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Summary

In this thesis, the problem of processor allocation on mesh-based multicomputer

systems is considered. The thesis first discusses the problem of fragmentation

that arises as a result of using contiguous processor allocation strategies. Next, a

comprehensive survey of various existing contiguous allocation strategies found in

the literature is made.

In order to minimize the overall processing time of the tasks and the fragmentation

caused by contiguous processor allocation strategies, this thesis employs the idea of

fusing migration as a part of allocation to design efficient task allocation algorithms.

In the proposed schemes, task migration is used whenever required to improve the

problem of fragmentation. To this end, three efficient schemes are proposed to

v



Summary vi

improve the performance of first-fit allocation strategies commonly used in practice.

The first scheme, called the First-fit mesh bifurcation (FFMB) scheme, attempts to

start the search for a free submesh from either the bottom-left corner or the top-left

corner of the mesh so as to reduce the amount of fragmentation in the mesh. The

next two schemes, called the Online dynamic compaction - Single corner (ODC-

SC) and Online dynamic compaction - Four corners (ODC-FC) schemes, use task

migration to improve the performance of existing submesh allocation strategies.

Rigorous simulation experiments are performed based on practical workloads as

reported in the literature to quantify all the proposed schemes and compare them

against standard schemes existing in the literature. Based on the results, clear

recommendations are made on the choice of the strategies and their performances

are demonstrated on several influencing parameters. Several illustrative examples

are also provided for the ease of understanding.
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Chapter 1
Introduction

A multicomputer is a computer which consists of nodes (or processors) that ex-

ecute several parallel tasks (or jobs) simultaneously. Most multicomputers are

disjoint-memory machines, constructed by joining nodes via network links. Each

node usually contains a microprocessor and its own private memory, and it cannot

directly access other nodes’ memories. A host computer that is connected to the

multicomputer is usually responsible for locating free nodes to be allocated to in-

coming tasks and releasing them when the tasks complete their execution. Thus

the problem of allocating a group of nodes for a request is referred to as processor

allocation problem.

There are various topologies that are used in the implementation of multicomput-

ers. Examples are the mesh, the hypercube and the torus. The mesh is one of

the most popular topology due to its simplicity, regularity and scalability. It has

1
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shown a high potential as a supercomputer at a much lower cost for the parallel ex-

ecution of various algorithms such as image processing, matrix multiplication and

partial differentiation. Many prototype and commercial systems, such as the Tera

Computer System [18], Intel Touchstone Delta [14], Intel Paragon XP/S [10]and

J-Machine [11], have been built based on the mesh topology.

1.1 Types of Processor Allocation Strategies

There are different processor allocation strategies that can be used in mesh mul-

ticomputers to allocate free nodes to the incoming tasks. These strategies can be

classified into two main types: contiguous allocation and non-contiguous allocation.

In contiguous allocation [3, 8, 9, 12, 15, 16], the nodes that are allocated to each

of the incoming task must be physically adjacent. In addition, most systems that

use contiguous allocation also require the allocated nodes to form a subgraph of

the original topology. For example, in mesh multicomputers, the tasks are usually

allocated to submeshes. On the other hand, in non-contiguous allocation [5], the

allocated nodes need not be physically adjacent to one another. Figure 1.1 shows

an example of contiguous and non-contiguous allocation in a 6 × 6 mesh multi-

computer. Two tasks, one requiring 15 nodes and the other requiring 12 nodes,

need to be allocated. If contiguous allocation is used, the tasks may be allocated

as shown in Figure 1.1(a). If non-contiguous allocation is used, the mesh may look
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(a) Contiguous Allocation (b) Non-contiguous Allocation

Figure 1.1: Example of contiguous and non-contiguous allocation

like the one shown in Figure 1.1(b).

Contiguous allocation suffers from the problem of fragmentation due to its con-

straint of contiguity. Often, when a task requests for a submesh for allocation, there

may be sufficient available nodes to satisfy the request but because these nodes

do not form a contiguous submesh of the required size, they cannot be allocated

to the task. Although non-contiguous allocation does not have this problem, it

introduces communication interference since the same network link may be shared

by different tasks for communication. This introduces delay and uncertainty to the

execution time of the tasks. This thesis will focus on contiguous allocation only.

There has been many literature that propose different submesh allocation strate-

gies for contiguous allocation. These strategies can be grouped into two different
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(a) Before allocation (b) First-fit allocation (c) Best-fit allocation

Figure 1.2: Example of first-fit and best-fit allocation

categories: first-fit and best-fit. In first-fit strategies [3, 8, 12, 15, 16], the mesh is

searched in a particular order and the first free submesh that is found is allocated.

The best-fit strategies [3, 9, 12] try to find a free submesh that results in the least

amount of fragmentation in the mesh. For example, Figure 1.2(a) shows the allo-

cated nodes in a 6× 6 mesh before allocating the next task which requires a 1× 4

submesh. If a first-fit strategy is used, it allocates the first free submesh that it

finds, as shown in Figure 1.2(b). If a best-fit strategy is used, it will find all the

available free submeshes in the mesh and allocates the free submesh that results

in the least fragmentation. In this case, the submesh at the top-left corner may be

allocated, as shown in Figure 1.2(c).

The first-fit strategies are fast, but they tend to cause a significant amount of frag-

mentation due to their first-fit nature. On the other hand, the best-fit strategies

perform better in terms of reducing fragmentation, but they tend to incur higher
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overheads since they usually need to locate all possible free submeshes and then

decide which free submesh is the best candidate.

1.2 Improving Performance in First-fit Strate-

gies

In this thesis, three different strategies to improve the first-fit strategies proposed in

the literature are designed. Firstly, a scheme to reduce the amount of fragmentation

introduced by first-fit strategies is designed by starting its search from one of two

corners instead of just one as seen by all the first-fit strategies. The advantage

of this method is that there is very little additional overhead incurred. Next,

two efficient online task allocation schemes fused with migration strategies are

proposed to improve the performance of current submesh allocation strategies.

One of the attractive aspects of the schemes is that both the schemes do not

require all the tasks to be suspended when task migration is performed. Instead,

only the task that is being migrated is suspended while the other tasks continue

their computation until it is their turn to be migrated. In addition, the migration

is contention-free as all the links that are used to migrate the tasks are free. The

first scheme tries to move the tasks towards the bottom-left corner of the mesh so

as to create a larger contiguous area of free nodes on the upper and right side of

the mesh. The second scheme tries to move the tasks towards all the four corners

of the mesh to create a contiguous area of free nodes in the middle of the mesh.
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It is beyond the scope of this thesis to consider all the best-fit strategies. However,

the two task migration schemes are extended to one of the most commonly used

best-fit strategies (busy-list strategy to be described later) and the performance

improvement will be shown.

The idea of fusing migration in realizing efficient task allocation algorithms is novel

to the literature. Thus, as an efficient solution to the task allocation problem,

task migration is used whenever required, depending on the decision taken in the

proposed schemes. This is in view of improving the fragmentation problem (as

explained in detail in Chapter 3 for all the strategies) and also maximizing the

throughput (number of tasks that can be successfully processed by the system) of

the mesh system.

The rest of the thesis is organized as follows. In Chapter 2, definitions and notations

will be introduced. These notations will be used throughout the thesis. The system

model and timing components are also described in this chapter. Related work

on submesh allocation strategies will be presented in Chapter 3. In Chapter 4, a

thorough description of the proposed schemes will be presented. Simulation results

will be shown and discussed in Chapter 5. Finally, we will conclude the thesis in

Chapter 6.



Chapter 2
Preliminaries

In this chapter, some notations and definitions of the terminology used in the thesis

will be presented. The system model as well as the timing components of processor

allocation will also be described.

