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Summary 

 

Accelerated Life Testing (ALT) and Accelerated Degradation Testing (ADT) have 

become attractive alternatives for reliability assessments as they distinctly save the 

testing time and testing cost. They are employed when specimens are tested at high 

stresses to induce early failures or degradations. Through an assumed stress-life or 

stress-degradation relationship, failure information is extrapolated from the test stress 

to that at design stress. Although such practice saves time and expense, estimates 

obtained via extrapolation are inevitably less precise. Hence, a systematic and in-depth 

study on ALT and ADT data analysis and experiment planning is in demand. 

 

This dissertation involves three parts. The first part addresses the planning of Constant 

Stress ALT (CSALT), in which we propose a method to quantify the departure from the 

usual optimality criterion. A contour plot is developed to provide the solution space for 

sample allocations at high and low stress levels in two-stress and three-stress CSADT 

plans. Based on the output from the contour plot, three related approaches to planning 

CSALT are then presented. The results show that our plans are:  (1) capable of 

providing sufficient failures at middle stress to detect non-linearity in the stress-life 

model if it exists; (2) able to serve as follow-up tests during product development; (3) 

flexible in setting stress levels and sample allocations.  

 

The second part addresses the analysis of Step Stress ADT (SSADT) data. We monitor 

the degradation path with stochastic processes and finally obtain a closed form 

estimation for unknown parameters. The mean lifetime and its confidence intervals are 

also derived when failure time follows the Inverse-Gaussian distribution (IGD) or 
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Birnbaum-Saunders distribution (BSD). Compared the existing approaches, our 

method alleviates the difficulty in determining the particular deterministic degradation 

functions.  

 

The third part deals with the planning of ADT. Motivated by the successful application 

of stochastic model in ADT data analysis, we present a general formulation to design 

both CSADT and SSADT by considering the tradeoff between the total experiment 

cost and the attainable estimate precision level. Decision variables such as the sample 

size, the test-stopping time or the stress-changing time in a CSDAT or a SSADT are 

optimized. Influence of the lower stress and inspection time interval on optimal plans 

is analyzed. Effect of precision parameters on optimal SSADT plans is also studied. 

The results imply that our formulation is easily coded, and our plans require fewer test 

samples and less test duration. Hence, testing cost is reduced. Compared with CSADT, 

SSADT is more powerful in this aspect. Thus implementation of SSADT is highly 

recommended in real case.  

 

This dissertation also contains numerical examples and simulation studies to 

demonstrate the validity and efficiency of each approach developed. We highlight the 

important findings and discuss the comparisons with existing methods. Finally, we 

point out some possible research directions. Since our current research focuses on 

single accelerated environment, the planning strategies proposed in this dissertation 

can be extended to multi-component multi-acceleration environment.   
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Chapter 1 

Introduction and Literature Survey 

 

 

1.1  INTRODUCTION 

 

In manufacturing industry, there is much interest in the lifetime information of 

products that is traditionally assessed from failure data. However, due to the increasing 

demand for improved quality and reliability, systems and their individual components 

are required to have extremely long life span. For example, the lifetime of a Light 

Emitting Diode (LED) can be longer than 105 hrs, i.e. 11.5 years. Thus it becomes 

particularly difficult, if not impossible, to collect enough failure data to estimate the 

time-to-failure under normal test condition. In order to shorten the testing time and 

reduce the testing cost, Accelerated Testing (AT) is promoted in such circumstances. 

 

AT can be conducted in two ways. One is the Accelerated Life Testing (ALT), which is 

employed at higher than usual stresses to induce early failures. Physical failures are 

observed during the experiment. Reliability information is estimated under test 

conditions and then extrapolated to that at use condition through a statistical model. 

ALT has a high capacity to save testing time and cost once failures are observed.  

 

However, there are still cases in which few data could be obtained even at highly 

elevated stress levels. Hence the second way is the Accelerated Degradation Testing 
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(ADT). It is imperative in ADT to identify a quantitative parameter (degradation 

measure) that degrades over time and thus is strongly correlated with product 

reliability. The degradation path of this parameter is then synonymous to performance 

loss of the product. Tseng et al (1995) defined failures as “soft failures” when the 

degradation measure of interest passes through a pre-specified threshold. Similar to 

ALT, degradation data measured at higher stresses are then extrapolated to use 

condition for prediction of product lifetime.   

 

The key idea to make components degrade or fail faster in an AT is to test the 

specimens at higher stresses which may involve higher temperature, voltage, acidity, 

pressure, vibration, load or even combinations of such stress levels. There are mainly 

three types of stress loading pattern for an ALT or ADT, namely, constant stress, step 

stress and progressive stress. The former two are the common types of AT in practice.  

 

In Constant Stress Testing (CST), test units are assigned to a certain increased stresses. 

These stresses are held constant throughout the testing until units fail or observations 

are censored. Figures 1.1-1.2 are demonstrations of Constant-Stress ALT (CSALT) and 

Constant-Stress ADT (CSADT) with three test stresses. CST has some advantages. The 

acceleration models are better developed and can be verified empirically. Besides, 

because it is simple to maintain the constant stresses once a test is set up, CST is easy 

to implement and widespread used in industry. However, it is not so easy to select an 

appropriate level of stress in a CST. If the stress level is too high, specimens under test 

may fail with a different failure mode from that under use condition. If the stress level 

is not high enough, many of the tested specimens may not fail within the available 
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testing time frame and thus the collected failure data are not sufficient to get a 

reliability inference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To overcome the problems encountered in CST. Step Stress Testing (SST) is adopted. 

Figures 1.3-1.4 are examples of Step Stress ALT (SSALT) and Step Stress ADT 
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Figure1.2. An example of the stress-loading pattern in a three–stress CSADT 
 

Figure 1.1. An example of the stress-loading pattern in a three-stress CSALT  
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(SSADT) plans with three stress levels. Either in SSALT or in SSADT, all units are 

subjected to the first test stress simultaneously, and the test stress is increased in steps 

at some pre-specified time points. As a result, each unit runs at each stress for a 

specific time until it fails or the test is censored. Because of the gradually increased 

stress level, SST helps to avoid over-stressing of test specimens. The disadvantage of 

SST is that it is more complex to model the influence of the increasing stress compared 

with the constant stress in a CST.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1.3. An example of the stress-loading pattern in a three-stress SSALT 
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Progressive Stress Testing (PST) is similar to the SST except that the stress applied to 

the test units is increased continuously. A particular case is called ramp stress test, in 

which the testing stress is linearly increasing (Tan, 1999). Figure 1.5 is an example of 

a PST with two different acceleration rates. PST can provide enough failure data 

within a short time frame, but it is difficult to control the stress changing rate and to 

model its effect. Thus PST is not commonly adopted in real world. Therefore, in this 

dissertation, we put our emphasis on data analysis and experiment design of CST and 

SST. We will not cover details of PST in the following chapters 
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Figure 1.4. An example of the stress-loading pattern in a three-stress SSADT 
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Figure 1.6 shows the relationship and differences among these reliability assessment 

methods.  

 

 

 

 

 

 

 

 

 

 

ALT and ADT have been studied by many scholars. The distinguished book by Nelson 

(1990) is a comprehensive resource dealing with their fundamental theories, 

applications, data analysis methods and experiment planning approaches. Papers about 

Figure 1.5.An example of the stress-loading pattern in PST with 
two acceleration rates 
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    Figure 1.6 Methods to assess reliability information for highly reliable products 
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ALT and ADT also appeared in many journals and proceedings. In the following 

sections, we first review the basics of AT such as the commonly used lifetime 

distributions, the commonly used acceleration models, modeling of the degradation 

paths in an ADT, the parameter estimation methods and failure mechanism validation. 

After that an extensive literature survey will be given on ALT and ADT data analysis 

and test planning.   

 

 

1.2 BASICS OF AT   

.  

1.2.1 The Commonly Used Lifetime Distributions 

 

AT is a quick way to assess reliability inferences on the performance of devices at a 

lower stress level and at operation time far beyond the length of experiments. These 

inferences are obtained through extrapolations in two dimensions, i.e. time and stress. 

Effect of increased stress on failure/degradation can be summarized with three types of 

models. The first one is Acceleration Factor (AF) model, which means the failure 

times and different stress level are linked through a deterministic relationship including 

many different formulations. The lifetime distribution is selected based on past 

experience, existing engineering knowledge and the underlying failure mechanisms. In 

this case, the failure at higher stress has the same distribution as that at normal stress 

but with an altered scale parameter. This type of models are easily understood and 

widely spread in published research, we will adopt it in our later analysis and give a 

throughout review in next section. The second type is proportional Hazard model. The 

hazard function at higher stress is related to hazard function at normal stress through a 
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covariate function involving stress as variables. Meeker et al (2002) has detailed 

explanation regarding this model. The last one is more general models, where scale 

and shape parameters change with stress levels. Extrapolation along stresses can be 

illustrated by acceleration models, which express the lifetime in term of a function of 

the applied stresses. We have summarized some commonly used life distribution in 

this section and the acceleration models in next section. 

 

 

1.2.1.1 The Exponential Distribution 
 

The exponential distribution is the most widely used distribution in mechanical and 

electronic industry. It owns a constant failure rate. This famous property implies its 

applications in modeling the long, flat portion of bathtub curve and modeling the 

failure time of product without significant wear out mechanism. Additionally, because 

of lack of memory, the exponential distribution is suitable to describe the life of 

electronic components and electronic systems such as the transistors, resistors, 

integrated circuits, and capacitors.   .  

 

The probability density function (p.d.f) of the exponential distribution is normally 

expressed as: 

( ) ( ) <∝≤≤= −− tetf tt γλ γλ 0                                        (1.1) 

where t is the lifetime; λ  represents the failure rate whose reciprocal is the mean time 

to failure; and γt  is a location parameter demonstrating the start point of a constant 

failure rate if the components have been subjected to a burn-in test. 

 



 
 
Chapter 1                                                                    Introduction and Literature Survey                        

                                                                                                                                     
9  

Bartlett’s test can be used to check the feasibility of using the exponential distribution 

as a failure-time model for a given data set (Elsayed, 1996).  

 

 

1.2.1.2 The Normal Distribution 
 

There are a lot of situations where the normal distribution is applicable. In reliability 

modeling, the lifetime of mechanical components under cyclic loads or fatigue test is 

always a normal variable. Degradation increments when a degradation process is 

modeled with a stochastic process are also normally distributed (Tang & Chang, 1994).  

Because of its convenient properties, random variables with unknown distributions are 

often assumed to be normal. Although this can be a dangerous assumption, it is often a 

good approximation due to the surprising result known as the Central Limit Theory, 

which states that, the mean of any set of variables with any distribution having a finite 

mean and variance tends to the normal distribution.  

 

The p.d. f of the normal distribution is: 

( ) ( ) 0,,
2

exp
2
1

2

2

><∝∝<−<∝∝<−⎥
⎦

⎤
⎢
⎣

⎡ −−= σµ
σ
µ

σπ
tttf               (1.2) 

where t is the lifetime; µ  and σ  are respectively the mean and the standard deviation 

of this distribution. They are also called the location and scale parameters.  
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1.2.1.3 The Lognormal Distribution 
 

The lognormal distribution is widely used in modeling the failure time of electronic 

components when they are assigned to high temperature, high electric field, or a 

combination of both temperature and electric field. It is used for calculating the failure 

rates due to electromigration in discrete and integrated devices. The lognormal 

distribution is also powerful to model failures of the fracture of substrate.  

 

The p.d.f of the lognormal distribution is: 

 ( ) ( )
0,,

2
ln

exp
2

1
lnln2

ln

2
ln

ln

><∝∝<−<∝∝<−⎥
⎦

⎤
⎢
⎣

⎡ −
−= σµ

σ
µ

σπ
t

t
t

tf        (1.3) 

where lnµ and lnσ  are respectively the log mean and log standard deviation.  

If a random variable is from a lognormal distribution, the logarithm of this random 

variable follows a normal distribution.  

 

 

1.2.1.4 The Weibull Distribution 
 

The Weibull distribution is used across a wide range of applications from electronic 

components, mechanical components, metal materials, ceramics, to product properties 

such as strength, elongation and resistance. Because of its flexible ability to include 

many distributions such as the exponential, the Raleigh, the normal distribution as 

special cases, it is the recommended model when little knowledge is known about the 

failure mechanism of products.  

 

The p.d.f of the Weibull distribution can be expressed as: 
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where θ , β  and γt  respectively refer to the scale, shape and location parameter. 

For 1=β , this p.d.f reduces to an exponential density; for 2=β , it describes a 

Raleigh distribution; for 44.3=β , it approximately is a normal distribution (Elsayed, 

1996). Generally, if 1<β , failure rate is a decreasing function of t; if 1>β , failure 

rate is a increasing function of t. 

 

 

1.2.1.5 The Extreme Value Distribution 
 

The extreme value distribution is useful in modeling the reliability of components that 

experience significant wear-out, i.e. highly increasing failure rate. 

 

It is closely related to the Weibull distribution with shape and scale parameters 

θβ and . Its p.d.f is: 
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⎥
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Extreme θθθ
γγ expexpexp1          (1.5) 

where θ
βγ log1=

Extreme
t  and

β
θ 1=Extreme  are the location and scale parameters. The 

natural logarithm of a Weibull random variable follows an extreme value distribution. 
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1.2.1.6 The Inverse Gaussian Distribution & The Birnbaum-Saunders 

Distribution 

 

These two distributions are normally used to model fatigue crack growth in 

engineering applications. The Inverse Gaussian distribution (IGD) has more 

applications in electrical networks, management sicken, mental health, demography, 

and environmental science. For its detailed theory and applications, see Chhikara & 

Folks (1989), Tang & Chang (1994), Gupta & Akman (1996), Iwase & Kanefuji 

(1996), Seshadri (1998) and Yang (1999). The Birnbaum-Saunders Distribution (BSD) 

was first derived by Birnbaum and Saunders (1969) and later developed by Desmond 

(1985). Owen & Padgett (1999) investigated the accelerated test models for system 

strength based on BSD. The confidence interval for the 100pth percentile and the point 

and interval estimates for the critical time of failure rate of the BSD are constructed in 

Chang & Tang (1993, 1994) and Tang & Chang (1995). For more information about 

comparisons and contracts of the two distributions, see Bhattacharyya & Fries (1982) 

and Desmond (1986). We will give the p.d. f of these two distributions later in chapter 

3. 

 

Other distributions such as the Raleigh distribution, the Gamma distribution, the Beta 

distribution and the Half-logistic distribution are also used in modeling the lifetime of 

products. Their reliability functions and applications have been thoroughly explained 

in Elsayed (1996). 
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1.2.2 The Commonly Used Acceleration Models 

 

Statistics-based models, physics-statistics based models, and physics-experimental 

based models are three kinds of acceleration models. The later two are normally 

employed to analyze failure time data when the exact relationships between the applied 

stresses and the failure time of components can be known based on physics or 

chemistry principles.  Specially, the commonly used models are the Arrhenius model, 

the Inverse Power Law model and the Eyring model.  

 

 

1.2.2.1 The Arrhenius Model 
 

When only thermal stress is significant, the empirical model, known as the Arrhenius 

model, has been applied successfully to demonstrate the thermally activated 

mechanisms such as solid-state diffusion, chemical reactions, semiconductor failure 

mechanisms, battery life etc (Condra, 2001). The effect equation of temperature on the 

reaction rate is: 

)exp(
tempKT

EaAr −=                                                     (1.6) 

where  r is the speed of reaction, A is an unknown constant that needs to be estimated 

from real data, Ea is the activation energy (eV) that a molecule must own before it can 

take part in the reaction. Condra (2001) summarized the activation energies for some 

semiconductor device failure mechanisms. KeVK /10623.8 5−×=  is the Boltzmann 

Constant, and tempT  is the testing temperature in Kelvin. 
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1.2.2.2 The Inverse Power Law Model 
 

The Inverse Power Law model is used when the life of a component is inversely 

proportional to an applied stress. The main applications of the Inverse Power Law 

model involve voltage and fatigue due to alternating stress. Failure time under this 

model can be expressed by the following equation: 

Bf S
At =                                                        (1.7) 

where ft  is the failure time, A and B are constants that relate to the product properties. 

S is the applied stress.  

 

 

1.2.2.3 The Eyring Model and the Generalized Eyring Model 
 

The Arrhenius model and the Inverse Power Law model are workable when there is 

only one stress factor. While, the Eyring model offers a general solution to problems 

where additional stresses exist. It has the added strength of having a theoretical 

derivation based on chemical reaction rate theory and quantum mechanics. With 

temperature as a test stress, the Eyring model has been applied to: (1) accelerated 

testing of capacitors, with voltage as the second stress; (2) failures caused by electro-

migration, with current density as the second stress; (3) epoxy for electronics, with 

humidity as the additional stress; and (4) rupture of solids with tensile stress as the 

second stress (Sun, 1995). It is also applicable to describe the dependence of product 

performance, aging and accelerated stresses in power supply systems (Chang, 1993).  

 

An Eyring model can be expressed as: 
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where lifem  is a measure of product life; A, B are constants to be estimated from real 

data; S is an applied stress, such as humidity, voltage or their transforms; 
emp

a

KT
E

 is the 

Arrhenius exponent.  

The Generalized Eyring model allows one or more non-thermal accelerating variables. 

For one additional non-thermal accelerating variable X, the model can be written as:  

( ) )exp(exp 2
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where A, B, C1, C2 are characteristics of the particular process. 
emp

a

KT
E

 is the Arrhenius 

exponent.  

 

These four models, which can be employed independently or in combinations, are 

most widely adopted in AT. Some other models, for example the exponential model 

(Yamakoshi et al 1977, Park & Yum 1997), are also available. Elsayed (1996), Hobbs 

(2000) and Condra (2001) have discussed how to select the test conditions and how to 

choose the suitable acceleration models. Based on the mechanical-damage failure 

mechanism, Guerin et al (2001) also presented the method to analyze and select 

suitable acceleration models that describe crack propagation of steel components. 

Considering the acceleration effect of humidity and temperature, Tang & Ong (2003) 

developed the moisture soak model for surface mounted devices.  
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1.2.3 Modeling of Degradation Processes  

 

Degradation means gradual loses of characteristic performance. ADT aims to measure 

the changing process of one or more characteristics of each device under test before an 

actual failure occurs. Hence, ADT data captures valuable information on the failure 

mechanisms of the specimens. However, the inferences from ADT are valid only when 

the underlying degradation model is properly defined. Two types of degradation 

models, namely deterministic models and stochastic models, have appeared in the 

published literature. 

 

1.2.3.1 Deterministic Degradation Models 
 

Degradation process can be modeled using a function of time and possibly 

multidimensional random variables. This kind of models is called deterministic model 

(Meeker & Escobar 1998, Tseng & Wen 2000, Yang & Yang 2002, Meeker et al 

2002). 

 

A deterministic model normally describes the following information: (1) a relationship 

between degradation measurement and time, i.e. the lifetime distribution over a 

particular stress; (2) effect of the stress levels on lifetime, i.e. the potential acceleration 

model; and (3) random effects of individual product characteristics.  

 

There are three types of deterministic models, i.e. linear, convex and concave models. 

To determine the format of a model, one needs to comprehensively understand the 

failure mechanisms of the product under test. Historical data, previous testing 

experience and engineering handbooks will be exactly useful in this aspect. 
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Deterministic models have several weaknesses. First, the degradation path of one item 

at a particular stress is determined once the parameters in the pre-assumed model are 

known, and thus the experimenter only needs to collect a certain number (same as the 

number of unknown parameters) of degradation points to estimate these parameters. 

On the contrast, he/she needs more samples to justify the variability of the parameters.  

Secondly, the error terms in those models are always assumed to be independent and 

identically distributed. This is not adequate for the correlated process. Moreover, some 

parameters especially the shape parameters in the assumed life distribution are 

assumed to be known before testing. This again, sometimes, is not possible in practice.  

To overcome these problems, stochastic models, which describe the degradation path 

as a random stochastic process in time, are adopted alternatively.  

 

 

1.2.3.2 Stochastic Degradation Models 
 

Stochastic models focus on the degradation increments instead of the actual 

degradation values. Degradation is realized as the additive superposition of a large 

number of small increments. 

 

The Wiener process is the most widely used stochastic process. Its theory has been 

thoroughly explained in Park & Beekman (1983) and Dawson et al (1996). Besides, a 

collection of stochastic processes have been promoted to monitor nondestructive 

accelerated degradation for power supply units in Tang & Chang (1995). Whitmore & 

Schenkelberg (1997) demonstrated a degradation process with a time scale 

transformation. Their model and inference methods have been illustrated using an 

application case involving self-regulating heating cables.        
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1.2.4 Parameter Estimation Methods 

 

Parameter estimation plays an important role in reliability assessment. A good estimate 

should be unbiased, consistent, efficient and sufficient (Elsayed, 1996). Clearly, the 

accuracy of an estimate depends on the sample size and the method in use for 

estimating the parameters. In general, two types of approaches, called parametric and 

nonparametric approaches, are generally employed for parameter estimation. 

 

 

1.2.4.1 Parametric Methods 
 

The Maximum Likelihood method (ML) and the Lease Square method (LS) are the two 

mainly used parametric estimation methods.  

 

Estimate from ML method maximizes the likelihood function, which is a joint 

probability of an observed sample as a function of the unknown parameters. This 

method possesses some advantages:  

 

1. It has some desirable mathematical and optimality properties. For example, ML 

estimate (MLE) is unbiased with minimum variance compared with other 

estimate, and is asymptotically normal for large sample size. As a result, the 

confidence bounds and hypothesis tests of the reliability interest can easily be 

obtained. 
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2. The existing softwares provide excellent algorithms for calculating MLEs for 

many of the commonly used distributions. This helps saving the computational 

efforts and mitigating the computational complexity. 

 

However, it also has some disadvantages:  

 

1. The likelihood equations need to be specifically worked out for a given 

distribution and estimation problem.  

 

2. The numerical estimation is usually non-trivial, particularly if the confidence 

intervals for the parameters are desired. Except for a few cases where the 

maximum likelihood formulas are in fact simple, it generally relies on high 

quality statistical software to obtain MLEs.  

  

LS method assumes that the best estimate of the parameters minimize the sum of the 

squared deviations, i.e. least square error, from a given set of data. It is normally used 

for curve fitting. For theory and estimation procedures of MLE and LSE, see Nelson 

(1990), Elsayed (1996) and Tobias & Trindade (1995). 

 

Other estimate methods such as the graphical method (Nelson 1975, 1990), the Weight 

Least Square method (Kwon 2000, Wu & Shao 1999), the Moment Estimate approach 

(Elsayed 1996), the Modified Maximum Likelihood (MML) method (Su et al, 1999), 

the Bayes approach (Viertl 1988, Chalone & Larntz 1992, Chaloner & Verdinelli 1995, 

Dorp 1996, Mazzuchi 1997, Robinson & Crowder 2000) are also available. But, MLE 

is the most widely adopted method in ALT and ADT analysis. It has the minimum 
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standard deviation for large samples, and the standard deviation is proved comparable 

to that of other estimates for small samples (Nelson, 1990).  

 

 

1.2.4.2 Non-parametric Methods 
 

Most AT analysis adopts parametric regression models to estimate the lifetime of 

products at normal stress. However, when the failure mechanism is unknown, or 

failure data indicate complicated distributional shapes, semiparametric and 

nonparametric models can serve as attractive alternatives to relax the difficulty in 

choosing a distribution function. Among the semiparametric models, multiple 

regression models and the proportional-hazards model have been highlighted (Millier 

1981, Gill 1984, Lawless 1986, Elsayed 1996, Wei 2001). More general models have 

been introduced in Etezadi-Amoli & Ciampi (1987) and Shyura et al (1999). These 

models have been successfully used to analyze the survival time of patients in medical 

applications. Nonparametric approaches for interval estimates of reliability measures 

have been reported in Tyoskin & Krivolapov (1996) and Shiau & Lin (1999).  

 

Other methods, such as the neural networks method, also appeared in some 

literature(Chang et al, 1999).  

 

 

1.2.5 Failure Mechanism Validation 

 

As mentioned early, the basic idea in AT is that we hypothesize that components 

operating at a well-selected level of elevated stress experience the same failure 
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mechanism as they may experience at normal stress. For example, if corrosion occur at 

the use temperature and humidity, the same type of failures happens faster in a more 

moist environment with an increased temperature. If different failure mechanisms are 

induced, they should be represented by different life distributions and different 

acceleration models (Tobias & Trindade, 1995). This indicates the essential 

shortcomings of AT: 

 

1. High level of stresses, sometimes, may induce new failure modes that would 

not be observed at use condition. For example, instead of simply accelerating a 

failure-causing chemical process, increased temperature can possibly change 

the material properties, that leads to a different failure mode. Hence, it is very 

important to validate the testing stress within a certain range before any testing 

starts. 

 

Normally, a new failure mode can be verified by checking the variability of the 

assumed stress-life relationship. If a new failure mode is recognized, the 

analysis should be adjusted by treating the failure time caused by the new 

failure mode as censoring time (Meeker & Escobar, 1998). 

 

2. Multiple operations, sometimes, may cause different failure modes that affect 

the lifetime of products under test. For example, the filament of an 

incandescent light bulb goes through a sublimation process and finally fails. 

There are, however, other operations such as the on-off cycles that induce both 

thermal & mechanical shocks to shorten the lifetime of the bulb. Correlation 
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among multiple operations should be clearly understood in order to obtain an 

accurate estimate in AT analysis. 

  

3. Some failure modes may be ignored when the experiment is focusing on a 

known failure mechanism. If the unknown modes are the dominating recourse 

of failures, a wrong estimation is to be obtained. Detailed analysis with respect 

to mixed failure modes has been published in the early work by Nelson (1975). 

Jayatilleka & Okogbaa (2001) also presented a method to identify potential 

failure models in journal bearing.  

 

4. The increase of a certain accelerating variable, sometimes, may cause changes 

of other accelerating variables. For example, during the testing of electronic 

products, the increase of temperature may cause the increase of humidity, 

which fastens the degradation speed too. In additions, the rate of usage for 

mechanical products is intensively related to corrosion (Meeker & Escobar, 

1998). The correlations between acceleration variables should also be counted 

in AT data analysis and experiment planning. 

 

Hereby, AT experiments should be designed carefully to produce data from only one 

failure mechanism. Other types of failures should be “censored” out of data analysis. 

Operations during a test should be well controlled to reduce risks of inducing new 

failure modes. Despite of the demand to select the highest testing stress as high as 

possible to minimize the standard deviation of estimate at design stress (Meeker, 1975), 

the highest stress should validate the same failure mechanism as that at use stress. 

Normally, the highest stress can be determined based on current product specifications, 
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past experience and engineering handbooks (Yang & Yang, 2002). If there lacks 

sufficient knowledge about the product, a preliminary test, which is conducted by 

testing a few samples at a reasonably high stress level over a short time, can be 

performed to clarify the failure or degradation mode and identify the highest allowable 

test stress.  

 

 

1.2.6 Destructive Testing and Non-destructive Testing  

 

In most published literature, AT is assumed to be non-destructive. However, in the 

situations where the reliability inspection is devastating and the unit cannot fulfill its 

functional requirements after inspection, destructive testing arises. The time to collect 

reliability measures in a destructive testing becomes inevitably important because it 

determines the attainable estimate precision level of the reliability interest. Bergman & 

Turnbull (1983) presented the optimal inspection time to achieve precise estimates in a 

destructive life test conducted on animals. Park & Yum (1997, 2004) designed 

destructive CSADT and SSADT plans by minimizing the asymptotic variance of MLE 

of mean lifetime at use stress. Sohn (1997) investigated the destructive ALT planning 

problem with logistic failure-distribution. Yang & Yang (2002) determined the 

inspection time in a two stress CSADT by considering a tightened degradation critical 

bound at higher test stress.  

 

Deterministic models are used in all above-mentioned papers. In chapter 7, we will 

present a planning scheme to determine the inspection time in a two-stress destructive 

CSADT. Differently, we apply stochastic processes to model the degradation paths. 
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The optimal testing time as well as the sample size and allocations at each stress are 

obtained by minimizing the total testing cost under an estimate precision constraint. 

Comparisons of our proposed plan and the existing plans will also be conducted.  

 

 

1.3 ANALYSIS OF ALT DATA AND PLANNING OF ALT TEST 

 

An important statistical issue of ALT is how to take advantage of the test data from the 

severe test conditions to make uncertainty statements about the failure behavior of the 

items at use stress. Most work related to ALT data analysis and test design is based on 

the sample theoretic theory (Nelson, 1990).  

 

 

1.3.1 Analysis of ALT Data 

 

The comprehensive sources for analyzing ALT data are Mann et al (1974), Cox & 

Oakes (1984), Viertl (1988) and Nelson (1990). 

 

ALT data are always a mixture of time censoring and failure censoring that cannot be 

modeled by a normal distribution (Tan, 1999). Usually, we use a Weibull distribution 

with a constant shape parameter to fit the failure time, a transformed linear function 

such as the Arrehnius model and the Inverse Power Law model to describe the stress-

life relationship, and the parametric method to estimate the unknown parameters 

(Nelson 1980, Tang 1996, Teng & Yeo 2002). Application of ML in estimation of the 

linear hazard rate type distribution and exponential step-stress model has been 
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proposed in Shaked (1978) and Khamis & Higgins (1998). Schneider & Weissfeld 

(1989) derived the confidence intervals of the lifetime in a lognormal distribution for 

censored ALT. Hirose (1993) and Sohn (1997) discussed the issues of non-constant 

scale parameters. Hirose (1993) also investigated a threshold below which failures 

were not likely to occur. Huang & Lin (1994) developed a two stage linear model in 

case that there were changing points in the assumed Arrhenius model. Bai & Yun 

(1996) generated a size-effected model in which failure rate was a function of sample 

size. Wang & Pham (1996) proposed a general statistical definition of accelerated 

factors and derived the unbiased estimator of the accelerated factor for the Gamma 

distribution. Tyoskin & Krivolapov (1996) published nonparametric models for 

SSALT analysis. Mazzuchi et al (1997) presented a Bayesian approach for inference 

under the Weibull failure model assumption and incorporated prior judgment into the 

analysis. Kim & Yum (2000) compared exponential life test plans with intermittent 

inspections. Jayawardhana & Samaranayake (2003) derived the lower prediction 

bounds for a future observation based on a Weibull lifetime distribution in which the 

scale parameter was assumed to have inverse power relationship with the stress levels. 

 

 

1.3.2 Planning of ALT Test 

 

Even the analyzing methods are powerful in obtaining an estimate, the estimates might 

be significantly different from the true lifetime at use stress. Planning of ALT 

mitigates this pressure. Usually, the sample size, the test duration and the expected 

proportion of failures are known due to the availability of samples and testing time. 

Hereby, decision variables in test planning involves the stress levels, number of units 
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allocated to each stress level in CSALT or holding time assigned at each stress in 

SSALT. Nelson (1990) summarized the normally used optimization criteria: 

 

1. minimizing the variance of the LSE of reliability interest at use stress (for test 

plans with complete data); Or 

2. minimizing the variance of the  MLE of reliability interest at use stress (for 

tests with censored data); Or 

3. minimizing the variance of an estimate over a range of stress; Or  

4. minimizing the variance of the estimate of a particular coefficient; Or   

5. minimizing the variance of the estimate of the scale parameter; Or 

6. be most sensitive to detect non-linearity of the stress-life relationship. 

 

Tian (2002) thoroughly reviewed the models, plans and applications of SSALT. Miller 

& Nelson (1983) designed a simple two stress SSALT with completed data. Bai et al 

(1993), Tang et al (1996) and Khamis & Higgins (1996) presented ideas on three-

stress SSALT designs. Tang (1999, 2003) not only optimized stress levels and the 

holding time, but also achieved a target Acceleration Factor (AF) to satisfy the test 

time constraint with a desirable fraction of failure in SSALT planning, see also Yeo & 

Tang (1999). They concluded that the statistically optimal way to increase AF in an 

ALT was to increase the lower stress levels and shorten their holding time. In most of  

the above-mentioned papers, a certain Weibull distribution has been assumed to model 

the failure time distribution and the cumulative exposure (CE) model has been 

employed to model the stress-life relationship.  
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In additions, Xiong & Milliken (1999) investigated the statistical models in SSALT 

and planned the optimal tests when the stress changing time was an order statistic from 

an exponential lifetime family. Park & Yum (1998) presented a modified SSALT and 

CSALT based on an exponential life distribution and a linear acceleration relationship 

by minimizing the asymptotic variance of the MLE of the mean lifetime at use stress. 

When the sample size was small, SSALT performs well to capture reliability 

information (Khamis, 1997).  

 

Statistically optimal CSALT plan (Nelson et al, 1978) consists of two stress levels. It 

yields the most accurate estimate but is unable to validate the assumed linearity of the 

stress-life relationship. It is not robust to mis-specifications of some pre-estimates 

either. Three-stress designs have eliminated this disadvantage. The three-stress best 

standard plan (Nelson & Kielpinski, 1976), which provides poor estimates, sets three 

equally spaced stresses and equally allocated test units (with allocation ratio 

1/3:1/3:1/3) to those stress levels. Three-stress compromised CSALT plan (Meeker 

1975, Meeker & Hahn 1985) uses three stresses in which the middle one is the average 

of the other two, and the allocation ratio for the three stresses is 4/7:2/7:1/7. It is more 

robust to avoid deviation from the linear stress-life assumption than the statistically 

optimal plan and more efficient to produce an accurate estimate than the best standard 

plan. But in this situation, no optimization has been addressed on the middle stress 

level. It is proved that the statistically optimal plan produces the smallest asymptotic 

variance. In the above-mentioned plans, the underlying life distribution is assumed to 

be a Weibull distribution, in which the scale parameter keeps constant for all stresses, 

and the stress-life relationship is simply linear. Optimality is achieved by minimizing 

the asymptotic variance of the MLE of a certain percentile of the time–to-failure 
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distribution at the design stress. Under the same assumptions, Yang & Jin (1994) 

addressed the sample allocations in three-stress CSALT by minimizing the asymptotic 

variance of the MLE of the mean life at design stress and the total running time. Tan 

(1999) solved the same problem by constraining the expected failures at design stress 

not less than a specific amount.  

