
PERFORMANCE ANALYSIS OF A RANDOM SEARCH
ALGORITHM FOR DISTRIBUTED AUTONOMOUS

MOBILE ROBOTS

CHENG CHEE KONG
(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

 i

Acknowledgements

Firstly, I would like to express my heartfelt appreciation to my project supervisor,

Associate Professor Gerard Leng. This project will never be realised without his

commendable guidance. Since my Bachelor’s dissertation project until this Master’s

dissertation project, he has always been there to guide me. Particularly in this Master’s

dissertation project, he has provided me with tremendous assistance in finding my

project focus. Despite his busy schedules, he has relentlessly met me at least once a

week to obtain updates on the project progress and to ensure that I am progressing in

the right direction. He is praiseworthy for his patience in listening to the problems

faced during the course of the project and providing valuable suggestions to solve

them. Also, not forgetting him for all the birthday parties he has initiated for the

postgraduate students, and the many lunches that he has treated us.

Next, I would like to thank my fellow peers, Mr Low Yee Leong and Mr Ng Wee Kiat

for their remarkable support and help in making this project a success. Throughout the

course of this project, they have provided me with a lot of valuable recommendations

and insights when formulating the search algorithm and building the robots.

I would also like to express my earnest gratitude to Mr Cheng Kok Seng, Amy, Mr

Ahmad and Pricilla from the Dynamics and Vibration Laboratory, for the generous

help that they have rendered.

In addition, I extend my gratitude to DSO National Laboratories for sponsoring part of

the project and my DSO colleagues, Mr New Ai Peng and Mr Yeo Ye Chuan for

Acknowledgements

 ii

sharing their views with me. I further thanked Mr Yeo for lending me the workstations

to run my simulations.

My family and friends have played important roles in my studies. Their

encouragement, concern and support are more than meaningful and heartfelt.

Table of contents

 iii

Table of Contents

ACKNOWLEDGEMENTS ..I

TABLE OF CONTENTS .. III

SUMMARY ...VI

LIST OF FIGURES ...VIII

LIST OF TABLES ... X

CHAPTER 1: INTRODUCTION... 1
1.1 BACKGROUND.. 1
1.2 PROJECT OBJECTIVES... 3
1.3 PROBLEM DEFINITION.. 7

1.3.1 Mobile Robot... 7
1.3.2 Target.. 8
1.3.3 Search Environment.. 8
1.3.4 Possible Applications.. 9

1.4 OUTLINE .. 10

CHAPTER 2: BACKGROUND ON PREVIOUS WORK 12
2.1 APPROACHES TO MULTI-ROBOT CONTROL.. 13
2.2 ROBOT CONTROL ... 17
2.3 COMMUNICATION .. 18
2.4 SEARCH STRATEGY.. 19
2.5 RELATED WORK .. 20
2.6 CHAPTER SUMMARY .. 21

CHAPTER 3: DESIGNING THE MULTI-ROBOT SYSTEM
ARCHITECTURE.. 23

3.1 ARCHITECTURE REQUIREMENTS .. 23
3.2 INSPIRATION FROM NATURE.. 24
3.3 PROPOSED ALGORITHM ... 26

3.3.1 Algorithm Characteristics... 28
3.3.2 Uniqueness of Algorithm... 29

3.4 CHAPTER SUMMARY .. 30

CHAPTER 4: DESIGNING A PHYSICAL ROBOT PLATFORM................... 31
4.1 MOBILE ROBOT DESIGN CRITERIA... 31
4.2 INSPIRATION FROM NATURE.. 32
4.3 ROBOT PLATFORM DESCRIPTION ... 33

4.3.1 Features of CoSyBot ... 35
4.3.1.1 Physical Structure ... 35
4.3.1.2 Mobility... 35
4.3.1.3 Sensors .. 36
4.3.1.4 Communication... 37
4.3.1.5 Processing ... 38

4.4 CLIENT PROGRAM.. 39
4.4.1 Features of the Client Program .. 41

Table of contents

 iv

4.5 CHAPTER SUMMARY .. 42

CHAPTER 5: MODELLING THE PHYSICAL ROBOT AND STRUCTURED
ENVIRONMENT.. 44

5.1 COSYBOT SIMULATION ... 44
5.2 MODELLING THE COSYBOT... 45

5.2.1 Physical Body.. 45
5.2.2 Motion Drive... 46
5.2.3 Sensors .. 46
5.2.4 Communication ... 47

5.3 MODELLING TARGET ... 49
5.4 MODELLING THE STRUCTURED ENVIRONMENT ... 49
5.5 INPUT FILE ... 49
5.6 CHAPTER SUMMARY .. 50

CHAPTER 6: ALGORITHM IMPLEMENTATION.. 51
6.1 MOBILE ROBOT NAVIGATION .. 51
6.2 REACTIVE BEHAVIOURS... 53

6.2.1 Obstacle Avoidance .. 55
6.2.2 Target Detection ... 60
6.2.3 Respond to Neighbouring Robot’s Message ... 63
6.2.4 Follow External Commands ... 66
6.2.5 Wander.. 66

6.3 IMPLEMENTING THE REACTIVE BEHAVIOURS .. 68
6.4 CHAPTER SUMMARY .. 70

CHAPTER 7: ANALYSING THE SYSTEM PERFORMANCE 72
7.1 TESTING THE ALGORITHM IN SIMULATION .. 72

7.1.1 Experiment Set-up... 73
7.1.1.1 Results and Analysis ... 73

7.2 PHYSICAL EXPERIMENTS ... 75
7.2.1 Experiment Set-up... 76
7.2.2 Robots Searching for Targets ... 76
7.2.3 Physical Experiments Results and Observations.................................. 81
7.2.4 Comparing with Simulated Test Results ... 82

7.3 SIMULATION EXPERIMENTS ... 83
7.3.1 Varying the Number of Robots.. 83

7.3.1.1 Experiment Set-up .. 84
7.3.1.2 Results and Analysis ... 84

7.3.2 Varying the Starting Positions and Targets’ Positions......................... 86
7.3.2.1 Experiment Set-up .. 86
7.3.2.2 Results and Analysis ... 87

7.3.3 Increasing the Environment Size .. 89
7.3.3.1 Experiment Set-up .. 89
7.3.3.2 Results and Analysis ... 90

7.4 DISCUSSIONS.. 93
7.5 CHAPTER SUMMARY .. 96

CHAPTER 8: CONCLUSIONS ... 98
8.1 DISSERTATION CONCLUSIONS.. 98
8.2 FUTURE DIRECTIONS.. 100

Table of contents

 v

CHAPTER 9: REFERENCES.. 101

APPENDIX A: DEVANTECH SRF08 SENSOR... 109

APPENDIX B: BRAINSTEM GP 1.0 ... 110

APPENDIX C: SFR08 EXPERIMENTS.. 111

APPENDIX D: SIMULATION RESULTS .. 112

Summary

 vi

Summary

Part of the work documented in this dissertation is described in [15]. The paper has

been presented in the 2004 IEEE International Conference on Intelligent Robots and

Systems (IROS) held at Sendai in Japan.

In this project, there are two objectives. The first objective is to formulate an

algorithm for multiple mobile robots to cooperatively search for multiple static targets

in an unknown structured environment. The environment is unknown to the robots as

they have no a priori map information on the environment layout. The second

objective is to analyse the system performance of the proposed algorithm.

To fulfil the first objective, we formulated a distributed random search algorithm for a

team of autonomous, simple robots. The algorithm is based on five simple behavioural

rules and each robot has the same rule set. The algorithm does not need the robots to

have self-localization capabilities. In this way, we do not have to deal with

localization problem, which is inherent and difficult to solve in the real world.

The algorithm has been implemented on physical robots. It is implemented as five

reactive behaviours on the physical robots. In the physical experiments, we deployed

five robots to search for three targets located in different rooms in a 4m by 4m mock-

up indoor environment with multiple rooms. Ten physical experimental runs are

repeated using the same set-up. The robots were able to find all the targets for all ten

runs. The mean time taken was 249 seconds. We also performed experiments varying

Summary

 vii

the environment layout and showed that our algorithm is robust to changes in

environment layout.

In addition to physical experiments, we performed multiple simulation experiments to

analyse the system performance. The time taken for all targets to be found is used to

measure performance. In the simulation experiments, we varied the number of robots

from four to twenty robots. We also changed the robots’ starting positions and target

positions, and the size of the environment. One hundred runs are repeated for each

parameter change. Our experiment results show that increasing the number of robots

in the robot team and using robots that are smaller in size improves system

performance.

Finally, we formulated a benefit function that takes into account cost considerations to

evaluate the benefit of increasing the number of robots. We found that ten robots is the

optimal number of robots to search in an environment approximately four times the

target sensing range for the type of sensors used.

List of figures

 viii

List of Figures

FIGURE 1-1: AN EXAMPLE OF A SIMPLE CLUTTERED ENVIRONMENT 5

FIGURE 1-2: AN EXAMPLE OF A STRUCTURED ENVIRONMENT .. 6

FIGURE 4-1: COSYBOT ROBOT PLATFORM ... 34

FIGURE 4-2: COSYBOT ACTUATOR LAYER... 36

FIGURE 4-3: SRF08 SENSORS ARRANGEMENT.. 37

FIGURE 4-4: ARCHITECTURE OF COSYBOT .. 39

FIGURE 4-5: ARCHITECTURE OF COSYBOT CLIENT PROGRAM 41

FIGURE 4-6: GUI OF THE CLIENT PROGRAM. MAIN WINDOW (LEFT) & HARDWARE

DIAGNOSTIC WINDOW (RIGHT) ... 42

FIGURE 5-1: SRF08 SONAR PATTERN GRAPH ... 48

FIGURE 5-2: SIMULATOR GUI.. 50

FIGURE 6-1: (A) PLAN-BASED APPROACH VERSUS (B) LOCAL REACTIVE APPROACH 54

FIGURE 6-2: SECTOR REPRESENTATION OF THE LOCAL ENVIRONMENT AROUND ROBOT. 57

FIGURE 6-3: UNIFORM ULTRASONIC RANGE. (A) CONTINUOUSLY TURNING, (B)

OVERTURNING ... 58

FIGURE 6-4: ILLUSTRATION OF OBSTACLE AVOIDANCE BEHAVIOUR 59

FIGURE 6-5: OBSTACLE AVOIDANCE BEHAVIOUR ALGORITHM....................................... 60

FIGURE 6-6: LIGHT DETECTORS AROUND ROBOT.. 61

FIGURE 6-7: ILLUSTRATION OF TARGET DETECTION BEHAVIOUR 62

FIGURE 6-8: TARGET DETECTION BEHAVIOUR ALGORITHM.. 63

FIGURE 6-9: IR TRANSCEIVERS AROUND ROBOT .. 64

FIGURE 6-10: ILLUSTRATION OF RESPOND TO NEIGHBOURING ROBOT’S MESSAGE

BEHAVIOUR.. 65

List of figures

 ix

FIGURE 6-11: RESPONDING TO NEIGHBOURING ROBOT’S MESSAGE ALGORITHM 65

FIGURE 6-12: ILLUSTRATION OF WANDER BEHAVIOUR... 67

FIGURE 6-13: WANDER BEHAVIOUR ALGORITHM... 68

FIGURE 6-14: SEQUENTIAL EXECUTION OF THE BEHAVIOURS... 69

FIGURE 6-15: INTERACTION OF THE BEHAVIOURS .. 71

FIGURE 7-1: SIMULATION TEST SET-UP .. 74

FIGURE 7-2: RESULTS OF 100 SIMULATION TEST RUNS... 75

FIGURE 7-3: PHYSICAL EXPERIMENTS LAYOUT .. 76

FIGURE 7-4: SCREENSHOTS OF A PHYSICAL EXPERIMENT ... 81

FIGURE 7-5: GRAPH OF MEAN TIME (ON LOGARITHMIC SCALE) TAKEN TO FIND ALL

TARGETS AGAINST NUMBER OF ROBOTS ... 85

FIGURE 7-6: STANDARD DEVIATION AGAINST NUMBER OF ROBOTS................................ 86

FIGURE 7-7: DIFFERENT ROBOTS’ STARTING POSITION AND TARGETS POSITION............. 87

FIGURE 7-8: EXPERIMENTAL RESULTS OF DIFFERENT ROBOTS’ STARTING POSITION AND

TARGETS’ POSITIONS .. 89

FIGURE 7-9: SET-UP FOR SCALED ENVIRONMENT EXPERIMENTS 92

FIGURE 7-10: EXPERIMENT RESULTS FOR SCALED ENVIRONMENT EXPERIMENTS........... 93

FIGURE 7-11: BENEFIT AGAINST NUMBER OF ROBOTS.. 95

List of tables

 x

List of Tables

TABLE 7-1: RESULTS OF SIMULATION TEST.. 75

TABLE 7-2: RESULTS FOR TEN PHYSICAL RUNS .. 81

TABLE 7-3: SIMULATION TEST AND PHYSICAL EXPERIMENT RESULTS FOR FIVE ROBOTS

TEAM.. 83

TABLE 7-4: RATIO OF THE RELATIVE NUMBER OF OBSTACLE AVOIDANCE BEHAVIOUR

ROUTINE CALLS FOR THE FOUR SET-UPS ... 93

Introduction

 1

Chapter 1: Introduction

In this dissertation, we give a detailed account of our work described in [15] and

further work following it. The paper has been presented in the 2004 IEEE

International Conference on Intelligent Robots and Systems (IROS) held at Sendai in

Japan. In the paper, we proposed a distributed random search algorithm for a team of

simple autonomous robots to search for targets in an unknown structured environment.

The proposed algorithm does not require the robots to have self-localization

capabilities and has been demonstrated to be effective on actual hardware. In addition,

we extended the work and performed multiple simulation experiments for further

analysis on the system performance.

1.1 Background

In the last two decades, there has been much research work in the development of

mobile autonomous robotic systems. A key driving force is their potential in reducing

the need for human presence in dangerous real world applications, such as toxic waste

cleanup, clearing of mine fields [17], planetary exploration [4], search and rescue

mission, security, surveillance and reconnaissance [28]. The challenge of these

applications is the requirement that the robotic systems work autonomously to achieve

the human supplied goals. One approach to designing these autonomous robotic

systems is to develop a single robot that is capable of accomplishing particular given

goals in a given environment. This idea of a single all-powerful robot has been the

traditional approach adopted by the robotics research community. A second approach

is to design cooperative multi-robot systems. Such a system consists of multiple

Introduction

 2

autonomous mobile robots working together as a team to accomplish a certain goal. In

recent years, there is an increased research interest in the latter approach. This is

because cooperative multi-robot systems offer several advantages over the single robot

systems [2] [14]:

• The complexity of the mission requirements may be too complicated for a

single robot to accomplish. Hence, problems can be decomposed to smaller

tasks and allocated among many robots.

• Many robots can be at different places, do many and perhaps different things at

the same time. This inherent parallelism in multi-robot systems can improve

overall system performance. Hence, cooperating robots have the potential to

accomplish a single task faster than a single robot [26].

• Each entity in the team of robots can be simpler than a more comprehensive

single robot. Thus, building multiple simple robots can be cheaper or easier

than having a single powerful robot.

• A single robot system is itself potentially a single point of failure. Multiple

robots can be more flexible and fault tolerant than a single powerful robot. For

a multi-robot team, fellow robots can assist a stuck robot or continue without

sacrificing the mission.

• Multiple robots have been shown to localize themselves more efficiently,

especially when they have different sensor capabilities [22]. This is due to

merging of overlapping information, which can help to compensate sensor

uncertainty.

Due to these advantages, cooperative multi-robot systems offer the potential of solving

large amount of real world applications. This motivated researchers to design multi-

Introduction

 3

robot solutions and the amount of research work in this field has grown substantially

over the years. For these works, they can be broadly categorized into two groups:

deliberative cooperation approach and swarm intelligence approach. In the

deliberative cooperation approach, robots in the team work together using an explicit

cooperation mechanism. Depending on the system architecture design, the robots may

or may not follow a leader. There is usually planning involved and a mechanism to

perform effective task allocation among the robots. To do this, the robots need to

transmit messages to each other using some explicit communications. This usually

places high demand on the communication requirements. Hence, cooperation is

usually achieved with robots coordinating with each other following some global plan.

Swarm intelligence differs from the former approach in that it uses an indirect type of

cooperation. Each robot in the team uses simple local rules to govern their behaviours

and acts relatively independent from all other robots. They do not follow a leader or to

some global plan. The swarm usually consists of large groups of these simple robots

and achieves its objectives through local interactions within the entire group. Swarm

intelligence is the emergent collective intelligence from these local interactions of

groups of simple autonomous entities.

1.2 Project Objectives

There are two objectives in this project: (1) To design an algorithm for multiple mobile

robots to cooperatively search for multiple static targets in an unknown structured

environment; (2) To analyse the system performance of the proposed algorithm. The

environment is unknown to the robots as they have no a priori map information on the

layout and locations of the targets.

Introduction

 4

The problem described above poses the following challenges:

• Firstly, how do we manage the many robots running around in the

environment? We need to design effective system architecture to control the

multiple robots. This system architecture must be capable of controlling a

large number of robots and ensure that they work as a team. In addition, it

must also be fault tolerant such that a robot breakdown or attrition will not

cause the overall system to fail.

• Secondly, we need to design a cooperative mechanism to perform task

allocation among the robots. This mechanism must allocate the tasks

effectively to the robots and ensure all robots are being employed to achieve

the given system mission. Hence, the mechanism should bring about the

performance benefit of employing a multi-robot system over a single robot

system.

• Thirdly, the unknown environmental layout is another challenge for multi-robot

cooperation, since no a priori map information is provided to the robots. The

robots will have no information that they can use to distribute the task among

themselves. We will need to answer the questions of how do we effectively

allocate the tasks or resources to the robots such that the overall system

performance improves.

