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Summary

Mobile communication has become one of the fastest growing technologies

of the twenty first century. However, inherent properties of the wireless media

place fundamental limitations on the capacity of such mobile systems. One of the

main problems faced in wireless communication is Inter Symbol Interference (ISI).

Traditionally, ISI has been compensated using adaptive equalizers with training

data. However, recent demand for high bandwidth has made these algorithms

obsolete with more efficient blind algorithms taking their place.

In this thesis, we present a new class of deterministic blind algorithms. In-

stead of using only the channel structure, algorithms presented in this thesis

utilize data structures that are created by the Finite Alphabet (FA) property as

transmitted data is impinged onto a mobile channel. In this thesis, we examine

both direct sequence estimation and blind channel estimation based on the data

structures created by the FA property. We begin our thesis by first introducing

and examining the structure of the data that is created. This, we label as spatial

data in our thesis. Then, we proceed to outline two spatial tools, the Primary

and Secondary clustering algorithms that are used for processing the spatial data

described above.

We first present the State Driven Sequence Estimation (SDSE) algorithm,
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which we have implemented for blind sequence detection. This algorithm uses the

spatial structure to derive a state transition table, which when complemented by

actual time data can be used to extract transmitted symbols within a sign ambi-

guity. Later, we present two channel estimation algorithms. Both, the Channel

Estimation by Difference Sets (CEDS) and Channel Estimation by Twin Indices

(CETI) utilize vectors that are generated from the spatial structure. However,

the manner they utilize these vectors differ, resulting in different behaviors in the

two algorithms.

Lastly we conclude our thesis, extending our work with subtle modifications

thereby enabling it to include complex transmitter constellations and Multiple

Input Multiple Output systems into its repertoire.
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Chapter 1

Introduction

1.1 The mobile media

Wireless communication has become one of the fastest growing technologies

of the twenty first century. Starting from the late 19th century, when Marconi

began experimenting with the transmission and reception of “Hertzian Waves”,

wireless systems have evolved to become a technology capable of providing in-

stantaneous high bandwidth links to mobile users. The current research thrust on

wireless systems is concentrated on the last two aspects mentioned above: To pro-

vide a higher bandwidth to a more mobile user. The mobile media is an important

consideration in designing wireless systems. Inherent properties of the wireless

media place fundamental limitations on the capacity of mobile systems. The char-

acteristics of the mobile channel are affected by the environment it encompasses.

The environment results in creating a multitude of propagation modes. These

modes vary from direct line of sight (LOS) to a mixture of scattered, reflected
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Figure 1.1: Multipath propagation

and diffracted modes depending on the clutter present within the channel. This

lends to the random nature of the mobile channel, and consequently its difficulty

in being modeled. Characterization of the wireless channel has been traditionally

separated into two categories [1]. They are, Large scale fading that predicts the

average signal strength for an arbitrary transmitter receiver (T-R) separation,

and small scale fading that characterizes the rapid random fluctuations of sig-

nal strength over distances comparable to its wavelength. This is illustrated in

Fig 1.1 where the T-R separation is denoted by d. Large scale fading is due to

the nature of radio waves, and their modes of propagation with respect to the

environment. The main components that factor into Large scale fading are,
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• Free space path loss given by

PL(dB) = −10 log10

[
GtGrλ

2

(4πd)2

]
(1.1)

Gt and Gr are transmitter and receiver gains respectively, while λ is the the

carrier wavelength.

• Ground reflections

• Diffraction due to edges such as buildings and mountains

• Scattering due to objects within the media.

In the real world, these four components interact to produce complex fading

characteristics. However, with the advent of radio, television and microwave

links, modeling of large scale fading became a necessity. This pushed open the

door for empirical modeling, and the models proposed by Okumura [2], Hata [3]

and Walfisch & Bertoni [4] provides the means to predict average signal strength

across many terrains with reasonable accuracy.

1.1.1 Small scale fading and the multipath model

Small scale fading is due to the rapid, random, fluctuations of the amplitude,

phase, and frequency, of a received radio signal over a time period, or distance

comparable to its wavelength. It is primarily due to objects like cars, buildings

and trees that clutter the mobile media. These objects cause transmitted rays

with slightly different angles of departure to undergo different perturbations on
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Figure 1.2: Multipath propagation

each surface they reflect, scatter, or diffract on. This results in the signals being

almost completely uncorrelated by the time they incident on the receiver antenna.

Furthermore, the change of the environment; swaying of trees, rain, humidity, etc,

creates additional complexities by inducing temporal variations in the signals.

Both effects, temporal and spatial randomness, limit the capacity of wireless

systems.

Consider the multipath channel shown in Fig. 1.2. It consists of P paths,

where each path p ∈ {1, ..., P}, is defined by its respective path length {γp}, and

its attenuation coefficient {ap}. Let s(t) be the transmitted signal at time index t.

Then, for a narrow band transmission, the superposition of the multipath signals
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can be written using the real operator <,

ỹ(t, γ̄) =
P∑

p=1

<
{

aps(t− γp/c)exp (j2π[fct− γp/λc])
}

(1.2)

where λc and fc are the wavelength and frequency of the carrier respectively. In

the equation, the speed of light is denoted by c and the time index by t. The

mean path length traversed γ̄, is defined by

γ̄ =
1

P

P∑
p=1

γp (1.3)

Defining τp = γp/c, Eqn. (1.2) reduces to the more familiar form:

ỹ(t) = <
{[

P∑
p=1

aps(t− τp)exp(−j2πfcτp)

]
exp(j2πfct)

}
(1.4)

Then, under the assumptions of both a time invariant channel, and the existence

of a large number of multipaths, the received baseband signal can be modeled by

the integral,

y(t) =

∫ +∞

−∞
h(τ)s(t− τ)dτ (1.5)

where h(τ) = a(τ)exp(−j2πfcτ). Here, a(τ) is the continuous-time form of ap.

Eqn. (1.5) reveals that the channel under these assumptions operate in a similar

manner to a linear filter with an impulse response of h(τ). For a discrete system
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this integral further simplifies to,

y(nT ) =
L∑

l=0

h(lT )s(nT − lT ) (1.6)

when the output r(t) is sampled every T s and given that the channel has a finite

impulse response of L + 1 symbols. This, with a slight abuse of notation can be

written in the simpler form,

y(n) =
N∑

l=0

hlsn−l (1.7)

where hl , h(lT ) and sn , s(nT ) for the nth transmitted symbol.

The underlying assumption of time invariance holds in high speed commu-

nication systems. This is because there, the data packets are relatively shorter

in duration with respect to the coherence time of the channel. The coherence

time of a channel is the time which the impulse response of the media is highly

correlated. The assumption of a finite channel length has also been verified by

practical measurements. These experiments show that the bulk of the energy of

a received symbol is concentrated in a finite time frame from the reception of the

first ray.

Eqn. (1.5) suggests that the mobile channel can be mathematically modeled

as a linear filter under the above two assumptions. However, modern wireless

communication systems are primarily based on digital transmissions. Thus, Eqn.

(1.6) provides a more accurate portrayal of the mobile media. This mathematical
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Figure 1.3: FIR structure of multipath channels

structure represents a Finite Impulse Response (FIR) transversal filter, and this

is illustrated in Fig 1.3.

1.1.2 Inter Symbol Interference

The FIR structure evident in Fig 1.3 indicates that mobile channels create

delayed and attenuated replicas for each symbol that is transmitted through the

media. Thus, what incidents on the receiver is not only the transmitted symbol,

but a superimposition of all the delayed signals that the media creates. This

has the effect of smearing the symbol in time as shown in the first graph of Fig

1.4. Time-dispersion of the channel causes received symbols to trail for more

than its allocated time period. Thus, components of one symbol begin to affect

the received signal of adjacent symbols. This effect is known as Inter Symbol

Interference (ISI). It corrupts the received signal, thereby preventing accurate

reconstruction of the transmitted symbols. Fig 1.4 illustrates how time dispersion

ultimately results in a received signal that has little or no resemblance to the
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transmitted symbols. In such cases, accurate reconstruction of the transmitted

symbol sequence is almost impossible without additional processing.

Time-dispersion in mobile channels is quantified using the rms delay spread

parameter, στ . This parameter is empirically derived using the power delay profile

of a given channel. For channels that are Wide Sense Stationary with Uncorre-

lated Scattering (WSSUS) the power delay profile, p(t) can be derived from the

channel parameters [1] as,

p(t) = 0.5|h(t)|2 (1.8)

The rms delay spread is the square root of the second central moment of the

power delay profile and it is defined as

στ ,
√

τ̄ 2 − τ̄ 2 (1.9)

where

τ̄ =

∑
k p(τk)τk∑
k p(τk)

(1.10)

τ̄ 2 =

∑
k p(τk)τk

2

∑
k p(τk)

(1.11)

and k ∈ {0, ...,∞}. Viewing from the frequency domain, the rms delay spread

transforms into a coherence bandwidth. The physical interpretation of the coher-

ence bandwidth, Bc is framed by a high correlation between of the two channels

seen from two frequencies separated by less than Bc.

Although as mentioned previously, the channel distorts the received signal
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Figure 1.4: Smearing of received signal by ISI
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to almost beyond recognition, there are tools available in communications to

overcome and undo such distortions inserted by the media. They are,

Diversity

Diversity is a tool that is used to compensate for fading where the signal

level drops to below the threshold of receptability in a receiver. It hinges on

the premise that if more than one replica of a signal is received on uncorrelated

channels, then the probability that all signals will fade simultaneously decreases

rapidly with the number of received signals.

A number of methods exist to provide identical signals that arrive through

uncorrelated channels.

• Spatial diversity - Here, the receiver antennae must be separated physically

by more than half a wavelength to minimize channel correlation.

• Time diversity - For time diversity, the transmissions must be separated by

more than the coherence time of the channel.

• Frequency diversity - In this case, transmission frequencies should differ by

more than the coherence bandwidth.

• Polarization diversity - This form of diversity depends on the fact that the

properties of mobile channels are dependant on the plane of polarization of

the transmitted carrier.

These schemes provide the means to enhance the received signal so that the depth

and duration of fades is appreciably reduced.
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Channel Coding

Channel coding adds redundant data bits onto the transmitted symbol se-

quence so that even if a few bits are lost during fading, they can still be es-

timated or detected using the additional bits embedded onto the transmission.

However, coupling additional bits onto the transmitted sequence reduces the raw

data transmission rate.

Channel decoding generally takes place after detection . Thus, it is essentially

a post detection scheme. Within channel coding, there are three main techniques

that is widely used in mobile communications. Application of the type of coding

depends on the requirements of the communication link. These factors include the

bi-directionality of the link, the nature of the communication system: whether it

is broadcast, multicast or unicast, and the bandwidth reduction that is tolerable.

The three families of channel coding available are,

• Block codes

• Convolution codes and

• Turbo codes

Channel coding is generally independent of modulation schemes. However, with

the advent of Orthogonal Frequency Division Multiplexing (OFDM), new space-

time coding techniques that combines antenna or space diversity, coding and

modulation have been proposed. These schemes offer high coding gains without

any bandwidth expansion.
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Figure 1.5: Filter structures and algorithms used for ISI cancelation

Equalization

Equalization compensates ISI that is generated by multipath, time-dispersive

channels. In a broad sense, any signal processing technique that helps reduce ISI

can be labeled as a equalizer. However, since mobile channel are time variant,

these algorithms must be adaptive. Most of the equalization algorithms used

today break equalizers into two components. A filter structure that is capable of

modeling the inverse of a given mobile channel, and an adaptive component that

estimates the filter taps to provide the best filter to compensate for the mobile

channel.

Of the filter structures used, the most commonly used is the Linear Transver-

sal Filter. The linear filter is essentially a tap delay line as shown in Fig 1.3.
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Another popular filter structure is the Decision Feedback Equalizer (DFE). In

contrast to the previous filter, the DFE filter has a non-linear structure. In addi-

tion to the filter structures, there need to be conditions or schemes that can be

used to adjust the filter taps. The two widely used schemes in this area are the

Zero Forcing (ZF) and the Least Mean Square (LMS) schemes. In the case of the

ZF equalizer, the weights are chosen such that all but one of the combined channel

and equalizer coefficients are zero. This however can create noise enhancement.

The LMS equalizer on the other hand minimizes both ISI and noise. Such, it is

a more optimum filter. However, both filters need the channel coefficient vector

h = [h0, h1, h2, ..., hL]′, to derive the optimized filter taps. A summary of the

filter types, their implantation structures and the algorithms that can be used in

adjusting the filter taps is illustrated in Fig 1.5

1.2 Blind Estimation

Traditionally, training sequences have been used for estimating channel pa-

rameters. In these algorithms, known bit patterns, s̆n are transmitted. The

receiver then adaptively adjusts the tap weight vector f , [f0, f1, ..., fL] using

schemes such as ZF or LMS to minimize the error signal ĕn. This is illustrated

in the Fig. 1.6

However, in face of higher signaling and bandwidth requirements, training

sequences are fast becoming a non viable option. For example, in GSM, training

sequences use up to about 20% of the available channel [5]. Moreover, as the sig-
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Figure 1.6: A linear trasversal adaptive filter structure

naling rate increases, the portion of the bandwidth used up by training sequences

tends to increase. Another detrimental aspect of training sequences is that they

cannot be used for estimating time varying channels. This is because they func-

tion under the assumption of a static channel to extract channel parameters from

the training data. Moreover, where they can be used, strict synchronization re-

strictions have to be followed. Furthermore, even in slowly varying channels,

training sequences become ineffectual when the channels undergo severe fading.

On the other hand, blind algorithms presents a bandwidth efficient alterna-

tive. Using information already embedded on the data stream, these algorithms

are able to extract channel parameters at a higher computational cost. Start-

ing from the seminal work of Sato [6] in 1975, blind algorithms have spread to

include several different classes. They all however have key features that make

them useful in both military and commercial high bandwidth applications.
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Figure 1.7: Schematic of the blind estimation problem

• No training sequences required, therefore conserve bandwidth and are harder

to jam and hack into.

• Robust to severe fading, therefore ensures lower outages where signal levels

fall below the receiver’s threshold.

• Capable of being used in estimating time varying channels

However, they do come with their own inherent problems.

• Computationally more expensive.

• Convergence to local minima due to the non linear nature of estimation.

1.2.1 The blind estimation problem

The blind estimation problem is aptly described by Fig. 1.7. The essence

of blind estimation is to extract the channel parameters h, and the source sym-

bols s(n), using only the channel output y(n). Though distinguishing the channel
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from the source may at first seem intractable, it can be done by exploiting the de-

terministic and statistical structures embedded by the channel and input. Define

h , [h0, h1, h2, ..., hL] to be the channel vector. Let sn , [sn, sn−1, sn−2, ..., sn−L]′

be the transmitted symbol vector and wk the noise element at time t = nT . Then

the received signal element at time index n is given by,

yn =
L∑

i=0

hisn−i + wn (1.12)

In mathematical terms, the goal of blind estimation is to estimate either h or s

given only the output vector y(n) , [yn, yn−1, yn−2, ...]
′ and prior knowledge of

statistical and deterministic structures of the input or channel or both.