 

By assuming that the failure time follows a Weibull distribution with non-constant 

scale parameter at each stress and the allocations at each stress is 4:2:1, Meeter & 

Meeker (1994) planned the three-stress CSALT by minimizing the asymptotic variance 

of MLE of the mean life at use stress. While, Tang (1999) gave the optimal stress 

levels and their allocations by minimizing the variability of scale parameter at each 

stress, see also Tang et al (2002). Wu et al (2001) addressed the limited failure 

censored life test plans. Sun (1999) proposed the failure free test plans. 

Test plans with other lifetime distributions such as the normal and the exponential 

distribution are also studied in Yang (1994) and Park & Yum (1996).  

 

Optimality in most of the above-mentioned literature is defined as achieving a 

minimum asymptotic variance for a certain percentile of reliability interest, that is, to 

obtain the “best design” that corresponds to “optimization”. In practice, stress levels of 

the best design may be too harsh to implement and also there may be constraints due to 

limitation of experiment budget and availability of products and/or test duration. Thus 

pursuing the best design, sometimes, enhances the difficulty of conducting 

experiments and increases the experimental expenses. To solve these problems, we 

consider relaxing the usual optimization criteria to obtain alternate plans. This idea is 

first initiated by the goal-softening approach. 
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Ho et al (1992) and Ho (1996) introduced the goal-softening approach as to “settle for 

the good enough solutions with high probability”. Ho et al (1992) argued ordinal rather 

than cardinal optimization concentrating on finding good, better or best designs rather 

than estimating accurately the performance value of these designs. The interest of goal 

softening approach is on whether solution A is better than solution B (say, solution A > 

solution B), not on how much solution A is better than solution B (say, solution A – 

solution B). Barnhart et al (1994), Ho & Deng (1997) showed examples of this 

approach for comparison with traditionally cardinal optimization. Lee et al (1999) also 

explained the role of goal softening in ordinal optimization: other than using accurate 

performance that presumably takes a long time to obtain, one could use the relative 

order of performance estimate as a basis for comparing and choosing design. Other 

than picking one single design that is exactly the true optimum in the design space, 

which is important in the presence of large estimate errors, one could pick a subset in 

which some good enough designs are contained with high probability. Using the order 

statistics formulation, they examined the feasibility of this approach to discrete event 

dynamic systems. It was stated that goal-softening approach was exponentially 

efficient in terms of matching good designs in a selected group.  

 

We intend to apply goal-softening approach to ALT planning in chapter 2. Instead of 

finding the unique design solution that corresponds to the smallest asymptotic variance, 

we are going to solve for the design space in which the asymptotic variances are within 

a tolerable bound.  
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1.3.3 Objectives of Our Proposed CSALT Planning Approach 

 

CSALT is wildly used due to several reasons as follows: 

 CSALT is easily implemented.   

After the test parameters are determined and the test is set up at the beginning 

of an experiment, experimenters do not need to adjust the testing equipments 

during the course of testing.  

 

 CSALT is easily understood.   

Once the test is completed, CSALT data are easier to analyse. The reliability 

information from each stress is clearer to understand than that in a SSALT. 

 CSALT can provide the required reliability information with a certain 

precision. 

 

Although CSALT has weak points such as the stress levels should be properly 

determined and the highest stress level should be investigated consciously, a well-

designed CSALT can give the required reliability with a certain level of confidence. If 

the confidence is acceptable, CSALT is regarded superior to SSALT. 

 

Thus in our research, we still focus on design of CSALT. A motivation is to capture 

the variance departure from the optimal planning when the stress levels and their 

corresponding allocations vary from the optimal values. In particular, given the highest 

stress below which a stress-life model is valid, the expected proportion of failure at this 

stress and that at design stress, our purpose is to develop a procedure that determines 

near optimal lower stress levels and their respective sample allocations. Here, 
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proximity to optimality is measured by achieving an asymptotic variance for the pth 

quantile of reliability interest not worse than c (>1) times that of a statistical optimal 

plan (In statistics, this is also termed as relative efficiency). Clearly, if c=1, the only 

plan available is the statistically optimum plan. For other c values greater than 1, given 

the desired number of stress levels (>2), we present the solution space for the near 

optimal stress levels and their corresponding sample allocations. In particular, a 

contour plot is used to depict this solution space for planning of three-stress ALT.  

 

Briefly, the objectives of planning CSALT in our research are to: 

 quantify the departure of actual variance of a test plan from that of the 

optimally designed plan 

 obtain, if exists, the design space of stress levels and their allocations in 

multiple stress CSALT  

 investigate the relationship between the well-known two stress CSALT and 

multiple stress CSALT  

 give solutions to plan multiple CSALTs with allowable variance inflation. 

 

 

1.3.4 Value of Our Proposed CSALT Planning Approach 

 

The proposed approach is expected to provide experimenters with flexibility in setting 

stress levels and sample allocations and be able to quantify the tradeoff in terms of 

how much the variance would be inflated.  
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Also the approach can be used as a follow-up test during product development when 

the preliminary inputs are reasonably accurate but the failure mechanisms may have 

been changed due to modification of design, which results in an unknown stress life 

model.  

 

 

1.4 DATA ANALYSIS AND PLANNING OF ADT TEST 

 

ADT is a helpful tool for us to gain insight of the physical mechanisms of a certain 

degradation process and make inferences on the performance of devices at lower stress 

levels and at operation time beyond the length of experiments. See Nelson (1990), 

Meeker & Hamada (1995), Meeker & Escobar (1998b), Chao (1999) and 

Bagdonavicius & Nikulin (2001) for its theories, models and applications. 

 

Besides reliability prediction, ADT is also useful in phases of product design, 

development, manufacturing and shipment. With failure analysis and corrective action 

programs, ADT can drastically reduce the product design and development cycle time, 

and achieve higher customer satisfaction, lower field failure rate, lower warranty and 

lower repair field cost. Tseng et al (1994, 1995) applied ADT to experiment design to 

improve the reliability of fluorescent lamps. Chuai & Hamada (1996b) presented 

Taguchi’s robust design for LED using degradation measurements. Jawaid & Ferguson 

(2000) applied ADT to design of printed circuit board assembly for a disk drive 

product. Scibilia et al (2000) applied ADT to improve the reliability of liquid crystal 

displays. Yu & Chiao (2002) designed the optimal degradation experiment to improve 

the reliability of LED.   
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1.4.1 Analysis of ADT Data 

 

One can find resourceful approaches with respect to degradation models, connections 

and differences between degradation models and failure-time models, statistical 

methods for data analysis and statistical inferences related to degradation data in books 

by Nelson (1990), Klinger (1992) and Meeker & Escobar (1998a). These concerns 

have also been reviewed in papers by Nelson (1981), Meeker & Escobar (1993a, b) 

and Chao (1999).  

 

Lu & Meeker (1993), Boulanger & Escobar (1994), Tseng et al (1994), Hamada 

(1995), Chiao & Hamada (1996), and Meeker et al (1998) considered general 

degradation path models to obtain estimates of the percentile of a failure time 

distribution. Suzuki et al (1993) used a linear degradation model to study the increase 

of a resistance measurement over time. Carey & Koenig (1991) used concave 

degradation models to describe the degradation of electronic components. Meeker and 

Escobar (1998) used similar models to monitor the growth of failure-causing filaments 

of clorine-copper compound in printed-circuit boards. Dowling (1993) and Meeker & 

Escobar (1998) used convex degradation models to study the growth of fatigue cracks. 

Lu et al (1997) proposed a model with random regression coefficients and standard-

deviation function to analyze linear degradation data from semiconductors. 

Yanagisawa (1997) used degradation models to estimate the degradation of amorphous 

silicon solar cells. Su et al (1999) considered a random coefficient degradation model 

with random sample size. A data set from a semiconductor application was used to 

illustrate their method. Wu & Shao (1999) established the asymptotic properties of the 

(weighted) least square estimators under the nonlinear mixed-effect model. They used 
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these properties to obtain point estimates and approximate confidence intervals for 

percentiles of the failure time distribution of metal film resistors and metal fatigue 

cracks. Chinnam (1999) used finite-duration impulse response multi-layer perception 

neural network to model degradation measures and self-organizing maps to model 

degradation variation. This method reduced overall operation cost by facilitating 

optimal component-replacement and maintenance strategies. Multiple linear regression 

methodology was established for describing the relationship between random 

parameters and stresses in Crk (2000). Wu & Tsai (2000) used the optimal fuzzy 

clustering method. Their procedure could get more accurate estimation results if the 

patterns of a few degradation paths were different from those of most degradation 

paths in a test. Tseng & Wen (2000) proposed the CE model to analyze the LED 

degradation data and then described the life distribution. These papers all focus on 

estimating the parameters in a degradation model and the percentiles of a failure time 

distribution.  

 

Parameters in the deterministic models are usually estimated by ML, LS, and other 

method such as MML (Su et al, 1999). However, for most models, it is not easy to 

obtain the estimates in a simple expression. One usually needs to get the estimates by 

numerical searching. Pinherio and Bates (2000) presented an estimation scheme that 

may provide approximate MLEs for the general deterministic models. They also gave a 

program to achieve the calculation. See also Bates & Watts (1988). Instead of ML and 

LS method, nonparametric and Bayesian approach could also be used (Shiau & Lin 

1999, Robinson & Crowder 2000) to estimate the unknown parameters in a distribution 

function. 
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The Wiener diffusion process is the normally used stochastic model to describe 

degradation paths (Goh et al 1989, Doksum 1991, Ebrahim & Ramallingam 1993, 

Lawless et al 1995, Whitmore 1995, Doksum & Normand 1995&1996, Whitmore & 

Schenkelberg 1997, Whitmore et al 1998, Cox 1999, Normand & Doksum 2000). A 

Wiener process with constant initial damage and constant beginning of damage time 

has been studied in Kahle &. Lehmann (1998). The failure time as the first passage 

time followes an IGD. By assuming in each realization of the damage process both the 

process increments and the failure time are observable, the MLEs of the drift and 

variance of the damage process, the constant initial damage, the beginning time of 

damage, and the boundary damage level have been estimated simultaneously. See also 

Kahle (1994) for the confidence regions of the MLE of these parameters. A limitation 

of this method is that this model is only applicable at use stress and the testing time is 

normally too long for the manufactures. An extended model for multiple CSADT 

analysis has been presented in Doksum & Hoyland (1992). The parameters in the 

lifetime distribution were estimated by assuming failure time was exactly observable 

and measurable. But the reliability information in degradation increments was ignored. 

 

Wendet (1998) presented some other stochastic models for damage processes and gave 

the MLE of unknown parameters for the corresponding lifetime distributions. See also 

Kahle & Wendt (2000). Cinlar (1980), Singpurwalla & Youngren (1993), 

Singpurwalla (1997), Bagdonavicius & Nikulin (2000a, b) modeled degradation by a 

gamma process that includes possibly time-dependent covariates. Other models, for 

example, the poisson process (Mercer, 1961), the cumulative B-models (Bogdanoff &. 

Kozin, 1985), the markov and semimarkov process (Cinlar 1984, Kopnov & Kanajev 

1994, Kopnov 1999) are also workable. 
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In most of the above papers, the unknown parameters are estimated by ML method. 

And the MLEs could not be expressed in a closed form and need to be searched with 

numerical methods that are quite time-consuming. In chapter 3, we will describe a 

certain kind of SSADT and present to estimate the unknown parameters by LS method. 

The estimates are shown with a closed form that reduces labor of calculation.  

 

 

1.4.2 Planning of ADT Test 

 

The objective of designing degradation experiments is to estimate the amount of 

degradation at use stress for the commercial lifetime of a system. Several factors such 

as the stress levels, the sample size, the inspection frequency, and the termination time 

affect the experimental cost and the precision of estimate significantly.  

 

ADT plans are usually designed to minimize the variance of MLE or LSE of the pth 

percentile of the lifetime at use condition subject to a cost constraint (Yu & Tseng 

1999, Wu & Chang 2002). Marseguerra et al (2003) designed the degradation test in 

order to achieve accurate estimates of the component reliability characteristics in light 

of budget limitation. They gave a multi-objective genetic algorithm for tracking the 

decision variables. Other optimization criteria in ALT planning as mentioned in 

section 1.3.2 are also applicable. 

 

Boulanger & Escobar (1994) proposed to design CSADT in three stages: 1) optimize 

stress levels and the corresponding allocations by minimizing the variance of the 

weighted least squares estimate (WLSE) of the mean of the log plateau; 2) determine 



 
 
Chapter 1                                                                    Introduction and Literature Survey                        

                                                                                                                                     
37  

the measurement frequency by equalizing degradation (ED Plan), that is, to make the 

expected amount of observed degradation between two consecutive measurements a 

constant, or equalizing Log-spacing (EL Plan), that is, the measurement time points are 

obtained such that they are equidistant in the log-time scale. As a result, it results in 

more measurements in the lower end of the interval; 3) determine the sample size to 

meet a pre-specified estimate precision. CSADT plans with only one inspection at the 

end of experiment, i.e. destructive CSADT, has been presented in Park & Yum (1997) 

and Yang & Yang (2002). Detailed review on destructive testing can further be found 

in chapter 7. 

 

Constraining the l-period moving-average to be less than a predetermined value, Tseng 

& Yu (1997) presented a termination rule for determining an appropriate stopping time 

for a degradation experiment. This method lacks information on optimizing the sample 

size. Based on this stopping criterion, Yu, & Tseng (1998) presented an on-line 

procedure for terminating an ADT with predetermined stress levels and allocations. 

 

It is noted that the degradation paths in all above planning methods are modeled by 

non-linear mix-effect models, i.e. deterministic models. Stochastic models, which have 

been proved flexible and acquirable to model degradation paths and widely used in 

ADT data analysis, so far have not been applied to ADT planning. This motivates us to 

design ADT in terms of stochastic processes. We will present a general formulation for 

planning of  both CSADT and SSADT in chapter 4. We will also consider a two stress 

CSADT in nature of destructive inspections, where degradation is modeled by 

stochastic process in chapter 7. The planning policy is to minimize the total cost of test 

as well as to achieve a requisite level of estimate precision.  
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1.4.3 Objectives of Our Proposed ADT Analysis and Planning 

Approach 

 

Compared with ALT, little information is available on ADT planning because it 

involves more design variables and is more complex in methodology development. It 

is also a challenge in industry to justify the goodness of an ADT planning. However, 

ADT do have advantages over ALT. It requires shorter testing time and reduces the 

experimental cost greatly. A well-designed ADT gives commercial benefit for 

industrial practice. Moreover, SSADT is superior to CSADT due to its flexibility in 

adjusting stress levels and avoiding estimate errors from misused stresses. Because of 

the disadvantages of deterministic models mentioned in section 1.2.3.1 and the gap of 

application of stochastic models in ADT planning, we propose to apply stochastic 

models in ADT data analysis and test designs. Our purposes are to: 

 

 investigate the suitable method for SSADT data analysis, which may mitigate 

the computation pressure from searching for parameter estimates. More 

precisely, we use LS method to estimate the unknown parameters. The 

estimates can be expressed in a closed form. A simple programming algorithm 

can be coded for analyzing SSADT data. 

 

 present general formulation for planning ADT 

Modeling the degradation path with a stochastic collection, and assuming a 

linear drift-stress relationship, we develop the general formulation for CSADT 

and SSADT planning to minimize the total cost of testing as well as to obtain a 

requisite level of estimate precision. A simple algorithm can be coded to 
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search for optimal plans. CSADT in nature of destructive testing is also 

considered. 

 

 

1.4.4 Value of Our Proposed ADT Analysis and Planning Approach 

 

There are two points recommendable in our proposed SSADT analysis approach. First, 

adopting of stochastic models in degradation path modeling alleviates the difficulty to 

determine the format of deterministic functions, which is quite useful when less 

knowledge is known about the tested product. Second, the estimate of unknown 

parameters can be expressed in a closed form that is easy to solve. It saves the 

computational efforts significantly.  

 

For planning of ADT, so far there is no literature employing stochastic models.  Our 

proposed approach not only fills up this gap, but also integrates CSADT and SSADT 

planning problem in a unique formulation. The planning policy, i.e. to minimize the 

total cost of testing as well as to achieve a certain level of estimate precision, reflects 

the trade-off between the testing expense and the attainable estimate precision. 

Because the desire to obtain accurate estimates normally requires more samples and 

inspections, experimenters need to be aware of the intended reliability of the product 

without imposing unrealistic precision constraint.  
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1.5 SCOPE OF THE STUDY  

 

As mentioned earlier, the published methods for planning optimal CSALT are 

achieved by minimizing the asymptotic variance of the estimated pth percentile of the 

failure time distribution, in which the statistical optimal plan by Nelson et al (1978) 

gives the smallest variance. However, if the variance of estimate is allowed to inflate 

to some extent, the possible design space of stress levels with their sample allocations 

is investigated. In ADT data analysis, the unknown parameters are normally estimated 

by ML method. As a result, it is quite time-consuming to do the numerical search. 

Even widely used in ADT data analysis, there is no published paper dealing with 

stochastic models in ADT planning. Therefore, the above problems will be studied in 

this dissertation. They are divided into three parts: CSALT planning (chapter 2), 

SSADT analysis (chapter 3), CSADT and SSADT planning (chapter 4, 5, 6, 7). 

 

In chapter 2, the relationship among the stress levels, their allocations and the 

corresponding variance of reliability estimate in two-stress CSALT plans and three-

stress CSALT plans are studied. We then relax the optimality criterion and extend the 

goal-softening idea to solve for the design spaces that include more than one “good 

enough” solutions. The design space of stress levels and allocations are illustrated with 

contour plots. After that, a procedure to design multiple-stress CSALT is generated. As 

an illustration, three approaches to design three-stress CSALT are presented.  

 

In chapter 3, an approach is presented for SSADT data analysis. Under the assumption 

that degradation follows a stochastic process, in which the drift-stress relationship is 

simply linear, LS method that results in the closed form estimates is used for parameter 
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estimation. Based on this methodology, a simple algorithm can be coded to analyze 

SSADT data.  

 

 Based on the assumptions in chapter 3, the general formulation for CSADT and 

SSADT planning is presented in chapter 4. Considering the trade-off between the 

testing cost and the attainable estimate precision, we develop the planning policy to 

minimize the total cost of testing and to achieve a requisite level of estimate precision. 

Cost functions and the estimate precision constraint are analyzed and generated 

accordingly. 

 

In chapter 5, optimal CSADT plans are simulated and analyzed. We apply our 

proposed approach to two-stress plans and compare them with the existing degradation 

testing plans. The advantages are summarized and its applications are suggested. 

 

In chapter 6, optimal SSADT plans are presented. First, we analyze the two-stress 

plans, compare them with the existing DT plan and our proposed CSADT plans. The 

advantages are summarized. After that, three approaches to obtain three-stress SSADT 

are also presented. 

 

In chapter 7, destructive CSADT is studied. We re-explain the planning policies and 

their mathematical formulations. After compared with the existing plans, the 

advantages of this approach are highlighted and its applications are suggested.   

 

Finally, some conclusions and further remarks are provided in Chapter 8. 
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Chapter 2  

Planning of Multiple-Stress CSALT 

 

 

2.1 INTRODUCTION 

 

For easy implementation, the traditional CSALT plans are conducted with equally 

spaced test stresses, each with same number of specimens (Nelson, 1990). But these 

plans are not capable of providing efficient estimates with acceptable accuracy. 

Problems of planning optimal test plans arise. The motivation is to predict the 

reliability information at use stress with high or controllable precision using the same 

number of test specimens and same test duration. Normally, an optimal CSALT plan 

specifies the test stresses and the sample allocations, i.e. number of test samples 

assigned to each stress.  

 

Among all published plans, the statistically optimal plan that consists of two stress 

levels is the simplest one. Optimality in this plan is achieved by minimizing the 

asymptotic variance of the MLE of the pth percentile of the lifetime distribution at 

design stress. However, It has been pointed out that this plan is not robust against 

model mis-specification in terms of failure time distribution and value of pre-estimated 

parameters (Nelson 1990, Meeker & Escobar 1998). More importantly, a two-stress 

test plan does not allow one to check for the validity of the assumed stress-life 

relationship. Yang (1994) proposed a three-stress CSALT, in which the optimality is 
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the same as that of statistically optimal plan. However, the questions remains, how to 

design multiple stress CSALT plans so that the uncertainty involved for some 

estimates of interest is not worse than that of a statistically optimal plan by a margin 

determined by the experimenter before the test. This chapter provides a solution to 

develop such a plan.  

  

Given the maximum possible stress below which a stress-life model is valid, the 

expected proportion of failure at this stress and that at design stress, we first apply 

goal-softening approach to determine nearly optimal lower stress levels and their 

respective sample allocations in a CSALT. Here, proximity to optimality is measured 

by achieving an asymptotic variance for the pth quantile of the lifetime distribution not 

worse than c= ( )mexp  (m ≥ 0) times that of a statistically optimal plan (In statistics, this 

is also termed as relative efficiency). Clearly, if m=0, the only plan available is the 

statistically optimal plan. For other m values greater than 1, given the desired number 

of stress levels (>2), we present the solution space for the near optimal stress levels 

and their corresponding sample allocations. In particular, contour plots are used to 

depict the solution spaces for two and three stress ALT plans. We then discuss the 

connections of optimal two-stress and three-stress plans. After that, three possible 

approaches to design three-stress CSALT plans are provided. 
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2.2 THE EXPERIMENT DESCRIPTION AND MODEL 

ASSUMPTIONS  

 

The common description of a CSALT states that n units available for test are assigned 

to each stress by: 

 nn kk π=            1=∑ kπ , 0>kπ                                   (2.1) 

where kπ  and kn  are respectively the proportion of sample allocation at kX and the 

number of test items at kX .  

 

Assumptions in our study are as follows: 

 

1. Test stresses are standardized by 

high)(for,middle)(for,low)(for, HMLk
SS
SS

X
DH

Dk
k =

−
−

=        (2.2) 

in which Sks are stress factors which may be functions of the applied stress such 

as temperature, voltage and so on. DS  and HS  represent respectively the use 

stress and the highest stress under which the same failure mechanism remains. 

As a result, they are normalized to be 0 and 1. This is to restrict the solution 

space within the (0,1) interval so that it becomes easier to search for any 

optimal intermediate stress. The use stress and the highest stress should be 

specified before planning. They can be selected based on the current product 

specifications and past experience. If there lacks sufficient knowledge about the 

product, a preliminary test as mentioned in section 1.2.5 can be performed. 

 

2. Testing at all stress levels is terminated by a common time T. 
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3. The lifetime follows a Weibull distribution of which the natural logarithm of 

life, ( )tLny = , has a smallest extreme value distribution with the c.d.f as:            

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −−−= σ

µyyF expexp1    ∝+<∝<− y                         (2.3) 

where ( )kXµµ =  is the location parameter for y and σ is the scale parameter. 

 

4. The stress-life relationship is governed by the stress-dependent location 

parameter ( )kXµ  and σ is assumed to be constant for all stress levels (Yang 

1994, Yang & Lin 1994).                 

         ( ) )( HDkDk XX µµµµ −−=                                             (2.4) 

where Dµ  and Hµ , the location parameters at design stress and highest stress, 

have a relationship with Dp  and Hp , the expected proportion of failures at 

design stress and high stress (Meeker, 1984), that is expressed by: 

( )( ) ......,,/ln HDkTp kk =−Φ= σµ                             (2.5) 

where Φ  is the c.d.f of  the standard normal distribution. 

 

Meeker (1984) showed that for an accelerated life test with duration T, the failure 

probability at any stress could be uniquely determined by Dp  and Hp  at: 

( ) ( ) ( ){ }HkDkk pXpXp 11 1 −− Φ−+ΦΦ=                                          (2.6) 

in which 1−Φ  is the inverse of Φ . Thus, Dp  and Hp  can be used in place of the 

parameters of the CSALT model. Meeker and Hahn (1985) adopted this idea.  

 

Once kp  is known, the expected number of failures at kX can be computed as 



 
 
Chapter 2                                                                  Planning of Multiple-Stress CSALT                        

                                                                                                                                     
46  

kkk pn=γ                                                           (2.7) 

With this equation, a constraint, that number of failures at a particular stress should not 

be less than a pre-specified minimum expected amount, can be imposed for planning 

of multiple-stress CSALT. 

 

 

2.3 THE GRAPHICAL REPRESENTATION OF NEAR OPTIMAL 

TWO-STRESS CSALT PLANS 

 

Given n, T, Hp  and Dp , the lower stress LX  and its allocation Lπ  in a statistically 

optimal plan are normally determined by minimizing the asymptotic variance of the 

MLE of the pth percentile at design stress, say ( ))log(var tA . For the derivation of the 

asymptotic variance of the MLE of a reliability interest, see Nelson (1990), Meeter et 

al (1994) and Yang (1994). Detailed statistically optimal plans have been tabulated in 

Meeker and Hahn (1985) in terms of Lπ  and LX  for some percentile of reliability 

interest. However, it is noted that the optimal low stress levels are typically too high, 

resulting in too much extrapolation to design condition, and it is recommended that a 

stress that is lower than the optimal low stress be used. If the asymptotic variance is 

allowed to inflate to some tolerable extent, may there be any alternate designs to 

overcome the deficiency of the two-stress CSALT? A possible approach is to soften 

the optimality criteria to search for near optimal plans.  

 

Instead of minimizing the asymptotic variance, we consider relaxing the optimality 

criteria to achieve an asymptotic variance not worse than ( )mexp  (m ≥ 0) times that of 



 
 
Chapter 2                                                                  Planning of Multiple-Stress CSALT                        

                                                                                                                                     
47  

a statistically optimal plan, where m is a maximum reliability bound tolerable. Clearly, 

if m=0, that is, ( )mexp =1, the only plan available is the statistically optimal plan. This 

idea can be formulated as: 

                                      
( )( )

( )( )[ ] m
tAMin

tA
Ln

p

p ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

logvar
logvar

                                       (2.8) 

where ( )( )[ ]ptAMin logvar  is the minimum asymptotic variance in a statistically 

optimal plan.  Figure 2.1 shows how m varies for a two-stress CSALT with respect to 

LX  and Lπ .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. An example of the solution space for two-stress CSALT plans 

“×” indicating the contour centre for Dp =0.0001, Hp =0.9, T=300, n=300 and σ=1 

“+”s indicating the contour centres for other Dp s and Hp s 

Hπ  

X

LX



 
 
Chapter 2                                                                  Planning of Multiple-Stress CSALT                        

                                                                                                                                     
48  

2.4 THE SOLUTION SPACE FOR THREE-STRESS CSALT PLANS 

 

This principle of enlarging the solution space can be generalized to three-stress 

CSALT plans. 

                

We have numerically plotted 
( )( )

( )( )[ ] m
tAMin

tA
Ln

p

p =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

logvar
logvar

 for all plans with XL ( )1,0∈ , 

XM ( )1,0∈ , ( )1,0∈Dπ , ( )1,0∈Dπ  and MDH πππ −−=1 . The results showed that for a 

fixed percentile of interest and for different combinations of Dp  and Hp , the range of 

Hπ  as a function of m can easily be determined. Figure 2.2 gives an example with 

various values for m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Feasible region of πH for different limits on variances. 
HP =0.9, DP =0.0001, n=300, T=300 and σ=1 

Hπ  

                                                                                          m 

Figure 2.2. The feasible region of πH for different limits on variances 
( HP =0.9, DP =0.0001, n=300, T=300 and σ=1) 



 
 
Chapter 2                                                                  Planning of Multiple-Stress CSALT                        

                                                                                                                                     
49  

Given Hπ , the solution space for LX  and MX can be defined using the optimality 

criterion (2.8). Note that LX  < MX , the solution is always below a straight line with 

slope 1. An example is given in Figure 2.3. Out plots also show that solution space for 

a fixed m is approximately a right-angle triangle and those with different m share the 

same slope with gradient 1. As one would usually like to ensure that LX and MX  are 

sufficiently far apart, the preferred solution should be at the vertex with the right angle. 

For different πH, one could trace the vertices as shown in Figure 2.3 and 2.4. Here we 

only need to consider πH within the range that is given Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The solution space of Lx  and Mx   
in three-stress CSALT planning ( 15.0=Hπ ) 

MX

XL 
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The above results can be integrated into a single graph using a contour plot shown in 

Figure 2.5. Along the line of unit gradient, we map the range of Hπ  with various 

setting of m. The loci of the preferred solutions in the space of LX  and MX  are then 

superimposed onto the contours of various m values.  

 

 

 

 

Figure 2.4 Loci of preferred solution with different Hπ   
in three-stress CSALT planning

XM 

XL 
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2.5 CONNECTIONS OF TWO-STRESS AND THREE-STRESS 

CSALT PLANS 

 

It is known that the statistically optimal plan produces the smallest asymptotic variance 

of the reliability estimate. However, if we set LX  equal to MX , the three-stress CSALT 

plan would reduce to a statistically optimal plan. That is, the statistically optimal plan 

is simply a special case of three-stress plan with ML XX = . We can dig up the 

connections of three-stress plans with two-stress plans with the following analysis.  

Figure 2.5 The solution space for three-stress CSALT planning 

XM 

XL 
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Fixing Hπ , we plot MMX π∗ Vs LLX π∗ in Figure 2.6. Those whose ( )( )ptA logvar  

satisfy 
( )( )

( )( )[ ] m
tAMin

tA
Ln

p

p =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

logvar
logvar

 possess a property that LLMM XX ππ ∗+∗  is a 

constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result indicates that the centroid of the lower and middle stress levels, weighted 

by their respective allocations, in a near optimal three-stress CSALT plan equals to the 

optimal low stress in the statistically optimal plan (Tang & Yang, 2002). The 

relationship can be formulated as   

 

LLX π  

MMX π

 

58.0=+ ML ππ

Figure 2.6. MMx π∗ Vs LLx π∗  plot for specific ( )( )
( )( )[ ] m
tAMin

tA
Ln

p

p =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

logvar
logvar  with fixed Hπ  in 

three-stress CSALT planning 
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                                         L

LM

LLMM X
XX

2
*

33

3333 =
+
+

ππ
ππ

                                          (2.9) 

where the subscript  number 3 and 2 means the number of stresses at which plans are 

designed, and the superscript  * denotes the optimal values. 

 

As          

HLM 333 1 πππ −=+                                               (2.10) 

Equation (2.9) is rewritten to be  

                                          L

H

LLMM X
XX

2
*

3

3333

1
=

−
+
π

ππ
                                      (2.11) 

and  

                

LL

HL

HL

LLMM

x

x

X

XX

2
*

2
*

2
**

2

32
*

3333

)1(

)1(

π
π

π
ππ

∗=

−∗=

−∗=

∗+∗

                                         (2.12) 

 

That is, the connection of the near optimal three-stress ALT plan with the statistically 

optimal plan is: 

                                    LLLLMM XXX 2
*

2
*

3333 πππ ∗=∗+∗ ∗∗∗∗                           (2.13) 

*
3

*
2 HH ππ =                                                         (2.14) 

*
2

*
3

*
3 LML πππ =+                                                     (2.15) 
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2.6 ALTERNATIVE PROCEDURES FOR THREE-STRESS CSALT 

PLANNING 

 

From the above results, it can be seen that depending on the preference, past 

experience and the experimental constraints, there are many possible ways to produce 

a multiple-stress CSADT. Here, we explain different approaches to determine Lπ and 

Mπ  under different situations.  

 

 

2.6.1 Approach 1 

 

Based on the connection with the statistically optimal plan, given Dp , Hp ,  n, T,  and 

σ, a three stress CSALT plan can be determined by the following procedures: 

 

1. Solve for the optimal values of LX 2
*  and L2

*π  (i.e. the optimal point in Figure 

2.1).  

2. Calculate H3π  by  

H3π = 1- L2
*π                                                     (2.16)   

3. Set a value for m. And read off the suggested LX 3  and MX 3  from Figure 2.5.  

4. Calculate M3π  using (2.13), noting from (2.15) that  

MLL 32
*

3 πππ −=                                              (2.17) 

This approach can be used as a follow-up test during product development when the 

preliminary inputs are reasonably accurate but the failure mechanisms may have been 

changed due to modification of designs, resulting in an unknown stress-life model. 
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2.6.2 Approach 2 

 

Since the main purpose of having a middle stress is for validating the stress-life model, 

one may prefer to have sufficient failures for detecting non-linearity if it exists. The 

minimum allocation at the middle stress can then be determined. This approach is 

advocated by Meeker & Escobar (1993) and considered by Yang (1994) and Tang 

(1999): 

 

1. Solve optimal values of LX 2
*  and L2

*π  (i.e. the optimal point in Figure 2.1). 

And cumulate H3π  using (2.16).                                                      

2. Choose LX 3  and MX 3  from the desirable zone in Figure 2.5.  

3. Calculate M3π  by  

)(3

3
3 TnF M

M
M

γπ =                                      (2.18) 

where M3γ  is the minimum number of failures expected at the middle stress 

level, and )(3 TF M  is the probability of failure by end of the test at the middle 

stress. 

4. Calculate L3π  using (2.17). 

 

 

2.6.3 Approach 3  

 

We could also adopt a hybrid of approach 1 and approach 2 as there is no need to 

fix LX 3 . This gives rise to:  
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1. Solve optimal values of LX 2
*  and L2

*π  (i.e. the optimal point in Figure 2.1). 

And calculate H3π  using (2.16).                                                      

2. Choose MX 3  from the desirable zone in Figure 2.5. 

3. Calculate M3π  by  (2.18). 

4. Calculate L3π  by (2.17) 

5. Calculate LX 3  using (2.14), i.e.  

LMMLLL XXX 333
*
2

*
23 /)( πππ ×−×=                           (2.19) 

 

The comparisons of these three approaches are illustrated in the following examples. 

 

 

2.6.4 Numerical Examples 

 

In this section, we give examples to show the procedures for planning a three stress 

CSALT given that PD=0.0001, PH=0.9, n=300, T=300, and σ=1. From (2.5), it is 

calculated that µH=4.8698 and µD=14.9148. The statistically optimal plan can be 

checked from Figure 2.1 as LX 2
* =0.71 and L2

*π =0.79. We choose the maximum 

estimate asymptotic variance bound at m=0.1. 

 

For approach 1, using (2.16), we get  

H3π = 1-0.79=0.21. 

Select LX 3 =0.62 and MX 3 =0.78 from Figure 2.5. Using (2.13) and (2.15) we have 

       71.079.078.062.0 33 ×=+ ML ππ  
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79.033 =+ ML ππ  

That is,   

0.35 =Lπ , Mπ = 0.44. 

