
ADVANCED PLANNING SYSTEMS FOR

HARD DISK DRIVE ASSEMBLY

NG TSAN SHENG

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADVANCED PLANNING SYSTEMS FOR

HARD DISK DRIVE ASSEMBLY

NG TSAN SHENG

(B.Eng.(Hons), National University of Singapore)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

Acknowledgments

This work owes much credit to the guidance of my research supervisors: Dr Lee

Loo Hay and A. P. Chew Ek Peng. I am thankful to them for their invaluable

advice and also the many hours of discussions and brainstorming despite their very

hectic schedules.

Special gratitude goes out to the staff of the Production Planning and Control

Department and the New Business Development Department of Maxtor Singa-

pore for their generosity and help during my attachment. I am also thankful to

the Department of Industrial and Systems Engineering in the university for the

provision of a very conducive research environment. I would like to extend my ac-

knowledgments to: Lai Chun, for her kind assistance and patience in handling my

administrative demands. Teng Suyan, for her help and discussions in my research

project. Wee Tat, for providing much help in the typesetting of this thesis. Mr Lau

Pak Kai and Ms Yao Qiong, for their assistance in using the laboratory facilities

and resources. Yew Loon, Mong Soon, Ivy, Yenping, and also the colleagues in

Quality and Reliability laboratory for their friendship through these few years in

the Department.

Also deserving of gratitude are my parents and family, for their support and

encouragement in pursuing my post-graduate studies. Finally, to Grace, for her

love and understanding, and for leading me back to know God, without whom none

of these would have been possible.

i

Contents

Acknowledgments i

List of Figures vi

List of Tables vii

Notation For Problem Parameters viii

Summary x

1 Introduction 1

1.1 The Relevance of Optimization in Production Planning With Mod-

ern Business Rules . 2

1.2 The Case of Hard-Disk Drives . 4

1.3 PPS Problems in Hard-Disk Drive Assembly 6

1.3.1 Build-pack PPS Problems 6

1.3.2 Reduction of Planning Cycle 9

1.4 Outline of Thesis . 10

ii

2 Background 12

2.1 Approved Vendor Matrices . 13

2.2 Problem Descriptions . 15

2.2.1 Multi-Period Build-Pack Scheduling 15

2.2.2 Build-Pack Planning With Stochastic Demands 17

2.3 Mass Customization Literature . 18

2.4 A Survey of Production Planning Models 23

2.4.1 Aggregate Production Planning Models 25

2.4.2 MRP Models . 30

2.4.3 Earliness-Tardiness Planning Models 34

2.4.4 Stochastic Planning Models 36

3 The Multi-Period Build-Pack Scheduling Problem 39

3.1 Problem Formulation . 39

3.2 Solution Procedure . 41

3.3 Computational Results . 50

3.4 A Multicommodity Network Representation 55

3.5 Concluding Remarks . 60

4 A Multi-Stage Bender’s Decomposition Solution Approach 62

4.1 Multi-stage Formulation . 64

4.2 Solution Procedure . 66

4.3 Implementing T Pj . 72

iii

4.4 Computational Results . 74

4.5 Concluding Remarks . 81

5 The Build-Pack Scheduling Problem With Limited Set-ups 83

5.1 Problem Formulation . 84

5.2 Rounding Procedures For Feasible Solutions in IP 85

5.3 Computational Results . 89

5.4 Concluding Remarks . 92

6 The Build-Pack Planning Problem With Stochastic Demands 94

6.1 The Partitioning Policy Formulation 95

6.2 Solving Problem BP . 101

6.2.1 Solving SBP When Customer Pool Ki is Fixed 103

6.2.2 Solving the Pricing Problem When Build-type θ is Fixed . . 106

6.2.3 Solving for the Minimum Reduced Cost 111

6.3 Solving Problem IBP . 114

6.3.1 The Branch-and-Price Scheme 115

6.3.2 LP Solution, Termination and Bounds 118

6.4 Computational Results . 123

6.5 Concluding Remarks . 127

7 Extensions to the Stochastic Model 129

7.1 Homogenous Lot Requirements . 130

7.1.1 Problem Scenario . 130

iv

7.1.2 Adapting the Branch-and-Price Solution Framework 130

7.2 Demands Following Arbitrary Distributions 132

7.2.1 Computing the Expected Cost Function Ci(·) 134

7.2.2 Solving the Pricing Problem 137

7.3 Concluding Remarks . 139

8 Conclusion and Future Research 142

Bibliography 146

v

List of Figures

3.1 Shortest Path Network for Hard-Disk Drive Production Planning . 46

3.2 Multicommodity Network for Hard-Disk Drive Production Planning 57

4.1 CPU Times vs AVM Restriction Level: Problem Set 1 79

4.2 CPU Times vs AVM Restriction Level: Problem Set 2 79

4.3 CPU Times vs AVM Restriction Level: Problem Set 3 80

7.1 The Recourse Network and its Deterministic Equivalent Represen-

tation For Three Customers . 135

7.2 Cascaded Equivalent Network of Pricing Problem for Fixed Ki . . 138

vi

List of Tables

2.1 AVM For Head-Disc Combination For a Customer 14

2.2 AVM For Head-PCB Combination For a Customer 14

3.1 Problem LP Set 1: |K| = 100 |V | = 10 T = 7 52

3.2 Problem LP Set 2: |K| = 200 |V | = 10 T = 7 52

3.3 Problem LP Set 3: |K| = 200 |V | = 20 T = 7 53

4.1 Problem B Set 1: |K| = 200, |V | = 10, T = 7 76

4.2 Problem B Set 2: |K| = 100, |V | = 20, T = 7 76

4.3 Problem B Set 3: |K| = 200, |V | = 20, T = 7 77

5.1 Problem IP Set 1: |K| = 50 |V | = 5 T = 7 89

5.2 Problem IP Set 2: |K| = 100 |V | = 5 T = 7 90

5.3 Problem IP Set 3: |K| = 100 |V | = 10 T = 7 90

6.1 Problem Instances For Hard-Disk Drive Build-Planning Problem . . 123

6.2 Computational Results For Hard-Disk Drive Build-Planning Problem125

6.3 CPU time (s) For Hard-Disk Drive Build-Planning Problem 125

vii

Notation For Problem Parameters

t production period, t = 1, · · · , T

p product component

θ build-type

k customer

v component vendor

dk random customer k demand in units of product

dk
t deterministic customer k demand in units of product due in t

ct manpower resource available in units of products built in t

g per unit shortage cost

h per unit holding cost

gk
t per unit tardiness cost of k in t

rp
k number of units of p required to build per unit of k

mv component supply from vendor v

mv,t component from vendor v arriving in t

P set of all components p

Vp set of all vendors of component p ∈ P

viii

V k
p set of all vendors of p ∈ P that is acceptable in the AVM for customer k

ϑ set of all possible build-types θ

K set of all customers k

Kv set of all k ∈ K that can use vendor v ∈ Vp for component p ∈ P

to make the final product

φ(·) standard normal density function

Φ(·) standard normal distribution function

G(·) standard normal ‘loss’ function, i.e. G(κ) =
∫∞

κ
(z − κ) · φ(z)dz,

where κ, z ∈ <

µk mean of customer k demand

σk standard deviation of cusomer k demand

Γk,v,v, =

1 if for k, vendor v of component p cannot be used together

with vendor v′ of component p′, where v ∈ Vp, v′ ∈ Vp
′ ∀p, p′ ∈ P .

0 otherwise.

ix

Summary

This dissertation studies a new class of production planning and scheduling prob-

lems motivated by an actual manufacturer of hard-disk drives. In order to dis-

tinguish itself in the technologically saturated and highly competitive electronic

goods market, the manufacturer offers its customers the approved vendor matrix

as a competitive advantage. An approved vendor matrix allows each customer to

pick and choose the various product component vendors for individual or pairs of

components constituting their product. Two main problems are considered in this

work: a multi-period production scheduling problem, and a stochastic production

planning problem. We also study various extensions of these two problems. In the

case when the presence of the approved vendor matrices are not considered, these

problems can be modeled and solved easily using linear and integer programming

techniques. The approved vendor matrices however, complicate these formulations,

and render their solution via general-purpose solvers extremely inefficient for real-

istic problem sizes. This work presents the appropriate mathematical models for

the problems studied, and then develop the specialized methods and algorithms

to solve them. In particular, our algorithms involve novel applications of column

x

and cut generation, decomposition, branch-and-bound and branch-and-price meth-

ods. We demonstrate that our algorithms are able to outperform general purpose

techniques significantly in terms of the computation times required to solve the

problems. This is a valuable and practical contribution for the decision makers,

who may be looking to apply optimization to solve their planning problems but

cannot afford the enormous amounts of computational resources often required

by general purpose methods. To the best of our knowledge this work is also the

pioneering effort that investigates this class of problems in production planning

research.

xi

Chapter 1

Introduction

This work is about optimization models for production planning and scheduling

(PPS) systems. Our focus is on a specific class of PPS problems characterized

by the hard-disk drive (HDD) industry. Proponents of highly successful man-

ufacturing practices such as lean production tend to regard ‘operations research

approaches’ in manufacturing planning as rigid and contrary to world class man-

ufacturing practices 94. In the next section, we will first motivate the relevance of

optimization models for PPS problems in the modern-day manufacturing environ-

ment. This motivation is then applied to the case of HDD manufacturing in §1.2.

We highlight the essential characteristics of HDD industry, and in particular how

the modular design of HDDs provides opportunities to build new competitive ad-

vantages for the company. These often translate into new business rules that may

cause ramifications on downstream activities like production planning. The impact

of one such business rule on an actual HDD manufacturer leads to the class of PPS

1

problems that is the scope of our research, which is discussed in §1.3. Finally in

§1.4 we outline the presentation of this thesis.

1.1 The Relevance of Optimization in Produc-

tion Planning With Modern Business Rules

It is well-known in both the industry and academia that the competent manage-

ment of logistics provide valuable cost-saving opportunities for manufacturers. For

example, if 4% of the total accumulated inventories in China (forming 50% of its

national GDP as of year 2000) can be shaved off, an estimated US 495 billion

dollars can be saved 62. A company with well-managed in supply chain operations

can potentially have up to 50 % cost advantage over competitors 99. The chal-

lenges of exploring cost-reduction strategies, of solving problems in managing and

optimizing logistical systems has continued to prompt research interest in areas

of distribution planning, inventory management and PPS. In recent years, manu-

facturing practices such as JIT (just-in-time 53) and lean production 114 have seen

much success over traditional planning systems such as MRPII (manufacturing re-

sources planning), especially in repetitive manufacturing organizations around the

world. While MRPII was developed by data processing professionals and did not

begin as an optimization model, it is often confused with the operations research

approach of problem-solving. This has led to the misconception among some pro-

ponents of practices such as lean production that PPS using operations research

2

approaches are “complex, inhibit change, foster mediocrity, and are inflexible” 94.

On the other hand, heightened competition in the electronics goods industries to

sustain or expand market shares has often compelled manufacturers to re-evaluate

business strategies. For instance, in discussing the limits of applying lean pro-

duction principles, Cusmano 35 remarks that “the parity of performance in core

processes is forcing manufacturers to seek competitive advantage not simply by fol-

lowing lean principles that everyone will know and be implementing, but by defining

other domains of competition”. Hence, in commodity-industry situations such as

HDD manufacturing, where there is a saturation of product and process technolo-

gies, the ability of a firm to compete with fellow incumbents frequently lies in its

capability to distinguish itself through innovative marketing initiatives 25. These

include among examples, the provision of product differentiation for customers

(variety and grades), competing on product attributes other than the basic ones,

building customer loyalty (e.g. good delivery services) and brand sensitivity etc.

However, these marketing initiatives to create new business opportunities, which

translate into business rules in the company, often complicate the downstream ac-

tivities of PPS and inventories management. For example, vehicle manufacturers

employing mass customization to provide product variety creates conflicts in the

manufacturing system that has been optimized for high conformance, low cost and

low variety 3. Logistics systems thus becomes increasingly complex and existing

models and planning methods will need to be continually modified to adapt to new

business rules.

3

All this leads to the surge of interest and a growing market for optimization.

Manufacturers are turning to vendors of ‘advanced planning systems’ (APS) that

promise to provide optimization of their supply chain components 125. Optimiza-

tion is regarded as: “the technology in a supply chain management system that can

have the single greatest impact on reducing costs, improving product margins, lower-

ing inventories and increasing manufacturing throughput...planning and scheduling

modules that depend on optimization technology have generated 30 to 300 % ROI

(return on investment) within companies that have already used them” 92. Gen-

erally, companies are looking for planning solutions that consider major supply

constraints, in contrast to traditional MRP solutions which do not consider sup-

ply (especially materials) constraints and frequently generate unrealistic supply

plans 99. In a similar spirit our work will also focus on PPS optimization models

that acknowledge supply limitations as hard constraints.

1.2 The Case of Hard-Disk Drives

In recent years, the HDD industry suffers a persisting trend of declining profits

as the prices per megabyte continue to fall25. HDD manufacturers compete in a

highly commoditized industry and face tremendous cost pressures. In many cases

manufacturing has achieved high levels of efficiencies, and there is often little room

for reducing costs further by improving manufacturing. One area that is still worthy

of exploration is the design of the HDD itself as a cost-savings measure.

Modular product design131 has recently received much renewed interest both

4

among managers and academics 10, 11, 119, 120, as it presents opportunities in reduc-

ing the time to develop new products119 and helps in better manufacturing and

vendor relations119. The modular design approach enables designers to focus on

components and subsystems of the product, rather than on the interactions be-

tween the components and the product itself. A product with a high degree of

modularization is defined as one in which the majority of components are inde-

pendently or loosely coupled46. This implies that component substitutions can be

made without major changes to the product design itself. Modular designs pro-

vide several advantages, among which includes: 1) the ability to market a large

variety of products, resulting from different combinations of the components, 2)

shorter times-to-market of products, 3) the ability to implement rapid incremental

technological improvements, as newly upgraded products can be introduced to the

market as soon as the new component technology is available, and 4) lower costs

of design, production, manufacture and distribution43.

Most product designs tend towards modular systems as its technology matures.

As understanding of the product and its components increase, it is possible to define

the necessary interfaces so that a component’s design could be independent of the

product design. A good example of this is the automobile industry 10. The HDD

is basically an assembly of a number of critical components, and can essentially

be considered to be a modular design too. This has enabled many technological

innovations to be incorporated in the HDD over the years. For example, the disc

platter component of the disk drive was made of aluminum in the earlier days. In

5

1992, IBM introduced glass platters, which are more reliable, smoother, can hold

more data, and can spin faster resulting in faster access time and data transfer

rates. Because of the modular design of HDDs, this technological innovation can

be easily incorporated into new HDDs that were marketed. Balachandra 12 provides

a detail discussion on the modular design of HDDs.

1.3 PPS Problems in Hard-Disk Drive Assembly

1.3.1 Build-pack PPS Problems

As mentioned in the preceding section, one of the advantages of adopting modular

product designs is the potential of achieving lower production and manufacturing

costs. However, it is clear that these advantages can only be exploited if there is

a proper design of the corresponding production, manufacturing and distribution

planning systems to aid decision-makers. There is an abundance of academic re-

search devoted to the study of various components of the planning systems. In this

work we study a new class of production planning problems of emerging impor-

tance based on HDD assembly. The characteristics of this class of problems were

motivated by an actual HDD manufacturer, whose customers are largely original

equipment manufacturers (OEMs) and reputable PC-makers. The HDD manufac-

turer purchases all the critical components from multiple vendors on a long-term

contract basis. It then assembles, tests and packs the drives for its customers.

The manufacturer adopts the modular design approach of HDDs as a cost-savings

6

measure as mentioned above. Based on the modular design of the HDD, the manu-

facturer also implements a scheme called the approved vendor matrix (AVM). The

AVM allows customers to restrict the combinations of pairs of preferred vendors

supplying the components in their products. In the HDD industry, products are

largely undifferentiated in the eyes of the purchasers 25. The AVM scheme is thus

positioned as a competitive advantage for this manufacturer as it provides its cus-

tomers the opportunity to participate in defining their products. A build type in

this work is defined as the set of all HDD that uses the same combination of com-

ponent vendors. A build type can be packed (assigned) for a customer order only

if it complies to the AVM specified by the customer. In general more than one

build-type can satisfy the AVM requirements of a customer and vice versa.

As have been mentioned in §1.1, the presence of certain new business require-

ments like mass customization can create complications in the current practice of

PPS. The AVM is in fact such a business requirement. In many cases such as this,

manufacturers are realizing that “the proliferation of product variety and the com-

plexity of the manufacturing environment has exceeded their ability to do production

planning on spreadsheets, using the guidelines, rules-of-thumb and experience de-

veloped over the years ” 125. The study of the production planning problems in the

face of business requirements of the AVM is thus timely and relevant.

We define production planning problems with AVM requirements as the class of

build-pack PPS problems. In summary the build-pack PPS problem can be simply

stated as follows. Given a fixed set of available capacities, component supplies and

7

the AVM requirements, develop the build and pack schedules that minimizes the

total production costs. These production costs that we aim to minimize are in line

with some of the most important supply chain performance measures of the indus-

try. In a white paper by Valdero 135 that discusses supply chain management of

high technology firms, the following serious business risks were identified: i) profit

lost to excess and obsolete inventory, ii) revenue lost to unexpected fulfillment de-

mands or incorrectly managed allocation, iii) customers lost because of unforeseen

shortages or mismanaged expectations, iv) partnership opportunities lost because

of inability to deliver on time or in sufficient quantities. The implications of these

problems are widespread, as it impacts a company’s immediate customers and part-

ners, translate directly to the company’s revenue growth and even affect their stock

prices and valuations. Similarly, AMR Research’s three-tiered hierarchy of supply

chain metrics66 rates perfect order fulfillment and supply chain management costs

as two key performance metrics in a manufacturing organization. These manage-

ment level metrics translate to the ground level as the detail metrics of finished

goods inventory, order cycle time and perfect order details. These metrics indicate

the level of the operational readiness of the company. To reflect these metrics, the

production costs in our models thus consists penalty costs for the inability to fulfill

customer demands, and the costs of production in excess of demands. The scope of

our research focuses on the mathematical modeling and solution development for

this class of problems. We consider two main problems in this work: a multi-period

production scheduling problem, and a stochastic production planning problem. We

8

also study various extensions of these two problems.

1.3.2 Reduction of Planning Cycle

From the perspective of the user of an APS, reducing the planning cycle and achiev-

ing real-time planning and execution is desirable as it leads to improvements such

as reduction of supply chain inventories, increase in responses of the operations and

improved customer service. Extensive planning cycles are also undesirable as they

result directly in production time lost that were intended to compensate for opera-

tional uncertainties 135. Further, as noted by Manugistics’ Heaghney and Noden 59,

the push to shorten decision cycle times, especially at the tactical and operational

levels of planning, has made consistent and balanced decision-making increasingly

difficult.

Up to now, the reduction of planning cycles has been limited by the speed at

which an optimized plan can be generated 125. A key element in APS systems that

embed optimization processes is the solver, which solves the planning model for the

optimal solution. Many application vendors of APS believe that core competencies

can be built on the internally developed solvers or other optimization components.

The mathematical model and the solution algorithms are in fact valuable avenues

which can directly help in the reduction of the planning cycles. Algorithmic per-

formance, in particular the computational speed of the solution process, is a major

concern and motivation of our work.

In the case where there are no AVM requirements, the same PPS problems can

9

be modeled and solved easily using linear and integer programming techniques.

