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Abstract

With exponential growth of the World Wide Web, techniques for alleviating the

bottlenecks to network performance have gained increased importance. Web caching

is one of such techniques which stores frequently used web objects nearer to the end

user to reduce unnecessary remote access.

As an evolving area in web caching, co-operative web caching has shown promis-

ing results over centralised caching mechanisms. This thesis makes several contri-

butions to the area of co-operative web caching. We introduce a novel co-operative

web caching architecture called Distributed Web Caching. Distributed Web Caching

introduced here, is a variant of co-operative web caching. The novel feature in Dis-

tributed Web Caching is that every client node could act as a cache server and share

its cache with neighboring nodes.

A comprehensive set of protocols for access, storage and serving of distributed

cached data is developed. We provide analytical models to evaluate and study of

Distributed Web Caching. We implement the proposed architecture and measure

the performance under different constraints.

Further, we extend our analysis to object replacement strategies in Distributed

Web Caching. We introduce simulation models to compare performance of object

replacement strategies. Several novel replacement strategies for Distributed Web

Caching are introduced and compared with existing stand-alone replacement strate-

gies.
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Chapter 1

Introduction

1.1 Background

The World Wide Web is experiencing exponential growth. The increased use of

the Web results in increased network bandwidth usage which in turn strains the

capacity of networks. This leads to an increasing number of servers becoming “hot

spots”, sites where the increasing frequency and volume of requests makes servicing

these requests difficult. This combination of overloaded networks and servers result

in increased document retrieval latency.

Caching documents throughout the Web can alleviate such problems [1]. Caching

refers to the temporary storage of commonly accessed computer information for

future reference. Caching is only beneficial when the cost of storing and retrieving

information from the cache is less than the cost of retrieving information from the

original location. The concept of caching has found its way into many aspects

of computing. Computer processors have data and instruction caches, operating

systems have buffer caches for disk drives and file systems, Internet routers use

1
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caches for storing recently used routes and Domain Name System (DNS) servers

use caches to store hostname-to-address lookups. Similarly, caches are used by Web

browsers, proxy servers and reverse proxy servers to store recently used Web objects

to reduce both latency and network traffic in accessing the World Wide Web.

Caching is based on a phenomenon called locality of reference. This could be

divided into temporal locality and spatial locality. Temporal locality means some

pieces of data are more popular than others. Spatial locality means requests for

certain pieces of data are likely to appear together [2].

First, Web Caching meant that each client maintained its own cache called the

Browser Cache to temporarily store frequently accessed web objects. However, since

the benefits of caching are more when a number of clients share the same cache, the

caching proxy was developed and used [3], [4]. A caching proxy services its clients

from its cache whenever possible and retrieving the objects from origin servers if

required. Unfortunately, a single caching proxy introduces a new set of problems,

namely those of scalability and robustness, since a single server is both a bottle neck

and a single point of failure [5]. Scalability to a large number of clients is important.

This is because when more clients share a single cache, there is a higher probability

of getting a cache hit [1].

In certain situations, it is beneficial for caches to communicate with each other.

This is called co-operative Web caching in general. The concept of co-operative

Web caching aims to minimize certain problems associated with single caching proxy

servers.

Even with cache co-operation in place, a proxy cache can become a performance

bottleneck due to the limited request service rate. Due to convergence of requests
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from many clients in to one network node, the network could experience high conges-

tion. The peak bandwidth demand could be several folds higher than the average

bandwidth demand on that network link. Since a proxy server also introduces a

single point of failure to the network, and requires to handle peak load bursts, such

systems have to be over provisioned by employing costly dedicated servers with high

performance and high reliability.

Therefore, it is desirable to explore the possibility of designing a web caching

system that does not solely rely on proxy caches for its functionality.

1.2 Research Scope

This study has following objectives:

1. identify the issues and constraints in existing co-operative web caching archi-

tectures.

2. propose a possible solution to overcome such issues and improve performance

using a distributed systems approach.

3. show its viability and verify its performance both mathematically and exper-

imentally.

1.3 Issues not covered in this thesis

• Issues of security and data privacy arising from cache co-operation and in using

the proposed Distributed Web Caching (DWC) protocol.

• Issues arising from dynamic data and methods of caching such data.
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• Active object replication and object pre-fetching [6].

• Off-line cache information dissemination.

• Centralised mechanisms of object discovery and delivery.

1.4 Thesis Contributions

By introducing cache co-operation to browser caches, it is possible to provide the

functionality of a Distributed Web Cache. Such a system needs no extra hardware

or administration and is fault resilient. Work reported in this thesis investigates

the possibility of applying co-operative web caching techniques to browser caches to

form a distributed cache in a corporate LAN type environment with 100 to 10,000

client nodes and which is confined to a single geographic region. This is a completely

novel approach to web caching.

In the proposed scheme, every client node in the network takes on the additional

role of a cache server. By becoming a cache server, each client node is able to accept

and service incoming requests for web objects. Each client node is therefore able

to request web objects from all other clients, if a particular object is not locally

available. This is similar to the role of institutional caches in conventional co-

operative web caching architectures.

The proposed Distributed Web Caching system could be classified as a pure

peer-to-peer web caching system [7].

A comprehensive set of protocols for access, storage, and serving functions is

developed. The proposed protocol guarantees data consistency between the original

server object and that in the cache. Due to the totally distributed nature of the
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design, an increase in number of client nodes corresponds to an increase in the

amount of shared resources and therefore an increase in reliability. The system does

not rely on centralised servers, improving scalability.

We provide analytical models to evaluate and study the Distributed Web Caching

proposed.

A software realization of the proposed system is implemented on the Linux oper-

ating system1, and the performance of the system is studied on a test bed. Further,

a simulation model for Distributed Web Caching is developed.

We also explore simulating cache performance under constrains such as limited

local storage, slow connection times, varying object sizes and access costs and unreli-

able client nodes. With limited cache storage on each client node, object replacement

schemes play a significant role in determining cache performance.

We extend our analysis to object replacement strategies in Distributed Web

Caching both to compare performance of object replacement strategies and to in-

vestigate how performance can be improved. This has resulted in several novel

replacement strategies of improved performance.

1.5 Publications

Portions of this thesis appear in following papers:

• T.T. Tay, Y. Feng and M.N. Wijesundara “A distributed Internet caching

system”, in proceedings of 25th Annual IEEE Conference on Local Computer

Networks (LCN 2000) 2000, pp. 624 -633, 2000.

1Subsequently this implementation was ported to Microsoft Windows operating system by Ng

Jiah Hui, Department of Electrical and Computer Engineering, National University of Singapore.
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- Chapter 4

• T.T.Tay and M.N.Wijesundara “A Replica-Aware extension for replacement

algorithms in Distributed Web Caching”, in Communications World, edited

by N. Mastorakis, Athens: WSES, pp. 279-286, 2001.

- Chapter 6

• M.N.Wijesundara and T.T.Tay “Distributed Web Caching”, in proceedings of

the 8th International Conference on Communication Systems (ICCS 2002),

2002, Volume: 2 , pp. 1142 -1146, 25-28 Nov. 2002.

- Chapter 5

• M.N.Wijesundara and T.T.Tay “An object replacement strategy for global

performance in Distributed Web Caching”, in proceedings of International

Conference on Communication Technology (ICCT 2003) 2003, Volume: 2,

pp. 1687 -1690, April 9 - 11, 2003.

- Chapter 6

• T.T.Tay and M.N.Wijesundara “Distributed Web Caching”, submitted to IEE

Communications, 2004.

- Chapters 1 to 5

1.6 Thesis Organisation

The thesis is organized as follows: Chapter 2 provides background information on

web caching. Commonly used cooperative web caching schemes are introduced and
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inter cache communication protocols and techniques are discussed in detail. Is-

sues relevant to web caching and related research work are discussed. Chapter 3

is a case study based on a real client access trace collected at Boston University

and University of California, Berkeley. This case study provides the motivation for

developing our Distributed Web Caching system. Chapter 4 provides a detailed de-

scription of the proposed Distributed Web Caching model and the protocol, followed

by the properties of the proposed caching system. Implementation aspects of the

proposed system is also discussed. Details of the software realization are presented.

Performance of the implemented system is studied. This chapter also includes an

explanation of experiment environment, methodology and results.

Chapter 5 is a mathematical study of the Distributed Web Caching system. This

includes a mathematical analysis into the movement of an object within the LRU

stack. The speedup due to Distributed Web Caching is studied and an upper bound

on speed up is derived. A simulation model for the system is also developed. The

model is able to simulate different access patterns, object popularity, inter-node

popularity correlation, object size, cache capacity, access cost of objects and access

delays. Chapter 6 introduces the topic of object replacement and its importance

under limited cache capacities. A “replica aware” extension for existing replace-

ments and a novel scheme for “Distributed Web Caching for Global Performance”

abbreviated as DWCG is introduced. Chapter 7 concludes the thesis.



Chapter 2

Web Caching

2.1 Introduction to Web Caching

Caching refers to the concept of temporary storage of commonly accessed computer

information for possible future reference. This simple concept has proven to be a

solution for the scalability issue of the World Wide Web, caused by exponential

growth [8], [9], [10], [11]. Web browsers routinely cache recently accessed objects in

Browser Caches using main memory and local disk storage. Special Cache servers

called Web Caching Proxies are often used to provide a shared cache to multiple

web browsers. A typical institutional proxy cache configuration is shown in Fig 2.1.

Browsers first attempt to satisfy the requests from their built-in browser caches.

Unresolved requests are forwarded to the institutional cache. Institutional cache

then tries to satisfy the requests from its local cache. Unresolved requests are then

forwarded to origin servers or to the higher level cache depending on the design of

the caching architecture and the configuration of the institutional cache.

For the web browsers, the cache server acts as a web server while for the web

8
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Figure 2.1: An institutional web caching proxy server

server, the cache server is a client when it requests for objects on browsers’ behalf.

This dual role as a substitute server and client has given rise to the name ’proxy’.

For caching to be effective, the following conditions must be satisfied:

• Client requests must exhibit both spatial and temporal locality of reference.

• The cost of caching must be less than the cost of direct retrieval.

There are three primary benefits of web caching:

• To speed up retrieval of web content by reducing latency.

• To reduce wide area bandwidth usage.

• To reduce load on origin servers.
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2.1.1 Retrieval Latency

There are several causes for delays in transmission of data from one point to another.

Theoretically, the transmission speed of data over electrical or optical circuits are

limited by the speed of light. However, in practice electrical or optical signals will

reach only two thirds of the theoretical bound. Transoceanic delays are in the 100ms

range.

Network congestion could be another source of latency. When links are close

to full utilization, data packets experience queuing delays at routers and switches.

There could be a number of points where queuing can occur depending on the length

of the link and complexity of the network. When queues are full, the devices are

forced to discard data packets. The Hyper Text Transfer Protocol (HTTP) uses the

Transmission Control Protocol (TCP), which is able to recover from such a loss by

retransmitting lost data. However, even a relatively small amount of packet loss will

have a dramatic impact on throughput.

By having web caches closer to web browsers, the transmission delay is reduced

due to shorter distances between end points. Shorter communication links require

fewer routers and switches between end points. Therefore, congestion and hence

packet loss due to queuing is minimized.

If properly designed, a cache miss should not be delayed much longer than a

direct request from origin server. Therefore, cache hits reduce the average latency

of all requests.
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2.1.2 Bandwidth Usage

In a multiuser environment, total HTTP traffic could sum up to a substantial portion

of the total bandwidth usage. By locating a cache server at the gateway of the local

area network, wide area bandwidth usage could be reduced. Every Cache hit could

save wide area bandwidth allowing more bandwidth available for other protocols

and applications. In certain countries, bandwidth usage is metered and therefore

bandwidth usage reductions will directly result in cost reductions.

Because of this reduction of bandwidth usage, those documents that are not

cached, can also be retrieved faster due to less congestion along the path.

2.1.3 Origin Server Load

By intercepting and fulfilling a portion of web requests, proxy cache servers could

effectively reduce the load on the origin servers. By using reverse proxy caches,

which are located in front of the origin servers to offload some of the HTTP content

delivery duties of the origin servers, loads on origin servers could be further reduced

and performance could be improved.

2.1.4 Secondary Benefits

If origin server is not available to service a particular request due to some reason, it

is possible to obtain a cached copy at the proxy cache. Therefore, robustness of the

web service is enhanced [12].

Another advantage of web caching is the ability to analyse institutional web

usage patterns by logging requests and responses at the server. A caching proxy

server can also be used for content filtering and internet access authentication.
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Figure 2.2: The HTTP 1.1 request format

2.2 The HyperText Transfer Protocol (HTTP)

HTTP carried around 70% of the internet traffic in 2002 [13]. HTTP is a simple

request-response protocol, which uses URLs (Uniform Resource Locators) as unique

identifiers of objects. HTTP 0.9 (1991) [14] was the first widely used version of the

protocol which was subsequently replaced by HTTP 1.0 (1996) [15] and HTTP 1.1

(1999) [16].

An HTTP message consists of an HTTP header and an entity body, the two being

separated by a carriage return (CR) followed by a line feed (LF). HTTP request is

issued by the client and the response is issued by the server. In both request and in

response, header field is encoded in clear text (ASCII).

2.2.1 The HTTP Request

The layout of an HTTP 1.1 request is shown in Figure 2.2. The request line is

followed by multiple general, request and entity header fields, optionally followed by
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an entity body, which contains any data that the user would like to upload to the

server. Header fields describe the client capabilities, authorization credentials, and

other information that helps in fulfilling the request.

Request line contains the request method, the path part of the URL, and the

version of the protocol. Possible request methods are described in section 2.3.1.

A request sent to origin server requesting http://www.nus.edu.sg/index.html would

be as follows:

GET /index.html HTTP/1.1

Host: www.nus.edu.sg

Accept: */*

Connection: Keep-alive

An entity body will only be present when POST and PUT methods are used.

Otherwise a HTTP request only contains request headers.

2.2.2 The HTTP Response

Similar to the HTTP request, the HTTP response contains a status line, followed by

general headers, response headers, entity headers, CR and LF, and an entity body.

Response headers are discussed in more detail in Section 2.3.2.

A typical response would look like this:

HTTP/1.1 200 OK

Date: Mon, 12 Mar 2001 19:12:16 GMT

Last-Modified: Fri, 22 Sep 2000 14:16:18

ETag: "dd7b6e-d29-39cb69b2"
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Figure 2.3: The HTTP 1.1 response format

Connection: close

Content-Type: text/html

<html>

<head>

<title>

Hello World

</title>

</head>

<body>

Hello World

</body>

</html>
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Figure 2.4: The TCP level message exchange in a HTTP transaction

(termination not shown)

2.2.3 The HTTP Message Transaction

The HTTP protocol is stateless due to its simplicity. Both the server and the

client do not require to record any information beyond the boundaries of the simple

request-response transaction.

Shown on Figure 2.4 is the TCP message exchange in a simple HTTP interac-

tion. There are 3 possible modes. The first mode is default for HTTP 0.9. The

second mode is possible only with HTTP 1.0 and upwards while the third mode

was introduced in HTTP 1.1. The first mode establishes and closes the TCP con-
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nection for each request, while the second mode has persistent TCP connections

so that more than one object can be requested after the TCP connection is estab-

lished. Connection is only closed when the download is complete. In the third mode

where pipelining is allowed, a second request can be made while the server is still

responding to an earlier request.

2.3 HTTP Support for Web Caching

The HTTP/1.1 protocol specification (RFC 2616) includes a number of elements

intended to provide better support for caching.

The HTTP request, shown in Section 2.2, when requested from a caching proxy

server is as follows:

GET http://www.nus.edu.sg/index.html HTTP/1.1

Host: www.nus.edu.sg

Accept: */*

Proxy-connection: Keep-alive

Here, the first line contains the full address of the resource compared to the

relative address in a direct request, while last line contains a Proxy-connection:

Keep-alive directive. Proxy-connection and Proxy-authorization directives are

used on a hop-by-hop basis to control the persistent TCP connections and to provide

credentials for access to the proxy (not the origin server) respectively.

Cache server decides the cachability of responses from the origin server depending

on the following components of the request and response.

• Request method
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• Response status code

• Cache-control directives

• Response validator

• Request authentication

In addition to the above, some heuristic based rules can be set up by the cache

administrator to cache or not to cache specific object types and responses.

