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Summary

In this thesis, electrically small dielectric resonator antennas have been designed,

characterized and fabricated successfully. A robust and reliable method using Tangen-

tial Vector Finite Element (TVFE) method has been proposed to compute eigenvalues

of an isolated dielectric resonator (DR). To obtain better insight and appreciation of

the isolated resonator problem, a FEM code (TVFE) was developed from scratch

and the results derived from it are compared with those of Ansoft High Frequency

Structure Simulator (HFSS ). Accurate characterization of the eigenmodes is critical

to achieve high radiation efficiency and can provide a good initial guess to the an-

tenna’s operating frequency. Predicted eigenvalues using the written codes are within

1% of error from measured values.

When the feed design is incorporated, HFSS is used to optimize the antenna. The

proposed feed structure for linear polarization comprised of a complementary pair of

magnetic dipole and magnetic loop [1], modified to exclude the ground plane. For

circular polarization, the feed structure comprised of a meandering magnetic dipole.

This compact structure overcomes the impact of a finite “ground plane” and has

a unidirectional radiation pattern away from the ground plane. Hence, the ground

plane’s impact on the antenna parameters is significantly reduced allowing a compact

design of the antenna system. The feed structure has metallization on all sides to

prevent possible electromagnetic interference from the antenna on the RF circuitry.

A probe is then used to excite the feed structure beneath the dielectric resonator.

Subsequently, the dielectric resonator antennas are fabricated and measured. Com-

parison is first carried out between a cylindrical and rectangular DR antenna to inves-

tigate their potential advantages. Next, a DR antenna with high permittivity values

of 38.5 is fabricated and compared with one using a permittivity value of 10.2. Fi-

nally, a circular-polarized DR antenna is designed, fabricated and compared with the

linear-polarized case.
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Chapter 1

Introduction

A compact dielectric resonator (DR) antenna has been proposed and analyzed in

this research work. The design process can be separated into two parts. The first part

is to choose a suitable resonator dimensions for optimal performance. To do this, we

need to have a good characterization of the DR’s eigenmodes so that variation of the

resonator’s size with respect to its radiation Q-factor (Qrad) and resonant frequency

can be accurately predicted.

The radiation Q-factor is first studied using closed-form equations from [2] and

[3]. Qrad is then plotted against the resonator’s size so as to identify a range of

suitable dimensions with low Qrad. Subsequently, we need to find out the resonant

frequency of the chosen DRs and Tangential Vector Finite Element (TVFE) method

is proposed for this analysis. Computed eigenvalues are compared with measured and

predicted results using conventional models ([2],[4]). Comparison of results reveals

that the proposed method is capable of predicting eigenvalues within 1% of error from

measured values.

The second part involves the use of commercial software - Ansoft High Frequency

Structure Simulator (HFSS ) version 8.5 to design the feed structure. The eigenvalue

computed in the first part provides a good guess of the antenna’s operating frequency

and the objective is to tune the feed design until the antenna operates close to this

predicted frequency. In this way, high radiation efficiency of greater than 90% can be

1
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achieved.

Even though HFSS has the capability to compute eigenvalues of an isolated DR, it

suffers from convergence problem as the size of the terminating metallic box gets larger

or when higher permittivity resonator is used. When solution does not converge,

HFSS will refine its mesh and do the computation again. This iteration process is

very time-consuming and the solution at times fails to converge at all. On the other

hand, mesh generated using Gmsh for the written matlab codes is such that, only

critical regions are meshed densely. For example, when a high dielectric constant

resonator is analyzed, region inside the DR requires more refined mesh than the air-

filled cavity. Hence, it allows the user more flexibility in choosing crucial areas where

denser mesh is required. Computation resource will not be wasted on having to solve

more unknowns due to meshing of non-critical regions. This leads to a faster and

more accurate prediction of the DR’s eigenvalues.

1.1 Background

The current trend in communications and wireless systems is towards miniaturiza-

tion of every possible component, so as to integrate different modules into one system.

At millimeter wave frequencies, integration of antennas and electronics is relatively

more straightforward as the components are physically small and can be integrated

on-chip or on the package. However, at lower frequencies such as in wireless appli-

cations, integrating antennas into a system on package is not easy. This is because

the antenna is no longer physically small. The severe constraint on the physical size

of integrated antennas therefore spurs designers to look into the implementation of

electrically small (ka < 1) antennas. The requirements for high power efficiency and

wide operational bandwidth makes the design and implementation of a wide band

and efficient electrically small antennas of vital importance. However, as the antenna
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gets electrically small, its fundamental limitations include a narrower bandwidth and

lower radiation efficiency. This present as an additional constraint on the antenna

design.

Traditional integrated antennas include microstrip patch, dipole and slot antennas.

These antennas have the advantages of easy fabrication, high power capability and

coplanar waveguide feed can be easily implemented. However, one of their primary

limitations is their lower radiation efficiency due to existence of spurious surface

waves in the substrate. As electrically small antenna is required, higher dielectric

permittivity substrate is often needed. This results in even lower antenna radiation

efficiency and narrower bandwidth. Another issue related to using patch antenna is

the need for a ground plane. The impact of a finite size ground plane includes a great

influence on the return loss and may cause new resonances. The finite size ground

plane also acts as part of a radiator and may affect the radiation patterns and field

distribution in the near-field region.

To overcome these limitations, a compact dielectric resonator (DR) antenna which

make used of a pair of complementary magnetic dipole and magnetic loop [1] for wider

bandwidth is proposed. Dielectric resonator antennas with printed feeds are not only

compact in size, they also exhibit high radiation efficiency and good polarization

selectivity within acceptable frequency bandwidth. In addition, DR antennas offer

simple design for circular-polarized (CP) antennas. However, the resonator’s dimen-

sions and the substrate parameters together with the printed feed design must be

carefully chosen for optimal performance of the antenna system.
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1.2 Project Objectives

The objective of this thesis is to develop design and characterization method-

ologies for the proposed compact DR antennas. Hence, it involves much design and

simulation of DR antennas with specified bandwidth, radiation pattern and polar-

ization. Performance of a cylindrical and rectangular DR antennas are compared to

show their strengths and limitations. To achieve small physical size, an electrically

small DR antenna is also fabricated. Linear and circular-polarized antennas are im-

plemented to verify broadband characteristic of the proposed feed structures and their

radiation properties. Simulated and measured radiation patterns for these antennas

are observed to be smooth and symmetrical, suitable for usage in various wireless

applications.

To design an antenna with optimal performance, it is very important to charac-

terize the eigenmodes of the dielectric resonator accurately. One of the objectives in

this thesis is to do comparison studies of various conventional models used to model

isolated DR and recommend a simple, yet robust method to predict the eigenvalues

accurately. The Tangential Vector Finite Element (TVFE) method is found to be

capable of predicting eigenvalues within 1% of error from measured results. Over the

years, various models such as P. Guillon et al ’s model [5] and Mongia et al ’s close-

form equations [2] have predicted resonant frequency of an isolated cylindrical DR to

around 1% of error. The main strength of the TVFE method is that it can adapt to

changes in the problem analyzed readily. No additional formulation is needed with

the slightest change in the problem. Hence, a change in the dielectric resonator’s

geometry from cylindrical to rectangular, the inclusion of a finite size substrate or a

metal plate placed near an isolated DR can be easily investigated by modifying the

geometry, re-generating the mesh and re-defining the necessary boundary conditions.

This can be easily done with an average performing personal computer.
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1.3 Outline of Concept

In this research, eigenvalues of the dielectric resonator are computed using edge-

based finite elements [6]. The resonator is placed in the center of a cavity whose

dimensions are chosen to be sufficiently large so as not to perturb the fields of the

dielectric resonator significantly. Formulation using tangential vector finite element

is advantageous as it overcomes the occurrence of “spurious” modes faced by nodal

based finite element approach. Even though this difficulty can be circumvented with

the introduction of a penalty term, it is difficult to satisfy continuity requirements

across material interfaces and treat geometries with sharp edges using classical finite

element method. Even though the use of tangential vector finite elements results in

more unknowns, the higher variable count is balanced by the greater sparsity of the

finite element matrix. Hence, the computation time required to solve such a system

iteratively with a given accuracy is still lesser than the traditional approach. Electric

field {E} within a three-dimensional cavity box with a center resonator occupying a

volume V can be discretized into small tetrahedrals, each having an elemental volume

Ve (e = 1, 2, . . . ,M), where M is the total number of elements. To obtain numerical

solution of Ee, it is expanded within the eth volume as

Ee =
m
∑

j=1

N e
jE

e
j = {N e}T{Ee}

where N e
j are the edge-based vector basis functions, E

e
j denote the expansion coeffi-

cients of the basis function, m represents the number of edges comprising the element

and the superscript e refers to the eth element. Substituting it into the usual vector

wave equation and using variational formulation, some vector identities and diver-

gence theorem, the weak form of Maxwell’s equation is obtained and expressed in

matrix form:

{F} = 1
2
({E}T [A]{E} − k2o{E}T [B]{E})
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where F represents the variational function. An eigenvalue system is then obtained

by applying the Ritz procedure, which amounts to taking the partial derivative of F

with respect to each unknown edge field and setting the result to zero. The result is

[A]{E} = k2o [B]{E}

where [A] and [B] are N × N symmetric, sparse matrices with N being the total

number of edges resulting from the subdivision of the body excluding the edges on

the boundary. The eigenvalues ko can be subsequently computed from the above

equation after imposing the necessary boundary conditions.

1.4 Thesis Layout

The layout of the thesis is as follows:

Chapter 2: Literature research is done to provide an overview of the DR antenna

technology and packaging techniques for electrically small antennas. Some common

analytical models used to characterize isolated DR are also reviewed and a paper on

the computation of cavity resonances using edge-based finite element has been found

to be useful in this research work.

Chapter 3: Conventional analytical models such as magnetic wall model, dielectric

waveguide model and Mongia’s closed-form equations for resonant frequency and Q-

factors are examined.

Chapter 4: Evaluation of the eigenvalues using TVFE method is discussed in detail.

A brief explanation of the variational formulation is presented, followed by listing

the finite element numerical procedures. Finally, software implementations of Matlab

codes are explained.

Chapter 5: Parametric study of the antenna is done to aid subsequent design pro-

cess. The fundamental limitations of electrically small antennas are listed. Finally,

precautions taken for the measurement of a small antenna are discussed.
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Chapter 6: Eigenvalues computed using TVFE method are compared with measured

results. In addition, the proposed method is compared with some popular models

commonly used for analyzing DR antennas, to ascertain the range of validity of the

models. Measurement results of the fabricated antennas are subsequently presented,

discussed and compared.

Chapter 7: The limitations of the TVFE method are discussed. Suggestions for

improvement and future works are made to conclude the thesis.

Appendix A: Derivations of the unknown coefficients aej , b
e
j , c

e
j and d

e
j .

Appendix B: Details of implementation of the computer programs in the thesis.

1.5 Original Contributions

In this project, the following original contributions have been made:

(i) Using Tangential Vector Finite Element (TVFE) method, eigenvalues of various

dielectric resonator geometries (cylindrical and rectangular) are compared with

some conventional models. TVFE method is found to be robust and capable of

predicting within 1% of error.

(ii) A compact DR antenna structure, modified from [1] to exclude the ground

plane has been proposed. Simulation and measurement results for linear and

circular-polarized antennas are in good agreement, verifying the usefulness of

the printed feed designs for broadband antennas. These antennas also have

smooth and symmetric radiation patterns, with high radiation efficiency.

(iii) Design methodology is proposed to aid subsequent design process for linear-

polarized (LP) and circular-polarized (CP) antennas.



Chapter 2

Literature Review

2.1 Dielectric Resonator Antennas Supported by

‘Infinite’ and Finite Ground Planes

In 1997, Z. Wu et al [7] carried out an experimental study of the effects of

ground plane size on a cylindrical dielectric resonator antenna fed by a probe. For

the convenience of the feed, dielectric resonator antenna usually had the support

of a ground plane of finite size. The parameters of concern include the antenna’s

resonance frequency, radiation pattern, gain and bandwidth. It has been observed

that when the ground plane is smaller than half-wavelength, the antenna suffers the

largest effect. Experimental study has shown that the size of the ground plane can

affect radiation of the antenna particularly at angles close to the ground surface.

Resonant frequency is mostly affected by the size of the ground plane when diameter

of the ground plane is smaller than half-wavelength. The frequency increases with the

size of the ground plane, with only little change when the diameter is greater than a

wavelength. Backward radiation is more severe for antenna with finite ground plane.

The backward radiation would lower the gain of the antenna. Experimentation shows

that the antenna gain increases from 2.73dB to 2.98dB as the diameter of the ground

plane increases from 2cm to 10cm. As the ground plane gets smaller, the impedance

bandwidth increases from 3.2% to 4.2%.

8
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2.2 Packaging Technique for Gain Enhancement of

Electrically Small Antenna designed on Gal-

lium Arsenide

In 2000, C.T.P. Song et al [8] presented a method to achieve complete RF front

end product equipped with its radiator within a single chip package. This is by

placing a parasitic radiator very close to the feed antenna, enabling the parasite

to extract the highly reactive near-field associated with the poor performance of a

reduced size feed antennas. This packaging technique offers alternative solution to

difficulties associated with electrically small antennas using gallium arsenide substrate

and increases the antenna gain by 15dB. As a result, manufacturing costs associated

with connecting the antenna to the RF front-end chip can be reduced.

The increasing demand for compact and fully integrated RF front end products

is due to their robustness, portability and ease of integration. One of the major

challenge now is to include a compact and fully integrated antenna, transmitter and

receiver on a single transceiver chip. However, such a configuration often suffers from

poor efficiency and narrow bandwidth. This is due to the antenna’s small radiating

element and hence a small effective aperture for collecting incoming radio signals or

providing radiation.

A quarter-wave H-shaped microstrip patch antenna operating at 5.8GHz, with

MESFET switches use as time division duplex operation, is used as the feed patch.

The chip antenna (4.1×2.1mm) is mounted on a brass block (20×20×6mm) which

acts as the ground plane for the antenna. Due to the small feed antenna size, a

gain of -10dBi is reported as compared to conventional patch antenna gain of +5dBi.

The parasitic radiator with a size of 22×22mm, is placed above the feed antenna

at distance of 0.5-10mm. Often, poor matching performance is due to difficulties in

achieving an optimum bond onto the chip. The bandwidth achieved by this antenna

configuration is 0.67%. Measured results show that the chip antenna without the
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parasite has a gain of -15dBi. The low gain is again due to the poor bond wire

properties. The inclusion of a parasitic radiator (placed 2mm above the feed) results in

an overall antenna gain close to 1dBi. It is observed in the experiment that increasing

the antenna ground plane can further improved the antenna gain to 6dBi.

The paper also offers suggestion to packaging design and assembly. It is well un-

derstood that packaging of a fragile semiconductor chip on a suitable carrier provides

robustness, ease of handling and protects the device from environmental degenera-

tion. Some of the more popular chip carriers are made of plastics and ceramics. As

the silicon/GaAs chip will perform all the necessary signal processing, only a few

connection pins are needed on the lead frame. These are effectively for the supply

voltage, ground and baseband signals. The parasitic antenna then sits on top of the

carrier material, sealing the MMIC antenna chip. The lid which seals the parasite

within the package may also be used as a radome to further improve the gain.

2.3 A Low-Profile Rectangular Dielectric Resonator

Antenna

In this paper, Esselle [9] reported a rectangular dielectric resonator antenna with

a very low profile (length-to-height ratio≈6). This aperture-coupled antenna can be

matched to the 50Ω input and radiates like a magnetic dipole at 11.6GHz.

The DRA has often been presented as a better alternative to microstrip patch

antenna. In order to have a fair comparison, the DRA has to have a low-profile.

Many low profile DRAs make use of very high permittivity material but in this paper,

a better comparison is made since the resonator has medium permittivity of 10.8.

The substrate has a permittivity of 10.2 and thickness of 0.64mm. The rectangular

resonator has a dimension of 15.2(L)×7.0(W)×2.6(H) mm.

The antenna is perfectly matched to the 50Ω input at this frequency, giving a

return loss of 38dB. Even though absorbers were placed around the edge of the ground
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plane to minimize ground effects, the radiation patterns are still marred by ripples

(-90≤ θ ≤90). It also has a very low antenna gain value (close to 0dB). The cross-

polarization is more than 15 dB below the co-polarization for the same directions.

The author attributes the difference between the measured and theoretical radiation

patterns to the finite size of the ground plane in the test antenna.

2.4 Overview of Analytical Models for Isolated Di-

electric Resonator

One of the simplest models to determine the resonant frequency of an isolated dielec-

tric resonator is by using Cohn’s Model [10]. In Cohn’s analysis, the electromagnetic

field inside a dielectric resonator with high dielectric constant may be approximately

described by assuming all surfaces are covered by perfect magnetic conductor. This

crude characterization of the dielectric resonator resulted in predicting the resonant

frequency with more than 10% of error.

A better analysis of the dielectric resonator is introduced by Itoh and Rudokas [11].

Instead of using idealized waveguide with perfect magnetic walls like in Cohn’s Model,

this model starts with a more realistic dielectric rod waveguide. Therefore, continu-

ity of both the electric and magnetic fields tangential to the dielectric resonator’s

cylindrical interface is ensured. Hence, eigenvalue solved from the transcendental

equations is a more accurate description of an isolated dielectric resonator than the

Cohn’s Model. As a result, this approximation method gives a considerably better

prediction of the resonant frequency with 2% of error.

Subsequently, full-blown solution of the boundary value problem has been achieved

by various authors predicting the resonant frequency with better than 1% accuracy.

Using a combination of magnetic wall and dielectric waveguide models, Guillon and

Garault [5] are able to propose a method with around 1% accuracy. However, in all

the analytic models mentioned above, effects of the feed on the resonant frequency and
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higher order modes are not taken into account. To do so, rigorous analysis methods

such as Method of Moment (MoM), Finite Difference Time Domain (FDTD) and

Finite Element Method (FEM) are required to include environmental effects on the

antenna.

2.5 Computation of Cavity Resonances Using Edge-

Based Finite Elements

In this paper by A. Chatterjee et al [6], eigenvalues of a cavity resonator are

obtained accurately using edge-based finite elements. It has also been observed that

this formulation method is suitable for modeling arbitrarily shaped inhomogeneous

regions. A comparison between the edge-based tetrahedral and rectangular brick ele-

ments shows the use of tetrahedral elements leads to greater accuracy of the computed

eigenvalues.