2.1 Notations and Definitions

A two-dimensional mesh system can be represented as M(W,H), comprising W×H

nodes (or processors). A node in column i and row j is denoted by 〈i, j〉 where

0 ≤ i < W and 0 ≤ j < H, with the bottom-left corner node having the address

〈0, 0〉. A submesh, denoted by S(w, h), is a w×h rectangular submesh comprising

w× h nodes such that 0 < w ≤ W and 0 < h ≤ H. The address of a submesh can

be denoted by 〈x1, y1, x2, y2〉 where 〈x1, y1〉 is the bottom-left corner node of the

7
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Figure 2.1: Example of an 8× 8 mesh

submesh while 〈x2, y2〉 is the top-right corner node of the submesh. The bottom-

left corner node is usually referred to as the base node of the submesh S(w, h).

Figure 2.1 shows an 8× 8 mesh denoted by M(8, 8). The submesh at the bottom-

left corner of the mesh is denoted by S1(3, 4) and has the address 〈0, 0, 2, 3〉 while

the second submesh is denoted by S2(5, 5) and has the address 〈3, 2, 7, 6〉. The

base node of S1(3, 4) is at 〈0, 0〉 while the base node of S2(5, 5) is at 〈3, 2〉.

Below are the definitions of some of the terminology and notations that will be

used throughout the thesis.

Definition 1. A node is said to be free if it is not allocated to any task. A

submesh is called a free submesh if all the nodes in the submesh are free. An
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allocated submesh is one in which all the nodes are allocated to the same task.

Definition 2. Internal fragmentation is said to occur if more nodes are allocated

to a task than required.

Definition 3. External fragmentation is said to occur if there are sufficient number

of free nodes to satisfy a request for a submesh, however, these free nodes do not

form a free submesh of the required dimension.

Definition 4. Virtual fragmentation is said to occur if an allocation strategy fails

to recognize a free submesh even though a free submesh exists.

Definition 5. The boundary value of a free node is the sum of the number of

allocated neighbors and mesh boundary points on which a particular free node

lies. The boundary value of a free submesh is the sum of the boundary values of

all the nodes in the periphery of the free submesh.

Definition 6. The residence time or processing time, denoted as tprocess, is the

total time that a task resides in the mesh system for processing. This is the time

taken for the task to finish its computation after it has been allocated to a submesh.

Definition 7. The delay time, denoted as tdelay, is the time interval between the



2.2 System Model and Timing Components 10

instant when a task arrives and when it is allocated. This includes the waiting

time as well as the search time (time required by a particular allocation strategy

to locate a free submesh to be allocated to the task).

Definition 8. The response time, denoted as tresponse, is the time interval from the

instant when a task arrives to the system until it is deallocated after processing.

2.2 System Model and Timing Components

As done in the literature [3, 8, 9, 12, 15, 16], without loss of generality, it is as-

sumed that all the requests arrive to the mesh system at node 〈0, 0〉 following some

particular distributions. Each task that is submitted for processing is defined as a

tuple comprising of the amount of CPU time required for processing. This CPU

time is defined in terms of the number of nodes to be used and the residence time.

Besides specifying the number of CPUs needed, it exactly specifies the dimension

of the required submesh as w× h. Further, it is assumed that a task submitted to

the system can be executed by any node in the system.

Next, several timing components that are involved in servicing a request will be

described. In addition, the timing components that are variable in length and

influence the overall processing time of a task will also be identified. The process

of scheduling a task involves searching for a submesh of the required dimension,



2.2 System Model and Timing Components 11

allocating the nodes of that submesh to the task, and after the residence time, deal-

locating the allocated submesh (releasing the nodes of the submesh and declaring

them as free nodes).

When a request for a submesh arrives at the mesh system, it may or may not be

serviced immediately as the system may be busy serving previous requests. The

request may therefore need to wait for a period of twait time units before it is being

serviced. The system then consumes tsearch time units (a variable component) to

locate a free submesh. If a free submesh is found, then the system takes another

tmaintainAlloc time units to allocate this submesh to this task. It should be noted that

this time also includes the time for updating any records used in the book-keeping

activities such as updating and maintaining all the structures (e.g. R-Array, busy

array etc). Therefore the total delay time for a request that succeeds in finding a

free submesh in the first attempt is given by:

tdelay = twait + tsearch + tmaintainAlloc (2.1)

However, if the mesh is fragmented or nearly fully occupied, the system may not be

able to find a free submesh on the first attempt. Once this happens, the request will

be put into a queue for reallocation in the future. The requests in the reallocation

queue will have to wait for tqueue time units (variable component) for the next
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submesh to be deallocated from the mesh. Each time a submesh is deallocated, the

system will go through the reallocation queue and attempt to find a free submesh

for each of the requests. If a request can now be satisfied, it is removed from

the reallocation queue. Otherwise the request remains in the reallocation queue

and waits for the next deallocation event. Suppose a request requires C attempts

before a free submesh is found. The total delay time is therefore given by:

tdelay = twait +
C∑

i=1

tisearch +
C−1∑

j=1

tjqueue + tmaintainAlloc (2.2)

where tisearch is the time taken to search the mesh during the i-th attempt and tjqueue

is the amount of time that the request spends in the reallocation queue between

the j-th and (j + 1)-th attempt after it fails to locate a free submesh during the

j-th attempt.

When a request is satisfied, the free submesh that is found will be allocated to the

task and the submesh will reside in the mesh for the duration of the processing

of the task tprocess. After the task finishes its computation, the submesh will then

be released and the system takes another tmaintainDealloc time units to update and

maintain all the structures. The total response time is therefore given by:

tresponse = tdelay + tprocess + tmaintianDealloc (2.3)
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Figure 2.2: Timing components during the servicing of a request

where tdelay is given by (2.2). Figure 2.2 shows the timeline from the instant a

request arrives at the mesh system to the instant it is removed from the system.



Chapter 3
Existing Strategies

In this chapter, some of the most recent and commonly used allocation and migra-

tion strategies and their workings will be described in a brief style for the purpose

of continuity. For a more detailed analysis of these strategies, the reader may refer

to their respective references.

3.1 Task Allocation Strategies

3.1.1 First-fit Strategies

This section describes a class of processor allocation strategies, referred to as first-

fit strategies, as mentioned in Chapter 1.

A. Two-Dimensional Buddy: The two-dimensional buddy scheme was pro-

posed by Li and Cheng [16] based on the traditional buddy strategy [19]. This

14
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strategy can only be used for a square mesh of side W ×W where W = 2n

and n is a positive integer. In this scheme, (n + 1) free submesh lists are

maintained, with the k-th list containing the free submeshes of size 2k × 2k,

where 0 ≤ k ≤ n. When there is a request for a submesh of size 2i × 2i,

the scheme will look for a free submesh in the i-th list. If no free submesh

is found in this list, the scheme will proceed to locate a free submesh in the

(i + 1)-th list. If a free submesh is found, it will be divided into four 2i × 2i

submeshes. One of these submeshes will be allocated to the task and the rest

will be inserted into the i-th list. During deallocation, the released submesh

will be inserted into the appropriate list and if its three buddy submeshes

are also in the list, they will be combined together to form a larger submesh

and inserted into the appropriate list.

The two-dimensional buddy scheme has its limitations. It can only allocate

square submeshes whose sides can be expressed in powers of 2. As a re-

sult, internal fragmentation occurs as usually more nodes are allocated to a

particular task than required.

B. Frame Sliding: The frame sliding strategy was proposed by Chuang and

Tzeng [15] to rectify the problem of internal fragmentation caused by the two-

dimensional buddy scheme. In this strategy, a submesh of the exact size will

be allocated to the tasks so that no extra number of nodes will be allocated.
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The strategy starts searching from the lowest and leftmost free node in the

mesh. The strategy will check if all the nodes in the current frame are free. If

not, the frame will slide horizontally towards the right side of the mesh with

a stride equal to the requested submesh width. When the frame reaches or

exceeds the right boundary of the mesh, it will slide vertically with a stride

equal to the requested submesh height. The frame will then start to slide

towards the left side of the mesh. The sliding of the frame will continue until

a free submesh is found or when the strategy has finished searching the whole

mesh.

