparisons between the CPU time taken by the AIM to compute the ex-

amples and the estimated CPU time by the MoM are shown in Table 5.4. Similarly

to the examples in the previous section, we also find that the time saving is great

for a problem with a large number of unknowns, especially in Example 3. We have

so far achieved saving in memory requirement and CPU time in solving scattering

problems of dielectric object characterized by the VIE.
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(b) HH−polarization

Figure 5.15: Bistatic RCS of a periodic dielectric slab with relative permittiv-
ities εr1 = 2.56, and εr2 = 1.44. (a) VV−polarization. (b)
HH−polarization.
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Table 5.3: Comparison of memory requirement between the AIM and the MoM in
solving electromagnetic scattering problems of dielectric objects charac-
terized using the VIE.

Example Unknowns, AIM, MoM, MAIM/MMoM

N MAIM(MB) MMoM(GB)

Dielectric spherical shell 28,498 117.08 6.05 1.89%

Coated dielectric sphere 18,528 192.27 2.56 7.34%

Periodic dielectric slab 176,187 536.88 231.28 0.23%

Note: 1 KB = 1,024 Bytes, 1 MB = 1,024 KB and 1 GB = 1,024 MB

Table 5.4: Comparison of CPU time between the AIM and the MoM in solving
electromagnetic scattering problems of dielectric objects characterized
using the VIE.

Example Unknowns, AIM, Estimated MoM,

N TAIM(sec) TMoM(sec)

Dielectric spherical shell 28,498 62 400

Coated dielectric sphere 18,528 156 297

Periodic dielectric slab 176,187 1,920 137,826



Chapter 6

Fast Solution to Scattering

Problems of Composite Dielectric

and Conducting Objects

6.1 Introduction

The scattering problem of composite dielectric and conducting objects can be for-

mulated using the surface integral equation (SIE) method [28, 33] or the hybrid

volume-surface integral equation (VSIE) method [34, 35]. The scattering by con-

ducting objects is usually characterized using the SIE, but the choice of using SIE

or VIE for dielectric object depends on its inhomogeneity. For an object with arbi-

trary inhomogeneity, solving the scattering problem using the VIE method will be

more advantageous than the SIE method, as the latter requires the integral equa-

tions to be formulated in every dielectric region. However, if the object consists

of only piecewise homogeneous dielectric materials, then the SIE formulation is

generally preferred.

As mentioned in the previous chapter, solving scattering problem involving of

dielectric objects is very costly. However the AIM can be used to alleviate the huge

89
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matrix storage requirement and high computational complexity problems facing by

the conventional MoM. In this chapter, the AIM solution to scattering problems

of composite conducting and dielectric objects will be presented. We will first

carry out the formulation by using the SIE method and solve the resultant matrix

equation by AIM [54]. Subsequently, we will use the AIM to analyze the scattering

problem characterized using the VSIE method [55].

6.2 Surface Integral Equation Method

6.2.1 Formulation

In this section, we will consider two sets of configurations, i.e. coated object and

discrete objects. We will only carry out the formulation for coated object and

subsequently deduce the formulation for discrete objects. Consider a coated object

with a metallic core as shown in Fig. 6.1(a) and the material properties of the

coating layer are characterized respectively by permittivity ε2 and permeability

µ2. The coated object is embedded in an isotropic and homogeneous background

medium which is characterized by material properties ε1 and µ1. The interface

between media i and j is denoted as Sji. The unit vector normal to Sji and

pointing toward the medium i is denoted as n̂ji. The coated object is illuminated

by an incident wave Einc, which is generated by impressed source in the background

medium.

To describe the problem, a mathematical surface is constructed on the surface

of the coating material. By using the surface equivalence principle, the equivalent

electric and magnetic current densities flowing on the fictitious surface are

J21 = n̂ × H1 (6.1)

K21 = E1 × n̂, (6.2)

where the E1 and H1 are respectively the total electric and magnetic fields in the
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incH

incEk̂

21n̂

02n̂

(a) Coated object

21n̂
01n̂

incH

incEk̂

(b) Discrete objects

Figure 6.1: Geometry of a dielectric and perfectly conducting scatterers embedded
in an isotropic homogeneous medium.

background medium. We also construct another mathematical surface that coin-

cides with the surface of the metallic core, S02. By invoking the surface equivalence

principle and using the boundary conditions on the conductor, the second set of

equivalent current densities can be obtained as

J02 = n̂ × H2 (6.3)

K02 = E2 × n̂ = 0. (6.4)

Outside the S21, the first set of equivalent current densities are radiating in an

unbounded background medium, hence the source-field relationship can be obtained

by using Eq. (2.6),

− K21 + n̂21 × η1L1J21 + n̂21 ×M1K21 = n̂21 × Einc (6.5)

J21 − n̂21 ×M1J21 + n̂21 × 1

η1

L1K21 = n̂21 × H inc. (6.6)

Inside the S21, both sets of equivalent current densities are radiating in an un-

bounded medium characterized by (µ2, ε2), hence we have

K21 + n̂21 × η2L2J21 + n̂21 ×M2K21 = n̂21 × η2L2J02 (6.7)
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−J21 − n̂21 ×M2J21 + n̂21 × 1

η2

L2K21 = −n̂21 ×M2J02. (6.8)

And on the surface of the S02, we have

n̂02 × η2L2J02 = n̂02 × η2L2J21 + n̂02 ×M2K21 (6.9)

J02 − n̂02 ×M2J02 = −n̂02 ×M2J21 + n̂02 × 1

η2

L2K21. (6.10)

By using the PMCHWT formulation [22–24], the EFIE and MFIE in Eqs. (6.5)–

(6.8) can be combined to become

n̂21 × Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 + M2)K21

−n̂21 × η2L2J02 (6.11)

n̂21 × H inc = −n̂21 × (M1 + M2)J21 + n̂21 × (
1

η1

L1 +
1

η2

L2)K21

+n̂21 ×M2J02. (6.12)

Now we consider the conducting scatterer placed beside a discrete dielectric

scatterer as shown in Fig. 6.1(b). Following the same procedure, the integral equa-

tions on the surface of the discrete dielectric scatterer are

n̂21 × Einc = n̂21 × (η1L1 + η2L2)J21 + n̂21 × (M1 + M2)K21

+n̂21 × η1L1J01 (6.13)

n̂21 × H inc = −n̂21 × (M1 + M2)J21 + n̂21 × (
1

η1

L1 +
1

η2

L2)K21

−n̂21 ×M1J01. (6.14)

