
COLLABORATIVE SESSION MANAGEMENT IN

DISTRIBUTED ENGINEERING DESIGN AND

ANALYSIS ENVIRONMENT

SUN DONGWEI

(B. Eng. Beijing University of Posts and Telecommunications)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

i

Acknowledgments

I would like to express my most sincere gratitude to my supervisor Dr. Liu Zhejie

for his invaluable guidance, patience and support over the entire course of my

research project. Without his constant support and advice, my completion of this

thesis research would not be possible.

I would like to extend my gratitude to Dr. Zhao Jinmin for providing helpful

advice and constructive suggestions for my research. My appreciation also goes to

all the staff in Data Storage Institute, for their kind assistance during the graduate

research.

In addition, I want to thank my friends and fellow students. I am especially

grateful to Mr. Li Jiangtao, who has been kindly sharing his knowledge and re-

search experiences with me. Special thank is extended to Ms. Liao Rong for always

inspiring me and helping me in difficult times.

Finally, I would like to thank my parents, Sun Hui and Zhao Guilin, for their

unconditional love and support in my life.

Contents

Acknowledgments i

Summary v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Background . 2

1.1.1 Overview . 2

1.1.2 Collaborative Engineering Design and Analysis 3

1.2 Problem Statement . 6

1.3 Research Objectives . 8

1.4 Structure of Thesis . 9

2 Review of Developing Technologies and Methodologies 11

2.1 Technologies to Support Distributed Collaborative System 11

2.1.1 Traditional Component-based Technologies 12

2.1.2 State-of-the-art Technology - .NET Remoting 15

2.2 Commercial Tools for Collaborative Engineering Design 17

2.2.1 Tools Assisting Collaborative Design 17

2.2.2 Tools Supporting Real-time Collaborative Design 19

2.3 Research and Development in Related Fields 20

2.3.1 Historical Overview . 20

2.3.2 Recent Work . 22

2.4 Summary . 28

ii

iii

3 A Distributed Collaborative CAD/CAE Framework 32

3.1 Software Architecture . 32

3.1.1 Overview . 32

3.1.2 Introduction to Product Geometric Modeling Kernel 33

3.1.3 Introduction to Workflow 34

3.1.4 Introduction to Coordination Modes 35

3.2 Product Design Workflow Management System 37

3.3 Product Design System . 38

3.3.1 Presentation Tier . 40

3.3.2 Business Logic Tier . 42

3.3.3 Data Tier . 46

3.4 Architectural Overview of Collaborative Session 48

3.5 Summary . 51

4 Collaborative Session Management 52

4.1 Organization of Collaborative Sessions 52

4.1.1 Introduction to UML . 53

4.1.2 Collaborative Product Design Process 54

4.1.3 Workflow-driven Collaborative Session Management 57

4.2 Synchronous Collaborative Session Management 58

4.2.1 Data Security and Consistency 59

4.2.2 Coordination Mechanism . 60

4.2.3 Synchronization Scheme . 62

4.2.4 Communication Framework 69

4.2.5 Operation Delay . 70

4.3 Summary . 77

5 Case Study - Spindle Motor Design and Analysis 79

5.1 Introduction to Product Design . 79

5.2 Introduction to Spindle Motor . 80

5.3 Spindle Motor Design using CoCADE Framework 82

5.3.1 Product Design Process Definition 82

5.3.2 Product Modeling . 84

iv

5.3.3 Product Performance Evaluation 90

5.4 Summary . 93

6 Conclusions 94

6.1 Concluding Remarks on Present Work 94

6.2 Suggestion on Possible Future Work 95

Bibliography 98

A List of Publications 107

B List of Abbreviations 108

C Main Visual C# Codes 110

D Main Visual C++ Codes 114

v

Summary

Global competition among manufacturing enterprises has brought in great change

in product realization. Companies are embracing Collaborative Product Commerce

(CPC), the emerging collaboration-oriented philosophy, to manage product quality,

cost and time-to-market in line with the global trend of competition in manufac-

turing between supply chains. In the CPC environment, collaborative product

design becomes the critical phase has a vital impact on the efficiency of the whole

collaborative commerce. Rapid advances in computer networks and information

technology provide an infrastructure to support the distributed and collaborative

product design. According to the nature of products and collaboration require-

ments, collaborative sessions are established to provide real-time interactions and

information sharing between participating collaborators.

The organization and management of a collaborative session in a distributed

collaborative design environment have attracted attention from both commercial

software developers and academia. However, the research efforts in general tend

to focus more on facilitating the collaborations in Computer-Aided Design (CAD)

fields without involving the integration of Computer-Aided Engineering (CAE)

capabilities, which is a crucial step at the design stage for evaluating the product

performance and behaviors.

This thesis presents a distributed collaborative CAD/CAE framework to sup-

port not only CAD collaborations but also CAE collaborations. Based on .NET

and J2EE technology, the framework has seamlessly wrapped the workflow system

and the product design system to manage collaborative sessions.

A workflow-driven mechanism for organizing collaborative sessions has been

introduced. During the execution of the product design process, collaborative

vi

sessions are managed by a workflow model in which all the task specifications are

defined. Ultimately, the product design workflow model is expected to improve the

flexibility of product development by effectively organizing collaborative sessions.

A centralized coordination mechanism has been proposed for the management

of synchronous collaborative sessions. Under this mechanism, a multi-thread syn-

chronization scheme for collaboration process has been proposed to realize efficient

real-time interaction. Such synchronization scheme can provide efficient and effec-

tive synchronization of operation, initial representation, and session status. The

proposed framework can provide a stable platform to realize efficient synchronized

engineering design and analysis.

A collaborative design case of hard disk spindle motor is presented to demon-

strate the effectiveness of the proposed framework, which has integrated CAD and

CAE functionalities in a distributed collaborative design environment, to support

the product development process and the collaborative session management. The

development of the framework has special reference to data storage industry which

is globalized and has significant presence in Singapore.

vii

List of Tables

2.1 Tools that assist collaborative design 18

2.2 Tools that support real-time collaborative design 19

2.3 A summary of thin-client style systems 24

2.4 Comparison of developing technologies 29

3.1 Configuration of coordination server 45

4.1 Main functions of .NET components 70

4.2 Execution time and operation message length 72

4.3 Response time using TCP/IP conncection 73

4.4 Response time using HTTP conncection 75

5.1 Stages in product lifecycle . 79

B.1 List of abbreviations . 109

List of Figures

1.1 CPC solutions provide an aggregate view of product development . 3

1.2 Collaborative engineering design and analysis 5

2.1 CORBA ORB architecture . 12

2.2 Java/RMI architecture . 13

2.3 DCOM architecture . 14

2.4 .NET Remoting architecture . 16

2.5 Two types of collaborative design tools 23

2.6 New paradigm of collaborative design tool 31

3.1 Architecture of CoCADE framework 33

3.2 Web-based workflow services client 36

3.3 Task model of product design workflow 37

3.4 Deployment of workflow management system 38

3.5 General structure of the product design system 39

3.6 A typical product design flow in the product design system 40

3.7 Product design client drawing disk assembly 41

3.8 Information flow in the product design client 41

3.9 Coordination server structure . 42

3.10 Coordination flow for a typical design process 43

3.11 Communication framework in coordination process 44

3.12 Coordination server application . 44

3.13 CAE server structure . 45

3.14 Product database . 47

3.15 Architectural structure of collaborative session 49

4.1 Use case diagram for a product design flow 55

4.2 Activity diagram for spindle motor design and analysis flow 56

viii

ix

4.3 An example of workflow model in product simulation stage 57

4.4 Centralized coordination mechanism (CCM) 60

4.5 Messaging structure of CCM . 61

4.6 Generation of operation information 62

4.7 Generation of representation data 63

4.8 Multi-thread request response (MTRR) scheme 64

4.9 Realization mechanism of MTRR scheme 65

4.10 Synchronization of initial representation data 66

4.11 Synchronization of operation . 67

4.12 Synchronization of session status 68

4.13 Remote .NET components in CoCADE System 69

4.14 Response time under normal conditions 72

4.15 Test parts for measuring response time 73

4.16 Transaction time obtained using Iometer 74

4.17 Soap message for invoking remote object 75

4.18 Queuing delay in interconnected network 76

5.1 Product development cycle . 80

5.2 A hard disk spindle motor . 81

5.3 A collaborative spindle motor design scenario 82

5.4 Define product design workflow model 83

5.5 Design process defined by XML . 84

5.6 Spindle motor design and analysis flow 85

5.7 Asynchronous collaborative session 86

5.8 Connect to server using HTTP or TCP/IP 87

5.9 Create session and join session . 88

5.10 Synchronous collaborative session 89

5.11 Update task information . 90

5.12 Product performance evaluation . 91

5.13 Macroinstruction stream for computing cogging torque 92

5.14 Dynamically insert new task into workflow model 93

6.1 Agent enhanced framework . 96

1

Chapter 1

Introduction

Confronted with global competition and rapidly changing customer requirements,

manufacturers face an increasingly arduous task in developing new products. Prod-

uct development is becoming more reliant on geographically dispersed, multi-

disciplinary designers during design, manufacturing, and delivery processes. To

improve collaboration in product development, companies are embracing Collab-

orative Product Commerce (CPC), which is an emerging design philosophy that

enables companies to be more responsive to the market needs. Advances in com-

puter networks and information technology have enabled global and distributed

design teams to more effectively communicate, collaborate, obtain and exchange a

wide range of information and design resources throughout product development

cycle using CPC solutions. Collaborative product development is going to receive

a lot more attention, because the activities of the design process determine both

product competitiveness and cost in collaborative commerce. By making the en-

tire collaborative product design process work more effectively, manufacturers are

taking a vantage position to manage product quality, cost and time-to-market.

The research effort presented in this thesis is to develop a distributed collab-

orative engineering design and analysis framework. A workflow-driven mechanism

has been introduced to organize collaborative sessions that facilitate collaborative

product design activities in a distributed environment. In this research work, the

2

synchronous collaborative session has been studied and a synchronization scheme

has been proposed to improve collaboration efficiency.

1.1 Background

1.1.1 Overview

Rapid advances in information technology are creating new opportunities for manu-

facturing companies to revitalize their competitive strategies. Many companies are

now embracing CPC, which leverages on the recent developments in information

technologies [1, 2, 3].

The Aberdeen Group [1] defines CPC as “ ... a class of software and services

that uses Internet technologies to permit individual to collaboratively develop,

build, and manage product throughout the entire lifecycle”. As Aberdeen defines

it, CPC delivers two primary business benefits. First, it improves product quality

and capability by connecting “islands of product knowledge” into a single, extended

experience base; and, it collapses time and distance by using the Internet to speed

time-to-market. Second, CPC tries to foster collaboration between contributors

from internal and external organizations throughout the product lifecycle (Figure

1.1).

From Figure 1.1, we can find that product design is the basis of collaborative

commerce. Nearly all of the competitive characteristics of a product are deter-

mined at its design time. Hence, the product design phase has a high impact on

the efficiency of the whole CPC solutions. Its design in technical and organizational

aspects affects time, cost and quality of the product development. The measure

of coordination and synchronization in a collaboration process significantly influ-

ences the collaboration efficiency. Therefore, collaborative product design should

be studied.

3

Internet

Design C
ustom

er

MarketingManufacturer

Su
pp

lie
r

Sourcing

Distributor Service

M
ai

nt
en

an
ce

Product Data

PDM, ERP,
etc.

Management

Figure 1.1: CPC solutions provide an aggregate view of product development

1.1.2 Collaborative Engineering Design and Analysis

• Computer Aided Engineering Design and Analysis

Computer Aided Design (CAD), emerged in the early 1960s, relates to the use

of computers to assist the design process and make the design process more efficient.

Specialized CAD programs support for various types of design such as architectural,

engineering, electronics, etc. CAD programs usually allow a structure to be built

up from some re-usable 2D or 3D templates. It is normally possible to generate

engineering drawings to allow the final physical product to be manufactured.

Computer-Aided Engineering (CAE) generally relies on discretization of ge-

ometry, description of part attributes/properties and physical conditions, and so-

lution of the large scale simultaneous algebraic equations resulting from specific

numerical algorithms. ADAMS [4] and ANSYS [5] are some of the CAE tools. The

CAE tools are typically implemented with a stronger emphasis on the detail design

phase in the product development process when iterative computer simulations are

extensively used to find design optimum and when the major design parameters

4

are verified.

The rapid development and implementation of collaborative tools allow CAD

to be used in a greater part of the development process. However, integrated analy-

sis is only possible when CAD presentation of the digital product can be utilized to

model the relevant physical processes, for instance, to create finite element models

for structural analysis, dynamic models for simulation of motion or for performing

Computational Fluid Dynamics (CFD) simulation.

• Collaborative Engineering Design and Analysis

With the globalization of manufacturing and product development activities,

enterprises are strategically distributing their design and manufacturing activities

in different regions to remain competitive. At the same time, a greater focus on out-

sourcing has spawned new business partners and closer relationships with external

suppliers. As a result, collaborations across enterprise boundaries and geographical

or disciplinary barriers are commonly practiced throughout the product lifecycle

in some of the industry segments, such as data storage industry. Collaboration is

particularly vital for product design since this upstream activity in the product

lifecycle has a decisive impact on the success of the product.

Collaborative engineering design and analysis can be regarded as a process in

which a group of designers jointly design a product model and evaluate its perfor-

mance. This would include the disparate functions in design, assembly, evaluation

and those in suppliers and customers (Figure 1.2). The benefits of collaborative

engineering design and analysis might include optimizing the product functions,

minimizing assembly costs, eliminating unnecessary engineering change effort and

expense, etc. Since a distributed collaborative design team often works in parallel

and independently with different engineering tools distributed in separate locations,

even across various time zones around the world, the resulting design process may

then be called distributed collaborative design [6].

5

Figure 1.2: Collaborative engineering design and analysis

In the development of complex products, the accomplishment of a design

process usually needs information feedbacks from manufacturers, suppliers and

customers who are located in distributed areas. Under the circumstances, the

traditional sequential design process becomes inflexible and time-consuming, since

all these information feedbacks are performed by human interactions. Distributed

collaborative design can solve this problem. In a distributed collaborative design

environment, people from different fields are brought together to discuss on the

product model and evaluate product performance. Therefore, the constraints and

conflicts can be detected in the early design stage and the design efficiency can be

improved considerably.

In order to carry out distributed collaborative design effectively, network-

based sessions are established in a distributed collaborative design environment to

support reliable collaboration between geographically dispersed engineering teams.

In a collaborative session, different engineers can share the common data and com-

municate with each other through conferencing tools, such as email, instant mes-

saging tools, etc.

Traditionally, a session is the term refering to a process in which a collec-

6

tion of users connect from various locations to work together on shared data or

use conferencing tools to communicate ideas [7]. However, collaborative product

design activities include asynchronous activities as well as synchronous activities.

Dependencies exist between sequential activities, that is, even if one may work as

an individual to perform an asynchronous collaboration activity, he still works on

shared resources which may affect other collaboration activities. In addition, the

functions of traditional network-based sessions have to be extended in order to

facilitate both design and analysis activities, such as providing co-modeling, visu-

alization of meshing result and engineering data. Thus, the definition of session for

distributed collaborative product design may be extended as:

The process in which multi-discipline designers, who may be from geograph-

ically dispersed locations, work together to design product or analyze engineering

results, synchronously or asynchronously, with the help of collaboration tools.

Synchronous design means that designers carry out the same design task

in the same workplace. They work on the product model concurrently, such as

co-modelling, co-analysis. Asynchronous design means that designers carry out

different design tasks in different workplace. They work on the different part of the

product model and do not need to be at the same pace.

1.2 Problem Statement

• Distributed Collaborative CAD/CAE Framework

The existing product design systems provide an effective tool for product

geometric modeling. However, most of them have limited co-modeling functions

for distributed collaborative design. In addition, they lack the capabilities of inte-

grating CAE, which is a crucial step at the design stage for evaluating the product

performance and behaviors. Although some studies have reported on integration

with respect to CAD/CAE functions, they did not provide an adequate integrated

7

environment for overall effective product design. With more and more product

complexity, to reduce time-to-market and lower the cost of product development,

it is necessary to evaluate product performance in product design stage. Mean-

while, Microsoft .NET Remoting provides much more complex functionalities than

traditional component-based technologies, and is becoming a powerful tool for the

development of distributed computing solutions.

It is therefor one of the targets of this research to develop a distributed

collaborative CAD/CAE framework based on Microsoft .NET technology that can

meet the need of integration of CAD and CAE. The system is expected to result

in reduced development time, cost saving, improved product quality and faster

response to the customer requirements.

• Collaborative Session Management

The organization and management of collaborative sessions in a distributed

engineering design environment have attracted attention from both commercial

software developers and academia. However the research efforts to-date tend to

focus more on facilitating the collaborations of CAD without involving the inte-

gration of the CAE capabilities.

Collaborative product development has necessitated distributed workflow

management to be adopted to manage and monitor distributed interactive activ-

ities in a product lifecycle. By facilitating the interoperation of mechanisms in a

heterogeneous environment, distributed workflow management can support both

design and adaption to the dynamic changes of resources needs and availability

in a distributed environment. It can be envisaged that the management system

for distributed workflow can be leveraged to play an important role in managing

collaborative sessions if it can be integrated with product design system and its

functions extended to dynamically define collaborative sessions.

In this research work, a workflow management system has been integrated

8

with the product design system. A workflow-driven collaborative session manage-

ment mechanism is introduced in an attempt to achieve the following benefits in

such a distributed collaborative engineering design and analysis environment:

First, it can automate the product design process. Real-time monitoring of

collaborative sessions as well as auditing of product design processes become pos-

sible. This can reduce costs, streamline processes and result in better session man-

agement and tracking. Second, through deploying workflow model, the reusability

of activity implementations in product design process can be achieved. Finally, the

distributed activities that may take place in heterogeneous environments are well

organized and the capabilities of disparate applications are well integrated.

