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SUMMARY

It has been observed that the spaced seeds have better speed and sensitivity than

the consecutive seeds with the same weight. Different spaced seeds have different

sensitivities. To find the optimal spaced seed in the sense of sensitivity (hitting prob-

ability) is a very computationally challenging problem. For short spaced seeds, one

can obtain the optimal seeds by exhaustive search. However, this is impractical, if not

impossible, for long spaced seeds. To handle long seeds, we propose good predictors

to reduce the computation and search space to identify the optimal spaced seed. We

will introduce several predictors in this thesis. The predictors can be computed very

quickly and the predicted optimal seeds are indeed optimal in sensitivity. Using these

predictors, we can identify very effective long spaced seed which are impossible for

in exhaustive search.

Although the predictors can be quickly computed, it also soon becomes more and

vi



Summary vii

more demanding to handle longer and longer seeds. For very long spaced seeds, we

cannot even calculate the predictors values exhaustively. In fact, it is never neces-

sary to do calculation for every seeds, since many seeds are “bad” seeds. We then

introduce some index variable to filter the spaced seeds, with which we need only to

handle much less seeds but we can also obtain the effective seeds with a good speed.

For searching even longer seeds, we will introduce the sampling method, which

needs very few seeds to handle. Combined with the method of predictors and filters,

we can find effective seeds as fast as before.
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CHAPTER 1

Introduction

1.1 Biological background

A common and yet powerful approach to discover biological functions and struc-

tures of a DNA sequence (or amino acid) is through sequence alignment with se-

quence in a database (Yeh et al. [2001], Delcher et al. [1999], Hardison et al. [1997],

Li et al. [2001]). By comparing genomic sequences, information on translations, tan-

dem and segment duplications can be easily inferred. It is usually done by align-

ing them using dynamic programming approach (Needleman and Wunsch [1970],

Smith and Waterman [1981]). This stimulates unprecedented demand for long DNA

sequence comparison, and poses a great challenge to alignment algorithm develop-

ers. Popular programs such as FASTA (Lipman and Pearson [1985]), BLAST (Altschul et al.

1
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[1990], Altschul et al. [1997]), are too computationally demanding to analyze mul-

timegabase sequence even in a modern computer (Gish [2001], Huang and Miller

[1991]).

One of the most important techniques for designing faster algorithms for sequence

comparison is the idea of filtration (Altschul et al. [1990], Altschul et al. [1997]). This

idea involves a two-stage process. The first stage preselects a set of positions in which

given sequences are potentially similar. The second stage verifies each of these pos-

sible positions using an accurate method rejecting those that do not satisfy the spec-

ified similarity criteria. For example, BLAST programs use this technique. Each of

these programs first finds reasonably long exact matches (consecutive k bases) be-

tween a given sequence and a sequence in the database, and then extends these exact

matches into local alignments. Based on statistical study, two sequences are likely to

have high-scoring local alignments only if there are reasonably long exact matches

between them. The value of k is usually set to 11 by considering tradeoff between

search speed and the sensitivity. The larger the k is, the faster the program but the

poorer its sensitivity.

In fact, employing the filtration technique for information retrieval/pattern match-

ing in the computer science and for sequence comparison in computational molec-

ular biology goes back almost two decades. It was first described by Rabin and Karp

[1987] for the string matching problem.

Multiple spaced patterns are usually used for approximate matching and sequence

comparison. Recently, a creative idea of using a single optimal spaced pattern (called
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spaced seed) was introduced in designing a more efficient and sensitive program Pat-

ternHunter for sequence comparison by Ma et al. [2002]. PatternHunter uses a single

optimal match pattern to improve the alignment sensitivity, which is important be-

cause the general sequence search aims to identify more homology sequences, and

in this case, the mismatch positions are unknown. PatternHunter searches for runs of

length 18 consecutive nucleotide bases in each sequence and requires matches at 11

positions. Even in a personal computer, PatternHunter is able to compare prokary-

otic genomes in seconds, arabidopis chromosomes in minutes and human or mouse

chromosomes in hours(Waterston et al. [2002], Scherer et al. [2003], Ureta-Vidal et al.

[2003])

The spaced seeds idea in PatternHunter motivated the problems of identifying op-

timal spaced seeds in different sequence alignment models (Keith et al. [2002], Buhler

[2001], Brejovà et al. [2003], Choi and Zhang [2004]). By assuming a Markov model,

Buhler et al. [2003] calculated the sensitivity of a spaced seed adapting the dynamic

programming technique in Keith et al. [2002]. From this, the optimal spaced seeds

can be identified. Brejovà et al. [2003] worked on the optimal spaced seeds in the

context of detecting homologous coding regions in unannotated genomic sequences.

They modified the dynamic programming technique to calculate the sensitivity of

spaced seeds in Keith et al. [2002] and identified the optimal spaced seeds for align-

ing coding regions. Choi and Zhang [2004] derived a set of recurrence relations to

compute the sensitivity of a spaced seed by assuming a zero-th Markov model of the

target sequence.

Although progress has been made to efficiently find the optimal spaced seeds, the

current methods are still not fast enough to meet the practical requirement for long
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spaced seeds. Some researchers now are trying to find predictors and other tech-

niques so as to improve the speed without miss of effective spaced seeds. Kong [2004]

proposed some quantities as predictors of effective spaced seeds. Preparata et al.

[2005] proposed a sampling trick to reduce the number of seeds of consideration.

1.2 Concepts and notations

Homology search

Two sequences are said to be homologous if they share a common ancestry. Given

a query sequence s, we want to search the database to find sequences or sub-sequences

that are as similar as possible to s, and then use the sequences we find to predict the

functions or structure of the new sequence s. The search precess is called homology

search.

Sequence alignment and matches

In homology search, we align the query sequence s and the target sequence S to

find the positions of exact match. For example, if the query sequence s = TAGC, the

target sequence S = AATGTAGCGCA, we can align s and S together and shift s from

left to right along S to find the exact match as follows:

S : A A T G T A G C G C A

s : T A G C
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Spaced seed

If the query sequence s is very long, since S is very long, it is computationally de-

manding to do the exact homology search, so we use a short segment of s to find

identical match in S. This short segment of the query sequence is called a seed. If

the seed occurs in some position of S, we say that the seed hits S at this position. For

example, if we treat s itself as a seed in the above alignment, then it hits S at positions

5 ∼ 8. We will use the last position of the segment identical with the seed in S as the

hitting position, so we will say that s hits S at position 8.

Further, we can use a 0,1 sequence to denote the alignment between s and S, since

we generally only care about match or mismatch. We use 1 for match and 0 for mis-

match. This can be illustrated as:

S : A A T G T A G C G C A S : A A T G T A G C G C A

s : T A G C s : T A G C

0 1 0 0 0 0 1 1

We also call the 0,1 sequence a seed, denoted by Q. Thus, to find the identical match

of a seed is equivalent to set the seed to be all 1’s (i.e. consecutive seed) with the same

length of the seed.

A spaced seed is a specified seed of 1 and ∗. Here we use ∗ to denote a “don’t care"

position to allow match or mismatch on this position. For example if we let

Q = 1∗11∗∗∗1∗111∗11, s = ATGTCCACTGATCCT, S = ACGTAACTCCGATCCT,

then s will hit S as:
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S : A C G T A C T C C G A T C C T

s : A T G T C C A C T G A T C C T

Q 1 ∗ 1 1 ∗ ∗ ∗ 1 ∗ 1 1 1 ∗ 1 1

We call the number of 1’s in a spaced seed the weight of this seed, and the total num-

ber of 1’s and ∗’s the length. We can always assume a spaced seed of length L to start

and end with 1’s, otherwise, we can simply cut off those ∗’s beyond the 1’s in the two

ends without loss of information.

Hitting probability

We use similarity to name the probability that a match occurs at one particu-

lar position. Apparently, the similarity is a kind of average of the probability of the

matches of A-A, T-T, C-C and G-G. It measures how similar the query sequence and

the target sequence are. We generally use p to denote the similarity. In practice, p is

always set around 0.7.

The hitting probability or sensitivity is the probability that a spaced seed Q hits

an independently and identically distributed (i.i.d.) Bernoulli random sequence S of

0 and 1; 1 occurs in S with the probability p, the similarity. We use HPn(Q) to denote

the hitting probability of spaces seed Q hitting S (with the similarity p) at or before

position n.

A simple fact is that, if Q′ is the reverse of Q, then we have HPn(Q′) =HPn(Q), be-

cause we can simply reverse the target random sequence S to be hit by Q′, then the

reverse of S is equivalent to S itself since different positions of S are totally indepen-

dent 0-1 variables.
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Obviously, there are many spaced seeds with the same length and same weight.

Since we know that the hitting probability of Q and its reverse is the same, we can sim-

ply use one of them. Specifically, we always choose the spaced seed that is tail-heavy,

which means the weight in the rear half is at least one half of the total weight.We use

QL,w to denote the collection of all tail-heavy spaced seeds with length L and weight

w.

1.3 Main objectives of this thesis

We start with a nested recursive algorithm of Choi and Zhang [2004] to calculate

the hitting probability of a given spaced seed Q at any n. Theoretically, one can find

the optimal spaced seeds (that is, seeds with the highest hitting probabilities) among

all spaced seeds with the same length L and the same weight w. There are two main

objectives of this thesis:

(1) to explore some simple but effective predictors for identifying effective spaced

seeds;

(2) to introduce good seeds filters to reduce the number of spaced seeds which

need to be considered substantially small, hence, improving the identification

process more efficiently; and

(3) to estimate the convergence rate of the hitting probability to 1 as n goes to

infinity.

In this thesis, we will discuss several indicators for good spaced seeds, which in-

clude
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(1) the hitting probabilities at smaller n, i.e., the probabilities of early hits

(2) lower bounds or upper bounds of the hitting probabilities including

• Cauchy-Schwartz lower bound

• Bonferroni-type lower bound

• Bonferroni-type upper bound

Although calculating these indicators are much faster than calculating the hitting

probabilities, the problem of identifying effective spaced seeds is that the number of

spaced seeds with the length L and weight w increases exponentially with L. There-

fore, another important issue is to find some simple seeds filter, which is inherently

simple and is efficient to distinguish effective spaced seeds from the ineffective ones

so as to reduce the total number of spaced seeds need to deal with.