2.3.1 Request Methods

As shown in Table 2.1, out of seven possible request methods, only three request

methods are cachable [17]. Those are namely: GET, HEAD and POST. GET is

the most popular request method followed by HEAD and POST. HEAD response

could return the new expiration time or it could indicate that the object has expired.

POST requests are not cachable by default. This could be overridden by using a

Cache-control directive or by including a expiration time, both of which are rare

in practice.

2.3.2 Response Status Codes

Response status code is an important factor that determines the cachability of the

response. Common status codes can be divided into five categories as shown in

Table 2.2. Status code 200 (OK) is the most common response, which indicates

successful processing of the request. Table 2.3 indicates the cachable HTTP status

codes. Responses with status code 304 are not cachable by the proxy, if the object

already resides in the browser cache.
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Table 2.1: HTTP/1.1 Request Methods and Cachability

Request Method Cachability

GET Yes

HEAD May be used to update a previously cached entry

POST No unless Cache-control headers allow

PUT No

DELETE No

OPTIONS No

TRACE No

Table 2.2: HTTP/1.1 Server Response Status Code Categories

Status Code Response Category

1xx Informational:

Transaction is being processed.

2xx Successful:

Successfully received and processed.

3xx Redirection:

Client is redirected by the server to a different location.

4xx Client error:

There is an error with client request.

For example: authentication required or resource does not exist.

5xx Server error:

An error occurred on the server while processing the request.
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Table 2.3: Cachable HTTP Status Codes

HTTP Status Code Description

200 OK

203 Non-Authoritative Information

206 Partial Content

300 Multiple Choices

301 Moved Permanently

304 Not Modified

410 Gone

2.3.3 Expiration and Validation

There are two ways caches can maintain consistency of cached objects with origin

servers. Those are namely expiration times and validators.

Expiration is based on the concept of time to live (TTL). An HTTP server can

provide an explicit time to live value of each object using the expires and max-age

headers. The expires header provides the date up to which the cached object may

be considered valid. The max-age header is a cache-control directive which is

described in detail in Section 2.3.4. The expires header provides the absolute time

of expiry while the max-age header header expiry is relative to the time the object

left the origin server or the time it was last validated with the origin server. Due to

difficulties in age determination, especially when the object has to travel through

multiple caches, an age header is inserted by the proxy that fetched the object from

origin server. The subsequent proxies then update the age header depending on the

time the object was fetched and the time it spent in the cache.
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Table 2.4: Possible cache-control directives in an HTTP request

Directive Value Description

no-cache none Cached objects cannot be used to satisfy the request.

no-store none Response to this request cannot be cached.

max-age seconds Only younger cached objects can be used.

min-fresh seconds Only cached objects that will not expire for a specified

time can be used.

max-stale seconds Only cached objects that expired up to the specified

time ago can be used.

no-transform none Only the exact response given by the origin server can

be used.

only-if-cached none A proxy should not forward the request on a cache

miss.

2.3.4 cache-control directives

The cache-control header is a feature introduced in HTTP/1.1 that contains multi-

ple directives that control the use of caches along the path from a requesting browser

to an origin server. HTTP/1.0 contained pragma: no-cache header, which forces

the caches to reload a new copy from origin server. However, its functionality was

not sufficient to provide the flexibility required. HTTP/1.1 cache-control headers

could be present in both requests and responses. Possible cache-control directives

in a HTTP request and a HTTP response are shown in Table 2.4 and Table 2.5

respectively.
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Table 2.5: Possible cache-control directives in an HTTP response

Directive Value Description

no-cache none The response cannot be cached.

no-store none The response cannot be stored in any client (proxy or

browser).

max-age seconds A cache must validate this object before serving once

the object reaches the specified value.

s-maxage none Same as max-age but applies only to proxies.

no-transform none Only the exact response given by the origin server can

be used.

private seconds The response can be used only for the client that orig-

inally requested the object.

public seconds The response may be cached and used for any client.

must-revalidate none A cache must always validate this object before using

it.

proxy-revalidation none Same as must-revalidate but only applicable to

proxies.
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2.3.5 Validation

When a client requests for an object from a cache and if the cached copy is stale,

the cache first has to check with the origin server (or possibly an intermediate cache

with a fresh response) to see if its cached entry is still usable before choosing to

serve that object. This process is called validation [13].

The last-modified header in HTTP responses indicate when the resource was

last modified at the origin server. An example is shown below.

HTTP/1.1 200 OK

Date: Mon, 10 Nov 2003 03:00:00 GMT

Last-Modified: Sun, 09 Nov 2003 02:30:45 GMT

In order to avoid retransmission of the full response, if the cached object is not

stale, the HTTP/1.1 protocol supports the use of conditional methods.

A If-modified-since header is used in a conditional GET request in order to

validate an object.

GET http://www.nus.edu.sg/ HTTP/1.1

If-Modified-Since: Sun, 09 Nov 2003 02:30:45 GMT

An ETag header is an alternative to If-modified-since header. ETag, which

stands for “entity tag”, is a unique identifier of a specific instant or version of the

object. For example origin may respond with:
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HTTP/1.1 OK

ETag: "nsdk32-lgt238-kj12knd"

When the cache is required to validate a particular object, If-none-match

header is used. For example a cache could request:

GET /index.html HTTP/1.1

If-None-Match: "nsdk32-lgt238-kj12knd"

If the ETag of the particular object at the origin server is the same, the server

could respond with 304 (Not Modified). If the object has been modified it will

respond with a 200 (OK) response followed by full content of the object.

ETag is considered as a strong validator whereas last-modified timestamp is

considered as a weak validator since timestamp only provides single-second resolu-

tion.

2.3.6 Authentication

WWW-Authenticate header and Authorization header are used when accessing a

protected resource. These requests and responses are not normally cachable. Ini-

tially an origin server will respond with a 401 (Unauthorized) status code along

with WWW-Authenticate header, which contains a challenge such as a user name

and password. Browser then resubmits the request along with access credentials

using a Authorization header. Intermediate caches will not cache the responses

unless explicitly specified by the origin server.
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2.4 Issues in Web Caching

Benefits in web caching are related to the size of the client population served by

the cache. However, increasing the client population could lead to the following

scalability issues.

1. Load scalability

Request Processing Power: When the number of clients served by a cache

increases, the rate at which the requests have to be processed also increases.

This is limited by the request processing power of the server. Server hardware

architecture, hardware resources, operating system and efficiency of caching

software determine the maximum request rate it could service.

Cache Capacity: The amount of data downloaded by a particular client in

a typical session could range from a few megabytes to a few gigabytes. When

this amount is multiplied by the number of users, the resulting total capacity

required is extremely large. Ideally, in order to maximize cache hits, as many

documents as possible should be cached, for as long a period as possible.

However, in practice, cache storage capacity is limited. In the event that the

storage capacity is not sufficient, replacement algorithms are used to determine

the documents to be replaced.

Network Bandwidth: A one-to-multipoint cache system, where a single

cache server serves many clients, may lead to a major congestion problem.

This is especially so, for a cache server that has a large cache capacity. Since

the cache capacity is large, the probability of cache hits is high. All the requests

and responses thus concentrate at the cache server node, leading to a high peak
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bandwidth demand at the cache server and the attached communication link.

When designing a cache system, it is important to factor in the requirement

for this peak bandwidth demand at the server node, in order to ensure a non-

blocking system, or at least to maintain a certain minimum quality of service.

The larger the number of documents a cache server caches and the larger the

number of clients a cache server serves, the higher peak bandwidth is required

at the server node. To fulfil this peak bandwidth demand, would mean an

excess of resources during off-peak period. A compromise has to be found

somehow.

2. Geographical scalability

When the client population is scattered in a large geographical area, due to

considerable communication delays between the proxy and the clients, the

advantage of fetching from the cache is reduced. Although not directly related

to the size of the client population, reliability and cache consistency are issues

of concern in web caching.

3. System Reliability

Usually in a network, all the HTTP requests are sent through the local proxy-

cache server. Hence, if the cache server fails, the requests will not be able to

bypass the cache. This is because the network architecture is fixed and the

requests are not dynamically routed to avoid possible failures. Therefore, the

reliability of the cache server becomes a major concern.

4. Cache Consistency

This is a major issue in any web caching strategy. Once a document is cached,
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there is no guarantee that the original document will remain unchanged. In

most cases, the document at the original server is updated without the knowl-

edge of the caches that have an older version of the document. In this situation,

when the client requests for the document a stale document will be returned.

This is a serious problem especially when many web sites today are moving

towards delivery of real-time information instead of serving as static archive

of information.

The solutions available for cache consistency fall into one of two categories,

namely weak consistency and strong consistency. Weak consistency and strong

consistency are achieved using the expiration and validation mechanisms that

are introduced in section 2.3.3.

Weak consistency is achieved by using a Time-To-Live (TTL) concept employ-

ing cache-control directives. If the TTL has not lapsed, the cached copy is

considered up-to-date and is delivered to the client. Otherwise, the copy is

discarded and a new copy is fetched from the origin server.

Strong consistency could be achieved by polling using a If-modified-since

or a similar HTTP header or by using an invalidation protocol [18]. Polling

involves the cache checking the validity of the document from the origin server

each time it is requested. Invalidation protocol involves the original server

keeping track of all the caches where the document is cached and then sending

an invalidation command to the caches, once the document is updated.
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2.5 Co-operative Web Caching

Co-operative web caching solves the load scalability issue by sharing the client re-

quests among several caches and geographical scalability issue by servicing requests

from locality of each cache server.

If a particular cache does not contain the requested object, co-operative web

caching provides the means to query other caches before requesting from origin

server.

2.5.1 Co-operative Web Caching Architectures

A caching architecture should provide the paradigm for caches to co-operate effi-

ciently with each other [12]. There are two main caching architectures.

1. Hierarchical caching architecture

Hierarchical caching was pioneered in the Harvest project [19]. In hierarchical

caching, caches are placed at multiple levels of the network. In a hierarchical

cache system, a cache locates a missing requested object by issuing a request

to the cache at the hierarchy’s upper level. The process is iterated until the

object is found or the request reaches the root cache. If the object is not found

cached at any of the upper levels of the cache hierarchy, the object is fetched

from origin server. The object is then cached at all cache servers along the

path it traverses from origin to client.

2. Distributed caching architecture

As mentioned in Chapter 1, in a loosely coupled collection of caches if the

topology is flat and ill defined it is called a mesh. A mesh configuration where
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the caches are placed only at the bottom level of the network (institutional

level) where there are no intermediate caches is called a Distributed Cache.

Therefore, the distributed caching architecture is a sub set of the mesh caching

architecture.

The main difference in distributed caching compared to hierarchical caching is

that instead of trying to retrieve a missing object from the parent cache, the

request is sent to a set of sibling (peer) caches. Since Distributed Web Caching

allows to request a missing object from multiple caches, the reliability problem

mentioned in section 2.4 could be solved by employing a distributed caching

architecture.

2.5.2 Cache co-operation protocols

Protocols employed for co-operative web caching could be categorized as follows [20]:

1. Message based protocols

Message based protocols use a query / response dialog for exchanging infor-

mation about cache contents.

The Harvest project which first proposed cache sharing [19], also designed

the Internet Caching Protocol (ICP) [2], [21], [22], which is a message based

protocol that supports discovery and retrieval of documents from neighboring

caches. Hypertext Caching Protocol (HTCP) is similar to ICP since it also uses

a User Datagram Protocol (UDP) based query-response protocol. However,

HTCP uses much more information than ICP to decide whether a request

would be a hit or a miss and it also supports strong authentication. The

downside is that the message format is significantly more complex [2].
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Malpani et al. proposed a co-operative distributed cache [1], which involves

the client randomly choosing a master cache which takes care of locating the

object within a group of caches using multicast. Master cache then redirects

the client to the cache that is holding the object. If that attempt fails, it

retrieves the object from origin server and passes it to the client.

2. Directory based protocols

Directory based protocols [23],[24],[25],[26],[27] summarize information into

frequently exchanged directories. In Summary Cache [24] which is also known

as Cache Digests [23], Relais project [25], and in SCOOP [26], caches inter-

exchange messages indicating their content, and keep local directories to facil-

itate finding documents in other caches.

Povey and Harrison also proposed a Distributed Internet Cache [28]. In their

scheme, upper level caches are replaced by directory servers, which contain

location hints about the documents stored in every node.

Tewari et al proposed a similar approach to implement a fully distributed

Internet cache where location hints are replicated locally at institutional caches

[29].

3. Hash based based protocols

These protocols [30], [2],[31], [32],[33], [34],[22], [35], [36], [37],[38] employ hash

functions to distribute URL space among co-operating web caches. Cache

Array Routing Protocol (CARP) [30], [2] is a hash based protocol, which

divides the URL-space among an array of loosely coupled caches and lets each

node store only the documents whose URLs are hashed to it. In the central
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directory approach (CRISP) [33], a mapping service ties together with a certain

number of caches.

4. Router based protocols

Router based protocols [39], [40],[20], [41] intercept web traffic at the IP layer

and redirect it to a caching proxy. The Web Cache Coordination Protocol

(WCCP) [20] is a router based protocol.

Some researchers have proposed protocols that combine features of multiple cat-

egories [42], [43],[44],[45].

2.5.3 Internet Cache Protocol (ICP)

ICP is the original intercache protocol [2]. Its primary purpose is to discover whether

any neighbor caches have a fresh copy of a particular object. The neighbor caches

answer with either yes (HIT) or no (MISS). Since UDP is used for ICP commu-

nications, if there is no response from a cache within a certain period of time it

could be concluded that the cache is offline or the network is severely congested.

The protocol can be configured to be used in complicated cache hierarchies with

multiple parents and sibling caches as neighbors. Despite its shortcomings ICP is in

widespread use due to wide area bandwidth savings and because ICP is supported

by all major caching products.

Following issues have to be considered before deciding to use ICP for cache co-

operation:

• Access Delays

Let us assume the following:
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So = Average HTTP service time from origin servers

Sn = Average HTTP service time from neighbor caches

Rn = Average ICP service time from neighbor caches

P = ICP hit ratio

Then we could do the following analysis:

The average service time without ICP is:

So (2.1)

The average service time with ICP is:

PSo + (1− P )So + Rn (2.2)

We are interested in the case when:

PS0 + (1− P )So + Rn < So (2.3)

Which reduces to:

P >
Rn

So − Sn

(2.4)

When the ICP hit ratio is larger than the ratio of the ratio of the ICP service

time to the difference in HTTP service times, then the benefits of the neighbor

hits are greater than the costs of ICP queries.

In certain cases, primary focus could be to reduce wide area bandwidth usage,

irrespective of service times.

• Bandwidth Usage
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Let us assume the following:

LICP = length of ICP query

LURL = Average length of the URL

n = Number of siblings

Total size of a query and response:

(LICP + LURL) ∗ 2 ∗ n (2.5)

If we substitute 24 bytes as the length of ICP query and 55 bytes for the

average length of a URL [2], we could obtain the following as the size of the

transaction before adding UDP and IP headers:

(79) ∗ 2 ∗ n = 158 ∗ n bytes (2.6)

• Other Issues

There are several other issues to be considered. Since in an ICP request

only contains the URL, and no information on additional headers such as

cache-control headers, there is a possibility of stale objects in sibling caches

returning ICP HIT responses.

Use of UDP for the protocol could be a drawback, since UDP does not have a

built in feedback mechanism when links are congested.

Since ICP does not indicate the request method in its queries and HTTP

GET method is assumed. This usually not an issue since non-GET requests

are usually uncachable.
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2.5.4 Summary Cache

It is possible to reduce forwarding delays and false hits by having apriori knowledge

of cache contents of neighbor caches. By employing an algorithm called Bloom

filter [24], [23] the cache contents could be represented in a compact summary.

These summaries are then exchanged between neighbors and kept up-to-date using

periodic updates.

Given the Bloom filter of a set of X URLs, one can efficiently but imprecisely

determine whether a given URL belongs to the set. This is achieved by comparing

the Bloom filter for just one URL and the Bloom filter for the set of X URLs. If

all unity bits in the former matches with the unity bits in the latter, it is assumed

that the URL belongs to set X.