 

For approach 2, we set LX 3 =0.62 and MX 3 =0.78. Using (2.4) and (2.3), we have 

0795.7)8698.49148.14(*78.09148.143 =−−=Mµ  

( ) 223.0
1

0795.7)300ln(expexp1)300ln( =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−=F  

Assuming that M3γ =21, from (2.18) and (2.17), we get  

314.0
223.0*300

21
3 ==Mπ  

476.0314.079.03 =−=Lπ  

 

For approach 3, with H3π = 0.21, MX 3 =0.78, M3π = 0.314 and Lπ =0.477, we have 

from (2.19): 

477.0/)314.078.079.071.0(3 ×−×=Lx = 0.66 

 

These results are summarized in Table 2.1. Since the low stress levels for approaches 1 

and 2 are determined with m = 0.1, the resulting asymptotic variances should be less 

than 1.1)exp( =m  times of the best achievable variance. The corresponding relative 

efficiency for approach 3 is 1.078 (<1.1), which is consistent with our expectation as 

the low stress (0.66) is larger than 0.62. The sample allocation ratio is approximately 

5:3:2. It is quite different from the 4:2:1 ratio recommended by Meeker and Hahn 

(1985). Despite of a smaller allocation, the expected number of failures is about 8-10 

at the lower stress in these plans. 
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Table 2.1. The proposed three-stress ALT plans  

(PD=0.0001, PH=0.9, n=300, T=300, σ=1, and m=0.1) 
 

 ( HML XXX ,, ) ( HML πππ ,, ) ( HML nnn ,, ) 

Approach 1 (0.62,0.78,1) (0.34,0.45, 0.21) (102,135,63) 

Approach 2 (0.62,0.78,1) (0.48, 0.31, 0.21) (143,94,63) 

Approach 3 (0.66,0.78,1) (0.48, 0.31, 0.21) (143,94,63) 

 

 

2.7 CONCLUSIONS 

 

By relaxing the optimality criteria in CSALT planning, we obtain the design space for 

the low/middle stress and their corresponding allocations in two/three stress plans. The 

proposed approach addresses the quantification of how much the variance of reliability 

estimate would be inflated if looser optimality criteria are used. It provides 

experimenters with flexibility in setting stress levels and sample allocations. One can 

adjust the low/middle stress and their allocations within a pre-specified bound until it 

is convenient to implement. 

 

Extension of the current principle to design CSALT with four or more stress levels is 

possible by generalizing (2.11) to one with three or more stress levels in the numerator. 

This gives additional degrees of freedom in determining the stress levels and the 

respective allocation. Nevertheless, it should be noted that the middle stress is 

invariant in the three approaches; which means that we could use it as a reference point 

to generate more than one lower stress levels. The limiting constraint lies in (2.18), i.e. 
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are there sufficient samples and/or sufficiently long test time available so that the 

expected numbers of failures at every stress level are reasonable.  
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Chapter 3  

Analysis of SSADT Data 

 

 

3.1 INTRODUCTION 

 

ADT, in which the degradation paths of a degradation measure are monitored 

intermittently, has gained considerable interest in the past years. As shown in section 

1.1, it is commonly used to estimate lifetime information of highly reliable products of 

which failures are rare even under elevated stresses. In ADT, failures typically arise 

when the amount of degradation reaches a threshold, so that information from 

degradation paths becomes synonymous to reliability information.  

 

Two essentials are required to analyze degradation data. One is that a model properly 

describing the underlying degradation mechanism should be selected. From the 

engineering view, common degradation mechanisms include fatigue, crack, corrosion 

and oxidation. Various examples can be seen in Nelson (1990) and Meeker & Escobar 

(1993). So far, deterministic models are widely used to model degradation paths in a 

large amount of literature. However, in order to determine the particular degradation 

function, experimenters are required to have sufficient knowledge about the product 

under test. This adds the difficulty to employ deterministic models. There are also 

other drawbacks stated in section 1.2.3.1. The alternate choice to model degradation 



 
 
Chapter 3                                                                                   Analysis of SSADT Data                         

                                                                                                                                     
61  

paths is the stochastic model, among which the most widely adopted one is the Wiener 

process. Detailed survey can be found in section 1.2.3.2. 

 

The other essential to analyze degradation data is the parameter estimation method. 

ML is normally used whatever the degradation model is. However, when using ML 

method, the numerical estimation is usually non-trivial. Except for a few cases where 

the maximum likelihood formulas are quite simple, it generally relies on high quality 

statistical software to obtain MLEs. LS method has been imposed in ADT data 

analysis when degradation is modeled with deterministic functions (Tseng & Wen, 

2000). Mathematically, it is much easier to obtain the LS estimate. Besides section 

1.4.1, the typical papers dealing with ADT analysis are summarized in Table 3.1. 

There is no evidence of the application of LS in stochastic model estimations yet. This 

motivates us to do such an investigation.  

 

Table 3.1. A summary of estimation method for ADT analysis 

Papers 
Degradation 

Model 
Type of Test 

Parameter 

Estimation  

Tseng & Wen, 2000 SSADT LS method  

Meeker & Escobar, 1998 

Yang & Yang, 2002 
CSADT 

Wu & Chang, 2002 

Deterministic 

model 

DT 

ML method 

 

Doksum & Hoyland, 1992 DT 

Kahle & Lehmann, 1998 

Stochastic model

 CSADT 
ML method 

 

 

As discussed in chapter 1, SSADT is superior to CSADT in some aspects. It requires 

fewer test products and fewer testing chambers, thus it reduces the experimental cost 
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greatly. Hence in this chapter, we focus on SSADT to develop a particular data 

analysis approach. 

 

In section 3.2, we first present a stochastic process model for SSADT. The emphasis is 

on a stress-life family such that its unknown parameters can be expressed with a closed 

form. Section 3.3 discusses the LSEs of the parameters. It provides a simple algorithm 

for computation. Section 3.4 derives the mean time to failure and its confidence 

interval if IGD and BSD are used to illustrate the lifetime distribution in different 

applications. Finally, a numerical example and its comparison with the existing method 

are presented in section 3.5. Section 6 presents the simulation studies. Section 3.7 

gives some remarks of our proposed approach. 

 

 

3.2 THE EXPERIMENT DESCRIPTION AND MODEL 

ASSUMPTIONS 

 

In the proposed SSADT experiment, let 0X  be the design stress. n items are put under 

test from stress X1 at time T0=0.  The test is changed to increased stresses Xk at time 

Tk-1. The time interval between two continuous inspections is t∆ . All items are 

inspected simultaneously and the inspection time is neglected. Each sample is to be 

inspected kL  times at stress kX , thus the total number of inspections on an item is 

∑=
k

kLL , the inspection time at each stress is ...2,1, =∆ ktLk and the termination 

time of the whole test is tL∆ . Figure 3.1 illustrates a two-stress SSADT experiment as 

described.  
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We assume that the degradation follows a stochastic process ( ){ }0, ≥ttDk  with drift 

0>kη  and diffusion 02 >kσ  at Xk. It is known that the degradation increments, 

denoted as )()( tDttD kk −∆+ , are independently normally distributed random 

variables (ND) with mean tk ∆η  and variance tk ∆2σ . If failure is defined as the first 

time the degradation path crosses a critical value cD , the failure time of the product 

under use condition is  

0
0 η

µ cD
=                                                         (3.1) 

 which follows IGD or BSD depending on the applied failure mechanisms.  

 

Some assumptions in our approach are: 

 

1. Physical failure does not occur, and only increments are observed and recorded 

during the experiment.  

t∆  

Figure 3.1.  An illustration of a two-step-stress ADT experiment  
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This assumption is acceptable due to the fact that many failure mechanisms in 

ADT occur gradually. That is, the unit under test experiences structural changes 

that cause it to degrade gradually over time, rather than to fail catastrophically 

at a given instant. None of samples would experience “failure” during the time 

allotted for the test. Viewing from this point, it is necessary for the 

experimenter to be aware of the product’s expected performance in order to 

define a level of degradation that is equivalent to failure in service. So that 

degradation of a given property or output of the unit under test can be measured, 

and can be extrapolated to the “failure” status.  

 

2. Linkage of reliability extrapolation from higher stresses to the use condition 

can be described with a drift-stress model. We assume it satisfies a log-linear 

function that can be described as follows:  

0Constantlog

log
2 >==

+=

bd

bxa

k

kk

σ
η

                           (3.2) 

  where dba ,, are unknown parameters.   

      

Normally, if variance is large, the paths can indicate with high probability that 

the process is improving instead of degrading.  

 

3. The test stress is normalized by:  
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( ) ( )
( ) ( )
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where Sm is the highest stress at which the same failure mechanisms as those at 

use stress are validated. The reason to do such a transformation has been stated 

in chapter 2. For similar stress standardization, one can refer to Duksum & 

Hoyland (1992) and Park & Yum (1997). The normalized use stress is always 

X0=0 and the highest stress is Xm=1. Hence (3.2) can be re-written to be 

KbX
k e0ηη = . It is seen that kbXe  is actually the AF reflecting how the failure 

time has been accelerated at Xk. For instance, if 2=b  and at the highest test 

stress 1=HX , AF= 12×e =7.389. That is, the lifetime of tested products at the 

highest test stress is shortened to be 1/7.389 of that at use condition. If we look 

at the degradation process, it would follow a continuous stochastic process with 

degradation rate increasing in steps, where the final degradation rate is 7.389 

times of that at normal stress. As a result, the total testing time is saved. 

 

These properties are shown in Figure 3.2. n samples are put under test starting from 

time t=0. The solid lines are degradation paths. At a particular time, degradations of 

these n specimens are normally distributed as shown by the dotted curves. If failure 

occurs when degradation exceeds a threshold Dc, then failure time follows an IGD or 

BSD depends on the real degradation mechanism.  
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3.3 PARAMETER ESTIMATION  

 

Analyzing the degradation data generally yields more accurate estimates of reliability 

related issues than analyzing the failure time data, especially when few failures are 

observed for highly reliable products. To estimate the products’ lifetime governed by a 

stochastic process, the key point is to estimate 0η , 2
0σ  and b  since they are the main 

parameters to describe the underlying stochastic process. In this section, we present an 

easily implemented method to estimate these parameters using degradation increments 

recorded in a SSADT. 

 

 

 

Figure 3.2. An illustration of using a stochastic process to model 
degradation paths 
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3.3.1 Estimation of b  and 0η  

 

Denote the degradation increment as kjiD ,,∆ , where the subscript i indicates the ith 

sample in test, j indicates the jth inspection, and k indicates the kth stress level. 

According to Goh et al (1989), each increment is a normally distributed random 

variable given by 

kjikkji tD ,,,, εη +∆=∆                                              (3.4) 

where ( )2
,,,, ,0~ kkjikji tN σε ∆  is a normally distributed variable. For large samples, 

according the Central Limit Theory, the average of kjiD ,,∆ will have a mean value  

[ ] kkji tDE η∆=∆ ,,                                                     (3.5) 

 

Since the variance at a fixed stress is a constant, by taking the logarithm of (3.4), we 

get 

k
kji bXa

t
D

+=
∆

∆ ,,log                                              (3.6) 

There are totally Ln ×  such equations. Hence, the LSE of ba,  can be derived from 

the following equation: 
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(Tseng & Yeo 2002). 

 

Hence,  
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This approach not only achieves closed-form estimates of ba and , but also provides a 

general algorithm for computation. The detailed Matlab program is given in Appendix 

A. Compared with the MLE in Kahle &. Lehmann (1998) and Doksum & Hoyland 

(1992), the approach is much easier for computation (Teng & Yeo, 2002).   
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Finally, the drift of the stochastic process at use condition 0X  is  

a)expˆ0 =η                                                     (3.9) 

 

 

3.3.2 Estimation of 2
0σ   

 

We apply residual analysis to estimate 2
0σ . Note that each increment has the same 

variance tk ∆2σ . 2
0σ  is then estimated as follow: 
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3.4 THE MEAN LIFETIME AND ITS CONFIDENCE INTERVAL  

 

The lifetime can be assessed once the drift and diffusion parameters in a stochastic 

process are estimated. If failure is defined as the first time the degradation process 

exceeds a threshold cD . IGD and BSD are two favorable choices to model the failure 

time distribution.  

 

3.4.1 Modeling the Failure Time with an IGD 

 

The IGD has been investigated as a failure time distribution for various applications 

from fatigue to stochastic wear out (Bhattacharyya & Fries 1982, Desmond 1986, 
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Duksum & Hoyland 1992, Tang & Chang 1994). It addresses a wider class of lifetime 

distributions. For example, it is almost an increasing failure rate distribution when it is 

slightly skewed, thus it is suitable to describe a lifetime distribution that is not 

dominated by early failures. In addition, the failure rate is a nonzero constant when 

time approaches infinity. The nearly constant failure rate after a certain time period 

implies that the occurrence of failure is purely random and is independent of past life, 

which is similar to the exponential distribution that has been widely used in reliability 

studies.  

 

A general IGD has two parameters: mean µ  and dispersion λ . Its p.d.f   is:  

( ) ( )
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Other versions of the p.d.f for the IGD are given in Seshadri (1998). The relationship 

between λµ,  in the IGD and 2,ση in the stochastic process is:  
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So it is easy to obtain the mean lifetime of a product at use condition and its p% 

confidence limits as follows:  
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where “lcl” and “ucl” respectively stand for lower confidence limit and upper 

confidence limit (Tang & Chang,1994). 

 

 

3.4.2 Modeling the Failure Time with a BSD  

 

Besides the independent property of degradation increments that can be described by 

an IGD, it is also possible the degradation increment at a particular time point relies on 

the total degradation accumulated to this time point in realization. In such situations, 

the BSD can be used. The BSD allows the degradation increment be intrinsically 

positive. Fixing the inspection time interval large enough to make sure the probability 

of negative increment is very small, Tang & Chang (1995) applied it to the power 

supply facilities and derived the failure time confidence bounds and tolerance limits. 

The c.d.f of the BSD is 
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The qth percentile of the BSD is: 

2
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The 1-q two sided tolerance limit at (1-p1-p2) confidence level is given by the (1-p1-

p2) confidence interval of percentile q: 
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(3.17) 

where ( )pZ p
1−= φ , ( )ucllcl µµ , and ( )ucllcl λλ , are respectively (1-p1) and (1-p2) level 

confidence interval of µ and λ  given in Equation (3.16). 

 

It is noted that when q=0.5, tq is consistent with the mean lifetime in an IGD.  

 

 

3.5 A NUMERICAL EXAMPLE 

 

Tseng & Wen (2000) provided an SSADT example of testing LED lamps that are used 

for scanning manuscripts. The brightness of LED, which determines the quality of 

facsimile, is chosen as the degradation measure. Temperature is selected as the 

accelerating variable since it affects the degradation rate intensively. The use condition 

is 250C. 22 lamps are tested at 250C, 450C, 650C, 850C and 1050C. However, according 

to the diagnostic checking, the valid temperature that would not induce different failure 

mechanics is less than or equal to 650C. Thus we only consider the degradation 

processes recorded at 250C 450C and 650C in our analysis. Consistent with the 

Arrhenius model in (3.3), the applied stresses are normalized at:  
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The number of inspections at each stress is 161 =L , 122 =L  and 143 =L . Time 

interval between two continuous inspections is 48hrs at 250C and 168hrs at higher 

temperatures. The critical degradation value is 5.0=cD . 

 

Due to the negative observations resulted from the low degradation rate, we use IGD 

as the failure time distribution in our example. Take the observed degradation 

increments, the stress levels and the corresponding inspection time into equation (3.7), 

we get 748.10−=a , 03.2=b  and 42
0 1056.5 −×=σ) . Thus from equations (3.9) and 

(3.11), the drift at use condition is computed as 5
0 10148.2 −×=η) . And the mean 

lifetime and its variance are computed from equation (3.12) as hrs232780=µ) and 

46.4490 =λ
)

. Substitute values of 0µ  and 0λ  into equation (3.14), their 95% 

confidence interval are (19497.5hrs, 28877.3hrs) and (408.94hrs2, 490.84hrs2). Note 

that in Tseng and Wen (2002), the lifetime of LED is estimated at 27200hrs. It is 

within the 95% confidence interval of the mean lifetime in our analysis. 

 

In reliability studies, the choices of failure time distribution are often made on basis of 

what is understood about the failure mechanism. It is more appropriate to consider the 

physical characteristics of a failure phenomenon than the goodness of data fit by a 

distribution to make a choice of a failure mode. When applying deterministic models, 

it is extremely important to select a reasonable degradation function by prior 

knowledge of technology (Moura, 1991). Tseng and Wen (2002) assumed an 

exponentially changing degradation path and applied the lognormal distribution to 

model the lifetime of LED. However, the failure rate of the lognormal distribution is 
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nearly zero when time approaches infinity. This is not feasible in real life since it 

indicates that no failure will occur. Our method overcomes this problem. Moreover, 

when there lacks prior knowledge about the product, our method is generally 

applicable since it does not contain any pre-specified parameters. Most importantly, 

our estimations are considered more accurate in terms that the 95% confidence interval 

of the meantime (17687hrs, 34038hrs) is narrower than that calculated using Tseng and 

Wen’s method (8724hrs, 74795hrs).  

 

 

3.6 SIMULATIONS 

 

To check the robustness of our proposed approach in analyzing SSADT data, we 

conducted a simulation study for three-stress level tests. Suppose that the use condition 

is 250C, and the highest stress available to maintain the same failure mechanism is 

650C. The simulation procedures are employed as follows: 

 

Step1:   Pre-guess the mean lifetime, the dispersion parameter of the product and the 

stress effect factor, i.e. µ , λ  and b . This information can be obtained through 

the historical data. Accordingly, the drift and diffusion parameter can be 

estimated by (3.1).  

 

As we already have Tseng and Wen’s test as reference, we set 4
0 105.2 ×=µ , 

6
0 105.1 ×=λ , and 0.2=b . The reason here we use a relatively large 0λ  is that 

we need to control the noise and/or measurement error reasonably small 
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compared with the degradation changes. Because 5

0
0 102 −×==

µ
η cD

, the 

degradation increment is quite a small number to measure. Here we consider 

the resolution of measurement instrument is high enough and the measurement 

errors from operators are controllable.  This problem should also be taken into 

account in real experiment. 

 

Step2:  Set the sample size n, inspection time interval t∆  and number of inspections Lk 

at each stress.  

 

Based on Tseng and Wen’s test, we set n=1, L1=15, L2=L3=10, 1201 =∆t , 

602 =∆t , and 483 =∆t . Here the reason we set L1>L2=L3 is that we aim to 

have more records at the lower stress such that there are more degradation 

measurements obtained at the lower stress. As a result, the reliability inferences 

are supposed to be more accurate since the lower stress is closer to the actual 

used condition. At the same time, we set a larger inspection time interval at the 

lower stress because the degradation rate at this stress is normally smaller and 

there won’t be obvious degradation changes in a shorter time interval. With a 

longer inspection time interval that leads to detectable degradation increments, 

we can also mitigate the effect from external environment disturbances and 

measurement errors.   

 

Step3:  Set the lower stress and middle stress respectively. Here we set the testing 

temperature at 250C and 480C.  Thus the normalized stresses according to the 

Arrhenius model in (3.3) are 01=X , 6.02=X  and 13=X . 
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Step4:  Generate the random degradation increments using (3.5). Figure 3.3 is the 

realizations of degradation paths (1000 runs) based on the above-mentioned 

parameters. 

 

Step5: Estimate ( )2and, kδβα  and ( )λµ,  using (3.2) and (3.13), calculate the 95% 

confidence interval of ( )λµ
)),  using (3.14) and check whether the true ( )λµ,  are 

contained in the 95% confidence interval.  

 

In 967 of the 1000 runs, the calculated 95% confidence interval of 00 ,λµ contains the 

true value of 00 ,λµ . Table 3.2 shows the simulation results of 50 runs as an example. 

We can conclude that this method is robust to estimate the unknown parameters in our 

approach.  

 

 

 

Figure 3.3 Simulation of degradation paths in SSADT 
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Table 3.2 Simulation results of analysis 
of three stress SSADT  

( 4
0 105.2 ×=µ , 6

0 105.1 ×=λ ) 

lclµ  uclµ  lclλ  uclλ  
24758 26818 929120 1741800
23584 25628 819080 1535500
24404 26595 794270 2082049
23726 25827 792060 2083495
23094 25226 712620 2287349
22870 25071 653070 2068281
24522 26996 641170 1695312
23380 25693 633890 1777710
24274 26730 631440 1961308
24596 27106 630040 1787830
23788 26205 613780 2212885
24484 27020 609510 2027765
23825 26260 607850 2169261
23496 25883 606700 2187966
23916 26370 606280 1894085
22766 25085 584840 2335789
24522 27126 583100 1965658
24384 26967 582770 2124092
24108 26657 577800 2338391
23184 25592 574370 1697237
22932 25303 572940 1796497
23011 25427 558680 1798672
24771 27478 558370 1893594
23940 26513 557000 1804207
22653 25029 551270 2345763
23610 26148 548890 2051499
23534 26066 546380 1724046
23968 26573 545990 1888367
22644 25050 538150 1595803
23446 25984 538040 1697945
24818 27599 534110 2221786
24653 27417 530120 1604833
24391 27115 528540 2376292
23191 25712 527760 1980001
23569 26170 521660 2427364
24085 26786 517940 2077250
24229 26956 517200 1809358
23311 25889 514070 2079963
24881 27737 512660 2424444
23321 25907 511780 1620720
24404 27190 507680 1503123
23664 26324 506810 2037481
23963 26675 506340 1724141
24281 27053 505060 2183117
23158 25736 504390 1775689
23613 26277 502140 2067875
24008 26744 501220 1978019
23003 25565 500570 2231511
23404 26038 499970 1878845
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3.7 CONCLUSIONS 

 

We present an approach to analyze SSADT data with stochastic processes in this 

chapter.  It alleviates the difficulty to choose the deterministic degradation path model. 

The proposed LS method gives closed form estimation for the unknown parameters 

and provides a general algorithm for computation. Another emphasis of this chapter  is 

on the design of the stress-life model, which contains the Arrhenius model and the 

Power Law model. It is suitable for various applications whatever the stress refers to 

temperature or voltage. The IGD and BSD can be chosen to model the lifetime given 

that failure occurs at the first passage time. Using this method, the mean lifetime and 

its confidence interval can then be easily predicted. Comparisons with the existing 

method indicate that our method is more convenient to implement and the estimations 

are even more accurate. 
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Chapter 4  

A General Formulation for Planning of ADT 

 

 

4.1 INTRODUCTION 

 

Planning of ADT is a necessary step to obtain precise reliability inferences from ADT 

data. Armed with a certain degradation model, a test plan for CSADT specifies the 

stress levels, sample size, sample allocations, inspection frequencies and number of 

inspections. Typically, a CSADT plan is designed so that a good estimate of a 

particular reliability measure, such as one with minimum bias or variance, can be 

obtained (Boulanger & Escobar 1994, Yu & Tseng 1999&2004, Wu & Chang 2002, 

Yang & Yang 2002). An SSADT plan specifies the stress levels, sample size, number 

of inspections and holding time at each stress. Compared with CSADT, SSADT is 

more complicated in terms of design, implementation and analysis as the test stress is 

increased step by step from a lower one to a higher one. However, as a result of the 

mild stress gradient, SSADT helps to prevent over-stressing specimens, which is 

significant in maintaining the same failure modes during the whole test. Detailed 

survey about ADT planning can be found in section 1.4.2. 

 

Similar to SSADT data analysis that we have discussed in chapter 3, planning of ADT 

also requires specifying the underlying degradation model. So far in all the published 
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work, all scholars employed deterministic functions to model the degradation paths. 

These published methods are useful in conditions where the planner masters sufficient 

knowledge about the product under test, thus s/he can determine the particular 

degradation function confidently. However difficulties arise if the product is newly 

developed and no historical information is available to understand the possible 

degradation process. Motivated by the successful application of stochastic models in 

ADT data analysis in chapter 3, we propose to design ADT experiments using 

stochastic models.  

 

Moreover, it is traced that the existing planning methods either concentrate on CSADT 

or on SSADT, there is no literature presenting both of the two types test planning in 

one formulation. Here we investigate such an approach, with which, a single function 

to design CSADT and SSADT is obtained. And as a result, a general program can be 

coded to search for optimal solutions for both CSADT and SSADT experiments. 

 

In this chapter, the stochastic process similar to that in chapter 3 is used. The unique 

formulation applicable to both CSADT and SSADT planning are then developed. The 

layout of this chapter is arranged as follows: in section 4.2, we give the description and 

the assumptions of our proposed method. Reasons to validate these assumptions are 

also stated. In section 4.3, we begin by comprehensively analyzing the trade-off 

between the cost budget and the attainable estimation accuracy in ADT designs. We 

then propose our planning policy and formulise the objective function as well as the 

constraints. In section 4.4, we present an example to demonstrate the planning 

procedure. And in section 4.5, we integrate the experiment plans and data analysis with 

some simulation studies. Based on the optimal CSADT and SSADT plans generated in 
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section 4.4, the mean lifetime of the product under test is estimated by simulating the 

degradation processes. Finally in section 4.5, we state some concluding remarks. This 

chapter only covers the overall view of ADT planning, detailed optimal CSADT plans 

and SSADT plans will be analyzed in chapter 5 - 7. 

 

 

4.2 THE EXPERIMENT DESCRIPTION AND MODEL 

ASSUMPTIONS 

 

Without loss of generality, we consider a CSADT or a SSADT with two stress levels. 

The experiment description and our assumptions are summarized as follows: 

 

1. Test stress kX is normalized by 2,1,0,
02

0 =
−
−

= k
SS
SS

X k
k , in which Sks are 

functions of the applied stresses. For instance, when the acceleration variable is 

temperature, to be consistent with the Arrhenius model, S is suggested to take a 

form of 
Temp

1 . With such a transformation, 10 210 =<<= XXX . This again 

is for easy searching for the intermediate stress within a (0,1) plane. The design 

stress indexed with subscript 0 and the maximum allowable stress indexed with 

subscript 2 should be specified before planning. They can be selected based on 

the current product specifications and/or past experience. If there lacks such 

information, a preliminary test can then be performed by forcing the 

degradation of the device over a short time to clarify the degradation modes 

and to identify the highest stress. That is, in order to determine the stress range, 

a pre-test is needed by testing a few samples at a reasonably high stress level. 
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Once the corresponding degradation data are collected, method in Meeker & 

Escobar (1998a) can then be used to justify whether there are different failure 

modes from the ones at use stress. 

 

2. n units are subjected to test, in which nk are put under Xk. The relationship 

between n and nk can be expressed by:   

⎪⎩

⎪
⎨

⎧
= ∑

=

SSADTfor

CSADTfor
2

1

k

k
k

n

n
n                                          (4.1) 

 

3. The test duration at stress Xk is Tk, and the stopping time of the whole test is T. 

The relationship between T and Tk is: 

⎪⎩

⎪
⎨

⎧
=
∑

=

SSADTfor

CSADTfor),(maximum
2

1

21

k
kT

TT
T                          (4.2) 

 

4. All samples are inspected simultaneously and continuously with a time interval 

t∆  until the stress changing time Tk at Xk.  Unit i is inspected Lk times at Xk 

and the degradation values observed at time 
iliii ttt ,2,1, ,..., , 

kliiii Ttttt
k

≤<<<<= ,2,1,0, ...0  are denoted as
kliii DDD ,2,1, ,..., . 

 

5. Only degradation increments are measured throughout the test. This 

assumption is mild since the products in ADT are always highly reliable and no 

physical failures would occur in the testing time frame (Kahle & Lehmann, 

1998). Further explanation can be seen in section 3.2.   
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6. The degradation is governed by a stochastic process ( ){ }0, ≥ttDk with drift 

0>kη  and diffusion 02 >kσ  at kX , in which drift is stress-dependent by: 

kk bXa +=η                                                  (4.3) 

and diffusion remains constant for all stresses:  

22 σσ =k                                                     (4.4) 

where 2,, σba  are unknown parameters that need to be pre-estimated either 

from engineering handbooks or other ways before experiment planning (Yang 

& Yang, 2002). Most product managers should have available at least some 

data from prior performance of similar products, earlier tests, component 

suppliers or other sources. These data are usually the least expensive data 

available, and should be used as extensively as possible to pre-estimate the 

unknown parameters. In cases, however, these sources are not sufficient, 

experimental data should be collected through a preliminary test (Condra, 

2001). η and σ  are normally very small for a highly reliable product. In this 

sense, the probability of a failure occurring during the testing duration is very 

small and negligible.   

 

Since X0=0, X2=1 and drift at use condition is a=0η . (4.3) can be rewritten as 

( )kkkk XoXbbXa 0
0

0 1 η
η

ηη =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+= , ( ) 1≥kXo  indicates a function of Xk. This 

relationship is well recommended in Duksum & Hoylan (1992). Generally, our 

approach is applicable to those that can be “linearized” as in (4.3). For example, (4.3) 

may be the result after taking logarithm of the actual sliding wear versus the logarithm 

of the applied loading; this helps to stabilize the variance. In the event that drift is an 
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exponential function of the stress factor, taking logarithm on both sides of the equation 

results in a linear function between the Log(Drift), which is ηk, versus the stress factor, 

Xk. 

 

The advantage of using (4.3) and (4.4) also lies in its simplicity in that the stress factor 

is zero under use stress. As a result, only coefficient “a” has a bearing on the precision 

constraint. 

 

 

4.3 A GENERAL FORMULATION FOR PLANNING OF CSADT 

AND SSADT 

 

The objective of planning accelerated testing is to obtain precise estimate of the 

reliability interest. So that the optimization criteria in many existing methods are to 

minimize the variance of a particular estimate as summarized in section 1.3.2. 

Obviously, the larger the number of samples and inspections is, the more accurate the 

statistical inferences will be. However, increasing number of testing samples and 

testing time also increase the testing cost. There is a trade-off between the attainable 

precision of the estimate and the total testing cost. Neglecting the cost issues, Park & 

Yum (1997) and Yu & Chiao (2002) designed to fulfill a precision constraint for 

optimal planning. While Boulanger & Escobar (1994), Yu & Tseng (1999) and Yu & 

Chiao (2002) generated cost functions according to their test disciplines. Considering 

this trade-off, we propose a precision constraint and a cost function based on our 

assumptions. Basically, the optimal ADT plan is obtained such that the total test 

expense is minimized while the probability that the estimated mean lifetime at use 
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stress locates within a pre-described range of its true value should not be less than a 

precision level p. We discuss the cost functions and the precision constraint in the 

following subsections. 

 

Define  

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
SSADTfor

CSADTfor

T
T
n
n

k

k

kπ                                           (4.5) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
SSADTfor

CSADTfor

n
n
T
T

q
k

k

k                                        (4.6) 

thus                                      

10 << kπ  , 1=∑ kπ . 

And for CSADT,  

10,1 21 ≤<= qq ; 

for SSADT,                                

 1=kq . 

 

With this definition, the proportions of the sample allocation in CSADT and the 

holding time in SSADT are comparable. Since the samples are assigned to two stresses 

in CSADT and the total test time is distributed to two stresses in SSADT, the 

consistency of physical meaning of kπ  is achieved. Another merit of this definition is 

that it is easier to code a program for optimization computation, as the sum of kπ  

always equals 1. 
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We have investigated that in a CSADT, the optimal testing time at stress X2 is always 

shorter than that of X1 with some preliminary study, i.e. T2 < T1, so that q2 is less than 

1.  

 

 

4.3.1 The Cost Functions 

 

The total cost of testing normally consists of three parts: the sample cost, the 

measurement cost, and the manpower cost. 

 

1. Sample cost deC  

This is the cost due to consuming of test units. Let Cd be the cost per test unit, 

for both CSADT and SSADT, the total sample cost is  

nCC dde ⋅=                                                    (4.7) 

 

2. Measurement cost meC  

This cost is induced by using inspection equipments and materials. It depends 

on the number of units and the number of inspections. Let Cmk denote the cost 

per inspection per unit at Xk. For both CSADT and SSADT, the number of 

inspections at Xk is kkkk q
t
TnLn ⋅

∆
⋅= π , thus the total inspection cost is:  

⎩
⎨
⎧

==
≤<=

=<<

⋅⋅
∆
⋅=

∑

∑

SSADTfor1
CSADTfor10,1

,1,10
21

11

qq
qq

qC
t
TnC

ki

kkmkme

ππ

π
         (4.8) 
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3. Manpower cost opC  

This kind of cost comprises of the salary of operators and depreciation of test 

equipments. It is proportional to the experimental time. Let Cok be the operation 

cost per time unit at stress Xk, then: 

for CSADT, the total operation cost is: ∑∑ ⋅=⋅ kokkok qCTTC  ; 

for SSADT, the total operation cost is: ∑∑ ⋅=⋅ kokkok CTTC π . 

 

To be standardized, the operation cost can be described as follow: 

⎪⎩

⎪
⎨
⎧

=

=
⋅= ∑ SSADTforw

CSADTforqw
wCTC

kk

kk
kokop π

                      (4.9) 

 

In general, the total cost of testing can be expressed by:  

⎩
⎨
⎧

==
≤<==

=<<

⋅+⋅⋅
∆
⋅+⋅=

∑

∑∑

SSADTfor1,
CSADTfor10,1,

,1,10 21

kkk

kk
kk

kokkkmkd

qw
qqqw

wCTqC
t
TnnCTC

π
ππ

π

             (4.10) 

 

 

4.3.2 The Precision Constraint 

 

Suppose that the mean lifetime at use condition, ( )0Xµ , is of interest in our planning. 

To obtain an estimate close to its true value with a certain level of confidence, we 

impose a precision constraint by limiting the sampling risk in estimating ( )0Xµ  with 
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its MLE, i.e. ( )0Xµ) , to be reasonably small. Mathematically, the above proposal can 

be expressed as: 

( ) ( ) ( ) pXcX
c
X

≥⎟
⎠
⎞

⎜
⎝
⎛ ⋅≤≤ 00

0Pr µµµ )                                  (4.11)  

where c>1 and 0<p<1 are given constants. The asymptotic variance of ( )0Xµ)  is 

needed for further explanation of (4.11). 

 

It is well known that the degradation increment )()( tDttD kk −∆+  in a stochastic 

process follows a normal distribution with mean tk ∆η  and variance tk ∆2σ , i.e. 