• Synchronization in Synchronous Collaborative Session

In a collaborative session, synchronization is to synchronize view, data rep-

resentation, and operations. It is one of the most critical problems involved in the

distributed engineering design environment. The problem becomes more challeng-

ing because of the integration of CAE capabilities. Synchronization between clients

is crucial not only for design processes but also for pre/post-processes during the

product performance evaluation period. A good synchronization scheme can ensure

efficient and effective collaborative engineering design and analysis processes.

In this thesis, the synchronous collaborative session management is studied

in detail. A new synchronization scheme for synchronous collaboration is proposed.

In this scheme, the proposed framework can provide a stable platform to realize

efficient synchronized engineering design and analysis.

1.3 Research Objectives

The objectives of this research work are:

• Develop a distributed collaborative CAD/CAE framework for distributed

9

collaborative engineering design and analysis based on Microsoft .NET tech-

nology.

• Investigate product design process and introduce a workflow-driven mecha-

nism to manage collaborative sessions in the framework.

• Study the synchronous collaborative session, propose and implement a syn-

chronization scheme for such session.

1.4 Structure of Thesis

The remainder of this thesis is organized as follows:

Chapter 2 - It presents a literature survey of the subject in the aspects of

technologies, commercial tools and academic researches.

Chapter 3 - It introduces the framework for distributed collaborative design

and analysis. It presents the software architecture as well as the functionality of

this framework.

Chapter 4 - It discusses the collaborative session management in the pro-

posed framework. It investigates the product design process and illustrates the

workflow-driven collaborative session management mechanism. It also studies the

synchronous collaborative session and proposes a synchronization scheme for real-

time interaction in the synchronous collaboration process.

Chapter 5 - It presents a case study relating to design of a hard disk spindle

motor. It depicts how the collaborative sessions are driven by a workflow model,

as well as the coordination and synchronization flow in synchronous collaboration

process.

Chapter 6 - It concludes this research work and suggests future directions in

the relevant areas.

Appendix A - It presents the list of publications arising from this thesis.

10

Appendix B - It presents the list of abbreviations.

Appendix C - It presents the main server side Visual C# code.

Appendix D - It presents the main client side Visual C++ code.

11

Chapter 2

Review of Developing

Technologies and Methodologies

Building up a distributed collaborative environment for product design and manag-

ing collaborative sessions in the environment have attracted attentions from both

software developers and academia. In this chapter, the major technologies that

support distributed collaborative systems are introduced. The key features and

collaboration mechanisms of the current commercial tools for collaborative design

are summarized. Based on a literature review of the R&D activities in the rele-

vant fields, the developing technology and client-server architecture adopted in this

thesis are discussed.

2.1 Technologies to Support Distributed Collab-

orative System

In a distributed product development process, design tasks are highly interrelated.

Technological developments introduced to the distributed collaborative engineering

design and analysis system must therefore support the need of interactions. In the

following sections, the major technologies that support distributed collaborative

12

systems are introduced.

2.1.1 Traditional Component-based Technologies

Traditional Component-based Technologies include: OMG’s Common Object Re-

quest Broker Architecture (CORBA) [8], JavaSoft’s Java/Remote Method Invoca-

tion (Java/RMI) [9], and Microsoft’s Distributed Component Object Model (DCOM)

[10].

• CORBA

CORBA is an open, vendor-independent architecture and infrastructure that

computer applications use to work together over networks using the standard Inter-

net Inter-ORB Protocol (IIOP) [8]. CORBA is a standard architecture allows ven-

dors to develop Object Request Broker (ORB) products that support application

portability and interoperability across different programming languages, hardware

platforms, operating systems, and ORB implementations.

Object ImplementationClient

Dynamic
Invocation

IDL
Stubs

ORB
Interfaces

Object Adaptor

IDL
Skeletons

Dynamic
Skeleton

ORB Core

Standard ORB Implementation Interface

ORB Implementation -dependent Interface

Standard Language Mapping

Adapter Interfaces

Figure 2.1: CORBA ORB architecture

Figure 2.1 shows the structure of CORBA ORB. All objects are defined

in CORBA using Interface Definition Language (IDL). Language mappings are

13

defined from IDL to programming languages, such as C++, Java, etc. “Using a

CORBA-compliant ORB, a client can transparently invoke a method on a server

object, which can be on the same machine or across a network. The ORB intercepts

the call, and is responsible for finding an object that can implement the request,

passing it the parameters, invoking its method, and returning the results of the

invocation” [8]. CORBA specifies that clients and object implementations can be

written in different programming languages and executed on different computer

hardware architectures and different operating systems, and that clients do not

have to be aware of the details about each other.

• Java/RMI

Java Remote Method Invocation (Java/RMI) enables the programmer to cre-

ate distributed Java technology-based applications, in which the methods of remote

Java objects can be invoked from other Java virtual machines, possibly on different

hosts [9]. RMI uses object serialization to marshal and unmarshal parameters and

does not truncate types, supporting true object-oriented polymorphism.

Client

Interface

Stub

Server

Interface
Implementation

Stub

Stub

Registry

Interface objects
communicates with
remote implementation
object via stub

Upload Stub to Registry
Bind to Name

Lookup Name
Download Stub

Figure 2.2: Java/RMI architecture

As shown in Figure 2.2, the basic structure of a RMI-based method call

involves a client, a server and a registry. To make a call to a remote object, the

14

client first looks up the object it wishes to invoke in the registry. The registry

returns a reference to the object on the server, which the client can use to invoke

any method that the remote object implements. The client communicates with

the remote object via a user-defined interface that is actually implemented by the

remote object. The client actually does not deal directly with the remote object

at all, but with a code stub that deals with the process of communication between

client and server using sockets by default.

• COM/DCOM/COM+

Component Object Model (COM) defines an Application Programming In-

terface (API) to allow components to be created for integration of custom appli-

cations, and to allow diverse components to interact. DCOM is an extension to

COM to allow network-based component interaction. While COM processes can

run on the same machine but in different address spaces, the DCOM extension al-

lows processes to be spread across a network. With DCOM, components operating

on a variety of platforms can interact, as long as DCOM is available within the

environment. COM+ integrates Microsoft Transaction Server (MTS) services and

message queuing into COM, and makes COM programming easier through a closer

integration with Microsoft languages.

Proxy
Object Stub

Figure 2.3: DCOM architecture

15

The DCOM client calls the interfaces of the server through the proxy, which

marshals the parameters and passes them to the server stub. The stub unmarshals

the parameters and makes the actual call inside the server object. When the

call completes, the stub marshals return values and passes them to the proxy,

which in turn returns them to the client. The same proxy/stub mechanism is

used when the client and server are on different machines. However, the internal

implementation of marshalling and unmarshalling differs depending on whether

the client and server operate on the same machine (COM) or on different machines

(DCOM). Given an IDL file, the Microsoft IDL compiler can create default proxy

and stub code that performs all necessary marshalling and unmarshalling. When

client and component reside on different machines, DCOM simply replaces the local

interprocess communication with a network protocol.

Figure 2.3 shows the overall DCOM architecture: The COM run-time pro-

vides object-oriented services to clients and components, and uses Remote Proce-

dure Call (RPC) and the security provider to generate standard network packets

that conform to the DCOM wire-protocol standard.

2.1.2 State-of-the-art Technology - .NET Remoting

The Microsoft .NET [11] strategy was presented by Microsoft officials to the rest of

the world in June 2000. Microsoft .NET brings a new model for distributed appli-

cations, as a successor to DCOM. The .NET Remoting offers far greater flexibility

and extensibility over DCOM.

Microsoft .NET Remoting provides a framework that allows objects to inter-

act with one another across application domains. The framework provides a num-

ber of services, including activation and lifetime support, as well as communication

channels responsible for transporting messages to and from remote applications.

Formatters are used for encoding and decoding the messages before they are trans-

ported by the channel. Applications can use binary encoding where performance

16

is critical, or eXtensible Markup Language (XML) encoding where interoperability

with other remoting frameworks is essential. All XML encoding uses the Simple

Object Access Protocol (SOAP) in transporting messages from one application do-

main to the other. Remoting was designed with security in mind, and a number

of hooks are provided that allow security sinks to gain access to the messages, as

well as the serialized stream, before the stream is transported over the channel.

Remote
Object

Dispatcher

Formatter

Client
Application

Proxy

Formatter

Channel (TCP/IP, HTTP)

Server Client

Figure 2.4: .NET Remoting architecture

Figure 2.4 shows an architecture overview of .NET Remoting. The remote

object exposes some methods for remote calls. A proxy is created on the client

mirroring the remote object in that it exposes the same public methods. The

client invokes these methods on the proxy class, and the proxy uses a formatter

to format the messages so that they can be sent across the network. The network

transport is defined by the channel. On the server, another formatter unformats

received messages, and passes them to dispatcher which calls the methods on the

remote object.

The .NET Remoting permits interceptors, or sinks, to be placed at certain

points in the flow on the client or server-side to add additional functionalities, such

as logging, duplicating calls for reliability reasons, or dynamically finding servers.

17

2.2 Commercial Tools for Collaborative Engineer-

ing Design

In a distributed collaborative design environment, designers bring their own per-

sonal viewpoints to the product model [12], interact and reach agreement while

sharing common information. Current commercial design software is a relatively

new integration of networking and CAD. The applications can support collabo-

ration of the designers working on a common design task, each with specific core

competencies, interacting in the design process. These application can be generally

classified into two categories [13]:

• Category I: Inspection of design models to assist collaborative design activ-

ities, such as ConceptWorks [14], eDrawings [16],Centric Innovation Center

[17], Hoops Streaming Toolkit [18], Autovue [19], Streamline [20], etc.

• Category II: Real-time collaborative design tools to support synchronous

co-modeling, such as OneSpace [15], CollabCAD [21], Alibre Design [22], etc.

This section will investigate these two categories of commercially available

solutions and their collaborative mechanisms.

2.2.1 Tools Assisting Collaborative Design

The systems in the first category is primarily used to support visualisation, anno-

tation and inspection of design models in a CAD environment. In order to realize

high-speed collaborative interaction across networks with the limited bandwidth

capability and to enhance the visualization performance, 3D streaming technolo-

gies have been adopted to reorganize the large number of meshes from a complex

model at different Levels of Details (LODs). These tools can enable designers with

faster transmission capabilities to obtain high-resolution images quickly while for

18

slower links to obtain lower resolution images at first, before resolution gradually

improves over time.

Table 2.1: Tools that assist collaborative design

Tools Characteristics Description Compatible systems

RealityWave
ConceptWorks

Features: An add-on component
of SolidWorks

SolidWorks

Functions: View, markup and
message

SolidWorks
eDrawing

Features: A viewer for native or
simplified CAD files

SolidWorks, Auto-
CAD, CATIA,Pro/E

Functions: view, mark-up, mea-
sure, hyperlinks, layouts and ani-
mation

Centric Software
Innovation Cen-
ter

Features: A platform to provide a
digital meeting room for product
design

Pro/E, CATIA

Functions: View, mark-up,
video/audio conferencing, chat

Tech Soft Hoops
Streaming
Toolkit

Features: An SDK for reading
and/or writing highly compressed
HSF files

Pro/E, IronCAD

Functions: Compression, color
support, HSF visulization

Cimmetry Sys-
tems Autovue

Features: A viewer for part and
assembly models, supports view-
ing printing, plotting and conver-
sion features

CATIA, Pro/E, Au-
todesk Inventor, Au-
toCAD, SolidWorks,
Solid Edge

Functions: View, manipulate,
measure, mark-up, redline, anno-
tate

Autodesk
Streamline

Feature: A platform based on the
VizStream, collaborates through
email and report

Autodesk Inventor,
SolidEdge, Solid-
Works

Functions: View, measure, email

Commercial tools under Category I include ConceptWorks [14], eDrawings

[16],Centric Innovation Center [17], Hoops Streaming Toolkit [18], Autovue [19],

Streamline [20], etc. The key characteristics of some tools under this category are

summarized in Table 2.1.

The tools in Category I can support real-time produce design review process

19

which is important when performing a stage discussion or doing a customer survey

for new products. However, since most of these tools are based on simplified CAD

files, real-time collaborative design, such as co-creation and co-modification, cannot

be effectively supported. Therefore, they can only serve as supporting tools.

2.2.2 Tools Supporting Real-time Collaborative Design

Table 2.2: Tools that support real-time collaborative design
Systems Collaborative Mechanisms Function

Description
CoCreate
OneSpace

Features: Dynamically includes data from
different CAD systems at the same time. Or-
ganizes 2D or 3D project files in a database
and helps track of document version and his-
tory.

Modeling, View,
Mark-up, Net-
meeting

Co-design Session: Shares individual models
through a common workspace. Each session
is under the guidance of a session adminis-
trator.
Data Sharing: Entire model is download
from server and can be stored and shared
through database.

CollabCAD Features: Uses OpenCASCADE 3D mod-
elling engine and Jython Client-side Script-
ing to achieve inter application operability
and quicker application development.

Modeling, view,
chat, video con-
ferencing

Co-Design Session: Multiple Designers can
access 2D or 3D models and work on it con-
currently across network.
Data Sharing: Store and share users’ models
through a database. IGES, STEP, etc. are
used for data exchange.

Alibre
Design

Features: The 3D CAD application can sup-
port feature-based parametric solid modeling
and 2D associative drafting

Modeling, view,
chat, mark-up,
NetMeeting

Co-design Session: Within a design session,
designers can create and modify precise 3D
models and 2D drawings simultaneously
Data Sharing: Through repository.

The systems in the second category can support real collaborative design.

The currently available systems include OneSpace [15], CollabCAD [21], Alibre

20

Design [22]. The collaborative mechanisms of these systems are summarized in

Table 2.2.

The tools in Category II can be used to establish a distributed workspace

with effective sharing of detialed design models. However, their collaborative de-

sign functionalities are limited and the communication efficiencies of these systems

are still quite far from satisfactory. This results in the deficient synchronization

among designers when collaborating synchronously. In addition, since engineering

analysis is a crucial step in product design process, it is necessary to integrate CAE

functionalities in distributed CAD environment. However, these commercial tools

are not designed to accommodate such functionalities.

2.3 Research and Development in Related Fields

2.3.1 Historical Overview

The researches on distributed collaborative engineering design can be traced back

to the time when Computer Supported Cooperative Work (CSCW) [23] was intro-

duced. Since the early 1990s, researchers have tried to integrate CAD and CAE

resources over the network. Most of these earlier researches intended to study the

interfaces to share environment, such as Ludwig’s (1990) [24] research in which

a methodology of integrating CAD and CAE using teleconferencing and messag-

ing tools was described, and Shu’s Teledesign system (1992) [25] which intended

to examine specific issues relating to viewpoints and pointers in a multi-user 3D

environment. The Co-CAD system that was developed by Gisi and Sacchi (1992)

[26] was claimed to support real-time collaborative solid modeling for mechani-

cal engineers. However, their approach was largely from a mechanical engineer’s

perspective and limited to collaboration between two people.

These earlier reported approaches for collaborative design over distance in-

cluded the use of communication tools such as e-mail, multimedia, shared screen

21

or teleconferencing. However, these GroupWare tools have limited functionalities

to support real-time collaborative design. Since the earlier research is constrained

by network and computer technologies to a large extend, the earlier systems are

quite far from the systems of practical use.

Due to the rapid development in network and computer technologies in the

late 1990s, there are new opportunities to improve the collaborative design en-

vironment. The impact of network technology on design environments has been

perceived, and computer support for collaborative design has grown into a major

area of research [27, 28, 29, 30].

CORBA 2.0, published in 1994, can provide an efficient protocol for com-

munication and support standardized language mapping. The NetFEATURE pre-

sented by Lee et al. (1999) [31] is based on CORBA ORB for communication.

The server, implemented using C++, can provide basic modeling functions, such

as solid creation, deletion, etc. The client, implemented using Java applet, can

handle the local copy of design models. Java/RMI is designed by people who have

years of CORBA experience. Its stable, flexible characteristics attract researchers’

attention. Based on Java/RMI technology, Chan et al. (1999) [32] developed a

Web-based collaborative modeling system, named CSM. The server has a global

model and each client has a local copy of this model. When a designer modifies the

model, the modifications are propagated to all other users through server. Locking

protocol is adopted to avoid operation conflicts. DCOM, introduced in 1996, makes

it possible to create network-based applications built from components. Liu (2000)

[33] developed a generic component framework for distributed feature-based design

and process planning based on COM/DCOM. Data sharing in such system can be

realized using standard format, STEP. Xie. et al. (2003) [34] developed CedSpace

using DCOM technology. In CedSpace, engineers can collaboratively discuss on a

product model though manipulation, mark-up, and chatting tools. A token ring

protocol is deployed in the collaborative design framework to avoid operation con-

flicts. Only the client who owns the token has the right to manipulate the product

22

model. Sever has a queuing list to handle multiple token requests.

In recent few years, the middleware technologies, such as Java/RMI, CORBA

and COM/DCOM, have grown mature and are widely used to develop, integrate

and distribute software components in an environment of heterogeneous computers,

operating systems, network protocols and programming languages. Researchers

began to describe a distributed collaborative engineering design environment from

different viewpoints, such as functional object model [35], Web-based model [36]

and agent-based model [37]. At the same time, the research focus becomes more

specified, like collaborative conceptual design [38, 39], collaborative component

design [32, 40], and collaborative assembly design [41, 42].

The emergence of .NET technology has brought a new evolution for dis-

tributed collaborative design by providing an internet-based platform of next gener-

ation windows services. It is expected that collaborative engineering design system

can fully leverage .NET technology to realize effective and efficient collaboration

activities. With such motivation, this work is to develop a distributed CAD/CAE

framework on the basis of .NET.

2.3.2 Recent Work

In recent years, significant research has focused on the technologies or the infras-

tructure that can assist product designers in the distributed design environment.

Li et al. [43] pointed out that the existing collaborative design tools can be broadly

classified into two categories:

• Manipulation client + modeling workspace (thin-client style, A in

Figure 2.5): Clients are equipped with light-weight data structures. Server

maintains a common modeling workplace for all clients.

• Modeling client + communication server (thick-client style, B in

Figure 2.5): Whole CAD system is implemented at client side. The server

23

acts as a coordination and information exchanger for all clients.