We examine the following seeds filters in the thesis:

• the number of blocks of ∗’s in a spaced seed

• the difference in the number of 1’s in the two halves

• the number of 1’s in the front and in the tail

• the maximal length of runs of 1’s and ∗’s

1.4 Organization of this thesis

We organize this thesis into five chapters. In the next chapter, chapter two, we

give the recursive relation to calculate the hitting probability at n, and discuss some

characteristics of the hitting probabilities, for example, what is the distribution of the
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hitting probabilities over all the spaced seeds in QL,w , and how does the hitting prob-

ability change with n,. . . , etc. In chapter three, we introduce and evaluate a number

of predictors for good spaced. In chapter four, we propose and discuss the essential

features of some seeds filters in order to reduce the number of seeds for considera-

tion before we apply our prediction for seeds with larger L and w. In the last chapter,

chapter five, we use some quantities to estimate the convergence rate of the hitting

probabilities to 1 as n approaches infinity.



CHAPTER 2

Calculating the Hitting Probability

To find the optimal spaced seeds with the highest hitting probabilities, we have to

know how to calculate the hitting probability. Previous research has established some

recursive formula to calculate this. We first start with the simplest case.

2.1 Simple formula for consecutive seeds

We call a spaced seed Q which consist of only 1’s without any ∗’s a consecutive

seed. For example, 111111 is a consecutive seed with length 6 and weight 6. We let

B denote the consecutive seed with weight w. Let HPn(B) be the probability that the

seed B hits a random sequence S at or before position n, and HPn(B) = 1−HPn(B) be

10
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the probability that B only hits S after n. Then we can simply have

HPn(B) = 0, for n = 0,1, . . . w −1,

HPw (B) = pw .

(2.1)

To derive this formula for n ≥ w +1, we study the event that B first hits S at position

n, which has probability

HPn(B)−HPn−1(B) =HPn−1(B)−HPn(B).

This event occurs if and only if S[n −L+1 : n] are all 1’s, S[n −L] is 0,and there are no

hits in S[1 : n −L−1]. In this case, S must be like:

S : 7 · · · · · · · · ·777
︸ ︷︷ ︸

n−w−1

011 · · ·11
︸ ︷︷ ︸

w

where 7 denote no hit at that position. We can easily get the probability

HPn−1(B)−HPn(B) = pw qHPn−w−1(B),

which leads to the recursive relation as:

HPn(B) =HPn−1(B)−pw qHPn−w−1(B),

or

HPn(B) =HPn−1(B)+pw q [1−HPn−w−1(B)] . (2.2)

Using the initial value given in (2.1), we easily get HPn(B) for w ≤ n ≤ 2w +1:

HPn(B) = pw
+ (n −w)pw q, for w ≤ n ≤ 2w

HP2w+1(B) = pw
+ (w +1)pw q −p2w q

We can calculate the hitting probabilities of larger n recursively by (2.2).
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2.2 Formula for general spaced seed

Choi and Zhang [2004] derived a nested relation to compute the hitting probabil-

ity of general spaced seeds recursively. For completeness of discussion, we include

the dirivation here.

To calculate the hitting probability of spaced seed Q at position n, we let A j be

the event that Q hits S at position j , and Ā j be the complement of A j . We use A[i : j ]

for abbreviation of Ai Ai+1 · · ·A j for i < j , and similarly Ā[i : j ] , Āi Āi+1 · · · Ā j , then we

have

HPn(Q) =P

(

⋃

L≤i≤n

Ai

)

.

We define fn as the probability that Q first hits S at n, that is

fn =P(Ā[L:n−1] An). (2.3)

Let σ(Q) = {Q1,Q2 · · · ,Qm} be the set of all m = 2L−w distinct realizations of Q by

replacing the “don’t care” positions by 0 or 1. For example, if Q = 1∗1∗1 then

σ(Q) = {10101,11101,10111,11111}.

We let A
( j )
n be the event that the word Q j occurs in S at n, then An =

⋃

1≤ j≤m A
( j )
n and

A
( j )
n are all disjoint. We let f

( j )
n =P(Ā[L:n−1] A

( j )
n ) be the probability that Q j first occurs

in S at n. Then we have the following theorem.
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Theorem 2.1 (Choi and Zhang 2004) We can calculateHPn by the following relations:

HPn =

n∑

i=1

fi (2.4)

fn =
∑

1≤ j≤m

f
( j )

n (2.5)

f
( j )

n =P(Q j )HPn−L −

L−1∑

i=1

[(

∑

k∈Γi , j

f (k)
n−i

)

P(Q j [L− i +1 : L])

]

(2.6)

with the following initial values

HPn = fn = 0, 1 ≤ n < L

HPn = fn = pw , n = L

Here P(Q j ) is the probability of the word Q j occurs and

Γi , j =
{

k|Qk [i +1 : L] =Q j [1 : L− i ]
}

.

Proof: It is easy to see that(2.4), (2.5) and the initial values hold. For equation (2.6),

we notice that

Ā[L:n−1] = Ā[L:n−L]

∖
L−1⋃

i=1

Ā[L:n−i−1] An−i , (2.7)

which is simply corresponding to

HPn−1 =HPn−L −

n−1∑

i=n−L+1

fi ,

we intersect with A
( j )
n on each event in (2.7) and get

Ā[L:n−1] A
( j )
n = Ā[L:n−L] A

( j )
n

∖
L−1⋃

i=1

Ā[L:n−i−1] An−i A
( j )
n

= Ā[L:n−L] A
( j )
n

∖
L−1⋃

i=1

(
m⋃

k=1

Ā[L:n−i−1] A(k)
n−i

A
( j )
n

)

.
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The event A(k)
n−i

A
( j )
n occurs if and only if the substring Qk [i + 1 : L] and Q j [1 : L− i ]

are identical. In the event Ā[1:n−L] A
( j )
n , Ā[1:n−L] and A

( j )
n are independent because they

involve totally separate part S[1 : n −L] and S[n −L+1 : n] of S. If we observe that the

events in the union are all independent, then the above equation naturally leads to

(2.6). �

2.3 Computational results of exact calculation

Table 2.1 (on page 15) shows the top 10 seeds together with their hitting probabil-

ities at position n = 64 of Q15,9,Q18,12 and Q20,13 for p = 0.5,0.7,0.9.

From this table, we observe that theHP64 of the top 10 spaced seeds of one QL,w do

not vary much, and the differences among them become smaller and smaller as L and

w increase. For example, for Q20,13, which have 15912 spaced seeds, the largest hit-

ting probability at p = 0.7 is 0.26475018; the 1000-th largest is 0.25809995; the 10000-

th largest is 0.24613015; the 100-th smallest is 0.21659947; the smallest is 0.16495660.

To see the distribution of HPn over all spaced seeds clearer, we may refer to the

density plot in Figure 2.1 (on page 16). We can observe that the distribution of HPn is

very skewed. A large part of seeds have good sensitivities.

Hence, in practice, we may only need to find very good spaced seeds instead of the

best one, because

(1) the hitting probabilities of very good spaced seeds differ slightly,
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Table 2.1 Top 10 seeds of Q15,9,Q18,12,Q20,13 for different p

QL,w p = 0.5 HP64 p = 0.7 HP64 p = 0.9 HP64

111***1*1*11*11 0.0835314 111***1*1*11*11 0.7291560 111***1*1*11*11 0.9999117
111**1**1*1*111 0.0835138 111*1***11*1*11 0.7285212 111**1**1*1*111 0.9999089
111*1***11*1*11 0.0835065 111**1**1*1*111 0.7284156 111*1***11*1*11 0.9999088
11*11**1*1**111 0.0834830 11*11**1*1**111 0.7283361 11*11**1*1**111 0.9999073

Q15,9 11**1*1*1**1111 0.0833132 11**1*1*1**1111 0.7271766 11**1*1*1**1111 0.9999071
111**1**11*1*11 0.0832590 11**1**1*1*1111 0.7262585 11**1**1*1*1111 0.9999050
11**11*1**1*111 0.0832450 111**1**11*1*11 0.7259705 1*1*1**11**1111 0.9999027
11**1**1*1*1111 0.0831087 11**11*1**1*111 0.7257927 1*1*11*11***111 0.9999019
111*1**1**1*111 0.0830764 1*1*1**11**1111 0.7254126 1**11**1*1*1111 0.9999016
11*1*1**1**1111 0.0830667 11*1*1**1**1111 0.7252475 11*11***11*1*11 0.9999012

111*1*11*1**11*111 0.0107008 111*1*11*1**11*111 0.3564296 111*1*11*1**11*111 0.9958336
111*1**11*1*11*111 0.0106887 111*1**11*1*11*111 0.3556505 111*1**11*1*11*111 0.9957644
11*11*1*1*11**1111 0.0106783 11*11*1*1*11**1111 0.3545175 111*1*1**111*11*11 0.9956795
111*1*1**11*11*111 0.0106697 111*1*1**11*11*111 0.3544993 11*1*111*1**111*11 0.9956546

Q18,12 111**11*11*1*1*111 0.0106603 111*1*1**111*11*11 0.3541413 111**11*1*1**11111 0.9956131
111*1*1**111*11*11 0.0106565 1111**11**1*1*1111 0.3538696 11*1*1*11**11*1111 0.9956102
111*1*11**1*11*111 0.0106552 111**11*1*1**11111 0.3538638 111*1*1**11*11*111 0.9956097
11*1*1*11**11*1111 0.0106545 11*1*1*11**11*1111 0.3537460 1111*1***111*11*11 0.9955834
111*11**1*1*11*111 0.0106526 111**11*11*1*1*111 0.3533500 11*11*1*1*11**1111 0.9955396
11*111**1*11*1*111 0.0106503 111*11**11*1**1111 0.3530935 11**111*1**1*11111 0.9955339

111*1*11**11**1*1111 0.0052289 111*1*11**11**1*1111 0.2647502 111*1**11*1**111*111 0.9906267
1111*1*1**11*11**111 0.0052265 111*1**11*1**111*111 0.2645119 111*1*11**11**1*1111 0.9904919
111*1**11*1**111*111 0.0052242 1111*1*1**11*11**111 0.2644288 111*1*1**1*11**11111 0.9904793
111*11**1*1*11**1111 0.0052216 111*1*1**1*11**11111 0.2640164 1111*1*1**11*11**111 0.9904206

Q20,13 111*11**1*11*1*1*111 0.0052209 111*11**1*1*11**1111 0.2637489 111*1**1*11**111*111 0.9902543
1111**11**1*1*11*111 0.0052195 1111*1**1**111*1*111 0.2634269 1111*1*1**111**11*11 0.9902031
111*11*1**11*1*1*111 0.0052190 1111**11**1*1*1*1111 0.2634076 1111*1**1**111*1*111 0.9901883
111*11**1*1*11*1*111 0.0052189 1111**1*1*1**11*1111 0.2633813 111*1*1***11*11*1111 0.9901600
111*1*11**1*1*11*111 0.0052185 111*11*1**11*1*1*111 0.2633607 111*11**1*1*11**1111 0.9901581
1111*1*1**111**11*11 0.0052169 111*11**1*1*11*1*111 0.2633077 111**11*1*1*1**11111 0.9901399
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Figure 2.1 Kernel density plots of HPn(Q) of Q15,9,Q18,12,Q20,13.