Depending on the information they utilize, blind algorithms can be cate-

gorized into two main classes [7]. They are the statistical and deterministic

algorithms. An important technique, the Maximum Likelihood (ML) estimators

fall under both categories. ML estimators are optimal for large data sets, and

under certain regularity conditions, the asymptotic variance of ML estimators

approach the Cramer Rao Bound (CRB) [7]. These estimators have the added

advantage of being able to be derived in a systematic manner. However, unlike

subspace methods, they do not lend to closed form solutions. Numerous ML

estimators have been proposed in literature. They can be found varying from

the Deterministic ML approaches like IQML and TSML proposed by Hua [8] and

Slock [9] to Statistical ML approaches like the Expectation-Maximization (EM)

approach proposed in [10, 11]. In contrast, Single Input Single Output (SISO)
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Figure 1.8: The Single Input Multiple Output channel model

systems rely primarily on statistical data gained from higher than second order

statistics. This is because in absence of the multiple output structure, phase in-

formation needed to clean symbol or channel parameters can only be read from

Higher Order Statistics.

Except ML estimators, most modern blind algorithms additionally require

channel diversity. They use diversity in either spatial or temporal forms to trans-

form the blind identification problem onto the Single Input Multiple Output

(SIMO) platform [12]. The SIMO platform used by these algorithms is illus-

trated in Fig. 1.8.

1.2.2 Statistical and deterministic algorithms

Statistical algorithms assume the input s, to be random with predefined

statistical properties. Generally, zero mean, independent and white distributions

of known variances are assumed for both noise and s in this class of algorithms.

Moreover, these algorithms require an accurate estimate of the channel length
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(length of the channel impulse response) for reliable estimation.

The earliest blind algorithms were primarily based on Higher Order Sta-

tistics (HOS). This was primarily due to research then being concentrated on

Single Input Single Output (SISO) channels. The SISO platform yields phase

information only in higher than second order statistics. Thus, HOS was needed

for estimation. On the other hand, Second Order Statistic (SOS) based algo-

rithms extract phase information using the multichannel SIMO platform. This

makes them more restrictive as HOS algorithms are able to perform without any

channel diversity. Furthermore, HOS algorithms show asymptotic insensitivity

to additive Gaussian noise that corrupts the received signals. This is useful in

noisy environments. However, the HOS algorithms suffer from higher computa-

tional costs in constructing higher order cumulants. Furthermore, they require a

larger data set for the estimates to stabilize compared to SOS algorithms. One

important fact is HOS are the primary source of data for estimating channels on

the SISO platform.

Generally, HOS algorithms can be categorized into three main classes. They

are: the Hidden Markov Model (HMM) based algorithms, the Polyspectra meth-

ods and the Bussgang methods. The HMM [13, 14] algorithms provide estimates

of channels driven by Finite Alphabet (FA) inputs using Markovian channel se-

quence information the FA property creates. This is viable in digital communi-

cations, where fixed constellations such as BPSK, QPSK and 16 QAM are used

for data transmission. However, HMM algorithms require large memory and

computational resources. Furthermore, they have a possibility of converging to
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local minima. Polyspectra methods [15, 16, 17] on the other hand use higher

order spectra. Using either the bispectrum (third order spectral cumulant) or

the trispectrum (fourth order spectral cumulant) [18] they extract information

needed to estimate channel parameters. The bispectrum however is not used

much in communications. This is due to the fact that most communication sys-

tems use data that have pdf’s symmetric around 0. This practice keeps energy

requirements low, a prime concern in most communication systems. Thus these

signals would contain no third order statistics and the bispectrum would be essen-

tially useless. Another category of HOS algorithms, the Bussgang methods [20]

do not explicitly use HOS. Instead, they minimize a cost function that implicitly

contains HOS information. Bussgang algorithms are generally of an adaptive na-

ture. These algorithms range from Sato [6] through Godard [19] to the stop and

go algorithm of Picchi [20]. However, like HMM algorithms, both the Polyspectra

and Bussgang methods may at times converge to local minima.

SOS algorithms are generally based on subspace decomposition. In one cat-

egory, the cyclic spectra or cyclic statistics provides a key to identifying chan-

nels [21, 22]. However, in addition to the cyclic statistics, these algorithms require

the FIR multichannel SIMO structure for estimation. SOS algorithms are gener-

ally more robust to noise than equivalent deterministic algorithms. However, con-

vergence of source statistics is required for their optimum performance. Another

category of statistical SOS algorithms that exist in literature are the Filtering

Transform algorithms [23, 24]. These algorithms utilize a two-step, closed form

approach to first estimate a filtering matrix z(h), and then derive the channel
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parameters from the estimated matrix. However, this algorithm does not take

advantage of the channel structure (structure of the filtering matrix, z(h) in this

case). Furthermore, the accuracy of the estimate in the first step becomes a lim-

iting factor in the accuracy of the estimate of the final result. However, when

a large number of channels are available, using filter matrices for identification

may have computational advantages. A third category of SOS algorithms falls

under the generic banner of linear prediction. Introduced first by Slock [9, 25],

they have an added advantage of being robust against over determination of the

channel length. This is important as estimating the channel length may turn

problematic in noisy environments.

Deterministic algorithms on the other hand do not assume any statistical

structures to be present in the input. They are generally capable of finite sample

convergence. That is, in absence of noise, the algorithms are capable of producing

exact channel estimates using a finite number of samples. Statistical algorithms

on the other hand need convergence of statistics for estimation. This makes

deterministic algorithms more effective in regions of high SNR. In addition, its

dependence on relatively shorter data sets makes it ideal for use in fading chan-

nels. Moreover, as it does not depend on source statistics, it can be used in a

wider range of equalizing applications. However, deterministic algorithms suffer

faster deterioration as the conditions within the media come close to violating

its identifiability conditions. Secondly, they may at times require restrictions on

the input sequence. This may complicate the identifiability conditions and is

discussed by Hua [26] and Xu [27].
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Deterministic algorithms in general exploit information structures that are

present in either the multichannel SIMO platform or those generated by the FA

property. These algorithms can be categorized basically into subspace and non

subspace algorithms. The subspace algorithms can be further categorized based

on the information structures they utilize. The Cross Relation (CR) approach

which was independently discovered by Liu [28], Gurreli and Nikias [29], Baccala

and Roy [30] and Robinson [31] exploits the multichannel structure. It performs

effectively in regions of high SNR using a relatively short data set. However,

the CR algorithm shows a relatively higher sensitivity to channel length over-

estimation. Another algorithm, the Noise Subspace(NS) algorithm proposed by

Moulines [32] exploits the structure of the filtering matrix. It forces the signal

space to have a block Teoplitz structure, which is orthogonal to the noise sub-

space. The NS algorithm is strongly related to the CR algorithm [33] as they

only differ in their parameterizations of noise and signal subspaces. Though, it

is relatively more complex than the CR method, it appears to provide better es-

timates under most conditions. Recently another deterministic subspace method

has been proposed by Tong and Zhao based on the Least Squares Smoothing

(LSS) of the observation process [34, 35, 36]. This algorithm uses the isomorphic

relationships between the inputs and the outputs of a channel. Using these rela-

tionships, the algorithm converts the blind estimation problem into a linear LSS

problem. This makes the LSS algorithms capable of having adaptive implementa-

tions. Furthermore, some derivatives like the Joint Order Detection and Channel

Estimation by LSS (J-LSS) algorithm, needs only an upper bound of the channel
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Figure 1.9: Classification of blind estimation algorithms

length to produce reliable estimates. A summary of the discussion presented is

illustrated in Fig. 1.9.
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Figure 1.10: The embedding of data used for blind estimation

1.3 Finite alphabet algorithms

Besides the two traditional sources of information, there exists another cate-

gory that is impinged onto the data stream at the moment of transmission. The

convolution of a FIR channel matrix with a transmitter constellation creates a

series of useful information that can be broadly categorized as Finite Alphabet

(FA) data. Thus, FA data contains not only channel information, but within,

it contains information that can be used to extract the transmitted symbol se-

quence. For example, most algorithms use prior knowledge of the transmitter

constellation to ensure that the received symbols fall into one of the known el-

ements within the constellation. A more definitive description of the structures

that are used by our algorithms are presented in Chapter 2. Another distinction

of the FA data with respect to the other two arises from its usage. In contrast to

either statistical or algebraic channel structures that are traditionally confined to

their respective algorithms, FA data can be used to supplement either algorithm
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or used on its own. Such, algorithms that were originally categorized under sta-

tistical or deterministic categories can at times contain FA dependencies. The

manner additional data that is used for blind estimation is embedded onto the

transmitted signal is illustrated in Fig. 1.10.

Interestingly, the first blind algorithms to appear in literature can be cat-

egorized under this category. Both Sato and Godard used the FA property in

penalizing the deviation of the equalizer output from either the binary states

in Pulse Amplitude Modulation (PAM) [6], or the constant modulus condition

in Quadrature Amplitude Modulation (QAM) [19]. In recent development, the

Viterbi Algorithm (VA) has became a prominent tool in FA algorithms. This

was precipitated by Forney in establishing that the VA can be used to compute

the maximum likelihood estimate of the transmitted signal, provided that the

multipath channel is known [37, 38]. Coupled with FA data, this has enabled the

VA to form a nucleus for sequence estimation algorithms.

Numerous algorithms have developed on this theme. Tong in [39] outlines a

novel algorithm that not only uses FA data, but also uses statistical and algebraic

channel structure information. The algorithm uses the Mahalanobis-transform

on the SOS subspace, and then the VA to search through the labels that are

created. However, Tong’s algorithms uses a SOS front end. Such, limitations of

SOS are inherently transferred to this algorithm. Firstly, the statistical structure

on the input data has to be assumed, and secondly, the phase ambiguity of SOS

manifested as a sign ambiguity in the extracted symbol sequence. Furthermore,

convergence of statistics becomes essential for optimal performance. However,
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due to the statistical nature of this algorithm, it is more robust to noise than an

equivalent deterministic algorithm. A low cost alternative to Tong’s algorithm

has been put forward by T Li and Z Ding [40]. Taking advantage of the structure

of differentially encoded data, [40] outlines a scheme capable of reducing the states

in the VA by at least half. However this method is valid only for Differential Phase

Shift Keying (DPSK) signals. Extending Tong’s work to the multi user platform,

Gunther and Swindlehurst have proposed a novel source separation scheme using

the shift structure present in the block Teoplitz structured input, together with

the relationships of input and output subspaces [41]. However, rather than being

statistical, this algorithm is more deterministic in nature. Van der Veen et al

in [41] has outlined another technique for using FA data in source separation.

Instead of subspace relationships, Van der Veen uses the Iterative Least Square

with Projection (ILSP) algorithm to infuse FA structure onto the input. This

provides a noise robust output with an added advantage that the algorithm can

operate independent of the observed channel length.

In addition to the Viterbi Algorithm, the algebraic structure of the channel

can also be used for both channel and sequence estimation. In [42], Manton and

Hua outline a scheme that refines channel estimates by transforming the blind

problem into a minimization problem. The FA structure provides the set of the

discrete number of points to search for the minima. However, for optimal perfor-

mance the algorithm requires a close initial estimate. This maybe problematic in

noisy environments. Another pseudo deterministic algorithm for sequence esti-

mation has been proposed by Yellin and Porat [43]. They utilize the FA property
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to curb the exhaustive search for symbols needed to satisfy the Time Delay Line

(TDL) equations,
N∑

k=0

sni−khk = y(ni) i ∈ [1,M ] (1.13)

Being a deterministic algorithm, it converges to exact channel estimates in ab-

sence of noise. But on the other hand, it shows a higher sensitivity to noise.

Moreover, the schemes assumes the existence of a correct symbol sequence sat-

isfying its identifiability conditions with a probability of 1. In spite of these

disadvantages, the algorithm has an in built insensitivity to order overestima-

tion. Even though it is vulnerable to order underestimation, this makes the

algorithm more viable in practical applications. Another approach to estimation

using closed form forward and time reversal equations of the channel and symbol

least squares estimates is outlined in [44]. With regard to performance, the algo-

rithm is sensitive to the initial estimates it generates. The initial estimates play a

crucial role on its global convergence capability. Sato in [5] suggests another algo-

rithm for sequence detection in the form of Implicit and Explicit Blind Sequence

Detection (IBSD/EBSD). It uses the short time average of squared error, together

with the Maximum a Posterior (MAP) and the ML algorithms to generate Trellis

labels. Then, [5] uses the VA to estimate the symbol sequence.

A more interesting algorithm from the point of this thesis was proposed

by Daneshgaran [45]. In this thesis, the FA property is used in context of the

clustering that occurs in the received vector set of a Single Input M Output

(SIMO) channel. The received vector set of a SIMO channel describes points in
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a M -dimensional space, thus algorithms using this category of information are

described as spatial algorithms in this paper. Presence of noise causes the received

vector set to deviate, forming clusters around theoretical centers. Daneshgaran

[46, 45], using the Linde-Buzo-Gray (LBG) clustering algorithm with a novel

initiation scheme, was able to present a methodology for extracting the clusters

and then using them as labels for the VA algorithm.

1.4 Motivation and Thesis outline

In the domain of blind estimation, explicit use of FA data is a recent phenom-

enon. Admittedly, it was used in both statistical and deterministic algorithms

starting from 1975 when Sato [6] first published his seminal work on blind esti-

mation. However, these works used the FA data implicitly, using the Bussgang

algorithms to fuse FA data with HOS for estimation. On the otherhand, explicit

use of the FA data is more recent. Table 1.1 shows the distribution of blind algo-

rithms categorized by the sources of information utilized for estimation. In this

table, deterministic algorithms is split into two categories to form the general de-

terministic algorithms and the spatial algorithms. The algorithms in the general

category rely primarily on the channel structure whereas spatial algorithms rely

more on data structures created by the FA property.

Clearly the domain of spatial algorithms is largely unexplored, and thus it

holds promise of alternate estimation algorithms with different behavior patterns

to both statistical and deterministic algorithms. This thesis is largely motivated
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Information Source Statistical Deterministic Spatial
Algorithms Algorithms Algorithms

Algebraic Channel Structure Low High Low

Statistical Data Structure High Low Low

Finite Alphabet Structure Medium Medium Low

Table 1.1: Distribution density of blind algorithms, categorywise

to researching this promising area: To use spatial data created by the FA property

for blind estimation of channel and symbol parameters.

This thesis consists of five chapters.

Chapter 1 : The current chapter is intended as a primer to the background of blind

estimation in mobile channels. Properties of the channel and how it affects mobile

transmissions is analyzed in this section. Then, the need for blind estimation is

explained followed by an in-depth discussion and analysis of currently available

blind algorithms. Finally, FA algorithms are explored in the context of the current

research thrust.

Chapter 2 is primarily concentrated on building spatial tool and information

structures we will be using later in our algorithms. We begin by introducing the

basic Multiple Output platform which forms one of the bases in our algorithms.

In addition, the FA property and how it embeds channel and input symbol in-

formation onto the received vector, thereby creating spatial clusters is explained.

