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Summary 

 

Part of the work documented in this dissertation is described in [15].  The paper has 

been presented in the 2004 IEEE International Conference on Intelligent Robots and 

Systems (IROS) held at Sendai in Japan. 

  

In this project, there are two objectives.  The first objective is to formulate an 

algorithm for multiple mobile robots to cooperatively search for multiple static targets 

in an unknown structured environment.  The environment is unknown to the robots as 

they have no a priori map information on the environment layout.  The second 

objective is to analyse the system performance of the proposed algorithm.   

 

To fulfil the first objective, we formulated a distributed random search algorithm for a 

team of autonomous, simple robots.  The algorithm is based on five simple behavioural 

rules and each robot has the same rule set.  The algorithm does not need the robots to 

have self-localization capabilities.  In this way, we do not have to deal with 

localization problem, which is inherent and difficult to solve in the real world. 

 

The algorithm has been implemented on physical robots.  It is implemented as five 

reactive behaviours on the physical robots.  In the physical experiments, we deployed 

five robots to search for three targets located in different rooms in a 4m by 4m mock-

up indoor environment with multiple rooms.  Ten physical experimental runs are 

repeated using the same set-up.  The robots were able to find all the targets for all ten 

runs.  The mean time taken was 249 seconds.  We also performed experiments varying 
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the environment layout and showed that our algorithm is robust to changes in 

environment layout.   

 

In addition to physical experiments, we performed multiple simulation experiments to 

analyse the system performance.  The time taken for all targets to be found is used to 

measure performance.  In the simulation experiments, we varied the number of robots 

from four to twenty robots.  We also changed the robots’ starting positions and target 

positions, and the size of the environment.  One hundred runs are repeated for each 

parameter change.  Our experiment results show that increasing the number of robots 

in the robot team and using robots that are smaller in size improves system 

performance. 

 

Finally, we formulated a benefit function that takes into account cost considerations to 

evaluate the benefit of increasing the number of robots.  We found that ten robots is the 

optimal number of robots to search in an environment approximately four times the 

target sensing range for the type of sensors used. 
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Chapter 1: Introduction 

 

In this dissertation, we give a detailed account of our work described in [15] and 

further work following it.  The paper has been presented in the 2004 IEEE 

International Conference on Intelligent Robots and Systems (IROS) held at Sendai in 

Japan.  In the paper, we proposed a distributed random search algorithm for a team of 

simple autonomous robots to search for targets in an unknown structured environment.  

The proposed algorithm does not require the robots to have self-localization 

capabilities and has been demonstrated to be effective on actual hardware.  In addition, 

we extended the work and performed multiple simulation experiments for further 

analysis on the system performance.  

 

1.1 Background 

In the last two decades, there has been much research work in the development of 

mobile autonomous robotic systems.  A key driving force is their potential in reducing 

the need for human presence in dangerous real world applications, such as toxic waste 

cleanup, clearing of mine fields [17], planetary exploration [4], search and rescue 

mission, security, surveillance and reconnaissance [28].  The challenge of these 

applications is the requirement that the robotic systems work autonomously to achieve 

the human supplied goals.  One approach to designing these autonomous robotic 

systems is to develop a single robot that is capable of accomplishing particular given 

goals in a given environment.  This idea of a single all-powerful robot has been the 

traditional approach adopted by the robotics research community.  A second approach 

is to design cooperative multi-robot systems.  Such a system consists of multiple 
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autonomous mobile robots working together as a team to accomplish a certain goal.  In 

recent years, there is an increased research interest in the latter approach.  This is 

because cooperative multi-robot systems offer several advantages over the single robot 

systems [2] [14]: 

• The complexity of the mission requirements may be too complicated for a 

single robot to accomplish.  Hence, problems can be decomposed to smaller 

tasks and allocated among many robots. 

• Many robots can be at different places, do many and perhaps different things at 

the same time.  This inherent parallelism in multi-robot systems can improve 

overall system performance.  Hence, cooperating robots have the potential to 

accomplish a single task faster than a single robot [26]. 

• Each entity in the team of robots can be simpler than a more comprehensive 

single robot.  Thus, building multiple simple robots can be cheaper or easier 

than having a single powerful robot. 

• A single robot system is itself potentially a single point of failure.  Multiple 

robots can be more flexible and fault tolerant than a single powerful robot.  For 

a multi-robot team, fellow robots can assist a stuck robot or continue without 

sacrificing the mission. 

• Multiple robots have been shown to localize themselves more efficiently, 

especially when they have different sensor capabilities [22].  This is due to 

merging of overlapping information, which can help to compensate sensor 

uncertainty. 

 

Due to these advantages, cooperative multi-robot systems offer the potential of solving 

large amount of real world applications.  This motivated researchers to design multi-
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robot solutions and the amount of research work in this field has grown substantially 

over the years.  For these works, they can be broadly categorized into two groups: 

deliberative cooperation approach and swarm intelligence approach.  In the 

deliberative cooperation approach, robots in the team work together using an explicit 

cooperation mechanism.  Depending on the system architecture design, the robots may 

or may not follow a leader.  There is usually planning involved and a mechanism to 

perform effective task allocation among the robots.  To do this, the robots need to 

transmit messages to each other using some explicit communications.  This usually 

places high demand on the communication requirements.  Hence, cooperation is 

usually achieved with robots coordinating with each other following some global plan.  

Swarm intelligence differs from the former approach in that it uses an indirect type of 

cooperation.  Each robot in the team uses simple local rules to govern their behaviours 

and acts relatively independent from all other robots.  They do not follow a leader or to 

some global plan.  The swarm usually consists of large groups of these simple robots 

and achieves its objectives through local interactions within the entire group.  Swarm 

intelligence is the emergent collective intelligence from these local interactions of 

groups of simple autonomous entities.  

 

1.2 Project Objectives 

There are two objectives in this project: (1) To design an algorithm for multiple mobile 

robots to cooperatively search for multiple static targets in an unknown structured 

environment; (2) To analyse the system performance of the proposed algorithm.  The 

environment is unknown to the robots as they have no a priori map information on the 

layout and locations of the targets. 
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The problem described above poses the following challenges: 

• Firstly, how do we manage the many robots running around in the 

environment?  We need to design effective system architecture to control the 

multiple robots.  This system architecture must be capable of controlling a 

large number of robots and ensure that they work as a team.  In addition, it 

must also be fault tolerant such that a robot breakdown or attrition will not 

cause the overall system to fail. 

• Secondly, we need to design a cooperative mechanism to perform task 

allocation among the robots.  This mechanism must allocate the tasks 

effectively to the robots and ensure all robots are being employed to achieve 

the given system mission.  Hence, the mechanism should bring about the 

performance benefit of employing a multi-robot system over a single robot 

system. 

• Thirdly, the unknown environmental layout is another challenge for multi-robot 

cooperation, since no a priori map information is provided to the robots.  The 

robots will have no information that they can use to distribute the task among 

themselves.  We will need to answer the questions of how do we effectively 

allocate the tasks or resources to the robots such that the overall system 

performance improves.  

• Fourthly, the structured environment is a complex environment for the robots 

to autonomously navigate through.  Most works on autonomous cooperative 

multi-robot team dealt with cluttered environment.  In this type of environment, 

disconnected obstacles are usually sparsely scattered in the environment.  The 

obstacles may be arranged in a regular array or randomly spaced out in the 

environment.  See Figure 1-1 for an example of a cluttered environment.  When 
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a robot encounters an obstacle, there is usually more than one motion path the 

robot could take to navigate around it.  On the contrary, a structured 

environment usually consists of connected linear wall-like obstacles.  In order 

to navigate around an obstacle, the robot has to look for discontinuities or 

openings in the obstacle.  For example, the robot has to go through an opening 

in order to exit a room.  See Figure 1-2.  Hence, this makes it more difficult for 

autonomous robot navigation in a structured environment.  

 

Figure 1-1: An example of a simple cluttered environment 

 

• The fifth challenge is to design an effective search strategy for the multi-robot 

team.  The search strategy should be one that is suitable for multiple robot 

cooperation.  It should also maximize the use of multiple robots such that it 

Obstacles

Robot navigating 
around obstacle 
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will bring about the benefit of performance improvement over a single robot 

team. 

• Lastly, we need to design a performance measurement to gauge the overall 

performance of the multi-robot team.  Using this performance measurement, 

we design experiments to analyse the system performance of the proposed 

algorithm. 

 

Figure 1-2: An example of a structured environment  

 

In this project, we attempt to solve a search problem using a multi-robot system.  Why 

a search problem?  In all the real world problems described earlier, for example a 

search and rescue mission, security, surveillance and reconnaissance, they all require 

the robots to perform autonomous navigation and in search for some object of interest 

Robot navigating 
around obstacle 

Wall obstacles 

Opening to 
exit room 
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in the environment.  Hence, the search problem seems to be the basic problem that all 

these real world applications have to overcome.  Thus, if we can provide an effective 

multi-robot solution to the search problem, this can lead on to the development of 

solutions for these real world applications.  In addition, the search problem will be an 

effective test bed for our algorithm on multi-robot control. 

 

1.3 Problem Definition 

In this section, we provide a formal definition for the problem described in the project 

objectives. 

 

1.3.1 Mobile Robot 

The design of the control algorithm for the multi-robot team is dependent on the 

capabilities of the robot platform.  For example, the stick pulling experiments 

described in [36] required at least two robots to coordinate the pulling effort in order to 

pull out a stick.  One robot alone is not able to perform the required task.  Hence, it is 

important to first define the basic capabilities of the mobile robots that the algorithm is 

intended for.  The mobile robots in our multi-robot team are autonomous and 

independent.  They should possess onboard processing capability, motors for mobility, 

own sensors to provide situation awareness of the environment and other devices that 

are required for the robot to complete the given task. 
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1.3.2 Target 

In this project, targets are entities of interest in the environment.  They emit certain 

predefined signatures that make them distinct from other entities in the environment. 

Thus, they can be easily identified and distinguished by our robots equipped with the 

sensors to detect the emitted signatures.  

 

1.3.3 Search Environment 

In this project, the search space is strictly two-dimensional and it is a structured 

environment.  The structured environment is the interior layout of an empty building 

with multiple rooms.  We will simplify the environment by not considering the 

furniture or other objects that can be found in a building.  There are also no doors to 

block openings from leading into rooms.  Thus, the environment is mainly simulated 

by layout of walls. 

 

In addition, the environment layout is unknown to the robots.  This means that no a 

priori map information will be provided to the robots before the start of the mission or 

throughout the search.  

 

Lastly, the unknown structure environment is bounded. Thus, the robots are 

constrained to move only within the search space. 
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1.3.4 Possible Applications 

If we are able to design an effective multi-robot system to answer the problem listed 

earlier, the following far-fetched goals will not be impossible but achievable in the 

near future: 

 

Search and rescue mission in a disaster sites 

Multi-robot systems can be employed to search for survivors in collapsed building.  

The robots can be fitted with sensors to detect survivors or fitted with cameras to assist 

rescue workers.  Deploying such systems has several advantages.  Small mobile robots 

can replace the rescue workers going into the disaster site.  This reduces the risk rescue 

workers have to bear in performing the rescue mission.  Smaller robots can also enter 

tight situations where a human cannot easily move through.  Having multiple robots to 

search for survivors can potentially reduce the search time needed.  This is especially 

important, as it is a time critical mission.  The number of survivors depends on how 

fast they can be rescued.  In fact, using robots in this area is not new.  In the recent 

2001 September 11 disaster, tele-operated robots are brought into the world trade 

center site to search for survivors.  

 

Search and clearing of hazardous substances 

In view of the growing threat of terror attacks on civilian infrastructures, we can 

envisage the following scenario.  Terrorists planted explosion or toxic chemicals in a 

shopping mall.  We need to find these hazardous entities as soon as possible.  Using 

multiple robots, we can reduce the risk that a human has to undertake.  In addition, the 

robots can be equipped with devices to dispose such items.  They can also find these 

items that may be easily hidden in locations out of reach by a human.  
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Fighting in build-up area (FIBUA)  

The military has recently shown interest in this application, as urban warfare will 

become a common battlefield in the future.  FIBUA is a difficult military operation due 

to factors such as limited visibility, complex and extensive fortifications, limited 

intelligence and problems in command and control.  These often result in collateral 

casualties and damages.  Because of this, the military has always tried to avoid fighting 

in an urban environment when possible.  The use of multiple robots before the actual 

operations can provide useful intelligence.  They can subsequently serve as 

surveillance posts to monitor changes in the environment.  The robots can also serve to 

extend the reach of the soldiers during operations, by serving as front scouts and 

clearing dangerous obstacles obstructing the mission. 

 

1.4 Outline 

The work described in this dissertation can be in general grouped into three phases: 

design, implementation, and analysis.  In the design phase, we designed the multi-

robot control architecture, the search strategy and the physical robot platform for 

implementation.  For the implementation, we formulated the algorithm into control 

behaviours in both a sensor-based simulation and the physical robots.  Lastly, we 

performed a series of physical and simulation experiments to study the performance of 

our random search algorithm. 

 

The contents of this dissertation are outlined as below: 
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Chapter 2 presents related works that other researchers have contributed in this area. 

We looked into different approaches for multi-robot architecture, autonomous control 

of the robot, effect of communications on cooperation and different search strategies.  

 

Chapter 3 presents our random search algorithm.  We discuss the requirements of the 

multi-robot system architecture and look at possible solutions for the architecture 

design.  Then, we present the design of our random search algorithm. 

 

Chapter 4 presents the physical robot that we implemented with the algorithm.  We 

present a detailed description on the design of the physical robot.  Besides the physical 

robots, we also developed a client program for controlling the robot. 

 

Chapter 5 presents the simulation program that we have developed.  We describe how 

we modelled the physical robot and other entities in the simulation program.  

  

Chapter 6 covers our algorithm implementation on physical robots and simulation.  We 

formulated the reactive behaviours to implement the proposed search algorithm. 

 

Chapter 7 describes the physical and simulated experiments to test our algorithm.  We 

present results from the various physical and simulated experiments and discuss the 

results and observations. 

 

Chapter 8 presents our conclusions and recommendations for future work. 
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Chapter 2: Background on Previous Work 

 

The first project objective is to design an algorithm to control multiple robots 

searching for static targets in a bounded structured environment unknown to the 

robots.  The algorithm should be capable of controlling large numbers of robots, 

perform effective resource allocation to the robots and at the same time be robust to 

failures.  In this chapter, we will review some of the related works. 

 

Cao et al. in [14] provides a critical survey of existing works and discusses open 

problems in cooperative autonomous mobile robotics, emphasizing the various 

theoretical issues that arise in the study.  The term “cooperative” has been used several 

times in this dissertation.  However, “what is cooperative?”  Some explicit definitions 

in robotics literature include: 

• “Joint collaborative behavior that is directed toward some goal in which there 

is a common interest or reward” in [7]. 

• “A form of interaction, usually based on communication” in [38]. 

• “Joining together for doing something that creates a progressive result such as 

increasing performance or saving time” in [48]. 

From these definitions, Cao et al. in [14] derived a more formal definition.  The 

authors defined cooperative as: “Given some task specified by a designer, a multiple-

robot system displays cooperative behaviour if, due to some underlying mechanism 

(i.e. the “mechanism of cooperation”), there is an increase in the total utility of the 

system”.  In their study, the authors identified five major research axes for cooperative 

multi-robot systems: (1) Group architecture; (2) Resource conflict; (3) The origin of 

cooperation; (4) Learning; and (5) Geometric Problems.  In addition, the authors 
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pointed out some promising directions in this field: (1) Development of rigorous 

formalizations; (2) Formal metrics for cooperation and system performance; (3) 

Experimental studies might become more rigorous and thorough; and (4) Incorporation 

of recent ideas in distributed control to achieve oblivious cooperation, or cooperation 

without communications (e.g. when robots have minimal sensing and communication 

capabilities). 