• Fourthly, the structured environment is a complex environment for the robots

to autonomously navigate through. Most works on autonomous cooperative

multi-robot team dealt with cluttered environment. In this type of environment,

disconnected obstacles are usually sparsely scattered in the environment. The

obstacles may be arranged in a regular array or randomly spaced out in the

environment. See Figure 1-1 for an example of a cluttered environment. When

Introduction

 5

a robot encounters an obstacle, there is usually more than one motion path the

robot could take to navigate around it. On the contrary, a structured

environment usually consists of connected linear wall-like obstacles. In order

to navigate around an obstacle, the robot has to look for discontinuities or

openings in the obstacle. For example, the robot has to go through an opening

in order to exit a room. See Figure 1-2. Hence, this makes it more difficult for

autonomous robot navigation in a structured environment.

Figure 1-1: An example of a simple cluttered environment

• The fifth challenge is to design an effective search strategy for the multi-robot

team. The search strategy should be one that is suitable for multiple robot

cooperation. It should also maximize the use of multiple robots such that it

Obstacles

Robot navigating
around obstacle

Introduction

 6

will bring about the benefit of performance improvement over a single robot

team.

• Lastly, we need to design a performance measurement to gauge the overall

performance of the multi-robot team. Using this performance measurement,

we design experiments to analyse the system performance of the proposed

algorithm.

Figure 1-2: An example of a structured environment

In this project, we attempt to solve a search problem using a multi-robot system. Why

a search problem? In all the real world problems described earlier, for example a

search and rescue mission, security, surveillance and reconnaissance, they all require

the robots to perform autonomous navigation and in search for some object of interest

Robot navigating
around obstacle

Wall obstacles

Opening to
exit room

Introduction

 7

in the environment. Hence, the search problem seems to be the basic problem that all

these real world applications have to overcome. Thus, if we can provide an effective

multi-robot solution to the search problem, this can lead on to the development of

solutions for these real world applications. In addition, the search problem will be an

effective test bed for our algorithm on multi-robot control.

1.3 Problem Definition

In this section, we provide a formal definition for the problem described in the project

objectives.

1.3.1 Mobile Robot

The design of the control algorithm for the multi-robot team is dependent on the

capabilities of the robot platform. For example, the stick pulling experiments

described in [36] required at least two robots to coordinate the pulling effort in order to

pull out a stick. One robot alone is not able to perform the required task. Hence, it is

important to first define the basic capabilities of the mobile robots that the algorithm is

intended for. The mobile robots in our multi-robot team are autonomous and

independent. They should possess onboard processing capability, motors for mobility,

own sensors to provide situation awareness of the environment and other devices that

are required for the robot to complete the given task.

Introduction

 8

1.3.2 Target

In this project, targets are entities of interest in the environment. They emit certain

predefined signatures that make them distinct from other entities in the environment.

Thus, they can be easily identified and distinguished by our robots equipped with the

sensors to detect the emitted signatures.

1.3.3 Search Environment

In this project, the search space is strictly two-dimensional and it is a structured

environment. The structured environment is the interior layout of an empty building

with multiple rooms. We will simplify the environment by not considering the

furniture or other objects that can be found in a building. There are also no doors to

block openings from leading into rooms. Thus, the environment is mainly simulated

by layout of walls.

In addition, the environment layout is unknown to the robots. This means that no a

priori map information will be provided to the robots before the start of the mission or

throughout the search.

Lastly, the unknown structure environment is bounded. Thus, the robots are

constrained to move only within the search space.

Introduction

 9

1.3.4 Possible Applications

If we are able to design an effective multi-robot system to answer the problem listed

earlier, the following far-fetched goals will not be impossible but achievable in the

near future:

Search and rescue mission in a disaster sites

Multi-robot systems can be employed to search for survivors in collapsed building.

The robots can be fitted with sensors to detect survivors or fitted with cameras to assist

rescue workers. Deploying such systems has several advantages. Small mobile robots

can replace the rescue workers going into the disaster site. This reduces the risk rescue

workers have to bear in performing the rescue mission. Smaller robots can also enter

tight situations where a human cannot easily move through. Having multiple robots to

search for survivors can potentially reduce the search time needed. This is especially

important, as it is a time critical mission. The number of survivors depends on how

fast they can be rescued. In fact, using robots in this area is not new. In the recent

2001 September 11 disaster, tele-operated robots are brought into the world trade

center site to search for survivors.

Search and clearing of hazardous substances

In view of the growing threat of terror attacks on civilian infrastructures, we can

envisage the following scenario. Terrorists planted explosion or toxic chemicals in a

shopping mall. We need to find these hazardous entities as soon as possible. Using

multiple robots, we can reduce the risk that a human has to undertake. In addition, the

robots can be equipped with devices to dispose such items. They can also find these

items that may be easily hidden in locations out of reach by a human.

Introduction

 10

Fighting in build-up area (FIBUA)

The military has recently shown interest in this application, as urban warfare will

become a common battlefield in the future. FIBUA is a difficult military operation due

to factors such as limited visibility, complex and extensive fortifications, limited

intelligence and problems in command and control. These often result in collateral

casualties and damages. Because of this, the military has always tried to avoid fighting

in an urban environment when possible. The use of multiple robots before the actual

operations can provide useful intelligence. They can subsequently serve as

surveillance posts to monitor changes in the environment. The robots can also serve to

extend the reach of the soldiers during operations, by serving as front scouts and

clearing dangerous obstacles obstructing the mission.

1.4 Outline

The work described in this dissertation can be in general grouped into three phases:

design, implementation, and analysis. In the design phase, we designed the multi-

robot control architecture, the search strategy and the physical robot platform for

implementation. For the implementation, we formulated the algorithm into control

behaviours in both a sensor-based simulation and the physical robots. Lastly, we

performed a series of physical and simulation experiments to study the performance of

our random search algorithm.

The contents of this dissertation are outlined as below:

Introduction

 11

Chapter 2 presents related works that other researchers have contributed in this area.

We looked into different approaches for multi-robot architecture, autonomous control

of the robot, effect of communications on cooperation and different search strategies.

Chapter 3 presents our random search algorithm. We discuss the requirements of the

multi-robot system architecture and look at possible solutions for the architecture

design. Then, we present the design of our random search algorithm.

Chapter 4 presents the physical robot that we implemented with the algorithm. We

present a detailed description on the design of the physical robot. Besides the physical

robots, we also developed a client program for controlling the robot.

Chapter 5 presents the simulation program that we have developed. We describe how

we modelled the physical robot and other entities in the simulation program.

Chapter 6 covers our algorithm implementation on physical robots and simulation. We

formulated the reactive behaviours to implement the proposed search algorithm.

Chapter 7 describes the physical and simulated experiments to test our algorithm. We

present results from the various physical and simulated experiments and discuss the

results and observations.

Chapter 8 presents our conclusions and recommendations for future work.

Background on previous work

 12

Chapter 2: Background on Previous Work

The first project objective is to design an algorithm to control multiple robots

searching for static targets in a bounded structured environment unknown to the

robots. The algorithm should be capable of controlling large numbers of robots,

perform effective resource allocation to the robots and at the same time be robust to

failures. In this chapter, we will review some of the related works.

Cao et al. in [14] provides a critical survey of existing works and discusses open

problems in cooperative autonomous mobile robotics, emphasizing the various

theoretical issues that arise in the study. The term “cooperative” has been used several

times in this dissertation. However, “what is cooperative?” Some explicit definitions

in robotics literature include:

• “Joint collaborative behavior that is directed toward some goal in which there

is a common interest or reward” in [7].

• “A form of interaction, usually based on communication” in [38].

• “Joining together for doing something that creates a progressive result such as

increasing performance or saving time” in [48].

From these definitions, Cao et al. in [14] derived a more formal definition. The

authors defined cooperative as: “Given some task specified by a designer, a multiple-

robot system displays cooperative behaviour if, due to some underlying mechanism

(i.e. the “mechanism of cooperation”), there is an increase in the total utility of the

system”. In their study, the authors identified five major research axes for cooperative

multi-robot systems: (1) Group architecture; (2) Resource conflict; (3) The origin of

cooperation; (4) Learning; and (5) Geometric Problems. In addition, the authors

Background on previous work

 13

pointed out some promising directions in this field: (1) Development of rigorous

formalizations; (2) Formal metrics for cooperation and system performance; (3)

Experimental studies might become more rigorous and thorough; and (4) Incorporation

of recent ideas in distributed control to achieve oblivious cooperation, or cooperation

without communications (e.g. when robots have minimal sensing and communication

capabilities).

2.1 Approaches to Multi-Robot Control

Controlling multi-robot systems is a complex problem. Simply increasing the number

of robots assigned to a particular task does not necessarily guarantee better

performance over single robot systems. Multiple robots must cooperate without

destructive interference to produce the benefits over single robot systems. In addition,

other issues such as the dynamic environment, malfunctioning robots, imperfect

communications, and time and resource constraints add complexity to the problem.

Over the years, various control strategies have been proposed. In general, they can be

classified in the following three approaches: (1) Centralised Deliberative Approach;

(2) Distributed Reactive Approach; and (3) Hybrid Deliberative Approach.

In centralised deliberative approach, there is a central, powerful planner or controller.

This central planner gathers information from other robots in the team and forms the

global map information of the environment. It then formulates a global plan and

allocates various tasks to the each individual robot in the team. While the robots

execute the tasks, it monitors the execution, re-plan and re-allocate tasks when

necessary. Sometimes a priori map information of the environment is required by the

Background on previous work

 14

planner to begin. Simmons et al. in [52] described a tiered architecture with a central

planner and executive to control multiple autonomous mobile robots. The authors

have tested the system in the deployment of teams of robots using different

deployment strategies. Li et al. in [34] proposed a centralised planner that uses the

hierarchical sphere tree structure to group robots dynamically and perform motion

planning for the robots. Burgard et al. in [13] used a centralised planner to coordinate

multi-robot exploration. In this work, target points and its utility are assigned to

individual robots based on the cost of reaching it. The principal advantage of a central

coordinating controller is that an optimal solution can be produced. It can compute a

desired position or trajectory for each robot in the system. However, such a system

has disadvantages:

• Optimal coordination of the multiple robots is computationally difficult. In

addition, the global plan is computed at the central planner. This requires high

demands on computation requirements under time constraints on this central

planner.

• All relevant information about the robots and their environment are transmitted

to a single location for processing. The amount of data transmitted can be

enormous and data loss may not be allowed. This leads to stringent and high

demands on communication requirements. Rybski et al. in [50] demonstrated

how the communication bottleneck reduces the overall system performance. In

his work, a multi-robot system on a shared communication channel is shown to

perform worse than a single robot.

• The system is not easily scalable in numbers. Adding more robots to the team

may require a change in the cooperation strategy. It can also cause an

exponential increase in computation and communications requirements.

Background on previous work

 15

• The system may not be suitable to operate in a dynamic environment. Any

changes to the environment have to be made known to the central planner. It

then has to re-plan the global plan. Hence, it can potentially slow down the

whole system.

• There is the existence of a single point of failure that can potentially cause the

whole system to fail. For example, if the central planner breaks down or there

is a break in the communication network, these can cause a standstill in the

system. Hence, increasing the risk of mission failure in harsh real world

environment.

Distributed reactive approach can address the above problems through distributing the

planning among the robots in the team. There is no global plan to coordinate the

robots. Each robot is an autonomous independent entity, acting on information that is

locally available through its sensors. Cooperation in the team emerges through the

local interactions among robots and the environment. As the field of artificial life

emerged, researchers have begun to model systems by applying nature-inspired

principles such as swarm intelligence to robotics. Swarm intelligence is the emergent

collective intelligence from the local interactions of groups of simple autonomous

entities. It was first introduced by Beni in [8] on the concept of cellular robotics.

Subsequently, proven working models in nature (ants, bees, etc.) have motivated

researchers to show considerable interest in swarm intelligence [9][21][56][59][61].

Parunak in [45] summarised several studies of such systems, and derives from them a

set of general principles that artificial multi-agent systems can use to support overall

system behaviour significantly more complex than the behaviour of individuals agents.

Dudek et al. in [21] presented a swarm robot taxonomy of the different ways in which

Background on previous work

 16

such swarm robots can be characterised. Reynolds in [49] demonstrated flocking

behaviour in birds using just three simple behavioural rules. In his simulated flock, the

birds worked independently trying to stick together and avoid collisions. The flocking

behaviour emerges from these independent behaviours. Hackwood et al. in [27]

proposed a model where simple robots act under the influence of “signpost robots”.

Many aspects of the collective activities of social insects are self-organized.

Successful models of self-organization capabilities of ant colonies have inspired many

researchers to design ant-liked systems. Ants and other insects are known to use

chemicals called pheromones for various communication and coordination tasks.

Payton et al. in [46][47] modelled these chemical pheromones with their virtual

pheromones of infrared messages. They have successfully demonstrated this concept

in their work on pheromone robotics through physical simple robots interacting with

each other using the virtual pheromones. Wagner et al. in [59] had the ant-robots

performing distributed covering of an un-mapped building using evaporating traces

that gradually vanish with time. Kube et al. in [32] demonstrated cooperative box

pushing by a group of robots just using simple ant inspired behavioural rules.

Bonabeau et al. in [10] identified that self-organisation relies on four basic ingredients:

(1) Positive feedback; (2) Negative feedback; (3) Amplification of fluctuations; and (4)

Multiple interactions. This distributed reactive approach allows fast response to

dynamic conditions and decrease the communications requirement. Typically, little

computation is required since each robot plans and executes its own activities.

Moreover, the whole system is more robust and the approach scales easily to

accommodate large number of robots. However, the principal drawback of this

approach is that they often result in highly sub-optimal solutions because all plans are

based on local information. In addition, completeness cannot be assured and generally

Background on previous work

 17

large numbers (or infinite time) is the best guarantee to obtain high probability of

“completing” the task.

In hybrid deliberative approach, cooperation is deliberately planned for. Unlike the

centralized approach, there is no central planner. Information gathered by different

robots is exchanged whenever possible and the robots use that available information to

generate individual plans. These plans can be individual robot activities or multi-robot

activities. Better connectivity among the robots allows better cooperation and hence

results in better system efficiency. To achieve cooperation, many groups adopted

strategies similar to Contract Net Protocol, first introduced by Smith in [54]. It is an

approach to negotiation in multi-agent systems inspired by a market-liked model.

Simmons et al. in [53] extended their earlier work of a centralized tiered layered

architecture [52] to a hybrid one. Each robot now has a complete three-layered

architecture and the layers can interact directly with the same layer of other robots.

This approach has the two disadvantages: firstly, negotiation protocols and mapping of

task domains to appropriate cost functions can complicate the design of a control-

architecture; secondly, negotiation schemes can increase communications

requirements.

2.2 Robot Control

Brooks [12] presented a robust and flexible robot control system. Layers of control

systems are built to let the robot operate at increasing levels of competence. These

layers operate asynchronously and higher-level layers can subsume the roles of lower

level layers. Mobile robots designed using the behaviour-based paradigm have shown

Background on previous work

 18

good performance in adapting and operating in open environments. The approach has

been praised for its robustness and simplicity of construction. One of the pioneering

works is Reynolds’s flocking behaviour in [49]. Balch et al. in [6] demonstrated multi-

robot formation keeping using reactive behaviours. Mataric in [40] presented three

examples of behaviour-based control robots performing navigation and path finding,

group behaviours, and learning election.

2.3 Communication

For robots to cooperate, some forms of communication may be required. In general,

there are three types of communication. In the first type, the environment itself is the

communication medium. There is no explicit communication among the robots.

Stigmergy is an example of such communication principles where indirect interactions

among the entities are through modifications of the environment to achieve collective

behaviour. It was first described by Grasse to explain how social insect colonies can

collectively produce complex behaviours [10]. The second type is interaction through

sensing where the robots are able to distinguish themselves from the environment.

Lastly, the robots communicate directly with one another. Hence, robot

communication can be implicit through interaction with the environment or explicit

where intended messages are directed or broadcast to other robots. Although, Arkin in

[1] has demonstrated that cooperation is possible without communication, he does not

make the claim for all tasks. The effect of communications on the system performance

has been studied in [5][20][37][55]. In general, these works concluded that some

simple local interactions among robots would improve the system performance.

Background on previous work

 19

2.4 Search Strategy

The problem of exploring an environment has several applications like planetary

exploration, reconnaissance, rescue, etc. An effective search algorithm should not be

environment dependent [42]. In general, there are two types of search strategies: a

perfectly plan-based coordinated search pattern [13][29][42][46][47], and a random

search [20][24][25][55].

Burgard et al. in [13] assigns target locations to robots, taking into account the cost of

reaching it and its utility. Typically, plan-based strategy requires accurate localization

capability. However, in urban environments, accurate localization using Global

Positioning System (GPS) is generally not possible. While landmark-based

approaches may be inaccurate, this is particularly true in disaster scenarios, where the

dynamic environment may undergo structural modifications [29]. Other plan-based

approaches in [29][46][47], overcomes this constraint by having the robot entities in a

tightly coordinated formation through line-of-sight relationships with one another.

However, such approaches may not fully exploit the parallelism advantage in multi-

robot systems.

For the random search strategy, Gage in [25] presented the chord strategy by McNish.

In the chord strategy, the searcher travels as far as possible between changes of

direction and is guaranteed not to visit any point twice during transit. A diffusion

reflection algorithm to determine the next chord direction can reliably provide uniform

coverage. However, the chord strategy requires the localization of the robot and

geometry of the search area. Other randomised search algorithms described in [25] do

not claim to provide complete coverage and they have only been explored in

Background on previous work

 20

simulations. Gage in [24][25] proposed that multi-robot systems consisting of many

inexpensive simple robots may tend to use randomised search strategies for two

reasons: (1) the effectiveness of a coordinated search strategy decreases with the

capability of the search sensor, and (2) the cost of implementing a coordinated search

strategy is higher.

2.5 Related Work

In this dissertation, we proposed a distributed random search algorithm. The multi-

robot control architecture of our algorithm uses the distributed reactive approach. In

this way, there is less demand on the computational and communication capabilities of

the robots. Hence, we can use multiple simple robots to solve the posed problem.

Moreover, this approach allows us to scale the number of robots easily and is robust to

single point of failure.

In our proposed algorithm, each robot is controlled by simple behavioural rules using

the behavioural-based approach. The difference of our work from previous similar

works is that we have added behavioural rules to promote local interactions. We

believed that these rules add benefits as previous studies on communication have

shown that having some form of simple local interactions would improve the system

performance. In addition, these local interactions are required for the robot to

complete the search problem.