The AVM however, complicate these formulations in a non-trivial manner, and

render their solution via general-purpose solvers extremely inefficient for realistic

problem sizes. The algorithms we present in this work, on the other hand, are able

to outperform general purpose techniques significantly in terms of solution times.

This directly contributes to the reduction of the planning cycle of the end-user. Our

algorithms also require modest amounts of computational resource, and is appealing

to decision makers looking to apply optimization to solve their planning problems,

but cannot afford the enormous amounts of computational resources often required

by general purpose methods. To the best of our knowledge this work is also the

pioneering effort that investigates this class of problems in production planning

research.

1.4 Outline of Thesis

The organization of the rest of this thesis is as follows. In Chapter 2, we provide

the essential background and motivation of our work. A description of the class of

AVM requirements that is central to all our problems is given. We then provide the

scenarios and motivations of the two problems that will be studied. These are: (1)

the multi-period build-pack scheduling problem, and (2) the build-pack planning

problem with stochastic demands. We will also consider various extensions of both

problems. In the last section of Chapter 2 a survey of some related literature in

production planning research is provided. Chapter 3 presents a formulation and

10

solution approach for Problem (1) using the column generation method. This lays

the foundation for designing the solution algorithms of the rest of the problems

considered. In Chapter 4 we provide an alternate formulation and solution method

for the same problem (1), using the generation of cut constraints in a multi-stage

formulation of the problem. This is essentially a dual approach, in contrast to

the primal approach in Chapter 3. In Chapter 5, an extension of Problem (1) is

considered, in particular when the number of setups are limited. The formulation

presented in Chapter 3 is modified to account for this, and we then provide some

simple heuristics based on linear programming (LP) rounding to generate good

quality solutions using only modest amounts of computation time.

In Chapter 6 we turn to the formulation and solution method of problem (2),

where the customer demands are assumed to be random. The formulation we use is

essentially a set-partitioning type model with side constraints for the components

supplies limitations. A column generation method is developed to solve the linear

relaxation and approximation of the problem, and a branch-and-price method is

used to achieve the optimal solution. Lastly in the chapter some computational

results from our implementation are presented. Chapter 7 considers some special

and realistic extensions to problem (2), namely when there are homogeneous lots

requirements, and when demands follow arbitrary discrete distributions. We pro-

pose some modifications to adapt the solution framework for Problem (2) for these

extensions. Finally Chapter 8 concludes our work, and throws open some possible

challenges for future research.

11

Chapter 2

Background

This chapter presents the essential background information of our work. In the

following section, we first describe, using examples in the HDD context, the class

of AVM requirements that are central to our problem models. §2.2 provides the

scenarios and motivations of the two problems we consider in this work, i.e. the

multi-period build-pack scheduling problem, and the build-pack planning problem

with stochastic demands. As their names suggest, the first problem concerns itself

with planning in smaller time-buckets, whereas the second problem is concerned

with tactical planning over a longer time horizon. Only the basic versions of the

two problems are presented here. Extensions of the problems will be described later

in chapters which consider them. In §2.3 we survey the ideas of mass customization

and related models in common component problems to draw comparisons to our

problem. Finally in §2.4 a survey of related PPS research is presented for the

purpose of positioning our work in the scheme of things.

12

2.1 Approved Vendor Matrices

As a competitive advantage, the HDD manufacturer allows its customers to choose

component vendors for their products using the AVM. As have been mentioned in

§1.2, the AVM is a scheme that offers product variety to its customers. This is

possible because the HDD can be regarded as a highly modular product (see §1.1).

The HDD is essentially an assembly of a number of critical components including,

for example: the headstack assembly (HSA) which mounts the read/write head,

the disc platter(s), the printed circuit board(PCB) that mounts the microprocessor,

the spindle motor, the bearings and the case and cover. Because of the high degree

of modularity in HDDs, the majority of the product components are regarded as

independent. For example, at the current stage in the life cycle of HDDs, upgrading

the spindle motor does not influence the performance of the drive other than itself,

since its performance does not interact with the other components. On the other

hand, the performance of HDDs is well-known in magnetic recording technology to

be highly sensitive upon the interaction between the HSA and disc components. In

particular, the choice of the coating on the disc platter influences the performance

of the read/write head. Additionally, the choice of the head may also affect the

firmware (microprocessor) that controls the read/write operations. Some customers

such as OEMs often have their own engineering evaluations on the performances

of various combinations of the HSA and disc components. To account for such

interactions the AVM allows the customer to specify combinations of vendors for

pairs of components. Tables 2.1 and 2.2 shows a typical AVM of a customer.

13

H1-H3, D1-D3 and P1-P3 here denote the different suppliers of the HSA, disc and

PCB components respectively. In Table 2.1 a value of zero (one) is assigned to

combinations of HSA and disc vendors that cannot (can) be used to build the HDD

for the customer. Similarly in Table the customer specifies a value of zero (one)

to combinations of HSA and PCB vendors that cannot (can) be used. All build

types that does not violate the specifications of Tables 2.1 and 2.2 can be assigned

towards this customer. For example, the build type comprising of components H1,

D2 and P2 can be used to fulfill the demand of the customer, while H1, D1 and P2

is not allowed to.

Table 2.1: AVM For Head-Disc Combination For a Customer

DISC/HSA H1 H2 H3

D1 0 1 1

D2 1 1 0

D3 0 1 1

Table 2.2: AVM For Head-PCB Combination For a Customer

PCB/HSA H1 H2 H3

P1 1 0 1

P2 1 0 0

P3 1 0 1

14

2.2 Problem Descriptions

In this section we describe the basic scenarios of the two problems considered in this

work. The problems were adapted from the production planning and scheduling

environment of the HDD manufacturer. As have been mentioned this manufacturer

performs the final assembly and testing of the disk-drives for the customers, with

the components supplied by multiple vendors on a long term basis. The problem

descriptions that follow are based on a technical documentation101 of the detailed

process flows of the production planning operations of the company. The document

was developed by the author and verified with the company during a period of

under-study with the company.

2.2.1 Multi-Period Build-Pack Scheduling

The problem scenario starts with the release of the Master Production Schedule

(MPS), which is a schedule of order types (by demand quantity and due date) to be

fulfilled in the current week. However, to be implemented at the shop floor level,

the master schedule needs to be broken down into even more detailed schedules. A

build schedule schedules the run quantities of build types in each production period,

while a pack schedule assigns the build types towards the fulfillment of customer

orders in the MPS.

Once the build and pack schedules are drawn, the rest of the production process

is relatively straightforward. At the beginning of each production period, produc-

tion supervisors refer to the build plans to draw components from the parts store,

15

and these components are fed into the manufacturing cells to be assembled into

the specified disk-drive types. These are then passed into the test cells for software

coding and power-up tests. Finally, the drives are labeled and packed for the cus-

tomers as specified in the pack schedule and these finished goods are shipped out

of the factory everyday to regional distribution centers (D.Cs).

In the current system, a team of human planners manually draft the build

and pack plans using the MPS as reference. When production volume and fin-

ished products proliferation becomes high, it becomes increasingly difficult and

time-consuming for the planners to co-ordinate and draft feasible schedules that

makes the best use of the common manufacturing resources. In this work, our

prescriptive scheduling model takes the MPS and translates it into optimal build

and pack production plans. We consider in our problem the limited availability of

both manpower capacity and components availability. In the company, it is not

uncommon that in the course of production planning, although the manufacturing

resources meets the requirements to fulfill the MPS in an aggregate sense, daily

availability of resources may not be fully synchronized with the build plans, and

cannot be changed in the short term, hence causing production ‘misses’or so-called

underpacks. These under-packs are costly as they contribute to the direct failure

to fulfill committed delivery to customers on time. An underpack of an order is

the number of units short of the demanded quantity that is due. Underpacks are

accumulated into the next production period as backlogs, and penalties are charged

towards the backlog. If they cannot be fulfilled by the end of the planning horizon

16

then they are penalized as shortages, since backlogging of demand into the next

work week indicates failure to fulfill the total demand bucket in the current week

and is considered as poor operational performance on the company’s part. Our

objective is to schedule daily production in a manner so as to minimize the total

daily production backlogs and shortages within the planning horizon.

2.2.2 Build-Pack Planning With Stochastic Demands

For this problem the description is as follows. The current practice of production

planning can be seen to consist of two main phases. In the first phase called build-

planning, the manager determines the total build-type levels to run in the entire

weekly demand bucket, subjected to limited availability of the component supplies.

Due to the volatility of the electronics goods market, the build-plan must be de-

termined prior to full knowledge of the customers’ future demand. In the current

practice, a simple product-mix linear program is used to generate the build-plan.

The unknown customer demand is estimated using a point forecast, and the AVM

restrictions are ignored. In the second phase called pack-planning, which occurs

after demand realization, production planners assign the build-types to fulfill these

demands using spreadsheets, observing the AVM requirements of the customers.

It should be noted that in actual operation, the build-plan is not used rigidly as a

decree to drive detailed scheduling, but rather as a tool for management to accom-

plish several other important purposes, including: 1) to estimate the capability of

customer demand fulfillment with the current components supplies over the larger

17

time bucket, 2) to drive capacity requirements, 3) to negotiate for component sup-

ply changes, and 4) to serve as a guideline for short-term planning.

In this work we are concerned with the development of a more rigorous approach

to the build-planning phase. Although the current practice of using the product-

mix LP is simple and requires little computational effort, the solutions generated

may be quite imprecise, since it only uses a point estimate for the demand and does

not take the AVM restrictions into account. Such an approach may be justifiable

in the past due to limited computational resource, but with the current availability

of high-speed processors readily at disposal, it seems motivating to devise more

realistic planning models which are capable of providing more precise estimates.

In particular it is desired that the new planning model takes into account the

variability of the demands, and also to respect the AVM restrictions. To define

this planning model we first state the build-pack planning problem as follows: given

some limited information of the future customer demands (i.e. for our modeling

purposes some fitted probability distributions of the demands), determine the set of

build-plans prior to demand realization that minimizes the total shortage costs for

unfulfilled demand and holding costs for excess production on expectation, subject

to limited components availability and the AVM restrictions.

2.3 Mass Customization Literature

With increasing demand for product variety and customization, and shortening

of product life cycles, companies face tremendous cost pressures and are forced

18

to revisit their operations strategy. While the Marketing literature7, 33 indicates

that broader specialized product lines lead to higher market share, the Operations

Management literature predicts that cost and complexity may increase with greater

variety. Manufacturers have adopted various strategies to reduce costs and improve

customer satisfaction. Mass customization (MC) is one such competitive strategy

that has become a major objective of many Fortune 500 companies. MC refers to a

process of production of goods and services tailored to suit the needs of customers

in a mass market. Davis38 promotes MC as: “the ability to provide individually

designed products and services to every customer through high process agility, flex-

ibility and integration.” A survey by Ablstrom and Westbrook1 reported several

benefits that companies have experienced from using mass customization, includ-

ing: increased customer satisfaction, increased market shares, increased customer

knowledge, reduced response time and manufacturing costs, and increased profit.

Identification and the classification of MC is widely varied in practice. In this sec-

tion we discuss some aspects of MC addressed in the literature, and how the AVM

scheme of the HDD manufacturer fits in the framework of MC, and its similarities

and differences with other models of MC in practice.

One of the most successful build-to-order (BTO) companies that employs MC

was Dell Computers, which gained market share by building customized computers

using the Internet as an order fulfillment vehicle. The personal computer system is

defined in terms of specifications such as memory size, processor speed, hard disk

drive, software and other peripherals. Dell provides a variety of these specifications

19

for the customers to choose from. The customer selects from the various options

for the different aspects of the computer system according to his choice. With

successful manufacturing and delivery of the finished products within 5 days of

lead time, Dell was able to generate 160 % ROI48 . Other major manufacturers like

Motorola, Hewlett-Packard, General Motors, Ford and Chrysler are also specifically

using mass customization processes in their production facilities.

Swaminathan133 identified five methods or approaches to facilitate mass cus-

tomization in practice: part standardization, process standardization, product

standardization, procurement standardization and partial standardization. The

use of standardized parts to serve different product items derives benefits of lower

costs due to economies of scale, reduced inventories, and improved forecasts of the

component needs. With process standardization, the customization can be delayed

as late as possible. With product standardization, companies may advertise a wide

variety of products but only stock a few of the items. Downward substitution is

then used to produce unstocked items when there is a demand for them. With

procurement standardization, companies acquire common equipment and compo-

nents to carry out their operations, thereby enabling benefits of cost-savings from

buying standardized materials and equipment. Lastly, the partial standardization

approach offers customers a limited number of options to choose from while keeping

their products mostly standardized. Dell Computers uses this approach effectively

by allowing its customers to choose a standardized computer system along with

selective options for the various categories of the product. Similarly for the HDD

20

manufacturer, the AVM can be seen a scheme to offer customers component se-

lection options for the standard system, which in this case is the disk drive. The

build-types in this sense constitute the product variety that is offered to satisfy

certain customer requirements. In general more than one build-type can satisfy a

customer’s requirements.

The definition of the levels of individualizing a product that characterizes mass

customization varies among authors. Gilmore and Pine51 for example identified

four customization levels based mostly on empirical observations: collaborative

(designers dialogue with customers), adaptive (standard products can be altered

by customers during use), cosmetic (standard products packaged specially for each

customer) and transparent (products are adapted to individual needs). In this

sense, for the HDD manufacturer, the AVM can be considered to be a customiza-

tion at the collaborative level. As have been mentioned, the customers of the

HDD manufacturer are largely OEMs and reputable PC-makers on a long-term

working relationship with the HDD manufacturer. Based on past experience, these

customers have developed some technical knowledge on the HDD component per-

formances and thus have their own engineering evaluations and preferences. The

AVM in this way allows certain latitude for the customers to participate in the

design of the their HDDs, although to end-users such a customization is usually

invisible.

To justify the use of MC as a competitive strategy the following factors are com-

monly emphasized in the literature. An existence of customer demand for variety

21

and customization81, 84 , appropriate market conditions82 , readiness of the value

chain43, 81 , available technology61, 75 , customizable products43, 84 and knowledge-

sharing81, 109 . For the HDD manufacturer, the demand for customization ap-

parently exists, although it was not the original intention of the manufacturer to

provide variety by multiple vendor purchase of their components. Customers are

becoming more knowledgeable about their HDDs and the various performances of

the components’ interfaces and prohibits combinations of interfaces which produce

inferior quality drives. Being the first to offer such a scheme in the HDD indus-

try, the market conditions for the AVM to be transformed into actual competitive

advantage is also appropriate. To improve the readiness of the supply chain, the

manufacturer is also working towards closer supplier and customer relationships in

both positioning of the physical supply networks closer and establishing an efficient

information network. The HDD, as have been mentioned in §1.2, is highly modular

in design, and hence is appropriate for implementation of customization.

The successful application of MC like in the case of the Dell Computers also

relies strongly on the tight integration of the upstream supplier of parts, the mid-

stream manufacturer and assembly of components, and the downstream distributor

of finished goods in the supply chain29 . The problems that are the motivation of

our work is the final assembly process of the HDDs. The production planners essen-

tially face a problem of assigning build-types to customer requirements under the

AVM restrictions. Because components from a particular vendor can be assigned

to more than one customer in general, our problem bears some similarity to the

22

component commonality problem9, 47 . This problem arises from assemble-to-order

systems where product-specific components are present alongside with parts shared

by several products. This is also a specific form of MC when applied to the situ-

ation where there are a large variety of products. Simple inventory models of the

component commonality problem with either stock-out or service level constraints

were considered by works like Baker et al9 , Collier32 and Gerchak et al47 . These

models are basically two-stage decision models, where in the first stage the stock

levels of the common and product-specific parts are determined prior to demand

realization, and in the second stage the sales of the products are determined. The

build-pack scheduling problem in our case is similar to the second-stage problem,

where the components levels are fixed and the demands are realized. However in

our case demands are not specified for individual products, rather groups of prod-

ucts,i.e. build-types that satisfy the AVM requirements. Multi-period extensions

were considered by Tayur132 and Srinivasan et al.130 using a build-to-level policy.

All these models however do not consider the constraints on limited components

supply, as is faced by our problem. Further, the issues of handling large problem

sizes and solution efficiency have not be addressed.

2.4 A Survey of Production Planning Models

In this section we provide a survey of the existing research literature in produc-

tion planning. Production planning mathematical models is an extensive area of

research and practical application because of their powerful optimization capabil-

23

ities. This survey is by no means exhaustive, and only aims to introduce some

common modeling approaches and frameworks that have been considered.

According Bitran and Hax23, production planning problems in manufacturing

may always be formulated as mixed-integer programs (MIP) or linear programs

(LP). However, this approach is often undesirable because firstly, the size of the

problem is usually too large, and secondly, this approach does not conform to

industrial practice, which requires hierarchical and functional decision units with

different responsibilities. In a hierarchical decision procedure, typically a set of

problems is solved in a sequential manner, with the planning horizon decreasing

and the level of detail increasing as one moves down the hierarchy. The high level

decision thus impose constraints on lower level actions, and the lower level decisions

providing feedback to the higher levels. By definition, it is clear that a hierarchical

approach is suboptimal. In practice, the planning process begins at which output,

inventory and manpower are determined in aggregate figures. These figures are

then used as inputs for lot sizing, scheduling and resource allocation at the level of

individual items. This process implies also that appropriate disaggregation schemes

will be required for consistency and feasibility.

In the rest of this section we survey various works in production planning re-

search. We classify the survey under the umbrella terms of aggregate production

planning, MRP models, earliness-tardiness models and stochastic planning models.

Note that this categorization is used here only to facilitate the presentation of the

material and does not imply a strict division between the categories. The models

24

and assumptions that has been developed and undertaken by different authors are

wide and varied, as different manufacturing systems and practices have emerged

and changed over many decades. In the discussion we also point out the similarities

and differences in the various modeling assumptions that has been considered in

other work and ours.

2.4.1 Aggregate Production Planning Models

Generally, the aggregate production planning (APP) problem concerns itself with

the utilization and allocation of production resources to satisfy customer demands

at minimum production costs. Typical decisions made are the determination of

workforce level, scheduling of overtime, determination of run quantities. In man-

ufacturing, planning and control systems the APP serves as a constraint on the

master production schedule (MPS). To justify the use of APP, it is necessary that

grouping of product families into an aggregate product is possible. This of course

assumes some degree of homogeny in the product families. For example, products

sharing similar setups are grouped into a product type. Product types of the same

seasonal demand pattern can then be grouped into a product family, and a product

type can only belong to one product family. The aggregated families of products

are then used as input in conjuction with various APP techniques to ensure that

resource and capacities are adequate to meet customer demands.

Many pioneering works67, 72, 107 since the 1950s have used MIP or LP models

for the APP problem. Various techniques that exploit the problem structure are

25

applied to solve the problems efficiently, including transportation formulations22, 26,

range programming85 and separable programming96. For most of these models, the

production costs consists of linear or piece-wise linear representations of compro-

mises between inventory costs and overtime costs. Very few models allow back-

logging of orders, with exceptions such as Posner and Szwarc111 and Singhal and

Adlakha128.

Besides the LP or MIP approach, the linear decision rule68, 69 (LDR) method

was also one of the early approaches developed to deal with non-deterministic

demands in APP. LDR relies on linear rules to set the workforce size, production

rates and inventory levels. The total expected costs is quadratic as opposed to

(piece-wise) linear in functional form. Basic calculus approach is used to obtain

the optimal solutions. The clear drawback of this method is the inability to deal

with integer-valued variables or constraints.

