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Summary 

Centrifuge model tests have been conducted to study the effects of excavation-

induced soil movement on the behaviour of a single pile and pile groups behind stable 

and collapsed walls in clay. The experiment results reveal that for an excavation in 

front of a stable retaining wall, the induced maximum bending moment and deflection 

on a single pile occur some time after the final excavation depth has been reached. On 

the other hand, the pile behaviour behind a collapsed wall is noted to be also time 

dependent but the responses depend on the degree of wall instability. After a critical 

excavation depth/time, the soil is observed to “flow” around the pile and the 

development of tension cracks and active wedge failure slip plane behind the wall 

exert significant influences on the pile responses.  

It is found that as the number of piles in a group increases, the induced pile 

bending moment would reduce. Moreover, the peripheral piles in a group would 

experience larger bending moment than the interior piles as the former are more 

exposed to the moving soil. It is found that by capping a pile group, the piles would 

experience a smaller deflection at the expense of a large negative bending moment 

along the pile shaft. In addition, the behaviour of the rear piles is influenced by the 

front piles via the connecting pile cap.  

A numerical model developed at the National University of Singapore is 

employed to back-analyse the centrifuge test data. The key parameters required by the 

numerical model include lateral free-field soil movement, subgrade modulus and 

limiting soil pressure. The numerical model provides a fair prediction of the induced 

pile bending moment, shear force, deflection and soil pressure profiles if the soil 

movement is not significant. For piles subject to large soil movement, the model can 
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predict the induced pile bending moment if the appropriate limiting soil pressure is 

adopted.  

A field case study of full-scale instrumented pile group has also been carried 

out so that the responses of the pile group due to excavation-induced soil movement 

can be studied. Owing to heavy rainfall, an unintended failure of the excavation had 

occurred and this led to the failure of the pile group. The field data complements the 

experimental and numerical studies to provide further understanding of pile group 

behaviour subject to large lateral soil movement. 

 

 

 

 

Keywords: Centrifuge model, Bending moment, Deflection, Free-field soil movement, 

Soil flow, Limiting soil pressure, Time dependent behaviour. 
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Nomenclature 
 

(EI)cap Pile cap bending rigidity 

[Fs] Soil flexibility matrix  

[Kp] Assembled stiffness matrix of all the beam elements forming the piles 

[Ks]  Stiffness matrix of soil 

{Pp}  Vector of pile-soil interaction forces acting on pile 

{Ps} Vector of pile-soil interaction forces acting on soil

{yo} Vector of lateral soil movements at the pile nodes in the absence of piles 

{yp}  Vector of pile deflections  

{ys} Vector of soil deformations at pile nodes 

A  Cross sectional area 

b  Breath/width 

Cc  Compression index 

Cs  Swelling index  

cu Undrained shear strength 

d  Depth of wall toe 

D  Measured deflection 

d’  Depth from compression zone to centroid of compression steel 

Di  Initial deflection at onset of cracking 

Ec  Young’s modulus for concrete 

EpIp Pile bending rigidity  

Es  Young’s modulus of soil 

Est Young’s modulus of steel 

f’c  Characteristic strength of concrete  

fct  Tensile strength of concrete in flexure or modulus of rupture of concrete  

fij Flexibility coefficient denoting the lateral deformation of the soil at node i due 

to a unit pile-soil interaction lateral force acting at node j 

fmax  Maximum pile head deflection

g   Gravitational field 

Gs,  Specific gravity of soil  

h  Thickness of pile cap 

Icr  Fully cracked moment of inertia  
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Ie Effective moment of inertia 

Ig  Gross moment of inertia  

Iuncr  Uncracked moment of inertia  

k  Coefficient of permeability  

K  Limit yield pressure coefficient 

Ka  Active earth pressure coefficient  

kc Pile cap reduction factor 

kh  Modulus of subgrade reaction of soil 

khd  Soil stiffness per unit length of pile 

Konc  Lateral earth pressure coefficient at rest for normally consolidated clay  

Kooc Lateral earth pressure coefficient at rest for overconsolidated clay 

Kp  Passive earth pressure coefficient 

ks  Soil movement moderation factor 
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l  Pile element length  

M  Slope of critical state line in q-p’ space 

Mcr Pile cracking moment  

Mmax  Maximum pile bending moment 

Mult  Ultimate pile bending moment capacity 

N Total number of nodes

p’ Mean effective stress 

Ps  Lateral force of soil acting on pile 

ps Lateral soil pressures 

Psj  Pile-soil interaction lateral force acting at node j  

py  Limiting soil pressures,  

qc  Cone resistance 

R  Registration ratio between measured and applied vertical stress of a Total 

Stress Cell (TSC) 

x Distance of pile behind the wall  

y  Distance from the centroid of the section to the extreme fibre in tension 

yo  Lateral soil movement 

yoi  Lateral soil movement at node i in the absence of piles 

ys  Soil deformation at the pile-soil interface  

ysi  Lateral soil deformation at pile-soil interface at node i 
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Z  Section modulus  

zp Depth of pivot point 

Γ  Location of critical state line in compression plane 

α  Coefficient as a function of excavation depth 

β  Coefficient as a function of excavation depth  

εc  Strains in compression 

εt  Strains in tension 

φ’  Effective friction angle 

κ  Slope of unloading-reloading line in ν:ln p’ plane 

λ Slope of normal compression line  in ν:ln p’ plane 

ν Poisson’s ratio 

σh Total horizontal stress 

σh’ Effective horizontal stress 

σv  Total overburden pressure 

σv’ Effective overburden pressure 

ψ  Curvature of pile  
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  Chapter 1: Introduction 

CHAPTER ONE 

 

INTRODUCTION 

 

1.1 BACKGROUND 

The scarcity of land in Singapore has led engineers to maximize the utilization of 

underground space. Many of Singapore’s underground infrastructures such as Mass 

Rapid Transit (MRT) tunnels and underground car parks are situated close to existing 

buildings. Buildings and infrastructures are normally supported by pile foundations to 

transfer the structural loads to the lower and more competent subsurface strata, 

especially in areas where soft marine clay is found in the upper soil layers. In many 

cases, these pile foundations are designed primarily to sustain vertical loads only. An 

existing pile foundation may experience additional bending moment due to excavation-

induced lateral soil movement if a deep excavation is carried out nearby. Some typical 

scenarios of piles subjected to lateral soil movement include the followings: 

(a)  Piles used for slope stabilization [Fukuoka (1977), Sommer (1977) and    

Kalteziotis et al. (1993)]. 

(b)  Piles supporting a bridge abutment near an embankment [De Beer and Wallays 

(1972), Schmidt (1977), Hull and McDonald (1992)]. 

(c)  Piles adjacent to an excavation [Finno et al. (1991), Poulos and Chen (1997) and 

Chandrasekaran et al. (1999)]. 

An assessment of the magnitude of induced bending moment in the above cases 

is important to ensure the structural integrity of the pile is maintained. There are cases 
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whereby piles are purposely designed to restrain or limit lateral soil movement such as 

those installed for landslide prevention. For slope stabilization or landslide prevention 

purposes, piles are deliberately heavily reinforced so that they can withstand the lateral 

soil pressures exerted by the moving soil mass. 

In urbanized areas where existing buildings and infrastructures are built very 

close to one another, any nearby excavation will cause a reduction of horizontal earth 

pressure on the side of excavation, leading to soil movement behind the retaining wall 

towards the cut. Besides that, the relief of vertical pressure due to excavation may also 

cause basal heave. The basal heave and the inward soil movement often cause ground 

subsidence around the excavation. If the excavation is carried out below the ground 

water level and if the coefficient of permeability of the soil is relatively high, the 

seepage-induced consolidation and drawdown may also cause problems (Lee et al., 

1993). Owing to such phenomena in excavation works, excessive soil deformation in 

the retained soil can pose a serious threat to the retaining structure and nearby existing 

structures supported on pile foundations. Moreover, in low-lying areas around 

Singapore, the soil deposits consist of the marine member of the Kallang Formation. 

This soft marine clay typically has an undrained shear strength that varies with depth 

and sometimes less than 25 kPa. As such, the stability of a retaining structure 

supporting such soft marine clay is often problematic and can also induce significant 

ground movement behind the excavation. 

Lateral soil movement would induce additional bending moment and deflection 

on adjacent existing piles and can have detrimental effects on existing pile foundations. 

If the excavation is very deep, such as that for the construction of a multi-storey 

basement car park or an underground subway station, the problem can become a very 

delicate issue. The shaft friction of the pile, which helps to carry the vertical load 
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imposed by the structures, will be reduced due to the reduction of the confining 

pressure around the piles as a result of ground deformation and settlement caused by 

the excavation.  

Several case histories have been reported on pile foundations whose structural 

integrity has been threatened as a result of additional bending moment caused by 

excavation-induced lateral soil movement. Finno et al. (1991) described a case where a 

tie-back excavation was performed in granular soils. Despite being supported by a tie-

back sheet pile wall, some pile caps had deflected by as much as 65 mm towards the 

excavation. This might induce additional bending moment on the pile group. 

Poulos (1997) described a bizarre case history where an office building had to 

be demolished due to massive ground deformation. A nearby unsupported excavation 

had caused the office building to tilt excessively. Maximum settlement of about 900 

mm was detected at one corner of the building. The horizontal movement at the top of 

the building was reported to be about 1.2 m. Grouting was carried out to arrest the 

settlement but was unsuccessful. Back-analysis was conducted and the results revealed 

that the pile structural capacity had been exceeded. Eventually, it was decided to 

demolish the entire office building in order to prevent possible collapse. 

In view of the grave hazards associated with excavation near existing 

structures, it is vital for geotechnical engineers to develop a good understanding of pile 

behaviour due to excavation-induced lateral soil movement. Recently, researchers like 

Chen and Poulos (1997) as well as Chow and Yong (1996) have developed theoretical 

approaches to predict the pile responses in such situations. Design charts have also 

been established by Poulos and Chen (1996, 1997) to estimate the pile responses near 

an unstrutted and a strutted excavation. 
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It may not be economically viable in practice to conduct large-scale 

instrumentation and monitoring programs just to study the response of piles due to 

excavation. An alternative way is to conduct centrifuge model experiments whereby 

artificial gravitational field is employed to replicate the increasing stress with depth as 

experienced by the ground in the field. Under a well-controlled environment, 

centrifuge experiments provide the flexibility and repeatability that cannot be achieved 

in field tests. Researchers like Springman et al. (1991) and Stewart et al. (1994a) have 

successfully modelled and investigated bridge abutment pile behaviour due to 

embankment loading. 

At the National University of Singapore (NUS), Shen (1999) performed 

centrifuge tests to investigate the behaviour of single piles and two-pile groups subject 

to excavation-induced lateral soil movement in dense sand. Lim (2001) extended the 

experiments to study the behaviour of two, four and six-pile groups in dense sand. The 

above experiments provided a fundamental insight to explain the pile behaviour 

subject to excavation-induced soil movement in sand.  

 

1.2 OBJECTIVES OF STUDY 

Soft clay is commonly found in Singapore and many other coastal cities around 

the world and its characteristics are very different from those of sand. The earlier 

studies at NUS on pile behaviour due to excavation-induced soil movement in sand are 

extended to that in clay in the present study. The objectives of the present study are as 

follows: 

a) To carry out centrifuge model tests to study the behaviour of piles behind a 

stable retaining wall and a retaining wall that subsequently collapses as it is 

believed that the pile behaviour is affected by the stability of the retaining wall, 
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which in turn determines the degree of deformation of the retained soil, rates of 

progressive lateral wall movement and dissipation of excess negative pore 

water pressure over time. Theoretically, the stress state of the soil should vary 

after the start of excavation and as such, this research is dedicated to 

experimentally study these time-dependent variables on the behaviour of piles 

embedded in such soil. 

b) To interpret the behaviour of free-head single pile as well as free-head and 

capped-head pile groups when subject to excavation-induced soil movement 

from the centrifuge test results. It is important to demonstrate using 

experiments to provide a fundamental understanding on how deforming soil 

over time would provide various stabilizing mechanisms, such as arching 

effect, in the presence of a single pile as well as various types of pile group 

configurations. 

c) To evaluate the ability of an existing numerical model developed at NUS to 

back-analyse the centrifuge test results so that a better understanding of pile-

soil behaviour can be achieved. It is hoped that this back-analysis would shed 

some light on the (i) ratio of undrained shear strength (cu) to limiting soil 

pressure (py), (ii) validity of measured free-field soil movement to be used in 

the back-analysis and (iii) the effect of pile cap fixity on the back-analysed 

results. Hence, this exercise also serves to calibrate the existing numerical 

model and also to complement the previous studies carried out on pile 

behaviour subject to excavation-induced soil movement in sand. 

d) To carry out a field case study on a pile group nearby an excavation and to 

compare the field observations with the predictions made from the existing 

numerical model. It is hoped that through this field study, the assessment of the 
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development of moment of inertia of the pile and the pile bending moment 

capacity, issues which are of great importance but are often given less attention 

by practicing engineers, would be addressed. This field study would also serve 

to complement the understanding developed in (a), (b) and (c) above so that a 

comprehensive research that encompasses centrifuge experiments, numerical 

back-analyses and practical field case study can be achieved wholesomely.  

 

1.3 OUTLINE OF THESIS 

The outline of this thesis is as follows: 

a) Chapter 2 presents an overview of the causes of lateral soil movement and 

existing research studies similar to the present research, with special emphasis 

on the pile behaviour subject to excavation-induced lateral soil movement. 

b) Chapter 3 highlights the centrifuge experiment set-up and procedure. Some 

new and improved instrumentation techniques such as non-contact laser 

displacement transducers for measuring pile head deflection are described. The 

effects of simulating an excavation using the method of draining a heavy fluid 

of equal unit weight as the soil it replaces are also discussed in detail. 

c) Chapter 4 discusses the centrifuge experiment results of the short and long term 

behaviour of a single pile behind a stable wall and a wall that subsequently 

collapses. 

d) Chapter 5 presents centrifuge test results of 2-, 4- and 6-pile groups behind a 

stable wall and a wall that subsequently collapses. The behaviour of free- and 

capped-head pile groups as well as the soil deformation patterns surrounding 

the piles are discussed in detail. In addition, the wall and soil deformation 
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behaviour as well as the time dependent pile responses during and after 

excavation are discussed. 

e) Chapter 6 presents and discusses the comparison between centrifuge test results 

and back-analysed numerical predictions obtained using an existing program 

developed at NUS. The importance of input soil properties is discussed with 

particular emphasis placed on the undrained soil strength and the limiting soil 

pressures. The effect of rotation of the pile head on the performance of the pile 

group is also presented.   

f) Chapter 7 presents the results of a large-scale field test on a 4-pile group nearby 

an excavation. Comparisons between the predicted pile behaviour using an 

existing numerical method and the field observations are made. 

g) Chapter 8 concludes the findings of the present study. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Lateral soil movement would induce additional bending moment and deflection 

on adjacent pile foundation. If the induced bending moment is unaccounted for in the 

design, structural integrity of the piles may be compromised. Hence, it is of great 

importance to understand the effects of lateral soil movement on piles. Generally, 

lateral soil movement may be caused by embankment loading, unstable or creeping 

slopes, tunnelling and excavation. The methods, effects and difficulties faced in 

investigating the behaviour of piles subject to lateral soil movement will be reviewed 

in detail in this chapter. The review is presented in the first half of this chapter and 

divided into three main sections; namely, (a) field studies, (b) theoretical predictions 

and (c) laboratory experiments. In addition, the effects of soil “flow” and its associated 

limiting soil pressure on piles are presented. Methods of simulating excavation at high-

g level and the stability of excavation over time are also reviewed.  

 

2.2 FIELD STUDIES 

A good number of field case histories to study the effects of soil movement on 

piles have been reported. These studies will be reviewed briefly in this section. 
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2.2.1 De Beer and Wallays (1972) 

De Beer and Wallays (1972) reported a field test at Zelzate, Belgium to study 

the influence of a sand embankment on instrumented test piles shown in Figure 2.1. 

Four test piles were installed at the toe of the embankment. One of the piles was a steel 

tube of 900 mm diameter and 28 m in length with wall thickness of 15 mm. The other 

three piles were reinforced concrete piles of diameters 600 mm, 450 mm and 350 mm. 

The length of the reinforced concrete piles was 23.2 m. Only the steel pile and the 600-

mm diameter reinforced concrete pile were fully instrumented to measure the pile 

stresses and strains, deflection and soil displacement. The soil profile, which was 

predominantly sand, is shown in Figure 2.2 together with the measured horizontal 

movement of the soil due to the embankment construction. The maximum soil 

movement was about 60 mm near the ground surface and decreased rapidly with depth. 

A maximum bending moment of 280 kNm was developed in the pile shaft. As the pile 

head had been rigidly restrained, the observed pile head deflection was negligible. 

However, a maximum pile deflection of about 20 mm was noted at about 5 m depth.  It 

was further observed that as the computed factor of safety decreases due to increasing 

embankment height and hence greater lateral soil movement at the embankment toe, 

greater pile bending moment was observed. Therefore, it has been demonstrated from 

this case study that soil movement would induce additional bending moment and 

deflection in adjacent piles. 

2.2.2 Marche (1973) 

Marche (1973) discussed the results of a reported loading test in Amsterdam. 

The load test set-up is given in Figure 2.3. Three steel test piles, each consisting of an 

open rectangular section and a length of 12.5 m, were driven at 5 m centre-to-centre 

spacing into peat, clay and sandy clay and founded on the firm sand stratum. The pile 
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head was restrained using a structural beam at the ground level. The embankment was 

built with each height increment of 5 m. The displacement of the pile head was 

prevented by means of struts propped at the ground level against a concrete beam 

supported by 8 raking piles in front of the embankment. The stresses in the piles were 

measured by strain gauges. The maximum induced bending moment recorded as a 

function of the pile distance is shown in Figure 2.4. Figure 2.5 shows the 

displacements induced in the underlying stratum after each height increment of 5 m. 

The results indicated that the pile bending moment increased with increasing distance 

between the embankment toe and the pile. In addition, the displacements of the pile 

and soil were not significantly different. It was concluded that the reaction frame did 

not successfully prevent the soil movement, which had induced additional bending 

moment onto the test pile. It is observed that relatively large negative bending moment 

was developed in pile head when the pile was restraint by the ground beam.  

2.2.3 Hannick and van Tol (1988) 

Hannink and van Tol (1988) reported that 41 terrace houses at the north side of 

a quay in Rotterdam, the Netherlands, have been subjected to large lateral soil 

movement, some as much as 2.5 m since 1958. The cause of the lateral soil movement 

was due to an unstable quay nearby. As a result, the piles supporting the terrace houses 

had deflected to such an extent that complete failure was feared. It was also reported 

that the maximum rate of soil displacement was about 0.10 m/year. The cross section 

of the quay is shown in Figure 2.6. Figure 2.7 details the magnitude of the lateral 

displacements experienced by some of the houses for a period of up to 4 years. It was 

concluded that the foundation piles offered no resistance against the creeping quay and 

that the stresses in the foundation piles had far exceeded the allowable values. It was 

feared that the foundation piles would soon experience complete failure unless 
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remedial measures were taken immediately. This case study highlights the importance 

of designing piles to withstand horizontal soil movement. 

2.2.4 Coutts and Wang (2000) 

Coutts and Wang (2000) instrumented six 1200-mm diameter bored piles 

supporting a vehicle viaduct to obtain the pile responses when the tunnel boring 

machine (TBM) approached or moved away from the instrumented piles. The piles for 

the viaduct were already constructed before the start of the tunnelling process. The 

instrumentation programme consists of in-pile and in-soil inclinometers and vibrating 

wire strain gauges. The layout of the instruments is shown in Figure 2.8. Anticipating 

that the ground surrounding the tunnel would deform, the bored piles were heavily 

reinforced to increase their bending moment and tension capacities. Typical 

reinforcement consisted of 20 T25 longitudinal bars with T16 link at 175 mm centres 

over the top 20 to 30 m of the piles. The results revealed that the maximum forces and 

stresses were recorded when the TBM was directly adjacent to the piles.  

The measured maximum bending moments and the moment as percentage of 

design working moment are shown in Table 2.1. The results revealed that the piles 

underwent bending in directions both parallel and perpendicular to the line of the 

tunnels. In general, the maximum bending moments were recorded at invert and crown 

levels. Approximately 91% and 59% of the design working axial load and bending 

moment, respectively, of the pile had been reached due to the tunnelling process alone. 

Had the piles not been adequately reinforced to cater for the anticipated additional 

bending moment due to tunnelling, they would have been substantially damaged, even 

before the full load of the viaduct superstructure was imposed on the piles. However, 

despite many inclinometers had been installed in the ground, no soil movement data 

was presented. The importance of pile-soil interaction is highlighted in this case study. 
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Significant additional pile bending moment and deflection can be expected due to a 

tunnelling process nearby. 

2.2.5 Poulos (1997) 

A well-documented field case study on the effects of excavation on nearby pile 

foundations was presented by Poulos (1997). Poulos (1997) reported the failure of 

piles supporting a building due to excessive ground movement arising from an 

uncontrolled and unsupported excavation close to one corner of the building. The 

project involved the construction of three buildings; namely, an office block, a hotel 

and a shopping centre in Indonesia. A nearby building had to be demolished due to the 

continual increase in settlement that caused it to tilt. Poulos summarized the available 

geotechnical and foundation data for the project and evaluated the various possible 

causes of settlement. The plan of the project and the borehole locations are shown in 

Figure 2.9. The borehole information is shown in Figure 2.10. The foundations for the 

buildings consisted of cast-insitu piles, 0.5-m nominal shaft diameter and 20 m in 

length. Vertical and lateral load tests were carried out and the piles generally 

performed satisfactorily. 

Both the office and hotel buildings were completed and no undue settlement 

was noted. Subsequently, piling work for the shopping centre building was undertaken 

between the two completed buildings. At the same time, an excavation adjacent to the 

shopping centre was carried out for the placement of a ground tank. The excavation 

was unsupported and extended to depth of 4 m. Before the excavation was completed, 

massive ground movement was observed. The contractor decided to stop the 

excavation and subsequently backfilled the excavated ground. The backfilling process 

took about three months.  
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During backfilling, the soil was merely dumped into the excavated ground 

without proper compaction. Consequently, the nearby ground continued to move 

towards the excavation over a period of two months. This resulted in a large area 

(approximately 36 m by 22 m) surrounding the excavated area being affected by soil 

settlement. The office building was found to have tilted towards the shopping centre 

site with a maximum settlement of about 900 mm. The horizontal movement at the top 

of the building was reported to be about 1.2 m. In view of this, grouting was carried 

out to arrest the settlement but this remedial action was unsuccessful. Eventually, it 

was decided to demolish the office building in order to prevent possible collapse. 

Nevertheless, no substantial movement was observed at the hotel site where the ground 

was undisturbed. However, substantial movement was observed for the newly installed 

free head piles for the shopping centre. The piles, which were located about 2 to 3 m 

from the line of excavation, had moved more than 1 m towards the excavation. Besides 

that, settlement of about 50 to 60 mm was also noted for these piles.  

Numerical analysis was also carried out to further study the effects of 

excavation on the piles. The analysis revealed that the pile head movement increased 

with increasing soil movement until the soil movement reached about 200 mm. It was 

postulated that at this stage, the soil might have just flowed past the pile and thus the 

pile did not experience any further movement. Figure 2.11 shows the maximum 

bending moment induced on the pile due to soil movement. A maximum bending 

moment of about 380 kNm had developed. For these piles having an unrestrained 

head, the maximum deflection occurred at the pile head while the maximum bending 

moment and shear occurred at a pile shaft elevation near the base of the soft soil layer. 

The maximum bending moment calculated from the numerical analysis was then 

compared with the structural capacity of the pile section. Figure 2.12 shows the 
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computed axial force and bending moment in the pile and clearly reveals that the 

structural capacity of the pile section is far exceeded, even for the case where ultimate 

steel and concrete strengths are used.  

Figure 2.13 compares the maximum bending moment and axial load computed 

from the horizontal soil movement acting on the capped pile of the office building with 

the structural capacity of the pile section. Again, the pile capacity was found to have 

been far exceeded. 

There was sufficient evidence to suggest that the failure of the pile foundations 

was directly associated with attempts made to carry out an unsupported excavation 

near the existing office building and shopping centre. It was also suggested that 

horizontal movement caused by such excavation could have caused overloading and 

eventual structural failure of the piles supporting the building. However, the 

mechanisms of large strain soil deformation behaviour on adjacent piles due to 

excavation have not been fully understood. Owing to such detrimental effects of an 

excavation on existing pile foundations, the present research project is deemed 

necessary so that a better understanding on pile-soil interaction can be obtained.  

 

2.3 THEORETICAL STUDIES 

Bransby and Springman (1996) studied the short term behaviour of pile groups 

subjected to lateral pressure caused by the deformation of a clay layer under an 

adjacent surcharge load using a three-dimensional finite element method. The clay was 

modelled with three different constitutive models namely; elastic, plastic and Cam 

Clay. The pile group was represented by linear elastic elements. The sand was 

modelled using Mohr-Coulomb elastic-plastic soil with an associated flow rule. The 

results were then compared with centrifuge test data. It was reported that the results 
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were in good agreement, although the finite element analyses over-predict the pile 

group displacements at small surcharge loads. Nevertheless, it had shed some light on 

problems involving passive lateral loading on piles as well as understanding the 

behaviour of soil-pile interaction. However, its use is still rather limited in practice due 

to the computation time required for the analysis, unless specific quantities had to 

addressed, which are not capable to be modeled in 2-D simulations. 

Stewart et al. (1994a) presented empirical design charts based on centrifuge test 

data to determine the maximum pile bending moment and pile head deflection as a 

function of the relative soil-pile stiffness and the current loading level based on limited 

field data and centrifuge results.  

Poulos (1994) developed design charts with the provision of maximum positive 

and negative bending moments, lateral pile head deflection, axial force and axial pile 

head deflection of a pile within an embankment. They were called the “CPI” charts. In 

this method, the piles were assumed to be installed after the embankment had been 

constructed. The bending moment and deflection developed in such piles might be 

substantially less than those developed in piles installed before the construction of 

embankment. 

 De Beer and Wallays (1972) presented a simple empirical formula to calculate 

the horizontal pressure acting on a pile when an embankment was being constructed. 

In order to calculate the induced bending moment, assumptions had to be made 

concerning the lateral support of the piles. The proposed method was very rough and 

the aim was to obtain an estimate of the maximum bending moment. This method 

could not be used to estimate the bending moment profile along the pile and hence, the 

pile has to be reinforced over the whole length for the calculated maximum bending 
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moment. Furthermore, this method is only applicable if a large factor of safety is used 

for the overall stability of the embankment. 

Mroueh and Shahrour (1999) carried out a study on the influence of 

construction of shallow tunnels on pile foundations using the finite element program 

PECPLAS. The soil behaviour was assumed to be governed by an elastic-perfectly 

plastic constitutive relation based on Mohr-Coulomb criterion with a non-associated 

flow rule. The numerical modelling was carried out in two stages. In the first stage, an 

axial load was applied. The second stage involved the construction of the tunnel in the 

proximity of the pile. A free-field condition (i.e. without the presence of the pile in the 

ground) was also analysed. The results revealed that the presence of the pile reduced 

the settlement of the ground by about 50 %. Figures 2.14(a) and (b) show that the pile 

lateral movement and the development of bending moment are very much dependent 

on the distance between the tunnel face and the pile axis. The influence of the position 

of the pile tip with regard to the tunnel axis was also observed to be very much related. 

As tunnelling could cause inevitable soil movement, the consequence was that the pile 

internal forces tend to increase and sometimes certain section of the pile tended to 

exceed the section capacity of the pile, as illustrated in Figure 2.15. This is an 

important finding and is in line with the objective of the present research, which 

focuses on pile behaviour subject to excavation-induced soil movement. 

Poulos and Chen (1996, 1997) described a two-stage analysis involving finite 

element and boundary element methods to study pile responses due to excavation-

induced lateral soil movement, focusing on unsupported and braced excavation in clay. 

In the simplified form of boundary element analysis, the pile was idealized as an 

elastic beam and the soil as an elastic continuum, but with limiting pressure at the pile-

soil interface to allow considerations of local failure of the soil adjacent to the pile. In 
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the finite element method, the computer program AVPULL was used for the analysis. 

The soil was modelled as an elasto-plastic material, governed by the Tresca failure 

criterion and a non-associated flow rule. The computed lateral soil movement from the 

finite element analysis was then used as input to the boundary element program to 

determine the pile responses. The predicted maximum pile bending moment and 

deflection showed fair agreement with existing measured field data. However, the 

boundary element method has a major limitation that it can be only performed on a 

single pile and a group with non-identical free-head piles, but cannot handle capped 

pile groups.  

Free-field displacements are motions of the soil that occur at a distance from 

the pile such that the displacements are not affected by the presence of the pile. A free-

field soil displacement method, in which a pile was represented by beam elements and 

the soil was idealized using the modulus of subgrade reaction, was proposed by Chow 

and Yong (1996). The magnitude of soil movement profile serves as input for the 

method. With this idealization, non-homogeneous soil can be easily treated. This 

approach requires the knowledge of the pile bending stiffness, distribution of lateral 

soil stiffness and the correct limiting soil pressure acting on the pile with depth. 

Comparisons with available well-documented case histories suggest that the method 

gives reasonable prediction of the general behaviour of pile foundations experiencing 

lateral soil movement. This numerical method will be used to back-analyse the 

centrifuge results in the present study. 

Byrne et al. (1984) proposed a simple method of analysis by modifying the 

conventional laterally loaded pile problem to predict the pile responses due to lateral 

free-field soil displacements. The method involved representing the stiffness of the soil 

with non-linear springs, with the outer ends of these springs attached to the free-field 
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so that a movement of the free-field resulted in a deflection of the pile. The governing 

differential equation for the pile was solved by iteration so that the bending moment, 

shear force and deflection of the pile could be estimated. However, this method does 

not consider the continuity of the soil and depends on an accurate input of the spring 

stiffness and the magnitude of free-field soil displacements. As such, a more reliable 

and efficient method is necessary to consider the various types of soil profiles common 

in practice. 

Viggiani (1981) derived dimensionless solutions for the ultimate lateral 

resistance of a pile in a two-layer cohesive soil profile, in which six possible failure 

modes were suggested. Piles whose yield moment was larger than the bending moment 

acting upon them were considered as rigid piles, and three possible soil failure modes 

were proposed. Another three possible failure modes were proposed for more flexible 

piles, whose yield moment was smaller than the bending moment acting upon them. A 

pile-soil contact pressure distribution was assumed for each failure mode and the shear 

force and bending moment in the piles were derived by satisfying force equilibrium 

conditions accordingly. These solutions are limited to cohesive soil only, can only be 

applied to the ultimate state and are confined to a simplified representation of the 

distribution of soil movement with depth. However, a more versatile approach, which 

overcomes these deficiencies, has been described by Poulos and Davis (1980) by 

making use of a simplified form of boundary element analysis to obtain the solution. 

Therefore, the method proposed by Viggiani (1981) has limited use in practice.  

Chen and Poulos (1997) presented a theoretical procedure for analyzing pile 

responses subjected to lateral soil movement. The pile lateral responses are computed 

using a boundary element analysis, utilizing the specified free-field soil movement 

profile. It is concluded that this method gives reasonable good estimation of the pile 
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responses after comparing the results with model tests and published case histories. 

Nevertheless, this method is only accurate for relative small soil movement. Relatively 

large soil movement can also be expected during excavation in practice and therefore, 

it is necessary to have a versatile method capable of predicting the pile responses 

regardless of the magnitude of the soil movement. 

 

2.4 LABORATORY STUDIES 

A good number of laboratory studies on the effects of soil movement on piles 

have been reported. These studies are divided into 1g model and centrifuge tests and 

will be reviewed in this section. 

2.4.1 1g model tests 

Fukuoka (1977) reported a small-scale model study with an instrumented pile 

installed in an iron box filled with soil. The model pile had a rectangular cross-section 

and was instrumented with strain gauges along the shaft. The iron box had dimensions 

of 100 mm x 200 mm in plan view. A jack was used to apply a uniform soil movement 

to the upper portion of the model pile. The study showed that the pile deflection profile 

was dependent on the flexural rigidity of the pile. This finding is important to this 

research so that care will be taken during the fabrication of the instrumented model 

piles. 

Matsui et al. (1982) carried out a model study on piles subject to soil 

movement in both clay and sand. The test equipment consisted of three parts, an air 

pressure control device, a main body of the apparatus and recording systems as shown 

in Figure 2.16. The main model consisted of a soil container box with the model pile 

and a laterally loading system. The interior dimension of the steel box measured 600 
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mm long, 300 mm wide and 300 mm deep. The deforming soil around the piles could 

be viewed through a strengthened glass plate. The soil in the box could be horizontally 

moved by providing different pressure through the loading systems. The experimental 

results were then compared to theoretical predictions, whereby a reasonable match was 

obtained. However, there was no explicit mention on how a vertical confining was 

applied in the experiment. Since this experiment was done in a 1g environment, it is 

suspicious if the stress-dependent soil properties that vary with depth are correctly 

accounted for.  