It is often necessary to solve Maxwell’s equations for the resonances of a closed

cavity. As exact eigenvalues can only be evaluated for simple geometries, numer-

ical technique such as the finite element method is required for arbitrarily shaped

cavities. However, the occurrence of spurious modes in nodal based finite element

method often plague the computation of their eigenvalues. Even though this can be

overcome by implementing a penalty term, continuity of fields across material inter-

faces and geometries with sharp edges are not easy to fulfil. It is suggested in this

paper, the use tangential vector finite elements can overcome these shortcomings.

Even though the use of edge elements would results in more unknowns, this can be

balanced by the greater sparsity of the finite element matrix. Hence, computation

time required to solve such a system iteratively with a given accuracy is still lesser

than the conventional approach.

Using edge-based finite element method, a comparison of the computed eigenvalues

for a 1.0×0.5×0.75cm rectangular cavity is presented, using rectangular bricks and
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tetrahedral elements. The edge-based approach using tetrahedral elements predicts

the first six distinct non-trivial eigenvalues with less than 4 percent error. This is much

accurate than using rectangular brick elements which predicts the same eigenvalues

with less than 6 percent error. This is despite the rectangular brick elements having

a maximum edge length of 0.15 cm which is smaller than the tetrahedral elements

of 0.2 cm. Another comparison of the computed eigenvalues for a rectangular cavity

half-filled with a dielectric filling of εr = 2, show good agreement (percentage error

within 1%) with the analytical values. Hence, edge-based approach has been reliable

in predicting the eigenvalues for both homogeneous and inhomogeneous cavities.



Chapter 3

Analytical Models for Dielectric
Resonator

Various analytical models have been used over the years to analyze isolated dielectric

resonator. It is usually developed by making basic assumptions to offer simple and

analytical solutions to an understanding of the physical phenomena. In analytical

methods, fields associated with the antenna are divided into interior and exterior

regions as shown in Figure 3.1.

Exterior Region

� � � � � �
Substrate

Interior Region

Figure 3.1: Division of fields associated with a dielectric resonator into interior and
exterior region

The interior region refers to fields within the resonator and the exterior region includes

the air and substrate. Often, it is of great practical interest to obtain solution of the

electromagnetic fields within the dielectric resonator in some simplified way that is

14
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still capable of giving results which are not too far from the exact values. In this

chapter, four such simple mathematical models shall be reviewed.

3.1 Magnetic Wall Model

In 1983, a simple analysis for a cylindrical DR antenna was carried out by S.A. Long

et al [4] using perfect magnetic wall model. Figure 3.2 shows the geometry of the DR

antenna analyzed.

Figure 3.2: Geometry of a cylindrical DR antenna

2a

h

� �
� �

�
�

Ground
PlaneSMA Connector

Figure 3.3: Side view of the cylindrical DR antenna
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3.1.1 Different excitation modes

Various modes can be excited in the dielectric resonator. Figure 3.4-3.7 show the

E-fields and H-fields of an isolated cylindrical DR. A study of the field configurations

is very useful, as it gives designers some intuition of the antenna’s far-field radiation

characteristics. In this way, radiation patterns of a DR antenna can be predicted

quite accurately without extensive computations. From Figure 3.4, it can be observed

that TE01δ mode radiates like a magnetic dipole oriented along the vertical (z-axis)

direction. Similarly, TM01δ mode radiates like an axial electric dipole. Such modes

have endfire radiation patterns. In contrast, the fields for TM11δ mode suggest it will

radiate like a magnetic dipole oriented along the horizontal direction. Such a mode

has a main beam in the broadside direction. As for TM21δ mode, it radiates like a

magnetic quadrupole oriented also along the horizontal direction. When magnetic

walls are not no longer imposed on the cylindrical DR’s surface, TM11δ mode is

replaced by hybrid HE11δ mode. This is the lowest order mode, giving rise to the

smallest antenna size and a desirable main beam along the broadside direction.

(i) E-field (ii) H-field

Figure 3.4: Fields inside an isolated cylindrical DR for TE01δ mode
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(i) H-field(ii) E-field

Figure 3.5: Fields inside an isolated cylindrical DR for TM01δ mode

(ii) E-field (i) H-field

Figure 3.6: Fields inside an isolated cylindrical DR for TM11δ mode

(i) E-field (ii) H-field

Figure 3.7: Fields inside an isolated cylindrical DR for TM21δ mode
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3.1.2 Resonant frequencies

When the DRA surfaces are assumed to be perfect magnetic conductors, wave func-

tions for such a cavity can be represented as follows [4]:

ΨTEnpm
= Jn

(

χTEnp
a
ρ

)

{

sinnφ

cosnφ

}

sin

[

(2m+ 1)πz

2d

]

(3.1.1)

ΨTMnpm
= Jn

(

χTMnp
a

ρ

)

{

sinnφ

cosnφ

}

cos

[

(2m+ 1)πz

2d

]

(3.1.2)

where ΨTEnpm
and ΨTMnpm

refer to wave functions for the transverse electric (TE) to z

and transverse magnetic (TM) to z respectively. Jn is the Bessel function of the first

kind, with Jn(χ
TE
np ) = 0, J

′
n(χ

TM
np ) = 0, n=1,2,3,. . . , p=1,2,3,. . . and m=0,1,2,3,. . .

From the separation equation k2ρ + k2z = k2 = w2µε, the resonant frequency of the

npm mode can be found as follows:

fnpm =
1

2πa
√
µε

√

√

√

√

{

χTEnp
2

χTMnp
2

}

+
[πa

2d
(2m+ 1)

]2

(3.1.3)

and the wavenumbers are found as

kρ =
1

a

{

χTEnp
χTMnp

}

(3.1.4)

kz =
(2m+ 1)π

2d
(3.1.5)

For most applications, it is of interest to excite the fundamental (dominant) mode,

which has the lowest resonant frequency and the smallest antenna size. The mode of

interest in this case is the TM110. The resonant frequency is calculated by using

fTM110
=

c

2πa
√
εr

√

(χTM11 )
2
+
(πa

2d

)2

(3.1.6)

where χTM11 = 1.841.
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3.1.3 Equivalent magnetic surface currents

The TM110 mode fields within the cylindrical dielectric resonator are used for the

derivation of the far-field expressions. Using equation 3.1.2, the wave function of this

mode is expressed as:

ΨTM110
= J1

(

χTM11
a

ρ

)

cosφ cos
[zπ

2d

]

(3.1.7)

The cosφ term is used because the feed position is along φ = 0. From equation 3.1.7,

the various E-fields can subsequently be obtained as follows:

Eφ =
1

jωερ

∂2Ψ

∂φ∂z
(3.1.8)

Ez =
1

jωε

(

∂2

∂z2
+ k2

)

Ψ (3.1.9)

Eρ =
1

jωε

∂2Ψ

∂ρ∂z
(3.1.10)

ΨTM110
is expressed as Ψ for convenience. Using equivalence principle,

−→
Ms =

−→
E × n̂ (3.1.11)

the equivalent magnetic currents on the DRA surfaces are found and treated as the

radiating sources for far-field radiation fields. The equivalent currents obtained are:

The side wall:

Mz′ =
π

2jωεad
J1(χ

TM
11 ) sinφ

′ sin

[

πz′

2d

]

(3.1.12)

Mφ′ =
1

jωε

(

χTM11
a

)2

J1(χ
TM
11 ) cosφ

′ cos

[

πz′

2d

]

(3.1.13)

The top and bottom walls:

Mφ′ =
πχTM11
2jωεad

J ′1

(

χTM11 ρ′

a

)

cosφ′ (3.1.14)

Mρ′ =
π

2jωερ′d
J1

(

χTM11 ρ′

a

)

sinφ′ (3.1.15)
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3.1.4 Field Configuration

As the radiation fields are usually expressed in spherical coordinates (r, θ, φ), trans-

formation of coordinates from cylindrical to spherical coordinates is required. Hence,

the following equations are obtained:

Mθ = Mρ′ cos θ cos(θ − θ′) +Mφ′ cos θ sin(θ − θ′)−Mz′ sin θ (3.1.16)

Mφ = −Mρ′ sin(φ− φ′) +Mφ′ cos(φ− φ′) (3.1.17)

After transformation, the currents are then used for the calculations of the electric

vector potentials:

Fθ =
e−jkor

4πr

∫ ∫ ∫

Mθe
jko[ρ′ sin θ cos(φ−φ′)+z′ cos θ]ρ′dρ′dφ′dz (3.1.18)

Fφ =
e−jkor

4πr

∫ ∫ ∫

Mφe
jko[ρ′ sin θ cos(φ−φ′)+z′ cos θ]ρ′dρ′dφ′dz (3.1.19)

where ko = ω
√
µoεo is the free space wave number. In far-field region, the electric

field Eθ and Eφ are proportional to the vector potentials Fφ and Fθ respectively. In

order to express the vector potentials into forms suitable for programming, they are

further evaluated as:

Fθ = C1{I2 − I1 − 0.5kρ(I3 + I4 − I5 − I6) + 1.16ko sin θJ1(koa sin θ)D1

−0.581k2ρa[Jo(koa sin θ) + J2(k0a sin θ)]D1} (3.1.20)

Fφ = C2{−I1 − I2 − 0.5kρ(I3 − I4 − I5 + I6)− 0.581k2ρa[Jo(koa sin θ)

−J2(koa sin θ)]D1} (3.1.21)
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where

C1 =
π2

jωεd

1

4πr
sinφ cos(kod cos θ) cos θ (3.1.22)

C2 =
π2

jωεd

1

4πr
cosφ cos(kod cos θ) (3.1.23)

D1 =

[

π2

4d2
− k2o cos

2 θ

]−1
(3.1.24)

kρ =
χTM11
a
=
1.841

a
(3.1.25)

I1 =

∫ a

0

J1(kρρ
′)J0(koρ

′ sin θ)dρ′ (3.1.26)

I2 =

∫ a

0

J1(kρρ
′)J2(koρ

′ sin θ)dρ′ (3.1.27)

I3 =

∫ a

0

J0(kρρ
′)J0(koρ

′ sin θ)ρ′dρ′ (3.1.28)

I4 =

∫ a

0

J0(kρρ
′)J2(koρ

′ sin θ)ρ′dρ′ (3.1.29)

I5 =

∫ a

0

J2(kρρ
′)J0(koρ

′ sin θ)ρ′dρ′ (3.1.30)

I6 =

∫ a

0

J2(kρρ
′)J2(koρ

′ sin θ)ρ′dρ′ (3.1.31)
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3.2 Dielectric Waveguide Model

An analytical model commonly used to model rectangular dielectric resonator antenna

is the dielectric waveguide model (DWM) [12]. The model originated from DWM of

rectangular dielectric guides. However, in this case the waveguide is truncated along

the z-direction at ±d/2 as shown in Figure 3.8. The six walls of the rectangular DR

are assumed to be perfect magnetic walls.

y

x

z

b

a

y

x

z

d

a

b

(a) (b)

Figure 3.8: (a) Infinite Dielectric Waveguide (b) Truncated Dielectric waveguide

3.2.1 Field Configuration

For a rectangular DR antenna with dimension a, b > d, the lowest order mode will be

TEz
111. Using DWM, the following fields within the DR antenna are obtained:

Hx =
kxkz
jwµo

sin(kxx) cos(kyy) sin(kzz) (3.2.1)

Hy =
kykz
jwµo

cos(kxx) sin(kyy) sin(kzz) (3.2.2)

Hz =
k2x + k

2
y

jwµo
cos(kxx) cos(kyy) cos(kzz) (3.2.3)

Ex = ky cos(kxx) sin(kyy) cos(kzz) (3.2.4)

Ex = −kx sin(kxx) cos(kyy) cos(kzz) (3.2.5)

Ez = 0 (3.2.6)
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where

k2x + k
2
y + k

2
z = εrk

2
o (3.2.7)

kz tan(kzd/2) =
√

(εr − 1)k2o − k2z (3.2.8)

ko =
2π

λo
, kx =

mπ

a
, ky =

nπ

b
(3.2.9)

3.2.2 Resonant Frequency

To evaluate the resonant frequency of the DR, kx and ky are substituted into charac-

teristic equation 3.2.7 and then used in the transcendental equation 3.2.8 to solve for

kz. The resonant frequency can be obtained from (3.2.7) by solving for ko using the

kz evaluated using simple numerical root-finding method.

3.2.3 Q-Factor

The radiation Q-factor of the DR antenna is determined as follows:

Qrad =
2wWe

Prad
(3.2.10)

where We and Prad are the stored energy and radiated power respectively. These

parameters can be obtained using:

We =
εoεrabd

32

(

1 +
sin(kzd)

kzd

)

(k2x + k
2
y) (3.2.11)

Prad = 10k4o |Pm|2 (3.2.12)

Pm =
−jw8εo(εr − 1)

kxkykz
sin(kzd/2)ẑ (3.2.13)

The bandwidth (BW) can be obtained as

BW =
S − 1
Qe

√
S

(3.2.14)

where S is the maximum acceptable voltage standing wave ratio (VSWR). The nor-

malized Q-factor is defined as

Qe =
Qrad

ε
3/2
r

(3.2.15)
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3.3 Empirical Equations derived from Rigorous

Methods

In the previous sections, some analytical models commonly used for isolated dielectric

resonator are reviewed. A more accurate way to determining the resonator’s frequency

and bandwidth, is by using the equations proposed by Mongia et al [2] and Kishk

et al [3]. It was found from rigorous methods that

koa ∝
1√

εr +X
(3.3.1)

gives a good approximation to describe the dependence of normalized wavenumber

as a function of εr. The value of X is found empirically by comparing the numerical

results of numerical methods. Its value is quite small and is assumed to depend on

the mode.

3.3.1 Resonant Frequency of Isolated Cylindrical DRs

HE11δ Mode:

koa(εr=38) =
6.324√
εr + 2

[

0.27 + 0.36
( a

2H

)

+ 0.02
( a

2H

)2
]

(3.3.2)

where c is the velocity of light in free-space. Range of validity for the above equation

is 0.4 ≤ a/H ≤ 6.

TE01δ Mode:

koa(εr≥25) =
2.327√
εr + 1

[

1.0 + 0.2123
( a

H

)

− 0.00898
( a

H

)2
]

(3.3.3)

where the the above formula is valid in the range 0.33 ≤ a/H ≤ 5.
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TE011+δ Mode:

koa(εr≥25) =
2.208√
εr + 1

[

1.0 + 0.7013
( a

H

)

− 0.002713
( a

H

)2
]

(3.3.4)

where the the above formula is valid in the range 0.33 ≤ a/H ≤ 5.

TM01δ Mode:

koa =

√

3.832 +
(

πa
2H

)2

√
εr + 2

(3.3.5)

where the the above formula is valid in the range 0.33 ≤ a/H ≤ 5.

3.3.2 Bandwidth of Isolated Cylindrical DRs

The impedance bandwidth of an antenna refers to the frequency bandwidth in which

the antenna’s VSWR is less than a specified value S. Impedance bandwidth of a DR

antenna, when completely matched to the coplanar waveguide feed at its resonant

frequency, is related to the total unloaded Q-factor (Qu) of the resonator by the

following equation:

BW =
S − 1
Qu

√
S

(3.3.6)

For a DR antenna, its dielectric and conductor loss are negligible as compared to its

radiated power. Hence, the total unloaded Q-factor (Qu) is related to the radiation

Q-factor (Qrad) by

Qu ' Qrad (3.3.7)

It has been found from rigorous numerical methods that Qrad depends on the DR’s

radius to height aspect ratio and the dielectric constant of the resonator.
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HE11δ Mode:

Qrad(εr=38) = 0.01007(εr)
1.30 a

H

{

1 + 100e−2.05[0.5(a/H)−0.0125(a/H)
2]
}

(3.3.8)

Range of validity for the above equation is 0.4 ≤ a/H ≤ 6.

TE01δ Mode:

Qrad(εr≥25) = 0.078192(εr)
1.27[1.0 +17.31

(

H
a

)

− 21.57
(

H
a

)2

+10.86
(

H
a

)3 − 1.98
(

H
a

)4
] (3.3.9)

Range of validity for the above equation is 0.5 ≤ a/H ≤ 5.

TE011+δ Mode:

Qrad(εr≥25) = 0.03628(εr)
2.38[−1.0 + 7.81

(

H

a

)

− 5.858

(

H

a

)2

+ 1.277

(

H

a

)3

] (3.3.10)

Range of validity for the above equation is 0.5 ≤ a/H ≤ 5.

TM01δ Mode:

Qrad = 0.009(εr)
0.888e0.04εr

{

1−
[

0.3− 0.2
(

a
H

)] [

38−εr
28

]}

.
{

9.498
(

a
H

)

+ 2058.33
(

a
H

)4.322
e−3.501(a/H)

}

(3.3.11)
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3.3.3 Radiation Q-Factor and Eigenvalues of Various Modes

Using empirical equations [2],[3] from previous section, variation of the DR’s

radiation Q-factor and wavenumbers are plotted against the a/h aspect ratio in Fig-

ures 3.9-3.12. TM01δ, TE01δ and HE11δ modes are considered in this investigation.

It is interesting to find out the amount of bandwidth attainable by an isolated

DR without resorting to bandwidth enhancement techniques. Comparing Figures 3.9

and 3.11, it is observed that DR with lower dielectric constant value has a lower

radiation Q-factor and therefore, a wider impedance bandwidth. However, it may

not be practical to choose a resonator with too low permittivity value. Since, the

resonator must have a dielectric constant high enough to contain the fields within the

DR antenna in order to resonate.

Figures 3.9 and 3.11 also provide typical radiation Q-factor values for DR with

εr = 10.2 and 38.5. These values are useful to give designers some intuition of

typical bandwidth achievable by DR antennas. It is interesting to note that a low

profile antenna give the widest bandwidth, but the bandwidth does not increase

monotonically with the DR antenna’s volume. As the DR antenna’s volume increases,

the bandwidth decreases initially until it reaches a minimum value and then increases

with volume. However, it should be kept in mind that the estimated achievable

bandwidth was determined for an isolated DR and do not take into account the

coupling mechanisms which may reduce the achievable bandwidth significantly.
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Figure 3.9: Radiation Q-factor of a dielectric disc with radius a, height h and dielectric
constant εr = 10.2.
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Figure 3.10: Resonant wavenumbers of different modes for an isolated cylindrical DR
with radius a, height h and dielectric constant εr = 10.2.
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Figure 3.11: Radiation Q-factor of a dielectric disc with radius a, height h and di-
electric constant εr = 38.5.
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Figure 3.12: Resonant wavenumbers of different modes for an isolated cylindrical DR
with radius a, height h and dielectric constant εr = 38.5.