• Bandwidth Usage

Let us assume the following:

S ∗ 230 = Cache size in bytes

L ∗ 210 = Mean object size in bytes

T ∗ 3600 = Digest update period in seconds

R = Average query rate per peer

If the summary is sized such that a cached object is represented by b bits, the

bandwidth that the summary would use in bytes/second could be calculated

as:

b

8
∗ S

L
∗ 220

3600 ∗ T
(2.7)

The ICP bandwidth requirement would be:
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2 ∗ 79 ∗R (2.8)

If we substitute T = 1, S = 100, L = 10 and b = 40 [13] and solve the two

equations for R we get R = 92.17. The bandwidth requirements for the two

cases considered here are the same if the ICP request rate is 92.17 requests per

second. If it exceeds 92.17, then summary cache could save bandwidth while

searching for cached objects. Conversely, if the request rate is lower, ICP

traffic will be lower. Summary cache requires the same bandwidth irrespective

of the request rate.

• False Positives

Bloom filters are imprecise because there is a remote chance that the test will

erroneously indicate that a URL belongs to a certain set, when in fact it is

not. This occurrence is called a false positive. In order to keep the probability

of occurrence of false positives low, size of the filter should be in the order of

40bits times the maximum number of objects in the set [13].

In terms of system resource usage Summary Cache requires more CPU processing

to calculate hash functions and requires to store the summaries in the main memory

for fast lookups. In contrast, ICP requires much less CPU processing and requires

virtually no main memory due to its stateless nature. Also it is impossible to use

Summary Cache on slow links as transfer of large summaries could saturate the

links.
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2.6 Chapter Summary

Web Caching has proven to be a solution for the scalability issue of the World Wide

Web caused by its exponential growth. For web caching to be efficient, HTTP has

to support, conditional requests and validation. HTTP support for web caching has

been improved in HTTP 1.1. There are issues in web caching such as its scalabil-

ity, reliability and consistency. Some of these could be solved using co-operative

web caching. Co-operative web caching is mainly divided into hierarchical and

Distributed Web Caching. Previously proposed Distributed Web Caching systems

involve proxy cache corporation using centralised control, mapping of objects to be

cached using a particular criterion or cache information replication among proxy

servers.



Chapter 3

A Case Study of Web Access

Patterns

3.1 Introduction

A number of researchers have carried out extensive studies on traces of World Wide

Web traffic and their characteristics [46], [47], [48]. In this chapter, characteristics

of a few selected traces are studied to determine the benefits of Distributed Web

Caching. In particular, temporal and spatial locality of web requests from each

browser and the correlation of web requests among all browsers, are key factors that

determine performance of Distributed Web Caching.

Out of the three traces that are studied, two are from Boston University (BU)

[49] and the other is from University of California, Berkeley (UCB) [50]. The traces

are ideal for this study since the client populations in all three traces are more

likely to have common interests compared to traces collected at commercial Internet

Service Providers. Such common interest groups are likely to produce web requests

36
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with higher correlation.

In order to investigate the applicability of Distributed Web Caching to such a

focused group of users, 3 different web caching strategies are simulated using the

trace data.

3.2 Nature of Traces

Traces B19 and B272 are collected in the general computing environment at the

Computer Science Department of Boston University. The data collection environ-

ment consists of 37 SUN SparcStation 2 workstations. 5 machines are used by the

postgraduate students in room 272. The requests originating from room 272 ap-

pear in trace B272. The rest of the 32 machines are used by undergraduates in

room B19. The requests originating from those machines are recorded in trace B19.

B19 contains a broader spectrum of users both students doing homework and less-

focused users. Both traces B272 and B19 are unique as they are recorded using a

modified version of Mosaic web browser. Since the recording is done at the browser

level, these two traces contain the user ID, session ID, machine ID and the browser

cache hit status among other standard details of the web requests. One month long

segments of each trace were chosen for evaluation purposes in our study.

Trace UCB1 is recorded from the Home IP service offered by UC Berkely to its

academic community. We use a 4-hour portion of the trace for evaluation. These

client traces were unobtrusively gathered through the use of a packet sniffing ma-

chine placed at the head-end of the Home IP modem bank. Therefore, this trace

does not contain the user ID, session ID and the browser cache hit status. How-

ever, users and machines can be identified using their IP addresses, since fixed IP’s
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were used. It is possible to assume that each user has a dedicated machine with a

dedicated IP. In addition, the trace also provide information about HTTP headers

including conditional requests and cache control headers. A summary of the 3 traces

is provided in Table 3.1.

Table 3.2 summarises some important characteristics of the traces, with regard

to caching and cache sharing.

• Zipf Parameter

Zipf’s law states that the relative probability of a request for the ith most pop-

ular page is inversely proportional to i. This can be expressed mathematically

as follows:

P =
Ω

ρα
(3.1)

where, P is the frequency of the requests to a particular page, ρ is the pop-

ularity rank of the particular page, α is the Zipf parameter [46] and Ω is a

positive constant. According to Zipf’s law α = 1. Cunha et al. [49] found that

the request probability for a web cache trace, when fitted with a curve of that

adheres to Zipf’s law, yields a curve with an exponent of α = 0.982, which is

very close to the value of α = 1 in Zipf’s law.

Figure 3.1 illustrates the adherence to the Zipfs law by the traces considered.

Once extrapolated, the ratio between the logarithm of the y-intercept and

logarithm of the x-intercept gives the value of Zipf parameter for the trace.

• Hot-set

If 30% of the web requests are made to the hottest 5% of the pages, it is typical

to think of this as an instance of Zipf’s law, and call it a 30/5 rule [51].
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Table 3.1: Summary of Traces

Trace B272 B19 UCB1

Trace Duration 1 month (Feb 1995) 1 month (Feb 1995) 4 hours (Nov 1997)

Total Sessions 139 3492 NA

Total Distinct Users 29 525 916

Total Machines 5 32 916

Total HTTP Requests 15306 444459 94438

Table 3.2: Other Characteristics of Traces

Trace B272 B19 UCB1

Hot-set 56/5 79/5 33/5

Zipf parameter 0.98 0.98 0.69

In Chapter 5 Zipf parameter is used to model object popularity.

3.3 Simulation of Web Caching Strategies

3.3.1 Simulation Setup

All traces are first imported into a MySQL relational database. Then selected

data sets are imported into MATLAB using SQL and MATLAB database toolbox.

Secondary analysis is carried out in MATLAB.
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Table 3.3: Caching Strategy 1

Trace B272 B19 UCB1

Total Requests 15306 444459 NA

Sum of distinct requests from each node by each user 3579 80286 NA

Hit Ratio 76.62% 81.94% NA

3.3.2 Caching Strategy 1

Caching strategy 1 simulates the environment of a student computer center at a

university. Each user is allowed to maintain a browser cache in each machine.

However, there is no information sharing between those caches. Since UCB1 trace

does not distinguish between users and machines, this simulation is not applicable

to UCB1 trace. Hit Ratio (HR) for this strategy is expressed in Equation 3.2.

Hit Ratio =
total requests− sum of distinct requests from each machine by each user

total requests

(3.2)

3.3.3 Caching Strategy 2

In this simulation, it is assumed that each user is accessing the web from a dedicated

machine. Therefore, in this case, each user has a dedicated browser cache. There

is no information sharing between browser caches in different machines. Hit Ratio

(HR) for this strategy is expressed in Equation 3.3.

Hit Ratio =
total requests− sum of distinct requests by each user

total requests
(3.3)
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Table 3.4: Caching Strategy 2

Trace B272 B19 UCB1

Total Requests 15306 444459 94438

Sum of distinct requests from each user 3192 64188 70948

Hit Ratio 79.15% 85.56% 24.87%

3.3.4 Caching Strategy 3

In the third simulation, scenario in Simulation 2 is assumed, with cache sharing. This

simulates a Distributed Web Caching environment. Hence, only when a user requests

for a URL which has not been accessed before by any of the users in the distributed

cache, the request will be forwarded to the origin server. Otherwise the request

will be fulfilled from within the shared cache. Hit Ratio (HR) for this strategy is

expressed in Equation 3.4. Note that the same Hit Ratio could be obtained using

a central proxy server with the capacity to hold all the distinct pages. Our aim

here, is to provide a service similar to that of a dedicated proxy server, without the

problems associated with operating a centralised, dedicated proxy server.

Hit Ratio =
total requests− sum of distinct requests from distributed cache

total requests

(3.4)
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Table 3.5: Caching Strategy 3

Trace B272 B19 UCB1

Total Requests 15306 444459 94438

Total distinct requests from shared cache 2897 38374 53652

Hit Ratio 81.07% 91.37% 43.19%

3.4 Conclusions

By comparing results from Strategy 1 and 2, it could be concluded that, the benefit

of caching improves when the overlap of requests is maximum and when the number

of distinct requests is minimum. By comparing B272 and B19 we could conclude

that, a higher the number of clients leads to a better overlap.

By comparing Strategy 1,2 and 3, it is clear that cache sharing provides the

best performance. Between Strategy 2 and 3, improvement in B272, B19 and UCB1

are 1.9%, 5.8% and 18.32% respectively. The relative improvement in sharing is

comparatively smaller in B272 and B19, since they have steep hot-sets and Zipf

parameter is close to 1. Therefore, the stand-alone caching already provides high

hit ratios.

However, since UCB1 only achieves a hit ratio of 24.87% with stand-alone

caching, there is a significant improvement, when caches are shared and overlap

between users is exploited. This could be attributed to the greater percentage of

distinct requests as indicated by the smaller hot-set and the lower Zipf parameter.
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3.5 Chapter Summary

In this chapter, a preliminary analysis was carried out on real web access traces

to determine the possible benefits in cache sharing using Distributed Web Caching.

It is observed that, cache sharing provides a significant improvement in hit ratios

over stand-alone caching strategies. This in turn translates into external bandwidth

savings and reduced user perceived delays when accessing the web.



Chapter 4

A Novel Distributed Web Caching

System

4.1 Introduction

At present, Distributed Web Caching employ proxy cache co-operation at the insti-

tutional level[30] as shown in in Figure 4.1.

A closer look at this architecture indicates that, proxy caches in fact are second

tier caches. If it is possible to implement cache co-operation at the browser cache

level, it is possible to benefit from the the high bandwidth available at the bottom

level of any network.

From a processing power point of view, client nodes nowadays are of high speed

and have large amounts of resources. These resources are not fully utilised all the

time.

This chapter investigates the possibility of implementing a cache co-operation

mechanism at the browser cache level of the network hierarchy, which utilises the

45
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Figure 4.1: Co-operative web caching at institutional level

wide bandwidth and unused computing resources at the bottom level of a network.

4.2 Network Topology

Prior to introducing the proposed distributed caching system, it is essential to define

the assumed topology of the network. Figure 4.2 shows the topology of the UK Joint

Academic Network (JANET). We assume that the whole of the internet consists of

a large number of such networks interconnected at the core routers.

At the core of JANET topology are the Core Point of Presence (CPOP) routers

inter-connected by high speed Dense Wavelength Division Multiplexing (DWDM)

fibre optic backbones. Some of these CPOP routers are connected to external net-
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Figure 4.2: Janet topology and link capacity - c©JNT Association 2003
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works providing connectivity to other networks in the UK and global connectivity

to USA, Europe, Japan, etc., mostly via submarine fibre optic cables. A second tier

of Backbone Access (BA) routers are connected to the core backbone network at

the CPOP routers via slower access links. It is possible that all the routers are not

fully interconnected. Therefore, it may be necessary for a message to pass through

more than one router to get from one location to another.

Institutional networks such as campus networks are connected to these BA

routers. For example, the campus computer network of University of Warwick is

connected to MidMan backbone access router via a 2.4Gbps link.

Gateway computers at the border of institutional networks function as exit and

entry points to those networks. Within an institutional network, computers are

organized into groups by their locations. Each of these groups forms a local area

network. These local area networks are again interconnected by lower level routers.

Within a local area network, there are computers that function as servers and client

workstations.

4.3 The Proposed Model

Typically, server nodes are powered by powerful computers with a high degree of

reliability whereas client nodes are usually served by less powerful personal com-

puters. However, the computer hardware landscape appears to have changed in

recent years. The gap in terms of computing power between server class computers

and client class computers has narrowed dramatically. Personal computers running

clients applications are becoming as powerful as low-end server computers. In terms

of reliability, there is still a significant difference. However, there is a steady im-
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provement in reliability as client operating systems are becoming more stable. In

the case of server computers, the workload is very much dependent on the number

of clients they serve. Demand does vary throughout the day but in general tends

to be much more uniform compared to client computer systems. Client computers

today are in general structured to be personal computers with the main task being

to service a machine-to-man interface. The system demands tend to vary a lot more

and, in fact, for a good part of the time the client computers are in an idle state.

Our proposal is that the client computer should be assigned to perform some

server functions on an on-demand-basis when the demand for local computing power

is low. One possible server function that can be assigned is a cache serving func-

tion. In our proposal, a client computer will have as its first priority performing

locally initiated tasks. When there is no locally initiated task listed in the queue,

the operating system (OS) can assign the computing resources to perform network

cache functions. In the event that a locally initiated task is created while the client

computer is performing an OS initiated server function, the client computer could

abandon the server task to attend to the locally initiated task. It could also lower

the priority of the cache serving function so that locally initiated tasks would al-

ways get attended to first by allocating all the necessary resources available on the

computer for the successful completion of locally initiated tasks. Under this ar-

rangement, users should not experience a degradation of performance of their client

computers. However, one implication of putting the server functions as low priority

tasks is that a definite quality of service with respect to the server functions cannot

be guaranteed. In fact, this makes the client computer unreliable from the server

function perspective. The key issues that have to be addressed in this proposal are
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then the methods to utilize the additional power of the client nodes to increase the

performance of the server functions while ensuring that the inherent unreliability

characteristic does not jeopardize the overall cache service performance.

The proposed Distributed Web Cache model is as follows:

The operating system in each client computer will be extended to equip each

client computer with a Cache Server Service (CSS). The extended OS will enable a

client computer to locally store objects that it requests and receives from the web.

The storage capacity allocated for this caching purpose is a parameter that can be

set by the user. These cached objects, will be served locally should the same objects

be requested again by the local browser or they will be served to any other users

in the vicinity that requests any of the cached objects. This latter service is a new

feature, as a result of the extended operating system. To support the objective of

serving the cached objects that are available locally to other user in the vicinity, the

following transactional protocol is adopted for CSS. Note that CSS intercepts all

web requests from client applications and processes them according to the following

protocol.

4.3.1 Distributed Web Caching (DWC) Protocol

There are two consistency options in the protocol.

• Strong Consistency (Mode A)

• Weak Consistency (Mode B)
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Figure 4.3: Proposed Distributed Web Cache Protocol
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Step 1: When the web browser on a client node A, generates a web request for a

particular web object, this request is first forwarded to the CSS module. On

receiving the request, the CSS module performs the following tasks:

(a) • Mode A

it opens a network connection with the origin server of the object

and requests for the header information of the object using an HTTP

HEAD request. Sets a timeout t1 for successful delivery of the header

form origin.

• Mode B

no action is taken.

(b) It checks to determine if the object requested is available in its local cache.

Step 2: If the object is not available in its local cache, it proceeds to Step 4.

If the object is available locally;

• Mode A

it waits for the arrival of the HTTP header information from the origin

server. If there is no response from origin before the timeout t1, the CSS

module aborts servicing the request and moves to the initial state. This

is an error state.

If the object is fresh the module moves to Step 3. If the object is stale,

the cached object is flushed off, and the module proceeds to Step 4.

• Mode B

– if the web browser has specified the freshness of the object in a

cache-control directive or in a conditional GET request, time stamp
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of the cached object is checked against the request. If the object is

deemed fresh the module proceeds to proceeds to Step 3.

– If the browser request does not specify the freshness and if the object

is still fresh according to its header information, the module proceeds

to Step 3.

– If the browser request does not specify the freshness and there is no

freshness information available in the header of the cached object,

the module assumes the object to be fresh and moves to Step 3.

– For all other cases, local copy of the object is assumed to be stale

and it is flushed off to move to Step 4.

Step 3: For both Mode A and Mode B, if the locally cached object is fresh, the

object is delivered to the client application from the local cache and the request

is fulfilled. This is called a local cache hit. The CSS module exits.

Step 4: For both Mode A and Mode B, the CSS module performs the following

two tasks:

(a) It multicasts the request to the neighbors who are listening to a partic-

ular multicast address using a modified ICP-like query. If the freshness

requirement is specified in Step 1 it is attached to the query.

If no such information is available (as in the case where the header infor-

mation from the origin server is not completely received yet), then only

the name or identifier of the object is included in the query.