 

2.1 Approaches to Multi-Robot Control 

Controlling multi-robot systems is a complex problem.  Simply increasing the number 

of robots assigned to a particular task does not necessarily guarantee better 

performance over single robot systems.  Multiple robots must cooperate without 

destructive interference to produce the benefits over single robot systems.  In addition, 

other issues such as the dynamic environment, malfunctioning robots, imperfect 

communications, and time and resource constraints add complexity to the problem.  

Over the years, various control strategies have been proposed.  In general, they can be 

classified in the following three approaches:  (1) Centralised Deliberative Approach; 

(2) Distributed Reactive Approach; and (3) Hybrid Deliberative Approach.  

 

In centralised deliberative approach, there is a central, powerful planner or controller.  

This central planner gathers information from other robots in the team and forms the 

global map information of the environment.  It then formulates a global plan and 

allocates various tasks to the each individual robot in the team.  While the robots 

execute the tasks, it monitors the execution, re-plan and re-allocate tasks when 

necessary.  Sometimes a priori map information of the environment is required by the 
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planner to begin.  Simmons et al. in [52] described a tiered architecture with a central 

planner and executive to control multiple autonomous mobile robots.  The authors 

have tested the system in the deployment of teams of robots using different 

deployment strategies.  Li et al. in [34] proposed a centralised planner that uses the 

hierarchical sphere tree structure to group robots dynamically and perform motion 

planning for the robots.  Burgard et al. in [13] used a centralised planner to coordinate 

multi-robot exploration.  In this work, target points and its utility are assigned to 

individual robots based on the cost of reaching it.  The principal advantage of a central 

coordinating controller is that an optimal solution can be produced.  It can compute a 

desired position or trajectory for each robot in the system.  However, such a system 

has disadvantages: 

• Optimal coordination of the multiple robots is computationally difficult.  In 

addition, the global plan is computed at the central planner.  This requires high 

demands on computation requirements under time constraints on this central 

planner. 

• All relevant information about the robots and their environment are transmitted 

to a single location for processing.  The amount of data transmitted can be 

enormous and data loss may not be allowed.  This leads to stringent and high 

demands on communication requirements.  Rybski et al. in [50] demonstrated 

how the communication bottleneck reduces the overall system performance.  In 

his work, a multi-robot system on a shared communication channel is shown to 

perform worse than a single robot. 

• The system is not easily scalable in numbers.  Adding more robots to the team 

may require a change in the cooperation strategy.  It can also cause an 

exponential increase in computation and communications requirements. 
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• The system may not be suitable to operate in a dynamic environment.  Any 

changes to the environment have to be made known to the central planner.  It 

then has to re-plan the global plan.  Hence, it can potentially slow down the 

whole system.  

• There is the existence of a single point of failure that can potentially cause the 

whole system to fail.  For example, if the central planner breaks down or there 

is a break in the communication network, these can cause a standstill in the 

system.  Hence, increasing the risk of mission failure in harsh real world 

environment. 

 

Distributed reactive approach can address the above problems through distributing the 

planning among the robots in the team.  There is no global plan to coordinate the 

robots.  Each robot is an autonomous independent entity, acting on information that is 

locally available through its sensors.  Cooperation in the team emerges through the 

local interactions among robots and the environment.  As the field of artificial life 

emerged, researchers have begun to model systems by applying nature-inspired 

principles such as swarm intelligence to robotics.  Swarm intelligence is the emergent 

collective intelligence from the local interactions of groups of simple autonomous 

entities.  It was first introduced by Beni in [8] on the concept of cellular robotics.  

Subsequently, proven working models in nature (ants, bees, etc.) have motivated 

researchers to show considerable interest in swarm intelligence [9][21][56][59][61].  

Parunak in [45] summarised several studies of such systems, and derives from them a 

set of general principles that artificial multi-agent systems can use to support overall 

system behaviour significantly more complex than the behaviour of individuals agents.  

Dudek et al. in [21] presented a swarm robot taxonomy of the different ways in which 
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such swarm robots can be characterised.  Reynolds in [49] demonstrated flocking 

behaviour in birds using just three simple behavioural rules.  In his simulated flock, the 

birds worked independently trying to stick together and avoid collisions.  The flocking 

behaviour emerges from these independent behaviours.  Hackwood et al. in [27] 

proposed a model where simple robots act under the influence of “signpost robots”.  

Many aspects of the collective activities of social insects are self-organized.  

Successful models of self-organization capabilities of ant colonies have inspired many 

researchers to design ant-liked systems.  Ants and other insects are known to use 

chemicals called pheromones for various communication and coordination tasks. 

Payton et al. in [46][47] modelled these chemical pheromones with their virtual 

pheromones of infrared messages.  They have successfully demonstrated this concept 

in their work on pheromone robotics through physical simple robots interacting with 

each other using the virtual pheromones.  Wagner et al. in [59] had the ant-robots 

performing distributed covering of an un-mapped building using evaporating traces 

that gradually vanish with time.  Kube et al. in [32] demonstrated cooperative box 

pushing by a group of robots just using simple ant inspired behavioural rules.  

Bonabeau et al. in [10] identified that self-organisation relies on four basic ingredients: 

(1) Positive feedback; (2) Negative feedback; (3) Amplification of fluctuations; and (4) 

Multiple interactions.  This distributed reactive approach allows fast response to 

dynamic conditions and decrease the communications requirement.  Typically, little 

computation is required since each robot plans and executes its own activities.   

Moreover, the whole system is more robust and the approach scales easily to 

accommodate large number of robots.  However, the principal drawback of this 

approach is that they often result in highly sub-optimal solutions because all plans are 

based on local information.  In addition, completeness cannot be assured and generally 
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large numbers (or infinite time) is the best guarantee to obtain high probability of 

“completing” the task. 

 

In hybrid deliberative approach, cooperation is deliberately planned for.  Unlike the 

centralized approach, there is no central planner.  Information gathered by different 

robots is exchanged whenever possible and the robots use that available information to 

generate individual plans.  These plans can be individual robot activities or multi-robot 

activities.  Better connectivity among the robots allows better cooperation and hence 

results in better system efficiency.  To achieve cooperation, many groups adopted 

strategies similar to Contract Net Protocol, first introduced by Smith in [54].  It is an 

approach to negotiation in multi-agent systems inspired by a market-liked model.  

Simmons et al. in [53] extended their earlier work of a centralized tiered layered 

architecture [52] to a hybrid one.  Each robot now has a complete three-layered 

architecture and the layers can interact directly with the same layer of other robots.  

This approach has the two disadvantages: firstly, negotiation protocols and mapping of 

task domains to appropriate cost functions can complicate the design of a control-

architecture; secondly, negotiation schemes can increase communications 

requirements. 

 

2.2 Robot Control 

Brooks [12] presented a robust and flexible robot control system.  Layers of control 

systems are built to let the robot operate at increasing levels of competence.  These 

layers operate asynchronously and higher-level layers can subsume the roles of lower 

level layers.  Mobile robots designed using the behaviour-based paradigm have shown 
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good performance in adapting and operating in open environments.  The approach has 

been praised for its robustness and simplicity of construction.  One of the pioneering 

works is Reynolds’s flocking behaviour in [49].  Balch et al. in [6] demonstrated multi-

robot formation keeping using reactive behaviours.  Mataric in [40] presented three 

examples of behaviour-based control robots performing navigation and path finding, 

group behaviours, and learning election.  

  

2.3 Communication 

For robots to cooperate, some forms of communication may be required.  In general, 

there are three types of communication.  In the first type, the environment itself is the 

communication medium.  There is no explicit communication among the robots.  

Stigmergy is an example of such communication principles where indirect interactions 

among the entities are through modifications of the environment to achieve collective 

behaviour.  It was first described by Grasse to explain how social insect colonies can 

collectively produce complex behaviours [10].  The second type is interaction through 

sensing where the robots are able to distinguish themselves from the environment.  

Lastly, the robots communicate directly with one another.  Hence, robot 

communication can be implicit through interaction with the environment or explicit 

where intended messages are directed or broadcast to other robots.  Although, Arkin in 

[1] has demonstrated that cooperation is possible without communication, he does not 

make the claim for all tasks.  The effect of communications on the system performance 

has been studied in [5][20][37][55].  In general, these works concluded that some 

simple local interactions among robots would improve the system performance. 
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2.4 Search Strategy 

The problem of exploring an environment has several applications like planetary 

exploration, reconnaissance, rescue, etc.  An effective search algorithm should not be 

environment dependent [42].  In general, there are two types of search strategies: a 

perfectly plan-based coordinated search pattern [13][29][42][46][47], and a random 

search [20][24][25][55].  

 

Burgard et al. in [13] assigns target locations to robots, taking into account the cost of 

reaching it and its utility.  Typically, plan-based strategy requires accurate localization 

capability.  However, in urban environments, accurate localization using Global 

Positioning System (GPS) is generally not possible.  While landmark-based 

approaches may be inaccurate, this is particularly true in disaster scenarios, where the 

dynamic environment may undergo structural modifications [29].  Other plan-based 

approaches in [29][46][47], overcomes this constraint by having the robot entities in a 

tightly coordinated formation through line-of-sight relationships with one another.  

However, such approaches may not fully exploit the parallelism advantage in multi-

robot systems.  

 

For the random search strategy, Gage in [25] presented the chord strategy by McNish.  

In the chord strategy, the searcher travels as far as possible between changes of 

direction and is guaranteed not to visit any point twice during transit.  A diffusion 

reflection algorithm to determine the next chord direction can reliably provide uniform 

coverage.  However, the chord strategy requires the localization of the robot and 

geometry of the search area.  Other randomised search algorithms described in [25] do 

not claim to provide complete coverage and they have only been explored in 
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simulations.  Gage in [24][25] proposed that multi-robot systems consisting of many 

inexpensive simple robots may tend to use randomised search strategies for two 

reasons: (1) the effectiveness of a coordinated search strategy decreases with the 

capability of the search sensor, and (2) the cost of implementing a coordinated search 

strategy is higher.  

 

2.5 Related Work 

In this dissertation, we proposed a distributed random search algorithm.  The multi-

robot control architecture of our algorithm uses the distributed reactive approach.  In 

this way, there is less demand on the computational and communication capabilities of 

the robots.  Hence, we can use multiple simple robots to solve the posed problem.  

Moreover, this approach allows us to scale the number of robots easily and is robust to 

single point of failure.   

 

In our proposed algorithm, each robot is controlled by simple behavioural rules using 

the behavioural-based approach.  The difference of our work from previous similar 

works is that we have added behavioural rules to promote local interactions.  We 

believed that these rules add benefits as previous studies on communication have 

shown that having some form of simple local interactions would improve the system 

performance.  In addition, these local interactions are required for the robot to 

complete the search problem. 

 

Our proposed search algorithm uses the random search strategy.  As discussed earlier, 

randomised search is more suitable for multi-robot systems that use simple robots.  
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The analysis on randomised search strategies in earlier works was mostly done in 

simulation and dealt with cluttered environments.  Unlike these works, our random 

search algorithm is implemented in both physical robots and simulation for a 

structured environment.  In addition, it is robust to changes in the environment. 

 

Lastly, our proposed random search algorithm does not require the robots to localize 

themselves.  As discussed earlier, good accurate robot self-localization in an indoor 

environment is difficult to achieve on real physical robots.  Many works on 

cooperative multi-robot systems could only be implemented in simulation as they 

assume that robots have the self-localization capabilities.  Hence, we do not make this 

assumption here.   

 

2.6 Chapter Summary 

In this chapter, we have looked at the various multi-robot control architectures that 

have been proposed by researchers over the years.  In general, there are three 

approaches: (1) Centralised Deliberative Approach, (2) Distributed Reactive 

Approach, and (3) Hybrid Deliberative Approach.  Each of these multi-robot control 

architectures has its advantages and disadvantages.  There is no “the one” architecture 

that is perfect for all multi-robot systems.  However, based on the system requirement, 

we can apply the techniques from these approaches to design an architecture that 

brings out the benefits of our multi-robot system.  

 

Some form of communication is required for cooperation among the robots.  The type 

of communication also affects the system architecture.  For example, swarm 
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intelligence uses implicit communications as cooperation and explicit communications 

is more suitable for deliberate control.  In general, the works surveyed suggests that 

some form of simple interactions will improve system performance. 

 

We also surveyed some of the search techniques employed.  In general, there are two 

approaches: plan-based and random search.  Plan-based techniques require more 

capabilities of the robots, such as self-localization and better sensors, compared to 

random search strategies. 

 

Lastly, we formulated our random search algorithm using the findings of these earlier 

works.  We also presented the differences of our work from these works.  Mainly, our 

algorithm has behaviour rules to provide local interactions and do not require robot 

self-localization capabilities. 
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Chapter 3:  Designing the Multi-Robot 

System Architecture 

 

In the earlier chapter, we have looked at some related works.  Over the years, 

researchers have proposed different multi-robot control architectures and different 

search strategies to tackle this autonomous robot search problem.  From their work, we 

learned the problems associated with multi-robot control and real world environment 

implementation complications.  In this chapter, we will discuss the requirements of the 

multi-robot system architecture to solve our posed problem.  Following this, we will 

look at possible solutions for the architecture design.  Finally, we will present our 

random search algorithm for multiple autonomous independent robots to solve the 

indoor search problem. 

 

3.1 Architecture Requirements 

The first objective of this project is to design a cooperative search strategy for multiple 

autonomous robots searching for targets in an unknown structured environment.  The 

first step to provide a solution for the problem is to design the multi-robot control 

architecture for the system.  Hence, we will define some characteristics that the multi-

robot system architecture should possess: 

• The multi-robot system should be economically cheaper compared to a single 

robot system.  This is to bring in the added benefit of using multiple robots.  

Each robot should be relatively cheap and allows them to be sacrificed.  For 
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example, a robot can itself be carrying a bomb and take out a target by 

exploding against it. 

• The system should be fast and responsive.  This is important for time crucial 

tasks such as locating a bomb in the building.  The robots cannot spend too 

much time waiting to compute the next step to move. 

• Easily scalable in numbers.  The system should allow increasing the number of 

robots without much work needed to change the multi-robot control system.  

• Robust to failures.  There should not be any failure points in the multi-robot 

systems that can potentially cause the whole system to fail.  We want a system 

that is capable of handling robot “attrition” such that the system will still 

operate even when it is down to a single robot. 

• Homogeneous composition.  We would like a system that is homogeneous, that 

is, all the robots are the same, having the same capability.  In addition, each 

robot has the capability of performing a given task alone.  This is different 

from some multi-robot system where robots need to coordinate to perform a 

task.  For example, in the stick pulling experiments, two robots are needed to 

pull out a stick. 

 

3.2 Inspiration From Nature 

In our effort to design an effective multi-robot system, we decided to take a step back 

and look at nature for ideas.  The reason being that nature itself has lots of proven 

working examples of real life cooperative systems.  How does a wolf pack coordinate 

and organize the pack in a hunt to make the wolves such efficient hunters?  How does 

a flock of geese organize themselves to fly in formation during migration such that 
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they save energy and have better chance of survival?  How does a school of fishes 

swim together in formation to fool their predators?  How does a swarm of army ants 

that can easily make up to a few hundred thousands in numbers organize themselves in 

a hunt foraging for food?  Living organism in nature has been constantly evolving for 

the past millions of years and nature has an effective way of improving them.  Through 

nature selection, the better systems will have higher chance of survival and those 

inferior systems need to improve or face extinction.  

