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Summary

This thesis focuses on atomless games in game theory.

In Chapter 1, we review the development of game theory in history and introduce

the main results of this paper. Chapter 2 consists of the mathematical preliminaries

needed in this thesis. Then, in Chapter 3, we introduce some basic elements of

game theory, and provide the classical proof of the existence of Nash equilibrium

in mixed-strategies. Also atomless games are introduced.

The new results of this thesis are included in Chapter 4 and Chapter 5, in which

we discuss certain atomless games in details. Chapter 4 deals with games with

private information. Based on our mathematical results on the set of distributions

induced by the measurable selections of a correspondence with a countable range,

we provide the purification results and also prove the existence of a pure strategy

equilibrium for a finite game when the action space is countable but not necessarily

compact.

v



Summary vi

Chapter 5 focuses on large games. We show the existence of equilibrium for

a game with continuum of players with finitely many types, and with countable

actions, where a player’s payoff depends on the action distributions of all the

players with the same type. We also consider another kind of large games with a

continuum of small players and a compact action space, where the players’ payoffs

depend on their own actions and the mean of the transformed strategy profiles.

Part of the results in Chapter 5 has been written into a journal paper [41] with Zhu

Wei, which is to be published in an international journal – “Economic Theory”.



Chapter 1
Introduction

1.1 History of Game Theory

Game theory is the study of multi-person decision problems. Generally, it can be

divided into two kinds: cooperative games and non-cooperative games. The usual

distinction between these two theories of game is whether there is some binding

agreement. If yes, the game is cooperative; Otherwise, non-cooperative. The

Nobel Prize of Economic Sciences in 1994 was awarded to three experts of game

theory: Nash, Selten and Harsanyi. Their main contributions to game theory are

the insightful studies in non-cooperative game. This paper also focuses on non-

cooperative games.

Historically speaking, the study of game theory began with the publication of The

Theory of Games and Economic Behavior by Von Neumann and Morgenstern in

1944. The 1950s was a period filled with excitement in game theory. During that

time, cooperative game had developed some crucial concepts, for instance, bar-

gaining models by Nash [24], core in cooperative games by Gillies [13] and Shapley

[36], Shapley value by Shapley [37], etc. Around the same period when coopera-

tive game research peaked in 1950s, non-cooperative game began to develop. For

1



1.1 History of Game Theory 2

example, Tucker [40] defined prisoner’s dilemma; Nash published two of his most

important papers of non-cooperative games – [25] in 1950 and [26] in 1951. Their

works laid the foundation for non-cooperative game theory. The sixties and sev-

enties in last century were decades of growth in game theory. Extensions such

as games of incomplete information (see, for example, Harsanyi [14], [15], [16]),

the concept of subgame perfect Nash equilibrium (see, for example, Selten [34],

[35]), etc. made the theory more widely applicable. Since 1980s, the concepts

and models have become more specified and formulated. For example, Kreps,

Milgrom, Roberts and Wilson [20] on incomplete information in repeated games,

Radner and Rosenthal [27] on private information and existence of pure -strategy

equilibria, Milgrom and Weber [23] on distributional strategies for games with in-

complete information, Khan and Sun [18] on pure strategies in games with private

information with countable compact action space.

Most models of game theory in economics were developed after 1970s. Since 1980s

in last century, game theory has gradually become one part of mainstream eco-

nomics, even forming the basis of micro-economics. Here, I would like to quote the

words in Games and Information by Eric Rasmusen [28] to sum up the position of

game theory in economics. He said:

Not so long ago, the scoffer could say the econometrics and game theory were like

Japan and Argentina. In the late 1940s both disciplines and both economies were

full of promise, poised for rapid growth and ready to make a profound impact on the

world. We all know what happened to the economies of Japan and Argentina. Of

the disciplines, econometrics became an inseparable part of economics, while game

theory languished as a subdiscipline, interesting to its specialists but ignored by the

profession as a whole. The specialists in game theory were generally mathemati-

cians, who cared about definitions and proofs rather than applying the methods to
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economics problems. Game theorists took pride in the diversity of disciplines to

which their theory could be applied, but in none had it become indispensable.

In the 1970s, the analogy with Argentina broke down. At the same time the Ar-

gentina was inviting back Juan Peron, economists were beginning to discover what

they could achieve by combining game theory with the structure of complex eco-

nomic situations. Innovation in theory and application was especially useful for

situations with asymmetric information and a temporal sequence of actions,· · · .
During the 1980s, game theory became dramatically more important to mainstream

economics. Indeed, it seemed to be swallowing up microeconomics just as econo-

metrics had swallowed up empirical economics.

1.2 Main Results

The main purpose of my thesis work is to focus on some aspects in the recent

development of game theory. The main contents include two parts–one deals with

game with private information and countable action spaces, and the other focuses

on large games.

Chapter 4 deals with games with private information. It is based on an article

[18] by Khan and Sun. We show that in the game with diffuse and independent

private information, purification of mixed-strategy equilibrium as well as pure-

strategy equilibrium exists when the action spaces are countable but not neces-

sarily compact. To prove the results, we also develop the distribution theory of

correspondences taking values in a countable complete metric space.

Radner and Rosenthal pointed out in [27] that randomized strategies have limited



1.2 Main Results 4

appeal in many practical situations, and thus it is important to ask under what

general conditions, pure strategy equilibrium exists. They showed both the purifi-

cation of mixed-strategy equilibrium and the existence of pure strategy equilibrium

for a game with finitely many players, finite action spaces, and diffuse and inde-

pendent private information. However, as shown by an example in Khan, Rath

and Sun [17] that there exists a two-player game with diffuse and independent

private information and with the interval [−1, 1] as their action space that has

no equilibrium in pure strategies. This means that the result of the existence of

pure strategy equilibrium of Radner and Rosenthal cannot be extended to general

action spaces.

On the other hand, it has been shown in Khan and Sun [18] that the purification of

mixed-strategy equilibriums together with a pure strategy equilibrium does exist in

a finite game with diffuse and independent private information and with countable

compact metric spaces as their action spaces. However, the requirement of com-

pactness for a countable action space excludes some interesting cases, including

the most commonly used countable space, the space of natural numbers.

It was suggested in the section of concluding remarks in [18] that one can work with

compact-valued correspondences taking values in countable metric action spaces

and tie in with the setting studied in Meister [22] to generalize Theorem 3 in [18]

to the case of general countable metric action spaces. However, we notice that the

proof of Theorem 2.1 in [22] has some problems.1 This also motivates us to consider

how the compactness assumption on the action spaces in Theorem 3 of [18] can be

relaxed. As we look into the problem more carefully, we realize that it may not be

1Meister [22] applied Theorem 3.1 (DWW theorem) in Dvoretzky et al [10] incorrectly. The

DWW theorem was used to purify a mixed-strategy whose values are probability measures with

finite supports that may change with respect to the sample information points and are not

contained in a common finite set. The latter condition, however, is a crucial condition in the

DWW theorem.



1.2 Main Results 5

so obvious to generalize Theorem 3 of [18] to the case of general countable metric

action spaces. In fact, we need to work with countable complete metric action

spaces (which clearly include the space of natural numbers) to show the existence

of pure strategy equilibrium. With such settings, we also show the purification

results. Without the completeness assumption or other related assumptions, we

do not know whether the result still holds.

In Chapter 5, we work with large games. After introducing a simple large game

model developed by Rath[29], we show the existence of equilibrium for a game

with continuum of players with finitely many types, and with countable actions,

where a player’s payoff depends on the action distributions of all the players with

the same type in Section 5.2.

The similar result with finite action spaces has been studied in Radner and Rosen-

thal [27], and that with countable metric action space has been shown in Khan and

Sun [18]. However, as we mention above, it would be more general and applicable

to take an infinite action space but not necessarily compact. Based on the results of

the set of distributions induced by the measurable selections of a correspondence,

we show the action spaces can set to be countable complete metric action spaces,

which extends the similar results shown before.

Then we discuss large games with transformed summary statistics. Non-cooperative

games with a continuum of small players and a compact action space in a finite

dimensional space have been used in the study of monopolistic competitions (see,

for example, Rauh [32] and Vives [42]). It is often assumed that the players’ payoffs

depend on their own actions and the summary statistics of the aggregate strategy

profiles in terms of the moments of the distributions of players’ actions. The exis-

tence of pure-strategy Nash equilibrium for such kind of games is shown in Rauh

[31] under some restrictions.
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In last section of Chapter 5, we reformulate the above model so that the players’

payoffs depend on their own actions and the mean of the strategy profiles under

a general transformation. The existence of pure-strategy Nash equilibrium is then

shown. Our result covers the case when the payoffs depend on players’ own actions

and finitely many summary statistics as considered in Rauh [31]. It is more gen-

eral than that of Rauh [31] in several aspects. First, our action space is a general

compact metric space while the formulation in Rauh [31] requires the action space

to be a compact set in a finite dimensional space. Second, we work with a general

transformation rather than the special functions obtained by taking the composi-

tion of some univariate vector functions with projections. Third, we do not need

the unnatural assumption on the strict monotonicity of some component of the

univariate vector functions as in Rauh [31].

The existence of pure-strategy Nash equilibrium is shown in Rath [29] for large

games with a compact action space in a finite dimensional space, where the payoffs

depend on players’ own actions and the mean of the aggregate strategy profiles.2

This result does not extend to infinite-dimensional spaces (see Khan, Rath and Sun

[17]) when the unit interval with Lebesgue measure is used to represent the space

of players; such an extension is possible if the space of players is an atomless hyper-

finite Loeb measure space (see Khan and Sun [19]). It is claimed in Rauh [31] that

“All these results involve the mean and hence do not apply to monopolistic compe-

tition models with summary statistics different from the mean or several summary

statistics”. However, our formulation shows that monopolistic competition models

can indeed be studied via the mean under some transformation.

2The case of a finite action space is discussed in Schmeidler [33].