To characterize batch processing manufacturing systems in contrast to contin-

uous assembly line systems, lot size models have been developed and explored by

several different authors. The central problem considers the trade-off between lost

productivity from frequent set-ups and short runs and higher inventory costs arising

from longer runs. There are two main lines of development in lot-sizing research:

the capacitated lot sizing model, pioneered by Manne93 and uncapacitated lot sizing

derived from the work of Wagner and Whitin138. In the former, production items

compete for limited capacity resource, and set-up costs become an important ele-

ment to be minimized. Most works in this direction also consider also the planning

26

for multiple items, using MIP formulations. The common solution approaches used

are decomposition37 , lagrangean relaxation41, 86 , branch-and-bound73 or heuris-

tic decision rules139. On the other hand, works extending Wagner and Whitin’s

algorithm138, for example Baker9 and Kao77, usually approach the problem using

dynamic programming methods. A major challenge in lot-sizing decision models is

the computational inefficiency in solving realistically-sized problems.

Other approaches in the area APP problems include goal programming (GP),

which is first introduced by Lee and Moore88. The basic idea is to incorporate

managerial objectives as constraints in the model. The managerial objectives are

of different priorities, and the solution procedure that follows is iterative in nature.

Highest priority goals are first achieved, then the next and so on. As higher priority

goals are achieved, the feasible space for the remaining goals is reduced, until sub-

sequent solutions become infeasible. Some extensions of APP problems considered

using the goal programming approach include Deckro and Hebert39, Lockett and

Muhlemann90, and Rakes et al.112.

Several heuristic approaches for the APP have also been developed over time

by different authors. The search decision rule approach combines simulation with

standard neighborhood search techniques to gain local optimality. An example is

the parametric production planning74 method, where two decision rules addressing

work force and production levels are assumed to exist. The forms of the rules

are suggested based on several experiments, and the parameters of the decision

rules are optimized using search techniques. Taubert’s134 approach combines a

27

branch-and-bound procedure with search techniques. Another popular heuristic

considered is the production switching heuristic97 (PSH), where the purpose is to

avoid frequent rescheduling of production and work force size over the planning

horizon. A small number of discrete levels of production and work force rules are

hence used, with switching of one level to another depending on the inventory and

demand levels. Several works based on the PSH has been developed, for example,

Oliff and Burch105 used the PSH for a fiberglass manufacturer, Hall56 developed a

graphical procedure for deciding when to change the production level, and O’Grady

and Byrne104 combined PSH with the LDR method.

In many aggregate models86, 93, 103 little attention was paid to assure consis-

tency between the aggregate and detailed production planning levels. In practice,

aggregation would be of little value if it was not possible to disaggregate back to

the detailed level to obtain good solutions. The coordination between aggregate

and disaggregate planning is thus another area of focus of many other works in

APP. For example, Bitran and Hax23, Graves52 and Hax and Meal 58 pioneered

the widely accepted hierarchical production planning (HPP) framework. The ba-

sic idea is to couple an LP-type aggregate model and a relatively simple jobshop

simulation at the detailed level. A common strategy is then to apply lagrangean

decomposition52 to de-couple the two levels and solve the problem in an iterative

manner. Zipkin145 examines the effect of bounding the aggregating variables in

LPs, and Rogers et al117 analyzed aggregation and disaggregation in optimization

models. Axsater5, 6 discussed the conditions for ‘perfect’ aggregation and includes

28

multi-stage production. ‘Perfect aggregation’ refers to an aggregation scheme that

ensures consistency between the aggregate and detailed models for all possible sets

of production levels. Aggregate feasibility can result in infeasibilities at the detail

level if more components are required than available, or if some production capacity

constraints are violated. Ritzman et al115 present an extensive collection of papers

on aggregation and disaggregation in manufacturing and service systems.

As mentioned, to use APP, it is necessary that grouping of product families

into an aggregate product is possible. This is the basis of aggregation and hence

reduction of the problem size. In our problem the set of products using the same

component vendors are grouped as a build type, where each build type can typi-

cally be used to fulfill more than one customer’s demand. On the other hand, each

customer’s demand can in general be fulfilled by more than a single build type.

If there is no AVM restrictions, then we can treat customer orders as the aggre-

gate products, and build-types as the disaggregated products. In fact, the exact

composition of the build-types is irrelevant in this case, and only the solution to

the aggregated problem is required. The AVM restrictions however, necessitate the

identification of the build-types serving the customer orders in the solution. This

makes the definition of aggregated products and their corresponding disaggregation

schemes in APP models unclear in our problem. In the next sub-section we shall

discuss another class of models, i.e. MRP models. These models arose from the

study of discrete parts manufacturing systems where the product structures can be

quite complex in general, with sharing of components among different products.

29

2.4.2 MRP Models

MRP and MRPII (manufacturing resource planning) systems are generally re-

garded as accepted tools of decision support systems (DSS) among production

management and control for the management of complex high-volume production

with hundreds of products from hundreds of individual components. The con-

ventional MRP system approach can be stated as follows. “A materials require-

ments system consists of a set of logically related procedures, decision rules, and

records designed to translate a master production schedule into time-phased net re-

quirements for each component inventory item needed to implement this schedule.

A material requirements planning system replans net requirements as a result of

changes in wither the master production schedule, or inventory status, or product

composition.”106.

The basic form of MRP does not consider capacity constraints. That is, they

perform ‘infinite loading’, and clearly this approach often does not produce fea-

sible production plans in practice. To circumvent this the MRPII system17 was

developed to incorporate a ‘rough-cut’ capacity planning phase prior to the bill-

of-materials explosion. This serves to reveal the productions that are causing the

capacity overloading. Management then takes action, typically by modifying the

master production schedule to rectify the capacity issues. In theory MRP and

MRPII attempt to produce a feasible production plan to meet external demands.

In practice, there are several complicating issues that make the successful appli-

cation of MRPII systems difficult. The problems associated with lead-times, lot

30

size requirements and capacity constraints are inter-related and difficult to resolve

by human judgment. This has motivated much research interest to study MRP

systems using mathematical models in the area of multi-stage discrete parts man-

ufacturing.

Works in multi-stage production planning scheduling is abundant and varies

in the class of systems studied. For a single-product series system, Love91 and

Zangwill144 developed efficient solution techniques when there are no capacity con-

straints. In the case of capacity constraints, Lambrecht and VanderEecken83 and

Ramsay113 present heuristic approaches to the lot-sizing. For parallel systems,

Gabbay44 studied the case where each level is constrained. Zahorik et al143 pre-

sented heuristics for an n-period problem using a network formulation. For assem-

bly systems, each product is composed of a number of predecessor sub-assemblies,

and each sub-assembly will have only one successor. Examples of lot-sizing research

for this system are Crowston et al34 and Veinott137 . Finally, in the general case

when components can be shared for different sucessor products, i.e. components

commonality, the system is that of the general form of the MRP problem.

Lot-sizing problems for this general case have been studied by several authors18, 19.

For capacity planning, the Collier32 finds that certain lot-sizing techniques can lead

to erratic capacity usage. Billington et al21 on the other hand pointed out that

batching may either help or hurt the capacity usage pattern. Further, works such

as Caie and Maxwell28 and Maxwell and Muckstadt95 developed heuristic methods

for the problem of sequence dependent setups in the multi-stage production setting.

31

Billington et al20 developed a MIP formulation to simultaneously determine lot-

sizes, lead-times and capacity utilization plans in a capacity-constrained multi-level

MRP system. The authors then attempt to reduce the problem size by ignoring

production facilities which are not supposed to be bottlenecks. Sergerstedt123 refor-

mulated the problem for a dynamic programming solution procedure. The formu-

lation was also extended to account for scheduling constraints. Hoover and Perry70

discussed the use of simulation models in conjuction with LP models in complex

production situations. Byrne and Bakir27 adopted this hybrid simulation-analytical

approach and showed that solution from the classical LP planning model may be

infeasible for real production systems due to non-linear behavior of the workloads

at the machines. They proposed adjustments of the capacity constraints based

on simulation results to obtain more realistic capacity constraints. Many other

works have also appeared in the literature dealing with various aspects of MRP

and MPS systems. These include studies on the effects of lead times on backlogs

and finished components inventories76, efficient adaptations of the simplex method

by exploiting the property of triangularized basis of linear programs of certain MRP

systems63, linear programming techniques for plan scheduling considering various

system characteristics like finite capacity and realistic lead time45.

As have been mentioned, research in MRP-related problems have focused largely

on capacity-planning, lot-sizing and lead-time issues. Because of the complexities

of these issues in the multi-stage structure, supply constraints, in particular, the

case where the components availability is fixed and cannot be changed in the short

32

term, are rarely considered. Further, it is not the character of the MRP approach to

deal with such situations, since the MRP idea is to develop a production plans for

the components rather than to treat the components as fixed resources. However,

such constraints reflect the nature of the build-pack scheduling problem, where

supply quantities from the vendors are already in place and cannot be changed.

The production planners task is then to work around these supplies to decide what

build-types to schedule for production and how to assign them to the customer

orders.

In discussing the mathematical programming approach to master production

scheduling, Chu30, addresses the issues of having limited ‘non-perishable’ produc-

tion resources, i.e. component supplies, and a possibility of the presence of a

‘vendor-approved list’ for components, which may increase the problem size enor-

mously. The differences are that our problem has a more complicated form of

vendor-approved list to be observed, and attempts to minimize backlogs and short-

ages, while in Chu30 a linear profit associated with production is maximized. The

model presented determines production quantities for individual products under

the restrictions of limited parts supplies and production capacities in order to

maximize total profit. The results of the model can be interpreted as the resulting

MPS and MRP. Also, while Chu30 suggest the use of an interesting myopic de-

composition in the temporal dimension to attack the size of the problem, it only

gives feasible-optimal solutions when capacity is slack. In our work we tackle the

problem size by exploiting the characteristics of the AVM. Further, while we do

33

not consider set-up costs and hence the issue of lot-sizing in our basic model, we

shall extend our model (Chapter 5) to consider the case where there is a constraint

on the number of setups performed in each period.

2.4.3 Earliness-Tardiness Planning Models

The majority of the production planning models discussed thus far are used to min-

imize total production costs or to maximize product output, and due dates if con-

sidered are simply taken as constraints of production planning. Earliness/tardiness

(E/T) production planning problems, on the other hand, recognizes on the out-

set that available capacity cannot meet customer requirements at all times, and

there are always capacity shortages in some periods and surplus in other periods.

Trying to meet the due-dates as precisely as possible thus becomes the goal of

E/T planning problems. E/T production planning arose from the surge of research

interest in trying to use the highly popular just-in-time (JIT) manufacturing phi-

losophy to improve the production planning approach of MRP. Work in machine

scheduling to minimize E/T penalties is not new (Ghosh49, 50 , Hall54, 55), but such

research is much focused on single-machine and parallel multi-machine schedul-

ing problems. Also, the processing capacity in such problems are assumed to be

constant, whereas in a production planning problem for the whole manufacturing

facility across a longer planning horizon, the aggregated capacity cannot be taken

as constants, but varies from period to period due to maintenence and renewal of

facilities. Wang140 presents two basic models for E/T production planning, one

34

in a mass or repetitive manufacturing system via a LP formulation and the other

for a one-of-a-kind product manufacturing via a MIP formulation. Li89 and Hao57

further discusses techniques to ease the computational burden of solving the E/T

planning problem. Wang141 models the E/T planning problem whereby customer

demands comes with associated ‘due-windows’ rather than due-dates. In this case,

the scenario is such that the production for a customer demand carried out within

its due-window will not incur any E/T penalties. Our problem is closest thus far to

the repetitive manufacturing model in Wang141 , and we may regard the customer-

specified due-date in our case to be a special case of ‘due-window’, i.e. from the

beginning of the planning horizon up to the specified due-date. Production oc-

curing after the due-window is penalized as backlog, or a tardy production. The

abovementioned models57, , 89, 140, 141 however does not consider ‘non-perishable’

resources like components supplies. Also, the techniques to reduce problem size in-

troduced in these works do well in the case when there are only a few end products.

Our problem, on the other hand, needs to consider the case of a high proliferation

of end products, with a customer-specified AVM to be observed. To model the

multi-period deterministic build-pack scheduling problem we adopt the framework

of the E/T formulation. Our solution approach however will be based on a column

generation procedure.

35

2.4.4 Stochastic Planning Models

To account for stochastic demands in the planning problems, a general approach

commonly used by the mathematical programming community is the scenario-

based stochastic linear-programming (SLP) approach. This is basically an exten-

sion of the deterministic models to permit production planning and scheduling

uncertainties to be explicitly modeled and evaluated. These models consider si-

multaneously multiple scenarios of an uncertain future. Optimal contingency plans

for each scenario are computed along with here-and-now strategies that optimally

hedge against these plans.

SLP has been widely applied in production planning research. Examples include

product mix planning when the requirements are stochastic36, 116, multi-period pro-

duction planning108 and manpower planning78 etc. Bitran et al24 presented a MIP

model for production planning of style goods with high set-up costs and forecast

revisions. Hiller60 generalized the deterministic multi-stage models (see §2.4.2)

to a stochastic programming model with recourse for the case when demand for

finished goods is uncertain. The model rationalizes the computations of safety

stocks at all stages in a multi-stage environment taking in account of capacity

constraints that limit the buildup of such stocks. Beale et al15 reported on compu-

tational experiments with a similar class of models. Kira et al80 extended Bitran

and Hax’s23 hierarchical production planning model to include random demand

variables. Swaminathan and Tayur132 proposed a two-stage integer program that

models the problem of designing vanilla boxes, or semi-finished products in the

36

delayed product differentiation approach of managing product variety. The first

stage of decisions involve deciding the production levels of the vanilla boxes prior

to demand realization. In the second stage the demand is realized, and final cus-

tomization and assignment is made to fulfill the customer demands. The number of

possible vanilla-boxes increases exponentially with the number of components due

to the possible combinations of the components. In these ways, this problem is sim-

ilar to our build-pack planning problem with stochastic demands (§2.3). However,

the vanilla box model does not consider components supply constraints, while in

our work the supply constraints are of major importance. Also the SLP approach

required full enumeration of the vanilla box configurations in the first stage, which

results in a large number of variables and constraints in the formulation. This

renders the solution algorithm unsuitable for large problem sizes.

In SLP future uncertainty is modeled as a finite set of possible outcomes or

scenarios, each with an associated probability of occurrence. The objective is typi-

cally to minimize some total costs of production on expectation over all the possible

outcomes. In this manner the problem can be formulated as a large-scale linear

program or deterministic equivalent program142 , and solution approaches like the

L-shaped method129 have been developed to solve such formulations. Such an ap-

proach, however, is known to be computationally efficient only when the number of

possible outcomes(the sample space) are of limited size. Furthermore, the applica-

tion of the SLP modeling approach presents an additional difficulty in our case due

to the high build-type proliferation in our problem. We will further elaborate this

37

point in Chapter 6 when we consider modeling demands with arbitrary discrete

distributions in our problem.

On the other hand, works like Metters98 , which considers production plan-

ning with stochastic seasonal demand, and Hodges and Moore65 , which considers

stochastic product-mix planning, uses the news-vendor model in classical inventory

theory as the basic approach for considering stochastic demands. Similarly, for the

build-pack problem with stochastic demands, we will adopt a solution framework

based on a multi-item, capacitated news-vendor problem. Additionally, to generate

feasible production plans, we will employ the use of a set partitioning formulation

that groups the customer orders prior to demand realization. As in the determinis-

tic case column generation is applied to address the high proliferation of build-pack

decisions. We then use the branch-and-price method to achieve a good set partition,

and to allow new columns to be generated at each branch-and-bound node.

38

Chapter 3

The Multi-Period Build-Pack

Scheduling Problem

In this chapter we focus on the multi-period build-pack scheduling problem described

in §2.2.1. First a formulation of the problem is presented in §3.1. Our formulation

is a linear program with an exponential number of columns. §3.2 then develops the

column generation method for solving this formulation. Computational results are

presented in §3.3, which compares our algorithms with the CPLEX general-purpose

solver. Lastly in §3.4, we provide an alternate modeling viewpoint of the problem,

by casting the same problem as a multicommodity network flow model.

3.1 Problem Formulation

We formulate the build-pack planning problem using the basic framework of the

E/T planning model for mass repetitive manufacturing systems introduced by

39

Wang140 . We denote a build-type as θ, and customer k. A pack type is defined

as an assignment of a build type θ towards customer k. Thus s =< k, θ >, where

s denote the index of a pack type. Note that by definition the build-type θ in

two different pack types may be the same in general. In reality, a build type is

distinguished into two or more pack types only when it is being packed and labeled

for different order types.

Denote S as the set of all feasible (in compliance with the AVM) pack types,

and Sk as the set of all feasible pack types dedicated to customer k respectively.

Customer demand dk
t , where t = 1 · · · T , can therefore be satisfied only by the

production of pack types s ∈ Sk. The objective of the multi-period build-pack

scheduling problem is to minimize the total costs of backlogged orders, with gk
t

denoting the penalty cost per unit of order k backlogged in period t. Let p denote

the a generic product component, e.g. the HSA, the disc platter, spindle motor

etc in the HDD, and P the set of all parts. Let v ∈ Vp be a vendor supplying

component p, where Vp is the set of all vendors supplying p. Production capacity

e.g. manpower available in period t is denoted by ct, and the components supply

from v arriving in period t is denoted by mv,t. Further, rp
k is the bill-of-materials

data, i.e. the number of parts p in the product of the customer k. The decision

variables are Bs,t, i.e., the production level of pack type s in period t, s ∈ S,

t = 1, · · · , T . The formulation LP is as follows.

40

Problem LP:

Minimize Z =
∑

k∈K

T∑

t=1

gk
t ·
[

t∑

t′=1

(
dk

t′ −
∑

s∈Sk

Bs,t′

)]+

(3.1)

subject to:

∑

s∈S

Bs,t ≤ ct t = 1 · · · T (3.2)

t∑

t′=1

(
∑

k∈Kv

rp
k

∑

s∈Sk

Bs,t) ≤
t∑

t′=1

mv,t′ ∀ v ∈ Vp, ∀ p ∈ P, t = 1 · · · T (3.3)

T∑

t=1

∑

s∈Sk

Bs,t ≤
T∑

t=1

dk
t ∀ k ∈ K (3.4)

Bs,t ≥ 0, Bs,t ∈ < s ∈ S, t = 1, · · · , T (3.5)

The objective function (3.1) minimizes the total cost of tardy production for

customer k due in each period t. Note that in this formulation the cost element

gk
T is the shortage cost per unit of each customer k. Constraints (3.2) are the

manpower capacity limitations for each period, and (3.3) are constraints on com-

ponents availability in each period. Constraints (3.4) disallows ‘overpacking’ to

occur and restricts total production to be less than the total demand over the

planning horizon. Constraints (3.5) are nonnegativity conditions on production.

3.2 Solution Procedure

The column generation technique51,102 is a specialization of the simplex method

which proceeds by solving a restricted form of the original problem (called the

master problem) by considering only a subset of all the possible columns (variables).

Non-basic columns which have the potential to contribute to the objective function

41

advantageously are generated at the pricing stage by solving a separate pricing

problem. The potential of a non-basic column is determined by some criterion,

usually the reduced cost of the column. The new columns found are augmented to

the master problem and re-solved for a new set of dual variables. The procedure

iterates between solving the master problem and the pricing problem until no more

columns of potential contribution can be found.

Let αk
s and βv,p

s ∀ k ∈ K, ∀ v ∈ Vp and ∀ p ∈ P be the set of indicator

parameters so that

αk
s = 1 if pack type s is being assigned as customer k, 0 otherwise.