CAD
System

Server

Communica
tion

facilitators

Client

Client Client

Viewer

Server

Manipulator

Client

Client Client

Message,
CAD filesObjects

A B

Figure 2.5: Two types of collaborative design tools

The ability of the Web for designers to publish information relevant to the

design process has motivated the adoption of the Web as a design collaboration

tool. Many researchers have developed Web-based collaborative design systems

that belong to the first category. HTML, Java Applets, Active X, VRML, agent,

COM/DCOM are widely used for developing the light-weight visualization clients.

Table 2.3 summarizes the thin-client style collaborative design systems. The col-

laboration mechanisms within some typical systems are described in detail.

• Co-DARFAD

Co-DARFAD system is a collaborative design system, as introduced by Huang

et al. (2001) [51], which is characterized with formal collaborative design process.

By standardizing the various design activities, the authors integrated concurrent

design and axiomatic design concepts in a unified and structure-oriented automatic

design process for mechanical product.

24

Table 2.3: A summary of thin-client style systems
R&D work Key features Development

technologies
Pahng et al.
(1998) [44]

Multi-server architecture using dis-
tributed object technology

Web, CORBA,
Java, HTML

Hague et al.
(1998) [38]

Localised design agents for conceptual
design based on product life cycle in-
formation

Agents, Web

Huang et al.
(1999) [39]

Web-based collaborative environment
using morphological char

Web, HTML,
ActiveX

Roy et al. (1999)
[45]

Share geometric models in VRML,
multi-server architecture

Web, HTML,
VRML

Chen and Liang
(2000) [46]

A system integrating and sharing engi-
neering information to support CE ac-
tivities

Web, CORBA,
VRML

Shen and Norrie
(2000) [37]

A agent architecture ensuring the co-
ordination among design parts and re-
source agents to support distributed
design and manufacturing activities

Agent

Lee et al. (2001)
[47]

A Web enabled approach for feature-
based modeling in a distributed com-
puting environment

Web, Java

Nidamarthi et
al. (2001) [48]

Designers upload and download their
CAD files in a server for sharing and
exchanging

Web, VRML

Shyamsundar
and Gadh (2001)
[41]

a new compact assembly representation
for Internet-based collaborative assem-
bly design involving clients and subcon-
tractors

Web, Java

Kong et al.
(2002) [49]

An Internet-based collaborative system
for a press-die design process for auto-
mobile manufacturers

CORBA, Java

Ming et al(2002)
[50]

A INPROSE system integrating prod-
uct design, process planning and CNC
in a collaborative environment

COM DCOM

Virtual Reality Modeling Language (VRML) is chosen as the common media

to allow a product to be viewed interactively across Co-DARFAD system. The

visual representation of product model is captured by the client CAD tool and the

corresponding VRML file is generated. Other clients can view the VRML based

visual product concept, discuss problems and exchange design ideas through web

25

browser.

The advantage of Co-DARFAD system is its flexibility in facilitating collab-

orative discussions for a whole design process even if clients use different CAD

software. However, no special measures are taken to keep reliable synchronization

during collaborative design process. In particular, data consistency and concurrent

operations in a collaborative session have to be solved by users themselves in order

to realize effective product design.

• DIJA software

The DIJA software (2003) [52, 53] can be seen as a general framework for

web-based CAD systems. Denis et al. proposed a replicated architecture based on a

multi-level language. The design information to exchange between two computers is

transformed to instructions belongs to the multi-level language. Thus, for the same

model, different clients can have different visualizations since they may execute

instruction that belongs to different level language. Each client can download its

desired data and store locally. Server saves the whole design.

The abstraction levels of DIJA software is implemented using the SDK 1.3

of the Java language and the Java 3D library for visualization. The instructions

are stored in a XML format.

DIJA software focuses on the multi-level language based on which server

and client can work on the same model in distributed environment. However,

synchronization issues in collaboration process are not taken into account. It is only

applicable to two applications currently and needs further validation to facilitate

collaborative works.

• e-Assembly

The e-Assembly system developed by Chen et al. (2004) [54] can support

Internet-based collaborative assembly modeling. E-Assembly client is based on

26

Java Applet and geometric engine is deployed at the server side.

A session server is implemented to provide services with functionalities that

enable designers to participate in and exit from a particular collaborative session.

A model change event being executed by one e-Assembly client can be published

to all other clients through the session server. Also the session server provides

message delivery service for all clients during the collaboration process.

The e-Assembly system provides distributed designers with the capability

of assembling parts collaboratively in real time and collaboration activities are

organized by its session server. However, the functions of session server are limited,

for example, online model modification is not supported.

Researches on the thick-client style collaborative design systems are limited.

There are several prototype systems that were reported in the literatures. Three

typical systems are described as below.

• CollIDE

The Collaborative Industrial Design Environment (CollIDE) proposed by

Nam and Wright (1998) [55] provides a shared 3D workspace for multiple designers.

The main functionality of CollIDE is to provide the shared visualization and acces-

sibility to common 3D objects in a collaborative session. Designers can copy the 3D

model that is developed in other 3D modeling system to the shared workspace win-

dow. In addition, they can bring geometry from the shared stage to their private

stage by selecting it and executing a CollIDE teleportation command. Multiple de-

signers can control a shared camera and see the movement of the camera controlled

by others.

CollIDE system has severe restrictions to crucial collaborative design issues.

The co-modeling functions are limited. Each designer has to perform geometric

modeling in his local CAD system, and then copy to the shared workspace. In ad-

dition, synchronization problems during a collaboration process are not addressed.

27

This will result in delay of operation and congestion of data transmission if conflicts

occur.

• Syco3D

Synchronous collaborative 3D CAD system (Syco3D) (Nam, and Wright,

2001) [56] uses a shared 3D workspace, called Shared Stage, to facilitate collabora-

tive design activities. Each designer has access to his individual 3D CAD workspace

which is linked to the Shared Stage. All designers in a collaborative session see the

same 3D view of a 3D virtual workspace and any change in the view is updated

instantly. When a designer is manipulating a 3D model in Shared Stage, a locking

protocol is adopt to keep other clients from manipulating the same model.

Syco3D system provides a shared workplace for sharing of product informa-

tion and assembling product. However, the high dependencies between parts of

product model are not considered. In addition, the system cannot support co-

modification, that is one can only view the part models that others are working

on, but he cannot modify these models.

• WPDSS

Web Product Design Support System (WPDSS) (Qiang et al. 2001) [57]

can support CAD-based collaborative design through the Internet. A client-server

architecture is deployed. The server supplies CAD geometry and engineering infor-

mation to all the clients. Real-time co-design is based on the traditional commercial

CAD software among many clients. A Java-based interface is developed to extend

the single-location CAD software to a multi-location application through the In-

ternet.

In order to reduce the geometric data transmitted across network, CAD

macro is used to record the modification procedures. The micro files generated

at one client are broadcasted to other clients through WPDSS server. Clients that

28

receive the macro files will update the geometric model using its local CAD system.

A co-modifying monitor is deployed at the server side to monitor the co-modifying

session. After one designer’s operation, the corresponding macro file is generated

and sent to the server in order to update models at other clients. When an update

request arrives, the monitor will check if there are other requests to ensure there

is one request at one time. Then the macro file is propagated to other clients to

update their local copy of product model. The next round operation will not start

until the co-modifying monitor receives feedback from all other clients that indicate

all clients have updated their models.

The advantages of WPDSS system is that it uses macro files to update opera-

tion among different clients. This will improve the efficiency of collaborative design

to some extend. However, the synchronization mechanism is not effective. Since a

slight operation will generate corresponding macro file, there are many redundant

update requests that are not meaningful. In addition, co-modifying monitor has

to wait the completion of all clients’ updating before starting next operation. This

will lead to a large latency of synchronization and the design process might be

blocked if the monitor cannot receive feedback due to network congestion.

2.4 Summary

• Developing Technologies

Traditional component-based technology, such as the DCOM, CORBA, or

Java/RMI, provided reliable, scalable architecture to meet the growing needs of

applications.

Though these component-based technologies work very well in an Intranet

environment, attempting to use them over the Internet presents two significant

problems. First, the technologies do not interoperate. While they all dealt with

objects, they disagreed over the details, e.g. lifecycle management, support for

29

constructors, and degree of support for inheritance. Second, and more important,

their focus on RPC-style communication typically led to tightly coupled systems

built around the explicit invocations of object methods.

Table 2.4: Comparison of developing technologies

Technologies Interoperating
ability

Degree of inheritance Object invocation

CORBA Programming
languages can
be used to code
objects only
when there are
ORB libraries.

Supports multiple in-
heritance at the inter-
face level

When a client object
needs to activate a
server object, it binds
to a naming or a
trader service.

Java/RMI The objects can
only be coded
in the Java lan-
guage.

Supports multiple in-
heritance at the inter-
face level

When a client object
needs a server object
reference, it has to do
a lookup() on the re-
mote server object’s
URL name.

DCOM Since the spec-
ification is at
the binary level,
programming
languages like
C++ and Java,
can be used.

Supports multiple in-
terfaces for objects
and uses the Query-
Interface() method to
navigate among inter-
faces.

When a client object
needs to activate a
server object, it can do
a CoCreateInstance()

.NET Re-
moting

Diverse pro-
gramming
languages like
C#, C++, Java,
and Visual Basic
can be used.

Support multiple
interfaces. Support
COM interfaces. This
means that a client
proxy dynamically
loads multiple server
stubs in the remot-
ing layer depending
on the number of
interfaces being used.

Support for passing
objects by value or by
reference, callbacks,
multiple-object acti-
vation and lifecycle
management policies.

The .NET Remoting provides an infrastructure for distributed objects. It

exposes the full-object semantics of .NET to remote processes using plumbing that

is both very flexible and extensible. Compared to traditional component-based

technologies, .NET Remoting offers much more complex functionalities, including

support for passing objects by value or by reference, callbacks, and multiple-object

30

activation and lifecycle management policies. Table 2.4 gives the comparison of

.NET Remoting with other technologies. It shows that .NET remoting can provide

more powerful support for product design in a distributed collaborative environ-

ment.

In this study, .NET Remoting technology is adopted to implement commu-

nication framework in the proposed framework. Based on .NET technology, the

framework has proved its ability to realize efficient and effective collaboration in

collaborative product design process.

• Client-Server Architecture

With the emergence of the Web, the thin-client style has gained much popu-

larity for ease of deployment. The rationale possibly lies in that data consistency

and operation synchronization can be easily achieved at a central server. However,

several drawbacks still cannot be overcome by thin-client style systems, such as the

demand for significant bandwidth for all client applications and the requirement

for the user to be online whenever the applications have to be used. While the

thick-client style tends to be more robust and capable of handling even the worst

network conditions.

Time has changed with the emergence of the new needs in modern industry.

Collaborative engineering analysis has been brought forward in order to shorten

product development cycle. The ideal system should be capable of supporting

collaborative engineering analysis as well as engineering design. To fully participate

in a collaborative design process, designers need to be able to, not only exchange

general geometric information but also to locate or provide generic analysis services.

However, according to the literature review, both the thin-client style and thick-

client style support only limited co-design functions through provision of shared

information space.

Thus, a new framework has been proposed in this thesis, which is capable of

collaborative engineering design and collaborative engineering analysis: modeling

31

CAD
System

Coordination
Server

Communication
facilitators

Client

Message,
Representation Data

Pre/post
process system

Analysis Server

Message

Client Client

Figure 2.6: New paradigm of collaborative design tool

client + coordination server + analysis server (Figure 2.6). Client is equipped with

all necessary CAD facilities. Analysis server provides CAE functionalities for en-

gineering analysis. Coordination server provides communication and coordination

for all design and analysis activities.

Since each client is equipped with a stand alone CAD system, most design

tasks can be carried out asynchronously. In addition, an enhanced single replica-

tion mechanism has been adopted in order to keep data consistency, that is, only

one client owns the original data, other clients only have the necessary data for

visualization. Synchronization among these clients is achieved by the coordination

server. The new framework is expected to have a combination of the advantages

of the thin-client style and thick-client style.

32

Chapter 3

A Distributed Collaborative

CAD/CAE Framework

This chapter presents a distributed collaborative CAD/CAE framework, CoCADE,

developed during the course of this research work. The framework has seamlessly

wrapped a workflow management system and a product design system for the

management of collaborative product design sessions which are likely to be dynamic

and interdependent.

3.1 Software Architecture

3.1.1 Overview

In order to automate definition of collaborative sessions for design-analysis activ-

ities using a workflow model, the architecture for the whole framework shown in

Figure 3.1 has been adopted. The figure shows the integrated three-tier architecture

of a workflow management system and a product design system.

33

Figure 3.1: Architecture of CoCADE framework

3.1.2 Introduction to Product Geometric Modeling Kernel

The product design system in CoCADE framework adopts ACIS [58], an object-

oriented three-dimensional (3D) geometric modeling engine from Spatial Technol-

ogy Inc., for product geometric modeling. ACIS provides a geometry foundation

for 3D modeling application and has the flexibility to adapt or extend for particular

application requirements.

Wireframe, surface, and solid modeling are incorporated in ACIS kernel by al-

lowing these alternative representations to coexist naturally in a unified data struc-

ture, which is implemented in a hierarchy of C++ classes. Linear and quadric ge-

ometry are represented analytically, and Non-Uniform Rational B-splines (NURBS)

represent free-form geometry.

34

ACIS supports two types of file format: SAB and SAT. Both of these two

formats contain all necessary model information which can be accessed by applica-

tions that are not based on ACIS. The difference between these two file formats is

that the data is stored in binary form in SAB files and in ASCII form in SAT files.

Several engineering design systems were implemented on the basis of ACIS

geometric kernel, such as AutoCAD [59], IronCAD [60] etc. In this research work,

ACIS geometric kernel 9.0 is adopted to enable product geometric modeling by

product design client.

3.1.3 Introduction to Workflow

The workflow is concerned with the automation of procedures where documents,

information or tasks are passed between participants according to a defined set of

rules to achieve, or contribute to, an overall business goal.

Conventionally, business processes are implemented by hard-coding business

process related aspects such as control and data flow into the software systems

that are hard to modify and maintain. Workflow management is a technology

that addresses these problems. The basic idea in workflow management is to cap-

ture formal descriptions of business work process and to support the automatic

enactment of the processes based on these descriptions.

Workflow Management System(WfMS) is the software system that supports

workflow management. As defined by Workflow Management Coalition (WfMC)[61],

WfMS is “a system that defines, creates, and manages the execution of workflows

through the use of software, running on one or more workflow engines, which is

able to interpret the process definition, interact with workflow participants, and,

where required, invoke the use of IT tools and applications”.

A WfMS consists of two main functional components: a build-time compo-

nent and a runtime component. The build-time component provides support for

35

the development and persistent storage of workflow types. It offers the workflow

modeler a workflow modeling language in which workflow types can be expressed

together with appropriate tools, such as editors, browsers, and parsers/compilers.

Besides workflow modeling, the build-time component also supports organizational

modeling, which includes the specification of information about processing enti-

ties. For instance, it has to be specified with activities provided by the processing

entities. Furthermore, organizational relationships among processing entities may

have to be defined in order to enable the specification of activity assignment to

processing entities based on organizational relationships. Besides the aforemen-

tioned functionalities, the build-time component may provide additional facilities

to simulate workflow executions and analyze workflow types.

The runtime component supports the creation and enactment of workflows

according to the workflow types created with the build-time component. Dur-

ing the workflow enactment, the runtime component interacts with the processing

entities in order to ensure that the workflows are executed as prescribed by the

corresponding workflow types. WfMS usually provides monitoring tools that allow

the workflow administrator to keep track of the execution progress workflows. Also,

WfMS typically maintains logs about workflow executions that can be queried and

analyzed in various ways in order to validate workflow types, identify bottlenecks,

etc.

3.1.4 Introduction to Coordination Modes

Generally, there are two modes for coordination activities, which are parallel and

sequential.

• Parallel mode: In a parallel mode, supposing that a product can be divided

into enough number of parts, each individual approaches a part of product.

Each part are connected with interface which can be predefined. There may

be information provided from each member to the group on the status of his

36

or her progress.

• Sequential mode: In a sequential mode, the group imposes phases on the

problem solving process that must be undertaken in a sequential manner by

all the members of the group. This mode is usually used when assembling

each part to one product. Each member can discuss problems and make

some changes to his or her own part in the product view which includes all

the parts of the product.

Normally, a product design process consists of discrete design tasks. Thus

the parallel mode is inevitable to be the main mode for the design process. The

sequential mode is also needed when assembling objects or analyzing simulation

results.

Figure 3.2: Web-based workflow services client

37

3.2 Product Design Workflow Management Sys-

tem

Considering the context where the workflow resides, the most common scenario

is that the application software (including product design client, CAE solver etc.)

is running on heterogeneous platforms. To enable all the participants to access

a workflow service easily and conveniently, a thin client which is based on web

browser is deployed to provide a main interface between the user and the workflow

server, as what is shown in the system architecture (Figure 3.1). Figure 3.2 shows

the Web-based workflow services client.

In order to model product design workflow, every activity can be regarded

as a task in the workflow model. each task consists of state, users, resources,

documents, and time requirement, etc. During the execution of the process, all

these composites of the task can be changed dynamically. At the same time, the

connectors between different tasks represent the relationships between activities.

It can be shown in Figure 3.3.

Figure 3.3: Task model of product design workflow

In a product design workflow model, all the tasks are message-driven. A

workflow engine that is the core of the workflow management system is responsible

for the explanation and execution of the messages. It is built on Enterprise Java

Beans (EJB) technology, which is the server-side component architecture for the

J2EE, to enable distributed, transactional, secure and portable development of

product design workflow. Figure 3.4 shows the deployment view of the workflow

38

Figure 3.4: Deployment of workflow management system

management system. the workflow engine is a Message Driven Bean (MDB) that

runs at EJB container. The advantage of MDB is that they can be pooled and

load-balanced to boost for scalability. The workflow engine listens for workflow

requests, services them and returns responses. Communication between the client

and the MDB is synchronized over Java Message Services (JMS). In this system,

the workflow engine is deployed in the Jboss EJB container and workflow web

services are deployed in Tomcat.