Chapter 2
Mathematical Background

The main purpose of this chapter is to study some mathematical preliminaries

which will be used in the following parts. After giving some notations and defini-

tions, we study some properties of correspondence, fixed points, etc., and provide

some basic theorems needed in game theory, or, at least in this thesis.

2.1 Some Definitions

2.1.1 Notation

Rn denotes the n−fold Cartesian product of the set of real numbers R.

2A denotes the set of all nonempty subsets of the set A.

conA denotes the convex hull of the set A.

proj denotes projection.

∅ denotes the empty set.
⊗

denotes product σ−algebra.

meas(X,Y ) denotes the space of (X ,Y)−measurable functions for any two mea-

surable spaces (X,X ) and (Y,Y).

7
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A∞ = A ∪ {∞} is a compactification of A.

If X is a linear topological space, its dual is the space X∗ of all continuous linear

functionals on X. If q ∈ X∗ and x ∈ X the value of q at x is denoted by q · x.

2.1.2 Definitions

The first term we want to emphasize is the concept of correspondence. Simply

speaking, a correspondence is a set-valued function. That is, it associates to each

point in one set a set of points in another set. The discussion to the correspondence

arises naturally here since this paper is dedicated to discuss game theory. For

instance, when we deal with non-cooperative games, the best-reply correspondence

is one of the most important tools.

Now, we start with a formal definition of correspondence, then followed by the

continuity of it.

Definition 1. Let X and Y be sets. A correspondence φ from X into Y assigns

to each x in X a subset φ(x) of Y . Let φ : X ³ Y 1 be a correspondence. The

graph of φ is denoted by Gφ = {(x, y) ∈ X × Y : y ∈ φ(x)}.

Just as functions have inverses, each correspondence φ : X ³ 2Y has two natural

inverses:

• the upper inverse φu defined by φu(A) = {x ∈ X : φ(x) ⊂ A};
• the lower inverse φl defined by φl(A) = {x ∈ X : φ(x)

⋂
A 6= ∅}.

Now, we can give the definition of different continuity of correspondences.

Definition 2. A correspondence φ : X ³ Y between topological spaces is:

1φ can also be viewed as a function from X into the power set 2Y of Y . For this reason, we

also denote a correspondence from X to Y as φ : X → 2Y .

Also, here we note that in this thesis we use notation “³” instead of notation “→” to differ

correspondences with common functions.
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• upper hemicontinuous(or, upper semicontinuous) at the point x if for every open

neighborhood U of φ(x), the upper inverse image φu(U) is a neighborhood of x ∈ X.

• lower hemicontinuous(or, lower semicontinuous) at the point x if for every open

set U satisfying φ(x)
⋂

U 6= ∅, the lower inverse image φl(U) is a neighborhood of

x.

• continuous if φ is both upper and lower hemicontinuous.

We now turn to the definition of measurable correspondences.

Definition 3. Let (S, Σ) be a measurable space and X a toplogical space (usually

metrizable). A correspondence φ : S ³ X is:

• weakly measurable if φl(G) ∈ Σ for each open subset G of X.

• measurable if φl(F ) ∈ Σ for each closed subset F of X.

Commonly, let (T, τ, µ) be a complete, finite measure space, and X be a separable

Banach space. We say the correspondence φ : X → 2Y has a measurable graph if

Gφ ∈ τ ⊗ β(X), where β(X) denotes the Borel σ−algebra on X.

Now, let G be a correspondence from a probability space (T, T , ν) to a Polish space

X. We say that G is a tight correspondence if for every ε > 0, there is a compact

set Kε in X such that the set {t ∈ T : G(t) ⊂ Kε} is measurable and its measure

is greater than 1− ε.

We say that the collection {Gλ : λ ∈ Λ} of correspondences is uniformly tight if for

every ε > 0, there is a compact set Kε in X such that the set {t ∈ T : for all λ ∈
Λ, Gλ(t) ⊂ Kε} is measurable and its measure is greater than 1− ε.

After giving these definitions of correspondences, we now introduce the definition

of selector (or, selection) of a correspondence. A selector from a relation R ⊂ X×Y

is a subset S of Y such that for every x ∈ X, there exists a unique yx ∈ S satisfying

(x, yx) ∈ R. We first give the formal definition of it.
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Definition 4. A selector from a correspondence φ : X ³ Y is a function f : X →
Y that satisfies f(x) ∈ φ(x) for each x ∈ X.

Another important item related to the game we discuss here is the concept of

fixed-point. When we deal with non-cooperative games, one way to prove the

existence of an equilibrium is to prove the existence of the fixed point of a best-

reply correspondence. We now give the definition of fixed point.

Definition 5. Let A be subset of a set X. The point x in A is called a fixed point

of a function f : A → X if f(x) = x. Similarly, A fixed point of a correspondence

φ : A ³ X is a point x in A satisfying x ∈ φ(x).

2.2 Known Facts

We have developed the definition of correspondence and some related items already.

Now we present some classical results which we will use later. Note that we do not

give specific proofs and just state these known facts. For the details about proofs,

one can refer any related book(see, for example, [1]). The reason we present them

here without proofs is to make the main theorems and proofs in this paper more

self-contained.

The first needed result is about the equivalence of compactness and sequential

compactness of a metric space.

Theorem 2.2.1. For a metric space the following are equivalent:

1.The space is compact.

2.The space is sequentially compact. That is, every sequence has a convergent

subsequence.

The next set of theorems are concerned with the properties of correspondence.
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Lemma 2.2.2. (Uhc Image of a Compact Set) The image of a compact set under

a compact-valued upper hemicontinuous correspondence is compact.

When we deal with upper hemicontinuity of a correspondence, we can often transfer

to prove it to be closed graph providing the following theorem.

Theorem 2.2.3. (Closed Graph Theorem) A closed-valued correspondence with

compact Hausdorff range space is closed if and only if it is upper hemicontinuous.

From the definition of upper hemicontinuity, we can have some other ways to assert

the upper hemicontinuity of a correspondence. The next theorem characterize

upper hemicontinuity of correspondences.

Theorem 2.2.4. (Upper Hemicontinuity) For φ : X ³ Y , the following state-

ments are equivalent.

1. φ is upper hemicontinuous.

2. φu(O) is open for each open subset O of Y .

3. φl(V ) is closed for each closed subset V of Y .

The next theorem states that the set of solutions to a well behaved constrained

maximization problem is upper hemicontinuous in its parameters and that the

value function is continuous.

Theorem 2.2.5. (Berge’s Maximum Theorem) Let φ : X ³ Y be a continuous

correspondence with nonempty compact values, and suppose f : X × Y → R is

continuous,. Define the “value function” m : X → R by

m(x) = max
y∈φ(x)

f(x, y),

and the correspondence µ(x) : X ³ Y of maximizers by

µ(x) = {y ∈ φ(x) : f(x, y) = m(x)}.
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Then the value function m is continuous, and the “ arg max ” correspondence µ is

upper hemicontinuous with compact values.

Now, we come to the measurability of a correspondence. We have given the def-

inition of both measurability and weak measurability. In fact, for metric spaces,

weak measurability is weaker than measurability, but not so much weaker. The

next theorem shows that for compact-valued correspondences the two definitions

coincide.

Theorem 2.2.6. (Measurability VS Weak Measurability) For a correspondence

φ : (S, Σ) ³ X from a measurable space into a metrizable space:

1. If φ is measurable, then φ is also weakly measurable.

2. If φ has compact values, then φ is measurable if and only if it is weakly mea-

surable.

Another theorem is used to assert a measurable correspondence as follows.

Theorem 2.2.7. Let (T, T ) be a measurable space, X a separable metrizable space,

U a metrizable space and φ : T × X ³ U . We suppose that φ is measurable in t

and continuous in x. Then φ is measurable.

Viewing relations as correspondences, we know that only nonempty-valued cor-

respondences can admit selectors, and nonempty-valued correspondences always

admit selectors. Recall the definition of selector. Similarly to that definition, a

measurable selector from a correspondence φ : S ³ X between measurable spaces

is a measurable function f : S ∈ X satisfying f(s) ∈ φ(s). We now state the main

selection theorem for measurable correspondences.

Theorem 2.2.8. (Kuratowski-Ryll-Nardzewski Selection Theorem) A weakly mea-

surable correspondence with nonempty closed values form a measurable space into

a Polish space admits a measurable selector.
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When we deal with the existence of equilibrium, one of those most basic way is

to use fixed-point theorem to assert that. As long as the game theory begins

to develop, the Brouwer fixed-point theorem is used by Von Neumann to prove

the basic theorem in the theory of zero-sum, two-person games. Nash also used

Kakutani fixed-point theorem to prove the existence of so called Nash equilibrium.2

In some infinite dimensional cases, we may refer to Fan-Glicksberg fixed-point

theorem to prove needed existence results.3 And when we deal with the existence

of equilibrium in this thesis, we also make quite lots of use of these fixed-point

theorems. So, we would like to end this chapter with the following set of different

versions of the fixed-point theorem.

Theorem 2.2.9. (Brouwer Fixed-point Theorem)Let f(x) be a continuous function

defined in the N−dimensional unit ball |x| ≤ 1. Let f(x) map the ball into itself:

|f(x)| ≤ 1 for |x| ≤ 1. Then some point in the ball is mapped into itself: f(x0) =

x0.

Theorem 2.2.10. (Kakutani Fixed-point Theorem)Let X be a closed, bounded,

convex set in the real N−dimensional space RN . Let the correspondence φ : X ³ X

be upper semicontinuous and have nonempty convex values. Then the set of fixed

points of φ is nonempty, that is, some points x∗ ∈ φ(x∗).

The following theorem is just a infinite dimensional version of Kakutani fixed-point

theorem.

Theorem 2.2.11. (Fan-Glicksberg Fixed-point Theorem) Let K be a nonempty

compact convex subset of a locally convex Hausdorff space, and let the correspon-

dence φ : K ³ K have closed graph and nonempty convex values. Then the set of

fixed points of φ is compact and nonempty.

2One can refer to Nash [25].
3See, for example, Khan and Sun [18].