(2) the optimal spaced seed for one p may not be the best for another p. For ex-

ample, in Table 2.1 (on page 15), the optimal seed of Q20,13 at p = 0.7 is only

the second best for the case p = 0.9. Thus, when we have no idea of the precise

p value, we need not know which seed is the best.

In Figure 2.2 (on page 17), the relation between HPn and n are illustrated for four

spaced seeds of Q20,13, in which 111∗1∗11∗∗11∗∗1∗1111 and 1∗∗∗∗∗∗∗111111111111

are respectively the optimal seed and worst seed when p = 0.7. We can observe the
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Figure 2.2 Plots of HPn(Q) vs n for four spaced seeds of Q20,13, in which,

according to their HP64(Q) at p = 0.7, 111∗ 1∗ 11 ∗∗11 ∗∗1∗ 1111 is the

optimal seed of Q20,13 and 1∗∗∗∗∗∗∗111111111111 the worst seed of Q20,13.

The 5 lines from bottom to top in each sub-plot are hitting probabilities for

p = 0.5 ∼ 0.9. The x-axis, which stands for n, is from 20 to 200.

hitting probability is quite proportional to the position n for small p (the lower lines).

For p close to 1, e.g. 0.9 (the top curve), the hitting probability will soon increase close

to 1.
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2.4 Complexity of the exact calculation

It can be shown that the complexity of this algorithm is O(Ln22(L−w)), which means

it will increase exponentially with L−w and linearly with L and n. For spaced seeds

with relatively small L and L−w, it is feasible to run the exact calculation to compute

their hitting probabilities. For example, for a given p and n = 64, it may takes less

than one hour in a microcomputer (with Pentiumr IV 2.4GH CPU) to exhaustively

compute the hitting probability of all the spaced seeds of Q18,12, but it takes about

one day to exhaustively calculate the HP128 of Q23,15 for a specified p.

Since the exhaustive search is so time-consuming, we have to find some other

quantities which can be calculated relatively easily to predict the best spaced seeds.

In the next chapter, we will introduce some predictors for best spaced seeds.

However, it is still meaningful to search the optimal spaced seed exhaustively for

small L and w, since the optimal spaced seeds will provide us important information

on what the effective spaced seeds would probably look like, and from this we are

able to formulate some heuristic methods to predict effective spaced seeds for large

L and w. In addition, this algorithm enables us to check whether the spaced seeds we

predict are really better than some others.



CHAPTER 3

Predictors for Effective Spaced Seeds

Recall that the complexity of the algorithm for exact calculation of the hitting prob-

ability will increase very exponentially with L−w and linearly with L and n. This im-

plies that we cannot identify the optimal seeds by exhaustive search for large L and w.

For example, it will take years to calculate HP128 of Q35,22. Another important reason

is the number of seeds of QL,w increases tremendously with L, we will talk about this

later in chapter 4). Thus, it is necessary to find some indicators which can be easily

computed to predict the optimal spaced seeds or at least very good spaced seeds.

19
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3.1 Predict using hitting probability HP2L−1

A simple and also efficient method is to use the hitting probability at small n to

predict those at large n as was exploited by Choi et al [2004]. Figure 2.2 (on page 17)

shows the relation between HPn(Q) and n for four selected spaced seeds of Q20,13. We

can see from the figure that, when p is not very close to 1,HPn(Q) is quite proportional

to n for moderate n, when p is close to 1, there will be a curve relation between them.

Among these four seeds, 111∗1∗11∗∗11∗∗1∗1111 and 1∗∗∗∗∗∗∗111111111111

are respectively the best and worst seeds of Q20,13 for n = 64, p = 0.7. The other two is

about the 33 and 66 percentile of the ranked spaced seeds of Q20,13. So we may expect

all the member of Q20,13 and other QL,w will possess this linearity feature, and we do

find that this feature also shown on other spaced seeds. Therefore, we expect that HP

at small n forms a good predictor of HPn at larger n.

Figure 3.1 (on page 21) illustrate the strong correlation as we expected between

HPn and HP2L−1 of Q15,9,Q18,12 and Q23,15 for p = 0.5,0.7,0.9. We also computed

the Pearson correlation coefficients and Spearman rank correlation betweenHPn and

HP2L−1 for the nine cases in this figure (not shown here), all the nine values are greater

that 0.97, which gives strong evidence of the predictability of HP2L−1.

We choose HP2L−1 instead of other early HP are mainly based on the following two

reasons:

(1) Since the proposition of the concept of spaced seeds is to beat the consecutive

seeds, we will want the hitting probabilities of spaced seed being greater than

those of the consecutive seeds. However, as the consecutive seed is shorter in
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Figure 3.1 Plots of HPn(Q) vs HP2L−1(Q) for Q15,9,Q18,12 and Q20,13 (rows

from top to bottom) for p = 0.5,0.7,0.9 (columns from left to right).

length, it has the priority at the early hitting, but soon it will be caught up with

by the spaced seeds in the hitting probability. Choi and Zhang [2004] showed

that when comparing with consecutive seeds, the hitting probabilities of good

spaced seeds have already caught up with the consecutive seed well before 2L.

This consists a reason for us to consider HP2L−1.

(2) Research has shown that the information of overlaps of spaced seed with it-

self plays an important role in the hitting problem, and the indicators we will

introduce below is also concerned with the overlapping of the spaced seeds.
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The following theorem implies the calculation of HP2L−1 takes account of all

possible overlapping structure of a spaced seed with itself.

Theorem 3.1 (Choi and Zhang) For a spaced seed Q with length L and weight w, we

have

HP2L−1 = Lpw
− (L−1)P(AL AL+1)−

L−1∑

k=2

(L−k)P(AL Ā[L+1:L+k] AL+k ) (3.1)

where A j defined as section 2.2.

Proof: Consider

HP2L−1 =HPL + (L−1) fL −

2L−1∑

j=L+1

( fL − f j )

= LHPL −

2L−1∑

j=L+1

j−1∑

k=L

( fk − fk+1)

= Lpw
−

2L−2∑

k=L

(2L−1−k)( fk − fk+1).

Observe that

fn =P(Ā[L:n−1] An) =P(Ā[L:n−1])−P(Ā[L:n]) =P(Ā[L+1:n])−P(Ā[L:n]) =P(AL Ā[L+1:n]),

we have

fL − fL+1 =P(AL AL+1)

for k ≥ L+1,

fk − fk+1 =P(AL Ā[L+1:k])−P(AL Ā[L+1:k]

=P(AL Ā[L+1:k] Ak+1).

Substituting these into above equation gives us the result. �
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In equation (3.1), the events AL AL+1 and AL Ā[L+1:L+k] AL+k involve all the possible

overlapping of spaced seed with the translation of itself.

3.2 Predictors using upper or lower bounds of HPn

Besides using the hitting probability itself, we can also use some estimations of

HPn . Applying some known inequalities, we are able to derive lower or upper bounds

of HPn . We explore whether these bounds will form good indicators of the effective-

ness of spaced seeds.

We need to introduce the notation of self-overlapping index of order 1, θ(1)
Q

(i ),

which will be abbreviated as θ(i ) if it is clear from the context. When the spaced seed

Q is written in a vector Q of 0 and 1 with length L (we fill the “don’t-care” position with

0 now), we always set Q[i ] = 0 for i < 1 or i > L(e.g., if L = 5, Q[6] =Q[−2] = 0). We use

Q ≫ i to denote the sequence of Q shifted to the right by i positions, or the vector of

Q with i zeros added in front. For example, if Q = 10101, then Q ≫ 2 = 0010101. We

define Q ≫ 0 =Q. Now we can give the definition of θ(1)
Q

(i ) as

θ(1)
Q

(i ) ,
L∑

j=1

Q[ j ] · (Q ≫ i )[ j ] (3.2)

which is actually equivalent to the number of common 1’s when Q and Q ≫ i are

aligned together. We use θ(i ) for abbreviation of θ(1)
Q

(i ).

Similarly, we define self-overlapping index of order 2, θ(2)
Q

(i , j ), as

θ(2)
Q

(i , j ) ,
L∑

k=1

Q[k] · (Q ≫ i )[k] · (Q ≫ i + j )[k]
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(a)

Q : 1 0 1 1 0 1 1

Q ≫ 2 : 0 0 1 0 1 1 0 1 1

Q&(Q ≫ 2) : 0 0 1 0 0 1 0 0 0 =⇒ θ(1)
Q

(2) = 2

(b)

Q : 1 0 1 1 0 1 1

Q ≫ 2 : 0 0 1 0 1 1 0 1 1

Q ≫ 3 : 0 0 0 1 0 1 1 0 1 1

Q&(Q ≫ 2)&(Q ≫ 3) : 0 0 0 0 0 1 0 0 0 0 =⇒ θ(2)
Q

(2,1) = 1

Figure 3.2 (a) illustrates θ(1)
Q

(2) for Q = 1011011. (b) illustrates θ(2)
Q

(2,1) for

Q = 1011011. The shaded cells in the first 2 rows of (a) and first 3 rows of (b)

highlight the spaced seed Q, the shaded cells in the last rows highlight the

common 1’s of Q and the shifted Qs.

which is equal to the number of common 1’s when Q, Q ≫ i and Q ≫ i + j are aligned

together. We use θ(i , j ) to abbreviate θ(2)
Q

(i , j ).

Obviously, θ(i ) = 0 if i ≥ L, and similarly, θ(i , j ) = 0 if i + j ≥ L. Figure 3.2 (on page

24) illustrates the calculation of θQ(2) and θQ(2,1) for Q = 1011011. Now we introduce

the following three bounds of HPn .