Our proposed search algorithm uses the random search strategy. As discussed earlier,

randomised search is more suitable for multi-robot systems that use simple robots.

Background on previous work

 21

The analysis on randomised search strategies in earlier works was mostly done in

simulation and dealt with cluttered environments. Unlike these works, our random

search algorithm is implemented in both physical robots and simulation for a

structured environment. In addition, it is robust to changes in the environment.

Lastly, our proposed random search algorithm does not require the robots to localize

themselves. As discussed earlier, good accurate robot self-localization in an indoor

environment is difficult to achieve on real physical robots. Many works on

cooperative multi-robot systems could only be implemented in simulation as they

assume that robots have the self-localization capabilities. Hence, we do not make this

assumption here.

2.6 Chapter Summary

In this chapter, we have looked at the various multi-robot control architectures that

have been proposed by researchers over the years. In general, there are three

approaches: (1) Centralised Deliberative Approach, (2) Distributed Reactive

Approach, and (3) Hybrid Deliberative Approach. Each of these multi-robot control

architectures has its advantages and disadvantages. There is no “the one” architecture

that is perfect for all multi-robot systems. However, based on the system requirement,

we can apply the techniques from these approaches to design an architecture that

brings out the benefits of our multi-robot system.

Some form of communication is required for cooperation among the robots. The type

of communication also affects the system architecture. For example, swarm

Background on previous work

 22

intelligence uses implicit communications as cooperation and explicit communications

is more suitable for deliberate control. In general, the works surveyed suggests that

some form of simple interactions will improve system performance.

We also surveyed some of the search techniques employed. In general, there are two

approaches: plan-based and random search. Plan-based techniques require more

capabilities of the robots, such as self-localization and better sensors, compared to

random search strategies.

Lastly, we formulated our random search algorithm using the findings of these earlier

works. We also presented the differences of our work from these works. Mainly, our

algorithm has behaviour rules to provide local interactions and do not require robot

self-localization capabilities.

Designing the multi-robot system architecture

 23

Chapter 3: Designing the Multi-Robot

System Architecture

In the earlier chapter, we have looked at some related works. Over the years,

researchers have proposed different multi-robot control architectures and different

search strategies to tackle this autonomous robot search problem. From their work, we

learned the problems associated with multi-robot control and real world environment

implementation complications. In this chapter, we will discuss the requirements of the

multi-robot system architecture to solve our posed problem. Following this, we will

look at possible solutions for the architecture design. Finally, we will present our

random search algorithm for multiple autonomous independent robots to solve the

indoor search problem.

3.1 Architecture Requirements

The first objective of this project is to design a cooperative search strategy for multiple

autonomous robots searching for targets in an unknown structured environment. The

first step to provide a solution for the problem is to design the multi-robot control

architecture for the system. Hence, we will define some characteristics that the multi-

robot system architecture should possess:

• The multi-robot system should be economically cheaper compared to a single

robot system. This is to bring in the added benefit of using multiple robots.

Each robot should be relatively cheap and allows them to be sacrificed. For

Designing the multi-robot system architecture

 24

example, a robot can itself be carrying a bomb and take out a target by

exploding against it.

• The system should be fast and responsive. This is important for time crucial

tasks such as locating a bomb in the building. The robots cannot spend too

much time waiting to compute the next step to move.

• Easily scalable in numbers. The system should allow increasing the number of

robots without much work needed to change the multi-robot control system.

• Robust to failures. There should not be any failure points in the multi-robot

systems that can potentially cause the whole system to fail. We want a system

that is capable of handling robot “attrition” such that the system will still

operate even when it is down to a single robot.

• Homogeneous composition. We would like a system that is homogeneous, that

is, all the robots are the same, having the same capability. In addition, each

robot has the capability of performing a given task alone. This is different

from some multi-robot system where robots need to coordinate to perform a

task. For example, in the stick pulling experiments, two robots are needed to

pull out a stick.

3.2 Inspiration From Nature

In our effort to design an effective multi-robot system, we decided to take a step back

and look at nature for ideas. The reason being that nature itself has lots of proven

working examples of real life cooperative systems. How does a wolf pack coordinate

and organize the pack in a hunt to make the wolves such efficient hunters? How does

a flock of geese organize themselves to fly in formation during migration such that

Designing the multi-robot system architecture

 25

they save energy and have better chance of survival? How does a school of fishes

swim together in formation to fool their predators? How does a swarm of army ants

that can easily make up to a few hundred thousands in numbers organize themselves in

a hunt foraging for food? Living organism in nature has been constantly evolving for

the past millions of years and nature has an effective way of improving them. Through

nature selection, the better systems will have higher chance of survival and those

inferior systems need to improve or face extinction.

Among these social organisms that display cooperative behaviour, the foraging

behaviour of the ant colony interests us the most. The ant colony is well known to be

efficient searchers, even in terrain that is unknown to the colony. The ants

demonstrate this capability in their food foraging behaviour. Not only are they able to

find the food source that can be located some distance, but also find the shortest path

leading to the food source from the nest. How do these simple social insects achieve

such complicated collective behaviour? The answer lies in the ants’ capability to self-

organize efficiently.

Deneubourg et al. in [19] showed that path selection to a food source in the Argentine

ant is based on self-organization. In their simple and elegant experiment set-up, a food

source is separated from the nest by a bridge with two equally long branches. After

some time, a single dominant trail of ants formed on one of the branches. They

replaced the branches with one branch longer than the other and performed the same

experiments. Initially, there were two trails of ants on the branches. After some time,

the trail on the shorter branch dominated. Hence, the ants were not only capable of

finding the food source, but also able to find the shortest path to it.

Designing the multi-robot system architecture

 26

Aron et al in [3] have shown that the Argentine ant could solve the minimal spanning

tree problem. In their laboratory experiment, three or four nests are connected by

cardboard bridges. The resultant traffic of ants was such that the ants were travelling

on a set of paths connecting all the nests. The set of paths formed a minimal spanning

tree, that is, the ants did not use redundant bridges.

Army ants are among the largest and most cohesive societies [18]. Their foraging

systems coordinate hundreds of thousands of individuals and cover a thousand square

meters in a single day. There is no centralized control, each individual acts on its own

behaviours. These swarm raids, comprised of individuals that are virtually blind, are

fascinating examples of powerful, totally decentralized control. This is achieved

through self-organization, which was shown in Deneuborg et al.’s [18] self-

organization model of the army ant raid patterns.

3.3 Proposed Algorithm

We are inspired by the amazing collective foraging behaviour of the ants that results

from just simple individual ant behaviours. Hence, we attempt to design our algorithm

using a similar approach. Like the individual ants, we design simple behavioural rules

for the robots, based on what simple individual will do intuitively when searching in

an environment. Firstly, the individual robot needs to wander around the unknown

environment to explore it. Through wandering in the environment, the robot will be

able to discover new grounds and explore them. When moving in the environment, it

will surely encounter obstacles or other robots. Hence, the robot needs certain

Designing the multi-robot system architecture

 27

collision avoidance logic to prevent collisions. In a search task, the individual robot

obviously must have certain logic to find the targets in the environment. Lastly, for

the robots to be cooperative and work as a team, they must have some means of

communication with each other. Therefore, putting all this together, our algorithm

consists of the following five behavioural rules:

Rule 1 is essentially obstacle avoidance behaviour. The robot will avoid any robots or

obstacle in its motion path. This rule does not require the robot to distinguish fellow

robots from obstacles.

Rule 2 allows the robot to find any target within its detection range. It will also alert

neighbour robots (if any) of the target presence relative to itself. This is achieved

through broadcasting a message and any robots within the communication range can

receive it.

Rule 3 allows the robots to react to messages from fellow robots. The way the robots

cooperate depends on the reaction of the robot. For example, if the robots move away

1) Avoid obstacles and fellow robots.

2) Find targets and alert neighbouring robots.

3) Respond to neighbouring robots’ messages.

4) Follow external commands.

5) Wander in the environment.

Designing the multi-robot system architecture

 28

from the robot emitting the messages, this will result in scattering behaviour of the

robots.

Rule 4 allows the robots to receive messages from an external command and acts on

them. These commands can be used to control or change the robots behaviour. The

robots can follow these commands and perform different sub tasks. For example,

initially the robots can be given the order to move in a group and assemble at a certain

location, start the mission at a certain time and finally regroup when the mission is

over.

Rule 5 is actually the default rule. It is activated when the above four rules is not

active and is dependant on the mission requirement. In a search mission, we will like

the robots to wander in environment and explore unseen places.

The rules are prioritised, with rule 1 having the highest priority. They provide local

interactions among the robots for cooperation. For example, when a robot avoids a

fellow robot, it changes its search path. Cooperation to find all targets is achieved

through the local interactions triggered by rule 2 and 3. These two rules can ensure

that a target is only found by one robot. Each robot is independent and controlled by

the five behavioural rules, that is, all the robots have the same intelligence.

3.3.1 Algorithm Characteristics

The proposed algorithm has the following characteristics:

Designing the multi-robot system architecture

 29

• Distributed Control. Each individual robot works independently and is

controlled by the behavioural rules without waiting for instructions from a

central controller.

• Simplicity. Each robot is governed by just the five simple behavioural rules.

The rules do not have high computational requirements. Hence, the robot can

be simple and low cost.

• Fast and responsive. The simple behavioural rules do not demand high

computation capability. Thus, all computations can be completed relatively

fast and be responsive to changes in the environment.

• Homogeneous. All robots are physically the same and are controlled by the

same behavioural rule set.

• Scalable in numbers. The algorithm does not require tight coordination among

the robots and the system is homogeneous. Hence, robots can be added or

removed easily without the need to change the algorithm.

• Robustness. The system is distributed. Thus, there is no single point of failure.

3.3.2 Uniqueness of Algorithm

The behavioural rules do not require the robot to know its position or the environment

layout. This is an important characteristic as robot localization in an indoor

environment is a difficult task and is itself an area of research. This is because it is not

possible to use the GPS in the indoor environment. We cannot rely on the robot’s

odometer as it accumulates errors from slippage and uneven terrain. In addition,

landmark-based localization techniques have high computation requirements and do

not work well in dynamic environments. Dynamic environments, for example a

Designing the multi-robot system architecture

 30

disaster site, may contain moving entities or changes in the layout. In this work,

fellow robots moving in the environment will cause problems for landmark-based

localization techniques.

Lastly, the randomised search strategy is employed here. Based on the architecture

requirements discussion, the random search is suitable for our algorithm. This is

because of the characteristics of our proposed algorithm. Random search is suitable

for simple distributed control architecture that is reactive to dynamic changes, and

where low cost robots can be easily added or removed from the system.

3.4 Chapter Summary

In this chapter, we proposed a distributed random search algorithm for a team of

autonomous simple robots. We have also identified certain key requirements for the

algorithm. They are: low cost robots; fast and responsive; scalable in numbers;

homogeneous and robust to failures.

In designing our algorithm, we looked at working cooperative systems from nature. In

particular, we are interested in the foraging behaviour of the ant colony. Through

simple local individual behaviours, the ants can produce emergent complex system

behaviour. Thus, we are inspired by the ants and propose an algorithm comprising of

five simple behavioural rules. Our algorithm employs a random search strategy and

does not require the robots to localize themselves. The behavioural rules also provide

local interactions among the robots for cooperation.

Designing a physical robot platform

 31

Chapter 4: Designing a Physical Robot

Platform

In this chapter, we present the mobile robot platform that we designed and built to

implement our random search algorithm. We will discuss the design criteria for the

robot. Following this, we give a description of the sensors, actuators, communication

devices and other components on the robot. Finally, we developed a client program to

control the robot using a Pocket PC. It should be noted that the focus of this research

is not designing the physical mobile robot. We designed the mobile robot for the

purpose of implementing our search algorithm. The physical robot is used to

demonstrate that the search algorithm is robust enough to function in a real world

environment.

4.1 Mobile Robot Design Criteria

Simplicity is one of the main characteristics of the proposed distributed search

algorithm. It does not have high demand on the capability of the robot platform.

Hence, simple and economically cheaper robots can be used. Gage [23] defined a

simple robot as one possessing: (a) a measure of mobility, (b) sensor capability to

measure its position with respect to its nearest neighbouring elements, (c) mission

capable sensor, (d) communications capability, and (e) on board processing capability.

Our simple robot must be capable to meet the demands of the proposed algorithm.

Thus, we define the following design criteria:

Designing a physical robot platform

 32

• Mobility. Each robot must be capable to move about in the environment

without help from other robots. Since the robots do not need to have

localization capability, there is no need for position encoders on the robots.

• Sensor capability. The robots must be equipped with sufficient sensors to

provide situation awareness of the environment to the robot. This is required

for successful autonomous robot navigation in the environment.

• Mission capable sensor. Since the mission here is to search for targets, which

are represented by light beacons. Hence, light detectors are required for the

robot to find targets.

• Communication. The algorithm requires some means of communication

among the robots. Thus, the robot must be equipped with some communication

device.

• Processing capability. The robots are autonomous. Hence, there must be some

on-board processing capability in the robot.

4.2 Inspiration From Nature

Since the design of our random search algorithm is nature-inspired, we could also look

at nature for ideas to design our mobile robot platform. In nature, organisms are living

in a harsh world where the rule “survival of the fittest” applies. Having good sensory

and motion capabilities is important for survival. Nature selection and evolution has

taken place through millions of years. Hence, the organism in nature must have

evolved to some very effective design. For example, biologists discovered that bats

started out as ground rodents and have evolved wings for flight to hunt for food.

Designing a physical robot platform

 33

However, the focus of this research is not on the robotic platform. We will not look

into those fanciful actuator capabilities but gather insight on the sensory part.

Have you ever tried swatting a fly? Notice how difficult it is to swat one. The fly’s

sense is very well developed. Its compound eyes with an “ommatidium” as basic unit

cover a wide angle and are particularly good in detecting quick assault movements.

This sensory capability combines with the fly’s ability to manoeuvre itself into

intricate flight patterns makes it difficult to swat a fly. Another example is spiders.

Spiders have six or eights eyes, all looking in different directions. This allows them to

spot preys, predators or potential danger easily. Hence, allowing them to react

responsive to the specific situation.

Drawing ideas from these insects, we decided to design a robot that has sensors to give

it wide coverage of the environment around it. Preferably, the robot should have

sensors all round to detect for any changes in the environment.

4.3 Robot Platform Description

The focus of this research is not in designing a robot platform. We are not proposing

creative novel designs for the robot. The purpose of the robot is for us to implement

the proposed algorithm and demonstrate that the algorithm works. We set out to

design our simple mobile robot based on the criteria listed and the ideas obtained from

nature. We named the mobile robot “CoSyBot”. Figure 4-1 shows the CoSyBot. We

have built and assembled five CoSyBots to implement our random search algorithm

and conduct physical experiments.

Designing a physical robot platform

 34

Figure 4-1: CoSyBot robot platform

Pocket PC

Light and
ultrasonic
range sensor

IR
transceiver

Microprocessor

Actuator

Magnetic
Compass

Designing a physical robot platform

 35

4.3.1 Features of CoSyBot

4.3.1.1 Physical Structure

CoSyBot has a modular structure. Layers or modules can be changed or added to

reconfigure the robot according to the mission requirements. For example, the light

sensor module can be replaced with a pyroelectric sensor module to detect heat source.

The robot has a circular footprint of 150mm in diameter with a height of 300mm.

There are two power supplies for the robot: six 1.5Volts AA batteries to power the

sensors and microprocessor; and four 1.5Volts AA batteries for the servomotors. All

power is supplied directly to the microprocessor boards, which then relay it to the

other devices.

4.3.1.2 Mobility

Locomotion of the robot is provided by two modified continuous servomotors with a

wheel each and supported by two ball transfers serving as caster wheels. The wheel

axis passes through the centre of the robot with the wheels symmetrical about the

centre axis. See Figure 4-2. This allows the robot to turn on the same position using

differential drive without any swing radius. Since, the environment is a two-

dimensional structured workspace with a flat terrain, this locomotion is sufficient for

the robot to manoeuvre in it. The servomotors are driven by the motor controller on

the microprocessor board.

Designing a physical robot platform

 36

Figure 4-2: CoSyBot actuator layer

4.3.1.3 Sensors

Firstly, a Devantech magnetic compass gives the heading information of the robot in

the environment. This compass uses the Philips KMZ51 magnetic field sensor, which

is sensitive enough to detect the Earth's magnetic field. The output is the absolute

heading value in the range of 0-360° with a resolution of 0.1°. The compass output 0°

when it is pointing in the direction of the Earth’s magnetic north. It is connected to the

microprocessor board using the industrial IIC bus.

Secondly, the ultrasonic range sensor layer consists of eight Devantech SRF08 range

sensors. Technical data of these ultrasonic sensors can be found in Appendix A. They

are placed 45° apart in a circular array, giving 360° all round sensing for the robot.

Each SRF08 is an ultrasonic range sensor and provides range information of the

environment around the robot. They are connected to the microprocessor board using

the industrial IIC bus. Each SRF08 has a unique address, which allows the

microprocessor to talk directly to.

Casters
Wheels

Designing a physical robot platform

 37

Thirdly, each SRF08 has a built in light sensor. The light sensor is to detect the targets

(light beacons) in the environment. Hence, they are the mission capable sensors for

the robot. Together, the sensors provide situation awareness of the environment.

Figure 4-3: SRF08 sensors arrangement

4.3.1.4 Communication

There are two types of communication devices on CoSyBot to provide local implicit

communication and global explicit communication. The IR transceiver layer on the

robot provides the implicit communication. It consists of eight IR transceivers placed

45° apart in a circular array, similar to the light and ultrasonic range sensor layer.

These IR transceivers are standard IrDa 1.0 compliant. They are directional and allow

communication via the IR channel. Hence, robots can send IR messages to other

robots within the transceiver line of sight range. This layer allows local interaction

between neighbour robots, similar to the “dance” which honey bees perform to

Ultrasonic range
 sensing

Light
sensing

Robot

Designing a physical robot platform

 38

communicate with each other. We designed the circuit for these IR transceivers, as it

was not available as an additional option for the BrainStem GP 1.0 board. They are

fabricated using commercial off the shelf components. The circuit board is responsible

for encoding and decoding the IR messages and communicates to the microprocessor

board via the RS 232 serial interface.