Chapter 3
Basic Game Theory

We start by describing a finite game1 in Section 3.1. Section 3.2 is devoted to

reviewing the theory of Nash equilibrium and the basic existence result. Section

3.3 discusses briefly state the setting of atomless games, which will be discussed

with more details in Chapter 4 and Chapter 5.

3.1 Description of a Game

When we talk about a game, the essential elements of a game are players, actions,

payoffs, and information. These elements are often called the rules of the game. In

a game, each player is assumed to try maximize his payoffs, so he will take some

plans known as strategies that make actions depending on the information faced

1In game theory, a game can be expressed into two different ways: normal (or strategic) form

representation and extensive form representation. Although theoretically, these two representa-

tions are almost equivalent, the former one is more convenient for us to discuss static games, and

last one is more useful in dynamic games. To enable a self-contained and yet concise treatment,

we only present the game in normal form and discuss the properties of such expression in this

thesis since we restrict our discussion to static games.

14
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to him. The combination of strategies chosen by each player is known as the equi-

librium. And that will lead to a particular result, which is called the outcome of a

game. So, the basic concepts of game include player, action, information, strategy,

payoff, outcome and equilibrium. In the following, we first describe these elements

of a simple finite game(i.e., both the number of players and their actions set are

finite and there is no other restrictions such as private information, etc., which

will be discussed later). Note again that the analysis in this paper is restricted to

games in normal form.

1. Players are the individuals that make decisions. In game, the goal of each

player is to maximize his payoff by choosing his own action. We assume the num-

ber of the players is n and denote each player as i, (i = 1, · · · , n) and the set of

players as I.

2. An Action (or move) of player i, say, ai is a choice the player can make.

Then, player i’s action set Ai is the set of all actions available to him. And an

action combination is an n−vector a = (a1, · · · , an), of one action for each of the

players in the game.

3. Information is the players’ knowledge of the game. We will give more specific

definition of it in the following chapters. Here, we use Ti to denote the information

set of player i.

4. The strategy of player i, denoted by si, is a rule for player i to choose his

action. Player i′s strategy space Si = si1, · · · , siK is the set of strategies available

to him. And a vector s = (s1, · · · , sn) is called strategy profile. The set of these

strategy profiles in the game is thus the cartesian product S = ×iSi, which is called
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the strategy space of the game.

5. The Payoff of player i, denoted by U(s1, · · · , sn), is the expected utility he

gets as a function of the strategies chosen by himself and the other players.2

6. The outcome of the game is a set of elements that one picks from the val-

ues of actions, payoffs, and other variables after the game is played out.

7. An equilibrium s∗ = (s∗1, · · · , s∗n) is a strategy combination consisting of a

best strategy for each player in the game.

8 The best response of player i to strategies s−i
3 chosen by the other players is

the strategy s∗i the maximize his payoff; that is,

Ui(s
∗
i , s−i) ≥ Ui(s

′
i, s−i),∀s′i 6= s∗i .

Till now, we have outlined most elements of a game. Normally, the analysis of

games involves different types of strategies:

(1) A pure strategy is for each player i, to choose his action si ∈ Si for sure given

the information he learns. More specifically, a pure strategy can be expressed as a

measurable function pi : Ti → Ai
4. In this case, the payoff function Ui of player i

2In economics, the payoffs are usually firms’ profits or consumer’s utility.
3Here, it means “all the other players’ strategies”, which follows usual shorthand notation in

game theory. For any vector x = (x1, · · · , xn), we denote the vector (x1, · · · , xi−1, xi+1, · · · , xn)

by x−i.
4Strategy and action are two different concepts: strategy is the rule of action but not action

itself. But, in static games, strategy is just the same as action. Thus, The pure strategy space

is just A in our discussion. So, in the following discussions in this chapter, we do not distinguish

si with ai or Si with Ai
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is a function of s(a); and for any given s, the value of Ui is fixed.

(2) A behavior strategy5of player i is when player i observe some information, he

selects a action ai ∈ Ai randomly. More specifically, a behavior strategy strategy

for player i is a function βi : Ai × Ti → [0, 1] with two properties: (a) For every

B ∈ Ai, the function βi(B, ·) : Ti → [0, 1] is measurable; (b) For every ti ∈ Ti, the

function βi(·, ti) : Ai → [0, 1] is a probability measure.

(3) A mixed strategy6for player i is a probability distribution over his pure strategy

set Si of pure strategies given certain information. To differ from pure strategies,

we now denote mixed strategies for player i as sigmai rather than si. More specifi-

cally, a mixed strategy σi for player i is a measurable function σi : [0, 1]×Ti → Ai.

Thus, the mixed strategy of player i can be expressed as σi = (σi1, · · · , σiK),

where σik = σ(sik) is the probability for player i to choose strategy sik, ∀k =

1, · · · , K, 0 ≤ σik ≤ 1,
∑K

1 σik = 1. We use Σi to denote the mixed strategy space

for player i(that is, σi ∈ Σi, where σi is one of the mixed strategies of player i).

The vector σ = (σ1, · · · , σn) is called a mixed strategy profile and cartesian product

Σ = ×iΣi represents mixed strategy space(σ ∈ Σ). The support of a mixed strategy

σi is the set of pure strategies to which σi assigns positive probability. In finite

case, for a mixed strategy profile σ, player i’s payoff is
∑

s∈S(
∏I

j=1 σj(sj))Ui(s),

5Here, we only give a simple description of behavior strategy, since it is used more in dy-

namic games. In fact, although behavior strategy and mixed strategy are two different concepts,

Kuhn(1953) proves that in games of perfect recall, both are equivalent. More details about the

equivalence between mixed and behavior strategies under perfect recall is discussed in page 87-

90 of Fudenberg and Tirole [11]
6From these definitions, we can see that pure strategy can be understood as the special case of

mixed strategy. For instant, pure strategy s′i is equivalent to the mixed strategy σi(1, 0, · · · , 0),

which means, for player i, the probability of choosing s′i is 1, probabilities of choosing any other

pure strategies is 0.
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which is still denoted as Ui(σ) in a slight abuse of notation.7

As we talk about a game, one of the most important concepts is the notion of Nash

equilibrium. And we will discuss such equilibrium in the next section with more

details.

3.2 Nash Equilibrium

In essence, Nash equilibrium requires that a strategy profile σ ∈ Σ8 should not only

be such that each component strategy σi be optimal under some behalf of player i

about the others’ strategies σ−i, but also should be optimal under the belief that

σ itself will be played.

In terms of best response, a (mixed) strategy profile σ ∈ Σ is a Nash equilibrium a

best response to itself. More specifically, σ∗ = (σ∗1, · · · , σ∗n) is a Nash equilibrium

if for any player i, i = 1, 2, · · · , n), one have ,

Ui(σ
∗
i , σ

∗
−i) ≥ Ui(σi, σ

∗
−i),∀σi ∈ Σi.

The existence of Nash equilibrium was first established by Nash [25]. The pro-

gresses about the existence of equilibrium in different games after Nash’s work are

often still based on the techniques that Nash attempts. So we provide here both

the theorem and the proof of the existence of Nash equilibrium which are stated

in Nash [25]. The idea of the proof is to apply Kakutani’s fixed-point theorem to

the players’ “reaction correspondences” which are defined in proof.

Theorem 3.2.1. (Nash, 1950) There exists at least one Nash equilibrium(pure or

mixed) for any finite game.

7Note that the payoff Ui(σ) of player i is linear function of player i’s mixing probability σi.
8We keep the notation consistently with the last section. Note again that σ means a mixed

strategy profile.
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Proof: We use ri(σ) to represent the “reaction correspondences” of i, which maps

each strategy profile σ to the set of mixed strategies that maximize player i’s payoff

when others play σ−i. Define the correspondence r : Σ ³ Σ to be the Cartesian

product of the ri. If there exists a fixed point σ∗ ∈ Σ such that σ∗ ∈ r(σ∗) and for

each i, σ∗i ∈ ri(σ
∗), then this fixed point is a Nash equilibrium by the construction.

So, our task now is to show all the conditions of Kakutani fixed-point are satisfied.

First note that each Σi is a probability space, so it is a simplex of dimension (J−1),

where J is the number of pure strategies of player i. This means, Σi (so is Σ) is

compact, convex and nonempty.

Second, as we noted before, each player’s payoff is linear, and therefore continuous

in his own mixed strategy. So ri(σ) is non-empty since continuous functions on

compacts always can attain maxima.

Moreover the linearity of payoff function means: if σ′ ∈ r(σ) and σ′′ ∈ r(σ), then

λσ′ + (1 − λ)σ′′ ∈ r(σ), where λ ∈ (0, 1)(that just means, if both σ′i and σ′′i are

best responses to σ−i, then so is their weighted average). So, r(σ) is convex.

Finally, to show r(σ) is upper hemi-continuous we need to show that r(σ) has

closed graph, i.e., if (σm, σ̃m) → (σ, σ̃), σ̃m ∈ r(σm), then σ̃ ∈ r(σ). Assume there

is a sequence (σm, σ̃m) → (σ, σ̃), σ̃m ∈ r(σm), but σ̃ /∈ r(σ). Then, σ̃i /∈ ri(σ) for

some i. Thus, there is a ε > 0 and a σ′i such that Ui(σ
′
i, σ−i) > Ui(σ̃i, σ−i) + 3ε.

And since Ui is continuous, and (σm, σ̃m) → (σ, σ̃), when m is large enough, we

have

Ui(σ
′
i, σ̃

m
−i) > Ui(σ

′
i, σ̃−i)− ε > Ui(σ̃i, σ−i) + 2ε > Ui(σ̃

m
i , σm

−i) + ε.

Hence, σ̃m
i /∈ ri(σ

m), which contradicts the assumption we made. So, r(σ) is upper

hemi-continuous.