An introduction into the spatial tools used in our algorithms is presented. The

two main tools introduce here are the primary and secondary clustering algo-

rithms. These tools enable us to handle spatial data in myriad of ways. Lastly,
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we introduce the deterministic indices. These are mathematical structures that

form the core of the Channel Estimation by Twin Indexing algorithm.

Chapter 3 Introduces the first of our spatial algorithms, the State Driven Se-

quence Estimation(SDSE) scheme. Indepth working of the theoretical algorithm

is first presented and then followed a discussion of the errors that can plague it

in noisy environments. Modifications needed to overcome these limitations are

then presented, and finally, the performance of the algorithm is presented with

an indepth discussion into its behavior.

Chapter 4 begins the presentation of the channel estimation schemes. Here, we

introduce the two channel estimation algorithms, Channel Estimation by Dif-

ference Sets (CEDS) and Channel Estimation by Twin Indexing (CETI). These

algorithms are explained in detail and followed by a procedural presentation that

makes the algorithms easy to understand. Next, we present an auxiliary algo-

rithm that helps overcome spatial algorithms inherent blindness to time ordering.

This algorithm resolves the sign and permutation ambiguities inherent in the out-

put of CEDS and CETI algorithms. Lastly, the performance of the CETI and

CEDS algorithms are analyzed individually and with respect to each other and

then followed by an indepth discussion into their behavior.

Chapter 5 first presents modifications that can be incorporated into our primary

algorithms to extend their utility. These modifications enable our algorithms

to work on new platforms ranging from complex transmitter constellations to

Multiple Input Multiple Output (MIMO) systems. Next we introduce avenues

open that can help enhance spatial algorithms. Finally, in the last section we
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conclude our thesis, presenting the crux of our work.
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Chapter 2

Spatial Structures and Tools

2.1 Introduction

In this chapter, we introduce the multiple output platform on which data

structures we call spatial structures are formed when data is transmitted using a

finite alphabet. Next, we introduce tools capable of processing the above spatial

structures. These spatial tools form the foundation on which our blind estima-

tion algorithms are developed. Lastly, we introduce a derivative of the spatial

structure, the Deterministic Indices, which are formed when spatial structures

are projected onto a one dimensional axis.

2.2 The Multiple Output Channel

Consider the single input, multipath communication channel shown in Fig 1.2

in Chapter 1. The received signal at the ith receiver, xi(t) is the superimposition



2.2 The Multiple Output Channel 32

of P multipath rays. Under the static channel assumption, the impulse response

of such a channel, ci(t) can be described by,

ci(t) =
P∑

m=1

αimδ(t− τim) (2.1)

where {αim} are zero mean Gaussian distributed reflection coefficients, and {τim},

the randomly distributed path delays of the P multipath signals. Under these

conditions, the received baseband signal takes the form,

xi(t) ,
∞∑

n=−∞
snhi(t− nT ) + wi(t) (2.2)

where {sn} is the transmitted symbol sequence and hi(t) , p(t) ∗ ci(t), the con-

volution of p(t) with ci(t). In the equation, p(t) describes the impulse response

of the pulse shaping filter while T denotes the symbol period. The symbol wi(t),

represents the band limited noise component present in mobile channels. The

above equations are general and hold true for any power delay profile. For a set

of discrete inputs, the received signal at time index nT may be further simplified

to,

xi(n) ,
L∑

l=0

hilsn−l + wi(n) (2.3)

assuming the channel has an impulse response limited to (L+1) symbol durations.

The number of multipaths, P and the channel length, L + 1 are not directly

related. Instead L + 1 is the time duration beyond which the composite channel

response becomes trivial. On the other hand, P is the number of multipaths that
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sum up to produce each of the {hil} coefficients. In Eqn. (2.3), hil , hi(t − lT )

denotes the discrete channel response coefficients. Stacking the output of M

sensors, we can then obtain the equivalent Single Input Multiple Output (SIMO)

channel model. This we write as,

x(n) , Hs(n) + w(n) (2.4)

where x(n) , [x1(n), ..., xM(n)]′, w(n) , [w1(n), ..., wM(n)]′ and s(n) , [sn, ..., sn−L]′

are the received, noise and symbol vectors respectively. The channel matrix is de-

noted by H , [h1,h2, ....,hM ]′ with row vectors defined by hm = [hm0, hm1, ...., hmL].

The objective of this thesis is to recover the channel and symbol parameters L, H

and s using spatial data embedded in x, under the following the key assumptions:

a) The channel is stationary for the time duration needed to collect data for

estimation.

This assumption is critical as all algorithms presented operate in

a batch mode where a set of received data vectors is processed

simultaneously. The time a channel is required to be stationary

depends on the algorithm utilized. It is directly correlated to

the smallest data set the algorithm utilizes to estimate channel

parameters to the required accuracy.

b) The noise {wi} is zero mean, and statistically independent of the transmit-

ted symbol sequence.
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This condition is required for the clustering phase in our algo-

rithm. It is only under this condition that the spatial structure

can be extracted from a received vector set corrupted by noise.

c) The transmitter symbols are independent and chosen from a finite alphabet.

For the purpose of this thesis si ∈ {1,−1}, and we define this alphabet

CB , {1,−1}.

This is a necessary condition for the creation of spatial structures

in mobile channels. In our algorithms, any finite transmitter con-

stellation or alphabet can be used. However, to produce a simple

and clear presentation, we have in our thesis limited the constel-

lations used to binary systems

d) The channel matrix H is full column rank. i.e. M ≥ L + 1

This assumption does not originate from spatial algorithms. In-

stead, it is a requirement created by the use of an auxiliary algo-

rithm to correct sign and permutation ambiguities of the chan-

nel matrix H extracted. These ambiguities result from time-

blindness, inherent in spatial algorithms.

Let M, v and s denote a Matrix, a Vector and a Scalar respectively. Then,

in developing our thesis, we shall use the notations, M′ and M†, to denote the

matrix operators, transpose and inverse (the pseudo-inverse when the matrix is

not square). Furthermore, 〈 〉i will denote the expectation operator over the index
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i and ∼ will be used to associate a state to its spatial vector. The functions abs[],

sgn[], sum[], max[] and min[] are similarly defined, denoting the absolute value,

the signum, the summation and the maxima and minima respectively.

2.3 The spatial structure and clustering

Consider the SIMO system described by Eqn. (2.4). Under noiseless condi-

tions, the received vector x can be represented using its noiseless counterpart y.

This takes the form,

y(n) = Hs(n) (2.5)

Then, under assumptions (a) and (c), the vector set containing all received noise-

less vectors,

Y ,
{
y|y = y(i) i ∈ {1, ..., N}

}
(2.6)

is finite with at most TL+1 elements. In the equation, N is the length of the

sampled time duration, i.e number of received vectors, while T represents the

number of symbols in the transmitter constellation. Each element of Y , y ∈ Y

describes a point in an M -dimensional space. Thus the set Y describes a lattice

in M -dimensional space. This M -dimensional lattice can be thought as a state

diagram, where each element represents a unique state. Under this model, the

output vector y(n) then can be seen transiting between the states in response

to the input symbol sn. This duality between the state diagram and its M -

dimensional vector representation forms the basis of our spatial algorithms. In
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Figure 2.1: 2D structure of a vector space created by channel of L = 2

this thesis, we associate a given state Sk to its respective M dimensional spatial

vector y(k) by,

Sk ∼ y(k) (2.7)

Fig 2.1 shows a two-dimensional structure that is created in the received

vector set of a two-sensor system in a channel of length L = 2. Noise corrupts

this lattice like structure, dispersing the received vectors inside hyper-spheres of

radii proportional to the noise power and origins defined by the noiseless vector

set Y . This is shown in Fig 2.2. If noise is normally distributed, the pdf of the

square of the cluster radii, U follows a central chi-squared distribution,

fU(u) =
1

NM
o 2M/2Γ(M/2)

u(D/2−1)exp(−u/2No) (2.8)

where 2No denotes the noise variance and M denotes the number of sensors in
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Figure 2.2: 2D structure corrupted by noise

the receiver. In Gamma function in Eqn. (2.8) is given by,

Γ(p) ,
∫ ∞

0

tp−1e−tdt (2.9)

Using clustering algorithms, it is possible to extract an estimate of the noise-

less structure from the dispersed vectors [45]. Clustering is essentially a tool or

algorithm that groups data using a defining characteristic that is unique to each

group. In our case, the clustered groups are the points in the M -dimensional

lattice structure Y .

Clustering algorithms have wide utility, especially in the field of Machine

Learning. They are widely used in applications ranging from pattern recogni-

tion to data compression. Depending on the manner they approach the clus-

tering problem, these algorithms can be classified into two main groups. They
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are the Parametric Clustering [52] and Non-Parametric Clustering [53] classes.

Parametric clustering attempts to minimize a cost function. Built on an op-

timization structure, these algorithms encompass statistical algorithms such as

Expectation-Maximization to fuzzy implementations like C Means Fuzzy Clus-

tering [50]. Non-Parametric algorithms on the other hand uses dissimilarities

between clusters formed at a given iteration to either merge them together or

split them apart. These algorithms, also called Hierarchial Algorithms do not

need to make any assumption on the distribution of the data vectors they are

processing. However, they have larger memory requirements and are more prone

to errors when clustering regions overlap.

From a clustering point of view, the ability to separate the spatial structure,

Y in a noisy environment depends on the ratio,

ρ =
Vol. of the noise hyper-spheres for a given containment probability

Vol. of the hyper-sphere containing all noiseless channel outputs
(2.10)

This is explained by the illustration in Fig 2.3, which shows how signal and noise

hyper-spheres are defined. Note that while the signal hyper-sphere encompasses

all lattice points, the noise hyper-sphere is defined within the concept of a contain-

ment probability. The containment probability defines the expected percentage

of points that should lie within the noise hyper-sphere. As refreshed in [45], the

equations
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Figure 2.3: Signal and noise hyper-spheres

V (r,M) =





πM/2rM

(M/2)!
for even M

or

2Mπ
M−1

2 (M−1
2

)!rM

M !
for odd M

(2.11)

define the volume of any M -dimensional hyper-sphere of radius r. Now, given a

set of SIMO channels of length L + 1, the radius squared of the noiseless channel

outputs will have the form,

R2
i =

M∑
m=1

[
L∑

l=0

amlihml

]2

(2.12)

where amli ∈ {+1,−1} are randomly distributed transmitter symbols that each

form one of the unique elements, i of the lattice Y . Then, assuming normalized
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channels, i.e. ||hj|| = 1 j ∈ {1,M}, the expected value of the radius square R̄2

can be expressed as

R̄2 =
M∑

m=1

L∑

l=0

〈
a2

mli

〉
i
[hml]

2 +
M∑

m=1

L∑

l=0

L∑

j=0,j 6=l

〈amliamji〉i [hmlhmj] (2.13)

which under assumption (c) simplifies to,

R̄2 =
M∑

m=1

L∑

l=1

[hml]
2

= M (2.14)

On the other hand, the volume of the noise hyper-spheres can only be defined

within the concept of a containment probability, pc.

2.4 The spatial tools and contention clustering

Given the nature of the blind estimation problem, i.e. the lack of knowledge

of channel parameters L and H, contention based clustering emerges as a viable

tool as it only requires an estimate of the noise power. The clustering algorithm

used in our thesis was adapted from Danshgaran’s derivative of the LBG algo-

rithm [45]. It relies on the fact, given that noise power is within acceptable limits,

then data points belonging to a given cluster are situated spatially closer to one

another than to data points belonging to a different cluster. This can be seen in
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Figure 2.4: Separation criteria for clustering algorithms

Fig 2.4 where,

〈Dc〉 > 〈Di〉 (2.15)

Spatial tools form the core of the blind estimation algorithms we will be present-

ing in this thesis. They form the handle which we will be using to manipulate

spatial data for symbol and channel parameter extraction. The first algorithm

we will be presenting is the Primary clustering algorithm. It is a de-noising tool

that uses first order statistics and spatial knowledge (Eqn. 2.15) to extract the

noiseless spatial structure Y (Eqn. 2.5) from the noise contaminated input vec-

tor set. The Secondary clustering algorithm although similarly structured serves

another purpose. It provides the means to extract identical vectors corrupted

by noise using the population of the vectors as a key. This tool can extract the

channel vectors from the spatial data they are embedded in.
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Figure 2.5: Sub clustering in the two-step primary clustering algorithm

2.4.1 The Primary Clustering algorithm

The clustering algorithm used in our simulations is based on a two-step

approximation structure. The first step creates sub-clusters between the number

of vectors in Y , and the number of final states, 2L. The second phase then

coalesces all sub-clusters belonging to a given cluster to one point. This sub-

clustering effect is illustrated in Fig 2.5. The two step approach described above

is more robust in regions of low Signal to Noise Ratios (SNR), and hence finds

application in our proposed algorithms.

The two phases of the above algorithm relies on two thresholds for extracting

and clustering vectors. The first, D1 is used for extracting sub-clusters as illus-

trated in Fig 2.5. The second, D2 then fuses all sub-clusters belonging to a single

cluster into one point. The thresholds D1 and D2 in our thesis were obtained

heuristically for normally distributed channel and noise parameters. Closed form
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derivation of D1 and D2 for optimum cluster detection is complex and was not

attempted in this thesis. The heuristic algorithms used in this thesis is presented

at the end of the current discussion on clustering algorithms. However, though

the two step approach has the distinct advantage of robustness, it may suffer a

small loss of accuracy in the position of the extracted cluster centers.

Another threshold, PMAX = 0.8N/2L+1 is used in the second clustering phase

to limit the number of vectors coalesced per cluster. This is 80% of the expected

populations for each cluster. Limiting the population in this manner minimizes

the probability of sub-clusters belonging to different clusters from fusing into

other clusters. The 80% numeric was obtained through Monte-Carlo iterations

by using different values to yield the best approximate to the number of clusters

that should be ideally created.

To begin deriving our algorithm, we shall first define Ỹ to be the set of

extracted cluster vectors initially containing C = 0 elements. The clustering

algorithm can then be described as follows:

i) Scan the received vectors sequentially, comparing the Euclidean squared

distance, d of each received vector to the established C cluster centers,

ỹ(m) m ∈ {1, .., C} using,

dmin = min
m∈{1,...,C}

M∑
i=1

[xi(n)− ỹi(m)]2 (2.16)

ii) If dmin > D1, add the data vector as a new cluster center. Otherwise merge

it to the closest center m weighted by the number of points already merged
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into it. This yields the sub-clusters described above and ends the first phase

of the clustering algorithm.

iii) Sort the sub-clusters, ỹ ∈ Ỹ by the number of data points fused into each

center.

iv) Beginning from the least populated sub-cluster, for each center, j compute

distances ljk to all other sub-clusters, k ∈ {1, ..., C}.

ljk =
M∑
i=1

[ỹi(j)− ỹi(k)]2 (2.17)

v) Find the closest center, kS satisfying the conditions,

1. ljkS
< D2

2. Pj + PkS
< PMAX

vi) If kS exists, merge the centers j and kS weighted by their populations.

Otherwise go back to iv).

The resultant set of vectors, Ỹ will be an approximate to the noiseless lattice

structure Y . In this algorithm, Pi denotes the population of the sub-cluster i.

