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Summary

Attentive behavior detection is an important issue in the area of visual understanding

and video surveillance. In this thesis, we will discuss the problem of detecting a frequent

change in focus of human attention(FCFA) from video data. People perceive this kind

of behavior(FCFA) as temporal changes of human head pose, which can be achieved by

rotating the head or rotating the body or both. Contrary to FCFA, an ideally focused

attention implies that the head pose remains unchanged for a relatively long time. For

the problem of detecting FCFA, one direct solution is to estimate the head pose in each

frame of the video sequence, extract features to represent FCFA behavior, and finally

detect it. Instead of estimating the head pose in every frame, another possible solution

is to use the whole video sequence to extract features such as a cyclic motion of the

head, and then devise a method to detect or classify it.

In this thesis, we propose two methods based on the above ideas. In the first method,

called the head pose estimation(HPE) method, we propose to find a 2-D manifold for

each head image sequence to represent the head pose in each frame. One way to build

a manifold is to use a non-linear mapping method called the ISOMAP to represent

the high dimensional image data in a low dimensional space. However, the ISOMAP

is only suitable to represent each person individually; it cannot find a single generic

manifold for all the person’s low dimensional embeddings. Thus, we normalize the 2-D

embeddings of different persons to find a unified head pose embedding space, which

is suitable as a feature space for person independent head pose estimation. These

features are used in a non-linear person-independent mapping system to learn the
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parameters to map the high dimensional head images into the feature space. Our non-

linear person-independent mapping system is composed of two parts: 1) Radial Basis

Function (RBF) interpolation, and 2) an adaptive local fitting technique. Once we

get these 2-D coordinates in the feature space, the head pose is very simply calculated

based on these coordinates. The results show that we can estimate the orientation

even when the head is completely turned back to the camera. To extend our HPE

method to detect FCFA behavior, we propose to use an entropy-based classifier. We

estimate the head pose angle for every frame of the sequence, and calculate the head

pose entropy over the sequence to determine whether the sequence exhibits either FCFA

or focused attention behavior. The experimental results show that the entropy value

for FCFA behavior is very distinct from that for the focused attention behavior. Thus

by setting an experimental threshold on the entropy value we can successfully detect

FCFA behavior. In our experiment, the head pose estimate is very accurate compared

with the “ground truth”. To detect FCFA, we test the entropy-based classifier on 4

video sequences, by setting an easy threshold, we classify FCFA from focused attention

by an accuracy of 100%.

In a second method, which we call the cyclic pattern frequency analysis (CPFA)

method, we propose to use features extracted by analyzing a similarity matrix of head

pose obtained from the head image sequence. Further, we present a fast algorithm

which uses the principal components subspace instead of the original image sequence

to measure the self-similarity. An important feature of the behavior of FCFA is its

cyclic pattern where the head pose repeats its position from time to time. A frequency

analysis scheme is proposed to find the dynamic characteristics of persons with frequent

change of attention or focused attention. A nonparametric classifier is used to classify

these two kinds of behaviors (FCFA and focused attention). The fast algorithm dis-

cussed in this work yields less computational time (from 186.3s to 73.4s for a sequence

of 40s in Matlab) as well as improved accuracy in classification of the two types of

attentive behavior (improved from 90.3% to 96.8% in average accuracy).
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Chapter 1

Introduction

1.1 Motivation

Recent advancements in the technologies of video data acquisition and computer hard-

ware, both in terms of speed and memory for processing information together with the

rapidly growing demand for video data analysis has made intelligent, computer-based

visual monitoring an active area of research. In public sites, surveillance systems are

commonly used by security or local authorities to monitor events that involve unusual

behaviors. The main aim of the video surveillance system is the early detection of

unusual situations that may lead to undesirable emergencies and disasters.

The most commonly used surveillance system is the Closed Circuit Television (CCTV)

system, which can record the scenes on tapes for the past 24 to 48 hours to be retrieved

“after the event”. In most of the cases, the monitoring task is done by human operators.

Undeniably, human labor is accurate for a short period, and difficult to be replaced

by an automatic system. However, the limited attention span and reliability of human

observers have led to significant problems in manual monitoring. Besides, this kind of

monitoring is very tiring and tedious for human operators, for they have to deal with a

wall of split screens continuously and simultaneously to look for suspicious events. In

addition, human labor is also costly, slow, and its performance deteriorates when the
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amount of data to be analyzed is large. Therefore, intelligent monitoring techniques

are essential.

Motivated by the demand of intelligent video analysis system, our work focuses on

an important aspect of this kind of system, i.e. attentive behavior detection. Human

attention is a very important cue which may lead to better understanding of human’s

intrinsic behavior, intention or mental status. One example discussed in [24] is about

the students’ attentive behavior relationship to the teaching method. An interesting,

flexible method will attract more attention from students while a repeated task will

make it difficult for students to remain attentive. Human’s attention is a means to

express their mental status [25], from which an abserver can infer their beliefs and de-

sires. The attentive behavior analysis is such a way to mimic the observer’s perception

to the inference.

In this work, we propose to classify these two kinds of human attentive behaviors, i.e.

a frequent change in focus of attention (FCFA) and focused attention. We would expect

that FCFA behavior requires a frequent change of head pose, while focused attention

means that the head pose will approximately be constant for a relatively long time.

Hence, this motivates us to detect the head pose in each frame of a video sequence,

so that the change of head pose can be analyzed and subsequently classified. We call

this the Head Pose Estimation (HPE) method and present it in the first part of this

dissertation. On the other hand, in terms of head motion, FCFA behavior will cause

the head to change its pose in a cyclic motion pattern, which motivates us to analyze

cyclic motion for classification. In the second part of this dissertation, we propose a

Cyclic Pattern Analysis (CPA) method to detect FCFA.

1.2 Applications

In video surveillance and monitoring, people are always interested in the attentive

behavior of the observer. Among the many possible attentive behaviors, the most
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important one is a frequent change in focus of attention (FCFA). Correct detection of

this behavior is very useful in everyday life. Applications can be easily found in, e.g. a

remote education environment, where system operators are interested in the attentive

behavior of the learners. If they are being distracted, one possible reason may be that

the content of the material is not attractive and useful enough for the learners. This

is a helpful hint to change or modify the teaching materials.

In cognitive science, scientists are always interested in the response to salient objects

in the observer’s visual field. When salient objects are spatially widely distributed,

however, visual search for the objects will cause FCFA. For example, the number of

salient objects to a shopper can be extremely large, and therefore, in a video sequence,

the shopper’s attention will change frequently. On the other side, when salient objects

are localized, visual search will cause human attention to focus on one spot only,

resulting in focused attention. Successful detection of this kind of attentive motion can

be a useful cue for intelligent information gathering about objects which people are

interested in.

In building intelligent robots, scientists are interested in making robots understand

the visual signals arising from movements of the human body or parts of the body, e.g.

a hand waving and a head nodding, which is a cyclic motion. Therefore, our work can

be applied in these areas of research also.

In computer vision, head pose estimation is a research area of current interest. Our

HPE method explained later is shown to be successful in estimating the head pose

angle even when the person’s head is totally or partially turned back to the camera.

In the following we give an overview of our approaches to recognizing human attentive

behavior through head pose estimation and cyclic pattern analysis.
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1.3 Our Approach

1.3.1 HPE Method

Since head pose will change during FCFA behavior, FCFA can be detected by esti-

mating head pose in each frame of a video sequence and looking at the change of

head pose as time evolves. Different head pose images of a person can be thought

of as lying on some manifold in high dimensional space. Recently, some non-linear

dimensionality reduction techniques have been introduced, including Isometric Feature

Mapping (ISOMAP) [18], Locally Linear Embedding (LLE) [20]. Both methods have

been shown to be able to successfully embed the hidden manifold in high dimensional

space onto a low dimensional space.

In our head pose estimation (HPE) method, we first employ the ISOMAP algorithm

to find the low dimensional embedding of the high dimensional input vectors from im-

ages. ISOMAP tries to preserve (as much as possible according to some cost function)

the geodesic distance on the manifold in high dimensional space while embedding the

high dimensional data into a low dimensional space (2-D in our case). However, the

biggest problem of ISOMAP as well as LLE is that it is person-dependent, i.e., it pro-

vides individual embeddings for each person’s data but cannot embed multiple persons’

data into one manifold as is described in Chapter 3. Besides, although the appearance

of the 2-D embedding of a person’s head data is ellipse-like, for different persons, the

shape, scale and orientation of the ellipse is different.

To find a person-independent feature space, for every person’s 2-D embedding we

use an ellipse fitting technique to find an ellipse that can best represent the points.

After we obtain the parameters of every person’s ellipse, we further normalize these

ellipses into a unified embedding space so that similar head poses of different persons

are near each other. This is done by first rotating the axes of every ellipse to lie

along the X and Y axes, and then scaling every ellipse to a unit circle. Further, by

identifying frames which are frontal or near frontal and their corresonding points in
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the 2-D unified embedding, we rotate all the points so that those corresponding to the

frontal view lie at the 90 degree angle in the X-Y plane. Moreover, since the ISOMAP

algorithm can embed the head pose data into the 2-D embedding space either clockwise

or anticlockwise, we will take a mirror image along the Y -axis for all the points if the

left profile frames of a person are at around 180 degree. This process yields the final

embedding space, or a 2-D feature space which is suitable for person independent head

pose estimation.

After following the above process for all training data, we propose a non-linear person-

independent mapping system to map the original input head images to the 2-D feature

space. Our non-linear person-independent mapping system is composed of two parts: 1)

a Radial Basis Fucntion (RBF) interpolation, and 2) an adaptive local fitting algorithm.

RBF interpolation here is used to approximate the non-linear embedding function

from high dimensional space into the 2-D feature space. Furthermore, in order to

correct for possible unreasonable mappings and to smooth the output, an adaptive

local fitting algorithm is then developed and used on sequences under the assumption

of the temporal continuity and local linearity of the head poses. After obtaining the

corrected and smoothed 2-D coordinates, we transform the coordinate system from

X-Y coordinate to R-Θ coordinate and take the value of θ as the output pose angle.