The wireless LAN communication network provides the explicit communication. This

is achieved using the IEEE 802.11b wireless device on the Pocket PC. The developed

communication network uses the UDP protocol, and allows both broadcasting and

peer-to-peer communication among the robots. In this way, explicit communication

can be achieved among the robots in the network to enhance cooperation among them,

e.g. when one robot found a target, it can inform all the robots in the team. In addition,

an operator can send external commands to the robots via this network.

4.3.1.5 Processing

Firstly, the robot has two BrainStem GP 1.0 microprocessor boards networked

together. This is the part of the robot that manages connections to the rest of the

physical devices on the robot, i.e. servomotors, ultrasonic range sensors, IR transceiver

etc. Simple TEA programs can also be loaded and run from the microprocessor

boards. Technical specifications of the BrainStem GP 1.0 microprocessor board can

be found in Appendix B.

Secondly, the robot can be operated in slave mode with a host computer as the master.

A Pocket PC is mounted on the robot and served as the host computer via RS 232

serial connections. This arrangement allows the robot to exploit the better processing

Designing a physical robot platform

 39

power of the Pocket PC. In our set-up, we used the HP iPAQ H5450 Pocket PC,

which has a 400 MHz XScale processor. The algorithms for the behavioural rules are

implemented in the host computer to control the robot. Figure 4-4 illustrates the

architecture of CoSyBot.

Figure 4-4: Architecture of CoSyBot

4.4 Client Program

We developed a client program for the CoSyBot using Microsoft Embedded Visual

C++. The design of this client program promotes reusability and portability. Figure

4-5 illustrates the architecture of client program. It consists of the following 3 layers:

BrainStem GP
1.0 module

(router)

BrainStem
GP 1.0
module

Environment

Sensors/Actuators

RS-232
Serial

CoSyBot

Higher-level software
(Client program)

WinCE Pocket PC

Designing a physical robot platform

 40

• Device Abstraction Layer. This layer abstracts the robot’s control code away

from the physical robot platform. In other words, it is an interface layer between

the control codes and the physical robot. It decouples the control codes from the

physical robot. Requests or commands are sent to this layer, which in turn relay

them to the physical robot and back to the source. The advantage of having this

layer is that it allows the client program to work with other robotic platform. This

can be achieved through providing the relevant device controllers to the device

abstraction layer. Hence, the user needs only to work in this layer, while reusing

his algorithm control codes without major changes to it.

• Application Layer. The algorithm control codes reside in this layer. It mainly

consists of two components. Perception module accesses the robot’s raw sensor

data through the device abstraction layer and processes them into useful

interpretable information for the robot. Behaviour module accesses this

information and triggers the appropriate control behaviour. The control behaviour

then sends the actuator commands to the physical robot through the device

abstraction layer.

• User Control Console. This layer provides an interactive display for the user to

control the robot. He can start and stop his control program from here, access the

processed information from the Perception module or execute the behaviours in the

Behaviour module. It also has an output console for logging data while the robot is

in operation. This is handy for the user to debug or troubleshoot his control codes.

The user can also access the robot’s physical devices directly via the device

abstraction layer.

Designing a physical robot platform

 41

The Microsoft Embedded Visual C++ toolkit also allows the client program source

codes to be complied to work with different embedded systems. In our set-up, the

client program runs on the HP iPAQ H5450 Pocket PC with a 400MHz xScale

processor. The Pocket PC acts as the host computer and controls the robot in slave

mode. Connection between the Pocket PC to the robot is via the RS-232 standard

serial port.

Figure 4-5: Architecture of CoSyBot client program

4.4.1 Features of the Client Program

Features of the client program include:

Device Abstraction Layer

Physical Robot (Sensors, Actuator, etc.)

Perception Behaviour

User Control Console (GUI)

Application Layer

Client Program

Designing a physical robot platform

 42

• Algorithms are implemented onto the robot through the client program using

C/C++ programming language. This is useful as C/C++ is a widely used

programming language.

• It handles the serial communication link with the robot.

• It supports the wireless network implementation for the robot.

• It has a hardware diagnostics tool to check the robot’s sensors and actuators.

• A GUI interface for easy interaction with human operator. See Figure 4-6.

Figure 4-6: GUI of the client program. Main window (left) & Hardware diagnostic
window (right)

4.5 Chapter Summary

In this chapter, we presented the physical robot CoSyBot that we designed and built.

CoSyBot is designed following the criteria that we had laid out so that it could meet

Designing a physical robot platform

 43

the demands of our proposed random search algorithm. In general, it must possess

sufficient sensors, motors for mobility, means for communication and on-board

processing capabilities, allowing it to operate independently. CoSyBot uses ultrasonic

sensors to sense the environment, light detector to detect targets (light beacons), IR

transceivers for local interactions, and servomotors for mobility. We have built and

assembled 5 CoSyBot for our physical experiments. In addition, we also developed

the client program to control the robots using a Pocket PC.

Modelling the physical robot and structured environment

 44

Chapter 5: Modelling the Physical Robot

and Structured Environment

Earlier, we described the physical robot that we have designed and built to implement

our proposed random search algorithm. We also developed the client program to

control the robot using a Pocket PC. The intention is to demonstrate our proposed

algorithm on physical robots. In addition to the physical robot and client program, we

also developed a computer simulation program. We modelled the physical robot and

the structured environment in the simulation program. In this chapter, we present the

simulation program and how we modelled the individual entities in it.

5.1 CoSyBot Simulation

This simulation program serves 2 main purposes. Firstly, we can use the simulation

program to design, develop and test our robot behavioural codes before implementing

on the physical robot. Hence, we are not developing it directly on the physical robot.

This makes sense because we would have to deal with real world problems if we work

on the physical robot directly. This takes more time and makes it difficult to isolate

any problems encountered during the development process. Secondly, it is technically

not feasible to perform multiple experiments using physical robots for studying the

algorithm. We can use the simulation program to perform multiple simulated

experiments. The simulation program will allow us to generate more results in a

shorter time compared to performing the physical experiments. The above two

Modelling the physical robot and structured environment

 45

purposes can be achieved through developing a simulation program that has high

fidelity to the physical robot.

The simulation program is a two-dimensional graphical simulator that simulates the

topological view of the environment. It can run on any Microsoft Windows based

machine. The program is written in C/C++ programming language and using

Windows programming for the graphics. Approximately six thousand seven hundred

and seventy lines of codes are written for this simulation program.

5.2 Modelling the CoSyBot

A model of the CoSyBot robot is created in the simulator. We modelled it closely to

the actual robot, having similar physical characteristics. These are namely the physical

body, motion drive, navigation and target sensors, and communications capabilities.

They are described in detail as follows.

5.2.1 Physical Body

The physical CoSyBot robot has a circular footprint of 150mm diameter and stands

300mm high. All physical devices on the robot are bounded within this circular

footprint. In other words, there are no physical devices protruding out of the 150mm

circle and physical contact on this circular body is considered robot collision. We

modelled this physical structure of CoSyBot in the simulator. On the simulator GUI, a

circle object represents the CoSyBot robot. The circle size scales with the simulated

environment dimensions, accordingly to the actual CoSyBot in a real environment.

Modelling the physical robot and structured environment

 46

The simulated robot will collide with simulated objects on the circle circumference and

not pass through them in the simulator.

5.2.2 Motion Drive

The physical CoSyBot robot uses differential drive with zero swing radius for motion.

Hence, it is capable of making turns on the same location. We model this motion

capability of the robot on the simulator. The model has two parameters for motion:

translation velocity and rotation velocity. These parameters can be configured

accordingly to the physical robot’s speed.

5.2.3 Sensors

There are three sensors on CoSyBot. The first sensor, which is the magnetic compass,

gives the robot’s heading. This is easily achieved in simulation using an absolute

reference frame and output the simulated robot’s heading with respect to it.

The next sensor, which is the SRF08 ultrasonic range sensor, gives range information

of objects from the robot. Figure 5-1 shows the sonar pattern graph of the SRF08

ultrasonic range sensor provided by the manufacturer. As illustrated by the sonar

pattern graph, the sensor has an effective field of view of 40° (20° left and right of the

sensor central axis). The sensor has built-in processing capability to process the raw

sonar data and outputs the detected range directly. It has an effective range of 3cm to

6m. However, this depends on the height of the sensor mounted from the ground.

This is because the sonar wave emitted is approximately conical in shape and sonar

reflections from the ground will decrease the effective range. The effect reduces as the

Modelling the physical robot and structured environment

 47

sensor is mounted higher. On the CoSyBot, the sensor has an effective range of 1.2m.

We verified these physical characteristics (field of view and range) of the sensor

through physical experiments of measuring the range and shifting obstacles away from

the sensor central axis. The experiment results can be found in Appendix C. We first

created a simulated model of the ultrasonic sensor with these physical characteristics.

Then, we positioned eight of this simulated ultrasonic sensor in the CoSyBot model.

They are placed in the same position as the physical CoSyBot. Therefore, the range

values obtained from them in simulation are similar to the actual physical robot.

The third sensor, which is the light detector, is capable of detecting any light beacons

that is within direct line of sight. On CoSyBot, we used the light detector with a

binary output to detect the targets. These characteristics are modelled on our simulated

light detector to detect line of sight simulated light beacons. Similarly, they are placed

at the same positions as on the physical CoSyBot.

5.2.4 Communication

CoSyBot uses IR transceivers for local implicit line of sight communication. The

communication range is limited to 1m for our application. We modelled these physical

characteristics in our simulated IR transceiver. Eight of this simulated IR transceivers

are created in the CoSyBot model. Similarly, they are placed in the same position as

the physical CoSyBot.

Modelling the physical robot and structured environment

 48

Figure 5-1: SRF08 sonar pattern graph

Therefore, a simulated model that is close to the actual physical robot is created. In

addition, the algorithm is developed following the architecture of the client program in

Figure 4-5. Program codes for both perception and behaviour are separated from the

simulator through a device abstraction layer. The effort in doing this is to ensure that

the algorithm developed in simulation can be easily implemented on the physical robot

without major changes.

Modelling the physical robot and structured environment

 49

5.3 Modelling Target

Targets are modelled as circular objects in the simulator. They return true to the

simulated light detectors on the CoSyBot when they are within the prescribed

detectable range.

5.4 Modelling the Structured Environment

Walls and obstacles are modelled as either polygon or circular objects in the simulator.

Like CoSyBot, they exist as simulated physical objects in the simulator. Any contact

with the surface of these objects is considered collision. Hence, the CoSyBot

simulated object cannot move through them. The structured environment is created

using a combination of wall objects in the simulator.

5.5 Input File

A text file is used to specify the set-up in the simulator. In the input file, the user can

specify the number of robots to use and their positions, the structured environment

layout and dimensions, the number of targets and their positions. The simulator reads

in these inputs and creates the set-up in the simulator. Hence, different experiment set-

ups can be easily modelled using different input files.

Putting all these together, Figure 5-2 shows the GUI display of the simulator. The blue

circles with arrowheads represent the CoSyBots and their heading. The black polygon

objects represent the walls or obstacles. Yellow circle objects represent the targets and

they change to red circles when found.

Modelling the physical robot and structured environment

 50

Figure 5-2: Simulator GUI

5.6 Chapter Summary

In this chapter, we described the two-dimensional simulation program that we have

developed. We modelled the CoSyBot, targets (light beacons), and the structured

environment in the simulator. It reads an input text file to set-up the simulated

environment. The program is written in C/C++ programming language and runs on

any Microsoft Windows based machine. Approximately six thousand seven hundred

and seventy lines of codes are written for this simulation program.

Algorithm implementation

 51

Chapter 6: Algorithm Implementation

In this chapter, we present the implementation of our proposed random search

algorithm. We formulated the five behavioural rules into five reactive behaviours for

the CoSyBot. These reactive behaviours are developed using the simulator described

earlier. Then, they are tested and refined on the physical CoSyBots. We describe the

algorithm behind each individual behaviour and illustrate how they interact together to

solve the posed search problem.

6.1 Mobile Robot Navigation

Autonomous mobile robot navigation is a key problem to successful applications of

mobile robot systems. In addition, avoiding collision with other entities in the

environment is important for successful mobile robot navigation. Hence, all mobile

robots feature some form of collision avoidance. These range from primitive

algorithms that stop the mobile robot in short of a detected obstacle to complex

algorithms that enable the robot to detour obstacles. The latter approach may result in

non-optimal paths, since no prior knowledge about the environment is used. This

brings no added benefit of designing complex obstacle avoidance algorithms as they

usually have high demands on sensors and computation requirements. Hence, our

algorithm is a simple local obstacle avoidance behaviour that suffices in preventing

collision and selecting a safe direction for the robot to navigate in the environment.

The second factor to consider is the navigation sensor used by the robot. Sensors such

as a laser range finder that has long range and high accuracy for resolution of 0.5

Algorithm implementation

 52

degree can provide more detailed and highly reliable sensor information of the

environment. They are excellent for algorithms that are highly sensitive to sensor

accuracy. The CoSyBot uses eight SRF08 ultrasonic sensors for navigation.

Ultrasonic sensors present many shortcomings [11]: 1) Poor directionality limits the

accuracy in determining the spatial position of the obstacle; 2) Frequent mis-readings

are caused by either ultrasonic noise from external sources or stray reflections from

neighbouring sensors; and 3) Specular reflections can cause an obstacle to be not

detected or “seen” as much smaller that in reality. Hence, we need to design an

obstacle avoidance algorithm suitable for using ultrasonic sensors.

From the literature, there are a number of obstacle avoidance algorithms available.

One popular obstacle avoidance method is based on edge detection. In this method, an

algorithm tries to determine the position of the vertical edges of the obstacle and then

steer the robot around either one of the “visible” edges [16][33][60]. A common

drawback of edge-detection approaches is their sensitivity to sensor accuracy.

Khatib in [30] suggested the idea of imaginary forces acting on a robot. In this

method, obstacles exert repulsive forces, while target applies an attractive force to the

robot. A resultant force vector, comprising the sum of a target-directed attractive force

and repulsive forces is calculated for a given robot position. Further works using this

technique can be found in [31][41]. Common to these methods is the assumption of a

known and prescribed world model, in which simple, predefined geometric shapes

represent obstacles and robot’s path is generated off-line.

Algorithm implementation

 53

Borenstein et al. in [11] developed the Vector Field Histogram (VFH) method. It

looks for gaps in locally constructed polar histograms. VFH employs a two-stage data

reduction process. In the first stage, it constructs a reduced one-dimensional polar

histogram from a local grid around the robot. In the second stage, it selects the most

suitable sector from all polar histogram sectors with a low polar obstacle density and

aligning the robot to that direction. Using this technique, the robot is able to travel at

faster speeds without becoming unstable and is less likely to get trapped in a local

minima. Borenstein et al. demonstrated the VFH method on a mobile robot using

ultrasonic sensors. Ulrich et al. proposed the VFH+ method in [57]. VFH+ is an

improved version of the VFH. It takes into account of the width of the robot and the

robot trajectory. This results in less trajectory oscillations and also an improved

direction selection using a cost function. The VFH* algorithm proposed in [58]

combined VFH+ with the A* search algorithm to overcome problematic situations

inherent with purely local obstacle avoidance algorithms.

The results and potential of the VFH algorithm inspired us in the algorithm design of

our reactive behaviours for “CoSyBot”. We find the similarity of the “CoSyBot”

physical characteristics and the VFH technique. In particular, the sector selection and

aligning the robot to that direction is suitable for CoSyBot.

6.2 Reactive Behaviours

In chapter three, our proposed algorithm consists of five behavioural rules: 1) Avoid

obstacle and fellow robots; 2) Find targets and alert neighbouring robots; 3) Response

to neighbouring robots’ messages; 4) Follow external commands; and 5) Wander in the

Algorithm implementation

 54

environment. CoSyBot has no self-localization capability, which itself poses a major

research problem. Hence, it will not be able to map the explored environment. Most

global plan-based algorithms will not be possible without map knowledge of the

environment. Local reactive approach is simple and fast. It connects the appropriate

actions for the robot to take directly to the available sensor information. See Figure

6-1. This is suitable for dynamic unknown environment. In addition, this approach

has less demand on the physical capability of the robot platform. Thus, it is suitable

for the simple CoSyBot platform.

The development of the robot behaviours is done using the CoSyBot simulator. This is

useful as the simulator contains a realistic model of CoSyBot. Both the simulator and

the client program are written in C/C++ programming language, and have similar

architecture. Therefore, the behaviour codes developed in the simulator could be

directly ported to the client program on the physical robot for testing. A local reactive

behaviour is implemented for each of the five behavioural rules.

Figure 6-1: (a) Plan-based approach versus (b) Local reactive approach

ACT SENSE

(b)

SENSE PLAN ACT

(a)

Algorithm implementation

 55

6.2.1 Obstacle Avoidance

Obstacle avoidance is the first behaviour on the list. As discussed earlier, obstacle

avoidance is important for autonomous mobile robot navigation. It is responsible for

preventing the robot from physical collision with other entities in the environment and

at the same time determines the robot’s new direction of motion. Therefore, it has the

highest priority.

This behaviour relies on the eight SRF08 ultrasonic range sensors to provide situation

awareness of the environment. The robot’s perception of the environment local to the

robot is divided into eight sectors, each covered by a sensor respectively. CoSyBot

always moves forward in a direction coincident with the central axis of sector 0.

Hence, sectors 1 and 7 are forward facing, sectors 2 and 6 are side facing, and the rest

are rear facing sectors. See Figure 6-2. Each ultrasonic range sensor simply returns

the range reading of the nearest object. Sectors with range reading less than a

prescribed trigger distance will be considered blocked. A blocked sector to the robot

implies that there is an obstacle in that particular sector or region of the environment.

Hence, it is not “safe” for the robot to transverse into that region. The region is now

considered inaccessible. When the obstacle avoidance behaviour is triggered, the

result is a change in the direction of motion or collision with an obstacle, if the choice

of the trigger distance is not properly chosen.

A larger trigger distance would suggest more “intelligent” obstacle avoidance

behaviour, as the robot is able to start avoiding obstacles that are some far distance

away. However, for local obstacle avoidance algorithms, a larger trigger distance may

Algorithm implementation

 56

cause the robot to be overly sensitive and perform manoeuvres unnecessarily early.