βv,p
s = 1 if pack type s is built using vendor v for component p, v ∈ Vp.

0 otherwise.

Each pack type s ∈ S is defined by a unique setting of the αk
s and βv,p

s indicator

parameters. In particular, αk
s ∀ k ∈ K defines one order type assigned, whereas βv,p

s

∀ v ∈ Vp, ∀ p ∈ P defines one build type used. In accordance with the definition

of s, only one αk
s value can be set to 1 over all k, and only one value of βv,p

s can be

set to 1 over all v ∈ Vp for each part p ∈ P . Further, the build type as defined by

βv,p
s must comply with the AVM restrictions for the order type defined in αk

s .

Let Rt be some set of pack types associated with period t, i.e., Rt ⊆ S, t =

1, · · · , T . Let Gk
t be ‘backlog’ variables denoting the total number of units of

unfulfilled demand for customer k in period t. Gk
t is defined such that Gk

t = 0 in

the case where there is no backlogging in period t. The restricted master program

can then be written as:

42

Problem MP:

Minimize Z =
∑

k∈K

T∑

t=1

gk
t · Gk

t (3.6)

subject to:

∑

s∈Rt

Bs,t ≤ ct t = 1 · · · T (3.7)

t∑

t′=1

∑

k∈Kv

rp
k ·
∑

s∈Rt′

αk
s · βv,p

s · Bs,t′ ≤
t∑

t′=1

mv,t′ ∀ v ∈ Vp, ∀ p ∈ P, t = 1 · · · T (3.8)

t∑

t′=1

(dk
t′ −

∑

s∈Rt′

αk
s · Bs,t′) ≤ Gk

t ∀ k ∈ K, t = 1 · · · T (3.9)

T∑

t=1

∑

s∈Rt′

αk
s · Bs,t ≤

T∑

t=1

dk
t ∀ k ∈ K (3.10)

Bs,t, Gk
t ≥ 0 ∀ k ∈ K,∀ s ∈ Rt, t = 1 · · · T (3.11)

Problem MP is equivalent to LP except that now minimization is over subsets

Rt ⊆ S , t = 1 · · · T rather than over the entire set S. At each iteration of the

procedure after solving MP to optimality, it is desirable to find new variables

to be included into Rt, t = 1 · · · T that will improve the current solution. For

minimization linear problems, non-basic variables with the negative reduced cost

satisfy this criterion. If there are no non-basic variables with negative reduced cost

then the current solution is optimal for LP and the procedure ends. The column

generation method allows new entering variables to be located without explicit

enumeration of all the columns. This is accomplished by formulating the search

for new variables as the pricing problem.

In our proposed approach we solve T pricing problems, one for each period, so

that solving each pricing problem yields a feasible set of the parameter variables

43

αk and βv,p ∀ k ∈ K, ∀ v ∈ Vp, ∀ p ∈ P . Let Γk,v,v, denote the AVM for customer k

between component vendors v and v′ of parts p and p′ respectively, where Γk,v,v, = 1

if v and v′ cannot be used together for customer k, 0 otherwise. The pricing problem

for period t is stated as follows. We subsume the subscripts in s for notational

convenience.

Problem RPt

Minimize Zr =
∑

k∈K

[(
T∑

t′=t

π2(k, t′) − π3(k)

)
· αk

]

−
∑

p∈P

∑

v∈Vp

∑

k∈Kv

[(
T∑

t′=t

π1(v, t′)

)
· rp

k · αk · βv,p

]
− π0(t) (3.12)

subject to:

∑

k∈K

αk = 1 (3.13)

∑

v∈V k
p

βv,p = αk ∀ p ∈ P,∀ k ∈ K (3.14)

βv,p + βv, ,p, ≤ 2 − αk · Γk,v,v, ∀ v ∈ Vp,∀ v, ∈ Vp′,where

p, p′ ∈ P, p 6= p′,∀ k ∈ K (3.15)

αk, βv,p ∈ {0, 1} ∀ k ∈ K,∀ v ∈ Vp,∀ p ∈ P (3.16)

where π0(t), π1(v, t), π2(k, t) and π3(k) refers to dual variables associated with

each constraint in (3.7), (3.8), (3.9) and (3.10) respectively. Note that π0(t), π1(v, t)

π2(k, t) and π3(k) are non-positive ∀ k ∈ K, ∀ v ∈ Vp,∀ p ∈ P, t = 1 · · · T .

Zr in (3.12) is the reduced cost expression for Bs,t, t = 1 · · · T and s ∈ S. (3.13)

allows s to be assigned to one and only one customer k. Constraints (3.14) imposes

44

the AVM for individual components and allows only one vendor per component.

Constraints (3.15) imposes the AVM restrictions for the components. Constraints

(3.16) restricts αk, βv,p to be zero-one binary variables.

Consider the case when the variables αk are fixed, i.e. αk′
= 1 for some k′ ∈ K,

and αk = 0 ∀k 6= k′. Observing that only the second term in (3.12) involves βv,p,

and since π1(v, t) ≤ 0 ∀v ∈ Vp, p ∈ P , RP t becomes the following problem:

min
βv

Zs =
∑

p∈P

∑

v∈V k
p

[(
T∑

t′=t

−π1(v, t′)

)
· rp

k · βv,p

]
(3.17)

subject to (3.14) to (3.16).

The problem is hence to find a feasible build type to be assigned to a chosen

customer k at the minimum cost. In a network representation, this is equivalent to

finding the shortest directed path through a set of nodes representing the compo-

nents. Figure 3.1 shows an example of the network representation in the hard-disk

drive problem for an order type. Here there are three ‘layers’ of component nodes,

one layer for each component, i.e. the HSA, disc and the PCBA. Each node in a

layer represents a component vendor that is acceptable for building the customer’s

order. For example, the three nodes in the layer of the HSA nodes correspond

to the HSA models. An arc links two component nodes in adjacent layers only if

they do not violate the AVM requirements. For instance in Figure 3.1 , there is no

arc linking the second HSA component node to the second disc component node,

indicating that the combination of vendors is not allowed in the AVM.

45

Figure 3.1: Shortest Path Network for Hard-Disk Drive Production Planning

In the network arrangement, any feasible walk starting from the source node

to the sink node through the layers of component nodes constitute a feasible build

type. The original problem of finding a feasible build type to be assigned to a

chosen customer at minimum cost is thus equivalent to searching for the shortest

path through the equivalent network of the problem. The ‘length’ of an arc feeding

into a node associated with component model v is then the cost coefficient of βv,p

in expression (3.17), v ∈ V k
p .

In the following we define the components of the shortest path network. Let

the network of concern be G(N ,A), where N is the node set and A is the set of arcs

in the network connecting the component nodes in the special ‘layered’ structure,

A ⊆ N × N . Let xi,j denote the flow leaving node i and entering node j, where

46

arc (i, j) ∈ A . Define the source node a, and the sink node b. Further, for each

vendor v ∈ V k
p of each component p ∈ P , define the component node nv. The

structure of G is such that the nodes nv, ∀ v ∈ V k
p for each component p forms a

layer of nodes, and the layers are arranged in a serial manner in the network. In

order to obtain a complete build type, there must be flow from a to b through one

and only one node per layer through the series of layers of component nodes. An

arc (nv, nv′) (such that v ∈ V k
p and v′ ∈ V k

p′) exists only if the pair of components

p and p′ constitute adjacent layers in the network, and such that v and v′ does not

violate AVM restrictions for k.

The shortest path problem associated with customer k in period t is stated as

follows.

Problem SPk
t

Minimise Zs =
∑

p∈P

∑

v∈V k
p

(

rp
k ·

T∑

t′=t

−π1(v, t′)

)
·
∑

i:(i,nv)∈A

xi,nv

 (3.18)

subject to:

∑

j:(a,j)∈A

xa,j = 1 (3.19)

∑

i:(i,b)∈A

xi,b = 1 (3.20)

∑

j:(nv ,j)∈A

xnv,j =
∑

i:(i,nv)∈A

xi,nv ∀ v ∈ V k
p ,∀ p ∈ P (3.21)

xi,j ∈ {0, 1} ∀(i, j) ∈ A (3.22)

47

Constraints (3.19) to (3.21) are network flow balance equations for the source

node a, sink node b and each of the components nodes respectively. Constraints

(3.22) imposes xi,j to be discrete, but due to the network structure of the problem,

total unimodularity guarantees xi,j to be integral in the optimal solution.

Our procedure to solve RPt searches through the set of customers. Customer

k in period t is ‘qualified’ as a candidate in the final solution only if the value

of Zr′ =
T∑

t′=t

π2(k, t′) − π0(t) − π3(k) from (3.12) is negative, since we are only

interested in negative reduced-costs (Zr) and the rest of the terms in (3.12) are

non-negative. For each qualified order-type we search for a corresponding build-

type which minimizes the value of Zs in (3.17). This is accomplished by solving

the shortest path problem SPk
t . The resulting pack-type is a valid candidate for

the final solution if the sum of the above two terms are negative. Hence there

are two factors which decide whether a pack-type < k, θ > is a valid candidate.

The first corresponds to the value of Zr′ , which indicates the promise of improving

the current schedule by packing for customer k. The second factor corresponds to

the value of Zs, which indicates the trade-off to be met if we pack for customer

k using build-type θ at the expense of other customers’ orders competing for the

same components. The decision of whether a pack-type should be considered as a

candidate for production is hence determined by the best possible overall promise

in schedule improvement. The pack-type with the highest overall promise is then

introduced into the production schedule. We summarize the solution procedure for

RPt below.

48

Procedure Price

1. Initialize the current best solution value Z∗
r = 0.

2. Select a k ∈ K as a candidate. If
T∑

t′=t

π2(k, t′) − π0(t) − π3(k) ≥ 0 then

eliminate the candidature of k and proceed to Step 3. Otherwise go to Step

5.

3. If there are still unselected k from K, go to Step 2. Otherwise proceed to

Step 4.

4. If Z∗
r = 0 then no entering non-basic variables Bs,t ∀ s ∈ S can be located.

Otherwise, the current solution to RPt is used to form the new column to

enter the set Rt. Let the optimal solution be (k∗,x∗), where x denotes the

vector of xi,j . Then αk = 1 if k = k∗, 0 otherwise. Also, βv,p = 1 if

∑

i:(i,v)∈A

x∗
i,v = 1, i ∈ N , 0 otherwise. Procedure Price terminates.

5. Solve the following shortest path problem SPk
t associated with the candidate

k and obtain the minimum cost Zs.

6. Compute Zr(k) = Zs+

T∑

t′=t

π2(k, t′)−π0(t)−π3(k). If Zr(k) < Z∗
r then update

Zr(k) = Z∗
r . Go to Step 3.

Once the sets Rt is updated, the master problem MP is then re-solved and the

steps of solving RP are repeated. The procedure for solving LP is summarized as

follows.

49

Procedure CG

1. Initialize the column sets Rt, t = 1, · · · , T .

2. Solve the restricted master problem MP to optimality.

3. Using the dual solution from MP, define the corresponding pricing problems

RPt , t = 1, · · · , T . Solve RPt using procedure Price.

4. If the solutions to RPt gives no non-basic variables with negative reduced

costs, then the current solution of MP is optimal in LP, and the procedure

ends. Otherwise proceed to Step 5.

5. Update the column sets Rt, t = 1, · · · , T with the new columns generated.

Go back to Step 2.

Although the above solution approach is developed based on the characteristic

AVM of the hard-disk drive problem, we can also accommodate in our work all

other types of AVM that have an equivalent network representation with structure

as defined in G(N ,A). This implies that for a customer order, there must be no

conflicts between the AVM of different component pairs, hence enabling a shortest

path representation of the problem.

3.3 Computational Results

In our computational experiments we tested procedure CG using three problem

sets. The sizes of the problems used, i.e. number of customer demands, the number

50

of component vendors, and the number of planning periods, are comparable to the

actual problems faced by the production planners of the hard-disk manufacturer

each week. The problems were also designed based on the HDD product structure.

There are three critical components: the HSA, the disc and the PCBA. Each

problem set consists of eight instances with randomly generated demand, capacity

and AVM restrictions.

The solution algorithms were all coded in C++. The CPLEX 7.0 LP and

network solver libraries were invoked to solve the decomposed sub-problems in the

column generation scheme. For comparison purposes the problem instances were

also solved entirely using the CPLEX LP solver. The computations were performed

on a Pentium IV, 2.4 GHz PC with 512 MB RAM. Tables 3.1, 3.2 and 3.3 highlight

the results of our computational study. |K| denote the total number of customers,

and |V | denote the number of vendors for each component.

51

Table 3.1: Problem LP Set 1: |K| = 100 |V | = 10 T = 7

Price1 Price2 GLP

Instance Cols Rows CPU/s Itn Cols(E) CPU/s Itn Cols(E) CPU/s

1 567700 913 2.2 19 2235 2.7 11 4468 157.2

2 448700 913 2.8 15 2441 2.4 7 4630 318.8

3 567700 913 2.5 9 2197 2.4 7 4840 182.7

4 343700 913 2.5 18 2401 2.6 12 4875 169.6

5 700700 913 5.6 23 3385 6.3 15 7515 170.7

6 448700 913 3.4 17 2415 2.5 8 4482 293.5

7 252700 913 3.2 16 2475 2.6 10 5002 196.5

8 567700 913 3 24 2489 3.9 14 6199 198.7

Table 3.2: Problem LP Set 2: |K| = 200 |V | = 10 T = 7

Price1 Price2 GLP

Instance Cols Rows CPU/s Itn Cols(E) CPU/s Itn Cols(E) CPU/s

1 1401400 1613 11.7 11 4580 12 7 8614 2010

2 1401400 1613 19 10 4419 15.2 7 9191 2150

3 1135400 1613 33.2 15 5130 24.4 9 10268 2985

4 897400 1613 10.8 12 4531 11.8 8 9253 2150

5 1135400 1613 24.8 11 4598 17.2 7 9439 3115

6 897400 1613 16.3 10 4201 10.5 5 7214 3216

7 1135400 1613 18.3 10 4193 13.9 6 8783 2755

8 897400 1613 18 10 4596 12.9 6 7989 2514

52

Table 3.3: Problem LP Set 3: |K| = 200 |V | = 20 T = 7

Price1 Price2 GLP

Instance Cols Rows CPU/s Itn Cols(E) CPU/s Itn Cols(E) CPU/s

1 11201400 1823 41.5 24 6992 42.7 14 18538 NA

2 9073400 1823 48.5 18 6193 59.8 12 16434 NA

3 7169400 1823 30 19 5800 36.7 9 13626 NA

4 2801400 1823 50.8 18 5800 51.2 9 13474 NA

5 1793400 1823 23.8 19 5744 30.4 10 12392 4319.5

6 1009400 1823 49.2 16 5793 48.8 8 12097 1891.4

7 1793400 1823 69.8 21 6579 60.8 7 13799 6747.7

8 1793400 1823 19.9 13 4793 22.1 5 9255 8919.4

Cols and Rows in the tables denote the total number of variables and constraints

in each problem instance respectively. CPU is the computation time in seconds

used to solve the instance to optimality. GLP corresponds to using the CPLEX

general-purpose LP solver to solve the entire problem instance. For procedure

CG two pricing schemes were implemented. In Price 1, only the most promising

column found among all sub-problems in t = 1 · · · T for each k is added to the

master problem during each pricing iteration. In Price 2 the most promising

column found from each sub-problem is added. One feasible column per customer

is randomly generated in the initialization phase of the algorithm. Itns refer to

the number of pricing iterations during the solution of problem LP. Cols(E) refers

to the total number of columns in the master problem at the end of the solution

process. NA in Table 3.3 indicates that there is insufficient memory space for

CPLEX to load the problem.

53

The computational efficiency of the column generation schemes are evident from

the results we obtain. Procedure CG uses an average of only 1.6%, 0.65% and

1.1% of the CPU times required by GLP for the problems in Tables 3.1, 3.2 and

3.3 respectively. This thus demonstrates the substantial savings in computation

time that can be achieved by adopting the column generation solution scheme

for our problems. In an actual implementation, our solution algorithm can be

embedded in a ‘production planning module’ in the APS. By incorporating the

solution algorithm into the APS, the direct contribution seen by the user is a

reduction of the planning cycle, which is of great importance.

The results presented also verify that the column generation algorithm uses

only a modest subset of the total number of columns to solve the problems. The

total number of variables at the end of the column generation procedure is on

average about 0.3% and 0.6% of the total number of variables in the full problem

for scheme 1 and 2 respectively for all three problem sets. This amounts to saying

that in practice only modest amounts of computational resources like memory or

storage space are required for running the module of the APS that solves this

production problem. There is even no requirement to store in the database the

entire set of possible build-types, since build-types are only generated when the

planning module is executed. Hence essentially only the AVM of each customer is

required to be stored in the database.

Since Price 2 generates a larger column pool than Price 1, it thus requires

more computational effort in solving the larger master problems. On the other

54

hand it uses less pricing iterations than Price 1. This trade-off is observed to be

advantageous for most of our test problems in Tables 3.1 and 3.2, with Price 2

converging faster to the optimal solution. For our largest problems in Table 3.3,

the performance of both schemes are almost on par. This indicates that Price

1 may be more efficient for very large problem sizes as it becomes increasingly

difficult to solve the larger master problems in Price 2.

3.4 A Multicommodity Network Representation

We now attempt to give more insight into the structure of the build-pack scheduling

problem. The pricing problem in the column generation method presented in the

previous section has revealed that there are some network structures in the problem,

and these that can be exploited for solution efficiency. In this section we will

explicitly model the network components of the problem in a new formulation. In

particular, we identify our problem as being similar to a class of multi-commodity

network flow (MCNF) problems. The motivation of this is so that we may then

exploit the abundance of existing techniques dedicated to solve MCNF problems.

MCNF problems arise when several items (commodities) share arcs in a ca-

pacitated network. They have been studied extensively because of their numer-

ous applications and their intriguing network structure exhibited. Ahuja2 and

Kennington79 provide comprehensive surveys of the MCNF problem formulations

and solution approaches.

In this section we develop a MCNF representation of our problem, where the

55

objective is to find the minimum cost paths to ship commodities from the origin(s)

to the destination(s) nodes through the given capacitated network. Let the net-

work of concern be G = (N,A), where N is the node set consisting of a supply

node, a number of demand nodes, manpower nodes and component vendor nodes.

A ⊂ N ×N is the set of arcs connecting N in a special ‘layer’ structure to form the

required network. The MCNF equivalent of a customer demand k is a commod-

ity to be transported from the supply node to some demand node(s). Figure 3.2

shows an example of the multicommodity network in the hard-disk drive production

planning context.

Let o be the supply node. The outflow of each commodity k at o is equal to

the total demand for k over the entire planning horizon, i.e.

T∑

t=1

dk
t .

Let qt as the demand nodes, t = 1 · · · T . The net requirements of each com-

modity k at qt is the demand for k due in t, i.e. dk
t . We also define a shortages node

qT+1 with zero net requirements. qT+1 is not a demand node by definition, and is

only used for transfer requirements from o into the demand nodes when shortages

occur.

Let ht, t = 1 · · · T denote the manpower nodes. Commodity k flows from o to

ht when production of k in period t happens. The capacity at node ht is equivalent

to the total manpower or labor resource available in the period t, i.e. ct.

Let nt
v denote a component vendor node, where v ∈ Vp, p ∈ P and t = 1 · · · T .

The system of the component vendor nodes is structured in the form of layers.