Although the frame sliding strategy eliminates internal fragmentation, it still

suffers from virtual fragmentation due to its incomplete submesh recognition

capability. There may exist free submeshes in the mesh system which the

strategy is unable to recognize.

C. Zhu’s First Fit: Zhu [12] introduced a First Fit strategy to resolve the prob-

lem of incomplete submesh recognition capability as with the frame sliding

strategy. In the First Fit strategy, a busy array is used to describe the avail-

ability of nodes in the mesh system. When a request for a submesh arrives

at the system, the strategy will derive a free-base array from the busy array

by scanning it twice. In this strategy, every occupied submesh generates two
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domains, referred to as bottom and left coverage comprising nodes that can-

not be considered as a free base. Thus, in the first scan, the left coverage

is identified and in the second scan, the bottom coverage is identified and

allocation to the current task is carried out. It may be noted that the sec-

ond scan comes to an immediate termination as soon as a first free base is

identified.

Zhu’s First Fit strategy performs better than the frame sliding strategy due

to its better submesh recognition capability. When a task requests a submesh

S(i, j), the strategy will be able to find a free submesh of size i× j if it exists

in the mesh. However, the strategy does not attempt to locate a free submesh

of size j × i and so its submesh recognition capability is still incomplete.

D. Adaptive Scan: Ding and Bhuyan [8] modified the frame sliding strategy

into the adaptive scan strategy. In the adaptive scan strategy, the frame slides

with an adaptive horizontal stride and a vertical stride of 1. In addition, for

a request of a submesh S(i, j), the strategy will first search for a submesh of

size i× j. If no free submesh can be found, it will search the mesh again for

a free submesh of size j × i.

The adaptive scan strategy eliminates the problem of virtual fragmentation,

but it still suffers from external fragmentation due to its first-fit nature.

E. Leapfrog (First-Fit): Recently, the leapfrog method was proposed by Wu,
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Hsu and Chou [3]. In this strategy, a statistical 2D-array called the R-Array

or run-length array is used. R-Array has the same dimensions as the mesh.

Each element in the R-Array stores an integer that represents the number of

consecutive free or occupied nodes in that row starting from a node that is

in the same position as the integer in the R-Array. For example, in a mesh

M(W,H), if the integer in R-Array(i, j) is 3, it means that the nodes at

〈i, j〉, 〈i + 1, j〉 and 〈i + 2, j〉 are free while the node at 〈i + 3, j〉 is occupied.

If the integer in R-Array(i, j) is −3, it means that the nodes at 〈i, j〉, 〈i+1, j〉

and 〈i + 2, j〉 are occupied while the node at 〈i + 3, j〉 is free. Hence, the

name for the strategy.

By using the R-Array, the search time for finding a free submesh can be

reduced since the strategy skipped the non-free nodes, therefore reducing the

search space. The leapfrog method can be used to implement both first-fit

and best-fit strategies.

3.1.2 Best-fit Strategies

Next, another class of processor allocation strategies, known as best-fit strategies,

will be described.
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A. Zhu’s Best Fit: Zhu [12] also proposed another best-fit strategy in addition

to the above described First Fit strategy. A busy array is used and the free-

base array is constructed by scanning the busy array twice. However, unlike

the First Fit strategy, the Best Fit strategy does not stop its search when it

finds a free base node in the second scan. Instead, it continues to generate the

entire free-base array. The strategy then tries to select the best-fit submesh.

It will try to select the free base node that is at the corner of the smallest

block of free base nodes. If more than one such free base node exists, it

will select the base node that is surrounded by the least number of free base

nodes.

Just like the First Fit strategy, the Best Fit strategy still suffers from the

problem of virtual fragmentation since it does not consider the free submesh

of both orientations.

B. Busy List: Sharma and Pradhan [9] proposed the busy list strategy. In

this strategy, a list of all the allocated submeshes in the mesh is maintained.

The strategy will search for all the free submeshes that are either at the

four corners of the mesh or next to any of the allocated submesh. Every

time a free submesh is found, its boundary value is calculated. At the end

of the search, the free submesh that has the highest boundary value will be

allocated to the task.
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Since the busy list method is a best-fit strategy, it significantly reduces the

amount of fragmentation in the mesh. Most of the existing literature uses

this strategy to compare the performance.

C. Leapfrog (Best-Fit): The leapfrog strategy [3] can also be used to realize

Zhu’s Best Fit strategy. It uses the R-Array to construct the free-base array.

Since the leapfrog method can skip the non-free nodes, it can construct the

free-base array much faster. It then uses the same heuristics as Zhu’s Best

Fit strategy to choose the best-fit submesh.

3.2 Task Migration Strategies

In this section, a few task migration strategies that are used in mesh multicom-

puters will be described. These strategies assume that the destination submesh is

known.

A. Diagonal Scheme, Gathering-Routing-Scattering Scheme: Yu, Chang

and Chen [2] proposed a few schemes that can be used to migrate tasks in

mesh multicomputers. The diagonal scheme tries to migrate the subtasks in

phases. In each phase, all the subtasks to be migrated must reside in nodes

that are not in the same row or column. In each phase, the subtasks will be

migrated in the x-direction first followed by the y-direction. In this way, the

routing in each phase will be congestion free.
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A second scheme, called the gathering-routing-scattering scheme, tries to

gather all the subtasks from the nodes in the same row to one particular

node in that row. The nodes that collect the subtasks in each row must

be in different columns. After the gathering operation, these nodes will be

routed to the destination nodes. Upon reaching the destination nodes, the

scattering operation will occur. In this operation, all the subtasks contained

in the destination nodes will be redistributed to the other nodes in the same

row.

A hybrid scheme which combines the above two schemes is also proposed.

In this scheme, the mesh will be partitioned into several subpartitions. In

each subpartition, the gathering operation is used to collect the subtasks

into nodes. Next, the diagonal scheme is used to route the subpartitions in

phases. Lastly, at the destination nodes, the scattering operation is carried

out to redistribute the subtasks. The efficiency of this scheme will depend

on how the mesh are divided into subpartitions.

B. G-TMS, NO-TMS: Wang and Chen [1] proposed the two schemes to mi-

grate tasks in a two-dimensional mesh system. In the General Task Migration

Scheme (G-TMS), the subtasks are migrated in phases. In the first phase,

the subtasks at the boundary nodes of the source submesh are migrated in

four different directions to the destination submesh. In subsequent phases,
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the subtasks at the boundary nodes of the remaining source submesh is again

migrated in four directions to the destination nodes until all the subtasks are

migrated. In the Near Optimal Task Migration Scheme (NO-TMS), the sub-

tasks at the corner nodes and the nodes near the center line of the source

submesh are migrated in the first phase. After the first phase, the scheme

migrate the subtasks at nodes located at the outermost corner and near the

center line of the remaining source submesh. Both the schemes are proven

to be contention free in each phase.

There are certain constraints that must be met in order to use the two strate-

gies. The source and destination submeshes must not be overlapped in the

same columns or rows in order for the subtasks to migrate without contention.

Another relieved constraint allows the submeshes to be overlapped in either

the same rows or columns but not both. In this case, the subtasks have to

use longer paths to migrate and the two submeshes have to be at a certain

distance away from each other in order to accommodate these paths.

Besides task migration in mesh multicomputers [1, 2], there are also several litera-

ture related to task migration in hypercube multicomputers [4, 6, 13, 17]. However,

a common assumption in all the literature is that the destination submeshes or sub-

cubes are known and the strategies concentrate on finding disjoint parallel paths

between the source and destination for the hypercube and mesh multicomputers.
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In a sense, in all the existing task migration strategies, the problem of task al-

location is never considered as a primary problem. The goal in these migration

problems is to determine the best possible parallel paths to reach a destination

from a source by assuming that task allocation has already taken place. Some

works assume that task allocation uses compaction strategies which are secondary

to task migration problems. The literature in task migration concentrates on de-

termining optimal routes to the destination and does not care about the searching

process of a destination submesh.