Moreover, it may also lead the robot to no longer detect existing openings or falsely

report a trap situation. This is due to the field of view of the ultrasonic sensor, which

increases away from the sensor. However, too small a trigger distance may result in

the robot not sufficiently responsive to dynamic changes in the environment. For

example, having a second robot suddenly moved into the robot’s motion path. Hence,

the choice of the trigger distances is important. A set of trigger distances that

performed well is obtained through experiments using the physical CoSyBot; refer to

table in Figure 6-2. The dashed red lines in the figure represent these trigger distances.

Observe that they are not uniform. There are two reasons for this. Firstly, for the

CoSyBot set-up, uniform range will cause the robot to be trapped in continuously

turning situation or overturning if it is to ignore the rear sectors, see Figure 6-3.

Secondly, the forward facing sectors is assigned a larger trigger distance for higher

safety considerations. The trigger distances are obtained through positioning obstacles

in the respective sectors with the robot moving towards them and able to avoid them

safely without collision. The largest trigger distance is 15cm in sector 0, which

coincidently is the robot width.

The robot changes its direction of motion when a forward facing or side facing sector

is blocked. The robot stops first and proceeds to select a new direction. During the

selection stage, the trigger distances for all sectors are changed to 15cm. Each central

axis of an unblocked sector is a possible new candidate direction. The robot will then

choose the unblocked sector closest to sector 0, illustrated in Figure 6-4. Hence,

sectors 1 and 7 have higher priority over the other sectors. In symmetrical situations,

the robot will choose one randomly. If all the sectors are blocked, the robot will stop

Algorithm implementation

 57

and wait for one to be clear. This is because the robot should always be able to turn

back to the previous direction, unless a fellow robot has moved behind it. Hence, it

can only proceed only after this fellow robot moves away. This is a first in, last out

policy. In this way, our algorithm can address the issue of multiple robots in a dead-

end narrow passageway. This is important for multi-robot systems since it will be an

inherent problem. The algorithm is illustrated in Figure 6-5.

Similar to the VFH algorithm, our local obstacle avoidance also looks for gaps in the

local environment. This is achieved without the need of maintaining a local grid and

constructing the polar histogram. Thus, our technique is less computational intensive.

Figure 6-2: Sector representation of the local environment around robot

Sector Safety Range
/ cm

0 15
1 11
2 7
3 7
4 7
5 7
6 7
7 11

Forward
direction

0

1 7

4

2

3

6

5

Robot

Algorithm implementation

 58

Figure 6-3: Uniform ultrasonic range. (A) Continuously turning, (B) Overturning

0
1 7

4

2

3

6

5

2
3 1

6

4

5

0

7

(A)

0
1 7

4

2

3

6

5

3
4 2

7

5

6

1

0

(B)

Algorithm implementation

 59

Figure 6-4: Illustration of obstacle avoidance behaviour

7

4

2

3

6

5

0
1 7

4

2

3

6

5

0
1

0

5

3

4

7

6

1
20

5

3

4

7

6

1
2

(1) (2)

(3) (4)

Selected
Direction

Algorithm implementation

 60

Figure 6-5: Obstacle avoidance behaviour algorithm

6.2.2 Target Detection

The robot will be able to perform autonomous navigation with the obstacle avoidance

behaviour in place. Next, the robot requires the mission capable behaviour for it to

complete the required task. Target detection is responsible for finding the targets and

its priority follows after obstacle avoidance.

Is any forward facing
or side facing sector

blocked?

Yes

Yes

Stop robot. Any
unblocked sectors?

Select the closest
sector to current

direction

No

No

Turn Robot

Proceed

Algorithm implementation

 61

This behaviour relies on the eight light detectors positioned around the robot. See

Figure 6-6. Similarly, eight sectors are considered. The light detectors can only detect

line of sight light beacons and do not have wide-angle span like the ultrasonic sensors.

When a light detector detects the light beacon, the respective sector is turned active.

Figure 6-6: Light detectors around robot

Like obstacle avoidance, target detection behaviour also changes the robot’s direction

of motion. However, targets are now attractive instead of the obstacles repulsive

effect. Each central axis of an active sector is a possible new candidate direction. The

behaviour will randomly choose one if there are more than one active sector. Targets

are considered found when it is within a certain range from the robot, fulfilling the

definite range law in [25]. The robot stops and broadcast the “found target” message

to other robots via the line-of sight infrared transceiver. See Figure 6-7. The

algorithm is illustrated in Figure 6-8. In the CoSyBot physical set-up, obstacles

0

1 7

4

2

3

6

5

Robot

Algorithm implementation

 62

between the robot and target will block off the light rays. Hence, the target detection

attractive effect will not conflict with obstacle avoidance’s repulsive effect.

Figure 6-7: Illustration of target detection behaviour

0

1 7

4

2

3

6

5

0

1 7

4

2

3

6

5

(1) (2)

1

2 0

5

3

4

7

6

(3)

1

2

5

3

4

7

6

(4)

Target
Detected

Target
Found

Algorithm implementation

 63

Figure 6-8: Target detection behaviour algorithm

6.2.3 Respond to Neighbouring Robot’s Message

For multiple robots to be cooperative, some form of communication is required.

Communication allows the robots to cooperate effectively, improving the overall

performance. Hence, it is an important component for multi-robot systems. In our

survey on the works by robotics researchers, they concluded that in general some

simple local interactions among robots will improve the system performance. This

behaviour is designed to provide for the local interactions among the robots.

Any sectors
active?

Yes

Yes

Is target within
required range?

No

No

Turn Robot

Proceed

Stop and send “found
target” message

Algorithm implementation

 64

The behaviour uses the eight line-of sight infrared transceivers for implicit

communication among the robots. See Figure 6-9. Earlier, a robot will send the

“found target” message when it has found a target. If the infrared transceiver in sector

0 receives this message, this implies a robot has found a target ahead of it. This

behaviour will stop the robot and change its direction of motion. In selecting a new

direction, the robot randomly chooses from the sectors that do not receive such

messages from other robots. Again, the candidate directions are the respective central

axis of the sectors. There are two reasons for this behaviour. Firstly, this prevents the

scenario of having more than one robot finding the same target. Secondly, in this way

the robots are compelled to explore other areas, increasing the probability in

exploration of unknown space. See Figure 6-10. The algorithm is illustrated in

Figure 6-11. The combination of this behaviour and target detection behaviour

provides the local interactions for cooperation to find all targets.

Figure 6-9: IR transceivers around robot

0

1 7

4

2

3

6

5

Robot

Algorithm implementation

 65

Figure 6-10: Illustration of respond to neighbouring robot’s message behaviour

Figure 6-11: Responding to neighbouring robot’s message algorithm

(1)

Infrared

Approaching
robot

(2)

Receive “found
target” message?

Yes

Stop robot.

Select new
direction

No

Turn Robot

Proceed

Algorithm implementation

 66

6.2.4 Follow External Commands

Follow external commands behaviour does not contribute directly to the autonomous

control of the robots. It is not required for the robots to complete the mission but is a

useful feature to the multi-robot system. It provides an avenue for the commander or

user to intervene or control the robots. For example, the commander can inhibit the

target detection behaviour at the beginning. This will cause the robots spreading out in

the environment without the distraction from the targets. He can later activate this

behaviour to complete the mission.

This behaviour uses the wireless network for global communication. This is achieved

using the UDP protocol in winsocks network programming. Currently, the usage of

this behaviour is limited to starting and stopping the robots. This is useful as starting

and stopping large number of robots can be a difficult task.

6.2.5 Wander

Wander is the default behaviour for the robot. When none of the previous behaviour is

active, wander is responsible for moving the robot in the environment. The robot just

continues moving in the current direction. In addition, it also looks for openings to

move into. This is useful as it increases the possibility of the robot moving into

potentially unexplored areas.

This behaviour uses the ultrasonic range sensor to sense for openings to move into.

Referring to Figure 6-2, it makes use of sectors 1, 2, 6 and 7. It senses for openings

through detecting a large jump in the range readings for these sectors. If openings are

Algorithm implementation

 67

detected, the behaviour will select, from the candidate directions, the new direction to

turn to or maintained the current direction. The decision is made randomly using a

random number generator. In doing this, it prevents the robot from being trapped in a

particular room. If there are no openings, the robot maintains its current forward

motion. See Figure 6-12. The algorithm is illustrated in Figure 6-13.

Figure 6-12: Illustration of wander behaviour

(1)

(3) (4)

(2)

Opening
detected

Algorithm implementation

 68

Figure 6-13: Wander behaviour algorithm

6.3 Implementing the Reactive Behaviours

The five reactive behaviours are implemented on five physical CoSyBot robots and the

simulator. For all five behaviours, the robot does not require to know its position in

the environment. Each robot is independent and has identical set of behaviours. The

behaviours provide the local interactions among robots. For example, when a robot

avoids a fellow robot, it changes to a new search direction.

Detect any
openings?

Yes

Yes

Approach Opening?

Select new
direction

No

No

Turn Robot

Proceed

Algorithm implementation

 69

The robot executes the behaviours in a sequential flow as shown in Figure 6-14.

Behaviours that acquired sensors information fulfilling all its condition will trigger and

send action commands to the robot. This allows the robot to respond quickly to

changes in the environment. Since the reactive behaviours are simple and each

requires little computation, sequential execution in real time is feasible. The detailed

interactions between the behaviours are illustrated in Figure 6-15.

Figure 6-14: Sequential execution of the behaviours

How do we know that the five behaviours are sufficient to solve the search problem?

In the earlier work by Balch et al. in [5], he has demonstrated in a similar foraging task

that three behaviours are sufficient. The behaviours are: Avoid; Forage and Wander.

This is similar to our behaviour set. Our additional behaviours are: Respond to

Obstacle Avoidance

Target Detection

Respond to neighbouring
robot’s message

Follow external
commands

Wander

Action

No

No

No

No

Yes

Yes

Yes

Yes

Algorithm implementation

 70

neighbour’s messages and Follow external commands. Follow external is used only to

start or stop the robots. As discussed earlier, respond to neighbour’s messages

behaviour provides the addition local interactions to improve systems performance. In

addition, it ensures that one target is found by only one robot. Hence, all robots are

employed to search for different targets and all targets can be found as long as there

are more robots than targets.

6.4 Chapter Summary

In this chapter, we implemented the proposed random search algorithm into five

reactive behaviours. The behaviours are: (1) Obstacle Avoidance, (2) Target

Detection, (3) Respond to neighbouring robot’s message, (4) Follow external

commands, and (5) Wander. We described the algorithm for each of the individual

five reactive behaviours and illustrated how they integrated with the capabilities of

CoSyBot. The behaviours are executed in a sequential flow in order of their priorities.

This is possible to control the robot in real time as the behaviours are simple and

require little computation. Lastly, we are confident that these behaviours are sufficient

because similar works previously have demonstrated a foraging task with three

behaviours: Avoid; Forage and Wander. We have additional behaviours for local

interactions to improve system performance and ensure that all targets will be found.

Algorithm implementation

 71

Figure 6-15: Interaction of the behaviours

Obstacle Detected

Avoid Obstacles

Is robot clear of
obstacles?

Yes

No Complete
current rule

Yes

No

Target Detected

Complete
current rule

No

YesMove to target

Found target?

Yes

Stop and alert
fellow robots

No

Receive message
from fellow robots?

Attend to robot
message

Yes

Complete
current rule

No

Receive external
commands?

Attend to external
commands

Yes

Complete
current rule

No

Wander

Analysing the system performance

 72

Chapter 7: Analysing the System

Performance

In the previous few chapters, we covered the design and implementation phases of this

project. In this chapter, we demonstrate that our proposed random search algorithm

can solve the search problem. We integrated the five behaviours together in a

simulation experiment to verify that our algorithm works. Then, we moved to physical

experiments to demonstrate that our algorithm works on real robots in a real world

environment.

Continuing to the next project objective, we performed multiple simulation

experiments to analyse the performance of our algorithm. In these experiments, we

varied the number of robots, robot starting positions and the size of the search

environment. Finally, we discuss the results and observations from these experiments.

7.1 Testing the Algorithm in Simulation

In the previous chapter, we reasoned that the five reactive behaviours are sufficient to

solve the posed search problem, supported with findings in previous works by other

researchers. In this section, we will test the five reactive behaviours in simulation to

demonstrate that they work.

The set-up in the simulation is designed to simulate the indoor of a building with

multiple rooms. We make the following assumptions: (1) Size of openings leading to

Analysing the system performance

 73

rooms is wide enough for the robot to move through, (2) the number of robots must be

greater or equal to the number of targets, and (3) targets should be located in the

environment that is accessible to the robots. This set-up will also be used in our

physical experiments.

7.1.1 Experiment Set-up

In this simulation test, we deployed five CoSyBots to search for three targets in a

structured environment. The environment created is a 4m by 4m bounded building

with multiple rooms. Figure 7-1 shows the simulation set-up. There are three targets

(yellow circles), each placed in separate different rooms. While, all five robots (Blue

circles with arrowhead) start from the same room. The speed of each robot is set to 0.3

meters per second. The range of the target sensor is approximately 1 meter, which is

less than the shortest distance from the opening to the target of all rooms. In other

words, the robots must enter the rooms to find the targets. The time taken for all three

targets found is used to measure the system performance. The aim of this experiment

as stated earlier is to verify that our proposed random search algorithm works. A

hundred simulation runs is repeated to generate a sufficiently large sample size.

7.1.1.1 Results and Analysis

The results obtained for the hundred simulation test runs is illustrated in Figure 7-2

and listed in Table 7-1. All three targets are found in all hundred simulation test runs.

Therefore, our proposed random search algorithm is sufficient to solve the search

problem.

Analysing the system performance

 74

From the results in Figure 7-2, we observed that the performance of the algorithm

fluctuates greatly for the hundred runs. The mean time is 216 seconds with standard

deviation of 105 seconds. This is due to two reasons. Firstly, the randomised strategy

in the algorithm resulted in robots taking different motion paths even for the same set-

up, resulting in different results for each run. Secondly, there are few robots in the

environment to provide consistent local interactions for cooperation.

Figure 7-1: Simulation test set-up

Analysing the system performance

 75

Figure 7-2: Results of 100 simulation test runs

Table 7-1: Results of simulation test

Five robots team Mean, µ /s Standard Deviation, σ / s
100 Simulation runs µs = 216 σs = 105

7.2 Physical Experiments

The proposed search algorithm has been shown to work in our simulation test. Hence,

we proceed to implement it on the physical robots. Physical experiments are

conducted to demonstrate that the developed reactive behaviours are feasible on actual

physical hardware.

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

96 160 199.5 248 517.5

Time (seconds)

De
ns

ity

Analysing the system performance

 76

7.2.1 Experiment Set-up

We duplicated the simulation test set-up, described in the earlier section, in the

physical experiment. See Figure 7-3. The physical robots also have similar

capabilities. There are two aims for this experiment. First is to demonstrate that the

proposed algorithm works on physical robots in a real world environment. Secondly is

to verify the fidelity of the simulation program to the physical experiments. Ten

physical experiment runs is repeated for this set-up.

Figure 7-3: Physical experiments layout

7.2.2 Robots Searching for Targets

Figure 7-4 shows screenshots of a video clip captured in one physical experiment run.

The screenshots show only portions of the set-up because the ceiling in the lab area is

not high enough for our video camera to capture the full set-up. Screenshot (1) shows

five CoSyBots at the starting position in one room and a target represented by a light

beacon in another room. We start the robots using a separate Pocket PC to send

commands to the robot through the wireless network. The user or commander just

Analysing the system performance

 77

needs to send a single “start” command, which is broadcasted to all the robots. And

the robots will start together upon receiving the command. Similarly, this applies to

“stop” and other commands. In addition, the user could also send commands to a

specific robot. To do this, he just needs to include the intended robot’s identification

number in the commands. In our set-up, each robot has a unique identification number

and the robots will ignore the commands if their identification number does not match.

These demonstrate the “Follow External Commands” behaviour on the physical

robots.

Screenshots (3), (4) and (5) illustrate the robot performing the “Obstacle Avoidance”

behaviour. The robot detected the wall within the trigger distance of its forward

sensing sectors. It then selected the new direction to turn to according to the algorithm

described earlier. Screenshot (6) shows the robot had successfully avoided the wall.

Throughout the physical experiments, the robots were able to avoid collisions using

this behaviour.

The “Target Detection” behaviour is illustrated in screenshots (13), (14) and (15).

When the light detectors on the robots detected the target, it triggered the behaviour to

approach the targets. The robots considered the targets found when they are within a

prescribed range away as shown in screenshot (15). Then the robots stopped and start

sending IR messages that the targets in the rooms are found. This interacts with the

“Respond to Neighbour’s Messages” behaviour to expel other robots away. In this

way, there will be only one robot to each target found.

Analysing the system performance

 78

When there are no obstacles, targets or IR messages, the robots will just wander in the

environment with the default “Wander” behaviour as shown in the screenshots. If the

robot detects an opening, this behaviour will also randomly decide to guide the robot

to move through the openings. In screenshot (17), the robot was moving parallel to the

wall. It detected the opening when moving past it and the “Wander” behaviour turned

the robot to move into the room illustrated in screenshots (18) and (19).

Each physical experiment terminated when the last target is found, for example in

screenshot (20). The screenshots show that all targets are found, each by one robot.

This is similar for other physical experiment runs. Therefore, the physical experiments

demonstrated that our proposed algorithm is capable of solving the required problem

and is feasible to be applied on physical robots.

Analysing the system performance

 79

1 2

3 4

5 6

7 8

Target

Avoid
obstacle

Current
direction

New
direction

Analysing the system performance

 80

9

10

11

12

13 14

15 16

Target

Target

Detect
target

Found
target

Detect
target

Found
target

Analysing the system performance

 81

Figure 7-4: Screenshots of a physical experiment

7.2.3 Physical Experiments Results and Observations

The robots found all three targets in all ten physical experiment runs. The results are

listed in Table 7-2. The mean time taken is 249 seconds.