 

Among these social organisms that display cooperative behaviour, the foraging 

behaviour of the ant colony interests us the most.  The ant colony is well known to be 

efficient searchers, even in terrain that is unknown to the colony.  The ants 

demonstrate this capability in their food foraging behaviour.  Not only are they able to 

find the food source that can be located some distance, but also find the shortest path 

leading to the food source from the nest.  How do these simple social insects achieve 

such complicated collective behaviour?  The answer lies in the ants’ capability to self-

organize efficiently. 

 

Deneubourg et al. in [19] showed that path selection to a food source in the Argentine 

ant is based on self-organization.  In their simple and elegant experiment set-up, a food 

source is separated from the nest by a bridge with two equally long branches.  After 

some time, a single dominant trail of ants formed on one of the branches.  They 

replaced the branches with one branch longer than the other and performed the same 

experiments.  Initially, there were two trails of ants on the branches.  After some time, 

the trail on the shorter branch dominated.  Hence, the ants were not only capable of 

finding the food source, but also able to find the shortest path to it. 
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Aron et al in [3] have shown that the Argentine ant could solve the minimal spanning 

tree problem.  In their laboratory experiment, three or four nests are connected by 

cardboard bridges.  The resultant traffic of ants was such that the ants were travelling 

on a set of paths connecting all the nests.  The set of paths formed a minimal spanning 

tree, that is, the ants did not use redundant bridges. 

 

Army ants are among the largest and most cohesive societies [18].  Their foraging 

systems coordinate hundreds of thousands of individuals and cover a thousand square 

meters in a single day.  There is no centralized control, each individual acts on its own 

behaviours.  These swarm raids, comprised of individuals that are virtually blind, are 

fascinating examples of powerful, totally decentralized control.  This is achieved 

through self-organization, which was shown in Deneuborg et al.’s [18] self-

organization model of the army ant raid patterns. 

 

3.3 Proposed Algorithm  

We are inspired by the amazing collective foraging behaviour of the ants that results 

from just simple individual ant behaviours.  Hence, we attempt to design our algorithm 

using a similar approach.  Like the individual ants, we design simple behavioural rules 

for the robots, based on what simple individual will do intuitively when searching in 

an environment.  Firstly, the individual robot needs to wander around the unknown 

environment to explore it.  Through wandering in the environment, the robot will be 

able to discover new grounds and explore them.  When moving in the environment, it 

will surely encounter obstacles or other robots.  Hence, the robot needs certain 
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collision avoidance logic to prevent collisions.  In a search task, the individual robot 

obviously must have certain logic to find the targets in the environment.  Lastly, for 

the robots to be cooperative and work as a team, they must have some means of 

communication with each other.  Therefore, putting all this together, our algorithm 

consists of the following five behavioural rules: 

 

Rule 1 is essentially obstacle avoidance behaviour.  The robot will avoid any robots or 

obstacle in its motion path.  This rule does not require the robot to distinguish fellow 

robots from obstacles.  

 

Rule 2 allows the robot to find any target within its detection range.  It will also alert 

neighbour robots (if any) of the target presence relative to itself.  This is achieved 

through broadcasting a message and any robots within the communication range can 

receive it.  

 

Rule 3 allows the robots to react to messages from fellow robots.  The way the robots 

cooperate depends on the reaction of the robot.  For example, if the robots move away 

 

1) Avoid obstacles and fellow robots. 

2) Find targets and alert neighbouring robots. 

3) Respond to neighbouring robots’ messages. 

4) Follow external commands. 

5) Wander in the environment. 
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from the robot emitting the messages, this will result in scattering behaviour of the 

robots.  

 

Rule 4 allows the robots to receive messages from an external command and acts on 

them.  These commands can be used to control or change the robots behaviour.  The 

robots can follow these commands and perform different sub tasks.  For example, 

initially the robots can be given the order to move in a group and assemble at a certain 

location, start the mission at a certain time and finally regroup when the mission is 

over. 

 

Rule 5 is actually the default rule.  It is activated when the above four rules is not 

active and is dependant on the mission requirement.  In a search mission, we will like 

the robots to wander in environment and explore unseen places. 

 

The rules are prioritised, with rule 1 having the highest priority.  They provide local 

interactions among the robots for cooperation.  For example, when a robot avoids a 

fellow robot, it changes its search path.  Cooperation to find all targets is achieved 

through the local interactions triggered by rule 2 and 3.  These two rules can ensure 

that a target is only found by one robot.  Each robot is independent and controlled by 

the five behavioural rules, that is, all the robots have the same intelligence.  

 

3.3.1 Algorithm Characteristics 

The proposed algorithm has the following characteristics: 
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• Distributed Control.  Each individual robot works independently and is 

controlled by the behavioural rules without waiting for instructions from a 

central controller. 

• Simplicity.  Each robot is governed by just the five simple behavioural rules.  

The rules do not have high computational requirements.  Hence, the robot can 

be simple and low cost. 

• Fast and responsive.  The simple behavioural rules do not demand high 

computation capability.  Thus, all computations can be completed relatively 

fast and be responsive to changes in the environment. 

• Homogeneous.  All robots are physically the same and are controlled by the 

same behavioural rule set. 

• Scalable in numbers.  The algorithm does not require tight coordination among 

the robots and the system is homogeneous.  Hence, robots can be added or 

removed easily without the need to change the algorithm. 

• Robustness.  The system is distributed.  Thus, there is no single point of failure. 

 

3.3.2 Uniqueness of Algorithm 

The behavioural rules do not require the robot to know its position or the environment 

layout.  This is an important characteristic as robot localization in an indoor 

environment is a difficult task and is itself an area of research.  This is because it is not 

possible to use the GPS in the indoor environment.  We cannot rely on the robot’s 

odometer as it accumulates errors from slippage and uneven terrain.  In addition, 

landmark-based localization techniques have high computation requirements and do 

not work well in dynamic environments.  Dynamic environments, for example a 
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disaster site, may contain moving entities or changes in the layout.  In this work, 

fellow robots moving in the environment will cause problems for landmark-based 

localization techniques.   

 

Lastly, the randomised search strategy is employed here.  Based on the architecture 

requirements discussion, the random search is suitable for our algorithm.  This is 

because of the characteristics of our proposed algorithm.  Random search is suitable 

for simple distributed control architecture that is reactive to dynamic changes, and 

where low cost robots can be easily added or removed from the system. 

 

3.4 Chapter Summary 

In this chapter, we proposed a distributed random search algorithm for a team of 

autonomous simple robots.  We have also identified certain key requirements for the 

algorithm.  They are: low cost robots; fast and responsive; scalable in numbers; 

homogeneous and robust to failures. 

 

In designing our algorithm, we looked at working cooperative systems from nature.  In 

particular, we are interested in the foraging behaviour of the ant colony.  Through 

simple local individual behaviours, the ants can produce emergent complex system 

behaviour.  Thus, we are inspired by the ants and propose an algorithm comprising of 

five simple behavioural rules.  Our algorithm employs a random search strategy and 

does not require the robots to localize themselves.  The behavioural rules also provide 

local interactions among the robots for cooperation. 
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Chapter 4: Designing a Physical Robot 

Platform 

 

In this chapter, we present the mobile robot platform that we designed and built to 

implement our random search algorithm.  We will discuss the design criteria for the 

robot.  Following this, we give a description of the sensors, actuators, communication 

devices and other components on the robot.  Finally, we developed a client program to 

control the robot using a Pocket PC.  It should be noted that the focus of this research 

is not designing the physical mobile robot.  We designed the mobile robot for the 

purpose of implementing our search algorithm.  The physical robot is used to 

demonstrate that the search algorithm is robust enough to function in a real world 

environment.   

 

4.1 Mobile Robot Design Criteria 

Simplicity is one of the main characteristics of the proposed distributed search 

algorithm.  It does not have high demand on the capability of the robot platform.  

Hence, simple and economically cheaper robots can be used.  Gage [23] defined a 

simple robot as one possessing: (a) a measure of mobility, (b) sensor capability to 

measure its position with respect to its nearest neighbouring elements, (c) mission 

capable sensor, (d) communications capability, and (e) on board processing capability.  

 

Our simple robot must be capable to meet the demands of the proposed algorithm. 

Thus, we define the following design criteria: 
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• Mobility.  Each robot must be capable to move about in the environment 

without help from other robots.  Since the robots do not need to have 

localization capability, there is no need for position encoders on the robots. 

• Sensor capability.  The robots must be equipped with sufficient sensors to 

provide situation awareness of the environment to the robot.  This is required 

for successful autonomous robot navigation in the environment. 

• Mission capable sensor.  Since the mission here is to search for targets, which 

are represented by light beacons.  Hence, light detectors are required for the 

robot to find targets. 

• Communication.  The algorithm requires some means of communication 

among the robots.  Thus, the robot must be equipped with some communication 

device. 

• Processing capability.  The robots are autonomous.  Hence, there must be some 

on-board processing capability in the robot. 

 

4.2 Inspiration From Nature  

Since the design of our random search algorithm is nature-inspired, we could also look 

at nature for ideas to design our mobile robot platform.  In nature, organisms are living 

in a harsh world where the rule “survival of the fittest” applies.  Having good sensory 

and motion capabilities is important for survival.  Nature selection and evolution has 

taken place through millions of years.  Hence, the organism in nature must have 

evolved to some very effective design.  For example, biologists discovered that bats 

started out as ground rodents and have evolved wings for flight to hunt for food.  
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However, the focus of this research is not on the robotic platform. We will not look 

into those fanciful actuator capabilities but gather insight on the sensory part. 

 

Have you ever tried swatting a fly?  Notice how difficult it is to swat one.  The fly’s 

sense is very well developed.  Its compound eyes with an “ommatidium” as basic unit 

cover a wide angle and are particularly good in detecting quick assault movements.  

This sensory capability combines with the fly’s ability to manoeuvre itself into 

intricate flight patterns makes it difficult to swat a fly.  Another example is spiders.  

Spiders have six or eights eyes, all looking in different directions.  This allows them to 

spot preys, predators or potential danger easily.  Hence, allowing them to react 

responsive to the specific situation.    

 

Drawing ideas from these insects, we decided to design a robot that has sensors to give 

it wide coverage of the environment around it.  Preferably, the robot should have 

sensors all round to detect for any changes in the environment. 

 

4.3 Robot Platform Description 

The focus of this research is not in designing a robot platform.  We are not proposing 

creative novel designs for the robot.  The purpose of the robot is for us to implement 

the proposed algorithm and demonstrate that the algorithm works.  We set out to 

design our simple mobile robot based on the criteria listed and the ideas obtained from 

nature.  We named the mobile robot “CoSyBot”.  Figure 4-1 shows the CoSyBot.  We 

have built and assembled five CoSyBots to implement our random search algorithm 

and conduct physical experiments. 
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Figure 4-1: CoSyBot robot platform 
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4.3.1 Features of CoSyBot 

4.3.1.1 Physical Structure   

CoSyBot has a modular structure.  Layers or modules can be changed or added to 

reconfigure the robot according to the mission requirements.  For example, the light 

sensor module can be replaced with a pyroelectric sensor module to detect heat source.  

The robot has a circular footprint of 150mm in diameter with a height of 300mm.  

There are two power supplies for the robot: six 1.5Volts AA batteries to power the 

sensors and microprocessor; and four 1.5Volts AA batteries for the servomotors.  All 

power is supplied directly to the microprocessor boards, which then relay it to the 

other devices.  

 

4.3.1.2 Mobility   

Locomotion of the robot is provided by two modified continuous servomotors with a 

wheel each and supported by two ball transfers serving as caster wheels.  The wheel 

axis passes through the centre of the robot with the wheels symmetrical about the 

centre axis.  See Figure 4-2.  This allows the robot to turn on the same position using 

differential drive without any swing radius.  Since, the environment is a two-

dimensional structured workspace with a flat terrain, this locomotion is sufficient for 

the robot to manoeuvre in it.  The servomotors are driven by the motor controller on 

the microprocessor board. 
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Figure 4-2: CoSyBot actuator layer 

 

4.3.1.3 Sensors   

Firstly, a Devantech magnetic compass gives the heading information of the robot in 

the environment.  This compass uses the Philips KMZ51 magnetic field sensor, which 

is sensitive enough to detect the Earth's magnetic field.  The output is the absolute 

heading value in the range of 0-360° with a resolution of 0.1°.  The compass output 0° 

when it is pointing in the direction of the Earth’s magnetic north.  It is connected to the 

microprocessor board using the industrial IIC bus. 

 

Secondly, the ultrasonic range sensor layer consists of eight Devantech SRF08 range 

sensors.  Technical data of these ultrasonic sensors can be found in Appendix A.  They 

are placed 45° apart in a circular array, giving 360° all round sensing for the robot.  

Each SRF08 is an ultrasonic range sensor and provides range information of the 

environment around the robot.  They are connected to the microprocessor board using 

the industrial IIC bus.  Each SRF08 has a unique address, which allows the 

microprocessor to talk directly to. 

Casters 
Wheels 
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Thirdly, each SRF08 has a built in light sensor.  The light sensor is to detect the targets 

(light beacons) in the environment.  Hence, they are the mission capable sensors for 

the robot.  Together, the sensors provide situation awareness of the environment. 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: SRF08 sensors arrangement 

 

4.3.1.4 Communication   

There are two types of communication devices on CoSyBot to provide local implicit 

communication and global explicit communication.  The IR transceiver layer on the 

robot provides the implicit communication.  It consists of eight IR transceivers placed 

45° apart in a circular array, similar to the light and ultrasonic range sensor layer.  

These IR transceivers are standard IrDa 1.0 compliant.  They are directional and allow 

communication via the IR channel.  Hence, robots can send IR messages to other 

robots within the transceiver line of sight range.  This layer allows local interaction 

between neighbour robots, similar to the “dance” which honey bees perform to 

Ultrasonic range 
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Light  
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communicate with each other.  We designed the circuit for these IR transceivers, as it 

was not available as an additional option for the BrainStem GP 1.0 board.  They are 

fabricated using commercial off the shelf components.  The circuit board is responsible 

for encoding and decoding the IR messages and communicates to the microprocessor 

board via the RS 232 serial interface. 

 

The wireless LAN communication network provides the explicit communication.  This 

is achieved using the IEEE 802.11b wireless device on the Pocket PC.  The developed 

communication network uses the UDP protocol, and allows both broadcasting and 

peer-to-peer communication among the robots.  In this way, explicit communication 

can be achieved among the robots in the network to enhance cooperation among them, 

e.g. when one robot found a target, it can inform all the robots in the team.  In addition, 

an operator can send external commands to the robots via this network. 

 

4.3.1.5 Processing   

Firstly, the robot has two BrainStem GP 1.0 microprocessor boards networked 

together.  This is the part of the robot that manages connections to the rest of the 

physical devices on the robot, i.e. servomotors, ultrasonic range sensors, IR transceiver 

etc.  Simple TEA programs can also be loaded and run from the microprocessor 

boards.  Technical specifications of the BrainStem GP 1.0 microprocessor board can 

be found in Appendix B. 

 

Secondly, the robot can be operated in slave mode with a host computer as the master.  

A Pocket PC is mounted on the robot and served as the host computer via RS 232 

serial connections.  This arrangement allows the robot to exploit the better processing 



Designing a physical robot platform 

 39

power of the Pocket PC.  In our set-up, we used the HP iPAQ H5450 Pocket PC, 

which has a 400 MHz XScale processor.  The algorithms for the behavioural rules are 

implemented in the host computer to control the robot.  Figure 4-4 illustrates the 

architecture of CoSyBot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Architecture of CoSyBot 

 

4.4 Client Program   

We developed a client program for the CoSyBot using Microsoft Embedded Visual 

C++.  The design of this client program promotes reusability and portability.  Figure 

4-5 illustrates the architecture of client program.  It consists of the following 3 layers:  
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• Device Abstraction Layer.  This layer abstracts the robot’s control code away 

from the physical robot platform.  In other words, it is an interface layer between 

the control codes and the physical robot.  It decouples the control codes from the 

physical robot.  Requests or commands are sent to this layer, which in turn relay 

them to the physical robot and back to the source.  The advantage of having this 

layer is that it allows the client program to work with other robotic platform.  This 

can be achieved through providing the relevant device controllers to the device 

abstraction layer.  Hence, the user needs only to work in this layer, while reusing 

his algorithm control codes without major changes to it. 