The above argument serves as a considerable motivation in this research to fuse

these task allocation and migration steps. Thus, as an efficient solution to the task

allocation problem, task migration should be used whenever required, depending

on the decision (as will be explained later in Chapter 4). This is in view of improv-

ing the fragmentation problem and also maximizing the throughput of the mesh

system.



Chapter 4
Proposed Algorithms

In this chapter, a few different strategies on task allocation will be presented. First

an allocation strategy, referred to as First-fit mesh-bifurcation (FFMB) strategy,

is presented. This strategy improves all the so far first-fit strategies described in

Chapter 3. Secondly, two different task migration schemes that can be used on the

above FFMB task allocation scheme are presented to improve its performance.

4.1 First-fit Mesh-bifurcation (FFMB) Strategy

This proposed strategy aims to improve the performance of first-fit allocation

strategies described in Chapter 3. First-fit strategies have shorter search time

but produce a significant amount of fragmentation due to their first-fit nature.

On the other hand, best-fit strategies choose a free submesh that contributes least

to the fragmentation in the mesh and so fragmentation is reduced. However, the

24
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search time of best-fit strategies is very high as it involves finding all the possible

free submeshes in the mesh system and then deciding on which free submesh con-

tributes least to fragmentation. In some situations, for example when the mesh

size is very large, the overhead incurred by the long search time overweighs the

benefits of reducing fragmentation in the system.

The strategy that will be proposed in this section aims to improve the performance

of first-fit allocation strategies without incurring extra search time and reduces ex-

ternal fragmentation. The key idea behind the scheme is as follows.

Nearly all first-fit strategies start their search for a free submesh from the bottom-

left corner of the mesh, moving rightwards in the same row until the right side of

the mesh is reached. They will then move upwards and continue their search in

the new row. The proposed strategy starts the search for a free submesh in one

of two positions: bottom-left corner (BLC) and top-left corner (TLC) of the mesh.

Thus, the mesh is bifurcated into two domains and the search starts from one of

the above mentioned respective nodes. While the practice of initiating a search

from the BLC is common, the choice on initiating from the TLC is not arbitrary.

This choice was mainly to minimize the fragmentation and improving the search

time. The starting position of the search depends on the number of free nodes in

the bottom and top half of the mesh. If there are more free nodes in the bottom
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half of the mesh, the strategy will start its search from the BLC of the mesh, just

like the original first-fit strategies. However, if there are more free nodes in the top

half of the mesh, the strategy starts its search from the TLC of the mesh, moving

rightwards and downwards as it continues its search.

By using two starting points instead of one, the proposed strategy hopes to achieve

two things. Firstly, when the search starts from the corner of one half in which

there are more free nodes, there is a higher chance that the strategy will be able to

find a free submesh faster. Consider a mesh system in which nearly all the nodes

in the bottom half of the mesh are occupied while most of the nodes in the top half

are free. By starting the search from the TLC, a free submesh can be found faster

when compared to starting the search from the BLC. Secondly, the strategy hopes

to reduce the amount of external fragmentation by allocating the submeshes near

the bottom and top edge of the mesh so that the original first-fit configuration

shifts towards more of a best-fit configuration.

Thus in order to realize this strategy, two counts are typically maintained, each

comprising the number of free nodes for each half of the mesh. With the above

description, the search time is expected to reduce by a factor of 0.5. However,

the complexity remains unaltered and is the same as the existing first-fit strategies

described in the literature. This search time will be captured in the simulation
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Task Requested Submesh Size Arrival Time Processing Time

1 3× 2 0 2.5
2 6× 4 1 3.5
3 3× 3 2 3.5
4 3× 4 4 4
5 5× 5 5 4

Table 4.1: Dimensions of requested submesh, arrival and processing time of the 5
tasks that arrive at M(8, 8)

studies during the task allocation phase and the simulation will also show that

external fragmentation is minimized to a large extent with the FFMB strategy.

The following example clarifies the workings of the proposed strategy and shows

that external fragmentation is minimized to a large extent.

4.2 Illustrative Example for FFMB

Consider the situation when 5 tasks arrive to a mesh M(8, 8). The arrival times,

the dimensions of the requested submeshes and the processing times are shown

in Table 4.1. Suppose the leapfrog (first-fit) method is used to allocate the sub-

meshes. For the purpose of illustration, it is assumed that the search time (tsearch)

and the maintenance time required for allocation (tmaintainAlloc) and deallocation

(tmaintainDealloc) are negligible. The leapfrog (first-fit) strategy always starts its

search from the BLC of the mesh. When Task 1 arrives at t = 0, it is allocated

to the submesh at 〈0, 0, 2, 1〉. Task 2 arrives at t = 1 and gets allocated to the
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submesh at 〈0, 2, 5, 5〉. However, when Task 3 arrives at t = 2, it cannot be allo-

cated to the mesh even though there are enough free nodes. This task is inserted

into a queue so that it can be allocated later. At t = 2.5, Task 1 is deallocated.

Task 3 in the queue is still unable to locate a free submesh for allocation. Task 4

arrives at t = 4 and similarly it cannot locate a free submesh and is inserted into

the queue. Task 2 is deallocated at t = 4.5 and now both Task 3 and Task 4 in the

queue are able to locate a free submesh at 〈0, 0, 2, 2〉 and 〈3, 0, 5, 3〉 respectively.

When Task 5 arrives at t = 5, it is unable to locate a free submesh in the system

and is inserted into the queue. This task has to wait until both Task 3 and Task 4

are deallocated from the system before it is able to be allocated to the submesh at

〈0, 0, 4, 4〉. Figure 4.1 shows the phases during the allocation and deallocation of

tasks using the leapfrog (first-fit) strategy.

Next the FFMB strategy is applied to the leapfrog (first-fit) strategy. Task 1 is

allocated to the submesh at 〈0, 0, 2, 1〉 just like in the previous case. However, when

Task 2 arrives at t = 1, it is allocated to the submesh at 〈0, 4, 5, 7〉. This is because

the FFMB strategy starts the search of a free submesh from the TLC since there

are more free nodes in the top half of the mesh system. When Task 3 arrives at

t = 2, it starts the search from the BLC of the mesh as there are now more free

nodes in the bottom half of the mesh. A free submesh at 〈3, 0, 5, 2〉 can be located

and allocated to Task 3 immediately. Next, Task 1 will be dellocated at t = 2.5.
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(a) t = 0, Task 1 allocated (b) t = 1, Task 2 allocated (c) t = 2.5, Task 1 deallo-
cated

(d) t = 4.5, Task 2 deal-
located, Task 3 reallocated,
Task 4 reallocated

(e) t = 8, Task 3 deallocated (f) t = 8.5, Task 4 deallo-
cated, Task 5 reallocated

Figure 4.1: Allocation and deallocation of tasks using the leapfrog (first-fit) strat-
egy

When Task 4 arrives at t = 4, the strategy can also locate a submesh at 〈0, 0, 2, 3〉.

At t = 4.5, Task 2 is deallocated from the mesh. Lastly, Task 5 arrives at t = 5

and is allocated to the submesh at 〈3, 3, 7, 7〉. Figure 4.2 shows the phases during

the allocation and deallocation of tasks using the leapfrog (first-fit) strategy with

the FFMB strategy.

From the above example, it can be observed that when the FFMB strategy is used,
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all the 5 tasks are able to locate a free submesh the moment they arrive to the mesh

system. Therefore, the FFMB strategy is able to reduce the amount of delay time

and external fragmentation in the mesh so that all the tasks can be accommodated.

4.3 Online Dynamic Compaction: Single Corner

Task Migration (ODC-SC) Strategy

After a series of successive allocation and deallocation of submeshes, the mesh

system will still suffer from a significant amount of external fragmentation even if

a best-fit allocation strategy is used. In order to rectify this problem, a compaction

or task migration strategy is required to rearrange or reschedule the active tasks in

the mesh so as to create a larger area of contiguous free nodes for future allocation.