And the integral equations on the surface of the discrete conducting scatterer are

n̂01 × Einc = n̂01 × η1L1J01 + n̂01 × η1L1J21 + n̂01 ×M1K21 (6.15)

n̂01 × H inc = J01 − n̂01 ×M1J01 − n̂01 ×M1J21 + n̂01 × 1

η1

L1K21. (6.16)
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6.2.2 Method of Moments

The integral equations formulated in the previous subsection are discretized using

the method of moments. The arbitrarily shaped 3-D objects are modeled using

triangular patches. Hence it is convenient to use the RWG basis functions fn to

expand the equivalent surface electric and magnetic current densities J ji and Kji

as follows:

J ji =
∑

Inj
fnj

(6.17)

Kji =
∑

Mnj
fnj

. (6.18)

Substituting Eqs. (6.17)–(6.18) into Eqs. (6.11)–(6.12) and (6.9), and applying the

Galerkin’s testing procedure, we can convert the integral equations to a linear

equation system written as

⎡⎢⎢⎢⎢⎢⎣
Z

E2I2 C
E2M2 θZ

E2I0

D
H2I2 Y

H2M2 θD
H2I0

θZ
E0I2 θC

E0M2 Z
E0I0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
I2

M 2

I0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
E2

H2

δE0

⎤⎥⎥⎥⎥⎥⎦ (6.19)

where the I0 stands for coefficients of the equivalent electric current density on

S0i and the (I2, M 2) are the coefficients of the equivalent electric and magnetic

current densities on S21. The elements of the sub-matrices, for u 
= v, are defined

as

ZEuIv
mn = −

∫
Tmu

fmu
(r)·

(
jωµaP

a
nv

+
j

ωεa

Qa
nv

)
dSmu (6.20a)

Y HuMv
mn = −

∫
Tmu

fmu
(r)·

(
jωεaP

a
nv

+
j

ωµa

Qa
nv

)
dSmu (6.20b)

CEuMv
mn = −

∫
Tmu

fmu
(r)·

(
∇ × P a

nv

)
dSmu (6.20c)

DHuIv
mn = − CEuMv

mn (6.20d)
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and

ZE0I0
mn =

∫
Tm0

fm0
(r)·

(
jωµaP

a
n0

+
j

ωεa

Qa
n0

)
dSm0 (6.21a)

ZE2I2
mn =

∫
Tm2

fm2
(r)·

(
jωµ1P

1
n2

+
j

ωε1

Q1
n2

+ jωµ2P
2
n2

+
j

ωε2

Q2
n2

)
dSm2 (6.21b)

Y H2M2
mn =

∫
Tm2

fm2
(r)·

(
jωε1P

1
n2

+
j

ωµ1

Q1
n2

+ jωε2P
2
n2

+
j

ωµ2

Q2
n2

)
dSm2 (6.21c)

CE2M2
mn =

∫
Tm2

fm2
(r)·

(
∇ × P 1

n2
+ ∇ × P 2

n2

)
dSm2 (6.21d)

DH2I2
mn = − CE2M2

mn (6.21e)

where

P u
nv

=
∫

Tnv

fnv
(r′)gu (r, r′) dSnv (6.22)

Qu
nv

= ∇
∫

Tnv

∇′
s · fnv

(r′)gu (r, r′) dSnv (6.23)

while the symbols µu and εu denote the permeability and permittivity in medium

u, respectively. The elements of the excitation electric and magnetic fields are

expressed as

Eu,m =
∫

Tmu

fmu
· Einc dSmu (6.24a)

Hu,m =
∫

Tmu

fmu
· H inc dSmu . (6.24b)

For our problem, we let (δ = 0, θ = 1, a = 2) and (δ = 1, θ = −1, a = 1) for cases

shown in Fig. 6.1(a) and Fig. 6.1(b), respectively.
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6.2.3 AIM Implementation

The AIM algorithm described in Chapter 2 needs some modifications in order

to account for the equivalent current densities radiating in different media. We

assume that there are altogether a total of R media containing current densities.

The scatterer is first placed in a rectangular region in every medium, which will

be recursively subdivided into smaller cells. A total number of Wr cells will be

produced if the subdivision of the rectangular region is taken place in medium

r. Each of the basis functions fn will only be bounded by a cell which comprises

(M + 1)3 = 27 grid points. Let Nt,r denote the total number of basis functions in

medium r and Nc,r(w) denote the number of basis functions enclosed by the wr-th

cell.

In the initialization stage, the projection matrices of the current densities in all

media, Λr, are computed and stored. The Green’s function matrices for all media,

Gr, are also computed and stored. During the matrix-vector multiplication, the

current densities contained within the same medium will be projected to the grid

points of the respective medium. The projection procedure is repeated for the

current densities radiating in other media. Next, the Fourier transform of the far-

zone interactions for all media are computed and subsequently transferred to the

respective testing functions. Lastly, the corrected near-zone interactions of different

media are added to the output. The complete modified AIM algorithm is shown

in Algorithm 4.
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/*Initialization */
for each medium r = 1 to R do

Compute G̃r = FFT(Gr)

Compute ∆r = Z − Λr Gr Λ
T

r

end
/* Projection step */
for each medium r = 1 to R do

Set Îr = 0
for each cell p = 1 to Wr do

for each basis function q in cell p, q = 1 to Nc,r(p) do
Îr(p) = Îr(p) + [Λr(p, q)]

T Iq,r(p)
end

end
end
/* Far-zone interaction */
for each medium r = 1 to R do

Compute Ĩr = FFT(Îr)
Compute P̃ r = G̃r · Ĩr

Compute P̂ r = FFT−1(P̃ r)
end
for each medium r = 1 to R do

Set V r = 0
for each cell p = 1 to Wr do

for each basis function q in cell p, q = 1 to Nc,r(p) do
Vq,r(p) = Vq,r(p) + Λr(p, q)P̂r(p)

end
end

end
/* Near-zone interaction */
for each medium r = 1 to R do

for each basis function p = 1 to Nt,r do
for each basis function q with, q = 1 to Nnz,r(p) do

Vq,r(p) = Vq,r(p) + ∆r(p, q)Iq,r(p)
end

end
end

Algorithm 4: AIM algorithm for solving electromagnetic scattering problems
of composite dielectric and conducting objects characterized using the SIE.