Each layer is composed of all nodes for each p. Each commodity must flow through

56

at least one node per layer to constitute a complete build type. If some level of a

commodity k flows through nt
v, then this level of k is produced using vendor v for

component p in period t. The nodal capacity of nt
v is the net available supply of vp

in period t. Note that these capacities are dynamic since they depend on the flow

and capacities on previous periods.

Figure 3.2: Multicommodity Network for Hard-Disk Drive Production Planning

57

The cost of shipping on arc (qt+1, qt) per unit of k is the tardiness cost gk
t . Note

that the arc cost is uni-directional on the arc. There is no cost in shipping from qt

to qt+1 if we do not consider holding costs.

The MCNF problem is to find a set of feasible flow paths and levels to ship

the commodities from o to qt, t = 1 · · · T + 1 so as to Minimize the total arc costs,

subjected to the limited node capacities. Define F k
t as the set of all feasible paths

from the origin node o to node qt, t = 1 · · · T . Similarly F k is the set of all paths

from origin o to all demand nodes qt, t = 1 · · · T , i.e. F k = F k
1 ∪ F k

2 · · · ∪ F k
T .

The path-flow variable Xf , for all paths f ∈ F k
t , is then equivalent to a scheduled

production level of some build type assigned to a customer k in period t. Denote

also the path-indicator parameters δf
i,j and δf

i , so that δf
i,j = 1 if path f contains

arc (i, j), δf
i,j = 0 otherwise. Similarly δf

i = 1 if path f contains node i, δf
i = 0

otherwise. In this manner the AVM restrictions can be explictly modeled in the

definition of F k
t , i.e. if customer k does not allow v ∈ Vp and v′ ∈ Vp′ to be used

together for some pair of components p and p′, then δf
nt

v ,nt
v′

= 0 for all the paths

f ∈ F k
t . The equivalent path-flow formulation can then be stated as:

Problem MCF:

MinimizeZ =
∑

k∈K

T∑

t=1

∑

f∈F k
t

gk
t · δf

qt+1,qt
· Xf (3.23)

subject to:

58

∑

f∈F k
t

Xf = dk
t ∀ k ∈ K, t = 1 · · · T (3.24)

∑

k∈K

∑

f∈F k

δf
ht
·Xf ≤ ct t = 1 · · · T (3.25)

t∑

t′=1

∑

k∈Kv

rp
k ·

∑

f∈F k

δf

nt′
v
· Xf

 ≤

t∑

t′=1

mv,t′ ∀ v ∈ Vp, p ∈ P, t = 1 · · · T (3.26)

Xf ∈ <+ ∀f ∈ F k, ∀ k ∈ K (3.27)

The objective function in (3.23) minimizes the total costs of shipping all the

commodities from the origin to destination nodes. Costs are only incurred when

commodities ship on arcs (qt+1, qt) , t = 1 · · · T . Constraints (3.24) are the flow

requirements conditions at each demand node qt. Constraints (3.25) and (3.26)

are the manpower capacity the components supply limitations respectively. Con-

straints (3.27) are uni-directional conditions on the path flows.

Since a MCNF representation exists for the build-pack problem, we can apply

techniques used to solve MCNF problems for the build-pack problems. Readers

familiar with MCNF models would realize that the path-flow formulation and the

path-generation method to solve it is in fact very similar to the column generation

formulation and solution approach of LP in the previous sections. We refer readers

to Ahuja2 for a detailed description of the application of the path-generation and

other solution approaches for MCNF problems.

59

3.5 Concluding Remarks

The multi-period build-pack scheduling problem aims to fulfill customer demands

as closely as possible under supply constraints of components availability. Al-

though at the aggregate level total supply can meet total demands, the presence

of the AVM restrictions often results in misalignment between the demands at

the detail level and the components availability. Substantial planning time is thus

used to draft schedules that matches build-type production to customer order ful-

fillment as closely as possible. We identify this problem as an opportunity to apply

optimization technologies to help reduce the planning time and achieve the opti-

mal schedule. In this chapter we have first developed a LP formulation for the

multi-period build-pack scheduling problem. The decision variables identify the

assignment of the build-types to customer orders. In this manner the AVM re-

strictions can be modeled explicitly by proper definition of the variables. In the

case when there are many components and vendors supplying each component, the

possible combinations of build types and the assignments of customer orders can

result in a very large number of decision variables. The method of column gener-

ation is applied to solve the problem using only a subset of all possible columns.

The success of a column generation approach usually hinges on the structure of the

pricing problem, i.e. whether the structure allows efficient solution. In our case, we

model the pricing problem for each customer order as a shortest path problem. We

remark that our network is appropriate for capturing the AVM restrictions consid-

ered in our problem. Since HDDs are highly modular by design (see Chapter 1),

60

we can assume that the interactions between interfaces are limited to pairs of com-

ponents (e.g. the disc platter and HSA components). ‘Higher order’ interactions

of the interfaces can be assumed to be negligible. The design of the AVM scheme

that is offered to the customers is also limited to component-pair restrictions.

Our computational experiments demonstrated that the column generation algo-

rithm is much more efficient compared to solving the problem via general-purpose

LP solvers. This has a direct consequence of helping to reducing the planning cy-

cle time and meeting the customer demands in an optimal manner. Only modest

amounts of computational resources are required since the entire set of build-type

and customer order assignments need not be stored.

Finally, we presented an alternative approach to model the same problem us-

ing a MCNF-type formulation. This was developed by combining the network

structure of the pricing problem with network components to model flow balance

conditions in the multiperiod setting. Doing so opens up the opportunity to exploit

the abundance of techniques available in the literature for solving general MCNF

problems.

61

Chapter 4

A Multi-Stage Bender’s

Decomposition Solution Approach

In this chapter we present an alternative solution approach to the multi-period

build-pack scheduling problem. The purpose of this is two-fold. First, from the

previous chapter, we have seen that the problem contains inherent network struc-

tures, and this can be exploited for solution efficiency. The network aspect of

the problem was made explicit by using a MCNF-type formulation at the end of

Chapter 3(§3.4). The solution approach presented in this chapter further makes

use of the network structure as being composed of ‘stages’ of networks. It is thus

of interest to study the solution performance of a formulation and solution algo-

rithm that is based on this stage-wise network structure. Secondly, the motivation

of presenting this solution and modeling approach is practical one, based on the

sensible question of whether, in a situation where there are very little AVM restric-

62

tions, it is possible to avoid a formulation such as LP which explicitly identifies

the build-types. Recall that in the case when there are no AVM restrictions, the

problem collapses into a very simple total tardiness planning problem that can be

solved efficiently. The solution, which can be viewed as a master schedule of the

production levels for each customer order, would then be sufficient, since it would

not be necessary to explicitly identify the different build-types. It would hence be

of value if this basic result can be made use of in some way when AVM restrictions

are present. Some scheme is then required to disaggregate the master schedule

solution into build schedules, and then to repair the solution if AVM restrictions

are violated. The issue of interest would then be comparing the economy of the

effort required to perform the repairing versus the column generation approach.

Our solution approach applies the outer linearization technique using benders

decomposition16 . A summary of the solution procedure is as follows. We first

cast the problem as a multi-stage model, where the first stage is simply a re-

laxation of the original problem formed by dropping all the AVM requirements.

The subsequent stages each consist of a transportation problem involving a pair of

components. The solution of each transportation problem accounts for the AVM

restrictions and yields a feasible component vendor assignment for the components

involved. The transportation problems are solved in a sequential manner, from the

first to the last component in the HDD. The solution for each stage sets up the

transportation problem in the next stage. If the problem at any stage the becomes

infeasible, some AVM restrictions are then violated. A benders feasibility cut is

63

then generated and augmented to the previous stage, which is solved again for a

new component vendor assignment. The procedure terminates when all the stages

are feasible. In §4.1 the multi-stage formulation is presented. The cut-generating

procedure is then developed in §4.2. §4.3 discusses some methods of implementa-

tion to help reduce the problem size. Computational results are presented in §4.4

to highlight the differences between the performance of the new solution approach

and the column generation approach presented in Chapter 3.

4.1 Multi-stage Formulation

We first present the multi-stage formulation to the Build-Pack problem. To begin

we sequence the product components in the order p0, p1, · · · pN , where N +1 = |P |,

|P | being the cardinality of the set P , and p0 is the first component constitut-

ing the shortest path network presented in §3.2 (or the MCNF network in §3.4),

p1 the second component and so on. This sequence is fixed throughout the solu-

tion procedure and determines the order in which the transportation problems are

solved.

In the formulation we define the variables Xk,t as the production level for cus-

tomer k in period t. Gk,t indicates the backlog level for k in period t. Y k,t
v is the

level of component j, vendor v (v ∈ Vpj), that is allocated to the production of k

in t. For all components pj , where j = 1 · · ·N , Y k,t
v is defined as

64

Y k,t
v =

rk
pj

rk
pj−1

·
∑

v′∈V
pj−1

Y k,t
v′ ,v ∀v ∈ Vpj , j = 1 · · ·N (4.1)

where Y k,t
v′ ,v is the disaggregation of Y k,t

v which uses v′ for the immediate pre-

decessor component pj−1. Note that (4.1) holds only for pj for j ≥ 1 since p0

does not have a predecessor component by definition. The multi-period build-pack

scheduling problem can then be re-written as:

Problem B:

Minimize Z =
∑

k∈K

T∑

t=1

gk,t · Gk,t (4.2)

subject to:

∑

k∈K

Xk,t ≤ ct t = 1 · · · T (4.3)

t∑

t′=1

∑

k∈K

rk
p · Xk,t′ ≤

t∑

t′=1

∑

v∈Vp

mv,t′ ∀p ∈ P, t = 1 · · · T (4.4)

Gk,t ≥
t∑

t′=1

dk,t −
t∑

t′=1

Xk,t′ ∀k ∈ K, t = 1 · · · T (4.5)

∑

v∈V 0
p

Y k,t
v = rk

p0 · Xk,t ∀k ∈ K, t = 1 · · · T (4.6)

t∑

t′=1

∑

k∈K

Y k,t′

v ≤
t∑

t′=1

mv,t′ ∀v ∈ Vp0 , t = 1 · · · T (4.7)

∑

v′∈Vpj−1

Y k,t
v′ ,v =

rk
pj−1

rk
pj

· Y k,t
v ∀k ∈ K, ∀v ∈ Vpj , j = 1 · · ·N,

t = 1 · · · T (4.8)

65

∑

v′∈Vpj

Y k,t
v,v′ =

rk
pj

rk
pj−1

· Y k,t
v ∀k ∈ K, ∀v ∈ Vpj−1 , j = 1 · · ·N,

t = 1 · · · T (4.9)

∑

v′∈V
pj−1

∑

k∈K

t∑

t′=1

Y k,t′

v′ ,v ≤
t∑

t′=1

mv,t′ ∀v ∈ Vpj , j = 1 · · ·N,

t = 1 · · · T (4.10)

Xk,t ∈ <+, Y k,t
v ∈ <+, Y k,t

v,v′ ∈ <+ (4.11)

The objective function (4.2) minimizes the total penalty for tardiness of the

orders. Constraints (4.3) imposes total manpower availability for each period,

and (4.4) are the components availability aggregated over all vendors for each

component and period. Constraints (4.5) are ‘backlog’ equations. Constraints (4.6)

and (4.7) are the flow-balance and availability conditions for the first component

p0 respectively. Constraints (4.8) follows directly from the definition of Y k,t
v in

expression (4.1). Constraints (4.9) together with (4.10) form the flow balance and

availability conditions for the rest of the components pj , j = 1 · · ·N .

4.2 Solution Procedure

Our solution procedure decomposes B into a master problem and a series of sub-

problems. Observe that for a fixed set of production levels Xk,t, (4.6) and (4.7) can

be replaced by a set of transportation feasibility conditions, with each Xk,t forming

a demand point and each component supply mv,t ∀v ∈ Vp0 forming a supply point.

Similarly, for a fixed set of production levels Y k,t
v ∀v ∈ Vpj−1 , (4.9) and (4.10) can be

66

replaced by transportation feasibility conditions with each Y k,t
v forming a demand

point and mv,t ∀v ∈ Vpj forming the supply point, j = 1 · · ·N . In the following we

first formalize the definitions of the decomposed problems.

Define the master problem RB : {Z = Minimize (4.2), s.t.(4.3)− (4.5)}, which

is just the basic total-tardiness problem. Note that when there are no AVM re-

strictions , the solution to RB forms an optimal production schedule.

The transportation problem associated with (4.6)and (4.7) is used to test for

possible AVM violations for the first component p0. In the following we define

the time-expanded transportation ‘route’ variable Y k,t,τ
v , τ = 1 · · · t where τ is

interpreted as the arrival period of the supply of v being used. Note that Y k,t
v =

t∑

τ=1

Y k,t,τ
v . The Phase-One transportation problem can then be written as:

Problem T P0:

Minimize Z =
T∑

t=1

t∑

τ=1

∑

k∈K

∑

v∈Vp0

Γk,v · Y k,t,τ
v (4.12)

subject to:

t∑

τ=1

∑

v∈V k
p0

Y k,t,τ
v = rk

p0 · Xk,t ∀ k ∈ K, t = 1 · · · T (4.13)

T∑

τ=1

∑

v∈Vp0

Y k̃,τ
v =

T∑

τ=1

∑

v∈Vp0

mv,τ −
T∑

t=1

∑

k∈K

rk
p0 · Xk,t (4.14)

T∑

t=τ

∑

k∈K

∑

v∈V k
p0

Y k,t,τ
v = mv,τ ∀ v ∈ Vp0 , τ = 1 · · · T (4.15)

Y k,t,τ
v ∈ S0 ∀ k ∈ K, v ∈ Vp0 , τ = 1 · · · t,

t = 1 · · · T (4.16)

67

The objective function (4.12) minimizes the sum of all the shipment levels on

inadmissible routes, or model assignment levels Y k,t,τ
v which are ‘illegal’, i.e. in

conflict with the AVM requirements. Constraints (4.13) and (4.15) follows directly

from (4.6) and(4.7), which are simply the demand and supply equations of the

transportation problem. Constraint (4.14) captures the supply that is in excess of

the demand in the formulation, and is commonly termed as a ‘dummy’ demand

point in unbalanced transportation problems. Y k̃,τ
v is used to denote the assignment

of the supply from v and τ to the dummy demand k̃. Note that (4.4) ensures that

there will be no unbalance in the other direction, i.e. demand in excess of supply.

Xk,t in (4.13) is fixed at the solution levels obtained from RB. (4.16) requires Y k,t,τ
v

to belong in the set S0, where we define S0 = {Y k,t,τ
v ≥ 0, s.t. I0}, I0 being the set

of cut constraints in T P0. We will further discuss cut constraints I0 later in this

section. Note that I0 is initialised as a null set in the first iteration of the solution

procedure.

The transportation problem associated with (4.9) and (4.10) for each component

pj where j ≥ 1 is used to test for possible AVM violations between component pj

and its immediate predeccessor component pj−1. Define the transportation route

variable Y k,t,τ
v,v′ , where τ is as defined previously, and Y k,t

v,v′ =
t∑

τ=1

Y k,t,τ
v,v′ . Suppose

we have a fixed set of vendor assignment levels Y k,t
v , ∀v ∈ Vpj−1 , ∀k ∈ K and

t = 1 · · · T for component pj−1. We can then define the Phase-One transportation

problem associated component pj as:

68

Problem T Pj :

Minimize Z =
T∑

t=1

t∑

τ=1

∑

k∈K

∑

v∈V
pj−1

∑

v′∈V
pj

Γk,v,v′ · Y k,t,τ
v,v′ (4.17)

subject to:

t∑

τ=1

∑

v′∈V
pj

Y k,t,τ
v,v′ =

rk
pj

rk
pj−1

· Y k,t
v ∀ k ∈ K, ∀ v ∈ Vpj−1 , t = 1 · · · T(4.18)

T∑

t=τ

∑

k∈K

∑

v∈V
pj−1

Y k,t,τ
v,v′ = mv′,τ ∀ v′ ∈ Vpj , τ = 1 · · · T (4.19)

T∑

τ=1

∑

v∈Vpj−1

Y k̃,τ
v′ =

T∑

τ=1

∑

v′∈V
pj

mv′ ,τ −

T∑

t=1

∑

k∈K

rk
pj

rk
pj−1

· Y k,t
v (4.20)

Y k,t,τ
v,v′ ∈ Sj ∀ k ∈ K, ∀v ∈ Vpj−1, ∀v′ ∈ Vpj ,

τ = 1 · · · t, t = 1 · · · T (4.21)

As in T P0, the objective function (4.17) of T Pj minimizes the sum of all the

shipment levels on inadmissible routes, and (4.18) and (4.19) follows from (4.9)

and (4.10) respectively. Constraint (4.20) as in (4.14) is the demand equation for

the dummy demand point used to capture any supplies in excess of the demand.

The set Sj in (4.21) is defined as: Sj : {Y k,t,τ
v,v′ ≥ 0, s.t. Ij}, where Ij is the set of

cut constraints in T Pj.

In the initial iteration of the solution procedure, we first solve RB for a set of

Xk,t. If there are no AVM restrictions, a complete build and pack schedule can

then be generated. However, if the AVM is present, a feasible pack schedule may

not exist for the current solution of Xk,t. In our solution scheme we check for

69

possible AVM violations components-wise, starting with p0. Given Xk,t, a feasible

component vendor assignment exists for p0 only if there are solutions to (4.6)

and(4.7) with Xk,t held at the given levels. To check this we can solve T P0, fixing

the demand quantities on the right-hand side of (4.13). If Z = 0 in (4.12), then a

feasible assignment exist for the first component p0, and we proceed to check the

assignment for the next component. Otherwise, a benders feasibility cut can be

generated using the dual solution of T P0. Benders feasibility cuts are based on

locating extreme rays in the convex polyhedra of the dual bender’s sub-problem.

The cut is written as:

∑

k∈K

T∑

t=1

µk,t · rk
p0 ·Xk,t +

∑

v∈Vp0

T∑

t=1

νv,t · mv,t

+µk̃ ·

T∑

τ=1

∑

v∈Vp0

mv,τ −
T∑

t=1

∑

k∈K

rk
p0 · Xk,t

+

∑

i∈I0

bi · πi ≤ 0 (4.22)

where µk,t, νv,t and µk̃ denote the optimal dual multipliers associated with

(4.13), (4.15) and (4.14) respectively. πi and bi refer to the dual multiplier and

right-hand side value of cut constraint i ∈ I0. (4.22) is augmented in RB, which

is then re-solved for a new set of production levels Xk,t. T P0 is solved again,

and if new violations are found, the corresponding cuts are then generated. The

procedure is repeated iteratively until Z = 0 in (4.12).