A series of small-scale laboratory tests on single instrumented model piles 

embedded in calcareous sediments undergoing lateral movement were reported by 

Poulos and Chen (1995b). The main part of the test apparatus consisted of a testing 

vessel, made of steel sheet with dimensions of 450 mm wide, 565 mm long and 700 

mm deep as shown in Figure 2.17. The vessel was equipped with steel plates capable 

of rotating and creating a triangular soil movement profile. Instrumented aluminium 

piles with different diameters of 25 mm, 35 mm and 50 mm were used. It was found 

that under a constant soil density, the maximum pile bending moment was dependent 

on the pile head fixity condition, the ratio of pile embedded length in the upper moving 

soil layer to the pile length in the lower stable soil layer, pile diameter and pile 

stiffness. Normalised expressions for pile bending moment caused by different 

amounts of soil displacements were also derived. Boundary element analyses showed 

good prediction of the experimental results.  The same apparatus was used by Chen 

and Poulos (1997) to study pile groups subjected to a linearly varying distribution of 

horizontal soil movement with depth. Tests were conducted on groups of free-head 

piles and groups of piles connected by a rigid cap. The extent of the group effect was 
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found to be dependent on a number of factors, including the position of the pile in the 

group, the pile spacing, the number of piles and the head fixity condition. 

2.4.2 Centrifuge experiments 

A good number of studies have been done on the centrifuge to examine the 

effects of lateral soil movement caused by embankment loading on piles supported 

bridge abutments in soft clay deposits. When an embankment on soft clay forms an 

approach to a piled bridge abutment, time dependent movement within the clay may 

induce significant lateral loading and deflection on the piles. In severe cases, structural 

distress to the piles may be detected. Embankment loading on the piled bridge 

abutments on soft clay is probably the most widely centrifuge experiments done to 

date to study pile behaviour subjected to lateral soil movement; see for example 

Springman et al. (1991), Stewart et al. (1994a, 1994b), Bransby and Springman (1997) 

and Ellis and Springman (1998).  

Springman et al. (1991) carried out a series of centrifuge tests to investigate the 

effect of surcharge loading on a single row of free-headed piles and on a pile group. A 

parametric study was also carried out to investigate the effect of different pile spacings 

for the free-headed piles with two types of head fixity and three foundation layouts. In 

prototype scale, the sub-soil condition consisted of a 6 to 8 m thick soft clay underlain 

by 8 to 10 m of sand. The instrumented model piles were made of aluminium tubes 

with 12.7 mm diameter and wall thickness of 1.219 mm. The embankment was 

modelled by means of a normal surcharge load, controlled by an inflatable latex bag at 

the location of the proposed embankment. The centrifuge data was used to verify or to 

complement the theoretical and numerical solutions such as SIMPLE and SLAP and 

reasonable agreement had been achieved. Bransby and Springman (1997) attempted to 

investigate the behaviour of pile groups when adjacent surcharge loads were applied 
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over a clay layer using the same method as Springman et al. (1991). The pile cap was 

in contact with the surface of the deforming soil and interaction was detected, in 

addition to the soil-pile interaction, as shown in Figure 2.18. Two types of model tests 

were conducted, namely a normal foundation and a buttonholed foundation with piles 

surrounded by an annulus of bentonite in the deforming soil layer. Comparison 

between the two sets of results revealed that buttonhole foundations reduced the lateral 

pile group deflection due to passive lateral pile loading. Stewart et al. (1994a, 1994b) 

reported a series of centrifuge tests on piled bridge abutment shown in Figure 2.19. 

Responses of flexible piles, pile rake and embankment geometry were the main focus.  

A sand hopper was designed to construct the embankment in-flight in stages. It was 

found that the factor of safety of the constructed embankment was critical in 

determining the response of the piles. Ellis and Springman (2001) carried out similar 

tests in the centrifuge and subsequently attempted to predict the responses of pile 

group using finite element analyses. A sand hopper was used to simulate the 

embankment construction. Vertical drains were used to speed up the consolidation 

process. Multi-filament polyester strings were twisted to diameter of 1.5 mm (150 mm 

prototype scale) to simulate vertical drains. It was noted that the lateral displacement 

of the clay underneath the embankment generated shear stress on the interface with the 

fill material. The underside of the pile cap also attracted this form of ‘shear transfer’ 

loading, which was predominantly the result of undrained shearing. Soil arching effect 

was also noted, thus causing additional lateral loading on the pile group and the FEM 

analyses were particularly useful in identifying this phenomenon. It was then 

concluded that the agreement between the centrifuge results and the FEM analyses 

were good. Even though the research projects described above were done to study the 

effects of embankment loading on adjacent pile foundations, the modelling principles 
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and methodologies are quite similar and thus can be used as a preview, guide and 

checklist for the present study to ensure the successful execution of centrifuge 

experiments to study the pile behaviour subject to excavation-induced soil movement. 

Almeida et al. (1985), Davies and Parry (1985), Ismes and Taylor (1991) and 

Bujang et al. (1991, 1993) shed some light on the time dependent behaviour of clay 

during and after the construction of an embankment without piles. This may be useful 

especially in understanding the time dependent effect of excess pore water pressure on 

pile behaviour. Bransby and Springman (1997) studied this phenomenon by observing 

the pile behaviour throughout their experiments and reported that the pile bending 

moment, shear force and lateral soil pressure varied with time. Nonetheless, no further 

investigation into the time dependent pile behaviour has been done. The research has 

highlighted that the time dependent pile behaviour may be associated to the dissipation 

of excess of pore water pressure. As such, the present research will investigate this 

further for the case of excavation. 

Loganathan et al. (2000) carried out centrifuge experiments on single pile and 

pile group subject to tunneling-induced ground deformation in clay shown in Figure 

2.20. The tunnel diameter was controlled and reduced by pumping away the oil in the 

annulus between the inner core and the membrane to simulate ground loss. Tunnel 

depths were then varied in each test to assess the influence of tunnel depth on ground 

movement and pile responses. The results revealed that the induced maximum pile 

bending moment and ground loss could be described by a near linear relationship. As 

such, it was postulated that an elastic analysis can be performed to predict pile 

behaviour induced by tunnelling if the ground loss value was less than 5%.  Besides 

that, the induced pile bending moment and lateral deflection of adjacent piles may be 

critical when the tunnel central line is located at or near the pile tip level. From the 
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studies, it has also been shown that any lateral soil movement and settlement caused by 

tunnelling could induce bending moment and axial forces on an adjacent pile. The 

measured ground movement generally compared well with the analytical solutions 

presented.  

At the National University of Singapore (NUS), centrifuge model tests have 

been carried out by Shen (1999) and Lim (2001) to study the responses of a single pile 

and pile groups due to excavation-induced soil movement in sand. It was reported that 

the induced bending moment on the piles increased with excavation depth. However, 

when the wall collapsed resulting in large lateral soil movement, the induced bending 

moment did not increase accordingly. It was postulated that the sand just flowed 

around the pile without exerting any additional load on the piles after the wall had 

failed. Lim (2001) also pointed out that if clay was used instead of sand, the pile 

bending moment and deflection reduced over time in the case of a collapsed wall. This 

sets the platform for the present research to study the time dependent behaviour of a 

single pile in clay subject to lateral soil movement in clay. 

Thus far, it has been observed from the above literature review that additional 

induced bending moment on existing pile foundations can arise from lateral soil 

movement, be it due to embankment loading or tunnelling. If some cases, additional 

induced pile bending moment can be so large that the pile ultimate bending moment 

capacity is exceeded. Besides embankment loading and tunnelling, lateral soil 

movement can also arise due to excavation. However, not much studies on the effects 

of excavation in clay on existing pile foundations have been done when compared to 

embankment loading. Therefore, this highlights the importance and necessity to 

perform an in-depth research on the behaviour of piles subject to excavation-induced 
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soil movement to complement existing findings based on research on embankment 

loading. 

 

2.5 CENTRIFUGE MODELLING OF EXCAVATION 

In the preceding sections, existing field, theoretical and laboratory studies on pile 

behaviour due to lateral soil movement have been reviewed. As the present study 

involves a centrifuge model study on pile behaviour due to excavation-induced soil 

movement, existing methods of modelling of excavation in the centrifuge will be 

reviewed in this section. Centrifuge modelling is deemed to be more attractive to study 

soil excavation. Being a small scale model it is relatively inexpensive to perform and 

the tests can be repeated under controlled and well-instrumented conditions. Thus the 

behaviour of the retaining wall and associated ground movement can be examined 

thoroughly.  

2.5.1 Methods of simulating excavation 

Generally, there are three methods to simulate excavation in centrifuge model 

tests. In the first method, the model excavation is carried out at 1g and the centrifuge 

model is then subjected to increasing centrifugal acceleration until the retaining wall 

fails. The second method involves replacing the excavation area with a heavy liquid of 

equal unit weight as the soil at 1g. The release of the heavy fluid, typically Zinc 

Chloride (ZnCl2) solution, simulates the progress of excavation. Such a method has 

been used by Katakami et al. (1998), Bolton and Powrie (1987, 1988) in Cambridge, 

Lee (1995), Wei (1997), Shen (1999) and Lim (2001) in NUS. The third method 

utilizes an in-flight excavator to perform the excavation process. This method has been 

used by Kimura et al. (1994) and Kongsomboon (2002). 
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2.5.2 Lateral soil pressure due to ZnCl2  

The lateral earth pressure due to ZnCl2 is different from that due to soil and 

hence requires further consideration. Bolton and Powrie (1987) discounted the high in-

situ lateral earth stresses in an overconsolidated clay deposit (for example, London 

clay) as they postulated that the slurry trench phase of the diaphragm wall construction 

was certain to alter them significantly, as observed by Powrie (1985). It was also 

postulated that the boundary stresses were approximately consistent with that imposed 

by the ZnCl2 solution after reconsolidation in the centrifuge. In addition, Powrie 

(1986) noted that the measured bending moment measured in a more flexible wall 

embedded in overconsolidated clay during the reconsolidation stage was relatively 

small, indicating that Ko = 1.0 was quite closely achieved behind a more flexible wall, 

similar to the Ko value imposed by the ZnCl2 liquid.  

The important findings from these researchers increase the confidence level of 

modelling excavation using ZnCl2 since it has been recognized that for 

overconsolidated clay, the effect of substituting it with ZnCl2 for the purpose of 

excavation does not necessarily adversely affect its initial stress condition prior to 

excavation after the reconsolidation stage in a centrifuge environment. 

2.5.3 Soil condition during and after excavation 

Bolton and Powrie (1987) studied the collapse of diaphragm wall embedded in 

overconsolidated clay. Subsequently, the study was extended to the behaviour of 

diaphragm walls in overconsolidated clay prior to wall collapse (Bolton and Powrie, 

1988). In both series of experiments, the excavation process was simulated by the 

draining of ZnCl2.  

Bolton and Powrie (1987) established that unpropped walls usually require 

large embedment depths for stability. Tension cracks would occur between the retained 
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soil and wall after excavation. It was observed that the flow rate of water flooding the 

tension cracks determined the rate of soil movement. As the passive resistance of the 

clay was not sufficient to sustain the full height flooded cracks, the wall started to fail 

by rotation at a pivot slightly above the wall toe. However, if the soil remained in 

contact with the wall, the development of large negative pore water pressure or suction 

in the soil next to the wall could maintain short term equilibrium of the wall. 

Subsequently, the failure mechanism of the wall was governed by the rate at which the 

soil could shear or slide along the rupture surfaces. The boundaries of significant soil 

movement and ruptures lied about 45o drawn from the base of the wall, indicating an 

undrained failure. The phenomenon of progressive wall failure was also highlighted, as 

the local slippages that occurred on the rupture surfaces tended to reduce the height of 

the retained soil and thus increased stability. However, the suctions generated in the 

soil during and after excavation caused an initial increase but subsequent gradual 

decrease in soil strength. These two processes continued to occur as the wall tilted 

progressively during and after excavation, leading to the time dependent effect 

analogous to observations noted by Stewart (1992) as well as Bransby and Springman 

(1997) in their research on behaviour of piles adjacent to an embankment. 

Bolton and Powrie (1988) presented the behaviour of diaphragm wall in clay 

prior to collapse using the same excavation method. Based on the measurements of soil 

displacement vectors during excavation, kinematically admissible strain fields were 

derived to idealize the soil behaviour in terms of uniformly deforming triangles. The 

mobilization of shear strain was also measured and displacements calculated during 

and after excavation using an appropriate assumed idealized strain field.   

From the review, it can be surmised that soil deformation behaviour associated 

with excavation includes the development of tension cracks, generation of negative 
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pore water pressure, progressive failure, significant soil movement and ruptures 

surfaces of 45o from the base of the wall. Therefore, with prior knowledge of the 

deformation behaviour of the wall and the retained clay, anticipation of specific 

observations from the author’s experiments can be easily and readily made so that 

consistency in observations between existing and new findings can be achieved.  

 

2.6 ESTABLISHED FINDINGS 

At this juncture, the findings from existing studies relevant to the present study 

are summarised. Stewart (1992) as well as Bransby and Springman (1997) reported 

time dependent pile behaviour in their centrifuge modelling of pile groups adjacent to a 

piled bridge abutment. Stewart (1992) observed the increase in pile bending moment 

over time occurred essentially under undrained conditions due to a number of factors, 

which would lead to an increase in subsoil displacement. These factors are 

redistribution of pore water pressure, progressive shearing, stress redistribution and 

local soil consolidation around the piles. Bransby and Springman (1997) further 

reported that the increase in pile bending moment over time (see Figures 2.21 and 

2.22) was due to the pile-soil-pile interaction, which led to an increase of average total 

stress around the front row piles and a decrease of total stress around the back row 

piles. It was also reported that as the clay consolidated further under the surcharge 

load, further lateral soil movement and pore water pressure redistribution were noted, 

hence the increase in pile bending moment (see Figure 2.23), shear forces and lateral 

pile pressure. Since the present study involves excavation in clay, which is critical in 

the long-term, it would be interesting to investigate the presence of any time dependent 

pile or soil behaviour. 
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The effects of soil flow on slope stabilizing piles have been reported by Ito and 

Matsui (1975). They established that plastic soil flow velocity and viscosity are 

important parameters in studying the visco-plastic soil behaviour and this concept is 

distinctly different from soil plastic deformation. These two parameters would 

significantly influence the undrained loading on a pile when a soil mass flows past the 

piles. They showed that the soil pressure acting on the piles increased with increasing 

product of soil flow velocity and viscosity (see Figure 2.24) when all other parameters 

are held constant.  However, these parameters are notoriously difficult to measure. 

Nevertheless, it is important to acknowledge that the theory of plastic flow has been 

attempted to back-analyse field results but without much success. 

Randolph and Houlsby (1984) analyzed the limiting pressure on a circular pile 

loaded laterally in a cohesive soil using cavity expansion theory. Their results 

compared well with the exact calculation of load acting on a long cylindrical pile 

which moved laterally through an infinite medium, where the soil was modelled as a 

perfectly plastic cohesive material with shear strength independent of the current total 

stress level. Randolph and Houlsby (1984) further reported that as the pile was pushed 

laterally through the soil, a region of high mean stress would occur in front of the pile 

and a region of low stress behind the pile. Therefore, the soil would flow around the 

pile from front to back. Characteristic meshes are used to represent the slip lines or 

planes on which the maximum shear stress occurs for the extreme cases for smooth 

pile (α = 0) and for fully rough pile (α = 1.0) as shown in Figure 2.25. Soil “flow” and 

its associated limiting soil pressure are important phenomena in the study of 

geotechnical failure conditions and this will be referred to in the author’s experiment 

involving a collapsed wall.  
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Maugeri et al. (1994) reported that by using the measured soil movement 

profiles obtained from inclinometers, bending moment and shear forces could be 

computed. A reduction of soil movement must be considered in this case because of 

the interaction between the rows of piles and the moving soil itself. By reducing the 

soil movement by 60% due to the reinforcing effect of the piles in the moving soil, 

better prediction of pile bending moment and shear forces could be obtained. It was 

also mentioned that since the moving soil had generally yielded, the numerical 

prediction would not be significantly affected by the soil subgrade modulus, especially 

when the magnitudes of soil displacements were considerable. The more important 

parameter in this case would be the limiting soil pressure. It has been shown that free-

field soil movement far from the instrumented piles may often give excessive soil 

movement, which may be unrealistic to be used in order to predict the behaviour of a 

closely spaced pile group, as the reinforcing and arching effect of the pile group are 

often neglected. Therefore, further research into such pile-soil-pile interaction would 

definitely be of interest and will be addressed in the present research. 

Chen and Martin (2002) used the 2-D finite difference analysis program FLAC 

to simulate soil plastic flow around pile group. It is a common knowledge that the arch 

that forms around the pile group provides a stabilizing mechanism against landslide. 

The numerical results revealed that the formation and shape of the arching zone are 

functions of pile arrangement, relative pile/soil displacement, pile shape, interface 

roughness and the soil dilation angle. The arching effect was explained using the pile 

load-displacement curves, which give the magnitudes of stresses that are transferred 

from the soil to the piles.  

In addition, the analyses also showed the development of plastic zones around 

the piles and the eventual failure modes at the pile/soil interface. It was concluded that 
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the development of soil arching is limited by the pile spacing. For cohesionless soils, 

lower ultimate lateral forces were observed on the piles with closer spacing. However, 

for closer spaced piles in cohesive soils, the ultimate lateral forces acting on the piles 

were higher. Nonetheless, it was also concluded that no significant group effect would 

occur if the pile spacing exceeds four pile diameters. Group effects were also noted to 

be more pronounced for cohesionless soils than for cohesive soils. As the work of 

Chen and Martin (2002) is purely numerical in nature, there is no proof to show the 

existence of such phenomenon. Therefore, it would be of interest to investigate further 

if such phenomenon actually exists and will be subsequently addressed in the present 

research. 

 

2.7 LIMITING SOIL PRESSURE ON ACTIVE AND PASSIVE PILES 

It is evident from the preceding section that the limiting soil pressure on the 

pile is crucial. The limiting soil pressure deserves greater attention and will be 

reviewed in detail in this section. Many researchers have proposed single, average 

values or lumped limiting soil pressure/undrained shear strength (py/cu) ratios for 

estimating limiting soil pressure on piles due to moving soils. De Beer (1977) defined 

passive piles as piles subjected to lateral soil movement and active piles as 

conventionally laterally loaded piles. The limiting soil pressure adopted by various 

researchers is listed in Table 2.2. It is evident that a wide range of py/cu ratios for 

laterally loaded piles (active piles) and piles subjected to lateral soil movement 

(passive piles) have been proposed. Careful study of the proposed py/cu ratios in Table 

2.2 reveals some contradictions by several researchers. For example, Poulos and Chen 

(1997) proposed that the limiting soil pressure on an active pile is similar to that of a 

passive pile. Poulos and Davies (1980) proposed that for the case of a laterally loaded 
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pile in a purely cohesive soil, the ultimate lateral resistance or limiting pressure, py, 

increases from 2 cu at the surface to 8 to 12 cu at a depth of about three pile diameters 

and remains constant for greater depths.  

It was further illustrated by Poulos and Davies (1980) that when py becomes 

constant, lateral failure involves a plastic flow of soil around the pile. On the other 

hand, Broms (1964a) proposed that this ultimate soil resistance or limiting soil 

pressure, py, for a cohesive soil can be further simplified and to account for the near 

ground effect for design purposes. The result is a limiting soil pressure distribution of 

zero from the ground surface to a depth, z of 1.5 pile diameters and a constant value of 

9 cu below this depth. However, the limiting soil pressure of 9 cu has also been adopted 

by some researchers in their analyses of piles subject to lateral soil movement caused 

by embankment loading (Goh et al., 1997) and excavation (Poulos and Chen, 1997), 

even though the former is a loading process while the latter is an unloading process. 

However, other researchers like Viggiani (1981), Maugeri et al. (1994) and Chow 

(1996) proposed that the limiting soil pressure on a passive pile is much lower than 

that of an active pile. Therefore, in view of such contrasting py/cu ratios adopted for a 

passive pile, one of the aims of the present study is to evaluate the py/cu ratio for piles 

subject to excavation-induced soil movement. 

 

2.8 SUMMARY 

It has been illustrated in the literature review that lateral soil movement can 

induce considerable bending moment on adjacent pile foundations. If the piles have not 

been designed to withstand these additional induced bending moment, the structural 

integrity of the piles may be threatened. Nevertheless, most of the earlier studies are 

related to landslide stabilization using piles and effects of embankment loading on 
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nearby piles supported bridge abutments. However, not many studies have been done 

to investigate the pile behaviour behind an excavation. This could be due to the fact 

that excavations are normally carried out close to an existing structure. As such, it is 

impossible to instrument an existing pile foundation that is already in place to study its 

behaviour. Therefore, physical modelling involving centrifuge experiments are deemed 

attractive as the behaviour of an existing pile foundation subject to excavation-induced 

soil movement can be studied in detail under a well-controlled laboratory environment. 

Excavation involves creating a large void in the ground, where the soil close to 

the excavation would move towards the cut. As such, the soil behind the wall may 

yield much more than the relatively stable soil further behind the wall. If the piles are 

capped in a group with some piles located in the yielded zone and some piles located 

in the stable zone, the different stress levels in the soils may affect the overall 

performance of the pile group. In addition, owing to the alleviation of the overburden 

pressure as a result of excavation, the horizontal confining soil pressure also reduces 

(Katakami et al., 1998) due to stress relief. Therefore, the limiting soil pressure may be 

exceeded when the excavation results in relatively large strain soil deformation. Such 

soil deformation behaviour is different from that due to embankment loading, 

landslides or tunnelling. The effects of excavation, such as soil deformation, seepage 

due to ground water drawdown and progressive wall movement may affect the 

behaviour of the piles close to an excavation. As such, a more detailed study involving 

the behaviour of piles subject to excavation-induced soil movement in clay is 

necessary. 

It is also important to realize from the literature review that relatively few 

attempts have been made to investigate the pile behaviour subjected to active and 

passive loadings. The limiting soil pressure proposed by Poulos and Davies (1980) and 
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Broms (1964a) for a laterally loaded pile (active) have been used for the analyses of 

passive piles subjected to lateral soil movement caused by embankment loading (Goh 

et al., 1997) and excavation (Poulos and Chen, 1997), even though the former is a 

loading process while the latter is an unloading process. The main reason many 

researchers tried to relate limiting soil pressure to the methods proposed by Poulos and 

Davies (1980) and Broms (1964a, b) is because of its simplicity of use. Therefore, in 

the present study, the applicability and validity of the method proposed by Poulos and 

Davies (1980) and Broms (1964a) to excavation will also be investigated. 

It is a common practice to use two-dimensional plane strain finite element 

method to predict pile responses due to excavation. Precautionary measures must be 

taken to smear the strength and stiffness properties of the pile over a unit width. 

Therefore, a correct choice of equivalent flexural rigidity is desired in order to 

correctly predict the pile responses when subject to lateral soil movement. The 

drawback of this method is that, if the piles are smeared in plane strain, the 

phenomenon of plastic soil “flow” could not be readily captured in the two-

dimensional analysis. For this reason, a centrifuge study or three-dimensional analysis 

is deemed more suitable to model the plastic flow of soils.  

As far as the author is able to ascertain, there has not been any reported 

centrifuge experiments done to investigate the behaviour of piles located behind a 

stable and collapsed retaining wall in an unstrutted excavation in a normally 

consolidated clay. In the case of a collapsed wall, the phenomenon of soil flowing past 

the pile and subsequently, the alleviation of soil pressure on the pile as well as the 

prediction of the soil pressure acting on the pile prior to soil flow have apparently not 

been studied. For these reasons, an in-depth centrifuge study into the behaviour of pile 

subject to excavation-induced soil movement in clay is deemed appropriate.  
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Table 2.1 Maximum bending moments and moment as percentage of design 

working moment (Coutts and Wang, 2000) 
 

Pier number Pile number Max Mxx 
(kNm) 

Percentage 
of design 
working 

moment (%) 

Max Myy 
(kNm) 

Percentage 
of design 
working 

moment (%) 
11 1 -176.6 16 492.1 44 
 2 -677.4 60 506.6 45

 
 
 
 

 
14 1 561.0 40 502.2 36 
 2 527.3 38 820.4 59 

20 1 610.8 39 249.0 16 
 2 -289.5 19 237.4 15

 
 
 
 

 
 

 

 
 

Table 2.2 Values of py/cu for single piles  
 

Reference K value Method of 
analysis 

Situation Type of loading 
on pile 

Chen and 
Poulos (1994) 

11.4 for piles 
near a cut 

2-D FEM Similar to 
piles used for 

landslide 
stablisation 

Passive 

Viggiani (1981) 2.8-4 (sliding 
soil) 

8 (stable soil) 

Empirical Piles used for 
landslide 

stabilisation 

Passive  

Maugeri et al. 
(1994) 

3.33 (sliding 
soil); 6.26 (stable 

soil 

Empirical, field 
data 

Piles used for 
landslide 

stabilisation 

Passive 

Chow (1996) 3-4 (sliding 
soil); 8-12 

(stable soil) 

Empirical, 
numerical 

Piles used for 
landslide 

stabilisation 

Passive 

Poulos and 
Chen (1997) 

9 Empirical Piles adjacent 
to an 

excavation 

Passive 

Goh et al. 
(1997) 

9 Empirical Single pile 
adjacent to 

embankment 

Passive 
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Figure 2.1 Test set-up at Zelgate, Belgium (after De Beer and Wallays, 1972) 

 
 
 
 
 

 
 

Figure 2.2 Soil profile and measured data for 600 mm diameter reinforced  
concrete pile (after De Beer and Wallays, 1972) 
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Figure 2.3 Loading test set-up at Amsterdam (after Marche, 1973) 

 

Figure 2.4 Measured maximum bending moments in piles (after Marche, 1973) 
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Figure 2.5 Measured pile horizontal displacements (after Marche, 1973) 
 
 

 
 

Figure 2.6 Cross-section of the quay (after Hannink and van Tol, 1988) 
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Figure 2.7 Horizontal displacements of Block 3  (after Hannink and van Tol, 1988) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Viaduct, pile and tunnel layout (after Coutts and Wang, 2000) 

   39



Chapter 2: Literature review 

 
 

Figure 2.9 Plan of the project and the borehole locations (after Poulos, 1997) 
 
 

 
 
 

Figure 2.10 Borehole information (after Poulos, 1997) 
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Figure 2.11 Maximum pile bending moment (after Poulos, 1997) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12 Structural capacity of shopping centre piles (after Poulos, 1997) 
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Figure 2.13 Structural capacity of office building piles (after Poulos, 1997) 
 
 
 
 
 (a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14 (a) Pile movement and (b) development of bending moment in pile due 
to tunnelling (after Mroueh and Shahrour, 1999) 
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Figure 2.15 Certain section of pile capacity is exceeded due to effect of tunnelling 
(after Mroueh and Shahrour, 1999) 

 
 
 
 

 
 

Figure 2.16 Experiment set-up (after Matsui et al., 1982) 
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Figure 2.17 Elevation view of testing vessel (after Poulos and Chen, 1995b) 
 
 

   44



Chapter 2: Literature review 

 
 
 

Figure 2.18 Centrifuge experiment set-up – piled bridge abutment (after Bransby 
and Springman, 1997) 
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Figure 2.19 Centrifuge experiment set-up – piled bridge abutment  
(after Stewart et al., 1994b) 
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Figure 2.20 Centrifuge experiment set-up - tunnelling, dimensions in mm  
(after Loganathan et al., 2000) 
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Figure 2.21 Front row pile behaviour with time (after Bransby and Springman, 
1997) 

 

 
 

Figure 2.22 Back row pile behaviour with time (after Bransby and Springman, 
1997) 
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Figure 2.23 Variation of pile bending moment profiles with time (after Stewart, 

1992) 
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Figure 2.24 The effect of product of flow velocity and plastic viscosity (vp · ηp) 
                     on the theory of plastic flow (after Ito and Matsui, 1975) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.25 Example of a characteristic mesh at α = 0 (fully smooth) and α = 1.0 
(fully rough), respectively (after Randolph and Houlsby, 1984) 
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CHAPTER THREE 

 

EXPERIMENTAL SET-UP AND 

PROCEDURES 

 

3.1 INTRODUCTION 

This Chapter presents the model set-up package, model pile and pile cap as well 

as model wall. This is then followed by the test procedures, and the preparation of 

clay. In order to enable acquisition of consistent and high quality data from centrifuge 

experiments, a good understanding of the working behaviour of miniature transducers 

and probing tools such as the linear variable displacement transducers (LVDTs), pore 

pressure transducers (PPTs), total stress cells (TSCs), non-contact laser potentiometers, 

in-flight bar penetrometer (T-bar) and the automated enhanced image processing 

system have to be established. The effects of simulating an excavation using the 

method of draining a heavy fluid of equal unit weight of the soil it replaces are also 

discussed in detail. 

 

3.2 CENTRIFUGE MODELLING 

3.2.1 Centrifuge modelling principles  

In geotechnical engineering, full-scale field tests are considered not viable 

because they are expensive, time-consuming and inconvenient. The inability to control 

the test conditions and soil properties in the field makes it unattractive because 
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parametric studies cannot be carried out. On the other hand, physical model tests may 

be attractive since the soil properties can be artificially controlled. Nevertheless, the 

drawback is that laboratory model tests could not duplicate the non-linearity 

characteristics of soil whose behaviour is highly stress dependent. Hence the data 

obtained cannot be extrapolated to the soil behaviour in the field. However, this 

drawback can be solved by subjecting the model tests to an artificially enhanced 

gravitational field N times the Earth’s gravity, whereby the prototype stress levels can 

be reproduced in the model tests. Hence, the model test results can then be used to 

interpret the prototype behaviour in a rational manner. 

As mentioned by Craig (1995), the first English language publication on 

centrifuge modelling in geotechnical engineering was presented at the First 

International Conference on Soil Mechanics and Foundation Engineering at Harvard in 

1936. Since then, centrifuge modelling technology has improved so rapidly that it has 

become a versatile tool in geotechnical engineering to study problems such as deep 

excavations and tunnelling works, embankment and slope stability, land reclamation as 

well as shallow and deep foundations amongst others.  

In physical model studies, it is seldom possible to replicate precisely all details 

of the prototype and some approximations have to be made (Taylor, 1995). For 

example, the most common question is that how can centrifuge modelling be justified 

if the soil particles are not reduced in size by a factor of N. Therefore, it is sensible to 

develop guidelines on the critical ratio between a major dimension in the model to the 

average grain diameter to minimise the problems of particle size effects. Ovesen 

(1979) compared centrifuge and prototype results and showed that when the ratio of 

foundation diameter to grain size was less than about 15, some deviations of results 

were noted. Tatsuoka et al. (1991) considered the ratio of particle size to shear band 
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width. Nevertheless, the important point is to recognize this fact and to carry out 

further centrifuge model tests to assess its significance in the problem being studied.  

Particle size effect is usually significant for coarse-grained soils but is much 

less so for clayey and other fine-grained soils (Zeng and Lim, 2002). In the present 

study, the top kaolin clay layer and the underlying fine sand layer are used to model 

the ground. Therefore, the particle size effects are unlikely to affect the findings 

significantly. One of the advantages of centrifuge modelling in the present study is that 

the consolidation time of the clay can be significantly expedited.  

A well-known issue caused by centrifugal acceleration is the variation of 

centrifuge acceleration field in the model and its effects on the vertical stress at the 

centre of a model with depth (Zeng and Lim, 2002). In the present study, the ratio of 

the height of model ground (250 mm, model scale) to the radius of centrifuge arm 

(1871 mm) is about 13%, which is slightly over the 10% recommended by Schofield 

(1980). However, potential errors resulted from the ratio of 13% is considered to be 

insignificant.  

3.2.2 Centrifuge scaling relationships 

The scaling relationship between a small-scale centrifuge model and its full-

scale prototype can be derived by dimensional analysis or from consideration of the 

governing differential equations (Taylor, 1995). The centrifuge model test results in 

the present study are related to their prototype scale by appropriate scale factors as 

shown in Table 3.1.  
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3.2.3 NUS geotechnical centrifuge 

Figures 3.1 and 3.2 show the NUS centrifuge facilities. The NUS centrifuge has 

a capacity of 40 000g-kg and operates up to a maximum g-level of 200g. This implies 

that the allowable payloads at 200g and 100g are 200 kg and 400 kg, respectively. The 

structure of the centrifuge is based on the conventional dual swing platform design. 

The model package is normally loaded onto one of the swing platforms with the 

opposing platform counter balanced by either counterweights or another model 

package with identical weights. When the centrifuge is spinning, the distance from the 

axis of rotation to the base of the platform is 1.871 m. The centrifuge is driven by a 

hydraulic motor, which is capable of delivering up to about 37 kW of power. The 

swing platform has a working area that measures 750 mm x 700 mm and a headroom 

of 1180 mm. A stack of electrical slip rings is mounted at the top of the rotor shaft for 

signals and power transmission between the centrifuge and the control room.  