Note that the number of multicast hops is set to 1 by default. The max-

imum number of hops should reach the whole of the corporate network.
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Setting it higher to reach networks beyond the corporate network may

not be feasible due to lack of support for multicast and the excessive de-

lays in accessing remote networks. This issue will be further discussed in

Section 5.1.2.

(b) The CSS module starts a timer to implement a deadline t2, for the receipt

of responses from potential cache servers.

Step 5: For both Mode A and Mode B, all nodes monitoring the particular multi-

cast address will receive the multicast query from Node A. If a particular node

computer, say Node B, has the requested object, it will do the following:

(a) It checks if the copy of the object in its cache is fresh. This is possible if the

freshness requirement is already available in the query. If the freshness

information is not included in the query and the header of the cached

object does not indicate that it is stale, Node B will assume that the

object is fresh.

(b) If the object cached in Node B is deemed stale, Node B will flush the

object off its cache. It then takes no further action.

(c) If Node B is able to serve the object and if the object is deemed fresh, it

will respond to Node A via the same multicast address.

By responding on the same multicast address, other nodes which have

the object in their local caches but are slower than Node B to respond

due to local processing loads would clear the request from their queues

and not respond to Node A. This will avoid a flood of responses to Node

A. Note that, the ability to serve or not is a parameter that can be set
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within Node B. This parameter is dependent on the computation load of

the node at the time of receiving the request.

Step 6: For both Mode A and Mode B,

(a) On receiving a response, Node A immediately opens a TCP channel with

Node B to receive the object into its own local cache. A first-come-

first-accept algorithm is adopted for the selection of cache servers. Later

responses will be ignored by Node A. A first-come-first-accept algorithm is

most acceptable since a fast response is a good indication that Computer

B has the resources currently to perform the cache serving function well.

(b) If there is no response from any computers by the deadline t2 for a re-

sponse, Node A can go back to Step 4 and re-multicast the request with

perhaps a higher hop count. Alternatively, it can directly open a com-

munication channel with the origin server to bring the object in from the

origin server. In this case, it is similar to existing web request protocol to

the original server. The choice between the two options is a parameter to

be set during system implementation. The recommended configuration is

to cover the corporate LAN with one multicast with the appropriate hop

count in Step 4 and, after the multicast timeout, to request the object

directly from the origin.

Step 7: • Mode A

Upon receiving the header information of the object from Node B, Node A

compares the information with the information from origin to determine

freshness. If the origin has failed to deliver the header by this stage and if
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the timeout t1 has elapsed, the protocol closes all connections and moves

to the initial state. This is an error state.

• Mode B

Protocol moves to Step 8 assuming that the incoming object is fresh.

Step 8: For both Mode A and Mode B, If the incoming object from Node B is

verified to be fresh,

(a) A deadline t3 for the successful delivery of the requested object from Node

B is computed and set. This deadline is related to the size of the object

and the expected rate of data delivery in the network.

(b) Reception of the object into the local cache of Node A continues. Once

the reception is complete, proceed to Step 10.

Step 9: • Mode A

If the cached object from Node B is verified to be not fresh, the following

is done.

(a) The session with Node B is aborted.

(b) The CSS module returns to Step 4. Note that returning to Step 4

after this point would allow the freshness information ro be attached

to the multicast query. This repetition of Step 4 onwards serves to

invalidate the stale copies of the object in the shared caches.

• Mode B

No action taken.
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Step 10: For both Mode A and Mode B, if the object requested is successfully

received from Node B into the local cache of Node A, the CSS module then

invokes the local serve function to deliver the object to the client application

that requested the object. This is called a remote cache hit. If by the deadline

t3, the object is still not received from Node B, the communication channel

with Node B is aborted. The CSS module returns to Step 4 and restarts the

request, with a block on replies from Node B.

At any stage, if the protocol fetches the object from the origin, it is a cache

miss. The protocol will impose a deadline similar to t3 for origin to successfully

deliver the object. If that fails, the protocol will close all connections and move

to initial state. This is an error state.

4.3.2 Design of the CSS Module

Multicast Timeout t2

As explained in [52], it is desirable to have a dynamic value for the multicast timeout

t2, depending on the size of the requested object. Let hshared be the hit ratio of the

shared cache. The two possible ways to receive an object O of size s, are either

from the origin which has a time cost of s/ro or from the shared cache which has a

time cost of s/rs where, ro and rs are the average transmission rates from origin and

from shared cache respectively. The extra waiting time is expected to be less than

s
ro
− s

rs
. Therefore, the longest acceptable waiting time for a multicast response t2

can be expressed as

t2 = hshared(
s

ro

− s

rs

) (4.1)



58

The analysis in section 5.1.2 on multicast timeout, arrives at the same result. The

parameters ro, rs and hshared are based on known values, if available. Otherwise,

default values are used. The parameters ro and rs are not maintained for each origin

server or each shared cache node. Instead average transmission rates over a period

of time are used. At the onset, size of the object s is unknown. The initial timeout

period, t2(initial) is selected based on some assumed probability for a “cache-hit” for

the requested object. A more accurate deadline t2, is subsequently calculated when

the cached copy is received.

CSS Task Queue Length L

The CSS task queue length is an important parameter to be determined. Ideally,

the length of the queue should be set such that queries are processed within the

multicast timeout t2 at the requesting node. It is possible to model the multicast

query and response messages at a node as a Poisson process [52]. Let λ(t) be the

arrival rate of the multicast messages. Probability that k “cache-query” messages

arriving from time t to t + ∆t, P (k in [t, t + ∆t]), could be calculated as

P (k in [t, t + ∆t]) =
1

k!
[

∫ t+∆t

t

λ(ς)dς]kexp[−
∫ t+∆t

t

λ(ς)dς]

(4.2)

If ∆t is assumed to be very small, Equation 4.2 can be simplified to:

P (k in [t, t + ∆t]) =
1

k!
[λ(t)∆t]kexp[−λ(t)∆t]

(4.3)

The average number of messages arriving from time t to t + ∆t, η(t), is then
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η(t) = λ(t)∆(t) (4.4)

The CSS module only processes messages received in the past t′2 of time, where

t′2 is an estimate of t2 of the requesting node. Therefore, the queue length L, can be

set to

L = λ(t).t′2 (4.5)

where, λ(t) is estimated based on the average incoming message rate in the past

and t′2 is calculated by averaging t′2 in the past.

Processing Multicast Requests

The CSS module receives two types of messages from neighboring CSS modules. It

adheres to following guidelines.

1. The local web requests have highest priority.

2. The probability of a “cache-hit” flood is minimized. Note that since a “cache-

query” from a requesting CSS reaches every CSS module within the muticast

range, it is possible for each node to respond to each query.

3. The probability of a responding CSS module issuing a “cache-hit” while the

requesting node has given up waiting for a response is minimised.

A task queue is maintained within the CSS module for incoming “cache-hit”

and “cache-query” messages. Upon receipt of a muticast message, it is processed as

shown in Table 4.1.
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Table 4.1: Inserting multicast messages to CSS task queue

Case 1: The message is a “cache-query” Case 2: The message is a “cache-hit”

The message is inserted to the rear of the task

queue together with the time, treceive.

If the “cache-hit” was a response for a local

request, the message is forwarded to the func-

tion handling local web requests.

Otherwise the message is inserted to the

rear of the task queue together with the time

treceive.

When there are no higher priority tasks in the system, CSS processes the multi-

cast messages picked up from the task queue at random and processed as shown in

Table 4.2.

Guideline 1

The foreground task of CSS module only services incoming “cache-hit” responses

that match local queries.

Guideline 2

The “cache-hit” responses are used to search and remove from the queue those

queries that have been attended to by other nodes. However, during and after

processing a “cache-query” in the queue, multiple “cache-hit” responses for the

same “cache-query” could arrive from other nodes.

Let query q exist in more than one CSS task queue. Let T1 be the time when a

node picks the query q for processing for the first time in the entire system and let

T2 be the time when that node finishes processing query q and issues a “cache-hit”
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Table 4.2: Processing of tasks from CSS task queue

Case 1: The message is a “cache-hit” Case 2: The message is a “cache-query”

Search the queue for a matching “cache-

query”

If (a match is found)

remove the matching “cache-query” and the

“cache-hit” message.

Othewise

remove the “cache-hit” message.

If (a cached copy is available and deemed

fresh)

estimate the timeout t2 at the peer as shown

below: t′2 = h′shared(
s
ro
− s

rs
) where, ro, rs and

h′shared are values from earlier transactions.

If(treceive +t′2 < tnow that is, if the requesting

client has given up)

the “cache-query” is removed.

Otherwise multicast a “cache-hit” response

on the same multicast address as the “cache-

query”.

If (a cached copy is available but stale)

the cached copy is flushed off and the “cache-

query” is removed.

If (a cached copy is not available)

the “cache-query” is removed.
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response.

If another node picks q between T1 and T2, there is a possibility of another

“cache-hit” response being issued for the same query q.

Let p0 be the probability that a node is free to process the CSS task queue, p1

be the probability that a node holds a cached copy of the object being requested in

q and p2 be the probability that a node picks up q to be processed next. Under the

assumption that all nodes take the same time to process a “cache-query” then in a

system with N nodes, the probability of a burst of m “cache-hit” responses for the

same query q is

P{burst of m} = Cm−1
N−1(p0p1p2)

m−1(1− p0p1p2)
N−m (4.6)

Let Nm be the number of multicast messages including the “cache-query” and

the “cache-hit” due to a request. Its average, Nm is

Nm = 1 +
N∑

m=1

mCm−1
N−1(p0p1p2)

m−1(1− p0p1p2)
N−m

= 2 + (N − 1)(p0p1p2)

(4.7)

A smaller p0p1p3 results in a smaller P{burst of m}. However, high values for

p0 and p1 are required to maintain an acceptable caching performance. As for p0,

if queries are picked in any regular order (e.g. FIFO or LIFO), the probability of

multiple nodes picking up the same query is high. This could lead to a flood of

“cache-hit” messages for the same query. Therefore, to counter that, we randomly

pick messages from CSS task queue.
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Guideline 3

In order to achieve this, CSS makes use of t′2 which is an estimate of t2. If the query

is processed before the time treceive + min(t′2, t2), the accuracy of estimation does

not matter. This eliminates the possibility of responding nodes processing requests

after the requesting node has given up. In addition, the requesting node will not

wait for responses that will never be issued. The situation is the same for the case

when t2 = t′2. If the query is processed after treceive +max(t′2, t2), the accuracy of the

estimate does not matter since, the requesting node has given up and the responding

nodes ignore the query.

In the case of t′2 > t2 and when cache query is processed after treceive + t2 and

before treceive + t′2, a “cache-hit” response will be sent when the requesting node

has given up waiting. The response will be ignored by the requesting node and the

message will flush off matching queries in CSS task queue of other nodes.

Similarly, in the case when t′2 < t2 and when the query is processed after treceive+

t′2 and before treceive + t2, no response will be sent although the requesting node is

still waiting. But it is possible that another which has larger t′2 will subsequently

issue a “cache-hit”.

4.3.3 Cache Maintenance

As the storage capacity at each client computer is limited, inevitably at some point

in time, the storage capacity at each node computer will become fully utilised. To

cache an incoming object, it is then necessary to replace some existing objects in

the system. This issue comes under placement and replacement strategies which are

discussed in detail in Section 6.
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4.3.4 Properties of the Proposed System

In designing the DWC protocol, following assumptions were made regarding the

client nodes.

• Ad-hoc Nature

Client nodes join and leave the Distributed Web Caching system without direct

control of any entity. Therefore, the number and location of active and the

network topology interconnecting them are highly dynamic. Due to the ad-hoc

nature, the Distributed Web Caching system has to be self organizing.

• Limited Capacity and Reliability of Client Nodes

Peers do not have the same capacity or the same reliability when compared to

servers. They fail more often. Therefore, the Distributed Web Caching system

has to be fault tolerant and adaptive.

• Rationality of Client Nodes

Rational client nodes make decisions to maximize their own benefit. These

decisions may not always be inline with the objectives of the caching system

as a whole.

The proposed Distributed Web Caching system has following properties:

1. Guaranteed Cache Consistency

If the system is operating in the Strong Consistency Mode (Mode A), In Step

1 of protocol, the header information of the object, which includes the time

stamp of the object, is requested from the origin server following a request for
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the object. This procedure is repeated for every request. The requesting node

compares the time stamp received from the origin server to time stamp of the

cached object. Only when the two time stamps are the same, is the object

obtained from the cache delivered to the web browser. In the event that the

time stamp differs, cached object is discarded and a more up-to-date object

is obtained from another cache server or from the origin server. If the object

comes from another cache server, the same time stamp criterion is imposed.

If the object is eventually obtained from the origin server after the search

procedure, then consistency is no longer an issue. It shows that none of the

cached versions in the system are up to date.

Note that, in Strong Consistency Mode (Mode A), HTTP header is requested

from the origin server, to enforce the consistency requirement for each request.

This has following implications [53].

(a) Additional wide area network traffic.

(b) Additional origin server load.

(c) Additional access latency .

As an alternative, protocol has a Weak Consistency Mode (Mode B) which will

rely on validity of objects, based on their header information. In this mode,

origin server will not be contacted to check the time stamp of the original

object. Strong cache consistency is always achieved with an added cost in

the form of increased access delay, additional wide area bandwidth usage and

additional work at the origin server [53]. Therefore, a choice has to be mode,

which mode is most appropriate to the individual node or to the network as a
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whole. In a situation where, wide area bandwidth is scarce and costly, Mode

B is more appropriate. Note that, the end user has the liberty to send out

requests by passing all caches using the web browser when deemed necessary.

2. Communications Overhead

Let us assume the following:

LDWC = length of DWC query (size is comparable to ICP)

LURL = Average length of the URL

n = Number of siblings

From Section 4.3.2, total size of a multicast query and a multicast response:

(LDWC + LURL) ∗ (2 + (n− 1)(p0p1p2)) (4.8)

It is expected that,

(LDWC + LURL) ∗ (2 + (n− 1)(p0p1p2)) ¿ (LDWC + LURL) ∗ (2 ∗ n) (4.9)

where, the latter is similar to the unicast version of ICP. As mentioned in

Section 4.3.2, a multicast response would stop other nodes form multicasting

a response for the same query, the probability of a “cache-hit” flood is minimal.

Therefore the best case would be,

(LDWC + LURL) ∗ 2 (4.10)

If the request rate is R, the minimum amount of data transfer for one client

node is,

(LDWC + LURL) ∗ 2 ∗R (4.11)



67

Since there are n nodes and multicast messages will reach all participating

nodes, the minimum total data transfer is,

(LDWC + LURL) ∗ 2 ∗R ∗ n (4.12)

Since the request rate is about 10 to 20 requests per hour [54] (R is 2.77∗10−3/s

to 5.5510−3/s), if we substitute R = 4.16 ∗ 10−3/s, and n = 100, we get the

minimum communications overhead on the ethernet port of a client node to

be,

79 ∗ 2 ∗ 4.16 ∗ 10−3 ∗ 100 = 65.7bytes/s = 526bps (4.13)

If the corporate network has 10,000 nodes the minimum communications over-

head will be 51Kbps per network link. We believe that, on a 10 to 100 Mbps

network link, this is acceptable.

In comparison, if the clients are served by a central proxy server, the minimum

communications overhead due to queries on the internal network link of the

proxy server will be,

LURL ∗R ∗ n (4.14)

However, it must be noted that all object transfers will take place via the same

single network link, unlike in the Distributed Web Caching system.

3. In-built System Reliability

A concern when employing client nodes to perform the functions of a cache

server is the reliability. The client node can fail in many more ways compared

to a dedicated cache server. In the first instance, the client node could be shut
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down by the user without prior notice, and this could happen in the middle of

a cache serving transaction, thereby terminating the transaction pre-maturely.

In addition, without prior notice, a client could be loaded with a computa-

tionally intensive local job so that the amount of resources available for the

cache serving purpose may suddenly diminish. Note that the caching serving

function is structured as a low priority task on the client nodes. Any locally

initiated task will be serviced with high priority even though it is created

later. As such, it may then not be possible to deliver the promised object to

the requesting computer within an acceptable time limit.