( )kjikjikkji ttND ,,
2

,,,, ,~ ∆∆∆ ση  with the p.d.f  

( ) ( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
∆−∆

−
∆

=∆ 2

2
,,

2,, 2
exp

2
1

σ
η

σπ t
tD

t
Df kkji

kji                       (4.12) 

 

We can write the log-likelihood of an individual degradation increment kjiD ,,  as 

( ) ( )
2

lnln
2
12ln

2
1ln

2
,,

,,
kji

kji

U
tLH −−∆−−= σπ                           (4.13) 

where  

( )
⎩
⎨
⎧

=
≤=

∆

∆−∆
=

otherwise2
if1

, 1,,
,, k

Ljk
t

tD
U kkji

kji σ
η

                          (4.14) 

Hence, the log-likelihood function for all degradation increments of n items is given by:  

∑∑
= =

=
n

i

L

j
kjiLHLH

1 1
,,lnln                                             (4.15) 

 

Given the degradation critical value cD , ( )0Xµ  is given by the ratio of this threshold 

over the drift at use condition, i.e. 
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( ) aDcDcX // 00 == ηµ                                          (4.16) 

 

Let { }σ)
)) ,,ba  be the MLE of { }σ,,ba , then, by the invariant property, the MLE of 

( )0Xµ  is given by:  

( ) aDcDcX ))) // 00 == ηµ                                          (4.17) 

 

Then the asymptotic variance of ( )0Xµ)  can be obtained using:  

( )( ) hFhXA
))) 1

0 'var −=µ                                             (4.18) 

where 
( ) ( ) ( ) '

000 ,, ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

∂
∂

=
σ

µµµ X
b
X

a
X

h
)))

, and F is a Fisher Information Matrix 

displayed as follows, in which we take use of ( ) 0, =jiUE  and ( ) 1, =jiUVar . The caret 

^ indicates that the derivative is evaluated at { } { }σσ ))) ,,,, baba = . The first and second 

order partial differential can be seen in Appendix B1. 
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Thus we have  

( )( ) Q
a
D

n
X c ⋅⋅= 4

22

0Avar )

)
) σµ .                                              (4.20) 

where Q is generated from the derivation of the asymptotic variance of MLE as: 
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With definitions (4.5) and (4.6), a universal format of Q can be obtained as: 
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Because the MLE is asymptotically normal and consistent, for large n, approximately 

we have:     

( ) ( ) ( )( )000 var,(~ XAXNX µµµ ))                                         (4.23) 

which can be rewritten as  

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅ Q

an
N

X
X

2

2

0

0 ,1~ )

)) σ
µ
µ

                                                 (4.24) 

 

From (4.11), we have  
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This translates to the following precision constraint  
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where ( )⋅Φ  is the c.d.f of the standard normal distribution. 

 

Finally, planning of ADT can be generally formulated as follows: 
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Minimizing:   
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Decision variables in an ADT are explored in Table 4.1.  

Table 4.1 Variables in a two-stress ADT 

Decision variables Other variables 

 n Tk 1π  q2 2π  q1 1X  

CSADT     

SSADT    1 

1- 1π

 

1 

 
Given 

 

 

This formulation has been coded in a VBA program to search for the optimal values of 

decision variables. We use it to analyze the CSADT plans and SSADT plans 
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respectively in chapter 5 and chapter 6. In addition, an interactive user form can be 

developed. We show it in the following examples. 

 

 

4.4 NUMERICAL EXAMPLES  

 

Yu & Tseng (1999) presented a degradation testing (DT) experiment for dot-matrix 

display unit conducted at use stress. The lifetime of a dot-matrix display unit is 

technically defined as the time when the standardized light intensity of LED lamp 

degrades below the critical value DC=0.5. Optimization criteria in their paper are to 

minimize the variance of the LSE of the 100pth percentile lifetime at use stress under 

the condition that the test cost does not exceed a cost budget. They used a lognormal 

function to model the degradation path. With Co=12.25/48=0.255$/hr*time, 

Cm=3.65$/unit*time, Cd=86$/unit and some other pre-estimated parameters, they 

obtained the optimal sample size n=30, the optimal inspection frequency t∆ =240hrs 

and number of inspections L=21. That is, the stopping time is T=21*240=5040hrs. The 

total cost in their planned experiment is:86*30+0.255*240*21+3.65*21*30=6165.75$. 

 

To compare our method with that in Yu & Tseng (1999), we use the same or slightly 

changed cost coefficients. Individual sample cost remains the same at Cd=86$/unit. 

Operation and inspections at high stress usually cost more, thus we set the operation 

and measurement coefficients at Co1=0.3$/hr*time, Co2=0.4$/hr*time, 

Cm1=4$/unit*time and Cm2=4.5$/unit*time, which are greater than those in Yu & 

Tseng (1999).  
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It is noted that our planning is based on a pre-estimation of a/σ , the ratio of the 

degradation process dispersion relative to its drift at use condition. So it is necessary to 

do a pilot test under use condition if a/σ is currently unknown or unpredictable in the 

product design stage. A preliminary test has been conducted in Yu & Tseng (1999). 

The degradation drift at use condition is estimated as a) =10-5. Information on 

variability is usually difficult to obtain, here we set a rough value of 310−=σ) to 

compute the optimal plans. Additionally, we set 3.01 =X , c=5 and p=0.9. 

 

The optimal SSADT and CSADT plans are computed by the interactive VBA program 

attached in Appendix B2.  Optimal values for the decision variables are obtained by 

numerical search within the whole design space. After inputting the cost coefficients, 

the selected stress level X1, the precision parameters c and p, the inspection time 

interval t∆ , and the type of ADT, the final plan is shown in the lower half of the 

dialog window. Commercially, it is helpful for the experimenter to get the optimization 

result quickly and easily. Figure 4.1 and 4.2 are respectively the final CSADT and 

SSADT results. 
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Figure 4.1 A user-interactive window for CSADT planning 
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Figure 4.2 A user-interactive window for SSADT planning 
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Optimal plans are summarized in Table 4.2  

 

 

Table 4. 2 Comparisons of our proposed ADT with the existing plan 

 

Approach Stress 
Sample 

size 
Test duration

Inspection 

times 
Cost 

Yu & Tseng’s plan X0=0 30 5040 21 6167.8

X1=0.3 15 4800 20 
CSADT 

X2=1 
24

9
4800

1920 8 
5806.6

X1=0.3 2400 10 

Our 

proposed 

planning SSADT 
X2=1 

7 

 
2880

480 2 
1857 

 

 

Basically, Yu and Tseng aimed to obtain the absolute optimized plan. However, if the 

testing time is too long or the available samples are limited, an optimal plan will be 

difficult for implementation in real industry. To overcome this problem, instead of 

minimizing the variance of an estimate, we propose to soften the planning criteria to 

obtain an estimate precision dominated by parameters c and p. Provided that the 

estimate precision constraint with c=5 and p=0.9 is acceptable, our proposed plan 

requires fewer samples and less testing time compared with Yu & Tseng (1999). This 

consequently reduces the total cost of testing. It would be favorable when the 

individual sample is extremely expensive or the product is newly developed such that 

number of available samples is limited. Our plan is also more efficient than the 

existing DT plan since it allows for reliability assessment within shorter test duration. 
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It is preferred in situations when manufacturers need to know the reliability result 

urgently (Tang et al, 2004). 

 

 

4.5 SIMULATIONS 

 

In order to verify the efficiency of our method in planning CSADT and SSADT 

experiments, here we show some simulation studies based on the results generated 

from the above example. The simulation procedures are illustrated as follows: 

 

 

4.5.1 Simulation Study of the Optimal CSADT Plan 

 

Step1. With reference to Yu & Tseng (1999), suppose the degradation drift and 

dispersion at use condition are respectively =0η a =10-5 and 310−=σ . 

Moreover, 5109 −×=b , 5.0=cD . That is, the lifetime of the tested product at 

normal stress is hrsDc 4
00 105/ ×== ηµ . 

 

Step 2: According to the optimal CSADT plan in section 4.4, set 3.01 =X , c=5, p=0.9, 

n1=15, n2=9, L1=20 and L2=8. Generate degradation increments from (4.3) (4.4) 

and (4.12). Detailed values of the degradation paths and their realizations are 

shown in Table 4.3 and Figure 4.3.  

 

Step 3: Using (4.13), (4.14) and (4.15), calculate the MLE of ( )σ)
v) ,,ba .  
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Here given initial values of )10,109,10( 355 −−− × , the MLE of ( )σ)
v) ,,ba  are 

estimated at 510147.1 −×=a) , 510651.7 −×=b
)

 and 31004.1 −×=σ)  by invoking 

the “Solver” function in Excel.   

 

Step 4: Using (4.17), (4.20) and (4.21), 

hrs8.435740 =µ)    

and                                ( )( ) 47505229Avar 0 =Xµ)  

 

Step 5: Substitute c=5, 0µ)  and ( )( )0Avar Xµ)  into (4.23), (4.24) and (4.25), compute 

the actual estimate precision level and compare it with desired estimate 

precision level p=0.9. The actual estimate precision level is: 

( )
( ) 9.099.05

5
1Pr

0

0 =>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤ p

X
X

µ
µ)

. 

The result indicates that our method is efficient to estimate the reliability interest as we 

have proposed. 

Figure 4.3 Realizations of the simulated CSADT plan 
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Table 4.3.1 Simulation of degradation paths in a CSADT experiment (X1=0.3) 

 
Samples 

Time(hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
240 1.0174 0.9902 0.9697 0.9839 0.9999 1.0048 0.9963 1.0016 0.9822 1.0001 0.9843 0.9691 0.9899 1.0174 0.9877 
480 1.0419 0.9953 0.9613 0.9904 1.0170 1.0191 0.9767 0.9863 0.9815 0.9750 0.9537 0.9701 0.9729 1.0290 0.9710 
720 1.0192 0.9750 0.9723 0.9963 1.0120 0.9953 0.9633 0.9767 0.9917 0.9759 0.9506 0.9471 0.9699 1.0055 0.9771 
960 0.9930 0.9618 0.9485 0.9758 1.0029 0.9761 0.9538 0.9551 1.0023 0.9510 0.9385 0.9850 0.9737 1.0030 0.9767 
1200 0.9774 0.9490 0.9251 0.9647 1.0230 0.9620 0.9761 0.9403 0.9796 0.9506 0.9300 0.9685 0.9632 0.9909 0.9709 
1440 0.9639 0.9257 0.9090 0.9198 0.9931 0.9442 0.9411 0.9165 0.9417 0.9640 0.9140 0.9351 0.9692 0.9894 0.9634 
1680 0.9610 0.9226 0.8927 0.9037 0.9874 0.9598 0.9304 0.9395 0.9436 0.9347 0.9220 0.9590 0.9609 0.9722 0.9813 
1920 0.9751 0.8942 0.8634 0.8907 1.0001 0.9769 0.9063 0.9342 0.9392 0.9016 0.9227 0.9483 0.9493 0.9516 0.9544 
2160 0.9539 0.8804 0.8514 0.8626 1.0101 0.9478 0.8922 0.9360 0.9224 0.8959 0.9395 0.9517 0.9442 0.9363 0.9283 
2400 0.9601 0.8677 0.8280 0.8656 0.9949 0.9291 0.8913 0.9258 0.9037 0.9012 0.9172 0.9690 0.9034 0.9287 0.9254 
2640 0.9400 0.8499 0.8071 0.8740 0.9799 0.9152 0.9296 0.9406 0.8670 0.8755 0.9016 0.9631 0.9088 0.9001 0.9203 
2880 0.9503 0.8613 0.7862 0.8939 0.9608 0.9166 0.9148 0.8942 0.8610 0.8729 0.9062 0.9316 0.9193 0.8800 0.8982 
3120 0.9258 0.8521 0.7875 0.8637 0.9499 0.9189 0.8956 0.8702 0.8529 0.8353 0.9278 0.9437 0.9120 0.8552 0.8783 
3360 0.9446 0.8340 0.7673 0.8609 0.9833 0.9303 0.8784 0.8636 0.8413 0.8310 0.9096 0.9507 0.9007 0.8690 0.8532 
3600 0.9270 0.8280 0.7529 0.8824 0.9439 0.9499 0.8671 0.8786 0.8499 0.8492 0.9098 0.9490 0.9136 0.8421 0.8266 
3840 0.9430 0.8273 0.7179 0.8628 0.9430 0.9365 0.8707 0.8986 0.8318 0.8280 0.9111 0.9345 0.8946 0.8249 0.8352 
4080 0.9343 0.8194 0.7264 0.8720 0.9264 0.9178 0.8563 0.8664 0.7910 0.7982 0.8800 0.9174 0.8736 0.8050 0.8425 
4320 0.9050 0.7994 0.6974 0.8361 0.9478 0.8980 0.8757 0.8428 0.7746 0.7970 0.8924 0.9227 0.8477 0.7893 0.8340 
4560 0.9212 0.7955 0.6466 0.8303 0.9325 0.8915 0.8745 0.8504 0.7536 0.7952 0.8969 0.9257 0.8520 0.7903 0.8334 
4800 0.9170 0.7903 0.6337 0.8262 0.9221 0.8985 0.8639 0.8383 0.7572 0.7653 0.8968 0.8949 0.8962 0.7799 0.8376 
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Table 4.3.2 Simulation of degradation paths in a CSADT experiment (X2=1) 

 
Samples 

Time(hr) 
1 2 3 4 5 6 7 8 9 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
240 0.9996 0.9959 0.9633 1.0126 0.9803 0.9939 0.9882 0.9668 0.9959
480 0.9643 0.9579 0.9591 0.9949 0.9641 0.9540 0.9796 0.9441 0.9622
720 0.9395 0.9487 0.9078 1.0111 0.9817 0.9206 0.9467 0.9282 0.9597
960 0.9189 0.9457 0.8779 0.9718 0.9555 0.9013 0.9370 0.9050 0.9301

1,200 0.8900 0.8947 0.8642 0.9407 0.9462 0.8663 0.9051 0.8958 0.9070
1,440 0.8806 0.8782 0.8529 0.9166 0.9301 0.8531 0.8847 0.8762 0.8899
1,680 0.8706 0.8389 0.8314 0.9107 0.9094 0.8163 0.8471 0.8360 0.8743
1,920 0.8147 0.8087 0.8015 0.8847 0.9025 0.7722 0.8390 0.8148 0.8427
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4.5.2 Simulation Study of the Optimal SSADT Plan 

 

In the previous section, the simulation of CSADT experiment shows the feasibility of 

our method in planning of CSADT plans. In the section, simulation and analysis of 

SSADT experiments will be conducted. The procedures are as follows: 

 

Step1. With reference to Yu & Tseng (1999), suppose the degradation drift and 

dispersion at use condition are respectively =0η a =10-5 and 310−=σ . That is, 

the lifetime of the tested product at normal stress is 

hrsDc 4
00 105/ ×== ηµ .Moreover, we set 5109 −×=b  and 5.0=cD .  

 

Step 2: According to the optimal SSADT plan in section 4.4, set 3.01 =X , c=5, p=0.9, 

n1=n2=7, L1=10 and L2=2. Generate degradation increments from (4.3) (4.4) 

and (4.12). Detailed values of the degradation paths and their realizations are 

shown in Table 4.4 and Figure 4.4.  

 

Step 3: Using (4.13), (4.14) and (4.15), calculate the MLE of ( )σ)
v) ,,ba .  

Here given initial values of )10,109,10( 355 −−− × , the MLE of ( )σ)
v) ,,ba  are 

estimated at 510598.1 −×=a) , 510511.7 −×=b
)

 and 41058.9 −×=σ)  by invoking 

the “Solver” function in Excel.   

 

Step 4: Using (4.17), (4.20) and (4.21), 

hrs8.312970 =µ)    

and                                  ( )( ) 40023043Avar 0 =Xµ)  
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Step 5: Substitute c=5, 0µ)  and ( )( )0Avar Xµ)  into (4.23), (4.24) and (4.25), compute 

the actual estimate precision level and compare it with desired estimate 

precision level p=0.9. The actual estimate precision level is: 

( )
( ) 9.099.05

5
1Pr

0

0 =>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≤ p

X
X

µ
µ)

. 

 

Again, the result indicates that our method is efficient to estimate the reliability interest 

as we have proposed.  

 

 
Table 4.4 Simulation of degradation paths in a SSADT experiment 

(X1=0.3 and X2=1) 
 

Samples 
Stress Time 

(hr) 1 2 3 4 5 6 7 

0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

240 0.987882 1.012572 1.004518 0.9949 1.000499 0.980991 1.001686

480 0.971093 1.026891 1.010027 0.996637 0.954895 0.990494 1.036393

720 0.96772 1.017109 0.9958 0.98293 0.912616 0.95464 1.036887

960 0.945132 1.003177 0.984459 0.995638 0.902479 0.955056 0.992599

1200 0.933198 1.007135 0.972326 0.962309 0.900699 0.951109 0.969865

1440 0.933777 1.017404 0.970086 0.94025 0.864381 0.907864 0.96033 

1680 0.943347 0.972359 0.933037 0.911272 0.862001 0.880161 0.959319

1920 0.92904 0.983817 0.93277 0.928677 0.837779 0.870673 0.967596

2160 0.910868 0.973345 0.920436 0.897862 0.853405 0.867113 0.955244

X1=0.3 
 

2400 0.91514 0.957783 0.916177 0.898705 0.847295 0.866632 0.95061 

2640 0.908173 0.930981 0.899866 0.883259 0.84164 0.826224 0.930932
X2=1 

2880 0.870833 0.905679 0.870372 0.862475 0.826422 0.817435 0.892879
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It is seen that the estimated mean lifetime in a SSADT is less accurate compared with 

that in a CSADT. It is explainable since SSADT saves quite a number of testing units 

and a plenty of time. Therefore, it inevitably captures less degradation information for 

reliability estimation. 

 

 

4.5 CONCLUSIONS 

 

We present to design the optimal ADT plans in a general formulation in this chapter. 

Different from all the existing methods, we adopt stochastic processes to model the 

degradation paths. If the lower stress and the inspection time interval are known, the 

optimal design is determined by minimizing the total testing cost under the condition 

Figure 4.4 Realizations of the simulated SSADT plan 
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that the probability the estimated mean lifetime at use stress within a range of its true 

value is not less than a pre-specified precision level. We combine SSADT and CSADT 

planning in a general formulation and further code it into a program for computation. 

In CSADT, we obtain the optimal sample size allocated at each stress, the stopping 

time (or number of inspections) at each stress. And in SSADT, we obtain the optimal 

sample size, the stress changing time and the stopping time of the whole test. We also 

provide a user-interactive dialog window for easy implementation. 

 

Compared with the existing DT plan in Yu & Tseng (1999), some concluding remarks 

can be drawn as follows: 

 

1. With a properly chosen lower stress, the proposed plans need less test samples. 

The test duration in our proposed ADT is much shorter, and with a well-set 

inspection interval, the test cost is also reduced.  

 

2. The proposed planning gives more freedom for the experimenter to choose the 

optimal plan according to the setting of the lower stress and inspection time 

interval, so that they can conduct the test at the convenience of practical 

circumstance.  

 

 

3. Compared with CSADT, SSADT saves time and cost significantly. 

Implementation of SSADT in real industry is highly recommended.  
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Simulation study integrating the experiment planning and data analysis are also 

provided. The results imply that our proposed method is efficient in planning both 

CSADT and SSADT experiments. However, because of its strength in saving testing 

time and testing cost, SSADT is inevitably less powerful to offer an accurate result as 

compared with CSADT.  
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Chapter 5  

Optimal CSADT Plans 

 

 

5.1 INTRODUCTION 

 

The general formulation for planning of ADTs has been presented in chapter 4. In this 

chapter, we focus on optimal CSADT plans and further discuss their properties and 

some of our findings. CSADT have been widely studied in Boulanger & Escobar 

(1994), Park & Yum (1997), Yu & Tseng (1999), Wu & Chang (2002), Yang & Yang 

(2002) and Yu & Chiao (2002). Normally, an ideal optimal CSADT plan needs to 

specify the stress levels, sample size, inspection time interval, sample allocations, and 

testing time at each stress. However, in some experiments, due to the limitation of real 

test conditions, some variables are not adjustable and should be fixed before testing. 

For example, the temperature in a test oven may only be adjusted within a certain 

range or even be fixed at a particular value. Besides the survey in section 1.4.5, Table 

5.1 is briefly a summary of these published papers on DT and CSADT plans.   

 

It is seen that in Table 5.1, the later three papers are related to multiple stress ADTs. 

However, only Boulanger & Escobar (1994) considered multiple-inspection test and 

addressed number of measurements under each test condition. They determined the 

design variables with three steps. But the testing time or number of inspections at each 
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stress is not genuinely optimized with ED and EL constraints. Based on the 

formulation in chapter 4, we provide two-stress CSADT plans with multiple 

inspections in this chapter. Compared with Boulanger & Escobar (1994), our approach 

is simpler since the decision variables can be obtained simultaneously.  

 

 
Table 5.1 A summary of the existing DT and CSADT plans 

 
 levels Xk n 

kπ t∆ Lk  
Planning Criteria 

Wu & Tseng, 2002 1 / √ / √ √ Minimizing Avar of LSE(), s.t. CC
Yu & Chiao, 2002 1 / √ / √ √ Minimizing Avar of LSE() s.t. PC 
Yu & Tseng, 1999 1 / √ / √ √ Minimizing Avar of LSE() 
Yang & Yang 2002 2 √ × √ / 1 Minimizing Avar of MLE() 
Park & Yum, 1997 3 √ √ √ / 1 Minimizing Avar of MLE() 

Boulanger & Escobar, 
1994 

3 √ √ √ √ × Minimizing Avar of WLSE()  
s.t. ED or EL, and PC 

Remarks: 
√ --- Optimized;  /---not included; ×--- not addressed 
Avar---asymptotic variance; 
CC, PC---cost constraint or estimate precision constraint 
ED, EL --- equalized degradation or equalized log-spaced degradation 
LSE(), WLSE(), MLE()---LSE, Weighted LSE or MLE of the mean lifetime at use stress 
 

 

We first give the optimal CSADT plans for various values of X1 and t∆  in section 5.2. 

We then analyze the influence of X1 and t∆  on the decision variables in an optimal 

plans. Because these two variables are supposed to be known before planning, the 

findings provide useful tips to determine proper values of them. Sensitivity study of 

optimal plans to mis-specified unknown parameters is involved in section 5.3. And 

finally, conclusions are drawn in section 5.4. 
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5.2 OPTIMAL TWO-STRESS CSADT PLANS 

 

Continuing with examples in Section 4.4, we set the cost coefficients at Cd=86$/unit, 

Cm1 = 4$/unit*time, Cm2 = 4.5$/unit*time, Co1 = 0.3$/hr*time, and Co2 = 0.4$/hr*time, 

the precision parameter c=5 and p=0.9, the stochastic process parameters a/σ  =100. 

The two-stress CSADT plans for t∆ =48, 48*2, 48*3, 48*4, 48*5, 48*6 have been 

computed as shown in Table 5.2. Because the total cost of testing is extremely high 

(>30,000$) when X1>0.7, we only show the results for X1<0.7.  

 

From Table 5.2, it suggests that: 

1. The influence of t∆  on the optimal number of sample size n (or number of 

samples allocated at each stress nk) is not significant. For a particular X1, this 

can be justified by investigating the ratio of sample deviation relative to the 

average number of samples resulted from different t∆ s.  

 

Define  

( ) ( ) ( )
( )tn

tntntSN n ∆
∆−∆=∆ *

**

                                           (5.1) 

where )(* tn ∆  is the optimal sample size when inspection time interval is set at 

t∆ . *n is the average value of )(* tn ∆  for different t∆ s. 

 

( )tSN n ∆  has the same nature as the signal to noise ratio that represents how 

widely the needed samples would disperse when t∆  varies. A small value of 

SNn implies that the optimal sample size is stable regardless how t∆  changes. 
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As shown in Table 5.3, ( )tSN n ∆ < 0.05 except for X1<0.1. So that we can 

conclude that n is not sensitive to t∆ . 

Table 5.2 Optimal two-stress CSADT plans  
(c=5, p=0.9) 

 
X1 t∆  *n  *

1n  *
2n  ( )**

1 TT *
2T  *

1L  *
2L  Cost 

48 11 9 2 3360 528 70 11 4784.2 
96 12 10 2 3072 480 32 5 3470.6 
144 11 9 2 3456 432 24 3 3046.6 
192 11 9 2 3456 384 18 2 2802.4 
240 10 8 2 3840 480 16 2 2734 

0.05 
 

288 10 9 1 3456 864 12 3 2687.9 
48 14 11 3 3216 960 67 20 5770.8 
96 14 11 3 3264 864 34 9 4146.3 
144 14 11 3 3312 864 23 6 3636.2 
192 15 12 3 3072 768 16 4 3340.8 
240 12 10 2 3840 960 16 4 3244 

0.1 
 

288 12 9 3 4032 864 14 3 3131.7 
48 15 11 4 3840 1248 80 26 6929.2 
96 16 12 4 3552 1152 37 12 4894.4 
144 16 11 5 3888 864 27 6 4211 
192 15 11 4 4032 960 21 5 3897.6 
240 15 11 4 4080 960 17 4 3718 

0.15 
 

288 15 10 5 4320 864 15 3 3599.1 
48 18 12 6 4080 1440 85 30 8238 
96 17 12 5 4224 1536 44 16 5815.6 
144 17 12 5 4320 1440 30 10 4999 
192 18 12 6 4224 1344 22 7 4597.8 
240 18 13 5 3840 1680 16 7 4361.5 

0.2 
 

288 19 13 6 4032 1152 14 4 4140.4 
48 20 13 7 4560 1728 95 36 9853.2 
96 20 13 7 4512 1824 47 19 6845.7 
144 20 13 7 4464 1872 31 13 5829.5 
192 21 13 8 4608 1536 24 8 5338.8 
240 19 13 6 4560 2160 19 9 5097 

0.25 
 

288 20 14 6 4608 1728 16 6 4851.6 
48 23 14 9 4992 2064 104 43 11866.7
96 23 15 8 4704 2304 49 24 8114.8 
144 23 15 8 4896 2016 34 14 6797.2 
192 24 16 8 4608 2112 24 11 6223.2 
240 23 15 8 4800 2160 20 9 5806 

0.3 
 

288 23 15 8 4896 2016 17 7 5525.2 
48 27 17 10 4992 2592 104 54 14358.4
96 27 17 10 4992 2592 52 27 9607.4 
144 28 18 10 4752 2592 33 18 8056.4 
192 27 17 10 4992 2688 26 14 7292.8 
240 27 17 10 4800 2880 20 12 6814 

0.35 
 

288 29 18 11 4608 2592 16 9 6510.7 
To be continued  

 



 
 
Chapter 5                                                                                       Optimal CSADT Plans 
 

                                                                                                                                     
111  

 

Table 5.2 Optimal two-stress CSADT plans  
c=5, p=0.9 
(Continued) 

 
X1 t∆  *n  *

1n  *
2n  ( )**

1 TT *
2T  *

1L  *
2L  Cost 

48 33 21 12 4896 3072 102 64 17559.6
96 32 20 12 4992 3264 52 34 11551.2
144 33 21 12 4896 3024 34 21 9506.4 
192 31 20 11 4992 3648 26 19 8643.3 
240 35 23 12 4560 2880 19 12 7926 

0.4 
 

288 35 21 14 4896 2592 17 9 7510.6 
48 40 26 14 4944 3600 103 75 21800.2
96 41 26 15 4896 3456 51 36 14111.2
144 42 26 16 4896 3168 34 22 11468 
192 40 25 15 4992 3648 26 19 10279.3
240 40 26 14 4800 3840 20 16 9504 

0.45 
 

288 42 26 16 4896 3168 17 11 8908 
48 50 32 18 4992 3984 104 83 27426.2
96 48 31 17 4992 4512 52 47 17473.9
144 49 32 17 4896 4464 34 31 14191.9
192 50 32 18 4992 4032 26 21 12439.4
240 49 32 17 4800 4560 20 19 11491.5

0.5 
 

288 49 32 17 4896 4320 17 15 10734.3
48 61 39 22 4992 4992 104 104 35260.4
96 61 39 22 4992 4992 52 52 22000.4
144 64 41 23 4896 4608 34 32 17704 
192 61 39 22 4992 4992 26 26 15370.4
240 64 43 21 4800 4800 20 20 14194 

0.55 
 

288 65 42 23 4896 4320 17 15 13195.3
48 83 52 31 4992 4896 104 102 46455 
96 83 52 31 4992 4896 52 51 28524.5
144 85 56 29 4896 4896 34 34 22790.2
192 83 54 29 4992 4992 26 26 19641.4
240 86 55 31 4800 4800 20 20 17946 

0.6 
 

288 86 56 30 4896 4608 17 16 16676 
48 115 72 43 4992 4944 104 103 63247.7
96 115 74 41 4992 4992 52 52 38370.4
144 117 71 46 4896 4896 34 34 30183.2
192 115 74 41 4992 4992 26 26 25877.4
240 119 74 45 4800 4800 20 20 23564 

0.65 
 

288 119 75 44 4896 4608 17 16 21814 
48 166 103 63 4992 4992 104 104 90102.4
96 166 103 63 4992 4992 52 52 53936.4
144 170 105 65 4896 4896 34 34 42272.2
192 166 103 63 4992 4992 26 26 35853.4
240 172 104 68 4800 4800 20 20 32592 

0.7 
 

288 172 105 67 4896 4608 17 16 30068 
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2. t∆  has less effect on the optimal stopping time Tk.  Taking T=T1 as an example, 

similarly we define   

( ) ( ) ( )
( )tT

tTtTtSNT ∆
∆−∆=∆ *

**

                                            (5.2) 

where )(* tT ∆  is the optimal testing time when inspection time interval is set at 

t∆ . *T is the average value of ( )tT ∆*  for different t∆ s. 

 

It is seen that ( )tSNT ∆  < 0.05 for X1>0.15 from Table 5.3. So that the 

influence of t∆  on the optimal stopping time T is not obvious. Actually, for a 

given X1, the optimal testing time for different t∆  are almost the same. But the 

plan with larger t∆ , i.e. longer inspection time interval, costs less. In practice, 

we suggest the experimenters select a longer measurement interval based on the 

practical test circumstance.  

 

Table 5.3 Influence of t∆ on n and T  
in optimal two-stress CSADT plans   

 
X1 ( )tSN n ∆  ( )tSNT ∆  

0.05 0.069487 0.071513 
0.1 0.090722 0.111458 

0.15 0.033678 0.065482 
0.2 0.042212 0.041953 

0.25 0.031623 0.012327 
0.3 0.017622 0.029341 

0.35 0.030424 0.033326 
0.4 0.048304 0.032824 

0.45 0.024078 0.01301 
0.5 0.015311 0.015906 

0.55 0.029711 0.015906 
0.6 0.017852 0.015906 

0.65 0.016855 0.015906 
0.7 0.053755 0.015906 
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3. However, both the optimal n and T are sensitive to X1. Hence, experimenters 

need to pay more attention on selection of X1.  

 

Actually, X1 can be determined by considering a cost budget. For example, 

according to Yu & Tseng (1999), their cost budget is 7500$ and their actual 

testing cost is 6175$. Let us set t∆ =240hrs, then to meet the cost budget at 

7500$, we should choose plans with X1<0.4; and to meet the cost budget at 

6175, we should choose plans with X1<0.3. 

 

There is one thing to point out. The testing time in our plan is always shorter 

than that of Yu & Tseng’s. It means that with a properly chosen X1, our test 

plan not only saves testing expense but also saves testing time.  

 

 

5.3 SENSITIVITY ANALYSIS 

 

It is noted that the optimal plans are obtained based on guessed values of unknown 

parameters in the degradation path models. However, due to intrinsic difference of the 

materials, and the inevitable non-homogeneity of the experimental circumstances, the 

above assumptions may be violated. Thus, a simulation study is needed to investigate 

the robustness of the proposed method with respect to those parameters. Here in our 

proposed planning strategy, a
σ  is the only parameter that needs to be pre-estimated. 

Suppose the true value of a
σ  is 100, in the following subsection, we analyze the 
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sensitivity of optimal n, 1π , T1, T2 to guessed values of a
σ at 80, 90, 110 and 120 

respectively. The corresponding optimal plans are attached in Appendix C.  

 

Denote  Dev. be the deviation (in percentage) of a
σ  from its true value.  

Let   *
2

*
1

*
1

* ,,, TTn π  be optimal n, 1π , T1, T2 with correct value of a
σ ;  

0
2

0
1

0
1

0 ,,, TTn π  be optimal n, 1π , T1, T2 with incorrect value of a
σ ;  

Rn= ( ) *0* /100 nnn −⋅  be the relative ratio of increase of n in 

percentage;  

1πR , RT1, RT2, similar to Rn, be the relative ratio of increase of 1π , 1T  

and 2T  in percentage.  