Chapter 4

Full-Wave Analysis of Dielectric
Resonator using Finite Element
Method

In the previous chapter, a number of analytical models have been used to

characterize dielectric resonator antenna. However, these simple models are not able

to characterize environmental effects such as the existence of a substrate, a finite size

ground plane, a feed substrate or a metallic box enclosing the dielectric resonator.

Also, higher order modes or hybrid modes co-exist with the desired mode within the

resonator. Their effects can be taken into account by using full-wave analysis. Over

the years, various more complex methods have been employed to analysis the dielectric

resonator. These range from various radial and axial mode matching methods [13]-

[14], the asymptotic expansion method for resonators with very high permittivity

[15], the moment method based on the surface integral techniques [16]-[17] and the

conventional mode matching approaches using dyadic Green functions or transverse

modes in expanding the interior and exterior fields [18]. Normally, these methods

are used to compute rigorously the resonant frequencies, the electromagnetic field

distribution of axis symmetric structures and their unloaded quality factors.

In this thesis, three-dimensional finite element method is used to investigate

TE, TM and hybrid DR modes. Finite element method has shown to be the most

applicable and versatile way to analyze a dielectric resonator resting on a finite size

30
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ground plane. With this method, it is possible to fit any polygonal shape by choosing

triangular element shapes and sizes. To increase the accuracy of the solution, denser

mesh or high-order polynomial approximation functions can be used. Formulation in

this chapter can be found in [19] and interested reader can refer to this book for more

details.

4.1 Problem Description

Consider the case of a dielectric resonator placed in the center of a metallic cavity

shown in Figure 4.1:

Metallic Cavity

Dielectric Resonator

Figure 4.1: Dielectric resonator enclosed by a cavity

In the full-wave analysis of a dielectric resonator enclosed in a metallic cavity, it is

necessary to solve the following boundary value problem:

∇×
(

1

µr
∇× E

)

− k2oεrE = −jkoZoJ (4.1.1)

∇×
(

1

εr
∇×H

)

− k2oµrH = ∇×
(

1

εr
J

)

(4.1.2)
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Boundary conditions often encountered for electrically conducting surfaces are

n̂× E = 0 (4.1.3)

n̂×∇×H = 0 (4.1.4)

and magnetically conducting surfaces are

n̂×H = 0 (4.1.5)

n̂×∇× E = 0 (4.1.6)

4.2 Variational Formulation

Given the boundary-value problem as shown in Figure 4.1, consider the vector wave

equation from Equation 4.1.1,

∇×
(

1

µr
∇× E

)

− k2oεrE = −jkoZoJ

Let the operator L be

L = ∇×
(

1

µr
∇×

)

− k2oεr (4.2.1)

and according the definition of the inner product,

〈LE,F〉 =
∫ ∫ ∫

V

F∗ ·
[

∇×
(

1

µr
∇× E

)

− k2oεrE

]

dV (4.2.2)

Using the second vector Green’s theorem,

∫ ∫ ∫

V

[b · (∇× u∇× a)− a.(∇× u∇× b)]dV

=

∮

S

u(a×∇× b− b×∇× a) · n̂dS (4.2.3)

the following equation is obtained:

〈LE,F〉 =

∫ ∫ ∫

V

E ·
[

∇×
(

1

µr
∇× F∗

)

− k2oεrF
∗
]

dV

+

∫ ∫

S

1

µr
[E× (∇× F∗)− F∗ × (∇× E)] · n̂dS (4.2.4)
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Using the identity,

[E× (∇× F∗)] · n̂ = (n̂× E) · (∇× F∗) = −E · [n̂× (∇× F∗)] (4.2.5)

and if both E and F satisfy the homogeneous Dirichlet boundary condition,

n̂× E = 0 on the cavity walls S1 (4.2.6)

and the homogeneous Neumann boundary condition of the third kind

1

µr
n̂× (∇× E) + γen̂× (n̂× E) = 0 on S2 (4.2.7)

with S1 + S2 = S, the surface integral in equation 4.2.4 vanishes on the condition

that both γe and µr are real. In addition, if both εr and µr are real, equation 4.2.4

can be expressed as

〈LE,F〉 = 〈E,LF〉 (4.2.8)

and therefore, L is self-adjoint. When this condition is satisfied, the variational

function can be constructed by substituting equation 4.2.1 into

F (φ) =
1

2
〈Lφ, φ〉 − 1

2
〈φ, f〉 − 1

2
〈f, φ〉 (4.2.9)

where the angular brackets denote the inner product defined by

〈φ, ψ〉 =
∫

Ω

φψ∗dΩ (4.2.10)

and Ω denotes the domain of the problem with the asterisk implying complex conju-

gate operation, the following equation is subsequently obtained:

F (E) =
1

2

∫ ∫ ∫

V

E∗ ·
[

∇×
(

1

µr
∇× E

)

− k2oεrE

]

dV

− jkoZo
2

∫ ∫ ∫

V

(E · J∗ − E∗ · J)dV (4.2.11)

Making use of the first vector Green’s theorem,

∫ ∫ ∫

V

[u(∇× a) · (∇× b)− a · (∇× u∇× b)]dV

=

∫ ∫

S

u(a×∇× b) · n̂dS (4.2.12)
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and boundary conditions (4.2.6) and (4.2.7), the following equation is obtained:

F (E) =
1

2

∫ ∫ ∫

V

[

1

µr
(∇× E) · (∇× E)∗ − k2oεrE.E

∗
]

dV

+
jkoZo
2

∫ ∫ ∫

V

(E∗ · J− E · J∗)dV

+
1

2

∫ ∫

S2

γe(n̂× E) · (n̂× E∗)dS (4.2.13)

Since there is no excitation, J = 0 and applying the Dirichlet boundary condition,

the following equation is hence obtained:

F (E) =
1

2

∫ ∫ ∫

V

[

1

µr
(∇× E) · (∇× E)∗ − k2oεrE · E∗

]

dV (4.2.14)

where ko = w2µoεo. From the above equation, it can be observed that both ∇ × E

and E need to be square integrable.

4.3 Finite Element Numerical Procedures

4.3.1 Domain Discretization

The variational formulation in the previous section seeks to find the solution in the

infinite-dimensional functional space. In order to solve the three-dimensional cavity

problem, there is a need to convert the original continuum problem into a discretized

version using finite element method. It this way, the solution space has been restricted

to a smaller, finite dimensional function space which can be described by a finite

number of parameters (the degrees of freedom). When this constraint is imposed

properly, stationary will occur at a point which is in the neighbourhood of the true

solution and leads to a finite number of equations with respect to the degrees of

freedom. Hence, from the original variational equation 4.2.14:

F (E) =
1

2

∫ ∫ ∫

V

[

1

µr
(∇× E) · (∇× E)∗ − k2oεE · E∗

]

dV

where V being the volume of the cavity. F can be numerically discretized by subdivid-

ing the volume V into small tetrahedral with volume V e (e=1,2,3,. . .,M), where M is
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the total number of elements. Within each element, the electric field is approximated

as

Ee =
n
∑

i=1

N e
i E

e
i = {Ee}T{N e} = {N e}T{Ee} (4.3.1)

where N e
i are the vector basis functions, E

e
i denote the expansion coefficients of

the basis functions and n represents the number of edges comprising the element.

Substituting (4.3.1) into (4.2.14), the following matrix form can be attained:

F =
1

2

M
∑

e=1

({Ee}T [Ae]{Ee} − k2o{Ee}T [Be]{Ee}) (4.3.2)

where

[Ae] =

∫ ∫ ∫

V e

1

µer
{∇ ×N e} · {∇ ×N e}TdV (4.3.3)

[Be] =

∫ ∫ ∫

V e

εer{N e} · {N e}TdV (4.3.4)

Once the summation is carried out and using global notation, equation 4.3.2 can be

expressed as

F =
1

2
({E}T [A]{E} − k2o{E}T [B]{E}) (4.3.5)

An eigenvalue system is subsequently obtained by applying the Ritz procedure, which

involved taking partial derivative of F with respect to each unknown edge field and

setting the result to zero. Hence, the following result is obtained:

[A]{E} = k2o [B]{E} (4.3.6)
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4.3.2 Elemental Interpolation

Once the domain has been discretized, the next step is to approximate the unknown

function within each element (Figure 4.2). Within each element, the unknown func-

2

1

4

3

Figure 4.2: Linear tetrahedral element

tion φ can be approximated as

φe(x, y, z) = ae + bex+ cey + dez (4.3.7)

where the four unknown coefficients ae, be, ce and de can be determined by enforcing

equation (4.3.7) at the four nodes of the element. Hence, the following four equations

are obtained:

φe1 = ae + bexe1 + c
eye1 + d

eze1 (4.3.8)

φe2 = ae + bexe2 + c
eye2 + d

eze2 (4.3.9)

φe3 = ae + bexe3 + c
eye3 + d

eze3 (4.3.10)

φe4 = ae + bexe4 + c
eye4 + d

eze4 (4.3.11)

where φej refers to the value of φ at the j
th node. Solving the above four simultaneous

equations, the following unknown coefficients are thus found to be:
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ae =
1

6V e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φe1 φe2 φe3 φe4

xe1 xe2 xe3 xe4

ye1 ye2 ye3 ye4

ze1 ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6V e
(ae1φ

e
1 + a

e
2φ

e
2 + a

e
3φ

e
3 + a

e
4φ

e
4) (4.3.12)

be =
1

6V e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

φe1 φe2 φe3 φe4

ye1 ye2 ye3 ye4

ze1 ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6V e
(be1φ

e
1 + b

e
2φ

e
2 + b

e
3φ

e
3 + b

e
4φ

e
4) (4.3.13)

ce =
1

6V e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

xe1 xe2 xe3 xe4

φe1 φe2 φe3 φe4

ze1 ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6V e
(ce1φ

e
1 + c

e
2φ

e
2 + c

e
3φ

e
3 + c

e
4φ

e
4) (4.3.14)

de =
1

6V e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

xe1 xe2 xe3 xe4

ye1 ye2 ye3 ye4

φe1 φe2 φe3 φe4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6V e
(de1φ

e
1 + d

e
2φ

e
2 + d

e
3φ

e
3 + d

e
4φ

e
4) (4.3.15)

with volume of the eth element, V e given as

V e =
1

6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

xe1 xe2 xe3 xe4

ye1 ye2 ye3 ye4

ze1 ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.3.16)

The coefficients aej , b
e
j , c

e
j and d

e
j can be determined from expansion of the determi-

nants (refer to Appendix A), where j = 1, 2, 3, 4. Substituting the expressions for

ae, be, ce and de back into (4.3.7), the following equation is obtained:

φe(x, y, z) =
4
∑

j=1

N e
j (x, y, z)φ

e
j (4.3.17)

where the interpolation functions

N e
j (x, y, z) =

1

6V e
(aej + b

e
jx+ c

e
jy + d

e
jz) (4.3.18)
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and the interpolation functions have the property of

N e
j (xi, yi, zi) = δij =

{

1 (i = j)

0 (i 6= j)
(4.3.19)

and in addition, N e
j (x, y, z) varnishes when the observation point is on the tetrahedron

surface opposite the jth node. This is to ensured inter-element continuity of the

interpolated function.

4.3.3 Tangential Vector Finite Elements

In the previous section, linear interpolation functions for the tetrahedral elements has

been derived. Consider the vector function

W12 = Le1∇Le2 − Le2∇Le1 (4.3.20)

As before, Le1 is a linear function that varies from one at node 1 to zero at node 2

and in a similar way, Le2 is a linear function which varies from one at node 2 to zero

at node 1. Also, the vector function W12 satisfies the following properties

∇ ·W12 = 0

∇×W12 = 2∇Le1 ×∇Le2

e1 ·W12 =
Le1 + L

e
2

le1
=
1

le1
(4.3.21)

where e1 refers to a unit vector pointing from node 1 to node 2, such that e1 · ∇Le1 =

−1/le1 and e1 · ∇Le2 = 1/le1. Parameter le1 denotes the length of the edge connecting

nodes 1 and 2. This implies that W12 has a constant tangential component along

edge (1 → 2) and no tangential component along any other five edges. In addition,

W12 has no tangential component along element facet (2,3,4) and (1,3,4). Tangential

component only exist on element facets that contain edge (1,2). Thus, W12 possesses

the necessary requirements to be a vector basis function for the edge field associated

with edge (1,2). Hence, the vector basis functions for the six edges are expressed as:
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Figure 4.3: Tetrahedral element

Edge i Node i1 Node i2
1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

Table 4.1: Edge definition for tetrahedral element

N e
1 = W12l

e
1 = (L

e
1∇Le2 − Le2∇Le1)le1

N e
2 = W13l

e
2 = (L

e
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N e
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e
3 = (L

e
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N e
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e
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where the vector basis function for edge i can be simplified as

N e
i =Wi1i2l

e
i = (L

e
i1
∇Lei2 − Lei2∇L

e
i1
)lei (4.3.22)
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where the local edge numbers i (= 1, 2, 3, . . . , 6) and their respective nodes i1 and

i2 are defined in Table 4.3.3. V
e refers to the volume of the tetrahedral element and

lei = |rei2 − rei1 | is the length of the ith edge with rei1 and rei2 denote the locations of the

nodes i1 and i2 of the e
th element respectively.

In general, the implementation of the above discretization will involve two num-

bering systems and thus some unique global edge direction must be defined to ensure

continuity of n̂ × E across all edges. Finally, since ∇ · W e
i = 0, the electric field

obtained from the solution of (4.3.2) satisfies the divergence equation within each el-

ement. Hence, the solution will be free from contamination due to spurious solutions.

4.3.4 Evaluation of Elemental Matrices

When the vector basis functions in the previous section are used for the three-

dimensional finite element discretization of a vector wave equation, the resulting

elemental matrices are obtained:

Ee
ij =

∫

V e

(∇×N e
i ) · (∇×N e

j )dV (4.3.23)

F e
ij =

∫

V e

N e
i ·N e

j dV (4.3.24)

These two integrals are subsequently evaluated analytically for tetrahedral elements.

Since

∇×N e
i = 2lei∇Lei1 ×∇L

e
i2

=
lei

(6V e)2
[(cei1d

e
i2
− dei1c

e
i2
)x̂+ (dei1b

e
i2
− bei1d

e
i2
)ŷ + (bei1c

e
i2
− cei1b

e
i2
)ẑ

(4.3.25)

and

N e
i ·N e

j =
lei l

e
j

(6V e)2
[Lei1L

e
j1
fi2j2 − Lei1L

e
j2
fi2j1 − Lei2L

e
j1
fi1j2 + L

e
i2
Lej2fi1j1 ]

(4.3.26)
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where fij = bei b
e
j + c

e
i c
e
j + d

e
id

e
j . Hence, the elemental matrices become

Ee
ij =

4lei l
e
jV

e

(6V e)4
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e
i2
− dei1c

e
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)(cej1d

e
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e
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e
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e
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e
j2
)

+(bei1c
e
i2
− cei1b

e
i2
)(bej1c

e
j2
− cej1b

e
j2
)] (4.3.27)

and
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4.4 Software Implementation

Based on the finite element formulation mentioned in the previous sections, several

subroutines are written in Matlab to facilitate the solving of eigenvalues for the case

of a dielectric resonator within a metallic cavity. In this section, an overview of the

Matlab codes will be presented for easy usage of the FEM codes (Appendix B).

4.4.1 Software Overview

The written codes are capable of generating the necessary matrices, formulating the

eigenvalue equation and solving the resultant matrices. The codes require the user to

input the following:

1. Generate the meshes using commercial softwares (For example: Gmsh and GID

7.2).

2. Permittivity of the dielectric resonator and supporting substrate.

3. Size of the metallic cavity box.

The Matlab codes will subsequently output the computed results as text files. The

output files consist of a list of assigned edges, assigned global edge for each elements

and most important of all, the eigenvalues of the dielectric resonator and metallic

cavity.
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4.4.2 Code Descriptions

FEDGE.M: This program is used for assigning numbers to each unique edges after

generating the mesh using commercial software (GID 7.2). The mesh gen-

erator will mesh the object drawn and provide two files: “Element.txt” and

“Global.txt”. ”Element.txt” comprises of all the tetrahedral elements with their

corresponding global nodes. On the other hand, “Global.txt” will contain x, y

and z coordinates of each global coordinates. “Element.txt” consists of a (n×4)

matrix as shown in Figure 4.4.

Element
Local Nodes

1 2 3 4

1 6 8 20 11

2 6 8 11 5

3 6 8 5 4

222 54 38 60 47

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.4: Example of element.txt generated using mesh generator GID 7.2

where n refers to the number of tetrahedral elements and is also the number

of rows for the matrix. The first column contains all the first nodes of the n

tetrahedral elements. Similarly, each columns comprised of their respective local

nodes. The data stored within each row and column are the global edges. Hence,

from Figure 4.4, we can see that there are a total of 222 tetrahedral elements.

Matrix of element.txt with (row,column)=(222,2) contains global node 38. The

row refers to the 222nd tetrahedral element and this corresponds to the 2nd local

node. The output files “fedge.txt” and “edge.txt” are required by “GEDGE.M”.
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File “fedge.txt” consists of a m×2 matrix as shown in Figure 4.5:

Edge
Local Nodes
1 2

1 6 8

2 6 20

3 6 11

341 62 70

.

.

.

.

.

.

.

.

.

70 65

100 17 38

340

.

.

.

.

.

.

.

.

.

101 38 22

Figure 4.5: Example of fedge.txt generated from FEDGE.M

In this file, the number of rows m are the number of unique edges. For example,

the 100th edge is defined by the first local node 17 and the second local node

38. The assumed positive direction of the vector along the edge is from global

node 17 →38.

GEDGE.M This program is used to identify the six global edges of each tetrahedral

elements and arrange them according to the order shown in Figure 4.6.