In fact, under the above described protocol, there is no guarantee of any

minimum quality of service by any particular client computer. The philosophy

of the protocol proposed in this chapter is very similar to that of the Internet

Protocol (IP) of the TCP/IP protocol. Here IP is inherently unreliable and

works on a best effort basis only. TCP (Transport Control Protocol) is then

the upper layer mechanism to ensure reliable end-to-end delivery of the data

packets. In our proposal, serving is also based on a best effort basis, and is

subjected to local availability of resources at each node computer. In our case,

response to requests may be delayed, transactions may be terminated before

completion or data delivery rate may deteriorate to an unacceptable level. In

view of this inherent unreliability nature of each client node in performing the

cache function, reliability is built into the upper layer protocol. This comes in

the form of a timeout and a retry mechanism. The requesting node is tasked

with the responsibility of monitoring the timeouts and performing retries.

4. Redundancy and Reduction of Hot-spots
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One of the problems associated with popular web objects is a hot spot phe-

nomenon. This phenomenon could happen to the origin server or even a ded-

icated cache server. In such a situation, the origin server or dedicated cache

server that has the object cached has to fulfil a large number of requests

within a short time span. The result is a bottleneck in computing resources of

the server as well as a huge demand on the bandwidth of the communication

medium linking the server to the rest of the network. Our proposed structure

and protocol effectively avoids such a hot spot phenomenon. Popular pages

requested by many clients would end up being cached by all the clients that

requested those pages. Further requests by other clients would attract cache

serve responses by the clients that hold copies of the page. If a particular

client is already engaged in serving the object, it would not have the resources

to respond to further requests quickly (even it is a fast computer), giving rise

to opportunities for, perhaps, other slower clients to have a chance at fulfill-

ing the requests. Overall, with many requests of the same object occurring

at the same time, the serving load as well as bandwidth demand of the com-

munication medium will be spread over many nodes and communication links

respectively, effectively making the hot spot phenomenon non-existent.

5. Zero Administrative Overhead

There is zero administrative overhead when client nodes join and leave the

Distributed Caching System. There is only a graceful degradation in cache hit

ratio when a client node leaves the system, since highly popular objects are

bound to have more than one copy in the system.

6. Low Memory Usage
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Since client nodes do not retain any information about the network topology

or the cache contents of the rest of the nodes, there very little memory usage

on client nodes. However, memory is required to maintain the CSS task queue.

4.4 Software Implementation

This section includes implementation aspects of the proposed Distributed Web

Caching system.

The cache server service (CSS) in section 4.3.1 is divided in to five functional

modules. Flowcharts 4.4 to 4.8 illustrate the five modules CSS Module 1 to CSS

Module 5 operating in Strong Consistency Mode (Mode A). In this mode, origin

server is consulted to validate the freshness of objects for each request. The system

has the ability to operate on Weak Consistency Mode (Mode B), using a subset

of features from Mode A, which relies on HTTP header information of objects to

determine freshness.

CSS Module 1 is the core functional module in the CSS. It is the only module

which communicates between CSS and external client nodes and servers. It initiates

and controls the search mechanism of the Distributed Web Caching System.

CSS Module 2 and CSS Module 3 are sub-functions of CSS Module 1. The

function of CSS Module 2 is searching for the requested object in the local cache.

The function of CSS Module 3 is to receive the object from a remote node of the

Distributed Web Caching System.

CSS Module 4 maintains a task queue on each node to keep track of all requests

from the local browser and from remote nodes. This queue holds all the cache service

requests in the system, and the content of the queue is updated whenever a task
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is fulfilled locally or by a remote node. As explained earlier, the CSS task queue

length L is a tuneable parameter that controls the service capability of each node.

If the queue saturates, it will discard all remote requests and only attends to local

requests, as local requests are given priority over remote requests. CSS Module 5

handles serving of cached objects from the local cache to remote nodes.

Upon receiving a web request, the CSS service will enter one of following four

states from the idle state:

• Local Cache Hit

• Remote Cache Hit

• Cache Miss

• Error State

4.4.1 Error State

This state indicates that, neither the Distributed Web Cache nor the origin has been

able to fulfil the request. The protocol closes all connections and moves to the initial

state. In Mode A, this could occur due to failure by the origin to deliver the HTTP

header information during an acceptable time. In both modes, if the origin fails to

deliver the object, if and when requested, it will move to an error state, if the origin

fails to deliver the object on time.
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Figure 4.9: Experimental Setup 1

4.5 Experimental Performance Evaluation

In order to evaluate the performance of the proposed system, an experimental sys-

tem was implemented on a Linux platform. This section describes the experiments

carried out and their results.

First, the communication delays of the protocol in different states and the average

response time of web requests are investigated. Then, the average response time is

compared with that of a centralized cache system under similar conditions.

From results of the experiments, it was possible to determine the average response

time of our Distributed Web Caching system.

4.5.1 Experimental Setup

Figures 4.9 and 4.10 illustrate the 2 arrangements used for the experiments. The

first setup is a Distributed Web Caching system consisting of 4 client nodes running
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Figure 4.10: Experimental Setup 2

the CSS. The clients used in these experiments are personal computers with PIII 500

CPUs and 64MB of memory. The network is an Ethernet with a bandwidth of 10

Mbps within the subnet and 100 Mbps between the subnet and the campus firewall.

The firewall is the Internet access point of the whole network. Web requests on each

client are made using a web access simulator.

The second setup emulates a conventional centralized caching system. In this

setup, client nodes are not equipped with CSS. The SQUID cache server software

[21] is used to configure a LAN level proxy cache server. Hardware used for the cache

server are identical to those on client nodes. It is connected to the Internet through

the campus firewall. Each client node is equipped with the web access simulator

mentioned above.

Both strong and weak consistency schemes were tested on both setups. In both

cases, browser caches are bypassed, eliminating their effects on measurements.



79

4.5.2 Methodology

The web access simulator running on client nodes generates the web requests by

reading in a list of URLs from a file. The time required to fulfill every request is

logged. This time duration includes the following:

• time taken for searching in the Distributed Web Cache

• time taken for validation from origin server (for Mode A)

• time taken for retrieval of the requested object (from a remote node or from

origin server)

• time taken for serving the object to the client simulator.

The tcpdump program [55] running on each client is used to record the TCP

layer transaction information while timing on the application layer is captured by

the applications’ transaction log.

URLs used in these experiments are extracted from log files of the IRCache

project 1 [56]. The IRCache Project provides a global hierarchical caching service.

The caching system has six top root cache sites located in USA, serving 5 to 14

GB of web contents every day to 125 to 200 client caches throughout the world.

The latest 7 days’ sanitized access logs are available on the web [56]. The log files

are in SQUID [57] format and each line in a log file includes the requested URL.

Experiments are carried out from 6AM to 9PM in order to avoid fluctuations in

available bandwidth throughout the day.

1IRCACHE is the NLANR Web Caching project primarily funded by the National Science

Foundation of USA.
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Session Type Local Validation Multicast Remote Multicast Transfer Total

search delays search timeout effective

Local Hit 0.020 s 1.050 s NA NA NA NA 1.050 s

Remote Hit 0.020 s 1.050 s 0.010 s 0.020 s NA 0.024 s 1.050 s

Cache Miss Object not found

0.020 s NA 0.010 s 0.020 s 0.150 s 2.440 s 2.610 s

Cache Miss Object found stale after retrieval from remote node

0.020 s 1.050 0.010 s 0.020 s 0.150 s 1.964 s 2.990 s

Table 4.3: Performance Evaluation - Average Delays - Experiment 1

Strong Consistency Mode (Mode A)

4.5.3 Experiments and Results

In the first experiment, a typical object of size 16.17 KB is requested and the average

delays in different layers of the protocol are recorded. The experiment was carried

out for both Mode A and Mode B and the results are shown in Table 4.3 and Table

4.4 respectively.

In both modes, if the object is fetched or validated from the origin, first TCP

connection with the origin includes the DNS resolution delay of around 500ms. Once

the DNS entry is cached at the campus DNS server, subsequent DNS requests are

fulfilled in less than 1ms.

As mentioned in Section 4.3.4, it is evident from Table 4.3, that Strong Consis-

tency Mode (Mode A) has a considerable cost in terms of access delay.

In the second experiment, average access times are compared for the two situa-

tions. They are namely, cache miss and remote cache hit.

For this experiment, 10000 unique URLs with objects of varying size were used.
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Session Type Local Validation Multicast Remote Multicast Transfer Total

search delays search timeout effective

Local Hit 0.020 s NA NA NA NA NA 0.020 s

Remote Hit 0.020 s NA 0.010 s 0.020 s NA 0.024 s 0.074 s

Cache Miss 0.020 s NA 0.010 s 0.020 s 0.150 s 2.440 s 2.610 s

Table 4.4: Performance Evaluation - Average Delays - Experiment 1

Weak Consistency Mode (Mode B)

Number of requests Top level domains

7500 .com

1113 .net

167 .uk

161 .org

116 .edu

Table 4.5: Performance Evaluation - Experiment 2 - Most visited Top Level Domains

(TLDs)

First, the client caches were emptied so that all requests have to be forwarded to

the origin. Once the access delays are measured, the caches were filled so that all

unique objects are available within the distributed cache. For both cases, cache hits

are controlled to exclude local hits.

There were 2063 unique sites in the access trace and total object size requested

was 27.7 MB. Table 4.5 shows top five domains visited and Table 4.6 shows the top

ten sites accessed.

The performance advantage in terms of access times were compared for 4 cat-
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Number of requests Top level domains

179 m.doubleclick.net

105 servedby.advertising.com

104 www.panasonic.com

93 www.mercedes.com

91 ad.doubleclick.net

89 www.bmw.com

82 www.weather.com

78 ads.aol.com

72 www.cartoonnetwork.com

71 www.mingpao.com

Table 4.6: Performance Evaluation - Experiment 2 - Most visited sites
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File Size Number of Average Response Time (sec) Improvement

files Cache Miss Remote Cache Hit

≤ 1kB 4199 0.414 sec 0.055 sec 87%

1kB ≤ 5kB 3565 0.702 sec 0.057 sec 92%

5kB ≤ 10kB 847 1.278 sec 0.063 sec 95%

> 10kB 1389 3.168 sec 0.082 sec 97%

Table 4.7: Performance Evaluation - Experiment 2 - Effect of file size - Mode B

Cache Architecture Cache Miss Cache Hit

Distributed Web Caching 2.610 sec 0.064 sec

Squid proxy on LAN 2.460 sec 0.050 sec

Campus proxy 2.465 sec 0.056 sec

Table 4.8: Performance Comparison - Experiment 3 - Average Delays - Mode B

egories of file sizes. Results from the first experiments are as shown in Table 4.7.

It was observed that with increasing file size the performance advantage improves.

This is due to the higher speeds of file transfer within the distributed cache.

The third experiment involves comparing performance of the distributed caching

system with that of a centralised caching system using the Experimental Setup 2

described in Section 4.5.1 and that of the campus proxy server. Average access

delays for to access the whole 10,000 requests were measured for the three cases

considered. Local hits are excluded in all measurements.

Results are shown in Table 4.8. It was observed that, for cache misses, Squid

server on LAN was 5.7% faster than Distributed Web Caching while campus proxy

was 5.5% faster. This is due to the multicast timeout delays in Distributed Web
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Session Type Local Validation Multicast Remote Multicast Transfer Total

search delays search timeout effective

Local Hit 0.020 s NA NA NA NA NA 0.020 s

Remote Hit 0.020 s NA 0.026 s 0.020 s NA 2.150 s 2.216 s

Cache Miss 0.020 s NA 0.026 s 0.020 s 0.150 s 2.540 s 2.710 s

Table 4.9: Performance Evaluation - Average Delays over WAN - Experiment 4

Weak Consistency Mode (Mode B)

Caching.

For the case of cache hits, the two cases were 21% and 12% faster than Dis-

tributed Web Caching respectively. This is due to lower communication delays

for the Squid server while and faster and efficient cache search performance of the

campus proxy, partially compensates for the slightly higher communication delay

compared to the Squid server which was on the LAN.

4.5.4 Experimental Setup for Performance over WAN

A special experiment was setup to measure the performance of Distributed Web

Caching over Wide Area Networks, considering possible constraints in collaborating

with remote LANs using IP multicast. A similar setup to Experimental Setup 1

described in Section 4.5.1 was setup at a remote location connected to the internet

via a 128 kbps leased line.

A VPN tunnel was established using poptop VPN server, so that the remote

network would see the local network to be in the same subnet. Encryption was

disabled to keep the tunnel encapsulation overhead to a minimum. Experiment 1

was repeated with this setup.
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Figure 4.11: Experimental Setup 4
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As shown in Table 4.9, the multicast overhead was slightly higher while file

transfer delay was significantly higher and the transfer speeds from local network to

the remote network were only marginally better than those from the local network to

the origin servers. Therefore, the performance significantly deteriorated compared

to Experiment 1.

For the system to have a significant speedup, the communication latency between

any two client nodes should be at least an order of magnitude smaller than the

latency to access external servers, and they should be connected by a network of

bandwidth at least and order of magnitude more than the external bandwidth.

Given a high local area bandwidth, if the distributed cache could produce more

cache hits than the centralised cache, it is possible to obtain an overall speedup in

access latency. This is expected due to the large number of clients participating in

the system.

It must be noted that the proposed system does not have the disadvantages of

a centalised network component such as a proxy server, which requires a highly

powerful and reliable server grade hardware with a high maintained cost. A central

node also could become a single point of failure and a hot-spot.

4.6 Recent Developments in

Distributed Web Caching

The work reported in this thesis was first published in year 2000 [58]. It is believed

to be the first publication that proposed a web caching system which exploits client

side caches.
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Figure 4.12: A BuddyWeb Client Node

From year 2002 onwards, a few other researchers have come up with improved

methods of exploiting client caches [59], [60], [54], [61], [62].

4.6.1 BuddyWeb

BuddyWeb[62] is a peer-to-peer (p2p) based collaborative web caching system. It

is implemented on top of BestPeer[63], an agent based p2p system. The BestPeer

network consists of two types of entities: a large number of computers (nodes)

and relatively fewer number of Location Independent Global Name Lookup (LIGLO)

servers. Each participant node must register with a LIGLO and can communicate or

share resources with other nodes (i.e. peers) in the network. A LIGLO server, which

has a fixed IP address, provides two main functions. It generates a BestPeer Global

Identity (BPID) for a so that, nodes with varying IP addresses can be identified as

a single unique entity. It also maintains peer’s current status, such as whether it is

online or offline. Agents are extensively used in searching and to perform tasks at

remote peer site.
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Figure 4.12 depicts the architecture of an autonomous peer in BuddyWeb. When-

ever the web browser submits a URL query, the local proxy will receive and rewrite

the query into input format of the BestPeer platform. Based on the requirement,

BestPeer generates a mobile agent and dispatches it to the BuddyWeb network to

search for matching documents. Upon receiving a match, BestPeer passes the in-

formation, i.e., document location back to the personal proxy. Then the personal

proxy will issue a direct HTTP request to the peer that has the documents. The

peer, upon receiving the HTTP request, will process it by the HTTP deamon, and

sends the requested documents to the requester.

• LIGLO servers maintain Peer-Tendencies as word lists of meta data of the

requested objects by each node. These Peer-Tendenciesare then transformed

to a corresponding vector in a vector space. These vectors are used for dynamic

reconfiguration of the BuddyWeb network. The vectors assist the nodes to

keep the k peers with the highest similarity, directly connected, where k is a

system parameter that can be set by participating peers.

• When a node forwards a query, it will look at the neighbor with the highest

similarity value, instead of forwarding the agent to all its directly connected

neighbors. When a peer initiates a query, it sets a TTL value for the maximum

number of hops for the agent. Each time the agent is forwarded, the hop count

it updated, and forwarding is stopped, if it exceeds.

4.6.2 Squirrel

Squirrel[54] is a decentralised p2p web cache, built on a self organising p2p routing

substrate called Pastry[64] as its object location service, to identify and route to
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nodes that cache copies of a requested object. Pastry assigns random, uniformly

distributed nodeIds to participating nodes (say N in number), form a circular 128-bit

namespace. Similarly, application objects are assigned uniform random objectIds in

the same same namespace. Objects are then mapped to the live node whose nodeId

is numerically closest to the objectId. To support object insertion and lookup,

Pastry routes a message toward the live node whose nodeId is numerically closest to

a given objectId, whithin an expected log2bN routing steps. In a network of 10,000

nodes with b = 4, an average message would route through three intermediate

nodes. Despite the possibility of concurrent failures, eventual message delivery is

guaranteed unless l/2 nodes with adjacent nodeIds fail simultaneously, where, l has

typical value 8 ∗ log16N . Node additions and abrupt node failures are efficiently

handled, and Pastry invariants are quickly restored.