 

Figures 5.4 to 5.7 are sensitivity analysis of n, 1π , T1 and T2 to the mis-specified a
σ  

for p=0.9 and c from 2 to 5. 
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Table 5. 4 Sensitivity of Rn to a
σ  in two-stress CSADT plans 
 

c  C X1 
Dev 

a/σ  2 3 4 5 X1 

Dev
a/σ 2 3 4 5 

-20 25.00 21.43 16.67 20.00 -20 35.90 31.82 27.03 28.57
-10 20.00 14.29 8.33 10.00 -10 19.23 13.64 18.92 22.86
10 25.00 0.00 0.00 20.00 10 20.51 15.91 16.22 5.71

 
0.05 

20 40.00 21.43 25.00 40.00

0.4

20 43.59 38.64 37.84 25.71
-20 28.00 13.33 20.00 8.33 -20 36.63 31.48 23.26 27.50
-10 16.00 6.67 13.33 0.00 -10 18.81 16.67 13.95 15.00
10 20.00 13.33 6.67 33.33 10 18.81 22.22 20.93 12.50

 
0.1 

20 36.00 33.33 6.67 25.00

 
0.45

20 41.58 44.44 41.86 35.00
-20 33.33 33.33 25.00 20.00 -20 35.66 34.29 30.91 28.57
-10 13.33 19.05 12.50 0.00 -10 19.38 18.57 16.36 20.41
10 20.00 0.00 6.25 6.67 10 20.93 20.00 21.82 20.41

 
0.15 

20 40.00 19.05 25.00 40.00

0.5

20 43.41 42.86 43.64 42.86
-20 32.43 19.05 22.22 27.78 -20 35.88 35.87 36.00 35.94
-10 18.92 14.29 5.56 11.11 -10 19.41 16.30 21.33 18.75
10 13.51 23.81 22.22 5.56 10 14.12 20.65 18.67 20.31

0.2 

20 35.14 33.33 33.33 22.22

 
0.55

20 8.82 43.48 38.67 43.75
-20 30.23 26.92 18.18 10.53 -20 0.00 36.29 33.67 36.05
-10 16.28 19.23 13.64 0.00 -10  19.35 19.39 18.60
10 18.60 15.38 13.64 21.05 10  20.97 20.41 20.93

 
0.25 

20 37.21 30.77 27.27 36.84

 
0.6

20  43.55 43.88 44.19
-20 30.77 31.25 29.63 21.74 -20 0.00 36.03 34.45
-10 19.23 18.75 18.52 4.35 -10   19.12 18.49
10 17.31 12.50 7.41 17.39 10   20.59 21.01

0.3 

20 36.54 31.25 22.22 39.13

 
0.65

20   43.38 44.54
-20 32.26 27.78 31.03 25.93
-10 16.13 11.11 10.34 14.81
10 20.97 16.67 24.14 14.81

0.35 

20 43.55 38.89 41.38 33.33
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 Table 5. 5  Sensitivity of 1πR  to a
σ  in two-stress CSADT plans 

 
c C X1 

Dev 
a/σ  2 3 4 5 

X1 
Dev

a/σ 2 3 4 5 
-20 1.96 4.55 8.00 9.38 -20 1.26 2.22 2.93 14.78
-10 2.94 2.78 1.82 13.64 -10 2.26 3.51 2.78 1.45
10 3.53 0.00 0.00 4.17 10 2.46 6.41 0.39 6.93

 
0.05 

20 0.84 3.92 4.00 7.14

0.4

20 0.19 8.20 5.80 3.75
-20 2.78 5.77 6.25 1.82 -20 2.24 11.66 10.14 4.51
-10 4.76 1.79 5.77 0.00 -10 0.62 2.11 7.83 4.98
10 4.17 2.94 1.56 2.50 10 0.42 0.96 0.20 5.98

 
0.1 

20 6.62 0.00 1.56 4.00

 
0.45

20 0.47 2.02 2.09 8.26
-20 2.17 6.25 0.00 2.27 -20 0.16 6.83 10.03 8.13
-10 0.33 0.37 4.76 0.00 -10 2.15 0.25 3.06 2.08
10 1.45 0.00 1.96 2.27 10 0.77 4.76 4.28 6.41

 
0.15 

20 2.48 0.25 0.00 3.90

0.5

20 2.38 2.86 0.27 7.19
-20 1.33 1.18 1.10 4.14 -20 0.36 2.25 0.27 1.99
-10 0.49 1.11 2.26 4.81 -10 3.97 4.02 8.19 0.18
10 7.67 2.31 5.59 5.26 10 6.85 0.55 2.20 3.35

0.2 

20 6.89 10.00 1.92 0.70

 
0.55

20 5.71 0.55 4.34 0.30
-20 5.94 8.77 2.22 5.43 -20 3.11 5.77 0.50
-10 2.95 3.17 7.37 7.69 -10 2.02 3.09 2.75
10 2.76 1.11 0.27 1.67 10 0.02 1.38 2.24

 
0.25 

20 4.77 6.21 4.76 1.18

 
0.6

20 1.10 0.09 3.40
-20 4.97 7.44 2.63 2.22 -20  2.97 1.04
-10 1.00 4.90 4.55 4.55 -10  0.52 1.13
10 3.19 1.01 3.45 2.22 10  2.78 0.61

0.3 

20 6.00 3.90 9.09 5.42

 
0.65

20  3.00 1.91
-20 8.92 5.85 5.75 4.71
-10 6.14 1.00 5.19 3.58
10 0.26 2.86 3.33 7.59

0.35 

20 0.69 3.68 0.98 10.29
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Table 5.6  Sensitivity of RT to a
σ  in two-stress CSADT plans 
 

c  C X1 
Dev 

a/σ  2 3 4 5 X1 

Dev
a/σ 2 3 4 5 

-20 15.00 18.75 26.67 25.00 -20 0.00 0.00 5.00 0.00
-10 0.00 6.25 13.33 31.25 -10 0.00 0.00 0.00 5.26
10 5.00 18.75 20.00 0.00 10 0.00 0.00 0.00 5.26

 
0.05 

20 0.00 18.75 13.33 0.00

0.4

20 0.00 0.00 0.00 5.26
-20 5.00 31.58 20.00 31.25 -20 0.00 0.00 5.00 5.00
-10 0.00 10.53 13.33 18.75 -10 0.00 0.00 0.00 0.00
10 0.00 0.00 6.67 6.25 10 0.00 0.00 0.00 0.00

 
0.1 

20 0.00 5.26 26.67 18.75

 
0.45

20 0.00 0.00 0.00 0.00
-20 0.00 6.25 16.67 17.65 -20 0.00 0.00 0.00 0.00
-10 0.00 0.00 5.56 23.53 -10 0.00 0.00 0.00 0.00
10 0.00 25.00 5.56 11.76 10 0.00 0.00 0.00 0.00

 
0.15 

20 0.00 25.00 11.11 5.88

0.5

20 0.00 0.00 0.00 0.00
-20 0.00 15.00 21.05 6.25 -20 0.00 0.00 0.00 0.00
-10 0.00 5.00 10.53 0.00 -10 0.00 0.00 0.00 0.00
10 0.00 5.00 0.00 25.00 10 0.00 0.00 0.00 0.00

0.2 

20 0.00 0.00 5.26 18.75

 
0.55

20 0.00 0.00 0.00 0.00
-20 0.00 5.00 25.00 26.32 -20 0.00 0.00 0.00
-10 0.00 0.00 5.00 15.79 -10 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 10 0.00 0.00 0.00

 
0.25 

20 0.00 0.00 0.00 5.26

 
0.6

20 0.00 0.00 0.00
-20 0.00 0.00 10.00 20.00 -20  0.00 0.00
-10 0.00 0.00 0.00 20.00 -10  0.00 0.00
10 0.00 0.00 0.00 0.00 10  0.00 0.00

0.3 

20 0.00 0.00 0.00 0.00

 
0.65

20  0.00 0.00
-20 0.00 5.00 0.00 5.00
-10 0.00 5.00 5.00 0.00
10 0.00 0.00 0.00 0.00

0.35 

20 0.00 0.00 0.00 0.00
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Table 5.7 Sensitivity of RT2 to a
σ  in two-stress CSADT plans 
 

c  C X1 
Dev 

a/σ  2 3 4 5 X1 

Dev
a/σ 2 3 4 5 

-20 25.00 0.00 0.00 0.00 -20 0.00 17.65 28.57 16.67
-10 0.00 0.00 0.00 0.00 -10 0.00 17.65 0.00 8.33
10 0.00 50.00 0.00 0.00 10 0.00 17.65 14.29 41.67

 
0.05 

20 25.00 50.00 0.00 0.00

0.4

20 0.00 17.65 14.29 41.67
-20 33.33 0.00 0.00 25.00 -20 5.26 20.00 36.84 25.00
-10 16.67 25.00 33.33 25.00 -10 0.00 10.00 15.79 12.50
10 0.00 50.00 66.67 25.00 10 5.26 5.00 0.00 25.00

 
0.1 

20 33.33 25.00 100.0 0.00

 
0.45

20 5.26 0.00 5.26 25.00
-20 22.22 33.33 0.00 25.00 -20 0.00 10.00 20.00 26.32
-10 33.33 0.00 0.00 0.00 -10 0.00 0.00 10.00 5.26
10 0.00 0.00 75.00 25.00 10 0.00 0.00 0.00 5.26

 
0.15 

20 11.11 0.00 50.00 50.00

0.5

20 0.00 0.00 0.00 5.26
-20 20.00 37.50 14.29 28.57 -20 0.00 0.00 0.00 0.00
-10 0.00 0.00 28.57 28.57 -10 0.00 10.00 11.11 0.00
10 30.00 12.50 0.00 14.29 10 0.00 0.00 5.56 0.00

0.2 

20 30.00 37.50 14.29 14.29

 
0.55

20 0.00 0.00 11.11 0.00
-20 28.57 22.22 14.29 33.33 -20 0.00 10.00 0.00
-10 14.29 0.00 0.00 22.22 -10 0.00 0.00 0.00
10 7.14 22.22 28.57 0.00 10 0.00 0.00 0.00

 
0.25 

20 21.43 44.44 57.14 0.00

 
0.6

20 0.00 0.00 0.00
-20 25.00 20.00 0.00 11.11 -20  0.00 5.00
-10 0.00 0.00 0.00 0.00 -10  0.00 0.00
10 12.50 30.00 50.00 11.11 10  0.00 0.00

0.3 

20 25.00 40.00 75.00 11.11

 
0.65

20  0.00 0.00
-20 20.00 26.67 21.43 25.00
-10 15.00 20.00 21.43 16.67
10 0.00 13.33 7.14 16.67

0.35 

20 0.00 13.33 7.14 25.00
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From Table 5.4, it is seen that the optimal n is sensitive to specification of a
σ , which 

can also be proved from Figure 5.1. Because deviation of n is normally larger than that 

of a
σ , the influence of a

σ  on Rn is obvious. Compared with overestimating, 

underestimating of a
σ  would have less effect on Rn. Thus experimenters should have 

accurate information of the underlying degradation process before they conduct test 

planning.   

 

 

 

 

 

 

 

 

 

 

 

 

From Table 5.6, the stopping time at X2 is moderately sensitive to the underestimated 

a
σ .  And from Table 5.4 and 5.5, the other variables are not sensitive to mis-specified 

a
σ . 

 

 

cDev

5432 20 10-10-20

34

29

24

19

14

R
n

Figure 5.1 Main effect plot of sensitivity of n to mis-specified a
σ   

in two-stress CSADT plans 
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5.4 CONCLUSIONS 

 
The optimal CSADT plans have been studied in this chapter. Even the inspection time 

interval and the lower test stress are assumed to be known in our planning, we 

analyzed the effect of these two variables on the optimal plans. For different settings of 

inspection time interval, the simulated plans are almost the same. Hence, 

experimenters can set the inspection time interval freely at their convenience. However, 

they should bear in mind that the lower stress level affects the optimal plans distinctly. 

Generally, a plan with a small X1 saves cost. Thus in order to determine a proper X1, a 

cost budget should be taken into account. 

 

Sensitivity study of optimal plans due to misspecifications of a
σ  has also been carried 

out in this chapter. It is concluded that optimal sample size is sensitive to changes of 

a
σ . The stopping time is sensitive to the underestimated a

σ . While other variables 

are not sensitive to a
σ . The result suggests experimenters have a thorough 

understanding of the tested product before they start to design any test plan. If they are 

not confident of the accuracy of a
σ , a larger value would be helpful to obtain a better 

plan that is close to the truly optimal one.   
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Chapter 6  

Optimal SSADT Plans 

 

 

 
6.1 INTRODUCTION 

 

For SSADT, an optimal plan specifies the sample size, stress levels, the time interval 

between two continuous inspections, holding time or number of inspections at each 

stress. Despite of the superiority of a SSADT to a CSADT as we have discussed in 

section 1.1 and section 3.1, there is no literature addressing the problem of planning 

SSADT yet. Based on our proposed formulation in chapter 4, we would like to further 

present the two-stress and three-stress SSADT plans in this chapter. 

 

We first analyze the two-stress plans in section 6.2. After discussing the optimal plans, 

we give the guidance on how to determine values of the lower test stress, the 

inspection time interval and the precision parameters. To investigate the influence of 

mis-specified pre-estimated parameters on the decision variables, sensitivity study is 

conducted. Sequentially, we present to plan three-stress plans with additional 

constraints in section 6.3. Three options are illustrated with examples. Finally, 

concluding remarks are given in section 6.4  

 

 



 
 
Chapter 6                                                                                       Optimal SSADT Plans                         
 

                                                                                                                                     
122  

6.2 OPTIMAL TWO-STRESS SSADT PLANS 

 

To compare with the plan in Tseng & Yu (1999), again we set the cost coefficients 

Cd=86$/unit, Cm1 = 4$/unit*time, Cm2 = 4.5$/unit*time, Co1 = 0.3$/hr*time, and Co2 = 

0.4$/hr*time, the precision parameter c=5 and p=0.9, the stochastic process parameters 

a/σ  =100. We have the optimal two-stress SSADT plans for t∆ =48, 48*2, 48*3, 

48*4, 48*5, 48*6 in Table 6.1.  

 
 
From Table 6.1, it is seen that the optimal sample size n* and the stopping time T* are 

not sensitive to the lower stress X1 and the inspection time interval t∆ . As shown in 

Figure 6.1 and 6.2, the optimal n is between 6 and 10. Compared with the optimal 

sample size 30 in Yu & Tseng’s plan, our value is smaller, which suggests our SSADT 

plan is superior in cases where the product is newly developed such that number of 

available samples is limited or the price of a single item is expensive. The optimal 

stopping time T is around 2888hrs in our plan, which is shorter compared with Yu & 

Tseng’s plan, i.e. 5040hrs. Our shorter testing time implies that experimenters can save 

nearly half of the time to get the reliability information. As a result, the test expense is 

greatly reduced from 6000$+ to 3300$-. 

 

 

 

 

 

 

 



 
 
Chapter 6                                                                                       Optimal SSADT Plans                         
 

                                                                                                                                     
123  

 

Table 6.1 Optimal SSADT plans 
(c=5, p=0.9) 

 
t∆ (hrs) X1 *n  *T  

*
1π  *L  

*
1L  *

2L  Cost 
0.05 7 2016 0.952381 42 40 2 2399.4 
0.1 7 2208 0.934783 46 43 3 2577.3 

0.15 7 2400 0.92 50 46 4 2755.2 
0.2 7 2544 0.849057 53 45 8 2915.6 

0.25 7 2736 0.877193 57 50 7 3076.9 
0.3 8 2496 0.807692 52 42 10 3188.8 

0.35 8 2640 0.836364 55 46 9 3319.2 
0.4 8 2736 0.807018 57 46 11 3429.6 

0.45 8 2832 0.79661 59 47 12 3531.2 
0.5 8 2928 0.819672 61 50 11 3615.2 

0.55 9 2688 0.857143 56 48 8 3670.8 
0.6 9 2736 0.859649 57 49 8 3721.2 

0.65 9 2832 0.966102 59 57 2 3766.2 
0.7 9 2832 0.949153 59 56 3 3775.5 

0.75 8 3216 0.985075 67 66 1 3805.6 
0.8 8 3216 0.985075 67 66 1 3805.6 

0.85 8 3216 0.985075 67 66 1 3805.6 
0.9 8 3216 0.985075 67 66 1 3805.6 

48 

0.95 8 3216 0.985075 67 66 1 3805.6 
0.05 7 2016 0.952381 21 20 1 1807.9 
0.1 7 2208 0.913043 23 21 2 1934.6 

0.15 7 2400 0.92 25 23 2 2048.2 
0.2 7 2592 0.888889 27 24 3 2174.9 

0.25 8 2400 0.88 25 22 3 2248.8 
0.3 8 2496 0.807692 26 21 5 2336.8 

0.35 8 2688 0.857143 28 24 4 2444.8 
0.4 8 2784 0.862069 29 25 4 2505.6 

0.45 9 2496 0.730769 26 19 7 2557.5 
0.5 9 2592 0.777778 27 21 6 2608.2 

0.55 9 2688 0.857143 28 24 4 2644.8 
0.6 9 2784 0.931034 29 27 2 2681.4 

0.65 8 3168 0.939394 33 31 2 2721.6 
0.7 8 3168 0.909091 33 30 3 2735.2 

0.75 9 2880 0.966667 30 29 1 2732.1 
0.8 9 2880 0.966667 30 29 1 2732.1 

0.85 9 2880 0.966667 30 29 1 2732.1 
0.9 9 2880 0.966667 30 29 1 2732.1 

96 

0.95 9 2880 0.966667 30 29 1 2732.1 

To be continued 
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Table 6.1 Optimal SSADT plans 
c=5, p=0.9 (continued) 

 
t∆ (hrs) X1 *n  *T  

*
1π  *L  

*
1L  *

2L  Cost 
0.05 6 2448 0.941176 17 16 1 1675.8 
0.1 6 2592 0.944444 18 17 1 1743.0 

0.15 7 2448 0.941176 17 16 1 1830.3 
0.2 7 2592 0.888889 18 16 2 1919.4 

0.25 7 2736 0.842105 19 16 3 2008.5 
0.3 7 2880 0.85 20 17 3 2079.7 

0.35 7 3024 0.809524 21 17 4 2168.8 
0.4 8 2736 0.789474 19 15 4 2190.4 

0.45 8 2880 0.85 20 17 3 2247.2 
0.5 9 2592 0.777778 18 14 4 2275.2 

0.55 8 3024 0.857143 21 18 3 2322.4 
0.6 9 2736 0.842105 19 16 3 2335.5 

0.65 8 3168 0.909091 22 20 2 2379.2 
0.7 8 3168 0.909091 22 20 2 2379.2 

0.75 9 2880 0.95 20 19 1 2376.9 
0.8 9 2880 0.95 20 19 1 2376.9 

0.85 9 2880 0.95 20 19 1 2376.9 
0.9 9 2880 0.95 20 19 1 2376.9 

144 
 

0.95 9 2880 0.95 20 19 1 2376.9 
0.05 7 2112 0.909091 11 10 1 1566.3 
0.1 7 2304 0.916667 12 11 1 1651.9 

0.15 8 2112 0.909091 11 10 1 1696.8 
0.2 8 2304 0.916667 12 11 1 1786.4 

0.25 9 2112 0.818182 11 9 2 1851.0 
0.3 8 2496 0.769231 13 10 3 1922.4 

0.35 8 2688 0.857143 14 12 2 1988.8 
0.4 9 2496 0.846154 13 11 2 2038.2 

0.45 9 2496 0.692308 13 9 4 2085.6 
0.5 8 3072 0.9375 16 15 1 2144.8 

0.55 9 2688 0.857143 14 12 2 2131.8 
0.6 8 3072 0.8125 16 13 3 2191.2 

0.65 10 2496 0.846154 13 11 2 2177.2 
0.7 9 2880 0.933333 15 14 1 2201.7 

0.75 9 2880 0.933333 15 14 1 2201.7 
0.8 9 2880 0.933333 15 14 1 2201.7 

0.85 9 2880 0.933333 15 14 1 2201.7 
0.9 9 2880 0.933333 15 14 1 2201.7 

192 
 

0.95 9 2880 0.933333 15 14 1 2201.7 

 
To be continued 
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Table 6.1 Optimal SSADT plans 

c=5, p=0.9 (continued) 
 

t∆ (hrs) X1 *n  *T  
*
1π  *L  

*
1L  *

2L  Cost 
0.05 6 2400 0.9 10 9 1 1503.0 
0.1 6 2640 0.909091 11 10 1 1599.0 

0.15 7 2400 0.9 10 9 1 1629.5 
0.2 7 2640 0.909091 11 10 1 1729.5 

0.25 8 2400 0.8 10 8 2 1784.0 
0.3 7 2880 0.833333 12 10 2 1857.0 

0.35 8 2640 0.818182 11 9 2 1888.0 
0.4 7 3120 0.769231 13 10 3 1984.5 

0.45 8 2880 0.833333 12 10 2 1992.0 
0.5 9 2640 0.818182 11 9 2 2019.0 

0.55 9 2640 0.727273 11 8 3 2047.5 
0.6 8 3120 0.846154 13 11 2 2096.0 

0.65 8 3120 0.846154 13 11 2 2096.0 
0.7 9 2880 0.916667 12 11 1 2098.5 

0.75 9 2880 0.916667 12 11 1 2098.5 
0.8 9 2880 0.916667 12 11 1 2098.5 

0.85 9 2880 0.916667 12 11 1 2098.5 
0.9 9 2880 0.916667 12 11 1 2098.5 

240 
 

0.95 9 2880 0.916667 12 11 1 2098.5 
0.05 5 2880 0.9 10 9 1 1525.3 
0.1 6 2592 0.888889 9 8 1 1541.4 

0.15 6 2880 0.9 10 9 1 1651.8 
0.2 7 2592 0.888889 9 8 1 1663.9 

0.25 6 3168 0.818182 11 9 2 1794.0 
0.3 8 2592 0.888889 9 8 1 1786.4 

0.35 7 3168 0.909091 11 10 1 1892.7 
0.4 7 3168 0.818182 11 9 2 1925.0 

0.45 9 2592 0.888889 9 8 1 1908.9 
0.5 9 2592 0.777778 9 7 2 1942.2 

0.55 7 3456 0.833333 12 10 2 2039.4 
0.6 8 3168 0.909091 11 10 1 2023.2 

0.65 8 3168 0.909091 11 10 1 2023.2 
0.7 8 3168 0.909091 11 10 1 2023.2 

0.75 9 2880 0.9 10 9 1 2031.3 
0.8 9 2880 0.9 10 9 1 2031.3 

0.85 9 2880 0.9 10 9 1 2031.3 
0.9 9 2880 0.9 10 9 1 2031.3 

288 
 

0.95 9 2880 0.9 10 9 1 2031.3 
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6.2.1 Determination of the Lower Stress 1X  and the Inspection Time 

Interval t∆  

 

There are also some findings by investigating the plot of L2/L1 Vs X1. These findings 

are especially useful to determine the optimal lower stress X1 and inspection time 

interval t∆ .  

 

In Figure 6.3, it is seen that for a given c and p, the polynomial trend of L2/L1 for 

various X1 shows contour curves. L2/L1 always reaches its maximum value at 

around ( )0.50.4,X1 ∈ . Also, the plots show contour patterns for various t∆ s. L2/L1 

increases when t∆  increases from 48hrs to 240hrs and then deceases when t∆ is 

greater than 240hrs. That is, L2/L1 is maximized at t∆ =240hrs, which is also the 

optimal inspection time interval in Yu & Tseng’ plan. We suggest the optimal t∆  and 

the optimal X1 be determined by referring to the highest curve in the countour, and the 

apex of this curve. Mathmatically, X1 can be caculated by setting the first order 

difference of the polynomial function equal to 0. For example, in Figure 6.3, it is read 

the optimal t∆ =240hrs and the optimal X1=0.45.  

 

Kielpinski & Nelson (1975) suggested the tester run more experiments at a lower stress 

rather than at a higher stress such that less extrapolation is made and the estimate 

would be more accurate. However, the consequence is that the test time becomes 

longer. The reason here we set our optimization criterion to achieve the highest value 

of L2/L1, i.e. T2/T1 is that we aim to assign more proportion of time to the higher stress, 

with which we can shorten the testing time but still grant to meet the estimate precision 

constraint.   
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Based on the above discussion, the optimal 2-stress CSADT plan is summarized in 

Table 6.2.  

Table 6.2 Optimal two-stress SSADT plan1 

X1 t∆  (hrs) n T(hrs) T1(hrs) T2(hrs) L L1 L2 Cost ($)
0.45 240 7 3120 2400 720 13 10 3 1789.5

 

However, if the operator prefers more inspections at the high stress level, i.e. X2, s/he 

can choose t∆ =48, i.e.  

Table 6.3 Optimal two-stress SSADT plan 2 

 t∆  (hrs) n T(hrs) T1(hrs) T2(hrs) L L1 L2 Cost ($)
0.45 48 8 2832 2256 576 59 47 12 3248.2

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Plot of L2/L1 Vs X1 in two-stress SSADT plans 
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 6.2.2 Determination of the Precision Parameters pc and  

 

The contour pattern does not exist for all values of {c, p}. We have plotted L2/L1 vs X1 

for c∈(1, 5) and p∈(1, 5). The results showed that the contour pattern mentioned in 

Figure 6.3 would only happen when p is greater than a particular value for a specified c. 

There is no obvious contour display for some values of c coped with a relatively 

smaller p. That is, the estimate precision constraint looses its function when c and p are 

set improperly. For a fixed c, p should be greater than a critical value such that the 

above-mentioned contour curves exist for different t∆ s. The boundaries of p is plotted 

in Figure 6.4. c and p should be chosen above the bold line. A small value of c and a 

relatively larger p are recommended if the operator wants a tighten precision constraint, 

vice versa.  
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Figure 6.4 Boundaries of {c, p}, the precision constraint in SSADT
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We next investigate the influence of (c, p) on the optimal X1 and t∆ . For various (c, 

p)’s, the optimal X1 and t∆  are summarzed in Table 6.4 and 6.5.  

 

Define porcRX |1 porcgiven|

porcgiven|
*
1

*
1

*
1

X

XX −
= . Shown in Table 6.4 and 6.5, with a fixed c 

or p, RX1|c or p is normally no greater than 10%. It indicates that optimal X1 is not 

sensitive to c and p.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.4 Optimal X1 and t∆  given {c, p} 
in two-stress SSADT planning 

 

c p X1* t∆ * RX1 
(%) c p X1* t∆ * RX1 

(%) 
2 0.5 0.5 192 12.2 4 0.5’ 0.466 48 2.1 
 0.55 0.467 240 4.8  0.55’ 0.434 96 4.8 
 0.6 0.512 240 14.9  0.6’ 0.43 144 5.7 
 0.65 0.424 240 4.78  0.65’ 0.472 192 3.5 
 0.7 0.442 240 0.74  0.7 0.455 144 0.2 
 0.75 0.459 240 3.08  0.75 0.464 192 1.7 
 0.8 0.411 144 7.70  0.8 0.478 288 4.8 
 0.85 0.414 192 7.03  0.85 0.461 240 1.0 
 0.9 0.395 240 11.30  0.9 0.461 240 1.10 
 0.95 0.429 192 3.66  0.95 0.439 240 3.73 

3 0.5 0.481 48’ 4.75 5 0.5’ 0.505 144 12.30 
 0.55 0.485 48’ 5.62  0.55’ 0.367 144 18.39 
 0.6 0.461 240 0.39  0.6’ 0.5 192 11.19 
 0.65 0.427 240 7.01  0.65’ 0.351 288 21.95 
 0.7 0.495 240 7.79  0.7’ 0.471 144 4.74 
 0.75 0.485 240 5.62  0.75 0.459 96 2.07 
 0.8 0.491 288 6.93  0.8 0.47 240 4.51 
 0.85 0.433 192 5.71  0.85 0.476 192 5.85 
 0.9 0.439 240 4.40  0.9 0.461 240 2.51 
 0.95 0.395 240 13.98  0.95 0.437 192 2.82 

 
’indicates the contour pattern does not exist for the corresponding {c, p}. 
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Table 6.5 Optimal X1 and t∆  given {p, c}in two-stress SSADT 
planning 

 
p c x1 t∆   RX1 

2 0.5 192  2.46 
3 0.481 48 ’ 1.43 
4 0.466 48 ’ 4.51 

0.5 

5 0.505 144 ’ 3.48 
2 0.467 240  6.56 
3 0.485 48 ’ 10.67 
4 0.434 96 ’ 0.97 

0.55 

5 0.367 144 ’ 16.26 
2 0.512 240  7.62 
3 0.461 240  3.10 
4 0.43 144 ’ 9.62 

0.6 

5 0.5 192 ’ 5.10 
2 0.424 240  1.31 
3 0.427 240  2.03 
4 0.472 192 ’ 12.78 

0.65 

5 0.351 288 ’ 16.13 
2 0.442 240  5.10 
3 0.495 240  6.28 
4 0.455 144  2.31 

0.7 

5 0.471 144 ’ 1.13 
2 0.459 240  1.66 
3 0.485 240  3.91 
4 0.464 192  0.59 

0.75 

5 0.459 96  1.66 
2 0.411 144  11.14 
3 0.491 288  6.16 
4 0.478 288  3.35 

0.8 

5 0.47 240  1.62 
2 0.414 192  7.17 
3 0.433 192  2.91 
4 0.461 240  3.36 

0.85 

5 0.476 192  6.73 
2 0.395 240  10.02 
3 0.439 240  0.00 
4 0.461 240  5.01 

0.9 

5 0.461 240  5.01 
2 0.429 192  0.94 
3 0.395 240  7.06 
4 0.439 240  3.29 

0.95 

5 0.437 192  2.82 

’indicates the contour pattern does not hold for the corresponding {c, p}. 
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The study also shows t∆ =240hrs is the most frequently occurring optimal inspection 

time interval for various (c, p)’s as in Table 6.6. what is more, if p=0.9, whatever c is, 

the optimal t∆ *=240hrs. 

 
Table 6.6 Frequency of the optimal t∆  

in two-stress SSADT plans 
  

t∆  No. of Occurrences Percentage 
240 17 58.6% 
192 7 24.1% 
288 3 10.3% 
144 2 7% 

Total 29 100% 
 
 

 

6.2.3 Sensitivity Analysis 

 

Again, we need to conduct sensitivity analysis on optimal SSADT plans to mis-

specified pre-set parameters. Suppose the true value of a
σ  is 100, we analyze the 

sensitivity of optimal n, 1π , T1, T2 to guessed values of a
σ  at 80, 90, 110 and 120 

respectively. The detailed data are given in Appendix D. 

 

Tables 6.7 to 6.10 are sensitivity analysis of n, T, T1 and T2 to the mis-specified a
σ . 