Since all the conditions of Kakutani fixed-point theorem are satisfied, the result

follows. ¤
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3.3 Atomless Games

On one hand, when we apply n−person game theory to economic analysis, it often

becomes a problem that small games (i.e., games with a small number players) are

hardly adequate to represent free-market situations. In this attempt, games with

such a large number of players that any single player have a negligible effect on the

payoffs to the other players are set to be atomless player space. For example, we

can use the number of points on a line (for example, the unit interval, [0, 1].) On the

other hand, when we deal with finite games with infinite (countable) actions and

private information, as we do in Chapter 4, the setting is also tied with atomless

measure as a model of diffuse information. We call the games which are set with

atomless property as atomless games. So far, we still need the following definitions.

Definition 6. A measurable set S is a null set for the measure µ if µ(S ′) = 0

for every measurable S ′ ⊂ S. An atom of the measure µ is a measurable non-null

set S such that, for every measurable S ′ ⊂ S we have either S ′ is a null set or

µ(S ′) = µ(S).

Definition 7. If the measure µ has no atom, it is called atomless.

In the following chapters, we will discuss atomless games with more details. In

Chapter 4, we discuss finite player games with countable action set and with in-

formational constraints, where we also make the assumption of diffuse information

with atomless measure. In Chapter 5, we deal with large games, where we assume

I be the set of players, I be a σ−algebra of subsets of I, and λ be an atomless

probability measure on I (Chapter 5).



Chapter 4
Games with Private Information and

Countable Actions

Games with private information (or imperfect information,incomplete information)

attracts a lot of attention in recent decades. It seems to be more practical to

give a appropriate situation that players make their decisions depending on the

observation of a certain information variable. As to such games, some interests

concern with the problem that whether there exists an equilibrium point or at

least an approximate equilibrium in pure strategies, if the game has an equilibrium

in mixed strategies. Radner and Rosenthal [27] and Milgrom and Weber [23] deal

with such problem together with the purification of a mixed strategy equilibrium

under the assumption of finite action spaces, with diffuseness and independence of

information, suitably formalized; The results with finite action sets also see those

in Aumann et al [6].

However, it would be more general and applicable to take a infinite action space.

Khan and Sun [18] extends the result into the case that action space can be chosen

as a countable compact metric space. In this paper, we show that the compactness

21
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can be removed in our case. In fact, the idea of setting the action space with-

out compact restriction is mentioned in the concluding remarks of Khan and Sun

[18]. As we show in the introduction, we realize that it may not be so obvious

to generalize the model and results in Khan and Sun [18] to the case of general

countable metric action spaces. In fact, we need to work with countable com-

plete metric action spaces (which clearly include the space of natural numbers) to

show the existence of pure strategy equilibrium. With such settings, we also show

the purification results. Without the completeness assumption or other related

assumptions, we do not know whether the result still holds.

The organization of this chapter is as follows. In Section 4.1, we provide our

mathematical results. More specifically, we work on the set of distributions induced

by the measurable selections of a correspondence with a countable range by using

the Bollobás and Varopoulos extension of the marriage lemma. In section 4.2, we

discuss a typical kind of games with a finite number of players, a countable action

set, and private information constraints . And we prove the purification results

of behavior strategy equilibria and the existence of a pure strategy equilibrium in

such games.

4.1 Distribution of an Atomless Correspondence

This section introduces some results that lead to a fairly general treatment to the

games that we discuss later.

A denotes a countable complete metric space; (T, T , λ) denotes an atomless prob-

ability space. Let {ai : i ∈ N} be a list of all the elements of A. Let F be a

correspondence from T to A, where F is measurable if for each a ∈ A, F−1(a) =

{t ∈ T : a ∈ F (t)} is measurable. For any F , let

DF = {λf−1 : f is a measurable selection of F}.
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We now state first a special case of the continuous version of the marriage lemma

offered by Bollobás and Varopoulos [9].

We present it with our own notation. Let (Tα)α∈I be a family of sets in T , and

Λ = (τα)α∈I be a family of non-negative numbers, I a countable index set. We call

(Tα)α∈I is Λ−representable1, if there is a family (Sα)α∈I of sets in T such that for

all α, β ∈ I, α 6= β, Sα ⊆ Tα, λ(Sα) = τα, Sα ∩ Sβ = Ø.

Theorem 4.1.1. (Tα)α∈I is Λ−representable if and only if

λ(∪α∈IF
Tα) ≥ Σα∈IF

τα

for all finite subsets IF of I.

We first state our main selection theorem for countable vectors.

Theorem 4.1.2. Let (T, T , λ) be a atomless probability space; and fα ∈ Meas(T,R+), α ∈
I, where I is a countable index set, such that for all t ∈ T , Σα∈Ifα(t) = 1.

Then, there exist measurable functions f ∗α ∈ Meas(T, {0, 1}), α ∈ I, such that

Σα∈If
∗
α(t) = 1 for all t ∈ T and

∫

T

fα(t)dλ(t) =

∫

T

f ∗α(t)dλ(t) for all α ∈ I.

Proof: First, we take (Tα)α∈I in Theorem 4.1.1 by choosing Tα = T for all α ∈ I.

Then we take τα =
∫

T
fα(t)dλ(t) for all α ∈ I. I is countable. Let Λ = (τα)α∈I .

Clearly, we have

λ(∪α∈IF
Tα) = λ(T ) = 1,

which is always bigger or equal to Σα∈IF
τα for all finite subsets IF of I.

Then, we can apply Theorem 4.1.1 to assert that (Tα)α∈I is Λ−representable. That

is, there is a set of sets (Sα)α∈I in T such that for all α, β ∈ I, α 6= β, Sα ⊆ T ,

λ(Sα) = τα, Sα ∩ Sβ = Ø.

1As to certain examples that are Λ−representable, one can refer to the constructions used in

the proofs of Theorem 4.1.2 and 4.1.4
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That is, ∫

T

fα(t)dλ(t) = λ(Sα) =

∫

T

f ∗α(t)dλ(t) for all α ∈ I,

where f ∗α(t) is characteristic function of Sα. ¤

We now present another theorem which can be viewed as a corollary of the above

theorem to cover some purification results for atomless games that we used later.

Theorem 4.1.3. Let (T, T , λ) be a atomless probability space; A a countable metric

space represented as {a1, a2, ...}; I a countable index set; and g ∈ Meas(T,M(A)).

Let g(t; B) represent the value of the probability measure g(t) at B ⊆ A and g(t; da)

the integration with respect to it. Then there exists g∗ ∈ Meas(T, A) such that,

(1) for all B ⊆ A,
∫

T
g(t; B)dλ(t) = λg∗−1(B);

(2) g∗(t) ∈ {ai ∈ A : g(t; {ai} > 0} ≡ supp g(t) for λ−almost all t ∈ T .

Proof : By applying Theorem 4.1.2 to gi(t) = g(t, {ai}), we can assert the existence

of functions g∗‘i (t), such that

∫

T

gi(t)dλ(t) = λ(Si) =

∫

T

g∗
′

i (t)dλ(t) for all ı ∈ I, (4.1)

where (Si)i∈I is a family of countable partitions of T, that is, (Si)i∈I , Sα ∩Sβ = Ø,

for all α, β ∈ I, α 6= β; and g∗
′

i (t) is the characteristic function of Si.

Now we define g∗(t, ai) = aig
∗′(t, ai). Then,we assert this g∗ ∈ Meas(T, A) is just

what we need. Note that g∗
′
(t, ai) = 1{ai}(g

∗(t, ai)).

(1) Since A is countable, B is a subset of A,

∫

T

g(t; B)dλ(t) =
∑
ai∈B

∫

T

g(t; ai)dλ(t) =
∑
ai∈B

λ(Si).

And according to the definition of g∗, we can get

g∗−1(t; ai) = aig
∗′−1(t; ai) = λ(Si).
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Now one can see that,

∫

T

g(t; B)dλ(t) =
∑
ai∈B

g∗−1(t; ai) = λg∗−1(B);

(2)From the equation (4.1.1) and the definition of g∗, we can assert the conclusion

directly. ¤

The next result is about the convexity of the distribution of an atomless corre-

spondence.

Theorem 4.1.4. For any F , DF is convex in the space M(A).

Proof : One can pick up ι1, ι2 from DF and α ∈ [0, 1]. According to the definition

of DF , there are measurable selections f1 and f2 of F satisfying λf−1
1 = ι1 and

λf−1
2 = ι2. Define τi = τ({ai}) = αλf−1

1 (ai) + (1 − α)λf−1
2 (ai), where ai ∈ A for

any i ∈ I. I is countable. Let Λ = (τα)α∈I .

We can easily obtain that τ is a probability on T : 1 = λ(T ) =
∑

i∈I τi. Take

Ti = f−1
1 (ai) ∪ f−1

2 (ai). Then for any finite subset IF of I,

⋃
i∈IF

Ti = (∪i∈IF
f−1

1 (ai))
⋃

(∪i∈IF
f−1

2 (ai)).

Therefore

λ(
⋃
i∈IF

Ti) ≥ max{λ(∪i∈IF
f−1

1 (ai)), λ(∪i∈IF
f−1

2 (ai))}

which implies

λ(
⋃
i∈IF

Ti) ≥ αλ(∪i∈IF
f−1

1 (ai)) + (1− α)λ(∪i∈IF
f−1

2 (ai)) =
∑
i∈IF

τi.

Applying Theorem 4.1.1, we know that (Tα)α∈I is Λ−representable. That is, we

can get a family (Si)i∈I of subsets of T such that for i, j ∈ I with i 6= j, Si ⊂ Ti,
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λ(Si) = τi, and Si ∩ Sj = ∅.2

Now we define f(t) =
∑

i∈I ai1Si
(t). Clearly, it is also a selection of F . Therefore

αι1 + (1− α)ι2 ∈ DF , and we reach the conclusion. ¤

The following lemma is a modification of Lemma 1 in [18]. Instead of the com-

pactness condition on the countable action space, we only require a non-emptiness

condition.

Lemma 4.1.5. Let {fn}∞n=1 be a sequence of measurable functions from T to a

countable metric space A such that τn = λf−1
n converges weakly to a probability

measure τ on A as n → ∞. Let F (t) ≡ cl-Lim{fn(t)}, the set of all limit points

of the sequence {fn(t)}∞n=1. If F (t) is nonempty for all t, then, there exists a

measurable selection f of F such that λf−1 = τ for each t ∈ T .