The disadvantage of performing compaction or task migration is that the active

tasks in the mesh have to be suspended for the period of task migration and

they can only continue after the task migration has been completed. Previous

literature [1, 2, 4, 6, 13, 17] assumes that the destination submesh is known a

priori and concentrates on finding parallel paths between the source and destination

submeshes so that task migration can be completed in a shorter amount of time.

This therefore reduces the overhead incurred for suspending the active tasks. The

proposed strategy concentrates on locating a destination submesh such that when

an active task is to be migrated towards the destination submesh, only the task
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(a) t = 0, Task 1 allocated (b) t = 1, Task 2 allocated (c) t = 2, Task 3 allocated

(d) t = 2.5, Task 1 deallo-
cated

(e) t = 4, Task 4 allocated (f) t = 4.5, Task 2 deallo-
cated

(g) t = 5, Task 5 allocated (h) t = 5.5, Task 3 deallo-
cated

(i) t = 8, Task 4 deallocated

Figure 4.2: Allocation and deallocation of tasks using the leapfrog (first-fit) strat-
egy with FFMB

to be migrated needs to be suspended. All other active tasks in the mesh will

continue with their computation during the migration of this task.
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The proposed task migration strategy will be described using the leapfrog (first-

fit) method as the underlying task allocation strategy. However, it should be

noted that the task migration strategy can be applied to any of the allocation

strategies that are described in Chapter 3. Consider the case when a request for

a submesh S(w, h) arrives to the mesh system M(W,H). The system first uses

the leapfrog strategy to search for a free submesh. If a free submesh is found, it

is allocated to that task. If no free submesh is found and there are enough free

nodes in the mesh to satisfy the request, the task migration scheme is employed

to migrate the running tasks. After task migration, the system uses the leapfrog

strategy again to search the mesh for a free submesh. Since the amount of external

fragmentation is reduced after task migration, there is a higher chance that the

system is now able to satisfy the request. This is one of the properties exploited in

the design of the proposed strategy. The task migration strategy is also employed

at most once between any two successive deallocation of submeshes. This is to

ensure that no excessive task migration will be done since each time the tasks are

migrated, a significant amount of overhead is incurred. In addition, there will not

be any significant improvement to the condition of fragmentation in the mesh if

task migration is performed more than once between two successive deallocations.

The algorithm for the task migration scheme is described in Figure 4.3. Below are

a few terms that are used in the algorithm:



4.3 Online Dynamic Compaction: Single Corner Task Migration
(ODC-SC) Strategy 33

(a). MigrationDone: Boolean flag that indicates whether task migration has been

performed since the last deallocation event. This flag is set to false after

every deallocation event and set to true after task migration is performed.

The use of this flag is to ensure that at most one task migration is done

between two successive deallocations.

(b). (BaseNode x, BaseNode y): Integer variables that stores the coordinates of

the base node of the new submesh found so far during each iteration of the

task migration strategy.

(c). PositionNo: All the allocated submeshes can be identified by a position num-

ber. The position number of each submesh can be calculated as follows:

PositionNo = (y′ ×W ) + x′ + 1 (4.1)

where (x′, y′) are the coordinates of the base node of the submesh. For

example, the position numbers in a 5× 4 mesh is shown below:




16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5



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Algorithm ODC-SC

Step 1: Check whether there are enough free nodes to satisfy the request.
If (not enough free nodes)

Go to Step 5.
Else {

Search for a free submesh using the leapfrog allocation strategy.
If (free submesh is found)

Go to Step 4.
Else {

If (MigrationDone = true)
Go to Step 5.

Else {
Assign MigrationDone ← true
Assign CurSubmesh ← allocated submesh with lowest PositionNo
Let the address of this allocated submesh be 〈x1, y1, x2, y2〉.
Assign CurNode x ← x1, CurNode y ← y1 and go to Step 2.

}}}
Step 2: Assign BaseNode x ← CurNode x

Assign BaseNode y ← CurNode y
While (all nodes adjacent to the left edge of the allocated submesh are free) {

Assign BaseNode x ← BaseNode x− 1 /* Shift allocated submesh leftwards */
}
While (all nodes adjacent to the bottom edge of the allocated submesh are free) {

Assign BaseNode y ← BaseNode y − 1 /* Shift allocated submesh downwards */
}
If (BaseNode x = CurNode x) and (BaseNode y = CurNode y)

Go to Step 3.
Else {

Update the list of allocated submeshes and the R-Array with the new position
of the allocated submesh. Start the actual migration process to move the task
from the source to destination submesh using the diagonal scheme [2].

}
Step 3: Assign CurSubmesh ← allocated submesh with next lowest PositionNo

If (CurSubmesh 6= NULL) {
Let the address of this allocated submesh be 〈x3, y3, x4, y4〉.
Assign CurNode x ← x3, CurNode y ← y3 and go to Step 2.

} Else {
Search for a free submesh again using the leapfrog allocation strategy.
If (free submesh is found)

Go to Step 4.
Else

Go to Step 5.
}

Step 4: Allocate the located submesh to the task. Consider the next task in the allocation
queue for scheduling. Go to Step 1.

Step 5: Insert the task into the reallocation queue for future allocation. Consider the next
task in the allocation queue for scheduling. Go to Step 1.

Figure 4.3: Algorithm ODC-SC
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The task migration algorithm tries to migrate the running tasks towards the BLC

of the mesh so as to create a larger contiguous area of free nodes in the top and

right side of the mesh. In Step 2 of the algorithm, the subtasks in the source

submesh are migrated in phases to the destination submesh using the diagonal

scheme [2]. In each phase, the subtasks are migrated using X-Y routing. In X-Y

routing, a subtask that is to be migrated from 〈a, b〉 to 〈c, d〉 will first move along

the row to 〈c, b〉 before moving along the column to 〈c, d〉. Figure 4.4 shows an

example of migrating a task from the submesh at 〈3, 5, 7, 7〉 to the submesh at

〈0, 0, 4, 2〉 in an 8× 8 mesh system using the diagonal scheme. From this example,

it can be seen that in each phase, the paths of the subtasks to be migrated do

not share any common links and therefore contention is avoided. Although the

diagonal scheme ensures that the paths that are used in each phase do not share

any common links with one another, it does not ensure that these paths do not

share any common links with other tasks that are running in the mesh system. The

proposed algorithm rectifies this problem by searching for the destination submesh

in such a way that all the paths that will be used by X-Y routing to migrate the

subtasks to the located destination submesh will be free. In this way, network

contention is avoided and whenever a task is being migrated, all the rest of the

running tasks do not need to be suspended and can continue with their execution.
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(a) Before Migration (b) Phase 1 (c) Phase 2

(d) Phase 3 (e) Phase 4 (f) Phase 5

Figure 4.4: Example of task migration using the diagonal scheme

4.4 Online Dynamic Compaction: Four Corners

Task Migration (ODC-FC) Strategy

A modified version of the ODC-SC strategy will be introduced in this section.

This scheme is essentially the same as the previous scheme, except that instead of

moving all the tasks towards the BLC of the mesh, the modified scheme moves the

tasks towards all four corners of the mesh so as to produce a larger contiguous space

of free nodes at the center of the mesh. The tasks are migrated towards all four



4.4 Online Dynamic Compaction: Four Corners Task Migration
(ODC-FC) Strategy 37

corners of the mesh instead of only towards the BLC so that the final configuration

of the mesh approaches that of a best-fit configuration and hence there will be less

external fragmentation after migration as compared to the previous scheme. This

strategy is particularly useful in yielding better response times when jobs arrive

with short deadlines. However, implementation overheads do play a role in realizing

this strategy.