To further detect FCFA behavior, we propose an entropy classifier. By defining the

head pose angle entropy of a sequence, we calculate the entropy value for both FCFA

sequences and focused attention sequences. Examining the experimental results, we

set a threshold on the entropy value to classify FCFA and focused attention behavior,

as discussed later.

1.3.2 CPFA Method

FCFA can be easily perceived by humans as temporal changes of head pose which

keeps repeating itself in different orientations. However, as human beings, we probably

do not recognize this behavior by calculating the head pose at each time instant but
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by treating the whole sequence as one pattern. Contrary to FCFA, an ideally focused

attention implies that head pose remains unchanged for a relatively long time, i.e., no

cyclicity is demonstrated. This part of work, which we call cyclic pattern frequency

analysis (CPFA) method, therefore, is to mimic human perception of FCFA as a cyclic

motion of a head and to present an approach for the detection of this cyclic attentive

behavior from video sequences. In the following, we give the definition of cyclic motion.

The motion of a point X(t), at time t, is defined to be cyclic if it repeats itself with

a time varying period p(t), i.e.,

X(t+ p(t)) = X(t) + T (t), (1.1)

where T (t) is a translation of the point. The period p(t) is the time interval that

satisfies (1.1). If p(t) = p0, i.e., a constant for all t, then the motion is exactly periodic

as defined in [1]. A periodic motion has a fixed frequency 1/p0. However, the frequency

of cyclic motion is time varying. Over a period of time, cyclic motion will cover a band

of frequencies while periodic motion covers only a single frequency or at most a very

narrow band of frequencies.

Most of the time, the attention of a person can be characterized by his/her head

orientation [80]. Thus, the underlying change of attention can be inferred by the

motion pattern of head pose changes with time. For FCFA, the head keeps repeating

the poses, which therefore demonstrates cyclic motion as defined above. An obvious

measurement for the cyclic pattern is the similarity measure of the frames in the video

sequence.

By calculating the self-similarities between any two frames in the video sequence, a

similarity matrix can be constructed. As shown later, a similarity matrix for cyclic

motion differs from that of one with smaller motion such as a video of a person with

focused attention.

Since the calculation of the self-similarity matrix using the original video sequence is
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very time consuming, we further improved the algorithm by using a principal compo-

nents subspace instead of the original image sequence for the self-similarity measure.

This approach saves much computation time as well as an improved classification ac-

curacy.

To analyze the similarity matrix we applied a 2-D Discrete Fourier Transform to

find the characteristics in the frequency domain. A four dimensional feature vector

of normalized Fourier spectral values in the low frequency region is extracted as the

feature vector.

Because of the relatively small size of training data, and the unknown distribution

of the two classes, we employ a nonparametric classifier, i.e., k-Nearest Neighbor Rule

(K-NNR), for the classification of the FCFA and focused attention.

1.4 Contributions

The main contribution of our HPE method is an innovative scheme for the estimation

of head orientation. Some prior works have considered head pose estimation, but they

require either the extraction of some facial features or depth information to build a

3-D model. Facial feature based methods require finding the features while 3-D model-

based methods requires either a stereo or multiple calibrated cameras. However, our

algorithm works with an uncalibrated, single camera, and can give correct estimate of

the orientation even when the person’s head is turned back to the camera.

The main contribution of our CPFA method is the introduction of a scheme for

the robust analysis of cyclic time-series image sequences as a whole rather than using

individual images to detect FCFA behavior. Although there were some works presented

by other researchers for periodic motion detection, we believe our approach is new to

address the cyclic motion problem. Different from the works in head pose detection,

this approach requires no information of the exact head pose. Instead, by extracting

the global motion pattern from the whole head image sequence and combining with
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a simple classifier, we can robustly detect FCFA behavior. A fast algorithm is also

proposed with improved accuracy for this type of attentive behavior detection.

The rest of the dissertation is organized as follows:

• Chapter 2 will discuss the related work, including works on attention analysis,

dimensionality reduction, head pose estimation, and periodic motion analysis.

• Chapter 3 will describe our HPE method.

• Chapter 4 will explain our CPFA method.

• Chapter 5 will show the experimental results and give a brief discussion on the

robustness and performance of our proposed methods.

• Chapter 6 will present the conclusion and future work.
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Chapter 2

Related Work

2.1 Attention Analysis

Computation for detecting attentive behavior has long been focusing on the task of

selecting salient objects or short-term motion in images. Most of the research works

tried to detect low level salient objects with local features such as edges, corners,

color and motion etc.[27, 28, 35, 26]. In contrast, our work deals with the issue of

detecting high level salient objects from long-term video sequences, i.e. the attention

of an observer when the salient objects to the observer is widely distributed in space.

Attentive behavior analysis is an important part of attention analysis, however, it is

believed not to have been researched much.

Koch and Itti have built a very sophisticated saliency-based spatial attention model

[43, 44]. The saliency map is used to encode and combine information about each

salient or conspicuous point (or location) in an image or a scene to evaluate how dif-

ferent a given location is from its surrounding. A Winner-Take-All (WTA) neural

network implements the selection process based on the saliency map to govern the

shifts of visual attention. This model performs well on many natural scenes and has

received some support from recent electrophysiological evidence [55, 56]. Tsotsos et

al. [26] presented a selective tuning model of visual attention that used inhibition of
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irrelevant connections in a visual pyramid to realize spatial selection and a top-down

WTA operation to perform attentional selection. In the model proposed by Clark et

al. [30, 31], each task-specific feature detector is associated with a weight to signify

the relative importance of the particular feature to the task and WTA operates on the

saliency map to drive spatial attention (as well as the triggering of saccades). In [39, 50],

color and stereo are used to filter images for attention focus candidates and to per-

form figure/ground separation. Grossberg proposed a new ART model for solving the

attention-preattention (attention-perceptual grouping) interface and stability-plasticity

dilemma problems [37, 38]. He also suggested that both bottom-up and top-down path-

ways contain adaptive weights that may be modified by experience. This approach has

been used in a sequence of models created by Grossberg and his colleagues (see [38]

for an overview). In fact, the ART Matching Rules suggested in his model tend to

produce later selection of attention and is partly similar to Duncan’s integrated com-

petition hypothesis [35] which is an object-based attention theory and different from

the above models.

Some researchers have exploited neural network approaches to model selective atten-

tion. In [27, 28], the saliency maps which are derived from the residual error between

the actual input and the expected input are used to create the task-specific expectations

for guiding the focus of attention. Kazanovich and Borisyu proposed a neural network

of phase oscillators with a central oscillator (CO) as a global source of synchronization

and a group of peripheral oscillators (PO) for modelling visual attention [42]. Similar

ideas have also been found in other works [33, 34, 45, 46, 47] and are supported by

many biological investigations [45, 57, 58]. There are also some models of selective

attention based on the mechanisms of gating or dynamic routing information flow by

dynamically modifying the connection strengths of neural networks [37, 41, 48, 49].

In some models, mechanisms for reducing the high computational burden of selective

attention have been proposed based on space-variant data structures or multiresolution

pyramid representations and have been embedded within foveation systems for robot

vision [29, 51, 32, 36, 52, 53, 54]. But it is noted that these models developed the overt
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attention systems to guide fixations of saccadic eye movements and partly or completely

ignored the covert attention mechanisms. Fisher and Grove [40] have also developed

an attention model for a foveated iconic machine visual system based on an interest

map. The low-level features are extracted from the currently foveated region and top-

down priming information are derived from previous matching results to compute the

salience of the candidate foveate points. A suppression mechanism is then employed

to prevent constantly re-foveating the same region.

2.2 Dimensionality Reduction

The basis for our HPE method is our belief that different head poses of a person will lie

on some high dimensional manifold (in the original image space) and can be visualized

by embedding it into a 2- or 3-D space, which is also useful to find the features to

represent different poses. In recent years, scientists have been working on non-linear

dimensionality reduction methods, since classical techniques such as Principal Com-

ponent Analysis (PCA) and Multidimensional Scaling (MDS) [21, 22, 23] cannot find

meaningful low dimensional structures hidden in high-dimensional observations when

their intrinsic structures are non-linear or locally linear. Some non-linear dimensional-

ity reduction methods, such as topology representing network [16], Isometric Feature

Mapping (ISOMAP) [17, 18, 19], locally linear embedding (LLE) [20], can success-

fully find the intrinsic structure given that the data set is representative enough. This

section will review some of these linear/non-linear dimensionality reduction techniques.

Multidimensional Scaling The classic Multidimensional Scaling (MDS) method

tries to find a set of vectors in d-dimensional space such that the matrix of Euclidean

distances among them corresponds as closely as possible to the distances between their

corresponding vectors in the original measurement space (D-dimensional, where D >>

d) by minimizing some cost function. Different MDS methods, such as [21, 22, 23], use

different cost functions to find the low dimensional space. MDS is a global minimization
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method; it tries to preserve the geometric distance. However, in some cases, when the

intrinsic geometry of the graph is nonlinear or locally linear, MDS fails to reconstruct

a graph in a low dimensional space.

Topology representing networks Martinetz and Schulten showed [16] how the

simple competitive Hebbian rule (CHR) forms topology representing networks. Let us

define Q = q1, · · · ,qk as a set of points, called quantizers, on a manifold M ⊂ RD.

With each quantizer qi a Voronoi set Vi is associated in the following manner: Vi =

x ∈ RD : ‖qi − x‖ = minj ‖qj − x‖, where ‖·‖ denotes the vector norm. The Delaunay

triangulation DQ associated with Q is defined as the graph that connects quantizers

with adjacent Voronoi sets (two Voronoi sets are called adjacent if their intersection

is non-empty.). The masked Voronoi sets V
(M)
i are defined as the intersection of the

original Voronoi sets with the manifold M . The Delaunay triangulation D(M)
Q on Q

induced by the manifold M is the graph that connects quantizers if the intersection of

their masked Voronoi sets is non-empty.