3.3 Product Design System

Product design system consists of product design client, coordination server, CAE

server, and product database. The overall system architecture including general

39

information flow and its relationship with product design workflow system are

shown in Figure 3.5.

Coordination
Server

Database II
(Geometric Data)

Database III
(Engineering Data)

CAE
Server

Database I
(Workflow Data)

Product Design
Workflow System

Part DraftProduct Design
Workplace

Task Specification

Product Model

Workflow Design
Client

Update
Task

Get
Task

Retrieve

Store

Retrieve

Store

Retrieve

Store

Get
Results

Set
Parameter

Design

View/
Edit

Design/
Analysis

Geometric Data /
Engineering Results

Data Tier Business Tier Presentation Tier

Product Design System

Figure 3.5: General structure of the product design system

Figure 3.6 describes a typical product design flow in product design system.

Product design client gets task information from product design workflow system.

Then the collaborative session is established to carry out the product design task.

Having finished product design process, designers can discuss and decide the data

preparation for simulation purpose including mesh generation and assignment of

materials properties, sources/load, and boundary condition. Such information is

sent to CAE server to solve the associated physical problems. Designers can invoke

several numerical analysis processes through CAE server and cooperatively analyze

the product performance. After the design task is completed, the task information

is updated to the product design workflow system.

40

Create/Modify geometric

model

Pre-process

(Assign materials, mesh,

etc.)

Satisfied?

Computing

and Post-process

Evaluate

Performance

End

Satisfied?

Update Task Information

Create Collaborative

Session

Get Task

Information

Satisfied?

Yes

No

Yes

No

No

Yes

Start

Figure 3.6: A typical product design flow in the product design system

3.3.1 Presentation Tier

Product design client (Figure 3.7) covers all necessary modeling and analysis facil-

ities needed for product design. It supports designers to work on their own design

tasks asynchronously or invoke a session to discuss problems and work coopera-

tively with other designers. Based on the geometrical modeling kernel, ACIS [58],

product design client deals primarily with geometric-based data and describes the

initial parts of a product. It uses Hoops Stream Format (HSF) [62] to support data

streaming and visualization of product data and computing results. In addition,

41

Figure 3.7: Product design client drawing disk assembly

product design client manages other parameters necessary for product performance

evaluation, such as material properties, physical loads, boundary conditions and

environment conditions. The information flow in product design client is described

in Figure 3.8. Three types of information data are generated during the collabora-

tive product design process: operation information, HSF presentation stream, and

session state. All the data are transmitted through .NET Remoting channel. And

all clients are synchronized during the design process.

Figure 3.8: Information flow in the product design client

42

3.3.2 Business Logic Tier

Session Manager

Message Handler

Session State MonitorSession Control:
Create, Join,

Leave, Terminate

Geometric
Data Manager

Data Access
Controller

Representation
Data Monitor

Geometric Data
Controller

CAE Data Monitor

Coordination Server

CAD Operation Monitor

CAE Operation Monitor

Figure 3.9: Coordination server structure

Business logic tier includes two parts. i.e. Coordination Server and CAE

Server. Coordination Server (Figure 3.9) is mainly implemented with three parts:

Session Manager, Message Handler and Geometric Data Manager. Session Man-

ager has session management functions including creating session, joining session,

leaving session and terminating session. Message Handler handles all the messages

needed for th collaborative design and analysis. It consists of Session State Moni-

tor, Operation Monitor, and Representation Data Monitor. Session State Monitor

watches changes in the session state, such as join-in of a new client, session ter-

mination, etc., and provides the information about the new session state to all

clients. Operation Monitor watches new CAD operations and CAE operations.

Representation Data Monitor watches new HSF data which is used for visual-

ization. Geometric Data Manager manages product data access. It associates

product data access privilege with user management to avoid data divulging and

handle data access conflicts to keep data consistency. Geometric Data Controller

43

controls CAD data transmission and storage (in public database at server side).

CAE Data Monitor controls CAE data (both simulation results and post-process

results) transmission.

Workflow EngineCoordination
Server CAE ServerClient

Session Creation
Request

Create Session

Geometric
Modeling

Geometric Data
Preparation

Computing and
Post-process

Pre-process

Engineering Results
Preparation

Evaluate
Performance

Update Workflow
Model

Begin

Get Task
Information

End

Verify Task
Infomration

A

B

C

Figure 3.10: Coordination flow for a typical design process

Coordination Server provides all coordination functions for collaborative en-

gineering design and analysis. Figure 3.10 shows the coordination flow for a typical

product design process (Figure 3.6). First, it is implemented with network protocol

drivers (TCP/IP and HTTP) to support reliable connection over Intranet/Internet,

provide .NET remote components to manage sessions and message circulation for

product design clients (A in Figure 3.10). Second, it handles coordinates with CAE

server for real-time product performance evaluation (B in Figure 3.10). Finally, Co-

ordination server can verify product design sessions and update task information

to workflow engine using XML messages (C in Figure 3.10). That is, when a col-

44

laborative session finishes, the corresponding updated XML message is sent from

the coordination server to the workflow engine, and then the work flow runs to the

next task. The communication framework is shown in Figure 3.11.

Figure 3.11: Communication framework in coordination process

During the product design process, the run-time information of collaborative

session can be monitored at the coordination server (Figure 3.12).

Figure 3.12: Coordination server application

Based on .NET technology, coordination server provides coordination for

multiple product design clients. Table 3.1 shows the configuration of coordination

server. Two channels, i.e. TCP/IP channel and HTTP channel, are opened to

45

Table 3.1: Configuration of coordination server
Channel Wellknown Mode Component Object Uri
HTTP Singleton Session Manager SessionMan.soap
HTTP Singleton Message Handler MessageHan.soap

TCP/IP Singleton Session Manager SessionMan
TCP/IP Singleton Message Handler MessageHan

the product design client. Two components, i.e. the session manager and message

handler, are implemented to provide coordination services.

The CAE Server provides all necessary functions for product evaluation, in-

cluding primarily simulation tools and perhaps heavy duty mesh generation and

post-process tools. It receives the instructions/parameters from the coordination

server, and executes corresponding process. Meanwhile, it manages engineering

results generated by the CAE tools and stores the computational results and nec-

essary information to the data tier.

Instruction Handler

CAE Operation Monitor

Simulation
Data Manager

Geometric Data
Monitor

Simulation Results
Controller

Post-process Results
Controller

CAE Server

CAE Solver Manager

CAE Solver
state Monitor

Macroinstruction
Generator

Figure 3.13: CAE server structure

As shown in Figure 3.13, CAE Server was implemented with Instruction Han-

dler, Simulation Data Manager and CAE Solver Manager. Instruction Handler

watches incoming CAE operations from Coordination Server and generate corre-

sponding macroinstruction stream to activate CAE solver to perform computing

46

tasks. Simulation Data Manager manages engineering data that are generated dur-

ing computing process. CAE Solver Manager controls the different CAE solvers to

perform computing tasks.

3.3.3 Data Tier

The data tier provides data management for the entire product development pro-

cess. It deals with user information, product design process information, CAE tools

information, pre-/post-process parameters, product geometric model information,

simulation/computing results information and development history. As shown in

Figure 3.14, the product information can be grouped into the following views:

• Product Design: This view covers most of the aspects needed for CAD

functions in product design client. It deals with geometry-based data and

the initial parts of the product are described.

• Product Design Process: This view records the product design workflow.

The product design processes are defined. The task specifications and status

are stored.

• Simulation and Analysis: The simulation and analysis view describes the

additional data needed for the analysis and the simulation domain. In addi-

tion to the test data, the results are stored to provide the basis for comparison

of different versions of the product design.

The product database should be a group database, accessible by all the users

involved in the design of the product. Checkin and checkout mechanism should be

used to keep the operations in a cooperative, controlled, and predictable manner.

• Check-ins: Check-ins are useful for moving objects from a personal database

to the group database. One could either check in objects which were earlier

47

Figure 3.14: Product database

checked out from a group database or check in the ones created in the personal

database.

• Check-outs: Check-outs are useful when the user wants to work on a par-

ticular object for a long period of time with a minimum of network traffic.

If the designer makes changes to an object and then decides to commit the

changes to the database, then the new version has to be created. Just before

checkout or checkin, the product design client should check if the object is versioned

or not. If the object is not versioned, it should be converted into a versioned object.

This will ensure that every time an object is checked in, a new version is created.

Periodically each product design client should group the latest state of all the

objects used by the client and create a new version of this group of objects. This

will be useful in the later design stage, when the individual components of the

product will be assembled together to form a product model.

48

3.4 Architectural Overview of Collaborative Ses-

sion

Traditional session definition [7] is lack of a systematic and comprehensive func-

tional description for collaborative design. Thus, the definition of session for col-

laborative product design has been extended as:

The process in which multi-discipline designers, who may be from geograph-

ically dispersed locations, work together to design product or analyze engineering

results, synchronously or asynchronously, with the help of collaboration tools.

The difference between an asynchronous collaborative session and a syn-

chronous collaborative session is that, in an asynchronous collaborative session,

collaborators can carry out different tasks in different workplaces asynchronously

and cooperatively; while in a synchronous collaborative session, collaborators carry

out the same task in the same workplace.

Apart from the description of session functions, it is necessary to describe

the supporting infrastructure for an effective collaborative session. The main is-

sues related to the collaborative session management may include: the relation

between session and design task, the manner of session coordination, and the syn-

chronization requirements in the collaboration process. The coordination and syn-

chronization issues in synchronous collaborative session are much more complex

than that in asynchronous collaborative session, as more real-time interactions are

needed for an effective synchronous collaboration process. Figure 3.15 presents the

architectural structure of collaborative session.

From Figure 3.15, it can be seen that the primitive objective of a collabo-

rative session is to realize co-design and co-analysis with the help of collaboration

tools, such as view, highlight, mark-up and annotation. The messaging function

helps collaborators to communicate ideas and discuss on the geometric model or

engineering results. The logging function can record the whole design process that

49

Figure 3.15: Architectural structure of collaborative session

is carried out in a collaborative session.

In order to effectively support above functions, the following important issues

should be addressed.

• Workflow Association

To provide effective support for a collaborative design activity, it is necessary

to establish the link between the collaborative session and the specific design task.

Every design activity should be pre-defined and associated with the product design

workflow. Collaborative sessions can be automatically defined, this may include

definition of resource requirements, dependency constrains, etc. to facilitate design

activities. Also, upon terminating a collaborative session, the corresponding task

50

information should be updated.

In this research work, a product design workflow system was incorporated into

the engineering design and analysis environment to support collaborative sessions

using a workflow-driven mechanism.

• Coordination

Coordination is the process that allows individuals to work together, which

involves communication between the participants. It includes the mechanism of

session establishment. As shown in Figure 3.15, the key functions for session es-

tablishment are: creating session, joining session, leaving session, and terminating

session. Operation token management is also needed for synchronous collaborative

session to avoid operation conflicts. The key functions for operation token manage-

ment are: request token, release token, confer token, and eject faulty client (Figure

3.15).

Coordination is important for a collaborative session, especially for a syn-

chronous session in which collaborators join online and carry out the same design

task in real time. In this thesis, the coordination mechanism in a synchronous

collaborative session is investigated and discussed in detail.

• Synchronization

Synchronization is another important issue for collaborative session manage-

ment. It is particularly vital for synchronous collaboration process in which the

representation data, operation information and session status should be synchro-

nized in order to support an effective and efficient design activity. Figure 3.15

shows the synchronization requirements for synchronous collaborative session. A

new synchronization scheme for synchronous collaborative session management is

proposed in this research work.

51

3.5 Summary

In this chapter, the architecture of a distributed collaborative CAD/CAE frame-

work, CoCADE, has bee proposed. A product design workflow management sys-

tem is integrated in the framework to manage all collaborative activities. Based

on .NET remoting technology, the product design system is implemented using a

3-tiered Client/Server architecture to support collaborative product design. The

architectural structure of collaborative session has been presented and the criti-

cal issues that affect collaborative session have been discussed. The framework

provides a reliable solution for collaborative engineering design and analysis in a

distributed environment.

52

Chapter 4

Collaborative Session

Management

The CoCADE framework can provide reliable support to CAD and CAE sessions

participated by designers from geographically dispersed locations. However, in such

a collaborative design and analysis environment integrated with CAE, collaborative

session management becomes more challenging.

In this chapter, collaborative product design process using CoCADE frame-

work is investigated. Based on the Unified Modeling Language (UML) model, a

workflow-driven mechanism has been proposed to organize the collaborative ses-

sions. The coordination and synchronization issues that significantly affect col-

laboration process are discussed in detail, and corresponding solutions have been

proposed.

4.1 Organization of Collaborative Sessions

Engineering product design is viewed as a systematic and iterative transformation

from abstract needs to concrete and detailed artifacts [63, 64]. It is typically

described as a process, i.e., the product design process. Gero and McNeill [65]

53

have shown that product design can be seen as a series of discrete activities which

are carried out at different product design stages.

Collaborative product design process can be treated as a specialized kind of

business process, in which documents, information, and tasks are “passed” from

one “stage” to another according to a set of rules. The design tasks can be carried

out in parallel or sequence. Collaborators work together for moments, then divide

up and go in their separate ways [66]. Communication and coordination between

relevant tasks are required for effective product design. Overlapping and cross-

functional cooperation are essential in the approaches of a collaborative design

process [67, 68].

In this section, UML approach, which consists of use case and activity di-

agrams, was adopted to model the logical perspectives of collaborative product

design process in the proposed framework. Based on the UML model, a workflow-

driven mechanism is adopted to manage collaborative sessions that facilitate design

activities in a collaborative product design process.

4.1.1 Introduction to UML

In order to eliminate the difference between the business description and the soft-

ware specification, unearthing common language understood by users and develop-

ers is imperative. Each symbol and semantic within the language must be defined

clearly and intuitively for users. UML is a well-defined and standard modeling

language. UML consists of use case, sequence, collaboration, class, object, state,

activity, component, and deployment diagrams [69]. A system could be modeled via

these diagrams from various aspects, such as structural, behavior, implementation,

and environment views.

Use case diagram is useful to represent goals, responsibility, functionality, and

boundary intuitively for a business process. It also expresses static interactions

between business processes and their external objects. When notations of use

54

case diagram maps into workflow mechanism, use case notations stand for sub-

processes of a business process, and actor notations stand for participants [70].

Therefore, based on the internal functions of a business process, each use case

notation describes a sub-process, which composes the whole business process. Each

use case also can be further detailed in another use case diagram. An actor of use

case diagram may be a user, an invoked application, a database, or a legacy system.

Even though use case diagram represents business processes, it cannot show

the order of each use case instance and dynamic behavior. Within the UML model

elements, both sequence diagram and activity diagram support to describe the

dynamic behavior of use cases. Whereas sequence diagram emphasizes the flow

of control from object to object, activity diagram emphasizes the flow of control

from activity to activity [71]. In contrast to sequence diagram, activity diagram

is very useful in modeling the process definition of the workflow and in describing

the behavior that contains a lot of parallel processing. This is essential for a

collaborative product design process.

In the following, UML approach is used to specify process definition. Use

case diagram is adopted to express the specification of system functionality, goals,

responsibility and iterations. Then activity diagram is adopted to model business

logical steps and dynamic behavior derived from previous use case diagram. Finally,

the workflow-driven mechanism is described based on the UML model.

4.1.2 Collaborative Product Design Process

If the tasks of product development process are performed separately, the high level

of interdependence may lead to error and critical situations [72]. In order to capture

the context of a collaborative product design process in proposed framework, object

relationships are presented with use case diagram. Figure 4.1 shows a use case

diagram for a typical product design process. The diagram contains four use cases

and five actors.

55

In Figure 4.1, planner has the role to plan the whole product development

process. Designers follow the pre-defined workflow and perform product design

synchronously or asynchronously. Product design workflow system accepts task

specifications and generates product design workflow. Coordination system acts

as a coordinator among product design, evaluation and simulation. CAE solver

focuses on the simulation of product model.

Planner

CAE Solver

Define Product
Design Process

Designer

Design Product

Simulation

Product Design
Workflow System

Evaluation

Coordination System

Figure 4.1: Use case diagram for a product design flow

Collaborative design process consists of a series of discrete, sequent or paral-

lel, activities which have interdependencies at certain stages. Collaborative sessions

are established to facilitate these activities. Figure 4.2 is the activity diagram for

hard disk spindle motor design flow. It consists of asynchronous collaborative ses-

sions (e.g. A and B in Figure 4.2) and synchronous collaborative sessions (e.g. C

and D in Figure 4.2).

When collaborating asynchronously, designers can carry out different design

tasks. As shown in Figure 4.2, the stator and rotor design tasks in stage A may

be interdependent, as the stator and rotor are to be assembled to spindle mo-

tor. The dependable computing tasks in stage B may be highly interdependent.

56

Asynchronous collaborative sessions are established to facilitate these dependable

tasks.

Plan

Define
Specification

Design Stator Design Rotor

Assemble
Spindle Motor

Mesh

Perform
Simulation

[Accept]

Define Post-
process I

Define Pos-
process II

Execute
Post-process

Execute
Post-process

Evaluation

Notify Designer Generate
Version

[Reject] [Accept]

Reject Model

[Reject]

Store Product

A

B

C

D

Figure 4.2: Activity diagram for spindle motor design and analysis flow

When collaborating synchronously, engineers can carry out the same task

cooperatively in real time (e.g. C or D in Figure 4.2). Synchronous collaborative

sessions are established to faciliate such activities. In synchronous collaborative

session, designers work intensely with one another, observing and understanding

57

each other’s intentions. Each participant contributes what they can in different

fields of expertise at moments when they have the knowledge appropriate to the

situation.

4.1.3 Workflow-driven Collaborative Session Management

Due to the complexity and interdependency of product design process, there may

be a lack of common understanding among the participants. Thus, efficient ar-

rangement of the workflow activities can greatly enhance the performance of the

whole design process. During the execution of workflow model, changes will have

to be made to suit new environments. Hence, a dynamic characteristic is imported

to the workflow which provides the functionalities that activities can be added or

dropped and collaborative sessions can be defined automatically to facilitate new

activities, the activities’ profile can also be altered even when the workflow process

is running. These are achieved by the flexible definition of the activities and con-

figuration of the workflow engine. Figure 4.3 shows an example of workflow model

in product simulation stage.