Simulation platform used for estimating clustering thresholds and the

channel length

The above results were obtained using the SIMO channel model. The channel

was modeled as a stochastic SIMO model, with impulse parameters modeled

as zero mean Gaussian processes having unit variances. Channel coefficients
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and noise are assumed identically and independently distributed, and in this

simulation, noise was modeled as a zero mean Gaussian process. The Monte

Carlo trials were conducted using a data set of N = 2000 samples per iteration.

Furthermore, the source symbols were generated from a alphabet of {+1,−1}

with equal probability. Results from 30 Monte Carlo iterations were compiled to

obtain information indices. 30 iterations was chosen as then, 1st order statistics

stabilized within acceptable ranges to extract mean values for the indices.

Derivation of the clustering thresholds

The distance thresholds D1 and D2 were empirically calculated using the

clustering algorithm in an adaptive mode. In this step, Monte-Carlo iterations

were carried out for each M -SNR pair, while gradually increasing the threshold

distance till the number of estimated centers converged around twice the ex-

pected number of clusters, 2L+2 for D1 in the first phase and to expected number

of clusters, 2L+1 for D2 in the second phase. Using this two-step approach, it

is possible to push the collapse of states in low SNR regions lower than what a

single step approach would yield. This could be due to the fact that as the SNR

deteriorates, the cluster radii expand to encompass more than one cluster. Thus,

a single threshold could collapse multiple clusters into a single point. However,

when using two thresholds smaller sub-clusters are first created. These are more

densely populated near the theoretical centers. Thus, a smaller secondary thresh-

old can be used to collapse these sub-clusters to a single point without collapsing

surrounding clusters into it. This is illustrated in Fig. 2.6 which shows how
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Figure 2.6: Cluster extraction

single-step and 2-step clustering algorithms behave in noisy environments. In

the figure, normalized error shows the average spatial deviation of the estimated

centers from the actual centers. In the series of figures 2.6, 2.7 and 2.8 the solid

and dotted lines outline the maxima and minima respectively in the output set

of Monte-Carlo iterations for each SNR value.

The above results were obtained using the simulation platform described

above. A channel length of L = 6 was selected and simulations were carried out

for M = 8, 12, 16 and 24 receivers. Then, the mean value of the of the clustering

thresholds D1 and D2 were tabulated for use in spatial algorithms.
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Channel length estimation

Using elementary curve fitting on all results obtained above through Monte-

Carlo iterations, we were able to derive empirical relationships for the two thresh-

olds using the parameters No, L and M . An interesting outcome of the modeling

was the independence of the first threshold, D1 = No(2M + 5) from the channel

length, L. This is also indicated in the results from the Monte-Carlo trials. This

implies that the number of centers estimated by the first step of our clustering

algorithm can also be used as a rough blind estimator of the channel length.

Thus, though channel length was assumed known in the previous section, it can

in fact be estimated using the PCA. However, it is important to keep in mind that

this step requires knowledge of the SNR. Fig. 2.7 illustrates the channel length

estimate extracted using the primary clustering algorithm. For this simulation,

the above simulation platform was used with M = 16 multipaths.

From figure 2.7, it is clear that the clustering algorithm does not guarantee

in converging to the exact number of states. In regions of high SNR, the algo-

rithm may converge to a slightly higher estimate. This is because the threshold

distances used to extract related spatial clusters are short in these areas. Thus,

the algorithm may converge to two points instead of one. On the other hand,

in regions of low SNR, the converse is true. Here, the noise radii may exceed

cluster separation distances violating Eqn. (2.13). This results in the thresholds

distances exceeding cluster separation distances. As such, two clusters or more

may at times converge to a single point.
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The clustering algorithm described above is dependant on both the number

of sensors, M and the size of the data set, N for estimation. Fig. 2.8 shows the

dependency of the algorithm to these two factors. However, it is evident that

while a reduction in the data set N creates a wider range for the estimates, a

reduction in the number of sensors M is more detrimental. To add to the clarity

of the figure, the following point needs to be stressed. The three graphs in Fig.

2.8 should ideally be superimposed on one another. However, an exploded view

is given to better present the influence of the factors N and M in the algorithm.

However, the use of these thresholds D1 and D2 create a dependency on the

knowledge of the SNR. This can be circumvented by putting the algorithm in a

learning mode where it gradually increases the estimated noise parameter till the

number of extracted clusters stabilizes to the theoretical value 2L+1. One impor-

tant fact this outlines is that clustering algorithms do not require the channel

length as an input parameter. Knowing the SNR the system is operating in is

sufficient for successful clustering. This in turn implies that the spatial algorithms

developed in this thesis will be immune from the need to know the channel length

L. Infact, the spatial algorithms can measure the rough channel length as shown

above.

2.4.2 Secondary clustering

In addition to the primary need to separate the received data vectors into

spatial clusters, we need an additional clustering tool that enables us to extract

vector families. That is, given a vector family Fv of the vector v having a popu-
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lation of Pv,

Fv =
{
fi|fi = v + ni i ∈ {1, ..., Pv}

}
(2.18)

we need to extract the estimates ṽ ≈ v and P̃v ≈ Pv. The noise source ni

is assumed to be a zero mean source. The algorithm used for this purpose is

basically a derivative of our primary clustering algorithm. It is limited to the

steps i) to iii), with a subtle variation in the derivation of D1.

The threshold distance D1 is empirically calculated using the deviation of the

extracted vector population against the theoretical population. The theoretical

population is extracted from a pilot output which is uncontaminated by noise.

Two instances of the algorithm, one using noiseless data and the other in an

adaptive form are run side by side across the entire M -SNR spectrum used in our

thesis. At each M -SNR, the adaptive algorithm iteratively increases the threshold

distance D1 till the extracted populations falls within 2-5% of the theoretical

populations. The expected values of D1 across the twin indices of M and SNR

are then tabulated to be used to separate and extract vector families.

2.5 1-D derivatives of the spatial structure

The data present in the multidimensional spatial structure is more than ad-

equate for estimation purposes. In addition, 1-D projections of this structure

suffices for channel estimation. This is of immense value in creating practical

algorithms. The resulting reduction in computational cost makes FA algorithms

more attractive. Moreover, due to the superimposition of data when projected
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onto the 1-D axis, these algorithms require relatively shorter data sets for es-

timation. However, these advantages come with inherent limitations. The 1-D

algorithms suffer in low SNR regions as it does not have redundant information

to increase the accuracy of its estimate.

In this thesis, we present a 1-Dimension derivative, the Deterministic Indices

that is formed by the projection of the M -dimensional spatial structure onto

a single axis. In the preceding section, an introduction into the structure of

Deterministic Indices is presented, and later in Chapter 4, we will lay out an

algorithm that uses this structure for estimating the channel matrix H.

2.5.1 The Deterministic Indices

Consider the Single Input Single Output (SISO) channel model described in

Eqn. (2.3). Under noiseless conditions it takes the simpler form,

yi(n) =
L∑

l=0

hilsn−l

= his(n) (2.19)

where yi(n) is the received signal at time index nT . Define Z , {z|z = s(i) i ∈

{1, ..., N}} to be the set of all possible source vectors. Then, the set of the

absolute value of the output, |yi| can be shown to be given by

Oi , {oi|oi = abs ([hi1, hi2, ...., hiL]sl) sl ∈ Z} (2.20)
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This is a projection of the M -dimensional structure onto the ith axis. Under

assumption (c), the set Oi is finite. Moreover, the three largest elements of Oi

can be proved to have deterministic forms. Let oiα be the largest element of the

set Oi. i.e. oiα = max(Oi). Under (c), oiα satisfies

oiα =
L∑

l=0

|hil| (2.21)

which is formed by the symbol vector, sα = [sgn(hi0), sgn(hi1), ..., sgn(hiL)]′.

Similarly, the two next largest elements of Oi; oiβ and oiγ can be shown to be

formed by the source vectors

sβ = [sgn(hi0), ...-sgn(hiu), ...sgn(hiL)]′

sγ = [sgn(hi0), ...-sgn(hiv), ...sgn(hiL)]′

and given by,

oiβ =
L∑

l=0,l 6=u

|hil| − |hiu|, (2.22)

oiγ =
L∑

l=0,l 6=v

|hil| − |hiv|, (2.23)

where |hiu| and |hiv| are the two smallest elements of hi. All other elements of Oi

are dependant on the distribution of the elements of the channel vector, hi and

thus have no deterministic form.

Similar to the M dimensional structure, noise corrupts these projections,
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Figure 2.9: Linear projections and population distribution in noise

dispersing them about their theoretical origins. One way to estimate the theo-

retical centers is to use clustering algorithms. However, a 1-D axis provides little

or no foothold for the clustering algorithms to work on. Therefore, instead of

using only the given 1-D data, we can use all other dimensions inexorably linked

to the 1-D structure in M space. i.e use the vectors y ∈ Y such that yi = oiα for

clustering.

Noise however mars such straight forward relationships. In practice we do

not know the elements; oiα, oiβ and oiγ. However, taking into account that they

are the three largest elements, we can pre filter, and extract 3 • N/2L vectors

corresponding to the largest values of [x(n)]i into another subset Fi. 3 • N/2L

is the expected population for the three clusters. Statistics then imply that in

this subset, the vectors with the deterministic elements at the ith position, fiα, fiβ

and fiγ will be more densely populated than other vector families. This provides

the key for identifying the vectors and is illustrated in Fig. 2.9. Then, using the

secondary clustering algorithm, it is possible to extract the vectors fiα, fiβ and fiγ.
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2.6 Summary

In this chapter, we presented the core channel platform and the assumptions

that help formulate the algorithms proposed in this thesis. Another important

base, the tools for handling spatial data was also presented. These tools form the

core of spatial data processing. Furthermore, we explored the structure of the

spatial data, and introduced the mathematical structures that from the last base

of the mainstream algorithms. Thus, this chapter will be heavily referenced in

the preceding chapters.
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Chapter 3

Blind Sequence Detection

3.1 Introduction

The objective of this chapter is to show that spatial algorithms can be used

as tools for blind sequence detection. In this respect, we introduce the State

Driven Sequence Estimation (SDSE) algorithm. We begin this chapter with an

introduction into the working of this algorithm. Here, mathematical structures

that help in extracting the symbol sequence will be explained. Following, we

present the algorithm in a structured form that simplifies understanding. Next,

we highlight problems that may arise during realization of the algorithm and then

proceed to outline solutions that minimize and ameliorates these effects. The

gains achieved in overcoming realization problems are then demonstrated and

followed finally by an indepth presentation and discussion into the performance

of the SDSE algorithm.
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3.2 State Driven Sequence Estimation (SDSE)

The ultimate aim of blind algorithms is to estimate the transmitted data

sequence within an acceptable confidence. The methodology used in achieving

the above goal can vary from algorithm to algorithm. However, in general, blind

algorithms have two traditional approaches to solving this problem. One approach

is to estimate the transmitted data sequence directly. The other is to estimate

the transmitted data sequence by first estimating the channel parameters, and

then utilizing these parameters to estimate the transmitted symbol sequence.

In this thesis, we attempt to show that spatial algorithms are capable of ap-

proaching the blind estimation problem in both directions mentioned previously.

The main advantage of direct symbol estimation lies in the fact that it skips over

the intermediate step of estimating channel parameters. This may make some of

the direct estimation algorithms more computationally attractive. Furthermore,

direct symbol estimation can be more accurate in estimating the transmitted

symbol sequence. This is because accuracy maybe compromised when estimating

symbols via channel parameters.

In this chapter, we will be focusing on the State Driven Sequence Estimation

(SDSE) algorithm. It is a direct symbol estimator, bypassing intermediate esti-

mation of channel parameters. In this chapter, we begin by providing the basis

for formulation of this algorithm. Consider the spatial structure introduced in

the clustering subsection of Chapter 2. Under noiseless conditions, the output

vector of a multiple-output system alternates between the elements of the set Y.
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This creates an allusion of a finite state machine, with the output transitioning

between the states in response to the input s(n). For a binary system such as

BPSK, each state has two possible inputs and two possible outputs. This Two-

Input Two-Output (TITO) basis creates the information structures we need for

estimation in the SDSE algorithm. This state like pseudo structure is illustrated

in Fig 3.1. To continue formulation of the SDSE algorithm, let us assume that

the received vector at time index nTs corresponds to the state Sn. i.e. S(n) = Sn

where S(n) is a time indexed state array as shown in Table 3.1. Thus we can

write,

S(n) = Sn

Sn ∼ y(n)

∴ S(n) ∼ H[sn, sn−1, ..., sn−L]′ (3.1)

using the notation as defined in Chapter 2 that links a spatial vector to a state.

The spatial vector,

y(n) , H[sn, sn−1, ..., sn−L]′

consists of two components. They are the channel matrix, H and the source

vector segment, [sn, sn−1, ..., sn−L]′. The behavior of the source vector segment

plays a crucial role in our algorithm. Now under assumption(c), the next trans-

mitted symbol can be denoted as sn+1 ∈ {+1,−1}. Assumption(c) in Chapter 2
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Figure 3.1: Typical state transition diagram

essentially states that the transmitter constellation used in this thesis is limited

to {+1,−1}. Entry of sn+1 into the FIR channel forces the oldest symbol, sn−L

out of the channel’s memory. Thus, the source vector segment of the next spatial

vector consists of either a positive or negative realization of sn+1 minus the oldest

symbol sn−L. This results in either,

S(n + 1) =





S
+
(n) ∼ H[+sn+1, sn, ..., sn−L−1]

′

or

S
−
(n) ∼ H[−sn+1, sn, ..., sn−L−1]

′

(3.2)

depending on the transmitted symbol. The physical realization of a new symbol

entering the channel is illustrated in Fig 3.2. Then with reference to the state di-

agram in Fig 3.1, the states S
+
(n) and S

−
(n) become the two possible transitions

out of S(n).

To extract the mathematical structures hidden behind the spatial states, let
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State at Time Index s(0) s(1) ... s(n-1) s(n)
Time Index 0 T ... (n-1)T nT

State S0 S8 ... Sk Sn

Table 3.1: Time Indexed state array

Figure 3.2: Typical state transition diagram

us now define dn+1 to be the difference vector of the two states, S
+
(n) and S

−
(n)

as shown below:

dn+1 ∼ 0.5
[
S

+

(n)− S
−
(n)

]

= 0.5H
[
[+sn+1, sn, ..., sn−L−1]− [−sn+1, sn, ..., sn−L−1]

]

= sn+1[h10, h20, ..., hM0]
′ (3.3)

Of the two components that make up dn+1, the channel component, h́0 =

[h10, h20, ..., hM0] is independent of the time index n. sn+1 on the other hand

modulates the direction of dn+1 and thus holds the key to estimation. To com-

plete formulating the SDSE algorithm, we shall undertake the two assumptions
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stated below in addition to the general assumptions stated in Chapter 2

e) The length of the data set is sufficient for completely filling up the state

transition table.

For complete extraction of the transmitted data sequence, the

state transition diagram shown in Fig 3.1 must be 100% linked.