Fig. 6.2(a) shows an example of sparsity pattern of the near-zone matrix Z
near

generated by the modified AIM. By inspecting the matrix carefully, we find that the

sub-matrices Y H2M2
mn and DH2I2

mn need not be stored as they can be computed using

the sub-matrices ZE2I2
mn and CE2M2

mn , respectively. Hence some savings in memory
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can be achieved. Fig. 6.2(b) depicts the sparsity pattern of Z
near

generated by a

more efficient implementation.

(a) Direct implementation (b) Efficient implementation

Figure 6.2: Sparsity patterns of Z
near

for composite conducting and dielectric ob-
ject (SIE).

6.2.4 Numerical Results

In this section, three examples are presented to demonstrate the applicability of

AIM in solving the scattering problems of composite conducting and dielectric

objects characterized using the SIE method. The first example we consider is a

coated metallic sphere having a radius of 1 m. The conducting core has a radius of

0.9 m and the thickness of the coating layer is 0.1 m with a relative permittivity of

εr = 1.6−j0.8. The bistatic RCSs for VV− and HH−polarizations are computed at

600 MHz using 45,540 unknowns and the results are shown in Fig. 6.3. The results

are compared with the Mie series solutions and a good agreement is observed. The

first example is also to serve as validation of accuracy of our AIM code.

The second example considered is a metallic-dielectric cylinder. The diameter

of the cylinder is 7.62 cm while the length of the metallic and dielectric cylinders is

5.08 cm each. The relative permittivity of the dielectric cylinder is εr = 2.6. The
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Figure 6.3: Bistatic RCSs of a coated dielectric sphere (a1 = 0.9 m; a2 = 1 m, εr =
1.6 − j0.8) at 600 MHz. (a) VV−polarization. (b) HH−polarization.
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(a) VV−polarization

(b) HH−polarization

Figure 6.4: Monostatic RCSs of a PEC-dielectric cylinder (a = 5.08 cm, b =
10.16 cm, d = 7.62 cm, and εr = 2.6). (a) VV−polarization. (b)
HH−polarization.
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(a) VV−polarization

(b) HH−polarization

Figure 6.5: Bistatic RCSs of four agglomerated dielectric spheres (r = 1λ, εr =
1.6 − j0.4) in the presence and absence of an 8λ×8λ PEC plate. (a)
VV−polarization. (b) HH−polarization.
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monostatic RCSs for VV− and HH−polarizations are computed at 3 GHz and 10

GHz, and are shown in Fig. 6.4. The RCSs computed at 3 GHz agree well with the

published results [31].

The last example considered is a system consisting of four agglomerated dielec-

tric spheres on the top of a PEC plate. The diameter of each of the four spheres

is 2λ and the relative permittivity of each of the spheres is 1.6− j0.4. The 8λ×8λ

PEC plate is placed at z = 0 and the centers of the spheres are located 1.3λ above

the PEC plate. The scattering of plane wave by the spheres in the presence and

absence of the finite PEC plate are computed and shown in Fig. 6.5. As expected,

the RCSs is higher for the case in the presence of the PEC plate.

Table 6.1 shows the memory used by the AIM and the estimated memory for

the MoM in computing the examples. From Table 6.1, we find that the saving in

memory is more than 98%. Table 6.2 compares the CPU time taken by the AIM

and the estimated CPU time for the MoM in computing the examples.

Table 6.1: Comparison of memory requirement between the AIM and the MoM
in solving electromagnetic scattering problems of composite conducting
and dielectric objects characterized using the SIE.

Example Unknowns, AIM, MoM, MAIM/MMoM

N MAIM(MB) MMoM(GB)

Coated metallic sphere 45,540 269.51 15.45 1.70%

Metallic-dielectric

cylinder (10 GHz) 37,008 173.53 10.20 1.67%

Spheres with PEC plate 43,937 108.71 14.38 0.74%

Note: 1 KB = 1,024 Bytes, 1 MB = 1,024 KB and 1 GB = 1,024 MB
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Table 6.2: Comparison of CPU time between the AIM and the MoM in solving elec-
tromagnetic scattering problems of composite conducting and dielectric
objects characterized using the SIE.

Example Unknowns, AIM, MoM,

N TAIM(sec) TMoM(sec)

Coated metallic sphere 45,540 2,020 3,816

Metallic-dielectric

cylinder (10 GHz) 37,008 4,533 6,999

Spheres with PEC plate 43,937 4,024 6,099

6.3 Hybrid Volume-Surface Integral Equation Method

6.3.1 Formulation

Consider an arbitrarily shaped 3-D scatterer, which consists of inhomogeneous di-

electric material and conducting body as shown in Fig. 6.6. The object is embedded

in an isotropic homogeneous background medium with permittivity εb and perme-

ability µb. The scatterer is illuminated by an incident wave Einc, which is excited

by impressed sources in the background media. The dielectric region V is assumed

to have the permeability µ = µb and complex dielectric constant ε̃ = ε(r)−jσ(r)/ω

where ε(r) and σ(r) are permittivity and conductivity, respectively, at r.

Figure 6.6: Geometry of a scatterer consisting of dielectric material and conducting
body embedded in an isotropic homogeneous medium.
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By using volume equivalence principle in the dielectric region V , the equivalent

volume current densities

JV = jω (ε̃ − ε1) E (6.25a)

KV = jω (µ − µ1) H = 0. (6.25b)

In other hand, by using surface equivalence principle on the surface of conductor

S, the equivalent surface current densities

JS = n̂ × H (6.26a)

KS = E × n̂ = 0. (6.26b)

The scattered electric field Esca and magnetic field Hsca produced by the induced

volume and surface current densities are given by

Esca
Ω (r) = −ηbLbJΩ, Ω = S or V (6.27)

Hsca
Ω (r) = MbJΩ, Ω = S or V. (6.28)

In the dielectric region V , by taking the scattered field from the surface current

into consideration, the total electric field becomes

E (r) = Einc (r) + Esca
V (r) + Esca

S (r) . (6.29)

Similarly, the scattered field by volume current density also contributes to the

total field on S. Since the tangential components of total electric field vanish on

conducting surface, we get

n̂ × Einc (r) = −n̂ × [Esca
V (r) + Esca

S (r)] . (6.30)

Eqs. (6.29) and (6.30) are known as the EFIE as the formulations involve only

electric field. For a closed conducting surface, the MFIE can be obtained by con-
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sidering the tangential components of the total magnetic field on the conducting

surface, which are equal to the induced surface current components. Thus, we get

n̂ × H inc (r) = JS − n̂ × [Hsca
V (r) + Hsca

S (r)] . (6.31)

In addition, the CFIE can be formulated for a closed conducting body by lin-

early combining the EFIE and the MFIE such that

CFIE = αEFIE + (1 − α) MFIE (6.32)

where α is a real value between 0 and 1. Since EFIE and MFIE are just special

cases of CFIE, we can generally use the CFIE as the SIE in the VSIE formulation.