3.2.1 Lower bound by Cauchy-Schwartz inequality

Let Hn denote the number of hits of Q in S[1 : n], Cauchy-Schwartz inequality gives

us

[E(Hn)]2
=

[

E(HnIHn≥1)
]2

≤E(H2
n)P(Hn ≥ 1) =E(H2

n)HPn ,

The last equation is because the event {Hn ≥ 1} is equivalent to Q hitting S at or before

position n. So we get

HPn ≥
(EHn)2

E(H2
n)

. (3.3)
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Because we know that Hn =
∑n

i=L IAi
, where Ai defined as section 2.2 and IAi

is the

indicator of whether event Ai occurs, we can calculate E(Hn) as

E(Hn) =E

(
n∑

i=L

IAi

)

=

n∑

i=L

P(Ai ) = (n −L+1)pw .

Similarly,

E(H2
n) =E

(
n∑

i=L

IAi

)2

=E

(
n∑

i=L

IAi
+

∑

i 6= j

IAi
IA j

)

= (n −L+1)pw
+

∑

i 6= j

P(Ai A j ).

To calculate P(Ai A j ), we only need to count the number of 1’s in the sequence

(Q ≫ i )
⋃

(Q ≫ j ). Note that the numbers of 1’s in Q ≫ i and Q ≫ j are both equal to

the weight w, and that the common number of 1’s of Q ≫ i and Q ≫ j is θ( j − i ), so

P(Ai A j ) = p2w−θ( j−i ). Now

∑

i 6= j

P(Ai A j ) = 2
∑

i< j

P(Ai A j ) = 2
n∑

j=L+1

j−1∑

i=L

P(Ai A j ) = 2
n∑

j=L+1

j−1∑

i=L

p2w−θ( j−i )

= 2
n−L∑

d=1

n−d∑

i=L

p2w−θ(d)
= 2

n−L∑

d=1

(n −L−d +1)p2w−θ(d)

= 2
L−1∑

d=1

(n −L−d +1)p2w−θ(d)
+ (n −2L+1)(n −2L+2)p2w . (3.4)

Thus, we can now express the lower bound of HPn in (3.3) as

(n −L+1)2p2w

(n −L+1)pw + (n −2L+1)(n −2L+2)p2w +2
∑L−1

d=1
(n −L−d +1)p2w−θ(d)

.

According to this, we are able to calculate the Cauchy-Schwartz lower bound of each

spaced seed.

Figure 3.3 (on page 26) shows the correlation betweenHPn and its Cauchy-Schwartz

lower bound, we can see from this figure that when p is not close to 1, thenHP and the

Cauchy-Schwartz lower bound have a fairly good linear relationship. Although this
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Chauchy−Schwartz Lower bound of HP64(Q)
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Figure 3.3 Plots of HPn(Q) vs its Cauchy-Schwartz lower bound of

Q15,9,Q18,12 and Q20,13 (rows from top to bottom) for p = 0.5,0.7,0.9

(columns from left to right).

may change as p becoming close to 1, we can also observe that there is also strong

rank correlation between them, so we can conclude that the Cauchy-Schwartz lower

bound of HPn turns out to be a fairly good indicator.



3.2 Predictors using upper or lower bounds of HPn 27

3.2.2 Lower bound by a Bonferroni-type inequality

We start with a well known Bonferroni-type inequality, which can be found, for

example, in Galambos J. and Simonelli I. [1996].

Theorem 3.2 For a set of event {Ei }n
i=1

, we have

P(
n⋃

i=1

Ei ) ≥
2

k

n∑

i=1

P(Ei )−
1

k(k −1)

∑

i 6= j

P(Ei E j )

where k =

⌊∑

i 6= j P(Ei E j )
∑n

i=1
P(Ei )

⌋

+2.

When we apply this inequality in the hitting probability problem, we will have

HPn =P(
n⋃

i=L

Ai ) ≥
2Σ1

k
−

Σ2

k(k −1)

where

Σ1 =

n∑

i=1

P(Ai ) = (n −L+1)pw , Σ2 =
∑

i 6= j

P(Ai A j ), k =

⌊
Σ2

Σ1

⌋

+2. (3.5)

In fact, Σ2 has been calculated in (3.4).

Figure 3.4 (on page 28) shows the scatter plot of HP(Q) with this Bonferroni-type

lower bounds. We may observe that this figure seems very similar with Figure 3.3 (on

page 26) for the Cauchy-Schwartz lower bounds.

3.2.3 Upper bound by Bonferroni inequality

We recall the well-known Bonferroni inequalities.
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Bonferroni Lower bound of HP64(Q)
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Figure 3.4 Plots of HPn(Q) vs its Bonferroni lower bound of Q15,9,Q18,12

and Q20,13 (rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left

to right).

Theorem 3.3 (Bonferroni) For a set of event {Ei }n
i=1

, if we let σ1 =
∑n

i=1P(Ei ), σ2 =

∑

i 6= j P(Ei E j ), . . . , σk =
∑

i1 6=i2 6=···6=ik
P(Ei1 · · ·Eik

), then we have

P(
n⋃

i=1

Ei ) ≤σ1 −σ2 +·· ·+ (−1)k+1σk , when k is odd (3.6)

P(
n⋃

i=1

Ei ) ≥σ1 −σ2 +·· ·+ (−1)k+1σk , when k is even (3.7)



3.2 Predictors using upper or lower bounds of HPn 29

We now apply inequality (3.6) for the case k = 3 to get

HPn ≤Σ1 −Σ2 +Σ3 (3.8)

where Σ1,Σ2 have been defined in (3.5), and

Σ3 ,
∑

i 6= j 6=k

P(Ai A j Ak ). (3.9)

After some derivation (see Appendix A), we will finally have

Σ3 =
1

6
(n −3L+1)(n −3L+2)(n −3L+3)p3w

+

L−1∑

i=1

(n −2L− i +1)(n −2L− i +2)p3w−θ(i )

+

L−1∑

i=1

L−1∑

j=L−i

(n − i − j −L+1)p3w−θ(i )−θ( j )

+

L−1∑

i=1

L−i−1∑

j=1

(n − i − j −L+1)p3w−θ(i )−θ( j )−θ(i+ j )+θ(i , j ) (3.10)

Figure 3.5 (on page 30) shows the scatter plot of HP(Q) with the Bonferroni upper

bounds in (3.8). From the plots in this figure that for small p like 0.5 and large p close

to 1, the Bonferroni upper bound predict fairly well for HPn . However, for moderate

p, it performs relatively bad because there seem to be a transition period at these

p for the correlation between HPn and the Bonferroni upper bound from positively

proportional to negatively proportional. Further inspection of the numerical values

of the Bonferroni upper bound for p = 0.5 shows that the Bonferroni upper bound is

very close to the real HPn . This upper bound, in general, is much closer to HPn than

the two lower bounds. Indeed, this upper bound becomes closer and closer to the real

HPn as L gets larger and larger. So for longer spaced seeds, we may use the Bonferroni

upper bound as a fairly good estimation of HPn when p is small.
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Bonferroni Upper bound of HP64(Q)
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Figure 3.5 Plots of HPn(Q) vs its Bonferroni upper bound of Q15,9,Q18,12

and Q20,13 (rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left

to right).

3.3 Compare the predictability of the above predictors

3.3.1 Discussion on the predictors

From the above figures (Figures 3.1 – 3.5), we may conclude that, among the above

indicators,HP2L−1 has the best correlation withHPn , followed by the Cauchy-Schwartz



3.3 Compare the predictability of the above predictors 31

lower bound and Bonferroni-type lower bound. Further we find:

(1) Although HP2L−1 is the best predictor of HPn , it does not constitute a practi-

cal predictor of HPn , because the calculation of HP2L−1 itself is also very time-

consuming. From section 2.2, we know that the exact calculation has the com-

plexity of O(Ln22(L−w)), so the time to compute HP2L−1 is only about L/n times

that of HPn . Generally, L/n is between 1/3 and 1/7, so there is no essential

improvement on the computing time. So the predictor HP2L−1 may be used to

predict effective spaced seeds of moderate length, not practical for very long

spaced seeds.

(2) The Cauchy-Schwartz and the Bonferroni-type lower bound perform very sim-

ilar. Of course, this is not a coincidence. This is because the two lower bound

are both based on the quantity of Σ2 which defined in (3.5).Typically, Σ2 is

generally much greater than Σ1. Generally we have the ratio Σ2

Σ1
≥ 5, and it

increases with L. We observe that for L larger than 20, the ratio Σ2

Σ1
is greater

than 100. Hence k =

⌊
Σ2

Σ1

⌋

+2 ≈
Σ2

Σ1
+2, then the Bonferroni lower bound

BLB =
2Σ1

k
−

Σ2

k(k −1)
≈

Σ
2
1

Σ1 +Σ2
= CSLB.

Therefore we can show that in their value range, the two types of bounds are

approximately equal.

We may simply use Σ2 (which will be negatively correlated with HPn) for indi-

cator of good spaced seeds instead of this two lower bounds.

(3) From their correlation with HPn , the Bonferroni upper bounds seem to per-

form worse than the two lower bounds. However, we may observe from Fig-

ure 3.5 (on page 30) the better and better performance of the Bonferroni upper
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bound for small p as L gets larger and larger . If this holds as true, then the

Bonferroni upper bound will be a very good predictor, even better Σ2, for long

spaced seeds when p is small. Table 3.1 (on page 33) and Table 3.2 (on page 34)

verifies this conjecture. Σ2 −Σ3, which is equivalent to the bonferroni upper

bound, really predicts well for large L.

We conclude that for moderate L and w, HP2L−1 is the best indicator, however, for

large L, we recommend Σ2 and/or Σ2 −Σ3 as predictors.

3.3.2 Further comparison of the predictability of Σ2 and Σ2 −Σ3

We notice that if a spaced seed performs well for one p, it will also perform well

(in general) for other p (this may be seen in Table 3.1 (on page 33)). Hence we may

just predict the top spaced seeds for one particular p and give one set of top seeds

for all p. So we can simply choose a p value under which the predictors has the best

predictability. It seems that using smaller p is the wise choice. So in the following

tables of predicted best seeds, we only give one set of best seeds which are predicted

by the indicators under p = 0.5.