• Application Layer.  The algorithm control codes reside in this layer.  It mainly 

consists of two components.  Perception module accesses the robot’s raw sensor 

data through the device abstraction layer and processes them into useful 

interpretable information for the robot.  Behaviour module accesses this 

information and triggers the appropriate control behaviour.  The control behaviour 

then sends the actuator commands to the physical robot through the device 

abstraction layer.    

• User Control Console.  This layer provides an interactive display for the user to 

control the robot.  He can start and stop his control program from here, access the 

processed information from the Perception module or execute the behaviours in the 

Behaviour module.  It also has an output console for logging data while the robot is 

in operation.  This is handy for the user to debug or troubleshoot his control codes.  

The user can also access the robot’s physical devices directly via the device 

abstraction layer.   
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The Microsoft Embedded Visual C++ toolkit also allows the client program source 

codes to be complied to work with different embedded systems.  In our set-up, the 

client program runs on the HP iPAQ H5450 Pocket PC with a 400MHz xScale 

processor.  The Pocket PC acts as the host computer and controls the robot in slave 

mode.  Connection between the Pocket PC to the robot is via the RS-232 standard 

serial port.   

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4-5: Architecture of CoSyBot client program 

 

 

4.4.1 Features of the Client Program 

Features of the client program include: 

Device Abstraction Layer 

Physical Robot (Sensors, Actuator, etc.) 

Perception Behaviour 

User Control Console (GUI) 

Application Layer

Client Program
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• Algorithms are implemented onto the robot through the client program using 

C/C++ programming language.  This is useful as C/C++ is a widely used 

programming language. 

• It handles the serial communication link with the robot. 

• It supports the wireless network implementation for the robot. 

• It has a hardware diagnostics tool to check the robot’s sensors and actuators. 

• A GUI interface for easy interaction with human operator.  See Figure 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: GUI of the client program. Main window (left) & Hardware diagnostic 
window (right) 

 

4.5 Chapter Summary 

In this chapter, we presented the physical robot CoSyBot that we designed and built.  

CoSyBot is designed following the criteria that we had laid out so that it could meet 
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the demands of our proposed random search algorithm.  In general, it must possess 

sufficient sensors, motors for mobility, means for communication and on-board 

processing capabilities, allowing it to operate independently.  CoSyBot uses ultrasonic 

sensors to sense the environment, light detector to detect targets (light beacons), IR 

transceivers for local interactions, and servomotors for mobility.  We have built and 

assembled 5 CoSyBot for our physical experiments.  In addition, we also developed 

the client program to control the robots using a Pocket PC. 



Modelling the physical robot and structured environment 

 44

Chapter 5: Modelling the Physical Robot 

and Structured Environment 

 

Earlier, we described the physical robot that we have designed and built to implement 

our proposed random search algorithm.  We also developed the client program to 

control the robot using a Pocket PC.  The intention is to demonstrate our proposed 

algorithm on physical robots.  In addition to the physical robot and client program, we 

also developed a computer simulation program.  We modelled the physical robot and 

the structured environment in the simulation program.  In this chapter, we present the 

simulation program and how we modelled the individual entities in it. 

   

5.1 CoSyBot Simulation 

This simulation program serves 2 main purposes.  Firstly, we can use the simulation 

program to design, develop and test our robot behavioural codes before implementing 

on the physical robot.  Hence, we are not developing it directly on the physical robot.  

This makes sense because we would have to deal with real world problems if we work 

on the physical robot directly.  This takes more time and makes it difficult to isolate 

any problems encountered during the development process.  Secondly, it is technically 

not feasible to perform multiple experiments using physical robots for studying the 

algorithm.  We can use the simulation program to perform multiple simulated 

experiments.  The simulation program will allow us to generate more results in a 

shorter time compared to performing the physical experiments.  The above two 
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purposes can be achieved through developing a simulation program that has high 

fidelity to the physical robot. 

 

The simulation program is a two-dimensional graphical simulator that simulates the 

topological view of the environment.  It can run on any Microsoft Windows based 

machine.  The program is written in C/C++ programming language and using 

Windows programming for the graphics.  Approximately six thousand seven hundred 

and seventy lines of codes are written for this simulation program.  

 

5.2 Modelling the CoSyBot 

A model of the CoSyBot robot is created in the simulator.  We modelled it closely to 

the actual robot, having similar physical characteristics.  These are namely the physical 

body, motion drive, navigation and target sensors, and communications capabilities.  

They are described in detail as follows. 

 

5.2.1 Physical Body   

The physical CoSyBot robot has a circular footprint of 150mm diameter and stands 

300mm high.  All physical devices on the robot are bounded within this circular 

footprint.  In other words, there are no physical devices protruding out of the 150mm 

circle and physical contact on this circular body is considered robot collision.  We 

modelled this physical structure of CoSyBot in the simulator.  On the simulator GUI, a 

circle object represents the CoSyBot robot.  The circle size scales with the simulated 

environment dimensions, accordingly to the actual CoSyBot in a real environment.  
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The simulated robot will collide with simulated objects on the circle circumference and 

not pass through them in the simulator.  

 

5.2.2 Motion Drive   

The physical CoSyBot robot uses differential drive with zero swing radius for motion.  

Hence, it is capable of making turns on the same location.  We model this motion 

capability of the robot on the simulator.  The model has two parameters for motion: 

translation velocity and rotation velocity.  These parameters can be configured 

accordingly to the physical robot’s speed. 

  

5.2.3 Sensors   

There are three sensors on CoSyBot.  The first sensor, which is the magnetic compass, 

gives the robot’s heading.  This is easily achieved in simulation using an absolute 

reference frame and output the simulated robot’s heading with respect to it. 

 

The next sensor, which is the SRF08 ultrasonic range sensor, gives range information 

of objects from the robot.  Figure 5-1 shows the sonar pattern graph of the SRF08 

ultrasonic range sensor provided by the manufacturer.  As illustrated by the sonar 

pattern graph, the sensor has an effective field of view of 40° (20° left and right of the 

sensor central axis).  The sensor has built-in processing capability to process the raw 

sonar data and outputs the detected range directly.  It has an effective range of 3cm to 

6m.  However, this depends on the height of the sensor mounted from the ground.  

This is because the sonar wave emitted is approximately conical in shape and sonar 

reflections from the ground will decrease the effective range.  The effect reduces as the 
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sensor is mounted higher.  On the CoSyBot, the sensor has an effective range of 1.2m.  

We verified these physical characteristics (field of view and range) of the sensor 

through physical experiments of measuring the range and shifting obstacles away from 

the sensor central axis.  The experiment results can be found in Appendix C.  We first 

created a simulated model of the ultrasonic sensor with these physical characteristics.  

Then, we positioned eight of this simulated ultrasonic sensor in the CoSyBot model.  

They are placed in the same position as the physical CoSyBot.  Therefore, the range 

values obtained from them in simulation are similar to the actual physical robot. 

 

The third sensor, which is the light detector, is capable of detecting any light beacons 

that is within direct line of sight.  On CoSyBot, we used the light detector with a 

binary output to detect the targets.  These characteristics are modelled on our simulated 

light detector to detect line of sight simulated light beacons.  Similarly, they are placed 

at the same positions as on the physical CoSyBot. 

 

5.2.4 Communication   

CoSyBot uses IR transceivers for local implicit line of sight communication.  The 

communication range is limited to 1m for our application.  We modelled these physical 

characteristics in our simulated IR transceiver.  Eight of this simulated IR transceivers 

are created in the CoSyBot model.  Similarly, they are placed in the same position as 

the physical CoSyBot. 
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Figure 5-1: SRF08 sonar pattern graph 

 

Therefore, a simulated model that is close to the actual physical robot is created.  In 

addition, the algorithm is developed following the architecture of the client program in 

Figure 4-5.  Program codes for both perception and behaviour are separated from the 

simulator through a device abstraction layer.  The effort in doing this is to ensure that 

the algorithm developed in simulation can be easily implemented on the physical robot 

without major changes. 
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5.3 Modelling Target 

Targets are modelled as circular objects in the simulator.  They return true to the 

simulated light detectors on the CoSyBot when they are within the prescribed 

detectable range. 

 

5.4 Modelling the Structured Environment 

Walls and obstacles are modelled as either polygon or circular objects in the simulator.  

Like CoSyBot, they exist as simulated physical objects in the simulator.  Any contact 

with the surface of these objects is considered collision.  Hence, the CoSyBot 

simulated object cannot move through them.  The structured environment is created 

using a combination of wall objects in the simulator. 

  

5.5 Input File 

A text file is used to specify the set-up in the simulator.  In the input file, the user can 

specify the number of robots to use and their positions, the structured environment 

layout and dimensions, the number of targets and their positions.  The simulator reads 

in these inputs and creates the set-up in the simulator.  Hence, different experiment set-

ups can be easily modelled using different input files. 

 

Putting all these together, Figure 5-2 shows the GUI display of the simulator.  The blue 

circles with arrowheads represent the CoSyBots and their heading.  The black polygon 

objects represent the walls or obstacles.  Yellow circle objects represent the targets and 

they change to red circles when found.   
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Figure 5-2: Simulator GUI 

 

5.6 Chapter Summary 

In this chapter, we described the two-dimensional simulation program that we have 

developed.  We modelled the CoSyBot, targets (light beacons), and the structured 

environment in the simulator.  It reads an input text file to set-up the simulated 

environment.  The program is written in C/C++ programming language and runs on 

any Microsoft Windows based machine.  Approximately six thousand seven hundred 

and seventy lines of codes are written for this simulation program. 
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Chapter 6: Algorithm Implementation 

 

In this chapter, we present the implementation of our proposed random search 

algorithm.  We formulated the five behavioural rules into five reactive behaviours for 

the CoSyBot.  These reactive behaviours are developed using the simulator described 

earlier.  Then, they are tested and refined on the physical CoSyBots.  We describe the 

algorithm behind each individual behaviour and illustrate how they interact together to 

solve the posed search problem. 

 

6.1 Mobile Robot Navigation 

Autonomous mobile robot navigation is a key problem to successful applications of 

mobile robot systems.  In addition, avoiding collision with other entities in the 

environment is important for successful mobile robot navigation.  Hence, all mobile 

robots feature some form of collision avoidance.  These range from primitive 

algorithms that stop the mobile robot in short of a detected obstacle to complex 

algorithms that enable the robot to detour obstacles.  The latter approach may result in 

non-optimal paths, since no prior knowledge about the environment is used.  This 

brings no added benefit of designing complex obstacle avoidance algorithms as they 

usually have high demands on sensors and computation requirements.  Hence, our 

algorithm is a simple local obstacle avoidance behaviour that suffices in preventing 

collision and selecting a safe direction for the robot to navigate in the environment.  

 

The second factor to consider is the navigation sensor used by the robot.  Sensors such 

as a laser range finder that has long range and high accuracy for resolution of 0.5 
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degree can provide more detailed and highly reliable sensor information of the 

environment.  They are excellent for algorithms that are highly sensitive to sensor 

accuracy. The CoSyBot uses eight SRF08 ultrasonic sensors for navigation.  

Ultrasonic sensors present many shortcomings [11]: 1) Poor directionality limits the 

accuracy in determining the spatial position of the obstacle; 2) Frequent mis-readings 

are caused by either ultrasonic noise from external sources or stray reflections from 

neighbouring sensors; and 3) Specular reflections can cause an obstacle to be not 

detected or “seen” as much smaller that in reality.  Hence, we need to design an 

obstacle avoidance algorithm suitable for using ultrasonic sensors. 

 

From the literature, there are a number of obstacle avoidance algorithms available.  

One popular obstacle avoidance method is based on edge detection.  In this method, an 

algorithm tries to determine the position of the vertical edges of the obstacle and then 

steer the robot around either one of the “visible” edges [16][33][60].  A common 

drawback of edge-detection approaches is their sensitivity to sensor accuracy.   

   

Khatib in [30] suggested the idea of imaginary forces acting on a robot.  In this 

method, obstacles exert repulsive forces, while target applies an attractive force to the 

robot.  A resultant force vector, comprising the sum of a target-directed attractive force 

and repulsive forces is calculated for a given robot position.  Further works using this 

technique can be found in [31][41].  Common to these methods is the assumption of a 

known and prescribed world model, in which simple, predefined geometric shapes 

represent obstacles and robot’s path is generated off-line.  
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Borenstein et al. in [11] developed the Vector Field Histogram (VFH) method.  It 

looks for gaps in locally constructed polar histograms.  VFH employs a two-stage data 

reduction process.  In the first stage, it constructs a reduced one-dimensional polar 

histogram from a local grid around the robot.  In the second stage, it selects the most 

suitable sector from all polar histogram sectors with a low polar obstacle density and 

aligning the robot to that direction.  Using this technique, the robot is able to travel at 

faster speeds without becoming unstable and is less likely to get trapped in a local 

minima.  Borenstein et al. demonstrated the VFH method on a mobile robot using 

ultrasonic sensors.  Ulrich et al. proposed the VFH+ method in [57].  VFH+ is an 

improved version of the VFH.  It takes into account of the width of the robot and the 

robot trajectory.  This results in less trajectory oscillations and also an improved 

direction selection using a cost function.  The VFH* algorithm proposed in [58] 

combined VFH+ with the A* search algorithm to overcome problematic situations 

inherent with purely local obstacle avoidance algorithms.    

 

The results and potential of the VFH algorithm inspired us in the algorithm design of 

our reactive behaviours for “CoSyBot”.  We find the similarity of the “CoSyBot” 

physical characteristics and the VFH technique.  In particular, the sector selection and 

aligning the robot to that direction is suitable for CoSyBot.   

 

6.2 Reactive Behaviours 

In chapter three, our proposed algorithm consists of five behavioural rules: 1) Avoid 

obstacle and fellow robots; 2) Find targets and alert neighbouring robots; 3) Response 

to neighbouring robots’ messages; 4) Follow external commands; and 5) Wander in the 
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environment.  CoSyBot has no self-localization capability, which itself poses a major 

research problem.  Hence, it will not be able to map the explored environment.  Most 

global plan-based algorithms will not be possible without map knowledge of the 

environment.  Local reactive approach is simple and fast.  It connects the appropriate 

actions for the robot to take directly to the available sensor information.  See Figure 

6-1.  This is suitable for dynamic unknown environment.  In addition, this approach 

has less demand on the physical capability of the robot platform.  Thus, it is suitable 

for the simple CoSyBot platform.     

 

The development of the robot behaviours is done using the CoSyBot simulator.  This is 

useful as the simulator contains a realistic model of CoSyBot.  Both the simulator and 

the client program are written in C/C++ programming language, and have similar 

architecture.  Therefore, the behaviour codes developed in the simulator could be 

directly ported to the client program on the physical robot for testing.  A local reactive 

behaviour is implemented for each of the five behavioural rules. 

 

 

  

 

 

 

 

 

 

Figure 6-1: (a) Plan-based approach versus (b) Local reactive approach 
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6.2.1 Obstacle Avoidance 

Obstacle avoidance is the first behaviour on the list.  As discussed earlier, obstacle 

avoidance is important for autonomous mobile robot navigation.  It is responsible for 

preventing the robot from physical collision with other entities in the environment and 

at the same time determines the robot’s new direction of motion.  Therefore, it has the 

highest priority.   