Once a feasible assignment exist for p0, we proceed to check for possible AVM

violations for the next component. Given Y k,t
v ∀v ∈ Vpj−1 , where pj−1 is the im-

mediate predeccesor component of pj by definition (j ≥ 1), a feasible assignment

70

exists for component pj only if there are solutions to (4.9) and (4.10) with Y k,t
v

∀v ∈ Vpj−1 fixed at the given levels. For j = 1, Y k,t
v ∀v ∈ Vpj is obtained directly

from the solution of T P0. For j > 1 this is obtained from the solution of T Pj−1

and then applying (4.8). T Pj is then solved. As before, Z = 0 in (4.17) indicates

that a feasible assignment exists for component pj , and we proceed to check the

next component pj+1. Otherwise, a feasibility cut is generated, and this can be

written as:

∑

k∈K

∑

v∈Vpj−1

T∑

t=1

µk,v,t ·
rk
pj

rk
pj−1

· Y k,t
v +

∑

v∈Vpj

T∑

t=1

νv,t ·mv,t

+µk̃ ·

T∑

τ=1

∑

v′∈V
pj

mv′,τ −
T∑

t=1

∑

k∈K

rk
pj

rk
pj−1

· Y k,t
v

+

∑

i∈Ij

bi · πi ≤ 0 (4.23)

where here µk,v,t, νv,t, and µk̃ denote the optimal dual multipliers associated

with (4.18), (4.19) and (4.20) respectively. As before bi and πi are the dual price

and right-hand side value of cut constraint i ∈ Ij. Constraint (4.23) is augmented

in Ij−1 and T Pj−1 is then re-solved. Note that Y k,t
v in (4.23) is first replaced back

with the transportation route variables of T Pj−1. If T Pj−1 remains feasible a new

set of model assignment values Y k,t
v ∀v ∈ Vpj−1 is then generated. This is used to

solve T Pj again, and if new violations are found, the corresponding feasibility cuts

are then found. The procedure is repeated until Z = 0 in (4.17). If T Pj−1 becomes

infeasible, then a cut (4.23) will have to be generated from T Pj−1 and passed back

to the previous problem.

The solution scheme thus proceeds in a nested form, with T Pj acting as the

71

benders subproblem for predecessor components and a master problem for succesive

components. The optimal solution is found at the end of the solution procedure

when Z = 0 in (4.17) ∀pj, where j = 0 · · ·N . The solution procedure is summarised

below.

Multi-Stage Algorithm:

1. Solve RB, yielding production levels Xk,t. Set the component index j = 0.

2. Fix Xk,t and solve T P0. If Z∗ = 0, increment j : j = j + 1 and proceed to

Step 3. Otherwise generate cut (4.22), update RB and return to Step 1.

3. If j = N + 1 optimality is reached, and the procedure terminates. If j = 0

go to Step 1. Otherwise solve T Pj using the current Y k,t
v ∀v ∈ Vpj−1.

4. If Z∗ = 0, increment j : j = j +1 and proceed to Step 3. Otherwise generate

cut (4.23) and update Ij−1. Decrement j : j = j − 1 and go to Step 3.

4.3 Implementing T Pj

As the number of customers and component suppliers increase, the size of the

problems T Pj for j = 1 · · ·N may become considerably large since the number of

transportation ‘routes’ in T Pj is in the order of |K|×|V |2×T 2, where |K| and |V |

denote the cardinality of the sets K and V respectively. This may render solution

times to increase significantly even if T Pj is a pure network problem (i.e. Ij is

empty). One way to ease the computational burden is to include in T Pj only the

72

demand points that has positive demands and hence only the routes serving these

points. Solving this compact version of T Pj can help to reduce the problem size

substantially. In the case when a cut is to be generated from T Pj, we need to obtain

the dual prices associated with all the demand points. This can be accomplished

as follows. First note that the dual feasibility condition associated with each Y k,t,τ
v,v′

in T Pj can be written as:

µk,v′ ,t + νv,t +
∑

i∈Ij

ai · πi ≤ Γk,v,v′ (4.24)

where µk,v′ ,t, νv,t, πi and i ∈ Ij are as previously defined. ai denotes the

coefficient of the route variable in cut constraint i, i ∈ Ij.

Since the omission of the zero demand points do not change the optimal solution,

the solution obtained from the compact version of T Pj is also optimal in the com-

plete T Pj. It then follows from strong duality of linear programming that the cor-

responding dual solution ν∗
v,t and π∗

i is also feasible and optimal in the complete dual

problem. Applying (4.24), the dual prices associated with the zero demand points

can then be recovered by simply setting µk,v′ ,t = min
v,t

(
Γk,v,v′ − ν∗

v,t −
I∑

i=1

ai · π∗
i

)
.

In actual implementation, only the set of cut coefficients ai needs to be stored.

Terms in the cuts are included into the model only if the corresponding route

variables are designated for non-zero demand points.

In implementing T Pj with a non-empty set Ij, we apply the Dantzig-Wolfe

decomposition algorithm10 to solve T Pj. Here the master problem consists of the

cut constraints i ∈ Ij, and the sub-problem is the pure transportation problem.

The master problem determines an optimal convex combination of corner point

73

solutions from a subset of available transportation solutions. The dual multipliers

associated with Ij are then used to price out a new master variable by solving

the transportation problem, where the objective is to minimise the reduced cost

of the master variable. Optimality in T Pj is achieved when no more negative

reduced-cost variables can be priced out. The master problem is thus kept to a

modest size, and the network structure of the sub-problem is preserved. We refer

readers to Ho and Sundarraj64 for a comprehensive description of implementing

the decomposition algorithm.

4.4 Computational Results

In our computational experiments we implemented both the column generation

(Chapter 3) and multi-stage decomposition (§4.2) algorithms using three industrial-

strength problems sets. All problems were designed based on the hard-disk drive

product structure. There are three components, the HSA, disc and the PCB, hence

|P | = 3. Each problem set consists of ten instances with randomly generated

demand and resource levels. Each instance is solved under different scenarios of

AVM restrictions. We define the ‘restriction level’ β of an AVM between two

components as the proportion of illegal assignments among all possible vendor

assignments, i.e. for an order k and components pj and pj+1,

β =

∑
v∈Vpj ,v′∈Vpj+1

Γk,v,v′

|Vpj | × |Vpj+1 |

For example, β = 0.3 indicates that 30% of the component vendor assignments

74

are not allowed in the AVM. In all our computations we set β to be the same for

all orders and components in each scenario. Note that 1 > β ≥ 0, where a high

β value indicates that there are many illegal component-vendor combinations. On

the other hand β = 0 refers to the case where there are no AVM restrictions.

The solution algorithms were all coded in C++. The CPLEX 7.0 LP and

network solver libraries were invoked to solve the decomposed sub-problems. All

computations were performed on a Pentium IV 4.0 GHz PC with 512MB RAM and

18GB disk space. Tables 4.1 to 4.3 highlight the results of our computational study,

where Cols and Rows indicate the total number of columns and rows in formulation

LP (see §3.1) respectively. Note that the column count decreases with increasing

β since the number of feasible pack-types decreases. Results obtained via three

solution approaches are presented, i.e. procedures GLP, CG and BD. GLP refers

to solving formulation LP, with all feasible pack types enumerated directly using

the CPLEX general-purpose LP solver. CG and BD refer to the column generation

procedure and the benders decomposition procedure respectively. CPU/s indicates

the mean computation time (average of the ten random instances) in seconds ob-

tained at each β level. Itns indicate the mean number of pricing iterations used by

procedure CG.

75

Table 4.1: Problem B Set 1: |K| = 200, |V | = 10, T = 7

CG BD GLP

β Cols Rows CPU/s Itns CPU/s Cuts CPU/s

0 1400000 1617 17.22 8 1.35 0 2614.7

0.1 1134000 1617 14.2 7 1.38 0 2171.0

0.2 896000 1617 13.4 6.7 1.38 0 1450.6

0.3 686000 1617 13.3 6.3 1.39 0 987.4

0.4 504000 1617 12.75 6.3 1.39 0 913.4

0.5 350000 1617 12.65 6 1.4 0 652.0

0.6 224000 1617 12.4 5.9 1.4 0 448.3

0.7 126000 1617 12.2 5.7 1.39 0 340.7

0.8 56000 1617 11.9 5.1 1.74 0.2 240.2

0.9 14000 1617 11 4.7 4.1 2.2 128.5

0.98 560 1617 10.2 4.5 11.7 10.2 18.2

Table 4.2: Problem B Set 2: |K| = 100, |V | = 20, T = 7

CG BD GLP

β Cols Rows CPU/s Itns CPU/s Cuts CPU/s

0 5600000 1127 15.25 49 0.98 0 NA

0.1 4536000 1127 13.05 48.2 0.98 0 NA

0.2 3584000 1127 12.78 47 0.98 0.1 NA

0.3 2744000 1127 12.35 46.4 0.98 0.3 NA

0.4 2016000 1127 11.75 43.9 1.45 0.7 7184.25

0.5 1400000 1127 11.11 42.9 1.62 1.2 2402.1

0.6 896000 1127 10.44 41.7 2.82 2.2 1298.5

0.7 504000 1127 10 39.1 3.48 2.8 889.5

0.8 224000 1127 9.45 39.6 7.4 5.8 402.7

0.9 56000 1127 8.65 37.9 10.55 8.5 229.7

0.95 14000 1127 7.45 36.2 15.2 14.6 115.4

76

Table 4.3: Problem B Set 3: |K| = 200, |V | = 20, T = 7

CG BD GLP

β Cols Rows CPU/s Itns CPU/s Cuts CPU/s

0 11200000 1827 NA 56.18 18.6 2.5 0

0.1 9072000 1827 46.85 13 2.5 0 NA

0.2 7168000 1827 45.54 12.3 2.6 0 NA

0.3 5488000 1827 42.66 11.2 2.5 0 NA

0.4 4032000 1827 42.94 11.1 2.5 0 NA

0.5 2800000 1827 38.1 10.5 2.5 0.1 NA

0.6 1792000 1827 38.16 10.1 3.2 0.3 9835

0.7 1008000 1827 38.2 10.1 5.4 1.1 4138

0.8 448000 1827 35.46 8.8 10.7 3.1 1060.8

0.9 112000 1827 34.36 8.3 24 7.1 352.2

0.95 28000 1827 33.7 8.2 100.8 17.6 283.5

In our implementation of CG, the master problem initially consists of one col-

umn per customer order. For the pricing scheme we solve |K| × T shortest path

problems during each pricing iteration. One new column per shortest-path prob-

lem is then augmented into the master problem if it has a negative reduced-cost.

A few other pricing schemes were also experimented but generally gave inferior

performance for our problem instances. Cuts refer to the mean number of cuts

generated by procedure BD.

We first remark that for all problems sets, both the decomposition procedures

CG and BD outperform GLP in computation times even for our smallest problem

instances. For large instances (over 2 million variables) CPLEX was unable to

load the problem data (indicated by NA in Tables 4 and 5) due to limited storage

resources, whereas procedures CG and BD solves the same problems using only

77

modest computation times. For procedure CG, we observe that the number of

pricing iterations for problem set 2 (Table 4.2) is generally larger than in problem

sets 1 and 3 (Tables 4.1 and 4.3). This may be because |K| in problem set 2 is

the lowest, and since each pricing iteration can add up to |K| × T new columns,

less number of columns are being priced out per iteration. Note that the number

of component vendors |V | does not change this maximum number of new columns

in our pricing algorithm.

We now compare the performance of CG and BD under different AVM restric-

tion scenarios. Figures 4.1, 4.2 and 4.3 show scatter plots of CPU time against the

β level using the results in Tables 4.1, 4.2 and 4.3 respectively. In all problem sets

we observe that for lower β values, procedure BD outperforms CG, while for high

β values procedure CG outperforms BD. Procedure CG is relatively insensitive

to the β level (with slightly lower CPU times and fewer pricing iterations as β

increases), whereas the computational effort required by BD increases significantly

when β is high (in particular β > 0.9).

78

Figure 4.1: CPU Times vs AVM Restriction Level: Problem Set 1

Figure 4.2: CPU Times vs AVM Restriction Level: Problem Set 2

79

Figure 4.3: CPU Times vs AVM Restriction Level: Problem Set 3

The performance behavior exhibited by procedure BD is reasonably intuitive.

When β is low, there are relatively few vendor assignments in the AVM that are

disallowed. Hence for a given schedule generated in problem RB the chance of find-

ing a feasible vendor assignment is conceivably higher. For our example problems,

solving the sequence of pure transportation problems T Pj in the first iteration of

the procedure proves to be sufficient for obtaining the complete solution when β

is relatively low (in the range of 0 to 0.4 on average over all three problem sets).

When β increases, more vendor assignments are illegal, and as a consequence an

increasing number of feasibility cuts are generated before the solution converges

to optimality. Despite this, BD still outperforms procedure CG consistently until

β > 0.9 (average over all three problem sets) in our example problems.

We note that procedure BD is clearly a winner when the AVM restrictions

are not too severe. This is in fact the case for the hard-disk drive example, where

customers specify the HSA-disk combinations which are not allowed in their orders.

80

Most HSA-disk assignments are typically acceptable to the customers, and the

disallowed assignments turn out to be quite sparse and few in the AVM but cannot

be ignored during the course of planning. In formulations LP or MCF in Chapter

3, the number of feasible pack-types and flow-paths respectively are extremely

large in such cases. Solving either formulations directly is clearly inefficient if

not impossible. Procedure CG, though relatively robust, is not able to use this

information to its advantage. We hence offer procedure BD as an alternative

approach for such scenarios. On the other hand, in scenarios where the AVM

restrictions are so tight that possibly only very few build-types are allowed for each

order, it is conceivable that ennumerating all the possible flow-paths would possibly

be the best solution approach.

4.5 Concluding Remarks

In this chapter we developed a different solution approach for the multi-period

build-pack scheduling problem. This solution approaach uses a multi-stage benders

decomposition method that solves the problem in a sequential manner. We have

demonstrated in our computational experiments that our approach outperforms

both the CPLEX general-purpose LP solver and the column generation technique

in the case when the AVM restrictions are not too severe. We thus recommend

the use of the multi-stage decomposition method in such scenarios. Possible future

extensions of this can include some enhancements to our solution approach in order

to accelerate convergence. For instance, the solution scheme in the multi-stage

81

decomposition generates a single cut at each stage of the problem. In anticipation

of a possibly large number of infeasible assignments generated when the AVM

restriction level is high, it may be profitable to attempt generating multiple cuts

at each stage during a single iteration. One possibility is to make use the existing

pool of transportation solutions generated from the Dantzig-Wolfe sub-problem to

form demand allocations for the successor problem stage. New feasibility cuts can

then be generated. Alternative decomposition schemes other than the sequential

procedure we proposed can be considered too. For example, in the first stage

independent transportation feasibility problems can be solved for the individual

components in parallel. In the second stage the vendor assignments from the

first stage are used to build the transportation problems for the component-pairs.

Again, feasibility cuts can be generated from both stages when the AVM restrictions

are violated, with the cuts from the second stage linking all the first stage problems

together in general. Dantzig-Wolfe decomposition can again be used to solve the

first stage problem with the cut constraints.

82

Chapter 5

The Build-Pack Scheduling

Problem With Limited Set-ups

In this chapter we consider an extension of the build-pack scheduling problem when

there are some special restrictions on work-cell (assembly lines) setups. In the h.d.d.

assembly plant, there are a fixed number of work cells in each production period.

The work cells are flexible in the sense that they can be set up to assemble any

build type, but the current practice is such that these setups or cell conversions

are only performed at the end of each period. Hence, a cell can only assemble one

build type in each period. The motivation of such a practice is not in the technical

difficulty of performing cell conversions as actual setup times are negligibly short,

but rather for the convenience and ease of monitoring the yields of each batch of

build type in production.

In §5.1 we provide a mixed integer program (MIP) formulation of this problem.

83

We also develop some simple LP rounding procedures in §5.2 to obtain good feasible

solutions to the problem. Computational results are presented in §5.3.

5.1 Problem Formulation

In this problem we consider manpower capacity in the units of number of work cells

available. The cell-rate f is the number units of products that can be produced

per cell per period. Let nt denote the total capacity available in period t in the

unit of work cells. Let the activity levels Cθ
t denote the number of cells making

build type θ in period t. The total tardiness production planning formulation LP

presented in Chapter 3 is extended to accommodate the cell setup restrictions as

follows:

Problem IP

Minimise Z =
∑

k∈K

T∑

t=1

gk
t

[
t∑

t′=1

(
dk

t′ −
∑

s∈Sk

Bs,t′

)]+

(5.1)

subject to:

∑

θ∈ϑ

Cθ
t ≤ nt ∀ t = 1 · · · T (5.2)

∑

s∈Sθ

Bs,t ≤ f · Ce
t ∀ θ ∈ ϑ, t = 1 · · · T (5.3)

t∑

t′=1

(
∑

k∈Kv

rp
k

∑

s∈Sk

Bs,t) ≤
t∑

t′=1

mv,t′ ∀ v ∈ Vp, ∀ p ∈ P, t = 1 · · · T (5.4)

T∑

t=1

∑

s∈Sk

Bs,t ≤
T∑

t=1

dk
t ∀ k ∈ K (5.5)

Bs,t ∈ <+, Cθ
t ∈ Z+ s ∈ S, θ ∈ ϑ t = 1 · · · T (5.6)

84

Constraints (5.2) require that the total number cells used is less than the avail-

able cells in each period. Constraints (5.3) state that the total units of products

built using build type θ must be less than the total production capacity allocated

to build type θ in each period t. Constraints (5.6) require Cθ
t to take on values

belonging to the set of all positive integers Z+, and this together with (5.2) and

(5.3) is sufficient to ensure that different build types are not built in the same cell in

each period. Constraints (5.1), (5.4) and (5.5) are reproduced directly from (3.1),

(3.3) and (3.4) in P for the sake of completeness.

IP is a linear mixed integer problem with general integer variables, and thus far

we are not able to locate special structural properties in the problem that can be

exploited for solution efficiency. We hence turn to study heuristics or approximate

techniques that allow us to obtain good feasible solutions. In the next section we

outline some simple rounding procedures that can be used for that purpose.

5.2 Rounding Procedures For Feasible Solutions

in IP

Rounding procedures for integer programs generally consists of two phases. First,

the LP relaxation of the original discrete problem is solved. Second, if the solu-

tion does not satisfy the integer restrictions, then each fractional variable is either

rounded up or down to its nearest integer. The resulting solution then forms an

upper bound on the optimal solution. In general, LP rounding does not guaran-

85

tee optimal or near-optimal solutions. However, by proper design of the rounding

scheme the upper bounds on the optimal solution that are obtained can be consid-

erably tightened.

In the following we present four simple rounding procedures R1, R2, R3 and

R4 for obtaining feasible solutions to IP. R1 and R2 are based on straightforward

rounding down of the LP relaxation, while R3 and R4 attempts to use some dual

information myopically to influence the rounding decisions. The rounding proce-

dures are outlined below. Before proceeding we define problem IP ′, which is the

linear relaxation of IBP with a set of fixed Cθ
t ∀θ ⊂ ϑ̂, s ∈ Ŝ, where ϑ̂ and Ŝ are

the set of all build types and pack types respectively in the column pool of problem

MP at the end of the column generation procedure described in §3.2.

Procedure R1

1. Solve LP using the column generation procedure in §3.2.

2. Check if the solution B̃s,t satisfies condition :

∑

θ∈ϑ̂

d
∑

s∈Sθ
B̃s,t

f
e ≤ nt t = 1 · · · T (5.7)

If it does, then the solution is optimal in IP. The procedure hence terminates.

Otherwise, proceed to Step 3.

3. Compute the number of work cells ∆(t) in the LP solution that exceed ca-

pacity limit for each period t, i.e.

∆(t) =
∑

θ∈ϑ̂

d
∑

s∈Sθ
B̃s,t

f
e − nt ∀ t = 1, · · · , T

86

4. For each period t, pick ∆(t) build types in production with the greatest slacks

(d
∑

s∈Sθ
B̃s,t

f
e−

∑
s∈Sθ

B̃s,t

f
) and reduce one work cell of production of each

type from the LP solution, i.e. fix Cθ
t = b

∑
s∈Sθ

B̃s,t

f
c if build type θ has been

picked. Fix all other Cθ
t at Cθ

t = d
∑

s∈Sθ
B̃s,t

f
e.