DC voltage is transmitted through the slip rings to the transducers mounted on 

the centrifuge or the model package from the control room. Likewise, registered 

signals from the transducers are then transmitted via slip rings. The signals are first 

filtered by an amplifier system at 100 Hz cut-off frequency to reduce interference or 

signal noise pick-up through the slip rings. The amplified signals are then collected by 

a data acquisition system at a regular interval in the control room. A software called 

Dasylab is used to process the signals whereby the signals are smoothened by using a 

block average. Two closed circuit cameras, which are mounted on the centrifuge, 

enable the entire in-flight process to be monitored in the control room. The NUS 

centrifuge is described in detail in Lee at al. (1991) and Lee (1992).  
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3.3 EXPERIMENTAL SET UP 

Figure 3.3 shows the experimental set-up of the present study. All the tests were 

carried out at 50g in the present study. It should be noted that pore pressure transducers 

(PPTs) are present in all the tests performed, but total stress cells (TSCs) are only 

placed in selected number of tests. 

3.3.1 Model container 

The model container weighs 100 kg and is made of stainless steel. The internal 

dimensions measure 540 mm in length, 200 mm in width and 470 mm in height. The 

front face of the container consists of a 60 mm thick perspex window, which enables 

the whole testing process to be monitored by an image processing camera system 

mounted in front of the container. The back face of the container consists of a steel 

plate, which is strengthened by stiffeners. This enables the container to withstand high 

gravitational force during centrifuge flight. The main body of the container comprises 

a base and two side walls forming a U-shape structure.  The two front and back faces 

are secured to the main body of the container by means of bolts and nuts. Water 

tightness is ensured by bolting all connected faces with rubber seals or gaskets in 

between. A specially designed valve to drain the zinc chloride solution (ZnCl2) via a 

polyethylene tube is located at the bottom, left-hand corner of the back face. 

3.3.2 Model pile 

The model pile was fabricated from a hollow square aluminium tube with an 

outer dimension of 9.53 mm and a wall thickness of 3.18 mm. Ten pairs of strain 

gauges were glued on opposite faces of the model pile at a vertical interval of 25 mm 

as shown in Figure 3.4. The strain gauges would be connected to a TDS-200 strain 

meter or data logger, mounted on-board the centrifuge. The strain meter would 
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transmit digitized data, which would be acquired by the data acquisition system in the 

control room. 

Strain gauges of model Kyowa KFG-1-120-C1-23 are used. Each strain gauge 

has a resistance of 120 Ω and a gauge factor of 2.1.The strain gauges were glued to the 

surface of the model pile using an adhesive of type Kyowa CC-33A after the pile 

surface had been roughened and cleaned with acetone. A coating agent of type Kyowa 

KE48RTV was used to ensure that the strain gauges are water-proofed and to ensure 

proper connection between the strain gauge and the electrical wires. After that, a thin 

layer of epoxy was applied to the entire length of the pile to ensure the strain gauges 

and all connections were waterproof. The final width of the pile measures 12.6 mm or 

630 mm in prototype scale. The total length of the model pile is 350 mm with a soil 

embedment depth of 250 mm or 12.5 m in prototype scale. The calibrated bending 

rigidity, EI of the model pile is 2.2 x 105 kNm2 at 50g. This is equivalent to a 600-mm 

diameter Grade 35 bored pile or a 610-mm diameter steel pipe pile with 12.7 mm wall 

thickness. 

The strain gauges were calibrated to measure the pile bending moment. The 

pile was properly cushioned and then clamped to a table edge in such a way that the 

pile shaft was cantilevered from the table edge. The instrumented pile was connected 

to a strain meter for data acquisition. Known dead weights were then hung at the tip of 

the pile so that the strain gauges at every level along the pile shaft would respond (in 

units of microstrain, µε) according to the bending moment induced by the dead 

weights. The known weights were increased in steps after the strain meter had acquired 

each corresponding set of data measured by the strain gauges. The measured strain 

gauge readings were then printed out from the strain meter so that the relationship 

between microstrain, µε (registered by the strain gauges) and the induced pile bending 
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moment (result of hanging dead weights at the tip of the cantilevered pile) could be 

established. Two appropriate faces of the instrumented square pile were calibrated. As 

such, during centrifuge experiments, the microstrain readings acquired from the data 

acquisition system can be readily related to its corresponding bending moment from 

the scaling relations of centrifuge modelling shown in Table 3.1. Typical calibration 

charts for the instrumented pile used in the centrifuge tests are shown in Figures 3.5 

and 3.6.  

3.3.3 Model pile cap 

The model pile cap is made of aluminium. Three types of pile caps were 

fabricated for the 2-, 4- and 6-pile group configurations. The thickness of the pile cap 

is 20 mm or 1.0 m thick in prototype scale. The pile caps were specifically designed to 

enable each pile in the group to be tightened individually using clamps in both 

directions. These clamps are attached to the main connecting pieces of the pile caps by 

means of bolts. Figure 3.7 shows the pile caps used in this study. 

This is a much improved design compared to previous pile caps done in NUS 

(Lim, 2001) as the rotation or movement of the pile-pile cap connection can be 

minimized. However, it is believed that since the width of each pile is not exactly 

identical to the slot width in the pile cap due to workmanship, some degree of rotation 

or movement might still be present. Nonetheless, extra precautionary measures have 

been employed to minimize such rotation or movement, such as by using clamps lined 

with rubber pads to ensure better grip. The prototype pile cap bending rigidity for the 

2- and 4-pile groups is 1.2 x 107 kNm2 and 2.0 x 107 kNm2, respectively. For the 6-pile 

group, the pile cap bending rigidity depends on the configuration of the piles facing the 

excavation. If the 6-pile group consists of 3 rows of 2 piles per row (2 piles x 3 rows) 

facing the excavation, the prototype EI of the pile cap is 2.0 x 107 kNm2 (similar to the 
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4-pile group case). However, in a 6-pile group of 3x2 configuration, the EI of the cap 

is 3.6 x 107 kNm2. 

3.3.4 Model retaining wall 

The model retaining wall is simulated using a 3 mm thick aluminum plate. The 

prototype bending rigidity is 24 x 103 kNm2/m at 50g, which is equivalent to a FSP IIA 

sheet pile. The total embedded length of the wall is 160 mm or 8 m at 50g. 

3.3.5 Pore pressure transducers 

Druck PDCR81 miniature pore pressure transducers (PPT) were used to 

monitor the variations in pore water pressure during the centrifuge tests. Before each 

test was carried out, the PPTs were de-aired using a vacuum machine to release any 

trapped air bubbles in the PPTs to prevent acquisition of inaccurate readings. Each 

PPT comes with its own manufacturer’s calibration factor and this must be 

incorporated into the calculation of pore water pressure. 

3.3.6 Total stress transducers 

The behaviour of total stress cells (TSCs) has to be understood fully as they are 

more sensitive than the pore water pressure transducers. Their presence in the clay will 

affect their own readings due to adjacent soil arching, surrounding soil saturation level 

and pore water pressure, presence of supporting backing plates and thickness of 

silicone rubber as waterproofing material applied to their bodies. It has been 

demonstrated by many researchers that difficulties arise when measuring normal stress 

accurately in a soil medium due to arching and grain size effects on the active 

diaphragms of the total stress transducers (see for example, Weiler and Kulhawy, 1982 

and Dewoolkar et al., 1998). It is well known that a stiff diaphragm will attract stress 
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to itself causing over-prediction of soil stress and a flexible diaphragm will shed stress 

from its active face, resulting in under-prediction.  

Lee et al. (2002) carried out various tests in different loading conditions to 

evaluate the performance of miniature total stress transducers (Entran EPL-D12) 

embedded in clays. The most applicable experiment from Lee et al. (2002) with 

regards to the present study is the self-weight loading test of saturated normally 

consolidated kaolin clay at high-g.  They found that the registration ratio, R (ratio 

between the measured and applied vertical stress) is under-registered and ranges from 

0.8 to 0.95 (Figure 3.8) over two consecutive loading-unloading cycles at high-g. 

Nonetheless, this range of R values is considered much closer to unity as compared to 

other loading cases like the 1g tests and tests done with dry kaolin powder, as reported 

by Lee et al. (2002).  

Juneja (2003) further showed that the increased stiffness of a normally 

consolidated kaolin clay, as compared to that of kaolin slurry, was insufficient to lead 

to a significant increase in stress arching. Besides that, it was also reported that total 

stress transducers installed with backing plates would register higher R values than 

those without the presence of such backing plates. It had also been shown that the 

thinner, long aluminium backing plate would serve to lower the transducer aspect ratio 

(0.04), thus reducing the effect of stress concentration on the transducer (Weiler and 

Kulhawy, 1982) as compared to the short aluminium plate (aspect ratio of 0.2) and the 

perspex plate (aspect ratio of 0.09). In practice, the long aluminium plate could be used 

to maintain the transducer orientation during insertion into the model ground. 

However, it has to be recognised that any insertion of miniature transducers into a 

model ground may interfere with the soil flow during consolidation, but such an effect 

can be greatly reduced by keeping the width of the plate to a minimum.  
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The miniature total stress transducers would have to be waterproofed using 

silicone rubber before it could be used in the saturated clay. Lee et al. (2002) reported 

that the thicker the waterproofing silicon rubber, the lower would be the registration 

ratio, R as shown in Figure 3.9. Nonetheless, the transducers that were embedded in 

clay subjected to high-g all recorded higher R values than those at 1g. Figure 3.9 

suggests that if silicon rubber had not been used as waterproofing coating, the R value 

would have been greater than 0.95.  

 The ratio of the measured total horizontal stress to the measured total vertical 

stress, KT, as presented by Lee et al. (2002), is shown in Figure 3.10. By using Jaky’s 

(1948) relation of Ko = 1-sin φ’, where Ko is the lateral coefficient of earth pressure at 

rest, φ’ is the effective friction angle and measured bulk unit weight of about 15 

kN/m3, KT = 0.85, 0.84 and 0.82 for φ’ = 26o, 29o and 32o, respectively. Lee et al. 

(2002) showed that the measured values of KT are rather consistent with Jaky’s Ko 

values.  

 Juneja (2003) reported that the calibration factors of the total stress transducers 

provided by the manufacturer are in close agreement with the measured loading and 

unloading calibration factors. This implies that the manufacturer’s calibration factors 

can be used directly and confidently with a correction factor of between 0.8 and 0.95 

such that the under-registration of the measured output readings of the total stress 

transducers can be corrected.  

 All necessary precautions and findings described by Lee et al. (2002) and 

Juneja (2003) have been strictly adhered to in the present study to ensure proper and 

correct installation of the total stress transducers. 
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3.3.7 Non-contact laser displacement transducers 

NAIS micro laser sensors LM10 (model ANR1250) were used to measure the 

pile head movement during and after excavation process. This sensor has a centre point 

distance (distance between sensor and target) of 50 mm and a measurable range of ±10 

mm within the centre point distance. The light source comes from a laser diode and has 

a wave length 685 nm and beam dimension of 0.6 mm x 1.1 mm at the centre point 

distance. It has a maximum linearity error of ±0.5% on aluminium. This translates to a 

linear error of 0.25 mm at prototype scale. The laser sensors must be warmed up for 

about 30 minutes before being put to active usage.  

The laser sensor has three main components, namely, the sensing body, the 

relay cable and the controller/display unit. The sensing body houses the laser diode and 

its function is to emit laser beam upon connected to a power supply of 24V DC.  The 

relay cable connects the sensing body to the DC power supply.  The controller/display 

unit is used to control and set the measuring limit of the sensor. A display window on 

the unit shows the measurement data as voltage signal.  

Calibration was carried out by securing a 100-mm Linear Variation 

Displacement Transducer (LVDT) to the sensing body of the laser sensor. The LVDT 

was connected to a voltmeter so that the voltage could be displayed digitally. The 

LVDT could take up to a maximum of 10 V. Hence, a direct relationship between 

displacement and voltage could be established, i.e. 1 V per 10 mm movement of the 

LVDT. The laser sensor has a specified optimum range of measurement to ensure 

accuracy of the readings. However, readings outside this optimum range can still be 

measured by the laser sensor but to a lesser accuracy. Therefore, calibration is ensured 

to lie only within this optimum range (for example, see Figure 3.11). As such, the 

LVDT serves as an indication or a ‘ruler’ for the calibration of the laser sensor.  

   61



  Chapter 3: Experimental set-up and procedures 

The output voltage reading on the laser sensor display unit varies with the 

displacement. Each set of readings of the LDVTs and the laser sensors were recorded 

at every specified displacement intervals so that correlation between displacement and 

voltage could be established. The calibrated charts for the two laser sensors used in the 

centrifuge tests are shown in Figures 3.12 and 3.13.   

3.3.8 Kaolin clay 

The kaolin clay used in the present study has a liquid limit (LL) of 80 %, 

plastic limit (PL) of 40 % and hence a plasticity index (PI) of 40 %, and a specific 

gravity, Gs, of 2.65. The compression index, Cc and swelling index, Cs are 0.64 and 

0.13, respectively. The coefficient of permeability of normally consolidated kaolin at a 

consolidation pressure of 100 kPa is about 1.36 x 10-8 m/s. The effective internal 

friction angle, φ’, is 25o Kaolin clay has critical state parameters λ of 0.27, average κ 

of 0.06, Γ of 3.265 and M of 1.02. The ratio of undrained shear strength, cu, to the 

effective overburden pressure for the normally consolidated clay is typically between 

0.20 and 0.30.  

3.3.9 Sand 

The sand that underlies the clay in each test serves as a stiff material for wall 

and pile embedment as well as for drainage purpose. The sand used is Toyoura sand, 

which is described in detail by Shen (1999). It has a mean grain size of 0.26 mm, 

uniformity coefficient of 1.3 and specific gravity, Gs, of 2.645. The maximum and 

minimum density of the sand is 16.17 kN/m3 and 13.10 kN/m3, respectively. Under a 

confining pressure of between 50 and 100 kPa, the peak internal friction angle is about 

43o. 
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3.4 EXPERIMENTAL PROCEDURES AND ASSESSMENT 

Standard or repetitiveness of experimental procedure is very important as it 

determines the reliability of reproducing similar soil stress state in each experiment. 

Both clay and sand were used in the present experiments. The thicknesses of the sand 

and clay layers depend on the requirement of each experiment. Besides that, the 

assessment of retained soil stress immediately prior to excavation at the 

reconsolidation stage as well as the evaluation of the effectiveness of the image 

processing system in this study are also presented.  

3.4.1 Preparation of model ground 

All kaolin clay samples tested were normally consolidated with a layer of 

overconsolidated crust. Standard preparation procedure was adopted to ensure 

repetitive reproduction of the model ground with similar stress distribution in each test. 

The kaolin powder was mixed with water at a water content of 120% in a de-airing 

mixer to produce uniform clay slurry as shown in Figure 3.14. Simultaneous mixing 

and de-airing could be done at the same time and thus the clay preparation time is cut 

down. De-airing is important as it ensures that the clay slurry is fully saturated. De-

airing also helps to free trapped air bubbles. This process normally took about 4 to 5 

hours.  

The four walls of the container were greased to reduce the soil-wall friction 

during testing. Subsequently, the model container was filled with water before the sand 

was rained down from a height of 600 mm. This ensures that the sand is saturated and 

is uniformly formed at the bottom of the model container. Depending on the 

requirement of the experiments, the thickness of sand may vary between 40 mm to 130 

mm. This will be further discussed in Chapter 4.  
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A sheet of filter paper was then placed on top of the sand to prevent direct 

contact between the sand and the clay that would be placed subsequently. This is to 

ensure that the sand will not be “contaminated” and thus can be re-used after each test. 

The kaolin slurry was then placed carefully under water to avoid trapping of air 

bubbles until the desired height was reached. Two pore pressure transducers (PPTs), 

which had been de-aired, were embedded in the kaolin slurry. As the kaolin slurry was 

initially very soft, it was left in the container to consolidate under its own weight 

overnight. Subsequently, a 17 kg plate measuring 520 mm long, 190 mm wide and 60 

mm thick was placed on top of the slurry to stiffen it for a couple of days. Then, the 

sample was placed on a loading frame for further 1-D consolidation under a loading 

pressure of 20 kPa.  

3.4.2 Self-weight consolidation 

When the kaolin clay had fully consolidated under a 20 kPa pressure, two 

linear variation displacement transducers (LDVTs) were installed on the clay surface. 

The LVDTs were supported by a gantry, which was bolted to the edge of the model 

container. After that, the model container was placed on the centrifuge swing platform 

and spun up to 50g for about 6 to 7 hours to allow the kaolin clay to consolidate under 

its own weight to obtain a normally consolidated sample. The dissipation of excess 

pore water pressure was monitored by the PPTs embedded in the kaolin clay.  

The ground surface settlement was monitored by the LDVTs. When the 

LVDTs register negligible changes, the centrifuge was spun down and the model 

container was removed from the platform. In doing so, a 2.8-m (prototype scale) thick 

layer of stiff overconsolidated crust is obtained so that instrumentation work can be 

carried out easily. Had this overconsolidated crust not been there, instrumentation 
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work would be very difficult, as the soft clay would collapse easily. However, much of 

the clay remained normally consolidated. 

3.4.3 Excavation and installation of model pile at 1g 

After consolidation under 50g, the kaolin clay became stiffer and thus more 

manageable. The back face of the model container was then removed so that additional 

PPTs could be embedded at pre-determined positions.  

A polyethylene tube, which would be used to drain off the zinc chloride from 

the latex bag, was fastened through the valve at the bottom corner of the back face. 

The valve was then tightened so that the ‘O’ rings would expand and squeeze against 

the polyethylene tube to ensure water tightness.  One end of the polyethylene tube was 

connected to the bottom of the latex bag while another end was connected to a solenoid 

valve fixed onto the top of a stainless steel container. The solenoid valve, as shown in 

Figure 3.15, was controlled by a 24V DC power supply. When power was supplied 

during flight, the valve would open to release the zinc chloride solution in-flight. 

The stainless steel container would be used to contain the drained zinc chloride 

during in-flight excavation. After this was done, the back face was bolted back to the 

main body of the container. Subsequently, the model wall and model pile were 

installed at 1g by jacking them into the clay using a guide to ensure that it was 

installed vertically as shown in Figure 3.16.  

Excavation was then carried out at 1g. The clay was carefully removed to 

minimize ground disturbance. The removed clay was replaced by zinc chloride 

solution in a latex bag. The density and height of the zinc chloride solution were made 

identical to those of the clay that had been removed.  
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3.4.4 Placement of soil markers 

The front perspex face of the model container was then removed to place 

markers on the kaolin clay with the aid of a template at 20 mm grid as shown in Figure 

3.17. The markers were used to track the soil movement during and after the 

excavation process so that the magnitude of soil movement could be quantified.  

3.4.5 Instrumentation of model ground and model pile 

Subsequently, a series of LVDTs and a pair of non-contact laser displacement 

transducers were installed and supported from a gantry fastened to the edges of the 

model container as shown in Figure 3.18. The LVDTs were used to measure the 

ground settlement behind the excavation. 

The pile head deflection during and after the excavation was monitored by the 

two non-contact laser transducers. Owing to the size of the laser transducers, it was not 

possible to measure them at the ground level. Since the pile head deflection was 

measured at two elevations along the free standing portion of the model pile above the 

ground, it is possible to calculate the pile head deflection at the ground level by linear 

interpolation. Figure 3.18 shows the plan view of the package set-up complete with the 

necessary instrumentation.  

3.4.6 Preparation for data acquisition 

Two personal computers in the control room were used to acquire the data. A 

computer software called Dasylab was used in the first computer to acquire readings 

from the PPTs and LVDTs. The second computer was used to run the image 

processing system so that images could be captured during the experiments and also to 

acquire the strain gauge readings from the on-board data logger after the experiment. 

The sampling rate for both computers was 3 seconds. The time on both the computers 
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were synchronized so that the PPT, LVDT and the strain gauge readings could be 

simultaneous. The data acquisition system was checked to be working properly before 

the start of each centrifuge experiment. All wired connections and bolts were ensured 

to be tightly secured. After checking, the data acquisition system was triggered to start 

acquiring data just before the centrifuge was activated. The image processing system 

was activated when excavation was to be carried out. The completed centrifuge 

package is shown in Figure 3.2. Finally, the model package was spun up to 50g for the 

reconsolidation of soil.  

3.4.7 Assessment of in-flight simulation of excavation using ZnCl2 

When zinc chloride solution (ZnCl2) is used as a substitute for the excavated 

soil, stress inequilibrium will occur initially due to different lateral stresses imposed by 

the soil and the liquid. It should be noted that in-flight excavation was only carried out 

when there were no further recorded changes in the consolidation settlement and pore 

water pressure values. In an undrained condition, the soil stresses can be characterized 

by its lateral earth pressure coefficient, KT, which is the ratio of the total horizontal to 

the total vertical stresses in the soil (Holtz and Kovaks, 1981). Therefore, this KT value 

is deemed appropriate to describe the soil total stresses prior to the start of excavation 

process.  

In order to study the stress state of the retained soil prior to excavation, two 

total stress cells (TSCs) were embedded at depths 1.5 m (TSC 1) and 3.5 m (TSC 2) at 

a distance of 0.5 m behind the wall. It is also very important to embed corresponding 

pore water pressure transducers (PPTs) close to the TSCs so that the effective stresses 

of soil can be calculated. Owing to soil settlement during the high-g reconsolidation, 

the image processor is used to capture the soil images over specified intervals so that 

subsurface settlement can be measured. When the settlement at the location of the 
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TSCs is known, corrections can then be made to the embedded depths of the TSCs, 

which are expected to settle together with the consolidating soil (Lee et al., 2002).  

Since the unit weight of the clay is known and the height of the water table 

above the ground surface can be measured by two PPTs on the ground surface, the 

total, σv, and effective overburden pressure, σv’, can be calculated. Besides that, the 

lateral earth pressure coefficients at rest for a normally consolidated, Konc, and 

overconsolidated, Kooc, clay layer can be calculated as follows: 

( )'sin1 φ−=oncK                                      (Jaky, 1948)                                   (3.1)                   

      (Mayne and Kulhawy, 1982)                              (3.2) ( ) ( )'sin φOCRKK oncooc =

Therefore, the effective horizontal stress, σh’ can be calculated since Ko and σv’ 

are already known. The pore water pressure, u, can also be calculated since both σh’ 

and σh (directly measured from TSCs) are known as well. This calculated pore water 

pressure is then compared to the measured values from the PPTs and is shown in 

Figure 3.19. Since both the measured and calculated pore water pressure show fair 

agreement, it can be safely deduced that the TSCs are reliable in measuring the total 

stresses in the soil in this study.  

Figure 3.20 shows that immediately after 50g has been achieved during the 

spinning up process, the average lateral earth pressure coefficient (TSCs 1 and 2), KT, 

of the retained soil is about 1.49. Since the KT value for the ZnCl2 is 1.0, wall and soil 

movement towards the excavation are inevitable as shown in Figure 3.21. After about 

2 hours (model time) of reconsolidation, the KT values of TSCs 1 and 2 would 

decrease due to dissipation of pore water pressure.  

With the subsequent reduction in the differences of KT values over time, the 

wall and soil movement would eventually reduce too. Therefore, after about 3 hours 

(model time) of high-g reconsolidation, stress and hydrostatic equilibrium is checked 
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based on the changes in the KT values. Figure 3.22 shows that for 30 days (prototype 

scale) prior to excavation, the KT values are indeed consistent and shows minimal 

fluctuation, suggesting an undrained hydrostatic equilibrium condition. At this stage, 

the average KT value measured on the retained soil is about 1.13, which is only slightly 

higher than the value of 1.0 due to the ZnCl2. As such, movement was expected to be 

negligible at this stage. This is consistent with the observation that no further wall or 

soil movement was noted by the image processing system. Subsequently, in-flight 

draining of the ZnCl2 from the rubber bag to simulate excavation was ready to be 

carried out.  

When both excess pore water pressure and ground settlement behind the wall 

showed negligible changes over time, the power supply controlling the solenoid valve 

would be switched off so that the ZnCl2 could be released to depict excavation at 50g. 

In prototype scale, the simulated excavation rate was 0.6 m per day. All data acquired 

and still images captured would be stored as temporary files in the computers and 

could be retrieved after the experiment. 

From this assessment, it has been shown that under an undrained condition, the 

KT value of an overconsolidated (OC) layer is higher than that of a normally 

consolidated (NC) layer. The KT value of an OC layer is generally higher than unity, 

while the KT value of a NC layer is lower than unity after 3 hours of reconsolidation 

(model time). This implies that if the ZnCl2 depth is equal or less than the depth of the 

OC layer at the retained side, the average KT value would not differ significantly from 

unity. Satisfactory stress equilibrium can hence be achieved at both sides of the wall 

immediately prior to excavation. 
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3.5 IMAGE PROCESSING SYSTEM 

Image processing techniques have been used by Allersma (1991) and Davies 

and Jones (1998). The image processing system used in NUS consists of a high 

resolution camera, a lighting system, an on-board computer mounted on the centrifuge 

and a command computer in the control room. This image processing system is 

capable of capturing live images of the soil movement during an in-flight centrifuge 

test via a remote control function. 

3.5.1 High resolution camera 

A CV-M1 2/3" CCD Progressive Scan High Resolution Camera was mounted 

in front of the perspex window of the model container.  The resolution of the images 

captured using this camera is over a million pixels. However, the accuracy of soil 

movement measurement depends on the size of the image captured; the smaller the 

area of interest, the better is the accuracy. For a high resolution image, the size of an 

image of about 100 mm x 100 mm can produce a pixel-to-pixel spacing of less than 

0.1 mm. 

3.5.2 Lighting system 

An appropriate lighting system is important in producing sharp and clear 

images, as shown in Figure 3.23. Two spot lights, each with a 50 W halogen bulb, 

were positioned on a cross bar at a specific distance in front and parallel to the model 

container to achieve the best lighting effects.  When the centrifuge was in operation, 

the florescent lights inside the centrifuge enclosure were turned off. This would greatly 

enhance the quality of the images captured. 
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3.5.3 On-board and command computers 

The on-board computer mounted on the centrifuge was capable of sustaining 

high gravitational force without being damaged. The computer consists of a solid-state 

hard disk, which is a collection of solid-state semi-conductors to provide fast access 

time as compared to a conventional hard disk. Since the hard disk of the computer was 

specially designed and built, it provided greater resilience to physical vibration, shock 

and extreme temperature fluctuations. All captured images were stored in this on-board 

computer. 

Both the on-board computer and the command computer in the control room 

were loaded with three different types of software, namely, PCVision, PcAnyWhere 

and Optimas.  

PCVision is capable of buffering images between the camera and host PC 

system to enhance the quality of the images.  This feature allows faster transfer of 

images as well as simultaneous acquisition and processing of data.  The memory of the 

on-board computer also assures that the images will not be lost during transfer of files 

from hard disk to system memory or vice-versa. 

PcAnyWhere enables the on-board computer to be manually controlled by the 

command computer in the control room so that image capturing can be activated at any 

time during a centrifuge test. Wireless communication between the two computers can 

be established either via an “internet” mode or a “direct” mode. In the “internet” mode, 

the communication between the two computers is via the Internet TCP/IP protocol, 

whereby each computer is identified by its unique allocated IP address and 

communication is automatically established via the internet. Any intermittent network 

instability, which may occur unexpectedly, will inevitably interfere with the 

controlling operation. Owing to this risk involved, the “direct” mode is preferred.   
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In the “direct” mode, the computer is connected directly to the on-board 

computer using a “cross” type network cable. By this configuration, the command 

computer in the control room establishes a “direct” connection with the on-board 

computer. This “direct” mode works in a more self-contained and robust environment, 

and will not be affected by any internet connectivity problem. This “direct” remote 

sensing method of communication is used for all the centrifuge tests. 

Once the connection between the two computers is established, the command 

computer in the control room can virtually take control of the on-board computer. 

Hence, the image capturing process can be activated anytime at the user’s will.  

3.5.4 Assessment of effectiveness of image processing system 

The image processing method is used to track the soil markers so that the soil 

movement due to excavation can be quantified. If necessary, this method can also be 

extended to measure the deflection profile of the wall since the wall has also been 

permanently marked with black dots at a specified interval as shown in Figure 3.23. 

The image processing software, Optimas, is used for live capturing of the desired 

images during in-flight centrifuge operation manually or at a specified time interval 

automatically. Optimas also enables calibration of distance between two fixed points in 

terms of pixel prior to the analysis. Pixel can be thought of as the small discrete 

elements that together constitute an array of element known as image and the value of 

a pixel is the average luminance value of an image.  

Since the number of pixels for each set of pictures taken after each centrifuge 

test is unique, a standard calibration method is necessary. Unless the focusing distance 

between the image processing camera and the model container in each centrifuge test 

can be consistently maintained to be exactly identical, variation in the number of pixels 

is due to occur. For this calibration purpose, two fixed points exactly 20 mm apart 
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from centre-to-centre were placed on the inside perspex screen at the same focusing 

distance as the soil markers so that this calibration points would be captured in every 

still image. These two points serve as reference points to convert pixel distance into a 

linear measuring unit. These reference points were located above the retained soil as 

shown in Figure 3.23. In this research, the average calibration factor obtained using 

this method is about 0.22 mm per pixel. 

In order to assess the effectiveness of the image processing system, two 

methods of measuring the surface settlement are adopted. The first method is the direct 

measurement of the surface settlement using LVDTs at various distances behind the 

wall. The second method involves measuring the subsurface settlement by tracking the 

vertical movement of the soil markers at various depths using the image processing 

method.  

A typical reconsolidation stage of a centrifuge test is used for this purpose. 

Figure 3.24 shows the settlement measured by both these methods over time. It is 

observed that the measured total sub-soil settlement agrees well with the direct 

measurement of the surface settlement using LVDTs. In view of this, the image 

processing analysis can be considered a competent and reliable method to measure the 

soil movement in the present study. 

3.5.5 Post-processing of images 

For the post-processing of the images, Optimas offers a powerful function of 

“Motion Analysis” whereby the movement of the points of interest in a series of 

images can be tracked using a pre-defined co-ordinate system. The movement of the 

points of interest can be established as the pixels of the images are converted into a 

linear measuring unit if the calibration is known. 
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The results of soil movement can be readily exported from Optimas to Excel 

spreadsheet for further manipulation. After the necessary calculations were done in 

Excel, the final results of soil movement were plotted in vectors and contours for easy 

visualization using a plotting software called Surfer version 7.0. Basically, the input 

parameters are the magnitudes and direction of the movement of the beads analyzed 

using Optimas. The computer software, Surfer, could be used to interpolate the soil 

movement in areas where the beads were not present, for example, at locations in in-

between the beads. 
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Table 3.1 Scaling relation of centrifuge modelling  

Parameter Prototype Centrifuge model at Ng 

Linear dimension 1 1/N 

Area 1 1/N2

Volume 1 1/N3

Density 1 1 

Mass 1 1/N3

Acceleration 1 1/N 

Displacement 1 1/N 

Strain 1 1 

Energy 1 1/N3

Stress 1 1 

Force 1 1/N2

Time (creep) 1 1 

Time (dynamics) 1 1/N 

Time (seepage) 1 1/N2

Flexural rigidity, EI 1 1/N4

Axial rigidity, EA 1 1/N2

Bending moment 1 1/N3
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Figure 3.1 Elevation view of the NUS centrifuge 
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Figure 3.2 Centrifuge package set-up with lighting system and  

image processing camera 
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Figure 3.3 Experiment set-up of the present study 
 
 

 
 
 

Figure 3.4 A partially completed and a completed model pile 
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Figure 3.5 Typical calibration chart for the instrumented pile (Face A) 
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Figure 3.6 Typical calibration chart for the instrumented pile (Face B) 
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Figure 3.7 Pile caps that can be clamped in both directions  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

Figure 3.8 Measured and applied vertical stress over 2 consecutive loading 
unloading cycles at high-g (a) Cycle 1 (b) Cycle 2 (after Lee et al., 

2002)  
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Figure 3.9 Measured and applied vertical stress over 2 consecutive loading 
unloading cycles at high-g (a) Cycle 1 (b) Cycle 2 (after Lee et al., 

2002)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10 Variation of measured vertical and horizontal stress at high-g  
(after Lee et al., 2002)  
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Figure 3.11 Typical optimum measuring range of a laser sensor 
 
 

-6 -4 -2 0 2 4 6
Volts (V)

-10

-8

-6

-4

-2

0

2

4

6

8

10

D
is

pl
ac

em
en

t (
m

m
) Y = 1.9722X + 0.0627

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12 Typical calibration chart for laser sensor A 
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Figure 3.13 Typical calibration chart for laser sensor B 
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Figure 3.14 De-airing mixer used to mix and de-air kaolin clay 

 
 
 

   82



Chapter 3: Experimental set-up and procedures 

 

e

Figure 3.15 Solen

Figure 3.16 

 

 

Solenoid valv
 
oid valve and stainless steel co

 
 
 

Guides

 
Installation of model wall usin

 
 

 

PE tube to drain ZnCl2
ZnCl2 container
 

ntainer behind the model container 

 

Model wall 

g guides to ensure verticality 

 83



Chapter 3: Experimental set-up and procedures 

 
 

Figure 3.17 Placement of markers on soil to track soil movement 
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Figure 3.18 Plan view showing the instrumentations installed on  

the model container 
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Figure 3.19 Calculated pore water pressure from TSCs compared with that 
measured from the PPTs (water table approximately 0.5 m 

above clay surface) 
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Figure 3.20 Measured KT value during reconsolidation of clay 
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Figure 3.21 Measured wall deflection profile during reconsolidation 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
Figure 3.22 Measured Ktotal 30 days before and after excavation (0 days denotes 

start of excavation) 
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Figure 3.23 Sharp and clear image captured using the image processing camera 
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Figure 3.24 Comparison of ground settlement measured using image processor and 
LVDTs 
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CHAPTER FOUR 

 

BEHAVIOUR OF SINGLE PILE ADJACENT 

TO EXCAVATION IN CLAY 

 

4.1 INTRODUCTION  

As reported in Chapter 2, only limited case studies and laboratory tests have 

been carried out to investigate the pile responses due to an adjacent excavation in clay. 