This inturn assures a complete state transition table. An incom-

plete state table makes the algorithm blind when transmitted

symbol sequences resulting in the vacant states are generated.

f) Of the two possible output states from S(0), one is assumed to be caused

by {+1} and d1 is defined to point in its direction. This is equivalent to

assuming s0 = +1.

This assumption underscores the sign ambiguity that is inherent

in the extracted symbol sequence. As the sign ambiguity cannot

be resolved, the sign of the difference vector generated in the first

iteration is assumed positive. However, the algorithm is equally

capable of assuming the converse. This however, generates a sym-

bol sequence out of phase by 180 degrees.

These assumptions are vital, as only under them do conditions exist where the

spatial structures contain sufficient information to completely resolve the trans-

mitted symbol sequence. To estimate the symbol sn+1, we first need to identify

which of the two output states of S(n) corresponds to the transmission of a {+1}.
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This can be established under assumption (f), which defines the reference vector

d1. Under these conditions, the sign of the symbol transmitted can be reasoned

thus: If the two difference vectors dn+1 and d1 point in the same direction, then

the state transition, s(n) → S
+
(n) is due to {+1}. Otherwise the state S

−
(n)

contains the positive transition. This knowledge when coupled with time infor-

mation in the time indexed state array, i.e.

s(n) → s(n + 1) , s(n) → S
+

(n) (3.4)

s(n) → s(n + 1) , s(n) → S
−
(n) (3.5)

what of the two equations, (3.4) or (3.5) holds true, can be used to estimate the

symbol s̃n+1 ≈ sn+1. This is illustrated in Table 3.2.

In the next section we attempt to outline our algorithm explicitly. There, we

attempt to structure the formulation presented above into logical steps. These

logical steps enables us to present the algorithm in a clear procedural form that

can be easily grasped.
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Figure 3.3: Visualization of the decoding process

S+1(n)
Current Next State Difference Phase wrt. {+1}State S(n + 1) Symbol

State S(n) S
+
(n) S

−
(n) Vector to d0 wrt. d0 sn

S0 S4 S8 d0 0 S4 S8 -1
S8 S2 S7 d1 180 S7 S7 1
...

...
...

...
...

...
...

...
Sp Sq Sr dp 180 Sr Sq -1
...

...
...

...
...

...
...

...
Sk Sn Sj dn 0 Sn Sn 1

Table 3.2: State Transition Table and symbol extraction
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3.3 The core SDSE algorithm

i) Use the primary clustering algorithm to extract estimates of the spatial

structure Y , to Ỹ from the data vectors x(n) n ∈ {1, ..N}.

ii) Assign each unique estimated center, ỹi to a state Si.

iii) Assign each data vector, x(n) to its closest state Sj using spatial separation

between the vectors x(n) to each of the spatial vectors ỹi i ∈ {1, .., C}.

min
j∈(1,C)

|| ỹi − x(n) || (3.6)

iv) Add the state to the time indexed spatial vector S(n).

v) Following S(n), build the state transition table as given by Table 3.2.

vi) Create the difference vectors dn and find which of the states, S
+

or S
−

corresponds to the transmission of a {+1}. (Note: S
+

and S
−

are chosen

randomly).

vii) Following S(n) and using the table, estimate the transmitted bit sequence

as follows.

• if S(n + 1) = S+1(n) then sn+1 = +1

• if S(n + 1) 6= S+1(n) then sn+1 = −1
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3.4 Issues when implementing SDSE

The SDSE algorithm described in the previous section was developed without

factoring the effect of noise. As such, the two independent channel components,

channel noise and distribution of parameters in the channel matrix can at times

cause the algorithm to fail. In this section, we outline problems that may arise

when using the theoretical SDSE algorithm, along with modifications that have

been added to make it robust to face each of these problems. The end result

is a modified SDSE algorithm that is more robust to both noise and channel

parameter distributions.

3.4.1 Sign ambiguity

The extracted symbol sequence depends on the premise of the direction of the

reference vector d1. Consequently, the extracted data sequence contains a sign

ambiguity. This is inline with our assumption (f) and cannot be resolved using

the FA data used in our algorithm.

3.4.2 Dependency on the channel matrix

The difference vectors d1 and dn form an essential component of the esti-

mation algorithm. The capability of the algorithm is limited to how well it can

estimate the directions of d1 and dn relative to one another. Estimation of the

relative direction between the two vectors becomes problematic when the mag-

nitude of the channel component, |h́0| comes onto the same magnitude order as
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the noise power. This can happen either when

- Operating in low SNR regions or when

- Extreme instances of the channel matrix occur, where the magnitude of

leading column |h́0| drops such that |h́0| ≈ σ2

However, even under such conditions preventing or minimizing the probability

of an erroneous estimate of the relative direction between d1 and dn is possible.

First, we can improve the estimate of the vector d1 by extracting the expected

value of it across the entire table.

d1 =

〈
(y

+

i − y
−
i )[d1]j

[y
+

i − y
−
i ]j

〉

i

(3.7)

Here, y
+

i ∼ S
+

i and y
−
i ∼ S

−
i are the spatial vectors corresponding to the two

output states of a given ith row in Table 3.2. The index j represent the largest

element of the vector d1 and the notation [d1]j denotes the jth element of the

vector d1. In other words, this module firsts corrects the direction of the difference

vectors generated in Table 3.2 using the largest element of d, and then extracts

the expected vector from the set d1...dn. Corruption of the largest element of d

is least probable in noisy conditions, thus it becomes a robust index to estimate

the difference vectors direction.

Another way to minimize the probability of extreme channel matrix con-

figurations from occurring is to increase the number of sensors. Increasing M

increases the dimensions of d1 and dn. Thus, it decreases the probability of
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|h́0| ≈ σ2 from occurring as the number of elements making up d1 increases. If

hi0 i ∈ {1, ..., M} has a distribution of ℘(i), this can be mathematically described

by

P

( [
M∑
i=1

h2
i0

]1/2

> σ2

)
< P

( [
M+m∑
i=1

h2
i0

]1/2

> σ2

)
m > 0 (3.8)

P (A) here denotes the probability of the event A happening.

A more practical solution to increasing the number of sensors is to do a

backward estimation. That is, instead of working from state S(n) to S(n + 1)

using the two output states, it is possible to estimate the symbols from the

transition of S(n + 1) to S(n) using the two input states. The advantage gained

is that the channel component of the difference vector changes from h́0 to h́L =

[h1L, h2L, ..., hML]. Furthermore, the probability that both h́0 and h́L will fade to

the noise level is much less probable than that of either one of them fading.

P
(
|h́L| ≈ σ2 ∩ |h́0| ≈ σ2

)
¿ P

(
|h́L| ≈ σ2

)
(3.9)

3.4.3 Dependency on the TITO structure

The accuracy of the SDSE algorithm depends on the state transition table

that it derives by scanning the input data vectors. However, clustering may not be

perfect due to noise. One result of sub-optimum clustering is the creation of split

states. This happens when the second phase of the clustering algorithm is not

able to reconcile all sub-clusters that are parts of a single cluster into one point.

These states are located spatially close to one another. However, they violate the
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Figure 3.4: A Single input single output state

TITO structure of the state diagram. One undesirable result this causes is the

creation of single output states. This is shown in Fig. 3.4. The algorithm relies

on each state having two output states to first generate a difference vector, and

then use the difference vector to estimate which of the two states corresponds to

the transition of a {+1}. This however is not possible with single output states.

The solution to resolving single output states is to walk back through the state

diagram and reach a common root. On each step down, all possible paths from

that state are checked against the path taken down to see if there is an alternate

path that is spatially close using the cost function,

Cp =
1

m

n∑
i=n−m

yi − ỹi,p (3.10)
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Figure 3.5: Alternate route search

that measures the spatial deviation of the new route from the original. Here, p

is the path being evaluated, and the series [yn−m, ..,yn] forms the state vectors

of the path climbed down. The path being evaluated is described by the vector

series [ỹn−m,p, .., ỹn,p] and m denotes the number of states walked back. A simple

example to this is illustrated in Fig 3.5. On arrival of an optimal root, the

alternate route is taken and all SISO states on the route are merged to their

TITO counterparts. Fig. 3.4, shows such a case where the states Sn+2 and Sn+5

are in reality split states. Another error that can occur is the creation of multiple

output states. This is especially true in low SNR regions, where noise causes

some data vectors to be erroneously assigned to wrong states. These states have

4 or more outputs. Thus, deriving the difference vector becomes problematic.

There is no clear solution to this error. It can however be reduced. First, when

the probability of an erroneous transition is lower, we can utilize the usage of
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Figure 3.6: SDSE algorithm with correction modules

the output states to limit our search for the two correct states. Secondly, as all

real difference vectors vary only in direction, finding which two states generate

a difference vector that is parallel to the difference vectors generated by other

TITO states gives promising candidates. By using these two restrictions, it is

possible to decrease the error probability in low SNR regions.
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3.5 Results and discussion

The channel model we used in our simulations was a stochastic SIMO model,

with impulse parameters modeled as zero mean Gaussian processes having unit

variances. Channel coefficients and noise are assumed identically and indepen-

dently distributed, and in this simulation noise was modeled as a zero mean

Gaussian process. For comparison purposes, we benchmark different aspects of

our algorithm against the reference system described below. For the reference

system, a channel length of L = 6 was selected with M = 12 receivers, and

the results were then obtained using a data set of N = 2000 samples per itera-

tion. The results obtained were then averaged over 30 Monte-Carlo iterations. 30

Monte-Carlo iterations enables us to see the stochastic behavior of the algorithm.

The SDSE algorithm has a step like estimating capability, thus the benefits of

using a larger Monte-Carlo set is negligible.

In this section, we shall first examine the SDSE algorithm in its theoretical

form and subsequently proceed to outline the effects of various recovery modules

that have been later incorporated into it. In the later second part, we shall

examine and evaluate the performance of the SDSE algorithm with respect to

the sample size, N , the number of multipaths, M and lastly the channel length

L.

We shall begin our analysis by examining the makeup of the SDSE algorithm.

Fig. 3.6 outlines the increment in performance generated by modules that have

been integrated later into the SDSE algorithm. The theoretical algorithm outlined
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Figure 3.7: Selecting output states with d1

in section 3.2 does not perform on par with modern algorithms such as T Li and

Z Ding’s Reduced State VA[40]. Furthermore, it can be seen from Fig 3.6 that

different modules have impact on different regions within the SNR spectrum.

The first two modules, expectation of the difference vector column in Table 3.2

to refine d1 and using d1 to select output states when multiple output states are

available, do not completely eliminate errors in high SNR regions. But instead,

they account for a significant portion of the reduction of BER in regions of low

and moderate SNRs. The functionality of the second module, using d1 to select

output states is illustrated in Fig 3.7. On the other hand, correcting for single

output states while effective in moderate to high SNR regions is almost ineffective

in low SNR regions. This outlines the nature of the two problems, creation of

single output states, and creation of multiple output states, that occur during

the clustering process. Typically single output states occur in high SNR regions

whereas multiple output states occur in low SNR regions.
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Figure 3.8: The symmetry of the state diagram

Another correction that can be implemented in the SDSE algorithm is a

backward estimation process. This is introduced in Section 3.3 as an alternative

to minimizing the probability of the channel column integrated into the difference

vector from fading to the noise level. The current estimation algorithm utilizes

the two output states of each state to estimate the next state i.e. S(n) → S(n+1).

However, due to symmetry of the state diagram, it is possible to use the two input

states to estimate the previous state i.e S(n + 1) → S(n). Then, performing an

averaging or majority rules decision, it will be possible to increase the accuracy

of our estimates. Furthermore, the symbol sequences the forward and backward

algorithms disagree upon contains the erroneous symbols. This knowledge can

then be used to deploy more computationally expensive algorithms to extract

them. Fig 3.8 illustrates the symmetrical nature of the state diagram. This is

the feature that enables the algorithm to be implemented in both forward and
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backward directions. However, this correction has not been incorporated in our

results as we try simultaneously to minimize the computational cost.

The performance of the SDSE algorithm with respect to the number of mul-

tipath data it utilizes is illustrated in Fig. 3.9. Here, all simulations are based on

the parameters N = 2000 and L = 6. The SDSE algorithm shows a similar sen-

sitivity as the order estimation algorithm (Fig. 2.5) to regions of low SNR. This

is because the rapid deterioration of states in low SNR regions leave the state

transition table incomplete, and the algorithm blind to certain bit sequences.

On the other hand, extra states that occur in high SNR regions have no effect

on the algorithm. This is due to the fact that these states represent redundant

data. Another important aspect of the SDSE algorithm is its step-like estimat-

ing capability, whereby data can be recovered with almost no errors within one

region. This can be due to the algorithms dependency on estimating the relative

direction between two difference vectors. In regions of low SNR, the estimation

can be erroneous leading to a deterioration in BER. On the otherhand, in high

SNR, corruption of the difference vectors is minimal and it poses no threat to

the determination of the relative direction between the two vectors. Another im-

portant aspect the figure illustrates is the capability of the algorithm to increase

the accuracy of its estimates by increasing the number of sensors, M . This is

true especially in low SNR regions. However, the gain achieved is of diminishing

nature. This is evident from the results which show that beyond M = 28, no

perceivable gain is achieved. The use of a large number of multi-paths is char-

acteristic of both this algorithm and other spatial algorithms introduced in this
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Figure 3.9: Performance of the SDSE algorithm

thesis. This however can be obtained by sampling the received signal at higher

rates to create virtual channels. Thus, the physical limitation on the number of

receivers is eased.

In Fig 3.10, we present the effect channel length has on the SDSE algorithm.

The two parameters, channel length, L and the data set size, N are linked tightly

to the SDSE algorithm by assumption(e). Assumption(e) simply states that

the state transition table needs to be complete for extracting the transmitted

symbol sequence without errors. On examining Figs 3.10 and 3.11, it is clear

that the SDSE algorithm displays non recoverable errors either on increasing L or

decreasing N . Increasing the channel length results in an exponential increase in

the number of states. Thus, the current data set no longer contain sufficient data

for completing the new transition table. Reducing the size of the data set again

creates a similar situation. Then, instead of the states increasing, the available
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Figure 3.10: The effect of the channel length, L on SDSE

data to fill the states decreases. Both from the point of view of the algorithm are

equivalent and leads to unrecoverable BER even in high SNRs. The simulations

in Fig 3.10 were derived using the parameters N = 2000 and M = 12 whereas

Fig 3.11 was derived using the parameters L = 6 and M = 12. One important

fact that is noticeable in the SDSE algorithm is that knowledge of the channel

length L does not form a necessity condition for extraction. This is because the

SDSE algorithm relies on the Primary clustering algorithm to do spatial data

processing. As mentioned in Chapter 2, the primary clustering algorithm does

not require an estimate of the channel length to perform. Instead, it can give a

rough estimate of the channel length if required. On the other hand, the bulk of

the computational cost of the SDSE algorithm lies with the clustering process.

This in turn is dependant on the number of states in the spatial structure, 2L.
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Figure 3.11: The effect of the data set size, N on SDSE

Thus, computational cost of the SDSE is roughly proportional to this value.