 

This behaviour relies on the eight SRF08 ultrasonic range sensors to provide situation 

awareness of the environment.  The robot’s perception of the environment local to the 

robot is divided into eight sectors, each covered by a sensor respectively.  CoSyBot 

always moves forward in a direction coincident with the central axis of sector 0.  

Hence, sectors 1 and 7 are forward facing, sectors 2 and 6 are side facing, and the rest 

are rear facing sectors.  See Figure 6-2.  Each ultrasonic range sensor simply returns 

the range reading of the nearest object.  Sectors with range reading less than a 

prescribed trigger distance will be considered blocked.  A blocked sector to the robot 

implies that there is an obstacle in that particular sector or region of the environment.  

Hence, it is not “safe” for the robot to transverse into that region.  The region is now 

considered inaccessible.  When the obstacle avoidance behaviour is triggered, the 

result is a change in the direction of motion or collision with an obstacle, if the choice 

of the trigger distance is not properly chosen.   

 

A larger trigger distance would suggest more “intelligent” obstacle avoidance 

behaviour, as the robot is able to start avoiding obstacles that are some far distance 

away.  However, for local obstacle avoidance algorithms, a larger trigger distance may 
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cause the robot to be overly sensitive and perform manoeuvres unnecessarily early.  

Moreover, it may also lead the robot to no longer detect existing openings or falsely 

report a trap situation.  This is due to the field of view of the ultrasonic sensor, which 

increases away from the sensor.  However, too small a trigger distance may result in 

the robot not sufficiently responsive to dynamic changes in the environment.  For 

example, having a second robot suddenly moved into the robot’s motion path.  Hence, 

the choice of the trigger distances is important.  A set of trigger distances that 

performed well is obtained through experiments using the physical CoSyBot; refer to 

table in Figure 6-2.  The dashed red lines in the figure represent these trigger distances.  

Observe that they are not uniform.  There are two reasons for this.  Firstly, for the 

CoSyBot set-up, uniform range will cause the robot to be trapped in continuously 

turning situation or overturning if it is to ignore the rear sectors, see Figure 6-3.  

Secondly, the forward facing sectors is assigned a larger trigger distance for higher 

safety considerations.  The trigger distances are obtained through positioning obstacles 

in the respective sectors with the robot moving towards them and able to avoid them 

safely without collision.  The largest trigger distance is 15cm in sector 0, which 

coincidently is the robot width.     

 

The robot changes its direction of motion when a forward facing or side facing sector 

is blocked.  The robot stops first and proceeds to select a new direction.  During the 

selection stage, the trigger distances for all sectors are changed to 15cm.  Each central 

axis of an unblocked sector is a possible new candidate direction.  The robot will then 

choose the unblocked sector closest to sector 0, illustrated in Figure 6-4.  Hence, 

sectors 1 and 7 have higher priority over the other sectors.  In symmetrical situations, 

the robot will choose one randomly.  If all the sectors are blocked, the robot will stop 
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and wait for one to be clear.  This is because the robot should always be able to turn 

back to the previous direction, unless a fellow robot has moved behind it.  Hence, it 

can only proceed only after this fellow robot moves away.  This is a first in, last out 

policy.  In this way, our algorithm can address the issue of multiple robots in a dead-

end narrow passageway.  This is important for multi-robot systems since it will be an 

inherent problem.  The algorithm is illustrated in Figure 6-5.   

 

Similar to the VFH algorithm, our local obstacle avoidance also looks for gaps in the 

local environment.  This is achieved without the need of maintaining a local grid and 

constructing the polar histogram.  Thus, our technique is less computational intensive. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: Sector representation of the local environment around robot 

 

 

 

Sector Safety Range 
/ cm 

0 15 
1 11 
2 7 
3 7 
4 7 
5 7 
6 7 
7 11 

Forward 
direction 

0 

1 7

4 

2 

3 

6

5

 
Robot



Algorithm implementation 

 58

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Uniform ultrasonic range. (A) Continuously turning, (B) Overturning 
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Figure 6-4: Illustration of obstacle avoidance behaviour  
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Figure 6-5: Obstacle avoidance behaviour algorithm 

 

6.2.2 Target Detection 

The robot will be able to perform autonomous navigation with the obstacle avoidance 

behaviour in place.  Next, the robot requires the mission capable behaviour for it to 

complete the required task.  Target detection is responsible for finding the targets and 

its priority follows after obstacle avoidance.   
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This behaviour relies on the eight light detectors positioned around the robot.  See 

Figure 6-6.  Similarly, eight sectors are considered.  The light detectors can only detect 

line of sight light beacons and do not have wide-angle span like the ultrasonic sensors.  

When a light detector detects the light beacon, the respective sector is turned active.   

 

Figure 6-6: Light detectors around robot 

 

Like obstacle avoidance, target detection behaviour also changes the robot’s direction 

of motion.  However, targets are now attractive instead of the obstacles repulsive 

effect.  Each central axis of an active sector is a possible new candidate direction.  The 

behaviour will randomly choose one if there are more than one active sector.  Targets 

are considered found when it is within a certain range from the robot, fulfilling the 

definite range law in [25].  The robot stops and broadcast the “found target” message 

to other robots via the line-of sight infrared transceiver.  See Figure 6-7.  The 

algorithm is illustrated in Figure 6-8.  In the CoSyBot physical set-up, obstacles 
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between the robot and target will block off the light rays.  Hence, the target detection 

attractive effect will not conflict with obstacle avoidance’s repulsive effect.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7: Illustration of target detection behaviour 
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Figure 6-8: Target detection behaviour algorithm 

 

6.2.3 Respond to Neighbouring Robot’s Message 

For multiple robots to be cooperative, some form of communication is required.  

Communication allows the robots to cooperate effectively, improving the overall 

performance.  Hence, it is an important component for multi-robot systems.   In our 

survey on the works by robotics researchers, they concluded that in general some 

simple local interactions among robots will improve the system performance.  This 

behaviour is designed to provide for the local interactions among the robots.     
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The behaviour uses the eight line-of sight infrared transceivers for implicit 

communication among the robots.  See Figure 6-9.  Earlier, a robot will send the 

“found target” message when it has found a target.  If the infrared transceiver in sector 

0 receives this message, this implies a robot has found a target ahead of it.  This 

behaviour will stop the robot and change its direction of motion.  In selecting a new 

direction, the robot randomly chooses from the sectors that do not receive such 

messages from other robots.  Again, the candidate directions are the respective central 

axis of the sectors.  There are two reasons for this behaviour.  Firstly, this prevents the 

scenario of having more than one robot finding the same target.  Secondly, in this way 

the robots are compelled to explore other areas, increasing the probability in 

exploration of unknown space.  See Figure 6-10.   The algorithm is illustrated in 

Figure 6-11.  The combination of this behaviour and target detection behaviour 

provides the local interactions for cooperation to find all targets. 
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Figure 6-10: Illustration of respond to neighbouring robot’s message behaviour 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11: Responding to neighbouring robot’s message algorithm 
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6.2.4 Follow External Commands 

Follow external commands behaviour does not contribute directly to the autonomous 

control of the robots.  It is not required for the robots to complete the mission but is a 

useful feature to the multi-robot system.  It provides an avenue for the commander or 

user to intervene or control the robots.  For example, the commander can inhibit the 

target detection behaviour at the beginning.  This will cause the robots spreading out in 

the environment without the distraction from the targets.  He can later activate this 

behaviour to complete the mission.     

  

This behaviour uses the wireless network for global communication.  This is achieved 

using the UDP protocol in winsocks network programming.  Currently, the usage of 

this behaviour is limited to starting and stopping the robots.  This is useful as starting 

and stopping large number of robots can be a difficult task. 

 

6.2.5 Wander 

Wander is the default behaviour for the robot.  When none of the previous behaviour is 

active, wander is responsible for moving the robot in the environment.  The robot just 

continues moving in the current direction.  In addition, it also looks for openings to 

move into.  This is useful as it increases the possibility of the robot moving into 

potentially unexplored areas. 

 

This behaviour uses the ultrasonic range sensor to sense for openings to move into.  

Referring to Figure 6-2, it makes use of sectors 1, 2, 6 and 7.  It senses for openings 

through detecting a large jump in the range readings for these sectors.  If openings are 
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detected, the behaviour will select, from the candidate directions, the new direction to 

turn to or maintained the current direction.  The decision is made randomly using a 

random number generator.  In doing this, it prevents the robot from being trapped in a 

particular room.  If there are no openings, the robot maintains its current forward 

motion.  See Figure 6-12.  The algorithm is illustrated in Figure 6-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 6-12: Illustration of wander behaviour 
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Figure 6-13: Wander behaviour algorithm 

 

6.3 Implementing the Reactive Behaviours 

The five reactive behaviours are implemented on five physical CoSyBot robots and the 

simulator.  For all five behaviours, the robot does not require to know its position in 
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behaviours provide the local interactions among robots.  For example, when a robot 

avoids a fellow robot, it changes to a new search direction.   
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The robot executes the behaviours in a sequential flow as shown in Figure 6-14.  

Behaviours that acquired sensors information fulfilling all its condition will trigger and 

send action commands to the robot.  This allows the robot to respond quickly to 

changes in the environment.  Since the reactive behaviours are simple and each 

requires little computation, sequential execution in real time is feasible.  The detailed 

interactions between the behaviours are illustrated in Figure 6-15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-14: Sequential execution of the behaviours 
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neighbour’s messages and Follow external commands.  Follow external is used only to 

start or stop the robots.  As discussed earlier, respond to neighbour’s messages 

behaviour provides the addition local interactions to improve systems performance.  In 

addition, it ensures that one target is found by only one robot.  Hence, all robots are 

employed to search for different targets and all targets can be found as long as there 

are more robots than targets. 

 

6.4 Chapter Summary 

In this chapter, we implemented the proposed random search algorithm into five 

reactive behaviours.  The behaviours are: (1) Obstacle Avoidance, (2) Target 

Detection, (3) Respond to neighbouring robot’s message, (4) Follow external 

commands, and (5) Wander.  We described the algorithm for each of the individual 

five reactive behaviours and illustrated how they integrated with the capabilities of 

CoSyBot.  The behaviours are executed in a sequential flow in order of their priorities.  

This is possible to control the robot in real time as the behaviours are simple and 

require little computation.  Lastly, we are confident that these behaviours are sufficient 

because similar works previously have demonstrated a foraging task with three 

behaviours: Avoid; Forage and Wander.  We have additional behaviours for local 

interactions to improve system performance and ensure that all targets will be found. 
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Figure 6-15: Interaction of the behaviours 
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Chapter 7: Analysing the System 

Performance 

 

In the previous few chapters, we covered the design and implementation phases of this 

project.  In this chapter, we demonstrate that our proposed random search algorithm 

can solve the search problem.  We integrated the five behaviours together in a 

simulation experiment to verify that our algorithm works.  Then, we moved to physical 

experiments to demonstrate that our algorithm works on real robots in a real world 

environment.   

 

Continuing to the next project objective, we performed multiple simulation 

experiments to analyse the performance of our algorithm.  In these experiments, we 

varied the number of robots, robot starting positions and the size of the search 

environment.  Finally, we discuss the results and observations from these experiments. 

 

7.1 Testing the Algorithm in Simulation 

In the previous chapter, we reasoned that the five reactive behaviours are sufficient to 

solve the posed search problem, supported with findings in previous works by other 

researchers.  In this section, we will test the five reactive behaviours in simulation to 

demonstrate that they work.   

 

The set-up in the simulation is designed to simulate the indoor of a building with 

multiple rooms.  We make the following assumptions: (1) Size of openings leading to 
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rooms is wide enough for the robot to move through, (2) the number of robots must be 

greater or equal to the number of targets, and (3) targets should be located in the 

environment that is accessible to the robots.  This set-up will also be used in our 

physical experiments. 

 

7.1.1 Experiment Set-up 

In this simulation test, we deployed five CoSyBots to search for three targets in a 

structured environment.  The environment created is a 4m by 4m bounded building 

with multiple rooms.  Figure 7-1 shows the simulation set-up.  There are three targets 

(yellow circles), each placed in separate different rooms.  While, all five robots (Blue 

circles with arrowhead) start from the same room.  The speed of each robot is set to 0.3 

meters per second.  The range of the target sensor is approximately 1 meter, which is 

less than the shortest distance from the opening to the target of all rooms.  In other 

words, the robots must enter the rooms to find the targets.  The time taken for all three 

targets found is used to measure the system performance.  The aim of this experiment 

as stated earlier is to verify that our proposed random search algorithm works.  A 

hundred simulation runs is repeated to generate a sufficiently large sample size. 

 

7.1.1.1 Results and Analysis 

The results obtained for the hundred simulation test runs is illustrated in Figure 7-2 

and listed in Table 7-1.  All three targets are found in all hundred simulation test runs.  

Therefore, our proposed random search algorithm is sufficient to solve the search 

problem.   
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From the results in Figure 7-2, we observed that the performance of the algorithm 

fluctuates greatly for the hundred runs.  The mean time is 216 seconds with standard 

deviation of 105 seconds.  This is due to two reasons.  Firstly, the randomised strategy 

in the algorithm resulted in robots taking different motion paths even for the same set-

up, resulting in different results for each run.  Secondly, there are few robots in the 

environment to provide consistent local interactions for cooperation.  

 

 

Figure 7-1: Simulation test set-up 
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Figure 7-2: Results of 100 simulation test runs 

 

 

Table 7-1: Results of simulation test 

Five robots team Mean, µ /s Standard Deviation, σ / s
100 Simulation runs µs = 216 σs = 105 
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7.2.1 Experiment Set-up 

We duplicated the simulation test set-up, described in the earlier section, in the 

physical experiment.  See Figure 7-3.  The physical robots also have similar 

capabilities.  There are two aims for this experiment.  First is to demonstrate that the 

proposed algorithm works on physical robots in a real world environment.  Secondly is 

to verify the fidelity of the simulation program to the physical experiments.  Ten 

physical experiment runs is repeated for this set-up.     

 

Figure 7-3: Physical experiments layout 

 

7.2.2 Robots Searching for Targets 

Figure 7-4 shows screenshots of a video clip captured in one physical experiment run.  

The screenshots show only portions of the set-up because the ceiling in the lab area is 

not high enough for our video camera to capture the full set-up.  Screenshot (1) shows 

five CoSyBots at the starting position in one room and a target represented by a light 

beacon in another room.  We start the robots using a separate Pocket PC to send 

commands to the robot through the wireless network.  The user or commander just 
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needs to send a single “start” command, which is broadcasted to all the robots.  And 

the robots will start together upon receiving the command.  Similarly, this applies to 

“stop” and other commands.  In addition, the user could also send commands to a 

specific robot.  To do this, he just needs to include the intended robot’s identification 

number in the commands.  In our set-up, each robot has a unique identification number 

and the robots will ignore the commands if their identification number does not match.  

These demonstrate the “Follow External Commands” behaviour on the physical 

robots.        

 

Screenshots (3), (4) and (5) illustrate the robot performing the “Obstacle Avoidance” 

behaviour.  The robot detected the wall within the trigger distance of its forward 

sensing sectors.  It then selected the new direction to turn to according to the algorithm 

described earlier.  Screenshot (6) shows the robot had successfully avoided the wall.  

Throughout the physical experiments, the robots were able to avoid collisions using 

this behaviour. 

 

The “Target Detection” behaviour is illustrated in screenshots (13), (14) and (15).  