To obtain a better understanding on the effects of excavation on a nearby pile 

foundation, centrifuge tests are carried out in the present study. The first test series 

involved a free head single pile behind a wall that remained stable after excavation. In 

the subsequent second test series, the excavation was made deep enough so that the 

wall would subsequently fail to fully appreciate the pile responses under this extreme 

circumstance.  

The failure of retaining wall is defined as the onset of excessive wall 

deflection. During and after completion of soil excavation in front of the wall, the 

ground surface settlement trough behind the wall, subsurface soil movement and pore 

water pressure in the soil, wall and induced pile head deflection as well as bending 

moment profiles along the pile were monitored regularly. This chapter reports the 

results of the abovementioned centrifuge tests. 
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4.2 TEST PROGRAM 

All the centrifuge tests were performed at 50g. Unless otherwise stated, the test 

results are presented in prototype scale hereinafter. The complete test program of 

single pile is shown in Figure 4.1. The single pile in Tests 1, 2, 3 and 4 are located 1, 3, 

5 and 7 m behind the retaining wall, respectively. In these tests, the excavation depth is 

1.2 m and the single pile is socketed 6 m into the lower sand layer. The pile toes are 

rested directly on the base of the model container. Tests 1, 2, 3 and 4 represent cases 

where the wall remains stable after excavation. 

Tests 5, 6 and 7 were carried out to study the pile behaviour behind a 

marginally stable wall and a wall that subsequently collapses. In order to induce 

significantly large wall movement upon excavation, either the excavation depth is 

greater and/or the height of the underlying sand layer is reduced as compared to the 

earlier stable wall test series. In these tests, the pile is located 3 m behind the retaining 

wall.  

 

4.3 EQUILIBRIUM ANALYSES FOR WALL STABILITY 

A refined limit equilibrium analysis, (Bolton and Powrie, 1987) based on 

permissible stress fields was used to calculate the required wall embedment below the 

dredged line. In the analysis, the active and passive zones switch about a pivot point so 

that the unpropped wall could satisfy the conditions of both moment and force 

equilibrium This method is capable of giving a more reasonable prediction of wall 

failure than other widely used method such as “fixed earth support” method. Figure 4.2 

shows the limit equilibrium of forces on the retaining wall. The depth of wall toe, d, 

and the depth of pivot point, zp, are determined by solving both the horizontal force 
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and moment equilibrium equations simultaneously. The equation of equilibrium of 

horizontal forces is given as: 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) 0121 '2'2''2 =−−−+−−+−−++ apepeaaprprp KKzKdKKzhKdh γγγγγγ
                                                                                                                                    (4.1) 

The equation of moment equilibrium about the wall crest is given as: 
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active and passive earth pressure coefficients are Ka = (1-sinφ’)/(1+sinφ’) and Kp = 

(1+sinφ’)/ (1-sinφ’), respectively. By substituting the soil bulk unit weight, γ, of 16.5 

kN/m3 and effective friction angle, φ’, of 25o and by iteration, Eqs. (4.1) and (4.2) can 

be solved simultaneously to yield d = 3.4 m and zp = 3.2 m. Thus, a required wall 

embedment depth of 3.4 m is needed to maintain limit equilibrium of the retaining 

wall. To safeguard the wall against failure, a factor of safety of 2 is used and hence an 

embedment depth of 6.80 m below the dredged level.  

For Test 5, the excavation depth is 1.8 m while the wall is embedded 6.5 m 

through the clay layer and 1.5 m into the underlying sand layer. The calculated factor 

of safety using the limit analysis is 1.46 and hence the wall is considered marginally 

stable. To model a cantilever retaining wall that eventually fails after excavation as in 

Test 6, the entire wall is embedded in clay. This is commonly known as a floating 

wall. For an excavation depth of 1.8 m, the calculated factor of safety is 0.95. Tests 6 

was done to illustrate the importance of wall toe embedment into the underlying sand 

layer. To simulate a catastrophic wall failure case as in Test 7, the wall and soil 

conditions are the same as those in Test 5 but with a much greater excavation depth of 

2.8 m. 
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4.4 IN-FLIGHT EXCAVATION 

In-flight excavation was simulated by draining zinc chloride (ZnCl2) solution 

from the rubber bag. The density of ZnCl2 is 16.5 kN/m3 and is identical to that of the 

clay. The simulated excavation rate is about 0.6 m per day, which is compatible to a 

medium scale excavation work. At this excavation rate, the change in pore water 

pressure caused by the release of lateral stress can be comfortably captured in this 

study. This is important because when the soil is unloaded, it will cause a drop in pore 

water pressure. If the excavation is carried out too fast, subsequent dissipation of 

excess negative pore water pressure and seepage effects over a longer time may 

conceal this drop.  

 

4.5 IN-FLIGHT BAR PENETROMETER TESTS 

A bar penetrometer or T-bar was used to estimate the undrained shear strength 

profile of the clay. The T-bar was first developed in the University of Western 

Australia and had been proven to be more advantageous than cone penetrometer and 

vane shear apparatus (Stewart and Randolph, 1991). It is an ideal tool to be used for 

clay since it combines the advantages of the cone penetrometer, which gives a 

continuous profile of strength and the vane shear device, which gives direct measure of 

shear strength.  

Besides that, the bar factor, Nb, has a strong theoretical basis (Randolph and 

Houlsby, 1984) and its value may be chosen with confidence (usually around 10.5) as 

opposed to the cone penetrometer where the cone factor is dependent on OCR and the 

measured cone resistance is dependent on stress level (Stewart and Randolph, 1991). A 

particular application for the bar penetrometer is for laterally loaded piles. The test 

measures the ultimate soil pressure acting on the bar and thus, a direct comparison to 
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the ultimate lateral pile capacity may be made. The schematic diagram of a bar 

penetrometer is shown in Figure 4.3.  

Figure 4.4 shows the undrained shear strength, cu profiles for the kaolin clay 

tested under 50g at 1.5 m and 3.0 m behind a stable wall before and after excavation. 

Figure 4.5 shows the clay cu profiles at 3.0 m behind the wall before and after the 

collapse of the wall in tests involving wall failure. Figures 4.4 and 4.5 reveal the 

presence of a 2.8 m thick lightly overconsolidated crust above the normally 

consolidated clay. It is also evident that the undrained shear strength of the clay prior 

to excavation increases with depth and can be readily described by: 

                                                85.0
' 29.0 OCR

p
c

o

u =                                           (4.3) 

where po’ is the effective overburden pressure and OCR is the overconsolidated ratio. 

An important observation was noted. When in-flight T-bar tests were carried out for 

the stable wall test series, a drop in the cu values was noted for clay at 1.5 m behind the 

wall only (see Figure 4.4). For clay at 3.0 m behind the wall, the cu values did not 

reduce much. This is so because the clay experiences greater deformation nearer to the 

wall. However, if the wall collapsed after excavation, the cu profile at 3.0 m behind the 

wall would reduce due to large soil deformation at the location. 

 

4.6 SINGLE PILE BEHAVIOUR BEHIND A STABLE WALL 

This section reports the results for Tests 1, 2, 3 and 4 where the retaining wall 

remains stable throughout the tests. The final excavation depth is 1.2 m and only free-

head single piles are studied. The test results are presented in prototype scale according 

to relevant scaling principles. The following sign conventions have been adopted in the  
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present study. The deflection of the pile towards the excavation side is regarded as 

positive. The pile shaft curvature towards the excavation side is also taken as positive.  

4.6.1 Test results 

The test with pile at 3 m behind the retaining wall (Test 2) is used to illustrate 

the general trend of the results. Two pore water pressure transducers or PPTs were 

placed at the bottom of the latex bag to monitor the variation of the ZnCl2 pressure 

during in-flight excavation. Figure 4.6 shows the variation of ZnCl2 pressure and 

excavation depth over time. The excavation depth increases fairly linearly over time 

and it took about 2.0 days to reach an excavation depth of 1.2 m. This corresponds to 

an excavation rate of 0.6 m/day.  

Figures 4.7(a) to (c) show the variations of excavation depth, wall head 

deflection and pile head deflection at ground level with time, respectively. It should be 

noted that the wall and pile head deflections at the ground level are derived by the 

linear geometry of the two displacement readings obtained along the free-standing 

portion of the wall and the pile, respectively. As the development of excavation depth 

and wall head deflection with time for the 4 tests are essentially identical, only a 

typical set of test data are shown in Figures 4.7(a) and (b) for clarity.  

Figure 4.8 shows the measured ground surface settlement troughs at different 

times. These troughs are derived from several displacement transducers placed at 

various distances behind the wall. As expected, the magnitude of soil movement 

decreases with increasing distance from the wall. It is noted that after completion of 

excavation, the soil continues to settle with time with the rate of increase decreasing 

with time. However, between the completion of excavation to the end of test (about 

350 days in duration), the incremental soil settlement is noted to be higher further 

away from the wall than those nearer to the wall. Such long term settlement behind the 
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wall after excavation is similar to those observed by Bolton and Powrie (1987). This 

observation will be further discussed later.  

Figure 4.9(a) shows the induced bending moment profile along the pile at 

different times for Test 2 with the pile located at 3 m behind the wall. The induced 

bending moment is noted to increase with excavation depth and the maximum bending 

moment is located at about 7.5 m below the ground. After completion of excavation, 

the bending moment along the pile continues to increase for some time. The bending 

moment reaches the respective maximum values at about 50 days after completion of 

excavation and after which it decreases with time. This phenomenon will be explained 

in greater detail in the next section. The induced shear force and soil pressure profiles 

along the pile can be derived from the first and second derivatives of the bending 

moment profiles, respectively. This is achieved by fitting a fourth order spline function 

between successive data points. On the other hand, the pile deflection profile can be 

obtained by integrating the spline function for the bending moment profiles twice with 

two specified boundary conditions in the double integration. The first condition is the 

measured pile head displacement and the second is zero pile toe rotation. 

 By specifying the above specific boundary conditions, the use of the extremely 

sensitive pile head rotation in the double integration process that may considerably 

affect the accuracy of the end results could be avoided. Figures 4.9(b), (c) and (d) 

show the derived pile shear force, deflection and lateral soil pressure profiles, 

respectively. Similar to the bending moment profile, the pile shear force, deflection 

and soil pressure profiles reach the respective maximum values about 50 days after 

excavation and after which they reduce slightly with time. This is expected as the shear 

force, deflection and lateral soil pressure profiles are derived from the measured pile 

bending moment profiles.  
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The development of maximum induced pile bending moment along the pile 

with time for all the 4 tests is shown in Figure 4.7(d). The elevation of the maximum 

induced pile bending moment is noted to be the same for all the 4 tests. As mentioned 

earlier, for Test 2 with the pile located at 3 m behind the wall, the maximum induced 

bending moment reaches its peak value about 50 days after completion of excavation 

as observed earlier and after which the bending moment decreases slightly with time. 

For Test 1 with the pile located very close to the wall at 1 m away, the trend is similar 

except that the peak value of maximum bending moment is reached 4 days after the 

completion of excavation, respectively. It has to be acknowledged that the approximate 

time for the pile bending moment to reach a maximum value is solely based on this 

research for a given set of boundary conditions and may not be applicable to a general 

case. 

On the other hand, for Tests 3 and 4 with the pile located further away from the 

wall at 5 m and 7 m away, respectively, the maximum bending moment is observed to 

increase continuously with time. Figures 4.7(c) and (d) clearly show that the induced 

pile bending moment and deflection reduce considerably with increasing distance 

between the pile and the wall. It is also evident from Figures 4.7 to 4.9 that the 

movements of the wall, the soil and the pile as well as the induced pile bending 

moment are dependent upon excavation depth and time. Further evaluation of the time 

dependent responses of the pile, the soil and the wall are examined in the next section. 

Figure 4.10 shows the maximum induced pile bending moment at various 

excavation depths obtained from the tests. It is evident that the maximum bending 

moment reduces exponentially with increasing distance of pile from the retaining wall. 

The maximum pile head deflection also shows an exponential reduction in magnitude 

with increasing distance of pile from the retaining wall, as illustrated in Figure 4.11.   
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The maximum pile bending moment, Mmax, in this case, can be expressed 

generally as an exponential function: 

Mmax = αeβx                                                                            (4.4) 

where x is the distance of pile behind the wall and α and β are functions of excavation 

depth, d. From the test data for an excavation whose maximum depth is 1.2 m, α and 

β can be established as: 

α = (125d + 125)d                                                                  (4.5) 

β = 0.15d − 0.58                                                                     (4.6) 

Τhe data fitted using the exponential function is also shown in Figure 4.10.  

Likewise, the maximum pile head deflection, fmax, can also be expressed using 

a similar exponential function: 

fmax = αeβx                                                                              (4.7) 

It is established that α and β for pile head deflection can be expressed as: 

α = 27.5d                                                                                (4.8) 

β = 0.25d − 0.62                                                                     (4.9) 

Figure 4.11 also shows the exponential function data expressed by Eqs. (4.7) to (4.9). 

The ability of the test data to be consistently described by such functions shows the 

consistency in performing these centrifuge experiments and thus, increases the level of 

confidence of the quality of data acquired.  

In order to further illustrate the progressive deformation of the soil near to the 

excavation, total stress cells (TSCs) were used. From the onset of excavation, the soil 

will progressively depart from the totally undrained assumption and approaches the 

partially drained condition over time until a totally drained condition is achieved. The 

mobilization of the lateral earth pressure coefficient, K from an initially Ko condition 

to or approaches the Ka condition is measured by the two TSCs described earlier in 
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Chapter 3. TSCs 1 and 2 are located 1.5 m and 3.5 m below ground level, respectively. 

The KT values prior to excavation as described in Chapter 3 are not meaningful 

anymore since KT caters for a totally undrained condition. Therefore, effective stress 

parameters have to be used instead. The coefficient of lateral earth pressure at rest, Ko, 

can be determined, since σv’ and σh’ can be calculated as σh and u are measured by the 

TSCs and PPTs, respectively. Immediately prior to excavation, the measured Ko values 

for TSCs 1 and 2 are approximately 0.78 and 0.68, respectively. By using φ’ = 25o and 

OCR = 2.0 in Eqs. (3.1) and (3.2), the calculated Ko values for TSC 1 and TSC 2 are 

0.78 and 0.58, respectively. Therefore, relatively good agreement is shown between 

the measured and calculated Ko values. As excavation progresses, the Ko values drop 

and the mobilized K values for TSCs 1 and 2 at the end of excavation are about 0.64 

and 0.63, respectively as shown in Figure 4.12. It is intuitively correct that the drop in 

TSC 1 to be greater than TSC 2 as the soil movement is greater near the surface of the 

ground. When the mobilized K values are plotted over time after the excavation as 

shown in Figure 4.13, it is observed that the K value for TSC 2 approaches the failure 

condition described by the coefficient of active soil pressure, Ka, whose value is 

calculated to be 0.406. This illustrates the progressive shearing of the soil over time. 

4.6.2 Evaluation of time dependent pile responses 

4.6.2.1 Pore water pressure 

Figure 4.14 shows the changes in excess pore pressure in the soil within the 

first 30 days of a typical test. The locations of the 4 PPTs are shown in Figure 3.3. It 

should be noted that adjustments have been made to the readings of PPTs 1, 2 and 3. 

Owing to water evaporation during the course of the centrifuge tests, the first 

adjustment accounts for the continuous drop in the ground water level that is measured 
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by 2 PPTs placed on the ground level. The second adjustment accounts for the 

continuous downward movement of PPTs 1, 2 and 3 as they settle together with the 

soil. The subsurface soil movement is estimated by comparing the different high-

resolution photographs taken during the tests. The method of estimating soil movement 

will be described in the next section.  Figure 4.14 reveals that negative excess pore 

pressure has developed during excavation. For PPTs 1, 2 and 3 that are located behind 

the wall, negative excess pore pressure develops and increases with excavation depth 

and then dissipates with time after the excavation has been completed. This 

observation reveals that there is stress relief in the soil and hence the soil and the wall 

continue to move with time after excavation. 

Figure 4.15 shows the excess pore pressure responses for the entire test 

duration. The excess negative pore pressure behind the wall has fully dissipated within 

30 days after the completion of excavation, as indicated by the readings of PPTs 1, 2 

and 3. PPT 4, which is embedded in front of the wall and at 2.5 m beneath the 

excavation base, experiences some fluctuations in readings. The rise in the excess pore 

pressure over time in front of the wall reveals that significant seepage has taken place 

from the retained side to the excavated side of the wall through the underlying 

permeable sand layer. 

4.6.2.2 Subsurface soil movement 

The above excess pore pressure responses reveal that the soil behavior is time 

dependent and the soil continues to move with time due to dissipation of excess pore 

pressure. To further investigate the time dependent phenomenon, the subsurface soil 

movement is examined in detail in this section. Figure 4.16(a) shows selected 

photographs of soil markers taken at different times of Test 2 (pile located 3 m from 

the wall) using the high-resolution image-processing camera. By comparing the 
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position of the soil markers from the photographs using a commercial computer 

software, the soil movement vectors could be derived and shown in Figure 4.16(b). It 

is noted that relatively large subsurface soil movement starts to occur beyond an 

excavation depth of 1 m.  This observation is consistent with the corresponding large 

increase in the bending moment and pile deflection when excavation depth exceeds 1 

m, as shown in Figures 4.9(a) and 4.9(c), respectively. Figure 4.16(b) further reveals 

that the soil deformation increases significantly as the wall moves and the zone of 

relative significant soil movement extends deeper with increasing wall movement. The 

significant soil deformation zone is confined to an approximate triangular area behind 

the wall bounded by a line of about 45o to the vertical. This observed soil deformation 

zone is somewhat similar to that observed by Bolton and Powrie (1988). The size of 

the zone increases with time after the completion of excavation. Figure 4.17 shows a 

photograph of the top view of the ground surface taken after a test. It reveals the 

occurrence of fissures within the deformation zone of the ground surface. 

To further examine the phenomenon of progressive soil movement, the soil 

movement vectors can be translated to shear strains defined using the method proposed 

by Ou et al. (2000). The shear strain provides a quantitative measure on the degree of 

soil shearing. Figure 4.16(c) shows the measured shear strains of the clay at different 

stages. Upon completion of excavation, the development of shear strain is confined to 

within 4 m of the wall. Within 50 days after the completion of excavation, the shear 

strains have propagated further and deeper due to progressive wall movement as 

shown in Figure 4.7(b).  

The development of shear strains around the pile is consistent with the concept 

of characteristic meshes in a plastically deformed cohesive soil proposed by Randolph 

and Houlsby (1984). Menzies (1997) established that in such a case, the soil 
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surrounding the piles would experience a reduction in strength and shear modulus. It is 

believed that this scenario applies to the soils within the soil deformation zone in the 

present study. Therefore, for a pile with a substantial portion of it lying within this 

largely plastically deformed soil region, there would be a relaxation of the induced pile 

bending moment once the soil within the deformation zone has weakened. At 300 days 

after the completion of excavation, the main plastic deformed soil region extends to a 

depth of about 2 m and a width of 2 m behind the wall. This observation is consistent 

with the post-excavation soil strength measurements shown in Figure 4.4 whereby the 

soil at 1.5 m behind the wall has significantly weakened after excavation while the soil 

at 3 m behind the wall remains practically undisturbed.  

Figure 4.16(c) also reveals that for piles located further away from the wall, the 

magnitudes of shear strains around the piles would be considerably smaller than those 

located closer to the wall. Hence, majority of the soil surrounding the piles have not 

weakened. This helps to explain the progressive increase in pile bending moment for 

Tests 3 and 4 over time shown in Figure 4.7(d). 

Figure 4.18 shows the measured free-field lateral soil movement profiles at 

different locations and times derived from the photographs of soil markers of a typical 

test where no piles are present. As expected, the magnitudes of lateral soil movement 

are noted to reduce with increasing depth and distance away from the wall. Figure 4.18 

also reveals that the soil continues to move after completion of excavation. These soil 

movement profiles will be used as part of the input parameters for all the numerical 

back analyses presented in Chapter 6. 

 

   100



Chapter 4: Behaviour of single pile adjacent to excavation in clay 

4.7 SINGLE PILE BEHAVIOUR BEHIND A COLLAPSED WALL 

Tests 5, 6 and 7 were conducted to investigate the behaviour of a single pile 

behind a marginally stable wall, a collapsed wall and a totally collapsed wall, 

respectively. Details of the test configuration are given in Figure 4.1.  

4.7.1 Wall and soil deformations 

The wall deflection profiles at different times obtained from Tests 5, 6 and 7 as 

well as Test 2 from the stable wall test series are shown in Figure 4.19. In all cases, the 

maximum wall deflection is at the ground level since it is a cantilever wall. The 

maximum wall defection for Test 5 is 0.5 m, which is 2.5 times that of 0.2 m recorded 

for Test 2. Figure 4.19(b) reveals that the wall deflection within the underlying sand 

layer is relatively small, illustrating the ‘key-in’ effect of the wall in the underlying 

dense sand layer. In Test 6, the wall is essentially ‘floating’ entirely in the soft clay 

layer. Hence it is significantly less stable and the maximum wall deflection of 1.2 m is 

much larger than that of Test 5. In this test, the whole wall is noted to tilt about the toe 

of the ‘floating’ wall, as shown in Figure 4.19(c). Test 7 involves the most severe case 

with the same wall embedment condition as that of Test 5 but a significantly larger 

excavation depth of 2.8 m. The wall ‘key-in’ effect in the dense sand layer disappears 

when excavation depth exceeds 1.4 m. As expected, the wall deflection in Test 7 is by 

far the most severe with a maximum wall deflection of 2.7 m at the ground level, as 

shown in Figure 4.19(d). Similar to the stable wall test series, the wall deflection is 

noted to be time dependent, whereby the wall would continue to deflect after 

completion of excavation. Nevertheless, the rate of increase in the wall tilt decreases 

over time. 

Figure 4.19 shows that at the same excavation depth of 1.2 m, the wall 

deflection profile obtained from Test 7 is significantly larger than that of Test 5, which 
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is in turn considerably larger than that of Test 2. This observation differs from the 

expected situation in the field whereby for the same soil and wall conditions, the wall 

deflection is expected to be very similar under the same excavation depth. The 

differences in the wall deflection profile in the 3 tests are attributed to the use of zinc 

chloride liquid to simulate in-flight soil excavation. In Test 2, the liquid in the latex 

bag has been completely drained out as the maximum excavation depth of 1.2 m has 

been reached. When the excavation depth reaches 1.2 m in Test 5, there is 0.6-m high 

liquid below the 1.2 m depth remaining in the latex bag while in Test 7, there is 1.6 m 

of liquid left in the bag. As the liquid below 1.2 m depth does not offer any shear 

resistance to the moving wall, the wall deflection is hence the largest in Test 7, 

followed by Test 5 and then Test 2. It is believed that while such shortcoming would 

cause discrepancies in the wall and pile responses in the intermediate excavation stages 

for the 3 tests, the results obtained at the maximum excavation depth for each test are 

valid and still useful for the understanding of pile responses behind a collapsed 

retaining wall. 

In all tests, the tilted wall causes the clay behind the wall to settle and the 

ground settlement continues to increase over time after the completion of excavation, 

as shown in Figure 4.20. It is noted that the ground surface settlement for Test 6 is 

about twice as large as that of Test 5. As the wall head in Test 7 has deflected by a 

massive 2.7 m, the ground surface settlement behind the wall is hence very large as 

well, with an observed maximum settlement of almost 1.6 m at 1.5 m behind the wall, 

as shown in Figure 4.20(d). It is observed that the post-excavation settlement troughs 

are very much time dependent, especially for the cases with significantly large wall 

movement and ground settlement. For the stable and marginally stable wall cases 

(Figures 4.20(a) and (b)), the gradient of the ground surface settlement trough close to 
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the wall is not as significant as those observed for the collapsed wall cases (Figures 

4.20(c) and (d)). This could be attributed to the formation of failure wedge behind the 

wall for the latter cases. 

4.7.2 Pile responses 

Figure 4.21 shows the development of bending moment profiles with 

excavation depth and time for Tests 2, 5, 6 and 7. Similar to the relative magnitudes of 

wall and soil movements reported earlier, the induced maximum bending moment on 

the pile increases significantly from the case of stable wall (Test 2), marginally stable 

wall (Test 5), collapsed wall (Test 6) to totally collapsed wall (Tests 7). Owing to 

differences in the excavation depth and wall stability, the elevation of maximum 

bending moment varies with the highest elevation at 7.5 m for the stable wall case to 

the lowest elevation of 9 m for the totally collapsed wall case.  Similar to the stable 

wall test series, the post-excavation pile responses are clearly time dependent. 

Figure 4.22 shows the variation of induced pile head deflection and maximum 

pile bending moment with logarithmic of time. It was reported in Section 4.6.1 that for 

a pile located 3 m behind a stable retaining wall in clay (i.e. Test 2), the post-

excavation pile responses increase with time and reach their peak values 50 days after 

the completion of excavation after which the pile responses decrease with time. Figure 

4.22 reveals that the induced pile responses for the marginally stable wall (Test 5) are 

similar to that of the stable wall except the magnitudes of the pile responses are 

considerably larger due to a greater excavation depth. 

However, the induced pile responses behind the two collapsed walls are 

significantly different. In Test 6 with a collapsed wall, the maximum induced pile head 

deflection and bending moment are significantly larger than those of Test 5 due to wall 

instability. Figure 4.22(b) shows that the induced maximum pile bending moment 
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reaches a peak value of 238 kNm at the onset of wall collapse at an excavation depth 

of 1.4 m. Thereafter the induced maximum pile bending moment decreases with time 

and upon reaching the maximum excavation depth of 1.8 m, the maximum bending 

moment reduces to 185 kNm, a reduction of 22 % from its peak value. The post-

excavation bending moment continues to reduce with time with the observed bending 

moment reducing to about 80 kNm at the end of the test. On the other hand, the pile 

head deflection (Figure 4.22(a)) remains practically unchanged for some time after the 

wall collapse. 

In Test 7 with a totally collapsed wall, the maximum induced pile bending 

moment reduces after reaching its first peak value at an excavation depth of 1.2 m and 

then remains fairly constant with increasing excavation depth. However, the bending 

moment increases again once the excavation depth exceeds 2 m until the final 

excavation depth of 2.8 m, as shown in Figure 4.22(b).  

The pile head deflection responses over time show a similar trend as the pile 

bending moment. Despite greater excavation depth, the pile head deflection observed 

in Test 7 is less than that in Test 6 (Figure 4.22(a)). The above suggests that the 

underlying dense sand layer has restrained the lower part of the pile from severe 

movement and rotation during and after the wall collapse. Figure 4.22 further reveals 

that the induced maximum pile bending moment and deflection for Test 7 are 

significantly larger than those of Test 5.  

4.7.3 Evaluation of pile responses due to soil deformation 

During the tests, photographs of soil markers were taken through the perspex 

window of the model container using a high resolution camera. Figures 4.23(a) and (b) 

show the photographs of side elevation of the experiment at maximum excavation 

depth for Tests 5 and 6, respectively. By comparing the photographs against those 
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prior to excavation using a commercial computer software, the soil movement vectors 

can be obtained and also shown in Figure 4.23. It is noted that the soil deformation 

patterns for Test 5 are similar to those observed for Test 2 in Section 4.6.2. For Test 6 

involving a collapsed wall, massive soil movement is detected and tension cracks can 

clearly be seen in the soil behind the wall, as shown in Figure 4.23(b). A photograph of 

the ground surface taken from the top after Test 6 shown in Figure 4.24 reveals that 

there is soil “flowing” around the pile. This observation is somewhat similar to the 

characteristic mesh of the deformed soil on a laterally loaded pile described by 

Randolph and Houlsby (1984). 

Figure 4.25 shows a photograph of the side elevation of the experiment at 

maximum excavation depth for Test 7. From the series of photographs taken at 

different periods, two stages of soil failure are noted. The first stage involves the 

development of tension cracks in front of the pile, similar to the observations described 

earlier for Test 6. It is believed that the tension cracks that develop in front of the pile 

could have reduced the soil-pile interface contact and this leads to a reduction in the 

transmission of full soil pressure onto the pile.  

Figure 4.22 reveals that for Test 7, the pile head deflection and bending 

moment remain fairly constant from the excavation depth of 1.2 m to 2 m. It is 

postulated that during this stage, the increase in soil pressure due to increasing soil 

movement on the pile arising from increasing excavation depth is just about balanced 

by the reduction in soil pressure on the pile due to the development of tension cracks. 

Upon further soil excavation, the second failure stage commences as the tension cracks 

further propagate and the active failure wedge is then prominently developed resulting 

in very large soil movement in front of the pile. With this, the soil mass behind the pile 

starts to press onto the pile again and causes the pile head deflection and bending 
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moment to increase again. After the wall has completely collapsed, the entire failure 

wedge slides and separates itself from the remaining soil mass, resulting in a 

significant reduction in the induced bending moment and deflection onto the pile. The 

vectors of significant soil movement in front and behind the retaining wall at the end 

of excavation for Test 7 are also shown in Figure 4.25. The formation of failure wedge 

in front of the pile is clearly evident as denoted by the longer soil movement vectors. 

As expected, soil heave is noted in front of the wall upon wall collapse.  

Figures 4.26(a) and (b) shows the measured free-field lateral soil movement 

profiles of Tests 5, 6 and 7 derived from the high resolution photographs of soil 

markers. These will be used as the input data for the subsequent numerical back 

analyses presented in Chapter 6. 

The variations of pile head deflection and free field soil movement at different 

depths at the pile location with time for Tests 5, 6 and 7 are shown in Figures 4.27(a), 

(b) and (c), respectively. For Test 5 involving a marginally stable wall, the soil starts to 

move ahead of the pile when the excavation depth exceeds 0.9 m. For Tests 6 and 7 

involving collapsed walls, the soil starts to move ahead of the pile at a relatively 

shallow excavation depth of 0.6 m, after which the difference between the soil and pile 

movement becomes more significant with increasing excavation depth. When the 

excavation depth exceeds about 1.0 m, relatively large free-field soil “flow” is 

observed and this is consistent to the soil “flow” phenomenon observed in Figure 4.24. 

The development of soil “flow” and tension cracks is thought to have prevented the 

transmission of additional soil pressure onto the pile and hence the drop in pile 

bending moment as noted in Figure 4.22(b). 
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4.8 COMPARISON OF SINGLE PILE BEHAVIOUR IN SAND AND CLAY 

Shen (1999) performed centrifuge tests on single free headed piles in sand with 

piles at 1 m, 3 m, 5 m, 7 m and 9 m behind a wall that remains stable with excavation 

depth of 4.5 m. He also carried out two tests involving single piles at 2 m and 4 m 

behind a wall that subsequently collapsed with excavation depth of 6.0 m. The pile 

condition is identical to the present study. Some similarities and differences could be 

drawn between the behavior of a single pile behind a stable and collapsed wall in both 

clay and sand. 

4.8.1 Similarities 
 

In the case of a stable wall in both clay and sand, the induced maximum pile 

bending moment and maximum pile head deflection reduce exponentially with 

increasing distance of pile behind the wall. The location of maximum pile bending 

moment for both clay and sand tests is at 7.5 m.   