3.6 Summary

In this chapter, we presented a blind sequence estimation scheme based on

spatial data. We began by presenting the mathematical structures that gener-

ate the state information used, and then proceed to formulate the algorithm in

a procedural form. The effect of noise on the algorithm is then analyzed and

following, we present an indepth analysis and discussion into the behavior of the

SDSE algorithm.

In the next chapter, we present spatial algorithms belonging to another cat-

egory in blind estimation. Instead of direct sequence estimation, the two algo-
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rithms presented in Chapter 4 estimate the channel parameters of the SIMO

platform. The Channel Estimation by Difference Sets (CEDS) and Channel

Estimation by Twin Indexing (CETI) are sibling algorithms derived from the

mathematical structures found in the difference set of the spatial vector set Y .
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Chapter 4

Blind Channel Estimation

4.1 Introduction

As outlined in Chapter 3, estimation of channel parameters is one of the key

approaches to extracting transmitted data. This chapter is intended to prove

that the spatial algorithms introduced in this thesis are capable of estimating

SIMO FIR channels. In this chapter, we first focus on the Channel Estimation

by Difference Sets (CEDS) algorithm. After formulating the CEDS algorithm in

a procedural from, we then introduce the Channel Estimation by Twin Indexing

(CETI) algorithm. Next, we introduce limitations of using purely spatial data

and then proceed to outline how time information can be incorporated into the

algorithms. Furthermore, we outline additional finite alphabet resources that are

available, and finally provide an indepth analysis and discussion into the behavior

of both the CEDS and CETI algorithms
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4.2 Channel Estimation by Difference Sets (CEDS)

In Chapter 3, we examined the use of spatial algorithms for direct estima-

tion of transmitted symbols. In this section, we present an algorithm from the

opposing branch, an algorithm that first estimates the channel parameters. We

begin by introducing mathematical structures, that form the basis of the CEDS

algorithm. To begin understanding the structures embedded in the spatial data,

we first need to define a subset of the difference vectors.

Definition: Let d be the difference of two spatial vectors as described in

Chapter 3, Eqn. (3.3). Then, d is defined as an elemental vector of order p, ep, if

and only if the spatial vectors generating the difference vector differ only in the

pth bit position of their respective source vector segments. That is if,

d ∼ 0.5(Sb − Sc) AND

Sb ∼ H[aL, ..., ap, ..., a0]
′

Sc ∼ H[aL, ...,−1× ap, ..., a0]
′

then,

ep , d

= ap[h1p, h2p, ..., hMp]
′ (4.1)

where {ai} ∈ {−1, +1}.

Using the above definition as an example, consider the state Sb. Changing the
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Figure 4.1: Elemental vector structure

sign of any one symbol, ap in its source vector segment results in forming another

spatial vector corresponding to a different state, Sc. Moreover, the difference

vector generated between the two states will be an elemental vector of order p

as defined above. This structure creates the basis for our estimation algorithm

to operate on. If difference vectors were to be calculated with respect to a given

state Sb, then at least one vector will be an elemental vector of order p. Thus,

for a channel of length L+1, L+1 unique elemental vectors exist. This is shown

in Fig 4.1. The figure illustrates spatial states that form elemental vectors when

difference vectors are computed. Consequently if difference vectors were to be

generated for the complete set of states,

V , {v|v = Si i ∈ {1, ..., 2L+1}} (4.2)

each of the 2L+1 spatial vectors associated with each state will contribute L + 1
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Figure 4.2: Elemental vector structure

elemental vectors. In other words, 2L+1 copies of each of the unique L+1 elemental

vectors will exist in the difference vector set,

D = {d|d = 0.5(yi − yj) {i, j} ∈ {1, ..., 2L+1} i 6= j} (4.3)

where yi ∼ Si and d ∼ 0.5(Si − Sj) ⇒ d = 0.5(yi − yj). The generation of the

difference set is illustrated in Fig 4.2. The arrows in the figure indicate unique

difference vectors.

However, vectors that are not elemental vectors, i.e. vectors generated by

states differing by more than one bit in their source vector segments will be less

populous. For a difference vector resulting from q bit differences in the source

vector segments, the maximum number of identical vectors that can be created

is upper bound by

Nq = 2L−q+2 (4.4)
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The elemental vector families in D will be more populous, and this provides

the key to their identification and consequent extraction by clustering algorithms.

Of the elemental vectors, Eqn. (4.1) indicates that they are in fact channel

coefficients. More precisely, they are columns of H. Thus, the extracted vector set

would be essentially the channel matrix, albeit having sign and order permutation

ambiguities in the columns.

The ambiguities results from not knowing the time order of the channel

vectors extracted. Sign and permutation ambiguities can be resolved later using

time data in a post processing step. One implementation of a post processing

algorithm is described under the “Correcting CEDS” sub-section. Let the matrix

thus extracted be denoted by H̃. We can now summarize our algorithm as follows:

4.2.1 The CEDS algorithm

i) Use the primary clustering algorithm to extract an estimate of Y , to Ŷ from

the input data vectors x(n) n ∈ {1, ..., N}

ii) Generate the difference vector set, D from the estimated vector set Ŷ .

D , {d̃|d̃ = 0.5(ŷi − ŷj) i, j ∈ {1, ..., 2L+1}, i 6= j} (4.5)

iii) Use population relationships to extract elemental vectors by applying the

secondary clustering algorithm to D.

iv) Use post processing to correct sign and permutation ambiguities.
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4.3 Channel Estimation by Twin Indexing (CETI)

In this section, we will be introducing another channel estimation scheme

that relies exclusively on spatial data. The CETI algorithm is computationally

cheaper than the CEDS algorithm. However, it doesn not supplant the CEDS

algorithm. This is due to the fact that the two algorithms were designed to

work in different environments. The CEDS algorithm is useful in estimating

slowly varying channels in lower SNRs. The CETI on the otherhand can handle

faster fading channels. However, it admittedly requires a higher SNR to work.

This, we quantify in the results and discussion section. There, we show that the

CETI algorithm relies on a substantially smaller data set compared to the CEDS

algorithm. This inturn implies that the channel has to be relatively stationary

for a shorter time compared to the channel CEDS requires. On the other hand

the CEDS algorithm outperforms the CETI, even more prominently in low SNR

regions. This is evident from Fig 4.9.

We begin the introduction into the CETI algorithm by introducing the math-

ematical concepts and structures that power it. In Chapter2, Section 2.5, under

the sub section The Deterministic Indices, we introduced three elements oiα, oiβ

and oiγ that are formed when the multi dimensional spatial structure is projected

onto a 1-dimensional axis. By using spatial algorithms, vectors fiα, fiβ and fiγ

containing oiα, oiβ and oiγ can be easily extracted. These vectors and indices

form the core of the CETI estimation algorithm. To begin formulating the CETI
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algorithm, consider the noiseless SIMO model,

y(n)
M×1

= H
M×(L+1)

s(n)
(L+1)×1

(4.6)

We can use the deterministic elements oiα, oiβ and oiγ with respect to any

of the M SISO sub-channels contained within the SIMO channel for estimation.

To begin, consider the ith SISO sub-channel. Equations (2.21), (2.22) and (2.23)

indicate that the source vectors, sα, sβ and sγ generate the ith element of the

vectors fiα, fiβ and fiγ. Since we are working within the SIMO model, these

source vectors contribute to generating all other elements contained within the

vectors fiα, fiβ and fiγ. i.e.,

fiα = H[sgn(hi1), ..., sgn(hiL)]′ (4.7)

fiβ = H[sgn(hi1), ...,−sgn(hiv), ..., sgn(hiL)]′ (4.8)

fiγ = H[sgn(hi1), ...,−sgn(hiu), ..., sgn(hiL)]′ (4.9)

Of the vectors fiα, fiβ and fiγ extracted by the secondary clustering algorithm,

probability implies that the vector corresponding to the element oiα will be more

populous. This can be seen from the Fig 4.3. If the indexes oiα, oiβ and oiγ have

the distributions of ℘(oiα), ℘(oiβ) and ℘(oiγ),

∫ ∞

T

℘(oiα) >

∫ ∞

T

℘(oiβ) (4.10)
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Figure 4.3: Elemental vector structure

By using this information, fiα can be identified. Now, define the difference vectors,

diαβ , 0.5(fiα − fiβ)

= sgn(hiv)[h1v, h2v, ..., hMv]
′ (4.11)

diαγ , 0.5(fiα − fiγ)

= sgn(hiu)[h1u, h2u, ..., hMu]
′ (4.12)

As can be seen, the two difference vectors contain two unique columns of H

indexed by the two smallest elements of the ith sub-channel. We shall call these

two elements the Least Significant Elements (LSE) in our thesis. To complete the

formulation of the CETI algorithm, we shall undertake the additional assumption

stated below in addition to the general assumptions stated in Chapter 2

e) Sufficient multipath channels have been chosen to ensure complete extrac-
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tion of all channel columns,

The CETI algorithm can only extract a channel column if in that

channel column there exists an element that is one of the two

smallest element of a channel row. Furthermore, for the secondary

clustering algorithm to be able to extract a channel column, it

must be more populous compared to erroneous vectors. These

two conditions place a lower bound to the number of multipaths

that is needed for estimation.

holds true in addition to the general assumptions stated at the beginning of

this thesis. If M multipaths are used, and the secondary clustering algorithm

requires a minimum population of Q vectors, the probability of extracting a

channel column can be described by,

PE , 1− P
(
Less than Q LSEs found

)

= 1−
Q−1∑
r=0

MCr[2/L]r[1− 2/L]M−r (4.13)

where the probability of a LSE occurring is 2/L. MCr, here is the binomial

coefficient given by,

MCr =
M !

(M − r)!r!
(4.14)

and the probability of finding exactly r LSE is given by

P (r) =M Cr[2/L]r[1− 2/L]M−r (4.15)
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Figure 4.4: Probability of extraction of channel columns

.

Choosing a large number of multipaths has two distinct advantages. First, as

the smallest elements of each of the sub-channels are randomly distributed, this

ensures the probability that all columns will be indexed at least once approaches

unity. Secondly, it increases the probability of the channel columns being indexed

more than once. This is illustrated in Fig 4.4. Thus, column vectors will be more

populous than any erroneous vectors that occur. This population relationship

forms the basis for identification of the channel columns. They can then be

extracted using the secondary clustering algorithm.

Table 4.1 shows the structure of the channel highlighting structures that the

CETI algorithm utilizes. The coefficients in italic (hij) indicate general channel

coefficients while values in Sans Serif (hij) indicate the two smallest coefficients

in each channel. Thus, in each row, the CETI algorithm is able to extract the
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Channel Columns Extractable
Columns

h̄1 h̄2 h̄3 h̄4 · · · h̄L

h11 h12 h13 h14 · · · h1L h̄3, h̄4

h21 h22 h23 h24 · · · h2L h̄1, h̄3

h31 h32 h33 h34 · · · h3L h̄2, h̄L
...

...
...

...
...

...
...

hM1 hM2 hM3 hM4 · · · hML h̄1, h̄4

n1 n2 n3 n4 · · · nL Nos. minimums

Table 4.1: Twin indexing through channel coefficients

channel columns indexed by the elements printed in Sans Serif. In the first row,

for example, h13 and h14 appear in Sans Serif. Thus, when processing the 1st

row the channel columns h̄3 and h̄4 are extractable. The last row indicates the

number of times the given channel column has been extracted. Using the table

as a reference, the CETI algorithm outlined in the next section can be easily

understood.
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4.3.1 The CETI algorithm

i) Scanning the data x(n), extract vectors having the largest 3N/2L elements

at the ith position, [x(n)]i into the subset Fi.

This step extracts the vectors corresponding to the largest three

elements, oiα, oiβ and oiγ.

ii) Use the secondary clustering algorithm to extract the vectors fiα, fiβ and fiγ

from Fi.

iii) Identify the more populous vector, fiα.

iv) Create the two difference vectors diαβ and diαγ

v) Add the difference vectors to the set D, and repeat steps (a) - (d) till all

SISO sub-channels have been processed.

D = {d|d = {diαβ,diαγ} i ∈ {1, ..., M}} (4.16)

vi) Use the secondary clustering algorithm in context of D and extract L + 1

vectors corresponding to the most populous families.

vii) Correct sign and permutation ambiguities using the post-processing algo-

rithm as outlined in the next sub-section.
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4.4 Improving and correcting CEDS and CETI

In this subsection, we attempt to rectify the spatial algorithms main draw-

back, its blindness to time. This is done by integrating a module that can incorpo-

rate time data and resolve the ambiguities resulting from its absense. However,

the module presented is not a part of the spatial algorithm and more refined

schemes may be available to the same end without the additional constraints this

algorithm imposes. Then, we proceed to present another module that has been

developed and integrated into the CEDS and CETI algorithms. This module uses

finite alphabet data in a distinctively different manner to examine the accuracy

of the extracted channel columns.

4.4.1 Sign and Permutation Correction

In comparison to the SDSE algorithm introduced in Chapter 3, both the

CETI and CEDS algorithms rely purely on spatial data. The SDSE algorithm

incorporates time data when building the time indexed state array. Time is

intangible in the spatial domain. Thus, the spatial algorithms presented in this

chapter are blind to ordering of data in the time domain. In our algorithms, time

blindness manifests as sign and permutation ambiguities. These result from not

being able to know the order or sign of the channel columns extracted with respect

to the channel matrix H. The sign ambiguity is a the factor, {+1,−1} each

column need to be multiplied before fitting onto H. However, these ambiguities

can be resolved by reprocessing the extracted information with time rich data.
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To begin, let us assume H̃ to be the extracted channel matrix containing both

sign and permutation ambiguities. We can now define,

v(n) , H̃
†
x(n) (4.17)

= Psn (4.18)

a pseudo input vector v(n) = [v0(n), ..., vL(n)]′. This step is the primary reason

for the inclusion of assumption(d). Other algorithms may exist, that can resolve

the time dependant ambiguity without adding such restrictions. Under noiseless

conditions, these ambiguities can be represented using a permutation matrix P.

The matrix P = [p1, ...,pM ]′ is defined with rows pi = [0, ..., pmi
, ...0], where mi ∈

{0, ..., L} is the position of the non-zero element pmi
∈ {-1, +1}. By integrating

the structure of P, v(n) can be expanded to,

v(n) = [pm0sn−m0 , pm1sn−m1 , ..., pmL
sn−mL

]′ (4.19)

Now consider the relative vector defined as,

rj(n) , v(n)./vj(n + 1) (4.20)

=
[

pm0sn−m0

pmj sn−mj+1
, ...,

pmL
sn−mL

pmj sn−mj+1

]
(4.21)

Both v(n) and v(n + 1) share L/(L + 1) elements. Thus, the vector rj(n) can

be used to extract information of the elements that are not shared commonly by
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Figure 4.5: Symbol transition decoding for permutation correction

v(n) and v(n + 1). Now consider the elements of rj(n). From Eqn. (4.17), it is

evident they can be represented by,

[rj(n)]q =





pmq sn−mq

pmj sn−mj+1
mq 6= mj + 1

pmq

pmj
mq = mj + 1

(4.22)

for q ∈ {0, ..., L}. This is the structure that lets us isolate the element in v(n)

that is not shared by v(n+1). Furthermore, it yields information as how symbols

rearrange themselves as they transfer from v(n) → v(n+1). This is the inherent

permutation. Now, consider the expected value of rj(n) across the time index

n ∈ {1, ..., N}.

r̄j =
〈
rj(n)

〉
n

(4.23)

Note that the element [rj(n)]q when mq = mj + 1 is only dependant on the

permutation matrix coefficients. This implies that a common element, [v(n)]q =

[v(n+1)]j exists. Thus r̄j will contain one non-zero element provided mq = mj +1
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is satisfied. Moreover, since v(n) and v(n + 1) share L common elements, the

above condition holds for L instances of r̄j j ∈ {0, .., L}. The j and q indices

where non-zero elements occur impart useful information. It states that a symbol

at the qth position in v(n) is transformed to the jth position in v(n + 1). When

all transformations are known, the permutation matrix can be corrected.