5. Solve IP ′. The resulting solution is feasible in IP.

Procedure R2

1. Solve LP using the column generation procedure in §3.2.

2. Check if the LP solution B̃s,t satisfies condition (5.7). If it does, then the

solution is feasible in IBP and the procedure terminates. Otherwise, proceed

to Step 3.

3. For each period t that does not satisfy (5.7), select one build type θ′ ∈ ϑ̂ with

the greatest slack. Fix Cθ
t = b

∑
s∈Sθ′

B̃s,t

f
c if θ = θ′, and Cθ

t = d
∑

s∈Sθ′
B̃s,t

f
e

otherwise .

4. Re-solve IP ′. Go to Step 2.

Procedure R3

1. Solve LP using the column generation procedure in §3.2. Set the iteration

u = 1.

2. Check if the LP solution B̃s,t satisfies condition (5.7). If it does, then the

solution is feasible in IBP and the procedure terminates. Otherwise, proceed

to Step 3.

87

3. Set the right-hand side of (5.3) as

∑
s∈Sθ′

B̃θ,t

f
, and re-solve the LP relaxation

of IP ′. Obtain the dual variables πθ,t associated with (5.3).

4. For each period t that does not satisfy (5.7), select build type θ′ ∈ ϑ̂ where

θ′ = arg

(
max
θ∈ϑ

πθ,t ·
(∑

s∈Sθ′
B̃s,t

f
− b
∑

s∈Sθ′
B̃s,t

f
c
))

.

5. Fix Cθ
t = b

∑
s∈Sθ

B̃s,t

f
c if θ = θ′, Cθ

t = d
∑

s∈Sθ
B̃s,t

f
e otherwise. Re-solve IP ′.

Go to Step 2.

Procedure R4

1. Begin with the feasible solution to IBP from R3. denote πθ,t as the dual

variable associated with each constraint in (5.4).

2. Increase Cθ′

t by one work cell, where θ′ = arg

(
min
θ∈ϑ

πθ,t

)
in the current

solution. Re-solve IP.

3. Check condition (5.7) for t = t′. If (5.7) is satisfied go back to Step 2.

Otherwise select the build-type θ′′ with the greatest slack in (5.3) for t = t′.

If θ′′ = θ′ no improvement is being made to the solution and the procedure

terminates. Otherwise proceed to Step 4.

4. Fix Cθ′′

t′ = b
∑

s∈Sθ
B̃s,t

f
c. Re-solve IP ′ and go back to Step 2.

88

5.3 Computational Results

We use three problem sets to test the solution procedures. Each set consists of eight

problem instances with the same number of order-types and component models.

Demand, capacity and the AVM data though randomly generated in each instance,

were also scaled in proportion to industrial parameter sizes. All problems were

designed based on the hard-disk drive case. Each instance was solved using R1 -R4

and also solved using CPLEX 7.0 MIP Solver on a Pentium IV, 2.4 GHz PC with

512 MB RAM. All the algorithms were coded in C++. Tables 5.1, 5.2 and 5.3

highlight the results of our computational study.

Table 5.1: Problem IP Set 1: |K| = 50 |V | = 5 T = 7

R1 R2 R3 R4 GMIP

Instance Cols Rows Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s

1 44975 1337 0.997 0.5 0.997 0.6 0.998 2.8 0.999 6.2 1 848.33

2 44975 1337 0.646 0.7 0.786 0.7 0.738 4 0.785 11 0.807 10000

3 32095 1337 0.993 0.3 0.995 0.3 0.993 1.2 0.995 3.2 1 389.4

4 32095 1337 0.988 0.4 0.997 0.5 0.998 1.3 0.999 6.5 1 416.1

5 32095 1337 0.993 0.3 0.994 0.3 0.996 1.7 0.992 5.4 1 243.2

6 21455 1337 0.969 0.4 0.99 0.5 0.991 2.9 0.994 6.2 1 986.2

7 44975 1337 0.933 0.5 0.957 0.5 0.958 2.4 0.957 5.1 0.973 10000

8 44975 1337 0.984 0.4 0.986 0.4 0.986 1.5 0.987 3.2 0.99 10000

89

Table 5.2: Problem IP Set 2: |K| = 100 |V | = 5 T = 7

R1 R2 R3 R4 GMIP

Instance Cols Rows Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s

1 63315 1687 0.891 1.9 0.942 2.7 0.945 48.8 0.941 51.5 0.978 10000

2 89075 1687 0.984 2 0.989 2.3 0.992 17.1 0.992 28.4 0.972 10000

3 63315 1687 0.891 2.2 0.957 2.6 0.954 62.1 0.958 90.7 1 3968.1

4 63315 1687 0.95 1.1 0.98 1.2 0.981 19.7 0.991 36.5 1 4819.5

5 89075 1687 0.823 2.2 0.922 3 0.933 38.6 0.93 72.5 1 5317.7

6 89075 1687 0.977 1.5 0.99 1.7 0.991 17.5 0.997 31.6 1 4288.5

7 63315 1687 0.926 1.8 0.957 2.1 0.958 25.8 0.957 48.6 0.97 10000

8 89075 1687 0.968 1.7 0.985 2 0.987 15.8 0.994 25.1 1 9197.5

Table 5.3: Problem IP Set 3: |K| = 100 |V | = 10 T = 7

R1 R2 R3 R4 GMIP

Instance Cols Rows Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s Ratio CPU/s

1 259700 7917 0.924 2.8 0.969 3.3 0.969 45.5 0.967 203.2 0.886 10000

2 259700 7917 0.98 3.3 0.985 3.3 0.987 61 0.99 233.6 0.94 10000

3 259700 7917 0.929 3.6 0.967 4.5 0.967 59.2 0.97 220.4 0.794 10000

4 259700 7917 0.94 3.7 0.969 5.1 0.972 43.3 0.969 275.9 0.868 10000

5 259700 7917 0.262 5.9 0.427 9.5 0.382 151.9 0.422 450.1 0.181 10000

6 259700 7917 0.984 3 0.991 3.3 0.99 58.6 0.994 183.6 0.891 10000

7 119700 7917 0.961 3.7 0.983 4.8 0.981 83.1 0.984 400.1 0.982 10000

8 119700 7917 0.988 3.3 0.994 3.75 0.992 45.2 0.994 210.5 0.993 10000

Cols and Rows refer to the problem sizes. CPU refers to the time in seconds

used by the solution algorithms. GMIP refers to solving the problem instance using

the general purpose CPLEX MIP solver. We set a solution time limit of 10,000

seconds and terminate the computations if GMIP does not find the optimal solution

within the time limit. The best feasible solution obtained is presented. Ratio

refers to the ratio of a valid lower bound to the solution obtained by the various

90

procedures. For problems solved to optimality by GMIP, the optimal solution is

used for the lower bound. Otherwise, we use the LP relaxation of IBP for the

lower bound.

The computation results shows that even the simplest procedures R1 and R2

gives reasonably good performance, with the solutions obtained within at least 90%

of the respective lower bounds, validating also the robustness of the heuristics, with

the exception of instance 5 in problem set 3 (Table 5.3). In this case the LP lower

bound was only 42.2% of the best upper bound obtained (using R4). However

all the rounding heuristics still outdo GMIP, which could only obtain a Ratio of

18.1%. The inferior solution quality in this instance may be due to a case of a weak

LP bound, which results in a large gap between the optimal integer solution and

the LP solution.

Although GMIP produced tighter upper bounds for most problems in Tables

5.1 and 5.2 at the end of the imposed time limit, the computation times required by

the rounding heuristics to obtain their bounds are reasonably small in comparison.

For problems in Tables 5.1 and 5.2 solved to completion by GMIP, R4 takes an

average of 1.5% of the solution time required by CPLEX to form upper bounds at

98% of the optimal solution. Further, we remark that for all the problems in Tables

5.1 to 5.3, when GMIP was run for an equal amount of CPU time used by R4,

no integer solutions were found. The rounding heuristics outperform the CPLEX

solutions on the largest problems (Table 5.3), obtaining tighter upper bounds at

modest computation times (average of 2.7% of the 10,000s used by GMIP. In other

91

words R4 uses less than 2.7% of the computation time needed by CPLEX to reach

that same bound. Generally it is observed that R3 and R4 gives marginally better

bounds than R1 and R2 but at the expense of more computation time used for the

dual price calculations.

5.4 Concluding Remarks

In this chapter we have considered an extension of the multi-period build-pack

scheduling problem that was formulated and solved in Chapters 3 and 4. The

problem scenario is such that, in each production period, the number of produc-

tion set-ups are limited. This effectively constrains the maximum number of kinds

of build-types that can be produced in each period. A MIP formulation is then

developed, which is based on the column generation formulation P of Chapter

3. Rather than solving the MIP directly, we developed some heuristics that sim-

ply perform rounding operations on the LP relaxation to produce upper bounds.

These upper bounds are demonstrated to be reasonably tight and requires modest

amounts of computation times.

For the rounding heuristics, as a managerial guide we suggest that, for a quick

evaluation of the schedule in the situation of frequent capacity re-planning, R1 or

R2 may be used. For example, the planning cycle may consist of several exchanges

or negotiations in the capacity schedule between the production planning and in-

dustrial engineering (IE). These negotiations may go back and forth for several

rounds before both parties are satisfied. In each round of negotiation the IE pro-

92

poses an updated capacity schedule. The production manager has to then evaluate

the impact of the capacity schedule on the quality of his production schedule, and

decide whether to accept or reject the proposed capacity change. If the change is

rejected, the IE then modifies the capacity schedule and the negotiation cycle is

repeated. In this case it may not be possible to devote excessive time to compute

the optimal production schedule for each round of the negotiation. R1 or R2 can

then be used to re-generate the production schedules for a conservative evaluation

during the negotiations in the order of seconds. Once the final capacity schedule

is published, R3 or R4 can then be applied for an improved final solution.

93

Chapter 6

The Build-Pack Planning Problem

With Stochastic Demands

We consider the build-pack planning problem with stochastic demands in this chap-

ter. The motivation and the description of the problem scenario is given in §2.2.2.

A summary of the problem is as follows. Given a fixed set of component supplies,

we are interested in evaluating a production plan (or build plan) that achieves as

low a total production costs as possible prior to full knowledge of the customer

demands. The production plan determines the total levels of each build-type to

produce over the entire time bucket. The total production costs consists of shortage

costs for unfulfilled demand and holding costs for excess production on expecta-

tion. When customer demands are realised, the build-types are assigned to fulfill

the demands, observing the AVM requirements of the customers.

The outline for this chapter is as follows. In §6.1 we presents a set-partitioning

94

type formulation for the problem. §6.2 develops the column generation algorithm

to solve the linear relaxation of the model, and based on this, §6.3 then presents

a branch-and-price solution framework designed for the problem. Finally, §6.4

present some computational results of our implementation.

6.1 The Partitioning Policy Formulation

We assume that the customer demands dk are independently and normally dis-

tributed with mean µk and standard deviation σk for each customer k. The distri-

bution parameters may be estimated either using past demand data, or from the

demand forecasting module if one exists. The normality assumption is relatively

common in production planning and inventory control models, and is reasonable

for most high-volume manufacturing environments. We consider the treatment of

arbitrary distributions in Chapter 7.

Two key characteristics of the build-pack planning problem: high build-type

proliferation and an extremely large number of random outcomes, renders the use

general stochastic programming techniques like the L-shaped method or scenario

decomposition methods impractical. In this work we adopt a set partitioning for-

mulation for the problem. A feasible solution arising from the set-partitioning

formulation is termed here as a partitioning policy. Such a policy requires a set

partition over all customers to be determined a priori to demand realization. When

the demands are realised, this set partition is not changed. Although a partitioning

policy cannot be guaranteed to be optimal among all policies, it is considerably

95

more tangible and easier to execute in actual operation. Essentially, the idea of

a partitioning policy is to consider the demands in terms of customer pools (i.e.

groups of customers), rather than the individual demands. Hence the build-plans

consist of allocating build-types towards these customer pools. Note that the AVM

restrictions require these build-types to observe the combined AVM of the customer

pool. The realised demands are then fulfilled with these allocated build-types. A

larger customer pool can take advantage of the so-called ‘risk-pooling’ effect127 ,

which serves to decrease demand variability, but at the same time stands to incur

some opportunity costs associated with over-restricting the set of build-types or

resources usable due to the combined AVM restrictions in the customer pool. An

optimal partitioning policy is one that forms customer pools that gives the best

trade-off between the benefit of the risk-pooling effect, versus the opportunity loss

in restricting the set of build-types usable due to the AVM requirements, thus

achieving minimum total costs on expectation.

Let mv be the components supply from vendor v. Let i denote the index of

customer pool Ki ⊆ K, and I the set of indices of all customer pools. The decision

variables are:

Yi =

1 if Ki appears in the solution

0 otherwise.

Qi,θ ≥ 0: the total level of build-type θ allocated to customer pool Ki

96

The set-partitioning formulation is as follows:

Problem IBP ′

Minimize Z =
∑

i∈I

Ci

(∑

θ∈ϑi

Qi,θ

)
· Yi (6.1)

subject to:
∑

i∈I

αk
i · Yi ≥ 1 ∀ k ∈ K (6.2)

∑

θ∈ϑi

Qi,θ ≤ M · Yi ∀ i ∈ I (6.3)

∑

i∈I

∑

θ∈ϑi

βv
θ · Qi,θ ≤ mv ∀ v ∈ Vp , ∀ p ∈ P (6.4)

Qi,θ ≥ 0 , Yi ∈ {0, 1} ∀ i ∈ I ∀ θ ∈ ϑ (6.5)

where

αk
i =

1 if Ki contains order k

0 otherwise.

βv
θ =

1 if build plan θ uses material v

0 otherwise.

Ci(·) in (6.1) is the production cost function associated with customer pool Ki.

It consists of penalty costs g per unit short of the total demand of Ki, and holding

costs h per unit production in excess of the total demand of Ki. Since the demands

of Ki is random, Ci is an expectation, and can be regarded as parametric function

of Qi. Denoting µ(i) =
∑

k∈Ki

µk and σ(i) =

√∑

k∈Ki

σ2
k for the aggregated demand

∑

k∈Ki

dk, the expected cost associated with Ki is:

Ci(Qi) = h · (Qi − µ(i)) + σ(i) · (g + h) · G
(

Qi − µ(i)

σ(i)

)
(6.6)

97

where for notational convenience we denote Qi =
∑

θ∈ϑi

Qi,θ, ϑi being the set of all

build-types that complies with the AVM of Ki. The function G(·) denotes the

standard normal ‘loss’ function, where G(κ) =

∫ ∞

κ

(z − κ) · φ(z)dz for κ, z ∈ <,

and φ(·) is the standard normal density function.

Ci(·) is also known as the news-vendor cost, and the optimum solution Q∗
i is

given by: Q∗
i = µ(i) + κ∗ · σ(i), where κ∗ is so that Φ(κ∗) =

g

g + h
, and Φ(·) is the

standard normal distribution function. The minimum costs C∗
i is given by:

C∗
i = (g + h) · σ(i) · φ(κ∗) (6.7)

Constraints (6.2) ensure that each customer k is covered only once in the optimal

solution. Constraints (6.3) ensure that a build-type allocation occurs only if the

corresponding customer pool is activated. Constraints (6.4) are the limitations on

the components availability.

Since IBP ′ is a minimization program and Ci(·) is known to be convex in

Qi for each Ki, we can create piece-wise linear approximations of Ci using a set

of discretized levels as in usual linear programming techniques. Note that the

convexity of Ci(·) holds for any demand distributions in general. In the following

we develop the piece-wise linear approximation of IBP ′. Define parameters Qi,j,θ

to be the jth level of build for pool Ki using θ, j = 1 · · · Ji, where Qi,θ,Ji is some

maximum build-level for Ki. Define the rational indicator variables Xi,θ,j and si,

where 1 ≥ Xi,θ,j ≥ 0 , 1 ≥ si ≥ 0. Xi,θ,j indicates a build-level of Xi,θ,j · Qi,θ,j.

si is viewed as the fraction of demand unfulfilled for Ki. In particular si = 1

indicates the case when Yi = 1 but Qi = 0 in IBP ′. In general, any total build-

98

level 0 ≤ Qi ≤ Qi,θ,Ji can be indicated by a feasible solution of the convexity

condition: si +

Ji∑

j=1

∑

θ∈ϑi

Xi,θ,j = 1. Using this convexity condition in conjunction

with the function convexity of Ci(·) in Qi, a proper piece-wise linear approximation

for Ci(·) can then be formed as follows:

Minimize Z =
Ji∑

j=1

∑

θ∈ϑi

Ci (Qi,θ,j) · Xi,θ,j + Ci(0) · si (6.8)

subject to:

Ji∑

j=1

∑

θ∈ϑi

Xi,θ,j + si = 1 (6.9)

Note that in (6.8) Ci(0) = g ·
∑

k∈Ki

µ(k). The complete piece-wise linear approxima-

tion of IBP ′ can then be written as:

Problem IBP

Minimize Z =
∑

i∈I

(
Ji∑

j=1

∑

θ∈ϑi

Ci (Qi,θ,j) · Xi,θ,j +
∑

k∈Ki

g · µ(k) · si

)
(6.10)

subject to:

∑

i∈I

αk
i · Yi ≥ 1 ∀ k ∈ K (6.11)

Ji∑

j=1

∑

θ∈ϑi

Xi,θ,j + si = Yi ∀ i ∈ I (6.12)

∑

i∈I

∑

θ∈ϑi

βv
θ ·

Ji∑

j=1

Qi,θ,j ·Xi,θ,j ≤ mv ∀ v ∈ Vp , ∀ p ∈ P (6.13)

Yi ∈ {0, 1}, 1 ≥ si ≥ 0, 1 ≥ Xi,θ,j ≥ 0 ∀ i ∈ I , ∀ θ ∈ ϑ , j = 1 · · · Ji (6.14)

The objective function(6.10) is the sum of the piece-wise approximations (6.8)

over all i ∈ I. Constraints (6.11) is reproduced from (6.2) directly. Constraints

99

(6.12) follows from (6.9) to ensure that the cost associated with each customer

pool Ki is a convex combination of si and Xi,θ,j ∀θ ∈ ϑi, j = 1 · · · Ji. (6.12) like

in (6.3) also ensures that a build-type is allocated to a customer pool only if the

customer pool is activated (i.e. Yi = 1). The components availability constraints

(6.13) follow from (6.4). For the rest of this work we will focus our attention on

solving the formulation IBP .

The linear relaxation of IBP is obtained by substituting out the binaries Yi from

the formulation using (6.12). Defining X ′
k =

∑

i∈I

αk
i · si, the following formulation

results:

Problem BP:

Minimize Z =
∑

i∈I

∑

θ∈ϑi

Ji∑

j=1

Ci (Qi,θ,j) · Xi,θ,j +
∑

k∈K

g · µk · X ′
k (6.15)

subject to:

∑

i∈I

αk
i ·
∑

θ∈ϑi

Ji∑

j=1

Xi,θ,j + X ′
k ≥ 1 ∀ k ∈ K (6.16)

∑

i∈I

∑

θ∈ϑi

βv
θ

Ji∑

j=1

Qi,θ,j · Xi,θ,j ≤ mv ∀ v ∈ Vp , ∀ p ∈ P (6.17)

1 ≥ Xi,θ,j ≥ 0 , 1 ≥ X ′
k ≥ 0 ∀k ∈ K , ∀ i ∈ I , ∀ θ ∈ ϑ , j = 1 · · · Ji (6.18)

The objective function (6.15) and constraints (6.16) are obtained from (6.10)

and (6.11) respectively by substituting out Yi. X ′
k ∀k ∈ K can be interpreted as

artificial variables introduced to ensure feasibility in BP , or as a build plan to

serve k with zero build level, and hence has cost g · µk. Note that in a proper set-

partition, (6.16) together with (6.15) still forms the appropriate piece-wise linear

100

approximation of total expected cost function. Constraints (6.17) is reproduced

from (6.12) directly for the sake of completeness.