Table 7-2: Results for ten physical runs

Runs 1 2 3 4 5 6 7 8 9 10
Time

taken /s 254 191 320 237 127 304 423 175 219 238

Mean, µ / s 249 Standard Deviation, σ / s 84

20

17 18

19

Detect
opening

New
direction

Found
target

Analysing the system performance

 82

During the runs, we observed that the robots have random motion paths. The robots

do not repeat the same motion path even though they start from the same positions for

each run. This is similar to the simulation test runs because of the randomness nature

present in the behaviours.

In addition, we also did physical experiments with different layouts, target locations

and starting positions. The results for these experiments are not tabulated. This is

because the main motive is to verify that the search algorithm is not unique to solving

the layout shown in Figure 7-3. In these experiments, the robots were still able to find

all the targets. Hence, the search algorithm is demonstrated to be robust to the robot

starting position and the layout of the environment.

In a few experiments, there were instances of robot ‘attrition’. For example, a robot

stopped moving due to failure in the hardware. However, this did not affect the rest of

the robots, they still continued to search for targets and found all targets. We also

performed experiments beginning with four robots, and adding one robot later during

the experiment. This did not affect the system. We can conclude that the algorithm is

robust to robot failure and scales in numbers easily.

7.2.4 Comparing with Simulated Test Results

The results obtained for the five robots team for both the simulated test and physical

experiment are listed in Table 7-3.

Analysing the system performance

 83

Table 7-3: Simulation test and physical experiment results for five robots team

Five robots team Mean, µ /s Standard Deviation, σ / s
100 Simulation runs µs = 216 σs = 105

10 Physical runs µs = 249 σp = 84

The average time for five robots in the simulation test runs is 216 seconds, which is

close to the 249 seconds obtained in physical experiments. The physical experiment

mean is 0.31σs from the simulation experiment mean. This is much smaller than one

standard deviation away. Hence, the simulation experiment results are reasonably

close to the physical experiments.

7.3 Simulation Experiments

Further experiments on the algorithm are done using the simulation program. The aim

of these simulation experiments is to analyse the performance of the proposed random

search algorithm. Various system parameters are varied for the analysis and

simulation experiments will allow us to perform the analysis more rapidly. Moreover,

it is not feasible and practical to perform many explicit physical experiments, as the

system parameters cannot be easily varied and time consuming having each run at real

time for large sample runs. For example, changing the number of robots or the

environment size and repeating the experiments for a hundred runs. The results for the

simulation experiments can be found in Appendix C.

7.3.1 Varying the Number of Robots

In any multi-robot system, one important system parameter to consider is the number

of robots in the team. This parameter has a direct influence on the system

Analysing the system performance

 84

performance. Intuitively, having more robots in the team should improve the

performance. However, it can also cause the whole system to fail if the multi-robot

control system is unable to handle the number.

7.3.1.1 Experiment Set-up

Using the same set-up in Figure 7-1, we varied the number of robots from a four robots

team to a twenty robots team at the same starting position. There are two aims of this

experiment. First is to analyse the effect of the number of robots on the system

performance. Second is to test whether the algorithm is scalable in number. Similarly,

a hundred simulation runs is repeated for each number of robots to produce a

sufficiently large sample size for the analysis.

7.3.1.2 Results and Analysis

Figure 7-5 shows the results with the mean time displayed on a logarithmic scale. The

graph shows the mean time, over hundred runs, taken for each of the robot team sizes.

Two observations can be made from the graph. Firstly, the system performance

improves with the number of robots. This is expected as having more robots in the

team means there are now more robots performing the task. It increases the

parallelism advantage of the multi-robot system. Hence, it suggests that increasing the

number of robots will increase the probability of success. Secondly, the system

performance reaches a point where there is no significant improvement with increasing

number of robots. From Figure 7-5, the number is about ten robots for this given

environment. After ten robots, the graph tends to a horizontal line. This is expected,

as having a larger number of robots with no change in the size of the environment will

lead to over-crowding. This increases the amount of interference each robot exerts on

Analysing the system performance

 85

fellow robots. The robots are spending more effort avoiding collision with each other

than performing productive work to complete the mission. Hence, it reduces the

efficiency of the system.

Throughout the experiments, no changes are required on the algorithm to increase the

number of robots in the team. We simply add the robots, each with the same identical

set of behaviours, to the team. Therefore, our algorithm is easily scalable in numbers.

Figure 7-5: Graph of mean time (on logarithmic scale) taken to find all targets against
number of robots

Lastly, in section 7.1.1.1, we stated that one of the reasons for the highly random

results is that there are too few robots in the environment to provide consistent local

interaction. From Figure 7-6, the standard deviation for the results obtained decreases

with the number of robots. Hence, this result support our hypothesis made earlier.

Mean Time Taken vs Number of Robots

1

10

100

1000

0 5 10 15 20 25
Number of robots

M
ea

n
Ti

m
e

(s
ec

on
ds

)

Analysing the system performance

 86

Figure 7-6: Standard deviation against number of robots

7.3.2 Varying the Starting Positions and Targets’ Positions

In this set of experiments, we varied the robots’ starting position and targets’ positions

in the same environment layout.

7.3.2.1 Experiment Set-up

The aim of this experiment is to verify that the algorithm is not dependent on the

robots’ starting position and targets’ positions. Figure 7-7 shows the different set-up

used. Set-up (1) is used in the previous experiments. From the figure, the robots start

in a different room with the targets shifted accordingly for each set-up. The

environment layout is kept the same because it affects the complexity of the

environment. Thus, for a fair comparison, we kept the layout and size unchanged. In

Standard Deviation vs Number of Robots

0
20
40
60
80

100
120
140
160

0 5 10 15 20 25
Number of robots

St
an

da
rd

 d
ev

ia
tio

n
(s

ec
on

ds
)

Analysing the system performance

 87

addition, we also varied the number of robots from four to twenty. Similarly, a

hundred simulation runs is repeated for each set.

Figure 7-7: Different robots’ starting position and targets position

7.3.2.2 Results and Analysis

Figure 7-8 shows the results with the mean time displayed on a logarithmic scale. The

graphs show the mean time taken to find all targets for different number of robots in

each of the four set-ups. A few observations can be made from the graphs. Firstly, all

(1) (2)

(4) (3)

Analysing the system performance

 88

four set-ups show a similar trend. They show an initial sharp decrease in the time

taken to find all targets with increasing number of robots. This decrease in the mean

time, i.e. improving system performance, gradually becomes insignificant after a

certain point. Secondly, the system performance for the same number of robots differs

for each set-up. This is evident from the graphs. For example, the four robots team in

set-up four took the longest mean time, approximately 1.5 times more than the rest.

This is because the complexity of the environment changes with the robots’ starting

position. The robots may be starting in some positions that have difficulty accessing

other rooms. This suggests that for the same environment layout and size, the number

of robots, their starting positions and target positions are factors affecting the system

performance. Thirdly, the effect of robots’ starting position and target positions on

system performance decreases with increasing number of robots. From the graph, the

system performance for the four set-ups is consistently closer to each other after ten

robots. More robots suggest more local interactions among them and increasing the

possibility to explore new areas.

Although the system performance varies for each set-up, the robots were able to

complete the required task. Hence, the algorithm is robust and not dependent on the

robots’ starting position and targets’ positions.

Analysing the system performance

 89

Figure 7-8: Experimental results of different robots’ starting position and targets’
positions

7.3.3 Increasing the Environment Size

In this set of experiments, we increased the size of the environment.

7.3.3.1 Experiment Set-up

The size of the environment is scaled up two times while keeping the same

environment layout. See Figure 7-9. Comparing to Figure 7-7, noticed that the

environment is now twice its original size and the robots’ starting position and target

positions are similar. The robot’s physical characteristics, such as sensing range and

speed, are kept the same. The aim of this experiment is to study the effect of the

environment size on the system performance. Similarly for a fair comparison, we kept

the layout unchanged. The number of robots is varied from four to twenty and a

hundred simulation runs is repeated for each set.

Mean Time Taken vs Number of Robots

1

10

100

1000

10000

100000

0 5 10 15 20 25
Number of robots

M
ea

n
Ti

m
e

(s
ec

on
ds

)

1
2
3
4

Analysing the system performance

 90

7.3.3.2 Results and Analysis

Figure 7-10 shows the results with the mean time displayed on a logarithmic scale.

The graphs show the mean time taken to find all targets for different number of robots

in each of the four set-ups. We would expect the robot to take longer to find all

targets, since the environment area is now twice as large. The robots have to traverse a

longer distance to find the targets. Surprisingly, the robots performed better in a

bigger environment. This is clearly observed when comparing the results in Figure 7-8

and Figure 7-10. We made certain observations from the simulation to explain for this

better performance. Firstly, the robots are now smaller relative to the environment.

This allows the robots to navigate through narrow passageways and openings to rooms

easily. These difficult environment features are now less tight in space for the robots.

Hence, the robots could enter rooms to find targets with lesser difficulty. Secondly,

the bigger free space in the environment reduced the interference among robots. The

robots have a bigger free space to move about, reducing the encounter times with other

robots. In this way, the robots spend less time avoiding fellow robots and more effort

exploring the environment. To support this hypothesis, we can compare the number of

obstacle avoidance behaviour routine calls for each set-up in both environment sizes.

For a fair comparison, we should consider the number of obstacle avoidance behaviour

routine calls relative to the total number of reactive behaviour routine calls in the robot

team. Table 7-4 lists the ratio of the relative number of obstacle avoidance behaviour

routine calls in a ten-robot team for the double size environment to the original size

environment. The ratios for all the four set-up are less than one. Hence, there are

lesser obstacle avoidance behaviour routine calls in the robot team for the bigger

environment. This is inline with our hypothesis.

Analysing the system performance

 91

The size of a real world environment is fixed and usually followed certain standards.

We cannot change the environment size. Hence, the results suggest that using small

robots is useful for the proposed algorithm. This is inline with the objectives of the

algorithm, which is to use simple cheap robots. Our algorithm uses local reactive

behaviours. It is not able to perform optimal path planning with only local

environment information. However, using small robots will allow it to navigate

through tight areas with lesser difficulty. This is similar to the argument of having

shorter trigger distance for obstacle avoidance discussed earlier.

Analysing the system performance

 92

Figure 7-9: Set-up for scaled environment experiments

(1) (2)

(3) (4)

Analysing the system performance

 93

Figure 7-10: Experiment results for scaled environment experiments

Table 7-4: Ratio of the relative number of obstacle avoidance behaviour routine calls
for the four set-ups

Ten-robot team Ratio for double
size to original size

Set-up 1 0.6
Set-up 2 0.4
Set-up 3 0.3
Set-up 4 0.4

7.4 Discussions

From the experiments, we have identified that the factors affecting the system

performance are the number of robots, the robots’ starting positions and targets’

positions, and the size of the robots. A larger number of small robots in the team will

reduce the effect of robots’ starting position on the system performance and yet yield

better performance. This can be deduced from the graphs in Figure 7-10.

Mean Time Taken vs Number of Robots

1

10

100

1000

10000

0 5 10 15 20 25
Number of robots

M
ea

n
Ti

m
e

(s
ec

on
ds

)

1
2
3
4

Analysing the system performance

 94

In almost all multi-robot works, increasing the number of robots in general will always

improve the system performance. Thus, from the performance viewpoint, having more

robots is good. However, there are associated costs with increasing the number of

robots. Such as the robot’s physical monetary value, power consumption,

communications overhead, etc. These costs are usually not taken into consideration in

accessing the benefit of adding more robots. This is because most of these costs are

subjective parameters. For example, to access whether the monetary price of the

robots is expensive, is subjective to the respective individual. Some of these costs may

be specific to the particular system. If the relevant costs involved are put into

consideration with improved system performance. There may be no added benefit in

increasing the number of robots, though this may improve the system performance.

The improvement may not always outweigh the costs involved.

We propose a simple function to evaluate the benefit of increasing the number of

robots:

() C
P

PP
nBBenefit

n

nn −
−

=+ +11, ,

Where Pn is the performance of the current number of robots, Pn+1 is the performance

of the adding one robot to the team and C is a constant. The first term in the function

is a dimensionless rate of change of the system performance. The constant term C is

the cost of adding one robot to the team. In the equation, it is a constant because the

cost of adding one more robot is subjective. Hence, it will be up to the human

designer to decide on its value. This equation simply balances the performance

improvement benefit with the incurred costs. Thus, as long as the value is positive and

non-zero, there is benefit to add the additional robot.

Analysing the system performance

 95

Applying the equation to the results in Figure 7-5 and choosing C = 0, we obtained the

benefits of increasing the number of robots in the first set-up. The results are

illustrated in Figure 7-11. We chose C = 0 because in our multi-robot systems, the

main cost incurred with adding more robots is the physical monetary value of our

robot. Since our algorithm aimed to use simple inexpensive robots, we can ignore the

cost and assigned it to 0. From the graph, the benefit of adding the eleventh robot is a

negative value. It is the first instance where the benefit falls below zero. In this case,

we should not add the eleventh robot and stopped here since there is a break in

bringing benefit to the system with adding more robots. The target sensing range of

the robot is 1 meter, while environment size is 4m by 4m in this set-up. Therefore, our

results suggested that ten robots is the optimal team size in an environment

approximately four times its target sensing range.

Figure 7-11: Benefit against number of robots

Benefit vs Number of Robots

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

4 5 6 7 8 9 10 11 12

Number of robots

B
en

ef
it

Analysing the system performance

 96

7.5 Chapter Summary

In this chapter, we showed that our proposed random search algorithm is able to solve

the indoor search problem using a simulation test set-up. Following this, we

demonstrated the algorithm on five physical CoSyBots with the same environment set-

up. We found that the results from both simulation test and physical experiments are

reasonably close. The mean time taken for the physical experiments is 249 seconds

that is 0.31 standard deviation from the simulation test mean of 216 seconds. Hence,

we could use the simulation program for experiments to estimate physical experiment

results. We also changed the environment layout, robots’ starting positions and

targets’ positions in the physical experiments. The robots found all targets for all the

physical experiment runs. Hence, our proposed algorithm is robust to changes in the

environment.

Further experiments are done using the simulation program. We varied the number of

robots from four to twenty, changed the robots’ starting positions and targets’

positions, and double the size of the environment. A hundred simulation runs are

repeated for each parameter change. We obtained some findings from these

experiments. Firstly, we found that the system performance improves with the number

of robots and reaches a point where there is no significant improvement. Secondly, the

system performance varies with different robots’ starting position. The difference

decreases with increasing number of robots. Thirdly, the robots performed better in

the bigger environment. This suggests that small robots work well with our proposed

algorithm.

Analysing the system performance

 97

Finally, we proposed a benefit function to evaluate the benefit of increasing the

number of robots. The benefit function takes into account the cost considerations in

increasing the number of robots. Our results suggested that ten robots is the optimal

team size in an environment approximately four times its target sensing range for the

type of sensors used.

Conclusions

 98

Chapter 8: Conclusions

8.1 Dissertation Conclusions

In this dissertation, we have designed a distributed random search algorithm that

cooperates a team of simple autonomous robots to search for targets in an unknown

indoor environment with multiple rooms. The multi-robot control architecture for our

algorithm is distributed, homogeneous and local. This allows the robots to operate

independently without a single central control, which is a potential point of failure.

The algorithm consists of five simple behavioural rules and each robot has the same

rule set.

We have demonstrated the effectiveness of the algorithm on physical robots. To

implement the algorithm on physical robots, we formulated the five behavioural rules

into five reactive behaviours: (1) Obstacle avoidance, (2) Target detection, (3)

Respond to neighbour’s message, (4) Follow external commands, and (5) Wander.

Obstacle avoidance together with wander is responsible for autonomous navigation in

the unknown environment. Using these two behaviours, the robot is able to

autonomously avoid collision and also looks for openings to move into. Target

detection is used to search for the targets. Respond to neighbour’s messages ensures

that one target is found by only one robot and also promotes local interactions among

the robots. Follow external commands allow a commander to issue control commands

to the robots. These behaviours are tested to work in our simulation program before

implementing on the physical robots. In the physical experiments, we deployed five

robots to search for three targets located in different rooms in a 4m by 4m structured

Conclusions

 99

environment. We also varied the layout, robots’ starting position and targets’ position.

The robots found all three targets in all the physical experiments. Therefore, the

algorithm is robust to changes in the environment set-up.

To analyse the system performance of our algorithm, we performed multiple

simulation experiments. We varied the number of robots from four to twenty, changed

the robots’ starting positions and targets’ positions, and double the size of the

environment. A hundred simulation runs are repeated for each parameter change.

Some findings are obtained from these experiments. Firstly, we found that the system

performance improves with the number of robots and reaches a point where there is no

significant improvement. This also showed that our algorithm is scalable in numbers.

Secondly, the system performance varies with different robots’ starting position. The

difference decreases with increasing number of robots. Thirdly, the robots performed

better in the bigger environment. This suggests that small robots work well with our

proposed algorithm. From these findings, we can conclude that using a larger number

of small robots in the team will reduce the effect of robots’ starting position on the

system performance and yet yield better performance. However, it reaches a point

where no significant improvement is achieved with adding more robots.

Finally, we formulated a benefit function that takes into account cost considerations to

evaluate the benefit of increasing the number of robots. Using our benefit function, we

found that the optimal number is ten robots for an environment that is four times its

target sensing range for the type of sensors used. However, this waits to be verified by

additional work, which is outside the scope of this dissertation.

Conclusions

 100

8.2 Future Directions

There are a few possible improvements on this work.

1. It is difficult for the human designer to optimise the local reactive behaviours.

The performance of these behaviours depends on the various parameters

involved, such as the trigger distance. The process of selecting these

parameters is usually tedious and may result in sub-optimal results. One

possible improvement is to use the machine learning technology, such as

genetic algorithms, to improve these behaviours, and hence, improving the

performance of the algorithm.

2. The system performance is affected by various system parameters, such as the

number of robots, environment layout and size, and the speed of robots.

Currently, there are no means to relate these factors to the system performance.

Having such a relationship is useful as the user could determine the number of

robots he needs to deploy for his required system performance.

3. Further studies can also be conducted to examine the effect of robot self-

localization on the system performance. With self-localization capabilities, the

robot can share more information with fellow robots. This can reduce the

problem of having a few robots searching the same area and robots revisiting

explored areas.