We begin by constructing the transition diagram shown in Fig. 4.5. In

the figure, solid arrows point from the q index to the j index at the occurrence

of each non-zero element. The direction of the arrows show how a symbol is

affected by the channel columns with respect to time. Once complete, correcting

indices u and k can be extracted as shown in Fig. 4.5. The time order of

the columns can be extracted from how the arrows index the j column. e.g.

v0 → v2 → v1 → vL → v5 → ... → v4. This creates the order for the correcting

index u = [u0, u1, u2, ..., ul]. The sign of [rj(n)]q at each instance forms the

elements of the sign correcting index k. However, when sn−mj+1 = sn+1 the

condition mq = mj + 1 cannot be met, and the vector r̄j will be identically 0.

This occur at the entry of a symbol into the channel, as then, the new symbol is

not shared between v(n) and v(n + 1). It also serves as the starting point to the

correcting indices. With the two correcting indices, the correcting matrix can be

formulated as the diagonal matrix CT given by,

CT = Diag

[
u0k0, u1k0k1, u2k0k1k2, ..., uL

L∏
i=0

ki

]
(4.24)
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4.4.2 Cost based Heuristic search (CBHS)

The population based vector identification criteria used in the separation of

channel vectors for both CEDS and CETI algorithms provide accurate results

in regions of moderate and good SNR. But in lower SNR regions, the popula-

tion statistics become unreliable and the extraction of channel vectors become

problematic. Under such conditions, the finite alphabet data provides another

mechanism to test the extracted vectors for accuracy. Using the knowledge that

the extracted vectors are in fact channel columns, it is possible to derive a function

to verify that the extracted vectors do infact constitute a valid channel matrix.

To begin, let v(n) be a pseudo estimate of the source vector as defined in Eqn.

(4.13). All elements of v(n) should ideally belong to either {+1} or {−1}. This

is the structure we use to generate our cost function. To begin, define the matrix

V , [v(n),v(n + 1), ...,v(n + K)] (4.25)

where K is a stacking factor. The cost function is then described by,

C(M,L,N,SNR) = sum

{
sum

[
squaree

(
abse(V )− ones(K + 1, L + 1)

)]}
(4.26)

and is used to give a measure of the “goodness” of the estimated channel matrix.

It essentially measures the deviation of symbols extracted using this channel ma-

trix against the transmitter alphabet. Ideally, symbols extracted should belong

to the transmitter alphabet. The cumulated deviation of the symbols from the
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Figure 4.6: Performance of the CEDS algorithm

transmitter alphabet forms the cost. The cost function depends on the three

parameters N , L and M in addition to noise. In the equation above, the function

ones(K, L) defines a matrix of dimension K × L having {+1} as elements. Fur-

thermore, the operators abse(M) and squaree(M) are used to denote element by

element operators that perform the absolute and squaring operations respectively

on the matrix M. Using Monte-Carlo iterations over all M -SNR regions while

keeping N and L constant, it is possible to extract the mean and range of the

cost function at each point. Then, using these tabulated values as a reference,

it is possible to identify a badly extracted H̃ matrix as then, the cost function

will exceeds the tabulated range. These erroneous matrices can then be corrected

using C(M,L,NSNR) as a benchmark and applying the following algorithm,
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• Extract Nv vector families having a population greater than N1/kPOP from

the set D used in the CETI and CEDS algorithms into the set J = [j1, ..., jNv
].

N1 = 2L+1 by Eqn. (4.4).

This essentially extracts additional vectors when extracting chan-

nel columns in both CEDS and CETI algorithms. When the cost

function indicates that the most populous vectors are not chan-

nel columns, the additional vectors can then be searched to find

channel columns

• Rearrange the columns of J to the increasing order of the population of

the vectors. Set H̃ = [h̃0, ..., h̃L] to the most populous vectors in J and

estimate its cost.

The population of an extracted vector is an indicator to the prob-

ability of it being a channel column. Thus, searching for channel

columns first among the more populous vectors saves time.

• Use the algorithm outlined by the pseudo code

The algorithm described below attempts estimate the cost of all

permutations of possible channel matrices from the most probable

to the least probable. It saves the matrix if the computed cost is

lower than a given percentage of the previous cost. Not included

here, but more practical, is an exit mechanism that can be used
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to exit the exhaustive search when an acceptable channel matrix

is found. This can be done by simply checking the cost to see if

it falls within the tabulated ranges and exiting.

Check every column in H̃

For i = 0 to L

Against all vectors extracted

For j = 1 to Nv

Replace the ith column with the vector in the jth position

H̆ = H̃; H̆[i, :] = jj;

Re-estimate into CNEW

If the new cost < 1/kC of the old cost, save channel data

If CNEW < COLD/kC

COLD = CNEW ; H́ = H̆;

End

End

End

The constants kPOP and kC were estimated empirically using Monte-Carlo itera-

tions to minimize the errors of extracted H matrices.
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4.5 Results and Discussion

The channel model we used in our simulations was a stochastic SIMO model,

with impulse parameters modeled as zero mean Gaussian processes having unit

variances. Channel coefficients and noise are assumed identically and indepen-

dently distributed, and in this simulation noise was modeled as a zero mean

Gaussian process. For comparison purposes, we benchmark different aspects of

our algorithm against the reference system described below. For the reference

system, a channel length of L = 6 was selected with M = 16 receivers, and the

results obtained using a data set of N = 2000 samples per iteration. This system

was chosen so as to be a common denominator for both CEDS and CETI algo-

rithms. The source symbols were generated from a alphabet of {+1,−1} with

equal probability. Finally the results obtained were then averaged over 30 Monte-

Carlo iterations. In our simulations, 30 Monte Carlo iterations proved sufficient

to present the stochastic performance of the algorithms.

The performance of the CEDS algorithm in noisy environments is illustrated

in Fig 4.6. It shows the deviation of the performance of the CEDS algorithm with

respect to the number of multipaths utilized. In comparison to the SDSE algo-

rithm outlined in Chapter 3, the CEDS algorithm appears to be more robust in

regions of low SNRs. From Fig 3.9, it is evident that the SDSE algorithm devel-

ops unrecoverable errors when the SNR falls below 10dB. On the other hand, for

the same number of multipaths, the CEDS maintains its asymptotic performance

well below 5dB. This maybe because while the SDSE algorithm is dependant on a
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Figure 4.7: The CEDS algorithm as a function of the data set, N

derived state transition table, the CEDS algorithm relies on relative populations

of vector families within a difference vector set. The transition table depends

on the accuracy of assigning received vector data to extracted states. On the

other hand, the secondary clustering algorithm used in the CEDS relies on the

relatively population of channel columns in the difference vector set D. Noise can

corrupt received vectors, so that they maybe spatially located closer to erroneous

states. This induces a corruption in the state table. On the otherhand, the effect

of noise on the population statistics of the set D is less felt. For one, elemental

vectors have the largest population, exceeding the next population strata by a

factor of 2. Such, even if a few vectors are corrupted beyond recognition, the

relative population relationships still hold. In addition, as with the SDSE algo-

rithm, increasing the number of sensors allows the algorithm to perform in lower
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SNR regions with a lower NRMSE. NRMSE in our thesis is defined as

NRMSE =
1

M

[ ∑M
i=1 |hi − h̃i|

]1/2

[∑M
i=1 |hi|

]1/2
(4.27)

where hi and h̃i are the channel and estimated channel rows respectively. Also

shown in Fig 4.6 is Moulines’ subspace algorithm[33]. Moulines’ algorithms is

based on subspace processing of data and as a deterministic algorithm provides a

good platform to compare our results. It should be noted that though Moulines’

algorithm has an advantage of about 3dB, the rate of deterioration of accuracy

of the channel estimates is almost identical. Furthermore, it should be kept in

mind that the performance statistics presented in this thesis are dependant on

the clustering algorithm used. Clustering algorithms were not the thrust of our

research, therefore other clustering algorithms such as fuzzy clustering and neural

network based clustering when incorporated into our algorithm, may help exceed

its current limitation. However, the current algorithm utilizes data that Moulines

algorithm ignores. Thus, it will be possible to create more robust algorithms by

creating hybrids incorporating spatial data estimation along with time data.

Fig 4.7 illustrates another aspect of the CEDS algorithm: its dependance

on the size of the data set used for estimation. While the CEDS algorithm

performs acceptably above a sample size of about 100 for a channel of L = 6,

the performance deteriorates rapidly when using smaller data sets. This is more

felt in higher SNRs, and in Fig 4.7 we can see the performance of the simulations

above an SNR of 15dB beginning to collapse as they pass the N = 100 boundary.
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Figure 4.8: The CETI algorithm’s reliance on the data set size, N

The CETI algorithm on the other hand is more resilient to smaller data sets. Fig

4.8 shows the performance of the CETI algorithm as a function of the data set

used. It shows the CETI algorithm maintaining its asymptotic performance well

below 100 samples to almost 20.

The projection of the spatial structure onto a single axis condenses input

data vectors. Thus, the CETI algorithm is able to perform acceptably with even

a data set size of 20 samples per estimate. Such a small data set is not capable

of generating the complete spatial structure, which in the simulations described

above has 64 points in M dimensional space. However, the CETI condenses

available data, generating the information outlined in Fig 4.3. The short data

length requirement is a very useful feature. It makes the CETI algorithm capable

of estimating time varying channels having a small quasi stationary window,

which in our simulation model maybe as small as 20 symbols.
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However, the CETI algorithm relies heavily on multipath data to infuse in-

formation. Such, the algorithm needs a large number of sensors (> 2L) before

it is able to extract all channel columns. Even so, the CETI algorithm utilizes

only a portion of the data set for estimation. This implies a lower computational

complexity in the execution of the algorithm. Fig. 4.9 outlines the detrimental

effect this has on estimation. It shows the deterioration of the CETI algorithm as

compared to the CEDS algorithm. Coupled to the algorithm’s poor performance

in regions of low SNR is its reliance on the smallest elements of each SISO chan-

nel. These coefficients are more vulnerable to noise. Thus, in regions of high SNR

the percentage corruption of these elements would be low. On the other hand,

in noisy environments, the magnitude of noise may even surpass the coefficients.

This results in the algorithm losing its accuracy. However, the CETI algorithm

is proposed to be used in medium and high SNR regions. In these regions, it

can operate on extremely small data sets with lower computational requirements

than the CEDS. Also shown in Fig 4.9 is Tongs’ SOS algorithm[12]. From it, we

can draw the same conclusion. The CETI outperforms the SOS algorithm in high

SNRs. This maybe due to the finite sample convergence property, FA algorithms

share with their deterministic brethren. However, as the SNR deteriorates, the

SOS algorithm proves superior. This however, is not relatively large when com-

pared to the CEDS algorithm. We can see both CEDS and Tong’s algorithm

beginning to deteriorate more rapidly on passing the 10dB threshold, and yet

they are still within 3-4dB of one another.

Fig 4.10 shows the effect of using the Cost Based Heuristic Search (CBHS)
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Figure 4.9: The CETI algorithm
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Figure 4.11: Difference vector set structure

module on the CEDS algorithm. While the increase in accuracy is significantly

lower than for the SDSE algorithm, it does make the algorithm operate more

efficiently in lower SNR regions. Not outlined in the error recovery section, but

utilized in the algorithm is a pseudo adaptive component that dynamically in-

creases the threshold distance D1 of the secondary clustering algorithm to ensure

proper vector extraction. The distance threshold D1 is dynamically increased if

the population difference between the least populous vector extracted and the

most populous vector not extracted differs by less than two. The structure de-

scribed is illustrated in Fig 4.11, and this helps eliminate erroneous sub clustering

that may occur even in regions of moderate and high SNRs.

4.6 Summary

In this chapter, we presented channel estimation algorithms relying on spa-

tial data as the primary source of information. The two algorithms presented,

Channel Estimation by Difference Sets (CEDS) and the Channel Estimation by

Twin Indexing (CETI) process spatial data in two unique methods. Thus, the
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algorithms differ in their strengths and weaknesses with respect to one another.

The CEDS algorithm is able to derive the channel coefficients with admittedly

higher accuracy than the CETI algorithm. Yet, the CETI algorithm cannot be

ruled out as inadequate. Its reliance on a smaller data set coupled with its lower

computational costs makes it attractive in high SNR regions.

In the next chapter, we shall extend our algorithms, relaxing some of the

key assumptions taken in the beginning of this thesis. These assumptions are not

inherent to the algorithm, but have been included to give a more readable and

simplified thesis. In this section, we will be discussing small alterations that can

enhance the utility of our algorithms, enabling them to add complex transmitter

constellations and MIMO systems to their repertoire. Next, we proceed to chart

out new avenues that can be explored in this field, and finally conclude this thesis

by presenting the crux of our work.
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Chapter 5

Future work and Conclusion

One limitation of the spatial algorithms as yet presented is their dependence

on the SIMO channel. Furthermore, the algorithms presented make exhaustive

use of the binary constellation as limited by assumption(b) in Chapter 2. How-

ever, these two factors are not inherent limitations of the spatial algorithms. In

the first subsection, Extending spatial algorithms, we outline how these algo-

rithms can be modified not only to process complex constellations, but also to

process and extract data in Multiple Input Multiple Output (MIMO) platforms.

Next, under Future Work, we describe additional directions for improving spatial

algorithms. These modifications will enable more accurate and cost effective spa-

tial algorithms to be formulated. Finally, we summarize our thesis and present

the crux of our results in the last and concluding subsection.



5.1 Extending spatial algorithms 107

5.1 Extending spatial algorithms

5.1.1 T -element Transmitter Constellations

The constellation used by a transmitter to impinge data onto a channel

plays a major role in creating the spatial structures our algorithms utilizes for

estimation. The spatial structures result from the convolution of a transmitter

constellation with impulse parameters of the channel involved. In our thesis, to

simplify the mathematics and data structures used in presenting our algorithms,

we have limited the transmitter constellations to binary systems. Thus, our thesis

rests on the premise of a transmitter limited to a constellation of

CB = {+1,−1} (5.1)

as specified in assumption(b) in Chapter 2. This however, is not an inherent

limitation of the algorithms. However, using a larger transmitter alphabet is not

without disadvantages. The number of states created in the received vector set Y

depends on both the channel length and the number of elements in the transmitter

constellation. An increase in either would result in a respective increase in the

number of spatial states. The relationship between the number of states created

NS, to the channel length L, and the number of elements in the transmitter

constellation, T is described by,

NS = TL (5.2)
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Figure 5.1: A 16 - element symmetric transmitter constellation, C16

The number of states, NS has a direct correlation to the computational require-

ments of the clustering algorithms. The exponential relationship between T and

Ns makes spatial algorithms expensive where large constellations or long chan-

nels are involved. However, taking into fact that most practical constellations

use complex elements and are symmetric about the real and imaginary axes, a

simplification that reduces the number of states generated can be implemented.