 

 

 

 

 

 



 
 
Chapter 6                                                                                       Optimal SSADT Plans                         
 

                                                                                                                                     
133  

 

Table 6. 7 Sensitivity of Rn to a
σ  in two-stress SSADT plans 
 

c  c X1 
Dev 

a/σ  2 3 4 5 X1 

Dev
a/σ 2 3 4 5 

-20 20.00 12.50 28.57 16.67 -20 28.57 27.27 11.11 33.33
-10 0.00 12.50 0.00 16.67 -10 7.14 9.09 11.11 11.11
10 20.00 0.00 0.00 0.00 10 7.14 9.09 11.11 11.11

 
0.05 

20 20.00 12.50 28.57 33.33

 
0.55

20 21.43 18.18 22.22 22.22
-20 9.09 25.00 14.29 0.00 -20 21.43 20.00 22.22 25.00
-10 9.09 12.50 14.29 0.00 -10 7.14 0.00 11.11 12.50
10 18.18 0.00 28.57 33.33 10 14.29 20.00 11.11 12.50

 
0.1 

20 18.18 12.50 28.57 33.33

 
0.6

20 14.29 20.00 33.33 25.00
-20 9.09 20.00 25.00 28.57 -20 14.29 20.00 30.00 25.00
-10 9.09 10.00 0.00 14.29 -10 14.29 0.00 20.00 12.50
10 27.27 10.00 0.00 0.00 10 14.29 20.00 10.00 12.50

 
0.15 

20 27.27 10.00 12.50 42.86

 
0.65

20 14.29 30.00 0.00 25.00
-20 9.09 22.22 12.50 14.29 -20 20.00 18.18 30.00 22.22
-10 9.09 11.11 12.50 0.00 -10 20.00 18.18 10.00 11.11
10 36.36 11.11 0.00 28.57 10 13.33 0.00 10.00 11.11

0.2 

20 36.36 22.22 12.50 28.57

0.7

20 13.33 18.18 10.00 22.22
-20 35.71 22.22 33.33 25.00 -20 13.33 18.18 36.36  
-10 28.57 11.11 22.22 25.00 -10 26.67 18.18 18.18  
10 7.14 11.11 11.11 0.00 10 0.00 0.00 9.09  

 
0.25 

20 14.29 22.22 11.11 12.50

 
0.75

20 13.33 18.18 0.00  
-20 15.38 30.00 12.50 14.29 -20 13.33 18.18 27.27  
-10 7.69 10.00 12.50 0.00 -10 26.67 18.18 18.18  
10 15.38 0.00 12.50 14.29 10 0.00 0.00 9.09  

0.3 

20 23.08 10.00 25.00 42.86

 
0.8

20 20.00 18.18 0.00  
-20 23.08 0.00 11.11 12.50 -20 13.33 18.18 11.11  
-10 23.08 11.11 0.00 0.00 -10 26.67 18.18 0.00  
10 15.38 22.22 11.11 12.50 10 0.00 0.00 11.11  

0.35 

20 23.08 44.44 22.22 12.50

 
0.85

20 20.00 27.27 22.22  
-20 23.08 22.22 25.00 14.29 -20 26.67 18.18 11.11  
-10 15.38 0.00 12.50 0.00 -10 26.67 18.18 0.00  
10 7.69 11.11 12.50 14.29 10 0.00 0.00 11.11  

0.4 

20 23.08 33.33 25.00 57.14

 
0.9

20 20.00 27.27 22.22  
-20 28.57 11.11 22.22 12.50 -20 26.67 25.00 11.11  
-10 7.14 11.11 11.11 12.50 -10 26.67 25.00 0.00  
10 14.29 22.22 11.11 12.50 10 0.00 8.33 11.11  

 
0.45 

20 28.57 22.22 22.22 12.50

 
0.95

20 20.00 16.67 22.22  
-20 14.29 10.00 20.00 22.22
-10 0.00 10.00 10.00 11.11
10 7.14 20.00 10.00 11.11

0.5 

20 28.57 20.00 0.00 11.11
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Table 6. 8 Sensitivity of RT to a

σ  in two-stress SSADT plans 
 

c  c X1 
Dev 

a/σ  2 3 4 5 X1 

Dev
a/σ 2 3 4 5 

-20 18.75 27.27 10.00 20.00 -20 10.53 7.69 30.77 0.00 
-10 18.75 9.09 20.00 0.00 -10 10.53 7.69 7.69 9.09 
10 0.00 18.18 20.00 20.00 10 15.79 15.38 7.69 9.09 

 
0.05 

20 18.75 27.27 10.00 10.00

 
0.55

20 21.05 23.08 15.38 18.18
-20 31.25 16.67 27.27 36.36 -20 20.00 20.00 15.38 15.38
-10 12.50 8.33 9.09 18.18 -10 15.00 20.00 7.69 7.69 
10 0.00 16.67 9.09 9.09 10 5.00 0.00 7.69 7.69 

 
0.1 

20 18.75 25.00 9.09 9.09

 
0.6

20 25.00 20.00 7.69 15.38
-20 29.41 20.00 10.00 10.00 -20 25.00 20.00 8.33 15.38
-10 11.76 10.00 20.00 0.00 -10 5.00 20.00 0.00 7.69 
10 5.88 40.00 20.00 20.00 10 5.00 0.00 8.33 7.69 

 
0.15 

20 11.76 60.00 30.00 0.00

 
0.65

20 25.00 13.33 41.67 15.38
-20 27.78 16.67 27.27 27.27 -20 21.05 21.43 8.33 16.67
-10 11.11 8.33 9.09 18.18 -10 0.00 0.00 8.33 8.33 
10 11.11 8.33 18.18 9.09 10 5.26 21.43 33.33 8.33 

0.2 

20 5.56 16.67 27.27 9.09

0.7

20 26.32 21.43 33.33 16.67
-20 0.00 15.38 0.00 10.00 -20 26.32 21.43 0.00  
-10 13.33 7.69 10.00 10.00 -10 10.53 0.00 0.00  
10 13.33 7.69 10.00 20.00 10 21.05 21.43 36.36  

 
0.25 

20 26.67 15.38 30.00 30.00

 
0.75

20 26.32 21.43 45.45  
-20 23.53 8.33 25.00 25.00 -20 26.32 21.43 9.09  
-10 11.76 8.33 8.33 16.67 -10 10.53 0.00 0.00  
10 5.88 25.00 8.33 8.33 10 21.05 21.43 36.36  

0.3 

20 17.65 33.33 16.67 0.00

 
0.8

20 21.05 21.43 45.45  
-20 16.67 35.71 27.27 27.27 -20 26.32 21.43 28.57  
-10 5.56 7.14 18.18 18.18 -10 10.53 0.00 21.43  
10 5.56 0.00 9.09 9.09 10 21.05 21.43 7.14  

0.35 

20 16.67 0.00 18.18 27.27

 
0.85

20 21.05 14.29 14.29  
-20 15.79 20.00 15.38 23.08 -20 10.53 21.43 28.57  
-10 5.26 20.00 7.69 15.38 -10 10.53 0.00 21.43  
10 10.53 6.67 7.69 7.69 10 21.05 21.43 7.14  

0.4 

20 15.79 6.67 15.38 7.69

 
0.9

20 21.05 14.29 14.29  
-20 11.11 26.67 16.67 25.00 -20 10.53 15.38 28.57  
-10 11.11 6.67 8.33 8.33 -10 10.53 7.69 21.43  
10 5.56 0.00 8.33 8.33 10 21.05 30.77 7.14  

 
0.45 

20 11.11 20.00 16.67 25.00

 
0.95

20 21.05 23.08 14.29  
-20 26.32 28.57 18.18 18.18
-10 21.05 7.14 9.09 9.09
10 10.53 0.00 36.36 9.09

0.5 

20 10.53 21.43 45.45 27.27
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Table 6. 9 Sensitivity of RT1 to a

σ  in two-stress SSADT plans 
 

c  c X1 
Dev. 

a/σ  2 3 4 5 X1 

Dev.
a/σ 2 3 4 5 

-20 20.00 30.00 11.11 22.22 -20 13.33 10.00 50.00 25.00
-10 20.00 10.00 22.22 0.00 -10 0.00 10.00 8.33 12.50
10 0.00 20.00 22.22 22.22 10 33.33 40.00 0.00 12.50

 
0.05 

20 20.00 30.00 11.11 11.11

 
0.55

20 33.33 30.00 0.00 25.00
-20 33.33 18.18 30.00 40.00 -20 26.32 15.38 9.09 18.18
-10 13.33 9.09 10.00 20.00 -10 26.32 23.08 0.00 9.09 
10 0.00 18.18 10.00 10.00 10 0.00 0.00 0.00 9.09 

 
0.1 

20 13.33 27.27 10.00 10.00

 
0.6

20 21.05 23.08 9.09 18.18
-20 26.67 22.22 11.11 11.11 -20 22.22 23.08 9.09 27.27
-10 13.33 11.11 22.22 0.00 -10 0.00 30.77 9.09 9.09 
10 6.67 44.44 11.11 11.11 10 0.00 7.69 0.00 9.09 

 
0.15 

20 13.33 55.56 33.33 0.00

 
0.65

20 22.22 23.08 27.27 18.18
-20 26.67 10.00 30.00 30.00 -20 27.78 23.08 0.00 18.18
-10 13.33 10.00 10.00 20.00 -10 5.56 0.00 0.00 9.09 
10 6.67 10.00 10.00 20.00 10 0.00 23.08 30.00 9.09 

0.2 

20 6.67 20.00 30.00 0.00

0.7

20 27.78 23.08 50.00 18.18
-20 0.00 9.09 12.50 0.00 -20 27.78 23.08 10.00  
-10 16.67 0.00 25.00 25.00 -10 11.11 0.00 0.00  
10 16.67 9.09 12.50 25.00 10 22.22 23.08 40.00  

 
0.25 

20 33.33 18.18 37.50 37.50

 
0.75

20 22.22 23.08 50.00  
-20 15.38 0.00 20.00 30.00 -20 27.78 23.08 0.00  
-10 7.69 0.00 10.00 10.00 -10 11.11 0.00 11.11  
10 15.38 44.44 10.00 10.00 10 22.22 23.08 55.56  

0.3 

20 23.08 55.56 20.00 10.00

 
0.8

20 22.22 15.38 66.67  
-20 20.00 36.36 25.00 33.33 -20 27.78 23.08 30.77  
-10 6.67 0.00 12.50 22.22 -10 11.11 0.00 23.08  
10 6.67 0.00 12.50 11.11 10 22.22 23.08 7.69  

0.35 

20 13.33 0.00 25.00 22.22

 
0.85

20 22.22 15.38 15.38  
-20 12.50 30.77 20.00 20.00 -20 11.11 23.08 30.77  
-10 6.25 23.08 10.00 0.00 -10 11.11 0.00 23.08  
10 6.25 0.00 10.00 20.00 10 22.22 23.08 7.69  

0.4 

20 12.50 0.00 20.00 0.00

 
0.9

20 22.22 15.38 15.38  
-20 14.29 18.18 11.11 20.00 -20 11.11 16.67 30.77  
-10 0.00 9.09 0.00 10.00 -10 11.11 8.33 23.08  
10 7.14 9.09 11.11 10.00 10 22.22 33.33 7.69  

 
0.45 

20 7.14 36.36 11.11 10.00

 
0.95

20 22.22 25.00 15.38  
-20 29.41 27.27 12.50 22.22
-10 29.41 0.00 0.00 11.11
10 0.00 9.09 50.00 11.11

0.5 

20 5.88 27.27 62.50 22.22
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Table 6. 10 Sensitivity of RT2 to a

σ  in two-stress SSADT plans 
 

c  c X1 
Dev. 

a/σ  2 3 4 5 X1 

Dev.
a/σ 2 3 4 5 

-20 0.0 0.0 0.0 0.0 -20 0.0 66.7 200.0 66.7 
-10 0.0 0.0 0.0 0.0 -10 50.0 66.7 0.0 0.0 
10 0.0 0.0 0.0 0.0 10 50.0 66.7 100.0 0.0 

 
0.05 

20 0.0 0.0 0.0 0.0

 
0.55

20 25.0 0.0 200.0 0.0 
-20 0.0 0.0 0.0 0.0 -20 100.0 50.0 50.0 0.0 
-10 0.0 0.0 0.0 0.0 -10 200.0 0.0 50.0 0.0 
10 0.0 0.0 0.0 0.0 10 100.0 0.0 50.0 0.0 

 
0.1 

20 100.0 0.0 0.0 0.0

 
0.6

20 100.0 0.0 0.0 0.0 
-20 50.0 0.0 0.0 0.0 -20 50.0 0.0 0.0 50.0 
-10 0.0 0.0 0.0 0.0 -10 50.0 50.0 100.0 0.0 
10 0.0 0.0 100.0 100.0 10 50.0 50.0 100.0 0.0 

 
0.15 

20 0.0 100.0 0.0 0.0

 
0.65

20 50.0 50.0 200.0 0.0 
-20 33.3 50.0 0.0 0.0 -20 100.0 0.0 50.0  
-10 0.0 0.0 0.0 0.0 -10 100.0 0.0 50.0  
10 33.3 0.0 100.0 100.0 10 100.0 0.0 50.0  

0.2 

20 0.0 0.0 0.0 100.0

0.7

20 0.0 0.0 50.0  
-20 0.0 50.0 50.0 50.0 -20 0.0 0.0 100.0  
-10 0.0 50.0 50.0 50.0 -10 0.0 0.0 0.0  
10 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0  

 
0.25 

20 0.0 0.0 0.0 0.0

 
0.75

20 100.0 0.0 0.0  
-20 50.0 33.3 50.0 0.0 -20 0.0 0.0 50.0  
-10 25.0 33.3 0.0 50.0 -10 0.0 0.0 50.0  
10 25.0 33.3 0.0 0.0 10 0.0 0.0 50.0  

0.3 

20 0.0 33.3 0.0 50.0

 
0.8

20 0.0 100.0 50.0  
-20 0.0 33.3 33.3 0.0 -20 0.0 0.0 0.0  
-10 0.0 33.3 33.3 0.0 -10 0.0 0.0 0.0  
10 0.0 0.0 0.0 0.0 10 0.0 0.0 0.0  

0.35 

20 33.3 0.0 0.0 50.0

 
0.85

20 0.0 0.0 0.0  
-20 33.3 50.0 0.0 33.3 -20 0.0 0.0 0.0  
-10 0.0 0.0 0.0 66.7 -10 0.0 0.0 0.0  
10 33.3 50.0 0.0 33.3 10 0.0 0.0 0.0  

0.4 

20 33.3 50.0 0.0 33.3

 
0.9

20 0.0 0.0 0.0  
-20 0.0 50.0 33.3 50.0 -20 0.0 0.0 0.0  
-10 50.0 50.0 33.3 0.0 -10 0.0 0.0 0.0  
10 0.0 25.0 0.0 0.0 10 0.0 0.0 0.0  

 
0.45 

20 25.0 25.0 33.3 100.0

 
0.95

20 0.0 0.0 0.0  
-20 0.0 33.3 33.3 0.0
-10 50.0 33.3 33.3 0.0
10 100.0 33.3 0.0 0.0

0.5 

20 50.0 0.0 0.0 50.0
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The results show that the optimal n, T, T1 and T2 are moderately sensitive to the 

deviation of the pre-estimate of a
σ . Overestimating and underestimating a

σ  have 

nearly the same effects on these decision variables. Thus it is important to estimate the 

degradation process parameters as accurate as one can before the test planning.  

 

 

6.3 OPTIMAL THREE-STRESS SSADT PLANS 

 

6.3.1 Introduction  

 

Compared with ALT, ADT is more efficient to provide precise reliability estimates 

especially for highly reliable products since it captures degradation information to 

obtain reliability reference rather than captures physical failures. Compared with 

CSADT, it is proved in chapter 4 that SSADT is useful to shorten testing time and save 

testing samples, therefore reduce the total experiment cost. We have studied two-stress 

SSADT plans in the previous sections. However, two-stress SSADT plans have some 

inefficiency:  

 

1. Experimenters need to specify a highest stress before planning. While, this high 

stress may cause different failure modes from that at design stress with a 

consequence that data collected at high stress are less informative. We have 

mentioned in section 4.2, experimenters need to know from historical 

information or to do a pre-test to roughly identify the highest allowable stress 

before test starts. Actually, an intermediate stress is needed to check whether 

the failure modes remain the same through out the stress range. 
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2. We have assumed a linear stress-drift relationship in our two-stress planning. 

However, this linear relationship is possibly inadequate. Normally, there should 

be at least three stress levels to check the curvature of the assumed relationship. 

 

3. It is possible that the degradation rate at the lower stress is very small such that 

the degradation increment is difficult to detect or the measurement error is 

relatively large. So, an intermediate stress, which is hopefully greater than the 

optimal lower stress in a two-stress SSADT, is needed for better estimation. 

 

Therefore, we consider planning SSADT with three test stresses. The test method and 

assumptions remains as we did in the two-stress ADT design. Except that kX  is 

normalized as: 

03

0

SS
SS

X k −
−

= .    X0=0<X1<X2< X3=1                 (6.1) 

S0, the design stress, and S3, the highest stress that validates the same failure 

mechanism, should be specified before test planning. Decision variables include 

sample size n, stress levels X1, X2, and number of inspections at each stress L1, L2, and 

L3.  

 

Using the same planning criteria stated in chapter 4, planning of three-stress SSADT 

can be formulated as follows: 

 

Minimizing:               

( )

0,0,0

,
3

1

3

1
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                             (6.2) 
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Subject to:   
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               (6.3) 

where Cd, Cmk, Cok, c, p are the same as defined in chapter 4 

 

 

6.3.2 Three-stress SSADT Plans 

 

The optimal three-stress plan, for example, for t∆ = 240hrs, c=2, p=0.9, 
a)
)σ =100, is: 

 
Table 6.11 Optimal three-stress SSADT plan 1 

 
Plans Cost coefficients n X1 L1 X2 L2 L3 L Cost 
Three-
stress 

SSADT 

Cd=86, 
Cm1 = 3.2, Cm2 = 4, Cm3 = 4.5, 

Co1 = 0.2, Co2 = 0.25, Co3 = 0.3 
8 0 11 0 1 1 12 1697.6

Two-stress 
SSADT 

Cd=86, 
Cm1 = 3.65, Cm3 = 4.5, 
Co1 = 0.26, Co3 = 0.3 

13 0.395 16 / / 3 19 3281.5

 

 

It is seen that the employment of an intermediate stress not only overcomes the 

disadvantages of two-stress SSADT, but also further saves the test samples, time, and 

cost. However, the result is not adoptable since X1 and X2 are not optimal. One more 

constraint is needed to properly enhance them. It can be done through two ways. 
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6.3.2.1 Approach 1 
 
By disassembling the optimal low stress in a two-stress SSADT to be the two lower 

stresses in a three-stress SSADT, we add in an additional constraint as: 

*
3

**
2211

H

LL

LL

LXLXLX

=

⋅=⋅+⋅
                                   (6.4) 

where *** and, HLL LLX  are respectively the optimal lower stress, inspections at low 

stress and inspections at high stress in a two-stress SSADT. The illustration is shown 

in Figure 6.5.  

 

 

 

 

 

 

 

 

 

 
 

For example, with t∆ = 240hrs, c=2, p=0.9, 
a)
)σ =100, the optimal plan satisfying this 

additional rule is listed in Table 6.12: 

Table 6.12 Optimal three-stress SSADT plan 2 
 

Plans Cost coefficients n X1 L1 X2 L2 L3 L Cost 
Three-
stress 

SSADT 

Cd=86, 
Cm1 = 3.2, Cm2 = 4, Cm3 = 4.5, 

Co1 = 0.2, Co2 = 0.25, Co3 = 0.3 
7 0.37 9 0.99 3 3 15 1810.1

 

XH  
LH

XL  
LL X1   

L1

X2   
L2 

X3   
L3 

St
re

ss
 lo

ad
in

g 
pa

tte
rn

  

2SSADT 3SSADT 

Figure 6.5. An illustration of 3-stress SSADT planning (extended from 2-stress SSADT plans) 
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It is observed in the three-stress SSADT, the lower stress is slightly smaller than that in 

the two-stress one. And the intermediate stress approaches to the high stress. 

Additionally, the sample size, total number of inspections, and total cost of test are 

reduced. 

 

 

6.3.2.2 Approach 2 
 

Since X1 and X2 are close to the design stress in Table 6.11, let the test starts from 

X1=X0=0. We add in one more constraint that the intermediate stress X2 should be 

greater than XL
*, i.e.  

X1=0,  X2>XL
*                                                    (6.5)                        

 X2, L1, L2, L3 are then to be determined by fulfilling (6.2), (6.3) and (6.5).  

 

For example, with t∆ = 240hrs, c=2, p=0.9, 
a)
)σ =100, the optimal plan is: 

Table 6.13 Optimal three-stress SSADT plan 3 
 

Plans Cost coefficients n X1 L1 X2 L2 L3 L Cost 
Three-
stress 

SSADT 

Cd=86, 
Cm1 = 3.2, Cm2 = 4, Cm3 = 4.5, 

Co1 = 0.2, Co2 = 0.25, Co3 = 0.3 
7 0 9 0.75 3 3 15 1810.1

 

 

With approach 2, a proper intermediate stress that fastens the degradation rate for 

better measurement is obtained. Compared with the two-stress SSADT, the test 

samples, inspections and the test cost are saved. 
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6.4 CONCLUSIONS 

 
The optimal SSADT plans are studied in this chapter. Besides the optimal sample size 

and holding time at each stress, we present the guidance on how to determine the lower 

test stress, the inspection time interval and the precision parameters. Three-stress 

SSADT plans are also studied in this chapter. To compare with each other, a summary 

of the proposed plans is given in Table 6.14. 

 

Table 6.14 Comparisons of optimal SSADT plans 

( t∆ = 240hrs, 
a)
)σ =100, c=2 and p=0.9) 

 

Plans Cost coefficients n X1 L1 X2 L2 L3 L 
Cost 

 
 

Planning 
criteria

Two-stress 
SSADT 

Cd=86, 
Cm1 = 3.65, Cm3 = 4.5, 
Co1 = 0.26, Co3 = 0.3 

13 0.395 16 / / 3 19 3281.5 (4.10) 
(4.25)

8 0 11 0 1 1 12 1697.6 (6.2) (6.3)

7 0.37 9 0.99 3 3 15 1810.1 (6.2) (6.3) 
(6.4) 

Three-
stress 

SSADT 

Cd=86, 
Cm1 = 3.2, Cm2 = 4, Cm3 = 4.5,

Co1 = 0.2, Co2 = 0.25, Co3 = 0.3
7 0 9 0.75 3 3 15 1810.1 (6.2) (6.3) 

(6.5) 
 

 

The conclusions are: 

1. A three-stress SSADT requires fewer samples and inspections to achieve the 

same level of estimation precision. And consequently, saves the total cost of 

test. 

 

2. As suggested by solution 1, the best plan that minimizes the test cost and 

provides an acceptable level of sampling risk is to test at design stress and the 

highest stress. It requires the least cost and time. But, the three-stress ADT is 
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reduced to a two-stress one. To involve an intermediate stress, solution 2 and 

solution 3 can be adopted. 

 

3. Solution 3 is recommended since the test starts from the design stress, which 

reflects the prototype of degradation process we are interested in and is helpful 

to provide better reliability reference. The intermediate stress is adequate to 

justify the model assumptions, and to fasten the degradation speed for easier 

measurement. 
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Chapter 7  

Planning of Destructive CSADT 

 

 

7.1 INTRODUCTION 

 

In engineering testing, there are cases where the degradation measurement is 

devastating, that is, items under test are destroyed and cannot fulfill their functional 

requirements after inspection. In such a situation, each unit can only be inspected one 

time in the degradation experiment. This kind of testing is called “destructive testing” 

(Park & Yum, 1997). In a destructive ADT, the time at which to collect the 

degradation data becomes more important because it significantly affects the estimate 

precision. 

 

Park & Yum (1997) presented a method to design destructive CSADT, which involves 

two, or three test stresses. Given the total number of samples available and the longest 

test time allowable, they determined the stress levels, test time and the sample 

allocations at each stress by assuming that the degradation process follows a lognormal 

distribution and the degradation rate is simply constant at a particular stress. 

Considering the influence of tightened degradation critical value on the lifetime of 

tested products, Yang & Yang (2002) proposed a two-stress CSADT planning method 

in which samples are inspected at the end of the whole testing. Park et al (2004) 
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developed to optimize destructive SSADT plans by assuming a simple constant-rate 

relationship and a cumulative exposure effect between the stress and the performance 

of a unit. The optimality in the three papers is defined to minimize the MLE of the 

mean lifetime at use stress.  

 

Motivated by the application of stochastic processes in CSADT and SSADT planning, 

in this chapter, we model the degradation process by a stochastic process with drift kη  

and dispersion 2
kσ  at stress Xk, and assume that the drift-stress relationship is simple 

linear while dispersion keeps the same for all the stress levels. For simplicity, we only 

consider two-stress level CSADT, where the highest stress is known and normalized to 

be 1. The planning policy is the same as we present through chapter 4 to chapter 6, i.e. 

to minimize the total cost of testing as well as to achieve a requisite level of estimate 

precision.  

 

First, we present the optimal plans with known lower stresses. Decision variables 

include the samples size, sample allocations and the test time at each stress. A 

numerical example compared with the existing plan shows the advantages of our 

proposed plan. Subsequently, we present to determine the lower test stress 

with/without test time and sample size constraints. Finally, sensitivity analysis is 

conducted to show the influence of mis-specified pre-estimated parameters on the 

decision variables. This sensitivity study also suggests how the pre-set parameters be 

determined and how the results be influenced if the pre-set parameter is not well 

estimated.  
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A comparison of Park & Yum (1997)’s plan and our proposed plan is given below in 

Table 7.1. 

 

Table 7.1 Comparisons of our proposed plan with the existing destructive 

CSADT plan 

 Park & Yum, 1997 The proposed method 

Type of ADT CSADT 

Number of Stress 2 or 3 2 

Inputs Sample size Stress levels  

Stress levels Sample size 

Decision variables Test time at each stress 

Sample allocations at each stress 

Planning policy 

To minimize: 

the MLE of mean life under 

use condition 

To minimize: 

       the total cost of testing 

S. t. 

       a requisite level of estimate 

precision 

 

 

 

7.2 PLANNING OF THE DESTRUCTIVE CSADT  

 

7.2.1 Experiment Description & Model Assumptions 

 

In this destructive CSADT, the basic description and assumptions are the same as 

those in chapter 4. That is, n samples in total are put into test, among which knπ  are 
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under kX , where 1
2

1
=∑

=k
kπ . Testing time at each stress is respectively T1 and T2. The 

only difference lies that there is no need to specify the inspection time interval. At 

stress Xk, the degradation changes follow a stochastic process with drift kη  and 

dispersion 2
kσ  that satisfy a relationship described in equation (4.3) and (4.4). 

Degradation increments of unit i follow a normal distribution, i.e. 

( )kkki TTND 2,~ ση∆  with the p.d.f                      

( ) ( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −∆
−=∆ 2

2

2 2
exp

(2
1

σ
η

σπ k

kki

k

i T
TD

T
Df                     (7.1)           

 

 

7.2.2 Planning Policy 

 

Same as the planning policy stated before, we aim to minimize the cost under the 

condition that the estimate precision satisfies a requisite level.  

 

Because there is only one inspection on each unit, the measurement cost reduces to: 

∑
=

⋅⋅=
2

1k
kmkme CnC π                                                 (7.2) 

Sample cost and manpower cost remains the same as:  

nCC dde ⋅=                                                              (7.3) 

and                                              ∑
=

⋅=
2

1k
kokop TCC                                                     (7.4) 

The cost function becomes: 
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where dC , mkC , okC  are the cost coefficients defined in chapter 4. 

 

We are interested in the estimate of the mean lifetime at use condition, i.e. ( )0Xµ . By 

limiting the sampling risk in estimating ( )0Xµ  to be reasonably small, i.e. (4.11), the 

precision constraint mathematically reduces to:  
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See Appendix E1 for the detailed derivations. 

 

With inspection times at each stress level equal to 1, the optimization criteria in our 

proposed method is a a special case of models in Chapter 4 that is expressed as: 

Minimizing:     
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7.3 OPTIMAL DESTRUCTIVE CSADT PLANS 

 
7.3.1 Simulations 

We have run simulations to obtain the optimal plans given Cd=86$/unit, Cm1 = 

4$/unit*time, Cm2 = 4.5$/unit*time, Co1 = 0.3$/hr*time, Co2 = 0.4$/hr*time and 

100/ =a))σ . The results are shown in Table 7.2.  

 
Table 7.2 Optimal two-stress destructive CSADT plans 

 
 X1 n* *

1π  n1* n2* T1*(hrs) T2*(hrs)
0.1 15 0.8 12 3 3312 528 

0.15 16 0.75 12 4 3792 912 
0.2 19 0.736842 14 5 3984 1152 

0.25 22 0.681818 15 7 4368 1344 
0.3 24 0.666667 16 8 4848 1824 

0.35 28 0.642857 18 10 5280 2064 
0.4 32 0.625 20 12 5760 2496 

0.45 36 0.611111 22 14 6240 3216 
0.5 42 0.595238 25 17 7008 3648 

0.55 48 0.583333 28 20 7872 4512 
0.6 56 0.571429 32 24 9072 5376 

0.65 67 0.567164 38 29 9984 6816 
0.7 89 0.573034 51 38 9960 8392 

0.75 127 0.574803 73 54 9960 9832 
0.8 209 0.555024 116 93 9960 9928 

0.85 393 0.557252 219 174 9960 9928 

c=5 
p=0.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.9 1 >500      
0.1 16 0.8125 13 3 3504 576 

0.15 17 0.764706 13 4 4080 960 
0.2 20 0.75 15 5 4176 1344 

0.25 23 0.695652 16 7 4656 1536 
0.3 26 0.692308 18 8 5088 1920 

0.35 29 0.655172 19 10 5568 2448 
0.4 34 0.617647 21 13 6144 2688 

0.45 38 0.605263 23 15 6864 3360 
0.5 44 0.590909 26 18 7584 3984 

0.55 50 0.58 29 21 8640 4896 
0.6 59 0.559322 33 26 9792 5808 

0.65 74 0.567568 42 32 9984 7296 
0.7 98 0.581633 57 41 9960 9064 

0.75 144 0.583333 84 60 9960 9928 
0.8 238 0.567227 135 103 9960 9928 

0.85 447 0.55481 248 199 9960 9928 

 
 

c=4 
p=0.9 

 
 
 
 
 
 
 
 
 
 
 
 

c=4 
p=0.9 

 
 0.9 1 >500      
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Table 7.2 Optimal two-stress destructive CSADT plans 
(Continued) 

 

 X1 n* *
1π  n1* n2* T1*(hrs) T2*(hrs) 

0.1 17 0.823529 14 3 4080 768 
0.15 20 0.75 15 5 4368 1056 
0.2 22 0.727273 16 6 4992 1392 

0.25 26 0.692308 18 8 5088 1824 
0.3 29 0.655172 19 10 5856 2112 

0.35 33 0.6363 21 12 6432 2544 
0.4 38 0.631579 24 14 6864 3120 

0.45 43 0.604651 26 17 7632 3792 
0.5 49 0.591837 29 20 8640 4512 

0.55 57 0.578947 33 24 9552 5472 
0.6 69 0.57971 40 29 9984 6816 

0.65 90 0.577778 52 38 9984 8016 
0.7 120 0.6 72 48 9960 9832 

0.75 183 0.579235 106 77 9960 9832 
0.8 302 0.566225 171 131 9960 9880 

C=3 
P=0.9 

  
  
  
  
  
  
  
  
  
  
  
  
  
  0.85 1 >500      

0.1 23 0.826087 19 4 5568 1056 
0.15 26 0.769231 20 6 6288 1440 
0.2 30 0.733333 22 8 6672 1968 

0.25 34 0.705882 24 10 7344 2448 
0.3 39 0.666667 26 13 8016 2928 

0.35 45 0.644444 29 16 8640 3504 
0.4 51 0.627451 32 19 9552 4224 

0.45 60 0.616667 37 23 9984 5136 
0.5 72 0.625 45 27 9984 6480 

0.55 90 0.611111 55 35 9984 7584 
0.6 111 0.621622 69 42 9984 9648 

0.65 153 0.620915 95 58 9960 9928 
0.7 221 0.60181 133 88 9960 9928 

0.75 337 0.581602 196 141 9960 9928 

C=2 
P=0.9 

  
  
  
  
  
  
  
  
  
  
  
  
  0.8 1 >500      

 
 

 

Some findings can be seen as follows: 

 

1. Once the experimenter specifies the sampling risk level and the lower stress, i.e. 

c, p and X1, the optimal plan implies that number of samples allocated at the 

lower stress is larger than that at higher stress; and the testing time required at 
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the lower stress is longer than that at higher stress. That is, n1
*>n2

*, T1
*>T2

* 

given c, p and X1.  

 

This property is explainable since degradation information collected at the 

lower stress is more preferable because there would be less extrapolation from 

the lower stress to the use condition than that from the higher stress to use 

condition. More samples set at the lower stress are helpful to achieve the 

desired estimate precision with a smaller sample size. 

 

2. Given c and p, the required sample size and testing time increase if the lower 

test stress increases. That is, n*(X1
1)<n*(X1

2), T*(X1
1)<T*(X1

2) if X1
1<X1

2. 

 

Since a higher test stress level means larger extrapolation, this finding can be 

explained in the way that to achieve the same precision, more samples are 

requested to compensate the larger extrapolation.   

 

3. For the same X1, a tightened test plan requires more samples and longer testing 

time. That is, given X1 and p, n*(c1)>n*(c2), T*(c1)>T*(c2), if c1<c2. 

 

With a specified sampling risk p, it is reasonable that if the experimenter wants 

the MLE of the mean lifetime at use condition drops within a smaller range 

(c1<c2) of its true value, it needs more samples and longer test time. 
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7.3.2 A Numerical Example 

 

In Park & Yum (1997), an example, in which temperature is the accelerated stressor, 

was provided to illustrate their approach. The operation temperature is 1200C. And the 

highest temperature validating the same failure mode is 2700C. Their two-stress 

optimal CSADT plan is: lower test temperature 1810C and sample size 193.  

 

Park & Yum (2004) also presented a two stress destructive SSADT plan where the 

highest testing temperature and use temperature are respectively 2750C, 1500C. The 

longest allowable testing time is 600hr. By optimizing the asymptotic variance of the 

MLE of the 100pth quantile of the lifetime distribution at the use condition, they 

obtained the optimal sample size as: n0=104, n1=343, n2=74, T1=486hrs and T2=600hrs. 

 

To compare with Park and Yum’s plans, we set the low temperature and the high 

temperature at 1810C and 2700C respectively. Thus the lower stress is normalized as: 

4863.0
)273120/(1)273270/(1
)273120/(1)273181/(1

1 =
+−+
+−+=X  

 

In the first plan, we set sample size n=193, and determine the sample allocations and 

testing time. In the second plan, we optimally determine the sample size, sample 

allocations, and test time at each stress.  The results are summarized in Table 7.3.  

 

 

 

 



 
 
Chapter 7                                                                        Planning of Destructive CSADT                        
 

                                                                                                                                     
153  

Table 7.3. Numerical comparisons of the proposed plans with the existing plans 

 Stress Sample size Test time (hrs) Total Cost 

1810C 164 1200 
Park & Yum 1997 CSADT 

2700C
193 

29 1200 

 

18482.5 

1500C 184 0 

2450C 343 486 Park & Yum 2004 SSADT 

2750C

601 

74 600 

 

54508.8 

1810C 130 528 CSADT 

Plan 1 2700C
193 

63 288 
17675.1 

1810C 14 4224 

The proposed plans 

(Two options) CSADT 

Plan 2 2700C

24 

 10 2208 
4315.4 

Remarks: 
1. Temperature in use condition is 1200C, and the highest allowable temperature is 2700C. 
2. Precision parameters are set at c=1.5 and p=0.9. 
3. Cost coefficients are respectively: Cd = 86, Cm1 = 4, Cm2 = 4.5, Co1 = 0.3, Co2 = 0.4 

 

The comparisons show that: 

 

1. The proposed optimal plan requires fewer samples but longer testing time than 

that of the existing plans. 

 

2. With the same sample size, the proposed method requires less testing time to 

obtain the same estimate precision than the existing plans. 

 

3. To achieve the same estimate precision, it is seen that the required sample size 

and the testing time are compensated by each other, which results in different 

plans. In this situation, the total cost of testing becomes a concern to determine 

the optimal plan as we have proposed in this dissertation. If the individual cost 

of sample is relatively high, the best plan always indicates a smaller sample 

size and longer test time. However, if the test result is expected to be obtained 
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in a short time frame, a larger sample size is needed and the experimenter must 

endure a higher test expense.  

 

4. Among all the above plans, our plan is most economical in terms of saving 

testing cost and testing time, especially when the unit sample is expensive. The 

existing SSADT can be adopted if no more than one test equipment can be 

employed or if the operation cost is relatively high. 

 

 

7. 4 DETERMINATION OF THE LOWER STESS X1 

 

In section 7.3, we have assumed that the lower stress is known. However, the optimal 

X1 or the proper X1 under some constraints, such as the limitation of test duration and 

availability of test samples, can be analyzed from the above simulation results. 

 

 

7.4.1 Determination of the Optimal Lower Stress X1 without 

Constraints 

 

Plots of n2/n1 Vs X1 for various c (given p=0.9) show that the ratio of allocations goes 

up till a plateau and then goes up again.  What’s more, for different c, the plateau 

approximately locates at X1=0.6 ± 0.05. A suggestion is that the optimal stress level be 

drawn within (0.55, 0.65).  

 

 

 



 
 
Chapter 7                                                                        Planning of Destructive CSADT                        
 

                                                                                                                                     
155  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.4.2 Determination of the Optimal Lower Stress X1 with the Test 

Time Constraint 

 

It is observed that the optimal testing time at X1 is longer than that at X2, i.e T1 > T2.  

And to satisfy the precision constraint, T1 is normally longer than 9000hrs such that the 

test is a little bit time-consuming. In the cases where manufacturers need to know the 

test result within a certain time span, a test time constraint can be added to determine a 

proper X1. 