4.8.2 Differences 
 

The most distinct difference of single pile behaviour is that the piles in clay, the 

induced pile bending moment would gradually increase over time for piles located 

further (at 5 m and 7 m) behind the wall, whereas for the tests in sand, the pile bending 

moment remain essentially unchanged, irrespective of pile distance from the wall, as 

established by Shen (1999). This is due to the fact that for sand, the excess pore water 

pressure generated during excavation would have already been dissipated after the 

completion of the excavation and hence, there is insignificant time dependent pile 

behaviour. Time dependent pile behaviour in clay could be seen as the effect caused by 

the progressive wall and soil deformations over time.  
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In the case of collapsed wall, tests carried out in clay display tension cracks and 

soil “flow” when wall movement is excessive. For piles in sand, when the soil 

movement becomes excessive, the sand particles would slide on top of one another and 

“flow” past the pile.  

   108



Chapter 4: Behaviour of single pile adjacent to excavation in clay 

Plan Elevation Parameter
(m)

Pile head
conditionTest

1

2

3

4

5

a = 1
x = 1.2

a = 3
x = 1.2

a = 5
x = 1.2

a = 7
x = 1.2

a = 3
x = 1.8

Free

Free

Free

Free

Free

a
x

a
x

a
x

a
x

a
x

6 a = 3
x = 1.8 Free

a
x

Wall

Pile

a

a

a

a

a

a

Instrumented pile

7 a = 3
x = 2.8 Free

a

Wall
condition

Stable wall

Marginally
stable wall

Collapsed
wall

a
x

Totally
collapsed

wall

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.1 Test program of single pile  
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Figure 4.2 Limit equilibrium analysis of retaining wall (after Bolton and Powrie, 
1987) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3  Bar penetrometer or T-bar (after Stewart and Randolph, 1991) 
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Figure 4.4  Measured undrained shear strength profiles for tests involving a stable 

wall  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Measured undrained shear strength profiles for tests involving a 
collapsed wall  
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Figure 4.6 Variations of ZnCl2 and excavation depth with time 
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Figure 4.7 Variations of (a) excavation depth, (b) average wall head deflection, (c) 

induced pile head deflection and (d) induced maximum pile bending 
moment with time 
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Figure 4.8 Surface settlement troughs during and after excavation 
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Figure 4.9 Measured pile (a) bending moment, (b) shear force, (c) deflection and 
(d) soil pressure profiles for Test 2 
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Figure 4.10 Variation of maximum pile bending moment and  

distance of pile behind retaining wall 
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Figure 4.11  Variation of maximum pile deflection and distance of pile behind 

retaining wall 
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Figure 4.12  Mobilisation of effective lateral earth pressure, K, of soil behind a 
stable retaining wall during excavation 
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Figure 4.13  Mobilisation of effective lateral earth pressure, K of soil behind a stable 

retaining wall over time after excavation 
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Figure 4.14  Variation of excess pore water pressure with time over first 30 days of 

test 
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Figure 4.15 Variation of long-term excess pore water pressure with time 
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Figure 4.16 Development of soil movements in Test 2: (a) Photographs, (b) soil 
movement vectors and (c) shear strains 
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Figure 4.17 Development of fissures around pile (plan view) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18 Measured free-field lateral soil movement profiles 
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Figure 4.19 Measured lateral wall movement profiles during excavation for 
(a) Test 2, (b) Test 5, (c) Test 6 and (d) Test 7 
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Figure 4.20 Measured surface settlement troughs behind wall during and 
after excavation for (a) Test 2, (b) Test 5, (c) Test 6 and  

(d) Test 7 
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Figure 4.21 Measured pile bending moment profiles during excavation for 
(a) Test 2, (b) Test 5, (c) Test 6 and (d) Test 7 
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Figure 4.22 Development of maximum induced pile (a) head deflection and 
(b) bending moment during and after excavation 
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Figure 4.23        Resultant soil movements at the end of excavation: (a ) Test 5 and (b) 

Test 6 
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Figure 4.24 (a) Photograph and (b) sketch of soil movement on ground surface after 
end of Test 6 
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Figure 4.25 Resultant soil movements at the end of excavation for Test 7 
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Figure 4.26 Measured lateral soil movement profiles for (a) Test 5 and (b) Tests 6 & 7
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CHAPTER FIVE 

 

BEHAVIOUR OF PILE GROUP ADJACENT 

TO EXCAVATION IN CLAY 

 

5.1 INTRODUCTION  

In practice, piles are normally installed in groups and the behaviour of piles in a 

group is influenced by the pile head condition, size of pile group and centre-to-centre 

spacing of piles. Piles in a group can be either free-head or capped-head. By capping a 

pile group, considerable interaction among individual piles in the group may also 

occur through the pile cap. In order to examine the group interaction effect, centrifuge 

model tests were performed on pile groups of various sizes, head conditions and 

configurations. These included tests on free- and capped-head pile groups consisting of 

two, four and six individual piles. All tests involved a stable wall with the exception of 

one test involving a collapsed wall. This chapter presents the experimental results of 

pile group tests and comparisons of results are made with those of single pile tests 

presented in Chapter 4.  

 

5.2 TEST PROGRAM 

All the centrifuge tests were performed at 50g. Unless otherwise stated, the test 

results are presented in prototype scale hereinafter. The schematic configurations for 

all the pile group tests are shown in Figure 5.1. The tests involved free-head and 
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capped-head 2-, 4- and 6-pile groups behind a stable wall having the same maximum 

excavation depth of 1.2 m. In addition, a test involving a 4-pile group behind a 

collapsed wall had been carried out with a maximum excavation depth of 1.8 m.  

In tests involving capped-head pile groups, the cap was connected to the 

individual pile heads at about 200 mm above the ground level to avoid interaction 

between the pile cap and the soil following the approach by Bransby and Springman 

(1997). It should be noted that the first level of strain gauges on the piles coincided 

with the ground surface. In addition, the maximum induced pile bending moment 

presented hereinafter refers to the maximum bending moment values achieved at all 

times during the tests. 

The behaviour of free-head (Tests 8 and 10) and capped-head (Tests 9 and 11) 2-

pile groups are arranged in a line perpendicular to the wall and located at various 

distances behind a stable wall will be first presented. Leung et al. (2003) established 

that it is not necessary to investigate 2-pile groups with piles aligned parallel to the 

wall as the individual pile responses are essentially identical.  

To further investigate the behaviour of a larger pile group, tests on free-head 

(Test 12) and capped-head (Test 13) 4-pile groups were carried out. Owing to 

symmetrical arrangement of a 4-pile group, only two piles, that is one front pile and 

one rear pile, were instrumented to monitor their responses. The results will then be 

compared with those of single pile and 2-pile group tests. To further investigate the 

pile group behaviour, two capped-head 6-pile group tests were carried out in two 

different configurations. In Test 15, a pair of piles is arranged in three rows at 3 m 

(front, F), 5 m (middle, M) and 7 m (rear, R) behind the wall, hereinafter denoted as 

the 2x3 configuration. In Test 16, three piles were arranged in two rows at 3 m (F) and 

5 m (R) behind the wall, hereinafter denoted as the 3x2 configuration. Peripheral piles 

   131



Chapter 5: Behaviour of pile group adjacent to excavation in clay 

(P) are piles that are located at the edge of a pile group and are more exposed to the 

excavation-induced lateral soil movement. Centre piles (C) are the ones that are 

located in between two peripheral piles and thus are somewhat shielded. The identity 

of the individual piles in Tests 15 and 16 is also shown in Figure 5.1. 

 

5.3 FREE-HEAD PILE GROUP RESPONSES BEHIND A STABLE WALL 

To compare the pile group test results with those of single free-head piles, the 

pile head deflection and bending moment of Tests 1, 2 and 3 presented in Chapter 4 

are also shown in this section. It should be noted that the variations of excavation 

depth and wall head deflection with time for the single pile and pile group tests behind 

a stable wall are essentially identical and these are represented by Figures 4.7(a) and 

(b). The final excavation depth was 1.2 m.  

5.3.1 Pile responses over time 

Figures 5.2 and 5.3 show the variations of pile head deflection and maximum 

induced pile bending moment with time, respectively, for free-head pile groups (Tests 

8, 10 and 12) and single piles (Tests 1, 2 and 3). It is noted that owing to space 

constraints in the model container, only the pile head deflection of the rear pile in the 

free-head pile group can be measured using the laser displacement transducers. Figure 

5.2(a) shows a comparison between the pile head deflection of Tests 2 and 8.  

The free-head piles are located 3 m behind the wall and the maximum induced 

pile head deflection is reached at about 50 days after the end of excavation for both the 

tests. However, for Tests 10 (2-pile group) and 12 (4-pile group) having the rear piles 

located 5 m behind the wall, the pile head deflection in both tests continues to increase 

during the entire test duration as shown in Figure 5.2(b). This phenomenon is 
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consistent with that observed for a single pile located 5 m (Test 3 shown in Figure 

5.2(c)) behind the wall, as discussed in detail in Section 4.6.1.  

Figure 5.3 shows the development of maximum induced pile bending moment 

over time for both single pile (Test 1) and that of the front pile of a free-head 2-pile 

group (Test 8) located at 1 m behind a stable wall. In both tests, the maximum bending 

moment value is reached 4 days after the completion of excavation. Subsequently, the 

bending moment is observed to reduce with time. This phenomenon is consistent with 

the earlier finding made in Section 4.6.2.2 that for a pile that is substantially embedded 

within the largely plastically deformed soil region, there would be a relaxation of 

induced pile bending moment and pile head deflection once the soil within the 

deformation zone has weakened after excavation.  

In the case of a single pile or an individual pile in a free-head pile group 

located 3 m behind the wall, the maximum bending moment is achieved at about 50 

days after the completion of excavation as shown in Figure 5.4(a). If these piles are 

located 5 m behind the wall, the maximum bending moment appears to increase 

continuously with time for the entire test duration, as shown in Figure 5.4(b). It is 

noted that the induced maximum pile bending moment is inversely related to the 

number of piles in a pile group. As the number of piles increases, the induced pile 

bending moment becomes smaller and the changes in the pile responses with time 

become less prominent. In general, the time dependent pile head deflection and 

maximum bending moment show similar behaviour for both single pile and individual 

piles in a free-head pile group at the same distance behind a stable wall.  
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5.3.2 Free-head 2-pile group (Tests 8 and 10)  

In Test 8, the front and rear piles of the free-head 2-pile group are located 1 m 

and 3 m behind the wall, respectively. On the other hand, the free-head front and rear 

piles of Test 10 are positioned at 3 m and 5 m behind the wall. The pile bending 

moment profiles described hereinafter relates to the maximum induced pile bending 

moment values obtained from the respective tests. 

. Figures 5.5, 5.6(a) and (b) show the induced pile bending moment profiles 

obtained from Tests 8 and 10 and those of single piles located 1 m, 3 m and 5 m 

behind the wall, respectively. It is noted that the shape of the pile bending moment 

profiles for all the tests is similar. For piles located 3 m and 5 m behind the wall, the 

maximum bending moment is located about 7.5 m below the ground level. However, if 

the pile is 1 m behind the wall, the maximum pile bending moment is observed to be 

located at 8.75 m below the ground level. This is attributed to the greater and deeper 

soil movement experienced by the pile due to the development of the 45o wedge of 

significant soil movement behind the wall after excavation as shown in Figure 4.16.  

By comparing the responses of the rear pile from Test 8 and the front pile from 

Test 10 with both piles located 3 m behind the wall, the measured bending moment of 

the latter pile is greater. This observation is similar to that noted by Lim (2001) for pile 

groups in sand and illustrates that the front pile is capable of shielding or shadowing 

the rear pile from the detrimental effects of excavation-induced soil movement. Thus it 

is important to note the relative position of an individual pile within a group as it 

would affect the response of the respective pile. 
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5.3.3 Free-head 4-pile group (Test 12) 

Test 12 was conducted as a free-head 4-pile group test where pairs of front and 

rear piles are positioned at 3 m and 5 m behind the wall, respectively, as shown in 

Figure 5.1. The induced bending moment profiles of the front and rear piles are shown 

together with those of single pile (Test 2) and 2-pile group (Test 8) in Figure 5.6. It is 

evident that the trend of induced pile bending moment profiles for all free-head pile 

groups is similar. Figure 5.6 reveals that as the number of piles in a group increases, 

smaller bending moment is induced on the piles. The induced bending moment on a 

single pile located 3 m behind the wall is about 5 % higher than that of the 

corresponding pile in a 2-pile group but is about 30 % higher than that in a 4-pile 

group. The corresponding differences are 5 % and 25 % for a pile located at 5 m 

behind the wall. This observation again confirms that the shadowing effect of front 

piles over the rear piles increases with increasing number of piles in a group. 

Chen and Martin (2002) noted that soil arching would occur between two front 

piles upon excavation. They defined soil arching as the transfer of stress from the 

yielding part of a soil mass to adjoining less-yielding or restrained parts of a soil mass.  

They then analysed the soil arching phenomenon using the finite difference code 

FLAC (Fast Lagrangian Analysis of Continua). By analyzing the rotation of the 

principal stresses directions shown in Figure 5.7, Chen and Martin (2002) verified that 

soil arching exists. Within each arching zone, the tangential direction and the radial 

direction are the direction of major and minor principal stresses, respectively. Figure 

5.8 shows a photograph of top view of the ground surface taken after Test 12. The 

phenomenon of soil arching and separation is evident and this suggests that the clay in 

this region may have yielded. This is consistent with the finding of Martin and Chen 

(2002) shown in Figure 5.9. It is believed that the development of this yield or plastic 
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zone starts at both sides of the pile and extends to the front of the pile when the soil 

deformation increases due to excavation.  

Figure 5.10 shows the variations of lateral soil movement at different depths at 3 

m behind the wall and the pile head deflection with excavation depth for Test 12. 

When the surrounding soil moves more than the pile head, it is thought that the near 

surface effect causes the soil at the upper 2 m to move more than the pile head than the 

underlying soil layers. Such near surface effect has also been observed by Randolph 

and Houlsby (1984), Poulos (1995a) as well as Chen and Martin (2002). This 

subsequently results in the development of an equilateral triangular arch, as reported 

by Adachi (1989) and shown in Figure 5.11. The arch is formed between the front 

piles when the yielded soil gets detached from its surrounding. The detached soil is 

then forced to squeeze into the row of piles but without significantly increasing the 

pressure acting on the piles (Chen and Martin, 2002). This is verified in the present 

study as the rate of increase of measured pile bending moment is noted to decrease 

towards the end of the 1.2 m excavation, as shown in Figure 5.12.  

Chen and Martin (2002) further studied the effect of pile spacing on the 

formation of an arch under undrained condition. It was highlighted that the 

development of an arch was limited by the pile spacing, with no visible arching for pile 

spacing less than 2 or greater than 4 times the pile diameter. As the 0.63 m square piles 

are spaced at 2.0 m in the present study, the pile spacing is about 3.2 times pile width. 

Thus soil arching is expected.  

 

 

 

   136



Chapter 5: Behaviour of pile group adjacent to excavation in clay 

5.4 CAPPED-HEAD PILE GROUP RESPONSES BEHIND A STABLE 

WALL 

 
This section presents the centrifuge results for various capped-head 2-, 4- and 

6-pile groups. 

5.4.1 Pile responses over time 

The development of pile cap deflection with time for Tests 9, 11, 13, 15 and 16 

is shown in Figure 5.13. Since the pile groups are capped, the deflection of each 

individual pile head is identical. The pile cap deflection for Test 9, which consists of a 

2-pile group with front and rear piles located 1 m and 3 m behind the wall, 

respectively, shows some fluctuations over time due to signal interference during data 

acquisition. Nevertheless, the general trend of this result shows that the pile cap 

deflection reduces with time after excavation. In contrast, for Test 11, which consists 

of a 2-pile group with front and rear piles at 3 m and 5 m behind the stable wall, 

respectively, the pile cap deflection remains fairly unchanged after achieving its peak 

value at about 50 days after the start of excavation. For Test 13 (4-pile group), Test 15 

(6-pile group, 2x3) and Test 16 (6-pile group, 3x2), where the front peripheral piles 

(FP) are located at 3 m behind the wall, the pile cap deflection increases continuously 

until the end of the tests.  

Figures 5.14(a) and (b) show the development of maximum positive and 

negative pile bending moments for the front and rear piles in a capped-head pile group, 

respectively. For clarity, the simplified figures located at the right hand side of Figures 

5.14(a) and (b) are shown to illustrate the locations of the maximum positive and 

negative pile bending moment for the front and rear piles, respectively. For the front 

piles, the maximum negative and positive pile bending moment values are typically 
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located about 6 and 14 pile widths below the ground level, respectively. On the other 

hand, for the rear and middle piles, the maximum negative and positive pile bending 

moment values are located at the pile head and about 12 pile widths from the ground 

level, respectively. 

For Test 9 where a substantial portion of the front pile (1 m behind the wall) is 

embedded within the largely plastically deformed soil region as described in Section 

4.6.2.2, there would be a relaxation of induced pile bending moment once the soil 

within the deformation zone has weakened after excavation. As such, the maximum 

negative and positive pile bending moment values are observed to reduce after 

excavation (see Figure 5.14(a)). This phenomenon is consistent with that of a single 

pile located at the same distance behind the stable wall shown in Figure 4.7. Since the 

front and rear piles are connected via a rigid pile cap, the rear pile located at 3 m 

behind the stable wall is dragged along, thus sharing the same behaviour as the front 

pile, where both the maximum negative and positive pile bending moment values 

reduce after excavation (see Figure 5.14(b)). Such reduction in pile bending moment 

for piles located at 3 m behind a stable wall has not been observed previously in the 

single pile tests (see Figure 4.7) and the free-head pile group test (see Figure 5.3(a)). 

Besides, the pile cap deflection also shows similar trend over time as discussed earlier 

(see Figure 5.13). These observations reveal that the interaction between piles in a 

capped-head pile group is considerably larger than the free-head pile group as the rear 

piles would jointly resist the excavation-induced soil movement through the pile cap. 

In general, the maximum positive bending moment of the front (FP and FC) 

and rear (RP and RC) piles at 3 m and 5 m behind the stable wall for Tests 11, 13, 15 

and 16 is reached about 50 days after the completion of excavation, as shown in 

Figures 5.14(a) and (b), respectively. Thereafter, the positive bending moment values 
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decrease with time. This is similar to the observation made for Tests 2 and 3 involving 

a single pile at identical distances behind the wall as shown in Figure 4.7(d). It has 

been discussed in Section 4.6.2 that such pile responses are influenced by the 

progressive wall and soil deformations with time.  

In contrast, the negative bending moment values of the front (FP and FC) and 

middle (MP) as well as the rear (RP and RC) piles at 3 m and 5 m behind the stable 

wall for Tests 11, 13, 15 and 16 are observed to reduce gradually after the end of 

excavation, as shown in Figures 5.14(a) and (b), respectively. These maximum 

negative bending moments are located at the individual pile heads. Therefore, 

comparison of the development of the maximum negative bending moment values is 

made to that of the pile cap deflection. It has been described earlier that the pile cap 

deflection for Tests 11, 13, 15 and 16 is observed to increase continuously until the 

end of the tests. As the pile deflection profiles are obtained by integrating the spline 

functions for the bending moment profiles twice with two known boundary conditions, 

it is therefore acknowledged that the pile head deflection is directly proportional to the 

bending moment. In other words, if the pile head deflection increases, so would the 

bending moment at the pile head or the maximum negative pile bending moment. 

However, such observation is not observed in this study. Instead, as the pile cap 

deflection values increase over time, the maximum negative pile bending moment 

values are noted to reduce, thus suggesting relaxation in the pile cap fixity. A 

reasonable postulation to this observation is the inability of the rigid pile cap to 

provide full fixity or restraint to the pile heads. This will be further investigated in 

Chapter 6.  
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5.4.2 Capped-head 2-pile group (Tests 9 and 11)  

Test 9 was carried out on two capped-head piles at 1 m (front pile) and 3 m (rear 

pile) behind the wall. It is observed from Figure 5.15 that the magnitude of the pile 

group deflection is lower than that of single piles and free-head pile group located at 

the same distance behind the wall. 

The pile bending moment profiles of Test 9 as well as those of corresponding 

free-head single piles are shown in Figure 5.16. It is noted that the bending moment 

profiles for both capped-head and free-head piles are quite different. For the capped-

head pile groups, positive and negative bending moments are recorded as opposed to 

only the positive bending moment recorded by the free-head pile groups. The location 

of the maximum positive bending moment for both piles is noted to be about 8.75 m 

below the ground surface. When compared to the respective single piles, it is noted 

that the magnitude of maximum positive bending moment for the capped-head piles 

has reduced, especially for the front pile. Nevertheless, negative pile bending moment 

is induced in the upper portion of both piles due to the restraint provided by the pile 

cap. The maximum negative bending moment is noted to be at about 3.75 m depth and 

at the ground surface for the front and rear piles, respectively. With the presence of 

pile cap, the individual piles in a group are “forced” to act in unison when subject to 

different magnitudes of soil movement. The induced bending moment on the front pile, 

which experiences greater soil movement, is expected to be moderated by the rear pile 

via the rigid pile cap. This is due to the shadowing effect of the front pile over the rear 

pile first reported by Lim (2001) as well as the pile-pile cap interaction when the pile 

group is subject to lateral soil movement.  

In order to further evaluate the above findings, Test 11 was carried out as a 

capped-head 2-pile group with the front and rear piles located 3 m and 5 m behind the 
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wall, respectively.  The bending moment profiles of these piles are also observed to be 

much smaller than those of single piles at the same distance from the wall, as shown in 

Figure 5.17. It is noted that the location of maximum positive pile bending moment for 

the front and rear piles are about 8.75 m and 7.5 m, respectively.  

The results of Tests 9 and 11 reveal that for the front piles located 1 m and 3 m 

behind the wall, respectively, the maximum positive pile bending moment is located at 

8.75 m depth. However, if the rear pile is located 5 m behind the wall, the maximum 

moment location shifts up to about 7.5 m depth. This is attributed to the wedge of 

significant soil movement behind the wall intercepting the pile at a higher elevation. 

For the front and rear piles in both tests, the maximum negative bending moment is 

noted to be about 3.75 m below and at the ground surface level, respectively.  

A summary of the measured maximum induced pile bending moment is shown in 

Figure 5.18.  It is evident that the front pile would shield the rear pile from the soil 

movement and thus results in a smaller measured positive bending moment along the 

rear pile. With the presence of pile cap, the rear pile generates a greater negative 

bending moment at the pile cap level than the front pile due to pile-soil interaction. 

5.4.3 Capped-head 4-pile group (Tests 13)  

Figure 5.19 shows the comparison of pile bending moment for a capped-head 2-

pile group (Test 10) and a capped-head 4-pile group (Test 13), with the front and rear 

piles located 3 m and 5 m behind the wall, respectively. By comparing the maximum 

positive and negative bending moment for the front pile, a difference of 22 % and 9 % 

is noted for Tests 10 and 13, respectively. However, for the rear pile, the 

corresponding difference is 20 % and 17 %. Therefore, the ability of a larger pile group 

to reinforce the surrounding soil undergoing lateral movement due to excavation could 
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be noted and this is consistent to the observations made for free-head pile groups 

described earlier. 

When comparing the maximum positive pile bending moment between free-head 

(see Figure 5.6) and capped-head pile groups (see Figure 5.19), the magnitudes for 

individual piles are larger for a free-head pile group than those of a capped-head pile 

group. However, negative bending moment is developed at the pile head due to 

restraint provided by the rigid pile cap. It can be surmised that the presence of a rigid 

cap can effectively reduce the maximum bending moment on individual piles in a 

group as the rigid cap forces the individual piles to react in unison to counter resist the 

detrimental lateral soil movement. Soil arching is also observed to be similar to that of 

Test 12.    

The measured pile head deflections for Tests 12 and 13 are summarized in Figure 

5.20. It is again demonstrated that a reduction in pile head deflection can be achieved 

by connecting individual piles to a rigid pile cap.  

5.4.4 Capped-head 6-pile group (Tests 15, 2x3 configuration)  

Owing to symmetrical arrangement of the 2x3 pile group configuration, only one 

of each of the three pairs of piles located at 3 m (front), 5 m (middle) and 7 m (rear) 

were instrumented. Figure 5.21 shows the bending moment profiles of the three 

instrumented piles. It is observed that the bending moment profile of the front pile is 

similar to all other front piles in the capped-head 2-pile and 4-pile group tests. It is also 

noted that the middle and rear piles demonstrate similar pile bending moment profiles.  

By comparing the bending moment profiles of each pile, it is observed that as the 

distance between the pile and the wall increases, the depth to maximum positive pile 

bending moment reduces. Such results are consistent with those of single piles 
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described in Section 4.6. The pile cap deflection is observed to be smaller than that of 

a capped-head 4-pile group in Test 13 as shown in Figure 5.20.  

Soil arching is also observed in Test 15. Similar to Test 12, soil arching is only 

observed between the pair of front piles located 3 m behind the wall. This shows that 

relatively large soil deformation is experienced by the piles located 3 m behind the 

wall. The relatively smaller soil deformation at 5 m behind the wall is not large enough 

to cause soil arching between that row of piles. 

5.4.5 Capped-head 6-pile group (Tests 16, 3x2 configuration)  

In the case of a 3x2 capped-head 6-pile group configuration, four instrumented 

piles were used to capture the pile group behaviour. The positions of the instrumented 

piles are shown in Figure 5.1. Figure 5.22 shows the measured bending moment for the 

four instrumented piles. The induced pile bending moment profiles are consistent to 

those of typical front and rear piles. Again, the elevation of maximum positive pile 

bending moment for the front piles is deeper than that of rear piles. This observation is 

similar to that of the 2x3 capped 6-pile group configuration. It is also observed that the 

induced bending moment for the front peripheral (FP) pile is greater than that of the 

front centre (FC) pile at the same distance of 3 m behind the wall. Similarly, the 

bending moment developed in the rear peripheral (RP) piles is also greater than that of 

the rear centre (RC) pile at the same distance of 5 m behind the wall.  

The above observation suggests that peripheral piles can shield the centre piles 

from excavation-induced soil movement. For the 3x2 pile group configuration of Test 

16, relatively larger pile bending moment is induced as compared to that of the 2x3 

configuration of Test 15, for the corresponding peripheral piles at the same distance 

from the wall. Therefore, it is surmised that a capped 3x2 pile group configuration is 

subjected to larger overall forces than a capped 2x3 pile group as the former is in fact 
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located closer to the wall. Figure 5.20 shows a comparison of the measured pile cap 

deflection for Tests 15 and 16. The 2x3 6-pile group shows a greater pile cap 

deflection than the 3x2 6-pile group. Such observations were also noted by Lim 

(2001). However, careful observation of the photographs taken after the test reveals 

that only slight soil arching was observed in Test 16. This could be due to the greater 

reinforcing effect provided by the 3x2 pile group configuration as opposed to that of 

2x3 configuration.  

 

5.5 CAPPED-HEAD PILE GROUP BEHAVIOUR BEHIND A COLLAPSED 

WALL 

Test 14, which consisted of a capped-head 4-pile group, was carried out to 

investigate the behaviour of pile group behind a collapsed wall. The front and rear 

piles are located 3 m and 5 m behind the wall, respectively and are floating in thick 

clay layer, without any toe embedment in sand. The excavation depth is 1.8 m and the 

wall would subsequently fail upon excavation as the calculated factor of safety using 

the limit analysis (Bolton and Powrie, 1987) is about 0.95. The results will then be 

compared with Test 6 from Chapter 4, on a single pile with a similar test setup.  

The development of pile cap deflection and maximum pile bending moment for 

Test 14 are shown in Figures 5.23 and 5.24, respectively. It is evident that the 

movement of the wall as well as the induced pile bending moment is dependent upon 

excavation depth and time. This is consistent with the earlier findings for single piles 

as described in detail in Section 4.7. The long term pile head deflection and front as 

well as rear pile bending moment demonstrate distinct peaks at the onset of wall 

collapse as shown in Figures 5.23 and 5.24(a) and (b), respectively. These peak values 

would then reduce significantly over time. Such pile behaviour is similar to that 
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demonstrated by the single pile located 3 m behind a collapsed wall in Test 6 (see 

Figures 4.22(a) and (b)). The reduction in the pile bending moment after excavation 

may be associated to the failure of the largely deformed soil to resist the excavation-

induced soil movement as described in Section 4.7. The similarity between the front 

and rear pile behaviour is believed to be influenced by the rigid pile cap. This 

illustrates the ability of a capped-head pile group in resisting further deformation when 

subjected to excavation-induced soil movement as described earlier.  

The measured front and rear pile bending moment profiles are shown in 

Figures 5.25 and 5.26. For the 4-pile group in Test 14, the pile bending moments 

remain unchanged only after the excavation has exceeded 1.6 m. This is different from 

Test 6 where the bending moment reaches a maximum at a shallower excavation depth 

of 1.4 m. Thus, this demonstrates that a capped-head pile group is capable of resisting 

excessive soil movement behind a collapsed wall more effectively than a single free-

head pile. 

Figure 5.25(a) reveals that the induced bending moment is generally much 

greater for the upper portion of the front pile. This may be attributed to the presence of 

a wedge of significant soil movement, somewhat similar to that observed for Test 6 as 

shown in Figure 4.23(b). It is interesting to note that since most of the rear pile is 

located outside the wedge of significant soil movement, it too demonstrates limiting 

pile responses as shown in Figures 5.26. Therefore, the observed limiting bending 

moment for both front and rear piles reveals that the front pile, which experiences 

larger soil movement, is assisted by the rear pile through the pile cap to resist the soil 

movement. This demonstrates the interaction between the front and rear piles to jointly 

resist the excavation-induced soil movement. As such, the pile head deflection as well 

as the front and rear positive pile bending moment are smaller than those of a single 
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pile located behind a collapsed wall in Test 6, if Figures 5.23 and 5.24 are compared 

with Figure 4.22(a) and (b), respectively. 

5.6 COMPARISON OF PILE GROUP BEHAVIOUR IN SAND AND CLAY 

Lim (2001) performed centrifuge tests on free- and capped-head pile groups in 

sand. Only tests involving pile groups behind a stable wall had been carried out. The 

final excavation depth was 4.5 m. The similarities and differences between the 

behavior of pile groups in clay and sand are discussed hereinafter. 

5.6.1 Similarities 

When piles are installed in a group in either sand or clay, the front piles would 

shield the rear piles from the detrimental effects of excavation-induced soil movement 

and hence relatively smaller bending moment is induced in the rear piles. However, the 

rear piles would generate a greater negative bending moment at the pile cap level than 

the front piles due to pile-soil interaction when the rear piles are dragged forward by 

the front piles which are subject to greater soil movement. 

When the size of pile group increases, the reinforcement and shadowing effects 

provided by the larger number of piles becomes more significant and hence, smaller 

bending moment is induced on the rear piles. The relative position of an individual pile 

in a group is also important. Peripheral piles can effectively shield the centre piles at 

the same distance behind the wall from the full exposure of soil movement and thus, 

smaller bending moment is developed in the shielded piles. Besides that, both tests in 

sand and clay evidently show that a capped 3x2 pile group configuration is subjected 

to larger overall forces than a capped 2x3 pile group as the former is in fact located 

nearer to the wall and excavation area.  
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5.6.2 Differences 

As discussed in Section 4.8.2 for single piles, pile groups installed in sand do 

not demonstrate any time-dependent effect. On the contrary, if a pile group is 

embedded in clay, time dependent pile bending moment is observed due to progressive 

deformation of the wall and soil over time.  

For piles embedded in clay, soil arching is observed to occur between piles that 

are close enough to the wall when the clay deforms during excavation. Besides that, 

soil “separation” is also noted to occur in front of a pile group after excavation. 

However, such observations are not noted in tests conducted in sand. 

Similar to the case of a single pile, the induced front and rear pile bending 

moment would reduce after excavation due to development of tension cracks and slip 

plane if the wall subsequently collapses after excavation. Such behaviour is not 

observed in tests carried out in sand. 

  

5.7 SUMMARY 

This chapter presents centrifuge model test results of free- and capped-head 2-, 4- 

and 6-pile groups in clay behind a wall that remains stable after excavation. It is found 

that the induced maximum bending moment is always smaller than that of a 

corresponding single pile at identical location. If the free-head piles are located at the 

same distance, the measured bending moment is higher if it serves as the front pile as 

opposed to the rear pile of the pile group. In a pile group, each individual pile will 

provide shadowing and reinforcing effects to the other piles nearby. The degree of 

shadowing effect experienced by each individual pile depends on its relative position 

with its surrounding piles.  
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For instance, it is observed that the induced bending moment for the front 

peripheral (FP) pile is greater than that of the front centre (FC) pile at the same 

distance behind the wall. Similarly, the bending moment developed at the rear 

peripheral (RP) piles is also greater than that of the rear centre (RC) pile at the same 

distance behind the wall. As the pile group gets larger, the shadowing and reinforcing 

effects will also become more prominent.  

The immediate effect of pile shadowing and reinforcing effect is to limit the 

detrimental effects of excavation-induced soil movement on the pile group. By capping 

a pile group, the individual piles are forced to interact in unison when subjected to 

different magnitudes of soil movement, depending on the distance of the piles from the 

excavation. The induced bending moment of the front pile, which experiences greater 

soil movement, is expected to be moderated by the rear pile via the pile cap. The 

interaction between the front and rear piles induces negative bending moment at the 

restraint pile head, but reduces the magnitude of bending moment developed along the 

pile and the pile group deflection. 