Element
Local Edges

1 2 3 4

1 1 2 3 4

2 1 3 7 -5

3 1 7 10 -8

222 212 -222 -226 -300

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5 6

314 -329

5 6

8 9

11 12

.

.

.

.

.

.

.

.

Figure 4.6: Example of gedge.txt generated from GEDGE.M
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The inputs for this code are “Element.txt”, “fedge.txt” and “edge.txt”. The

output file comprised of a n×6 matrix, where each row represents the number

of elements and each column corresponds to each of the six local edges. Some

of the global edges are negative and this indicates opposite direction to the

assumed direction to ensure continuity at all the edges. The assumed direction

for edges can be found in “fedge.txt”.

BEDGE.M The purpose of this code is to identify edges on the boundary of the

metallic cavity. This program requires the user to input the dimensions of

the metallic cavity. The output file “bedge.txt” contains all the edges on the

metallic boundary.

CAVITY.M This is the main program which requires output files generated by the

earlier codes. These include: Global.txt, Element.txt, gedge.txt and fedge.txt.

The code first computes the element matrices and subsequently, the elemental

matrices add up to give the global matrices. Finally, the matrices are solved for

their eigenvalues using eigenvalue solver package available in matlab.



Chapter 5

Design Methodology of the
Dielectric Resonator Antenna

5.1 Introduction

In the previous section, an accurate characterization of the DR has been proposed

so that the resonator’s size can be carefully chosen for optimal performance. Now,

design methodology for the feeding mechanism is presented. Dielectric resonator an-

tennas (DRAs) are gaining popularity because of their various merits. These include

its higher radiation efficiency (> 90%), due to the lack of conductor loss and sur-

face wave loss. Various resonator shapes (cylindrical, rectangular and hemispherical)

can be chosen. There is also no need for special feeding technique. In fact, simple

feeding mechanism such as probe-feeding, coplanar waveguide, microstrip line and

aperture-coupling are existing technologies that can be employed. Various modes can

be excited depending on the desired radiation patterns. In addition, there is a wide

range of permittivity values to choose from and this gives designers a lot of flexibility

in choosing the antenna size and bandwidth. The aim of this design is to achieve

an integrated dielectric resonator antenna with wide impedance bandwidth (> 10%).

Efforts are also made to obtain a smooth and symmetrical radiation pattern.

46
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5.2 Conventional DRAs

Examples of some conventional DRAs are shown in Figure 5.1. As observed, the

actual size of the antenna includes the finite size ground plane which has an influence

on the antenna’s return loss and radiation patterns.

� � � � � � � �� �� �
Probe Feed

Ground Plane � � � � � � � �� �� �
W

Ls

(a) (b)

� � � � � � � �� �� �
W

d

Ls

Aperture � � � � � � 	 		 		 	
G

W

d

Co-Planar Feed

(c) (d)

Figure 5.1: Examples of some conventional DRAs: (a)Probe Feed (b)Microstripline
Feed (c)Aperture Feed (d)Coplanar waveguide Feed

In addition, tuning the resonator placed on substrate has been a major problem

for traditional DRAs. However, the proposed antenna is able to advert this problem

because feeding substrate is placed inside the DRA. The problem of tuning is resolved

as position of the substrate (RF Micro-module) is fixed. Therefore, the DRA can be

fixed to external substrate easily, with no requirement for very accurate placing of

the device. Beside problems associate with traditional DRAs, there are also inherent

limitations of a small antenna which will be discussed in the next section.
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5.3 Fundamental Limitations of a small antenna

Design of compact and fully integrated antennas is a major challenge in development

of modern RF front end products for wireless communications. The conventional inte-

grated patch antennas suffer from low efficiency, high sensitive fabrication tolerances,

and narrow bandwidth. Due to the size constraint, integrated antennas are often

small or electrically small. Small antennas inherently have low radiation resistance,

low radiation efficiency and narrow bandwidth. The antenna’s Q-factor (quality fac-

tor) increases at a high rate when the antenna size gets smaller. Small antenna usually

have very sensitive tolerances. Hence, the near field distribution may affect the an-

tenna input impedance greatly causing mismatch between the radiating elements and

the rest of the circuits. To achieve a smaller size, high dielectric constant substrates

are often used. However, this would reduce the radiation efficiency drastically. For a

conventional microstrip antenna using high dielectric constant substrate (silicon), the

radiation efficiency can be as low as about 20%. Another problem is that the antenna

must operate with a finite ”ground plane”, which has a great impact on the return

loss and causes new resonances. The finite ground plane acts as part of a radiator

and often cause scalloping in the radiation pattern. It also results in the antenna

having a low forward-backward ratio. Hence, the design process becomes more com-

plex. Electrically small antennas are neither balanced nor unbalanced. As a result,

return currents flow along the coaxial cable and radiate. During measurement of the

antenna’s radiation patterns, the higher gain measured could be the result of long and

radiating RF feeding cable. To overcome these problems, special precautions must

be taken during antenna measurement.
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5.4 Antenna measurement for small antenna

Because of the limitations of small antenna mentioned in the earlier section, there are

a few concerns during the measurement of a small antenna. The reduction of antenna

size results in introducing more challenging problems in antenna measurement. One

of the difficulties involved is how to determine the small impedance and low efficiency

with precision. Measurements of a small antenna often involve proximity effects and

it is important for designers to be wary of such effects.

Environment effects include coupling of the antenna with nearby materials. When

the size of the antenna under test is comparable to or smaller than that of the in-

strument connected to the test antenna, electromagnetic coupling is likely to exist

between the antenna element and nearby objects, such as the RF cables and in-

struments. For example, if a coaxial cable connected to an antenna element has a

comparatively larger size than the antenna under test, and it runs very closely to the

antenna element, the cable couples electromagnetically with the antenna element and

the impedance of the antenna may be measured with an error. The length and thick-

coupling

unbalanced
current

connecting wire

coax cable

test antenna element

Figure 5.2: Small antenna and connecting cable

ness of the connecting wire from the cable to the antenna feed point should be short

enough to avoid the inclusion of an extra impedance of the connecting wire because
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the antenna impedance might be comparable to or smaller than the wire impedance

when the size of the antenna becomes extremely small. If any object exists near an

antenna element, especially near the feed point, it may have some influence on the

antenna characteristics. The antenna feed point is such an important aspect during

fabrication that anything which interacts with the antenna current must be removed.

It is observed that how good the impedance bandwidth depends on how good is the

connection between the probe and the coplanar waveguide feed. Hence, a via con-

nection is suggested. Comparison of return loss using normal probe connection and

one using a via connection shows the latter more superior and gives more consistent

measurement results. In addition to a better contact, it can also minimized the air

gap between the substrate and the resonator.

Another important problem is to suppress the unbalanced currents that may flow

on the outside of the coaxial cable and generate undesired radiation. Simulation

of the antenna has shown that radiation pattern can be affected by the length of

the connecting coaxial cable. The higher gain measured could be due to the long

and radiating coaxial cable. Hence, it is very important to ensure RF cables are

well-covered with absorbers during measurement in the anechoic chamber.

Finally, it is not an easy task to measure the phase of a small antenna accurately.

Correct measurement of a small antenna’s phase has been found to be very crucial for

the measurement of an electrically small antenna with circular polarization. Special

attention has to be given to the connectors and cables used during the measurement.

Even though a L-shape connectors may not affect the magnitude of the radiation

pattern significantly, it has been found to affect the phase of circular-polarized antenna

substantially if it is not taken into account during the initial calibration process.

Hence, all the connectors must be taken into account during calibration.
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5.5 Proposed Antenna Structures

5.5.1 Linear and Circular-Polarized Antennas

The schematics of the proposed antennas, with linear-polarized (LP) and circular-

polarized (CP) feed designs are shown in Figure 5.3 and 5.4 respectively. The po-

tential advantages of using a DRA as compared to a conventional microstrip antenna

include its significantly higher radiation efficiency and broader impedance bandwidth.

Moreover, small physical dimensions of the antenna can be achieved by using higher

permittivity ceramic material for the dielectric resonator whose physical dimension is

proportional to λo/
√
εr.

To overcome the finite “ground plane” problem, a feed structure comprising of a

complementary pair of magnetic dipole and magnetic loop, modified to exclude the

ground plane and optimized for a wider bandwidth has been proposed in Figure 5.3.

The design parameters of the feed are chosen to allow a unidirectional radiation

pattern away from the ground plane. So, the ground plane impact on the antenna

parameters is significantly reduced allowing a compact design of the antenna system.

The feed structure has metallization on all sides to prevent possible electromagnetic

interference from the antenna on the RF circuitry. A probe is then used to excite the

feed structure beneath the dielectric resonator. A similar design for circular-polarized

antenna is shown in Figure 5.4 which has a meandering magnetic dipole as its feed

design.
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Figure 5.3: Schematics of the proposed linear-polarized DRA
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Figure 5.4: Schematics of the proposed circular-polarized DRA
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5.5.2 Design Procedures

In this section, the design methodology for LP and CP dielectric resonator antennas

are presented. The purpose of this investigation is to provide designers an easy and

reliable way of designing the antenna.

Coplanar Waveguide Feed Design

The feeding mechanism of the antenna comprised of a coplanar waveguide (CPW)

feed and the first step is to design the CPW feed for a 50Ω environment.

Figure 5.5: Coplanar Waveguide Feed

This can be easily done using Advanced Design System (ADS) to obtain the

desired center conductor width (W) and gap (G) between the center conductor and

the ground plane. The slot width of the magnetic loop and magnetic dipole is set at

this value of G throughout the optimization process.

Parametric Study of a LP Antenna

Next, various parameters of the antenna are varied to ascertain their effects on the

antenna’s impedance loci. Simulated impedance loci of the antenna are plotted as a

function of frequency in the smith chart , shown in Figure 5.7 - 5.11. The aim is to

tune the impedance locus such that the “loop” is positioned at Zo = 50Ω as shown

in Figure 5.6. The simulated impedance loci comprised of 20 points, ranging from



54

3.5GHz to 4.5GHz with a step-size of 0.05GHz. These figures contain simulated loci

for several values of the antenna parameters.

Figure 5.6: Desired Impedance Locus

The effect of varying length of the magnetic dipole, Ls is shown in Figure 5.7. If

the input impedance at a single frequency (eg. 4.5GHz) is plotted for various Ls,

the locus approximately follows a constant resistance contour. The impedance loci

at the desired frequency band are not very sensitive to a slight change in Ls. As Ls

increases, radius of the impedance locus widens with minimal shift in the position of

the impedance loci “loop”. Hence, this parameter is suitable for fine-tuning of the

antenna’s matching. Next, parameter d is varied at a step-size of 0.35mm to give

the impedance loci presented in Figure 5.8. The shape of the impedance loci remains

approximately the same, except for a clockwise rotation as d increases from 6.65mm

to 7.70mm. At higher frequency, d has a bigger influence on the capacitive reactance

component of the antenna’s input impedance than Ls. Varying d while keeping all

other parameters constant, is effectively changing the position of the magnetic dipole.

Having observed the impedance loci’s behaviour due to changes in Ls and d, the

magnetic dipole behaves like a capacitive load.

The magnetic loop is next investigated. Size of the magnetic loop depends on the
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magnetic loop’s radius Rs. As Rs increased from 6.60mm to 7.85mm, the impedance

locus widen noticeably. It is noted that increasing Rs also increase the value of d

without affecting the position of the magnetic dipole. Hence, there is a slight clockwise

shift in the impedance loci. Another useful parameter to play with is displacing the

magnetic loop’s center with respect to the resonator’s center (positioned at (0,0)). It

is observed that as the center of the magnetic loop is displaced further away from the

reference position, the impedance locus shifted downwards with a slight rotation in

the clockwise direction.

The position of the probe can also be adjusted to fine-tune the impedance locus

because it affects the amplitude of the electric and magnetic fields excited within

the dielectric resonator. As the location of the probe shifts from (3,0) to (6,0), the

impedance locus shifted upward accordingly.

Ls

Figure 5.7: Variation of input impedance as a function of the magnetic dipole length
Ls. Frequency increases clockwise with step of 0.05GHz. Center of Loop : (1.35,0),
Rs = 7.15mm, d = 7.35mm
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Reference Line

d

Figure 5.8: Variation of input impedance as a function of parameter d. Frequency
increases clockwise with step of 0.05GHz. Center of Loop = (1.35,0), Rs = 7.15mm,
Ls = 4.094mm

Center of loop

Rs

Figure 5.9: Variation of input impedance as a function of the magnetic loop radius
Rs. Frequency increases clockwise with step of 0.05GHz. Center of Loop = (1.35,0),
Ls = 4.094mm
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With reference
to DR center

(0,0)

x

y

Loop center

Figure 5.10: Variation of input impedance as a function of the magnetic loop center.
Frequency increases clockwise with step of 0.05GHz. Ls = 4.094mm, Rs = 7.15mm,
d = 7.35mm

x

y

Probe centerWith reference
to DR center

(0,0)

Figure 5.11: Variation of input impedance as a function of the probe position. Fre-
quency increases clockwise with step of 0.05GHz. Center of Loop = (1.35,0), Ls =
4.094mm, Rs = 7.15mm, d = 7.35mm
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Parametric Study of a CP Antenna

In this section, parameters such as Ls, L1, d and the probe position are varied to

determine their effects on the impedance locus. The meandering magnetic dipole

comprised of vertical and horizontal slots. These vertical and horizontal slots are

responsible for exciting two near-degenerate orthogonal modes of nearly equal am-

plitudes and 90o phase difference within the resonator. The parametric study will

focus more on getting a broad impedance bandwidth first, before attempts to achieve

circular-polarization.

The length of Ls is increased progressively in steps of 0.7mm to investigate the ef-

fects of horizontal slots on the impedance locus. As Ls increased, the radius of the

impedance locus is observed to become slightly narrower with no obvious rotation.

Next, length of the vertical slots can be varied by changing parameters such as L1

and d. As L1 is increased in steps of 0.5mm, the impedance locus widens with a

slight clockwise rotation. L1’s influence on the impedance locus is more than the

previous case when Ls is varied. Hence, Ls is suitable for fine tuning the impedance

locus when a slight change is required for optimal bandwidth. When d is increased

in steps of 0.35mm, radius of the impedance locus becomes narrower with no obvious

rotation. Finally, changing location of the probe from (3,0) to (6,0), widens radius of

the impedance locus with no rotation.
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Ls

Figure 5.12: Variation of input impedance as a function of Ls. Frequency increases
clockwise with step of 0.05GHz. Probe position = (5,0), L1 = 5.735mm, d = 7.862mm

L1

Reference Point

Figure 5.13: Variation of input impedance as a function of L1. Frequency increases
clockwise with step of 0.05GHz. Probe position = (5,0), Ls = 12.394mm, d =
7.862mm
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d

Reference

Figure 5.14: Variation of input impedance as a function of d. Frequency increases
clockwise with step of 0.05GHz. Probe position = (5,0), Ls = 12.394mm, L1 =
5.735mm

Center of Probe

x

y

Center of
DR at (0,0)

Figure 5.15: Variation of input impedance as a function of probe position. Frequency
increases clockwise with step of 0.05GHz. Ls = 12.394mm, L1 = 5.735mm, d =
7.862mm
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However, using the above observations to design a CP antenna is not enough. After

achieving a wide impedance bandwidth, the next task is to tune the design parameters

until axial ratio of the antenna at boresight is around 1. The axial ratio can be

obtained from:

Figure 5.16: Axial ratio calculation

AR =
major axis

minor axis
=
OA

OB
(5.5.1)

It is a very tedious task to tune the antenna until AR becomes unity. An easier

and faster way to design subsequent LP and CP antennas is by scaling the design

parameters from Figure 6.17 and 6.42, followed by fine-tuning the antenna using the

above parametric studies.



Chapter 6

Results and Discussions

In this chapter, eigenvalues of cylindrical dielectric resonator with various permittiv-

ity values and sizes, are analyzed using Tangential Vector Finite Element (TVFE)

method. The predicted eigenvalues are then compared with measured results, to as-

certain the range of validity of the proposed method and some other popular models.

Once the eigenvalues have been computed accurately, the antennas are designed and

fabricated. Measured results of the dielectric resonator (DR) antennas are subse-

quently presented. Performance of antenna using different resonator geometries and

permittivity values are compared to understand their characteristics and potential

advantages. Lastly, the measured results of a circularly polarized cylindrical DR

antenna is presented and used to compare with a linearly polarized DR antenna.

6.1 Comparison of Eigenvalues

6.1.1 Test Case: Empty Box

Before comparing the eigenvalues using various methods, it is necessary to ascertain

the accuracy of finite element method. As a simple example, consider the problem

of finding the eigenvalues of an empty cavity as shown in Figure 6.1, which shows an

air-filled cavity and the mesh generated using GiD 7.2 - a three-dimensional finite

element mesh generator. The walls of the cavity are perfectly conducting, so the

62



63

Figure 6.1: Mesh generated for empty cavity using GiD 7.2

governing equations for the electric field are as follows:

∇× (∇× E)− k2oE = 0 (6.1.1)

n̂× E = 0 (6.1.2)

The analytical solution to this problem is very well established and it consists of two

sets of modes: TEmnp and TMmnp. The eigenvalues can be calculated analytically as

k2 = π2
(

m2

a2
+
n2

b2
+
p2

c2

)

(6.1.3)

Hence, the case of an empty cavity is solved using the finite element method described

earlier and compared with eigenvalues obtained analytically using Equation (6.1.3).