Pastry also provides applications with a leaf set, consisting of l nodes with

nodeIds numerically closest to and centered around the local nodeId. Applications

can use the leaf set to identify their neighbours in the nodeId space, say for repli-

cating objects onto them.

In Squirrel, it is assumed that all nodes can access the internet either directly

or through a firewall. Each participating node runs an instance of Squirrel. On

each node, browser cache is disabled and Squirrel instance is set as the proxy server.

Web browsers issue their requests to Squirrel proxy running on the same node. If

the proxy knows that the object is uncacheable, it forwards the request directly to

the origin server. Otherwise, it checks the local cache. If a fresh copy of the object

is not found in the local cache, then Squirrel essentially tries to locate a copy on

some other node. It starts by mapping the object URL (the key) to a node in the



90

network using Pastry, as follows. It computes a SHA-1 hash of the URL to obtain a

128-bit objectId, and invokes Pastry routing procedure to forward the request to the

node with nodeId numerically closest to this objectId. It designates the recipient as

home node for this object.

Squirrel has two modes of operation.

1. Home-store:

In this model, Squirrel stores objects both at the client caches and at its home

node. If the local search fails, Squirrel node issues a cGET or a GET request

to the home node. If the home node has a fresh copy, it directly connects back

to the client node and responds with the object or a not-modified message as

appropriate.

If the home node instead finds a stale copy in its cache, or if it incurs a cache

miss, it issues a cGET or a GET request to the origin server respectively. If

the origin responds with a not-modified message or a cacheable object, then

the home node revalidates the local copy or stores the object as appropriate,

and forwards a suitable response to the initiating client.

All external requests to an object are routed through its home node. So

home node normally maintains the mode up-to-date copy of the object in

the Squirrel network, and does not have to search among other nodes before

responding. On each home node, the replacement policy treats all objects are

treated equally, regardless of whether the object was stored there because the

node was its home, or because the node accessed it recently (or both).

2. Directory:
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In this model, a node that recently accessed an object can be asked to serve it

to subsequent clients. In this approach, the home node for an object remem-

bers a small directory directory of K (e.g., 4) pointers to nodes that have most

recently accessed the object. The key idea is to redirect subsequent requests

to a randomly chosen node among these (called the delegate), which would be

expected to have a copy of the object locally cached. This protocol maintains

the invariant that these copies stored at the delegate nodes are the same ver-

sion of the object. Squirrel synthesises and ETag for internal use by hashing

the object contents to keep track of the version.

4.6.3 Other Approaches

A Churn-Resistant Peer-to-Peer Web Caching System [61] by Linga et al. built

on Kelips peer-to-peer routing substrate focuses on maintaining a constant load on

participants and is able to reorganise continuously under churn.

There is another interesting approach to cache co-operation among client nodes

which uses proxy servers as directory servers that keep track of browser cache con-

tents [59], [60].

In the approach introduced by Xiao et al.[59], for a given browser request, browser

cache is first searched, attempting to satisfy the request. If the object is not found in

the local cache, the request is forwarded to the proxy server, where the proxy cache

is searched for the same purpose. If the search fails to produce a hit, the browser

index file is searched where, the URL is matched in another client machine. The

proxy server informs the latter client to forward the object to the requesting node,

or fetches the cached object to the proxy cache and forwards it to the requesting
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node.

In the system introduced by Zhu et al. [60], the proxy and the client caches try to

optimize the cache contents using a hierarchical greedy-dual (Hier GD) replacement

algorithm. Here, the client caches are organised in a p2p cache using the Pastry

overlay introduced in Section 4.6.2. When the proxy has to evict an object, it then

stores the evicted object in a node in the p2p cache using a distributed hash table

(DHT) functionality.

Experimental results on both Browsers-Aware systems indicate that, hit rates

and response times are much better when there is co-ordination between the proxy

and the client caches, than when there is no co-ordination between the two levels.

The obvious drawback in this approach is the presence of a centralised component,

leading to hot-spot phenomenon, reliability and scalability issues, and high operating

costs.

4.7 Chapter Summary

Since local area networks nowadays have ample bandwidth and the client nodes are

becoming increasingly powerful and resourceful in terms of memory and storage,

it could be possible that the clients could take part in web caching. These client

nodes could be combined to form a distributed caching system. In this chapter, a

protocol for such a Distributed Web Caching system is proposed. The system is

then implemented and tested. The performance is measured and compared with a

conventional centralised caching system. Although the access latencies were higher

in the case of Distributed Web Caching compared to centralised caching, the aim

here is to provide a similar service at no extra cost and without the disadvantages
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of having a central component in the network. In [59], Xiao et al. have shown, that

a co-operative browser cache such as the one introduced here, has better hit rates

and byte hit rates compared to having isolated browser caches. It is also shown that

this performance could be further enhanced using a proxy server to co-ordinate the

co-operative browser caches.

Several researchers have proposed co-operative browser caches using a p2p ap-

proach. A general problem with the use of p2p routing substrates for web caching

is that they are too “heavy-weight” because individual clients may not participate

in the p2p network for very long necessitating constant updates of the distributed

data structures[65].

However, it must be noted that, the communication overhead in locating an

object is considerably lower in structured p2p systems compared to unstructured

p2p systems such as the one introduced in this thesis. The same guarantee cannot

be given to access latency, as it depends on the number of hops, the p2p substrate

requires to locate an object. When client nodes join and leave the distributed cache,

there is no overhead in the unstructured approach, while the in structured approach

there is a considerable time lag and a computational overhead for the system to fully

adjust to such changes.



Chapter 5

An analysis of Distributed Web

Caching

5.1 Introduction

In this chapter a study on object movement in the LRU (least recently used) stack is

carried out to provide a novel perspective to behavior of a Distributed Web Cache.

This study shows that Distributed Web Caching increases the maximum inter-

arrival time between two adjacent requests for a given document without a miss.

A mathematical study on speedup of web caching, shows that Distributed Web

Caching always produces a speedup of greater than unity. This analysis provides an

upper bound for speedup and a maximum for multicast timeout, if a speedup is to

be greater than unity.

94
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5.1.1 Miss Rate in Distributed Web Caching

Let there be N documents of equal size in the sample space. Let there be M caches

of capacity Ck (k = 1, 2, 3, ..., M) measured in unit document size in the Distributed

Caching System. Let us assume that Least Recently Used (LRU) algorithm is being

used in all M caches for object replacement.

CACHE k
 CACHE k
 CACHE M
CACHE 1

A
 B


Figure 5.1: A:Unco-operative and B:Distributed Web Caching

As shown in Figure 5.1A, let the aggregate request arrival process at cache

k(k = 1, 2, 3, ..., M) be Poisson with mean arrival rate λk. Let the arrivals of the

request for individual document i(i = 1, 2, 3, ..., N) at cache k be independently

sampled from the aggregate arrival process based on the probability set pki , where

pki is the access probability for the document i at cache k. Here, pki is modelled

using Zipf-like distributions.

pki = Kk
1

Rk(i)Zk
(5.1)
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where (k = 1, 2, 3, ..., M),(i = 1, 2, 3, ..., N) and

N∑

k=1

pki = 1 (5.2)

λki = pkiλk (5.3)

where λki is the mean arrival rate for document i in node k, Kk is the normalization

factor, Rk(i) is the popularity rank of the document i at cache k and Zk is the

hot-set parameter taking values such that they correspond to hotsets of 30/5, 20/5,

10/5 etc. Here, hot-set 30/5 refers to the case where 30% of all requests are for the

hottest 5% of the pages [1].

Tail of cache


Head of cache


Cache miss
 Cache hit

Eviction Level


Figure 5.2: General LRU stack movement of a document in a node

General movement of an object in the LRU stack is illustrated in Figure 5.2.

After a document is accessed, it occupies position at the head of the stack. The

document starts moving towards the tail of the cache due to other documents being

accessed. If there are no repeat accesses the document gets evicted once it reaches
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the tail of the cache. The number of documents the cache can hold is determined

by cache capacity. Immediately after a repeat access the object moves to the head

of the cache. The vertical lines indicate repeat accesses. The time epochs t1,t2 to

tn−1 are random variables and are not necessarily in increasing order. The behavior

with respect to time is unique to LRU since, it only considers time since last access

as the key for replacement.

As illustrated in Figure 5.2 and explained in [66], let us consider the inter-

arrival time between two successive cache misses for document i at cache k. This

is composed of n − 1 independent identically distributed (i.i.d.) random variables

{t1, t2, t3, . . . , tn−1} and an independent random variable tn. Here the n− 1 random

variables correspond to the time period between two successive hits and the time

period tn refers to the time interval between the last cache hit and the next cache

miss.

t′ =
n−1∑
i=1

ti + tn (5.4)

The effect of n−1 constituent Poisson processes is represented by a mean field τki

where, tj ≤τki (j = 1, 2, . . . , n−1) and tn >τki. Here, τki is defined as the maximum

inter-arrival time between two consecutive requests for a document without a cache

miss.

As shown in Figures 5.1A and 5.1B respectively, let λmiss,uncooperative
ki be the miss

rate for uncooperative caching and λmiss,distributed
ki be the miss rate of distributed

caching. Using the mean field approximation approach, it has been shown in [66]

that for uncooperative caching the miss rate is as follows.

λmiss,uncooperative
ki = λkie

−λkiτ
uncooperative
ki (5.5)



98

Figure 5.3: Resultant LRU stack movement

This result could be further extended to Distributed Web Caching. In a Distributed

Web Caching system, the local misses are forwarded to co-operating caches in the

group as shown in Figure 5.1B. A portion of these requests will receive hits from

the co-operating caches. Therefore, only those requested objects that are not found

in all co-operative caches are considered as distributed cache misses and requested

from the origin servers.

Similar to τuncooperative
ki ,τ distributed

ki can be defined as the maximum inter-arrival

time between two adjacent requests for a given document i without a miss from the

distributed cache.

As illustrated in Figure 5.3, if we consider the time period t′ between two cache
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misses for page m in node n, the maximum inter-arrival time between two consec-

utive requests without a miss for page m in node n is τmn. If we take the resultant

movement of the same page n in node m and m′, the maximum inter-arrival time

between two consecutive requests without a miss becomes τ ′mn.

Let us consider the LRU stack movement of a particular page i in node k and

let x(k, i, t) represent the stack position as a function of time t for the duration t′.

Let x(k, i, t) = 0 if the page is not cached. Then the resultant stack movement with

function f(i, t) is derived as follows,

f(i, t) = max{x(k, i, t)} (5.6)

where k = 1, 2, . . . , M

In function x(k, i, t) and the resultant function f(i, t), let τuncooperative
ki and τ distributed

ki

be the maximum inter-arrival time between two consective requests without a miss

respectively. Here, τ distributed
ki > τuncooperative

ki if any of the other nodes has the same

object cached when node k has to evict the object.

Otherwise, τuncooperative
ki = τ distributed

ki if node k was the only node which had the

object i cached at the time of eviction. Therefore,

τ distributed
ki ≥ τuncooperative

ki (5.7)

Since λmiss,uncooperative
ki = λkie

−λkiτ
uncooperative
ki and λmiss,distributed

ki = λkie
−λkiτ

distributed
ki it

could be concluded that,

λmiss,uncooperative
ki ≥ λmiss,distributed

ki (5.8)

This means the cache miss rate decreases due to co-operative caching other than

in the special case where λmiss,uncooperative
ki = λmiss,distributed

ki . This is possible when
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Table 5.1: Symbols in mathematical expressions

Definition Symbol

Hit ratio at local cache hlocal

Hit ratio at neighboring shared caches hshared

Average time to retrieve an object from local cache Tlocal

Average time to retrieve an object from neighboring

shared caches Tshared

Average time to retrieve an object from origin

server Torigin

Average time overhead for cache discovery for a hit To,hit

Average time overhead for a cache discovery for a miss To,miss

object i is the most popular in node k or when LRU stack movement of object i on

other nodes are not time overlapping with node k in such a way that could increase

τ distributed
ki .

5.1.2 Speedup Due to Distributed Web Caching

The decrease in distributed cache miss rate does not necessarily translate into a

decrease in average user response. In order to quantify the reduction in user response

time, access delays and overheads have to be incorporated into the analysis.

Consider a Distributed Caching System as shown in Figure 4.3. Consider a sub-

net where client caches are shared with a high-speed local network and are connected

to the origin servers via a wide area network. There are no intermediate caches.

• Assumption 1: The average time to retrieve an object from the local cache is
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significantly less than the average time required to retrieve the object from a

neighboring cache or origin server. (Tlocal ¿ Tshared, Torigin)

On average, local disk I/O is faster than network file transfers especially when

there is congestion.

• Assumption 2: The average response time ratio Tshared/Torigin does not change

as more caches join the Distributed Cache.

In reality, increasing cache co-operation shifts the load of the web servers to

Distributed Cache and affects the network congestion patterns.

• Assumption 3: Shared client caches are randomly distributed across the net-

work.

In reality, certain client caches may have faster access to the origin servers than

others. However, by assuming a random distribution, we can use an average

response time (Tshared), and hit ratio (hshared) [67].

For Distributed Web Caching to be viable, the speedup that can be achieved

using Distributed Web Caching has to be greater than unity. Speedup S, can be

defined as the ratio of task time without Distributed Web Caching to task time with

Distributed Web Caching.

S =
Twithout

Twith

(5.9)

Without Distributed Web Caching, all the local cache misses are forwarded to

the origin servers.

Twithout = hlocalTlocal + (1− hlocal)Torigin (5.10)
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Twith = hlocalTlocal (5.11)

+ (1− hlocal)[hshared(Tshared + To,hit) + (1− hshared)(Torigin + To,miss)]

Therefore,

S = A+B

A+B[hshared(
Tshared+To,hit

Torigin
)+(1−hshared)(1+

To,miss
Torigin

)]
(5.12)

where, A = hlocal
Tlocal

Torigin
and B = 1− hlocal .

Since A ≥ 0, for all hlocal where (1− hlocal) > 0, for S to be greater than or equal to

unity (S ≥ 1),

[hshared(
Tshared+To,hit

Torigin
)+(1−hshared)(1+

To,miss
Torigin

)] ≤ 1 (5.13)

If we assume the overheads To,hit and To,miss are negligible this simplifies to

hshared(Torigin − Tshared) ≥ 0.

Since 0 ≤ hshared ≤ 1 and Torigin À Tshared, the above condition is satisfied.

Hence the conditions for (S ≥ 1) are valid.

Let us consider the conditions for a speedup of less than unity (S < 1). For S

to be less than 1,

hshared(Torigin − Tshared) ≤ 0.

Since 0 ≤ hshared ≤ 1 and Torigin À Tshared, above condition is not valid. There-

fore, speedup is always greater than or equal to unity (S > 1), provided that

hshared > 0.

We could also derive an upper bound for Speedup S. Let us consider the case

where the local cache access time is much faster than the shared cache access time

and shared cache access time is much faster than origin server access time (Tlocal ¿
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Tshared ¿ Torigin) and overheads are negligible (To,hit = To,miss = 0) . This provides

an expression for the maximum speedup Smax.

Smax =
1

1− hshared

(5.14)

If we assume To,hit 6= 0 and To,miss 6= 0 we could express Equation 5.13 as:

hshared[(Torign + To,miss)− (Tshared + To,hit)] ≥ To,miss (5.15)

Here, [(Torign + To,miss)− (Tshared + To,hit)] is the time saving due to a shared cache

hit. Therefore, the multicast timeout To,miss has the following upper bound.

To,miss ≤ hshared ∗ time saving due to a shared cache hit (5.16)

5.2 Simulation Experiments

5.2.1 Assumptions

For simplicity, the assumptions of our simulation model of Distributed Web Caching

are as follows:

• User requests are generated using Zipf-like access probability distribution pki

in (1).

• All nodes have the same activity.

• All documents are of the same type and size

• Replacement policy is restricted to LRU on all nodes
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• The issues of dynamic contents and non-cacheable contents are not considered

here.

• All cached documents are assumed to remain fresh.

5.2.2 Objectives

The objectives of this experiment are as follows:

• To investigate possible increase in maximum inter-arrival time (τki), for two

successive requests for a particular document without a cache miss.