T1

T4

T3 T5

Activity: Simulation
Engineer: A
Model: Spindle Motor
Start: Jun 1, 2004
End: Jun 1, 2004

...

Activity: Post-Process 1
Engineer: B
Model: Spindle Motor
Start: Jun 3 2004
End: Jun 5, 2004

T2

Activity: Assign Post-
Process Parameters
Engineer: B, C
Model: Spindle Motor
Start: Jun 2, 2004
End: Jun 2, 2004

...

Activity: Post-process 2
Engineer: C
Model: Spindle Motor
Start: Jun 3, 2004
End: Jun 10, 2004

Activity: Evaluation
Engineer: A, B, C
Model: Spindle Motor
Start: Jun 10 2004
End: Jun 10, 2004

Workflow Entry / Exit Activity

Activity: Evaluation P1
resutls
Engineer: B, C
Model: Spindle Motor
Start: Jun 6 2004
End: Jun 6, 2004

T6

Figure 4.3: An example of workflow model in product simulation stage

In Figure 4.3, every task consists of related information, such as activity,

engineer, model, time requirements etc. T3 and T4 are dependable computing

58

tasks: T3 needs the computing results of T4 during its computing process before

it proceeds to T5. In the initial workflow model, T4 is expected to finish before

receiving the data request (on Jun 5 onwards) from T3. The old workflow route

is T4 ⇒ T3. T3 and T4 are performed in asynchronous sessions. However, due to

requirements change of product model, it needs to evaluate the results generated by

T3 before sending them to T4. In such case, a new task T6 is dynamically defined in

the workflow model while T4 and T3 are executing. Before T6 is inserted between T3

and T4, operations such as checking states of T4 and T3 are performed by workflow

engine. After passing verification, T6 is added and waits for execution, and then

a synchronous collaborative session is defined by workflow system to carry out T6.

The new workflow route becomes T4 ⇒ T6 ⇒ T3. If the new task cannot pass

the verification of workflow engine, workflow system will inform designers through

coordination server to manually modify the workflow model to facilitate the new

task.

During the execution of the product design process, collaborative sessions

are managed by workflow model in which all task specifications are defined. When

task attributes are changed or the connectors between different tasks are redirected,

synchronous or asynchronous collaborative sessions are defined to facilitate these

changes. Eventually, the product design workflow model can improve the flexibility

and changeability of product development by effectively organizing collaborative

sessions.

4.2 Synchronous Collaborative Session Manage-

ment

Communication and coordination are essential for an effective collaboration pro-

cess, especially for synchronous collaborative sessions when collaborators need to

work on the same product model simultaneously. This section will investigate the

59

primary aspects of synchronous collaborative session. Coordination and synchro-

nization issues that significantly affect collaboration process are discussed in detail,

and corresponding solutions have been proposed.

4.2.1 Data Security and Consistency

The security issues in distributed collaborative engineering system can be broken

into three categories: Client Security, Transmission Security, and Collaboration

Security. Standard solutions can be used for Client and Transmission Security,

such as public-key encryption [73]. Collaboration Security should be considered in

synchronous collaborative sessions. The main challenge for Collaboration Security

is the fact that the collaborator must divulge information to the online product

design workplace when collaborating in synchronous collaborative session, yet the

collaborator needs assurances that this does not let others learn the details of their

design.

A distributed collaborative engineering design and analysis system has to en-

sure every client has the same view of data including product data and engineering

data. The simplest way to realize this is to store data only once on the server and

to redirect any access to these data via RPC. However, for a distributed CAD/CAE

framework which needs large scale engineering data exchange, RPC solutions are

not adequate [74]. Another way of sharing data is to provide each client with a

replica of the data and to ensure the consistency between each two replicas. Repli-

cation process consists in copying on the client the data that the remote program

needs among those stored on the server, and in ensuring the consistency at each

modification realized on a data or on one of its replicas.

In CoCADE system, a public database at server side is deployed to store all

versions of product data. Designer can check out the product data to his local

database for asynchronous/synchronous collaborative design or check in the latest

product data.

60

The measure is used to manage product data in a synchronous collaborative

session is that only one client owns the initial data for editing or analysis. Other

clients only have the necessary data for visualization. Through doing so, it is easy

to keep data consistency compared with the system in which each client has one

copy of data. It uses RPC to realize efficient information exchange over network.

This measure makes conflict control easy in the whole design session. It can also

be utilized as a measure to secure the confidential data that only belongs to one

company or team.

4.2.2 Coordination Mechanism

The synchronous collaborative session is usually group-based. The initiator who

creates the collaborative session plays the leading role in the collaborative design

process. Others are collaborators who join the session. Accordingly, Centralized

Coordination Mechanism (CCM), including centralized session management and

centralized token circulation management, has been developed for the CoCADE

system.

In
iti

at
or

Member

Create Session

Terminate Session

M
em

ber

Join Session

Leave Session

Member

CoCADE
Server Request Token

Release Token

Confer Token

Kick Client

ACIS

HSF

HSF

HSF

Figure 4.4: Centralized coordination mechanism (CCM)

As shown in Figure 4.4, CCM has two types of clients, Initiator who creates

61

the collaborative session, and Member who joins the collaborative session. Only

one client holds the original data that are downloaded from public database or

created in the design process, as designated by the initiator. To get the best

performance, CoCADE transfers original data only between the server and the

data holder (designated by the initiator). The data transferred between two clients

is HSF data which is only for visualization. This mechanism helps to reduce the

unnecessary data transition and improve network performance.

A token ring protocol is deployed in CCM. Only the designer who owns

the control token, named Token Holder, can make changes to the product model.

However, the initiator has the full control of operation token. He can not only

confer the control token to a requesting client, but also take back the operation

token from a “dead” client (e.g., due to network congestion).

Members should obtain confirmation from the initiator and current token

holder before he obtains the operation token. If multiple members request the

token, the initiator has the right to select the next token holder to avoid conflicts.

Figure 4.5 shows the messaging structure of CCM. The messages during ses-

sion establishment process and collaboration process are managed by Coordination

Server. A typical coordination flow under CCM can be described as follows.

MemberCoordination ServerInitiator

Messages:
CS: Create Session
TS: Terminate Session
JS: Join Session
LS: Leave Session

CS

CT: Confer Token
KC: Kick Client
Req_T: Request Token
Rel_T: Release Token

TS

CT

LS

Req_T
Rel_TKC

JS

Figure 4.5: Messaging structure of CCM

Session Establishment: Initiator sends Create Session message to Coordina-

tion Server. Coordination Server creates the new synchronous collaborative session.

62

The operation token initially belongs to the initiator. Member sends Join Session

message to Coordination Server in order to join the session. When a new member

joins, other members that are already in the session will be notified.

Collaboration: Members who want to operate on product model send Request

Token message to Coordination Server. Coordination Server informs the Initiator

and Token Holder, then waiting for their response. Token Holder sends Release

Token message to Coordination Server when his operation is complete. Then Ini-

tiator selects next token holder and sends Confer Token message to Coordination

Server. Upon receiving Confer Token message from Initiator, Coordination Server

notified the selected member.

In such way, the token circulates among designers until the collaborative

design work finishes. Using CCM, the collaborative design is kept in a controlled,

cooperative and efficient manner.

4.2.3 Synchronization Scheme

Capture Operation

Generate
Operation Stream

Network (LAN/Internet)

Apply Operation

Token holder Data holder

Verify
Operation Stream

Pack
Operation Data

Unpack
Operation Data

Convert
Data Type

Convert
Data Type

Figure 4.6: Generation of operation information

In a synchronous collaborative session, synchronization is one of the most

63

critical issues that will affect effectiveness and efficiency of collaboration process.

It includes the synchronization of operation, initial representation, and session

status.

Operation synchronization covers the dynamic synchronization of operation

information. This means that when token holder is operating (creating mod-

els, changing camera position etc.), the operation information is captured and

streamed, then sent to other clients. The process for generating operation infor-

mation is shown in Figure 4.6

The representation data includes the necessary data for the representation of

geometric model, meshing, simulation, and computing results. When new data are

loaded into the workplace, the corresponding HSF data that is only for visualization

is generated and sent to other clients. Initial representation synchronization ensures

that all clients share the same view of the newly loaded data. The generation of

representation data is shown in Figure 4.7.

Read out HSF data

Encode segment name
(Data stream head)

Generate HSF
data buffer

Pack data
(Head + Data)

Convert data type

Network (LAN/Internet)

Unpack data

Decode segment name

Parse HSF data buffer

Display

Data Holder Other Clients

Convert data type

Figure 4.7: Generation of representation data

Session status synchronization means every client should know other clients’

64

status. That is when a client requests the control token, other clients should be

notified.

Figure 4.8: Multi-thread request response (MTRR) scheme

The Multi-thread Request Response (MTRR) scheme (Figure 4.8) has been

implemented to realize concurrent collaboration in CoCADE system. Upon joining

the collaborative session, the client initiates three threads to request updated infor-

mation including initial representation, operation, session status from Coordination

Server.

Figure 4.8 shows an example. The initiator requests the new operation. Other

clients request the initial representation data. The clients without the control token

might request control token. If the information (operation, initial representation,

token etc) is not available, the request will be hung up at Coordination Server.

Three monitors including Session State Monitor, Operation Monitor and HSF

Data Monitor are implemented in Coordination Server. They are responsible for

monitoring the status of session (e.g. token state), operation and initial represen-

tation data respectively.

65

Client
Main

Program

Thread:
request new

data
Send request

Server
Data

Monitor

New request
arrive

New Data
Available

get new data
back

Get New data

Send request New request
arrive

New Data not
Available

Initiate thread
waiting for new data

Get New data

Hang up

Thread:
waiting for
new data

Thread activated

Thread activated

Hang up

New data arrive

Hang up

Send request

Thread activated

New request
arrive... ...

Initiate thread:
Request new

data

Data

Data

Figure 4.9: Realization mechanism of MTRR scheme

Figure 4.9 shows the realization mechanism of the MTRR scheme. Client

main program initiates a thread to request new data. Upon sending data request to

coordination server, the thread hangs up and is waiting for the response from server.

Server data monitor receives the data request from client and checks whether the

requested data is available. If the data is available, the server immediately sends

the data along with the return results of the request. Upon receiving data from

the server, the client thread is activated. It forwards the new data to client main

program. It then sends a new request to server and hangs up.

If the data is not available at the server side, the server has to wait for the

arrival of the new data from other clients (data holder in this example). Therefore,

to hold the request for the new data, the server initiates a new thread to hold the

request. That is, a thread is initiated after receiving the request and hangs up to

block the execution of the corresponding server program - the function that deals

66

with data requests from the client. Once receiving new data from the data holder,

the hanging thread is activated, then the corresponding server program proceeds

to get the new data and assigns them to the return results of the request.

Collaboration Process in Synchronous Session
(synchronization of initial representation data)

Coordination
Server Other ClientsIntiator

Create session

Initiate
session

Join session

Design start

Yes

All client
joined?

No

Has initial
data?

Load initial
representation

data

Yes

Notify existing
clients and
waiting for

other clients

No

Start

End

Figure 4.10: Synchronization of initial representation data

By such way, MTRR scheme can ensure each client to receive updated infor-

mation effectively. It can achieve following benefits:

Robustness: The clients do not need to hold and expose a public IP. In

other words, the server does not need to know every details of client. This is very

important for designers, who resided in a different network domain of different

companies, to collaborate over Internet.

Efficiency: The server response time is reduced especially when the required

information is not available. Client needs not to repeat sending request to server.

It can get new information immediately after new data arrives on the server side.

67

Effectiveness: Every request has an effective return result since the request

will be held if it cannot obtain desired information. Hence it can realize instant

response with minimum requests and improve network utilization.

The communication framework that supports MTRR scheme and the opera-

tion latency using MTRR scheme will be discussed in the succeeding sections. The

processes using MTRR scheme to synchronize initial representation data, operation

and session status are described below.

When data holder (the initiator in this example) loads product geometric

data (or computing results, etc.) to workplace, the corresponding HSF data is

generated and transmitted to Coordination Server. The initial data monitor will

activate the sleeping requests for initial representation data. Then other clients

will receive the initial representation data back to update their visualizations. The

synchronization flow of initial representation data is illustrated in Figure 4.10.

Collaboration Process in Synchronous Session
(synchronization of operation)

Coordination
Server Initiator Other ClientsToken Holder

Start

Execute
operation

End

Generate
operation

Notify initiator

Update HSF
operation

Execute HSF
operation

(Update view)

Execute HSF
operation

(Update view)
Only this part is
executed when

the initiator holds
the token

Figure 4.11: Synchronization of operation

68

When the token holder executes an operation, the operation information is

sent to Coordination Server. The operation monitor activates the sleeping requests

for new operation. Operation is executed at data holder (the initiator in this ex-

ample) and corresponding HSF operation information is broadcast to other clients.

Then other clients receive the operation information and execute on the basis of

HSF data that is only for visualization. The synchronization flow of operation is

shown in Figure 4.11.

Collaboration Process in Synchronous Session
(synchronization of session status)

Coordination
Server Token holder InitiatorToken Applicant

Notify other
clients

Release token

Request token

Get token and
confer token

Notify initiator

Start

Get control
token

End

Waiting for
token release

Is token holder
blocked?

Yes

Notify token
applicant

No

Figure 4.12: Synchronization of session status

When session status changes, such as requesting token, every client should

receive the same information. Figure 4.12 shows the synchronization flow of a token

circulation process. When a client requests the control token from token holder,

he should obtain confirmation from initiator and current token holder before he

obtains the operation token. And the initiator has the right to select the next

token holder to avoid conflicts.

69

4.2.4 Communication Framework

The MTRR scheme is developed based on .NET remoting technology. Figure

4.13 shows the .NET remoting architecture. The initial representation data (HSF

stream), operation and session status are synchronized between two clients. The

update events include the new representation data, new operation or new session

state.

Figure 4.13: Remote .NET components in CoCADE System

Coordination Server provides .NET remote components to clients. These

components include all the interfaces that are needed for collaborative activities.

In figure 4.13, Client 1 is an active designer (token holder) who can edit the product

model and update the latest information through the .NET remote components.

70

Other clients (Client 2 in 4.13) are observers who only receive the updated infor-

mation or send requests for control token through the .NET remote components.

Two .Net components are implemented to realize coordination and synchro-

nization. One is Session Manager component that is responsible for collaborative

session management. The other is Message Handler that is responsible for synchro-

nization during collaboration process. Table 4.1 lists the main functions of the two

.NET components.

Table 4.1: Main functions of .NET components
Session Manager Interfaces Functions
CreateSession Create a new collaborative session
JoinSession Join a existing collaborative session
LeaveSession Leave a collaborative session
TerminateSession Terminate a collaborative session

Message Handler Interfaces Functions
UpdateData Update HSF representation data
GetNewData Get new representation data
UpdateDisplay Update operation information
GetDisplay Get new operation information
GetSessionState Get new session state
RequestToken Request operation token
ReleaseToken Release operation token
Confertoken Confer operation token to a client

4.2.5 Operation Delay

Collaborative applications can address the latency in term of response time [75].

CoCADE system utilizes the Internet as the medium for collaboration. It is impor-

tant to consider the actual response time for different activities performed utilizing

the CoCADE system.

In CoCADE system, response time is the time between a designer’s operation

and a remote collaborator’s seeing the results of that operation. It is function of:

(i) the available bandwidth of the Internet, (ii) the execution time of operation, and

(iii) the operation message size. Of the three factors affecting the response time,

the available bandwidth, which is resulted in queueing delay, has the maximum

71

influence on the response time and cannot be predicted in advance due to rapid

fluctuations of the available bandwidth. Therefore, in this section, the response

time is categorized based on the type of data transferred through the Internet.

The queueing delay is analyzed using a simplified queueing model.

• Response Time

A normal scenario is considered for calculating the response time (Figure

4.14): token holder generate an operation. Data holder executes the operation,

then broadcasts visualization information to other clients through coordination

server. Token holder and data holder reside at different client sites. Thus, there

are two types of operations: Original Operation, which is executed by data holder

based on ACIS geometric data, and HSF Operation, which is executed by other

clients based on Hoops data for visualization only.

The average transaction time of Original Operation between client and server

is t1. The average transaction time of HSF Operation between client and server is

t2. The execution time of Original Operation is te1. The execution time of HSF

Operation is te2.

The response time for creation of the primitives (block, cylinder, sphere etc)

is the time required for completion of the following operations: sending Original

Operation to data holder, executing Original Operation, sending HSF operation to

other clients (token holder in this scenario), executing HSF operation. It can be

calculated by: 2t1+2t2+te1+te2.

The response time for loading models requires the following operations to be

completed: data holder loads ACIS based data, sending HSF representation data to

token holder, Visualizing representation data. It can be calculated by: 2t2+te1+te2.

72

Token Holder
Coodination

Server
Data Holder

OrignialOperation Get New Operation

Reques
t

New Op
eratio

n

Requ
est

New
Oper

atio
n

Holding

Execution

RequestNew Operation

Oper
atio

n De
liver

Succ
ess

NewOperation

Upd
ate

HSF

oper
atio

n

HSF

Ope
rati

on

Request New Operation

Response time
for creation
of primitives

t1

te1

...

HoldingRequest New Operation

Based on
ACIS data

Based on
Hoops data

Execution

t1

t2

t2

te2

Response
time for
loading
part

Figure 4.14: Response time under normal conditions

During these trials, the server was running on a computer having Intel Pen-

tium IV 2.66GHz CPU; The client was executed on another PC, which had an Intel

Pentium IV 1.5GHz CPU. The test part for measuring response time are shown

in Figure 4.15. The execution time and operation message size can be read from

client program as shown in Table 4.2.