Although we drop the compactness condition on the action space A, the proof of

this lemma is the same as that of Lemma 1 in Khan and Sun [18], provided that

F (t) 6= ∅,∀t. Thus we skip it. Note that the proof in Khan and Sun [18] also uses

Lemma 2.1.

Theorem 4.1.6. If F is compact valued, then DF is compact in M(A).

Proof : Let A∞ be a compactification of A. Note that M(A∞) is a compact metric

space. So for any sequence {µn}∞n=1 from DF ⊂ M(A∞), there is a convergent

subsequence. Without loss of generality, we assume {µn}∞n=1 converges weakly to

a probability measure µ on A∞. From the definition of DF , one can pick up a

sequence {fn}∞n=1 of measurable selections of F such that λf−1
n = µn for each

n ≥ 1.

2In fact, here we can another proof using a little trick similar to the proof of Theorem 4.1.2.

The idea is as follows: First observe 1 = λ(T ) =
∑

i∈I τi. Then one can follow the steps

attempted in theorem 4.1.2, and get λ(Si) = τi, where (Si)i∈I is a family of subsets of T satisfying

α, β ∈ I, α 6= β, Sα ⊆ T , λ(Sα) = τα, Sα ∩ Sβ = Ø.
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According to Proposition 3.8 in Sun [38], {µn : n = 1, 2, . . . } is tight. That is , for

any ε > 0, there exists a compact set Kε ⊂ A, such that µn(Kε) ≥ 1− ε for all n.

Since Kε is also compact in A∞, the weak convergence of {µn} to µ implies that

µ(A) ≥ µ(Kε) ≥ 1−ε. Let ε tends to zero yielding µ(A) ≥ 1. So µ is concentrated

on A, i.e., µ ∈ M(A). Now that all the µn and µ0 are concentrated on A, the

weak convergence of µn to µ0 in M(A∞) is equivalent to the weak convergence in

M(A).3

Define G to be G(t) = cl-Lim{fn(t) :}, which is nonvoid and included in F (t),

because all the sequence fn(t) is from the compact set F (t) for each t. The pre-

ceding lemma yields that there exists a measurable selection f from G such that

µ = λf−1, in other words, µ ∈ DG ⊂ DF . Therefore DF is compact. ¤

Now we turn to investigate the upper semicontinuity of the distribution of a cor-

respondence depending on a parameter.

Theorem 4.1.7. Assume that for each fixed y in Y , a metric space, G(·, y) (which

is also denoted by Gy) is a measurable correspondence from T to A, and for each

fixed t ∈ T , G(t, ·) is upper semicontinuous on Y . Also, assume that there exists a

compact valued correspondence H from T to A such that G(t, y) ⊂ H(t) for all t

and y. Then DGy is upper semicontinuous on Y .

Proof : By Theorem 2.2.44, in order to show DGy is upper semicontinuous on Y , it

suffices to show that D−1
G (V ) ≡ {y : DGy ∩ V 6= ∅} is closed in Y for each closed

subset V of M(A). Towards this end, suppose {yn}n≥1 is a sequence from D−1
G (V )

which converges to y0 ∈ Y . By the definition, for each n ≥ 1, there exist a measures

3In fact, for each open subset O∞ of A∞, lim supn µn(O∞) ≥ µ0(O∞). So lim supn µn(O∞ ∩
A) ≥ µ0(O∞ ∩ A), i.e., for each open subset O ⊂ A, lim supn µn(O) ≥ µ0(O). Hence we get the

weak convergence of µn to µ0 in M(A).
4Also, see Lemma 14.4 in Aliprantis and Border [1]
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µn ∈ V and a measurable selection gn of G(·, yn), such that µn = λg−1
n . Note that

M(A∞) is compact and µn ∈ M(A∞). So there is a subsequence of {µn}, say

itself without loss of generality, converging weakly to some µ0 ∈ M(A∞). Since a

compact valued correspondence H includes G(·, y) for all y, as in the proof of the

preceding theorem, we have µ0 ∈ M(A) and µn converges weakly to µ0 in M(A).

Therefore µ0 ∈ V since V is closed in M(A). Also Lemma 4.1.5 implies that there

exists a measurable selection g of the correspondence F ≡ cl-Lim{gm : m ≥ 1} ⊂ H

such that λg−1 = µ0. From the upper semicontinuity of G(t, ·) for t ∈ T , we obtain

cl-LimG(t, yn) ⊆ G(t, y0) for all t ∈ T . So for each t ∈ T , F (t) ⊆ G(t, y0). Thus

g(·) is a measurable selection of G(·, y0). Therefore µ0 ∈ DGy0
. So DGy0

∩V 6= ∅ for

it contains µ0. This means that y0 ∈ D−1
G (V ). Therefore D−1

G (V ) is indeed closed

and we obtain the expected results. ¤

4.2 Games with Private Information

Consider a game Γ consisting of a finite set I of l players. Suppose for each i,

(Zi,Zi) and (Xi,Xi) are measurable spaces. Let (Ω,F) be the measurable space

(
∏

i∈I(Zi×Xi),
∏

i∈I(Zi×Xi)) , the product space with the product σ-algebra and

µ a probability measure on (Ω,F). For a point ω = (z1, x1, ..., zl, xl) ∈ Ω, define

the coordinate projections

ζi(ω) = zi,

χi(ω) = xi.

he random mappings ζi(ω) and χi(ω) are interpreted respectively as player i’s

private information related to his action and payoff.

Each player i in I first observes the realization, say zi ∈ Zi, of the random element

ζi(ω), then chooses his own action from a nonempty compact subset Di(zi) of a
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countable complete metric space Ai.
5 The payoff of player i is given by utility

function ui : A ×Xi → R, where A =
∏

j∈I Aj is the set of all combination of all

players’ moves. We also assume the following uniform integrability condition (UI):

(UI) For every i ∈ I, there is a real-valued integrable function hi on (Ω,F , µ)

such that for µ-almost all ω ∈ Ω, |ui(a, χi(ω))| ≤ hi(ω) holds for a ∈ A.

We can thus describe a finite game with private information as

Γ = (I, ((Zi,Zi), (Xi,Xi), (Ai, Di), ui)i∈I , µ).

For any player i, let meas(Zi, Di) be the set of measurable mappings f from (Zi,Zi)

to Ai such that f(zi) ∈ Di(zi) for each zi ∈ Zi. An element gi of meas(Zi, Di) is

called a pure strategy for player i. A pure strategy profile g is an l-vector function

(g1, ..., gl) that specifies a pure strategy for each player. For a pure strategy profile

g = (g1, ..., gl), the expected payoff for player i is

Ui(g) =

∫

ω∈Ω

ui (g1(ζ1(ω)), ..., gl(ζl(ω)), χi(ω)) µ(dω).

An (Nash) equilibrium in pure strategies is defined as a pure strategy profile g∗ =

(g∗1, ..., g
∗
l ) such that for each player i,6

Ui(g
∗) ≥ Ui(gi, g

∗
−i) for all gi ∈ meas(Zi, Di).

Let M(A) be the space of probability measures on Ai endowed with the weak

topology. Note that such topology is metrizable by the Prohorov metric since the

space Ai is metrizable. A behavioral strategy for the player i, say gi
7 is an element

5A mapping F from a set C to the set of nonepmty subsets of a set E is called a correspondence

from C to E. Thus, Di is a correspondence from Zi to Ai that takes compact subsets of Ai as

its values; such a correspondence is called a compact-valued correspondence.
6Note that g∗−i is an (l − 1)-vector function given by g∗ with its ith component deleted, and

(gi, g
∗
−i) is the l-vector obtained from g∗ with its ith component replaced by gi.

7Note that there is no inconsistency with our notation of pure strategy above, since every pure

strategy can also be though of as a behavioral strategy with point measures.
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of meas(Zi,M(Ai)), where M(A) is equipped with its Borel σ−algebra. Given the

players play the behavioral the strategies {gi}i∈I , the resulting expected payoff to

i is

Ui(g) =

∫

ω∈Ω

∫

al∈Al

· · ·
∫

a1∈A1

ui(a1, · · · , al, χi(ω))g1(ζ1(ω); da1),

· · · , gl(ζl(ω); dal)µ(dω),

where again g is an l−vector function given by (gi, ..., gl). An equilibrium (Nash) in

behavioral strategies is defined similarly to that in pure strategies. More formally,

we say, g∗ = (g∗1, ..., g
∗
l ) ∈

∏l
i=1 meas(Zi,M(Ai)) is an equilibrium in behavioral

strategies if for each player i, Ui(g
∗) ≥ Ui(gi, g

∗
−i) for all gi ∈ meas(Zi, Ai).

We say an equilibrium b∗ in pure strategies is a purification of an equilibrium b

in behavioral strategies if, for every player i, Ui(b) = Ui(b
∗), and for all zi ∈ Zi,

b∗i (zi) ∈ supp bi(zi).

That means, a purification b∗ of an equilibrium b is an equilibrium that gives every

player the same expected payoff that b does. In the following, we first prove two

results that under certain hypotheses about the random variables ζ1, χ1, · · · , ζl, χl,

every equilibrium has a purification. And we prove the existence of equilibrium of

pure strategies under certain conditions.

We now provide our first two results concerning with the purification of mixed

strategies.

Theorem 4.2.1. If, for every player i,

(a) the distribution of ζi is atomless,

(b) the random variables {ζj : j 6= i} together with the random variable ξi ≡ (ζj, χj)

form a mutually independent set,

then every equilibrium has a purification.