The mesh generated for the cavity is refined until the eigenvalues computed are be-

low 1% of error as compared with the analytical model. The computed results are

summarized in Table 6.1. From the tabulated results, four cases A, B, C and D are

used to compare with the analytical results.
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Comparison of Eigenvalues

Case A Case B Case C Case D

Computed Computed Computed Computed

(tetrahedral) (tetrahedral) (tetrahedral) (tetrahedral)

Mode Analytical 93 Unknowns Error(%) 191 Unknowns Error(%) 419 Unknowns Error(%) 1422 Unknowns Error(%)

TE101 0.8322 0.8329 0.08 0.8262 0.72 0.8255 0.81 0.8299 0.28

TE011 0.8322 0.8472 1.80 0.8306 0.19 0.8307 0.18 0.8309 0.16

TM110 0.8322 0.8653 3.98 0.8472 1.80 0.8358 0.43 0.8320 0.02

TE111 1.0192 1.0815 6.11 1.0060 1.30 1.0179 0.13 1.0204 0.12

TM111 1.0192 1.1037 8.29 1.0249 0.56 1.0267 0.74 1.0209 0.17

TE102 1.3158 1.2716 3.36 1.2435 5.49 1.2839 2.42 1.3028 0.99

TE201 1.3158 1.3320 1.23 1.2721 3.32 1.3017 1.07 1.3042 0.88

TE021 1.3158 1.3556 3.02 1.2994 1.25 1.3084 0.56 1.3065 0.71

TE012 1.3158 1.3869 5.40 1.3124 0.26 1.3109 0.37 1.3071 0.66

TM210 1.3158 1.4391 9.37 1.3256 0.74 1.3236 0.59 1.3112 0.35

TM120 1.3158 1.4480 10.05 1.3652 3.75 1.3286 0.97 1.3157 0.01

TE112 1.4413 1.4701 2.00 1.3871 3.76 1.4049 2.53 1.4273 0.97

TM112 1.4413 1.5186 5.36 1.4045 2.55 1.4265 1.03 1.4321 0.64

Table 6.1: Eigenvalues (ko, cm
−1) for an empty cavity with dimensions of 5.339 cm × 5.339 cm × 5.339 cm)
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The difference between all the four cases lies in the mesh generated. As the mesh

becomes denser, the number of unknowns increases. In Case A, there are 93 unknowns

and this leads to an error percentage ranging from 0.08% to 10%. As the mesh is

further refined in Case B (191 unknowns), the error percentage improved to within the

range of 0.19% - 5.49%. Similar trend is observed in Case C (419 unknowns) as the

error percentage improves to 0.13% - 2.53%. The solution finally converges to below

1% of error in Case D which has 1422 unknowns. Hence, consistency in obtaining

accurate results within 1% of error can be achieved as the meshing becomes more

refined.

6.1.2 Dielectric Resonator in Cavity

Using the concept mentioned in the earlier section, similar procedure is applied to the

case of a dielectric resonator placed in the center of a cavity as shown in Figure 6.2. In

the computation of the dielectric resonator’s eigenvalues, volume mesh is generated.

But for easy viewing, surface mesh is generated in Figure 6.3. A closed-up view of

the mesh generated using 3-dimensional tetrahedral elements is shown in Figure 6.5.

The meshing of the cavity is omitted in this case for simplicity.

X

Z

Y

Figure 6.2: Geometry of a Dielectric Res-
onator positioned in the center of a metal-
lic box drawn using Gmsh

X

Z

Y

Figure 6.3: Surface Mesh generated for
the metallic box enclosing a dielectric res-
onator
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Z

X

Y

Figure 6.4: Closed-up view of surface mesh
generated for the dielectric resonator

X

Y

Z

Figure 6.5: Closed-up view of volume mesh
generated for the dielectric resonator

Using the mesh generated, eigenvalues of the cavity and dielectric resonator can be

obtained. To obtain an accurate evaluation of the eigenvalues, there are a few con-

siderations.

Effect of mesh refinement

The first consideration is to ensure computed solution has converged, by meshing

the cavity with resonator progressively until subsequent eigenvalues give an absolute

error less than 0.01 difference. A dielectric resonator of εr=79.7, radius = 5.145mm

and height = 4.51mm, placed inside a 8×8×8cm cavity shall be used as an example.

Six steps in meshing are generated in Table 6.2 to investigate the convergence of the

resonator’s eigenvalues.

Maximum edge length (tetrahedral)
Case Nodes Unknowns Cavity,∆m(cm) DR,∆d(cm)
(a) 193 1091 2.0 0.50
(b) 239 1422 1.8 0.50
(c) 312 1829 1.6 0.50
(d) 362 2178 1.6 0.30
(e) 450 2816 1.6 0.20
(f) 474 2970 1.6 0.18

Table 6.2: Parameters used to generate mesh of the dielectric resonator in cavity
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Z

Y

XZ

(c) (d)

XZ

Y

XZ

Y

(e) (f)

Figure 6.6: Steps in the mesh refinement process for dielectric resonator with permittivity
of 79.7, radius a=0.5145cm and height h=0.451cm: (a)193 Nodes, ∆m = 2.0cm and ∆d =
0.5cm (b)239 Nodes, ∆m = 1.8cm and ∆d = 0.5cm (c)312 Nodes, ∆m = 1.6cm and
∆d = 0.5cm (d)362 Nodes, ∆m = 1.6cm and ∆d = 0.30cm (e)450 Nodes, ∆m = 1.6cm and
∆d = 0.20cm(f)474 Nodes, ∆m = 1.6cm and ∆d = 0.18cm
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It can be observed from case (a)-(c) that maximum edge length for the tetrahedral

elements within the dielectric resonator (∆d) has been kept constant. Region outside

the resonator has been meshed according to steps of ∆m=2.0cm,1.8cm,1.6cm. Next,

in the case (c)-(f), the maximum edge length inside the resonator is refined accordingly

to steps of ∆ d=0.50cm, 0.30cm, 0.20cm and 0.18cm while ∆m is set at 1.6cm. The

results of the computed eigenvalues are tabulated in Table 6.3. As observed from

Case Absolute Error |δt|

Modes (a) (b) (c) (d) (e) (f) (b)− (a) (c)− (b) (d)− (c) (e)− (d) (f)− (e)
TE01δ 0.830 0.676 0.678 0.826 0.782 0.779 0.154 0.002 0.148 0.044 0.003

HE11δ 0.956 0.944 0.954 0.954 0.960 0.953 0.012 0.010 0.000 0.006 0.007

TM01δ 1.127 1.104 1.131 1.135 1.142 1.138 0.023 0.027 0.004 0.007 0.004

Table 6.3: Eigenvalues computed in the mesh refinement process

Table 6.3, the absolute errors |δt| generally decrease for all the three modes. In case

(f), |δt| falls below 0.01 and hence the iteration is stopped.

Effect of the cavity’s size

The second consideration is the effect of the cavity size on the resonator’s resonant

frequency. Consider the same example as before, a 8cm×8cm×8cm cavity and a di-

electric resonator with εr = 79.7, radius = 5.145mm and height = 4.51mm. Such a

case generates the same results shown in Table 6.3. Even though the results seem to

have converged, computed eigenvalues in case (f) have absolute error percentage of

0.44 - 6.86% from measured results (Table 6.6). A glance of Table 6.6 reveals that

TE01δ mode has the lowest frequency and hence, the largest free-space wavelength.

The cavity box must be sufficiently large so as not to perturb the resonator’s eigen-

modes. Therefore, cavity of different sizes are employed to examine their effects on

eigenvalues of 3 main modes (TE01δ, HE11δ and TM01δ).
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Size of Cavity TE01δ (0.729) HE11δ (0.954) TM01δ (1.133)

(cm) (λo)

wrt TE01δ ko |Error(%)| ko |Error(%)| ko |Error(%)|
7×7×7 0.81 0.769 5.54 0.947 0.78 1.091 3.74

8×8×8 0.93 0.779 6.86 0.953 0.10 1.138 0.44

9×9×9 1.04 0.743 1.88 0.956 0.19 1.119 1.20

10×10×10 1.16 0.745 2.22 0.951 0.37 1.111 1.92

11×11×11 1.28 0.738 1.29 0.955 0.07 1.120 1.16

12×12×12 1.39 0.730 0.14 0.955 0.10 1.126 0.62

Table 6.4: Effects of cavity’s size on eigenvalues of the dielectric resonator (εr =
79.7, a = 5.145mm, h = 4.51mm)

As observed from Table 6.4, cavity’s size has an impact on the computed eigenvalues.

This influence is greater for modes with lower resonant frequency, such as TE01δ

mode which has the lowest eigenvalue value (fr = 3.48GHz and λo = 8.62mm). The

absolute error percentage in predicting the resonator’s eigenvalues range from 0.10 -

6.86% when using a cavity of 7×7×7cm and 8×8×8cm. As the cavity’s dimensions

increase to 9×9×9cm, a much improved absolute error percentage of 0.19 - 1.88% has

been achieved. The absolute error percentage eventually improved to below 1% for

all the three modes when the cavity increased to 12×12×12cm.

However, it is observed that accurate prediction of the desired HE11δ mode does not

require a cavity size of such magnitude. In fact, a 7×7×7cm is sufficiently large enough

to predict the eigenvalues within 1% error percentage. Taking these two factors into

consideration, eigenvalues are computed and discussed in the next section.

6.2 Validity of models

Results of the computed eigenvalues are tabulated in Table 6.6 for isolated cylindrical

DRs. A wide range of permittivity values ranging from 35 - 79.7 and of different sizes

are chosen to carry out this investigation. Eigenvalues generated using Tangential
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Vector Finite Element (TVFE) method are compared with measured ([20],[21],[22])

and computed eigenvalues using conventional models ([2],[4]). From Table 6.6, it is

observed that by imposing PMC walls, percentage error greater than 20% is obtained.

Eigenvalues computed uisng PMC wall model are usually lower than the measured

values. On the other hand, Mongia’s closed-form equations is capable of predicting

the eigenvalues with errors below 2%. Finally, TVFE method has been able to predict

eigenvalues with less than 1% error for all the cases.

Next, eigenvalues of rectangular DR antennas are investigated. The mode excited

is TEz
111 by means of aperture coupling. The resonant frequencies are then compared

among values obtained from DWM, simulation (HFSS), TVFE method and measure-

ment. It is noted that simulation and measurement results have taken into account,

effects of the feeding mechanism while DWM and TVFE method are basically com-

puting eigenvalues of an isolated rectangular DR. It is interesting to see how much

the antenna has de-tuned due to the feeding mechanism. Eigenvalues computed using

DWM are generally lower than measured results. Simulated values are usually closer

to the measured values. In case (a), the simulated frequency is way off the measured

value. As the antenna’s size gets smaller, it is very sensitive to its environment such

as its feed. Hence, the antenna’s resonant frequency is de-tuned the most as compared

to other cases. The TVFE method achieves quite a good accuracy for predicting the

eigenvalues of the antenna.

Resonant Frequency (GHz) for Rectangular DRA

a b d

Case (mm) (mm) (mm) DWM |Error %| TVFE |Error %| HFSS |Error %| Measured [23]

(a) 10 5 10 2.50 8.4 2.57 5.9 2.354 13.8 2.73

(b) 15 5 15 2.06 3.3 2.17 1.9 1.918 10.0 2.13

(c) 20 5 20 1.87 20.3 1.70 9.3 1.690 8.7 1.56

Table 6.5: Comparison of resonant frequency among DWM, simulation, TVFE
method and measurement (εr=90)



71

Computed Eigenvalues of an Isolated Cylindrical Dielectric Resonator

Resonator This Study

Parameters (Reference) (PMC Wall [4]) (Mongia [2]) (TVFE)

Mode εr a (cm) H (cm) ko ko Error(%) ko Error(%) ko Error(%) Reference

TE01δ 79.7 0.5145 0.451 0.729 0.653 10.38 0.725 0.53 0.730 -0.14 [20]

HE11δ 79.7 0.5145 0.451 0.954 0.560 41.36 0.962 -0.82 0.955 -0.10 [20]

TM01δ 79.7 0.5145 0.451 1.133 0.921 18.71 1.129 0.34 1.126 0.62 [20]

TE01δ 35 0.5000 1.000 0.934 0.855 8.43 0.934 0 0.931 0.28 [21]

HE11δ 35 0.5000 1.000 0.934 0.677 27.54 0.946 -1.29 0.935 -0.13 [21]

TM01δ 35 0.5000 1.000 1.338 1.322 1.17 1.360 -1.64 1.337 0.10 [21]

TE01δ 38 0.6415 0.562 0.831 0.759 8.69 0.836 -0.56 0.832 0.17 [22]

HE11δ 38 0.6415 0.562 1.085 0.650 40.09 1.105 -1.58 1.082 -0.31 [22]

TM01δ 38 0.6415 0.562 1.289 1.070 17.01 1.292 -0.24 1.288 -0.05 [22]

Table 6.6: Comparison of eigenvalues obtained using Tangential Vector Finite Element (TVFE) Method and other conventional
methods
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6.3 Dielectric Resonator Antennas Fabricated

In this section, dielectric resonator antennas are fabricated after optimization process

using Ansoft High Frequency Structure Simulator (HFSS) and eigenvalue analysis

(TVFE method). Return loss of the antenna is measured using HP Vector Network

Analyzer (VNA), while radiation pattern measurement is carried out using Indoor

Anechoic Chamber. Firstly, comparison of two antenna geometries (cylindrical and

rectangular DR) are investigated to ascertain their potential advantages. Next, com-

parison is done between antennas of low (εr = 10.2) and high (εr = 38.5) permittivity

values. Finally, a circular-polarized antenna is designed and fabricated. The mea-

surement results are included for comparison with the linear-polarized case.

6.3.1 Comparison of Cylindrical and Rectangular Dielectric

Resonator Antennas

Schematics

The schematics for the cylindrical and rectangular DRAs designed are shown in Fig-

ure 6.7 and 6.8 respectively. Parameters shown in the schematics are optimized pa-

rameters based on commercial software Ansoft HFSS 8.5. A summary of the physical

dimensions of the resonator and feeding substrate chosen are presented in Table 6.7.

Specifications

Antenna Geometry Rectangular Cylindrical

Predicted Frequency (GHz) 3.79 4.10

Resonator Permittivity, εr 10.2 10.2

Dimensions(mm) 23.6(W) × 23.6(L) 24(D)

Height(mm) 7.62 7.62

Substrate Permittivity, εs 2.2 2.2

Substrate thickness, t (mils) 62 62

Table 6.7: Specifications of resonator and substrate used
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Diameter = 24 mm
Center of DR at (0,0)

h = 7.62 mm

Ls = 4.094 mm

t = 62 mils

d = 7.35 mm

 Ds = 14.3 mm
Center of magnetic

loop at (1.35,0)

SMA
Connector

Dielectric Resonator

Probe

Ground Planes

RT/Duroid 5880
Substrate

W = 1.6 mm

G = 0.35 mm

y

x

z

4 mm

Figure 6.7: Design schematics for linear-polarized cylindrical DRA
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Width = 23.6 mm
Center of DR at (0,0)

h = 7.62 mm

Ls = 5.10 mm

t = 62 mils

d = 5.25 mm

 Ds = 11.5 mm
Center of magnetic

loop at (1,0)

SMA
Connector

Dielectric Resonator

Probe

Ground Planes

RT/Duroid 5880
Substrate

W = 1.6 mm

G = 0.35 mm

y

x

z

2.25 mm

Length = 23.6 mm

Figure 6.8: Design schematics for linear-polarized rectangular DRA
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Near-Field analysis

Before comparing performance of the cylindrical and rectangular DR antennas, it

is crucial to have some understanding of the physics behind the designed antennas.

Hence, near-field analysis of the DR antennas is investigated using simulation soft-

ware. Comparison of the antennas’ E-fields, H-fields and current density are carried

out. The geometry of the antenna simulated are as shown in Figure 6.9 and 6.10.

E-fields and H-fields of both antennas resembles that of HEM11δ mode in a dielectric

waveguide or the TM11δ mode (if PMC walls are assumed) shown in Figure 3.6. This

is an indication that the desired HEM11δ has been excited.

Figure 6.9: Cylindrical DRA simulated in
HFSS

Figure 6.10: Rectangular DRA simulated
in HFSS

From Figures 6.11 and 6.12, it is observed that E-fields can be excited from the

magnetic loop, magnetic dipole and the coplanar waveguide feed. For cylindrical

DR antenna, the magnetic loop contributes most of the E-fields, with the maximum

component directed in the vertical direction (x-axis). The magnetic dipole can also

contribute to E-fields in the vertical direction, but observed to be in lesser extent.

Coplanar waveguide has been observed to excite E-fields in the horizontal direction

(y-axis). These E-fields comprise of two components with equal magnitude but point-

ing in the opposite directions. Hence, far-field radiation at boresight is mainly due
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to E-fields excited by the magnetic loop and dipole. The E-fields at the coplanar

waveguide feed could result in a higher cross-polarization levels during the far-field

measurement of the antenna.

Figure 6.11: E-fields within the cylindrical
dielectric resonator simulated using Ansoft
HFSS (4.20GHz)

Figure 6.12: E-fields within the rectangu-
lar dielectric resonator simulated using An-
soft HFSS (3.64GHz)

Figure 6.13: H-fields within the cylindrical
dielectric resonator simulated using Ansoft
HFSS (4.20GHz)

Figure 6.14: H-fields within the rectangu-
lar dielectric resonator simulated using An-
soft HFSS (3.64GHz)

Next, the current densities for both DRAs are investigated. The current density

for rectangular DR antennas in Figure 6.16 is of particular interest, as maximum

current density is noticed at both sides of the magnetic loop, with line of symmetry

along the x-axis. This suggests the length of the magnetic loop is about 1λg and

can help to approximated the effective dielectric constant εeff . The first step is to
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calculate the circumference of the magnetic loop. From schematics of the rectangular

DR antenna (Figure 6.8), the outer diameter of the magnetic loop, Ds is 11.5mm and

the inner diameter is 10.8mm. The actual diameter of the magnetic loop is taken

from the center of slot of the magnetic loop, that is (11.5-0.35)=11.15mm. Hence

the circumference of the magnetic loop Lloop is 35.04mm. At 3.64GHz, the free-space

wavelength λo is 82.42mm and by equating λg =
λo√
εeff
, the effective dielectric constant

εeff is found to be 5.53.

Using this εeff value, the designs can be expressed in term of its electrical length in

Figure 6.17 and 6.18. A convenient starting point of the design process is to tune the

circumference of the magnetic loop to 1λg by similar observation of the current density.

Subsequently, εeff can be approximated and used for calculation of λg. A good guess

of the initial design parameters for subsequent designs, can be be obtained from

scaling of Figure 6.17 and 6.18. Judging from the current density of the magnetic loop

for cylindrical DRAs, the magnetic loop is larger than 1λg. A quick calculation shows

that the magnetic loop’s circumference is 43.83mm, equivalent to 1.44λg. Hence, after

analyzing the antenna’s near-field characteristics, the measurement of the antenna is

presented in the next section.