Given a set of quantizers Q and a finite data set Xn, the CHR produces a set of edges

as follows: (i) For every xi ∈ Xn determine the closest and second closest quantizer,

respectively qi0 and qi1 . (ii) Include (i0, i1) as an edge in E. A set of quantizers

Q on M is called dense if for each x on M the triangle formed by x and its closest

and second closest quantizer lies completely on M . Obviously, if the distribution of

the quantizer over the manifold is homogeneous (the volumes of the associated Voronoi

regions are equal), the quantization can be made dense simply by increasing the number

of quantizers.

Martinetz and Schulten showed that if Q is dense with respect to M , the CHR

produces the induced Delaunay triangulation.

ISOMAP The ISOMAP algorithm [18] finds coordinates in Rd of data that lie

on a d dimensional manifold embedded in a D >> d dimensional space. The aim

is to preserve the topological structure of the data, i.e. the Euclidean Distances in

Rd should correspond to the geodesic distances (distances on the manifold). The
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algorithm makes use of a neighborhood graph to find the topological structure of the

data. The neighborhood graph can be obtained either by connecting all points that

are within some small distance of each other (ε-method) or by connecting each point

to its k nearest neighbors. The algorithm is then summarized as follows: (i) Construct

neighborhood graph. (ii) Compute the graph distance (the graph distance is defined as

the minimum distance among all paths in the graph that connect the two data points.

The length of a path is the sum of the lengths its edges.) between all data points using

a shortest path algorithm, for example Dijkstra’s algorithm. (iii) Find low dimensional

coordinates by applying MDS on the pairwise distances.

The run time of the ISOMAP algorithm is dominated by the computation of the

neighborhood graph, costing O(n2), and computing the pairwise distances, which costs

O(n2logn).

Locally Linear Embedding The idea underpinning the Locally Linear Embed-

ding (LLE) algorithm [20] is the assumption that the manifold is locally linear. It

follows that small patches cut out from the manifold in RD should be approximately

equal (up to a rotation, translation and scaling) to small patches on the manifold in

Rd. Therefore, local relations among data in RD that are invariant under rotation,

translation and scaling should also be (approximately) valid in Rd. Using this princi-

ple, the procedure to find low dimensional coordinates for the data is simple: Express

each data point xi as a linear (possibly convex) combination of its k nearest neighbors

xi1 , · · · ,xik : xi =
∑k

j=1 ωijxij + ε, where ε is the approximation error whose norm is

mininmized by the weights that are used. Then we find coordinates yi ∈ Rd such that∑n
i=1

∥∥∥yi −
∑k

j=1 ωijyij

∥∥∥2

is minimized. It turns out that the yi can be obtained by

finding d eigenvectors of a n× n matrix.
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2.3 Head Pose Estimation

In recent years, a lot of research work has been done on head pose estimation [69, 70,

71, 72, 73, 74, 79, 80]. Generally, head pose estimation methods can be categorized

into two classes, 1) feature-based approaches, 2) view-based approaches.

Feature-based techniques try to find facial feature points in an image from which it is

possible to calculate the actual head orientation. These features can be obvious facial

characteristics like eyes, nose, mouth etc. View-based techniques, on the other hand,

try to analyze the entire head image in order to decide in which direction a person’s

head is oriented.

Generally, feature-based methods have the limitation that the same points must be

visible over the entire image sequence, thus limiting the range of head motions they can

track [59]. View-based methods do not suffer from this limitation. However, view-based

methods normally require a large dataset of training sample.

Matsumoto and Zelinsky [60] proposed a template-matching technique for feature-

based head pose estimation. They store six small image templates of eye and mouth

corners. In each image frame they scan for the position where the templates fit best.

Subsequently, the 3D position of these facial features are computed. By determining

the rotation matrix M which maps these six points to a pre-defined head model, the

head pose is obtained.

Harvile et al. [63] used the optical flow in an image sequence to determine the relative

head movement from one frame to the next. They use the brightness change constraint

equation (BCCE) to model the motion in the image. Moreover they added a depth

change constraint equation to incorporate the stereo information. Morency et al. [64]

improved this technique by storing a couple of key frames to reduce drift.

Srinivasan and Boyer [61] proposed a head pose estimation technique using view-

based eigenspaces. Monrency et al. [62] extended this idea to 3D view-based eigenspaces,
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where they use additional depth information. They use a Kalman filter to calculate

the pose change from one frame to the next. However, they reduce drift by comparing

the images to a number of key frames. These key frames are created automatically

from a single view of the person.

Stiefelhagen et al. [65] estimated the head orientation with neural networks. They

use normalized gray value images as input patterns. They scaled the images down to

20×30 pixels. To improve performance they added the image’s horizontal and vertical

edges to the input patterns. In [66], they further improved the performance by using

the depth information.

Gee and Cipolla have presented an approach for determining the gaze direction using

a geometrical model of the human face [67]. Their approach is based on the computa-

tion of the ratios between some facial features like nose, eyes, and mouth. They present

a real-time gaze tracker which uses simple methods to extract the eye and mouth points

from the gray-scale images. These points are then used to determine the facial normal.

They do not report the accuracy of their system, but they show some example images

with a little pointer for visualization of the head direction.

Ballard and Storkman [68] built a system for sensing the face direction. They showed

two different approaches for detecting facial feature points. One approach relies on the

eye and nose triangle, the other one uses a deformable template. The detected feature

points are then used for the computation of the facial normal. The uncertainty in the

feature extraction results in a major error of 22.5% in the yaw angle and 15% in the

pitch angle. Their system is used in a human-machine interface to control a mouse

pointer on a computer screen.

Wu and Toyama [75] proposed to use a probabilistic model approach to detect the

head pose. They used four image-based features—convolution with a coarse scale

Gaussian and convolution with rotation-invariant Gabor templates at four scales—to

build the probabilistic model for each pose and determine the pose of an input image

by computing the maximum a posteriori pose. Their algorithm uses an 3D ellipsoidal
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model of the head to represent the pose information. Brown and Tian [76] used the

same probabilistic model but instead of a 3D model they used 2D images directly to

determine the coarse pose by computing the maximum a posteriori probability.

Rae and Ritter [77] used three neural networks to do color segmentation, face lo-

calization, and head orientation estimation respectively. The inputs of their neural

network for head orientation estimation are a set of heuristically parameterized Gabor

filters extracted from the head region (80 × 80). Their system is user-dependent, i.e.,

it works well for a person included in the training data but performance degrades for

unseen persons. Zhao & Pingali [78] also presented a head orientation estimation sys-

tem using neural networks. They used two neural networks to determine pan and tilt

angles separately. Brown and Tian [76] use a three layer NN to estimate the head pose.

They propose to histogram equalize the input image to reduce the effects of variable

lighting conditions.

2.4 Periodic Motion Analysis

Recently, a lot of work has been done in segmenting and analyzing periodic motion.

Existing methods can be categorized as those requiring point correspondences [13, 15];

those analyzing periodicities of pixels [8, 12]; those analyzing features of periodic motion

[11, 6, 7]; and those analyzing the periodicities of object similarities [1, 4, 5, 13]. Related

work has been done in analyzing the rigidity of moving objects [14, 9]. Below we review

and critique each of these methods.

Cutler and Davis [1] compute the image self-similarity S of a sequence of motion

images using absolute correlation. These motion images used are first Gaussian filtered

and stabilized to segment the motion area. Then, morphological operation is performed

to reduce motion due to image noise. They merge the large connected components

of motion area and eliminate small ones. The motion sequences that demonstrate

periodicity are walking or running persons from airborne video. A Fisher’s test is
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utilized to detect the periodic motions from nonperiodic ones. Fisher’s test rejects

the null hypothesis if the self-similarity shows only white noise by testing whether the

power spectrum P (fi) is substantially larger than the average value. If the periodicity is

non-stationary, the normal Fourier Analysis will not be appropriate to find the correct

periodicity. Instead, they propose to use a Short-Time Fourier Transform (STFT).

They use a short-time analysis window (Hanning windowing function) in the Fourier

Transform to find the “local” spectrum of the signal. Their method is useful when

motions like walking and running demonstrate strong peroidicity or at least “local”

periodicity, i.e. periodic in several periods. However, their method will fail significantly

when the motion is nonperiodic but cyclic.

Seitz and Dyer [13] compute a temporal correlation plot for repeating motions using

different image comparison functions, dA and dI. The affine comparison function dA

allows for view-invariant analysis of image motion, but requires point correspondences

(which are achieved by tracking reflectors on the analyzed objects). The image com-

parison function dI computes the sum of absolute differences between images. However,

the objects are not tracked and, thus, must have nontranslational periodic motion in

order for periodic motion to be detected. Cyclic motion is analyzed by computing the

period-trace, which are curves that are fit to the surface d. Snakes are used to fit these

curves, which assumes that d is well-behaved near zero so that near-matching config-

urations show up as local minima of d. The K-S test is utilized to classify periodic

and nonperiodic motion. The samples used in the K-S test are the correlation matrix

M and the hypothesized period-trace PT . The null hypothesis is that the motion is

not periodic, i.e., the cumulative distribution function M and PT are not significantly

different. The K-S test rejects the null hypothesis when periodic motion is present.

However, it also rejects the null hypothesis if M is nonstationary. For example, when

M has a trend, the cumulative distribution function of M and PT can be significantly

different, resulting in classifying the motion as periodic (even if no periodic motion

present). This can occur if the viewpoint of the object or lighting changes significantly

during evaluation of M . The basic weakness of this method is it uses a one-sided
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hypothesis test which assumes stationarity and works for periodic motion only.

Polana and Nelson [12] recognize periodic motions in an image sequence by first

aligning the frames with respect to the centroid of an object. Reference curves, which

are lines parallel to the trajectory of the motion flow centroid, are then extracted and

the spectral power is estimated for the image signals along these curves. The periodicity

measure of each reference curve is defined as the normalized difference between the sum

of the spectral energy at the highest amplitude frequency and its multiples and the sum

of the energy at the frequencies half way between.