6.3.2 Method of Moments

The volume of dielectric material and the surface of conducting body are discretized

into tetrahedral elements and triangular patches, respectively. These elements are

used because of their flexibility to model arbitrarily shaped 3-D object. The surface

current density is expanded using the the RWG basis functions fS
n

JS =
NS∑
n=1

IS
n fS

n. (6.33)

As for the dielectric region, the electric flux density D is expanded using the

SWG basis functions fV
n as follows

D = ε̃ (r) E =
NV∑
n=1

IV
n fV

n . (6.34)

By use of Eq. (6.25a), the volume current density is expressed below:

JV = jω
NV∑
n=1

IV
n

ε̃ (r) − εb

ε̃ (r)
fV

n = jω
NV∑
n=1

IV
n κ (r) fV

n (6.35)
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where κ(r̄) = (ε̃(r̄) − εb)/ε̃(r̄) is the contrast ratio [29]. The properties of the

SWG and the RWG basis functions, for example, the continuity of the electric flux

density normal to the interior face (SWG) and the continuity of the surface current

density normal to the interior edge (RWG), make them suitable to be implemented

in efficiently solving integral equations. It is also noted during discretization of

the body, the triangular patches are generated such that it is coincided with the

surface of tetrahedron.

Using the volume basis functions to test Eq. (6.29) and the surface basis func-

tions to test Eq. (6.32), the hybrid integral equations will be converted into a matrix

equation system as

⎡⎢⎣ Z
V V

Z
V S

Z
SV

Z
SS

⎤⎥⎦
⎡⎢⎣ IV

IS

⎤⎥⎦ =

⎡⎢⎣ EV

ES

⎤⎥⎦ (6.36)

where the vectors IV and IS represent the coefficients of volume and surface current

densities, respectively. The excitation vector can be computed using

EV
m =

∫
Vm

fV
m · Einc (r′) dV ′ (6.37a)

ES
m =

∫
Sm

fS
m ·

[
αEinc (r′) + (1 − α) ηbH

inc (r′)
]
dS ′ (6.37b)

while the elements of the block matrices can be computed using

ZV V
mn =

∫
Vm

fV
m · fV

n

ε
dV − ωkbηb

∫
Vm

fV
m ·

[∫
Vn

κfV
n g(r, r′)dV ′ +

∇
k2

b

∫
Vn

∇′ ·
(
κfV

n

)
g(r, r′)dV ′

]
dV (6.38a)

ZV S
mn = jkbηb

∫
Vm

fV
m·

[∫
Sn

fS
ng(r, r′)dS ′ +

∇
k2

b

∫
Sn

∇′ · fS
ng(r, r′)dS ′

]
dV (6.38b)

ZSV
mn =

∫
Sm

fS
m· jω

[
αjkbηb

(∫
Vn

κfV
n g(r, r′)dV ′ +

∇
k2

b

∫
Vn

∇′ ·
(
κfV

n

)
g(r, r′)dV ′

)
− (1 − α) ηb
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∇ ×
∫

Vn

κfV
n g(r, r′)dV ′

]
dS (6.38c)

ZSS
mn =

∫
Sm

fS
m·

[
αjkbηb

(∫
Sn

fS
ng(r, r′)dS ′ +

∇
k2

b

∫
Sn

∇′ · fS
ng(r, r′)dS ′

)
+ (1 − α) ηb(

1

2
fS

n − ∇ ×
∫
−

Sn

fS
ng(r, r′)dS ′

)]
dS (6.38d)

where
∫
−

S
is the Cauchy principal value. The κ is a constant value within the

tetrahedron and it can be taken out from the integration. Besides, we can also

rewrite

∇ ·
(
κfV

n

)
= κ∇ · fV

n + ∇κ · fV
n (6.39)

where the second term is 0 and IV
n (κ+

n − κ−
n ) for similar and dissimilar media in

fV
n , respectively [29].

6.3.3 AIM Implementation

In the hybrid VSIE formulation, the equivalent volume and surface current densities

are the unknowns to be determined. Hence the AIM algorithm needs to be modified

to account for both current densities. The scatterer is contained in a rectangular

region which has been subdivided into W cells. Each of the basis functions (fV
n

and fS
n) is bounded by a cell which comprises (M + 1)3 = 27 grid points. Let NV

t

and NS
t denote the total number of volume and surface basis functions, and NV

c (w)

and NS
c (w) denote the numbers of volume and surface basis functions in a w-th

cell.

In the initialization stage, the projection matrices for the equivalent volume

and surface current densities, Λ
Ω
, are computed separately and stored. It is noted

that the projection schemes for both current densities are identical except that the

equivalent volume current density need to be projected together with the contrast

ratio, κ. Since both equivalent current densities radiate in background medium,

only one Green’s function matrix is required. During the matrix-vector multiplica-
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tion, the current densities will be first projected onto grid points. Then the far-zone

interactions are computed by convolving the grid currents with the Green’s func-

tion matrix and subsequently transferred back to the respective testing functions.

Lastly, the corrected near-zone interactions of different regions are added to the

output. The complete modified AIM algorithm is given in Algorithm 5.
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/*Initialization */
Compute G̃ = FFT(G)

Compute ∆ = Z − Λ G Λ
T

/* Projection step */
Set Î = 0
for each cell p = 1 to W do

for Ω = V and S do
for each basis function fΩ

q in cell p, q = 1 to NΩ
c (p) do

Î(p) = Î(p) + [ΛΩ(p, q)]T IΩ
q (p)

end
end

end
/* Far-zone interaction */
Compute Ĩ = FFT(Î)
Compute P̃ = G̃ · Ĩ
Compute P̂ = FFT−1(P̃ )
Set V = 0
for each cell p = 1 to W do

for Ω = V and S do
for each basis function fΩ

q in cell p, q = 1 to NΩ
c (p) do

VΩ
q (p) = VΩ

q (p) + ΛΩ(p, q)P̂ (p)
end

end
end
/* Near-zone interaction */
for Ω = V and S do

for each basis function fΩ
p = 1 to NΩ

t do
for each basis function fV

q with, q = 1 to NV
nz(p) do

VΩ
q (p) = VΩ

q (p) + ∆ΩV (p, q)IV
q (p)

end
for each basis function fS

q with, q = 1 to NS
nz(p) do

VΩ
q (p) = VΩ

q (p) + ∆ΩS(p, q)IS
q (p)

end
end

end

Algorithm 5: AIM algorithm for solving electromagnetic scattering problems
of composite dielectric and conducting objects characterized using the hybrid
VSIE.