4. It will be interesting to do a comparison study between the proposed algorithm

and other deliberate approaches. In this study, factors such as demand on the

robot’s capabilities, cost, flexibility of the system and system performance may

be considered.

References

 101

Chapter 9: References

[1] R. C. Arkin, “Cooperation without communication: Multiagent schema-based

robot navigation,” Journal of Robotic Systems, 1992, pp 351-364.

[2] R. C. Arkin, and T. Balch, “Cooperative multiagent robotic systems,” in

Artificial Intelligence and Mobile Robots, D. Kortenkamp, R. P. Bonasso, R.

Murphy (Eds.), MIT/AAAI Press, 1998.

[3] S. Aron, J. L. Deneubourg, S. Goss, and J. M. Pasteels, “Functional self-

organization illustrated by inter-nest traffic in the Argentine ant Iridomyrmex

humilis,” In Bological Motion, edited by W. Alt and G. Hoffman, Berlin:

Springer-Verlag, 1990, pp 533-547.

[4] D. Apostolopoulos, L. Pedersen, B. Shamah, K. Shillcutt, M. D. Wagner, and W.

R. L. Whittaker, “Robotic antarctic meteorite search: Outcomes,” in Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA),

2001, pp 4174-4179.

[5] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic

systems,” Autonomous Robots, vol 1, 1994, pp 1-25.

[6] T. Balch, and R. C. Arkin, “Behavior-based formation control for multirobot

teams,” in IEEE Transactions on Robotics and Automation, vol 14, 1998, pp

926-939.

[7] D. Barnes, and J. Gray, “Behaviour synthesis for cooperant mobile robot

control,” In International Conference on Control, pages 1135–1140, 1991.

[8] G. Beni, “The concept of cellular robotic system,” in IEEE International

Symposium on Intelligent Control, 1988, pp 57-62.

References

 102

[9] G. Beni, and J. Wang, “Swarm intelligence in cellular robotics systems,” in

Proceedings of NATO Advanced Workshop on Robots and Biological System,

1989.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Swarm intelligence : from natural

to artifical systems,” Oxford University Press, 1999.

[11] J. Borenstein, and Y. Koren, “The vector field histogram – fast obstacle

avoidance for mobile robots,” IEEE Journal of Robotics and Automation, Vol 7,

No 3, June 1991, pp 278-288.

[12] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Autonmation, vol RA-2, no. 1, 1986, pp 14-23.

[13] W. Burgard, M. Moors, and F. Schneider, “Collaborative exploration of

unknown environments with teams of mobile robots,” Advances in Plan-Based

Control of Robotic Agents, M. Beetz et al. (Eds), 2002, pp 52-70.

[14] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile robotics:

Antecedents and directions”, In Autonomous Robots 4, 1997, pp. 7-27.

[15] C. K. Cheng, G. Leng, “Cooperative search algorithm for distributed

autonomous robots,” Paper Accepted, to appear in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems, 2004.

[16] J. L. Crowley, “World modeling and position estimation for a mobile robot using

ultrasonic ranging,” in Proceedings of the IEEE International Conference on

Robotics and Automation, 1989, pp 674-680.

[17] C. DeBolt, C. Freed, T. N. Nguyen, and T. B. Nguyen, “Basic UXO gathering

system (BUGS); multiple, small, inexpensive robots for autonomous UXO

clearance,” UXO Forum Conference Proceedings, 1998.

References

 103

[18] J. L. Deneubourg, S. Goss, N. R. Franks, and J.-M. Pasteels, “The blind leading

the blind: Modelling chemically mediated army ant raid patterns,” J. Insect

Behavior 2, 1989, pp 719-725.

[19] J. L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels, “The self-organizing

exploratory pattern of the Argentine ant,” J. Insect Behavior 3, 1990, pp 159-

168.

[20] A. Drogoul, and J. Ferber, “From tom thumb to the dockers: Some experiments

with foraging robots,” in 2nd International Conference on Simulation of

Adaptative Behavior, 1992, pp 451-459.

[21] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for swarm robots,”

in Proceedings of IEEE International Conference on Intelligent Robots and

Systems, 1993, pp. 441-447.

[22] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “Collaborative multi-robot

localization,” in Proceedings of the 23rd German Conference on Artificial

Intelligence, Springer Verlag, 1999.

[23] D. W. Gage, “Command control for many-robot systems,” Proceedings of

AUVS-92, the Ninthteen AUVS Technical Symposium, 1992.

[24] D. W. Gage, “Randomized search strategies with imperfect sensors,” in

Proceedings of SPIE Mobile Robots VIII, vol 2058, 1993, pp 270-279.

[25] D. W. Gage, “Many-robot MCM search systems,” in Proceedings of the

Autonomous Vehicles in Mine Countermeasures Symposium, 1995.

[26] D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige, “Many robots make short

work,” AI Magazine, 18(1), pp 55-64, 1997.

References

 104

[27] S. Hackwood, and G. Beni, “Self-organisation of sensors for swarm intellignce,”

in IEEE International Conference on Robotics and Automation, 1992, pp. 819–

829.

[28] D. F. Hougen, S. Benjaafar, J. C. Bonney, J. R. Budenske, M. Dvorak, M. Gini,

H. French, D. G. Krantz, P. Y. Li, F. Malver, B. Nelson, N. Papanikolopoulos, P.

E. Ryski, S. A. Stoeter, R. Voyles, and K. B. Yesin, “A minature robotic system

for reconnaissance and surveillance,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2000.

[29] A. Howard, M. J. Mataric, and G. S. Sukhatme, “An incremental self-

deployment algorithm for mobile sensor networks,” in Autonomous Robots, Vol

13, 2002, pp 113-126.

[30] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

in IEEE International Conference on Robotics and Automation, 1985, pp 500-

505.

[31] B. H. Krogh, and C. E. Thorpe, “Integrated path planning and dynamic steering

control for autonmous vehicles,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 1986, pp 1664-1669.

[32] C. R. Kube, and E. Bonabeau, “Cooperative transport by ants and robots,” in

Robotics and Autonomous Systems, vol. 30, 2000, pp 85-101.

[33] R. Kuc, and B. Barshan, “Navigating vehicles through an unstructured

environment with sonar,” in Proceedings of the IEEE International Conference

on Robotics and Automation, 1989, pp 1422-1426.

[34] T. Y. Li, H. C. Chou, “Motion planning for a crowd of robots,” in Proceedings of

the IEEE International Conference on Robotics and Automation, 2003, pp 4215-

4221.

References

 105

[35] A. Manz, R. Liscano, and D. A. Green, “A comparison of realtime obstacle

avoidance methods for mobile robots,” in Experimental Robotics, June 1991.

[36] A. Martinoli, and F. Mondada, “Collective and cooperative group behaviours:

Biologically inspired experiments in robotics,” In Proceedings of the Fourth

International Symposium on Experimental Robotics (1995).

[37] M. J. Mataric, “Minimizing complexity in controlling a mobile robot

population,” in Proceedings of the IEEE International Conference on Robotics

and Automation, 1992, pp 830-835.

[38] M. J. Mataric, “Interaction and intelligent behavior,” PhD thesis, MIT, EECS,

May 1994.

[39] M. J. Mataric, “Issues and approaches in the design of collective autonmous

agents,” in Robotics and Autonomous Systems, vol. 16, 1995, pp. 321-331.

[40] M. J. Mataric, “Behaviour-based control: examples from nagvigation, learning,

and group behaviour,” in J. Expt. Theor. Artif. Intell., vol. 9, 1997, pp 323-326.

[41] W. S. Newman, and N. Hogan, “High speed robot control and obstacle

avoidance using dynamic potential functions,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 1987, pp 14-24.

[42] D. J. Pack, and B. E. Mullins, “Towards finding an universal search algorithm

for swarm robots,” in Proceedings of IEEE International Conference on

Intelligent Robots and Systems, 2003, pp. 1945-1950.

[43] L. E. Parker, “Multi-robot team design for real-world applications,” in

Distributed Autonomous Robotic Systems 2, edited by H. Asama, T. Fukuda, T.

Aria and I. Endo, Springer-Verlag, Tokyo, 1996, 91-102.

References

 106

[44] L. E. Parker, “Current state of the art in distributed autonomous mobile

robotics,” in Proceedings of the 4th International Symposium on Distributed

Autonomous Robotic Systems (DARS), 2000, pp. 3-12.

[45] H. V. D. Parunak, “Go to the ant: engineering principles from natural multi-

agent systems,” in Annals of Operations Research, vol. 75, 1997, pp 69-101.

[46] D. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee, “Pheromone

robotics,” in Autonomous Robots, vol. 11, 2001, pp. 319–324.

[47] D. Payton, R. Estkowski, and M. Howard, “Progress in pheromone robotics,” in

Intelligent Autonomous Systems, vol. 7, M. Gini et al., Eds. IOS Press, 2002, pp.

256–264.

[48] S. Premvuti and S. Yuta, “Consideration on the cooperation of multiple

autonomous mobile robots,” In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 59–63, 1990.

[49] C. W. Reynolds, “Flocks, herds, and schools: A distibuted behavioral model,” in

Computer Graphics, 21(4) (SIGGRAPH ’87 Conference Proceedings), 1987, pp

25-34.

[50] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. P. Papanikolopoulos,

”Performance of a distributed robotic sytem using shared communications

channels,” in IEEE Transactions on Robotics and Automation, vol 18, 2002, pp

713-727.

[51] M. Schneider-Fontan, and M. J. Mataric, “Territorial multi-robot task division,”

in IEEE Transcations on Robotics and Automation, vol 14, no 5, 1998, pp 815-

822.

[52] R. Simmons, D. Apfelbaum, D. Fox, R. P. Goldman, K. Z. Haigh, D. J.

Musliner, M.Pelican, S. Thrun, “Coordinated deployment of multiple

References

 107

heterogeneous robots,” in Proccedings of the Conference on Intelligent Robots

and Systems (IROS), 2000.

[53] R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D. Hershburger, A. Stentz, and

R. Zlot, “A layered architecture for coordination of mobile robots,” in Multi-

Robot Systems: From Swarms to Intelligent Automata, A. Schultz and L. Parker

(eds.), Kluwer, 2002.

[54] R. G. Smith, “The contract net protocol: high-level communication and control

in a distributed problem solver,” in IEEE Transactions on Computers, C-29 (12),

1980, pp 1104-1113.

[55] K. Sugawara, and M. Sano, “Cooperative acceleration of task performance:

Foraging behavior of interacting mulit-robots system,” Physica D, No. 100,

1996, 343-354.

[56] G. Theraulaz, and J. L. Deneubourg, “On formal constraints in swarm

dynamics,” in Proceedings of the IEEE International Symposium on Intelligent

Control, 1992, pp 225-233.

[57] I. Ulrich, and J. Borenstein, “VFH+: Reliable obstacle avoidance for fast mobile

robots,” in Proceedings of the IEEE International Conference on Robotics and

Automation, 1998, pp 1572-1577.

[58] I. Ulrich, and J. Borenstein, “VFH*: Local obstacle avoidance with look-ahead

verification,” in IEEE International Conference on Robotics and Automation,

2000, pp 2505-2511.

[59] I. A. Wagner, M, Lindenbaum, and A. M. Bruckstein, “Distributed covering by

ant-robots using evaporating traces,” in IEEE Transactions on Robotics and

Automation, 1999, pp 918-933.

References

 108

[60] C. R. Weisbin, G. de Saussure, and D. Kammer, “SELF-CONTROLLED. A

real-time expert system for an autonomous mobile robot,” Computers in

Mechanical Engineering, 1986, pp 12-19.

[61] H. Yamaguchi, “A cooperative hunting behavior by mobile-robot troops,” in The

International Journal of Robotics Research, vol 18, 1999, pp 931-940.

Appendix A

 109

Appendix A: Devantech SRF08 Sensor

Technical Details:

Beam Pattern See graph
Voltage 5v
Current 15mA Typ. 3mA Standby
Frequency 40KHz
Maximum Range 6 m
Minimum Range 3 cm
Max Analogue Gain Variable to 1025 in 32 steps
Connection Standard IIC Bus
Light Sensor Front facing light sensor
Timing Fully timed echo, freeing host computer of task
Echo Multiple echo - keeps looking after first echo
Units Range reported n uS, mm or inches
Weight 0.4 oz.
 Size 43mm w x 20mm d x 17mm h

Appendix B

 110

Appendix B: BrainStem GP 1.0

BrainStem GP 1.0 features:
o 40 MHz RISC processor
o 5 channel, 10 bit A/D
o 5 digital I/O lines
o GP2D02 Driver
o 1 MBit IIC port
o IIC routing
o Status LED
o Stores 11 1K TEA programs
o Runs up to 4 TEA programs concurrently
o RS-232 serial port
o Reflex architecture
o 4 high-resolution servo outputs
o Execution of 9000 instructions per second
o Access to I/O features via built-in serial command set
o Convenient power and ground connections for each I/O pin

Appendix C

 111

Appendix C: SFR08 Experiments

CoSyBot 1
Range /

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8

3 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4 4 – 5
25 23 – 25 25 – 26 25 - 27 23 – 25 25 – 27 24 – 26 25 – 27 25 – 27
50 49 – 52 50 – 52 48 - 51 50 - 53 50 – 52 51 – 53 49 – 50 49 – 51
100 99 – 103 99 – 102 98 - 101 100 – 103 99 – 102 100 – 103 100 – 102 99 – 103
125 119 – 121 121 – 123 120 – 122 121 – 123 119 – 121 120 – 123 121 – 124 120 – 122
150 119 – 121 121 – 123 120 – 122 121 – 123 119 – 121 120 – 123 121 –124 120 – 122

CoSyBot 2
Range /

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8

3 3 – 4 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4
25 24 – 26 25 – 26 24 – 25 23 – 25 24 – 26 24 – 26 25 – 28 26 – 28
50 48 – 50 49 – 51 51 – 53 50 – 53 50 – 52 50 – 52 49 – 52 47 – 49
100 97 – 100 100 – 102 99 – 103 100 – 103 96 – 99 99 – 103 99 – 102 97 – 100
125 121 – 123 119 – 121 122 – 123 120 – 122 121 – 123 119 – 121 123 – 124 118 – 120
150 121 – 123 119 – 121 122 – 123 120 – 122 121 – 123 119 – 121 123 – 124 118 – 120

CoSyBot 3
Range /

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8

3 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5 4 – 5 3 – 4 4 – 5
25 25 – 26 24 – 25 24 – 26 23 – 25 26 – 28 25 – 27 24 – 26 25 – 27
50 49 – 51 50 – 52 50 – 52 50 – 52 49 – 52 50 – 51 47 – 49 49 – 52
100 101 – 103 100 – 102 98 – 101 99 – 103 96 – 99 99 – 102 99 –103 99 – 103
125 120 – 122 119 – 121 118 – 120 121 – 122 122 – 124 120 – 123 119 – 120 121 – 124
150 120 – 122 119 – 121 118 – 120 121 – 122 122 – 124 120 – 123 119 – 120 121 – 124

CoSyBot 4
Range /

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8

3 3 – 4 4 – 5 3 – 4 4 – 5 3 – 4 3 – 4 3 – 4 4 – 5
25 23 – 25 25 – 26 24 – 26 25 – 26 23 – 25 23 – 24 23 – 25 26 – 28
50 49 – 52 50 – 53 48 – 50 50 – 53 49 – 51 47 – 49 48 – 50 50 – 52
100 97 – 101 99 – 103 98 – 101 99 – 103 96 – 100 96 – 100 98 – 102 99 – 103
125 119 – 120 121 – 123 118 – 120 121 – 123 120 – 124 119 – 121 120 – 122 122 – 124
150 119 – 120 121 – 123 118 – 120 121 – 123 120 – 124 119 – 121 120 – 122 122 – 124

CoSyBot 5
Range /

cm Sonar 1 Sonar 2 Sonar 3 Sonar 4 Sonar 5 Sonar 6 Sonar 7 Sonar 8

3 3 – 4 3 – 4 3 – 4 4 – 5 3 – 4 4 – 5 3 – 4 4 – 5
25 23 – 25 24 – 26 24 – 25 25 – 28 24 – 26 25 – 28 24 – 26 25 – 28
50 49 – 53 48 – 51 49 – 52 50 – 54 50 – 52 51 – 55 49 – 52 49 – 52
100 97 – 101 97 – 100 98 – 102 99 – 104 99 – 103 100 – 104 99 –103 98 – 103
125 119 – 121 118 – 120 121 – 123 123 – 124 121 – 122 123 – 125 121 – 123 120 – 122
150 119 – 121 118 – 120 121 – 123 123 – 124 121 – 122 123 – 125 121 – 123 120 – 122

Appendix D

 112

Appendix D: Simulation Results

4 robots in 4m by 4m environment

Set-up 1
Mean / s 291

Std. dev. / s 138

Set-up 2
Mean / s 6150

Std. dev. / s 6148

Set-up 3
Mean / s 9157

Std. dev. / s 7110

Set-up 4
Mean / s 14718

Std. dev. / s 10484

Density Histogram (Setup 2)

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

887 1950 4202.5 7974.5 19835

Time (seconds)

De
ns

ity

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

126.5 198 275 359 590.5

Time (seconds)

De
ns

ity

Density Histogram (Setup 3)

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

1051.5 3991 7516 11915 21363.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

2125 6684 12589 19705 39935

Time (seconds)

D
en

si
ty

Appendix D

 113

4 robots in 8m by 8m environment

Set-up 1
Mean / s 638

Std. dev. / s 293

Set-up 2
Mean / s 1300

Std. dev. / s 946

Set-up 3
Mean / s 2061

Std. dev. / s 1957

Set-up 4
Mean / s 1243

Std. dev. / s 1072

Density Histogram (Setup 1)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

233.5 421 569.5 760 1308

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

0.001

333 625.5 855 1518 3715.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

315.5 776.5 1412 2599 5548

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

143.5 424 893.5 1587.5 4529.5

Time (seconds)

D
en

si
ty

Appendix D

 114

5 robots in 4m by 4m environment

Set-up 1
Mean / s 216

Std. dev. / s 105

Set-up 2
Mean / s 4414

Std. dev. / s 3676

Set-up 3
Mean / s 3390

Std. dev. / s 4091

Set-up 4
Mean / s 6286

Std. dev. / s 5941

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

96 160 199.5 248 517.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.00002
0.00004
0.00006
0.00008
0.0001