 

Figure 7.1. Plot of n2/n1 Vs X1 for various c 
in destructive CSADT plans 
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Figure 7.2 demonstrates the influence of X1 on optimal test time T1 and T2.  For 

example, if the allowable testing time is 5000hrs, and the estimate precision 

requirement is represented as p=0.9 and c=3, a proper lower test stress is 

approximately read off from Figure 7.2 at X1=0.204. It also can be computed by linear 

extrapolations. Since T1
*

(X1=0.2)=4992hrs and T1
*

(X1=0.25)=5088hrs, to get X1 where the 

corresponding T1 is 5000hrs, we take a linear extrapolation in between X1=0.2 and 

X1=0.25, the calculation is as follows: 

X1=0.2 +(0.25-0.2)*(5000-4992)/(5088-4992)=0.204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.2 Plot of optimal test time (T1 & T2) Vs X1 for various c  

in destructive CSADT plans 
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7.4.3 Determination of the Optimal Lower Stress X1 with the Sample 

Size Constraint 

 

Similarly, since the test requires a lot of samples (n>50) when tested at the optimal X1, 

there may be a sample size constraint especially when the products are newly 

developed and a limited number of samples are available for test. A proper X1 can be 

determined from an n Vs X1 plot as shown in Figure 7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, if the number of available samples is 50 and the estimate precision 

requirement is defined as p=0.9 and c=3. The proper X1 is approximately determined 

from Figure 3 or it can be calculated by taken a linear extrapolation in between X1= 0.5 

and X1=0.55 as:  

X1=0.5 +(0.55-0.5)*(50-49)/(57-49)=0.506 

Figure 7.3. Plot of n Vs X1 for various c in destructive CSADT plans 
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7.4.4 Determination of the Optimal Lower Stress X1 with Both Test 

Time and Sample Size Constraints 

 

In the condition both the test time and the sample size are limited, a proper X1 should 

be chosen to satisfy the two constraints. Mathematically, it is represented as follow: 

X1= Minimum (X1|under the test time constraint, X1|under the sample size constraint) 

 

For example, if the test time is limited to 5000hrs, the number of available samples is 

50, and the experimenter defines the estimate precision at p=0.9 and c=3, the lower test 

stress should be determined as below: 

X1= Minimum (X1|under the test time constraint, X1|under the sample size constraint) 

     = Minimum (0.202, 0.506) 

     =0.202 

 

 

 7.5 ROBUSTNESS ANALYSIS  

 

Since the optimal plans are designed based on a guessed value of a
σ , we conduct the 

sensitivity analysis of design variables to the mis-specification of a
σ . For consistency, 

we assume the true value of a
σ  is 100. Simulations of the optimal plans have been 

run for a
σ  at 80, 90, 110 and 120 respectively. The detailed data set can be found in 

Appendix E2. 
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7.5.1 Sensitivity of n to a
σ  

 

Table 7.4 summarizes the values of Rn for various deviations of a
σ  from its true 

value 100. The results show that the optimal planning is moderately sensitive to the 

deviation of the pre-estimate of a
σ . Overestimating and underestimating a

σ  have 

nearly the same effect on Rn. But when X1 is selected greater than 0.5, the sensitivity 

is evident since Rn >deviation of a
σ .  Hereby, we suggest X1<0.5 be used in practice. 

Table 7.4 Sensitivity of n to a
σ  

C  
X1     a

σ        Rn (%)
            dev. (%) 

2 3 4 5 

-20 17.4 17.6 25 26.7 
-10 8.7 11.8 12.5 13.3 
10 8.7 11.8 6.3 6.7 

0.1 

20 17.4 23.5 18.8 13.3 
-20 20 18.2 20 21.1 
-10 10 4.5 10 10.5 
10 13.3 13.6 10 10.5 

0.2 

20 23.3 22.7 20 15.8 
-20 20.5 17.2 19.2 20.8 
-10 7.7 10.3 7.7 8.3 
10 12.8 13.8 11.5 12.5 

0.3 

20 23.1 20.7 19.2 20.8 
-20 19.6 21.1 20.6 21.9 
-10 9.8 10.5 11.8 9.4 
10 13.7 7.9 8.8 6.3 

0.4 

20 27.5 18.4 17.6 18.8 
-20 25 20.4 20.5 21.4 
-10 13.9 10.2 11.4 11.9 
10 18.1 10.2 9.1 7.1 

0.5 

20 33.3 24.5 18.2 16.7 
-20 27.9 23.2 20.3 21.4 
-10 13.5 13 8.5 10.7 
10 19.8 17.4 15.3 10.7 

0.6 

20 42.3 31.9 32.2 25 
-20 35.7 30 29.6 29.2 
-10 19 17.5 14.3 15.7 
10 21.3 20 16.3 14.6 

0.7 

20 43.9 43.3 38.8 33.7 
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7.5.2 Sensitivity of 1π to a
σ  

 

Table 7.5 is a summary of values of 1πR  for various deviations of a
σ  from its true 

value. The results show that the plans are robust against the departure of guessed a
σ  

from its true value. Overestimating and underestimating a
σ  have nearly the same 

effect on 1πR . 

 

Table 7.5 Sensitivity of 1π to a
σ  

 
C  

X1     a
σ        1πR  (%)

            dev. (%) 
2 3 4 5 

-20 4.4 4.6 2.6 2.3 
-10 2 2.9 3.3 3.8 
10 3.2 4.1 1.4 1.6 

0.1 20 1.4 1.7 2.8 2.9 
-20 3.4 0.7 0 0.5 
-10 1 1.8 3.7 4.2 
10 0.3 1 3 3.1 

0.2 20 0.5 1.9 5.6 1.3 
-20 1.6 1.8 3.7 2.6 
-10 0 0.2 3.7 2.3 
10 2.3 1.8 5.4 0 

0.3 20 0 4.7 2.2 1.7 
-20 1.1 0.3 1.9 2.4 
-10 0.5 2.2 2.5 0.7 
10 1.7 0.4 5 1.2 

0.4 20 3 1.5 1.2 1.1 
-20 5.2 0.4 1.5 1.8 
-10 4.5 0.2 0.2 0.1 
10 1.6 0.1 2.2 0.8 

0.5 20 3.3 0.3 0.9 0.6 
-20 5.5 2.4 2.7 0.6 
-10 2.8 2.2 0.7 2 
10 2.8 4.4 2.5 1.2 

0.6 20 2.8 4.3 5.4 0 
-20 0.5 6.7 5.3 5.8 
-10 0.3 2.4 1.8 2.3 
10 0.4 0.5 2.6 2.7 

0.7 20 3.5 0.2 3.7 5.6 
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7.5.3 Sensitivity of T1 and T2 to a
σ  

 

Values of RT1 and RT2 for various deviation of a
σ are shown in Table 7.6 and Table 

7.7. The results indicate T1 is moderately sensitive to departure of a
σ  when X1 <0.5, 

and is robust to the departure when X1 > 0.5. While T2 is moderately sensitive to mis-

specified a
σ .  Because overestimate of a

σ  request longer testing time both at the 

lower stress and the highest stress. It satisfies the precision constraint conservatively. 

Table 7.6 Sensitivity of T1 to a
σ  

 
C  

X1     a
σ        RT1 (%)

            dev. (%) 
2 3 4 5 

-20 19 20 19.2 17.4 
-10 12.1 5.9 6.8 7.2 
10 13.8 11.8 8.2 10.1 

0.1 

20 23.3 18.8 20.5 23.2 
-20 17.3 22.1 20.7 18.1 
-10 10.1 15.4 6.9 8.4 
10 6.5 7.7 13.8 9.6 

0.2 

20 16.5 16.3 25.3 25.3 
-20 21 23.8 19.8 20.8 
-10 12.6 9.8 12.3 10.9 
10 6 4.9 11.3 5.9 

0.3 

20 15 15.6 19.8 20.8 
-20 21.6 21 20.3 21.7 
-10 12.1 7.7 11.7 13.3 
10 3 11.2 8.6 14.2 

0.4 

20 4.5 21.7 21.1 19.2 
-20 7.7 20.6 19.6 21.2 
-10 1 10.6 9.5 8.9 
10 0 10 10.1 11 

0.5 

20 0 15.6 20.3 23.3 
-20 0 12 20.1 19 
-10 0 2.9 10.8 9.5 
10 0 0 2 9.5 

0.6 

20 0 0 2 10.1 
-20 0 0.2 0.2 0.2 
-10 0 0.2 0.2 0.2 
10 0 0.2 0.2 0.2 

0.7 

20 0.2 0 0.2 0.2 
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Table 7.7 Sensitivity of T2 to a
σ  

 
C  

X1     a
σ        RT2 (%)
dev. (%) 

2 3 4 5 

-20 36.4 31.3 8.3 9.1 
-10 9.1 18.8 8.3 0 
10 0 6.3 41.7 27.3 

0.1 

20 18.2 6.3 25 45.5 
-20 26.8 20.7 17.9 20.8 
-10 9.8 13.8 17.9 12.5 
10 7.3 3.4 0 8.3 

0.2 

20 17.1 20.7 7.1 20.8 
-20 16.4 20.5 22.5 15.8 
-10 11.5 9.1 12.5 13.2 
10 9.8 9.1 2.5 10.5 

0.3 

20 21.3 27.3 22.5 15.8 
-20 18.2 15.4 17.9 11.5 
-10 6.8 12.3 1.8 5.8 
10 12.5 13.8 16.1 13.5 

0.4 

20 29.5 21.5 25 25 
-20 24.4 18.1 19.3 14.5 
-10 13.3 8.5 7.2 6.6 
10 6.7 9.6 12 15.8 

0.5 

20 23 16 24.1 23.7 
-20 25.9 22.5 19 17.9 
-10 15.4 12 12.4 8.9 
10 3 7.7 9.1 8.9 

0.6 

20 3.5 23.9 19 22.3 
-20 1 19.4 19.5 20.5 
-10 0 4.8 12.6 8.5 
10 0.5 1.5 9.6 13.3 

0.7 

20 0.1 1 9.1 19 
 

 

 7.6 CONCLUSIONS 

 

Planning of CSADT in nature of destructive testing is studied in this chapter. The 

optimal sample size in total, the allocations and the testing time at each stress are 

determined to minimize the total cost of experiment and to achieve a requisites level of 

estimate precision. Additionally, the consideration of properly setting the lower stress 

is presented in case that the testing time or sample size is limited. Sensitivity analysis 
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indicates that 1π  is robust to the mis-estimated a
σ , while n, T1, T2 are moderately 

sensitive to a
σ . X1 <0.5 is suggested for a test plan to save the total cost of testing if 

individual sample is expensive.  
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Chapter 8  

Conclusions and Future Research 

 

 

This dissertation has surveyed the literature of main aspects related to AT, such as the 

commonly used lifetime distributions, the acceleration models, modeling of 

degradation process in ADT, parameter estimation methods, failure mechanism 

validation, non-destructive and destructive testing, analysis of AT data, planning of 

ALT/ADT and so on. After that, ALT and ADT have been studied in three aspects, 

namely, planning of multiple-stress CSALT (chapter 2), analysis of SSADT data 

(chapter 3) and planning of CSADT, SSADT and destructive CSADT (chapter 4 to 7). 

 

Planning of multiple-stress CSALT has been presented in chapter 2. Different from the 

existing CSALT plans that minimize the asymptotic variance of the estimate of a 

particular reliability interest, we quantified the influence of variance inflation by 

relaxing the optimization criteria to the test plans. Assume that the failure time of 

product follows a Weibull distribution and the stress-life model is simply linear, we 

developed the design space for the low/middle stress and their corresponding 

allocation(s) in two/three stress plans. The result implies that the centroid of the lower 

and middle stress levels, weighted by their respective allocation, in our near optimal 

three-stress CSALT plan equals to the optimal low stress in the two-stress statistically 

optimal plan, which owns the smallest asymptotic variance. Based on the design space 
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and the connection of three-stress plan with two-stress plans, three approaches were 

further imposed to plan three-stress tests. Our proposed plans allow the experimenter 

to validate the stress-life model by minimizing allocation to the middle stress such that 

there are sufficient failures for detecting non-linearity if it exists. Our plans can also 

serve as follow-up tests during product development when the failure mechanisms are 

possibly changed due to modification of designs. Furthermore, our plans are friendly in 

practical use. They provide flexibility for experimenters to set stress levels and sample 

allocations. Experimenters can adjust the lower/middle stress and their allocations 

within a range until it is convenient to implement.  

 

A new way to analyze SSADT data has been studied in chapter 3. With a general 

stochastic model and a linear function to monitor the degradation process and the drift-

stress relationship, we achieved the closed from estimation of unknown parameters. 

This method not only alleviates the difficulty to determine the particular deterministic 

degradation functions, but also provides an analytical solution for various applications 

when the acceleration variables are temperature, voltage and so on. From the 

expression of the reliability estimate, it is clear, as expected, that the unknown 

parameters can be solved easily and efficiently.  

 

Planning of ADT has been studied in chapter 4 to chapter 7. In chapter 4, we presented 

to design both CSADT and SSADT in one general formulation. Motivated by the 

successful applications of stochastic models in ADT data analysis, we used stochastic 

processes to monitor the degradation paths in our ADT planning. Considering the 

tradeoff between the total cost of testing and the attainable estimate precision, we 

optimized the ADT plans by minimizing the total testing cost under the condition that 
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the probability the estimated mean lifetime at use stress within a range of its true value 

is not less than a pre-specified precision level. Given the lower stress and the 

inspection time interval, we obtained the optimal sample size allocated at each stress, 

the stopping time (or number of inspections) at each stress in CSADT, and the optimal 

sample size, the stress changing time and the stopping time of the whole test in 

SSADT 

 

It is seen that the general formulation is easily coded. Compared with the existing DT 

plan, our proposed plans require fewer test samples and less test duration if the lower 

stress and the inspection time interval are properly selected. As a result, the test cost 

can be greatly reduced. Compared with CSADT, SSADT saves time and cost 

significantly. Hence implementation of SSADT is highly recommended in real 

industry.  

 

Based on the formulation in chapter 4, the optimal CSADT plans have been simulated 

and analyzed in chapter 5. We studied the influence of the lower test stress and the 

inspection time interval on optimal plans. It is shown that the inspection time interval 

has less effect on the optimal results, while the lower stress affects the optimal results 

intensively. Additionally, the proper X1 can be determined by taking a cost budget into 

account. Sensitivity analysis of optimal plans to misspecifications of degradation 

parameters, a
σ , has also been carried out. It is seen that the optimal sample size and 

the stopping time are sensitive to a
σ  when X1>0.5. The other variables are not 

sensitive to a
σ . It is suggested regardless what planning method the experimenters 

are going to use, they should utilize all available information to get an accurate a
σ  
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before test planning. If it is not possible, an overestimate of a
σ  would be helpful to 

lead to a conservative plan, which is more close to the optimal one. 

 

The optimal SSADT plans have been studied in chapter 6.  Besides the optimal sample 

size and holding time at each stress, we presented the guidance on how to determine 

the lower test stress, the inspection time interval and the precision constraint 

parameters. We recommended the lower stress and the inpection time interval be 

deteremined by the apex in the L2/L1 Vs X1 convex contour plots. However, the 

contour pattern only exists for some combinations of c and p, hence, we further 

analyzed the scope of p copped with c. As a result, experimenters can tighten or loosen 

a plan by adjusting the values of c and p. 

 

To overcome the inefficiency of two-stress plans, we also designed three-stress 

SSADT plans with additional planning rules in chapter 6. The results indicate that 

three-stress SSADT requires less samples and inspections to achieve the same level of 

estimate precision, and consequently, saves the total cost of test. Moreover, existence 

of intermediate stress is adequate to verify the stress-drift relationship, and to fasten 

the degradation speed. 

 

Destructive CSADT plans have been addressed in chapter 7. The optimal sample size, 

the allocations and the testing time at each stress are determined. How to select a lower 

stress is also discussed in cases where the total testing time or sample size is limited. 

Sensitivity analysis indicates that ratio of optimal testing time at different stress levels 

is robust to the mis-estimated a
σ , while the optimal sample size and the testing time 
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are moderately sensitive to a
σ . We recommend experimenters choose a lower stress 

less than 0.5 for a destructive CSADT because such a plan saves the total testing cost if 

an individual sample is expensive.   

 

AT data analysis and experiment planning involves a wide range of problems. This 

dissertation mainly discussed SSADT data analysis, multiple-stress CSALT planning, 

two-stress CSADT planning (with or without destructive inspections), and two/three-

stress SSADT planning. The planning strategy presented in this dissertation can be 

applied to design SSALTs and multiple-stress CSADTs for future research. However, 

it is not applicable to destructive SSADT planning because the Fisher Information 

Matrix, which plays an important role in deriving the asymptotic variance of MLE of 

the lifetime at use stress, does not exist. Thus, the estimate precision constraint based 

on ML estimates cannot be generated.  

 

As in ALT planning, we have assumed the stress-life relationship is simply linear, 

current research can be extended to discuss the nonlinearity models. Some digamous 

analysis (Tseng & Wen, 2000) can be used to check whether the failure times or scale 

parameters at different stresses are linear or not. Additionally, one can future discuss 

the possible statistic tests that can be employed to test the null hypothesis that a 

relationship is linear versus an alternate hypothesis that it is not. 

 

Another limitation of current research is that in three-stress ADT planning, the 

decision variables are six-dimensional, i.e. lower stress, middle stress, samples 

allocated at each stress or holding time at each stress, inspection times and inspection 

intervals. But the discussion has been restricted to a lower dimension by assuming 
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lower stress and inspection interval are known. Even further details have been 

explained on how to determine these two variables, a more sophisticated method that 

can optimize all the six factors simultaneously and can achieve a global optimum are 

expected. 

 

The ADT models allow lot of score for new research in terms of modeling the 

degradations, inspection points and the use of data in a dynamic manner to obtain 

estimates, Kalman filtering (Singpurwalla and Meinhold, 1986) offers scope for further 

research. 

 

In addition, the emphasis of current work is to analyze or test individual components in 

a single acceleration environment. Future research can be directed to test two/three 

different components in multiple environments. The early paper by Zelen (1959) 

presented a factorial exponential method to analyze failure data collected from 

different components treated in different environments. The recent work by 

Singpurwalla (1986) and Kvam and Samaniego (1993, 1997) extended Zelen’s model. 

Integrating the planning strategy presented in this dissertation and the analytical ideas 

mentioned in the above papers, future research of planning ALT and ADT in random 

environments can be promoted to improve the applicability of AT in practice. 
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Appendix A: A Matlab program for analysing SSADT data  

Function [V_final]=SSADT_analysis (CriD, n, Xk, Lk,DI, DeltT,  percentage, q) 
 
% n is the number of samples in test 
% xk is vector of test stress 
% Lk is a verctor of inspection frequencies 
% LogDIoverDeltT is an L by n matrix that records ln(DI/deltT) 
%% deltT is the inspection time interval  
 
%% the assumption is that the dispersion drift at different stress level follows log-
linear function: 
%% log(D/delatT)=alpha+beta*Xk 
 
% the output itaU, deltaUsqure are the drift and diffusion parameters at use condition 
% the output beta is the parameter in the log-linear function. It is the accelerated factor 
due to changing of stress level 
 
% number of total inspection per item L  
L=sum(Lk); 
% Number of stress levels 
TotNumS=sum(size(Xk))-1; 
 
%X is the L by 2 matrix 
X=ones(L,2);  
p=1; 
for i=1:TotNumS 
      X(p:(p+Lk(i)-1),2)=Xk(i);   
      p=p+Lk(i); 
end  
i=1; 
j=1; 
for i=1:L 
   for j=1:n 
      if DI(i,j)==0 
         DI(i,j)=10^(-15); 
     end  
 end 
end 
    
LogDIoverDeltT=log(abs(DI./(DeltT*ones(1,n)))); 
% XD is X' Times D(L*n), a 2 by n matrix 
XD=X'*LogDIoverDeltT;                
% FinalsumXD is the r.h.s of the equations in report. It is the summarizations of all the 
increments, and the sum of the increment*stress  
FinalsumXD=(sum(XD'))';           
   
V=1/n*inv(X'*X)*FinalsumXD; 
 
alpha=V(1,1); 
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beta=V(2,1); 
 
%split the D matrix into parts, Dk---the Degradation increments at Xk 
%calculate itak 
p=1; 
DeltUSqure=0; 
for i=1:TotNumS 
Ita(i)=exp(alpha+beta*Xk(i)); 
itakDeltT=(Ita(i)*DeltT)*ones(1,n); 
PDeltUSqure=(sum((sum((DI(p:(p+Lk(i)-1),:)-itakDeltT(p:(p+Lk(i)-
1),:)).*(DI(p:(p+Lk(i)-1),:)-itakDeltT(p:(p+Lk(i)-1),:))))'))/(n*Lk(i)-1); 
DeltUSqure=DeltUSqure+PDeltUSqure; 
p=p+Lk(i); 
end 
 
ExpBetaXk=exp(beta*Xk); 
SumExpBetaXk=sum(ExpBetaXk'); 
 
ItaU=exp(alpha); 
DeltUSqure=DeltUSqure/SumExpBetaXk; 
MeanU=CriD/ItaU; 
LamdaU=CriD^2/DeltUSqure; 
 
MeanU_lower=… 
(1/MeanU+sqrt(FCDF((1-percentage), 1, (n*L-1))/(MeanU*LamdaU*(n*L-1))))^(-1); 
MeanU_upper=… 
1/(1/MeanU-sqrt(FCDF((1-percentage), 1, (n*L-1))/(MeanU*LamdaU*(n*L-1)))); 
 
LamdaU_lower=LamdaU*chi2inv(percentage/2, n*L-1)/(n*L); 
LamdaU_upper=LamdaU*chi2inv(1-percentage/2, n*L-1)/(n*L); 
 
Tq=MeanU/4*(sqrt(MeanU/LamdaU)*norminv(q, 0, 1)+… 
sqrt(MeanU/LamdaU*norminv(q, 0, 1)^2+4))^2; 
 
Tq_lower=MeanU_lower/4*(sqrt(MeanU_lower/LamdaU_upper)*norminv(q, 0, 1)+… 
sqrt(MeanU_lower/LamdaU_upper*norminv(q, 0, 1)^2+4))^2; 
Tq_upper=MeanU_upper/4*(sqrt(MeanU_upper/LamdaU_lower)*norminv(q, 0, 1)+… 
sqrt(MeanU_upper/LamdaU_lower*norminv(q, 0, 1)^2+4))^2; 
 
V_final=[ItaU, DeltUSqure, beta, MeanU, LamdaU, MeanU_upper, MeanU_lower, 
LamdaU_upper, LamdaU_lower,Tq, Tq_lower]; 
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Appendix B1: First and second order partial derivations of 

kjiLnL ,,   

From equation (4.12) 
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The first and second order partial differential of the kjiLnL ,,  can be derived as follows: 
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Appendix B2: A VBA program to optimise CSADT and 

SSADT plans with a interactive dialog window 

Dim st As Boolean 
 
Private Sub CommandButton1_Click() 
TextBoxcd.Value = Null 
TextBoxcm1.Value = Null 
TextBoxcm2.Value = Null 
TextBoxco1.Value = Null 
TextBoxco2.Value = Null 
 
TextBoxsignalratio.Value = Null 
TextBoxc.Value = Null 
TextBoxp.Value = Null 
 
TextBoxX1.Value = Null 
TextBoxTcrita.Value = Null 
TextBoxdeltT.Value = Null 
End Sub 
 
Private Sub CommandButton2_Click() 
save_output 
Hide 
End Sub 
 
Private Sub CommandButton3_Click() 
st = True 
End Sub 
 
Private Sub CommandButtonstarrun_Click() 
 
Dim Cd, Cm1, Cm2, Co1, Co2, signalratio, c, p, X1, deltT, Tcritical As Double 
 
clear_output 
Repaint 
st = False 
 
If TextBoxcd.Value = "" Then 
MsgBox ("Please enter a value of individual sample cost Cd.") 
Exit Sub 
End If 
 
If TextBoxcm1.Value = "" Then 
MsgBox ("Please enter a value of measurement cost at X1 Cm1.") 
Exit Sub 
End If 
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If TextBoxcm2.Value = "" Then 
MsgBox ("Please enter a value of measurement cost at X2 Cm2.") 
Exit Sub 
End If 
 
If TextBoxco1.Value = "" Then 
MsgBox ("Please enter a value of operation cost at X1 Co1.") 
Exit Sub 
End If 
 
If TextBoxco2.Value = "" Then 
MsgBox ("Please enter a value of operation cost at X2 Co2.") 
Exit Sub 
End If 
 
If TextBoxX1.Value = "" Then 
MsgBox ("Please enter a value of lower stress, X1.") 
Exit Sub 
End If 
 
If TextBoxTcrita.Value = "" Then 
MsgBox ("Please enter a value of longest allowable test time, Tcritical.") 
Exit Sub 
End If 
 
If TextBoxdeltT.Value = "" Then 
MsgBox ("Please enter a value of time interval between two inspection, deltT.") 
Exit Sub 
End If 
 
If TextBoxc.Value = "" Then 
MsgBox ("Please enter a value of precision requirement, c.") 
Exit Sub 
End If 
 
If TextBoxp.Value = "" Then 
MsgBox ("Please enter a value of precision level, p.") 
Exit Sub 
End If 
 
If TextBoxsignalratio = "" Then 
MsgBox ("Please enter a value of signalratio.") 
Exit Sub 
End If 
 
If CSADT = False And SSADT = False Then 
MsgBox ("Please seclet a the type of ADT") 
Exit Sub 
End If 
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Cd = TextBoxcd.Value 
Cm1 = TextBoxcm1.Value 
Cm2 = TextBoxcm2.Value 
Co1 = TextBoxco1.Value 
Co2 = TextBoxco2.Value 
 
signalratio = TextBoxsignalratio.Value 
c = TextBoxc.Value 
p = TextBoxp.Value 
 
X2 = 1 
X1 = TextBoxX1.Value 
Tcritical = TextBoxTcrita.Value 
deltT = TextBoxdeltT.Value 
 
Dim n As Integer 
Dim T, T1, T2, pai1, pai2, q1, q2, r1, r2, w1, w2 As Double 
Dim fai As Double 
Dim cost As Double 
 
Dim Ln As Integer 
Dim LT, Lp, Lq As Double 
Dim Costsave, Tsave, pai1save, q2save As Double 
Dim nsave, rol As Integer 
 
Ln = 1 
q1 = 1 
Costsave = 10000000 
 
If CSADT.Value = True Then 
 
For n = 1 To 200 Step Ln 
Lp = 100 / n 
For T = deltT To Tcritical Step deltT 
Lq = 100 / (T / deltT) 
For pai11 = 1 To 99 Step Lp 
pai1 = pai11 / 100 
pai2 = 1 - pai1 
'for CSADT, wk=qk, rk=paik, q1=1, 0<q2<1 
For q22 = Lq To 100 Step Lq 
q2 = q22 / 100 
w1 = q1 
w2 = q2 
r1 = pai1 
r2 = pai2 
Q = -(X1 * X1 * pai1 * q1 + X2 * X2 * pai2 * q2) / (T * ((X1 * pai1 * q1 + X2 * pai2 
* q2) ^ 2 - (X1 * X1 * pai1 * q1 + X2 * X2 * pai2 * q2) * (r1 * q1 + r2 * q2))) 
fai = Application.WorksheetFunction.NormSDist((c - 1) * n ^ 0.5 / (signalratio * Q ^ 
0.5)) - Application.WorksheetFunction.NormSDist((1 / c - 1) * n ^ 0.5 / (signalratio * 
Q ^ 0.5)) 
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If fai >= p Then 
cost = Cd * n + n * T / deltT * (Cm1 * pai1 * q1 + Cm2 * pai2 * q2) + T * (Co1 * w1 
+ Co2 * w2) 
If Costsave >= cost Then 
Costsave = cost 
nsave = n 
Tsave = T 
pai1save = pai1 
q2save = q2 
End If 
End If 
 
Next 
Next 
Next 
Next 
TextBoxn.Value = nsave 
TextBoxT.Value = Tsave 
TextBoxpai1.Value = pai1save 
TextBoxpai2.Value = 1 - pai1save 
TextBoxq1.Value = q1 
TextBoxq2.Value = q2save 
TextBoxcost.Value = Costsave 
 
TextBoxn1.Value = Round(nsave * pai1save) 
TextBoxn2.Value = nsave - Round(nsave * pai1save) 
TextBoxT1.Value = Tsave 
TextBoxT2.Value = Tsave * q2save 
TextBoxL1.Value = Tsave / deltT 
TextBoxL2.Value = Tsave * q2save / deltT 
End If 
 
 
If SSADT.Value = True Then 
q1 = 1 
q2 = 1 
r1 = q1 
r2 = q2 
 
For n = 1 To 200 Step Ln 
For T = deltT To Tcritical Step deltT 
Lp = 100 / (T / deltT) 
For pai11 = 1 To 99 Step Lp 
pai1 = (pai11 - 1) / 100 
pai2 = 1 - pai1 
w1 = pai1 
w2 = pai2 
 
If st = True Then 
Exit Sub 
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End If 
 
Q = -(X1 * X1 * pai1 * q1 + X2 * X2 * pai2 * q2) / (T * ((X1 * pai1 * q1 + X2 * pai2 
* q2) ^ 2 - (X1 * X1 * pai1 * q1 + X2 * X2 * pai2 * q2) * (r1 * q1 + r2 * q2))) 
fai = Application.WorksheetFunction.NormSDist((c - 1) * n ^ 0.5 / (signalratio * Q ^ 
0.5)) - Application.WorksheetFunction.NormSDist((1 / c - 1) * n ^ 0.5 / (signalratio * 
Q ^ 0.5)) 
If fai >= p Then 
cost = Cd * n + n * T / deltT * (Cm1 * pai1 * q1 + Cm2 * pai2 * q2) + T * (Co1 * w1 
+ Co2 * w2) 
If Costsave >= cost Then 
Costsave = cost 
nsave = n 
Tsave = T 
pai1save = pai1 
End If 
End If 
 
Next 
Next 
Next 
TextBoxn.Value = nsave 
TextBoxT.Value = Tsave 
TextBoxpai1.Value = pai1save 
TextBoxpai2.Value = 1 - pai1save 
TextBoxq1.Value = q1 
TextBoxq2.Value = q2 
TextBoxcost.Value = Costsave 
TextBoxn1.Value = nsave 
TextBoxn2.Value = nsave 
TextBoxT1.Value = Tsave * pai1save 
TextBoxT2.Value = Tsave - Tsave * pai1save 
TextBoxL1.Value = TextBoxT1.Value / deltT 
TextBoxL2.Value = TextBoxT2.Value / deltT 
End If 
 
End Sub 
 
 
Private Sub CSADT_Click() 
CSADT.Enabled = True 
End Sub 
 
Private Sub Label2_Click() 
MsgBox ("this is the measurment cost") 
End Sub 
 
Private Sub SSADT_Click() 
SSADT.Enabled = True 
End Sub 
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Private Sub save_output() 
Dim myRange As Range 
Set myRange = Worksheets("user_interactive").Range("A1:D5") 
'myRange.Cells.Item(1, 1) = TextBoxn.Value 
TextBoxn.Value = nsave 
TextBoxT.Value = Tsave 
TextBoxpai1.Value = pai1save 
TextBoxpai2.Value = 1 - pai1save 
TextBoxq1.Value = q1 
TextBoxq2.Value = q2 
TextBoxcost.Value = Costsave 
TextBoxn1.Value = nsave 
TextBoxn2.Value = nsave 
TextBoxT1.Value = Tsave * pai1save 
TextBoxT2.Value = Tsave * (1 - pai1save) 
End Sub 
 
Private Sub clear_output() 
TextBoxn.Value = Null 
TextBoxT.Value = Null 
TextBoxpai1.Value = Null 
TextBoxpai2.Value = Null 
TextBoxq1.Value = Null 
TextBoxq2.Value = Null 
TextBoxcost.Value = Null 
TextBoxn1.Value = Null 
TextBoxn2.Value = Null 
TextBoxT1.Value = Null 
TextBoxT2.Value = Null 
TextBoxL1.Value = Null 
TextBoxL2.Value = Null 
End Sub 
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Appendix C: Optimal CSADT plans with mis-specified a
σ  

 

a
σ  c X1

o no T1
o T2

o To n1
o n2

o L1
0 L2

o 

0.05 15 4080 720 4080 13 2 17 3 
0.1 18 4560 960 4560 14 4 19 4 

0.15 20 4800 1680 4800 15 5 20 7 
0.2 25 4800 1920 4800 18 7 20 8 

0.25 30 4800 2400 4800 21 9 20 10 
0.3 36 4800 2880 4800 25 11 20 12 

0.35 42 4800 3840 4800 29 13 20 16 
0.4 50 4800 4800 4800 37 13 20 20 

0.45 64 4800 4800 4800 46 18 20 20 
0.5 83 4800 4800 4800 58 25 20 20 

0.55 109 4800 4800 4800 74 35 20 20 

2 

0.6 146 4800 4800 4800 92 54 20 20 
0.05 11 3120 480 3120 9 2 13 2 
0.1 13 3120 960 3120 11 2 13 4 

0.15 14 4080 960 4080 10 4 17 4 
0.2 17 4080 1200 4080 12 5 17 5 

0.25 19 4560 1680 4560 12 7 19 7 
0.3 22 4800 1920 4800 14 8 20 8 

0.35 26 4560 2640 4560 17 9 19 11 
0.4 30 4800 3360 4800 20 10 20 14 

0.45 37 4800 3840 4800 23 14 20 16 
0.5 46 4800 4320 4800 30 16 20 18 

0.55 59 4800 4800 4800 40 19 20 20 

3 

0.6 79 4800 4800 4800 50 29 20 20 
0.05 10 2640 480 2640 9 1 11 2 
0.1 12 2880 720 2880 9 3 12 3 

0.15 12 3600 960 3600 9 3 15 4 
0.2 14 3600 1440 3600 10 4 15 6 

0.25 18 3600 1440 3600 12 6 15 6 
0.3 19 4320 1920 4320 13 6 18 8 

0.35 20 4800 2640 4800 13 7 20 11 
0.4 27 4560 2400 4560 17 10 19 10 

0.45 33 4560 2880 4560 20 13 19 12 
0.5 38 4800 3840 4800 23 15 20 16 

0.55 48 4800 4320 4800 30 18 20 18 
0.6 65 4800 4320 4800 40 25 20 18 

80 

4 

0.65 87 4800 4800 4800 54 33 20 20 
To be continued 
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Continued 

a
σ  c X1

o no T1
o T2

o To n1
o n2

o L1
0 L2

o 

0.05 16 4800 960 4800 14 2 20 4 
0.1 21 4800 1200 4800 16 5 20 5 

0.15 26 4800 1440 4800 20 6 20 6 
0.2 30 4800 2400 4800 22 8 20 10 

0.25 36 4800 2880 4800 26 10 20 12 
0.3 42 4800 3840 4800 31 11 20 16 

0.35 52 4800 4080 4800 37 15 20 17 
0.4 63 4800 4800 4800 45 18 20 20 

0.45 82 4800 4560 4800 58 24 20 19 
0.5 104 4800 4800 4800 71 33 20 20 

0.55 137 4800 4800 4800 89 48 20 20 

2 

0.6 185 4800 4800 4800 118 67 20 20 
0.05 12 3600 480 3600 10 2 15 2 
0.1 14 4080 720 4080 11 3 17 3 