Proof: Let g = (g1, · · · , gl) ∈
∏l

i=1meas(Zi, (Ai)) be an equilibrium in behavioral
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strategies. Fix any player i = 1, · · · , l. Apply Theorem 4.1.3 to the collection

{(Zi,Zi), µζ−1
i , Ai, gi},

where µζ−1
i is defined as the measure induced on the measurable space (Zi,Zi)

8to

obtain a pure strategy g∗i ∈ meas(Zi, Ai) such that for each i,

(1) for all B ⊆ Ai,
∫

zi∈Zi
gi(zi; B)dµζ−1

i (t) = µζ−1
i (g∗−1

i (B));

(2) g∗i (zi) ∈ {ai ∈ Ai : g(zi; {ai} > 0} ≡ supp g(zi) for µζ−1
i −almost all zi ∈ Zi.

Let g∗ = (g∗1, · · · , g∗l ). We should show now that g∗ is a purification of g.

To see this, we now focus on player i and let ζ−i be the random variable (ζ1, · · · , ζi−1, ζi+1, · · · , ζl),

and (ξi, ζ−i) be the random variable form Ω to the space (Zi ×Xi,
∏

j 6=i Zj), with

µ(ξi, ζ−i)
−1 the corresponding measure induced on that space. Hypothesis (b) in

the theorem ensures that µ(ξi, ζ−i)
−1 = (µξ−1

i (
∏

j 6=i µζ−1
j ).9

Then, since ui is a µ−integrable function on Ω for any a ∈ A, we can assert the

existence of a function zi → E{ui(a, χi) : ζi = zi} such that for any measurable

W ∈ Zi,
∫

{ω∈Ω:ζi(ω)∈W}
ui(a, χi(ω))dµ(ω) =

∫

zi∈W

E{ui(a, χi) : χi = zi}dµζ−1
i (zi).

We know obtain

Ui(g) =

∫

ω∈Ω

Σa∈Aui(a, χi(ω))Πl
i=1gi(ζj(ω); {aj})dµ(ω)

= Σa∈A

∫

ω∈Ω

ui(a, χi(ω))gi(ζi(ω); {aj})× Πi6=jgi(ζj(ω); {aj})dµ(ω)

= Σa∈A

∫

zi∈Zi

E{ui(a, χi) : ζi = zi}gi(zi : ai)dµζ−1
i (z)× Πi6=j

∫
gj(zj : {aj})dµζ−1

j (zj)

= Σa∈A

∫

zi∈Zj

E{ui(a, χi) : ζi = zi}gi(zi; {ai})dµζ−1
j (zi)Πi6=jτj({aj})

=

∫

zi∈Zi

Σai∈Ai
[Σa−1∈A−1E{ui(a, χi) : χi = zi} × Πi6=jτj({aj})]gi(zi; {ai})dµζ−1

i (zi).

8Hypothesis (a) ensures that the measure µζ−1
i is atomless. So we can apply our theorem

4.1.3.
9See, for example, Ash [2], pp. 213-214.
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The first equality uses the fact that expectations taken over a countable space can

be written as summations instead of integrals; the second equality relies on ui be-

ing a uniformly summable function; the third invokes the ”change of variable” for-

mula;10 and the independence hypothesis; the fourth is true just by definition; and

the fifth appeals to the conditional expectation still being a uniformly summable

function.

This computation brings out the fact that the payoff to the ith player depends

on the distribution of the other players’ strategies, namely on τj, j 6= i. Since we

purified the other players’ mixed strategies in the way that this distribution does

not change, all we need to check is that g∗i gives the same payoff to the ith player

as does gi. Towards this end, let

F
′
(zj) = argmaxai∈Ai

Gi(zi, ai), where

Gi(zi, ai) = [Σa−1∈A−1E{ui(a, χi) : ζi = zi}Πi6=jτj({ai})]

We now claim that

supp gi(zi; ·) ⊂ F
′
(zj) for µζ−1

i a.e. zi ∈ Zi

If not, there must exist measurable function fi, hi from Zi to Ai such that

gi(zi)({fi(zi)}) > 0 and {zi : Gi(zi, fi(zi)) < Gi(zi, hi(zi))} is not µζ−1
i −null.

Define a new mixed-strategy g′i satisfied, g′i(zi) equal gi(zi), if Gi(zi, fi(zi)) ≥
Gi(zi, hi(zi)), otherwise let it be equal to gi(zi)−gi(zi)({fi(zi)})δfi(zi)+gi(zi)({fi(zi)})δhi(zi).

But that means that Ui(g) < Ui(g
′
i, g−i). That is a contradiction to the maximality

of g.

Now, we clearly have that Ui(g
∗
i , g−i) ≥ Ui(g). And from the beginning of the

induction, we know that for j 6= i, g∗j and gj induce the same distribution τj on A.

So we have Ui(g
∗) = Ui(g

∗
i , g−i) = Ui(g), which completes the proof. ¤

10See, for example, Billingsley [7], pp.222-223.
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Theorem 4.2.2. If, for every player i,

(a′) the distribution of ζ ′i is atomless,

(a′′) the set Z ′′
i is finite,

(b) the random variables {ζ ′j : j 6= i} together with the random variable ξi ≡
(ζ ′i, ζ

′′
i , χj) form a mutually independent set,

then every equilibrium has a purification.

Sketch of the proof: Given Theorem 4.2.1, we can follow the idea in Khan and Sun

[18].11 The little trick is to replace in Theorem 4.2.1, for each player i, his action

space Ai with the new space Ãi ≡
∏

z′′i ∈Z′′i
Ai. For each i, Ai is a countable metric

space and Z ′′
i is finite, so Ãi is clearly a countable metric space. For any player

i, his behavioral strategy gi ∈ meas((Z ′
i, Z

′′
i );M(Ai)). Now, define the behavioral

strategy g̃i ∈ meas(Z ′
i;M(Ãi)) as:

g̃i(z
′
i; {ãi}) =

∏

z′′i ∈Z′′i

gi((z
′
i, z

′′
i ), {ãi(z

′′
i )}),∀z′i ∈ Z ′

i,∀ãi ∈ Ãi,

where ãi(z
′′
i ) is the z′′i−th coordinate of ãi.

Thus the following is clear. Given a behavioral strategy g = (g1, . . . , dl) in the

game, we define another strategy g̃ as above for another game with Z ′ = Z ′
1×· · ·×Z ′

l

as the space of relevant private information, and with Ãi the action space for player

i. Hypotheses (a′) and (b) guarantee that hypotheses (a) and (b) of Theorem

4.2.1 are satisfied. Thus, Theorem 4.2.1 yields a pure strategy g̃∗ = (g̃∗1, · · · , g̃∗l )

with g̃∗i ∈ meas(Z ′
o; Ãi) in this new game. Then, a pure strategy equilibrium

g∗ = (g∗1, · · · , g∗l ) with g∗ ∈meas((Z ′
i, Z

′′
i );M(Ai)) in original game can be ob-

tained. ¤

In our statement of Theorems 4.2.1 and 4.2.2, we have made an effort to keep

the similar structure with the corresponding theorems in Khan and Sun [18] and

11Or, one can refer to earlier paper like Radner and Rosenthal [27].
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those in Radner and Rosenthal. Note again that Radner and Rosenthal focus

on finite actions, and Khan and Sun base their theorem on countable compact

metric action set. Our cases only need action set to be countable metric space

with compact-valued correspondence. Therefore, although the statement of theo-

rem and the techniques that dealt with in proof are similar as works before, both

model and its applications are new and more general. The next theorem is to

assert the existence of an equilibrium in pure strategies.

Theorem 4.2.3. Under the hypotheses of Theorem 4.2.2, and under the condition

that for every player i ∈ I, ui(·, χi(ω)) is a bounded continuous function on A for

µ−almost all ω ∈ Ω, there exists an equilibrium in pure strategies.

Proof: We use the Kakutani-Fan-Glicksberg fixed point theorem to prove the ex-

istence of Nash equilibrium in pure strategies. We shall present the proof for the

special case that Zi = Z ′
i for all i, i.e., there is no atom component for private

information variable ζi. One can check, by following the sketch of proof of Theo-

rem 2 in Khan and Sun [18], to get the same conclusion under the hypotheses of

Theorem 4.2.3.

Let us consider a single player i. Since ui(a, χi(·)) is uniformly µ-integrable function

on Ω, we can assert12 that there exists a function Vi : A × Zi → R, such that

Vi(a, ζi(ω)) is the regular conditional expectation of ui(a, χi(ω)) under the sub-σ-

algebra of F generated by ζi. That is, for any measurable set W ∈ Zi, we have

∫

{ω∈Ω:ζi(ω)∈W}
ui(a, χi(ω))dµ(ω) =

∫

zi∈W

Vi(a, zi)dµζ−1
i (zi).

Moreover, by Theorem 2.2 in Dynkin and Evstigneev [?], we know that for µζ−1
i -

almost all zi ∈ Zi, V (·, zi) is continuous and bounded on A. Without loss of

generality, we can assume for all zi ∈ Zi, V (·, zi) is continuous and bounded on

12For example, one can refer to Theorem 2.1 in Dynkin an Evstigneev [?].
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A.13

Denote DDi
= {(µζ−1

i )g−1
i : gi is a measurable selection of Di}. Construct a

mapping from Zi × Ai ×
∏l

j=1DDj
into R defined by

(zi, ai, λ1, · · · , λl) → Gi(zi, ai, λ1, · · · , λl) =

∫

a−i∈A−i

Vi(a, zi)dλ−i.

In fact, Gi is simply the payoff to player i when information zi is revealed to him

and he takes the action ai, while all other players, generically indexed by j 6= i,

play the mixed action λj, j 6= i.14 It is obvious that, for any fixed zi ∈ Zi, Gi is a

continuous real valued function on Ai×
∏l

i=1DDi
; and for any fixed (ai, λ1, · · · , λl),

it is measurable on Zi. Therefore Gi is jointly measurable, in particular, measurable

on Zi ×
∏l

i=1DDi
for each fixed ai ∈ Ai.

Then, consider the set-valued mapping, from Zi ×
∏l

i=1DDi
into Ai given by

(zi, λ1, · · · , λl) ³ F i(zi, λ1, · · · , λl) = arg maxai∈Di(zi)
Gi(zi, ai, λ1, · · · , λl).