A typical near-zone matrix Z
near

generated by using our modified AIM is shown

in Fig. 6.7. A coated conducting sphere has been used to generate the Z
near

in

this example. We have also shown the reordered Z
near

to clearly show the saving

achieved by the AIM.
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(a) Actual sparsity pattern (b) Reordered sparsity pattern

Figure 6.7: Sparsity patterns of Z
near

for the composite conducting and dielectric
object (VSIE).

6.3.4 Numerical Results

In this section, several examples will be presented to show the accuracy of the

proposed method. The first example we consider is a coated conducting sphere

having a radius of 1 m. The core of the sphere has a radius of 0.8 m and the

thickness of the coating layer, with a relative permittivity of εr = 1.6 − j0.8, is

0.2 m. The bistatic RCSs for the VV− and HH−polarizations at 300 MHz are

computed with 31,174 unknowns and the results are shown in Fig. 6.8. The RCS

results are compared with the Mie series solutions and a good agreement has been

observed in each case.

The second example is a dielectric-conducting cylinder. The diameter of the

cylinder is 7.62 cm while the length of the metallic and dielectric cylinders is 5.08 cm

each. The monostatic RCSs for the VV− and HH−polarizations in the XZ−plane

are computed at 3 GHz with 11,864 unknowns. The results are shown in Fig. 6.9

and a good agreement is observed with the results obtained using SIE.

The third example is a coated conducting cylinder. The diameter and height

of the cylinder are 2 λ and 6 λ, respectively. The cylinder has one coating layer
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Figure 6.8: Bistatic RCSs of a coated conducting sphere (a1 = 0.8 m, a2 = 1
m, and εr = 1.6 − j0.8) at 300 MHz. (a) VV−polarization. (b)
HH−polarization.
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(a) VV−polarization

(b) HH−polarization

Figure 6.9: Monostatic RCSs of a PEC-dielectric cylinder (a = 5.08 cm, b = 10.16
cm, d = 7.62 cm, and εr = 2.6) at 3 GHz. (a) VV−polarization. (b)
HH−polarization.
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Figure 6.10: Monostatic RCSs of a conducting cylinder coated with three different
dielectric materials (εr1 = 2.0, εr2 = 2.2 − j0.4, εr3 = 2.4 − j0.2) at
300 MHz. (a) VV−polarization. (b) HH−polarization.
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with 3 different lossy dielectric materials. The coating layer is 0.05 λ thick and

is divided into 3 sections evenly with same height. The relative permittivity εr of

each sections are 2.0, 2.2− j0.4 and 2.4− j0.2, respectively. The monostatic RCSs

for VV− and HH−polarizations are computed at 300 MHz with 105,370 unknowns.

The results are shown in Fig. 6.10. To verify the result, the monostatic RCS of

the coated cylinder with relative permittivity εr set equal to 1.44 have been also

computed and compared with the solution obtained using the SIE method. The

results are shown in Fig. 6.10. An excellent agreement is observed between the

results.

The last example we consider is a thin conducting trapezoidal plate with coating

on its sides. The dimension of the trapezoidal plate is shown in Fig. 6.11 and the

coating layer has relative permittivity of εr = 4.5− j9.0. The monostatic RCSs for

VV− and HH−polarizations in the XY− and XZ−planes are computed at 1 GHz

with 60,253 unknowns. The corresponding results are shown in Fig. 6.12. A good

agreement with published results [88, 90] is observed.

Figure 6.11: The geometry of trapezoidal plate with coating on its sides. The
coating material has a relative permittivity, εr = 4.5 − j9.0.

Table 6.3 shows the comparisons between the memory used by the AIM and

the estimated memory for the MoM to compute the examples. For all examples

except for Example 2, the saving in memory is more than 95%. For Example 2,

the volume of the entire dielectric cylinder is discretized using tetrahedral cells and
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(b) HH−polarization in XZ−plane
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(c) VV−polarization in XY−plane
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(d) HH−polarization in XY−plane

Figure 6.12: Monostatic RCSs of a trapezoidal conducting plate with coated sides
at 1 GHz. (a) VV−polarization in XZ−plane. (b) HH−polarization in
XZ−plane. (c) VV−polarization in XY−plane. (d) HH−polarization
in XY−plane.
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hence more unknowns and near-zone elements are involved.

Table 6.4 shows the CPU time taken by the AIM to solve the examples. The

estimated CPU time for the MoM is also shown for comparison. We find that the

overall time saving is significant especially for the Examples 3 and 4.

Table 6.3: Comparison of memory requirement between the AIM and the MoM
in solving electromagnetic scattering problems of composite conducting
and dielectric objects characterized using the VSIE.

Example Unknowns, AIM, MoM, MAIM/MMoM

N MAIM(MB) MMoM(GB)

Coated conducting sphere 31,174 139.16 7.24 1.88%

Conducting-dielectric cylinder 11,864 139.96 1.05 13.03%

Coated cylinder 105,370 417.02 82.72 0.49%

Trapezoidal conducting plate 60,253 286.28 27.05 1.03%

Note: 1 KB = 1,024 Bytes, 1 MB = 1,024 KB and 1 GB = 1,024 MB

Table 6.4: Comparison of CPU time between the AIM and the MoM in solving elec-
tromagnetic scattering problems of composite conducting and dielectric
objects characterized using the VSIE.