In this modified scheme, the mesh is divided into four quarters. The bottom-left

quarter is Quarter 1, followed by the bottom-right quarter, the top-right quarter,

and finally the top-left quarter. Every allocated submesh will be in one of the four

quarters. If most of the nodes in the allocated submesh are in Quarter 1, then

that allocated submesh will be considered to be in Quarter 1. In this scheme, all

the tasks in Quarter 1 will be migrated towards the bottom-left corner (BLC) of

the mesh, while all the tasks in Quarter 2, 3 and 4 will be migrated towards the

bottom-right corner (BRC), top-right corner (TRC) and top-left corner (TLC),

respectively. In addition, each quarter will have its own set of position numbers.
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For example, the position numbers in a 6× 4 mesh is illustrated below:




1 2 3 | 3 2 1

4 5 6 | 6 5 4

− − − − − − −

4 5 6 | 6 5 4

1 2 3 | 3 2 1




In the previous scheme, the position number of an allocated submesh refers to

the position number of the base node (BLC node) of that allocated submesh. In

this modified strategy, however, the position number of a submesh is calculated

depending on the quarter in which the submesh resides. If the submesh resides in

Quarter 1, its position number refers to the position number of the BLC node of

the submesh. If the submesh is in Quarter 2, its position number is the position

number of the BRC node of the submesh. For submeshes in Quarter 3 and 4,

their position numbers refer to the position numbers of the TRC and TLC nodes

respectively. Complete workings of the ODC-FC strategy is shown in Figure 4.5.

The above algorithm tries to move the tasks in Quarter 1 first, followed by the

tasks in Quarter 2, Quarter 3 and finally Quarter 4. In each quarter, each of the

running tasks will be migrated in order of their position number in that particular

quarter. Just as in the previous strategy, the algorithm ensures that all the paths
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Algorithm ODC-FC

Step 1: Check whether there are enough free nodes to
satisfy the request.
If (not enough free nodes)

Go to Step 9.
Else {

Search for a free submesh using the leapfrog
allocation strategy.
If (free submesh is found)

Go to Step 8.
Else {

If (MigrationDone = true)
Go to Step 9.

Else {
Assign MigrationDone ← true
Assign Quarter ← 1
Assign CurSubmesh ← NULL
While (Quarter ≤ 4) {

Assign CurSubmesh ← allocated
submesh with lowest PositionNo
located in Quarter
If (CurSubmesh = NULL)

Assign Quarter ← Quarter + 1
Else {

Let the address of this allocated
submesh be 〈x1, y1, x2, y2〉.
Assign CurNode x ← x1,
CurNode y ← y1 and go to
Step 2.

}
}

}
}

}
Step 2: Assign BaseNode x ← CurNode x

Assign BaseNode y ← CurNode y
If (Quarter = 1) or (Quarter = 4)

Go to Step 3.
Else {

While (all nodes adjacent to the right edge
of the allocated submesh are free) {

Assign BaseNode x ← BaseNode x + 1
/* Shift allocated submesh rightwards */

}
}
Go to Step 4.

Step 3: While (all nodes adjacent to the left edge of
the allocated submesh are free) {

Assign BaseNode x ← BaseNode x− 1
/* Shift allocated submesh leftwards */

}
Step 4: If (Quarter = 1) or (Quarter = 2)

Go to Step 5.

Else {
While (all nodes adjacent to the top edge
of the allocated submesh are free) {

Assign BaseNode y ← BaseNode y + 1
/* Shift allocated submesh upwards */

}
}
Go to Step 6.

Step 5: While (all nodes adjacent to the bottom edge
of the allocated submesh are free) {

Assign BaseNode y ← BaseNode y − 1
/* Shift allocated submesh downwards*/

}
Step 6: If (BaseNode x = CurNode x) and

(BaseNode y = CurNode y)
Go to Step 7.

Else {
Update the list of allocated submeshes and
the R-Array with the new position of the
allocated submesh. Start the actual
migration process to move the task from
the source to destination submesh using
the diagonal scheme [2].

}
Step 7: While (Quarter ≤ 4) {

Assign CurSubmesh ← allocated submesh
with next lowest PositionNo in Quarter
If (CurSubmesh = NULL)

Assign Quarter ← Quarter + 1
Else {

Let the address of this allocated submesh
be 〈x3, y3, x4, y4〉
Assign CurNode x ← x3,
CurNode y ← y3 and go to Step 2.

}
}
Search for a free submesh again using the
leapfrog allocation strategy.
If (free submesh is found)

Go to Step 8.
Else

Go to Step 9.

Step 8: Allocate the located submesh to the task.
Consider the next task in the allocation
queue for scheduling. Go to Step 1.

Step 9: Insert the task into the reallocation queue for
future allocation. Consider the next task in
the allocation queue for scheduling. Go to
Step 1.

Figure 4.5: Algorithm ODC-FC
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Figure 4.6: Mesh before task migration is employed

that are used to migrate the subtasks using X-Y routing are free in order to prevent

network contention and allow all the other tasks to continue with their execution.

4.5 Illustrative Example for ODC-SC and ODC-

FC

Consider the situation when the leapfrog (first-fit) strategy is used to locate free

submeshes in a mesh M(8, 8). After some allocation and deallocation, the mesh

becomes fragmented as shown in Figure 4.6.

Suppose the next task (Task 5) arrives and requests for a submesh S(3, 3). There

are enough free nodes in the mesh to satisfy the request, but they do not form a

submesh of dimension 3 × 3. Now if the ODC-SC strategy is employed, Task 1

will be the first task to be migrated since its position number of 11 is the smallest

among all the tasks in the mesh, followed by Task 2, 3 and 4. Task 1 will locate



4.5 Illustrative Example for ODC-SC and ODC-FC 41

a destination submesh at 〈0, 0, 2, 1〉 using the ODC-SC algorithm. It should be

noted that all the paths used to migrate Task 1 from 〈2, 1, 4, 2〉 to 〈0, 0, 2, 1〉 using

X-Y routing are all free and all the other running tasks in the mesh need not

suspend their operations. Similarly, Task 2 will be migrated to the submesh at

〈3, 0, 4, 3〉. Task 3 will not be able to locate a destination submesh for migration.

Finally Task 4 is migrated to the submesh at 〈4, 4, 6, 6〉. After task migration,

the degree of external fragmentation is reduced and a free submesh can now be

located at 〈5, 0, 7, 2〉 to be allocated to Task 5. The phases of using the ODC-SC

strategy is shown in Figure 4.7. However, there still exists some degree of external

fragmentation in the mesh. If another task (Task 6) arrives to the mesh requesting

for a submesh S(3, 4), the mesh will not be able to allocate a free submesh to

satisfy this request.

Next, the ODC-FC strategy is used instead of the ODC-SC strategy to allocate the

tasks. The strategy will first try to migrate all the tasks in Quarter 1. Only Task 1

belongs to Quarter 1 since 4 out of 6 of its nodes are located in Quarter 1. This

task will be migrated to the submesh at 〈0, 0, 2, 1〉. Similarly, Task 2 in Quarter 2,

Task 4 in Quarter 3 and Task 3 in Quarter 4 are migrated to the submeshes

at 〈6, 0, 7, 3〉, 〈5, 5, 7, 7〉 and 〈0, 6, 3, 7〉 respectively. After task migration, a free

submesh at 〈3, 0, 5, 2〉 can be allocated to Task 5. The ODC-FC strategy results

in less external fragmentation as compared to the ODC-SC strategy. Even when
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(a) Before task migration (b) Migrate Task 1 (c) Migrate Task 2

(d) Task 3 cannot be mi-
grated, Migrate Task 4

(e) Allocate Task 5

Figure 4.7: Phases of migration using the ODC-SC strategy

Task 6 arrives to the system, a free submesh can still be located at 〈0, 2, 2, 5〉 to

be allocated to the task. The phases of migration using the ODC-FC strategy are

shown in Figure 4.8.
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(a) Before task migration (b) Migrate Task 1 in Quar-
ter 1

(c) Migrate Task 2 in Quar-
ter 2

(d) Migrate Task 4 in Quar-
ter 3

(e) Migrate Task 3 in Quar-
ter 4

(f) Allocate Task 5 (g) Allocate Task 6

Figure 4.8: Phases of migration using the ODC-FC strategy



Chapter 5
Simulation Results and Discussions

In this chapter, the performance study on all the strategies proposed in Chapter 4

will be reported. The model that is described in Chapter 2 is used to compute all

the individual components (arrival, search, allocation, processing and deallocation)

in the performance evaluation of all the strategies to compare their behavior. The

exact details on the implementation study will be presented in Appendix A. The

key performance metric used in this study is the average delay time t̄delay
1, as

defined in Chapter 2. The performance of the proposed strategies with respect to

fragmentation, which is also an indicator of performance, will be highlighted as

well.