The joint continuity of Gi on A and the compactness of each Di(zi) imply that

F i(zi, λ1, · · · , λl) is compact, measurable with respect to zi, and upper semicontinu-

ous with respect to (λ1, ·, λl) ∈
∏l

i=1DDi
. The latter is guaranteed by Berge’s max-

imum theorem. Furthermore, for each l-tuple (λ1, · · · , λl) ∈
∏l

i=1DDi
, there exists

a measurable selection from the correspondence F i by Kuratowski-Ryll-Nardzewski

Selection Theorem.15

We now consider the object DF i
(λ1,··· ,λl)

= {(µζ−1
i )g−1

i : gi is a measurable selection

of F i(·, λ1, · · · , λl)}. By the assertion of the existence of a measurable selection,

it is nonempty. Then, applying Theorem 4.1.4, Theorem 4.1.6 and Theorem 4.1.7,

13In fact, V (·, zi) ≤ h̃(zi), with h̃(ζi) = E[h|ζi]. Recall that for µ-almost all ω ∈ Ω,

|ui(a, χi(ω))| ≤ hi(ω) holds for a ∈ A.
14Note that under the assumption on action choice (i.e., compact-valued property of Dj for

any j ∈ I) of our models, λj ∈ DDj
.

15See, for example, Aliprantis and Border [1].
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we know that it is convex, compact and upper semicontinuous with respect to

(λ1, · · · , λl) ∈
∏l

i=1DDi
. Let Φ be the correspondence from

∏l
i=1DDi

to
∏l

i=1DDi

such that for any tuple (λ1, · · · , λl) ∈
∏l

i=1DDi
,

Φ(λ1, · · · , λl) =
l∏

i=1

DF i
(λ1,··· ,λl)

.

Thus Φ is nonempty, compact, convex valued, and upper semicontinuous with

respect to (λ1, · · · , λl). And from Theorem 4.1.4 and Theorem 4.1.6, one can get

DDi
is nonempty, compact and convex. Applying the Kakutani-Fan-Glicksgerg

fixed-point theorem, we know that there exists a fixed-point

(λ∗1, · · · , λ∗l ) ∈ Φ(λ∗1, · · · , λ∗l ),

and for each player i, λ∗i ∈ DF i
(λ∗1,··· ,λ∗

l
)
. So there exists g∗i ∈ meas(Zi, Ai) such that

g∗i is a selection of F i
(λ∗1,··· ,λ∗l ), and µg∗−1

i = λ∗i . It is clear that g∗ = (g∗1, · · · , g∗l ) is

an equilibrium in pure strategy. ¤



Chapter 5
Large Games

In this chapter, we show the existence of pure-strategy Nash equilibrium for non-

cooperative games with a continuum of small players. Such games are often so

called as large games. The organization of this chapter is as follows:

Section 5.1 describes a typical large game model. Section 5.2 relies on the math-

ematical results developed in Chapter 4 and asserts the existence of equilibrium

for a game with continuum of players that are divided into finite types, and with

countable actions. Section 5.3 deals with a non-cooperative game with a continuum

of small players and a compact action space.

5.1 A Simple Large Game

In 1973, Schmeidler [33] showed that a large game with an atomless space of players

and finite actions has a Nash equilibrium in mixed strategies and if the payoffs are

restricted so as to depend only on the average response of others then there is a

pure strategy equilibrium. A simpler proof of the result is showed in Rath [29].

Also Rath [29] shows that when the analysis is restricted to pure strategies, it not

only allows for a much simpler proof, but also extends to the case where the space

37
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of actions is a compact subset of n-dimensional Euclidean space.

We now restate the settings and the result in Rath [29].

Let I = [0, 1] endowed with Lebesgue measure λ be the set of players, P the space

of actions where P is a compact subset of Rn. A strategy profile is a measurable

function from I to P . Let FP denote the space of all strategy profiles and for any

f ∈ FP let s(f) =
∫

I
fdλ, and SP = {s(f)|f ∈ FP}.

Now, let UP denote the set of real-valued continuous functions defined on P × SP

endowed with sup norm topology.

Then, we say, a game is a measurable function g : I → UP . And a Nash equilibrium

of a game g is a f ∈ FP such that for almost all t, g(t)(f(t), s(f)) ≥ g(t)(x, s(f)),

∀x ∈ P .

Theorem 5.1.1. Every game described above has a Nash equilibrium.

The argument of the proof also makes use of Kakutani’s fixed point theorem as

what is done in classical proof in Nash [26]. For details, one can refer to Rath [29].

5.2 Large Games with Finite Types and Count-

able Actions

This section is a generalization of Theorem 10 in Khan and Sun [18]. We consider

the game here as a game with a continuum of players and with a countable action

set, where the players are divided into finite different types. With the mathematical

results developed in the last chapter, we can assert the existence of equilibrium in

pure strategies of such games.

First, we give the game model as follows.

Let I be the set of players, (I, I, λ) an atomless probability space representing the

space of player names, and A a countable metric space which represents the action
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space. Each player i, i ∈ I choose his own actions D : I ³ A in A, where the

correspondence D is compact-valued. The players are divided into l types. So let

I1, · · ·, Il be a partition of I according to the player’s type, where the partition with

positive λ-measures c1, · · ·cl. For each 1 ≤ j ≤ l, we denote λj to be the probability

measure on Ij such that for any measurable set B ⊆ Ij, λj(B) = λ(B)/cj. Let

UA be the space of real-valued continuous functions on A×M(A)l, endowed with

its sup-norm topology and with B(UA) its Borel σ-algebra. A strategy profile is

a measurable function f : I → A satisfying f(i) ∈ D(i), i ∈ I, which specifies a

strategy for each player.

Definition 8. A game Γ is a function from I to UA. And an equilibrium (Nash)

of a game Γ is a f : I → A with f(i) ∈ D(i) for each i ∈ I, such that for λ-almost

all i ∈ I,

ui(f(j), λ1f
−1
1 , . . . , λlf

−1
l ) ≥ ui(a, λ1f

−1
1 , . . . , λlf

−1
l )

for all a ∈ D(i), where ui = Γ(i) and fj is the restriction of f to Ij.

We now apply our results on the distribution of atomless correspondence to prove

the existence of Nash equilibrium in such a game. Before the main theorem, we de-

fine Dj as the restriction of D to Ij, andDDj
= {λjg

−1
j , gj is a measurable selection of Dj},

for j = 1, · · · , l.

Theorem 5.2.1. Every game described above has a Nash equilibrium.

Proof: Consider the set-valued mapping, from I ×∏l
j=1DDj

into A given by

(i, µ1, · · · , µl) → F (i, µ1, · · · , µl) = arg max
a∈D(i)

ui(a, µ1, · · · , µl),

where (µ1, · · · , µl) ∈
∏l

j=1DDj
. It is obvious that for given (µ1, · · · , µl), F (·, µ1, · · · , µl)

is a compact-valued correspondence from I to A. Berge’s maximum theorem and

the joint continuity of ui on A×∏l
j=1DDj

imply that for each i ∈ I, F (i, µ1, · · · , µl)
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is upper semicontinuity of on
∏l

j=1DDj
. Moreover, for each l-tuple (µ1, · · · , µl) ∈

M(A)l, ui is measurable in I×A,1 since u(·, ·, µ1, · · · , µl) is a measurable function

on I, and a continuous function on A. Therefore, there exists a measurable selec-

tion from the correspondence F(µ1,··· ,µl)
2 by Kuratowski-Ryll-Nardzewski Selection

theorem.

For each 1 ≤ j ≤ l, let F j be the restriction of correspondence F on Ij×
∏l

j=1DDj
.

Now we consider the object DF j
(µ1,··· ,µl)

. By the assertion of the existence of a

measurable selection, it is nonempty. Then, applying Theorem ??, Theorem 4.1.6

and Theorem 4.1.7, we know that it is convex, compact and upper semicontinuous

with respect to (µ1, · · · , µl) ∈
∏l

j=1DDj
. As we do in the proof of Theorem 2.1,

let G be the correspondence from
∏l

j=1DDj
to

∏l
j=1DDj

such that for any tuple

(µ1, · · · , µl) ∈
∏l

j=1DDj
,

G(µ1, · · · , µl) =
l∏

j=1

DF j
(µ1,··· ,µl)

.

The correspondence G is compact and convex valued, upper semicontinuous with

respect to (µ1, · · · , µl) ∈
∏l

j=1DDj
. So, Kakutani-Fan-Glicksgerg fixed-point the-

orem implies the existence of a fixed-point (µ∗1, · · · , µ∗l ) ∈ G(µ∗1, · · · , µ∗l ), and for

each j, a measurable selection f ∗j of F j(·, µ∗1, · · · , µ∗l ) such that λjf
∗−1
j = µ∗j . Fi-

nally, let f ∗ be the mapping from T to A such that for each i ∈ Ij, f ∗(i) = f ∗j (i).

It is clear that f ∗ is an equilibrium. ¤
1We can still apply Theorem 3.14 in Castaing and Valadier [12] to assert this declaration.
2As before, F(µ1,··· ,µl) is a shorthand notation of F (·, µ1, · · · , µl).
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5.3 Large Games with Transformed Summary Statis-

tics

Non-cooperative games with a continuum of small players and a compact action

space in a finite dimensional space have been used in the study of monopolistic

competitions (see, for example, Rauh [32] and Vives [42]). It is often assumed that

the players’ payoffs depend on their own actions and the summary statistics of the

aggregate strategy profiles in terms of the moments of the distributions of players’

actions. Rauh [31] takes into consideration of such games with some restrictions

and shows the existence of pure-strategy Nash equilibrium for such kind of games.

However, as we showed in the introduction, some restrictions are not natural. We

show here the existence of pure-strategy Nash equilibrium for such games but with

less constraints than others. We reformulate the above model so that the players’

payoffs depend on their own actions and the mean of the strategy profiles under a

general transformation.