Table 4.2: Execution time and operation message length
Operation Part Original

Operation
length (byte)

*Execution
Te1 (ms)

HSF Opera-
tion length
(byte)

*Execution
Te2

Create Sphere (a) 65 50 133 10
Create Block (b) 81 70 145 10
Create Cylinder (c) 77 60 142 10
Load Plate (d) NA 50 1849 10
Load Clamper (e) NA 250 9014 30
Load Gear (f) NA 530 16718 60

* The timer accuracy is 10 ms for client Windows XP operating system

73

Figure 4.15: Test parts for measuring response time

Response Time Using TCP/IP Connection

To obtain the message transaction time between client and server, Iometer

[76], the popular I/O subsystem measurement and characterization tool, is adopted.

The remote access specification is defined (A in Figure 4.16) and a distributed

environment with ten clients (B in Figure 4.16) is simulated. The size of operation

information package for transmission is set to the same as that are listed in Table

4.2. The package size of parts representation data is set to the same as HSF package

size, that is 8KB each package. Then the average transaction time can be read from

Iometer Results Display Panel (C in Figure 4.16). The response time of operation

using TCP/IP connection is calculated in Table 4.3.

Table 4.3: Response time using TCP/IP conncection
Operation Part Original

Operation
length/Delay
T1

(byte/ms)

*Execution
Te1 (ms)

HSF Op-
eration
length/Delay
T2

(byte/ms)

*Execution
Te2 (ms)

Response
time
(ms)

Create Sphere (a) 65/10 50 133/11 10 102
Create Block (b) 81/10 70 145/11 10 122
Create Cylinder (c) 77/10 60 142/11 10 112
Load Plate (d) NA 50 1849/15 10 88
Load Clamper (e) NA 250 9014/41 30 352
Load Gear (f) NA 530 16718/64 60 706

* The timer accuracy is 10 ms for client Windows XP operating system

74

A. Edit remote access specification

B. Setup remote access clients

C. Read transaction time from results display panel

Figure 4.16: Transaction time obtained using Iometer

Response Time Using HTTP Connection

For HTTP connection, data for transmission is described by SOAP message

which is generated by .NET Remoting class for transmission over internet. Thus,

additional text message is added because of using SOAP. A typical SOAP message

generated by .NET framework is shown in Figure 4.17:

To obtain a formal solution for calculating response time, the average SOAP

head is set as 512 bytes. Then the average transaction time is measured using

Iometer and the average response time is calculated (Table 4.4).

75

<SOAP-ENV:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:Method
 xmlns: m= "http://server/Method.soap>
 <messagebody>message</messagebody>
 <m:Method>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 4.17: Soap message for invoking remote object

Table 4.4: Response time using HTTP conncection
Operation Part Original

Operation
length/Delay
T1

(byte/ms)

*Execution
Te1 (ms)

HSF Op-
eration
length/Delay
T2

(byte/ms)

*Execution
Te2 (ms)

Response
time
(ms)

Creation Sphere (a) 577/15 50 645/16 10 122
Creation Block (b) 593/15 70 657/16 10 142
Creation Cylinder (c) 589/15 60 654/16 10 132
Load Plate (d) NA 50 2361/34 10 128
Load Clamper (e) NA 250 9526/71 30 422
Load Gear (f) NA 530 17230/121 60 832

* The timer accuracy is 10 ms for client Windows XP operating system

• Queuing Delay

For the interconnected network, where client and server reside in different

LANs, queuing is inevitable for routing or flow control (Figure 4.18). The queuing

delay is one of the most important factors that affects the response time.

To obtain a better understanding of queuing delay, M/M/1 queueing model

[77] is adopted to represent the queuing system. The M/M/1 queuing system

consists of a single transmission line. Data packages arrive according to a Poisson

process with the rate λ, and the transmission rate µ. The average transmission

time is τ = 1/µ. The utilization factor of transmission line can be denoted as

76

Figure 4.18: Queuing delay in interconnected network

ρ = λ/µ (4.1)

The average number of packages in the system in steady-state is:

N = λ/(µ− λ) (4.2)

The average delay per package (waiting time in queue plus transmission time)

is given by By Little’s Theorem [78],

T = N/λ (4.3)

Using equation (4.1) and (4.2), this becomes,

T = 1/(µ− λ) = τ/(1− ρ) (4.4)

The average waiting time in queue, W, is the average delay T less the average

transmission time 1/µ, therefore,

77

W = 1/(µ− λ)− 1/µ = ρτ/(1− ρ) (4.5)

From equation (4.4) and (4.5), it can be concluded that the utilization of

the transmission line has heavy impact on the transmission delay. When ρ → 0,

T ≈ τ , that is when transmission rate is far higher than package arriving rate,

the average delay per package is near the transmission time. When ρ increases,

T > τ , that is when package arriving rate increases, the average delay per package

increases accordingly. When ρ → 1, T →∞, that is when packaging arriving rate

is near or exceed the transmission rate, network congestion will occur. The package

may be blocked or discarded.

Based on the discussion in this section, it is clear that transferring initial

representation data is a slower process compared with transferring other operation

information. This transfer typically occurs when a new session is established. For

example, when a new session starts, product part is loaded into workplace for

editing. In order to minimize the transfer of large CAD based representations

of the product, HSF operation is used to synchronize client views. The response

time using HTTP connections is higher than that using TCP/IP connections. It is

partially because of the queueing delay. Although it is difficult to predict available

network bandwidth, the M/M/1 queuing delay model provide a basis for adequate

delay approximations.

4.3 Summary

In this chapter, a workflow-driven mechanism has been proposed to manage col-

laborative sessions in CoCADE framework. It is found that the workflow system

can dynamically define and organize collaborative sessions during product design

process to facilitate product design activities. The critical issues, such as coor-

dination and synchronization, which have important impact on the synchronous

78

collaborative design efficiency, have been studied in detail. CCM mechanism and

MTRR scheme have been proposed to provide reliable support for collaborative

design and analysis in synchronous collaborative session.

79

Chapter 5

Case Study - Spindle Motor

Design and Analysis

In this chapter, an electromagnetic design case relating to spindle motors for hardisk

drives is presented to demonstrate how a collaborative design and analysis work

is supported by CoCADE framework with the collaborative session management

scheme.

5.1 Introduction to Product Design

Ulrich and Eppinger [79] have defined product development as “the set of activities

beginning with the perception of a market opportunity and ending in the produc-

tion, sale and delivery of product”. These activities form a product lifecycle from

concept specification, through design and manufacture to disposal (Table 5.1).

Table 5.1: Stages in product lifecycle
Product Development Cycle Product Delivery Cycle

1 Customer requirements Process planning
2 Product specification Manufacture
3 Conceptual design Inspection
4 Detailed design Sale
5 Simulation and Optimization Support and Services
6 Prototyping and Testing Disposal and Recycle

80

Product Lifecycle Management (PLM) covers all stages of product lifecy-

cle and has been widely recognized as a strategic business approach to support a

product-centric business solution that unifies product lifecycle by enabling online

sharing of product knowledge and business applications [80, 81, 82, 83]. In the

product development cycle, the need for inner-enterprise and inter-enterprise col-

laborations becomes more and more intense. As shown in Figure 5.1, it is very

important to bring engineers from relevant fields together to solve design prob-

lems in the early design stage. Better collaboration of the designers working on

a common design task will reduce the product development lead-time to a large

extent.

Product
Specification

Conceptual
Design

Detailed Design

Simulation &
Optimization

Prototype Making
& Testing

Design Analysis
Feedback

Prototype Feedback

Figure 5.1: Product development cycle

5.2 Introduction to Spindle Motor

Hard disk drive is one of the most important components within a PC. Using the

magnetic recording technologies, the hard disk drive is capable of storing large

81

amounts of digital information. The spindle motor (Figure 5.2) is a key component

in the hard disk drive, as it is responsible for turning the hard disk platters, and

allowing the hard drive to operate. For accurate recording of information, it is

extremely important for the platter to revolve at a constant speed with as little

vibration as possible [84]. The spindle motor must provide stable and reliable

turning power for thousands of hours of often continuous use.

Figure 5.2: A hard disk spindle motor

The precise circular motion is determined by the torque, which is produced by

the magnetic field in the hard disk spindle motor. Therefore, an accurate analysis

of the magnetic field is necessary in design stage. In order to predict instantaneous

magnetic field distribution in the spindle motor, numerical technique based on

the Finite Element Analysis (FEA) has been adopted [85]. It is a process which

takes a CAD model as input and adds materials, applies loads and constraints to

the model, and simulate the performance. Through dividing the whole problem

domain into finite small regions in which the field problem can be approximately

represented by linear equations, FEA is perhaps the most useful numerical tool to

solve non-linear field problems with complex geometry.

82

5.3 Spindle Motor Design using CoCADE Frame-

work

Figure 5.3 shows a spindle motor design scenario based on the CoCADE framework

with workflow-driven collaborative session management mechanism.

Assume that Engineers A, B (Company I) and C (Company II) involves in

the collaborative design of a spindle motor using the CoCADE system. CoCADE

servers are deployed in Company II. They will follow the major steps discussed in

the following sections.

Figure 5.3: A collaborative spindle motor design scenario

5.3.1 Product Design Process Definition

Planning is the first step for the product design process. The workflow process is

implemented with consideration of the following:

• The requirements of product design and product specification.

• Appropriate knowledge that can be used to enhance the workflow process.

83

Figure 5.4: Define product design workflow model

• The most efficient and useful methods of integrating and transferring knowl-

edge.

• The needs of distributed designers and the required modes of communication.

Based on the spindle motor specifications, a collaborative design workflow

model is created by engineers A, B and C cooperatively through a product design

workflow editor. As shown in Figure 5.4, the task attributes consisting of states,

users, resources, documents, time requirements, etc., are described. Accordingly,

collaborative sessions are defined with consideration of such task attributes. The

possible dependencies are evaluated in the workflow model and corresponding solu-

tions are described as new task. The workflow planner is to make effort to predict

the potential interdependent tasks in product modeling stage and computing stage.

This can avoid conflicts and errors occurred in product development process in ear-

lier stage, and save time and resources. After completion of process definition, a

84

<?xml version="1.0" encoding="iso-8859-1"?>

<?xml-stylesheet type="text/xsl" href=""?>

<Process id="0" name="Spindle Motor Design Process" description="Case Study" state="0">

<Users>A</Users>

<Resources>CoCADE System, ANSYS, ANSOFT, SQL Server</Resources>

<Documents>Spindle Motor Documents</Documents>

<Task id="1" taskType="1" rect="18,18,50,50" name="Plan" description="" state="0">

<PrecedingTasks></PrecedingTasks>

<SucceedingTasks>Spindle Motor Specification</SucceedingTasks>

<Users>A</Users>

<Resources>Product Design Workflow System</Resources>
<Documents>Spindle Motor Documents</Documents>

</Task>

<Task id="2" taskType="1" rect="12,12,50,50" name="Specification" description="" state="0">

<PrecedingTasks>Project Planning</PrecedingTasks>

<SucceedingTasks>Stator Design,Rotor Design</SucceedingTasks>

<Users>A,B,C</Users>

<Resources>SQL Server</Resources>

<Documents>Spindle Motor Documents</Documents>

</Task>

... ...

</Process>

Figure 5.5: Design process defined by XML

XML file is created by workflow engine to record all necessary information relating

to the design process. Figure 5.5 shows a sample of XML file.

Based on the above process definition, the spindle motor design and analysis

flow in this study is illustrated in Figure 5.6. collaborative sessions are established

to facilitate the collaborative design activities. In asynchronous collaborative ses-

sion, engineers can design product parts asynchronously and collaboratively. For

example, the stator and rotor design (Figure 5.6) are carried out in asynchronous

sessions. Synchronous collaborative session requires that all participants join the

same workplace and carry out the same design task in real time. It requires coordi-

nation and synchronization in the collaboration process. For example, the Perfor-

mance Evaluation task (Figure 5.6) are carried out in a synchronous collaborative

session.

5.3.2 Product Modeling

Following the pre-defined workflow model, collaborative design can be carried out

by engineers from different disciplines. The design tasks can be performed by

multiple engineers in parallel. As illustrated in Figure 5.7, the stator and rotor are

85

Figure 5.6: Spindle motor design and analysis flow

designed by Engineer A (Company I) and C (Company II) asynchronously. The

asynchronous collaborative design flow is:

• Engineer A checks out stator model from public database reside at server

side. The accessibility of the stator model from other engineers will then be

denied. Coordination server sends updating message to workflow engine and

the new task status is set to “Start”.

• Engineer A creates a asynchronous collaborative session in CoCADE system

and perform geometric design. Workflow engine will record the duration of

86

Figure 5.7: Asynchronous collaborative session

this design task. Simultaneously, Engineer C can perform the rotor design in

the session.

• When finishing stator design, Engineer A checks in the stator model as a

new version. The accessibility of stator model is granted to all authorized

engineers.

• Engineer C checks out the latest version of stator model and perform some

modifications.

• Upon completion of the stator and rotor design, the workflow state will move

to the next task. The new task status of stator and rotor design is set to

“End”.

The involved participants also need to create synchronous collaborative ses-

sions to carry out the same design task in the same workplace, such as the Spindle

Motor Assembly task in Figure 5.6. Engineers A, B and C establish the synchronous

collaborative session for assembling spindle motor and discuss on the model with

the help of coordination server that are implemented with the coordination proto-

col and synchronization scheme. The flow of synchronous collaborative design is:

87

i: HTTP Connection

ii: TCP/IP Connection

Figure 5.8: Connect to server using HTTP or TCP/IP

• Connect to server: As Engineer A and B are out of Company II, they use

HTTP to connect CoCADE server (i in Figure 5.8). While Engineer C uses

TCP/IP to connect CoCADE server for the best performance (ii in Figure

5.8).

88

• Establish session: Engineer A creates the synchronous collaborative session

named “SM Design” (i in Figure 5.9), checkouts the latest version of the

stator and rotor. Then Engineer A waits for other engineers. Engineer B and

C to join the session (ii in Figure 5.9). Engineer B and C receive the initial

representation data that Engineer A has created or loaded from Coordination

Server, in this case the part of a spindle motor.

i:

Create

Session

ii:

Join

Session

Figure 5.9: Create session and join session

• Collaborative design (Figure 5.10): Collaborative communication [86]

takes place after the establishment of collaborative session. Engineer A, B,

89

and C discuss on the product model and share their ideas with the help

of CoCADE collaboration tools, such as instance messaging tool, mark-up

tool etc. They can also modify the product model cooperatively under CCM

(Centralized Coordination Mechanism). One can manipulate the product

model when he obtains the control token from previous token holder. The

initiator, Engineer A, is the session chairman who can keep the collaboration

process in a controlled and cooperative manner. Operations, initial represen-

tation data and session status are synchronized using MTRR (Multi-thread

Request Response scheme).

Figure 5.10: Synchronous collaborative session

• Save product model: After Engineer A, B and C reach an agreement of

spindle motor geometry, Engineer A checks in the product model to public

90

database.

• Update task information : After completion of a design task, the corre-

sponding information is updated through coordination server to the workflow

model (Figure 5.11). Then the product design will proceed to the next task.

Figure 5.11: Update task information

5.3.3 Product Performance Evaluation

Having finished product design process, three engineers can discuss and decide the

data preparation for simulation purpose including mesh generation and assignment

of materials properties, sources/load, and boundary condition. Such information is

sent to CAE server to solve the associated physical problems. Engineers can discuss

about the resultant mesh (i in Figure 5.12) and re-define mesh parameters until

desirable results (ii in Figure 5.12) are obtained. After the completion of simulation

process, engineers collaboratively define post-process parameters and send these

parameters to CAE server. The instruction handler that is implemented in CAE

server generates the corresponding macroinstruction stream to invoke computing

91

process of CAE solvers. Figure 5.13 shows a sample macroinstruction stream for

computing cogging torque.

i. Resultant Mesh

iii. Flux Density iv. Cogging Torque

ii. Magnetic Field

Figure 5.12: Product performance evaluation

In this study, the definition of computing tasks (flux density and cogging

torque), which are performed by Engineer B and C respectively, are carried out

in asynchronous sessions (Figure 5.6). However, the computing of cogging torque

requires information on computed flux density obtained from post-process I. The

workflow engine will detect dependencies and their interfaces to avoid conflicts

among these computing tasks.

In order to find the slot effect on the distribution of the flux density in the

spindle motor, three engineers decide to evaluate the flux density generate by post-

process I before computing cogging toque. A new task, flux density evaluation,

92

!====CALCULATE COGGING TORQUE====

! T=L*(R^2)*INTERGRATE(BN*BT)d(theta)/MIU0

! L IS THE AXIAL LENGTH OF MOTOR R IS THE CALCULATION RADIUS IN AIRGAP

! BN AND BT ARE NORMAL AND TANGENTIAL COMPONETN OF FLUX DENSITY

! d(theta)=2*PI/720

!================================

COG=0

*DIM,SDBRDATA,ARRAY,720 !SAVE FLUX DENSITY DATA TO FILE

*DIM,SDBTDATA,ARRAY,720

*DIM,SDVPDATA,ARRAY,720

*DO,J,1,2*ROTA

COG=COG+5*RC*RC*BNTDATA(J,5,1)*BNTDATA(J,6,1)/720

NUMBR(J)=BNTDATA((719-2*ROTA+J),5,1)

NUMBT(J)=BNTDATA((719-2*ROTA+J),6,1)

*ENDDO
*DO,J,(2*ROTA+1),720

COG=COG+5*RC*RC*BNTDATA(J,5,1)*BNTDATA(J,6,1)/720

NUMBR(J)=BNTDATA((J-2*ROTA),5,1)

NUMBT(J)=BNTDATA((J-2*ROTA),6,1)

*ENDDO

/OUTPUT,COG0,DAT

*STATUS,COG

/OUTPUT,NUMBR,DAT

*STATUS,NUMBR !SAVE FLUX DENSITY DATA TO FILE

/OUTPUT,NUMBT,DAT

*STATUS,NUMBT,DAT

!/OUTPUT,SDVPDATA,DAT

!*STATUS,SDVPDATA

!*MWRITE,BRDATA,BR,DAT

Figure 5.13: Macroinstruction stream for computing cogging torque

is inserted into the workflow model dynamically. After verification of workflow

engine, the workflow model is updated as shown in Figure 5.14.