When the light detectors on the robots detected the target, it triggered the behaviour to 

approach the targets.  The robots considered the targets found when they are within a 

prescribed range away as shown in screenshot (15).  Then the robots stopped and start 

sending IR messages that the targets in the rooms are found.  This interacts with the 

“Respond to Neighbour’s Messages” behaviour to expel other robots away.  In this 

way, there will be only one robot to each target found.   
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When there are no obstacles, targets or IR messages, the robots will just wander in the 

environment with the default “Wander” behaviour as shown in the screenshots.  If the 

robot detects an opening, this behaviour will also randomly decide to guide the robot 

to move through the openings.  In screenshot (17), the robot was moving parallel to the 

wall.  It detected the opening when moving past it and the “Wander” behaviour turned 

the robot to move into the room illustrated in screenshots (18) and (19).   

 

Each physical experiment terminated when the last target is found, for example in 

screenshot (20).  The screenshots show that all targets are found, each by one robot.  

This is similar for other physical experiment runs.  Therefore, the physical experiments 

demonstrated that our proposed algorithm is capable of solving the required problem 

and is feasible to be applied on physical robots. 
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Figure 7-4: Screenshots of a physical experiment 

 

7.2.3 Physical Experiments Results and Observations 

The robots found all three targets in all ten physical experiment runs.  The results are 

listed in Table 7-2.  The mean time taken is 249 seconds. 

 

Table 7-2: Results for ten physical runs 

Runs 1 2 3 4 5 6 7 8 9 10 
Time 

taken /s 254 191 320 237 127 304 423 175 219 238 

 
Mean, µ / s 249 Standard Deviation, σ / s 84 
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During the runs, we observed that the robots have random motion paths.  The robots 

do not repeat the same motion path even though they start from the same positions for 

each run.  This is similar to the simulation test runs because of the randomness nature 

present in the behaviours.   

 

In addition, we also did physical experiments with different layouts, target locations 

and starting positions.  The results for these experiments are not tabulated.  This is 

because the main motive is to verify that the search algorithm is not unique to solving 

the layout shown in Figure 7-3.  In these experiments, the robots were still able to find 

all the targets.  Hence, the search algorithm is demonstrated to be robust to the robot 

starting position and the layout of the environment.   

 

In a few experiments, there were instances of robot ‘attrition’.  For example, a robot 

stopped moving due to failure in the hardware.  However, this did not affect the rest of 

the robots, they still continued to search for targets and found all targets.  We also 

performed experiments beginning with four robots, and adding one robot later during 

the experiment.  This did not affect the system.  We can conclude that the algorithm is 

robust to robot failure and scales in numbers easily. 

 

7.2.4 Comparing with Simulated Test Results 

The results obtained for the five robots team for both the simulated test and physical 

experiment are listed in Table 7-3.  
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Table 7-3: Simulation test and physical experiment results for five robots team 

Five robots team Mean, µ /s Standard Deviation, σ / s
100 Simulation runs µs = 216 σs = 105 

10 Physical runs µs = 249 σp = 84 
 

The average time for five robots in the simulation test runs is 216 seconds, which is 

close to the 249 seconds obtained in physical experiments.  The physical experiment 

mean is 0.31σs from the simulation experiment mean.  This is much smaller than one 

standard deviation away.  Hence, the simulation experiment results are reasonably 

close to the physical experiments. 

 

7.3 Simulation Experiments 

Further experiments on the algorithm are done using the simulation program.  The aim 

of these simulation experiments is to analyse the performance of the proposed random 

search algorithm.  Various system parameters are varied for the analysis and 

simulation experiments will allow us to perform the analysis more rapidly.  Moreover, 

it is not feasible and practical to perform many explicit physical experiments, as the 

system parameters cannot be easily varied and time consuming having each run at real 

time for large sample runs.  For example, changing the number of robots or the 

environment size and repeating the experiments for a hundred runs.  The results for the 

simulation experiments can be found in Appendix C. 

 

7.3.1 Varying the Number of Robots 

In any multi-robot system, one important system parameter to consider is the number 

of robots in the team.  This parameter has a direct influence on the system 
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performance.  Intuitively, having more robots in the team should improve the 

performance.  However, it can also cause the whole system to fail if the multi-robot 

control system is unable to handle the number.   

 

7.3.1.1 Experiment Set-up 

Using the same set-up in Figure 7-1, we varied the number of robots from a four robots 

team to a twenty robots team at the same starting position.  There are two aims of this 

experiment.  First is to analyse the effect of the number of robots on the system 

performance.  Second is to test whether the algorithm is scalable in number.  Similarly, 

a hundred simulation runs is repeated for each number of robots to produce a 

sufficiently large sample size for the analysis. 

 

7.3.1.2 Results and Analysis 

Figure 7-5 shows the results with the mean time displayed on a logarithmic scale.  The 

graph shows the mean time, over hundred runs, taken for each of the robot team sizes.  

Two observations can be made from the graph.  Firstly, the system performance 

improves with the number of robots.  This is expected as having more robots in the 

team means there are now more robots performing the task.  It increases the 

parallelism advantage of the multi-robot system.  Hence, it suggests that increasing the 

number of robots will increase the probability of success.  Secondly, the system 

performance reaches a point where there is no significant improvement with increasing 

number of robots.  From Figure 7-5, the number is about ten robots for this given 

environment.  After ten robots, the graph tends to a horizontal line.  This is expected, 

as having a larger number of robots with no change in the size of the environment will 

lead to over-crowding.  This increases the amount of interference each robot exerts on 
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fellow robots.  The robots are spending more effort avoiding collision with each other 

than performing productive work to complete the mission.  Hence, it reduces the 

efficiency of the system. 

 

Throughout the experiments, no changes are required on the algorithm to increase the 

number of robots in the team.  We simply add the robots, each with the same identical 

set of behaviours, to the team.  Therefore, our algorithm is easily scalable in numbers.  

 

Figure 7-5: Graph of mean time (on logarithmic scale) taken to find all targets against 
number of robots 

 

 

Lastly, in section 7.1.1.1, we stated that one of the reasons for the highly random 

results is that there are too few robots in the environment to provide consistent local 

interaction.  From Figure 7-6, the standard deviation for the results obtained decreases 

with the number of robots.  Hence, this result support our hypothesis made earlier. 
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Figure 7-6: Standard deviation against number of robots 
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addition, we also varied the number of robots from four to twenty.  Similarly, a 

hundred simulation runs is repeated for each set. 

 

Figure 7-7: Different robots’ starting position and targets position 

 

 

7.3.2.2 Results and Analysis 

Figure 7-8 shows the results with the mean time displayed on a logarithmic scale.  The 

graphs show the mean time taken to find all targets for different number of robots in 

each of the four set-ups.  A few observations can be made from the graphs.  Firstly, all 
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four set-ups show a similar trend.  They show an initial sharp decrease in the time 

taken to find all targets with increasing number of robots.  This decrease in the mean 

time, i.e. improving system performance, gradually becomes insignificant after a 

certain point.  Secondly, the system performance for the same number of robots differs 

for each set-up.  This is evident from the graphs.  For example, the four robots team in 

set-up four took the longest mean time, approximately 1.5 times more than the rest.  

This is because the complexity of the environment changes with the robots’ starting 

position.  The robots may be starting in some positions that have difficulty accessing 

other rooms.  This suggests that for the same environment layout and size, the number 

of robots, their starting positions and target positions are factors affecting the system 

performance.  Thirdly, the effect of robots’ starting position and target positions on 

system performance decreases with increasing number of robots.  From the graph, the 

system performance for the four set-ups is consistently closer to each other after ten 

robots.  More robots suggest more local interactions among them and increasing the 

possibility to explore new areas.   

 

Although the system performance varies for each set-up, the robots were able to 

complete the required task.  Hence, the algorithm is robust and not dependent on the 

robots’ starting position and targets’ positions. 
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Figure 7-8: Experimental results of different robots’ starting position and targets’ 
positions  

 

7.3.3 Increasing the Environment Size 

In this set of experiments, we increased the size of the environment.   

 

7.3.3.1 Experiment Set-up 

The size of the environment is scaled up two times while keeping the same 

environment layout.  See Figure 7-9.  Comparing to Figure 7-7, noticed that the 

environment is now twice its original size and the robots’ starting position and target 

positions are similar.  The robot’s physical characteristics, such as sensing range and 

speed, are kept the same.  The aim of this experiment is to study the effect of the 

environment size on the system performance.  Similarly for a fair comparison, we kept 

the layout unchanged.  The number of robots is varied from four to twenty and a 

hundred simulation runs is repeated for each set. 
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7.3.3.2 Results and Analysis 

Figure 7-10 shows the results with the mean time displayed on a logarithmic scale.  

The graphs show the mean time taken to find all targets for different number of robots 

in each of the four set-ups.  We would expect the robot to take longer to find all 

targets, since the environment area is now twice as large.  The robots have to traverse a 

longer distance to find the targets.  Surprisingly, the robots performed better in a 

bigger environment.  This is clearly observed when comparing the results in Figure 7-8 

and Figure 7-10.  We made certain observations from the simulation to explain for this 

better performance.  Firstly, the robots are now smaller relative to the environment.  

This allows the robots to navigate through narrow passageways and openings to rooms 

easily.  These difficult environment features are now less tight in space for the robots.  

Hence, the robots could enter rooms to find targets with lesser difficulty.  Secondly, 

the bigger free space in the environment reduced the interference among robots.  The 

robots have a bigger free space to move about, reducing the encounter times with other 

robots.  In this way, the robots spend less time avoiding fellow robots and more effort 

exploring the environment.  To support this hypothesis, we can compare the number of 

obstacle avoidance behaviour routine calls for each set-up in both environment sizes.  

For a fair comparison, we should consider the number of obstacle avoidance behaviour 

routine calls relative to the total number of reactive behaviour routine calls in the robot 

team.  Table 7-4 lists the ratio of the relative number of obstacle avoidance behaviour 

routine calls in a ten-robot team for the double size environment to the original size 

environment.  The ratios for all the four set-up are less than one.  Hence, there are 

lesser obstacle avoidance behaviour routine calls in the robot team for the bigger 

environment.  This is inline with our hypothesis. 
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The size of a real world environment is fixed and usually followed certain standards.  

We cannot change the environment size.  Hence, the results suggest that using small 

robots is useful for the proposed algorithm.  This is inline with the objectives of the 

algorithm, which is to use simple cheap robots.  Our algorithm uses local reactive 

behaviours.  It is not able to perform optimal path planning with only local 

environment information.  However, using small robots will allow it to navigate 

through tight areas with lesser difficulty.  This is similar to the argument of having 

shorter trigger distance for obstacle avoidance discussed earlier. 
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Figure 7-9: Set-up for scaled environment experiments 
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Figure 7-10: Experiment results for scaled environment experiments 

 

Table 7-4: Ratio of the relative number of obstacle avoidance behaviour routine calls 
for the four set-ups 

Ten-robot team Ratio for double 
size to original size 

Set-up 1 0.6 
Set-up 2 0.4 
Set-up 3 0.3 
Set-up 4 0.4 

 

7.4 Discussions 

From the experiments, we have identified that the factors affecting the system 

performance are the number of robots, the robots’ starting positions and targets’ 

positions, and the size of the robots.  A larger number of small robots in the team will 

reduce the effect of robots’ starting position on the system performance and yet yield 

better performance.  This can be deduced from the graphs in Figure 7-10.  
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In almost all multi-robot works, increasing the number of robots in general will always 

improve the system performance.  Thus, from the performance viewpoint, having more 

robots is good.  However, there are associated costs with increasing the number of 

robots.  Such as the robot’s physical monetary value, power consumption, 

communications overhead, etc.  These costs are usually not taken into consideration in 

accessing the benefit of adding more robots.  This is because most of these costs are 

subjective parameters.  For example, to access whether the monetary price of the 

robots is expensive, is subjective to the respective individual.  Some of these costs may 

be specific to the particular system.  If the relevant costs involved are put into 

consideration with improved system performance.  There may be no added benefit in 

increasing the number of robots, though this may improve the system performance.  

The improvement may not always outweigh the costs involved.   

 

We propose a simple function to evaluate the benefit of increasing the number of 

robots: 

( ) C
P

PP
nBBenefit

n

nn −
−

=+ +11, , 

Where Pn is the performance of the current number of robots, Pn+1 is the performance 

of the adding one robot to the team and C is a constant.  The first term in the function 

is a dimensionless rate of change of the system performance.  The constant term C is 

the cost of adding one robot to the team.  In the equation, it is a constant because the 

cost of adding one more robot is subjective.  Hence, it will be up to the human 

designer to decide on its value.  This equation simply balances the performance 

improvement benefit with the incurred costs.  Thus, as long as the value is positive and 

non-zero, there is benefit to add the additional robot.   
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Applying the equation to the results in Figure 7-5 and choosing C = 0, we obtained the 

benefits of increasing the number of robots in the first set-up.  The results are 

illustrated in Figure 7-11.  We chose C = 0 because in our multi-robot systems, the 

main cost incurred with adding more robots is the physical monetary value of our 

robot.  Since our algorithm aimed to use simple inexpensive robots, we can ignore the 

cost and assigned it to 0.  From the graph, the benefit of adding the eleventh robot is a 

negative value.  It is the first instance where the benefit falls below zero.  In this case, 

we should not add the eleventh robot and stopped here since there is a break in 

bringing benefit to the system with adding more robots.  The target sensing range of 

the robot is 1 meter, while environment size is 4m by 4m in this set-up.  Therefore, our 

results suggested that ten robots is the optimal team size in an environment 

approximately four times its target sensing range.  

 

 

Figure 7-11: Benefit against number of robots  
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7.5 Chapter Summary 

In this chapter, we showed that our proposed random search algorithm is able to solve 

the indoor search problem using a simulation test set-up.  Following this, we 

demonstrated the algorithm on five physical CoSyBots with the same environment set-

up.  We found that the results from both simulation test and physical experiments are 

reasonably close.  The mean time taken for the physical experiments is 249 seconds 

that is 0.31 standard deviation from the simulation test mean of 216 seconds.  Hence, 

we could use the simulation program for experiments to estimate physical experiment 

results.  We also changed the environment layout, robots’ starting positions and 

targets’ positions in the physical experiments.  The robots found all targets for all the 

physical experiment runs.  Hence, our proposed algorithm is robust to changes in the 

environment.   

 

Further experiments are done using the simulation program.  We varied the number of 

robots from four to twenty, changed the robots’ starting positions and targets’ 

positions, and double the size of the environment.  A hundred simulation runs are 

repeated for each parameter change.  We obtained some findings from these 

experiments.  Firstly, we found that the system performance improves with the number 

of robots and reaches a point where there is no significant improvement.  Secondly, the 

system performance varies with different robots’ starting position.  The difference 

decreases with increasing number of robots.  Thirdly, the robots performed better in 

the bigger environment.  This suggests that small robots work well with our proposed 

algorithm. 
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Finally, we proposed a benefit function to evaluate the benefit of increasing the 

number of robots.  The benefit function takes into account the cost considerations in 

increasing the number of robots.  Our results suggested that ten robots is the optimal 

team size in an environment approximately four times its target sensing range for the 

type of sensors used. 
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Chapter 8: Conclusions 

 

8.1 Dissertation Conclusions 

In this dissertation, we have designed a distributed random search algorithm that 

cooperates a team of simple autonomous robots to search for targets in an unknown 

indoor environment with multiple rooms.  The multi-robot control architecture for our 

algorithm is distributed, homogeneous and local.  This allows the robots to operate 

independently without a single central control, which is a potential point of failure.  

The algorithm consists of five simple behavioural rules and each robot has the same 

rule set.     

 

We have demonstrated the effectiveness of the algorithm on physical robots.  To 

implement the algorithm on physical robots, we formulated the five behavioural rules 

into five reactive behaviours: (1) Obstacle avoidance, (2) Target detection, (3) 

Respond to neighbour’s message, (4) Follow external commands, and (5) Wander.  