Soil arching and “separation” of soil have been observed to occur between the 

front piles of a pile group when the soil deforms during excavation in the 4- and 6-pile 

groups. The arch is formed between the rows of piles when the yielded soil gets 

detached from its surrounding. The detached soil is then forced to squeeze into the row 

of piles but without significantly increasing the pressure acting on the piles. 

Generally, the observed long term maximum positive bending moment would 

increase after excavation until about 50 days later and subsequently reduce. It is 

thought that progressive wall and soil deformations are the reasons for such observed 

time dependent pile behaviour. On the contrary, the maximum negative bending 

moment generally reduces slightly over time after excavation. This behaviour could be 
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the result of the pile-pile cap interaction as the maximum negative pile bending 

moment is located nearer to the pile cap. 

A test involving a 4-pile group in clay behind a wall that subsequently 

collapses upon excavation has also been carried out. The pile bending moments remain 

unchanged and reduce only after excavation exceeds 1.6 m. It is thought that the 

limiting soil pressure that can be exerted on the piles have been reached at this stage. 

The long term pile maximum positive and negative bending moments display distinct 

peaks and would reduce after the completion of excavation. Such pile behaviour is 

consistent to that observed for the case of a single pile case located behind a collapsed 

wall.  

This chapter has successfully provided experimental evidences that the soil 

surrounding the piles would resist the detrimental effects caused by excavation by 

initiating some resisting mechanisms such as soil arching and load-sharing amongst 

individual piles in a group. These experimental observations have instilled greater 

confidence level of the centrifuge experiments that have been performed so that the 

numerical back-analyses described in the next chapter can be “calibrated” to 

incorporate such soil behaviour, which otherwise could not be ascertained to have 

existed. 
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Figure 5.2 Variations of pile head deflection for free-head piles located at (a) 3 m 
and (b) 5 m behind a stable wall  
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Figure 5.3 Variations of pile bending moment for free-head piles at 1 m behind a 

stable wall 
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Figure 5.4 Variations of pile bending moment for free-head piles at (a) 3 m and  
(b) 5 m behind a stable wall 
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Figure 5.5  Measured maximum induced bending moment profiles for free-head 
piles at 1 m behind a stable wall 
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Figure 5.6  Measured maximum induced bending moment profiles for free-head 
piles at (a) 3 m and (b) 5 m behind a stable wall 
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Figure 5.7 Arching effect is depicted by the rotation of the principal stresses 
directions under undrained condition (after Chen and Martin, 2002) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Soil arching and separation noted in Test 12 
 
 
 
 
 

   157



Chapter 5: Behaviour of pile group adjacent to excavation in clay 

 
 

(b) (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9 Deformation of pile/soil interface with separation under undrained 
condition as depicted by (a) displacement vectors and (b) exaggerated grid distortion 

(after Chen and Martin, 2002) 
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Figure 5.10 Measured free-field soil movements at different depths and pile head 
deflection at 3 m behind the wall for Test 12 
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Figure 5.11 Measured free-field soil moving ahead of pile (after Adachi et al., 1989) 
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Figure 5.12 Development of pile bending moment for front pile of Test 12 
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Figure 5.13 Variations of pile cap deflection during and after excavation for front, 

middle and rear piles of various capped-head pile groups 
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Figure 5.14 Variations of maximum pile bending moment during and after   
excavation for (a) front and (b) middle and rear piles of various 

capped-head pile groups 
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Figure 5.15 Measured pile head deflection for single piles and 2-pile groups 
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Figure 5.16 Measured maximum induced bending moment profiles for free-head 

single piles and capped-head 2-pile group at similar locations 
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Figure 5.17 Measured maximum induced bending moment profiles for free-head 

single piles and capped-head 2-pile group at similar locations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.18 Variation in maximum induced pile bending moment with distances 
from wall for Tests 9 and 11 
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Figure 5.19 Measured pile bending moment profiles for capped-head 2- and 4-pile 

groups at similar locations (Tests 11 and 13) 
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Figure 5.20 Measured pile head deflection for free- and capped-head 4- and 6-pile 

groups 
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Figure 5.21 Measured pile deflection profiles for a 2x3 capped-head 6-pile group  
(Test 15) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22 Measured pile bending moment profiles for a 3x2 capped-head 6-pile 
group (Test 16) 
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Figure 5.23 Variations of (a) excavation depth and (b) pile cap deflection for a 4-
pile group behind a collapsed wall (Test 14)  
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Figure 5.24 Variations of maximum positive and negative bending moment for (a) 

front and (b) rear pile of a capped-head 4-pile group behind a collapsed 
wall (Test 14)  
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Figure 5.25 Measured front pile (a) bending moment, (b) deflection, (c) soil 
pressure and (d) shear force for Test 14 
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Figure 5.26 Measured rear pile (a) bending moment, (b) deflection, (c) soil pressure 
and (d) shear force for Test 14 
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CHAPTER SIX 

 

NUMERICAL ANALYSIS OF CENTRIFUGE 

TEST RESULTS 

 

6.1 INTRODUCTION 

A numerical method of analysis has been proposed by Chow and Yong (1996) 

to analyze the responses of single piles subject to lateral soil movement. The concept 

of the method is based on the finite element method where the pile is represented by 

beam elements and the soil is idealized using the modulus of subgrade reaction. The 

non-linearity of the soil behaviour can be incorporated by limiting the soil pressure 

that can act on the pile. Chow (1996) presented a numerical model using a hybrid 

method of analysis to analyse pile groups subject to lateral soil movement. This hybrid 

method is an extension of the Chow and Yong (1996) method used for the analysis of 

single pile subject to lateral soil movement. In this hybrid method, the pile-soil 

interaction forces acting on the piles and the soil are first considered separately and 

then combined by considering equilibrium and compatibility.  

The numerical method had been used by Shen (1999), Law (2000) and Lim 

(2001) to analyse centrifuge test results in sand. They found that reasonably good 

match could be achieved, provided appropriate soil parameters were adopted. This 

approach is used in the present study to analyse the single pile and pile group 

responses in clay behind stable and collapsed retaining walls.  
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6.2 METHOD OF ANALYSIS 

The method of analysis for a single pile and a group of piles subject to 

excavation-induced soil movement is presented in this section. 

6.2.1 Analysis for single pile 

The method of analysis for a single isolated pile subject to lateral soil 

movement is described by Chow and Yong (1996). In this method, the pile is modelled 

as a series of linear elastic beam elements. The behaviour of pile subject to lateral soil 

movement is analyzed using the finite element method where the soil is idealized using 

the modulus of subgrade reaction. The analysis requires knowledge of the flexural 

rigidity, EpIp, of the pile, the distribution of the lateral soil stiffness, Kh, with depth and 

the limiting soil pressure, py, with depth. The limiting soil pressure is necessary to 

allow for local failure, thus permitting non-linear soil behaviour to be incorporated. 

The free-field soil movement is required as input data. Detailed description of this 

method can be found in Chow and Yong (1996).  

6.2.2 Analysis for piles in a group 

Chow (1996) extended the above method to analyse pile groups subject to lateral 

soil movement. The method of modeling the pile and the soil response at the individual 

piles are similar to that described for a single pile in Section 6.2.1. The pile-soil 

interaction forces acting on the piles and the soil are first considered separately and 

then combined by considering equilibrium and compatibility. 

The load-deflection relationship of the piles in a group is given by: 

                                                      [ ]{ } { }ppp PyK =                                                   (6.1) 
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where [Kp] = assembled stiffness matrix of all the beam elements forming the piles, 

{yp} = vector of pile deflection and rotation of the pile nodes and {Pp} = vector of pile-

soil interaction forces acting on the pile. 

The soil response at the individual piles is modelled using the modulus of 

subgrade reaction. The lateral soil pressure, ps, acting on the pile is given by: 

                                                   ( )oshs yykp −=                                                      (6.2) 

where kh = modulus of subgrade reaction of the soil, ys = soil deformation at the pile-

soil interface and yo = lateral soil movement. The lateral force of the soil, Ps, acting on 

the pile at a particular node is given as: 

                                                   ( )oshs yylKP −=                                                  (6.3) 

where Kh = khd is the lateral soil stiffness per unit length of the pile and l is the pile 

element  length associated with that node. 

The relative lateral soil movement at the pile-soil interface at a particular node i 

of a pile due to its own interaction forces and at other nodes in the pile group may be 

obtained by using the principle of superposition from: 

                                                                                                  (6.4) ∑
=

=

=−
Nj

j
sjijoisi Pfyy

1

where ysi = lateral soil deformation at the pile-soil interface at node i, yoi = lateral soil 

movement at node i in the absence of the piles, fij = flexibility coefficient denoting 

lateral deformation of the soil at node i due to a unit pile-soil interaction lateral force 

acting at node j, Psj = pile-soil interaction lateral force acting at node j and N = total 

number of nodes. 

Eq. (6.4) is written for each of the nodes leading to the following flexibility 

relationship of the soil: 

                                                { } { } [ ]{ }ssos PFyy =−                                                (6.5) 
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where {ys} = vector of soil deformation at the pile nodes, {yo} = vector of lateral soil 

movement at the pile nodes in the absence of the piles, [Fs] = soil flexibility matrix and 

{Ps} = vector of pile-soil interaction forces acting on the soil. 

The following stiffness relationship of the soil is obtained when the flexibility 

equation in Eq. (6.5) is inverted:  

                                 { } [ ] { } { }( ) [ ] { } { }( )ossosss yyKyyFP −=−= −1                           (6.6) 

where [Ks] is the stiffness matrix of the soil.  

Equilibrium of the interaction forces acting at the pile-soil interface yields: 

                                                       { } { }ps PP −=                                                       (6.7) 

and the compatibility of the deformation of the pile and the soil (assuming linearity) 

yields: 

                                                         { } { }ps yy =                                                       (6.8) 

The following stiffness relationship of the pile group system can be obtained by using 

the above equilibrium and compatibility conditions together with Eqs. (6.1) and (6.6): 

                                              [ ] [ ]( ){ } [ ]{ }ospsp yKyKK =+                                        (6.9) 

The vector [Ks]{yo} represents the induced lateral forces acting on the piles 

resulting from the lateral soil movement. The pile deformation, {yp}, is obtained by 

solving Eq. (6.9). Subsequently, by differentiating the pile deformation profile, {yp}, 

the shear force and bending moment profiles can be obtained. Similar to the case for 

the method of analysis for single pile, the non-linear behaviour of soil can be 

incorporated by limiting the soil pressure that can act on the pile. 

Law (2000) modified the computer program to handle different magnitudes of 

soil movement according to the pile location. This enables the program to be more 

flexible and versatile in solving problems involving a group of piles at various 

positions when subject to lateral soil movements. Law (2000) also modified the 
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program so that a capped-head pile group can be modelled. The pile cap is simulated 

by introducing beam elements into the method of analysis to “tie” the pile heads in a 

group together. Therefore, the bending rigidity of the pile cap, (EI)cap, has to be 

included as part of the input data. 

 

6.3 SOIL PARAMETERS 

6.3.1 Lateral soil stiffness 

The modulus of subgrade reaction, kh, for horizontal loading, is a conceptual 

relationship between the soil pressure, p, and the deflection, ρ, which is widely used in 

the analysis of laterally loaded piles. In more general terms, the modulus of subgrade 

reaction is the slope (tangent or secant line) or ratio of the applied pressure, p, to the 

corresponding soil deformation, ρ. Hence, the modulus of subgrade reaction, kh, can be 

written as: 

                                                              ρhkp =                                                     (6.10)                         

where kh has a unit of kN/m3. 

The lateral soil stiffness per unit length of the pile is given as: 

                                                              dkK hh =                                                    (6.11) 

where kh is the modulus of subgrade reaction. The Kh parameter can be approximately 

related to the Young’s modulus of the soil, Es as follows (Poulos & Davis, 1980 and 

Chow & Yong, 1996): 

                                                               sh EK ≈                                                     (6.12) 

For clay, it is assumed that the Es is related to the undrained shear strength, cu, as 

follows (Poulos and Davis, 1980): 

                                                     ( ) us cE 400150 −=                                               (6.13) 
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Hence,  

                                                    ( ) uh cK 400150 −=                                               (6.14) 

Since this study involves a layer of sand underlying the clay, the relevant input 

involving sand is also presented. Shen (1999) reported that for Toyoura sand, the 

Young’s modulus is normally assumed to be proportional to depth, z: 

                                                             mzEs =                                                       (6.15) 

where m is the proportional factor in MN/m3. 

Shen (1999) used the relationship from Adachi et al. (1994) to describe the 

correlation between cone resistance, qc, and depth, z, for the sand. It was established 

that: 

                                                           zqc 8.2=                                                       (6.16) 

where qc is in MPa and z in m, fits his data well. Webb et al. (1990) showed that the Es 

can be related to qc by the relation: 

                                                      ( ) cs qE 5.25.1 −=                                                (6.17) 

Substituting Eq. (6.16) into Eq. (6.17) yields: 

                                                         ( )zEs 72.4 −=                                                 (6.18) 

Substitution of Eq. (6.18) into Eq. (6.12) leads to: 

                                                       ( )zKh 72.4 −=                                                  (6.19) 

In this study, the Kh was chosen so that when used in conjunction with the properties 

derived for clay, the calculated bending moment matches the measured bending 

moment, which led to: 

                                                    ( )MPainzK h 6.5=                                   (6.20) 

where z is the depth in m. Eq. (6.20) is then used in all the subsequent back-analyses. 
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6.3.2 Undrained shear strength  

As described in Section 4.5, a bar penetrometer or T-bar was used to determine 

the continuous undrained shear strength profile of the clay before and after excavation 

in separate tests. The measured undrained shear strength will be used as input for all 

subsequent back-analyses performed hereinafter.  

6.3.3 Limiting soil pressure 

Poulos (1994) stated that limiting soil pressure can be employed to account for 

the non-linear pile-soil response. Thus accurate limiting soil pressure can result in a 

good theoretical prediction of the response of a pile subject to lateral soil movement. 

This is especially true for the case where lateral soil movement is sufficiently large to 

cause the soil to flow past the pile without exerting any additional pressure on it.  

In general, for piles embedded in cohesive soils, the limit yield pressure due to 

relative pile-soil displacement can be written as: 

                                                            uy Kcp =                                                       (6.21) 

where K is a limit yield pressure coefficient. For a laterally loaded single pile in 

cohesive soils, Broms (1964a) suggested a simplified and conservative distribution of 

soil resistance, py, as: 

                                                 uuy cc
d
zp 912 ≤⎟

⎠
⎞

⎜
⎝
⎛ +=                                             (6.22)                        

However, in the present study, the limiting soil pressure for a pile embedded in moving 

soil is not available and needs to be evaluated.  

De Beer (1977) described active piles as piles that are being loaded laterally at 

the pile head that results in surrounding lateral soil movement. On the contrary, 

passive piles are piles subject to externally imposed lateral soil movements that result 

in induced forces on the piles. Researchers including Viggiani (1981) and Maugeri 
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(1994) (see Table 2.2) established that the magnitude of K on a passive pile subject to 

lateral soil movement should be lesser than that of a laterally loaded pile (K = 9 as 

described by Broms (1964a)). However, Poulos and Chen (1997) proposed a K value 

of 9 for piles subject to excavation-induced soil movement (see Table 2.2), which is 

similar to that for a laterally loaded pile. Goh et al. (1997) (see Table 2.2) also 

proposed the same K value for piles supporting an embankment, which has contrasting 

loading condition as the former involves stress relief while the latter involves 

increasing loading condition. However, for the analysis of piles used for landslide 

stabilization, Chow (1996) suggested that for sliding soil above the slip surface, K=3 – 

4 and for the stable soil below the slip surface, K= 8 – 12. The lower value of K in the 

sliding zone is thought to be due to its proximity to the ground surface and the 

weakening of soil due to sliding movements. Since the findings on the K values remain 

inconsistent, it is hoped that the back-analysis would provide further understanding on 

the K values of a passive pile. 

As mentioned earlier, since this study involves an underlying sand layer where 

the pile is embedded in, the limiting soil pressure for sand is presented here for 

completeness. Broms (1964b) proposed that the ultimate soil pressure for cohesionless 

soils as: 

                                                pvy Kp '3σ=                                                 (6.23) 

where σv’ = effective vertical overburden pressure 

     Kp = (1 + sinφ’) / (1 – sinφ’) 

           φ’ = angle of internal friction  
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6.3.4 Free-field lateral soil movement 

Free-field soil movement refers to the soil movement that occurs solely due to 

excavation without the presence of piles. The free-field soil movement in the present 

study is obtained by monitoring the movement of soil markers placed behind the 

perspex side face of the container using the image processing technique described in 

Chapter 3. Such technique has also been used by Almeida et al. (1985), Bolton & 

Powrie (1987, 1988), Bransby & Springman (1997) and Kongsomboon (2002). The 

measured average free-field lateral soil movement profiles used for the analyses of pile 

behaviour behind a stable and a collapsed retaining wall are shown in Figures 4.26(a) 

and (b), respectively. 

 

6.4 PREDICTION OF PILE RESPONSES IN THE CASE OF A STABLE 

RETAINING WALL 

Both free and capped pile groups have been analysed. Individual free-head 

piles are free to deflect and rotate when subject to excavation-induced soil movement. 

In contrast, capped pile groups would deflect in unison and ideally, the rotation of each 

individual pile head should be zero if a fully-fixed pile cap that prevents rotation can 

be successfully achieved. For the case of a pile group, the individual piles are located 

at pile spacing to pile width ratio of 3.2 from one another. Comparisons will then be 

made with the measured centrifuge experiment data.  

6.4.1 Single pile 

Centrifuge tests have been carried out on single piles with free-head condition 

only. The centrifuge test results are back-analyzed using the numerical method 

described in Section 6.2. The corresponding lateral soil movement profiles at the pile 
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locations (Figures 4.26(a) and (b)) are used as input in the analysis. The lateral soil 

stiffness, Kh of the clay is evaluated using Eq. (6.14). Since the normally consolidated 

clay in the present study is relatively soft as measured by the T-bar tests, Kh = 150 cu is 

used. Eq. (6.22) is used to calculate the limiting soil pressure, py, for the clay. For the 

underlying sand layer, Eqs. (6.20) and (6.23) are used to calculate the lateral soil 

stiffness, Kh, and limiting soil pressure, py, respectively. 

In practice, the maximum pile bending moment and deflection profiles are the 

most important results as excessive induced bending moment can fail a pile 

structurally while a large pile deflection can threaten its serviceability. It has been 

established from earlier chapters that the pile response is time dependent. In the 

numerical back-analysis, the measured lateral soil movement profile corresponding to 

the measured peak pile bending moment profile at the pile location is used as the input. 

The input soil strength values are based on the measured soil strength profile prior to 

excavation. A comparison of the predicted and measured maximum induced pile 

bending moment profiles and the corresponding pile deflection, shear force and soil 

pressure profiles are shown in Figure 6.1 for Tests 1, 2, 3 and 4, where the single pile 

is located 1 m, 3 m, 5 m and 7 m behind the wall respectively. In general, there is 

reasonably good agreement between the predicted and measured pile bending moment, 

deflection, shear force and soil pressure profiles. However, for Test 1 with the pile 

located 1 m behind the wall, the predicted pile responses are about 25 % higher than 

the measured values using the pre-excavation soil strength profile.  

The T-bar penetrometer test was carried out to determine the undrained shear 

strength profiles of the clay at various distances behind the wall. The in-flight T-bar 

tests were conducted before and after the excavation. Figure 4.4 reveals that after 

excavation, the soil at 1.5 m behind the wall has experienced a substantial reduction in 

   179



Chapter 6: Numerical analysis of centrifuge test results 

the undrained shear strength for the top 1.2 m depth. This reduction could be attributed 

to the large stress relief in the soil caused by excavation due to significant soil 

movement at the pile location, as shown in Figure 4.16. Figure 4.4 also shows that the 

soil at 3 m or beyond behind the wall has not weakened upon excavation. It is hence 

proposed that the post-excavation soil strength profile should be employed in the back-

analysis if the pile is located within 2 m of the wall. 

For further analysis of Test 1 results, the reduced soil strength profile obtained 

after excavation is used in Eq. (6.22) and this yields a smaller limiting soil pressure 

profile to better reflect the situation of large strain soil deformation. The revised 

predicted pile responses for Test 1 (denoted by a dashed line marked with crosses) are 

also given in Figure 6.1. It is evident that the revised predicted pile responses give a 

substantially better agreement with the measured pile responses.  

It should be noted that Eq. (6.22) is primarily used to estimate the limiting soil 

pressure for a conventional laterally loaded pile and hence may not be appropriate for 

the present case involving large soil deformation for the case of an excavation. The 

results of the above re-analysis using the post-excavation soil strength profile for Test 

1 is consistent with the findings of Viggiani (1981) and Maugeri (1994) (see Table 2.2) 

who reported that the py/cu ratio for passive piles in the case of excavation and 

landslide is generally much lower than that for active laterally loaded piles. The large 

strain soil deformation situation will be further investigated later when addressing the 

pile behaviour due to excavation-induced soil movement behind a collapsed wall. 
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6.4.2 2-pile group 

Numerical back-analysis involving free- and capped-head 2-pile group tests 

are presented in this section. 

6.4.2.1 Free-head 

Tests 8 and 10 involve free-head 2-pile groups arranged in a line in the direction 

of the soil movement as shown in Figure 5.1. In Test 8, the piles are located 1 m 

(front) and 3 m (rear) behind the wall, while for Test 10, the piles are located 3 m 

(front) and 5 m (rear) behind the wall. The centrifuge test results reported in Section 

5.4 revealed that the front pile would shield the rear pile from the excavation-induced 

soil movement. In addition, the reinforcing effect would increase as the number of 

piles in a group increases. However, the free-field soil movements measured at some 

distance away from the pile group are likely to neglect such pile shadowing, 

reinforcing and soil arching effects that have been observed to occur around the pile 

groups. To tackle the pile shadowing, reinforcing and soil arching effects in the back-

analysis, a semi-empirical method is introduced by means of the application of a soil 

movement moderation factor, ks. Lim (2001) and Maugeri et al. (1994) realised the 

occurrence of such phenomena and introduced their own correction factors. It is found 

that in the present study, a soil moderation factor of 0.8 is found to be the most 

appropriate for a 2-pile group in clay.  

Figures 6.2(a) and (b) show the comparison between the predicted and measured 

bending moment and deflection profiles between the front (1 m behind wall) and rear 

(3 m) piles for Test 8, respectively. Similar to the single pile case at 1 m behind the 

wall (Test 1) reported earlier, there is an over-prediction of the front pile responses if 

the pre-excavation undrained shear strength of the soil is adopted in the analysis. If the 
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post-excavation strength is used instead, better pile bending moment and deflection 

profiles are obtained as shown in Figures 6.2(a) and (b). 

The comparisons between the predicted and measured pile bending moment and 

deflection profiles for the 3 m (front) and 5 m (rear) piles for Test 10 are shown in 

Figures 6.3(a) and (b), respectively. For consistency, the same moderation factor of 0.8 

has been used for Tests 8 and 10 and hence, the predicted pile behaviour at 3 m from 

the wall show identical response, regardless of the pile being a front or rear pile. The 

fair agreement between the predicted and measured pile responses reveals that the 

same moderation factor of 0.8 can be used for a 2-pile group free head group with piles 

having the same centre-to-centre spacing. The pre-excavation soil strength can be used 

provided that the piles are located at least 2 m away from the wall. 

6.4.2.2 Capped-head 
 

Tests 9 and 11 involved capped-head 2-pile groups arranged in a line in the 

direction of soil movement. In Test 9, the capped-head front and rear piles are located 

1 m and 3 m behind the wall, respectively. In Test 11, the capped-head front and rear 

piles are located at 3 m and 5 m behind the wall, respectively. The bending rigidity of 

the pile cap, (EI)cap, is determined to be 1.2x107 kNm2. The Young’s Modulus of 

aluminium, E, is 7.2x103 MPa. Being a rectangular section, the moment of inertia of 

the pile cap, I, equals to bh3/12 where b is the breath and h is the thickness of the pile 

cap. The breath of the pile cap is the dimension perpendicular to the direction of the 

soil movement. The same soil movement moderation factor of 0.8 is also applied.  

The predicted and measured pile bending moment and deflection profiles for the 

capped-head front (1 m behind wall) and rear (3 m) piles of Test 9 are shown in 

Figures 6.4(a) and (b), respectively using the pre-excavation soil undrained shear 

strength for the calculation of soil limiting pressure, py, as given in Eq. (6.22). The 
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overall pile group responses are over-predicted. The over-prediction of the responses 

of the entire pile group can be attributed to the interaction between the front and rear 

piles via the pile cap with the soil around the front pile (1 m behind the wall) 

experiencing significantly greater stress relief and reduction in soil strength upon 

excavation than the  rear pile (3 m behind the wall). 

For further analysis, the post-excavation soil strength is used in calculating the 

limiting soil pressure, py, as given in Eq. (6.22). The results show that better prediction 

of the pile group bending moment and deflection profiles are obtained, except for the 

predicted bending moment at the pile head as shown in Figures 6.5(a) and (b). For the 

over-prediction of the pile head bending moment and deflection, it is suspected that the 

pile cap could not provide full restraint to the pile heads. Such problem has also been 

observed by Lim (2001). In order to provide a better understanding on the effect of the 

rotational behaviour of the pile head, the stiffness matrix that governs the load-

deformation behaviour of the pile cap in the numerical method is studied further. The 

pile cap and the piles can be thought of beam elements akin to a 2-D rigid-jointed 

structure, for example, a portal frame, where the structure lies in the vertical x-y plane 

and subject to loads acting in the same plane. Ideally, the connections between the pile 

heads and pile cap should be fixed against vertical displacement and also that rotation 

of the pile heads with respect to the pile cap should be perpendicular to each other but 

are allowed to displace in the horizontal x-direction in response to the lateral soil 

movement. The ability of the pile cap to achieve such criteria will be evaluated 

subsequently. The general force-deformation relationship for the beam elements 

subject to external forces and bending moments are given by: 
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Vector (a) represents the resultant forces of the beam element, vector (b) is the 

common stiffness constant, matrix (c) is the global stiffness matrix relating the force-

deformation relationship of the beam element, vector (d) denotes the deformation of 

the beam element and vector (e) represents the externally applied forces acting on the 

beam element. The matrices in Eq. (6.24) can be further simplified since only the 

rotational component is of interest. Therefore, Eq. (6.24) reduces to: 
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Since it is suspected that rotation occurs at the pile head as the measured bending 

moment at the pile head is over-predicted as shown in Figures 6.5(a) and (b), the 

diagonal elements which represent 4EI/L in the stiffness matrix in Eq. (6.25) are 

multiplied by a reduction factor, kc, of less than unity. Thus, Eq. (6.25) can be re-

written as: 
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In doing so, the pile cap is now modelled as if it is incapable of providing full 

rotational restraint to the pile heads. It is found that in this study, kc is noted be about 

0.02 so that the predicted pile head bending moment gives reasonable prediction of the 

 (c)(b) (d) (e) (a) 
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measured pile head bending moment as shown in Figure 6.6(a). As a comparison, if 

full rotation is allowed at the pile cap (kc=0) using the numerical method, the pile head 

shows that no bending moment is developed as shown in Figure 6.7(a). This shows 

that relaxation in the rotational degree-of-freedom is the cause of over-prediction of 

the pile head negative bending moment in Test 9. However, it is also observed that the 

deliberate relaxation of the rotational degree-of-freedom at the pile heads does not 

influence the maximum positive and negative bending moments along the pile. As 

such, this back-analysis method highlights the modelling limitation of the pile cap.  

From Figure 6.7(b), both the predicted and measured pile deflection profiles 

show negligible movement below 9 m depth, revealing that the embedment of the pile 

into the sand layer is effective in preventing the pile toe movement, thus the validation 

of a fixed pile toe. For the front pile, negative bending moment is developed at the pile 

head. Maximum negative and positive pile bending moment are developed at 3.5 m 

and 8 m below the ground level, respectively. However, for the rear pile, the maximum 

negative pile bending moment is developed at the pile head, while the maximum 

positive pile bending moment occurs at approximately 8 m depth.  

Figures 6.8(a) and (b) show the derived typical shear force and soil pressure 

profiles for both the capped front and rear piles of Test 9, respectively, when the post-

excavation undrained shear strength is used in computing py. It is noted that shear force 

is produced at the pile head due to the restraint imposed by the pile cap that causes the 

front pile to drag and pull the rear pile in the direction of the soil movement. The 

predicted and measured soil pressure acting on the piles generally show fair agreement. 

Both the predicted and measured pile responses show similar trends and are in fair 

agreement if the post-excavation undrained shear strength is used computing py in the 

analysis.  
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Since Test 11 involves front and rear piles at 3 m and 5 m behind the wall, no 

reduction in undrained shear strength after excavation was observed earlier. Therefore, 

this pre-excavation soil strength profile is used in the analysis. As for the pile cap 

rotational stiffness, a similar kc=0.02 used in Test 9 is adopted to maintain consistency. 

Figures 6.9(a) and (b) show the predicted and measured pile bending moment and 

deflection profiles for both capped head front (3 m from wall) and rear (5 m from wall) 

piles for Test 11, respectively. It is observed that the predicted pile responses are 

slightly higher than the measured pile responses. The locations of the minimum and 

maximum pile bending moment are also well-predicted. It is observed that the 

measured maximum positive pile bending moment and pile head deflection are greater 

for the front pile in Test 9 than those of the rear pile in Test 11. This is because the 

capped- pile group in Test 9 is located nearer to the excavation and as a result there is a 

greater interaction in the pile group due to larger soil movement. 

6.4.3 4-pile group 

Numerical back-analysis involving free- and capped-head 4-pile group tests 

are presented in this section. 

6.4.3.1 Free-head 

In order to account for the pile shadowing, reinforcing and soil arching effects, a 

soil movement moderation factor has to be adopted to moderate the effect of free-field 

soil movement on a pile group as discussed earlier. For a larger 4-pile group, the pile 

shadowing, reinforcing and soil arching effects are expected to be more pronounced. 

By back-analyses, it is found that, a soil moderation factor of 0.7 is found to be most 

appropriate for a 4-pile group in clay. 
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Figures 6.10(a) and (b) show the bending moment and deflection profiles for 

both the free-head front and rear piles of Test 12. The front and rear piles are located 3 

m and 5 m behind the wall, respectively. It is observed that for both the front and rear 

piles, the locations of the maximum pile bending moments have been well-predicted. 

Nonetheless, the numerical method slightly under-predicts the front pile head 

deflection.  

6.4.3.2 Capped-head 

For the capped-head 4-pile group (Test 13), the bending rigidity of the pile cap, 

(EI)cap, is calculated to be 1.95x107 kNm2. Similarly, the same soil movement 

moderation factor, ks, of 0.7 and reduction factor, kc, for pile cap rotational stiffness of 

0.02 are adopted for consistency. As shown in Figures 6.11(a) and (b), the numerical 

method slightly under-predicts the measured bending moment of the front pile located 

3 m behind the wall. However, for the rear pile which is located 5 m behind the wall, 

the predicted maximum negative bending moment is smaller than the measured values 

but the predicted maximum positive moment is greater than the measured value. 

Nevertheless, Figure 6.11(b) shows that the predicted pile deflection profiles generally 

agree well with the measured ones.  

6.4.4 6-pile group 

Only capped head 6-pile group tests have been performed. The two tests involve 

piles arranged in (i) three rows with two piles per row (2x3) in Test 15 and (ii) two 

rows with three piles per row (3x2) in Test 16. For case (i), the three rows of piles are 

located 3 m , 5 m and 7 m behind the wall; while for case (ii), the two rows of piles are 

located 3 m and 5 m behind the wall. The pile group layout for Tests 15 and 16 are 

shown in Figure 5.1. 
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6.4.4.1 Capped-head 

The ideal bending rigidity of the pile cap, (EI)cap, for the 6-pile groups arranged 

in 2x3 (Test 15) and 3x2 (Test 16) formations is 1.95x107 kNm2 and 3.6x107 kNm2, 

respectively. By back-analyses, it has been found in this study that a soil movement 

moderation factor of 0.5 is found to be most appropriate for a 6-pile group in clay. The 

same reduction factor, kc, for pile cap rotational stiffness of 0.02 is also adopted for 

consistency. 

Figures 6.12(a) and (b) show the predicted and measured pile bending moment 

and deflection profiles for the 3x2 arrangement of the 6-pile group (Test 15) at 3 m, 5 

m and 7 m behind the wall, respectively. It is observed that the pile head deflection is 

generally under-predicted. Nevertheless, the predicted and measured pile bending 

moment profiles seem to show better agreement than the deflection profiles. The 

peripheral pile bending moment profiles at 3 m and 7 m behind the wall are similar to 

those of a typical front and rear pile as observed in the 2- and 4-pile groups earlier. It is 

interesting to note that the bending moment profile of the middle peripheral pile at 5 m 

behind the wall assumes similar shape of a typical rear pile.  