Example Unknowns, AIM, Estimated MoM,

N TAIM(sec.) TMoM(sec)

Coated conducting sphere 31,174 68 379

Conducting-dielectric cylinder 11,864 362 583

Coated cylinder 105,370 751 14,434

Trapezoidal conducting plate 60,253 860 8,205



Chapter 7

Preconditioner – Further

Acceleration to the Solution

7.1 Introduction

A non-uniform mesh will usually produce ill-conditioned matrix. The ill-conditioned

matrix will cause the solution slow to converge, or even fail to converge. To over-

come this problem, preconditioning matrix or preconditioner can be used to im-

prove the condition number of a matrix and accelerate the convergence rate of

the solution [91–97]. It is applied to transform the original matrix into another

matrix, which is easier to be solved by an iterative solver. The solution of the

transformed matrix is identical to the solution of the original matrix. Mathemati-

cally, we pre-multiply the matrix equation by the preconditioning matrix M
–1

to

obtain a preconditioned matrix equation

M
–1

ZI = M
–1

V . (7.1)

Ideally, if M
–1

= Z
–1

, then the matrix equation is solved in one step. How-

ever it is impractical to construct such a preconditioner as it is indeed computing

the inverse of Z which requires O(N3) operations. Practically, the preconditioner

117
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must be simple to construct and inexpensive to store. It is also requires that the

computed M
–1

can approximate Z
–1

and hence improves the condition number

of the Z.

In previous chapters, the AIM has been successfully implemented to solve the

electromagnetic scattering problems of different type of scatterers. However, we did

not discuss the convergence rate of the solutions. In this chapter, we will discuss

four preconditioning techniques that can be used to accelerate the solution of the

scattering problems. All preconditioners are constructed by using the near-zone

matrix Z
near

that generated by our AIM implementation [98–100].

7.2 Diagonal and Block Diagonal Preconditioner

The diagonal preconditioner (DP) is a diagonal matrix whose diagonal elements are

identical to those of the impedance matrix. It is simple to construct and trivial to

invert. Moreover, it only requires a row vector of size N to store its matrix elements.

The DP can be extracted directly during the construction of Z
near

. Fig. 7.1 depicts

the sparsity pattern of DP.

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 630

Figure 7.1: Sparsity pattern of diagonal preconditioner.
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Another preconditioner closely related to the diagonal preconditioner is the

block diagonal preconditioner (BDP). The BDP is a matrix that retains the block

diagonal partitions of the impedance matrix Z. The block diagonal partitions can

be obtained using different methods. In our implementation, we have partitioned

the Cartesian grids into blocks with the block size equal to the near-zone threshold

distance. The fictitious blocks correspond to the block matrices in the BDP. Every

block matrix is constructed by computing the interactions among the elements

within the block. Then the BDP can be obtained by simply taking the inverse of

the block matrices individually. The sparsity pattern of a typical BDP is shown in

Fig. 7.2.

Figure 7.2: Sparsity pattern of block diagonal preconditioner.

7.3 Zero Fill-In Incomplete LU Preconditioner

The direct LU decomposition of Z
near

may result in a dense matrix preconditioner,

which is too expensive to be stored. In contrast, the incomplete LU (ILU) decom-

position only factorizes the nonzero entries of the Z
near

. The preconditioner based

on the ILU decomposition will have identical sparsity pattern as that of Z
near

.

We have implemented the IKJ version of ILU decomposition obtained from [91].
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Let the NZ(Z
near

) represent the non-zero entries of the sparse matrix Z
near

, the

preconditioner can be constructed using Algorithm 6.

for i=2,...,n do

for k=1,...,i–1 and (i,k) in NZ(Z
near

) do

compute zik = zik/zkk

for j=k+1,...,n and (j,k) in NZ(Z
near

) do

compute zij = zij − zikzkj

end
end

end

Algorithm 6: Zero Fill-In Incomplete LU, ILU(0).

We refer the preconditioner generated by this algorithm as ILU(0), as no additional

elements add into the preconditioner during the factorization. Fig. 7.3 illustrates

the sparsity pattern of a ILU(0).

Figure 7.3: Sparsity pattern of ILU(0).

7.4 Incomplete LU with Threshold Preconditioner

The ILU(0) has an identical sparsity pattern as that of Z
near

and this is considered

the major drawback of this method as it needs a large amount of memory for
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storage. To overcome the shortcoming of ILU(0), we have considered a variation

of ILU decomposition, ILU with threshold (ILUT). The ILUT allows additional

rules to control the computational cost and storage, and these let the user save the

scarce memory for other usages. We have implemented ILUT(p, τ) given in Ref.

[91, 101], which can be constructed using Algorithm 7.

for i=1,...,n do

w = zi∗
for k=1,...,i–1 and when wk 
= 0 do

compute wk = wk/zkk

apply dropping rule 1 to wk

if wk 
= 0 then

w = w − wkuk

end
end

apply dropping rule 2 to w

li,j = wj for j = 1, ..., i − 1

ui,j = wj for j = i, ..., n

w = 0
end

Algorithm 7: Incomplete LU with threshold, ILUT(p, τ).

The dropping rule 1 will drop the element wk if |wk| is less than the relative

tolerance τi, which is obtained by multiplying τ by the norm of i-th row, ||zi∗||.
When applying the dropping rule 2, the element in w is dropped if it is less than τi

and then only p largest elements in the lower and upper parts of the row are kept.

The parameter τ controls the computational cost while the parameter p controls

the overall memory required to store the preconditioner. These parameters can be

adjusted to meet different needs. It is also noted that the ILU(0) is a special case

of ILUT where the dropping rules apply to the elements that are in positions not

belonging to the sparsity pattern of Z
near

. For simplicity purpose, we have let τ = 0

in our implementation and only varied the value of p to control the storage size of

the preconditioner. Fig. 7.4(a) and Fig. 7.4(b) illustrate the sparsity patterns of

ILUT(5) and ILUT(40), respectively.
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(a) ILUT(5) (b) ILUT(40)

Figure 7.4: Sparsity patterns of ILUT.

7.5 Performance of Preconditioners

In this section, we will present numerical examples to illustrate the performance of

the preconditioners implemented in our AIM-accelerated GMRES iterative solver.

Here we will demonstrate the capability of the preconditioners in solving the elec-

tromagnetic scattering problems formulated using the SIE method and the VSIE

method, which represent the two classes of integral equation method used in our

work.

7.5.1 Surface Integral Equation

In this section, we will only consider the scattering problem of metallic structures

as the preconditioners can be easily modified to cope with other types of scatterers.

The first testing object that we have considered is the NASA almond [85]. The

maximum dimensions of the almond along the x−, y− and z−axes are 1 m, 0.4 m

and 0.13 m, respectively. The geometry of the NASA almond is shown in Fig. 7.5.

The discretization of the object using triangular patches has resulted in 3,510 un-

knowns. We compute the HH−polarization bistatic RCSs of the NASA almond at
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900 MHz with the illuminating plane wave incident upon the tip. The convergence

characteristics of the solution process without a preconditioner and with different

preconditioners are shown in Fig. 7.6.