We begin by first defining the transmitter constellation as,

CT , {ci|ci = ai + jbi i ∈ {1, ..., T}} (5.3)
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which, in case it is symmetric is also bound by

{ai, bi} ∈ {±1, ...,±(T 1/2 − 1)} (5.4)

T here is the number of elements in the constellation. Fig 5.1 illustrates a sixteen

element symmetric constellation which is similarly structured to 16 QAM. Using

the constellation notation, a transmitted symbol at time index n can then be

written as,

sn = an + jbn, {an + jbn} ∈ CT (5.5)

Integrating the structure of the complex input symbols as defined in Eqn. (5.4)

onto the SIMO channel platform, we can expand Eqn. (2.4) from Chapter 2 to

x(n) = H




an + jbn

an−1 + jbn−1

...

an−L + jbn−L




+ w
R(n) + jw

I(n) (5.6)

where w
R(n) and w

I(n) denotes the real and imaginary components of noise. Then,

separating the real and imaginary components of the transmitter symbols, we can

further simplify Eqn. (5.6) to,

x(n) = Ha(n) + jHb(n) + w
R(n) + jw

I(n) (5.7)
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where a(n) = [an, an−1, ..., an−L]′ and b(n) = [bn, bn−1, ..., bn−L]′. Now, by sepa-

rating the real and imaginary components from Eqn. (5.6), we can create the two

parallel SIMO systems,

xR(n) = Ha(n) + w
R(n) (5.8)

xI(n) = Hb(n) + w
I(n) (5.9)

Instead of solving Eqn. (2.4), we can now estimate the channel by solving either

Eqns. (5.7) or (5.8) or both. The creation of two parallel SIMO systems is

graphically illustrated in Fig 5.2. The CEDS and CETI algorithms described in

this thesis need only one of the two equations described above to estimate channel

parameters. This is because they rely on the channel matrix and elemental vectors

created between the spatial states. The SDSE algorithm however requires both

equations. This is due to the fact that it has to identify each state uniquely before

sequence estimation can begin. Such unique information can only be extracted

when both Eqns.(5.7) and (5.8) are solved

The advantage to using Eqns. (5.7) and/or (5.8) instead of Eqn. (2.4) is that

both (5.7) and (5.8) are based on pseudo constellations. The constellation Eqns.

(5.7) and (5.8) describe contain only the components of CT projected onto the real

and imaginary axes respectively. Thus, they are lower in complexity compared to

CT . This inturn implies a lower computational burden in the clustering process.

Let the pseudo constellations described by Eqns. (5.7) and (5.8) be denoted by

CA and CB. For a symmetric constellation as shown in Fig 5.1,
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Figure 5.2: The complex channel

{CA, CB} = {±1, ...,±(T 1/2 − 1)} (5.10)

Most practical constellations used for data transmission fall into this category.

The savings in computational cost this simplification entitles makes spatial algo-

rithms a more viable option for practical implementations.

5.1.2 Extending spatial algorithms to MIMO channels

Spatial information provides the basis for estimation in our algorithms. In

this aspect, the multiple output platform we base our algorithms is vital. Only

on such a platform can we capture the spatial structures needed for estimation.

However, since only the multiple output structure is needed, it follows that in

addition to estimating SIMO channels, our algorithms are capable of handling

MIMO channels. To begin extending our algorithm, consider the SIMO model

described by Eqn. (2.4)in Chapter 2. Let the source in Eqn. (2.4) be denoted by

the subscript i. This helps identify the given source in a multiple input system.
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Figure 5.3: The Multiple input multiple output channel

We can then write a more appropriate representation of Eqn. (2.4) as,

xi(n) = Hi
M×L

si
L×1

(n) + wi
M×1

(n) (5.11)

where the i subscript declares that the system is bound to the source i. A

MIMO channel can be thought of as a collection of S such SIMO channels. This

is illustrated in the simplified MIMO channel shown in Fig 5.3. In the figure,

dotted lines indicate the propagation of one source while the solid lines indicate

the propagation of another. For such systems, the received signal at any sensor

is a superimposition of the data received from all sources. i.e.,

x(n) =
S∑

i=1

Hi
M×L

si
L×1

(n) + W
M×1

(n) (5.12)
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Expanding Eqn. (5.11), we can arrange it in the form,

x(n) = [H1,H2, ...HS]




s1(n)

s2(n)

...

sS(n)




+ W
M×1

(n) (5.13)

illustrating the data structure spatial algorithms grasp when fed with input vec-

tors from a MIMO system. We can further simplify Eqn. (5.12) to obtain the

generic form,

x(n) = H
M×L̄

SnL̄×1
+ WnM×1

(5.14)

where H = [H1,H2, ...HS], Sn = [s1(n), s2(n), ..., sS(n)]′, Wn = W (n) and,

L̄ =
S∑

i=1

Li (5.15)

This is identical to equations (2.4), (5.7) or (5.8), except the fact that the effective

channel length has increased due to the concatenation of the channels into a

monolithic whole. The mathematical structure given by Eqn. (5.13) indicates

that the spatial algorithms will see the MIMO channel as a SIMO channel, albeit

having a longer channel length. This is because spatial algorithms utilize the

unique output vectors Eqn. (5.13) generates in absence of noise. The spatial

vector set for the above MIMO system can be described by,

Y = {y|y = HSi i ∈ {1, ..., N}} (5.16)
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This has exactly the same structure as Eqn. (2.5), which is used to describe

SIMO channels in Chapter 2. Thus, estimation of MIMO channels comes easily

as an extension to our algorithms. Though spatial algorithms see no distinction

between SIMO and MIMO channels, increase of the channel length results in an

exponential increase in the computational cost. This is due to the fact that the

number of states in a MIMO or SIMO channel increases exponentially with the

channel length.

Fig 5.4 shows the performance of the CETI algorithm modified to compute

MIMO channels. In this simulation, the channel was modeled as a stochastic

SIMO model, with impulse parameters modeled as zero mean Gaussian processes

having unit variances. Channel coefficients and noise are assumed identically

and independently distributed, and in this simulation noise was modeled as a

zero mean Gaussian process. Two SIMO systems with L = 6 and L = 4 were

superimposed to produce the MIMO channel.

One fact that should be kept in mind when estimating MIMO channels in

this manner is spatial algorithms blindness to time order. The CETI algorithm

extracts the MIMO channel as a concatenated SIMO channel having 10 columns.

Time blindness causes the channel columns of all SIMO channels to be mixed

randomly, resulting in a complex permutation. By using the permutation recov-

ery module explained in Chapter 4, permutation of the columns within the SIMO

channels can be resolved. However, this algorithm is not able to solve the permu-

tation of the SIMO channels with the monolithic concatenated channel. Further

studies will need to be carried out in this area. This final permutation is shown
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Figure 5.4: Extracting a Two Input Two Output channel using CETI

in Fig 5.5

5.2 Future Work in spatial algorithms

The algorithms described in this thesis utilizes blocks of input data for es-

timating channel and symbol parameters. This however, does not imply that

the algorithms presented cannot be converted to have adaptive implementations.

This is especially true with regard to the CEDS and CETI algorithms. In Chap-

ter 4, Figs 4.7 and 4.8 outline pseudo adaptive implementations of the above two

algorithms using incrementing blocks of data. Completely adaptive implementa-

tions has not been a goal in our current research. However, such an implementa-

tion would have lower computational requirements. Such, it would make spatial

algorithms more practical.
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Figure 5.5: Permutation in extracting MIMO channels

Secondly, though spatial tools ( e.g., primary and secondary clustering al-

gorithms), form an essential part of our algorithms, they themselves have not

been a focus in our study. However, using better spatial tools may result in

generating better estimates for both channel and symbol parameters. Modern

clustering algorithms based on fuzzy [50] and neural [51] technologies may have

higher extraction capability compared to our algorithm. This is the capabilities

of the clustering algorithm to extract the required vectors from the input vector

set. This is one reason we do not attempt to benchmark our results. The estima-

tion algorithms we present are platforms that can be used together with spatial

tools to extract channel or symbol parameters. Such, they are dependant on the

capability of spatial tools. Spatial tools are a topic in themselves and is an area

we need to explore to utilize the full power of the algorithms presented in this

thesis.

One problem with the spatial algorithms we present is that they are blind to

time order. This is because time does not exist in the spatial domain. Thus, even
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Figure 5.6: Derivatives of the spatial structure

though spatial algorithms can extract columns of the channel matrix H, they

cannot extract data pertaining to their position or sign within H. To provide

completeness, we have included an auxiliary algorithm that can correct both

ordering and sign errors in the columns extracted. However, this algorithm does

not belong to the spatial algorithm family. Better methodologies for correcting

these errors are a topic that needs to be researched into. This will help ease

assumption(d), which is included only to validate the auxiliary algorithm. This

in-turn will increase the scope of our algorithms.

Another important aspect that needs to be considered and researched into is

the availability of other derivatives of information from the spatial structure. In

our algorithms, we have utilized elemental vectors, deterministic indices and the

TITO structure for channel and symbol estimation. This is illustrated in Fig 5.6.

It is possible that other derivatives of information may exist and this is an area
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that needs to be researched extensively. For example, the finite alphabet property

used in the Cost Based Heuristic Search module in Chapter 4 maybe incorporated

into spatial algorithms to result in better performance. Furthermore, hybrid

algorithms that use more than one data source of statistical, deterministic or

finite alphabet data needs to be explored. Using two sources may help to create

better algorithms that uses each source to cover weakness of the others it utilizes.

This may create algorithms that are both robust and practical.
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5.3 Conclusion

In our thesis, we present a family of algorithms utilizing spatial structures

created by finite alphabet transmitters for estimating the channel parameters H,

L and the transmitted symbol sequence s, under the assumption of a static or

slow varying channel.

We begin our thesis with first an introduction into the mobile media, its

properties and how it impedes communication systems. Then, we explore the so-

lutions available for overcoming ISI in the form of blind algorithms. A discussion

on the two main categories of blind estimation algorithms, statistic algorithms

and deterministic algorithms is presented. Then, a sub-category of deterministic

algorithms known as finite alphabet algorithms which utilizes the structure of

the transmitter constellation in lieu of the channel structure is presented. We

then proceed to outline the motivation behind our thesis, to create a framework

for developing a class of finite alphabet algorithms, algorithms that utilize spa-

tial structures and can estimate the channel parameters H, s and L. These

algorithms can be developed in the future to perform on par and even exceed

traditional algorithms.

Next, we introduce fundamental mathematical concepts that power our al-

gorithms. We begin by introducing the channel platform used to formulate our

algorithms and outline the basic assumptions which all algorithms in this thesis

are based on. Furthermore, in this section we introduce two spatial tools: the

primary and secondary clustering algorithms, that we have developed to handle
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spatial data. The primary clustering algorithm can extract the spatial structure

from the received vector set of a multiple output platform. The secondary clus-

tering algorithm is more subtle in nature. It is used to extract vector families

corrupted by noise from a vector admixture using the vectors relative population

as a key. We end this chapter with an introduction into the deterministic indices

that form the core of the Channel Estimation by Twin Indexing (CETI) scheme.

In the third chapter, we introduce the first of our spatial algorithms, the

State Driven Sequence Estimation (SDSE) algorithm. Indepth working of the

theoretical algorithm is first presented and then followed a discussion of the errors

that can plague it in noisy environments. Modifications needed to overcome these

limitations are then presented, and finally, the performance of the algorithm is

presented with an indepth discussion into its behavior.

Following, we introduce the two channel estimation schemes, Channel Es-

timation by Difference Sets (CEDS) and Channel Estimation by Twin Indexing

(CETI). These algorithms are explained in detail and followed by a procedural

presentation that makes the algorithms easy to understand. Next we present an

auxiliary algorithm that helps overcome spatial algorithms inherent blindness to

time ordering. This algorithm resolves the sign and permutation ambiguities in-

herent in the output of the CEDS and CETI algorithms. Lastly, the performance

of the CETI and CEDS algorithms are analyzed individually and with respect to

each other and later followed by an indepth discussion into their behavior.

The assumptions stated at the beginning of our thesis limit the utility of our

algorithms. First, we can extend our work from the binary constellations used to
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presnet our algorithms to examine complex constellations that exist in the real

world. The mathematical models we have used is analyzed explaining how to in-

corporate complex transmitter constellations into it. Furthermore, an advantage

of using symmetric constellations is highlighted within this framework. This is

of advantage as most practical constellations used in communications are sym-

metric and this simplification induces a reduction in computation requirements.

Then we extend our work from the SIMO platform onto the MIMO platform.

The MIMO platform also shares the same multiple output feature, enabling our

algorithm to migrate into this domain easily. Following, we discuss new avenues

for research that will enhance the accuracy while simultaneously decreasing the

computational requirements of the algorithms.

The algorithms described in this thesis are essentially a category of deter-

ministic algorithms. Thus, they have the advantage of having finite sample con-

vergence which makes them perform better in SNRs above 15dB. In addition,

algorithms like the CETI can utilize extremely small data sets for estimation.

This has two distinct advantages. The reduction in computational cost is one.

The second results from using a shorter data set. This property makes the algo-

rithm more resilient to fading conditions. The smaller the data set the algorithm

utilizes, the better apt it is to facing faster fading channels. This gives the CETI

algorithm a distinct practical advantage.

However, all spatial algorithms introduced in this thesis have one main draw-

back. They rely extensively on the multiple output platform. Such, the number

of inputs available has a direct impact on the ability of the algorithms to extract
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either the spatial structure or its derivative, the deterministic indices. In either

case, the performance of the algorithms drop sharply if the number of multipaths

are not sufficient. This is more noticeable in the CETI algorithm as it only uses

a fraction of the input data available for estimation.

But taken from the other end, increasing the number of sensors allows the

algorithm to perform better even in low SNR regions. A scheme that dynamically

alters the number of inputs depending on the current SNR will be beneficial as it

can reduce the computational cost in moderate SNRs and still functioning aptly

in regions of low SNRs. This will help create a more viable algorithm.

Lastly, it must be noted that the assumptions stated at the beginning of

this thesis do not necessarily represent limitations of the spatial algorithms in-

troduced here. The assumption of a binary constellation stems from the need

for a simplified presentation. Extending our work to more complex constellations

is described in the previous section. Another assumption stems from the auxil-

iary algorithm we have bundled in our thesis for correcting sign and permutation

errors. This algorithm needs the channel matrix to be full column rank. This as-

sumption is not an inherent component of the spatial algorithms. Such, alternate

algorithms that can correct these errors may help ease this restriction.
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