Table 3.1 (on page 33) shows the predicted top 10 spaced seed of Q15,9,Q18,12 and

Q20,13 together with their rank under HP64. We observe that Σ2 −Σ3 predicts better

and better as L gets larger and larger, and it outperforms Σ2 for the case of Q20,13.

Table 3.2 (on page 34) lists the top 10 spaced seeds predicted by Σ2−Σ3 and Σ2 for

Q23,15,Q24,16,Q29,17 and Q33,20 (we choose L and w value with the ratio w/L staying

around p = 0.7). In this figure, we also give the relative ranks (based on HP128(Q))
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Table 3.1 Predicted top 10 seeds of Q15,9,Q18,12,Q20,13

QL,w Σ2 −Σ3 0.5 0.7 0.9 Σ2 0.5 0.7 0.9
1**111**1*111*1 65 55 30 111**1**1*1*111 2 3 2
11**1**1111*1*1 56 42 17 11*11**1*1**111 4 4 4
1**1*1*11**1111 57 46 21 111*1***11*1*11 3 2 3
1**11**1*1*1111 46 25 9 111***1*1*11*11 1 1 1

Q15,9 1***11*11*1*111 156 151 112 111**1**11*1*11 6 7 15
1*1*1**11**1111 13 9 7 11**11*1**1*111 7 8 20
1***111111*1**1 700 688 623 11**1*1*1**1111 5 5 5
111***1*1*11*11 1 1 1 111*1**1**1*111 9 11 22
1*1*11*11***111 25 16 8 111**1*1**1*111 11 13 27
11*1***111*11*1 44 38 38 11*11***1*1*111 12 14 23
111*1*11*1**11*111 1 1 1 111*1*11*1**11*111 1 1 1
111*1**11*1*11*111 2 2 2 111*1**11*1*11*111 2 2 2
11*11*1*1*11**1111 3 3 9 11*11*1*1*11**1111 3 3 9
111*1*1**111*11*11 6 5 3 111*1*1**11*11*111 4 4 7

Q18,12 11*1*111*1**111*11 15 14 4 111**11*11*1*1*111 5 9 15
111**11*11*1*1*111 5 9 15 1111**11**1*1*1111 12 6 18
11*1*1*11**11*1111 8 8 6 111*1*11**1*11*111 7 12 28
111*1*1**11*11*111 4 4 7 111*11**1*1*11*111 9 21 73
1*111**11*11*1*111 32 66 39 111**11*1*1*11*111 11 22 31
11*111*1*11*1**111 17 27 19 11*111**1*11*1*111 10 15 21
111*1*11**11**1*1111 1 1 2 111*1*11**11**1*1111 1 1 2
1111*1*1**11*11**111 2 3 4 1111*1*1**11*11**111 2 3 4
111*1**11*1**111*111 3 2 1 111*11**1*11*1*1*111 5 15 30
111*11**1*1*11**1111 4 5 9 111*11**1*1*11**1111 4 5 9

Q20,13 111*11**1*11*1*1*111 5 15 30 1111**11**1*1*11*111 6 16 39
1111*1*1**111**11*11 10 11 6 111*11*1**11*1*1*111 7 9 12
11*1*111**11**1*1111 16 11 18 111*1*11**1*1*11*111 9 19 37
111*11**1*1*11*1*111 8 10 17 111*11**1*1*11*1*111 8 10 17
111*11*1**11*1*1*111 7 9 12 111*1**11*1**111*111 3 2 1
111*1**1*11**111*111 11 13 5 1111**1*1*11**11*111 13 24 49

The first column of spaced seeds is predicted by Σ2 − Σ3 at p = 0.5 (same as the

Bonferroni upper bound). The second column of spaced seeds is predicted by Σ2 at

p = 0.5 (same as the Cauchy-Schwartz lower bound and approximately same as the

the Bonferroni-type lower bound). The columns following the seeds are the rank under

their hitting probabilities at n = 64,HP64(Q).

among these seeds, and we calculate sums of these ranks. In most cases, the top 10

seeds predicted by the two quantities overlap substantially. Most seeds are in both

predicted top 10 seeds. The 7 signs mark the seeds not belonging to Σ2 −Σ3 (column

A) or Σ2 (column B). Because we rank the best seeds by 1, the predictor is better with

small rank sums. We can see in most cases, the rank sums before the slashes, which

are the rank sums corresponding to Σ2−Σ3, are smaller, so in the four Q, Σ2−Σ3 turns

out to be the better predictor.
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Table 3.2 Predicted top 10 seeds of Q23,15,Q24,16,Q29,17,Q33,20,Q35,22

QL,w No Seed A B p = 0.5 p = 0.7 p = 0.9
1 1111**1*1*1*11**11*1111 1 1 2
2 111*1**11*1*1**111*1111 7 5 5 9
3 111*11**11*1**11*1*1111 3 3 4
4 111*11**1*1**111*1*1111 7 7 6
5 1111**11*1*1*1**11*1111 2 2 1
6 1111*1*1**11**11*1*1111 4 4 3

Q23,15 7 1111**11**1*1*1*11*1111 6 6 11
8 11*11*11***111*1*1*1111 7 13 13 10
9 111*111**1*11**1*1*1111 7 9 9 12

10 111*1*11*1**11**11*1111 8 8 5
11 1111**1*1*11**11*1*1111 7 10 10 8
12 111*1*1*11*1**11**11111 7 11 11 13
13 1111*1**11**11*1*1*1111 7 12 12 7

58/64 58/64 63/60
1 1111**11*1*1*11**11*1111 1 1 1
2 1111*1*11**11**11*1*1111 2 3 5
3 111*1*11*1*11**11**11111 3 2 2
4 111*11*11***111*1*11*111 7 5 5 3
5 111*11*11***111*11*1*111 7 10 7 9
6 111*11*1**11**111*1*1111 4 4 4

Q24,16 7 111*11*11**111*1*1**1111 9 11 7
8 111*11*11**1*1*111**1111 7 8 11
9 111*11*11**111**1*1*1111 8 9 8

10 1111**11**11*1*1*11*1111 6 6 6
11 1111**11**11*11*1*1*1111 7 12 12 10
12 111*111**1*1*11*11**1111 7 11 10 12

55/63 56/66 56/66
1 1111**1*1**11**11**1*1*1*1111 1 1 2
2 111*11***11*1*1*1**11*1**1111 2 9 5
3 111*11***11**1*11**1*1*1*1111 4 2 4
4 1111*1*1*1**1**1*11**11**1111 5 7 9
5 111*11*1*1***11**1*11**1*1111 6 5 8

Q29,17 6 1111**11**1*1*1**1*11**1*1111 3 3 1
7 1111**1*1**11**1**11*1*1*1111 7 6 7
8 1111**11*1***1*11*1*1**11*111 9 8 6
9 1111**1*1*1*1**11**11**1*1111 8 4 3

10 1111**11*1*1**1**11**1*1*1111 10 10 10
55/55 55/55 55/55

1 1111*1**111**11**1*11**1*1*1*1111 1 4 6
2 1111*1*1**11*1*1**11**1*11**11111 2 2 5
3 1111**11*1*1**11**11*1**1*1*11111 3 1 2
4 1111*1**11**111**1*1*1*11**1*1111 4 7 4
5 1111*1*1**111**1**11*1**11*1*1111 5 3 3

Q33,20 6 1111**11**111*1**1*11**1*1*1*1111 6 9 9
7 1111*1*1*11**11**1*11**1*1**11111 7 5 1
8 1111**11*11***11*1*11**1*1*1*1111 8 8 7
9 1111*1*1*1**11*1**1*11**11**11111 9 6 10

10 1111*1**11*1**11**111**1*1*1*1111 10 10 8
55/55 55/55 55/55

1 1111*1*11**1*11*1*1*1*11**11**11111 1 3 3
2 1111*1*1*11**111**1*11**11**1*11111 2 6 11
3 1111*1**11*1*1*11*1**11**111**11111 3 1 2
4 1111*1*1*111***11*11**11**1*11*1111 4 4 6
5 1111**111*1*1*11**11**11*1**1*11111 5 7 5

Q35,22 6 1111*1*1*111**11**1*11*1**11**11111 7 8 10
7 1111**111**1*1*11**11*11**1*1*11111 7 8 9 7
8 1111*1*1**11*1*11**11**1*111**11111 6 2 1
9 1111*1*1*1**11*11*1**111**11**11111 9 11 9

10 1111*1*1*111**11**11*1**1*11**11111 10 5 4
11 1111*1*11*1**11*1*1*1*11**11**11111 7 11 10 8

55/58 56/57 58/57

The seeds for each Q are the union of top 10 seeds predicted by Σ2 −Σ3 and Σ2. The 7signs in

column A and B mark out the seeds not belonging to the top 10 of Σ2 −Σ3(A) and Σ2(B) respec-

tively. The column of p = 0.5 is the internal ranks (by HP128(Q)) of the seeds among themselves,

and the last row in each Q is the sums of the rank of the top 10 seeds predicted by Σ2 −Σ3 and

Σ2. Similar for others.
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However, since the predicted top seeds of Σ2 −Σ3 and Σ2 overlap so much, and

the sums of the ranks becomes closer as L increases, we expect the two predictors

performs almost the same for larger L. Since the calculation ofΣ2 is faster thanΣ2−Σ3,

we recommend to use Σ2 for larger L.



CHAPTER 4

Features for Good Spaced Seeds

Generally, the calculation time of Σ2 or Σ2 −Σ3 is much less than that of the HPn

using the recursive relation given in Theorem 2.1. For example, we just take several

minutes to run the computation of both the the indicators of Σ2 and Σ2−Σ3 of all the

spaced seeds of Q23,15 for one p, but the exact calculation of the hitting probability

may take about one day.

However, the number of seeds will increase very rapidly. We have the following

lemma on the number of spaced seeds.

36
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Table 4.1 Number of spaced seeds in Q

QL,w

∥
∥QL,w

∥
∥ QL,w

∥
∥QL,w

∥
∥

Q15,9 868 Q24,16 160,050

Q18,12 4,032 Q29,17 8,692,788

Q20,13 15,912 Q33,20 103,129,040

Q23,15 101,850 Q35,22 286,587,224

Lemma 4.1 Let
∥
∥QL,w

∥
∥ be the number of spaced seeds belonging to QL,w , then we have

∥
∥QL,w

∥
∥=







1

2

(

L−2

w −2

)

L is even, w is odd;

1

2

[(

L−2

w −2

)

+

(⌊
L
2

⌋

−1
⌊

w
2

⌋

−1

)]

otherwise.