Figure 6.15: Simulated current density
for cylindrical DR antenna using Ansoft
HFSS (4.20GHz)

Figure 6.16: Simulated current density
for rectangular DR antenna using Ansoft
HFSS (3.64GHz)
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d = 0.242

 Ds = 0.47

0.132

G = 0.01

W = 0.05

Ls = 0.135

Figure 6.17: Electrical length (in λg) of the feed design for linear-polarized cylindrical
DR antenna (4.20GHz)

Ls = 0.146

d = 0.15

 Ds = 0.33

0.064

G = 0.01

W = 0.05

Figure 6.18: Electrical length (in λg) of the feed design for linear-polarized rectangular
DR antenna (3.64GHz)
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Measurement Results

Based on the design parameters mentioned in the previous section, the antennas are

fabricated, measured and presented in this section. Photos of the fabricated antennas

are displayed in Figure 6.19 to 6.23.

Via Connection

Figure 6.19: Top view of feeding substrate for Cylindrical Dielectric Resonator An-
tenna (Linear-Polarized) fabricated

Dielectric Resonator

Substrate
SMA Connector

Figure 6.20: Three-dimensional view of Cylindrical Dielectric Resonator Antenna
(Linear-Polarized) fabricated
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Via Connection

Figure 6.21: Top view of feed substrate for Rectangular Dielectric Resonator Antenna
(Linear-Polarized) fabricated

SMA
Connector

Dielectric Resonator

Feed Subsrate

Figure 6.22: Three-dimensional view of Rectangular Dielectric Resonator Antenna
(Linear-Polarized) fabricated
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Complementary pair of magnetic
loop and magnetic dipole

Figure 6.23: Photo showing the complementary pair of magnetic loop and magnetic
dipole for linear-polarized antenna

For cylindrical DR antenna, the simulated bandwidth range from 3.80 GHz to 4.45

GHz. This corresponds to an impedance bandwidth of 16%. In contrast, the fab-

ricated antenna has an impedance bandwidth of 13% and falls within the range of

3.90 to 4.45 GHz. The slightly smaller bandwidth is most likely due to the imperfect

contact between the probe and the coplanar waveguide. The use of a via connection

has been found to be the best way to avert a mismatch due to poor soldering. It

can also ensure the air-gap between the feeding substrate and dielectric resonator is

minimized. On the other hand, the rectangular dielectric resonator antenna exhibits

a much wider simulated bandwidth of 27%, operating in the range of 3.30 GHz to

4.33 GHz (return loss ≥ 10dB). The fabricated antenna is in good agreement with the

simulation results and exhibits a wide impedance bandwidth of 23%, ranging from

3.36 GHz to 4.25 GHz. A comparison of the return loss for cylindrical and rectangular

DR antennas can be done by referring to Figure 6.24 and 6.25.
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Near-Field Measurement

Antenna Geometry Rectangular Cylindrical
Operating Frequency(|S11| ≥ 10dB) 3.36 - 4.25 GHz 3.90 - 4.45 GHz
Impedance Bandwidth 0.89 GHz (23%) 0.55 GHz (13%)
Q-Factor 3.1 5.4

Table 6.8: Summary of near-field results for cylindrical and rectangular dielectric
resonator antennas

Figure 6.24: Measured Return Loss for Cylindrical Dielectric Resonator Antenna,
εr = 10.2 (Linear-Polarized)

Figure 6.25: Measured Return Loss for Rectangular Dielectric Resonator Antenna,
εr = 10.2 (Linear-Polarized)
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Subsequently, the far-field measurement of both antennas is carried out using NUS

indoor anechoic chamber. The accuracy of such a measurement setup is believed to

be about ±1dB. Both antennas exhibit symmetrical radiation patterns with minimal

scalloping that is dominant for small antenna measurement. This is due to care-

ful placement of the absorbers during measurements. The cylindrical DR antenna

has a measured gain of about 4.20dB and this is in good agreement with the sim-

ulated gain of 4.40dB. In contrast, the rectangular dielectric resonator antenna has

a measured gain of 3.97dB, as compared to a higher simulated gain of 4.47dB. The

cross-polarization level for the rectangular DRA is observed to be much higher than

that of the cylindrical DRA. The H-Plane 3dB-beamwidth ΘH is also observed to be

narrower than that of the cylindrical one. Hence, the rectangular DRA has a higher

directivity and a lower radiation efficiency of 87%. This is lower than the cylindrical

DRA, which has a radiation efficiency of 94%. The lower radiation efficiency for rect-

angular DRA could be due to the presence of higher order modes in the rectangular

dielectric resonator, losses incur due to the feed and substrate loss. Even though the

rectangular DRA can achieve a much wider impedance bandwidth than a cylindrical

design, it must tolerate a lower radiation efficiency and a higher cross-polarization

level.

Far-Field Measurement

Antenna Geometry Rectangular Cylindrical
E-Plane Co-Polarization(dBi),EcPol 3.35 4.20
E-Plane Cross-Polarization(dB) wrt EcPol -8.52 -21.2
E-Plane 3dB-Beamwidth(deg),ΘE 119 115
H-Plane Co-Polarization(dBi),HcPol 3.97 4.24
H-Plane Cross-Polarization(dB) wrt HcPol -16.04 -17.24
H-Plane 3dB-Beamwidth(deg),ΘH 90 105
Forward-to-Backward(F/B) Ratio(dB) 8 13
Directivity(dB) 4.46 4.23
Radiation Efficiency(%) 87 94

Table 6.9: Summary of measured radiation patterns
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The directivity is obtained by integrating the antennas’ radiation patterns. Radiation

efficiency of the antennas is computed using Wheeler cap method.

Figure 6.26: Measured far-field radiation pattern at 4.20 GHz for Cylindrical Dielec-
tric Resonator Antenna (Linear-Polarized)

Figure 6.27: Measured far-field radiation pattern at 3.64 GHz for Rectangular Dielec-
tric Resonator Antenna (Linear-Polarized)
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6.3.2 Comparison of Antennas using High and Low Permit-

tivity Dielectric Resonator

Next, DR antennas using dielectric resonators of high (εr = 38.5) and low (εr = 10.2)

permittivity value are investigated. The advantage of using resonator with higher

dielectric constant is a smaller physical size, since the resonator’s dimension is a

function of λo/
√
εr. However, problems associated with a smaller antenna is its nar-

rower bandwidth and lower radiation efficiency. In addition, it has greater sensitivity

to fabrication errors and its environment. Design schematics for DR antenna using

high permittivity value is shown in Figure 6.28. The earlier cylindrical DR antenna

designed (with εr = 10.2) is compared with the current case. A summary of the

resonator and feeding substrate’s specifications are presented in Table 6.10.

Specifications

Resonator Permittivity, εr 38.5 10.2
Predicted Frequency (GHz) 4.04 4.10

Diameter(mm) 13 24
Height(mm) 5.00 7.62
Substrate Permittivity, εs 4.4 2.2
Substrate thickness, t (mils) 62 62

Table 6.10: Specifications of resonator and substrate used
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Figure 6.28: Design schematics for linear-polarized cylindrical DRA using high per-
mittivity resonator (εr = 38.5)
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Near-Field Analysis

Near-field analysis of the antenna is next investigated. Analysis of the antenna’s E-

fields, H-fields and current density are conducted. The antenna structure simulated

is presented in Figure 6.29. E-fields and H-fields of the antenna resemble that of

HEM11δ and hence, the desired mode has been excited.

Figure 6.29: Linear-polarized antenna (εr = 38.5) simulated using Ansoft HFSS

Figure 6.30: Simulated E-fields within the
antenna (εr = 38.5) using Ansoft HFSS
(3.60GHz)

Figure 6.31: Simulated H-fields within the
antenna (εr = 38.5) simulated using Ansoft
HFSS (3.60GHz)

From Figure 6.30, E-fields are observed to come from the magnetic loop, magnetic

dipole and the coplanar waveguide feed. Like in the previous case, the magnetic
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loop contributes to most of the E-fields. The magnetic dipole has also excited E-

fields along the vertical direction, but observed to be in lesser extent. As before,

coplanar waveguide are observed to excite E-fields comprising of two components of

equal magnitude but opposite directions. Next, the current density for DR antenna is

investigated. Judging from the current density of the magnetic loop for DR antenna,

the magnetic loop is larger than 1λg.

Figure 6.32: Simulated current density for antenna (εr = 38.5) using Ansoft HFSS
(3.60 GHz)
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Measurement Results

Based on the design parameters mentioned in the previous section, the antennas are

fabricated, measured and presented in this section. Photos of the fabricated antennas

are displayed in Figure 6.33 and 6.34.

Via Connection

Figure 6.33: Top view of feeding substrate for Cylindrical Dielectric Resonator An-
tenna (εr = 38.5)

Dielectric Resonator

SMA
Connector

FR4 Substrate

Figure 6.34: Three-dimensional view of Cylindrical Dielectric Resonator Antenna
(εr = 38.5) fabricated
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For DR antenna using higher permittivity value, simulated bandwidth ranges from

3.50 to 3.67 GHz. This corresponds to an impedance bandwidth of 4.7%. However,

the fabricated antenna can be optimized experimentally to achieve a wide impedance

bandwidth of 10% operating in the range from 3.79 to 4.20 GHz. Hence, the comple-

mentary pair of magnetic loop and magnetic dipole has shown potential in the design

of broadband antenna even for smaller DR antenna using higher permittivity value.

As the antenna size becomes smaller, it has been observed to become more sensitive

to the environment and can be de-tuned easily. A comparison between simulated and

measured return loss for cylindrical DRA using high permittivity are presented in

Figure 6.35. The return loss for lower permittivity case is also included in Figure 6.35

for reference purpose. The near-field results for both antennas are summarized in

Table 6.11.

Near-Field Measurement

Permittivity of the Resonator High (εr = 38.5) Low (εr = 10.2)
Operating Frequency(|S11| ≥ 10dB) 3.79 - 4.20 GHz 3.90 - 4.45 GHz
Impedance Bandwidth 0.41GHz (10%) 0.55GHz (13%)
Q-Factor 7.1 5.4

Table 6.11: Summary of near-field results for high and low permittivity dielectric
resonator antennas
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Figure 6.35: Measured Return Loss for Cylindrical Dielectric Resonator Antenna
(εr = 38.5)

Subsequently, far-field measurement of DR antenna (εr = 38.5) is carried out. The

antenna using higher permittivity resonator has a smooth and symmetric radiation

patterns. Careful placement of the absorbers is found to be critical for good antenna

measurements. DR antenna with εr = 38.5 has a measured gain of about 3.90dB and

is slightly higher than the simulated gain of 3.50dB. The gain of antenna using lower

permittivity value of εr = 10.2 is a slightly higher value of 4.20 dB.

Cross-polarization level for DR antenna using higher permittivity value is noted to

be 14dB below its corresponding co-polarization level. The H-Plane 3dB-beamwidth

ΘH is narrower than the lower permittivity case. Hence, the higher permittivity DRA

has a higher directivity and a lower radiation efficiency of 80%. This is much lower

than the cylindrical DRA, which has a radiation efficiency of 94%. Even though

the use of higher permittivity value can achieve miniaturization, it must tolerate a

narrower impedance bandwidth, a lower radiation efficiency and higher fabrication

sensitivity. A summary of the far-field measurements for different permittivity value
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used are tabulated in Table 6.12 for comparison purposes.

Far-Field Measurement

Permittivity of the Resonator High (εr = 38.5) Low (εr = 10.2)
E-Plane Co-Polarization(dBi),EcPol 3.78 4.20
E-Plane Cross-Polarization(dB) wrt EcPol -15.2 -21.2
E-Plane 3dB-Beamwidth(deg),ΘE 116 115
H-Plane Co-Polarization(dBi),HcPol 3.90 4.24
H-Plane Cross-Polarization(dB) wrt HcPol -14.2 -17.2
H-Plane 3dB-Beamwidth(deg),ΘH 82 105
Forward-to-Backward(F/B) Ratio(dB) 6 13
Directivity(dB) 4.65 4.23
Radiation Efficiency(%) 80 94

Table 6.12: Summary of measured radiation patterns

Figure 6.36: Measured far-field radiation pattern at 4.0 GHz for Cylindrical Dielectric
Resonator Antenna (εr = 38.5)
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6.3.3 Comparison of Linear and Circular-Polarized Cylindri-

cal Resonator Antennas

Schematics

Design parameters for the circular-polarized dielectric resonator antenna are shown in

Figure 6.37. These parameters are optimized results based on HFSS 8.5. A summary

of the specifications of the dielectric resonator and feeding substrate are presented

in Table 6.13. As observed, both dielectric resonators have similar physical dimen-

sions and material properties. This is to ensure a fair comparison of the antenna’s

performance. The only difference between the linear and circular-polarized antennas

lies in the feeding design. To achieve single-feed circular polarization (CP) operation,

the use of an inclined coupling slot at 45o [24] has been the popular method. An-

other way to achieve circular polarization is to use a cross slot of equal slot length

[25]. In our analysis, the proposed single-feed CP design comprised of a meandering

magnetic dipole. Circular polarization has been achieved by choosing a suitable size

of the magnetic dipole length, which results in the excitation of two near-degenerate

orthogonal modes of nearly equal amplitudes and 90o phase difference.

Specifications

Predicted Frequency(GHz) 4.10
Polarization Linear Circular
Resonator Permittivity, εr 10.2 10.2
Diameter(mm) 24 24
Height(mm) 7.62 7.62
Substrate Permittivity, εs 2.2 2.2
Substrate thickness, t (mils) 62 62

Table 6.13: Specifications of resonator and substrate used



94

Diameter = 24 mm
Center of DR at (0,0)

y

x

� � � � �

�
�
�

� �
� �
� �

h = 7.62 mm

Ls = 12.394 mm

t = 62 mils

d = 7.862 mm

SMA
Connector

Dielectric Resonator

Probe

Ground Planes

RT/Duroid 5880
Substrate

W = 1.6 mm

G = 0.35 mm

z

L1= 5.735 mm

2.1 mm

Probe
 Center at (5,0)

Origin

Figure 6.37: Design schematics for circular-polarized cylindrical DRA
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Near-Field Analysis

Near-field analysis of the circular-polarized antenna is investigated using HFSS 8.5 in

a similar manner. The simulated E-fields, H-fields and current density are presented

and analyzed. The geometry of the antenna structure simulated in HFSS is shown

in Figure 6.38.

Figure 6.38: Circular-polarized antenna simulated using Ansoft HFSS

Figure 6.39: E-fields within the rectangu-
lar dielectric resonator simulated using An-
soft HFSS (3.88GHz)

Figure 6.40: H-fields within the circular-
polarized antenna simulated using Ansoft
HFSS (3.88GHz)

From Figure 6.40, H-fields of the circular-polarized antenna resemble that of the de-

sired HEM11δ. Unlike the H-fields of the linear-polarized antenna (Figure 6.13) which
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is along the y-axis, the magnetic field of the circular-polarized antenna is inclined at

about 45o to the y-axis. Also, the E-field of the linear-polarized is often in the vertical

direction along the x-axis. However, a close observation of E-field for the circular-

polarized antenna reveals that vertical and horizontal arms of the meandering dipole

result in electric fields existing along x and y-axis together. These fields are respon-

sible for splitting the fundamental resonant frequency of the dielectric resonator into

two near-degenerate resonant modes with near-equal amplitudes and 90o phase dif-

ference. The position of the probe can also affect the amplitude of the signal and

hence need to be positioned carefully.

The simulated current density for the circular polarized antenna is presented in

Figure 6.41. Using the effective dielectric constant (εeff = 5.53) obtained earlier,

the guided wavelength (λg = 32.88mm) is calculated. Subsequently, the physical

dimensions of the meandering magnetic dipole can be expressed in term of its electrical

length as shown in Figure 6.42. Adding up all the vertical and horizontal arms, the

optimized meandering magnetic dipole has a total length of 1.031λg.

Figure 6.41: Simulated current density
for circular-polarized antenna using Ansoft
HFSS (3.88GHz)

W = 0.05

G = 0.010.064

L
s
 = 0.377

y

x

z

d = 0.24
L
1 
= 0.174

Figure 6.42: Electrical length (in λg) of the
feed design for circular polarization
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Measurement Results

Using the design parameters for the meandering magnetic dipole, the circular-polarized

antenna is fabricated, measured and presented. Photos of the fabricated antenna are

displayed in Figure (6.43-6.45)

Via Connection

Figure 6.43: Top view of feeding substrate for Cylindrical Dielectric Resonator An-
tenna (Circular-Polarized)

SMA Connector

Dielectric resonator

Fully-metallized
feed substrate

Figure 6.44: Three-dimensional view of Cylindrical Dielectric Resonator Antenna
(Circular-Polarized) fabricated
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Meandering
magnetic dipole

Figure 6.45: Photo showing the meandering magnetic dipole for circular-polarized
antenna

The circular-polarized antenna has a simulated impedance bandwidth ranging

from 3.60 GHz to 4.10 GHz. This corresponds to an impedance bandwidth of 13%.

In contrast, the fabricated antenna has a larger impedance bandwidth of 24%, due to

experimental optimization. A comparison of the simulated and measured return loss

for the circular-polarized antenna is shown in Figure 6.46. The operating frequency

of the antenna falls in the range of 3.41 - 4.36 GHz. On the other hand, the linear-

polarized antenna operates in the range of 3.90 - 4.45 GHz and has a bandwidth

of 13%. The near-field measurement for linear and circular-polarized antennas are

summarized in Table 6.14.

Near-Field Measurement

Polarization Linear Circular
Operating Frequency(|S11| ≥ 10dB) 3.90 - 4.45 GHz 3.41 - 4.36 GHz
Impedance Bandwidth 0.50GHz (13%) 0.95GHz (24%)
Q-Factor 5.4 2.9

Table 6.14: Summary of near-field results for linear and circular-polarized dielectric
resonator antennas
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Figure 6.46: Measured return loss for Cylindrical Dielectric Resonator Antenna
(Circular-Polarized)

Figure 6.47 shows the measured axial ratio of the CP radiation in the broadside

direction. The axial ratio calculation is based on Equation 5.5.1. A large 3-dB CP

bandwidth (3.80 - 4.52 GHz) of about 720MHz is obtained. However, as the antenna’s

impedance bandwidth falls in the range of 3.41 - 4.36 GHz, a bit of compromise in

performance is needed to achieve an antenna with a good match (|S11| < 1/3) and an

acceptable axial ratio within the 3-dB CP bandwidth. Measured radiation patterns

are also plotted in Figure 6.48. The E-plane is along the x-z plane while the H-plane

is along the y-z plane. The radiation patterns of the circular-polarized antenna are

less symmetrical than the linear-polarized antenna. The circular-polarized antenna is

observed to have a gain of around 3 dBi in the broadside direction. The front-to-back

ratio is measured to be 10.6 dB, which indicates the antenna radiates effectively in the

broadside direction. Figure 6.49 shows the antenna gain in the broadside direction

against operating frequency. The antenna gain in the range of 3.66 - 4.34 GHz is

within 1.0 dB variation. The radiation efficiency for the circular-polarized antenna
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(74%) is noted to be much lower than that of the linear-polarized antenna (94%).