Figure 7.5: Geometry of a NASA almond.

In Fig. 7.6(a), we observe that the DP improves the convergence rate slightly

while the BDP shows better improvement in convergence rate as it converges to

10−3 in 27 iterations. The ILU(0) preconditioner gives the best results as it con-

verges to 10−5 within only 13 iterations. Fig. 7.6(b) shows the convergence rate of

the ILU based preconditioners. We find that the ILUT(40) performs better than

the other two ILUT preconditioners and produces comparable performance to the

ILU(0). The good performance of ILUT(40) over the other two ILUT precondi-

tioners is expected as it contains more matrix elements. However it is surprised

that the ILU(0) is just slightly better than ILUT(40) as it contains about 6 times

more elements than the latter.

The second example we considered is a metallic generic airplane. The airplane

model used in this example is identical to the one shown in Fig. 4.6. The compli-

cated structure has resulted in non-uniform meshes, especially at the corner. The

VV−polarization bistatic RCSs are computed with the plane wave incident from

the top of the airplane. The convergence characteristics of the solution process

without a preconditioner and with different preconditioners are shown in Fig. 7.7.

In Fig. 7.7(a), we observe similar convergence behavior as in the previous exam-
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Figure 7.6: Comparison of the convergence rates for the scattering by a NASA
almond. (a) Different preconditioners. (b) ILU based preconditioners.
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Figure 7.7: Comparison of the convergence rates for the scattering by a generic
airplane. (a) Different preconditioners. (b) ILU based preconditioners.
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ple. The DP improves the convergence rate slightly while the BDP shows better

improvement in convergence rate as it converges to 10−3 in 90 iterations. The

ILU(0) preconditioner gives the best results as it converges to 10−5 within only

25 iterations. Fig. 7.7(b) shows the convergence rate of the ILU based precon-

ditioners. We find that the ILUT(40) performs better than the other two ILUT

preconditioners and produces comparable performance to the ILU(0). It is ex-

pected as the ILUT(40) contains more matrix elements than the other two ILUT

preconditioners.

Lastly, we compare the performance of these preconditioners in another larger

testing case. The scattering object considered in this case is a conesphere whose

dimensions are 69 cm × 7.5 cm × 7.5 cm [85]. The geometry of the conesphere

is shown in Fig. 7.8. The conesphere is discretized using triangular patches and

resulted in 64,287 unknowns. We compute the VV−polarization bistatic RCSs of

the object at 9 GHz with the plane wave incident upon the tip. The convergence

characteristics of these preconditioners are shown in Fig. 7.9(a).

7.5 cm

61 cm

y

z

x

z

Figure 7.8: Geometry of a metallic conesphere.

The ILU(0) preconditioner outperforms the DP and BDP by reducing the nor-

malized residual error to 10−5 in 25 iterations. Again, the performances of the

ILUT preconditioners are compared with ILU(0) as shown in Fig. 7.9(b).

Table 7.1 summarizes the performance of the preconditioners in characterizing

the electromagnetic scattering by metallic objects using the SIE method. The

number of iterations is recorded when the normalized residual error less than 10−3

is achieved. All the recorded timings have been rounded to the nearest integer. The
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Figure 7.9: Comparison of the convergence for the scattering by a conesphere. (a)
Different preconditioners. (b) ILU based preconditioners.
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time used to construct diagonal preconditioner is not included as it is extracted

directly from the Z
near

.

From Table 7.1, we observe that the great improvement due to the ILU(0) comes

at a price. It consumes more memory than other preconditioners. However, the use

of ILU(0) is justified by the overall time saving. It has reduced the total time needed

to analyze electromagnetic scattering by the testing objects. We also observe that

the ILU based preconditioners produce overall better result and ILUT(40) produces

comparable results to the ILU(0) with less memory requirement. The time saving

benefited from the preconditioners will be considerable when it is used to compute

the monostatic RCS of an electrically large object.
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Table 7.1: Performance of the preconditioners in solving electromagnetic scattering
problems characterized using the SIE.

Unknowns, Preconditioning Storage Setup time Number of Solution time

N techniques (sec.) Iteration, Niter (sec.)

No preconditioner – – 110 14

DP 27 KB – 90 12

BDP 2 MB 2 31 4

3510 ILU(0) 10 MB 4 9 2

(Example 1) ILUT(40) 2 MB 2 11 2

ILUT(20) 1 MB 1 14 2

ILUT(5) 274 KB 1 36 5

No preconditioner – – 86 30

DP 51 KB – 66 24

BDP 2 MB 2 42 14

6459 ILU(0) 9 MB 3 13 5

(Example 2) ILUT(40) 4 MB 3 15 5

ILUT(20) 2 MB 2 20 7

ILUT(5) 503 KB 1 34 12

No preconditioner – – 104 652

DP 502 KB – 53 330

BDP 19 MB 24 33 211

64287 ILU(0) 90 MB 52 13 81

(Example 3) ILUT(40) 38 MB 25 14 85

ILUT(20) 19 MB 17 16 97

ILUT(5) 5 MB 10 23 140
Note: 1 KB = 1,024 Bytes and 1 MB = 1,024 KB
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7.5.2 Volume-Surface Integral Equation

In this section, the performance of the preconditioners in solving the scattering

problem of composite conducting and dielectric objects formulated using the VSIE

method will be presented. Two examples will be presented in this section to demon-

strate the applicability of these preconditioners in solving the VSIE. The first ex-

ample is a coated metallic sphere. The core of the sphere is having a radius of 0.8 m

and the thickness of the coating layer is 0.2 m. We compute the VV−polarization

bistatic RCSs at 300 MHz of the sphere with 31,174 unknowns. The convergence

characteristics of the solution process with different preconditioners are shown in

Fig. 7.10.

In Fig. 7.10(a), we find that the convergence rate by ILU(0) preconditioner is

amazing as it reduces the normalized residual error 10−5 within 10 iterations. The

comparison of the performance between the ILU(0) and the ILUT preconditioners

in solving this problem is shown in Fig. 7.10(b). The ILU(0) again performs better

than the ILUT preconditioners. However, the result is expected as the former

contains more elements. Nevertheless we have observed that the ILUT(40) produces

comparable results to the ILU(0).