1A bar indicates that this is an average of the delay defined in Chapter 2
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5.1 Simulation Parameters

The performance of the proposed algorithms is studied using an event-driven sim-

ulation. The events in the simulation are allocation, deallocation and reallocation.

Several parameters will be used in this simulation model. In this simulation study,

all the parameters are generated randomly following some particular probability

distributions. The width and height of the submeshes requested by the incoming

tasks are derived from a normal distribution with mean w̄ and h̄ respectively. It is

assumed that the processing time of the tasks follows an exponential distribution

with a mean of t̄process and the interarrival time of the tasks follows the exponential

distribution with a mean that is determined by the system load s, where 0 < s ≤ 1.

The system load is defined as follows:

s =
w̄ × h̄× t̄process

W ×H × t̄interarrival

(5.1)

where t̄interarrival is the mean interarrival time of the task. In this study, the system

load will be varied and the parameter t̄interarrival is tuned accordingly to generate

a sequence of arrival events corresponding to a particular system load.

In addition, it is assumed that the mesh system uses wormhole routing to send

messages from one node to another. It has been demonstrated that wormhole

routing is distance insensitive [7]. The latency tlatencyin sending one message with
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l bytes to another node using wormhole routing is given by:

tlatency = ts + tx × l (5.2)

where ts is the startup latency and tx is the transmission time of one byte. In

the proposed ODC-SC and ODC-FC strategies, the diagonal scheme [2] is used to

migrate the subtasks in phases. The number of phases P required to migrate a

subtask S(w, h) is given by max(w, h). The total latency tmigrate in migrating a

task from the source submesh to the destination submesh is therefore given by:

tmigrate = (ts + tx × l)× P (5.3)

assuming that all the subtasks at each node have the same size of l bytes. Therefore

each migrating task will be suspended for a period of tmigrate during migration.

5.2 Performance in Minimizing Delay Time

In this section, the performance of the proposed strategies in minimizing the mean

delay time will be described.
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(a) Frame sliding (b) Adaptive scan

(c) Leapfrog (first-fit)

Figure 5.1: Performance of FFMB strategy

5.2.1 FFMB Strategy

First, the FFMB scheme is applied to the frame sliding, adaptive scan and the

leapfrog (first-fit) strategies, on a mesh system M(64, 64). Both the width and

height of the requested submeshes have a mean of 16 and a variance of 8. The

mean processing time is taken to be 10 seconds. The simulation is run for ten

different sets of arrival events, with each set consisting of 10, 000 tasks, and the

average is obtained. Figure 5.1 shows the mean delay time of the three strategies

before and after applying our FFMB scheme at different system load.
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From the figure, it can be seen that there is a significant reduction by 45 to 58

percent in the mean delay time when our FFMB scheme is used with the frame

sliding strategy. However, similar effect is not apparent when the FFMB scheme

is employed with the adaptive scan and the leapfrog (first-fit) strategies. From

the simulation, both the adaptive scan and leapfrog (first-fit) strategies show an

improvement of about 10 to 23 percent when the FFMB scheme is employed. The

frame sliding is not an efficient strategy due to its incomplete submesh recogni-

tion capability as explained in Chapter 3, resulting in a large amount of virtual

and external fragmentation. The proposed FFMB strategy is able to improve its

performance by significantly reducing the amount of fragmentation in the mesh

system and allowing more submeshes to be allocated to the tasks. On the other

hand, both the adaptive scan and the leapfrog (first-fit) strategies already have

complete submesh recognition capabilities built-in and hence introduce a signifi-

cantly smaller amount of fragmentation to the mesh system as compared to the

frame sliding strategy. Therefore the FFMB scheme is less influential in improv-

ing their performance. Also, from the figures, it is observed that the effect of the

FFMB strategy thrives hard to render a good performance under higher system

loads, which is to be expected of an efficient strategy.
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(a) Frame sliding (b) Adaptive scan

(c) Leapfrog (first-fit) (d) Busy list

Figure 5.2: Performance of ODC-SC and ODC-FC strategies

5.2.2 ODC-SC and ODC-FC Strategies

Next, both the ODC-SC and ODC-FC strategies are applied to the frame sliding,

adaptive scan, leapfrog (first-fit) and busy list strategies. The same set of param-

eters for the mesh considered earlier is used. In addition, the startup latency in

migrating a task is taken to be 10 microseconds and the transmission time of one

byte of message is 20 nanoseconds [1, 2]. Each subtask is assumed to be 1 kilobyte

in size2. As before, ten sets of runs, each consisting of 10, 000 tasks, are carried

out and an average value is obtained.

2These are typical values derived from [1, 2]
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Figure 5.2 shows the mean delay time of the different strategies with and without

the ODC-SC and ODC-FC schemes. As seen from the figure, the ODC-SC scheme

is able to improve the performance of all the various allocation strategies. The

frame sliding strategy shows an improvement of 13 to 54 percent when the ODC-

SC strategy is used, while the adaptive scan and leapfrog (first-fit) both improves

their mean delay time by 45 to 62 percent. Further, ODC-SC improves the busy

list strategy by about 12 to 29 percent. The ODC-FC scheme performs even better

for all the strategies. When used with the frame sliding strategy, the mean delay

time is reduced by 65 to 82 percent. Both the adaptive scan and the leapfrog

(first-fit) strategy shows a 65 to 76 percent reduction in mean delay time and the

busy list strategy improves its performance by 20 to 51 percent.

From the results using the busy list strategy, it can be seen that the proposed

ODC-SC and ODC-FC schemes can also be used with best-fit strategies. However,

the improvement in performance is smaller for the busy list strategy as compared

to the other strategies. This is due to the fact that the busy list strategy itself

results in very little external fragmentation and therefore there is a limit to the

improvement that can be realized. In addition, it should also be noted that the

mean delay time when using the busy list with the ODC-SC scheme is approxi-

mately the same as when ODC-SC scheme is used with either the adaptive scan

or the leapfrog (first-fit) strategy. This is also true when the ODC-FC strategy
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is used. Therefore, it can be seen that although the busy list strategy performs

better than both the adaptive scan and leapfrog (first-fit) strategy without task

migration, all the three strategies performs equally well when used together with

either the ODC-SC or the ODC-FC schemes.

5.2.3 FFMB with ODC-SC and ODC-FC Strategies

Lastly, the FFMB scheme is employed together with either the ODC-SC or the

ODC-FC scheme to the three first-fit allocation strategies and their performance

is observed. Figure 5.3 shows the results of the study.

For the frame sliding strategy, there is an improvement of 62 to 82 percent if

the FFMB scheme is used with the ODC-SC scheme, as compared to the case

when the ODC-SC strategy is used alone. However, there is only about 24 to 30

percent improvement when the FFMB scheme is used with the ODC-FC scheme.

Furthermore, for the adaptive scan and the leapfrog (first-fit) strategies, there is

only a little difference in performance whether the FFMB scheme is used with the

two task migration strategies. The mean delay time is still approximately the same

when the FFMB scheme is used together with the ODC-SC or ODC-FC schemes,

as compared to the case when no FFMB scheme is used. From these results, we can

conclusively see that there is no need to use the FFMB scheme when either the

ODC-SC or the ODC-FC strategy is employed. However, these results indicate
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(a) Frame sliding (b) Adaptive scan

(c) Leapfrog (first-fit)

Figure 5.3: Performance of FFMB with ODC-SC and ODC-FC

clearly that the FFMB strategy should be used to improve the performance of

first-fit strategies only in the absence of task migration.