And we discuss in Section 5.1, the existence of pure-strategy Nash equilibrium

is shown in Rath [29] for large games with a compact action space in a finite

dimensional space, where the payoffs depend on players’ own actions and the mean

of the aggregate strategy profiles. We note that this result does not extend to

infinite-dimensional spaces (see Khan, Rath and Sun [17]) when the unit interval

with Lebesgue measure is used to represent the space of players; such an extension

is possible if the space of players is an atomless hyperfinite Loeb measure space (see

Khan and Sun [19]). It is claimed in Rauh [31] that “All these results involve the

mean and hence do not apply to monopolistic competition models with summary

statistics different from the mean or several summary statistics”. However, our

formulation shows that monopolistic competition models can indeed be studied

via the mean under some transformation.
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In the following, we first provide the main theorem and two kinds of proofs of it.

Then we state some specific examples and give remarks.

5.3.1 The Model and Result

Let I be the set of players, I be a σ−algebra of subsets of I, and λ be an atomless

probability measure on I. We use (I, I, λ) to represent the space of player names.

For example, one can take (I, I, λ) as the unit interval [0, 1] with Lebesgue measure.

Let P denote a nonempty, compact and metric space such that each player i ∈ I

chooses a pure strategy from P . For instance, P might be the set of possible

prices an individual firm can set for its product. A strategy profile is a measurable

function f : I → P , which specifies a strategy for each player.

Let s be a continuous function from P to the n-dimensional Euclidean space Rn,

and C the range of s.3 The continuity of s and compactness of P imply that C

is also compact. Let Σ4 be a convex and compact subset of Rn, which contains

C. It is clear that for any strategy profile f , σf =
∫

I
(s ◦ f)dλ ∈ Σ. The mean σf

of s ◦ f is a summary statistics of the society which the players can observe. A

payoff function for a player is a real-valued continuous function defined on P ×Σ,

which means that it depends on her own action p ∈ P and the vector σ ∈ Σ of

summary statistics. Let P denote the space of all continuous payoff functions with

the supremum norm.

Now, we define a game to be a measurable function Γ : I → P , which assigns

each player i ∈ I a continuous payoff function Γ(i)(·, ·). An equilibrium (in pure

3A special case can be considered as: Let s : R → Rn by s(x) = (x, x2, ..., xn) then the first n

moments of the price profile f : I → P are given by
∫

I
(s ◦ f)dλ. In the discussion in Vives[42]

(1999, 167-176) the set of firms is [0, N ] with Lebesgue measure and the summary statistic is

q̃ =
∫ N

0
s(q(i))di where q(i) is firm is output and s : R → R is a strictly increasing continuous

function.
4For example, we can set Σ = convC.
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strategies) for such a game is a strategy profile f : I → P such that each player

plays a best response against the induced vector of summary statistics; i.e.,

Γ(i)(f(i), σf ) ≥ Γ(i)(p, σf )

for all i ∈ I and p ∈ P where σf =
∫

I
(s ◦ f)dλ.

In the following theorem, we present a general result on the existence of equilibrium

for the game Γ.

Theorem 5.3.1. Let (I, I, λ) be an atomless probability space, P a nonempty,

compact metric space, s a continuous function from P onto a compact subset C of

Rn, and Σ a compact, convex subset of Rn containing C. Let P denote the space of

real-valued continuous functions on P × Σ with the supremum norm. Then every

game Γ : I → P has an equilibrium in pure strategies.

Proof: First, define the best-response correspondence B : I × Σ → P as

B(i, σ) = argmaxp∈P Γ(i)(p, σ),

which is the set of maximum points for the continuous function Γ(i)(·, σ) on P .

By standard arguments (see, for example, Rath [29]), we can obtain that for each

σ ∈ Σ, B(·, σ) is a closed-valued, measurable correspondence from I to P ; and for

each i ∈ I, B(i, ·) is an upper semicontinuous correspondence from Σ to P .

Let F : I × Σ → Σ be the correspondence defined by F (i, σ) = s(B(i, σ)), and

Φ : Σ → Σ, a correspondence defined by Φ(σ) =
∫

I
F (i, σ)dλ. We shall show that

Φ is (a) nonempty-valued, (b) convex-valued, (c) upper semicontinuous.

(a)Let σ ∈ Σ. By the standard measurable selection theorem (see, for example,

Theorem 8.1.3 in Aubin and Frankowska [3], there exists a measurable function

f : I → P such that f(i) ∈ B(i, σ) for all i ∈ T . Then the measurable function

g : I → Σ defined by g = s ◦ f satisfies g(i) ∈ F (i, σ) for all i ∈ I. Thus, (a) is

proved.
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(b) Since λ is atomless, Φ is convex-valued by Theorem 8.6.3 in Aubin and Frankowska

[3], which is a simple consequence of the classical Lyapunov theorem.

(c)Since B is upper semicontinuous and s is continuous, Theorem 14.22 in Alipran-

tis and Border [1] implies that F is upper semicontinuous on Σ for each i ∈ I. A

classical result of Aumann on the preservation of upper semicontinuity via integra-

tion (see, Aumann [4, 5]) says that Φ is also upper semicontinous.

By the Kakutani fixed-point theorem, there exists a σ∗ ∈ Φ(σ∗). That is, there

exists a measurable function g : I → Σ such that σ∗ =
∫

I
gdλ and g(i) ∈ F (i, σ∗).

Note that F (i, σ∗) = s(B(i, σ∗)), which is a subset of C. Thus, the measurable

function g takes values in C.

Since s is a function from P onto C, we can define a correspondence s−1 from C to

P such that s−1(c) = {p ∈ P : s(p) = c}. Since s is continuous, it is obvious that

s−1 is a weakly measurable correspondence with nonempty closed values from the

measurable space C with Borel σ-algebra to the compact metric space P . Hence,

the Kuratowski-Ryll-Nardzewski Selection Theorem in Aliprantis and Border [1],

implies that we can find a Borel measurable selector h of s−1. Then it is clear

that the strategy profile f : I → P defined by f = h ◦ g is an equilibrium in pure

strategies for the game Γ. ¤

5.3.2 Remarks and Examples

(1) A continuum of firms, represented by [0, 1], is considered in Vives [42]: the price

pi of firm i’s product is given by pi = Pi(qi, q̃), where qi is firm i’s output, and q̃ is

a vector of summary statistics which characterizes the output distribution of firms

(e.g., q̃ =
∫

s(qi)di, here, when s is the identity function then q̃ is the average

quantity). The profits of firm i, i ∈ [0, 1], is given by πi = (P (qi, q̃) − m)qi − F ,
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where F is a fixed cost and m is a constant marginal cost of production. By

taking first-order condition, a Nash equilibrium can be obtained, characterized by

(pi −m)/pi = εi, where εi = −(qi/pi)(∂Pi/∂qi) is the quantity elasticity of inverse

demand. The existence of Nash equilibrium can be deduced in Rauh’s model by

viewing [0, 1] as the set of players, the quantities that firms can maintain as their

actions—elements in set P , and q̃ as a vector of summary statistics in Σ by taking

s : R → R to satisfy one consumption-strict monotonicity. Clearly, it can also

be obtained naturally by ours by taking similar constructions but without other

constraints.

(2)The function s in Rauh [31] is defined by taking the composition of the uni-

variate vector functions s1, . . . , sm with projections proj1, . . . , projm. Let C be the

range of s. It is obviously contained in the set Σ, which is the product of the

intervals between the minimum and maximum of the functions srq as in Rauh [31].

In our paper, we define s as any continuous function,5 and target space Σ as any

convex and compact subset of Rn, which contains C, and also contains that Σ

defined in Rauh [31]. Thus both the model and the main theorem in Rauh [31] are

special cases of ours.

(3) The action set P is often set to be a subset of Euclidean space. So a nat-

ural question arises whether the action set can be a generic compact metric space.

Our theorem gives an affirmative answer. Note that the action space in our model

can be infinite dimensional. For example, we can take P = M(A), the space of

probability measures on A endowed with the weak topology, where A is an infinite

subset of an Euclidean space. We also consider another more specific example. Let

the firms’ payoffs depend on their own quantities (which are belonging to R) along

5The type of assumption on the strict monotonicity of the functions sr1 as in Rauh [31] is not

needed in our case.
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the time and the summary statistics of the society. We formulate it as follows. We

assume time set to be [0, T ]. A continuum of firms [0, 1] take actions from action

set P , where P is taken to be a bounded closed subset of L∞([0, T ],R) with topol-

ogy σ(L∞([0, T ],R), L1([0, T ],R)). Note that P is compact by Alaoglu Theorem.

Let D be an upper bound for P . Let s : P → Rn be a projection at n epoches:

for f ∈ P , s(f) = (f(τ1), . . . , f(τn)), where (τ1, . . . , τn) are n fixed sampling times.

The set of summary statistics Σ can be taken as [0, D]n. The payoff function for

a firm is a real-valued continuous function defined on P × Σ. Then, following our

main model and theorem, we can claim the existence of Nash equilibrium in this

example.

(4) The target space can only be finite-dimensional in general.6 We now show

that our model can adopt the target space to be any separable Banach space by

choosing an atomless hyperfinite Loeb measure space (I, I, λ) as the space of play-

ers.7 We will reserve all other notations discussed above except that Σ can be a

weakly compact and convex subset of a separable Banach space(X, ‖ ·‖) with weak

topology instead of a subset of Rn. Moreover, we see s as a weakly continuous func-

tion from P onto a weakly compact subset C of a separable Banach space(X, ‖ ·‖).
Our main theorem is still valid in this setting when the integral in the definition

of σf is the Bochner integral. To prove this result, we can simply use Theorems 1

and 6 in Sun [39] to claim the convexity and upper semicontinuity as in (b) and

(c) above; we can then use the Fan-Glicksberg fixed point theorem instead of the

Kakutani fixed-point theorem to prove the existence of Nash equilibrium.

6For instance, we just assume that I is the closed unit interval with Lebesgue measure, then

an equilibrium may not exist as shown in Khan, Rath and Sun [17] and Rath, Sun and Yamashige

[30].
7See the theory of correspondences on Loeb spaces developed in Sun [39].
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