Next, we compare the performance of these preconditioners in another testing

case which consists of 105,370 unknowns. The scattering object considered in this

case is a coated cylinder which has been described in Chapter 7. We compute

the VV−polarization bistatic RCSs of the cylinder at 300 MHz. The convergence

characteristics of these preconditioners are shown in Fig. 7.11. In Fig. 7.11(a),

we see that the ILU(0) preconditioner outperforms the DP and BDP by reducing

the normalized residual error to 10−5 in 25 iterations. The comparison of the

performance between the ILU(0) and ILUT preconditioners is shown in Fig. 7.11(b).

Again, we observe that the ILU(0) outperforms all ILUT preconditioners; however,

the ILUT(40) produces comparable results with less storage requirement.

We summarize in Table 7.2 the performance of the preconditioners in solving

the electromagnetic scattering using the VSIE. The number of iterations is recorded
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when the normalized residual error less than 10−3 is achieved. The recorded timings

have been rounded to the nearest integer. The time used to construct diagonal

preconditioner is not included as it is extracted directly from the Z
near

.

In Table 7.2, we find that the ILU(0) outperforms the other preconditioners

in terms of total number of iterations. It consumes more memory than other

preconditioners. However the ILUT(40) is actually the best performer as it uses

the least time to produce the solution. The performance of ILU(0) is greatly

affected by the its matrix size as the additional time is required to multiply the

ILU(0) to the impedance matrix in every iteration.

Table 7.2: Performance of the preconditioners in solving electromagnetic scattering
problems characterized using the VSIE.

Unknowns, Preconditioning Storage Setup time Number of Solution time

N techniques (sec.) Iteration, Niter (sec.)

No preconditioner – – 307 343

DP 27 KB – 47 53

BDP 14 MB 56 39 46

31174 ILU(0) 125 MB 74 10 18

(Example 1) ILUT(40) 19 MB 18 12 15

ILUT(20) 9 MB 16 13 16

ILUT(5) 2 MB 10 22 26

No preconditioner – – 472 1757

DP 823 KB – 254 949

BDP 65 MB 257 129 508

105370 ILU(0) 370 MB 215 17 96

(Example 2) ILUT(40) 63 MB 65 19 78

ILUT(20) 32 MB 38 32 131

ILUT(5) 8 MB 25 75 289
Note: 1 KB = 1,024 Bytes and 1 MB = 1,024 KB



Chapter 8

Conclusion and Suggestions for

Future Work

8.1 Conclusion

In this thesis, a grid based fast integral equation solver for electrically large objects

is presented. The fast solver is developed to solve the electromagnetic scattering

problem of arbitrarily shaped 3-D objects made of metallic, dielectric or composite

metallic and dielectric structures. The scattering problems are characterized using

the surface integral equation method, the volume integral equation method, and

the hybrid volume-surface integral equation method.

The method of moments (MoM) is applied to discretize the integral equations

and solve the resultant matrix equation using an iterative solver. However, the

MoM is inadequate when used to solve large-scale electromagnetic problems, es-

pecially those structures with complex dielectric properties. The AIM is used to

accelerate the matrix-vector multiplication in iterative solvers and to reduce the

memory requirement for matrix storage. In Chapter 4, we have used the AIM to

solve the electromagnetic scattering and radiation problems of metallic structures,

which is formulated by using the surface integral equation (SIE). Numerical exam-
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ples have been presented to show the accuracy and efficiency of our code in solving

the electromagnetic problems of metallic structures.

In Chapter 5, we have formulated the scattering problems of dielectric objects

using the SIE method and the volume integral equation (VIE) method, separately.

The original AIM has been modified to cope with the additional information needed

for the dielectric materials. For the scattering problems formulated using the SIE

method, additional fast Fourier transform (FFT) needs to be carry out to account

for the material properties. On the other hand, formulating the scattering problem

using the VIE will normally result in a matrix equation with a large number of

unknowns. Hence a proper choice of the type of integral equation methods is nec-

essary. We have presented several numerical examples to demonstrate the accuracy

and applicability of the AIM in solving the scattering problems of dielectric objects

using the SIE method and the VIE method.

We have also considered the electromagnetic scattering by composite conduct-

ing and dielectric objects in Chapter 6. The scattering problems are formulated

using the SIE method and the hybrid volume-surface integral equation (VSIE)

method, separately. The SIE method is appropriate for the scatterer with piece-

wise homogeneous dielectric material while the VSIE is preferred for the scatterer

with inhomogeneous dielectric material. We have used the modified AIM to ana-

lyze the electromagnetic scattering by a large composite conducting and dielectric

object. Numerical examples are presented to show the capability and efficiency of

our AIM implementation in solving the scattering problems formulated using the

SIE method and the VSIE method.

Lastly in Chapter 7, several preconditioning techniques have been incorporated

into our AIM code to accelerate the convergence rate of the solutions. The diago-

nal preconditioner is the simplest preconditioner but it produces only a marginal

improvement. The block diagonal preconditioner is constructed using the elements

in the block diagonal partition and it provides better convergence rate. Two pre-

conditioners based on the incomplete LU (ILU) decomposition, i.e. zero fill-in ILU
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(ILU(0)) and ILU with threshold (ILUT), have also been implemented in our code.

The ILU(0) has provided the best convergence rate among the preconditioners in-

vestigated; however, it requires large matrix storage. The ILUT has been used to

overcome the weakness of the ILU(0) by allowing additional rules to control the

number of elements. In our experiment, we find that the ILUT(40) has produced

comparable results to the ILU(0).

8.2 Recommendations for Future Work

As technology progresses rapidly in the area of computational electromagnetics,

there is plenty of room for future studies. The following items represent some

possible future work directions.

1. The simulation in this thesis was performed by using a personal computer

(PC), in which the computing resources are limited. The size of problem can

be solved is constrained by the available computing resources on the PC. By

using parallel computing, it is possible to combine the computing resources

of a cluster of personal computers to solve larger problems.

2. The basis functions used in this thesis are of low order. Higher-order basis

functions enable the use of larger patches for the discretization and hence

reduce the total number of unknowns. In addition, the higher-order basis

functions are also able to increase the accuracy of the solution. By combining

the higher-order basis functions with the AIM, we expect that the efficiency

of the code can be increased.

3. The analyses in this thesis are performed in frequency domain, which implies

each simulation will only produce results at a particular frequency. In order

to perform the analysis over a wide range of frequencies, we can resort to the

time domain analysis. By adopting the time domain AIM analysis, we are

able to perform a fast frequency sweep analysis for a large-scale scatterer.
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