5.3 Performance in Reducing Fragmentation

Lastly, the performance of the proposed strategies in reducing the amount of frag-

mentation (virtual and external) in the mesh system will be evaluated. As de-

scribed in our system model in Chapter 2, a request may make several attempts
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(a) Frame sliding (b) Adaptive scan, Leapfrog and Busy List

Figure 5.4: Effect of fragmentation in the mesh system under various strategies

in locating a free submesh in the mesh system before one is found. An attempt

is unsuccessful when either there is not enough free nodes to satisfy the request

or when a free submesh cannot be found due to fragmentation in the mesh sys-

tem. Therefore the mean number of attempts per task that is unsuccessful due to

fragmentation will be used as the performance metric to measure the amount of

fragmentation in the mesh system. Simulation is carried out using a system load

of 0.5 and the other parameters are the same as in the previous cases. Figure 5.4

shows the results obtained when the frame sliding, adaptive scan, leapfrog (first

fit) and busy list strategies are used with the proposed strategies.

From the figure, it can be observed that the number of unsuccessful attempts

for the frame sliding strategy is much higher than the rest of the strategies even

when the proposed schemes are employed. This is due to the fact that the frame

sliding strategy suffers from both virtual and external fragmentation while the
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other strategies only suffer from external fragmentation. Therefore the amount of

fragmentation is much higher for the frame sliding strategy. The FFMB scheme is

able to reduce the number of unsuccessful attempts due to fragmentation for all the

three first-fit strategies. With an exemption of frame sliding strategy, the ODC-SC

scheme improves the condition of fragmentation further. FFMB performs better

than ODC-SC when used with the frame sliding strategy as it is able to reduce a

larger amount of virtual fragmentation in addition to external fragmentation. Of

the three schemes, ODC-FC obtains the best performance since it can reduce the

largest amount of fragmentation with all the four allocation strategies used in the

study.



Chapter 6
Conclusions

In this thesis, the problem of processor allocation is considered in mesh multi-

computer systems. Firstly, a comprehensive survey of all the existing and useful

strategies in the literature has been made. Then three novel strategies that could

improve the performance of the first-fit strategies reported in the literature are

proposed. One of the strengths in the design of the strategies is in fusing the task

migration with the process of processor allocation to derive significant performance

improvement. While there are related issues such as efficient search mechanisms

and fragmentation in place, the strategies are shown to take care of these issues

efficiently. While there is literature in analyzing the task migration and allocation

independently, these are, in reality, mutually dependent events. This is the first

time in the domain of processor allocation strategies that such an attempt in real-

izing the combined influence of task migration and allocation is undertaken.

55



56

Three efficient strategies that elicit this combined influence of task migration and

allocation strategies are presented in this thesis. It has been shown that by using

the strategies together with the existing strategies, the performance improvement

is multi-fold. Clear recommendations have been made on the choice of the strate-

gies to be used, especially when first-fit strategies are to be implemented. The

impact of the strategies on one of the best-fit strategies is also shown. The recom-

mendations also took into account the total amount of overheads involved in the

process. Further, when the size of the mesh system is small, the strategies are an

apt choice in maximizing the utilization of the system, as fragmentation is shown

to be small with the design. Also, when one does not need migration owing to a

small size network, the FFMB scheme becomes a natural choice. Thus, depending

on the choice of the requirements, size of the network, amount of overheads, it

has been shown that a judicious choice among the proposed strategies is able to

render an improved performance. The rigorous simulation study which used prac-

tical workloads as reported in the literature, testified the entire workings of the

strategies proposed.

The usefulness and importance of the proposed schemes is evident from the rig-

orous simulation study. The simulation results show that the proposed schemes

indeed enhance the performance of the existing allocation strategies. When first-fit

strategies are to be chosen over best-fit strategies due to overhead concerns, the



57

proposed FFMB strategy can be employed to improve the performance of these

first-fit strategies without incurring much additional overhead. The ODC-SC and

ODC-FC strategies can be used to improve the first-fit strategies so that they can

perform better than best-fit strategies that do not use task migration. Although

the ODC-SC and ODC-FC strategies can also be used with best-fit strategies, they

tend to introduce a significant amount of overhead on top of the large overhead

that is already in place with best-fit strategies. In addition, the study shows that

both first-fit and best-fit strategies perform equally well under ODC-SC and ODC-

FC. Therefore, if ODC-SC or ODC-FC are to be employed, first-fit strategies can

be used as they incur a smaller amount of overhead. Lastly, the study also shows

that although ODC-FC incurs higher implementation overheads than ODC-SC,

it performs better. Therefore, ODC-FC can be employed in situations where the

tasks have shorter deadlines. In case where the tasks have soft deadlines, ODC-SC

can be used to reduce the amount of overheads incurred during task migration.

There are a few plausible extensions to the study presented in this thesis. As it

was clearly shown in the study that ODC-SC or ODC-FC indeed improves per-

formance under task migration, it would be of natural interest to redesign best-fit

strategies incurring minimum overheads so that the proposed strategies could be

applicable to derive better performance. Secondly, although the study in this thesis

is targeted at mesh architecture, which is commonly and widely used, performance
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study of the proposed strategies to arbitrary topologies would be interesting.
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Appendix A
Implementation Details

The implementation details on the simulation study will be presented in brief. The

performance of the proposed algorithms is studied using event-driven simulation.

The events in the simulation are allocation, deallocation and reallocation. A set of

allocation events are generated before the actual simulation is run and these events

are generated following some probability distributions. These allocation events

represent the arrival of the requests for a free submesh during the duration of the

simulation. Each allocation event is a structure that contains information such

as the arrival time of the allocation event, the dimensions of the submesh that is

required and the processing time required by the task to complete its computation.

These allocation events are inserted into an allocation queue in increasing order of

their arrival time. There is also a deallocation queue and a reallocation queue. The

deallocation queue contains deallocation events in increasing order of their arrival
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time. Similarly, the reallocation queue contains reallocation events in increasing

order of their arrival time. These two queues will be empty at the start of the

simulation.

A variable sysT ime is used in the program to track the overall system time. During

the simulation, the program compares the first event in each of the three queues

and chooses the event with the earliest arrival time as the next event. When more

than one of the events have the same arrival time, the program first chooses the

deallocation event, followed by the reallocation event and finally the allocation

event. The sysT ime variable is then updated accordingly.

If the next event is an allocation event, it is removed from the allocation queue

and the program will try to locate for a free submesh in the mesh system. If a

free submesh can be successfully located, the system updates the structures such

as R-arrays [3] and busy-arrays [12] and the total time taken to search for the free

submesh as well as to update the structures are added to the sysT ime variable.

The program then generates a deallocation event with an arrival time that is equal

to the sum of the current system time and the processing time required by the task

and inserts it into the deallocation queue. On the other hand, if no free submesh is

found, only the time taken to search for the free submesh is added to the sysT ime

variable. The program then generates a reallocation event with an arrival time
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that is equal to the arrival time of the next deallocation event. This ensures that

all the reallocation events will be processed every time after a deallocation event

has been processed.

If the next event is a deallocation event, it is first removed from the deallocation

queue. The program then updates the structures so that the submesh that is

allocated to this task is freed. The time taken to update the structures is added

to the sysT ime variable.

If the next event is a reallocation event, it is first removed from the reallocation

queue. The program then uses the same procedure as the allocation event to try

to search for a free submesh. If a free submesh is found, the sysT ime variable is

updated accordingly and a deallocation event is generated and inserted into the

deallocation queue. Otherwise a new reallocation event is generated with a new

arrival time and inserted back into the reallocation queue.

The simulation ends when all the three event queues are empty.