• To determine possible speedup due to Distributed Web Caching using experi-

mental values derived in [58].

5.2.3 Experiment 1

Experiment Design

In modelling the cases where nodes have different hot-set curves, we keep zk un-

changed, and vary the pages comprising the hot-sets. It is also important to repre-

sent the correlation between hot-sets with a single parameter (ρ). The correlation

factor ρ [51] takes on integer values from 1 to N . Let us assume that for Node 1,

pages are sorted in decreasing popularity and given page indices 1 to N . Let us

then consider Page 1, the most frequently accessed page in Node 1. Page 1 occupies

position 1 in the hot-set curve for Node 1. For all other nodes, Page 1 occupies a

randomly chosen position between 1 and ρ. More generally, page i in the original

curve is placed in a randomly chosen position from 1 to min(ρ + i− 1, N) , except

that the position occupied by any of the previous (i− 1) pages is not allowed.
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Table 5.2: System parameters for the simulation experiment 1

System Parameters Symbol Value(s)

Total number of documents N 1000

Number of nodes (caches) M 3,6

Cache capacity on each node Ck 120 documents

Hot-set parameter

(hot-set of 30/5) Zk 0.65

Cache capacity for no

eviction Cno ev 665

Correlation factor ρ 1000 (1:max, 1000:min)

Number of requests

from each node R 1000 (1 request/sec)
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Cache capacity was chosen to be 30% of the total capacity needed for no eviction.

A sharp hot-set of 30/5 was chosen for the access probability distribution so that

the chosen cache capacity provides a local hit ratio of about 0.2. Cache warm up

was performed by sending the same request stream through the caching system

before measurement. Hence any transient effects during cache warm up have been

eliminated.

As illustrated on Figure 5.2, τki is the total time the object takes from a hit to

eviction. Figure 5.4 and Figure 5.5 show the movement of a randomly selected page

within a particular node (node 2). After a document is accessed, it occupies position

1 in the LRU stack. The document starts moving towards the tail of the cache due

to other documents being accessed. If there are no repeat accesses the document

gets evicted once it reaches the tail of the cache. The number of documents the

cache can hold is determined by cache capacity.

Here, a vertical line from eviction level to level 0 indicates eviction of the page.

Shown in a dashed line is the maximum stack position the same document has on all

other nodes. The vertical fall of the dashed line shows the time when all other nodes

have evicted the same document. The improvement in τki is measured in terms of

the time all other nodes are able to retain the document after the local node has

evicted the document due to limitation of cache space.

The number of co-operating caches affects the shared cache hit ratio and hence

the overall miss rate. Therefore, two cases were simulated where number of nodes is

3 and 6. In both cases, total number of hits, total number of misses, hit rate, miss

rate, hit rate and miss rate were recorded.
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Figure 5.4: Improvement in τ2,28 in node 2 (number of nodes = 3)

Experimental Results

Figure 5.5 illustrates a classic example of the benefit of increased τki. Here, Node 2

receives a cache hit within the distributed cache. This is because other nodes have

been able to retain the particular document within the distributed cache until Node

2 requests for the same document again. In the long run increased τki would cause

this phenomenon to repeat reducing the number of distributed cache misses.

Table 5.3 summarises the hit and miss rates due to uncooperative caching and

cooperative caching for the two cases with 3 nodes and 6 nodes in the system. From

Table 5.3 it could be clearly seen that miss rate decreases due to Distributed Web

Caching (λmiss,uncooperative > λmiss,distributed). It is also seen that when the num-

ber of co-operating caches increases, distributed cache miss rate is further reduced

(λmiss,uncooperative
M=3 > λmiss,distributed

M=6 ), due to the increase in the effective cache size.
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Figure 5.5: Improvement in τ2,28 in node 2 (number of nodes = 6)

Table 5.3: Comparison of hit rates and miss rates in simulation experiment 1

Unco-operative Distributed

No of nodes Total Rate (λ) Total Rate (λ)

3 Cache hits 627 0.2090/sec 1189 0.3963/sec

3 Cache misses 2373 0.7910/sec 1811 0.6037/sec

6 Cache hits 1286 0.2143/sec 3584 0.5973/sec

6 Cache misses 4714 0.7857/sec 2416 0.4027/sec
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Figure 5.6: hlocal vs. Cache Capacity

5.2.4 Experiment 2

Experiment Design

The objective of this experiment is to determine the speedup due to Distributed

Web Caching in terms of access time. Shown in Table 5.4 are the additional system

parameters used in this experiment. Data used here are gathered from a real im-

plementation of the Distributed Web Caching System [58]. This provides realistic

values for the delays involved in the protocol.

Experimental Results

The experiment was carried out for 5 cache sizes representing the range 5% to 70%

of cache size required for no eviction. Cache co-operation provided a lower access

time compared to non-co-operative caching as illustrated in Figure 5.9 and Figure

5.10 respectively. It is clear from Figure 5.11, that there is a speed up of greater
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Table 5.4: System parameters for the simulation experiment 2

System Parameters Symbol Value(s)

Total hit ratio of the

Distributed Web Caching system htotal refer to Figure 5.8

Shared level hit ratio of the

Distributed Web Caching system hshared refer to Figure 5.7

Local hit ratio hlocal refer to Figure 5.6

Average time to retrieve an

object from local cache Tlocal 0.100s

Average time to retrieve an

object from a shared cache Tshared 0.200s

Average time to retrieve an

object from origin server Torigin 2.600s

Average time overhead for cache

discovery of a hit To,hit 0.050s

Average time overhead for cache

discovery of a miss To,miss 0.150s

Cache capacity (documents) Ck 30,60,. . . ,480

Hot-set parameter

(hot-set of 30/5) Zk 0.65

Cache capacity for no eviction Cno ev 665

Number of nodes M 2,4,. . . ,12
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than unity throughout the range considered.

However, a reduction of speed up with higher cache sizes (beyond the region

considered here) was noticed. This could be attributed to reduction of shared cache

hits when the local cache size is closer to the size required for no eviction. Therefore

the benefit of external caching reduces.

In reality, cooperative caching systems operate with hshared around 0.3 [67] and

hlocal from 0.2 to 0.7 [47],[67], [68] representing cache sizes much lower than the

maximum required for no eviction. There is a definite improvement in access time

in regions with those hit ratios (e.g. 4 nodes with capacity 120).
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5.3 Chapter Summary

In Section 5.1.1, the effect of Distributed Web Caching to maximum inter-arrival

time between two adjacent requests τ was studied. We showed that Distributed

Web Caching should increase the value of τ and thereby redue the miss rate of

the Distributed Cache. In our simulation study in Section 5.2.3, we investigated

the behavior of objects within the LRU stack. It was clearly observed that the

value of τ increases due to other nodes caching the same object during the same

time period. It was further observed that when the number of participating nodes

increases the value of τ further and thereby further reducing the miss rate of the

Distributed Cache. In Section 5.1.2, the speedup due Distributed Web Caching

was investigated. Conditions for speedup were derived along with an expression

for maximum speedup Smax. We further derived an upper bound for the multicast

timeout To,miss. In our simulation study in Section 5.2.4, we investigated the average

access times and the speedup due to Distributed Web Caching. It was observed that

the system provides a speedup of more than unity through out the practical range

of parameter values.



Chapter 6

Object Replacement in

Distributed Web Caching

6.1 Introduction

A complete cache management system requires the following.

• A location strategy

• An admission control strategy

• A replacement strategy

• A placement strategy

• A consistency strategy

In this section we address the problem of object replacement in Distributed Web

Caches. The problem is a version of the knapsack problem which is known to be

115
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NP-hard. We propose a heuristic based approach to the problem termed Distributed

Web Caching for Global Performance (DWCG). Using event driven simulations, we

show that in a Distributed Web Caching environment, the proposed strategy can

outperform conventional uncooperative caching strategies such as Least Frequently

Used (LFU), Least Recently Used (LRU) and Greedy Dual Size Frequency (GDSF)

in terms of Latency Savings Ratio (LSR), Hit Ratio (HR) and Byte Hit Ratio (BHR).

6.2 Object Replacement Strategy

Object replacement algorithms for web caching has gained increased attention among

researchers during recent times [69], [70], [71], [72], [73], [74], [75], [76], [77], [78],

[79], [80]. In general, a caching strategy A, takes a request sequence ρ, and a cache

of size S in initial state S0, produces a state sequence S1,S2,...,Sm and incurs a cost

W (A, ρ, S). The normalized cost is defined as,

C(A, ρ, S) =
W (A, ρ, S)

Wmax(ρ)
(6.1)

where, maximum cost Wmax(ρ) is the cost incurred when no caching is done and

0 ≤ C ≤ 1. Given a specific access sequence, an optimal strategy should minimize

the cost incurred while accessing uncached objects. Hence it should minimize Equa-

tion 6.1.

Object replacement strategies such as LRU [81] and LFU [81] aim to maximize

the hit ratio. SIZE [82] aims to maximize the byte-hit ratio. HYBRID [83] and LRV

[84] are aimed at maximizing both hit ratio and byte-hit ratio while minimizing cost

of access. However, these two strategies are heavily parameterized and require tuning

of parameters [85]. GD-SIZE [86] uses access cost along with an aging mechanism
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and outperforms LRU, SIZE, HYBRID and LUV [87]. However, it does not take

access frequencies into account. A modified version of GD-Size called Greedy-Dual-

Size-Frequency [88] takes cost, size and frequency into account, further improving

performance of the original GD-Size.

Our primary objective is to minimize client request response time. Clearly, when

comparing two objects with the same popularity and size, the document that took

a longer time to fetch should be retained at the expense of the other. The access

time saving by caching a document can be formally expressed as the latency savings

ratio (LSR) which can be expressed mathematically as below.

LSRA,ρ,S =
Dρ,0 − (DA,ρ,S −Dρ,∞)

Dρ,0

(6.2)

where,

Dρ,0 =
N∑

i=1

dorigin
i .ri

Dρ,∞ =
N∑

i=1

δi(d
origin
i ) + dlocal

i .(ri − δi))

δi = 1 if ri ≥ 1 and δi = 0 if ri = 0

DA,ρ,S =
N∑

i=1

dorigin
i .f origin

i +
N∑

i=1

dshared
i .f shared

i +
N∑

i=1

dlocal
i .f local

i

Dρ,0: Time taken in accessing the request sequence ρ without caching.

Dρ,∞: Time taken in accessing the request sequence ρ with an infinite client cache

capacity.

DA,ρ,S: Time taken in accessing the request sequence ρ with a cache capacity S on

each client node and when replacement algorithm A is applied.
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dorigin
i : Time taken to fetch document i from origin.

dshared
i : Time taken to fetch document i from distributed cache.

dlocal
i : Time taken to fetch document i from local cache.

f origin
i : total number of origin fetches for document i for capacity S and replacement

algorithm A with Distributed Web Caching.

f shared
i : total number of fetches from distributed cache for document i for capacity

S and replacement algorithm A with Distributed Web Caching.

f local
i : total number of local fetches for document i for capacity S and replacement

algorithm A with Distributed Web Caching.

ri: total number of references for document i.

Here, Dρ,∞ ≤ DA,ρ,S ≤ Dρ,0. Therefore the range of LSRA,ρ,S is , Dρ,∞
Dρ,0

≤ LSRA,ρ,S ≤ 1.

Therefore, it is clear that the limits of the matrix is dependent on the properties of

access sequence ρ and not the replacement strategy A or the cache capacity S.

Latency savings ratio (LSR) introduced here, is derived from Delay Savings Ratio

(DSR) used in [89],[90],[82] and [90]. However, this has been modified to remove

the effect of cache warm up during measurement of latency savings. Therefore, for

a given sequence only the steady state performance is compared.

Since the time to satisfy a request from local or distributed cache is smaller

than the time to satisfy a request from the origin server (dlocal
i < dshared

i < dorigin
i ),

maximal latency savings ratio guarantees minimal client request response time.

In order to maximize LSR we can combine 3 key parameters of a cached document

i (probability of access pi, size of document sizei and fetch latency taccessi
) into one
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performance metric called local benefit, defined as;

local benefiti =
pi ∗ taccessi

sizei

(6.3)

Here, local benefiti gives the expected latency reduction obtained from caching i

per unit size. This is the normalized contribution of document i to LSR. Object

replacement is carried out by evicting documents starting from the least beneficial,

in the ascending order of benefit until sufficient space is created for the incoming

object. In Equation 6.3, probability of access pi can only be estimated by observing

the past reference pattern. This could be done using LRU, LRU-K [91] or LFU.

However, these methods alone do not perform satisfactorily since LRU and LFU

only take recency and frequency of access respectively. LRU-K takes in to account

last K references. However, sometimes it is not possible to consider K references

if fewer than K references have been made. Therefore we propose to combine LRU

and LFU as shown in Equation 6.4.

pi ∝ nrefi

trefi

(6.4)

where, nrefi is the number of references for object i after being cached, trefi is the

time since last reference to object i since caching. This could be incorporated into

local benefiti as follows.

local benefiti =
nrefi ∗ taccessi

trefi ∗ sizei

(6.5)
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6.3 Replica Awareness in Object Replacement in

Distributed Web Caching

Distributed Web Caching assumes there is a considerable correlation between the

access streams of different nodes (or users). Due to this correlation and due to

independent admission and replacement policies, multiple copies of the same object

(replicas) could co-exist in the Distributed Cache.

6.3.1 Detection of Replicas

Detection of replicas could either be done using a centralised server which monitors

multiple copies or by using a regular information exchange mechanism between the

client caches.

Both these solutions were not feasible since a centralised server totally contradicts

the distributed systems approach to overall design and regular information exchange

adds extra communications and processing overheads to the system.

However, a multicast request could provide an indication of a possible fetching

of that object in the near future into another node. In each cache, a counter is

maintained for each object in the cache. The counter starts at 1 indicating the local

copy. The counter is then incremented for each multicast request that is detected in

the system. When the object is evicted the counter information discarded. Although

this approach does not provide the exact number of replicas in the system, it provides

an indication of global popularity of the object while the object remains in the cache.

There exist two different approaches to make use of the replica count in object

replacement.
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1. To give higher importance to objects requested by other nodes. This less

greedy approach expects that if a page is requested by another node, the prob-

ability of more nodes requesting for the same page is high. Therefore, the

page is given more importance for the benefit of future remote requests. In

the following sections, we investigate the performance of this approach.

2. To give less importance to objects requested by other nodes. This ap-

proach expects the requesting node to cache the object so that other nodes

can access that particular copy if there is a local miss. We have introduced

this scheme in [92] as a replica-aware extension to replacement policies in

Distributed Web Caching. This is discussed in section 6.7.

6.4 Distributed Web Caching for Global Perfor-

mance (DWCG)

The benefit to the whole Distributed Web Caching system can be named as the

global benefit. We express the global benefit as follows.

global benefiti =
nrefi ∗ taccessi

trefi ∗ sizei

∗ remote benefit factori (6.6)

Here, the remote benefit factor has to be dynamically calculated depending on the

demand for a particular page by the neighboring nodes. Using event driven simula-

tions we found out that enremotei , where, nremotei is the number of remote requests

for a particular page, gives a considerable improvement in performance.

Therefore, the proposed priority key for DWCG algorithm is as follows.

Priority Keyi =
nrefi ∗ taccessi

trefi ∗ sizei

∗ enremotei (6.7)



122

In the following section we develop a simulation model for the Distributed Web

Caching system and simulate key replacement algorithms such as LRU, LFU, GD-

SIZE-FREQUENCY [83] along with the proposed DWC-G algorithm. The perfor-

mance is then compared according to latency savings ratio (LSR) defined above.

6.5 Simulation Model

First, a simulation model for Distributed Web Caching is developed. It is then

simulated using empirically derived analytical workloads. Researchers [93],[48],[6]

have frequently observed a number of invariant characteristics of web caching by

doing trace analysis. Such information is also used in these simulations.

6.5.1 Assumptions

For simplicity, the assumptions of our simulation model of Distributed Web Caching

are as follows [94]:

• All nodes have the same activity.

• The issues of dynamic contents and non-cacheable contents are not considered

here.

• The all cached documents are assumed to remain fresh since the protocol has

a built in method to guarantee freshness of objects using “polling every time”

technique.
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6.5.2 Objectives

• Performance comparison of commonly used replacement strategies with the

proposed strategy DWCG.