0.15 17 3840 1440 3840 13 4 16 6 
0.2 18 4560 1920 4560 13 5 19 8 

0.25 21 4800 2160 4800 15 6 20 9 
0.3 26 4800 2400 4800 17 9 20 10 

0.35 32 4560 2880 4560 22 10 19 12 
0.4 38 4800 3360 4800 25 13 20 14 

0.45 45 4800 4320 4800 31 14 20 18 
0.5 57 4800 4800 4800 40 17 20 20 

0.55 77 4800 4320 4800 49 28 20 18 

3 

0.6 100 4800 4800 4800 64 36 20 20 
0.05 11 3120 480 3120 9 2 13 2 
0.1 13 3120 960 3120 11 2 13 4 

0.15 14 4080 960 4080 10 4 17 4 
0.2 17 4080 1200 4080 12 5 17 5 

0.25 19 4560 1680 4560 12 7 19 7 
0.3 22 4800 1920 4800 14 8 20 8 

0.35 26 4560 2640 4560 17 9 19 11 
0.4 30 4800 3360 4800 20 10 20 14 

0.45 37 4800 3840 4800 23 14 20 16 
0.5 46 4800 4320 4800 30 16 20 18 

0.55 59 4800 4800 4800 40 19 20 20 
0.6 79 4800 4800 4800 50 29 20 20 

90 

4 

0.65 110 4800 4800 4800 70 40 20 20 
To be continued 
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Continued 

a
σ  c X1

o no T1
o T2

o To n1
o n2

o L1
0 L2

o 

0.05 25 4560 960 4560 22 3 19 4 
0.1 30 4800 1440 4800 25 5 20 6 

0.15 36 4800 2160 4800 28 8 20 9 
0.2 42 4800 3120 4800 33 9 20 13 

0.25 51 4800 3600 4800 39 12 20 15 
0.3 61 4800 4320 4800 46 15 20 18 

0.35 75 4800 4800 4800 57 18 20 20 
0.4 94 4800 4800 4800 67 27 20 20 

0.45 120 4800 4800 4800 84 36 20 20 

2 

0.5 156 4800 4800 4800 108 48 20 20 
0.05 14 4560 720 4560 12 2 19 3 
0.1 17 4560 1440 4560 14 3 19 6 

0.15 21 4800 1440 4800 16 5 20 6 
0.2 26 4560 2160 4560 19 7 19 9 

0.25 30 4800 2640 4800 21 9 20 11 
0.3 36 4800 3120 4800 25 11 20 13 

0.35 42 4800 4080 4800 30 12 20 17 
0.4 51 4800 4800 4800 37 14 20 20 

0.45 66 4800 4560 4800 46 20 20 19 
0.5 84 4800 4800 4800 56 28 20 20 

0.55 111 4800 4800 4800 74 37 20 20 

3 

0.6 150 4800 4800 4800 98 52 20 20 
0.05 12 4320 480 4320 10 2 18 2 
0.1 16 3840 1200 3840 13 3 16 5 

0.15 17 4560 1680 4560 13 4 19 7 
0.2 22 4560 1680 4560 15 7 19 7 

0.25 25 4800 2160 4800 17 8 20 9 
0.3 29 4800 2880 4800 20 9 20 12 

0.35 36 4800 3120 4800 24 12 20 13 
0.4 43 4800 3840 4800 28 15 20 16 

0.45 52 4800 4560 4800 35 17 20 19 
0.5 67 4800 4800 4800 47 20 20 20 

0.55 89 4800 4560 4800 57 32 20 19 
0.6 118 4800 4800 4800 76 42 20 20 

 
110 

4 

0.65 164 4800 4800 4800 102 62 20 20 
To be Continued 
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Continued 

a
σ   X1

o no T1
o T2

o To n1
o n2

o L1
0 L2

o 

0.05 28 4800 1200 4800 24 4 20 5 
0.1 34 4800 1920 4800 29 5 20 8 

0.15 42 4800 2400 4800 33 9 20 10 
0.2 50 4800 3120 4800 39 11 20 13 

0.25 59 4800 4080 4800 46 13 20 17 
0.3 71 4800 4800 4800 55 16 20 20 

0.35 89 4800 4800 4800 67 22 20 20 
0.4 112 4800 4800 4800 82 30 20 20 

0.45 143 4800 4800 4800 101 42 20 20 

2 

0.5 185 4800 4800 4800 126 59 20 20 
0.05 17 4560 720 4560 14 3 19 3 
0.1 20 4800 1200 4800 16 4 20 5 

0.15 25 4800 1440 4800 19 6 20 6 
0.2 28 4800 2640 4800 22 6 20 11 

0.25 34 4800 3120 4800 25 9 20 13 
0.3 42 4800 3360 4800 30 12 20 14 

0.35 50 4800 4080 4800 36 14 20 17 
0.4 61 4800 4800 4800 45 16 20 20 

0.45 78 4800 4800 4800 56 22 20 20 
0.5 100 4800 4800 4800 68 32 20 20 

0.55 132 4800 4800 4800 88 44 20 20 

3 

0.6 178 4800 4800 4800 115 63 20 20 
0.05 15 4080 480 4080 13 2 17 2 
0.1 16 4560 1440 4560 13 3 19 6 

0.15 20 4800 1440 4800 15 5 20 6 
0.2 24 4800 1920 4800 17 7 20 8 

0.25 28 4800 2640 4800 20 8 20 11 
0.3 33 4800 3360 4800 24 9 20 14 

0.35 41 4800 3600 4800 28 13 20 15 
0.4 51 4800 3840 4800 35 16 20 16 

0.45 61 4800 4800 4800 42 19 20 20 
0.5 79 4800 4800 4800 53 26 20 20 

0.55 104 4800 4800 4800 68 36 20 20 
0.6 141 4800 4800 4800 92 49 20 20 

120 

4 

0.65 195 4800 4800 4800 121 74 20 20 
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Appendix D: Optimal SSADT plans with mis-specified a
σ  

 
 

σ / a  c X1 n T1 T2 T L L1 L2 
0.05 8 2880 240 3120 13 12 1 
0.1 10 2400 240 2640 11 10 1 

0.15 10 2640 240 2880 12 11 1 
0.2 10 2640 480 3120 13 11 2 

0.25 9 2880 720 3600 15 12 3 
0.3 11 2640 480 3120 13 11 2 

0.35 10 2880 720 3600 15 12 3 
0.4 10 3360 480 3840 16 14 2 

0.45 10 2880 960 3840 16 12 4 
0.5 12 2880 480 3360 14 12 2 

0.55 10 3120 960 4080 17 13 4 
0.6 11 3360 480 3840 16 14 2 

0.65 12 3360 240 3600 15 14 1 
0.7 12 3120 480 3600 15 13 2 

2 >=0.75 13 3120 240 3360 14 13 1 
0.05 7 1680 240 1920 8 7 1 
0.1 6 2160 240 2400 10 9 1 

0.15 8 1680 240 1920 8 7 1 
0.2 7 2160 240 2400 10 9 1 

0.25 7 2400 240 2640 11 10 1 
0.3 7 2160 480 2640 11 9 2 

0.35 9 1680 480 2160 9 7 2 
0.4 7 2160 720 2880 12 9 3 

0.45 8 2160 480 2640 11 9 2 
0.5 9 1920 480 2400 10 8 2 

0.55 8 2640 240 2880 12 11 1 
0.6 8 2640 240 2880 12 11 1 

0.65 8 2400 480 2880 12 10 2 
3 >=0.7 9 2400 240 2640 11 10 1 

0.05 5 1920 240 2160 9 8 1 
0.1 6 1680 240 1920 8 7 1 

0.15 6 1920 240 2160 9 8 1 
0.2 7 1680 240 1920 8 7 1 

0.25 6 2160 240 2400 10 9 1 
0.3 7 1920 240 2160 9 8 1 

0.35 8 1440 480 1920 8 6 2 
0.4 6 1920 720 2640 11 8 3 

0.45 7 1920 480 2400 10 8 2 
0.5 8 1680 480 2160 9 7 2 

0.55 8 1440 720 2160 9 6 3 
0.6 7 2400 240 2640 11 10 1 

0.65 7 2400 240 2640 11 10 1 
0.7 7 2400 240 2640 11 10 1 

0.75 7 2160 480 2640 11 9 2 
4 >=0.8 8 2160 240 2400 10 9 1 

0.05 5 1680 240 1920 8 7 1 
80 5 0.1 6 1440 240 1680 7 6 1 

To be continued 
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Continued 

σ / a  c X1 n T1 T2 T L L1 L2 
0.15 5 1920 240 2160 9 8 1 
0.2 6 1680 240 1920 8 7 1 

0.25 6 1920 240 2160 9 8 1 
0.3 6 1680 480 2160 9 7 2 

0.35 7 1440 480 1920 8 6 2 
0.4 6 1920 480 2400 10 8 2 

0.45 7 1920 240 2160 9 8 1 
0.5 7 1680 480 2160 9 7 2 

0.55 6 2400 240 2640 11 10 1 
0.6 6 2160 480 2640 11 9 2 

0.65 6 1920 720 2640 11 8 3 
80 5 >=0.7 7 2160 240 2400 10 9 1 

0.05 10 2880 240 3120 13 12 1 
0.1 10 3120 240 3360 14 13 1 

0.15 10 3120 480 3600 15 13 2 
0.2 10 3120 720 3840 16 13 3 

0.25 10 3360 720 4080 17 14 3 
0.3 12 2880 720 3600 15 12 3 

0.35 10 3840 720 4560 19 16 3 
0.4 11 3600 720 4320 18 15 3 

0.45 13 3360 480 3840 16 14 2 
0.5 14 2880 720 3600 15 12 3 

0.55 13 3600 480 4080 17 15 2 
0.6 13 3360 720 4080 17 14 3 

0.65 12 4320 240 4560 19 18 1 
0.7 12 4080 480 4560 19 17 2 

2 >=0.75 11 4800 240 5040 21 20 1 
0.05 7 2160 240 2400 10 9 1 
0.1 7 2400 240 2640 11 10 1 

0.15 9 1920 240 2160 9 8 1 
0.2 8 2160 480 2640 11 9 2 

0.25 8 2640 240 2880 12 11 1 
0.3 9 2160 480 2640 11 9 2 

0.35 8 2640 480 3120 13 11 2 
0.4 9 2400 480 2880 12 10 2 

0.45 8 2880 480 3360 14 12 2 
0.5 9 2640 480 3120 13 11 2 

0.55 10 2640 240 2880 12 11 1 
0.6 10 2400 480 2880 12 10 2 

0.65 10 2160 720 2880 12 9 3 
3 >=0.7 9 3120 240 3360 14 13 1 

0.05 7 1680 240 1920 8 7 1 
0.1 6 2160 240 2400 10 9 1 

0.15 8 1680 240 1920 8 7 1 
0.2 7 2160 240 2400 10 9 1 

0.25 7 2400 240 2640 11 10 1 
0.3 7 2160 480 2640 11 9 2 

0.35 9 1680 480 2160 9 7 2 
0.4 7 2160 720 2880 12 9 3 

0.45 8 2160 480 2640 11 9 2 
90 4 0.5 9 1920 480 2400 10 8 2 

To be continued 
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Continued 

σ / a  c X1 n T1 T2 T L L1 L2 
0.55 8 2640 240 2880 12 11 1 
0.6 8 2640 240 2880 12 11 1 

0.65 8 2400 480 2880 12 10 2 
4 >=0.7 9 2400 240 2640 11 10 1 

0.05 5 2160 240 2400 10 9 1 
0.1 6 1920 240 2160 9 8 1 

0.15 6 2160 240 2400 10 9 1 
0.2 7 1920 240 2160 9 8 1 

0.25 6 2400 240 2640 11 10 1 
0.3 7 2160 240 2400 10 9 1 

0.35 8 1680 480 2160 9 7 2 
0.4 7 2400 240 2640 11 10 1 

0.45 7 2160 480 2640 11 9 2 
0.5 8 1920 480 2400 10 8 2 

0.55 8 1680 720 2400 10 7 3 
0.6 7 2400 480 2880 12 10 2 

0.65 7 2400 480 2880 12 10 2 
90 5 >=0.7 8 2400 240 2640 11 10 1 

0.05 12 3600 240 3840 16 15 1 
0.1 13 3600 240 3840 16 15 1 

0.15 14 3360 480 3840 16 14 2 
0.2 15 3360 480 3840 16 14 2 

0.25 15 3360 720 4080 17 14 3 
0.3 15 3600 720 4320 18 15 3 

0.35 15 3840 720 4560 19 16 3 
0.4 14 4080 960 5040 21 17 4 

0.45 16 3600 960 4560 19 15 4 
0.5 15 4080 960 5040 21 17 4 

0.55 15 4800 480 5280 22 20 2 
0.6 16 4560 480 5040 21 19 2 

0.65 16 4320 720 5040 21 18 3 
0.7 17 4320 480 4800 20 18 2 

2 >=0.75 15 5280 240 5520 23 22 1 
0.05 8 2880 240 3120 13 12 1 
0.1 8 3120 240 3360 14 13 1 

0.15 9 3120 240 3360 14 13 1 
0.2 10 2640 480 3120 13 11 2 

0.25 10 2880 480 3360 14 12 2 
0.3 10 3120 480 3600 15 13 2 

0.35 11 2640 720 3360 14 11 3 
0.4 10 3120 720 3840 16 13 3 

0.45 11 2880 720 3600 15 12 3 
0.5 12 2400 960 3360 14 10 4 

0.55 12 3360 240 3600 15 14 1 
0.6 12 3120 480 3600 15 13 2 

0.65 12 2880 720 3600 15 12 3 
3 >=0.7 11 3840 240 4080 17 16 1 

0.05 7 2640 240 2880 12 11 1 
0.1 9 2160 240 2400 10 9 1 

0.15 8 2400 480 2880 12 10 2 
110 4 0.2 8 2640 480 3120 13 11 2 

To be continued 
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Continued 

σ / a  c X1 n T1 T2 T L L1 L2 
0.25 10 2160 480 2640 11 9 2 
0.3 9 2640 480 3120 13 11 2 

0.35 10 2160 720 2880 12 9 3 
0.4 9 2640 720 3360 14 11 3 

0.45 10 2400 720 3120 13 10 3 
0.5 9 2880 720 3600 15 12 3 

0.55 10 2880 480 3360 14 12 2 
0.6 10 2640 720 3360 14 11 3 

0.65 11 2640 480 3120 13 11 2 
0.7 9 3120 720 3840 16 13 3 

4 >=0.75 10 3360 240 3600 15 14 1 
0.05 6 2640 240 2880 12 11 1 
0.1 8 2160 240 2400 10 9 1 

0.15 7 2400 480 2880 12 10 2 
0.2 9 1920 480 2400 10 8 2 

0.25 8 2400 480 2880 12 10 2 
0.3 8 2640 480 3120 13 11 2 

0.35 9 2400 480 2880 12 10 2 
0.4 8 2880 480 3360 14 12 2 

0.45 9 2640 480 3120 13 11 2 
0.5 10 2400 480 2880 12 10 2 

0.55 10 2160 720 2880 12 9 3 
0.6 9 2880 480 3360 14 12 2 

0.65 9 2880 480 3360 14 12 2 
110 5 >=0.7 10 2880 240 3120 13 12 1 

0.05 12 4320 240 4560 19 18 1 
0.1 13 4080 480 4560 19 17 2 

0.15 14 4080 480 4560 19 17 2 
0.2 15 3840 720 4560 19 16 3 

0.25 16 3840 720 4560 19 16 3 
0.3 16 3840 960 4800 20 16 4 

0.35 16 4080 960 5040 21 17 4 
0.4 16 4320 960 5280 22 18 4 

0.45 18 3600 1200 4800 20 15 5 
0.5 18 4320 720 5040 21 18 3 

0.55 17 4800 720 5520 23 20 3 
0.6 16 5520 480 6000 25 23 2 

0.65 16 5280 720 6000 25 22 3 
0.7 17 5520 240 5760 24 23 1 

0.75 17 5280 480 5760 24 22 2 
2 >=0.8 18 5280 240 5520 23 22 1 

0.05 9 3120 240 3360 14 13 1 
0.1 9 3360 240 3600 15 14 1 

0.15 9 3360 480 3840 16 14 2 
0.2 11 2880 480 3360 14 12 2 

0.25 11 3120 480 3600 15 13 2 
0.3 11 3360 480 3840 16 14 2 

0.35 13 2640 720 3360 14 11 3 
0.4 12 3120 720 3840 16 13 3 

0.45 11 3600 720 4320 18 15 3 
120 3 0.5 12 3360 720 4080 17 14 3 

To be continued 
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Continued 

σ / a  c X1 n T1 T2 T L L1 L2 
0.55 13 3120 720 3840 16 13 3 
0.6 12 3840 480 4320 18 16 2 

0.65 13 3840 240 4080 17 16 1 
0.7 13 3840 240 4080 17 16 1 

0.75 13 3840 240 4080 17 16 1 
0.8 13 3600 480 4080 17 15 2 

3 >=0.85 14 3600 240 3840 16 15 1 
0.05 9 2400 240 2640 11 10 1 
0.1 9 2640 240 2880 12 11 1 

0.15 9 2880 240 3120 13 12 1 
0.2 9 3120 240 3360 14 13 1 

0.25 10 2640 480 3120 13 11 2 
0.3 10 2880 480 3360 14 12 2 

0.35 11 2400 720 3120 13 10 3 
0.4 10 2880 720 3600 15 12 3 

0.45 11 2400 960 3360 14 10 4 
0.5 10 3120 720 3840 16 13 3 

0.55 11 2880 720 3600 15 12 3 
0.6 12 2880 480 3360 14 12 2 

0.65 10 3360 720 4080 17 14 3 
4 >=0.7 11 3600 240 3840 16 15 1 

0.05 8 2400 240 2640 11 10 1 
0.1 8 2640 240 2880 12 11 1 

0.15 10 2160 240 2400 10 9 1 
0.2 9 2400 480 2880 12 10 2 

0.25 9 2640 480 3120 13 11 2 
0.3 10 2160 720 2880 12 9 3 

0.35 9 2640 720 3360 14 11 3 
0.4 11 2400 480 2880 12 10 2 

0.45 9 2640 960 3600 15 11 4 
0.5 10 2640 720 3360 14 11 3 

0.55 11 2400 720 3120 13 10 3 
0.6 10 3120 480 3600 15 13 2 

0.65 10 3120 480 3600 15 13 2 
120 5 >=0.7 11 3120 240 3360 14 13 1 
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Appendix E1: Derivation of estimate precision constraint for 

destructive CSADT planning 

From equation (7.1), the log-likelihood of each increment is     
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The second order partial derivates of LnL are: 
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Hence, the fisher information matrix is derived as: 

( ) ( )
( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

−+−+

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

−

=

∑

∑∑

∑∑∑

=

==

===

2
0,1
0,1,1

ln

lnln

lnln
,

ln

2
221

2
111

2211112111

2

1
2

2

1

2

1
2

2

1

2

1

2

1
2

2

symmetric
XTXT
XTXTTT

n

b
L

Esymmetric

b
L

E
b

L
E

a
L

E
ba
L

E
a

L
E

F

n

i

i

n

i

i
n

i

i

n

i

i
n

i

i
n

i

i

ππ
ππππ

σ

σ

σ

 

and  
( )( ) ( )( ) ( )( )[ ]2

221111
2
221

2
1112111 1112 XTXTXTXTTTF ππππππ −+−−+−+=  

Let  

( )
( )( ) ( )( ) ( )( )

( )
( ) ( )2

212111

2
221

2
111

2
221111

2
221

2
1112111

2
221

2
111

22

1

2

1

2
2

1

2

1

2

11

1
1

111
1

XXTT
XTXT

XTXTXTXTTT
XTXT

XTXTT

XT
FQ

k
kkk

k
kkk

k
kk

k
kkk

−−
−+

=

−+−−+−+
−+

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
==

∑∑∑

∑

===

=

ππ
ππ

ππππππ
ππ

πππ

π

 

 
Then the asymptotic variance of MLE of ( )0Xµ  is calculated as: 
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Appendix E2: Destructive CSADT plans 

 
 

σ / a  c X1 n 1π  T1 T2 

0.1 19 0.789474 4512 672 
0.15 21 0.761905 4848 1248 
0.2 24 0.708333 5520 1440 

0.25 28 0.714286 5760 1872 
0.3 31 0.677419 6336 2448 

0.35 36 0.638889 6816 2880 
0.4 41 0.634146 7488 3456 

0.45 47 0.617021 8304 4080 
0.5 54 0.592593 9216 4896 

0.55 63 0.587302 9888 6144 
0.6 80 0.5875 9984 7152 

0.65 101 0.594059 9984 9120 
0.7 142 0.598592 9960 9832 

0.75 216 0.592593 9960 9928 
0.8 357 0.57423 9960 9928 

2 

>0.85 >500    
0.1 14 0.785714 3264 528 

0.15 16 0.75 3600 768 
0.2 18 0.722222 3888 1104 

0.25 20 0.7 4320 1440 
0.3 24 0.666667 4464 1680 

0.35 26 0.653846 5040 2208 
0.4 30 0.633333 5424 2640 

0.45 34 0.617647 6240 3024 
0.5 39 0.589744 6864 3696 

0.55 46 0.565217 7728 4224 
0.6 53 0.566038 8784 5280 

0.65 64 0.546875 9936 6336 
0.7 84 0.559524 9984 7920 

0.75 117 0.581197 9984 9840 
0.8 192 0.557292 9984 9984 

0.85 362 0.546961 9960 9928 

3 

>0.9 >500    
0.1 12 0.833333 2832 624 

0.15 14 0.785714 3168 768 
0.2 16 0.75 3312 1104 

0.25 19 0.684211 3600 1200 
0.3 21 0.666667 4080 1488 

0.35 23 0.652174 4560 1920 
0.4 27 0.62963 4896 2208 

0.45 31 0.612903 5376 2640 
0.5 35 0.6 6096 3216 

0.55 41 0.585366 6720 3840 
0.6 47 0.574468 7824 4704 

0.65 56 0.553571 8976 5712 
0.7 69 0.550725 9936 7296 

0.75 95 0.568421 9984 9216 
0.8 153 0.568627 9960 9832 

0.85 286 0.552448 9960 9928 

80 

4 

>0.9 >500    
To be continued 
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Continued 
σ / a  c X1 n 1π  T1 T2 

0.1 11 0.818182 2736 576 
0.15 13 0.769231 2928 768 
0.2 15 0.733333 3264 912 

0.25 17 0.705882 3504 1200 
0.3 19 0.684211 3840 1536 

0.35 23 0.652174 4080 1632 
0.4 25 0.64 4512 2208 

0.45 28 0.607143 5328 2496 
0.5 33 0.606061 5520 3120 

0.55 38 0.578947 6432 3600 
0.6 44 0.568182 7344 4416 

0.65 53 0.54717 8304 5328 
0.7 63 0.539683 9984 6672 

0.75 87 0.551724 9984 8400 
0.8 134 0.567164 9984 9888 

0.85 252 0.551587 9960 9880 

80 5 

>0.9 >500    
0.1 21 0.809524 4896 960 

0.15 25 0.76 5376 1152 
0.2 27 0.740741 6000 1776 

0.25 32 0.6875 6384 2064 
0.3 36 0.666667 7008 2592 

0.35 40 0.65 7776 3264 
0.4 46 0.630435 8400 3936 

0.45 53 0.603774 9216 4656 
0.5 62 0.596774 9888 5616 

0.55 75 0.613333 9984 7056 
0.6 96 0.604167 9984 8160 

0.65 124 0.604839 9984 9840 
0.7 179 0.603352 9960 9928 

0.75 273 0.582418 9960 9928 
0.8 452 0.577434 9960 9928 

2 

>0.85 >500    
0.1 15 0.8 3840 624 

0.15 18 0.777778 3984 912 
0.2 21 0.714286 4224 1200 

0.25 23 0.695652 4704 1632 
0.3 26 0.653846 5280 1920 

0.35 30 0.633333 5616 2352 
0.4 34 0.617647 6336 2736 

0.45 38 0.605263 6960 3504 
0.5 44 0.590909 7728 4128 

0.55 52 0.576923 8496 4848 
0.6 60 0.566667 9696 6000 

0.65 77 0.571429 9936 7104 
0.7 99 0.585859 9984 9360 

0.75 147 0.571429 9984 9984 
0.8 243 0.559671 9984 9984 

0.85 459 0.562092 9960 9928 

3 

>0.9 >500    
0.1 14 0.785714 3264 528 

0.15 16 0.75 3600 768 

90 

4 
0.2 18 0.722222 3888 1104 

To be continued 
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Continued 
σ / a  c X1 n 1π  T1 T2 

0.25 20 0.7 4320 1440 
0.3 24 0.666667 4464 1680 

0.35 26 0.653846 5088 2160 
0.4 30 0.633333 5424 2640 

0.45 34 0.617647 6048 3168 
0.5 39 0.589744 6864 3696 

0.55 45 0.577778 7824 4368 
0.6 54 0.555556 8736 5088 

0.65 64 0.546875 9984 6288 
0.7 84 0.571429 9984 7920 

0.75 117 0.589744 9984 9840 
0.8 193 0.57513 9960 9928 

0.85 362 0.552486 9960 9928 

4 

>0.9 >500    
0.1 13 0.769231 3072 528 

0.15 15 0.8 3264 816 
0.2 17 0.705882 3648 1008 

0.25 19 0.684211 3984 1344 
0.3 22 0.681818 4320 1584 

0.35 25 0.64 4608 2016 
0.4 29 0.62069 4992 2352 

0.45 33 0.606061 5712 2688 
0.5 37 0.594595 6384 3408 

0.55 43 0.581395 7056 4128 
0.6 50 0.56 8208 4896 

0.65 60 0.55 9408 5856 
0.7 75 0.56 9936 7680 

0.75 104 0.567308 9984 9552 
0.8 170 0.576471 9960 9880 

0.85 318 0.54717 9960 9928 

90 

5 

>0.9 >500    
0.1 23 0.826087 5568 1056 

0.15 26 0.769231 6288 1440 
0.2 30 0.733333 6672 1968 

0.25 34 0.705882 7344 2448 
0.3 39 0.666667 8016 2928 

0.35 45 0.644444 8640 3504 
0.4 51 0.627451 9552 4224 

0.45 60 0.616667 9984 5136 
0.5 72 0.625 9984 6480 

0.55 90 0.611111 9984 7584 
0.6 111 0.621622 9984 9648 

0.65 153 0.620915 9960 9928 
0.7 221 0.60181 9960 9928 

0.75 337 0.581602 9960 9928 

2 

>0.8 >500 0.581602 9960 9928 
0.1 17 0.823529 4080 768 

0.15 20 0.75 4368 1056 
0.2 22 0.727273 4992 1392 

0.25 26 0.692308 5088 1824 
0.3 29 0.655172 5856 2112 

0.35 33 0.6363 6432 2544 

100 

3 

0.4 38 0.631579 6864 3120 
To be continued 
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Continued 

σ / a  c X1 n 1π  T1 T2 

0.45 43 0.604651 7632 3792 
0.5 49 0.591837 8640 4512 

0.55 57 0.578947 9552 5472 
0.6 69 0.57971 9984 6816 

0.65 90 0.577778 9984 8016 
0.7 120 0.6 9960 9832 

0.75 183 0.579235 9960 9832 
0.8 302 0.566225 9960 9880 

3 

>0.85 >500    
0.1 16 0.8125 3504 576 

0.15 17 0.764706 4080 960 
0.2 20 0.75 4176 1344 

0.25 23 0.695652 4656 1536 
0.3 26 0.692308 5088 1920 

0.35 29 0.655172 5568 2448 
0.4 34 0.617647 6144 2688 

0.45 38 0.605263 6864 3360 
0.5 44 0.590909 7584 3984 

0.55 50 0.58 8640 4896 
0.6 59 0.559322 9792 5808 

0.65 75 0.56 9960 7096 
0.7 98 0.581633 9960 9064 

0.75 144 0.583333 9960 9928 
0.8 238 0.567227 9960 9928 

0.85 447 0.55481 9960 9928 

4 

>0.9 >500    
0.1 15 0.8 3312 528 

0.15 16 0.75 3792 912 
0.2 19 0.736842 3984 1152 

0.25 22 0.681818 4368 1344 
0.3 24 0.666667 4848 1824 

0.35 28 0.642857 5280 2064 
0.4 32 0.625 5760 2496 

0.45 36 0.611111 6240 3216 
0.5 42 0.595238 7008 3648 

0.55 48 0.583333 7872 4512 
0.6 56 0.571429 9072 5376 

0.65 67 0.567164 9984 6816 
0.7 89 0.573034 9960 8392 

0.75 127 0.574803 9960 9832 
0.8 209 0.555024 9960 9928 

0.85 393 0.557252 9960 9928 

100 

5 

>0.9 >500    
0.1 25 0.8 6336 1056 

0.15 30 0.766667 6432 1632 
0.2 34 0.735294 7104 2112 

0.25 39 0.692308 7680 2640 
0.3 44 0.681818 8496 3216 

0.35 50 0.64 9312 3888 
0.4 58 0.637931 9840 4752 

0.45 70 0.642857 9984 5664 
0.5 85 0.635294 9984 6912 

110 2 

0.55 103 0.631068 9984 8784 
To be continued 
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To be continued 

σ / a  c X1 n 1π  T1 T2 

0.6 133 0.639098 9984 9936 
0.65 185 0.616216 9960 9928 
0.7 268 0.604478 9960 9880 

0.75 408 0.585784 9960 9928 
2 

>0.8 >500    
0.1 19 0.789474 4560 720 

0.15 22 0.772727 4752 1200 
0.2 25 0.72 5376 1440 

0.25 29 0.689655 5712 1824 
0.3 33 0.666667 6144 2304 

0.35 37 0.648649 6816 2832 
0.4 41 0.634146 7632 3552 

0.45 47 0.617021 8544 4128 
0.5 54 0.592593 9504 4944 

0.55 64 0.59375 9888 6240 
0.6 81 0.604938 9984 7344 

0.65 102 0.598039 9984 9408 
0.7 144 0.597222 9984 9984 

0.75 221 0.579186 9960 9880 
0.8 365 0.575342 9960 9928 

3 

>0.85 >500    
0.1 17 0.823529 3792 816 

0.15 20 0.75 4176 1008 
0.2 22 0.727273 4752 1344 

0.25 26 0.692308 4992 1632 
0.3 29 0.655172 5664 1968 

0.35 32 0.65625 6096 2688 
0.4 37 0.648649 6672 3120 

0.45 42 0.619048 7488 3696 
0.5 48 0.604167 8352 4464 

0.55 56 0.571429 9408 5232 
0.6 68 0.573529 9984 6336 

0.65 86 0.581395 9984 8016 
0.7 114 0.596491 9984 9936 

0.75 175 0.582857 9960 9832 
0.8 288 0.569444 9960 9928 

4 

>0.85 >500    
0.1 16 0.8125 3648 672 

0.15 18 0.777778 3984 1056 
0.2 21 0.714286 4368 1248 

0.25 23 0.695652 4944 1632 
0.3 27 0.666667 5136 2016 

0.35 30 0.633333 6000 2304 
0.4 34 0.617647 6576 2832 

0.45 40 0.6 6912 3408 
0.5 45 0.6 7776 4224 

0.55 53 0.584906 8688 4896 
0.6 62 0.564516 9936 5856 

0.65 77 0.584416 9984 7680 
0.7 102 0.588235 9984 9504 

0.75 153 0.575163 9960 9928 
0.8 253 0.565217 9960 9928 

110 

5 

0.85 475 0.545263 9960 9928 
To be continued 
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Continued 

σ / a  c X1 n 1π  T1 T2 

110 5 >0.9 >500    
0.1 27 0.814815 6864 1248 

0.15 33 0.757576 7008 1728 
0.2 37 0.72973 7776 2304 

0.25 42 0.690476 8592 2832 
0.3 48 0.666667 9216 3552 

0.35 55 0.654545 9936 4320 
0.4 65 0.646154 9984 5472 

0.45 79 0.64557 9984 6528 
0.5 96 0.645833 9984 7968 

0.55 120 0.641667 9984 9312 
0.6 158 0.639241 9984 9984 
0.7 318 0.597484 9960 9928 

0.75 486 0.592593 9960 9928 

2 

0.8 >500    
0.1 21 0.809524 4848 816 

0.15 24 0.75 5328 1200 
0.2 27 0.740741 5808 1680 

0.25 30 0.7 6480 2160 
0.3 35 0.685714 6768 2688 

0.35 40 0.65 7440 3168 
0.4 45 0.622222 8352 3792 

0.45 51 0.607843 9264 4608 
0.5 61 0.590164 9984 5232 

0.55 74 0.608108 9984 6624 
0.6 91 0.604396 9984 8448 

0.65 119 0.605042 9984 9888 
0.7 318 0.597484 9960 9928 

0.75 263 0.581749 9960 9880 
0.8 434 0.569124 9960 9928 

3 

>0.85 >500    
0.1 19 0.789474 4224 720 

0.15 21 0.761905 4656 1200 
0.2 24 0.708333 5232 1440 

0.25 27 0.703704 5664 1920 
0.3 31 0.677419 6096 2352 

0.35 35 0.657143 6816 2784 
0.4 40 0.625 7440 3360 

0.45 46 0.608696 8112 4032 
0.5 52 0.596154 9120 4944 

0.55 62 0.580645 9936 5760 
0.6 78 0.589744 9984 6912 

0.65 99 0.59596 9984 8688 
0.7 136 0.602941 9984 9888 

0.75 208 0.591346 9960 9880 
0.8 343 0.574344 9960 9928 

4 

>0.85 >500    
0.1 17 0.823529 4080 768 

0.15 20 0.75 4368 1056 
0.2 22 0.727273 4992 1392 

0.25 26 0.692308 5136 1776 

120 

5 

0.3 29 0.655172 5856 2112 
To be continued 
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Continued 

σ / a  c X1 n 1π  T1 T2 

0.35 34 0.647059 6192 2496 
0.4 38 0.631579 6864 3120 

0.45 43 0.604651 7632 3792 
0.5 49 0.591837 8640 4512 

0.55 56 0.571429 9840 5472 
0.6 70 0.571429 9984 6576 

0.65 87 0.586207 9984 8688 
0.7 119 0.605042 9984 9984 

0.75 183 0.584699 9960 9832 
0.8 301 0.55814 9960 9928 

0.85 566 0.558304 9960 9928 

120 5 

>0.9 >500    
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