Tsai et al. [15] analyze the periodic motion of a person walking parallel to the

image plane. Both synthetic and real walking sequences were analyzed. For the real

images, point correspondences were achieved by manually tracking the joints of the

body. Periodicity was detected using Fourier analysis of the smoothed spatio-temporal

curvature function of the trajectories created by specific points on the body as it

performs periodic motion. A motion-based recognition application is described in which

one complete cycle is stored as a model and a matching process is performed using one

cycle of an input trajectory.

Allmen [2] used spatio-temporal flow curves of edge image sequences (with no back-

ground edges present) to analyze cyclic motion. Repeating patterns in the ST flow

curves are detected using curvature scale-space. A potential problem with this tech-

nique is that the curvature of the ST flow curves is sensitive to noise. Such a technique

would likely fail on very noisy sequences.

Niyogi and Adelson [11] analyze human gait by first segmenting a person walking

parallel to the image plane using background subtraction. A spatio-temporal surface is

fit to the XY T pattern created by the walking person. This surface is approximately

periodic and reflects the periodicity of the gait. Related work [10] used this surface

(extracted differently) for gait recognition.

Liu and Picard [8] assume a static camera and use background subtraction to segment

motion. Foreground objects are tracked and their path is fit to a line using a Hough
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transform (all examples have motion parallel to the image plane). The power spectrum

of the temporal histories of each pixel is then analyzed using Fourier analysis and the

harmonic energy caused by periodic motion is estimated. An implicit assumption in

[8] is that the background is homogeneous (a sufficiently nonhomogeneous background

will swamp the harmonic energy). Our work differs from [8] and [12] in that we analyze

the periodicities of the image similarities of large areas of an object, not just individual

pixels aligned with an object. Because of this difference (and the fact that we use

a smooth image similarity metric), our Fourier analysis is much simpler since the

signals we analyze do not have significant harmonics of the fundamental frequency.

The harmonics in [8] and [12] are due to the large discontinuities in the signal of a

single pixel; our self-similarity metric does not have such discontinuities.

Fujiyoshi and Lipton [6] segment moving objects from a static camera and extract

the object boundaries. From the object boundary, a “star” skeleton is produced, which

is then Fourier analyzed for periodic motion. This method requires accurate motion

segmentation, which is not always possible. Also, objects must be segmented indi-

vidually; no partial occlusions are allowed. In addition, since only the boundary of

the object is analyzed for periodic change (and not the interior of the object), some

periodic motions may not be detected (e.g., a textured rolling ball, or a person walking

directly toward the camera).

Selinger and Wixson [14] track objects and compute self-similarities of that object.

A simple heuristic using the peaks of the 1D similarity measure is used to classify rigid

and nonrigid moving objects, which in our tests fails to classify correctly for noisy

images.

Heisele and Wohler [7] recognize pedestrians using color images from a moving cam-

era. The images are segmented using a color/position feature space and the resulting

clusters are tracked. A quadratic polynomial classifier extracts those clusters which

represent the legs of pedestrians. The clusters are then classified by a time delay

neural network, with spatio-temporal receptive fields. This method requires accurate
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object segmentation. A 3-CCD color camera was used to facilitate the color clustering

and pedestrians are approximately 100 pixels in height. These image qualities and

resolutions are typically not found in surveillance applications.

There has also been some work done in classifying periodic motion. Polana and

Nelson [12] use the dominant frequency of the detected periodicity to determine the

temporal scale of the motion. A temporally scaled XY T template, where XY is a

feature based on optical flow, is used to match the given motion. The periodic motions

include walking, running, swinging, jumping, skiing, jumping jacks, and a toy frog.

This technique is view dependent and has not been demonstrated to generalize across

different subjects and viewing conditions. Also, since optical flow is used, it will be

highly susceptible to image noise.

Cohen et al. [3] classify oscillatory gestures of a moving light by modeling the ges-

tures as simple one-dimensional ordinary differential equations. Six classes of gestures

are considered (all circular and linear paths). This technique requires point correspon-

dences and has not been shown to work on arbitrary oscillatory motions.

Area-based techniques, such as our method, have several advantages over pixel-based

techniques, such as [12, 8]. Specifically, area-based techniques allow the analysis of

the dynamics of the entire object, which is not achievable by pixel-based techniques.

This allows for classification of different types of periodic motion. In addition, area-

based techniques allow detection and analysis of periodic motion that is not parallel

to the image plane. All examples given in [12, 8] have motion parallel to the image

plane, which ensures there is sufficient periodic pixel variation for the techniques to

work. However, since area-based methods compute object similarities which span many

pixels, the individual pixel variations do not have to be large. A related benefit is that

area-based techniques allow the analysis of low S/N images, since the S/N of the object

similarity measure is higher than that of a single pixel.
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Chapter 3

Head Pose Estimation

In this chapter, we will describe our method of head pose estimation (HPE). The

algorithm for HPE method is composed of two parts: i) unified embedding to find the

2-D feature space; ii) parameter learning to find a person-independent mapping. This

is then used in an entropy-based classifier to detect FCFA behavior. Here, we propose

to use foreground segmentation and edge detection to extract the head in each frame of

the sequence for further experiments. However, our algorithm can be used with head

sequences extracted by other different head tracking algorithms (see a review in [84]).

Head tracking is a step before FCFA detection. It is related while not within the scope

of our discussion.

All the data we used in the HPE method are image sequences obtained from a fixed

video camera. To simplify the problem, we obtain the video such that the heads only

rotate horizontally without any upward or downward rotation, i.e., a pan rotation only.

A sample sequence is shown in Fig. 3.1. Since the size of the head in each image of a

sequence and between different sequences could be different, we normalize them to a

fixed size of n1 × n2.
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Figure 3.1: A sample sequence used in our HPE method.

3.1 Unified Embedding

3.1.1 Nonlinear Dimensionality Reduction

Since the image sequences primarily exhibit head pose changes, we believe that even

though the images are in high dimensional space, they must lie on some manifold

with dimensionality much lower than the original. Recently, several new non-linear

dimensionality reduction techniques have been proposed, such as Isometric Feature

Mapping (ISOMAP) [18] and locally linear embedding (LLE) [20]. Both methods

have been shown to successfully embed manifolds in high dimensional space onto a low

dimensional space in several examples. In our work, we adapt the ISOMAP framework.

Table 3.1 details the three steps in the ISOMAP algorithm. The algorithm takes as

input the distances dx(i, j) between all pairs i, j from N data points in the high-

dimensional input space X, measured either in the standard Euclidean metric or in

some domain-specific metric. The algorithm outputs coordinate vectors yi in a d-

dimensional Euclidean space Y that best represents the intrinsic geometry of the data.

The only free parameter (ε or K) appears in Step 1.

Fig. 3.2(a) shows the 2-D embedding of the sequence sampled in Fig. 3.1 using

the K-ISOMAP (K = 7 in our experiments) algorithm. Since we rotate the head so

that there is almost no tilt angle change, i.e., it is a pan rotation (1-D circular motion

physically) only, we believe a good choice of the embedding space is a 2-D plane. If
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Table 3.1: A complete description of the ISOMAP algorithm.

Step Operation Description

1 Construct neighborhood graph Define the graph G over all N data points
by connecting points i and j if they are
[as measured by dx(i, j)] closer than ε
(ε-ISOMAP),or if i is one of the K nearest
neighbors of j (K-ISOMAP). Set edge len-
gths equal to dx(i, j).

2 Compute shortest paths Initialize dG(i, j) = dx(i, j) if i, j are link-
ed by an edge; dG(i, j) = ∞ otherwise.
Then for each value of k = 1, 2, · · · , N
in turn, replace all entries dG(i, j) by
min {dG(i, j), dG(i, k) + dG(k, j)}. The
matrix of final values DG(i, j) will contain
the shortest path distances between all
pairs of points in G.

3 Construct d-dimensional embedding Let λp be the p-th eigenvalue (in decreas-
ing order) of the matrix τ(DG) (The ma-
trix τ is defined by τ(D) = −HSH/2,
where S is the matrix of squared distances
{Sij = Dij

2}, and H is the centering matrix
{Hij = δij − 1/N}.), and vi

p be the i-th
component of the p-th eigen vector. Then
set the p-th component of the d-dimensional

coordinate vector yi equal to
√
λpv

i
p.

1-D space is chosen here, it will cause a discontinuity at head pose angles of 0◦ and

360◦. However, by choosing a 2-D plane, this problem can be solved, which as can

be seen later is very important for the non-linear person-independent mapping. As

can be noticed from Fig. 3.2(a), the embedding can discriminate different pan angles.

The outline of the embedding can be seen to be ellipse-like. The frames with head pan

angles close to each other in the images are also close in the embedded space. One point

that needs to be emphasized is that we do not use the temporal relationships to achieve

the embedding, since the goal is to obtain an embedding that preserves the geometry
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of the manifold. Temporal relation can be used to determine the neighborhood of each

frame but it was found to lead to erroneous, artificial embedding.
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Figure 3.2: 2-D embeding of the sequence sampled in Fig. 3.1 (a) by ISOMAP, (b) by
PCA, (c) by LLE.

Fig. 3.2(b) and (c) show corresponding results using the classic linear dimensionality

reduction method of principal component analysis (PCA) and the non-linear dimen-

sionality reduction method of LLE on the same sequence. We choose also a 2-D em-

bedding to make them comparable. As can be seen, PCA leads to an embedding that

cannot differentiate head poses in our case. Using LLE makes the 1-D circular motion

degenerate into a line in a 2-D plane, which correctly shows the intrinsic dimensionality

of this motion. However, the points at the leftmost and the rightmost end of the line
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correspond to similar poses, which, however, are far away in the embedded space. This

characteristic is not suitable for our non-linear person-independent mapping method,

and will cause large error as shown later.