For Test 16, the same soil movement moderation factor of 0.5 and reduction 

factor, kc, for pile cap rotational stiffness of 0.02 are also adopted for consistency. The 

predicted and measured pile bending moment and deflection profiles for the 2x3 

arrangement of the 6-pile group at 3 m and 5 m behind the wall are shown in Figures 

6.13(a) and (b), respectively. It is also observed that the bending moment profiles and 

the locations of the maximum positive and negative bending moment have been well-

predicted. Nevertheless, the pile group deflection is slightly under-predicted. 
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6.5 PREDICTION OF PILE RESPONSES IN THE CASE OF A COLLAPSED 

RETAINING WALL 

 
This section describes the back-analysis of a single pile and also that of a pile 

group in the case of a collapsed wall. Comparisons with existing established limiting 

soil pressure / undrained shear strength ratio, K, are also made. 

6.5.1 Single pile  

In Section 6.4.1, it has been established that the pile bending moment and 

deflection could be reasonably well predicted using the numerical method if the single 

pile is located at 3 m or more behind the wall. However, if the pile is located very 

close to the wall at 1 m away, the pile responses are well over-predicted especially at 

greater excavation depths due to significant soil movement at the pile location. As the 

soil movement for Tests 5, 6 and 7 are significantly large for a great distance behind 

the wall due to the collapse of the wall (see Figures 4.23 and 4.25), the numerical 

method would also grossly over-predict the pile bending moment and deflection. It is 

anticipated that under large soil movement, the soil pressure acting on the pile may 

have reached its limiting values. The numerical back-analyses for a single pile that 

experiences substantial lateral soil movement are carried out hereinafter. 

6.5.1.1 Pre-excavation undrained shear strength 

As a first attempt, the pre-excavation undrained shear strength profile at the 

pile location of 3 m behind the wall is used as the input soil strength parameters in the 

back analyses. The limiting soil pressure coefficient K is defined as the ratio of 

limiting soil pressure py and cu. The following K values (Poulos and Davis 1980) are 

adopted in the back analysis: 

                                            K = py/cu = 2(1+z/d) ≤ 9                                   (6.27) 
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where z is the depth below the ground and d is the pile diameter or width.  

Figure 6.14 shows a comparison of the measured and calculated maximum 

induced pile bending moments and pile head deflection for Test 5. The maximum 

induced pile bending moment occurs at about 7.5 m depth, as shown in Figure 4.21(b). 

There is a reasonably close agreement between the measured and calculated pile 

responses up to an excavation depth of about 1.8 m, after which the calculated pile 

bending moments and deflections considerably overestimate the measured pile 

responses.  The calculated and measured pile responses for Test 6 (measured peak pile 

responses at 1.4 m excavation depth) and Test 7 (measured pile responses at 

excavation depths of 1.2 m and 2.8 m) plotted in Figures 6.15, 6.16(a) and 6.16(b), 

respectively, reveal that the calculated pile bending moments are much larger than the 

measured values. The above findings are similar to those established in the back- 

analyses of the earlier stable wall study in Section 4.6 and this confirms that the use of 

pre-excavation undrained shear strength profiles would over-predict the induced pile 

bending moments when the magnitude of lateral soil movement is large. It is believed 

that under large soil movements, the soil pressures acting on the pile may have reached 

their limiting values.  

6.5.1.2 Post-excavation undrained shear strength 

Figure 4.5 shows that the undrained shear strength of the top soil had 

significantly weakened after excavation. In view of the over-prediction of pile 

responses at large soil movements using the pre-excavation undrained shear strength, 

the second attempt in the back analyses is to employ the post-excavation undrained 

shear strength profiles as the input soil strength values. The calculated pile bending 

moments and deflections using the post-excavation strength profiles for Tests 5, 6 and 

7 are also shown in Figures 6.14, 6.15 and 6.16, respectively. It is evident that the 
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agreement between the calculated and measured pile bending moments are 

considerably better. However, the calculated pile deflections are lower than the 

measured values. In practice, the correct prediction of pile bending moment is the most 

critical issue as this concerns the structural capacity and integrity of the pile. The 

under-prediction of pile deflection is probably due to the presence of tension cracks 

and the formation of active failure wedge in the tests (see Figures 4.23(b) and 4.25), 

which could not be modeled in the numerical analysis. The under-prediction is 

especially severe for Test 7. Figure 4.19(d) clearly shows that after an excavation 

depth of 1.4 m in Test 7, the wall rotation in the underlying sand layer increases 

considerably implying a reduction in effectiveness of the wall ‘key-in’ in the sand 

layer. This in turn causes a bigger pile rotation in the underlying sand layer and such 

phenomenon could not be accounted for in the numerical analysis.  

As mentioned earlier, the maximum soil pressures acting on the pile is likely to 

be reached at large soil movements. At this juncture, it is worthy to evaluate the actual 

magnitudes of soil pressures on the pile. The method of deriving the soil pressure 

profiles is the same used for the earlier stable wall study. As an example, Figure 6.17 

shows the soil pressure profiles of Test 6 that are deduced from the corresponding 

bending moment profiles shown in Figure 4.21(c). It is evident that the limiting soil 

pressures py along the upper portion of the pile have been reached at an excavation 

depth of 1.2 m. Thereafter the soil pressures do not increase further with increasing 

excavation depth. 

Using the py values derived from the experimental data for the 3 tests and the 

post-excavation undrained shear strength profiles, the variation of limiting soil 

pressure coefficient K with depth for the 3 tests can be derived and shown in Figure 

6.18(a). It is noted that the back-analyzed K value increases from zero at the ground 
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surface to a maximum value of around 8 at about 2 m depth. The theoretical K values 

determined using Equation 2 are also plotted in Figure 6.18(a) for comparison. It is 

evident that the theoretical and back-analyzed K values are reasonably close. This 

verifies that the post-excavation undrained shear strength values should be adopted in 

order to obtain a more accurate prediction of induced pile bending moments. 

6.5.1.3 Pre-excavation undrained shear strength with back-analysed limiting soil 

pressure 

In most practical cases, the post-excavation undrained shear strength profiles are not 

available. In view of this, the back-analyzed K values with respect to the pre-

excavation undrained shear strength profiles for the 3 tests are also determined and 

shown in Figure 6.18(b). As expected, the back-analyzed K values are much lower 

than the theoretical K values shown in Figure 6.18(a). An envelope of limiting K 

values is hence plotted and indicated by the dash line in Figure 6.18(b). The maximum 

back-analyzed K value of 6 is close to the K values proposed by a number of 

researchers (for example, Maugeri, 1994; Moser, 1973) for piles subject to lateral soil 

movement. The above finding illustrates that the reduction of K from a value of 9 for 

conventional laterally loaded piles to a lower value of 6 for piles subject to excavation-

induced soil movements is attributed to the reduction in the undrained shear strength 

upon excavation. It should be noted that the magnitude of 6 is merely a back-analyzed 

value and may not be applicable to other situations with different wall, soil or pile 

conditions. 

The third and final attempt in the back analyses is to employ the pre-excavation 

undrained shear strength profiles but adopting the envelope of K values deduced from 

Figure 6.18(b). The calculated pile bending moments and deflections for Tests 5, 6 and 

7 shown in Figures 6.14, 6.15 and 6.16, respectively, again reveal much better 
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agreement with the measured pile responses. It should be noted that the calculations 

obtained using the post-excavation undrained shear strength profile and pre-excavation 

undrained shear strength profile with reduced K values are identical. This is as 

expected as the two approaches essentially use the same back-analyzed limiting soil 

pressures.  

Some researchers (Viggiani, 1981; Maugeri, 1994; Pan et al., 2002) established 

that the magnitude of K on a conventional laterally loaded pile should be greater than 

that on a pile subject to lateral soil movement. However, others (Chen and Poulos, 

1994) suggested that the K values for the above two situations could be similar with a 

K value of 9 proposed for piles subject to excavation-induced soil movement (Poulos 

and Chen, 1997) and for embankment piles (Goh et al., 1997). The results of the 

present study help to clarify the above contrasting proposals of K values. The results of 

the back analyses reveal that if only pre-excavation undrained shear strength profiles 

are available, an appropriate reduction in the K value should be adopted in order to 

obtain a more accurate prediction of pile responses behind an excavation with large 

soil movements. 

6.5.2 Pile group 

The experimental set up of Test 14 is similar to that of Test 6, except that the 

former consists of a capped head 4-pile group with front and rear piles located 3 m and 

5 m behind the wall while the latter consists of a single pile at 3 m behind the wall. 

The method of analyses established in Section 6.5.1 above is adopted. The free-

field soil movement profiles used is similar to that of Test 6 and shown in Figure 

4.26(b). Using the simplified envelope of limiting soil pressure distribution (Figure 

6.15(b)) and the reduced cu values after excavation (Figure 4.5), the predicted front and 

rear pile responses are shown in Figures 6.19(a) and (b). The predicted pile responses 
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show fair agreement with the measured values, suggesting that the limiting soil 

pressure envelope developed for a single pile can also be used for a group of pile 

behind a collapsed wall. It is also interesting to note that when prediction is made at 

excavation depth of 1.8 m, the greater soil movement (see Figure 4.26(b)) has no effect 

on the pile responses as the soil limiting pressure has been reached. As such, it is not 

necessary to use the soil moderation factor as for the case of pile groups located behind 

a stable wall. This finding reiterates the postulation that once soil limiting pressure has 

been reached, the pile responses will not increase further. This is consistent with the 

findings made for the case of a single pile located behind a collapsed wall (Test 6). 

 

6.6 DISCUSSION ON SOIL LIMITING PRESSURE ON PILES 

The postulation of using lower limiting soil pressure on piles generally works 

well in this study as large strain soil deformation or soil “flow” had occurred behind 

the collapsed wall during and/or after the excavation process. This is somewhat 

analogous to the effect of landslide or in the case of a slope failure. In all these cases, 

both sliding and stable zones exist within the soil. From Figures 4.23(b) and 4.25, it is 

evident that behind an excavation in clay, a zone of significant soil movement is 

formed at an angle of 45o propagating from a distance of about 6.5 m behind the wall 

to the depth of the clay-sand interface. When a shear plane or a plane of weakness 

starts to form within the soil mass, the soil located in the failure zone would weaken 

and may be detached from its original soil mass in the form of tension cracks. 

Therefore, lateral stress relief or reduction in confining stress occurs within the 

affected soil mass, thus reducing the magnitude of soil pressure that can be exerted on 

the pile.   
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It must be mentioned that for the case of a collapsed wall for both the single 

pile and pile group, the usage of the soil moderation factor is not as important as for 

the case of a stable wall. This is so because the very large soil movements associated 

with the collapse of the wall is taken care of by the appropriate soil limiting pressure. 

Once the limiting soil pressure has been reached, any increase in the lateral soil 

movement will not increase the induced forces on the piles anymore. As such, this 

study highlights the fact that for large strain soil deformation as in the case of a 

collapsed wall, the governing parameter is the limiting soil pressure, py, that can act on 

the pile as opposed to the case of a stable wall, where the governing parameter is the 

lateral soil stiffness, Kh.  

 

6.7 GENERAL COMPARISON WITH TESTS DONE IN SAND 

Lim (2001) and Law (2000) used the numerical methods as described in 

Section 6.2 to predict the responses of single piles and pile groups due to excavation in 

sand. It was concluded that the numerical method was capable of predicting reasonably 

well the shape and locations of the maximum bending moment values. However, the 

magnitudes of the pile bending moment are not predicted satisfactorily as shown from 

Figures 6.20 to 6.24. They reported that this could be due to experimental errors 

caused by the difficulties in constructing the pile caps to fully constrain the pile head 

movement in the centrifuge model tests. Further investigation shows that the pile caps 

used were too thin and could only be used to clamp the individual piles in a single 

direction. Both of these construction methods used in the study are thought to be 

unable to provide the necessary restraint mechanism to the pile heads and hence the 

measured magnitudes of the pile responses do not agree with the predicted values.  
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In view of these deficiencies, the pile caps used in this study are made thicker 

and can be clamped to the individual piles in both directions. Besides that, the 

undrained shear strength profiles of the clay have been appropriately measured using 

in-flight T-bar tests before and after the excavation process. As the important 

parameters involved have been properly quantified and correctly accounted for, it is 

not surprising that the measured and predicted pile responses show better agreement in 

terms of magnitudes and shapes of the pile responses (for example, from Figures 6.11 

to 6.13) than the predictions made by Lim (2001) and Law (2000) for tests conducted 

in sand.  

The similarity for both the numerical prediction between sand and clay tests is 

the adoption of soil moderation factors to account for the pile reinforcing, shadowing 

and soil arching effects.  

 

6.8 SUMMARY OF FINDINGS 

The numerical methods proposed for the analysis of a single pile and a pile 

group subjected to excavation-induced soil movement can generally provide fair 

prediction when compared to centrifuge test results. This is so provided that the soil 

undrained shear strength can be appropriately measured using an in-flight bar 

penetrometer or T-bar.  

When piles are installed in a group, each individual pile will provide 

shadowing and reinforcing effects to other adjacent piles. Therefore, it is intuitively 

correct that as the pile group gets larger, the shadowing and reinforcing effects will 

also become more prominent. The immediate effect of pile shadowing and reinforcing 

effect is to limit the detrimental effects due to excavation-induced soil movement. 

Since the input data involves measured free-field soil movement, a soil moderation 

   196



Chapter 6: Numerical analysis of centrifuge test results 

factor has to be established to account for the pile shadowing and reinforcing effects. 

Besides that, soil arching effect is also observed to occur at the surface of the OC crust 

of the kaolin clay for the pile groups. This soil arching effect will also contribute to the 

moderation of the excavation-induced soil movement. By back-analysis, the magnitude 

of soil moderation factor is established to be 0.8 for a 2-pile group, 0.7 for a 4-pile 

group and 0.5 for a 6-pile group in clay. 

It should be noted that the reduction factor, kc, for pile cap rotational stiffness 

may not be similar because different pile caps were used for different pile groups but 

generally kc serves as a reasonable approximation. By allowing some rotation at the 

pile head and adopting lateral soil movement moderation factors in all the numerical 

analyses, consistently fair agreement of the pile responses between the numerical 

predictions and centrifuge test results can be achieved. Therefore, the centrifuge tests 

and numerical methods can be used to complement each other well to provide a better 

understanding on pile-soil interaction behaviour. 

The present study on the case of a collapsed wall establishes that due to soil 

stress relief after excavation, the soil pressure acting on the pile is found to be lower 

than those on a conventional laterally loaded pile. Based on the findings of the 

numerical back-analysis, a simplified envelope of K values having a maximum value 

of 6 with respect to original soil strength prior to excavation is proposed to estimate 

the magnitude of bending moment induced on the pile in this study. 

This Chapter has also highlighted the importance of understanding and 

estimating the soil limiting pressure due to the collapse of a retaining wall caused by 

excavation. It brings to light that for soil undergoing large strain deformation, the 

governing parameter is the limiting soil pressure, py, as opposed to the case of a stable 

wall, where the lateral soil stiffness, Kh, is the governing parameter. Such knowledge 
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will lead to the understanding that when designing landslide or creeping slope 

stabilizing piles, increasing the number of less reinforced piles will be far more 

beneficial than having a smaller number of highly reinforced piles.   
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Figure 6.1 Comparison of measured and predicted maximum induced pile (a) bending 
moment, (b) deflection, (c) shear force and (d) soil pressure profiles 

 
 
 
 
 

 199



Chapter 6: Numerical analysis of centrifuge test results 
 

 

-10 0 10 20 30 40
Deflection (mm)

0 50 100 150 200 250 300

Bending moment (kNm)

12.5

10

7.5

5

2.5

0
D

ep
th

 (m
)

1 m 3 mDistance from wall
Measured
Predicted using pre-
excavation soil strength

-Predicted using post-
excavation soil strength

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Figure 6.2  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 8) 
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Figure 6.3  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 10) 
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Figure 6.4  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 9) using pre-excavation of undrained shear strength and without 

reduction in pile head rotation stiffness 
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Figure 6.5  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 9) using post-excavation undrained shear strength and without reduction 

in pile head rotation stiffness 
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Figure 6.6  Predicted and measured pile (a) bending moment and (b) deflection 

profiles (Test 9) using post-excavation undrained shear strength and reduction in pile 
head rotation stiffness (kc=0.02) 
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Figure 6.7  Predicted and measured pile (a) bending moment and (b) deflection 

profiles (Test 9) using post-excavation undrained shear strength and allowing full pile 
head rotation (kc=0) 
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Figure 6.8  Predicted and measured pile (a) shear force and (b) soil pressure 
profiles (Test 9) using post-excavation undrained shear strength and reduction in pile 

head rotation stiffness (kc=0.02)  
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Figure 6.9  Predicted and measured pile (a) bending moment and (b) deflection 

profiles (Test 11) 
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Figure 6.10  Predicted and measured pile (a) bending moment and (b) deflection 

profiles (Test 12) 
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Figure 6.11  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 13) 
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Figure 6.12  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 15) 
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Figure 6.13  Predicted and measured pile (a) bending moment and (b) deflection 
profiles (Test 16) 
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Figure 6.14 Variation of measured and calculated (a) bending moment and (b) pile 
head deflection with excavation depth for Test 5 
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Figure 6.15  Comparison of measured and calculated pile (a) bending moment and 
(b) deflection profiles for Test 6 at excavation depth of 1.4 m 
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Figure 6.16  Comparison of measured and calculated pile (a) bending moment and  
(b) deflection profiles for Test 7 at excavation depth of 

 (a) 1.2 m and (b) 2.8 m 
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Figure 6.17 Limiting soil pressure deduced from pile bending moments (Test 6) 
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Figure 6.19  Predicted and measured pile (a) bending moment and (b) deflection 
profiles for capped front and rear piles (Test 14) using two different methods  
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Figure 6.20  Predicted and measured 4-pile group bending moment profiles for 
capped front and rear piles (after Law, 2000) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6.21  Predicted and measured 4-pile group bending moment profiles for 
capped front and rear piles (after Lim, 2001) 
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Figure 6.22  Predicted and measured 6-pile group (2x3) bending moment profiles for 

capped piles (after Lim, 2001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.23  Predicted and measured 6-pile group (3x2) bending moment profiles for 

capped peripheral piles (after Lim, 2001) 
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Figure 6.24  Predicted and measured 6-pile group (3x2) bending moment profiles for 
capped middle piles (after Lim, 2001) 
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CHAPTER SEVEN 

 

FIELD STUDY  

 

7.1 INTRODUCTION 

A proposed 8-storey industrial building with one-level basement carpark is to be 

constructed at a site bounded by two existing 5-storey buildings the East and South 

directions. In order to construct an underground storage tank, a temporary open-cut 

excavation of a 1V:2.5H slope was proposed. The excavation was to be carried out in 

front of a 4-pile group. This case provided an excellent opportunity to carry out a detail 

field study to supplement the earlier centrifuge model studies and numerical back-

analyses to obtain a further understanding on the pile behaviour due to excavation-

induced soil movement in clay.  

Owing to some unforeseen situations, excessive soil movement had taken place 

during the slope excavation and caused failure of the instrumented pile group. This 

pre- and post-failure pile behaviour of the unintended failure has provided valuable 

field data for analysis. It is hoped that from this field study, the effects of soil “flow” 

on the pile as well as the behaviour of a capped-head pile group as observed in the 

centrifuge tests in Chapter 4 can be further evaluated.  In addition, the field data can 

also be used to further investigate the magnitude of limiting soil pressure on the pile 

obtained from the numerical back-analyses performed in Chapter 6. 
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7.2 CHARACTERISTICS OF SITE 

The site plan and layout is shown in Figure 7.1. The location of the instrumented 

900-mm 4-pile group is also shown in the figure. 

7.2.1 Soil investigation works 

The soil investigation work consists of: 

(i)  4 boreholes made using rotary wash boring. Borehole 1 (BH 1) was located 

within the excavation area, see Figure 7.1. 

(ii)  Standard Penetration Tests (SPT) with split spoon samplers were carried out to 

obtain disturbed samples for index property tests. 

(iii)  Undisturbed sampling of soil specimens at 1.5 m to 3.0 m intervals using thin 

wall samplers for trixial compression tests. 

(iv)  Ground water level and pore water pressure measurement using water standpipe 

and piezometer. 

(v)  Vane shear tests carried out in borehole to determine the in-situ strength of the 

soft marine clay. 

7.2.2 Geological formation 

The geological formation of the site belongs to the Alluvial Member of Kallang 

Formation and Old Alluvium. According to Moh (2001), the former can be described 

as sediments consisting of pebbles, sand, clay or peat. This layer is usually normally or 

lightly over-consolidated. On the contrary, Old Alluvium typically consists of loose 

coarse quartz-feldspar sand and gravel with lightly cemented sandstone-conglomerate. 

The top 8 m of this layer are usually deeply weathered. 
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7.2.3 Subsoil conditions 

Figure 7.2 shows the subsurface profile close to the instrumented piles. It can 

be subdivided into 6 layers with the top fill layer (denoted by Layer 1a) of between 0.5 

m and 1.5 m thick. Beneath the fill is the very soft, greenish grey marine clay (Layer 1) 

with thickness ranging between 7.5 m and 9 m. The SPT N values for this layer are 

less than 4. Layer 2 is about 5 m thick and consists of loose, clayey sand as well as 

medium stiff sandy clay with SPT N values between 4 and 10. Subsequently, medium 

dense clayey sand (Layer 3) with SPT N values between 10 and 30 of about 2 m thick 

can be found. Layer 4, which is about 10 m thick, consists of dense, clayey sand with 

SPT N values ranging between 30 and 50. This is followed by an 8-m thick very dense 

clayey sand and hard silty clay (Layer 5) with SPT N values ranging between 50 and 

100. The hard stratum, or Layer 6, consists of dense sand and stiff clay, having SPT N 

values of in excess of 100. The physical properties of the soils are partially shown in 

Table 7.2.  

A water standpipe was located in front of the sheet piles as shown in Figure 

7.1. The groundwater table was observed to be about 1 m below the ground level prior 

to the commencement of excavation. The geotechnical parameters of the subsoils such 

as undrained shear strength, N values and effective strength parameters (c’ and φ’) are 

summarized in Table 7.2.  

 

7.3 INSTRUMENTATION PROGRAM AND LAYOUT 

The instrument layout plan is shown in Figure 7.1. The instruments consisted of 

resistance-type strain gauges and inclinometers so that pile bending moment and soil 

deflection profiles could be measured, respectively. Resistance-type strain gauges were 

employed, as they were more economical than the commonly used vibrating wire 
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strain gauges. To ensure that the resistance-type strain gauges function well under 

harsh and damp conditions during the estimated monitoring period of about 3 months, 

they were properly waterproofed using resin. The wires connecting the strain gauges 

were buried underground leading to the strainmeter. The strainmeter was programmed 

to acquire the strain gauge data at specified intervals automatically.  

Since the 4-pile group was symmetrical, it was necessary to instrument only two 

piles perpendicular to the excavation boundary. Therefore, only the front (nearer to 

excavation) and rear (further from excavation) piles were instrumented. Owing to 

concerns over the effects of year-end Singapore monsoon rainstorms at the site, the 

engineers decided to bring the excavation schedule forward. As such there was a 

shortage of strain gauges. Hence only a limited number of strain gauges were installed 

in the two instrumented piles, as shown in Figure 7.3.  Figure 7.4 shows the plan and 

elevation views of the instrumented piles in relation to the excavation, respectively. 

The centre-to-centre pile spacing is 2.5 m and hence the pile spacing/diameter ratio is 

approximately 2.8. 

 

7.4 PROPOSED METHOD AND SEQUENCE OF EXCAVATION  

The proposed sequence of excavation to reach the soffit level of the underground 

storage tank can be divided into four stages as follows: 

 

Stage 1 

The 900-mm diameter bored piles would be installed first as shown in Figure 

7.5(a). Subsequently, sheet piles would be installed behind the proposed excavation 

area to prevent water from seeping in. Then, the 4-pile group (PG A) would be capped 

by a 1.5 m thick pile cap.  
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Stage 2 

Excavation would then be carried out to reach the soffit of the basement slab 

forming a slope with a maximum gradient of 1V:2.5H as shown in Figure 7.5(b). Then, 

the 4-pile group (PG B) would be capped with a 1.5 m thick pile cap.  

 

Stage 3  

Further excavation was proposed to reach the soffit of the proposed 

underground storage tank at the same gradient as in Stage 2. The soffit of the storage 

tank would be reached after an excavation of about 5.2 m from the existing ground 

level. Subsequently, the 4-pile group (PG C) and the single pile (SP 1) would be 

capped with 1.5 m thick pile caps as shown in Figure 7.5(c). These piles were designed 

to support the proposed underground storage tank. 

 

Stage 4 

The basement slabs and walls of the underground storage tank would then be 

cast as shown in Figure 7.5(d). The cut slope would be backfilled to the existing 

ground level. Finally, the sheet piles behind the excavation would be extracted from 

the ground. 

 

7.5 ACTUAL EXCAVATION AND CONSTRUCTION EVENTS  

The early arrival of year-end monsoon rain prevented the Contractor from 

executing the excavation works according to the proposed method given in Section 

7.4. Table 7.3 entails the actual construction and excavation sequence over the 3-

month monitoring period. Although the original design called for an open-cut, sheet 

piles and struts were subsequently installed when large soil movement was recorded, 
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in particular after the occurrence of the slope failure next to the instrumented pile 

group. The alignment and location of these sheet piles are shown in Figure 7.1. Some 

of the major construction events are highlighted as follows: 

a) 1-5 Dec 2002 - Installation of strain gauges and inclinometers in the instrumented 

bored piles. 

b) 11 Dec 2002 - Excavation approached the instrumented piles. 

c) 12 Dec 2002 - Slope failed next to the instrumented piles due to heavy rain 

overnight. 

d) 17-21 Dec 2002 - Installation of cantilever sheet piles to prevent further slope 

movement. 

e) 20-30 Dec 2002 - Excavation was carried out in front of sheet piles. Further soil 

movement was recorded. 

f) 28 Dec 2002 - 2 Jan 2003 - Installation of strut to reduce sheet pile deflection. 

g) 3-10 Jan 2003 - Excavation continued. Further soil movement was recorded. 

h) 9 Jan-12 Feb 2003 - Construction of pile cap for piles supporting water tank, casting 

of basement slab and waterproofing of storage tank wall. 

i) 13-25 Feb 2003 - Back filling of cut slope, extraction of sheet piles and compaction. 

Snapshots of the excavation process are shown in Figures 7.6. Figure 7.7 shows 

the actual excavation and construction sequence as described from points (c) to (h) 

above. The unintended soil failure at the site provided valuable field data on the 

behaviour of a 4-pile group subject to excavation-induced soil movement. 

7.5.1 Measured in-pile and in-soil inclinometer readings 

The in-pile inclinometer in the instrumented rear pile (see Figure 7.3) was 

monitored daily since the start of the excavation. Unfortunately, due to some ground 

resistance during installation, the in-soil inclinometer (see Figure 7.1 for location) was 
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only successfully installed on 17 Dec 2002. Therefore, the soil movement that 

occurred during the slope failure on 12 Dec 2002 was not recorded. However, the pile 

deflection profile was available. For a clearer presentation, only the measured pile 

deflection and their corresponding soil movement profiles that occurred during major 

construction events are presented here. Owing to the presence of the 1.5 m thick pile 

cap, the top of the pile was restrained from deflecting freely, as shown in Figure 7.8. 

The worst pile deflection profile was recorded after the completion of the excavation 

works on 7 Feb 2003. After 13 Feb 2003, the back-filling of the slope and compaction 

of the backfill had caused the pile to move backwards and hence a reduction in the pile 

deflection profile. The corresponding soil movement profiles are shown in Figure 7.9.  

Figure 7.10 shows the measured lateral pile deflection and soil movement at 

various depths over the excavation period. It is noted that prior to 26 Dec 2002, the 

lateral pile deflection is generally greater than the lateral soil movement. After 26 Dec 

2002, the latter exceeded the former significantly, especially for the top 7.5 m of the 

soil, primarily of soft marine clay. This happened during the excavation in front of the 

slope. This revealed that the unstrutted sheet piles, which were only installed when the 

soil movement was noted to be as large as 270 mm at the ground surface on 28 Dec 

2002, were ineffective. 

A drop in the ground water level was noted within the excavation area as 

indicated by the water standpipe readings shown in Figure 7.11.  

 

7.6 PILE BENDING MOMENT 

Bending moment in deep foundation can be estimated using the curvature of the 

deflection curve obtained from in-pile inclinometer readings. Inclinometer tubes are 

normally made of PVC and would deflect according to the lateral displacement 
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curvature. The toe of the inclinometer casing should be embedded into a hard layer or 

grouted to prevent any toe movement. However, if this cannot be achieved, then the 

displacement should be referred to the top of the inclinometer tube, which must be 

surveyed very accurately so that the boundary condition can be accurately established. 

The use of inclinometer provides a continuous set of deflection data, recommended at 

every 0.5 m elevation or less. The bending moment profile can then be deduced from 

the deflection data. 

Alternatively, the bending moment at a given pile elevation can be obtained from 

strain gauges mounted in pairs at each elevation at opposite sides of the reinforcement 

cage of the pile. The difference in the elongation strains divided by the distance 

between these two strain gauges at the same elevation gives the measure of curvature. 

However, in any case, if only one strain gauge at a particular elevation functions 

properly, then the curvature is calculated using the measured strain divided by the 

distance from that strain gauge to the neutral axis of the section. Unless many levels of 

strain gauges are used, a continuous profile of the bending moment cannot be obtained.  

The following sections discusses the available pile capacity, the calculation of 

suitable moment of inertia for the pile and finally the computation of the pile bending 

moment from the measured inclinometer and strain gauge readings. 

7.6.1 Pile capacity 

The cracking moment, Mcr is calculated based on:  

                                                               Mcr = fctZ                                                     (7.1) 

where fct is the tensile strength of concrete in flexure or the modulus of rupture of 

concrete and equals to 0.623f’c
0.5 (in MPa), f’c is the characteristic strength of concrete 

(in MPa), Z is the section modulus (=Ig/y), Ig is the gross moment of inertia and y is the 

distance from the centroid of the section to the extreme fibre in tension. For the 900-
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mm diameter bored pile, the cracking moment is calculated to be 264 kNm. The 

cracking moment is the minimum bending moment required to initiate a crack in the 

pile. Since concrete is weak in resisting tension, steel is an important element that can 

increase the bending moment capacity of the pile. 

When a pile reaches its ultimate capacity, the concrete in compression will be 

crushed and the steel reinforcement will yield causing the load carrying capacity of the 

pile to decrease significantly resulting in structural distress. The ultimate bending 

moment capacity of a pile can be calculated using the moment interaction diagram 

proposed by Mohammad and Merrony (1996), as shown in Figure 7.12. The ultimate 

bending moment capacity, Mult, of this 900-mm diameter bored pile with nominal 0.5 

% steel reinforcement works out to be about 520 kNm, which is just about two times 

the cracking moment, Mcr, of the pile. In comparison, the ultimate bending moment 

capacity for the 1075-mm diameter bored pile with 3 % steel reinforcement used by 

Chandrasekaran et al. (1999) was about 3000 kNm. The reason behind this superior 

ultimate bending moment capacity is the much higher percentage of steel provided, as 

Chandrasekaran et al. (1999) anticipated additional bending moment due to soil 

movement.  It is evident that the engineers had not designed the 900-mm bored piles 

against any soil movement, as the large soil movement caused by the slope excavation 

at the site was not anticipated.  

7.6.2 Average moment of inertia 

A pile develops bending moment when subject to lateral soil movement. If the 

bending moment exceeds the cracking moment, Mcr of the pile, cracks would start to 

develop. In the presence of cracks, the tensile stress is assumed to be resisted 

completely by the reinforcement. Nevertheless, the depth and width of cracks may 

vary, depending on the bending moment distribution along the pile. However, there 
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may also be some sections along the pile where the Mcr is not exceeded and hence, 

cracks are not formed. For instance, the concrete between cracks may still be capable 

of carrying some tension. As a result, the actual effective moment of inertia, Ie, will be 

somewhat in between the uncracked, Ig, and the fully cracked, Icr values.  Branson 

(1977) mentioned that in such a situation, the moment of inertia used to represent the 

entire pile would be the average effective moment of inertia, Ie. The significance of 

using an average Ie value for the entire pile length is to ensure a smooth bending 

moment profile. Such a method has also been used by Reese (1997) to analyse the 

cracking behaviour of laterally loaded piles. The method used by Reese (1997) 

employed the average observed deflection, the applied loading and iteration to find the 

values of the average EI and the corresponding values of maximum bending moment 

that fitted the results. In such computations, the value of EI was changed for the entire 

pile for ease in the computations.  