The result of flux density is downloaded by Engineer A. Engineer B and C

can obtain the updated representation data from coordination server. The radical

component of the flux density and the tangential component are analyzed by three

engineering synchronously (iii in Figure 5.12).

After completion of the new task, the cogging torque is calculated and the

computational result is viewed by three engineers. They compare the cogging

torque with previous version of spindle motor and cooperatively analyze the spindle

motor performance (iv in Figure 5.12).

93

Figure 5.14: Dynamically insert new task into workflow model

5.4 Summary

The CoCADE framework provides a platform for designers from different compa-

nies and institutes to communicate their ideas in design stage. In the case study,

designers from research institute can provide the technical feasibility analysis for

product development. Designers from manufacturing industry can provide advices

from the viewpoint of manufacturing process. All these designers follow the pre-

defined workflow process. Collaborative sessions including asynchronous collabo-

rative session and synchronous collaborative session are defined by workflow model

to facilitate the collaboration activities. It is shown that the CoCADE framework

can effectively support such product development activities.

94

Chapter 6

Conclusions

6.1 Concluding Remarks on Present Work

Although collaborative design has been intensively studied by researchers in recent

years and frameworks on the basis of different technologies have been explored,

the effective integration of CAE capabilities to handle multi-physical problems for

product performance evaluation remains to be studied and realized. Collaborative

session management in distributed engineering design and analysis environment

become more complicated because of the involvement of product performance eval-

uation activities.

This thesis introduces a framework develped on the basis of Microsoft .NET

technology and it can provide a collaborative design and analysis environment over

the Internet. It appears that the state-of-the-art .NET technology is an effective

tools to build such framework. The thesis also discusses the product design process

and shows how to leverage workflow technology to organize collaborative sessions.

The synchronization problem in synchronous collaboration process has been solved

using a new synchronization scheme.

During the course of this research work, several contributions have been

achieved:

95

• A prototype of a distributed collaborative CAD/CAE system, which is based

on a client-server architecture comprising of modeling client, coordination

server, and analysis server, has been built. The architecture intents to provide

reliable support for both design and analysis activities.

• A systematic and comprehensive definition of collaborative session has been

given. The architectural structure of collaborative session has been presented,

its key functions are described, and issues related to collaborative session

management are studied.

• A product design workflow system has been incorporated into the engineering

design and analysis environment. Product design process in such prototype

system has been analyzed. The mechanism that makes use of workflow to

manage collaborative sessions has been illustrated. It is found that the work-

flow engine can be utilized to dynamically define collaborative sessions during

product design process to facilitate product design activities.

• A new multi-thread request response scheme has been developed to facilitate

synchronization of initial representation data, operation and session state in

collaborative sessions.

Through the case study, it can be concluded that the workflow-drive mecha-

nism can effectively organize collaborative sessions during product design process

and the synchronization scheme can efficiently solve synchronization problems in a

collaborative session. The proposed framework provides reliable support to CAD

and CAE sessions participated by designers from geographically dispersed loca-

tions.

6.2 Suggestion on Possible Future Work

Agent technology provides an extension to collaborative session management in

product design process. As defined by Jennings and Wooldridge [87], an agent is a

96

computer system situated in some environments, and that is capable of autonomous

action in this environment in order to meet its design objectives. Its properties of

being autonomous, collaborative, and intelligent are of high interest to researchers

in the area of distributed and collaborative design and analysis. The benefits of

applying agent technology in proposed framework include resources management.

In case of workflow change, multiple collaborative sessions may have conflict-

ing interests in using some resources, such as product model, CAE solvers, human

resource etc. Agent can help to organize these resources to avoid such conflicts.

Figure 6.1: Agent enhanced framework

Figure 6.1 shows the extended framework integrated with agents. The main

functions of these agents are described as follows.

• Session agent: It acts as assistant to client. The typical usage is query-

97

ing/updating clients’ status, sending/receiving message etc.

• Session control agent: It manages design process in a session through

session agents on the client side, and coordinates with other session control

agents for sharing configuration and resources information between sessions.

• Session management agent: It helps the workflow engine to manage ap-

propriate resources and other arragement for collaborative sessions according

to the workflow model. It will optimize the resources allocation in case of

workflow change.

In the extended framework, an agent-enhanced workflow-driven collaborative

session management will be realized. The product development activities will be

organized in a more flexible, efficient, intelligent and robust manner to facilitate

distributed collaborative engineering design and analysis.

98

Bibliography

[1] AberdeenGroup. Beating the Competition with Collaborative Product Com-

merce, Jun. 2000.

[2] D. Burdick, “Collaborative Product Commerce: The Technology Vision”, Re-

search Note Technology by Gartner Group. Jan. 2000.

[3] M.J. Chung, H.S. Jung, W. Kim, R. Goplannalan, and H. Kim, “A Framework

for Collaborative Product Commerce using Web Services”, Proceedings of the

IEEE International Conference on Web Services, 2004.

[4] ADAMS, MSC.Software Corporation, http://www.mscsoftware.com

[5] ANSYS, ANSYS Inc., http://www.ansys.com/

[6] L. Wang, W. Shen, H, Xie, J. Neelamkavil, and A. Pardasani, “Collabora-

tive conceptual design - state of the art and future trends”, Computer-Aided

Design, vol.34, pp.981-996, 2002.

[7] Hans-Peter. Dommel and J.J. Garcia-Luna-Aceves, “GROUP COORDINA-

TION SUPPORT for Synchronous Internet Collaboration”, IEEE INTER-

NET COMPUTING, Mar.-Apr. 1999.

[8] CORBA, Object Management Group (OMG) Inc., http://www.omg.org, 2004.

[9] Java/RMI, Sun Microsystems, Inc., http://java.sun.com/products/jdk/rmi/index.html,

2004.

[10] DCOM, Microsoft Corporation, http://www.microsoft.com/com, 2004.

99

[11] .NET, Microsoft Corporation, http://www.microsoft.com/net, 2004.

[12] N. Senin, N. Borland and D. R. Wallace, “Distributed modeling of product

design problems in a collaborative design environment”, Technical Report.

CAD lab., Department of Mechanical Engineering, MIT. 1998.

[13] W. D. Li, S. K. Ong, J. Y. H. Fuh, Y. S. Wong, Y. Q. Lu and A. Y. C.

Nee, “Feature-based design in a distributed and collaborative environment”,

Computer-Aided Design, vol.36, pp.775-797, August 2004.

[14] ConceptWorks, RealityWave Inc., http://www.realitywave.com/products-

concept.asp, 2004.

[15] OneSpace, CoCreate, http://www.onespace.net, 2004.

[16] eDrawings, SolidWorks Inc., http://www.solidworks.com/edrawings, 2004.

[17] Centric Innovation Center, Centric Software, Inc.,

http://www.centricsoftware.com/innovate, 2004.

[18] Hoops Streaming Toolkit, Tech Soft America (TSA),

http://www.hoops3d.com/products/hoops/stream.htm, 2004.

[19] Autovue, Cimmetry Systems Inc., http://www.cimmetry.com, 2004.

[20] Streamline, Autodesk Inc., http://www.autodesk.com/streamline-trial, 2004.

[21] CollabCAD, National Informatics Centre, India, http://www.collabcad.com,

2004.

[22] Alibre Design, Alibre Inc., http://www.alibre.com, 2004.

[23] I. Greif, “Computer Supported Cooperative Work: A Book of Reasdings”,

Morgan Kaufmann, San Mateo, Ca, 1988.

[24] L.F. Ludwig, “Integration of CAD/CAE with multimedia teleconferencing and

messaging via broadband networks and shared resource servers”, Proceedings

100

of the First International Conference on Systems Integration, pp. 136-143,

Apr. 1990.

[25] L. Shu, and W. Flowers, “Groupware experiences in three-dimensional com-

puteraided design”, Proceedings of the Conference on Computer-Supported Co-

operative Work (1992), pp. 179-186, 1992.

[26] M.A. Gisi and C. Sacchi, “Co-CAD: a collaborative mechanical CAD system”,

Presence, vol. 3, pp. 341-350, 1994.

[27] J.P. Harrison, and B. Christensen, “Virtual Collaborative Simulation Envi-

ronment for Integrated Product and Process Development”, Proceedings of

HPDC, 1996.

[28] M.L. Maher, S.J. Simoff, and A. Cicognani, “Potentials and limitations of

virtual design studios”, Interactive Construction On-line, vol.1, 1997.

[29] A. Stork and U. Jasnoch, “A collaborative engineering environment”, Proceed-

ings of TeamCAD’97 Workshop on Collaborative Design, pp. 25-33, 1997.

[30] G.D.F. Pahng, N. Senin, and D. Wallace, “Distributed modeling and evalua-

tion of product design problems”, Computer Aided Design, 30(6):411-423.

[31] J. Y. Lee, H. Kim, S.B. Han, and S.B. Park, “Network-centric feature-based

modeling”, Proceedings of Pacific Graphics ’99, IEEE Computer Society,

pp.280-289, 1999.

[32] S. Chan, M. Wong and V. Ng, “Collaborative solid modeling on the WWW”,

Proceedings of the 1999 ACM Symposium on Applied Computing, pp.598-602,

1999.

[33] X.D. Liu, “CFACA: component framework for feature-based design and pro-

cess planning”, Computer-Aided Design, 32(7):397-408, 2000.

101

[34] Z. Xie, Z.J. Liu, T.C. Chong, and H. Zhou. “A Framework for Collaborative

Engineering Design and Analysis”, The Fourteenth International Conference

on the Computation of Electromagnetic Fields, 2003.

[35] C.A.M. Barbosa, M. Dreux, J. Bento, B. Feijo, R. Melo, and S. Scheer, “An

object model for collaborative CAD environments”, The Seventh International

Conference on Computer Supported Cooperative Work in Design, pp. 179-184,

2002.

[36] R. Bidarra, et al., “Web-based Collaborative Feature Modeling”, Proceedings

of Sixth ACM Symposium on Solid modeling and applications, pp.319-320,

May. 2001.

[37] W. Shen and D.H. Norrie, “Multi-agent systems for concurrent intelligent

design and manufacturing”, London, UK: Taylor and Francis, 2000.

[38] M.J. Hague and A. Taleb-Bendiab, “Tool for the management of concurrent

conceptual engineering design”, Concurrent Engineering: Research and Appli-

cations, 6(2):111-129, 1998.

[39] G.Q. Huang and K.L. Mak, “Web-based morphological charts for concept de-

sign in collaborative product development”, Intelligent Manufacturing, 10:267-

278, 1999.

[40] H.C. Chang, W.F. Lu, and X.F. Liu, “WWW-based collaborative system for

integrated design and manufacturing”, Concurrent Engineering: Research and

Applications, 7(4):319-314, 1999.

[41] N. Shyamsundar and R. Gadh, “Internet-based collaborative product design

with assembly features and virtual design spaces”, Computer-Aided Design,

33(9):637-651, 2001.

[42] K.Y. Kim, Y. Wang, O.S. Muogboh, and B.O. Nnaji, “Design formalism for

collaborative assembly design”, Computer-Aided Design, 36(9): 849-871, 2004.

102

[43] W.D. Li, J.Y.H. Fuh, and Y.S. Wong, “An Internet-enabled integrated system

for co-design and concurrent engineering”, Computers in Industry, in press,

May, 2004.

[44] G.D.F. Pahng, S. Bae, and D. Wallace, “A Web-based collaborative design

modelling environment”, Proceedings of the IEEE Workshops on Eanbling

Technologies Infrastructure for Collaborative Enterprises, pp.161-167, 1998.

[45] U. Roy and S.S. Kodkani, “Product modelling within the framework of the

Would Wide Web”, IIE Transactions, 31(7):667-677, 1999.

[46] Y.M. Chen, M.W. Liang. “Design and implementation of a collaborative en-

gineering information system for allied concurrent engineering”, International

Jounal of Computer Integrated Manufacturing, 13(1):11-30, 2000.

[47] J.Y. Lee, H. Kim, and K. Kim, “A web-enabled approach to feature-based

modeling in a distributed and collaborative design environment”, Concurrent

Engineering, 9(1):74-87, April. 2001.

[48] S. Nidamarthi, R.H. Allen, R.D. Sriram, “Observations from supplementing

the traditional design process via Internet-based collaboration tool”, Interna-

tional Journal of Computer Integrated Manufacturing, 14(1):95-107, 2001.

[49] S.H. Kong, S.D. Noh, Y.G. Han, G. Kim, and K.I. Lee, “Internet-based collab-

orative system: press-die design process for automobile manufacturer”, Inter-

national Journal of Advanced manufacturing Technology, 20(9):701-708, 2002.

[50] X.G. Ming, Q.F. Ni, W.F. Lu, I.B.H. Lee, M.W. Fu, S.K. Ong, and A.Y.C.

Nee, “Towards collaboratively integrated manufacturing system for tooling

production in SMEs - the INPROSE approach”, Proceedings of the 9th ISPE

International Conference on Concurrent Engineering: Research and Applica-

tions, pp.465-474, 2002.

[51] K. Z. Huang, X. D. Li, S. K. Cao, B. Yang and W. Pan, “Co-DARFAD -

the collaborative mechanical product design system”, The Sixth International

103

Conference on Computer Supported Cooperative Work in Design, pp.163-168,

Jul. 2001.

[52] Y. Gardan, E. Perrin, F. Danesi, L. Denis, N. Gardan, F. Heschung, E. Ma-

lik, M. Reimeringer and R. Stock, “First operational systems based on the

dija project”, IASTED International Conference on Applied Modelling and

Simulation (AMS 2002), pp. 294-299, 2002.

[53] L. Denis, Y. Gardan and E. Perrin, “A framework for a distributed CAD

system”, Computer Aided Design, in press, Sep. 2003.

[54] L. Chen, Z.J. Song, and L. Feng, “Internet-enabled real-time collaborative

assembly modeling via an e-Assembly system: status and promise”, Computer-

Aided Design, 36(9):835-847, Aug. 2004.

[55] T.J. Nam, and D.K. Wright, “CollIDE: a shared 3D workspace for CAD”,

Proceedings of the 1998 Conference on Network Entities, pp. 389-400, 1998.

[56] T.J. Nam, and D. Wright, “The development and evaluation of Syco3D: a

real-time collaborative 3D CAD system”, Design Studies, 22(6): 557-582, Nov.

2001.

[57] L. Qiang, Y.F. Zhang, and A.Y.C. Nee, “A distributed and collaborative con-

current product design system through the WWW/Internet”, International

Journal of Advanced Manufacturing Technology, 17(5):315-322, 2001.

[58] ACIS R12, Spatial Corporation, http://www.spatial.com, 2003.

[59] Autodesk, Inc., http://www.autocad.com, 2004.

[60] IRONCAD, http://www.ironcad.com, 2004.

[61] Workflow Management Coalition, http://www.wfmc.org.

[62] Hoops 9.0, Tech Soft America (TSA), http://developer.hoops3d.com, 2003.

104

[63] G. Pahl, and W. Beitz, “Engineering Design”, Springer-Verlag, The Design

Council/Berlin, 1984.

[64] V. Hubka, and W. E. Eder, “Theory of Technical Systems - A Total Concept

Theory for Engineering design”, ISBN 3-540-17451-6, Springer-Verlag, 1988.

[65] J. S. Jero, and T. McNeill, “An approach to the analysis of design protocols”,

Design Study, 19:21-61, 1998.

[66] T. Kvan, A. Vera, and R. West, “Expert and situated actions in collaborative

design”, in: P. Siriruchatapong, Z. Lin, J. P. Barthes(Eds.), Proc. of 2nd

Intern. Workshop on CSCW in design, International Academic Publishers,

Beijing, pp.400-450, 1997.

[67] B. Prasad, “Concurrent Engineering Fundamentals: Integrated Product and

Process Organization”, vol.1, Prentice Hall, 1996.

[68] R. S. Breuhaus, K. R. Fowler, and J. J. Zanatta, “Innovative Aspects of the

Boeing 777 Development Program”, Proc. ICAS, ICAS96-0.4, vol.1, 1996.

[69] OMG, “Unified Modeling Language (UML), version 1.5”,

http://www.omg.org/technology/documents/formal/uml.htm, 2003

[70] Workflow Management Coalition, “Workflow Managment Coalition Terminol-

ogy & Glossary”, Jun. 1996.

[71] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling Language

User Guide”, Addison-Wesley Longman, Inc., 1998.

[72] W. Eversheim, H. Rozenfeld, W. Bochtler and R. Graessler, “A Method for an

Integrated Design and Process Planning based on a Concurrent Engineering

Reference Model,” Annals of the CIRP 44, pp.403-406, 1995.

[73] H. Scott, and K. Stephen, “Data Security for Web-based CAD”, Proc. of the

35th annual conference on Design automation, vol.00, May. 1998.

105

[74] F. Danesi, L. Denis, Y. Gardan, Y. Lanuel, and E. Perrin, “Towards a web-

based cad system”, Proc. of the 15th International Conference on Information

Visualization, Computer Aided Geometric Design Session (IV-2001), 2001,

269. IEEE Computer Society; pp.269-274, 2001.

[75] S. Bhola., G. Banavar., and M. Ahamad, “Responsiveness and Consistency

Tradeoffs in Interactive Groupware,” presented at CSCW, 1998.

[76] Iometer, http://www.iometer.org.

[77] D. Bertsekas and R. Gallager, “THE M/M/1 QUEUEING SYSTEM” in “Data

Networks”, 2nd ed. PRENTICE HALL Inc. pp.162-173, 1992.

[78] D. Bertsekas and R. Gallager, “QUEUEING MODELS-LITTLE’S THEO-

REM” in “Data Networks”, 2nd ed. PRENTICE HALL Inc. pp.152-157, 1992.

[79] K. T. Ulrich, and O. Eppinger, “Product Design and Development”, McGraw-

Hill International Editions, Management and Organization Series, 1995.

[80] AMRResearch, http://www.amrresearch.com, 2002.

[81] J. Brown, “The PLM program, an incremental approach to the strategic value

of PLM”, http://www.technologyevaluation.com, 2002

[82] CIMdata, http:www.cimdata.com, 2002.