3.1.2 Embedding Multiple Manifolds

Although the ISOMAP can very effectively represent a hidden manifold in high dimen-

sional space into a low dimensional embedded space as shown in Fig. 3.2(a), it fails to

embed multiple people’s data together into one manifold. Since typically intra-person

differences are much smaller than inter-person differences, the residual variance min-

imization technique used in ISOMAP, therefore, tries to preserve large contributions

from inter-person variations. This is shown in Fig. 3.3(a) where ISOMAP is used to

embed two people’s manifolds (care has been taken to ensure that all the inputs are

spatially registered). Here, the embedding shows separate manifolds (note one mani-

fold has degenerated into a point because the embedding is dominated by inter-person

distances which are much larger than intra-person distances.) Besides, another funda-

mental problem is that different persons will have different shape of manifold. This

can be seen in Fig. 3.3(b).

To embed multiple persons’ data to find a useful, common 2-D feature space, each

person’s manifold is first embedded separately using ISOMAP. An interesting point

here is that, although the appearance (shape) of the manifold for each person differs,

they are all ellipse-like (different parameters for different manifolds). We then find a

best fitting ellipse [85] to represent each manifold before we further normalize it. Fig.

3.4 shows the results of the ellipse fitted on the manifold of the sequence sampled in

Fig. 3.1. The parameters of each ellipse were then used to scale the coordinate axes

of each embedded space to obtain a unit circle. After we normalize the coordinates

in every person’s embedded space into a unit circle, we find an interesting property

that on every person’s unit circle the angles between any two points are roughly the

same as the difference between their corresponding pose angles in the original images.
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Figure 3.3: (a) Embedding obtained by ISOMAP on the combination of two person’s
sequences. (b) Separate embedding of two manifolds for two people’s head pan images.

However, when using ISOMAP to embed each person’s manifold individually, it cannot

be ensured that different person’s frontal faces are close in angle in each embedded

space. Thus, further normalization is needed to make all person’s frontal images to be

located at the same angle in the manifold so that they are comparable and meaningful

to build a unified embedded space. To do this, we first manually label the frames in

each sequence with frontal views of the head. To reduce the labelling error, we label

all the frames with a frontal or near frontal view, take the mean of the corresponding
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coordinates in the embedded space, and rotate it so that the frontal images are located

at the 90 degree angle. In this way, we align all the person’s frontal view coordinates

to the same angle.
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Figure 3.4: The results of the ellipse (solid line) fitted on the sequence (dotted points).
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Figure 3.5: Two sequences whose low-dimensional embedded manifolds have been nor-
malized into the unified embedding space (shown separately).

After we rotate every person’s normalized unit circle so that the frontal view frames

are at the 90 degree angle, the left profile frames are automatically located at about
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either 0◦ or 180◦. Since the embedding can turn out to be either clockwise or anti-

clockwise, we form a mirror image along the Y -axis for those unit circles where the left

profile faces are at around 180 degrees, i.e., anticlockwise embeddings. Finally, we have

a unified embedded space where different persons’ similar head pose images are close

to each other on the unit circle, and we call this unified embedding space the feature

space. Fig. 3.5 shows two of the sequences normalized to obtain a unified embedding

space. The details of obtaining the unified embedded space are given in Table 3.2.

Table 3.2: A complete description of our unified embedding algorithm.

Step Operation Description

1 Individual Embedding Define Y P = {yP
1 , · · · ,yP

nP
} the vector sequence of

length nP in the original measurement space for person
P . ISOMAP is used to embed Y P to a 2-D embedded
space. ZP = {zP

1 , · · · , zP
nP
} are the corresponding co-

ordinates in the 2-D embedded space for person P .

2 Ellipse Fitting For person P , we use an ellipse to fit ZP , resulting
in the ellipse with parameters: center cP

e = (cPx , c
P
y )T ,

major and minor axes aP and bP respectively, and
orientation ΦP

e .

3 Multiple Embedding For person P , let zP
i = (zP

i1, z
P
i2)

T , i = 1, · · · , nP .

We rotate and reshape every zP
i to obtain z∗

P

i =(
1/aP 0
0 1/bP

) ((
cosΦP

e −sinΦP
e

sinΦP
e cosΦP

e

)
zP

i − cP
e

)
.

Identify the frontal face frames for Peron P , and the
corresponding {z∗Pi } of these frames. The mean of these
points is calculated, and the embedded space is rotated
so that this mean value lies at the 90 degrees angle.
After that, we choose a frame l showing left profile

and test whether z∗
P

l is close to 0 degrees. If not, we

set z∗
P

i =

( −1 0
0 1

)
· z∗P

i .
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3.2 Person-Independent Mapping

3.2.1 RBF Interpolation

As described in Table 3.2, let the input images of person P from a sequence are Y P =

{yP
1 , · · · ,yP

nP
∈ RD} and the sets of corresponding points in the feature space, i.e. the

unified embedded space, are Z∗P
= {z∗P

1 , · · · , z∗P

nP
}, where nP is the number of frames

for person P . We can then learn a nonlinear interpolative mapping from the input

images to the corresponding coordinates in the feature space by using Radial Basis

Functions.

We combine all the persons’ sequences together, Γ = {Y P1 , · · · , Y Pk} = {y1, · · · ,yn0},
and their corresponding coordinates in the feature space, Λ = {Z∗P1 , · · · , Z∗Pk} =

{z∗1, · · · , z∗n0
}, where n0 = nP1 + · · · + nPk

is the total number of input images. For

every single point in the feature space, we take the interpolative mapping function in

the form of

f(y) = ω0 +
M∑
i=1

ωi · ψ(|y − ci|). (3.1)

where ψ(·) is a real-valued basis function, ωi are real coefficients, ci, i = 1, · · · ,M
are centers of the basis functions on RD, |·| is the norm on RD (original input space).

Choices for basis functions include thin-plate spline (ψ(u) = u2log(u)), the multi-

quadric (ψ(u) =
√
u2 + a2), Gaussian (ψ(u) = e−

u2

2σ2 ), etc..

In our experiment, we use Gaussian basis functions and employ k-means clustering

[82] algorithm to find the corresponding centers. Once basis centers have been deter-

mined, the widths σ2
i are set equal to the variances of the points in the corresponding

cluster.

To decide the number of basis functions to use, we experimentally tested various

values of M and calculated the mean squared error of the RBF output. For every
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value of M , we used a leave-one-out cross-validation method, i.e., we take out in turn

one person’s data for testing, and combine all the remaining persons’ data to learn the

parameters of the RBF interpolation system. Fig. 3.6 shows the results of our test

for different number of basis functions (from 2 to 50). As can be seen in Fig. 3.6, to

avoid both underfitting and overfitting, a good choice of the number of basis functions

is M = 8.
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Figure 3.6: Mean squared error on different values of M .

Let ψi = ψ(|y − ci|) and by introducing an extra basis function ψ0 = 1, (3.1) can be

written as

f(y) =

M∑
i=0

ωiψi. (3.2)

Let points in the feature space be written as z∗i = (z∗i1, z
∗
i2). After obtaining the

centers c1, · · · , cM , and determining the width σ2
i , to determine the weights ωi, we

merely have to solve a set of simple linear equations

fl(yi) =

M∑
j=0

ωlj · ψ(|yi − cj|) = z∗il, i = 1, · · · , n0, (3.3)
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where l = 1, 2.

By defining matrices Ω =

⎛
⎝ ω10 · · · ω1M

ω20 · · · ω2M

⎞
⎠, Ψ =

⎛
⎜⎜⎜⎝

ψ11 · · · ψn01

... ψij
...

ψ1M · · · ψn0M

⎞
⎟⎟⎟⎠, Z =

⎛
⎝ z∗11 · · · z∗n01

z∗12 · · · z∗n02

⎞
⎠, where ψij = ψ(|yi − cj|), (3.3) can be written in matrix form as

Ω · Ψ = Z. (3.4)

The least square solution for Ω is then given by

Ω = ZΨ∆, (3.5)

where Ψ∆ = ΨT (ΨΨT )−1 is the pseudo inverse of Ψ.

3.2.2 Adaptive Local Fitting

The RBF interpolation can map an image or a video sequence into the 2-D feature

space and find the corresponding coordinate or sequence of coordinates. Specially,

when processing video sequences, such as in the case of attentive behavior detection,

temporal continuity requirement and temporal local linearity assumption can be ap-

plied to correct unreasonable mappings, if any, in individual frames, and to smooth the

outputs of RBF interpolation. We propose an adaptive local fitting (ALF) technique.

Our ALF algorithm is composed of two parts: 1) adaptive outlier correction; 2) locally

linear fitting.

In adaptive outlier correction, assuming temporal continuity of the head video se-

quence and their corresponding 2-D features, estimates which are far away from those

of their S (an even number and let S = 2s0) temporally nearest neighbor (S-TNN)

frames are defined as outliers. Let zt be the output of the RBF interpolation sys-

tem for the t-th frame, and DS
t be the mean distance between zt and the points
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{zt−k| − s0 ≤ k ≤ s0, k �= 0}:

DS
t =

1

S

s0∑
k=−s0,k �=0

|zt − zt−k| , (3.6)

where |·| is the norm on the 2-D feature space.

For the t-th frame, we wait until the (t + s0)-th image (to obtain all S-TNNs) to

make update. We adaptively calculate DS
t and update the mean Mt and the variance

Vt of the sequence {DS
s0+1, · · · , DS

t } as follows

Mt =
1

t− s0
[(t− s0 − 1)Mt−1 +DS

t ],

Vt =
1

t− s0 − 1
(

t∑
j=s0+1

DS
j

2 − (t− s0)Mt
2).

To check for outliers, we set a threshold h = λ
√
Vt, where λ is a tolerance coefficient.

Using different values of λ can make the system tolerant to different degrees of sudden

change in the head pose. If Dt − Mt > h, we deem point zt an outlier, and set

zt = 1
S

∑t+s0

j=t−s0,j �=t zj.

In locally linear fitting, we assume the local linearity within a temporal window of the

length of L. We employed the technique suggested in [86] for linear fitting to smooth

the output of RBF interpolation.