A problem to deal with in design of a wide-band antenna is the antenna’s radi-

ation patterns. Often, antenna optimized for a wider impedance bandwidth needs

to constantly take note of its radiation patterns. From past simulation work, it is

observed that antennas usually achieve a wider bandwidth at the expense of a less

symmetrical radiation patterns, with lots of scalloping. Even if simulation results

show a smooth and symmetrical radiation pattern, the measured one may also suffers

from scalloping. In the worst scenario, the antenna has no maximum in the boresight

direction.

For the proposed circular-polarized antenna, the radiation patterns measured may

have some scalloping but are still symmetrical. It also has the desirable main lobe in

the broadside direction. The lower gain and radiation efficiency could be the result

of having excite more modes for a wider impedance bandwidth.

Figure 6.47: Measured axial ratio in the broadside direction against frequency
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Figure 6.48: Measured radiation patterns for the circular-polarized antenna at 4.20
GHz

Figure 6.49: Measured antenna gain in the broadside direction against frequency
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Far-Field Measurement

Polarization Linear Circular
E-Plane Co-Polarization(dBi),EcPol 4.20 2.93
E-Plane 3dB-Beamwidth(deg),ΘE 115 112
H-Plane Co-Polarization(dBi),HcPol 4.24 3.11
H-Plane 3dB-Beamwidth(deg),ΘH 105 102
Forward-to-Backward Ratio(dB) 13.0 10.6
Directivity(dB) 4.23 4.52
Radiation Efficiency(%) 94 74

Table 6.15: Summary of measured radiation patterns for circular-polarized antenna
at 4.20 GHz

6.3.4 Comparison of TwoMethods for Measurement of DRAs

Radiation Efficiency

In this section, two methods for the measurement of antenna radiation efficiency

are computed using conventional gain/directivity method (G/D) and Wheeler cap

method. Each of these methods was used to measure the efficiency of four different

dielectric resonator antennas discussed previously.

The Gain/Directivity Method

One of the most popular way to measure antenna efficiency is to determine the gain

G and the directivity D of the antenna. The efficiency η can then be computed as:

η =
Prad
Pin

=
G

D
(6.3.1)

where Prad is the radiated power and Pin is the input power. In this method, the gain

of the DR antenna was measured using a standard gain horn and the directivity is

calculated from the radiation patterns. The simplest method requires the following

procedures:

• Measure the two principal E and H-plane radiation patterns of the test antenna.
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• Determine the half-power beamwidths (in degrees) of the E and H-plane pat-

terns.

• Compute the directivity using:

Do =
32, 400

ΘEΘH

(6.3.2)

This method is a very crude estimation of the antenna’s directivity. It is more accurate

when the pattern exhibits only one major lobe and its minor lobes are negligible. The

other method requires the antenna directivity be calculated from:

D =
4πF (θ, φ)|max

∫ 2π

0

∫ π

0
F (θ, φ) sin θ dθ dφ

(6.3.3)

where F (θ, φ) function represents the radiation patterns obtained by measurement.

F (θ, φ)|max refers to the maximum radiation intensity measured and in this case refers

to the boresight direction. This method requires tedious integration of the measured

radiation patterns but is believed to be accurate for broad beam antennas. Measured

radiation patterns are observed to be fairly similar and by assuming the pattern to

be symmetrical with respect to φ, equation 6.3.3 can be reduced to a simpler form:

D =
2F (0, 0)

∫ π

0
F (θ) sin θdθ

(6.3.4)

The Wheeler Cap Method

This method was originated from Wheeler [26] and is first used by Newman et al [27]

for measuring efficiency of electrically small loop antennas. This technique has since

been popularly used for measuring the radiation efficiency of other electrically small

antennas. The experimental set-up is shown in Figure 6.50 where the test antenna is

completely enclosed by a metallic cylindrical container. The input impedance of the

antenna at resonant frequency is then measured with and without the cap. The real

part of the measured input impedance without the cap (R1) and with the cap (R2)
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are noted and used for the computation of efficiency as follows:

η =
R1 −R2
R1

=
Rr

Rr +RL

(6.3.5)

where Rr and RL refer to the radiation resistance and radiation loss respectively.

� � �
�
�
� �
� �

Test Antenna

Ground Plane

Zin

Wheeler Cap

Radius, a

Dielectric Resonator

Figure 6.50: Set-up for measuring antenna radiation efficiency using the Wheeler cap
method

The metallic cap has an effect of shorting out the radiation resistance, hence allowing

RL to be separated from Rr. It is suggested in Wheeler’s paper [26] that a cap radius

of about one sixth of a wavelength can be used. However, it was subsequently reported

in [27] that the size of the cap and its shape are not so critical. In this investigation,

a cylindrical cap with diameter of 21cm is used. It is found during measurement that

it is very important to center the cap over the test antenna. In addition, copper tape

has been used to ensure the cap are in good contact with the ground plane.
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Comparison of Measurement Methods

The computed directivity and radiation efficiency are tabulated in Table 6.16 for

comparison.

Directivity (dB) Radiation Efficiency (%)
Method 1 Method 2 Method 1 Method 2 Wheeler

Gain Cap
Case Do =

32,400
ΘHΘE

Integration G/D G/D Method

(a) 4.29 4.23 98 100 94
(b) 5.32 4.65 72 84 80
(c) 4.81 4.46 83 89 87
(d) 4.53 4.52 72 72 74

Table 6.16: Computed directivity and antenna efficiency using various methods for
(a) Linear-polarized Circular DRA (εr=10.2) (b) Linear-polarized Circular DRA
(εr=38.5) (c) Linear-polarized Rectangular DRA (εr=10.2) (d) Circular-polarized Cir-
cular DRA (εr=10.2)

From the above table, it is observed that radiation efficiency computed from G/D

using method 2 generally gives a higher value than when method 1 is used. The

directivity computed using gain integration method is believed to be more accurate

then the directivity computed from method 1. However, the gain integration method

is more tedious as it requires the use of computers, which can be difficult and time-

consuming. The measured radiation patterns also lack repeatability due to the posi-

tioning of test antennas on the pedestal mount. The Wheeler cap method is a more

popular choice here as it computes the antenna efficiency with more consistency and

ease. The evaluated values are found to be generally lower than the ones computed

using gain integration method.
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Conclusions and Recommendation
for future work

7.1 Conclusions

In this thesis, a novel integrated antenna has been successfully fabricated and

measured. The antenna has the advantage of being compact, suitable for Bluetooth

(2.45GHz) and other wireless applications. Its fully-metallized substrate prevents

RF chip from any interferences. Simulation and measured results have both verified

the usefulness of using a complementary pair of magnetic dipole and magnetic loop

to achieve wide impedance bandwidth of greater than 10%. The circular-polarized

antenna, excited by means of a meandering magnetic dipole has also shown great

potential. Measurement results reveal it has a broad 3-dB CP bandwidth of 18% and

a wide operational frequency of 24%. The measured radiation patterns for the linear-

polarized (LP) and circular-polarized (CP) antennas are symmetrical and smooth.

The LP antenna achieved a high radiation efficiency of 94% and illustrate the impor-

tance of exciting the antenna close to the natural frequency of the DR.

To compute the resonant frequency of the dielectric resonator accurately, Tan-

gential Vector Finite Element(TVFE) has been proposed. Comparison of computed

eigenvalues with measured results reveal that TVFE method can predict eigenvalues

to within 1% error. The strength of this method lies mainly in its robustness to

106
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changes in the stated problem. Once the code for TVFE method has been written,

changes in the structure analyzed can be easily integrated by means of modifying the

mesh generated and redefined the necessary boundary conditions.

7.2 Limitations of TVFE method

The limitations and difficulties encountered in the process of formulating the problem

using TVFE method includes:

(i) Extraction of the dielectric resonator’s eigenvalues is a tedious process. Even

though the computed eigenvalues are free from “spurious” modes, the eigenval-

ues obtained using TVFE comprised of ‘cavity’ type modes as well as ‘dielectric

resonator’ type modes. The eigenvalues of the dielectric resonators are obtained

by one to one comparison of eigenvalues between an empty cavity and when the

DR is placed inside the cavity.

(ii) Radiation Q-factor (Qrad) cannot be computed using this formulation. Eigen-

values of the resonator are obtained by imposing Dirichlet boundary condition

on the cavity walls. Qrad cannot be computed unless loss is incorporated in the

problem formulation.

(iii) Accuracy of the computed eigenvalues depends much on the quality of the mesh

generated. The higher the required accuracy, the more dense the mesh is re-

quired to be. The larger the structure, the more will be the number of unknowns.

This means a longer computation time and more demanding on the capability

of the computer. This problem becomes worst when a very high permittivity

resonator which require denser mesh, is required to be analyzed.
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7.3 Recommendation for future work

Future works that can be done on this project are as follows:

(i) TVFE method can be improved by imposing perfectly matched layers (PML)

on the cavity walls. This would remove eigenvalues of the cavity, leaving behind

the desired ‘dielectric resonator’ type modes. In addition, radiation Q-factor of

the dielectric resonator can also be computed.

(ii) Low-profile DR antenna can be implemented. Preliminary simulation results

show that low-profile antenna have shown the widest impedance bandwidth,

with symmetrical radiation patterns.

(iii) The complementary pair of magnetic loop and magnetic dipole can be exported

to design broadband microstrip antenna.

(iv) Active integrated antenna can also be implemented to achieve higher gain per-

formance, yet with a wide operation bandwidth.
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Appendix A

Derivations of ae
j, bej, cej and de

j

A.1 Determinant of any order n

In order to derive the unknown coefficients aej , b
e
j , c

e
j and d

e
j , the determinant of the

matrix must first be found by the following approach:

Determinant D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.1.1)

for n ≥ 2:

D = aj1Cj1 + aj2Cj2 + · · ·+ ajnCjn

=
n
∑

k=1

(−1)j+kajkMjk (j = 1, 2, · · · , or n) (A.1.2)

or

D = a1kC1k + a2kC2k + · · ·+ ankCnk

=
n
∑

j=1

(−1)j+kajkMjk (k = 1, 2, · · · , or n) (A.1.3)

where

Cjk = (−1)j+kMjk (A.1.4)

Hence, using the above method, the volume of the tetrahedral element can be found
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as follows:

V olume V e =
1

6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z1 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6

4
∑

k=1

(−1)1+ka1kM1k

=
1

6
[(−1)2M11 + (−1)3M12 + (−1)4M13 + (−1)5M14]

=
1

6
[M11 −M12 +M13 −M14] (A.1.5)

where

M11 =

∣

∣

∣

∣

∣

∣

∣

∣

x2 x3 x4

y2 y3 y4

z2 z3 z4

∣

∣

∣

∣

∣

∣

∣

∣

= x2(y3z4 − y4z3)− x3(y2z4 − y4z2) + x4(y2z3 − y3z2)

M12 =

∣

∣

∣

∣

∣

∣

∣

∣

x1 x3 x4

y1 y3 y4

z1 z3 z4

∣

∣

∣

∣

∣

∣

∣

∣

= x1(y3z4 − y4z3)− x3(y1z4 − y4z1) + x4(y1z3 − y3z1)

M13 =

∣

∣

∣

∣

∣

∣

∣

∣

x1 x2 x4

y1 y2 y4

z1 z2 z4

∣

∣

∣

∣

∣

∣

∣

∣

= x1(y2z4 − y4z2)− x2(y1z4 − y4z1) + x4(y1z2 − y2z1)

M14 =

∣

∣

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3

z1 z2 z3

∣

∣

∣

∣

∣

∣

∣

∣

= x1(y2z3 − y3z2)− x2(y1z3 − y3z1) + x3(y1z2 − y2z1)
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A.2 Comparison of Coefficients

Subsequently, the unknown coefficients can be found by expansion of the determi-

nants:

Evaluation of aej:

ae =
1

6V e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φe1 φe2 φe3 φe4

xe1 xe2 xe3 xe4

ye1 ye2 ye3 ye4

ze1 ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

6V e
(ae1φ

e
1 + a

e
2φ

e
2 + a

e
3φ

e
3 + a

e
4φ

e
4) (A.2.1)

Using D =
n
∑

k=1

(−1)j+kajkMjk (Let j = 1, n = 4)

=
4
∑

k=1

(−1)1+ka1kM1k

= (−1)2a11M11 + (−1)3a12M12 + (−1)4a13M13 + (−1)5a14M14

= a11M11 − a12M12 + a13M13 − a14M14 (A.2.2)

where

M11 =

∣

∣

∣

∣

∣

∣

∣

∣

xe2 xe3 xe4

ye2 ye3 ye4

ze2 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

= xe2(y
e
3z

e
4 − ye4z

e
3)− xe3(y

e
2z

e
4 − ye4z

e
2) + x

e
4(y

e
2z

e
3 − ye3z

e
2)

M12 =

∣

∣

∣

∣

∣

∣

∣
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xe1 xe3 xe4

ye1 ye3 ye4

ze1 ze3 ze4

∣
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∣

∣
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e
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e
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e
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M13 =
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M14 =
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∣
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ye1 ye2 ye3

ze1 ze2 ze3

∣

∣

∣
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∣

∣
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= xe1(y
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e
3 − ye3z

e
2)− xe2(y

e
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e
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e
3(y

e
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e
2 − ye2z

e
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and since

a11 = φe1 a12 = φe2

a13 = φe3 a14 = φe4 (A.2.3)

we obtain

D = φe1M11 − φe2M12 + φ
e
3M13 − φe4M14

∴ ae =
1

6V e
D =

1

6V e
(ae1φ

e
1 + a

e
2φ

e
2 + a

e
3φ

e
3 + a

e
4φ

e
4)

By comparing of coefficients, the following results are obtained:

ae1 =M11 ae3 =M13

ae2 = −M12 ae4 = −M14 (A.2.4)

Evaluation of bej:

be =
1

6V e
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e
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e
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e
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e
3 + b

e
4φ

e
4) (A.2.5)

Using D =
n
∑

k=1

(−1)j+kajkMjk (Let j = 2, n = 4)

=
4
∑

k=1

(−1)2+ka2kM2k

= (−1)3a21M21 + (−1)4a22M22 + (−1)5a23M23 + (−1)6a24M24

= −a21M21 + a22M22 − a23M23 + a24M24

= a21(−M21) + a22M22 + a23(−M23) + a24M24 (A.2.6)
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where

M21 =

∣

∣
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e
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e
3 − ye3z

e
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∣

∣

∣

∣

∣

∣

∣

∣

1 1 1

ye1 ye3 ye4

ze1 ze3 ze4

∣

∣

∣

∣

∣

∣

∣

∣

= (ye3z
e
4 − ye4z

e
3)− (ye1ze4 − ye4z

e
1) + (y

e
1z

e
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e
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e
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e
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M24 =
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ye1 ye2 ye3

ze1 ze2 ze3

∣

∣

∣
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∣
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3 − ye3z

e
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e
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e
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e
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e
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and since

a21 = φe1 a22 = φe2

a23 = φe3 a24 = φe4 (A.2.7)

we obtain

D = φe1(−M21) + φ
e
2M22 + φ

e
3(−M23) + φ

e
4M24

∴ be =
1

6V e
D =

1

6V e
(be1φ

e
1 + b

e
2φ

e
2 + b

e
3φ

e
3 + b

e
4φ

e
4)

By comparing of coefficients, the following results are obtained:

be1 = −M21 be3 = −M23

be2 =M22 be4 =M24 (A.2.8)
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Evaluation of cej:

ce =
1

6V e
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4) (A.2.9)

Using D =
n
∑

k=1

(−1)j+kajkMjk (Let j = 3, n = 4)

=
4
∑

k=1

(−1)3+ka1kM1k

= (−1)4a31M31 + (−1)5a32M32 + (−1)6a33M33 + (−1)7a34M34

= a31M31 + a32(−M32) + a33M33 + a34(−M34) (A.2.10)

where

M31 =
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e
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and since

a31 = φe1 a32 = φe2

a33 = φe3 a34 = φe4 (A.2.11)
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we obtain

D = φe1M31 + φ
e
2(−M32) + φ

e
3M33 + φ

e
4(−M34)

∴ ce =
1

6V e
D =
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6V e
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e
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e
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e
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e
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e
4)

By comparing of coefficients, the following results are obtained:

ce1 =M31 ce3 =M33

ce2 = −M32 ce4 = −M34 (A.2.12)

Evaluation of dej:

de =
1

6V e
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4) (A.2.13)

Using D =
n
∑

k=1

(−1)j+kajkMjk (Let j = 4, n = 4)

=
4
∑

k=1

(−1)4+ka1kM1k

= (−1)5a41M41 + (−1)6a42M42 + (−1)7a43M43 + (−1)8a44M44

= a41(−M41) + a42M42 + a43(−M43) + a44M44 (A.2.14)
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where

M41 =
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e
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e
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e
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e
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and since

a41 = φe1 a42 = φe2

a43 = φe3 a44 = φe4 (A.2.15)

we obtain

D = φe1(−M41) + φ
e
2M42 + φ

e
3(−M43) + φ

e
4M44

∴ de =
1

6V e
D =

1

6V e
(de1φ

e
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e
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e
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e
3φ

e
3 + d

e
4φ

e
4)

By comparing of coefficients, the following results are obtained:

de1 = −M41 de3 = −M43

de2 =M42 de4 =M44 (A.2.16)



Appendix B

Matlab Codes implementing FEM

B.1 Main

Function cavity025

%=======================================================

%Assign nodal values to variables after using GiD mesher

%=======================================================

Global = load(’Global_0.25.txt’);

element = load(’element_0.25.txt’);

G_edge = load(’G_edge025.txt’);

fedge = load(’fedge025.txt’);

sizeElement = size(element);

sizeGlobal = size(Global);

sizefedge = size(fedge);

N_elements = sizeElement(1);

gnodes = sizeGlobal(1);

num_edge = sizefedge(1);

%Initialization

%==============

Detm = ones(4);

a = zeros(1,4);

b = zeros(1,4);

c = zeros(1,4);

d = zeros(1,4);

u = ones(1,4);

eps = ones(1,N_elements);

mu = ones(1,N_elements);

L = zeros(1,6);

in1 = [1 1 1 2 4 3]; %Contain local node

in2 = [2 3 4 3 2 4]; %Contain local node

in3 = [in1;in2];

I = in3’;

E = zeros(num_edge); %From the fedge_222.txt

F = zeros(6);

Ee = zeros(6);

FF = zeros(num_edge);

% G_edge(e,k) where k can be 1,2,3,4,5 and 6.