Obstacle avoidance together with wander is responsible for autonomous navigation in 

the unknown environment.  Using these two behaviours, the robot is able to 

autonomously avoid collision and also looks for openings to move into.  Target 

detection is used to search for the targets.  Respond to neighbour’s messages ensures 

that one target is found by only one robot and also promotes local interactions among 

the robots.  Follow external commands allow a commander to issue control commands 

to the robots.  These behaviours are tested to work in our simulation program before 

implementing on the physical robots.  In the physical experiments, we deployed five 

robots to search for three targets located in different rooms in a 4m by 4m structured 
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environment.  We also varied the layout, robots’ starting position and targets’ position.  

The robots found all three targets in all the physical experiments.  Therefore, the 

algorithm is robust to changes in the environment set-up.   

 

To analyse the system performance of our algorithm, we performed multiple 

simulation experiments.  We varied the number of robots from four to twenty, changed 

the robots’ starting positions and targets’ positions, and double the size of the 

environment.  A hundred simulation runs are repeated for each parameter change.  

Some findings are obtained from these experiments.  Firstly, we found that the system 

performance improves with the number of robots and reaches a point where there is no 

significant improvement.  This also showed that our algorithm is scalable in numbers.  

Secondly, the system performance varies with different robots’ starting position.  The 

difference decreases with increasing number of robots.  Thirdly, the robots performed 

better in the bigger environment.  This suggests that small robots work well with our 

proposed algorithm.  From these findings, we can conclude that using a larger number 

of small robots in the team will reduce the effect of robots’ starting position on the 

system performance and yet yield better performance.  However, it reaches a point 

where no significant improvement is achieved with adding more robots.   

 

Finally, we formulated a benefit function that takes into account cost considerations to 

evaluate the benefit of increasing the number of robots.  Using our benefit function, we 

found that the optimal number is ten robots for an environment that is four times its 

target sensing range for the type of sensors used.  However, this waits to be verified by 

additional work, which is outside the scope of this dissertation. 
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8.2 Future Directions  

There are a few possible improvements on this work. 

1. It is difficult for the human designer to optimise the local reactive behaviours.  

The performance of these behaviours depends on the various parameters 

involved, such as the trigger distance.  The process of selecting these 

parameters is usually tedious and may result in sub-optimal results.  One 

possible improvement is to use the machine learning technology, such as 

genetic algorithms, to improve these behaviours, and hence, improving the 

performance of the algorithm. 

2. The system performance is affected by various system parameters, such as the 

number of robots, environment layout and size, and the speed of robots.  

Currently, there are no means to relate these factors to the system performance.  

Having such a relationship is useful as the user could determine the number of 

robots he needs to deploy for his required system performance.  

3. Further studies can also be conducted to examine the effect of robot self-

localization on the system performance.  With self-localization capabilities, the 

robot can share more information with fellow robots.  This can reduce the 

problem of having a few robots searching the same area and robots revisiting 

explored areas.   

4. It will be interesting to do a comparison study between the proposed algorithm 

and other deliberate approaches.  In this study, factors such as demand on the 

robot’s capabilities, cost, flexibility of the system and system performance may 

be considered.   

   



References 

 101

Chapter 9: References 

[1] R. C. Arkin, “Cooperation without communication: Multiagent schema-based 

robot navigation,” Journal of Robotic Systems, 1992, pp 351-364. 

[2] R. C. Arkin, and T. Balch, “Cooperative multiagent robotic systems,” in 

Artificial Intelligence and Mobile Robots, D. Kortenkamp, R. P. Bonasso, R. 

Murphy (Eds.), MIT/AAAI Press, 1998. 

[3] S. Aron, J. L. Deneubourg, S. Goss, and J. M. Pasteels, “Functional self-

organization illustrated by inter-nest traffic in the Argentine ant Iridomyrmex 

humilis,” In Bological Motion, edited by W. Alt and G. Hoffman, Berlin: 

Springer-Verlag, 1990, pp 533-547. 

[4] D. Apostolopoulos, L. Pedersen, B. Shamah, K. Shillcutt, M. D. Wagner, and W. 

R. L. Whittaker, “Robotic antarctic meteorite search: Outcomes,” in Proceedings 

of the IEEE International Conference on Robotics and Automation (ICRA), 

2001, pp 4174-4179. 

[5] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic 

systems,” Autonomous Robots, vol 1, 1994, pp 1-25. 

[6] T. Balch, and R. C. Arkin, “Behavior-based formation control for multirobot 

teams,” in IEEE Transactions on Robotics and Automation, vol 14, 1998, pp 

926-939. 

[7] D. Barnes, and J. Gray, “Behaviour synthesis for cooperant mobile robot 

control,” In International Conference on Control, pages 1135–1140, 1991. 

[8] G. Beni, “The concept of cellular robotic system,” in IEEE International 

Symposium on Intelligent Control, 1988, pp 57-62. 



References 

 102

[9] G. Beni, and J. Wang, “Swarm intelligence in cellular robotics systems,” in 

Proceedings of NATO Advanced Workshop on Robots and Biological System, 

1989.  

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Swarm intelligence : from natural 

to artifical systems,” Oxford University Press, 1999. 

[11] J. Borenstein, and Y. Koren, “The vector field histogram – fast obstacle 

avoidance for mobile robots,” IEEE Journal of Robotics and Automation, Vol 7, 

No 3, June 1991, pp 278-288. 

[12] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE 

Journal of Robotics and Autonmation, vol RA-2, no. 1, 1986, pp 14-23. 

[13] W. Burgard, M. Moors, and F. Schneider, “Collaborative exploration of 

unknown environments with teams of mobile robots,” Advances in Plan-Based 

Control of Robotic Agents, M. Beetz et al. (Eds), 2002, pp 52-70. 

[14] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics: 

Antecedents and directions”, In Autonomous Robots 4, 1997, pp. 7-27. 

[15] C. K. Cheng, G. Leng, “Cooperative search algorithm for distributed 

autonomous robots,” Paper Accepted, to appear in Proceedings of the IEEE 

International Conference on Intelligent Robots and Systems, 2004. 

[16] J. L. Crowley, “World modeling and position estimation for a mobile robot using 

ultrasonic ranging,” in Proceedings of the IEEE International Conference on 

Robotics and Automation, 1989, pp 674-680. 

[17] C. DeBolt, C. Freed, T. N. Nguyen, and T. B. Nguyen, “Basic UXO gathering 

system (BUGS); multiple, small, inexpensive robots for autonomous UXO 

clearance,” UXO Forum Conference Proceedings, 1998. 



References 

 103

[18] J. L. Deneubourg, S. Goss, N. R. Franks, and J.-M. Pasteels, “The blind leading 

the blind: Modelling chemically mediated army ant raid patterns,” J. Insect 

Behavior 2, 1989, pp 719-725. 

[19] J. L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels, “The self-organizing 

exploratory pattern of the Argentine ant,” J. Insect Behavior 3, 1990, pp 159-

168. 

[20] A. Drogoul, and J. Ferber, “From tom thumb to the dockers: Some experiments 

with foraging robots,” in 2nd International Conference on Simulation of 

Adaptative Behavior, 1992, pp 451-459. 

[21] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for swarm robots,” 

in Proceedings of IEEE International Conference on Intelligent Robots and 

Systems, 1993, pp. 441-447. 

[22] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “Collaborative multi-robot 

localization,” in Proceedings of the 23rd German Conference on Artificial 

Intelligence, Springer Verlag, 1999. 

[23] D. W. Gage, “Command control for many-robot systems,” Proceedings of 

AUVS-92, the Ninthteen AUVS Technical Symposium, 1992. 

[24] D. W. Gage, “Randomized search strategies with imperfect sensors,” in 

Proceedings of SPIE Mobile Robots VIII, vol 2058, 1993, pp 270-279. 

[25] D. W. Gage, “Many-robot MCM search systems,” in Proceedings of the 

Autonomous Vehicles in Mine Countermeasures Symposium, 1995. 

[26] D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige, “Many robots make short 

work,” AI Magazine, 18(1), pp 55-64, 1997. 



References 

 104

[27] S. Hackwood, and G. Beni, “Self-organisation of sensors for swarm intellignce,” 

in IEEE International Conference on Robotics and Automation, 1992, pp. 819–

829. 

[28] D. F. Hougen, S. Benjaafar, J. C. Bonney, J. R. Budenske, M. Dvorak, M. Gini, 

H. French, D. G. Krantz, P. Y. Li, F. Malver, B. Nelson, N. Papanikolopoulos, P. 

E. Ryski, S. A. Stoeter, R. Voyles, and K. B. Yesin, “A minature robotic system 

for reconnaissance and surveillance,” in Proceedings of the IEEE International 

Conference on Robotics and Automation (ICRA), 2000. 

[29] A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incremental self-

deployment algorithm for mobile sensor networks,” in Autonomous Robots, Vol 

13, 2002, pp 113-126. 

[30] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” 

in IEEE International Conference on Robotics and Automation, 1985, pp 500-

505. 

[31] B. H. Krogh, and C. E. Thorpe, “Integrated path planning and dynamic steering 

control for autonmous vehicles,” in Proceedings of the IEEE International 

Conference on Robotics and Automation, 1986, pp 1664-1669. 

[32] C. R. Kube, and E. Bonabeau, “Cooperative transport by ants and robots,” in 

Robotics and Autonomous Systems, vol. 30, 2000, pp 85-101. 

[33] R. Kuc, and B. Barshan, “Navigating vehicles through an unstructured 

environment with sonar,” in Proceedings of the IEEE International Conference 

on Robotics and Automation, 1989, pp 1422-1426. 

[34] T. Y. Li, H. C. Chou, “Motion planning for a crowd of robots,” in Proceedings of 

the IEEE International Conference on Robotics and Automation, 2003, pp 4215-

4221. 



References 

 105

[35] A. Manz, R. Liscano, and D. A. Green, “A comparison of realtime obstacle 

avoidance methods for mobile robots,” in Experimental Robotics, June 1991. 

[36] A. Martinoli, and F. Mondada, “Collective and cooperative group behaviours: 

Biologically inspired experiments in robotics,” In Proceedings of the Fourth 

International Symposium on Experimental Robotics (1995).  

[37] M. J. Mataric, “Minimizing complexity in controlling a mobile robot 

population,” in Proceedings of the IEEE International Conference on Robotics 

and Automation, 1992, pp 830-835. 

[38] M. J. Mataric, “Interaction and intelligent behavior,” PhD thesis, MIT, EECS, 

May 1994. 

[39] M. J. Mataric, “Issues and approaches in the design of collective autonmous 

agents,” in Robotics and Autonomous Systems, vol. 16, 1995, pp. 321-331. 

[40] M. J. Mataric, “Behaviour-based control: examples from nagvigation, learning, 

and group behaviour,” in J. Expt. Theor. Artif. Intell., vol. 9, 1997, pp 323-326. 

[41] W. S. Newman, and N. Hogan, “High speed robot control and obstacle 

avoidance using dynamic potential functions,” in Proceedings of the IEEE 

International Conference on Robotics and Automation, 1987, pp 14-24. 

[42] D. J. Pack, and B. E. Mullins, “Towards finding an universal search algorithm 

for swarm robots,” in Proceedings of IEEE International Conference on 

Intelligent Robots and Systems, 2003, pp. 1945-1950. 

[43] L. E. Parker, “Multi-robot team design for real-world applications,” in 

Distributed Autonomous Robotic Systems 2, edited by H. Asama, T. Fukuda, T. 

Aria and I. Endo, Springer-Verlag, Tokyo, 1996, 91-102. 



References 

 106

[44] L. E. Parker, “Current state of the art in distributed autonomous mobile 

robotics,” in Proceedings of the 4th International Symposium on Distributed 

Autonomous Robotic Systems (DARS), 2000, pp. 3-12. 

[45] H. V. D. Parunak, “Go to the ant: engineering principles from natural multi-

agent systems,” in Annals of Operations Research, vol. 75, 1997, pp 69-101. 

[46] D. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee, “Pheromone 

robotics,” in Autonomous Robots, vol. 11, 2001, pp. 319–324. 

[47] D. Payton, R. Estkowski, and M. Howard, “Progress in pheromone robotics,” in 

Intelligent Autonomous Systems, vol. 7, M. Gini et al., Eds. IOS Press, 2002, pp. 

256–264. 

[48] S. Premvuti and S. Yuta, “Consideration on the cooperation of multiple 

autonomous mobile robots,” In IEEE/RSJ International Conference on Intelligent 

Robots and Systems, pages 59–63, 1990. 

[49] C. W. Reynolds, “Flocks, herds, and schools: A distibuted behavioral model,” in 

Computer Graphics, 21(4) (SIGGRAPH ’87 Conference Proceedings), 1987, pp 

25-34. 

[50] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopoulos, 

”Performance of a distributed robotic sytem using shared communications 

channels,” in IEEE Transactions on Robotics and Automation, vol 18, 2002, pp 

713-727. 

[51] M. Schneider-Fontan, and M. J. Mataric, “Territorial multi-robot task division,” 

in IEEE Transcations on Robotics and Automation, vol 14, no 5, 1998, pp 815-

822. 

[52] R. Simmons, D. Apfelbaum, D. Fox, R. P. Goldman, K. Z. Haigh, D. J. 

Musliner, M.Pelican, S. Thrun, “Coordinated deployment of multiple 



References 

 107

heterogeneous robots,” in Proccedings of the Conference on Intelligent Robots 

and Systems (IROS), 2000. 

[53] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershburger, A. Stentz, and 

R. Zlot, “A layered architecture for coordination of mobile robots,” in Multi-

Robot Systems: From Swarms to Intelligent Automata, A. Schultz and L. Parker 

(eds.), Kluwer, 2002. 

[54] R. G. Smith, “The contract net protocol: high-level communication and control 

in a distributed problem solver,” in IEEE Transactions on Computers, C-29 (12), 

1980, pp 1104-1113. 

[55] K. Sugawara, and M. Sano, “Cooperative acceleration of task performance: 

Foraging behavior of interacting mulit-robots system,” Physica D, No. 100, 

1996, 343-354. 

[56] G. Theraulaz, and J. L. Deneubourg, “On formal constraints in swarm 

dynamics,” in Proceedings of the IEEE International Symposium on Intelligent 

Control, 1992, pp 225-233. 

[57] I. Ulrich, and J. Borenstein, “VFH+: Reliable obstacle avoidance for fast mobile 

robots,” in Proceedings of the IEEE International Conference on Robotics and 

Automation, 1998, pp 1572-1577. 

[58] I.  Ulrich, and J. Borenstein, “VFH*: Local obstacle avoidance with look-ahead 

verification,” in IEEE International Conference on Robotics and Automation, 

2000, pp 2505-2511. 

[59] I. A. Wagner, M, Lindenbaum, and A. M. Bruckstein, “Distributed covering by 

ant-robots using evaporating traces,” in IEEE Transactions on Robotics and 

Automation, 1999, pp 918-933. 



References 

 108

[60] C. R. Weisbin, G. de Saussure, and D. Kammer, “SELF-CONTROLLED. A 

real-time expert system for an autonomous mobile robot,” Computers in 

Mechanical Engineering, 1986, pp 12-19. 

[61] H. Yamaguchi, “A cooperative hunting behavior by mobile-robot troops,” in The 

International Journal of Robotics Research, vol 18, 1999, pp 931-940. 