(4.1)

Proof: Recall that QL,w is the collection of all spaced seeds with heavy tail. When L

is even and w is odd, there does not exist any symmetric seeds. Among all the
(L−2

w−2

)

candidate spaced seeds, exactly one half will be discarded.

In other cases, the weight can be evenly divided into the two halves. In this case,

we cannot discard those Q with its reverse being the same as Q itself, namely, those Q

being symmetric about its center. The number of these symmetric Q is just
(⌊

L
2

⌋

−1
⌊

w
2

⌋

−1

)

.

So the total number of spaced seeds now is as (4.1). �

Table 4.1 (on page 37) shows the number of seeds in QL,w that appears in the pre-

vious chapters.

Thus, even though the computation of the indicators for a single spaced seeds is

very fast, it will become very time-consuming to compute them for all spaced seeds
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in QL,w for very large L. For example, the computation of both Σ2 and Σ2−Σ3 of Q35,22

takes less than one day. Therefore, we need to find even simpler index to reduce the

magnitude of the total number of spaced seeds falling into our consideration.

4.1 Number of blocks of ∗’s in Q

From Table 2.1 (on page 15), we notice that the number of blocks (runs) of ∗’s in

the best spaced seeds are about the same. For example, for the case that Q15,9, all the

best spaced seeds listed have 4 blocks of ∗’s despite of what value p takes. We also

checked the top 100 seeds of Q15,9,Q18,12,Q20,13 for p = 0.5,0.7,0.9, and found that

the number of blocks of ∗’s really remains very robust with variation less than 2.

If we use b to denote the number of blocks of ∗’s in Q, then we can show that

b = w −θ(1)−1,

where w is the weight of Q, and θ(1) is the first order self-overlapping index at 1 as

defined in (3.2) (on page 23). Recall that θ(1) is the common number of 1’s in Q and

Q ≫ 1. In order to a common 1 occur in position k of Q, it is necessary and sufficient

to having 1’s occur in positions k −1 and k. Thus, θ(1) is just the number of 11’s in Q,

which equals the total number of 1’s minus the number of 1∗’s, then minus 1 (for the

last 1 of Q). Apparently, the number of 1∗’s is just b. So b, which is equivalent to θ(1)

is also a measure of self overlapping, and it is the simplest one.

Figure 4.1 (on page 39) shows the box-plots of HP64 vs b. We can see clearly that

the distribution of HP64 is very different for different b values. For example, for Q15,9
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Figure 4.1 Box-plots of HPn(Q) vs b, the number of block of ∗’s of

Q15,9,Q18,12 and Q20,13 (rows from top to bottom) for different p =

0.5,0.7,0.9 (columns from left to right).

the spaced seeds with b = 4 as a whole have the highest hitting probabilities. From

the figure, we can observe that the spaced seeds with very small number (like 1,2) of

blocks of ∗’s always have lower hitting probabilities.

Table 4.2 (on page 40) lists the optimal b values for some QL,w . For the cases of

Q23,15,Q24,16,Q29,17,Q33,20,Q35,22, we simply use the predictor, Σ2−Σ3, instead of the

exact hitting probability of the seeds. But we conjecture that the optimal spaced seeds

have the same b values as given in the table.
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Table 4.2 Optimal b values of different QL,w

L 14 15 15 16 16 17 15 17 18 18 20 20 23 24 29 33 35

w 11 12 11 12 11 12 9 11 12 11 13 12 15 16 17 20 22

b 3 3 4 4 4 4 4 4 5 5 5 5 6 6 8 9 10

b̂ 3.1 3.4 3.5 3.8 3.9 4.2 3.9 4.3 4.6 4.7 5.2 5.3 6.0 6.3 8.1 9.2 9.6

The top spaced seeds for Q23,15,Q24,16,Q29,17,Q33,20,Q35,22 are predicted by

Σ2 −Σ3.

We may observe that, at least in our range, b has a strong linear relation with L, w.

The regression line is

b =−0.578+0.397L−0.168w.

In Table 4.2 (on page 40), the row b̂ records the fitted value of b using the above

regression line (with one efficient digit). We excitedly find that the fit is very good. So

in practice, we may simply use the rounded integer of the above value to filter out the

rest of spaced seeds.

4.2 Weight difference of two halves of Q

Another observation about the features of the best spaced seeds given in Table 2.1

(on page 15), we find that the 1’s distribute very evenly in the seeds. Then we can

expect good spaced seeds to be balanced, so the weight difference between the right

half and the left half cannot exceed some number. We use∆w to denote the difference

(always be positive) of the number of 1’s in the left half and the right half of a spaced

seed Q. For example, if Q = 11*11* 1111*1 , then there are four 1’s in the left six

positions, and five 1’s in the right six positions, so ∆w = 1; if Q = 11*11* 1 1111*1 ,



4.2 Weight difference of two halves of Q 41

Difference of weight in the two halves of Q

H
P

64
(Q

)

0 1 2 3 4 5 6

0.
06

5
0.

07
0

0.
07

5
0.

08
0

−

−
−−−−−

L=15 w=9 p=0.5

0 1 2 3 4 5 6

0.
60

0.
65

0.
70

−

−
−−−−−

L=15 w=9 p=0.7

0 1 2 3 4 5 6

0.
99

90
0.

99
95

−

−
−−−−−

L=15 w=9 p=0.9

0 2 4 6

0.
00

80
0.

00
90

0.
01

00

−
−−−

L=18 w=12 p=0.5

0 2 4 6

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

−
−−−

L=18 w=12 p=0.7

0 2 4 6

0.
97

0
0.

98
0

0.
99

0

−
−−−

L=18 w=12 p=0.9

1 3 5 7

0.
00

40
0.

00
45

0.
00

50

−
−−−

L=20 w=13 p=0.5

1 3 5 7

0.
18

0.
20

0.
22

0.
24

0.
26

−
−−−

L=20 w=13 p=0.7

1 3 5 7

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

−
−−−

L=20 w=13 p=0.9

Figure 4.2 Box-plots of HPn(Q) vs ∆w, the difference of weight of the two

halves of a spaced seed Q, of Q15,9,Q18,12 and Q20,13 (rows from top to bot-

tom) for different p = 0.5,0.7,0.9 (columns from left to right).

then there are four 1’s in the left six positions1, and five 1’s in the right six positions,

so ∆w = 1.

To see the distribution of the hitting probabilities for different ∆w, we refer to the

box-plots in Figure 4.2 (on page 41). We observe clearly that the hitting probabilities

with small ∆w values are generally larger. In this figure, the highest hitting probabil-

ities occur only when ∆w is 0 or 1. If we refer back to Table 3.2 (on page 34), we may

count the ∆w for the predicted spaced seed as listed in Table 4.3 (on page 42). In this

1. Easy to see that it is equivalent to define the left half to be position 1 to
⌊

L
2

⌋

or 1 to
⌈

L
2

⌉

.
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Table 4.3 ∆w of the predicted top 10 spaced seeds

QL,w 1 2 3 4 5 6 7 8 9 10

Q23,15
1 1 0 1 0 0 1 2 0 1
1 0 0 0 0 1 0 1 1 1

Q24,16
0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Q29,17
1 0 1 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0 1 1

Q33,20
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Q35,22
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

For each QL,w , the first row is the ∆w value of the top 10 spaced seeds pre-

dicted by Σ2 −Σ3, the second row is predicted by Σ2. The column with title i

is the i -th predicted top

table, the ∆w value are all less than or equal to 2, and most of them are 0’s.

Therefore, we conjecture that the value of ∆w of the best spaced seed is a small

integer, generally no more than 2. Further, we may imply from Table 4.3 that if either

one of L and w is even, then we strongly prefer the seeds with ∆w = 0, at most we give

some consideration for those with ∆w = 2; if the both L and w are odd, then we prefer

the seeds with ∆w = 0 or 1.

4.3 Number of 1’s in head and tail of Q

When studying the best seeds given in Table 2.1 (on page 15) and the predicted

best seeds given in Table 3.1 (on page 33) and Table 3.2 (on page 34), we may notice

that the number of 1’s in the front of Q and in the tail of Q also remain stable with very

small variation, and the number of 1’s in head and tail covers a large part of the total
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number of 1’s. This is a common phenomenon in all QL,w we have examined.

We let hQ denote the number of consecutive 1’s in the head of Q, and tQ denote

the number of consecutive 1’s in the tail. For example, if Q = 111∗11∗11, then hQ =

3, tQ = 2 as there are three 1’s in the first block of 1’s and two 1’s in the last block of 1’s.

We are often interested in the total weight h + t in the head and tail and the dif-

ference of weight |h − t | in the head and tail. Since these two quantities are the same

for Q and the reverse of Q, therefore, it does not matter whether we choose Q or its

reverse.

Figure 4.3 (on page 44) and Figure 4.4 (on page 45) show us the box plots of HPn to

the two indices. From these two figures, we see that the hitting probabilities do vary

with different h+t or |h−t | values, and we can roughly see the optimal values of h+t

occur in the middle of its range, and the optimal value of |h−t | occur at the lower end

in its range.

Table 4.4 (on page 46) shows us the h + t and |h − t | values of the top seeds or the

predicted top seeds for some QL,w . Similar to the results of ∆w, we find that the |h−t |

value of the good spaced seeds is always a small integer less than (or sometimes equal

to) 2.

We can find h+t has a good linear relation with L and w. The estimated regression

line is

h + t = 3.001−0.156L+0.533w. (4.2)

The ĥ + t values (with one efficient digit) in Table 4.4 (on page 46) are the fitted values

of the above regression line. In many cases, the estimation is fairly good. Generally,
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Figure 4.3 Box-plots of HPn(Q) vs h + t , the number of 1’s in the head and

tail of a spaced seed Q of Q15,9,Q18,12 and Q20,13 (rows from top to bottom)

for p = 0.5,0.7,0.9 (columns from left to right).

the optimal h + t values are the floor or ceiling integer of the fitted value by L and w.

In summary, we may prefer the seeds with |h − t | value less than 2. For h + t , we

can infer according to the formula (4.2) and allow a variation less than 2.
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Figure 4.4 Box-plots of HPn(Q) vs |h − t |, the difference of the number of

1’s in the head and in the tail of a spaced seed Q of Q15,9,Q18,12 and Q20,13

(rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left to right).