%Loop through all elements:

%==========================

for e=1:N_elements

%Allocate the vaue of the permittivity

%=====================================
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qe=eps((e));

%Compute the Element matrix entries:

%===================================

%Global(element(e,i),j) where j =1(x-coord), 2(y-coord) and 3(z-coord)

%i = 1(1st Gnode),2(2nd Gnodes),3(3rd Gnodes) and 4(4th Gnodes)

%of eth element

%will give the coordinates of the global nodes.

%Generate the 4 coordinates for each element

x1=Global(element(e,1),1);

x2=Global(element(e,2),1);

x3=Global(element(e,3),1);

x4=Global(element(e,4),1);

x = [x1 x2 x3 x4];

y1=Global(element(e,1),2);

y2=Global(element(e,2),2);

y3=Global(element(e,3),2);

y4=Global(element(e,4),2);

y = [y1 y2 y3 y4];

z1=Global(element(e,1),3);

z2=Global(element(e,2),3);

z3=Global(element(e,3),3);

z4=Global(element(e,4),3);

z = [z1 z2 z3 z4];

M_Vol = [u;x;y;z]; %assemble into matrix form

Dt = det(M_Vol);%Calculate the determinant of the matrix

Ve = Dt/6; %Elemental volume

%Calculate the length of eth edge

%================================

L(1) = sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2);

L(2) = sqrt((x1-x3)^2+(y1-y3)^2+(z1-z3)^2);

L(3) = sqrt((x1-x4)^2+(y1-y4)^2+(z1-z4)^2);

L(4) = sqrt((x2-x3)^2+(y2-y3)^2+(z2-z3)^2);

L(5) = sqrt((x2-x4)^2+(y2-y4)^2+(z2-z4)^2);

L(6) = sqrt((x3-x4)^2+(y3-y4)^2+(z3-z4)^2);

%Evaluate the coefficient values

%===============================

a(1) = x2*(y3*z4-z3*y4)-x3*(y2*z4-z2*y4)+x4*(y2*z3-z2*y3);

a(2) = -x1*(y3*z4-z3*y4)+x3*(y1*z4-z1*y4)-x4*(y1*z3-z1*y3);

a(3) = x1*(y2*z4-z2*y4)-x2*(y1*z4-z1*y4)+x4*(y1*z2-z1*y2);

a(4) = -x1*(y2*z3-z2*y3)+x2*(y1*z3-z1*y3)-x3*(y1*z2-z1*y2);

b(1) = -(y3*z4-z3*y4)+(y2*z4-z2*y4)-(y2*z3-z2*y3);

b(2) = (y3*z4-z3*y4)-(y1*z4-z1*y4)+(y1*z3-z1*y3);

b(3) = -(y2*z4-z2*y4)+(y1*z4-z1*y4)-(y1*z2-z1*y2);

b(4) = (y2*z3-z2*y3)-(y1*z3-z1*y3)+(y1*z2-z1*y2);

c(1) = (x3*z4-z3*x4)-(x2*z4-z2*x4)+(x2*z3-z2*x3);

c(2) = -(x3*z4-z3*x4)+(x1*z4-z1*x4)-(x1*z3-z1*x3);

c(3) = (x2*z4-z2*x4)-(x1*z4-z1*x4)+(x1*z2-z1*x2);

c(4) = -(x2*z3-z2*x3)+(x1*z3-z1*x3)-(x1*z2-z1*x2);

d(1) = -(x3*y4-y3*x4)+(x2*y4-y2*x4)-(x2*y3-y2*x3);

d(2) = (x3*y4-y3*x4)-(x1*y4-y1*x4)+(x1*y3-y1*x3);

d(3) = -(x2*y4-y2*x4)+(x1*y4-y1*x4)-(x1*y2-y1*x2);

d(4) = (x2*y3-y2*x3)-(x1*y3-y1*x3)+(x1*y2-y1*x2);

% i and j refer to unknown edges

for i=1:6

for j=1:6

i1 = I(i,1);
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i2 = I(i,2);

j1 = I(j,1);

j2 = I(j,2);

edgei = sign(G_edge(e,i));

edgej = sign(G_edge(e,j));

del_Ni = edgei*L(i)*[c(i1)*d(i2)-d(i1)*c(i2) ;

d(i1)*b(i2)-b(i1)*d(i2) ;

b(i1)*c(i2)-c(i1)*b(i2)]/(6*Ve)^2;

del_Nj = edgej*L(j)*[c(j1)*d(j2)-d(j1)*c(j2) ;

d(j1)*b(j2)-b(j1)*d(j2) ;

b(j1)*c(j2)-c(j1)*b(j2)]/(6*Ve)^2;

Ee(i,j)= 4*Ve*dot(del_Ni,del_Nj);

E(abs(G_edge(e,i)),abs(G_edge(e,j))) = E(abs(G_edge(e,i)),abs(G_edge(e,j))) + Ee(i,j);

end;

end;

%Evaluate the Matrix F

%=====================

for i=1:4

for j=1:4

fe(i,j)=b(i)*b(j)+c(i)*c(j)+d(i)*d(j);

end;

end;

f11=fe(1,1);

f12=fe(1,2);

f13=fe(1,3);

f14=fe(1,4);

f21=fe(2,1);

f22=fe(2,2);

f23=fe(2,3);

f24=fe(2,4);

f31=fe(3,1);

f32=fe(3,2);

f33=fe(3,3);

f34=fe(3,4);

f41=fe(4,1);

f42=fe(4,2);

f43=fe(4,3);

f44=fe(4,4);

edge1 = sign(G_edge(e,1));

edge2 = sign(G_edge(e,2));

edge3 = sign(G_edge(e,3));

edge4 = sign(G_edge(e,4));

edge5 = sign(G_edge(e,5));

edge6 = sign(G_edge(e,6));

F(1,1) = edge1*edge1*(L(1))^2*(f22 - f12 + f11)/(360*Ve);

F(1,2) = edge1*edge2*(L(1)*L(2))*(2*f23 - f21 - f13 + f11 )/(720*Ve);

F(1,3) = edge1*edge3*(L(1)*L(3))*(2*f24 - f21 - f14 + f11 )/(720*Ve);

F(1,4) = edge1*edge4*(L(1)*L(4))*( f23 - f22 - 2*f13 + f12 )/(720*Ve);

F(1,5) = edge1*edge5*(L(1)*L(5))*( f22 - f24 - f12 + 2*f14)/(720*Ve);

F(1,6) = edge1*edge6*(L(1)*L(6))*( f24 - f23 - f14 + f13 )/(720*Ve);

F(2,1) = F(1,2);

F(2,2) = edge2*edge2*(L(2))^2*(f33 - f13 + f11)/(360*Ve);

F(2,3) = edge2*edge3*(L(2)*L(3))*(2*f34 - f13 - f14 + f11 )/(720*Ve);

F(2,4) = edge2*edge4*(L(2)*L(4))*( f33 - f23 - f13 + 2*f12)/(720*Ve);

F(2,5) = edge2*edge5*(L(2)*L(5))*( f23 - f34 - f12 + f14 )/(720*Ve);

F(2,6) = edge2*edge6*(L(2)*L(6))*( f34 - f33 - 2*f14 + f34 )/(720*Ve);

F(3,1) = F(1,3);

F(3,2) = F(2,3);
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F(3,3) = edge3*edge3*(L(3))^2*(f44 - f14 + f11)/(360*Ve);

F(3,4) = edge3*edge4*(L(3)*L(4))*(f34 - f24 - f13 + f12 )/(720*Ve);

F(3,5) = edge3*edge5*(L(3)*L(5))*(f24 - f44 - 2*f12 + f14 )/(720*Ve);

F(3,6) = edge3*edge6*(L(3)*L(6))*(f44 - f34 - f14 + 2*f13)/(720*Ve);

F(4,1) = F(1,4);

F(4,2) = F(2,4);

F(4,3) = F(3,4);

F(4,4) = edge4*edge4*(L(4))^2*(f33 - f23 + f22)/(360*Ve);

F(4,5) = edge4*edge5*(L(4)*L(5))*(f23 - 2*f34 - f22 + f24)/(720*Ve);

F(4,6) = edge4*edge6*(L(4)*L(6))*(f34 - f33 - 2*f24 + f23)/(720*Ve);

F(5,1) = F(1,5);

F(5,2) = F(2,5);

F(5,3) = F(3,5);

F(5,4) = F(4,5);

F(5,5) = edge5*edge5*(L(5))^2*(f22 - f24 + f44)/(360*Ve);

F(5,6) = edge5*edge6*(L(5)*L(6))*(f24 - 2*f23 - f44 + f34)/(720*Ve);

F(6,1) = F(1,6);

F(6,2) = F(2,6);

F(6,3) = F(3,6);

F(6,4) = F(4,6);

F(6,5) = F(5,6);

F(6,6) = edge6*edge6*(L(6))^2*(f44 - f34 + f33)/(360*Ve);

%Assemble the Element matrices F into the Global FEM System:

%=========================================================

for i=1:6

for j=1:6

FF(abs(G_edge(e,i)),abs(G_edge(e,j))) = FF(abs(G_edge(e,i)),abs(G_edge(e,j))) + F(i,j);

end;

end;

end;

%Apply Boundary Conditions

%==========================

%TM modes

iedge = load(’iedge025.txt’); %need bedge1 to generate the result

non_cond = iedge’; Fmatrix = FF(non_cond,non_cond); Ematrix =

E(non_cond,non_cond);

eig_squares=eig(Ematrix,Fmatrix);

eig_values_indices=find(eig_squares >=0 );

eig_values=sqrt(eig_squares(eig_values_indices));

eign_values=sort(eig_values)
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B.2 Define global edges

%==============================================================================

%

%This program assign numbering(ROWs of fedge) to each of the elements.

%The algorithm is such that it will not allocate a numbering to the same edge.

%

%==============================================================================

Function fedge025

%Load Files

element = load(’element_0.25.txt’);

%Initialization

%===============

sizeElement = size(element);

n_ele = sizeElement(1);

nsize = 6*n_ele;

edge = zeros(nsize,2);; %Use upper limit of 999 first

fedge = zeros(10,2);

temp = zeros(nsize,2);

elem1 = [1 1 1 2 4 3];

elem2 = [2 3 4 3 2 4];

same = 0;

%Assign unknown egdes

%=====================

i=1;

for e=1:n_ele %6x440 = 2640 => zeros(60,2)

%Set up the unknown edge elements

if e==1

for j=1:6

edge(i,1)=element(e,elem1(j));

edge(i,2)=element(e,elem2(j));

i=i+1;

end;

else

for j=1:6

temp(i,1)=element(e,elem1(j));

temp(i,2)=element(e,elem2(j));

i=i+1;

end;

i=i-1;

end;

%Compare if the edges are repeated

if e>1

%Set up the limits for the looping

lim1 = i-6;

lim2 = i-5;

lim3 = i;

for p=lim2:lim3

same=0; %Initialize back to zero

%Loop through the previous element to see if repetitions occur

for k=1:lim1

temp1=temp(p,1);

temp2=temp(p,2);

edge1=edge(k,1);

edge2=edge(k,2);

if temp1==edge1
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if temp2==edge2

same = 1;

end;

end;

if temp1==edge2

if temp2==edge1

same = 1;

end;

end;

end;

%same

if same==0

edge(p,1)=temp1;

edge(p,2)=temp2;

end;

%Terminate the loop generating the temp variable

end;

i=i+1; %Is to ensure the next temp element is assigned

%For the if Loop

end;

%For all the element

end;

%To take away rows that are repeated

n = 1;

for k=1:nsize

if edge(k,1)~=0

if edge(k,2)~=0

%if edge(k,1)>=edge(k,2)

fedge(n,1)=edge(k,1);

fedge(n,2)=edge(k,2);

n=n+1;

%else

% fedge(n,1)=edge(k,2);

% fedge(n,2)=edge(k,1);

% n=n+1;

%end;

end;

end;

end;

edge;

fedge;

tfedge = fedge’;

tedge = edge’;

fid = fopen(’fedge025.txt’,’w’);

fprintf(fid,’%6i %6i\n’,tfedge);

fclose(fid);

fid = fopen(’edge025.txt’,’w’);

fprintf(fid,’%6i %6i\n’,tedge);

fclose(fid);
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B.3 Global edges for each elements

%==============================================================================

%

%This program assign numbering(ROWs of fedge) to each of the elements.

%The algorithm is such that it will not allocate a numbering to the same edge.

%Required fedge1.m to generate fedge_222.txt and edge_222.txt

%

%==============================================================================

Function G_edge025

%Load Files

element = load(’element_0.25.txt’);

edge = load(’edge025.txt’);

fedge = load(’fedge025.txt’);

%Initialization

%===============

sizeElement = size(element);

n_ele = sizeElement(1);

nsize = 6*n_ele;

temp = zeros(nsize,2);

elem1 = [1 1 1 2 4 3];

elem2 = [2 3 4 3 2 4];

G_edge= zeros(6,n_ele);

notfound=0;

I1=size(edge); %1332 with zeros at rows where repetition of edges occur

I2=size(fedge); %341

i=1;

k=1;

r=1;

for e=1:n_ele

for j=1:6

temp(i,1)=element(e,elem1(j));

temp(i,2)=element(e,elem2(j));

temp1=temp(i,1);

temp2=temp(i,2);

k=1;

notfound=0;

%=============================

while notfound==0,

fedge1=fedge(k,1);

fedge2=fedge(k,2);

if temp1==fedge1

if temp2==fedge2

G_edge(r,e)=k;

notfound=1;

r=r+1;

if r>6

r=1;

end;

end;

end;

if temp2==fedge1

if temp1==fedge2

G_edge(r,e)=-k;

notfound=1;

r=r+1;

if r>6

r=1;

end;

end;
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end;

k=k+1;

if k>I2(1)

k=I2(1);

end;

end;

%=============================

i=i+1;

end;

end;

G_edge;

fid = fopen(’G_edge025.txt’,’w’); %Need to take transpose of this text file

fprintf(fid,’%6i %6i %6i %6i %6i %6i\n’,G_edge);

fclose(fid);
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B.4 Edges on the boundary

%-----------------------------------------------------------------------------

%This program is written to find edges at the boundary

Function bedge025

%Define the x,y,z limitation of the rect cavity

xlim=[0 1];

ylim=[0 0.5];

zlim=[0 0.75];

%Initialize matrix indices

i=1;

j=1;

k=1;

l=1;

m=1;

p=1;

q=1;

r=1;

same1=0;

same2=0;

Global = load(’Global_0.25.txt’);

fedge = load(’fedge025.txt’);

G1 = size(Global);

G2 = size(fedge);

bnode = zeros(1,5);

inode = zeros(1,5);

iedge = zeros(1,5);

bedge = zeros(1,5);

ZY1 = zeros(1,5);

ZY2 = zeros(1,5);

ZX1 = zeros(1,5);

ZX2 = zeros(1,5);

XY1 = zeros(1,5);

XY2 = zeros(1,5);

for n=1:G1(1)

%Find Nodes on ZY-Plane

if Global(n,1)==xlim(1)

ZY1(i)=n;

i=i+1;

end;

if Global(n,1)==xlim(2)

ZY2(j)=n;

j=j+1;

end;

%Find Nodes on ZX-Plane

if Global(n,2)==ylim(1)

ZX1(k)=n;

k=k+1;

end;

if Global(n,2)==ylim(2)

ZX2(l)=n;

l=l+1;

end;

%Find Nodes on XY-Plane

if Global(n,3)==zlim(1)

XY1(m)=n;

m=m+1;

end;



130

if Global(n,3)==zlim(2)

XY2(p)=n;

p=p+1;

end;

end;

I1=size(ZY1);

I2=size(ZY2);

I3=size(ZX1);

I4=size(ZX2);

I5=size(XY1);

I6=size(XY2);

%Find edges on the boundaries

for e=1:G2(1)

for j=1:I1(2)

if fedge(e,1)==ZY1(j)

same1=1;

end;

if fedge(e,2)==ZY1(j)

same2=1;

end;

end;

if same1~=same2

same1=0;

same2=0;

end;

for j=1:I2(2)

if fedge(e,1)==ZY2(j)

same1=1;

end;

if fedge(e,2)==ZY2(j)

same2=1;

end;

end;

if same1~=same2

same1=0;

same2=0;

end;

for j=1:I3(2)

if fedge(e,1)==ZX1(j)

same1=1;

end;

if fedge(e,2)==ZX1(j)

same2=1;

end;

end;

if same1~=same2

same1=0;

same2=0;

end;

for j=1:I4(2)

if fedge(e,1)==ZX2(j)

same1=1;

end;

if fedge(e,2)==ZX2(j)

same2=1;

end;

end;
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if same1~=same2

same1=0;

same2=0;

end;

for j=1:I5(2)

if fedge(e,1)==XY1(j)

same1=1;

end;

if fedge(e,2)==XY1(j)

same2=1;

end;

end;

if same1~=same2

same1=0;

same2=0;

end;

for j=1:I6(2)

if fedge(e,1)==XY2(j)

same1=1;

end;

if fedge(e,2)==XY2(j)

same2=1;

end;

end;

if same1~=same2

same1=0;

same2=0;

end;

if same1==1

if same2==1

bedge(q)=e;

q=q+1;

same2=0;

end;

same1=0;

else

iedge(r)=e;

r=r+1;

end;

end;

%Set up an array containing nodes at the boundary

fid = fopen(’iedge025.txt’,’w’);

fprintf(fid,’%6i\n’,iedge);

fclose(fid);

fid = fopen(’bedge025.txt’,’w’);

fprintf(fid,’%6i\n’,bedge);

fclose(fid);