0.00012
0.00014
0.00016
0.00018
0.0002

648 1924 3444.5 6018.5 11620

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

287 1013.5 2183 4004 15192.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.00002
0.00004
0.00006
0.00008

0.0001
0.00012
0.00014
0.00016

916.5 2421 4468.5 7867 19498

Time (seconds)

D
en

si
ty

Appendix D

 115

5 robots in 8m by 8m environment

Set-up 1
Mean / s 551

Std. dev. / s 301

Set-up 2
Mean / s 1300

Std. dev. / s 1365

Set-up 3
Mean / s 1203

Std. dev. / s 1567

Set-up 4
Mean / s 928

Std. dev. / s 902

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

210.5 374.5 463 621 1192

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

311.5 512 744.5 1406 4807

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

237.5 479 724.5 1224 7416

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

174 396 662.5 1076 3350.5

Time (seconds)

D
en

si
ty

Appendix D

 116

6 robots in 4m by 4m environment

Set-up 1
Mean / s 167

Std. dev. / s 66

Set-up 2
Mean / s 1940

Std. dev. / s 1859

Set-up 3
Mean / s 1430

Std. dev. / s 1471

Set-up 4
Mean / s 2389

Std. dev. / s 2235

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

55.5 126.5 158 190 298

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.00005
0.0001

0.00015
0.0002

0.00025
0.0003

0.00035
0.0004

0.00045
0.0005

281.5 791.5 1398 2438.5 6680.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

158 481 932 1676.5 4382.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.00005

0.0001
0.00015

0.0002
0.00025

0.0003
0.00035

0.0004
0.00045

0.0005

368.5 964 1832.5 2996 6634

Time (seconds)

D
en

si
ty

Appendix D

 117

6 robots in 8m by 8m environment

Set-up 1
Mean / s 395

Std. dev. / s 167

Set-up 2
Mean / s 713

Std. dev. / s 683

Set-up 3
Mean / s 685

Std. dev. / s 689

Set-up 4
Mean / s 644

Std. dev. / s 595

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

170.5 286.5 367 473 702

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016

200 354.5 528 760 2711.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

0.002

174.5 306 484 821 2763.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

127 299 478.5 768.5 2232

Time (seconds)

D
en

si
ty

Appendix D

 118

7 robots in 4m by 4m environment

Set-up 1
Mean / s 147

Std. dev. / s 54

Set-up 2
Mean / s 1371

Std. dev. / s 1473

Set-up 3
Mean / s 772

Std. dev. / s 645

Set-up 4
Mean / s 1153

Std. dev. / s 913

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

79.5 109.5 137 173.5 276.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

185.5 511.5 936.5 1604 5193.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

141.5 324 545 966 2118.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008

225 527 891.5 1578.5 3494

Time (seconds)

D
en

si
ty

Appendix D

 119

7 robots in 8m by 8m environment

Set-up 1
Mean / s 337

Std. dev. / s 146

Set-up 2
Mean / s 562

Std. dev. / s 492

Set-up 3
Mean / s 499

Std. dev. / s 517

Set-up 4
Mean / s 509

Std. dev. / s 413

Density Histogram (Setup 1)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

166 240 303.5 387 667.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

164.5 279 390.5 593 1967

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

155 255.5 359 558.5 2145

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

108.5 262.5 412.5 622.5 1549

Time (seconds)

D
en

si
ty

Appendix D

 120

8 robots in 4m by 4m environment

Set-up 1
Mean / s 131

Std. dev. / s 51

Set-up 2
Mean / s 802

Std. dev. / s 638

Set-up 3
Mean / s 597

Std. dev. / s 607

Set-up 4
Mean / s 687

Std. dev. / s 536

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

57 99.5 125.5 151 233

Time (seconds)

De
ns

ity

Density Histogram (Setup 2)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

150.5 375.5 653 1062 2239

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

107.5 224 419 712.5 1985

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

158 396.5 602.5 809 2320

Time (seconds)

D
en

si
ty

Appendix D

 121

8 robots in 8m by 8m environment

Set-up 1
Mean / s 346

Std. dev. / s 138

Set-up 2
Mean / s 430

Std. dev. / s 332

Set-up 3
Mean / s 424

Std. dev. / s 267

Set-up 4
Mean / s 435

Std. dev. / s 342

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

189 247 314 414.5 608.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

132.5 244 329 463 1130.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

141 258.5 372.5 514 1024

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

112.5 207 327.5 540 1117

Time (seconds)

D
en

si
ty

Appendix D

 122

9 robots in 4m by 4m environment

Set-up 1
Mean / s 110

Std. dev. / s 32

Set-up 2
Mean / s 741

Std. dev. / s 606

Set-up 3
Mean / s 455

Std. dev. / s 382

Set-up 4
Mean / s 655

Std. dev. / s 594

Density Histogram (Setup 1)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

57.5 93.5 109 124.5 171.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

166 324.5 597.5 998 2224

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

103.5 206.5 349.5 547.5 1411

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

141 327 517 747 2141

Time (seconds)

D
en

si
ty

Appendix D

 123

9 robots in 8m by 8m environment

Set-up 1
Mean / s 284

Std. dev. / s 114

Set-up 2
Mean / s 363

Std. dev. / s 267

Set-up 3
Mean / s 324

Std. dev. / s 236

Set-up 4
Mean / s 341

Std. dev. / s 243

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

141 220 266 317.5 580.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

133 227 283 387 1008

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

92 185.5 264.5 380.5 959.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

114 208.5 277.5 404.5 986.5

Time (seconds)

D
en

si
ty

Appendix D

 124

10 robots in 4m by 4m environment

Set-up 1
Mean / s 106

Std. dev. / s 34

Set-up 2
Mean / s 488

Std. dev. / s 364

Set-up 3
Mean / s 332

Std. dev. / s 246

Set-up 4
Mean / s 524

Std. dev. / s 413

Density Histogram (Setup 1)

18

18.5

19

19.5

20

20.5

21

21.5

53.5 86 101.5 118.5 184.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

111.5 236.5 408 630.5 1217.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

96 170 273.5 425.5 946

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0002
0.0004
0.0006
0.0008

0.001
0.0012
0.0014
0.0016
0.0018

119.5 268.5 404 644 1634

Time (seconds)

D
en

si
ty

Appendix D

 125

10 robots in 8m by 8m environment

Set-up 1
Mean / s 283

Std. dev. / s 104

Set-up 2
Mean / s 367

Std. dev. / s 261

Set-up 3
Mean / s 294

Std. dev. / s 179

Set-up 4
Mean / s 365

Std. dev. / s 288

Density Histogram (Setup 1)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

156 216.5 268 325 492.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

119 210.5 281 408.5 879

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

103.5 174.5 254.5 370.5 682

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

83 183 281.5 439.5 1083

Time (seconds)

D
en

si
ty

Appendix D

 126

11 robots in 4m by 4m environment

Set-up 1
Mean / s 106

Std. dev. / s 38

Set-up 2
Mean / s 372

Std. dev. / s 296

Set-up 3
Mean / s 281

Std. dev. / s 245

Set-up 4
Mean / s 403

Std. dev. / s 537

Density Histogram (Setup 1)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

52 80.5 99.5 126.5 205.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

84.5 173.5 282 475.5 1047.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

61.5 122.5 189 341 828

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

79.5 179 301.5 444.5 2747.5

Time (seconds)

D
en

si
ty

Appendix D

 127

11 robots in 8m by 8m environment

Set-up 1
Mean / s 252

Std. dev. / s 76

Set-up 2
Mean / s 334

Std. dev. / s 236

Set-up 3
Mean / s 271

Std. dev. / s 173

Set-up 4
Mean / s 250

Std. dev. / s 199

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

151.5 200.5 237 288 400

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

133.5 196 262.5 375.5 910.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

105.5 171 215.5 308.5 803.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

62 118 195 310 756

Time (seconds)

D
en

si
ty

Appendix D

 128

12 robots in 4m by 4m environment

Set-up 1
Mean / s 97

Std. dev. / s 29

Set-up 2
Mean / s 277

Std. dev. / s 229

Set-up 3
Mean / s 247

Std. dev. / s 207

Set-up 4
Mean / s 380

Std. dev. / s 271

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

53 80.5 93 110.5 165

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

72.5 138 204 333 1004.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

60 125 204 298 849

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

91 198.5 301.5 487.5 848.5

Time (seconds)

D
en

si
ty

Appendix D

 129

12 robots in 8m by 8m environment

Set-up 1
Mean / s 225

Std. dev. / s 72

Set-up 2
Mean / s 284

Std. dev. / s 217

Set-up 3
Mean / s 278

Std. dev. / s 203

Set-up 4
Mean / s 237

Std. dev. / s 177

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

124 178.5 220.5 262 366

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

113 186.5 232 298.5 1085

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

95 154 211 319.5 782.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

61 124.5 188.5 286.5 626.5

Time (seconds)

D
en

si
ty

Appendix D

 130

13 robots in 4m by 4m environment

Set-up 1
Mean / s 91

Std. dev. / s 25

Set-up 2
Mean / s 305

Std. dev. / s 199

Set-up 3
Mean / s 219

Std. dev. / s 217

Set-up 4
Mean / s 285

Std. dev. / s 232

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

0.03

51 78.5 89 101.5 145

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.0005

0.001

0.0015

0.002

0.0025

79 173 265.5 372.5 756

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

58.5 106 154 252.5 851

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

74.5 153 227.5 345 901

Time (seconds)

D
en

si
ty

Appendix D

 131

13 robots in 8m by 8m environment

Set-up 1
Mean / s 222

Std. dev. / s 68

Set-up 2
Mean / s 283

Std. dev. / s 175

Set-up 3
Mean / s 225

Std. dev. / s 112

Set-up 4
Mean / s 218

Std. dev. / s 136

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

129.5 182 210 247 389.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

100.5 175 237.5 331 693

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

97.5 154.5 204.5 264 476.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

67 128 184 276.5 483.5

Time (seconds)

D
en

si
ty

Appendix D

 132

14 robots in 4m by 4m environment

Set-up 1
Mean / s 93

Std. dev. / s 31

Set-up 2
Mean / s 283

Std. dev. / s 209

Set-up 3
Mean / s 222

Std. dev. / s 151

Set-up 4
Mean / s 279

Std. dev. / s 184

Density Histogram (Setup 1)

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

49 74.5 88.5 105.5 177.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004

97 161.5 229 320 755.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

66 123.5 170 279 526.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

71.5 150 242 358.5 675

Time (seconds)

D
en

si
ty

Appendix D

 133

14 robots in 8m by 8m environment

Set-up 1
Mean / s 226

Std. dev. / s 74

Set-up 2
Mean / s 231

Std. dev. / s 130

Set-up 3
Mean / s 233

Std. dev. / s 120

Set-up 4
Mean / s 218

Std. dev. / s 135

Density Histogram (Setup 1)

0

0.001

0.002

0.003

0.004

0.005

0.006

127 182 217.5 254.5 362

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

79 149.5 188 274 561.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

102.5 165 207 262.5 508

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

0.005

68 185.5 530

Time (seconds)

D
en

si
ty

Appendix D

 134

15 robots in 4m by 4m environment

Set-up 1
Mean / s 81

Std. dev. / s 26

Set-up 2
Mean / s 214

Std. dev. / s 129

Set-up 3
Mean / s 185

Std. dev. / s 127

Set-up 4
Mean / s 255

Std. dev. / s 171

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

45 65.5 76.5 93.5 142.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

80.5 129.5 183.5 271.5 542

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

57.5 104.5 142 212 477

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

79 154 199 297.5 743.5

Time (seconds)

D
en

si
ty

Appendix D

 135

15 robots in 8m by 8m environment

Set-up 1
Mean / s 210

Std. dev. / s 76

Set-up 2
Mean / s 229

Std. dev. / s 126

Set-up 3
Mean / s 226

Std. dev. / s 112

Set-up 4
Mean / s 219

Std. dev. / s 148

Density Histogram (Setup 1)

0
0.001
0.002

0.003
0.004
0.005
0.006

0.007
0.008

104.5 166.5 198 238 372

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

101 156 200.5 262.5 522

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

95.5 154 203 272 487.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

68 168 511.5

Time (seconds)

D
en

si
ty

Appendix D

 136

16 robots in 4m by 4m environment

Set-up 1
Mean / s 91

Std. dev. / s 23

Set-up 2
Mean / s 228

Std. dev. / s 129

Set-up 3
Mean / s 185

Std. dev. / s 120

Set-up 4
Mean / s 230

Std. dev. / s 157

Density Histogram (Setup 1)

17

18

19

20

21

22

23

51.5 89 144.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

80.5 144.5 202.5 285 596.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

59 109.5 154.5 228 484

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

72 135 181 275 577

Time (seconds)

D
en

si
ty

Appendix D

 137

16 robots in 8m by 8m environment

Set-up 1
Mean / s 194

Std. dev. / s 62

Set-up 2
Mean / s 210

Std. dev. / s 99

Set-up 3
Mean / s 207

Std. dev. / s 103

Set-up 4
Mean / s 214

Std. dev. / s 133

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

100.5 153.5 182 223 319

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

96 151 188.5 244.5 471

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

86 140.5 191.5 248 441

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.0005
0.001

0.0015
0.002

0.0025

0.003
0.0035

0.004

61 186.5 471

Time (seconds)

D
en

si
ty

Appendix D

 138

17 robots in 4m by 4m environment

Set-up 1
Mean / s 93

Std. dev. / s 26

Set-up 2
Mean / s 200

Std. dev. / s 116

Set-up 3
Mean / s 182

Std. dev. / s 112

Set-up 4
Mean / s 224

Std. dev. / s 135

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

51.5 79 89.5 102.5 160.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

66.5 119.5 172 247.5 428.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

61.5 110 144 223 442.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

74 137.5 182.5 260.5 531.5

Time (seconds)

D
en

si
ty

Appendix D

 139

17 robots in 8m by 8m environment

Set-up 1
Mean / s 204

Std. dev. / s 56

Set-up 2
Mean / s 226

Std. dev. / s 124

Set-up 3
Mean / s 200

Std. dev. / s 106

Set-up 4
Mean / s 169

Std. dev. / s 99

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

124 170 199 234.5 321.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

96.5 152.5 193 257 495

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

90 132.5 164.5 234.5 457.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

58 148.5 400

Time (seconds)

D
en

si
ty

Appendix D

 140

18 robots in 4m by 4m environment

Set-up 1
Mean / s 80

Std. dev. / s 22

Set-up 2
Mean / s 204

Std. dev. / s 106

Set-up 3
Mean / s 143

Std. dev. / s 79

Set-up 4
Mean / s 210

Std. dev. / s 129

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

46.5 68 77 88 122.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

70.5 131 179 255 436.5

Time (seconds)

De
ns

ity

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

54 93.5 126.5 168 321

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

73.5 136.5 173.5 242 506.5

Time (seconds)

D
en

si
ty

Appendix D

 141

18 robots in 8m by 8m environment

Set-up 1
Mean / s 192

Std. dev. / s 52

Set-up 2
Mean / s 199

Std. dev. / s 102

Set-up 3
Mean / s 197

Std. dev. / s 103

Set-up 4
Mean / s 168

Std. dev. / s 112

Density Histogram (Setup 1)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

119 163.5 186.5 208 291

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

90 135 178 241 408

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

89.5 133.5 170.5 223 441.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

56 134.5 415

Time (seconds)

D
en

si
ty

Appendix D

 142

19 robots in 4m by 4m environment

Set-up 1
Mean / s 82

Std. dev. / s 24

Set-up 2
Mean / s 184

Std. dev. / s 100

Set-up 3
Mean / s 162

Std. dev. / s 106

Set-up 4
Mean / s 191

Std. dev. / s 105

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

47 67 76.5 90.5 154

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

69 124.5 161.5 229 408

Time (seconds)

D
en

si
ty

Density Histogram (Setup 3)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

56.5 99.5 135 190.5 458.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

67.5 126 162.5 221.5 447.5

Time (seconds)

D
en

si
ty

Appendix D

 143

19 robots in 8m by 8m environment

Set-up 1
Mean / s 180

Std. dev. / s 45

Set-up 2
Mean / s 199

Std. dev. / s 114

Set-up 3
Mean / s 177

Std. dev. / s 79

Set-up 4
Mean / s 183

Std. dev. / s 109

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

99 151.5 180 205.5 288

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.001
0.002

0.003
0.004
0.005
0.006

0.007
0.008

88.5 131.5 166.5 218 409.5

Time (seconds)

De
ns

ity

Density Histogram (Setup 3)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

87 128 157.5 197.5 336

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

67 158 411

Time (seconds)

D
en

si
ty

Appendix D

 144

20 robots in 4m by 4m environment

Set-up 1
Mean / s 85

Std. dev. / s 21

Set-up 2
Mean / s 192

Std. dev. / s 101

Set-up 3
Mean / s 252

Std. dev. / s 178

Set-up 4
Mean / s 161

Std. dev. / s 97

Density Histogram (Setup 1)

0

0.005

0.01

0.015

0.02

0.025

48.5 73 84 94.5 140

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

86.5 127.5 166 221.5 456.5

Time (seconds)

De
ns

ity

Density Histogram (Setup 3)

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045
0.005

67.5 125.5 200.5 330.5 623

Time (seconds)

De
ns

ity

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

55 98.5 136.5 196.5 448.5

Time (seconds)

D
en

si
ty

Appendix D

 145

20 robots in 8m by 8m environment

Set-up 1
Mean / s 175

Std. dev. / s 46

Set-up 2
Mean / s 178

Std. dev. / s 88

Set-up 3
Mean / s 175

Std. dev. / s 84

Set-up 4
Mean / s 168

Std. dev. / s 127

Density Histogram (Setup 1)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

110 144 168.5 195 270.5

Time (seconds)

D
en

si
ty

Density Histogram (Setup 2)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

83.5 125.5 159.5 202 369.5

Time (seconds)

De
ns

ity

Density Histogram (Setup 3)

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

85.5 124.5 155.5 201.5 385

Time (seconds)

D
en

si
ty

Density Histogram (Setup 4)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

52 133 416.5

Time (seconds)

D
en

si
ty