[83] X. G. Ming, W. F. Lu, S. Ma, and Q. F. Ni, “Web Service Architecture

for Collaborative Product Lifecycle Management in Virtual Enterprise”, The

10th ISPE International Conference on Concurrent Engineering: Research and

Applications, 2003.

[84] R. Menon, H. T. Loh, Z. J. Liu, and Yaccob Ibrahim, “Robust Design of

Spindle motors: A case study”, Reliability Engineering and System Safety

Quality, vol. 75, pp.313-319, 2002.

106

[85] X. K. Gao, T. S. Low, S. X. Chen, and Z. J. Liu, “Robust design for torque op-

timization using Response Surface Methodology”, IEEE Trans. on Magnetics,

vol.38, No. 2, pp.1141-1144, 2002.

[86] L. Horvath, and T. Varga, “Product Modeling Methods in Collaborative En-

gineering Environments”. IEEE International Conference on Intelligent Engi-

neering Systems, pp.517 - 522. 1997.

[87] N.R. Jennings and M.J. Wooldridge, “Applications of Intelligent Agents”, In

N.R Jennings, M.J. Wooldridge, (eds.), Agent Technology: Foundations, Ap-

plications, and Markets. Springer, pp.3-28, 1998.

107

Appendix A

List of Publications

Recent publications are listed below:

[1] D.W. Sun, X.H. Xiong, Z.J. Liu, J.M. Zhao, W.F. Lu, and X. G. Ming,

“Concurrency in a Distributed Collaborative CAD/CAE Environment”, in press,

International Journal of Production Research, Dec. 2004.

[2] D.W. Sun, X.H. Xiong, L.W. Ruan, Z.J. Liu, J.M. Zhao, and Y.S.

Wong, “Workflow-driven Collaborative Session Management in Product Lifecycle

Management via Internet”, Proceedings of International Engineering Management

Conference 2004, #IEMC245, Oct. 2004.

[3] D.W. Sun, L.W.Ruan, Z.J. Liu, J.M. Zhao, W.F. Lu, and X.G. Ming,

“Concurrency in a Distributed Collaborative CAD/CAE Environment”, Proceed-

ings of the 11th ISPE International Conference on Concurrent Engineering: Re-

search and Applications, #CE04-582, Jul. 2004.

[4] L.W. Ruan, D.W. Sun, H.H. Long, and Z.J. Liu, “DATA STREAM-

ING FOR REAL-TIME COLLABORATIVE DESIGN”, Proceedings of the Inter-

national Conference on Scientific and Engineering Computation (IC-SEC) 2004,

#IC-SEC0135, Jul. 2004.

108

Appendix B

List of Abbreviations

109

Table B.1: List of abbreviations

API Application Programming Interface
CCM Centralized Coordination Mechanism
CAD Computer Aided Design
CAE Computer Aided Engineering
CoCADE Collaborative CAD/CAE System
CollIDE Collaborative Industrial Design Environment
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPC Collaborative Product Commerce
CPD Collaborative Product Development
CSCW Computer Supported Cooperative Work
DCOM Distributed Component Object Model
EJB Enterprise Java Beans
ERP Enterprise Resource Planning
FEA Finite Element Analysis
HSF Hoops Stream Format
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
J2EE Java 2 Enterprise Edition
Java/RMI Java/Remote Method Invocation
LAN Local Area Network
LODs Levels of Details
MTRR Multi-thread Request Response
MTS Microsoft Transaction Server
NURBS non-uniform rational B-splines
OMG Object Management Group
ORB Object Request Broker
PDM Product Data Management
PLM Product Lifecycle Management
RPC Remote Procedure Call
SDK Software Development Kit
STEP Standard for the Exchange of Product model data
SOAP Simple Object Access Protocol
Syco3D Synchronous collaborative 3D CAD system
TCP/IP Transmission Control Protocol/Internet Protocol
UML Unified Modelling Language
VRML Virtual Reality Modeling Language
WfMc Workflow Management Coalition
WfMS Workflow management system
WPDSS Web product design support system
XML eXtensible Markup Language

110

Appendix C

Main Visual C# Codes

• Main Visual C# Codes for Component - Session Manager

namespace CoServer {
public class SessionManager:MarshalByRefObject,ISessionManager
{

//following is the source code for create and join session
public int CreateSession(string sessionName,string sessionPwd
,string clientName)
{

//check if the sessionName has been used
int i=0;
for (i=0;i<Server.sessionListSize;i++)
{

if (Server.sessionList[i].sessionState==1 &&
Server.sessionList[i].name==sessionName)

return -1;
}
//find vacant session position
i=0;
while (Server.sessionList[i].sessionState!=0 &&
i<Server.sessionListSize-1)
{

i++;
}
if (Server.sessionList[i].sessionState!=0)
{

Server.e.MaxSessionReached();
return -10;

}
//intialize session
Server.sessionList[i].sessionState=1;
Server.sessionList[i].clientSize=1;
Server.sessionList[i].id=i;
Server.sessionList[i].name=sessionName;
Server.sessionList[i].passWord=sessionPwd;
string nullString="";
Server.sessionList[i].data[0]=nullString.ToCharArray();
Server.sessionList[i].informationSize=0;
for (int index=0; index<Server.informationHistoryLength;
index++)
{

Server.sessionList[i].displayInformation[index]="";

111

}
Console.WriteLine("Infor: Client-{0}-create session-{1}--{2}",

clientName,sessionName,System.DateTime.Now.ToString());
//add to clientlist
Server.clientList[i][0].id=0;
Server.clientList[i][0].name=clientName;
Server.clientList[i][0].status="Initiator";
//return sessionID
return i;

}
public string JoinSession(string sessionName,string
sessionPwd,string clientName)
{

string idString="";
int sessionID=0,clientID;
while (Server.sessionList[sessionID].name!=sessionName
&& sessionID<Server.sessionListSize-1)
{

sessionID++;
}
if (Server.sessionList[sessionID].name!=sessionName)
{

//incorrect session name
idString="-3";
return idString;

}
if (Server.sessionList[sessionID].passWord!=sessionPwd)

//incorrect pwd
return idString;

if (Server.sessionList[sessionID].clientSize==
Server.clientListSize-1)
{

//maximus clients reached
idString="-2";
return idString;

}
for (int i=0;i<Server.sessionList[sessionID].clientSize;i++)
{

if (Server.clientList[sessionID][i].name==clientName)
{

//duplicate client name
idString="-1";
return idString;

}
}
clientID=Server.sessionList[sessionID].clientSize;
Server.clientList[sessionID][clientID]=new DataStructure.Client();
Server.clientList[sessionID][clientID].id=clientID;
Server.clientList[sessionID][clientID].name=clientName;
Server.clientList[sessionID][clientID].status=" ---- ";
Console.WriteLine("Infor: Client-{0}-join session-{1}--{2}",

clientName,sessionName,System.DateTime.Now.ToString());
Server.sessionList[sessionID].clientSize++;
//generate information
int clientSize=Server.sessionList[sessionID].clientSize;
Server.clientList[sessionID][clientSize].id=clientID;
Server.clientList[sessionID][clientSize].name=clientName;
Server.clientList[sessionID][clientSize].status="Join";

112

//raise event
for (int i=0;i<clientID;i++)
{

Server.sessionStateUpdate[sessionID][i].Set();
}
idString=sessionID.ToString()+","+clientID.ToString();
return idString;

}
}

• Main Visual C# Codes for Component - Message Handler

namespace CoServer {
public class MessageHandler:MarshalByRefObject,IMessageHandler
{
//following is the source code for update data and token management

public void UpdateData(int sessionID,char[] newData,int dataSize)
{

//data[0] store the number of data string
Server.sessionList[sessionID].data[0]=dataSize.ToString().ToCharArray();
//store the data to data[dataSize]
Server.sessionList[sessionID].data[dataSize]=newData;
return;

}
public char[] GetNewData(int sessionID,int clientID,int sequence,
bool firstTime)
{

if (!firstTime)
Server.dataUpdate[sessionID][clientID].WaitOne();

int clientSize=Server.sessionList[sessionID].clientSize;
string nullChar="";
if (Server.sessionList[sessionID].sessionState==0)
{

return nullChar.ToCharArray();
}
else if (Server.clientList[sessionID][clientSize].status[0]==’L’)
{

if (Server.clientList[sessionID][clientID].dataInform)
{

//if the leave client’s id is prior to the current client
if (Server.clientList[sessionID][clientSize].id<clientID)
{

nullChar="0";
Server.clientList[sessionID][clientID].dataInform=false;
return nullChar.ToCharArray();

}
//if the leave client is the current client

else if (Server.clientList[sessionID][clientSize].id==clientID)
{

Server.clientList[sessionID][clientID].dataInform=false;
return nullChar.ToCharArray();

}
}

}
return Server.sessionList[sessionID].data[sequence];

}
public void RequestToken(int sessionID,int clientID)

113

{
int clientSize=Server.sessionList[sessionID].clientSize;
//generate information
Server.clientList[sessionID][clientSize].id=clientID;
Server.clientList[sessionID][clientSize].name=

Server.clientList[sessionID][clientID].name;
Server.clientList[sessionID][clientSize].status="Requesting";
//update clientlist
Server.clientList[sessionID][clientID].status="Requesting";
//raise event
for (int i=0;i<clientSize;i++)
{

Server.sessionStateUpdate[sessionID][i].Set();
}
return;

}
public void ReleaseToken(int sessionID,int clientID)
{

int clientSize=Server.sessionList[sessionID].clientSize;
Server.clientList[sessionID][clientSize].id=clientID;
Server.clientList[sessionID][clientSize].name=

Server.clientList[sessionID][clientID].name;
Server.clientList[sessionID][0].status="Initiator(O)";

Server.clientList[sessionID][clientSize].status=" ---- ";
Server.clientList[sessionID][clientID].status=" ---- ";

//raise event
for (int i=0;i<clientSize;i++)
{

Server.sessionStateUpdate[sessionID][i].Set();
}
return;

}
public void ConferToken(int sessionID,int clientID)
{

int clientSize=Server.sessionList[sessionID].clientSize;
//generate information
Server.clientList[sessionID][clientSize].id=clientID;
Server.clientList[sessionID][clientSize].name=

Server.clientList[sessionID][clientID].name;
Server.clientList[sessionID][clientSize].status="Operating";
//update client list
if (clientID==0)

Server.clientList[sessionID][clientID].status="Initiator(O)";
else

Server.clientList[sessionID][clientID].status="Operating";
//raise event
for (int i=0;i<clientSize;i++)
{

//update client list
if (i!=0 && i!=clientID)

Server.clientList[sessionID][i].status=" ---- ";
//raise event
Server.sessionStateUpdate[sessionID][i].Set();

}
return;

}
}

114

Appendix D

Main Visual C++ Codes

• Thread for Requesting New Operation

UINT WatchNewDisplay(LPVOID param) {
bool keepRunning=true;
CoCADEView* thisView=static_cast<CoCADEView*>(param);
int theCID=thisView->m_pClientDlgBar->m_pNetInfor->clientID;
int startPoint=0;
while (keepRunning)
{

//invoice get new data method
try
{

CString displayInfor,typeString,messageString;
displayInfor=thisView->m_pClientDlgBar->GetDisplayInformation
(theCID,startPoint);
startPoint++;
if (displayInfor=="")
{

keepRunning=false;
}
else if (displayInfor=="0")
{

theCID--;
}
else// if (!thisView->m_pClientDlgBar->m_hasToken)
{

int iEnd,iLength;
iEnd=displayInfor.FindOneOf(" ");
typeString=displayInfor.Mid(0,iEnd);
iLength=displayInfor.GetLength();
messageString=displayInfor.Right(iLength-iEnd-1);
if (typeString=="N_SET_CAMERA")
{

thisView->m_pHView->SetCameraFromMessage(messageString,
messageString.GetLength());

}
//unpack operations
... ...

}
}//end of try
catch (Exception)
{

115

AfxMessageBox("Fail to update display!");
keepRunning=false;

}
}
return 0;

}

• Thread for Requesting Initial Representation Data

UINT WatchNewData(LPVOID param) {
bool keepRunning=true;
CoCADEView* thisView=static_cast<CoCADEView*>(param);
int theCID=thisView->m_pClientDlgBar->m_pNetInfor->clientID;
while (keepRunning)
{

//invoice get new data method
try
{
if (!thisView->m_pClientDlgBar->GetHSFData(0,false,theCID))
{

keepRunning=false;
}
else
{

//get new data list size
int new_data_size=atoi(thisView->m_pClientDlgBar->m_pNetInfor->
hsf_data);
if (new_data_size==0)
{

theCID--;
}
else
{
if (new_data_size>1000)
{

new_data_size=new_data_size % 10000;
thisView->m_pClientDlgBar->m_pNetInfor->data_size=0;
((HCoCADEView*)thisView->m_pHView)->Flush(false);

}
//store message length
int message_length;
//insert new data
for (int i=thisView->m_pClientDlgBar->m_pNetInfor->data_size+1;
i<new_data_size+1;i++)
{

thisView->m_pClientDlgBar->GetHSFData(i,true,theCID);
message_length=

thisView->m_pClientDlgBar->m_pNetInfor->hsf_data_length;
thisView->m_pHView->InsertHSFDataFromMessage

(thisView->m_pClientDlgBar->m_pNetInfor->hsf_data,
message_length);

}
//update view
thisView->m_pClientDlgBar->m_pNetInfor->data_size=new_data_size;
thisView->m_pHView->FitWorld();
thisView->m_pHView->Update();
}

116

}
}//end of try
catch (Exception* e)
{

AfxMessageBox("Fail to update data!");
keepRunning=false;

}
}
return 0;

}

• Thread for Requesting Session Status

UINT WatchSessionState(LPVOID param) {
//set running control
bool keepRunning=true;
//get object reference
ClientDlgBar* pClientDlgBar=static_cast<ClientDlgBar*>(param);
int theCID=pClientDlgBar->m_pNetInfor->clientID;
CString theCName=pClientDlgBar->m_pNetInfor->clientName;
int iend,ilength,clientSize,clientID=0;
CString stateString,clientName,clientStatus;
while(keepRunning)
{
try
{

IMessageHandler* mH=pClientDlgBar->GetMH();
//get session state, clientStatus,clientName
... ...
stateString=

mH->GetSessionState(pClientDlgBar->m_pNetInfor->sessionID,
pClientDlgBar->m_pNetInfor->clientID);

switch(clientStatus[0])
{
case ’J’: //Join

{
pClientDlgBar->m_listClients.InsertItem(clientID,clientName,0);
pClientDlgBar->m_listClients.SetItemText(clientID,1," ---- ");
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString("--------"+clientName+
" joined");

}
break;
case ’L’: //Leave

{
if (theCID!=clientID)
{

if (theCID>clientID)
{

//update NetInfor
pClientDlgBar->m_pNetInfor->clientID--;
theCID--;

}
pClientDlgBar->m_listClients.DeleteItem(clientID);
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_selectedClient="";
pClientDlgBar->m_selectedItem=-1;

117

pClientDlgBar->m_outputMessage.AddString("--------"+
clientName+" left");
if (clientStatus=="LO" || clientStatus=="LKO")
{

pClientDlgBar->m_listClients.SetItemText(0,1,
"Initiator(O)");
if (theCID==0)
{

pClientDlgBar->m_hasToken=true;
pClientDlgBar->SetDlgItemText(IDC_BUTTON_SESSIONCONTROL,
"Confer Control");

}
}
pClientDlgBar->UpdateClientDlgBar((HWND)param);

}
else
{

keepRunning=false;
if (clientStatus=="LK" || clientStatus=="LKO")
{

pClientDlgBar->m_listClients.DeleteAllItems();
pClientDlgBar->m_hasToken=false;
pClientDlgBar->m_pNetInfor->statusString="Kick";
AfxMessageBox("You are drop out of the session.");

}
}

}
break;

case ’T’: //Terminate
{

keepRunning=false;
if (theCID!=0)
{

pClientDlgBar->m_hasToken=true;
pClientDlgBar->m_pNetInfor->statusString="";
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString
("--------Session was terminated");
pClientDlgBar->GetClientList(true);

}
}
break;

case ’ ’: //release
{

if (theCID==0)
{

pClientDlgBar->m_hasToken=true;
pClientDlgBar->SetDlgItemText(IDC_BUTTON_SESSIONCONTROL,
"Confer Control");

}
pClientDlgBar->m_listClients.SetItemText(0,1,"Initiator(O)");
pClientDlgBar->m_listClients.SetItemText(clientID,1,clientStatus);
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString("--------"+clientName+
" released control right");
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString
("--------Initiator obtained control right");

118

pClientDlgBar->UpdateClientDlgBar((HWND) param);
}
break;

case ’O’: //Operating
{

for (int i=1;i<pClientDlgBar->m_listClients.GetItemCount();i++)
pClientDlgBar->m_listClients.SetItemText(i,1," ---- ");

//update client list to idle
pClientDlgBar->m_listClients.SetItemText(clientID,1,clientStatus);
pClientDlgBar->m_listClients.SetItemText(0,1,"Initiator");
if(theCID==clientID) //confer to the current client
{

pClientDlgBar->m_hasToken=true;
pClientDlgBar->SetDlgItemText
(IDC_BUTTON_SESSIONCONTROL,"Release Control");
AfxMessageBox("Get control right.");

}
pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString
("--------"+clientName+" was granted control right");
pClientDlgBar->UpdateClientDlgBar((HWND)param);

}
break;

case ’R’: //Requesting
{

pClientDlgBar->m_listClients.SetItemText(clientID,1,clientStatus);
if (pClientDlgBar->m_hasToken)
{

AfxMessageBox(clientName+
" made a request for you to release control.");

}
}
break;

case ’M’: //Message
{

pClientDlgBar->m_outputMessage.DeleteString(0);
pClientDlgBar->m_outputMessage.AddString(clientName);
pClientDlgBar->UpdateClientDlgBar((HWND)param);

}
break;

default: //others -- unknown status
{

AfxMessageBox("Unkown session status occured!");
keepRunning=false;

}
break;

}
}//end of switch
catch (Exception* e)
{

AfxMessageBox("Fail to update session state!");
keepRunning=false;

}
}
return 0;

}