 



Appendix A 

 109

Appendix A: Devantech SRF08 Sensor 

 

 

 

 

 

 

 

 

 

 

 

 

Technical Details:  
 

Beam Pattern  See graph 
Voltage  5v  
Current  15mA Typ. 3mA Standby  
Frequency  40KHz  
Maximum Range  6 m  
Minimum Range  3 cm  
Max Analogue Gain Variable to 1025 in 32 steps  
Connection  Standard IIC Bus  
Light Sensor  Front facing light sensor  
Timing  Fully timed echo, freeing host computer of task 
Echo  Multiple echo - keeps looking after first echo  
Units  Range reported n uS, mm or inches  
Weight  0.4 oz.  
  Size  43mm w x 20mm d x 17mm h 
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Appendix B: BrainStem GP 1.0 

 

 

 

 

 

 

 

 

 

 

 

BrainStem GP 1.0 features:  
o 40 MHz RISC processor  
o 5 channel, 10 bit A/D  
o 5 digital I/O lines  
o GP2D02 Driver  
o 1 MBit IIC port  
o IIC routing  
o Status LED  
o Stores 11 1K TEA programs  
o Runs up to 4 TEA programs concurrently  
o RS-232 serial port  
o Reflex architecture  
o 4 high-resolution servo outputs  
o Execution of 9000 instructions per second  
o Access to I/O features via built-in serial command set  
o Convenient power and ground connections for each I/O pin 
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Appendix C: SFR08 Experiments 

CoSyBot 1 
Range / 

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8 

3 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4 4 – 5 
25 23 – 25 25 – 26 25 - 27 23 – 25 25 – 27 24 – 26 25 – 27 25 – 27  
50 49 – 52 50 – 52 48 - 51 50 - 53 50 – 52 51 – 53 49 – 50 49 – 51  
100 99 – 103 99 – 102 98 - 101 100 – 103 99 – 102 100 – 103 100 – 102 99 – 103  
125 119 – 121 121 – 123 120 – 122 121 – 123 119 – 121 120 – 123 121 – 124 120 – 122 
150 119 – 121 121 – 123 120 – 122 121 – 123 119 – 121 120 – 123 121 –124 120 – 122 

 
 

CoSyBot 2 
Range / 

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8 

3 3 – 4 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4 
25 24 – 26 25 – 26 24 – 25 23 – 25 24 – 26 24 – 26 25 – 28 26 – 28 
50 48 – 50 49 – 51 51 – 53 50 – 53 50 – 52 50 – 52 49 – 52 47 – 49  
100 97 – 100 100 – 102 99 – 103 100 – 103 96 – 99 99 – 103 99 – 102 97 – 100  
125 121 – 123 119 – 121 122 – 123 120 – 122 121 – 123 119 – 121 123 – 124 118 – 120 
150 121 – 123 119 – 121 122 – 123 120 – 122 121 – 123 119 – 121 123 – 124 118 – 120 

 

CoSyBot 3 
Range / 

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8 

3 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 4 – 5 3 – 4 4 – 5 
25 25 – 26 24 – 25 24 – 26 23 – 25 26 – 28 25 – 27 24 – 26 25 – 27 
50 49 – 51 50 – 52 50 – 52 50 – 52 49 – 52 50 – 51 47 – 49 49 – 52  
100 101 – 103 100 – 102 98 – 101 99 – 103 96 – 99 99 – 102 99 –103 99 – 103  
125 120 – 122 119 – 121 118 – 120 121 – 122 122 – 124 120 – 123 119 – 120 121 – 124 
150 120 – 122 119 – 121 118 – 120 121 – 122 122 – 124 120 – 123 119 – 120 121 – 124 

 

CoSyBot 4 
Range / 

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8 

3 3 – 4 4 – 5 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 
25 23 – 25 25 – 26 24 – 26 25 – 26 23 – 25 23 – 24 23 – 25 26 – 28 
50 49 – 52 50 – 53 48 – 50 50 – 53 49 – 51 47 – 49 48 – 50 50 – 52  
100 97 – 101 99 – 103 98 – 101 99 – 103 96 – 100 96 – 100 98 – 102 99 – 103  
125 119 – 120 121 – 123 118 – 120 121 – 123 120 – 124 119 – 121 120 – 122 122 – 124 
150 119 – 120 121 – 123 118 – 120 121 – 123 120 – 124 119 – 121 120 – 122 122 – 124 

 

CoSyBot 5 
Range / 

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8 

3 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4 4 – 5 3 – 4 4 – 5 
25 23 – 25 24 – 26 24 – 25 25 – 28 24 – 26 25 – 28 24 – 26 25 – 28 
50 49 – 53 48 – 51 49 – 52 50 – 54 50 – 52 51 – 55 49 – 52 49 – 52  
100 97 – 101 97 – 100 98 – 102 99 – 104 99 – 103 100 – 104 99 –103 98 – 103  
125 119 – 121 118 – 120 121 – 123 123 – 124 121 – 122 123 – 125 121 – 123 120 – 122 
150 119 – 121 118 – 120 121 – 123 123 – 124 121 – 122 123 – 125 121 – 123 120 – 122 
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Appendix D: Simulation Results 

4 robots in 4m by 4m environment 
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Mean / s 291 

Std. dev. / s 138 
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Mean / s 6150 
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4 robots in 8m by 8m environment 
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Std. dev. / s 293 
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0.0016

233.5 421 569.5 760 1308

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

0.001

333 625.5 855 1518 3715.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

315.5 776.5 1412 2599 5548

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

143.5 424 893.5 1587.5 4529.5

Time (seconds)

D
en

si
ty
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5 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 216 

Std. dev. / s 105 

Set-up 2 
Mean / s 4414 

Std. dev. / s 3676 

Set-up 3 
Mean / s 3390 

Std. dev. / s 4091 

Set-up 4 
Mean / s 6286 

Std. dev. / s 5941 

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

96 160 199.5 248 517.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.00002
0.00004
0.00006
0.00008
0.0001

0.00012
0.00014
0.00016
0.00018
0.0002

648 1924 3444.5 6018.5 11620

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

287 1013.5 2183 4004 15192.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014
0.00016

916.5 2421 4468.5 7867 19498

Time (seconds)

D
en

si
ty
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5 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 551 

Std. dev. / s 301 

Set-up 2 
Mean / s 1300 

Std. dev. / s 1365 

Set-up 3 
Mean / s 1203 

Std. dev. / s 1567 

Set-up 4 
Mean / s 928 

Std. dev. / s 902 

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

210.5 374.5 463 621 1192

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

311.5 512 744.5 1406 4807

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

237.5 479 724.5 1224 7416

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

174 396 662.5 1076 3350.5

Time (seconds)

D
en

si
ty
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6 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 167 

Std. dev. / s 66 

Set-up 2 
Mean / s 1940 

Std. dev. / s 1859 

Set-up 3 
Mean / s 1430 

Std. dev. / s 1471 

Set-up 4 
Mean / s 2389 

Std. dev. / s 2235 

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

55.5 126.5 158 190 298

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.00005
0.0001

0.00015
0.0002

0.00025
0.0003

0.00035
0.0004

0.00045
0.0005

281.5 791.5 1398 2438.5 6680.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

158 481 932 1676.5 4382.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.00005

0.0001
0.00015

0.0002
0.00025

0.0003
0.00035

0.0004
0.00045

0.0005

368.5 964 1832.5 2996 6634

Time (seconds)

D
en

si
ty
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6 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 395 

Std. dev. / s 167 

Set-up 2 
Mean / s 713 

Std. dev. / s 683 

Set-up 3 
Mean / s 685 

Std. dev. / s 689 

Set-up 4 
Mean / s 644 

Std. dev. / s 595 

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

170.5 286.5 367 473 702

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

200 354.5 528 760 2711.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

0.002

174.5 306 484 821 2763.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

127 299 478.5 768.5 2232

Time (seconds)

D
en

si
ty
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7 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 147 

Std. dev. / s 54 

Set-up 2 
Mean / s 1371 

Std. dev. / s 1473 

Set-up 3 
Mean / s 772 

Std. dev. / s 645 

Set-up 4 
Mean / s 1153 

Std. dev. / s 913 

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

79.5 109.5 137 173.5 276.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

185.5 511.5 936.5 1604 5193.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

141.5 324 545 966 2118.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008

225 527 891.5 1578.5 3494

Time (seconds)

D
en

si
ty
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7 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 337 

Std. dev. / s 146 

Set-up 2 
Mean / s 562 

Std. dev. / s 492 

Set-up 3 
Mean / s 499 

Std. dev. / s 517 

Set-up 4 
Mean / s 509 

Std. dev. / s 413 

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

166 240 303.5 387 667.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

164.5 279 390.5 593 1967

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

155 255.5 359 558.5 2145

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

108.5 262.5 412.5 622.5 1549

Time (seconds)

D
en

si
ty
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8 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 131 

Std. dev. / s 51 

Set-up 2 
Mean / s 802 

Std. dev. / s 638 

Set-up 3 
Mean / s 597 

Std. dev. / s 607 

Set-up 4 
Mean / s 687 

Std. dev. / s 536 

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

57 99.5 125.5 151 233

Time (seconds)

De
ns

ity

Density Histogram (Setup 2)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

150.5 375.5 653 1062 2239

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

107.5 224 419 712.5 1985

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

158 396.5 602.5 809 2320

Time (seconds)

D
en

si
ty
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8 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 346 

Std. dev. / s 138 

Set-up 2 
Mean / s 430 

Std. dev. / s 332 

Set-up 3 
Mean / s 424 

Std. dev. / s 267 

Set-up 4 
Mean / s 435 

Std. dev. / s 342 

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

189 247 314 414.5 608.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

132.5 244 329 463 1130.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

141 258.5 372.5 514 1024

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

112.5 207 327.5 540 1117

Time (seconds)

D
en

si
ty
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9 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 110 

Std. dev. / s 32 

Set-up 2 
Mean / s 741 

Std. dev. / s 606 

Set-up 3 
Mean / s 455 

Std. dev. / s 382 

Set-up 4 
Mean / s 655 

Std. dev. / s 594 

Density Histogram (Setup 1)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

57.5 93.5 109 124.5 171.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

166 324.5 597.5 998 2224

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

103.5 206.5 349.5 547.5 1411

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

141 327 517 747 2141

Time (seconds)

D
en

si
ty
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9 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 284 

Std. dev. / s 114 

Set-up 2 
Mean / s 363 

Std. dev. / s 267 

Set-up 3 
Mean / s 324 

Std. dev. / s 236 

Set-up 4 
Mean / s 341 

Std. dev. / s 243 

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

141 220 266 317.5 580.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

133 227 283 387 1008

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

92 185.5 264.5 380.5 959.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

114 208.5 277.5 404.5 986.5

Time (seconds)

D
en

si
ty
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10 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 106 

Std. dev. / s 34 

Set-up 2 
Mean / s 488 

Std. dev. / s 364 

Set-up 3 
Mean / s 332 

Std. dev. / s 246 

Set-up 4 
Mean / s 524 

Std. dev. / s 413 

Density Histogram (Setup 1)

18

18.5

19

19.5

20

20.5

21

21.5

53.5 86 101.5 118.5 184.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

111.5 236.5 408 630.5 1217.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

96 170 273.5 425.5 946

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

119.5 268.5 404 644 1634

Time (seconds)

D
en

si
ty
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10 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 283 

Std. dev. / s 104 

Set-up 2 
Mean / s 367 

Std. dev. / s 261 

Set-up 3 
Mean / s 294 

Std. dev. / s 179 

Set-up 4 
Mean / s 365 

Std. dev. / s 288 

Density Histogram (Setup 1)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

156 216.5 268 325 492.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

119 210.5 281 408.5 879

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

103.5 174.5 254.5 370.5 682

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

83 183 281.5 439.5 1083

Time (seconds)

D
en

si
ty
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11 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 106 

Std. dev. / s 38 

Set-up 2 
Mean / s 372 

Std. dev. / s 296 

Set-up 3 
Mean / s 281 

Std. dev. / s 245 

Set-up 4 
Mean / s 403 

Std. dev. / s 537 

Density Histogram (Setup 1)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

52 80.5 99.5 126.5 205.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

84.5 173.5 282 475.5 1047.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

61.5 122.5 189 341 828

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

79.5 179 301.5 444.5 2747.5

Time (seconds)

D
en

si
ty
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11 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 252 

Std. dev. / s 76 

Set-up 2 
Mean / s 334 

Std. dev. / s 236 

Set-up 3 
Mean / s 271 

Std. dev. / s 173 

Set-up 4 
Mean / s 250 

Std. dev. / s 199 

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

151.5 200.5 237 288 400

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

133.5 196 262.5 375.5 910.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

105.5 171 215.5 308.5 803.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

62 118 195 310 756

Time (seconds)

D
en

si
ty
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12 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 97 

Std. dev. / s 29 

Set-up 2 
Mean / s 277 

Std. dev. / s 229 

Set-up 3 
Mean / s 247 

Std. dev. / s 207 

Set-up 4 
Mean / s 380 

Std. dev. / s 271 

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

53 80.5 93 110.5 165

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

72.5 138 204 333 1004.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

60 125 204 298 849

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

91 198.5 301.5 487.5 848.5

Time (seconds)

D
en

si
ty
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12 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 225 

Std. dev. / s 72 

Set-up 2 
Mean / s 284 

Std. dev. / s 217 

Set-up 3 
Mean / s 278 

Std. dev. / s 203 

Set-up 4 
Mean / s 237 

Std. dev. / s 177 

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

124 178.5 220.5 262 366

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

113 186.5 232 298.5 1085

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

95 154 211 319.5 782.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

61 124.5 188.5 286.5 626.5

Time (seconds)

D
en

si
ty
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13 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 91 

Std. dev. / s 25 

Set-up 2 
Mean / s 305 

Std. dev. / s 199 

Set-up 3 
Mean / s 219 

Std. dev. / s 217 

Set-up 4 
Mean / s 285 

Std. dev. / s 232 

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

0.03

51 78.5 89 101.5 145

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

79 173 265.5 372.5 756

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

58.5 106 154 252.5 851

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

74.5 153 227.5 345 901

Time (seconds)

D
en

si
ty
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13 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 222 

Std. dev. / s 68 

Set-up 2 
Mean / s 283 

Std. dev. / s 175 

Set-up 3 
Mean / s 225 

Std. dev. / s 112 

Set-up 4 
Mean / s 218 

Std. dev. / s 136 

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

129.5 182 210 247 389.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

100.5 175 237.5 331 693

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

97.5 154.5 204.5 264 476.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

67 128 184 276.5 483.5

Time (seconds)

D
en

si
ty



Appendix D 

 132

 
 

14 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 93 

Std. dev. / s 31 

Set-up 2 
Mean / s 283 
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14 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 226 

Std. dev. / s 74 

Set-up 2 
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15 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 81 

Std. dev. / s 26 

Set-up 2 
Mean / s 214 
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15 robots in 8m by 8m environment 
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Mean / s 210 

Std. dev. / s 76 
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16 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 91 

Std. dev. / s 23 
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16 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 194 

Std. dev. / s 62 
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17 robots in 4m by 4m environment 
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17 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 204 

Std. dev. / s 56 

Set-up 2 
Mean / s 226 
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Std. dev. / s 106 

Set-up 4 
Mean / s 169 

Std. dev. / s 99 

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

124 170 199 234.5 321.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

96.5 152.5 193 257 495

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

90 132.5 164.5 234.5 457.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

58 148.5 400

Time (seconds)

D
en

si
ty



Appendix D 

 140

 
 

18 robots in 4m by 4m environment 
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Std. dev. / s 22 
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18 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 192 

Std. dev. / s 52 

Set-up 2 
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19 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 82 

Std. dev. / s 24 

Set-up 2 
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19 robots in 8m by 8m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 180 

Std. dev. / s 45 
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Mean / s 199 
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20 robots in 4m by 4m environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set-up 1 
Mean / s 85 

Std. dev. / s 21 
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20 robots in 8m by 8m environment 
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Mean / s 175 

Std. dev. / s 46 
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