After the above process, the head pose angle can be very easily estimated as

θt = tan−1(
zt2

zt1
). (3.7)
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3.3 Entropy Classifier

Here we propose a simple method to detect FCFA behavior in a video sequence, given

the head pose angle estimated for each frame as discussed above. The head pose

angle range of 0◦-360◦ is divided into Q equally spaced angular regions. Given a video

sequence of length N , a pose angle histogram with Q bins is calculated as

pi =
ni

N
, i = 1, 2, · · · , Q (3.8)

where ni is the number of pose angles which fall into the i-th bin. The head pose

entropy E of the sequence is then estimated as

E = −
Q∑

i=1

pilogpi. (3.9)

For focused attention, we expect that the entropy will be low, and become high for

FCFA behavior. Hence we set a threshold on E to detect FCFA.

A block diagram of our HPE algorithm as discussed above is shown in Fig. 3.7.

As shown in Fig. 3.7, in the offline learning process, we first use ISOMAP to find

the individual 2-D embedding for each person in the training data, then a coordinate

normalizer is proposed to find a unified embedding (2-D feature space) for multiple

persons. Following this, we use the original images and the corresponding coordinates

in the 2-D feature space to train and learn the parameters of the RBF interpolator.

In the online head pose estimation scheme, we use the trained RBF interpolator to

map new head images or sequence of head images into the 2-D feature space. For video

sequence of head images, we propose an adaptive local fitting technique to correct

unreasonable mapping and smooth the output. The head pose angle is then obtained

as a simple trigonometric function of the 2-D coordinates. To extend our HPE method

to detect FCFA behavior, we designed an entropy-based classifier. Giving the sequence
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Figure 3.7: Overview of our HPE algorithm.

of head pose angles, we calculate the head pose angle entropy of the sequence and

compare it with a preset threshold to detect FCFA behavior.
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Chapter 4

Cyclic Pattern Frequency Analysis

In this chapter, we present another technique for cyclic pattern frequency analysis

(CPFA) to differentiate between two types of attentive behaviors, i.e., focused attention

and frequent change in focus of attention (FCFA) based on detecting non-cyclic or cyclic

head motion, respectively. The algorithm for cyclic motion detection consists of three

parts: (1) linear dimensionality reduction of head images; (2) head pose similarity

computation as it evolves in time; (3) frequency analysis and classification. To extact

the head from images, we use the same technique discussed in Chapter 3. However,

head tracking is by itself a research area with several prior works[83, 69]. Hence, our

algorithm can also be used with head sequences extracted from other different head

tracking algorithms (see a review in [84]).

In the following sections, video sequences of a person looking around (called “watcher”),

i.e., exhibiting FCFA behavior as shown in Fig. 4.1(a), and a person talking to others

(called “talker”), i.e., exhibiting focused attention as shown in Fig. 4.1(b), will be used

to illustrate the algorithms and methods used.

35



(a) watcher (b) talker

Figure 4.1: A sample of extracted heads of a watcher (FCFA behavior) and a talker
(focused attention).

4.1 Similarity Matrix

The input data here is a sequence of images given head centers ci located. Before we

calculate the similarity, we first normalize the head in each frame of the sequence to

be a fixed size of n1 × n2. To characterize the cyclicity of the head, we first compute

the head H ’s similarity in images t1 and t2. While many image similarity metrics can

be used, we used the absolute difference [1, 13], as it is computationally simple:

St1,t2 =
∑

(x,y)∈B

|Ot1(x, y) −Ot2(x, y)|, (4.1)

where Ot(x, y) is the image intensity at the pixel (x, y) of the t-th image, B is the

bounding box n1 × n2 of head H centered at the head center ci. In order to reduce

sensitivity to head location errors, the minimal S is found by computing similarities

over a small square search window, to obtain the best similarity match S
′
t1,t2

as below:

S
′
t1,t2 = min

|dx|,|dy|<a

∑
(x,y)∈B

|Ot1(x+ dx, y + dy) −Ot2(x, y)|. (4.2)

In our experiments we used a = 2 for all sequences, as the results were insensitive to

a ≥ 2. Using S
′
t1,t2, we define a similarity matrix for an N-image sequence as

R =
[
S

′
ti,tj

]
N×N

, i, j = 1, 2, · · · , N. (4.3)

Fig. 4.2 shows an example of the similarity matrix R for watcher and talker, displayed
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as images. The values of the matrix elements have been linearly scaled to the gray-scale

intensity range [0,255]. Dark regions show more similarity. Note that the matrix is

symmetric along the main diagonal. As can be seen from Fig. 4.2, the appearance

of the similarity matrix R for watcher and talker are different. R for watcher has

more interlacing of black and white regions indicating that the similarities between

different images within the sequence vary significantly, i.e., the person is looking around

and exhibiting FCFA behavior. On the contrary, R for talker looks more smooth

which means that the similarities between images within the sequence are higher (S
′

is smaller). This happens when the head pose does not change much in the whole

sequence indicating a focused attention behavior.

(a) watcher (b) talker

Figure 4.2: Similarity matrix R of a (a) watcher (exhibiting FCFA) and (b) talker
(exhibiting focused attention).

4.2 Dimensionality Reduction and Fast Algorithm

Similarity matrix R calculated as in (4.1) and (4.2) using original images does show the

difference between FCFA and focused attention behavior as can be seen in Fig. 4.2,

however, it is time consuming to compute because of the high dimensionality of head

images (the dimensionality of the head images is n1n2 = n1 × n2). A direct and easy

solution to save computational time is to use principal component analysis (PCA) to

reduce the dimensionality of the images. Here, we did not use the ISOMAP algorithm

to reduce the dimensionality as was used in Chapter 3 because the video sequences we

used in CPFA method is taken with whatever upward or downward motion of the head
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which violated the assumption used in Chapter 3.

For any two n-dimensional vectors, x = (x1, · · · , xn)T and y = (y1, · · · , yn)T, let

DE(x,y) be the Euclidean distance between x and y and DAbs(x,y) be the absolute

distance between x and y. A standard result in linear algebra shows that DAbs(x,y)

is bounded as

DE(x,y) ≤ DAbs(x,y) ≤ √
nDE(x,y). (4.4)

Let the vectors x and y be transformed by PCA to the d-dimensional vectors x′

and y′, respectively. If the PCA dimensionality reduction preserves almost all of the

energy (DE(x,y) ≈ DE(x′,y′)), the difference between the absolute distance in the

original space DAbsOrg
= DAbs(x,y) and that in PCA subspace DAbsPCA

= DAbs(x
′,y′)

is bounded by

(1 −
√
d)DE ≤ (DAbsOrg

−DAbsPCA
) ≤ (

√
n− 1)DE. (4.5)

The bound in (4.5) shows that when x is near (or similar) to y, i.e. DE is small, the

difference between DAbsOrg
and DAbsPCA

is narrowly bounded and from (4.4), because

DE is small, both DAbsOrg
and DAbsPCA

are small too. When x is far away from (or

dissimilar to) y, i.e. DE is large, from (4.4) both DAbsOrg
and DAbsPCA

are large. Hence,

DAbsPCA
exhibit the same properties as DAbsOrg

, and can be used to measure similarity.

We choose a d-dimensional PCA subspace for image representation. We have found

that even for small representational error d << n1n2 where the images are of dimension

n1 × n2. The projection matrix P from original image space to PCA subspace hence

of is of dimension d× n1n2.

To account for the head center locating error, for the t-th head image, we shifted the

head center by ±1 pixel vertically or horizontally or both, which resulted in 9 possible
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head images, written as vectors Ht1, · · · ,Ht9, each of which is n1n2-dimensional. It

is easy to see that this process is equivalent to the shifting used in 4.2, since when

calculating the similarity between two images, here we shift both images by ±1 pixel

to search for the minimal similarity, while in 4.2 we shift one image by ±2 pixel and

keep the other fixed. Projecting each Hti onto the predefined PCA subspace, we get

the 9 vectors

hti = PHti, i = 1, · · · , 9 (4.6)

The similarity between image t1 and image t2 is then obtained by choosing the minimal

pairwise absolute distances in the PCA subspace between the shifted head vectors for

these two images, and is given as

S ′′
t1,t2

= min
i,j

DAbs(ht1i,ht2j), i, j = 1, · · · , 9 . (4.7)

The computation for similarity by searching for the minimal absolute distance will cost

O(d) using (4.7) in the PCA subspace instead of O(n1n2) using (4.2) in the original

measurement space. This translates to significant savings for computing the similarity

matrix R.

The efficient algorithm for computing the similarity matrix for the image sequence

is described below:

1. Preprocessing and PCA Training

• Given the training image sequences of length N , detect the location of the

head in each image;

• Nomalize the size of the head in each image to n1×n2, and set the bounding

box to the fixed size n1 × n2 and centered at the head center in each image;

• Use the normalized head images of different persons’ to find the PCA pro-

jection matrix P.
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2. Computing the Similarity Matrix

• Extract 9 shifted head subimage vectors {Hti, i = 1, · · · , 9} from each

image of the sequence, and compute their corresponding vectors {hti, i =

1, · · · , 9} in the PCA subspace according to (4.6).

• For the t-th (t = 2, · · · , N) frame, calculate the absolute distance S ′′ as in

(4.7) between itself and the previous t− 1 images

S ′′
i,t, i = 1, · · · , t− 1; (4.8)

• Form the similarity matrix R′ by setting S ′′
t,i = S ′′

i,t, for i > t, and S ′′
j,j = 0,

for j = 1, · · · , N ,

R′ =
[
S ′′

i,j

]
, i, j = 1, · · · , N. (4.9)

Fig. 4.3 shows images of the similarity matrix R′ for watcher and talker calculated

in the PCA subspace using the above algorithm. The values of the matrix elements

have been linearly scaled to the gray-scale intensity range [0,255]. Note that similarity

matrices R′’s are similar to R’s shown in Fig. 4.2 in texture except that they are darker

than R’s. The reason that R′ is similar to R is that calculating R′ in the PCA subspace

preserves the similarities and dissimilarities between images as discussed above. The

difference in average brightness can be attributed to the fact that the actual values

in the 2 similarity matrices R and R′ can be different leading to different scaling

parameters for the [0, 255] display range.