A fundamental assumption of bending theory for a simple beam is that plane 

sections remain plane. This means that traverse planes of a beam, which are flat before 

any load is applied remain flat after the bending moment is applied, that is, they simply 

rotate slightly but do not distort. Values of the ultimate strain of concrete and steel 

have to be selected to reflect their failure because the non-linear stress-strain curves for 

these materials do not indicate a condition for collapse. Therefore, it is often assumed 

that concrete fails in compression when it reaches the ultimate compressive strain of 

0.003. For the reinforcing steel, the ultimate value of strain is 0.015. Steel is assumed 

to have a linear stress-strain relation until the yield stress is attained and beyond which, 

the stress in the steel remains constant as the strain increases or strain hardening is 

neglected. This results in a linear variation of strain with distance from the neutral axis, 

with no limit to the amount of plastic deformation in both tension and compression. 
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The following paragraphs present the application of simple beam theory to calculate 

the Ig, Icr or Ie based on existing simple design charts. 

MacGregor (1988) did a comparison between circular and rectangular 

reinforced concrete columns by using the conservation of area method. An axial load-

bending moment interaction diagram as shown in Figure 7.13 is used to describe the 

behaviour of both columns under similar loading conditions. It was shown that a 

discrepancy of only 5 % was observed in the case of pure bending (no axial force) for 

the two different sections. Nevertheless, discrepancies may arise due to the eccentricity 

ratio of the column when axial load is present. Therefore, the assumption of area 

conservation to transform a circular section to a rectangular one so that the beam 

theory can be used for the case of pure bending (no axial load) is acceptable for this 

study. 

For a fully cracked section, the stresses in the steel and concrete are assumed to 

be proportional to the strains. The cracked moment of inertia, Icr of a rectangular 

section is given by Kong and Evans (1987) as: 
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d = effective depth 

d’ = depth from compression zone to centroid of compression steel 

x = depth of neutral axis 

b = width of concrete section 

Alternatively, readily available design charts such as that shown in Figure 7.14 

can also be used to evaluate Icr.  

For an uncracked section, since the pile is only reinforced with 0.5 % steel, it 

can be considered as a lightly reinforced pile. Branson (1977) indicated that for lightly 

reinforced concrete structure, the gross moment of inertia, Ig of the section can be used. 

As such, the gross moment of inertia, Ig for a circular section is given by: 
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Nonetheless, if in any case that a heavily reinforced section (e.g. 3 % steel) is used, it 

would be more accurate to use the uncracked moment of inertia, Iuncr (Branson, 1977). 

Based on the conservation of area method, the Iuncr for a circular pile can be 

approximated (Kong and Evans, 1987):  
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where h = total depth of the concrete section and the other symbols remain similar as 

above. 

Finally, for an intermediately cracked section, the effective moment of inertia, 

Ie is given by Branson (1977) and ACI (1989): 
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By adopting Eqs. (7.2) and (7.3), the Icr and Ig of pile is calculated to be 0.00607 

m4 and 0.03221 m4, respectively for the 900-mm bored piles. The Young’s modulus, 

Ec, for Grade 35 concrete is 32000 MPa.  

In structural engineering, the distribution of load on a beam can be readily 

calculated and thus, the applied moment, M, or moment diagram can be produced for 

the entire span of the beam so that standard equation like Eq. (7.5) can be used to 

calculate Ie. However, in this study, the applied moment, M, is unknown and thus Eq. 

(7.5) cannot be used. Nonetheless, it has been established earlier that the pile is lightly 

reinforced and the Mult is only twice the Mcr. Figure 7.15, which is derived from Eq. 

(7.5) by Branson (1977), shows the generalized moment of inertia against bending 

moment relation in the cracking range. By using Ig/Icr of 4.0 (since Ig/Icr = 5.0 is not 

available in Figure 7.15), the M/Mcr ratio is about 3.0, if Ie/Ig = 0.25 is assumed. Had 

Ig/Icr of 5.0 been used instead, the M/Mcr ratio was expected to be approximately 2.6. 

The M/Mcr ratio will be subsequently checked. From the computed ratio Ie/Ig = 0.25, Ie 

has a value of 0.00805 m4, which is reasonably close to that of Icr whose value is 

0.00607 m4. This is consistent to the observation that the pile is lightly reinforced and 

that the Mult is only twice the Mcr. Hence, in this study, Ie can be approximated 

(without large errors) to be equal to Icr and be used as the average moment of inertia 

for the calculation of pile bending moment, if and only if the Mcr of the pile is 

exceeded in cases where the soil movement profiles are severe. This simple analytical 

method by Branson (1977) only serves as a good first approximation of Ie and hence, 

further validation using numerical method is necessary. Errors in using constant values 

of Ie in the regions of low values of bending moment are thought to be small (Reese, 

1997). This method is particularly suitable for the first approximation in this study 
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because in both Eq. (7.5) and in the field work, axial load is absent and hence, the 

computation is more straightforward.  

7.6.3 Calculation of pile bending moment  

Since the strain gauges were fastened to the opposite faces of the reinforcement 

cage and perpendicular to the excavation face through proper installation procedure, 

the output readings of the strain gauges give the strain readings directly. As strain is a 

function of the stress and the Young’s modulus of steel, Est, the curvature, ψ of the pile 

can be obtained from the sum (if different signs) or difference (if similar signs) in the 

strains in tension, εt, and compression, εc, steel reinforcement divided by the distance 

between them: 
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Such a method was also used by Poh et al. (1999). Hence, with the curvature 

and the flexural rigidity, EcI of the pile known, the bending moment can be calculated 

based on Macaulay’s method:  

         M = ψEcI                                                           (7.7) 

where Ec = Young’s modulus of concrete and the moment of inertia, I can be either the 

Ig, Icr or Ie depending on the degree of cracking of the pile. In computing the bending 

stiffness, the value of Ec is assumed to remain constant (Reese, 1997). 

Inclinometer readings can be employed to obtain the bending moment profile. 

Poh et al. (1999) established that high order polynomials are necessary to fit the 

measured deflection profiles. To obtain a good fit between the measured and fitted 

deflection profiles, a 7th order polynomial function is used in the present study. 

Differentiating the pile deflection profile twice would give the curvature along the pile. 
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With the curvature along the length of the pile known, the bending moment profile can 

then be computed using Eq. (7.1). 

 A sensible way to start predicting the condition of the pile is to use the gross 

moment of inertia, Ig, as the first approximation. Since all the pile deflection profiles 

are similar in trend as shown in Figure 7.8, a trial and error process is performed to 

obtain the minimum pile deflection profile that initiates cracking or when the pile Mcr 

is reached. This minimum pile deflection profile and its fitted 7th order polynomial 

function are shown in Figure 7.16. When the fitted 7th order polynomial function is 

differentiated twice, the corresponding pile bending moment profile is obtained as 

shown in Figure 7.17. At this stage, the pile bending moment at depth 12.5 m just 

reaches its Mcr value. As the top of the piles are tied to the pile cap with relatively high 

percentage of steel, the negative bending moment at the pile cap level is smaller in 

absolute magnitude than the maximum positive bending moment that developed along 

the lower part of the pile, where the steel reinforcement of the pile is nominal. 

 Unfortunately, the first measured pile deflection profile obtained was on 11 

Dec 2002 (see Figure 7.8), at the time when the excavation had already begun. 

Therefore, at this particular point in time, the pile has already cracked as the deflection 

profile measured on 11 Dec 2002 is much greater than the minimum value for crack 

initiation, as shown in Figure 7.16. This again verifies the earlier assumption that the 

pile is a lightly reinforced one, whose cracking resistance due to soil movement is very 

low.  

In order to show that there exists different degrees of cracking along the length 

of the pile as described above and that an average Ie is necessary to compute a smooth 

bending moment profile, the ratio of the back-analysed bending moment, M and the 

cracking moment, Mcr is plotted against the ratio of the measured deflection, D and the 
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initial deflection at the onset of cracking, Di (Figure 7.18) at different depths along the 

pile for the selected back-analysed pile responses between 11 Dec 2002 and 17 Jan 

2003. Three typical zones can be evidently identified as shown in Figure 7.18. Zone 1 

is identified as the zone where the pile experiences no cracking at all and hence the 

assumption of gross moment of inertia, Ig, for the pile is valid. This coincides with data 

points measured at depth of 15 m for the medium dense clayey sand layer with SPT 

blow counts of between 10 and 30. The higher resistance of the sand and attenuated 

lateral soil movement might have prevented the pile from being deflected excessively. 

The measured data points in Zone 2 are obtained from the pile responses at 

depths of 3 m, 5 m and 9 m below the ground surface. It is evident that these data 

points are somewhat nestled between the two extremes of Zones 1 and 3. These depths 

are dominated by the soft marine clay, whose soil resistance is relatively smaller than 

that of sand. The rate of increase of the M/Mcr ratio is not as high as that noted in Zone 

1, suggesting that cracking of the pile might be on-going and hence, an effective 

moment of inertia, Ie would best present this zone.   

Zone 3 represents the measured data points obtained from the pile responses at 

depth of 12.5 m, which coincides with the location of maximum pile bending moment. 

As such the M/Mcr and D/Di ratios are the greatest compared to those in Zones 1 and 2. 

The M/Mcr ratio for Zone 3 is about 2.6, which is consistent to the earlier assumption 

made in Section 7.6.2. Thus the assumption of a fully cracked pile having a fully 

cracked moment of inertia, Icr can be justifiably used at this depth along the pile.  

The pile behaviour at different degrees of cracking as observed in Figure 7.18 

shows similar trend to that postulated by the European Concrete Committee (see 

Figure 7.19) and is described in greater detail by Branson (1977). This chart is 

typically known as the bilinear moment-deflection curve, which suggests that while the 
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moment capacity of the pile reduces at increasing load levels, the pile deflection 

increases corresponding to the increasing degree of cracking of the pile. This would 

transform the pile from an initially uncracked one (Zone 1 of Figure 7.18) when there 

is no cracking to that of an intermediately cracked pile (Zone 2) and finally to a fully 

cracked pile (Zone 3) when large degree of cracking has occurred. 

As described earlier, the significance of using an average moment of inertia for 

the entire pile length is to ensure a smooth bending moment profile. Therefore, Icr is 

adopted as the average moment of inertia as described in Section 7.6.2. and is used for 

all the subsequent back-analyses. The results of the pile deflection and the 

corresponding calculated bending moment profiles on 4 occasions are shown in Figure 

7.20. The measured pile deflection profiles obtained from in-pile inclinometer installed 

in the rear piles reveal that the pile deflected considerably above 14 m depth. For the 

rear pile, the bending moment profile obtained from the inclinometer deflection profile 

and from strain gauges at 4 elevations shows reasonable agreement. For the front pile, 

only the bending moment obtained from the strain gauges is shown as no inclinometer 

has been installed.  

 

7.7 NUMERICAL PREDICTION 

The numerical method by Chow and Yong (1996) described in Chapter 6 is used 

to further evaluate the field data. The soil properties used in the numerical analysis are 

shown in Table 7.2. As discussed in Section 6.5.1, the limiting soil pressure/soil 

strength ratio, K, of 6 is used because the post-excavation soil undrained shear strength 

is not available. The stiffness rigidity of the pile cap is calculated to be 2.7x107 kNm2. 

The fully cracked moment of inertia, Icr, is used as discussed before, since the piles are 

nominally reinforced and experience large deflection and soil movement. Therefore, 
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the fully cracked bending rigidity, EIcr, of the pile is 133422 kNm2. The input soil 

movement profiles are obtained from the in-soil inclinometer readings.  

 Figure 7.20 show the comparison between the measured and predicted bending 

moment and deflection profiles of the piles. It is noted that the shapes of the measured 

and predicted bending moment profiles and the elevation of their maximum values are 

similar. Unfortunately, the strain gauges in both piles are several metres above the 

maximum bending moment elevation. Figure 7.10 shows that after 26 Dec 2002, the 

soil at 10 m below the ground surface had moved ahead of the pile. This suggests a 

typical soil “flow” phenomenon where the soil pressure is approaching its limiting 

values, similar to that reported in Chapter 4. Therefore, limiting soil pressure, py, given 

in Table 7.2 for the clay layer based on the recommendation of Chapter 6 are used in 

the numerical back-analysis. 

Figure 7.20(a) shows a fair agreement between the predicted and measured pile 

responses on 28 Dec 2002. This date coincides with excavation around the piles to 

facilitate the installation of the pile caps. Figure 7.7 reveals that at this stage, the 

excavation has reached about 5 m below the existing ground level. Figure 7.20(b) 

shows the predicted and measured pile responses on 31 Dec 2002 when excavation 

progressed further, but with a strut put in place at the top of the sheet pile to prevent 

further soil movement. Unfortunately, the strut was not stiff enough to prevent further 

soil movement. As a result, the soil moved considerably till a greater depth inducing a 

larger bending moment and deflection on the pile. The predicted and measured pile 

responses also show reasonable agreement (see Figure 7.20(b)) at this stage. 

Figure 7.9 reveals that on 6 Jan 2003, a substantial increase in lateral soil 

movement was recorded when excavation depth reached 6.0 m (see Figure 7.7). This 

caused the partially embedded pile cap and the top of the piles to be further loaded by 
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the moving soil. As the current numerical method cannot model the embedded 

reinforced pile cap, it is not surprising that the negative pile bending moment of the 

rear pile at the pile cap elevation cannot be predicted accurately as shown in Figure 

7.20(c). Additional soil movement was also recorded during the casting of the pile cap 

on 17 Jan 2003 (see Figure 7.9). Similarly, the measured pile responses are well under-

predicted especially at the pile cap level of the rear pile and at depths of between 5 and 

10 m of the front pile. The measured pile deflection profiles are also well under-

predicted. Therefore, it can be surmised that the numerical method underestimates the 

maximum negative and positive bending moment values at the pile cap level and at 

depth of about 12.5 m, respectively. This could be due to the presence of reinforcement 

provided for connecting the pile top to the pile cap that could not be directly modelled 

in the numerical analysis.  

Figure 7.21 shows the comparison between the measured and predicted 

maximum pile bending moment of the rear pile over the excavation period. As 

mentioned before, the rear pile had already cracked prior to the start of acquiring the 

in-pile inclinometer data. After 26 Dec 2002, the pile experienced increasingly large 

soil movement as shown in Figure 7.10. This helps to suggest that after 26 Dec 2002, 

the extent of cracking along the pile had increased. This is supported by the fact that 

when Icr is used in the numerical analysis after 26 Dec 2002, consistent predictions that 

yield about 18 % difference of the measured values are observed, as shown in Figure 

7.21. The figure also shows that the ultimate pile bending moment has been exceeded 

after 31 Dec 2002. This signifies that the instrumented piles have been damaged by 

excessive soil movement during the excavation. Thus, these piles are deemed unfit to 

carry the design column loads and a replacement pile group is deemed necessary. 
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By comparing Figures 7.10 and 7.21, it is evident that after 5 Jan 03 the rate of 

increase of pile bending moment actually reduces, despite the pile experiencing 

increasing soil movement. This observation is consistent to that made in Chapter 5 that 

as the soil starts to yield or approaches failure, the development of the pile bending 

moment would not increase further as its limiting soil pressure values is being reached 

due to progressive stress relief caused by excavation.  

 

7.8 SUMMARY 

This field study involving an instrumented pile group behind an excavation that 

subsequently failed has shed some light on the importance of designing piles to 

withstand the detrimental effects of lateral soil movement on piles. The pre- and post-

failure pile behaviour of the unintended failure has provided valuable data necessary 

for analysis and further understanding.  

This field study has demonstrated that the extent of the cracked section along a 

pile depends on the soil condition and pile embedment depth when plotted using the 

bi-linear moment-deflective curve method proposed by Branson (1977). For the case 

of pure bending as in this case study, the conservation of area method can be used to 

transform a circular section to a rectangular one such that the readily available design 

charts for the more common rectangular beam section can be utilized. Therefore, the 

gross, Ig and fully cracked Icr moment of inertia can be determined. This is necessary 

as further development of cracks along a pile would transform the pile from an initially 

uncracked pile to that of an intermediately cracked pile and finally to a fully cracked 

pile when large degree of cracking has occurred. It has also been demonstrated that the 

calculation of the average effective moment of inertia, Ie can be complicated, but 

necessary, in order to obtain a smooth pile bending moment profile. The numerical 
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analysis has been deployed to back-analyse the field results and it has been found that 

the measured and predicted pile bending moment and deflection profiles are generally 

consistent in trend. Therefore, the findings of this field study complement those of 

centrifuge experiments reported in Chapters 4 and 5 and numerical back-analyses 

presented in Chapter 6 as all the results reveal that the development of pile bending 

moment is influenced by the limiting soil pressure associated with the progressive 

stress relief due to excavation.
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Table 7.1 Soil physical properties for BH 1 (after Moh, 2001) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7.2 Geotechnical parameters of subsoil layers  
 
 
 Layers Depth cu vane w LI γ c' φ' SPT Esand Kh py

m kPa % kN/m3 kPa deg kPa kPa kPa
Fill 0.1 18.00 0.10 28 1 1500 1500 6.81

0.5 18.00 1 1500 1500 29.10
1 18.00 1 1500 1500 68.05

1.5 18.00 1 1500 1500 102.08
Marine clay 2 10.30 99.30 0.78 13.86 0.10 23 0 3605 61.80

2.5 10.30 99.30 0.78 13.86 0 3605 61.80
3 10.30 99.30 0.78 13.86 0 3605 61.80

3.5 10.30 99.30 0.78 13.86 0 3605 61.80
4 10.30 99.30 0.78 13.86 0 3605 61.80

4.5 10.30 99.30 0.78 13.86 0 3605 61.80
5 10.30 99.30 0.78 13.86 0 3605 61.80

5.5 10.70 84.00 0.61 14.69 0 3745 64.20
6 10.70 84.00 0.61 14.69 0 3745 64.20

6.5 10.70 84.00 0.61 14.69 0 3745 64.20
7 10.70 84.00 0.61 14.69 0 3745 64.20

7.5 13.30 28.30 -0.02 18.59 0 4655 79.80
Med stiff 8 18.59 2.00 30 5 7500 7500 647.28
sandy clay 8.5 18.59 6 9000 9000 675.11

9 18.59 7 10500 10500 730.02
9.5 18.59 7 10500 10500 758.98
10 18.59 7 10500 10500 808.68

Loose medium 10.5 5.00 30 10 15000 15000 790.97
clayey sand 11 12 18000 18000 828.63

11.5 18.18 14 21000 21000 859.27
13 20.03 18 27000 27000 965.73

13.5 20.03 22 33000 33000 1017.71
14 25 37500 37500 1054.62

Dense 14.5 20.00 10.00 33 38 57000 57000 1538.51
clayey sand 15 38 57000 57000 1555.46

15.5 20.00 38 57000 57000 1616.09
16 29 43500 43500 1659.15

16.5 29 43500 43500 1711.00
17 20.00 29 43500 43500 1758.62
19 20.00 29 43500 43500 1970.25

Very dense 21 21.00 10.00 35 36 54000 54000 2598.51
clayey sand 23.5 21.00 52 78000 78000 2943.49

24 21.00 58 87000 87000 3041.63
26 21.00 64 96000 96000 3203.49
28 21.00 64 96000 96000 3449.15
30 21.00 64 96000 96000 3662.06
31 21.00 64 96000 96000 3840.25

Very dense 36.42 21.00 15.00 35 100 150000 150000 4059.75
clayey sand

Effective parameters
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Figure 7.1 Location of instruments and piling layout 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.2 Subsurface profile (after Moh, 2001) 
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Figure 7.3 Layout of instruments attached to reinforcement cages of bored piles 
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Figure 7.4 Plan and elevation views of instrumented pile group 
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Figure 7.5 Proposed excavation sequence 
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 (a) Lowering of reinforcement cage into the ready-to-cast bored pile  
(5 Dec 2002) 

 
 

Failed slope 
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 (b) Slope failure next to instrumented pile group  

(12 Dec 2002) 
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 (c) Failed slope being backfilled temporarily with sand  
(13 Dec 2002) 
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 (d) Excavation in front of sheet piles at toe of slope  

(20 – 30 Dec 2002) 
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 (e) Deflected sheet piles due to excessive soil movement  

(26 Dec 2002) 
 
 
 
 

Misaligned sheet piles 
after excessive soil 
movement 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (f) Another view of deflected sheet piles due to excessive soil movement  
(26 Dec 2002) 
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 (g) Installation of struts when soil movement is uncontrollable  
(28 Dec 2002 – 2 Jan 2003) 

 
 
 

Sprayed 
concrete facing 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (h) Casting of pile caps for underground water storage tank  

(9 – 17 Jan 2003) 
 

Figure 7.6 Photographs of major events at site 
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Figure 7.7 Actual excavation and construction sequence 
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Figure 7.8 Measured deflection profiles of rear piles 
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Figure 7.9 Measured lateral soil movement profiles 
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Figure 7.10 Measured lateral pile deflection and soil movement over time 
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Figure 7.11 Ground water level variation before and after start of excavation 
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Figure 7.12 Moment interaction diagram for a circular column (after Muhammad 
and Merrony, 1996) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

Figure 7.13  Effect of column type on shape on interaction diagram 
(after MacGregor, 1988) 
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Figure 7.14 Design chart for a cracked section moment of inertia (after Lutz, 1973) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.15 Generalised effective moment of inertia versus bending moment 
relation in the cracking range (after Branson, 1977) 
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Figure 7.16 Minimum pile deflection profile to initiate cracking 
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Figure 7.17 Minimum bending moment profile to initiate cracking 
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Figure 7.18  Measured bi-linear moment-deflection curve 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 7.19  Bi-linear moment-deflection curve (after Branson, 1977) 
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Figure 7.20 Measured and predicted bending moment and deflection profiles of 
piles on (a) 28 Dec 2002, (b) 31 Dec 2002, (c) 6 Jan 2003 and (d) 17 Jan 2003 
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Figure 7.21 Development of measured and predicted pile maximum positive 
bending moment of rear pile over time 
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Chapter 8: Conclusions 

CHAPTER EIGHT 

 

CONCLUSIONS  

 

8.1 CONCLUDING REMARKS 

Centrifuge model tests have been carried out to investigate the effects of 

excavation-induced soil movement on a free-headed single pile as well as free- and 

capped-head pile groups adjacent to an unstrutted excavation in clay behind a stable 

and a collapsed retaining wall. In conjunction with the model study, in-flight T-bar 

tests have been performed to obtain the undrained shear strength profiles before and 

after the excavation process. An image processing technique has also been used to 

measure the lateral soil movement profiles at different locations and times with 

reasonably good accuracy and sensitivity of displacement magnitudes. The measured 

free-field soil movement at the pile location and measured soil strength profile are 

adopted as input parameters for an existing finite element program to back analyze the 

measured pile responses. A field case study on a pile group subject to excavation-

induced soil movement has also been carried out. The pre- and post-failure behaviour 

of the instrumented pile group has provided valuable data for a further understanding 

of the effects of soil movement on piles and also for comparison between field 

measurements and those predicted using the above mentioned numerical method. The 

findings of the studies are given as follows:   
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8.1.1 Single piles behind a stable retaining wall 
 

It has been established that the development of induced pile bending moment 

and deflection is time dependent due to the progressive wall and soil movements after 

excavation. For single piles located close to the wall and much of the pile lies within 

the large soil deformation zone, the induced pile bending moment and deflection 

increase with time after excavation has been completed. However, there is relaxation 

in the induced pile bending moment and deflection once the soil in the deformation 

zone has weakened. On the other hand, for single piles located further behind the wall, 

the induced pile bending moment and deflection increase continuously with time. This 

suggests that the soil surrounding the pile may not have weakened and are still capable 

of offering further resistance against increasing soil movement.  

It has been found that for single piles located at 3 m or more behind the stable 

wall, reasonably good pile responses can be predicted using an existing finite element 

program developed at the National University of Singapore. On the other hand, for a 

single pile located very close to the wall, the predicted pile bending moment and 

deflection are about 25% higher than the measured responses. This case is re-analyzed 

using the measured reduced soil strength after excavation and a much better agreement 

between the predicted and measured pile responses can be obtained.  This supports the 

finding of Hull et al. (1991) that the limit soil pressure/soil strength ratio for pile 

subject to soil movement is significantly less than that of conventional laterally loaded 

piles, in particular when the magnitudes of soil movement are large as in the case of 

the pile located at 1 m from the wall.  
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8.1.2 Single piles behind a collapsed retaining wall 
 

The performance of a single pile behind retaining walls having various degrees of 

instability has also been investigated. It is found that the wall would continue to move 

after excavation for stable and marginally stable walls, demonstrating similar time 

dependent phenomenon as stable walls. The wall movement would in turn cause soil 

movement behind the wall and this time dependent effect becomes more prominent 

with increasing excavation depth or decreasing wall stability. For tests experiencing 

wall collapse, the pile bending moment would start to reduce even before the 

excavation has been completed. For a pile located within the zone of significant soil 

movement, there is lateral soil stress relief due to excavation and the soil surrounding 

the piles would experience a reduction in strength that results in the relaxation of 

induced pile bending moment and soil pressure. This observation is reinforced by the 

image processing results, which reveal the occurrence of soil “flow” past the pile and 

tension cracks on the ground surface.  

The existing numerical method is used to back-analyse the maximum pile 

bending moments and head deflections obtained from the centrifuge tests. In order that 

the performance of the pile subject to large soil movement could be reasonably well 

predicted, it is established that appropriate limiting soil pressure on the pile should be 

adopted. The limiting soil pressure derived from the measured pile bending moment 

profile reveals that the ratio of limiting soil pressure over soil strength proposed by 

Poulos and Davies (1980) is appropriate provided that the reduced soil strength profile 

due to stress relief upon excavation is adopted in the back-analysis. As only the soil 

strength profile prior to excavation is known in most practical cases, a simplified 

envelope of limiting soil pressure/original soil strength ratio is proposed. The induced 

bending moment on a pile subject to large soil movement can also be reasonably well 
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predicted using this proposed envelope with limiting soil pressure/original soil strength 

ratio established to be about 6 in this study. This finding illustrates that the reduction 

of K from a value of 9 for conventional laterally loaded piles to a lower value of 6 for 

piles subject to excavation-induced soil movements is attributed to the reduction in the 

undrained shear strength upon excavation. It should be noted that the magnitude of 6 is 

merely a back-analyzed value and may not be applicable to other situations with 

different wall, soil or pile conditions. The results of the present study help to clarify 

the above contrasting proposals of K values. The results of the back-analyses reveal 

that if only pre-excavation undrained shear strength profiles are available, an 

appropriate reduction in the K value should be adopted in order to obtain a more 

accurate prediction of pile responses behind an excavation with large soil movements.  

8.1.3 Pile groups located behind a stable retaining wall 
 

Centrifuge model tests involving free- and capped-head 2-, 4- and 6-pile groups 

in clay behind a wall that remains stable after excavation have been carried out. It is 

found that the induced maximum bending moment is always lower than that of a 

corresponding single pile at identical location. If the piles are located at the same 

distance behind the wall, the measured bending moment is higher if the piles serve as 

the front piles as opposed to the rear piles of the pile group. The induced bending 

moment of the front pile, which experiences greater soil movement, is moderated by 

the rear pile via the pile cap. The interaction between the front and rear piles induces 

negative bending moment at the restraint pile head, but reduces the magnitude of 

bending moment developed along the pile and the pile group deflection. 

In a pile group, each individual pile will provide some shadowing and reinforcing 

effects on piles nearby. The degree of shadowing experienced by each individual pile 

depends on its relative position with its surrounding piles. It is observed that the 
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induced bending moment for the front peripheral (FP) pile is greater than that of the 

front centre (FC) pile at the same distance behind the wall. Similarly, the bending 

moment developed at the rear peripheral (RP) piles is also greater than that of the rear 

centre (RC) pile at the same distance behind the wall.  

Soil arching effect and “separation” of soil are observed to occur between the 

front piles of a pile group when the soil deforms during excavation in the 4- and 6-pile 

groups. An arch is formed between the row of piles when the yielded soil gets 

detached from its surrounding. The detached soil is then forced to squeeze into the row 

of piles hence without significantly increasing the pressures acting on the piles. 

Generally, the observed long term maximum positive bending moment would 

increase after excavation until about 50 days later and subsequently reduce. This 

behaviour is consistent to that observed for single piles. On the contrary, the maximum 

negative bending moment generally reduces slightly over time after excavation. This 

behaviour could be the result of the pile-pile cap interaction as the maximum negative 

pile bending moment is located close to the pile cap. 

In the numerical back-analysis, the soil moderation factor, whose magnitude 

depends on the size of the pile group, has been proposed to account for the shadowing 

and reinforcing effects. Soil arching moderates the detrimental effects of excavation-

induced soil movement on a pile group. It is acknowledged that as the pile cap is 

incapable of providing full fixity to the individual pile heads, a reduction factor for pile 

cap rotational stiffness is thus necessary. By adopting a consistent set of lateral soil 

movement moderation factor as well as reduction factor for pile cap rotational stiffness 

in the numerical back-analyses, the pile responses can be predicted reasonably well. 
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8.1.4 Pile group located behind a collapsed retaining wall 
 

A test involving a 4-pile group in clay behind a wall that subsequently 

collapses after excavation has also been carried out. The long term front and rear pile 

bending moment and head deflection demonstrate distinct peaks at the onset of wall 

collapse. These peak values would then reduce significantly over time and similar 

observation is also noted for a single pile. The observed limiting bending moments for 

both front and rear piles suggest that the front pile, which experiences larger soil 

movement, is assisted by the rear pile through the pile cap to resist the soil movement. 

This further illustrates the interaction between the front and rear piles to jointly resist 

the excavation-induced soil movement. For the case of a pile group, the bending 

moment and head deflection of both the front and rear piles are smaller than those of a 

single pile. Thus a capped-head pile group could resist the excessive soil movement 

behind a collapsed wall more effectively than a single pile.  

In the numerical back-analysis, fair agreement between the predicted and 

measured pile responses can be obtained when both the simplified envelope of limiting 

soil pressure distribution and the measured reduced undrained shear strength values 

after excavation are adopted. Therefore, the limiting soil pressure envelope developed 

for a single pile can also be used for a group of pile behind a collapsed wall. It is found 

that despite experiencing greater soil movement, both the front and rear pile responses 

remain unchanged suggesting that the soil limiting pressures have been reached. As 

such, the adoption of soil moderation factor is not necessary in the numerical analysis 

as the pile responses are governed by the soil limiting pressures that can be developed 

when the wall collapses. This is consistent to the findings deduced for a single pile 

located behind a collapsed wall.  
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8.1.5 Field study 
 

This field study involving an instrumented pile group behind an excavation that 

subsequently failed has highlighted the importance of designing piles to withstand the 

detrimental effects of lateral soil movement on piles. The pre- and post-failure pile 

behaviour of the unintended failure has provided valuable data necessary for analysis 

and further understanding.  

It is found that the measured and predicted pile bending moment and deflection 

profiles are generally consistent in trend. For the case of pure bending, the 

conservation of area method can be used to transform a circular section to a 

rectangular one such that the readily available design charts for the more common 

rectangular beam section can be utilized. Therefore, the gross, Ig and fully cracked Icr 

moment of inertia can be determined. It has also been demonstrated that the calculation 

of the average effective moment of inertia, Ie can be complicated. Nevertheless, a 

simple analytical method by Branson (1977) based on beam theory can be used as a 

first approximation. The numerical analysis has been shown to explain the field results 

to provide a better understanding of the development of the moment of inertia, I, from 

an initially uncracked section to a fully cracked section. An average effective moment 

of inertia, Ie, can be approximated to represent the various degrees of cracking along 

the length of the pile so that a smooth pile bending moment profile can be obtained.  

 

8.2 RECOMMENDATIONS FOR FURTHER STUDIES 

This research has provided an insight into the fundamental behaviour of piles 

subject to excavation-induced soil movement in clay behind an unbraced excavation. 

The combination of centrifuge modeling, numerical back-analysis and field study has 

successfully highlighted the importance of designing piles against lateral soil 
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movement. Nevertheless, through the rigorous numerical back-analyses that have been 

performed, some weaknesses of centrifuge modeling have been observed. Some 

suggested improvements that can be done are listed as follows: 

(i) Full rotational fixity between pile heads and pile cap can be further 

improved by means of welding instead of clamping the pile heads in both 

directions.  

(ii) Various pile head conditions may be of interest for further research. For 

example, a fix-fix pile head condition in both translation and rotation 

should better represent the field condition as pile caps are normally 

restraint by ground beams. The ground beams may be simulated using steel 

or aluminium square sections that can be welded to the pile cap.  

(iii) Since excavation is normally strutted in practice, it would also be of 

interest if a strutted excavation can be studied.  

(iv) To better reflect the actual function of a load carrying pile group, it is 

recommended that that an externally applied axial load be used on the pile 

group. 

(v) If a larger pile group is required for a test, a suitable container with width 

greater than 3 times the width of the pile cap should be used to prevent 

“near boundary” effects. 
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