4.4 Maximal length of the blocks of 1’s and ∗’s

Besides the filters we discussed above, there are other possible good filters, for

example, the maximal length of runs of ∗’s or 1’s (except the first and last runs of 1’s).

If we let zmax and umax denote the maximal length of the runs of ∗’s and 1’s(except the

first and the last run), then generally we have zmax, umax = 2 or 3, which can be seen

in Table 4.5 (on page 46).
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Table 4.4 h + t and |h − t | of the top spaced seeds

L 14 15 15 16 16 17 15 17 18 18 20 20 23 24 29 33 35

w 11 12 11 12 11 12 9 11 12 11 13 12 15 16 17 20 22

h + t 8 7 6 6 6 7 5 6 6 6 7 7 8 8 8 8 9

ĥ + t 6.7 7.0 6.5 6.9 6.4 6.7 5.5 6.2 6.6 6.0 6.8 6.3 7.4 7.8 7.5 8.5 9.2

|h − t | 2 1 0 2 0 1 1 0 0 0 1 1 0 0 0 0 1

The top spaced seeds for Q23,15,Q24,16,Q29,17,Q33,20,Q35,22 are predicted by

Σ2 −Σ3.

Table 4.5 Optimal zmax and umax values

Q Q15,9 Q18,12 Q20,13 Q23,15 Q24,16 Q29,17 Q33,20 Q35,22

zmax 3 2 2 2 2 2 2 2

umax 2 2 2 2 2 2 3 2

Optimal zmax and umax values for Q15,9,Q18,12,Q20,13 are values of the op-

timal seeds. The other zmax and umax values are values of the predicted top

seeds by Σ2.

Figure 4.5 (on page 47) and Figure 4.6 (on page 48) show the box plot of HP64 vs

these two filters. From this figure, we can see clearly that 2 or 3 are optimal values for

zmax and umax.

4.5 Separability and filterability of seeds filters

To measure the goodness of a seeds filter, we may use two index: separability and

filterability.

• Separability measures the capability of a filter to separate the seed according

to their hitting probabilities. Higher separability indicates that, as a whole,the

seeds with good filter value(s) have higher hitting probabilities than seeds with
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Figure 4.5 Box-plots of HPn(Q) vs zmax (left) and umax (right) of

Q15,9,Q18,12 and Q20,13 (rows from top to bottom) for different p =

0.5,0.7,0.9 (columns from left to right).

bad filter values. The ideal filter partitions HPn into several categories with

the hitting probability of one category always no less than that of the other

categories. Using the ideal filter, we can totally reduce the seeds to those with

the optimal filter value. However, it is not clear whether such a filter exists.

None of the filters we have proposed are ideal in this sense.

• Filterability refers to the filtration ability of a filter, i.e., the proportion of seeds

that are filtered out by using the filter. Obviously, the higher the proportion is,
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Figure 4.6 Box-plots of HPn(Q) vs umax of Q15,9,Q18,12 and Q20,13 (rows

from top to bottom) for different p = 0.5,0.7,0.9 (columns from left to right).

the more efficient the filter.

In summary, the more selective, the less seeds left to handle; the more sensitive,

the higher probability the remaining seeds have. Of course, we hope to have a filter

with both high separability and filterability, but it is not an easy problem.

From Figure 4.1 (on page 39) to Figure 4.4 (on page 45), we may find the sepa-

rabilities of the filter we proposed, including b,∆w, |h + t | and |h − t |, are about the

same level. Generally speaking, we can only exclude the seeds with the very bad filter
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values.

On the filterability, we have the following lemma (for proof, see Appendix B).

Lemma 4.2 For all the spaced seeds with length L and weight w in QL,w , we have

(1) the number of seeds with b(1 ≤ b ≤ L−w) blocks of ∗’s is






1

2

(

w −1

b

)(

L−w −1

b −1

)

, if







L even, w odd, or

L odd, w +b even

,

1

2





(

w −1

b

)(

L−w −1

b −1

)

+

(⌈w
2

⌉

−1
⌊

b
2

⌋

)(⌊L−w
2

⌋

−1
⌈

b
2

⌉

−1

)

 , otherwise.
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(3) the number of seeds with h + t = k (2 ≤ k ≤ w) is
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(4) the number of seeds with |h − t | = k(0 ≤ k ≤ w −2) is
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Figure 4.7 Pie chart of the filterability of the seeds filters b,∆w, h+ t , |h− t |

(rows from top to bottom) for Q24,16,Q29,17,Q33,20,Q35,22 (columns from left

to right). The shaded sectors highlight the proportions in which the predicted

best seeds falls.
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Figure 4.8 Pie chart of the filterability of zmax and umax for Q15,9,Q18,12

and Q20,13 (columns from top to bottom).

Figure 4.7 (on page 50) shows us the filterability of the filters b,∆w, h+ t , |h− t | for

the cases of Q24,16,Q29,17,Q33,20,Q35,22. In each chart, the shaded sector is where the

predicted best seeds fall in. From these charts, we can see, generally, the above filters

can filter out 40% ∼ 90% seeds. If we can combine several filters, then we can filter

out more. However we have no idea what is the optimal combination of the filters.

It would be an interesting direction to pursue in the future. But to achieve higher

filterability, we may as well try all the possible filters.

Figure 4.8 (on page 51) shows the filterability of filters zmax and umax. It appears

that the filterability of this two filters are lower than the other filters in Figure 4.7 (on

page 50). Of course, for these two filters, we take two possible optimal values. This

reduces their filterability.
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Figure 4.9 Box plot ofHP64 with optimal filter values of Q15,9,Q18,12,Q20,13

for p = 0,5,0.7,0.9. The left box in each panel is the box plot for all the

spaced seeds, the right box is for the spaced seeds with optimal b,∆w, h +

t , |h − t |, zmax, umax values.

From Figure 4.7 (on page 50), we notice that h+ t is the most efficient filter among

the filters as long as we know the exact optimal choice of h+t , which in many case we

cannot know. Filterability of other filters are about the same level. If we allow ±1 error

of the optimal choice of h + t , then the filterability of h + t will fall to the same level

as that of the others. Although the filterabilities of the other filters are not as good as

h + t , they are more stable and easier to predict (the optimal values).

Table 4.6 (on page 53) shows us the filterability when we combine several filters

together. The last 3 rows record the percentage of remaining seeds after filtration

when we use exact optimal filter values. We can see that if we use several filters at the

same time, then we can greatly deduce the number of seeds. Especially when we use
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Table 4.6 Filterability of the combinations of the filters for Q15,9,Q18,12,Q20,13

b X X X X X X X X

∆w X X X X X X X X

h + t X X X X X X X X

|h − t | X X X X X X X X

Q15,9 41.0 34.6 16.1 34.1 14.6 6.9 15.0 6.3 12.7 8.1 3.1 5.5 3.5 3.5 1.7

Q18,12 28.8 39.6 13.1 22.9 13.8 3.1 8.2 5.2 10.8 2.7 1.4 4.2 0.6 1.4 0.4

Q20,13 37.3 66.5 8.7 30.8 26.2 2.8 12.3 5.3 22.4 2.9 1.8 9.2 0.9 2.2 0.8

The Xsigns mark out which filters (rows) are used. The numbers in the last

3 rows are percentage obtained by dividing the number of spaced seeds with

the checked optimal filter values by the total number of seeds.

four filters, we need only handle less than 1% of the total seeds.

Figure 4.9 (on page 52) shows the separability when we use all the above filters.

The box plot at left hand side in each panel is for all seeds of QL,w , the right hand side

is for those seeds with optimal b,∆w, h+t , |h−t |, zmax and u+max values. We can see

from the figure that the hitting probabilities of the optimal seeds are almost among

the top quarter of QL,w . Since the hitting probability distribution are very skew, in

fact, the hitting probability of the seeds with optimal filter values are generally very

close to the maximal hitting probability.

4.6 Quick and practical search for effective spaced seeds

Having the predictors and seed filters, we can now follow the procedure to predict

effective spaced seeds as follows:

(1) find the optimal filter values including b,∆w, h + t , |h − t |, zmax, umax



4.6 Quick and practical search for effective spaced seeds 54

(2) compute the predictors’ value for the seeds with the above optimal filters val-

ues

(3) sort the predictors value and obtain the top spaced seeds as effective seeds

In procedure (1), we can use the suggested optimal values we discussed in the pre-

cious sections. Since this step is very important, we introduce the sampling method

to determine and secure our selection (see Preparata et al. [2005]). The procedures

are

(1) generate a set of sample seeds;

(2) for each seeds in this sample, calculate the hitting probability;

(3) choose the one with the largest hitting probability as an effective seed.

Now having the idea of predictors and seeds filters, we can further use the follow-

ing procedures that is computationally faster:

(1) generate a set of sample seeds with different filters values;

(2) for each seeds in this sample, calculate the value of the predictors (e.g. Σ2) for

selected2 p and n;

(3) choose the one with optimal predictor value to determine the optimal filters

values;

(4) generate all or a sample3 of the spaced seeds with the optimal filters values

achieved from step (3), compute the predictor value for each seed;

(5) choose the spaced seed with the optimal predictor value in step (4) as a effec-

tive spaced seed.

2. We prefer small p, e.g. 0.5, for good predictability

3. Depending on the number of seeds with the optimal filters values



CHAPTER 5

Asymptotic Hitting Probability

When the length of the random sequence S is very very long, then it is impossible

for us to computeHPn . In this case, in order to predict the behavior of different spaced

seeds, we need to explore the asymptotic behavior of HPn , and to find what attribute

of a spaced seed controls the asymptotic behavior.

For the asymptotic behavior of HPn , based on the work of deterministic finite state

automata of Nicodéme et al. [2002], Buhler et al. [2003] derived the following theo-

rem.

Theorem 5.1 For spaced seed Q with length L and weight w, there exist βQ > 0,0 <

λQ < 1 such that

HPn(Q) =βQλ
n
Q(1+o(1)),
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Having this theorem, we can study the asymptotic behavior through studying the be-

havior of βQ and λQ . Easy to know that the smaller the λQ , the faster the HPn(Q) goes

to 0, or the faster the HPn(Q) goes to 1, that is, the better the spaced seed Q. Similarly,

the smaller the βQ , the better the spaced seed Q.