To calculate R′ during online operation when the images are coming continuously,

we need only to design a stack of length N based on the first-in-first-out (FIFO) rule.

When a new image is obtained, we push it into the stack and remove the oldest one to

form a new N -image sequence. To obtain R′ for the new sequence, the only calculation

is the S ′′ between the new image itself and its previous N − 1 images.
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(a) watcher (b) talker

Figure 4.3: Plot of similarity matrix R′ for watcher and talker.

4.3 Frequency Analysis

For analyzing cyclic motion, many methods could be used. We choose Fourier analysis

for its simplicity and ease of use.

To find the characteristics of the behavior, one direct way is to apply 1-D Fourier

Transform to all the rows of the similarity matrix R, and average the Fourier spectra

of all the rows. Figure 4.4(a) shows the averaged Fourier spectra of watcher and talker,

which appear to be similar. However, if we zoom into the low frequency area, as shown

in Figure 4.4(b), we can see that the spectral values for talker are larger than those for

watcher. This gives us a hint to find features in the low frequency area for classification.

Since R′ is a 2-D matrix, we use 2-D Discrete Fourier Transform [81] to find the Fourier

spectrum matrix FR′ of the similarity matrix.

To make the value of the elements in Fourier spectrum matrix comparable for different

persons, we normalized them by the total energy of the similarity matrix to obtain

FR′ =
F{R′}∑N

i=1

∑N
j=1 |R′(i, j)|2 , (4.10)

where N is the number of images in the sequence, and F{·} denotes the 2-D Fourier

Transform operator. Analogous to (4.10), for purposes of comparison we can also

compute a matrix FR based on the similarity matrix R computed as in (4.3) using the

original head images.
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Figure 4.4: (a) Averaged 1-D Fourier spectrum of watcher (Blue) and talker (Red);
(b)Zoom-in of (a) in the low frequency area.

Central areas of FR and FR′ matrices for watcher and talker are shown in Figs. 4.5

and 4.6. The values of the elements have been linearly scaled to [0,255]; as the DC
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component here is much larger than that of any other frequency, we set it the value

of the second largest element for display purposes; bright areas show high Fourier

spectral values. Note that the symmetry property of the similarity matrices R and R′,

and the Fourier Transform makes FR and FR′ matrices symmetric diagonally and cross

diagonally. From comparison of Fig. 4.5 and 4.6 it is apparent that the two spectra

using R and R′ are very similar. Hence, we use R′ as it is computationally simpler to

calculate.

(a) watcher (b) talker

Figure 4.5: Central area of FR ma-
trix for (a) watcher and (b) talker.

(a) watcher (b) talker

Figure 4.6: Central area of FR′ ma-
trix for (a) watch and (b) talker.

4.4 Feature Selection

Given the Fourier spectrum matrix FR′ we choose as features those elements of FR′

that show significant differences between the two classes. Thus, given an element ej of

the matrix FR′ , we define a coefficient δj to reflect the degree of difference between the

two classes as:

δj =
|mean(ej |ω1) − mean(ej|ω2)|

std(ej|ω1) + std(ej |ω2)
(4.11)

where mean(ej |ωi), std(ej |ωi) are the mean and standard deviation of ej given class ωi,

where i = 1, 2.

We calculated the δj values of 16 low frequency elements in FR′ , and the results are
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shown in Fig. 4.7. The 4 elements which have significantly large values of δj are chosen

to compose the feature vector. These 4 elements correspond to the Fourier spectrum

at the frequencies (0, 0), (0, 2π
N

) and (2π
N
,±2π

N
).
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Figure 4.7: The δj values (Delta Value) of the 16 elements in the low frequency area.

4.5 K-NNR Classifier

As the distribution of the feature vector is unknown, we employ a nonparametric

approach — k-nearest-neighbor (K-NNR) rule [82] for classification. We assign Class

ω1 for FCFA and Class ω2 for focused attention and use k = 3 (odd to avoid ties). A

Leave-One-Out Cross-validation (LOOCV) method is adopted to estimate the overall

performance.

Figure 4.8 shows a block diagram of our algorithm. After we detect and normalize

the head in each image of the sequence, we shift the bounding box to extract head

subimage vectors for each image. By projecting on a pre-trained PCA transform matrix

P, corresponding vectors in the PCA subspace is obtained, where we use absolute

distance to calculate the similarity between images and form the similarity matrix R′.

Through frequency analysis on R′, we get a normalized Fourier spectrum matrix FR′ .

A feature vector is then formed by selecting the 4 element in the low frequency area of
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Figure 4.8: Overview of our CPFA algorithm.

FR′ . Using a K-NNR classifier, we detect FCFA behavior by the classification of FCFA

from focused attention behavior.
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Chapter 5

Experiments and Discussion

In this chapter, we give the experimental results of our HPE method and our CPFA

method, and discuss their performance.

5.1 HPE Method

In this section, we present the results of our HPE method. In the first experiment,

we use video sequences, where the persons are slowly rotating their heads for three

complete revolutions continuously. We didn’t set any limit for the rate of head rotaion.

However, our expectation is to cover as many poses as possible, since we believe it

will increase the accuracy of our person-independent mapping system, which can be

deemed as a non-linear interpolating algorithm. To test the generalization ability of our

person-independent mapping function to determine pose angle, we use a leave-one-out

cross-validation (LOOCV) method. To test our algorithm to detect FCFA behavior,

we performed a second experiment using new video data exhibiting simulated FCFA

and focused attention. These results are also shown in this section.
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5.1.1 Data Description and Preprocessing

The data we used is composed of two parts, 1) those used to learn the person-independent

mapping; 2) data exhibiting FCFA and focused attention behavior for classification and

testing performance of system. All image sequence data was obtained from a fixed video

camera. To simplify the problem, we set the camera to be approximately level with

the heads. During video sequence acquisition the persons were sitting on a chair which

could be rotated. They kept their head level without any upward or downward tilt, as

they were rotated in front of the camera during video acquisition.

Since the size of the head in each image throughout the sequence and between dif-

ferent sequences could be different, we normalized the head to a fixed size, n1 × n2 =

24×16. After head-size normalization, histogram equalization and Gaussian smoothing

was applied to each image in the sequence to reduce the effects of varying illumination

and noise.

For parameter learning, we used 7 persons’ sequences (subsampled sequences shown

in Fig. 5.1). The corresponding length of each sequence is shown in Table 5.1.

Table 5.1: Length of the 7 sequences used for parameter learning in HPE scheme.

Person 1 2 3 4 5 6 7 Total

Sequence Length 508 967 426 677 447 505 685 4215

For use in classification and detection of FCFA behavior, we obtained 4 more se-

quences, where two exhibited FCFA and two exhibited focused attention (subsampled

sequences shown in Fig. 5.2). The corresponding length of the sequences are given in

Table 5.2.
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(1) (2)

(3) (4)

(5) (6)

(7)

Figure 5.1: Samples of the normalized, histogram equalized and Gaussian filtered head
sequences of the 7 people used in learning.

5.1.2 Pose Estimation

We first individually embed every person’s data and normalize them to find a unified

embedding space as described in Chapter 3. Fig. 5.3 shows the unified embedding in
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(a) (b)

(c) (d)

Figure 5.2: Samples of the normalized, histogram equalized and Gaussian filtered head
sequences used in classification and detection of FCFA. ((a) and (b) exhibiting FCFA,
(c) and (d) exhibiting focused attention).

Table 5.2: Length of the sequences used in classification and detection of FCFA.

Person a b c d

Sequence Length 2231 3074 1494 1322

the feature space for the persons in our experiment.

We use leave-one-out cross-validation (LOOCV) to test our person-independent map-

ping method, i.e., we take out in turn one sequence as the testing data and use all the

remaining sequences for parameter learning. Fig. 5.4 shows the results of the person-

independent mapping to estimate the head pose angle in each frame for each of the 7

sequences which are used in turn as the test data in the LOOCV method. The green

lines correspond to “ground truth” head pose angle. This is obtained by calculating

the projection of the test sequence into the unified 2-D embedded space. This gound

truth can be compared to the pose angles estimated from the person-independent RBF
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Figure 5.3: Feature space showing the unified embedding for 5 of the 7 persons (please
see Fig. 3.5 for the other two).

interpolation system shown with red lines, and it can be seen that the latter are very

good approximations to the ground truth. The values above the small head images are

the pose angles of those images calculated from person-independent mapping.
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Figure 5.4: The LOOCV results of our person-independent mapping system to estimate
head pose angle. Green lines correspond to “ground truth” pose angles, while red lines
show the pose angles estimated by the person-independent mapping.

We found that our person-independent mapping system works well even if the face

displays small facial expressions. This is the case for person (7) in Fig. 5.4(7), whose

head image sequence is shown in Fig. 5.1(7), and the person appears to be smiling.

5.1.3 Validation on real FCFA data

After testing the framework for person-independent head pose angle mapping system,

we test its use for detecting FCFA behavior. For this purpose we acquire new data

sequences, as sampled and shown in Fig. 5.2. These sequences are taken with the same
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Figure 5.4 (continued): The LOOCV results of our person-independent mapping syst-
em to estimate head pose angle. Green lines correspond to “ground truth” pose angle-
s, while red lines show the pose angles estimated by the person-independent mapping.

camera, but in a different environment than those used in Section 5.1.2. The sequences

acquired here represent FCFA behavior (Fig. 5.2(a) and (b), where the persons are

looking around) and focused attention behavior (Fig. 5.2(c) and (d), where the persons

are roughly looking in two directions).

We process the whole sequence with the person-independent mapping system to

estimate pose angle in each frame and then calculate the head pose entropy value E

for each sequence as described in Section 3.3. To visualize the appearance of pose

angles in sequences of FCFA and focused attention, we combine the estimated pose

angle by the person-independent mapping system with the temporal information to

52



draw the trajectories as shown in Fig. 5.5 for FCFA sequences ((a) and (b)) and

focused attention sequences ((c) and (d)). Here roughly circular trajectories in (a) and

(b) depict the FCFA behavior of persons looking around quite well while for focused

attention person are looking roughly in two directions, as can be seen in the trajectories

of (c) and (d).
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Figure 5.5: The trajectories of FCFA ((a) and (b)) and focused attention ((c) and (d))
behavior.