• To understand the effect of varying parameters on performance of caching

strategies.

6.5.3 Object Popularity

Assuming that there are N distinct objects and M nodes, probability of access of a

document i in node k can be expressed using Zipf-like distributions as follows.

pki = Kk ∗ 1

Rk(i)Zi
(6.8)

for k = 1, 2, .., M and i = 1, 2, .., N such that
∑N

i=1 pki = 1, where Kk is a

normalisation constant, Rk(i) is the rank of document i in node k and Zk is the

hot-set parameter. Zk can be adjusted so that the hot-set is 20/5, 10/5, etc. “20/5”

corresponds to the case where 20% of all requests are made to the hottest 5% of the

objects. In our experiments we simulated hot-sets 20/5 and 10/5.

6.5.4 Correlation of object popularity

In modelling the cases where nodes have different hot-set curves, we keep Zk un-

changed. Instead similar to Experiment 1 on Section 5.2.3, we vary the pages com-

prising the hot-sets. It is important to represent the correlation between hot-sets

with a single parameter (ρ). The correlation factor ρ [51] takes on integer values

from 1 to N . Let us consider Page 1, the most frequently accessed page in Node 1.
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Page 1 occupies position 1 in the hot-set curve for Node 1 (R1(1) = 1). For all other

nodes, Page 1 occupies a randomly chosen position between 1 and N . Any page i in

the original curve is placed in a randomly chosen position from 1 to min(ρ+i−1, N)

except that the positions occupied by any of the previous i − 1 pages are not al-

lowed. When ρ = 1, we have perfect correlation between nodes and when ρ = N ,

we have random correlation. In our simulations we use ρ = N
5
, 4N

5
to represent both

extremes.

6.5.5 Access Cost of Objects

In modelling the cost of access form origin, we use the model suggested in [23].

Access cost of object can be expressed as follows.

taccessi = ω.si + 2.(1− ω).A.random(0, 1) (6.9)

where, si is size of object, A is the average size of an object and ω is the cost

correlation parameter which lies between 0 and 1. In our simulations, we use ω = 0.5.

6.5.6 Object Size Distribution

We assume that there are N different objects with size si. Sizes are uniformly

distributed between 1 and N . We simulate three different size distributions [95].

1. First we sort the N objects with descending global popularity pi =
∑M

j=1 pij

and assign sizes 1 to N (popularity and size negatively correlated).

2. Next we sort the objects in the ascending order of global popularity and assign

sizes 1 to N (popularity and size positively correlated).
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3. Finally we shuffle the sizes randomly (popularity and size randomly corre-

lated).

6.5.7 Cache Capacity

We have chosen the cache capacities to be 0.10 to 0.50 of minimum per node capacity

required for no replacement SNR. i.e. 0.10 ∗
∑M

i=1

M
to 0.50 ∗

∑M
i=1

M

6.6 Simulation Experiments

6.6.1 Experiment 1

Experimental Setup

In our first simulation experiment we compare the LSR for LRU, LFU, GD-SIZE-

FREQUENCY algorithms with the proposed DWCG algorithm. Table 6.1 shows

the parameters used in the experiment.

Experimental Results

Figures 6.1 to 6.4 illustrate the experimental results for Experiment 1. Four sets of

results were obtained for combinations of moderate (20/5) and flatter (10/5) hot-

sets with high (N/5) and low (4N/5) object popularity correlation settings between

nodes.
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Table 6.1: System parameters for the simulation experiments

System Parameters Symbol Value(s)

Total number of documents N 5000

Number of nodes (caches) M 6

Cache capacity on each node Ck 0.10 ∗
∑M

i=1 SNR

M to 0.50 ∗
∑M

i=1 SNR

M

Hot-set parameter Zk 0.53 (hot-set of 20/5)

0.35 (hot-set of 10/5)

Object Size - Frequency Correlation γ 3:Random (1:Positive, 2:Negative)

Object Size - Cost Correlation Factor ω 0.5

Object Popularity correlation factor ρ N
5 to 4N

5

Number of requests N 500 per node

Total length of request sequence L 3000 requests

Local cache access time dlocal 0.04 ∗ dorigin

Shared cache access time dshared 0.10 ∗ dorigin
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6.6.2 Experiment 2

Experimental Setup

In our second simulation experiment we compare the hit ratio for LRU, LFU, GD-

SIZE-FREQUENCY algorithms with the proposed DWCG algorithm. Hit ratio can

be considered as a secondary performance matrix. The same simulation parameters

used for Experiment 1 were used for this experiment. In calculating the hit ratio,

both local and shared cache hits are considered as cache hits.

Experimental Results

Figures 6.5 to 6.8 illustrate the experimental results for Experiment 2.
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6.6.3 Experiment 3

In our third simulation experiment we compare the byte hit ratio for LRU, LFU,

GD-SIZE-FREQUENCY algorithms with the proposed DWCG algorithm. Similar

to hit ratio, byte hit ratio can be considered as a secondary performance matrix.

Significance of byte hit ratio is that the object size is taken into account in measuring

the performance compared with hit ratio. In calculating the byte hit ratio, both local

and shared cache hits are considered as cache hits.

Experimental Results

Figures 6.9 to 6.12 illustrate the experimental results for Experiment 3.
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Discussion on Experimental Results

It is clear from the results that DWCG out performs LRU, LFU and GDSF in

terms of LSR. Gain in LSR is from 4.5% to 17.2%, over LFU, 1.2% to 8.4% over

LRU and 1% to 3.4% over GDSF depending on the hot-set and inter-site popularity

correlation factor.

In Experiments 2 and 3 the results show that DWCG performs better in terms

of HR and BHR. The gains are similar to those in Experiment 1.

An interesting observation is that when there is a close object popularity correla-

tion between nodes, a sharp hot-set yields better performance in terms of LSR, HR

and BHR. In contrast, when the object popularity correlation between nodes is low,

a flatter hot-set yields better results in terms of LSR, HR and BHR. This is due to

the amount of overlap between popular objects in the two cases, if the overlapped

objected are popular it yields better performance. In a less correlated case, a sharp

local hot-set further reduces the usefulness of cache cooperation. The performance

of DWCG is further improved when number of nodes are increased and when the

request sequence is longer.

Adding more nodes to the system will improve the overlap of popular objects

and hence improve the usefulness of Distributed Web Caching. In addition, length

of the request sequence and number of objects in the system affect the performance.

However, the key parameters determining the performance of a given scenario are

the local hot-set parameter and the inter-site object popularity parameter.
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6.7 A Replica-Aware extension for object replace-

ment algorithms in Distributed Web Caching

When inter-node object popularity correlation is high, replica awareness could be

used to reduce the local importance of a particular object, when that object is

popular elsewhere. This way more importance could be given to objects that are

popular only locally.

Some of the commonly used object replacement algorithms could be modified to

incorporate this feature as follows:

Modified Priority Keyi = Priority Keyi ∗ 1

Remote Dependency Factori

(6.10)

RemoteDependency Factori indicates the dependency on remote nodes for hav-

ing this object cached. Two Remote Dependency Factors are considered.

RDF-1: Remote Dependency Factori = nremotei

RDF-2: Remote Dependency Factori = enremotei

6.8 Simulation Experiment

LSR, BHR and HR performances of original LRU algorithm is compared with RDF-1

and RDF-2 versions for the 2 cases when hot sets are 30/5 and 20/5 with inter-node

object popularity correlation factor fixed at ρ = 1000 (high correlation).

Both versions of RDF has outperformed the original version of LRU. RDF-2 per-

forms marginally better than RDF-1. Since RDF relies on other nodes to cache some
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of the locally popular objects, the gains are only visible when there is a significant

correlation of hot-sets.

6.9 Chapter Summary

In this chapter, a novel object replacement strategy the DWCG was introduced. The

strategy aims at improving the global performance using a co-operative replacement

scheme. In order to achieve this, the remote benefit factor was incorporated in to

the priority key. The objective of this factor is to reflect the importance of caching

the page for the benefit of cooperating nodes by taking in to account the number

of remote references so far. We have further introduced a modified performance

matrix called Latency Savings Ratio (LSR) to suit Distributed Web Caching. The

measurement removes any effect of cache warm up and measures the steady state

latency saving.
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It was noted that the performance can be further fine tuned by introducing the

parameters a and b as shown below.

Priority Keyi =
nrefi ∗ taccessi

trefa
i ∗ sizei

∗ e
nremotei

b (6.11)

a = 0.2 and b = 4 yielded marginally better results in the considered scenario.

These parameters have to be determined according to the total length of the re-

quest stream and the number of nodes in the system respectively. However, for a

general case with an infinite request stream and a large number of nodes these two

parameters are not required. Using simulation experiments, the performance of the

proposed scheme was compared with LRU, LFU and GDSF. It was observed that

DWCG out performs LRU, LFU and GDSF in terms of LSR. Gain in LSR is from

4.5% to 17.2%, over LFU, 1.2% to 8.4% over LRU and 1% to 3.4% over GDSF

depending on the hot-set and inter-site popularity correlation factor.



Chapter 7

Conclusions

This thesis focuses on providing an alternative to centralised web caching, due to

numerous problems associated with centralised network components.

In Chapter 1, a brief introduction to the work reported is provided, along with

the scope of the research, areas not covered in this thesis, and the organization of

the thesis.

In Chapter 2, a detailed on web caching is provided. Benefits of web caching

and HTTP support for web caching are discussed. These are followed by issues in

web caching and how co-operative web caching could solve some of those issues is

discussed. Co-operative web caching architectures and cache co-operation protocols

are also introduced. Properties of two widely used cache co-operation protocols

namely, ICP and Summary Cache are investigated and their properties are com-

pared, including the query overhead.

Provided in Chapter 3, is a case study using user access traces collected at Boston

University (BU) and University of California, Berkeley (UCB). BU trace logs are

unique due to the fact that they have been collected using a modified browser,

139



140

therefore, the logs contain, all user requests, which are not filtered by the browser

caches. Traces collected at the proxy caches tend to loose some of the requests due

to local fulfilment of some of the requests by the browser caches. UCB trace log

is collected through the use of a packet sniffing machine placed at the head-end of

the Home IP modem bank. All three traces represent academic users, who are most

likely to have similar web access patterns. Simulations carried out clearly indicate

that there is a considerable benefit in cache sharing compared to isolated browser

caching. Our findings have been further verified by results in [59].

In Chapter 4, the concept of a novel Distributed Web Caching system is pre-

sented. The software implementation along with modular break down and flow

charts are provided. Performance from the experimental implementation is evalu-

ated and compared with a centralised caching system. The access latencies were

slightly higher compared to centralised caching systems. However, it is clear that

a Distributed Web Cache could provide an alternative to centralised caching at no

extra cost. The proposed system has resilience to node failures and uses very little

state information, therefore considerably reducing memory usage. The system also

has no extra overheads or delays when nodes enter and exit the distributed cache.

We see that the system can easily scale up to 10,000 client nodes with acceptable

levels of query overhead. The recent developments in the area of client cache co-

operation include the use of p2p substrates and coordinating proxy servers. The

advantages in both those approaches compared to the one proposed here, is the

reduced, object location overhead. The main disadvantage of those systems is that,

those systems require the client nodes to be online for a considerable period of time

for full functionality [65].
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In Chapter 5, results from a study on object behavior in the LRU stack is pre-

sented. A mathematical expression is derived for the speedup. An upper bound for

the speed up and the maximum multicast timeout for a speedup of greater than

unity are also derived. A simulation model is developed and the system is simulated

to verify the findings. It was observed that the increasing number of nodes in the

Distributed Web Cache, increase the hit rates and decrease access latencies.

In Chapter 6, focus is given to replacement algorithms and their performance

in a Distributed Web Caching environment. A novel replacement algorithm called

DWCG is developed and its performance is compared with standard replacement

algorithms. It was observed that DWCG out performs LRU, LFU and GDSF in

terms of LSR. Gain in LSR is from 4.5% to 17.2%, over LFU, 1.2% to 8.4% over

LRU and 1% to 3.4% over GDSF depending on the hot-set and inter-site popularity

correlation factor.

7.1 Thesis outcome

The work reported in this thesis proposes a novel approach to web caching. The

proposed distributed approach to exploit client caches is reliable and reduces hot-

spots in the network.

The system can scale well in corporate networks with up to 10,000 client nodes.

A rule of thumb for acceptable performance with the proposed system would be

that, the communication latency between any two client nodes should be at least

an order of magnitude smaller than the latency to access external servers, and they

should be connected by a network of bandwidth at least and order of magnitude

more than the external bandwidth. This rule is valid for all attempts to exploit
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client caches [54].

The main advantage of the system is that it could be implemented with no

additional cost and eliminates the need to maintain a costly, highly reliable and

powerful caching infrastructure for the same purpose. The system tolerate the tran-

sient behavior of client nodes. For example, when a client node leaves the distributed

cache, nothing needs to be done, since there is no specific structure to restore or to

maintain. The multicast query method provides a robust and comprehensive search

mechanism.

The main disadvantage in the proposed system is the considerable query over-

head, which is proportional to the number of participating nodes. If we consider a

network of 1000 nodes, the overhead per peer is about twice that of the p2p cache

by Linga et al. [61]. However, it has been made clear that the overhead will stay

within acceptable levels for corporate networks with 100 to 10,000 client nodes.

Conditions for speedup and expressions for maximum speedup and maximum

multicast delay are derived. Object replacement plays a major role in any caching

system.

Due to the independent replacement carried out by each node, the cache capacity

is not optimally utilized. A special object replacement algorithm called DWCG is

developed specially for Distributed Web Caching environment. This novel algorithm

is able to outperform conventional algorithms such as LRU, LFU and GDSF. It

requires no additional communications for coordination between caches compared

to the tightly coordinated method suggested in [60].

The proposed system can easily be integrated to the operating system or could

be executed as a daemon or a service on client nodes and it can co-habit with legacy
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infrastructure, requires no changes to the network beyond the corporate network.

7.2 Future Work

• SuperNodes

The proposed system has following disadvantages:

1. expensive searching process and therefore, more network traffic and less scal-

ability and,

2. lack of guarantee on locating a requested file exists in the system.

Since the requested object could be anywhere in the distributed cache, intuitively,

more work is needed to locate it compared to the case of structured p2p systems.

The scope of the search is restricted to a certain number of hops (or to the corporate

network) to limit the overhead. This means that, if the file happened to be on a

client outside the range of the search, it will not be located. Another problem is

many internet service providers don’t route UDP multicast messages for various

reasons.

A natural solution would be to employ some Supernodes, such as in the case

of Morpheus. In Morpheus, peers are automatically elected to become SuperNodes

if they have sufficient bandwidth and processing power (a configuration parameter

allows users to opt out of running their peer in this mode). Once a Morpheus peer

receives its list of SuperNodes from a central server, little communication with the

server is required.

A similar approach could be used to make the proposed system to scale beyond

the corporate networks. The SuperNodes, which could connect two corporate net-
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works together via TCP connections, could maintain information about the files

available within the clients on that network. This information is periodically ex-

changed between SuperNodes. Therefore, only if the remote network seem to con-

tain the object, the request will be relayed to the remote SuperNode and then to

the client in that network. The file transfer may take place directly between client

nodes. The method used in Summary Cache[24],[23] using Bloom Filters to obtain

compact representations of the cache contents, may be employed. Such a mecha-

nism, could also be used to partition a corporate network, so that multicast range

could be further reduced.

Another possible approach is to let clients query only the SuperNodes, which will

maintain summary cache like information of all clients connected to them. Client

requests are made through the SuperNodes similar to a proxy server. SuperNodes

could be located via multicast or using a set of servers with static IPs, that can

also act as authenticating servers. This method provides a more accurate location

strategy at the expense of higher resource usage at SuperNodes and bandwidth usage

for exchanging summaries.

• Issues of information security and privacy

The proposed Distributed Web Caching system requires a remarkable amount

of trust from the participating client nodes. A node must trust that other nodes

implement the same protocols and will respect the goals of the system.

It is possible to decoy files to have the correct length, but not the original content.

Similar issues have traditionally hurt search engines, where any page with a given

search term inside it had an equal chance of appearing highly on the search results.

The best solution to the search engine problem, as used by Googles PageRank
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technology, has been to form a notion of popularity. For Google, pages that are

linked from “popular” pages are themselves more popular. An interesting issue is

how to add such a notion of popularity into a p2p storage system.

It might be possible to extend the idea to the proposed system.
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