5.1 Bounds of λQ

Because λQ controls the convergence rate of the hitting probability, it is very im-

portant to estimate its value. We have the following bounds on λQ :

Theorem 5.2 For λQ in Theorem 5.1, we have

max
0≤i≤L−1

(

HPL+i

) 1
i+1

≤λQ ≤ min
0≤i≤L−1

(

HPL+i

) 1
L+i

.

To prove this theorem, we need the following lemma in Choi and Zhang [2004].

Lemma 5.3 (Choi and Zhang) Let Q be a spaced seed with length L, then for any 2L−

1 ≤ k ≤ n,

HPkHPn−k+L−1 ≤HPn ≤HPkHPn−k .

Proof of Theorem 5.2: For 0 ≤ i ≤ L, applying the first inequality in Lemma 5.3, we

have

HPL+iHPn−i−1 ≤HPn .
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Let n →∞, then from Theorem 5.1, we can deduce that

HPL+i ≤
HPn

HPn−i−1

=
βQλ

n
Q(1+εn)

βQλ
n−i−1
Q

(1+εn−i−1)
→λi+1

Q , n →∞

and this will imply

λQ ≥

(

HPL+i

) 1
i+1

.

Taking the maximum for i = 0,1, . . . ,L−1 yields

λQ ≥ max
0≤i≤L−1

(

HPL+i

) 1
i+1

.

Thus we prove the first inequality in Theorem 5.2. Similarly, we apply the second

inequality in Lemma 5.3 to get the second inequality. �

Since λQ controls the convergence rate of HPn , it will play an important role in the

performance of HPn for different spaced seeds Q at large n.

Figure 5.1 (on page 58) and Figure 5.2 (on page 59) show the relationship between

HP64 and the lower or upper bound of λQ . These two figures exhibit a very strong cor-

relation between the bounds of λQ and HP64, even though the position n = 64 is not

large enough for the hitting probability approaching 1 for p = 0.5 and 0.7. This pro-

vides strong numerical, evidence that λQ controls the performance of HPn for proper

large n.

A pleasing feature from these bounds is that the bounds of λQ are very tight. The

difference of the two bounds are only as small as 0.001 ∼ 0.08. Tighter bounds occur

when p is moderate (not close to 1).

According to this, we can use the lower bound or upper bound of λQ as a predictor

of HPn . But since the calculation of the two bounds involves calculating the hitting
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Lower bound of λQ

H
P

64
(Q

)

0.9983 0.9985

0.
06

5
0.

07
0

0.
07

5
0.

08
0

L=15 w=9 p=0.5

0.972 0.974 0.976 0.978 0.980

0.
60

0.
65

0.
70

L=15 w=9 p=0.7

0.82 0.84 0.86

0.
99

90
0.

99
95

L=15 w=9 p=0.9

0.99978 0.99980 0.99982

0.
00

80
0.

00
90

0.
01

00

L=18 w=12 p=0.5

0.991 0.992 0.993

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

L=18 w=12 p=0.7

0.88 0.89 0.90 0.91 0.92

0.
97

0
0.

98
0

0.
99

0

L=18 w=12 p=0.9

0.99989 0.99990 0.99991

0.
00

40
0.

00
45

0.
00

50

L=20 w=13 p=0.5

0.9930 0.9940 0.9950

0.
18

0.
20

0.
22

0.
24

0.
26

L=20 w=13 p=0.7

0.90 0.91 0.92 0.93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

L=20 w=13 p=0.9

Figure 5.1 Plots of HPn(Q) vs the lower bound of λQ for Q15,9,Q18,12 and

Q20,13 (rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left to

right).

probabilities at position n ≤ 2L−1, it will take similar time as calculating HP2L−1, so

the two bounds are not practical predictor.
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Upper bound of λQ
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Figure 5.2 Plots of HPn(Q) vs the lower bound of λQ for Q15,9,Q18,12 and

Q20,13 (rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left to

right).

5.2 Estimate λQ

Applying Theorem 5.1, we have

HPn

fn
=

HPn

HPn−1 −HPn

≈
βQλ

n
Q

βQλ
n−1
Q

−βQλ
n
Q

=
λQ

1−λQ
,

so

log
HPn

fn
≈ log

λQ

1−λQ
.
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log(
HPn

fn
)  at n = 2L−1
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Figure 5.3 Plots of HPn(Q) vs log

(

HP2L−1

f2L−1

)

for Q15,9,Q18,12 and Q20,13

(rows from top to bottom) for p = 0.5,0.7,0.9 (columns from left to right).

Easy to see that this is an increasing function of λQ . Because λQ is negatively corre-

lated with HPn , it is negatively correlated with HPn .

Figure 5.3 (on page 60) shows us the correlation of HPn with the approximating

value of λ, log(HP2L−1

/

f2L−1 ). Apparently, there is a good correlation when p is small,

but it becomes worse when p increases.
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APPENDIX A

Derivation of Equation (3.10)

First, we know that

Σ3 =
∑

i 6= j 6=k

P(Ai A j Ak ) =
n−L∑

i=1

n−L−i∑

j=1

n−L−i− j∑

l=L

P(Al Al+i Al+i+ j )

Because the probability P(Al Al+i Al+i+ j ) is independent of l , we get

Σ3 =

n−L∑

i=1

n−L−i∑

j=1

(n −L− i − j +1)P(AL AL+i AL+i+ j ). (A.1)

Now we have the following four cases:

(1) i + j ≤ L−1. In this case, we have the probability

P(AL AL+i AL+i+ j ) = p3w−θ(i )−θ( j )−θ(i+ j )+θ(i , j ),

this simply comes from counting the number of 1’s in Q
⋃

(Q ≫ i )
⋃

(Q ≫ i + j ).

The part of summation corresponding to this case in equation (A.1) will be

Σ
(1)
3 =

L−1∑

i=1

L−i−1∑

j=1

(n − i − j −L+1)p3w−θ(i )−θ( j )−θ(i+ j )+θ(i , j ) (A.2)
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(2) i + j ≥ L, but 0 ≤ i , j ≤ L−1. In this case

P(AL AL+i AL+i+ j ) = p3w−θ(i )−θ( j ).

The part of summation corresponding to this case in equation (A.1) will be

Σ
(2)
3 =

L−1∑

i=1

L−1∑

j=L−i

(n − i − j −L+1)p3w−θ(i )−θ( j ) (A.3)

(3) one of i , j ≤ L−1, the other ≥ L. In this case, it is easy to know that both the two

cases whether i ≥ L or j ≥ L have the same probability. So we just calculate the

case for i ≤ L−1, j ≥ L and then double it. In this case

P(AL AL+i AL+i+ j ) = p3w−θ(i ),

so the part of summation corresponding to this case in equation (A.1) will be

Σ
(3)
3 = 2

L−1∑

i=1

n−L−i∑

j=L

p3w−θ(i )

=

L−1∑

i=1

(n −2L− i +1)(n −2L− i +2)p3w−θ(i ) (A.4)

(4) i , j ≥ L. In this case

P(AL AL+i AL+i+ j ) = p3w .

The part of summation corresponding to this case in equation (A.1) will be

Σ
(4)
3 =

n−L∑

i=L

n−L−i∑

j=L

(n − i − j −L+1)p3w

=
1

6
(n −3L+1)(n −3L+2)(n −3L+3)p3w (A.5)

Now we just add the summations of (A.2)–(A.5) to get equation (3.10).



APPENDIX B

Proof of Lemma 4.2

(1) To determine the number of seeds with b(1 ≤ b ≤ L − w) blocks of ∗’s, it is

equivalent to determine which 1’s are followed by ∗ and which ∗’s are followed

by 1.

To determine the position of 1’s followed by a∗ among all the w 1’s, we first

exclude the last 1 because it cannot followed by anything. Then among the

remaining w −1 1’s, we simply choose b and get the number
(w−1

b

)

.

Then to determine the number of ∗’s followed by 1, we follow the same argu-

ment above and get the number is
(L−w−1

b−1

)

.

For case (i) L even and w odd, or L odd, and (ii) w +d even, there are no sym-

metric seeds. Therefore, simply multiply the above number and divided by 2

(take half of the seeds with heavy tail).
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Otherwise, there exist symmetric seeds. To count the number of these seeds,

we can only consider one half of the spaced seed. It is easy to enumerate all

the possible cases to get the number of variation is

(⌊w+1
2

⌋

−1
⌊

d
2

⌋

)(⌊L−w
2

⌋

−1
⌈

d−2
2

⌉

)

just using the same trick as used above.

(2) When a seed has the weight difference ∆w(0 ≤ ∆w ≤ L− 2), obviously, if the

first condition

if L even and







w odd, ∆w even, or

w even, ∆w odd

occurs, then there is no seeds satisfying this condition.

Otherwise, when ∆w 6= 0, then there will exist symmetric seeds. Then we just

multiply the count of choose 1’s from the left half and the count of choosing

1’s from the right half to get the result.

When ∆w = 0, there will exist symmetric seeds. In this case both the weight

of the two halves are
⌈

w−1
2

⌉

, we just choose these 1’s in the first half, and then

square it to get all the possible candidate seeds. To get the exact number of

seeds with heavy tail, we should discard one half excluding those symmetric

seeds. The number of symmetric seeds is just as the number of choose
⌈

w−1
2

⌉

1’s from the left half. Thus, we get the result.

(3) If k is odd, or L is even and w is odd, then the symmetric seeds will not occur.

In this case the number of spaced seed with h + t = k is one half of k −1 times

(for all possible h and t values) of the combination number
(L−k−2

w−k

)

. Otherwise,

there will be symmetric seeds, then before we take one half of the total seeds,
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we must add back the symmetric ones, which have the number

(⌊
L
2

⌋

−
k
2
−1

⌊
w
2

⌋

−
k
2

)

(4) When k is not 0, there does not exist symmetric seeds, so we just add all the

spaced seeds with h = 1,2, . . . , w+k
2

and then divide by 2. But we know that the

numbers of candidate seeds with h = i , t = i + k and those of h = i + k, t = i

are the same. So instead divided by 2, we can simply take the seeds with h < t .

When k is 0 and L even, w odd, we have h = t and there is also no symmetric

seeds. So we just needs count all the candidate seeds with h = t = 1,2, . . . ,
⌊

w
2

⌋

and then divide by 2. In the other case, h = t and there exist symmetric seeds.

We also add back the symmetric seeds and then take one half