Table 5.3 shows the corresponding value of E for the sequences in Fig. 5.5 calculated

using Q = 36 angular bins. It can be seen that the entropy values of FCFA behavior

((a) and (b)) are very distinct from those of focused attention ((c) and (d)). By setting

a threshold of E0 = 2.5, we can detect FCFA behavior perfectly in the 4 sequences.
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Table 5.3: The entropy value of head pose corresponding to the sequences in Fig. 5.5.

(a) (b) (c) (d)
E 3.07 3.00 1.17 1.91

5.2 CPFA Method

In this section we present the results of our CPFA algorithm on FCFA and focused

attention sequences which are different from those used in Section 5.1. In the first

experiment, we use 11 sequences captured from a fixed camera, and use cross-validation

to estimate the classification error of the CPFA method for detecting the two types

of behaviors. To have a good estimate of the performance, we conducted a second

experiment with 20 more sequences captured from different cameras and settings to

validate the classifier built using all the data in the first experiment.

5.3 Data Description and Preprocessing

Video sequences used in the experiments are taken by a camera from the overhead

corner of a hall with frame rate of 25 frames per second. These sequences are first

cropped to a length of 40 seconds and then resampled by keeping one out of every 5

frames. Thus, for each person, we get an image sequence of 200 frames.

Since the fixed camera is far away from the object, the head scale within a sequence

will not change. However for different sequences, the head sizes may be different. Thus,

we first normalize every image of the sequence used into the size of n1 × n2 = 30× 20.

The original head size in the sequences ranges from 25 × 15 to 63 × 43.

To find the dimensionality d of the PCA subspace, we trained the data to preserve

98% of the total energy and resulted in a d = 9 dimensional space.
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5.3.1 Classification and Validation

As described in Chapter 4, we assign Class ω1 for FCFA and Class ω2 for focused

attention. The labeled training data here include five ω1 sequences and six ω2 sequences

of different persons. The similarity matrixR and R′ for each person are shown in Figure

5.6 and Figure 5.7.

R of persons in Class ω1

R of persons in Class ω2

Figure 5.6: Similarity matrix R (the original images are omitted here and the R’s for
watcher and talker are shown in Fig. 4.2).

R′ of persons in Class ω1

R′ of persons in Class ω2

Figure 5.7: Similarity matrix R′ (the original images are omitted here and the R′’s for
watcher and talker are shown in Fig. 4.3).

The results of LOOCV using R showed that none of the ω1 data in 5 cases was

misclassified while one of the ω2 data in 6 cases was misclassified. When examining
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the cause of this misclassification (the similarity matrix is the leftmost of Class ω2 in

Figures 5.6 & 5.7), we found that the person was listening to others at first and then

kept changing his attention to other directions (as shown in Figure 5.8). Thus, his data

is, to some extent, similar to and overlaps with FCFA. As shown in Table 5.4, however,

none is misclassified by R′.

Figure 5.8: Sampled images of misclassified data in the first experiment using R.

5.3.2 More Data Validation

To test whether the proposed method generalized well on other data sets, some more

video sequences are validated on the classifier which is built with all of the data used

in Section 5.3.1. The new sequences include 10 ω1 sequences and 10 ω2 sequences with

different persons, different head sizes and different camera exposures taken by different

cameras.

Using R, the results showed that 2 ω1 sequences were misclassified and none of the

ω2 sequences is misclassified. Examining the misclassified data, we found that the two

ω1 data are taken under the same illumination and the same exposure which are the

lowest among the whole data set. Their faces are dark and almost of the same color as

that of hair. Thus, it is reasonable to expect that they would be misclassified.

Using R′, however, only one sample was misclassified, yielding an improvement in

classification accuracy. One possible reason for the better performance is that mapping

the sequences into a subspace reduced the illumination effect while maintain the relative

change between frames.
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Table 5.4 summarizes the results of both experiments.

Table 5.4: Summary of experimental results of our CPFA method.

using R using R′

ω1 ω2 ω1 ω2

First Class ω1 4 1 5 0
Experiment Class ω2 0 6 0 6

Accuracy 90.9% 100%
Second Class ω1 10 0 10 0

Experiment Class ω2 2 8 1 9
Accuracy 90% 95%

Average Accuracy 90.3% 96.8%

5.3.3 Computational Time

In the system, frames used for computation are 0.2s apart. The algorithm is imple-

mented using sequences of N = 200 frames obtained by temporal subsampling of 40s of

video on a 2.4GHz Pentium IV PC. The most time-consuming step is the calculation of

the similarity matrix. Compared to this, the time used for FFT and K-NNR is trivial-

—63ms and 15ms respectively in Matlab. As Table 5.5 shows, running the algorithm

to calculate the similarity matrix R′ in Matlab needs 73.4s, which is about 2.5 times

faster than calculating R which needs 186.3s. In a real-time system, upon the arrival

of each image, we only need to compute the similarity between itself and the previous

199 subsampled images. The computation time is 0.75s in Matlab. It would be using

less time if programmed in the C environment.

Table 5.5: Time used to calculate R & R′ in Matlab.

R R′

186.3s 73.4s
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5.4 Discussion

Our HPE method works on images acquired from an uncalibrated single camera and

can successfully estimate the head pose angle even when the person is totally or par-

tially turned back to the camera. The method is robust to varying illumination, since

the data we used was acquired under different illuminations, with or without light in

different rooms and with different background (inhomogeneous). The unified embed-

ding using ISOMAP combined with the nonlinear RBF mapping make our method

person-independent regardless of whether the person is in our database. In addition,

our system is also robust to small facial expression changes, since the training data we

used to learn the non-linear mapping includes those where the person is smiling..

However, since our person-independent mapping system is based on an interpolative

system, the results may degrade if the test images or sequences were not well repre-

sented in the original training space (which cause extrapolation). This can be explained

by the fact that the RBF interpolation uses Gaussian kernels, where the outputs can

be very small if the input data is far away from any of the centers. On the contrary, if

the input data is well represented by the training data, the estimation results will be

very good, such as for person (e) in Fig. 5.4.

Here, to simplify the problem, we use head sequences taken under the assumption

that no upward or downward motion is included. This is to simplify the mapping by

ISOMAP, where we need only a 2-D space to represent the dimensionality-reduced head

sequences. If upward and downward motions are included, the problem will become

complex where the dimensionality of the embedded space will be increased. However,

we believe this problem can be solved by introducing some more complex algorithms,

which sets up a future work for us.

As to our CPFA method, for FCFA, the person frequently changes his head pose

(this can be achieved by rotating his head or rotating his body or both), which results

in the similarity matrix R of the person demonstrating cyclicity. However, for focused
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attention, the person seldom rotates his head, resulting in the similarity matrix R

demonstrating little or no cyclicity. Thus, after 2-D Fourier Transform of the similarity

matrix and normalization over the total energy, DC component and the magnitudes of

the three lowest frequencies were found to be suitable features for classification.

Our CPFA algorithm is robust to low resolution and varying illumination. The lowest

resolution of the head was 25×15 in the experiments. In addition, the similarity matrix

R′ is noise tolerant since PCA can denoise the raw data. Furthermore, our algorithm

is robust to error in head location by searching for the minimal S
′
in a small area to

reduce the location error.

Here, in both methods, we assume that the direction of visual attention is fully

characterized by the head pose and do not consider eye gaze. We did not consider eye

gaze detection as the head images we used in the experiment were relatively small and

sometimes the eyes were not clear, making gaze detection very difficult. Besides, in

many cases, in order to look at a big area, it is more convenient for people to change

the head pose rather than eye gaze, which motivated the development of the proposed

method.
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Chapter 6

Conclusion

Attentive behavior detection is useful for human computer interaction. Knowing where

a person is looking at can further improve the interactivity. It can be useful in remote

learning systems to know if students are focusing on the lecture or inferring whether a

product is attractive to people in the advertising documents; or for video surveillance, to

know whether the attentive behavior of the person is abnormal. To infer this behavior,

we have presented two different systems to detect FCFA.

In our HPE system, we use ISOMAP to embed each individual’s high dimensional

head image data into a low dimensional (2-D) space. By ellipse fitting, we normalize by

reshaping, rotating, and mirror imaging if needed, the individual embedded space to

find a unified embedded space. A RBF interpolation technique is used to find a person-

independent mapping for new input head image data into the unified embedding space,

i.e. our feature space. For head image sequences, we propose an adaptive local fitting

algorithm to remove outliers and to smooth the output of RBF interpolation. The head

pose estimate in each frame is then obtained by a simple coordinate-angle converter.

To detect FCFA behavior from video sequences, the entropy of the head pose estimates

over the entire sequence is used to classify the sequence as a FCFA or focused attention

behavior. The experiment results show that our HPE method can very well estimate

the head pose even when the head is turned back to the camera and by setting a
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threshold of E0 = 2.5 on the head pose angle entropy, we can successfully detect FCFA

behavior.

For our CPFA method, by foreground segmentation and edge detection, we locate the

head in each frame of the sequence. A similarity matrix is computed in a 9-dimensional

principal components subspace as the head pose evolves over time. A 2-D frequency

analysis is applied on the similarity matrix for feature extraction. Finally, K-NNR is

proposed to differentiate FCFA from focused attention. The experiment results show

our CPFA method achieved an average classification accuracy of 96.8% on 31 video

sequences and the computational time for a 40s video sequence is 73.4s in Matlab.

Future work includes extending our HPE method to a system that can also work

with different tilt angles of the head and large facial expressions such as laughs, which

we believe can be done with a larger training data of more people with different tilt

angles and different facial expressions. Furthermore, our CPFA method can also be

extended to video summarization and segmentation.
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