6.2 Solving Problem BP

In this section we consider solving the linear problem BP. Note that in the for-

mulation of BP, if the AVM restrictions are not present, then optimal pool K∗
i is

such that αk
i∗ = 1 ∀ k ∈ K, i.e. all the demands are pooled together. Furthermore,

since there is no restrictions on the set of build-types to use, all the build-types

become essentially indistinguishable, and hence the optimal build-level can be de-

termined easily. In general however, all build-types are unique, and BP has a total

column count in the order of 2|K|×|V ||P |. This renders solution by general purpose

LP-solvers impractical if not impossible for any realistic problem instances. As in

the deterministic build-pack scheduling problem we propose a column generation

approach to address this problem.

Define RBP as a restricted version of BP, where RBP contains only a subset of

all feasible columns in BP. The solution procedure is outlined as such. First RBP

is solved to optimality using any general-purpose linear solver. Next, we check

for further improvements that can be made to the current solution by considering

new customer pools or build-types not in the current solution. This corresponds to

scanning for non-basic columns with negative reduced costs in BP . If there are no

such columns then the current solution is optimal for BP and the procedure ends.

Otherwise, these columns are augmented to I ′ and RBP is re-solved.

101

Column generation allows new entering variables to be located without explicit

enumeration of all the columns. This is accomplished by formulating the search for

new variables as a pricing problem. In our pricing scheme, we search for a subset

Ki, a corresponding feasible build-type θ, and the associated maximum build-level

Qi,θ,Ji that minimizes the reduced cost of a non-active Xi,θ,Ji . The columns Xi,θ,j

for j = 1 · · · Ji are then augmented in RBP. The pricing problem is stated as:

Problem SBP

Minimize Zi,θ,Ji = Ci(Qi,θ,Ji) −
∑

k∈K

γk · αk
i −

∑

p∈P

∑

v∈Vp

πv · βv
θ · Qi,θ,Ji (6.19)

subjected to:

∑

v∈Vp

βv
θ = 1 ∀ p ∈ P (6.20)

αk
i + βv

θ + βv′

θ ≤ 3 − Γk,v,v′ ∀ k , ∀ v ∈ Vp , ∀ v′ ∈ Vp′ ,

where p, p′ ∈ P, p 6= p′ (6.21)

αk
i , βv

θ ∈ {0, 1} , Qi,θ,Ji ≥ 0 ∀ k ∈ K , ∀ v ∈ Vp , ∀ p ∈ P (6.22)

(6.19) is the reduced cost expression of Xi,θ,J . γk and πv are the dual prices

associated with (6.16) and (6.17)respectively. Note that γk ≥ 0 and πv ≤ 0. (6.20)

restricts one supplier v per component p. (6.21) enforces the AVM for the set of

orders Ki.

Problem SBP is a binary integer problem and is non-linear in the objective

function. The rest of this section develops the main components of the algorithm

for solving SBP. §6.2.1 presents procedure Path for solving SBP in the case when

the customer pool Ki fixed. §6.2.2 develops procedure Group for solving SBP when

102

the build-type θ is fixed. In both cases we show that the respective problems can be

solved efficiently. Using the results of these two special cases, a specialized branch-

and-bound procedure is then developed in §6.2.3 to solve SBP for the minimum

reduced cost.

6.2.1 Solving SBP When Customer Pool Ki is Fixed

In this case a subset Ki is given, and we need to minimize (6.19) over βv and Qi, (we

temporally suppress the subscripts θ and j for clarity of notation). Substituting

the expression for Ci(Qi) from (6.6) we can re-write (6.19) as:

Zi = (h −
∑

p∈P

∑

v∈Vp

πv · βv) · (Qi − µ(i)) + σi · (g + h) ·G
(

Qi − µ(i)

σ(i)

)

−

∑

k∈Ki

γk + µ(i) ·
∑

p∈P

∑

v∈Vp

πv · βv

where Zi denotes the objective function in (6.19) for fixed Ki. Denoting π =

−
∑

p∈P

∑

v∈Vp

πv · βv, h′ = h + π and g′ = g − π, the above becomes:

Zi = h′ · (Qi − µ(i)) + σi · (g′ + h′) · G
(

Qi − µ(i)

σ(i)

)
−

(∑

k∈Ki

γk − µ(i) · π

)

The first two terms in the above corresponds exactly to the news-vendor prob-

lem with parameters g′ and h′. Noting that (6.20)-(6.22) are independent of Qi,

and substituting the expression for minimum costs of the news-vendor problem

(6.7) in the above, we have:

Zi(π) = (g′ + h′) · σ(i) · φ(κ∗) −
(∑

k∈Ki

γk − µ(i) · π
)

103

where here Zi is expressed explicitly as a function of π. As was previously defined,

κ∗ is so that Φ(κ∗) =
g′

h′ + g′ =
g − π

h + g
.

We will now go on show that, for nonnegative build-levels, i.e. Qi ≥ 0, the

pricing problem when Ki is fixed is equivalent to a shortest path problem. To

establish this, we first state the following lemma:

Lemma 1: Zi(π) is non-decreasing in π whenever Qi ≥ 0.

Proof. Recall that from the news-vendor problem, our optimal build-level is given

by Q∗
i = µ(i)+κ∗ ·σ(i). Since we are concerned only with non-negative build-levels,

it is necessary that κ∗ ≥ −µ(i)

σ(i)
.

Taking first derivatives on Zi(π), we have:

∂Zi

∂π
= σ(i) · (g + h) · ∂κ∗

∂π
· ∂φ(·)

∂κ∗ + µ(i)

= σ(i) · (g + h) ·
(

−1
(g+h)·φ(κ∗)

)
· (−κ∗ · φ(κ∗)) + µ(i)

= σ(i) · κ∗ + µ(i) ≥ 0

The last inequality follows directly from our definition of κ∗. �

Lemma 1 implies that to minimize Zi, we only need to select the minimum π.

To accomplish this we simply solve the following problem:

Problem SPP:

min
βv

∑

p∈P

∑

v∈Vp

(−πv) · βv

subject to: (6.20)-(6.22).

104

SPP requires us to select exactly one supplier per component without violating

the AVM constraints of the orders in Ki in a manner such that minimum costs is

incurred. This is in fact equivalent to the shortest path network problem SP in

§3.2 (see Figure 3.1 for the example of the network representation in the HDD

context), where G(N ,A) denotes the network graph, N being the node set and A

the set of arcs in the network connecting the nodes. N consists of source node s,

sink node t, and component nodes nv corresponding to the supplier v. The only

difference in this case is that an arc linking two component nodes exists only if it

does not violate the AVM restrictions for the entire group Ki, rather than for a

single customer. More formally, defining any full order {p1, p2, · · · , p|P |} on the set

of components P, the arc (v, v′) ∈ A only if v ∈ V k
pi and v′ ∈ V k

pi+1 (i = 1 · · · |P |),

and v and v′ does not violate the AVM for Ki. For instance, there is no arc linking

the second HSA component node to the second disc component node in Figure 3.1,

indicating that the combination of vendors is not allowed in the AVM of the entire

group Ki.

In the network arrangement, any feasible walk starting from the source node to

the sink node constitute a feasible build type. The problem of finding a minimum

cost feasible build type for orders Ki is thus equivalent to searching for the shortest

path through the equivalent network of the problem, where the ‘length’ of an arc

feeding into a component node associated with vendor v is equal to −πv. The

procedure for minimizing Zi for a given subset Ki is as follows.

105

Procedure Path

1. Establish the network G(N ,A) for the customer set Ki by deleting arcs (v, v′)

which violate the AVM of Ki.

2. Solve the shortest path problem (SPP) for the optimal path (build-type)

(βV)∗. Set the minimum path length π∗ = min(g,
∑

p∈P

∑

v∈Vp

(−πv) · (βv)∗).

3. Compute the associated minimal Zi using the news-vendor cost, i.e.

Z∗
i = (g + h) · σ(i) · φ(κ∗) −

(∑

k∈Ki

γk − µ(i) · π∗

)

where κ∗ is so that Φ(κ∗) =
g′

h′ + g′ =
g′ − π∗

h + g
.

In Step 2, the minimum path length π∗ is set to be at most g, since Φ(κ∗) ≥ 0.

Note that because Lemma 1 is necessary but not sufficient for Q∗
i to be non-

negative, it is possible that procedure Path may propose negative reduced cost

columns but with Q∗
i ≤ 0. Such columns are simply discarded from consideration.

6.2.2 Solving the Pricing Problem When Build-type θ is

Fixed

This corresponds to the problem of picking a subset Ki and the associated Qi to

minimize the cost for a particular build-type θ, (i.e. βv and hence π is fixed). For

some fixed π, the minimum cost associated with a group Ki is given by the optimal

news-vendor cost:

Zθ(Ki) = (g′ + h′) · φ(κ∗) ·
√∑

k∈Ki

σ2
k −

(∑

k∈Ki

γk − π ·
∑

k∈Ki

µk

)

106

where here Zθ(Ki) here denotes Zi,θ in (6.19) for fixed θ and varying with Ki.

Note that φ(κ∗) is independent of Ki. Zθ(Ki) can be shown to be submodular in

Ki. Given a ground set N , and subsets A and B where A, B ⊆ N , a function

F : 2N → < is submodular if F(A∪B) ≤ F(A) + F(B)−F(A∩ B) ∀ A, B ⊆ N .

Submodularity can be shown to hold for Zθ(Ki) as a result of the concavity of

the square-root term. Submodular function minimization (SFM) problems seek to

find the minimizing subset A∗, so that F(A∗) ≤ F(A)∀A ⊆ N . SFM problems are

known to be solvable in polynomial time, and several new combinatorial algorithms

have recently been developed (Iwata, Fleishcer and Fujishige71 and Schrijver122) to

solve general SFM. Here we apply an optimal ranking algorithm proposed by Shen,

Coullard and Mark124 to solve SFM of the above form arising from a joint location-

inventory model. In the following we state the self-explaining solution procedure,

where K∗(π) denotes the minimizing set for a given π.

Procedure Group

1. Denote ak = γk − π · µk, and bk = f(κ∗) · σ2
k ∀k ∈ K. If ak ≤ 0 for some

k ∈ K, the customer k is discarded from the rest of the algorithm. Update

K as the remaining set.

2. Rank the customers k ∈ K in the sequence {k1, k2 · · · k|K|}, so that

−a1

b1
≤ −a2

b2
· · · −

a|K|

b|K|
≤ 0

Denote K(n) as the set of customers {k1, · · · kn}. Initialize the index n = 1,

and min = 0.

107

3. If n > |K| go to Step 4. Otherwise compute Zi(K(n)). If Zi(K(n)) ≤ min

update min = Zi(K(n)). Increase n = n + 1, and repeat Step 3.

4. The minimizing set K∗(π) is the set K(n). Terminate the algorithm.

The minimizing set K∗(π) is also called a lower ideal of the ranking order in

Step 1. We refer readers to Shen, Coullard and Mark124 for a proof of the algorithm.

We now go on to establish some useful results for our problem.

Lemma 2: For any π′ > π, the minimizing set K∗(π′) always forms a subset of

K∗(π), i.e. K∗(π′) ⊆ K∗(π).

Proof. For some fixed π and non-empty subset K ′ ⊆ {K\K∗(π)}, the below in-

equality holds by optimality of K∗(π):

∑
k∈K′

(
γk − π · µk

)

(g + h) · φ(κ∗) ·
√∑

k∈K′ σ2
k

≤

√∑
k∈K∗(π)∪K′ σ2

k −
√∑

k∈K∗(π) σ2
k

√∑
k∈K′ σ2

k

(6.23)

Now we assume that for some π′ > π, the new minimizing set K∗(π′) is not a

subset of K∗(π′). Thus K∗(π′) can be described as K∗(π′) = K” ∪ K ′, for some

K” ⊆ K∗(π). By optimality of K∗(π′) the below inequality holds:

∑
k∈K′

(
γk − π′ · µk

)

(g + h) · φ(κ∗) ·
√∑

k∈K′ σ2
k

≥
√∑

k∈K”∪K′ σ2
k −

√∑
k∈K” σ2

k√∑
k∈K′ σ2

k

where (κ′)∗ is so that Φ((κ′)∗) =
g − π′

g + h
. By the concavity of the square-root

function the following holds for non-empty K ′:

108

√ ∑

k∈K”∪K′

σ2
k −

√∑

k∈K”

σ2
k >

√ ∑

k∈K∗(π)∪K′

σ2
k −

√ ∑

k∈K∗(π)

σ2
k (6.24)

Thus it follows that

∑
k∈K′

(
γk − π′ · µk

)

(g + h) · φ((κ′)∗) ·
√∑

k∈K′ σ2
k

>

∑
k∈K′

(
γk − π · µk

)

(g + h) · φ(κ∗) ·
√∑

k∈K′ σ2
k

Since π′ > π, the above can only be true if the numerator term increases faster

than the denominator term in π, i.e.

∂

∂π

(∑

k∈K′

(
γk − π · µk

)
)

>
∂

∂π

(g + h) · φ(κ∗) ·

√∑

k∈K′

σ2
k

⇒ −
∑

k∈K′

µk > (g + h) ·
√∑

k∈K′

σ2
k ·

∂κ∗

∂π
· ∂φ(·)

∂κ∗

⇒ −
∑

k∈K′

µk > (g + h) ·
√∑

k∈K′

σ2
k ·
(

−1

(g + h) · φ(κ∗)

)
· (−κ∗ · φ(κ∗))

⇒ 0 >
∑

k∈K′

µk + κ∗ ·
√∑

k∈K′

σ2
k = Q∗(K ′)

The last equality follows from the definition of the news-vendor cost model

for the subset K ′, where Q∗(K ′) is the associated optimum build-level. Since

Q∗(K ′) ≥ 0 ∀ K ′ ⊆ K by feasibility, this last inequality is contradictory for non-

empty sets K ′. Hence the assumption that K∗(π′) is not a subset of K∗(π) cannot

hold, and thus K∗(π′) ⊆ K∗(π). �

109

Lemma 3: For any given subset K̂ ⊆ K, the minimizing set K̂∗(π) over K̂

always forms a subset of K∗(π).

Proof. As before, (6.23) holds by optimality of K∗(π), and this re-written as:

∑
k∈K′

(
γk − π · µk

)

φ(κ∗) · (g + h)
≤
√ ∑

k∈K∗(π)∪K′

σ2
k −

√ ∑

k∈K∗(π)

σ2
k

for some non-empty K ′ ⊆ {K̂\K∗(π)}. Now we assume that K̂∗(π) is not fully

contained in K∗(π). As before we can then describe K̂∗(π) as K̂∗(π) = K ′ ∪ K”,

where K” is some subset so that K” ⊆ {K∗(π) ∩ K̂}. By optimality of K̂∗(π) the

following holds:

∑
k∈K′

(
γk − π · µk

)

φ(κ∗) · (g + h)
≥
√ ∑

k∈K”∪K′

σ2
k −

√∑

k∈K”

σ2
k

Using (6.24) again, it is obvious that the last two inequalities are contradicting

in the strict sense. Hence, the assumption that K̂∗(π) 6⊆ K∗(π) cannot be true,

thus K̂∗(π) ⊆ K∗(π). �

Lemmas 2 and 3 imply that if K ′ is the set of orders not in the minimizing set

K∗(π), then K ′ can be simply discarded from consideration whenever π′ > π, or

when we solve the problem over some subset K̂ ⊆ K. Conversely, if K” belongs to

the minimizing subset for some π′ > π or over some K̂ ⊆ K, then K” ⊆ K∗(π).

These observations are useful in reducing the search space when we apply procedure

Group to solve the related problems.

110

6.2.3 Solving for the Minimum Reduced Cost

We now consider solving SBP for the minimum reduced cost Zi∗ ,θ∗, where Ki∗ and

θ∗ denote the optimal customer pool and build-type respectively. To accomplish

this we will make use of the results in §6.2.1 and §6.2.2 embedded in a specialized

branch-and-bound procedure. Define the problem at the root node of the branch-

and bound tree as the relaxation of SBP by dropping constraints (6.21), i.e. the

AVM restrictions. At the beginning of the solution procedure this root node prob-

lem is first solved. When AVM restrictions are absent, any build-type θ assigned

to customer pool Ki is feasible. It is clear then from §6.2.1 that it suffices to select

the minimum cost build-type θ0 with cost π0, or equivalently the shortest path

length on the network of problem SPP. Solving for the corresponding subset K0

can then be accomplished by simply applying procedure Group over the candidate

set K, where the candidate set of a node is the set of all customers (variables) in

the node problem.

Once K0 is obtained, it is checked to see if any AVM restrictions are violated.

if θ0 is feasible for K0, the optimal solution is found and the procedure terminates.

Suppose (6.21) is now violated for the pair of suppliers (v, v′), where v ∈ p and

v′ ∈ p′ for some pair of components p and p′. Branching then take place to

create two new subproblems (or descendent nodes) based on arc (v, v′). The first

subproblem enforces (v, v′) to be active. This is equivalent to requiring (v, v′) to

be used in the shortest path network. All other arcs feeding nodes nv ∀v ∈ p′ are

thus eliminated. Customers k that are incompatible with (v, v′) are also eliminated

111

from the candidate set of the node, so that an AVM violation on (v, v′) will not

occur again. The second subproblem removes arc (v, v′) from the network, so that

again violations on (v, v′) will never occur. Customers that are incompatible with

all other remaining paths (build-types) are also eliminated.

At each descendent node, the problem is again solved by relaxing the remaining

AVM restrictions, using procedure Group over its ground set of customers. The

solution Z ′ at the node then forms a lower bound to all its descendent nodes. If

the solution does not violate any AVM restrictions, the node is fathomed, and its

solution forms an upper bound on the optimal solution of SBP. The best upper

bound obtained in the procedure is updated as the incumbent solution Z∗
ub. Pruning

of the branch-and-bound tree takes place by fathoming nodes with lower bounds

greater than the incumbent. Branching takes place at a node if the node cannot

be fathomed. Upper bounds can also be generated using the current solution by

applying some repairing heuristics. The procedure terminates when there are no

more unfathomed nodes.

For our problems a depth-first search strategy is used. In implementation depth-

first search requires less memory since only the nodes on the current path are stored.

This contrasts with breadth-first search approaches,, where all of the tree that has

so far been generated must be stored. The solution procedure is summarized below.

Procedure Branch

1. Initialize Z∗
u.b. = 0. Set the root node as the current node and proceed to

Step 2.

112

2. Solve the problem at the current node using procedure Group to obtain Z ′.

The solution then falls in one of the two situations below:

a. The solution does not violate AVM restrictions. Z ′ is an upper bound

to the optimal solution of SBP. Furthermore, if Z ′ ≤ Z∗
u.b. update the

incumbent Z∗
u.b. = Z ′. Prune all nodes in the tree with solutions greater

than Z∗
u.b.. The node is fathomed. Proceed to Step 3.

b. The solution violates some AVM restrictions. If Z ′ < Z∗
u.b., proceed to

Step 4. Otherwise if Z ′ ≥ Z∗
u.b., the node is fathomed and proceed to

Step 3.

3. If the list unfathomed nodes is empty the procedure ends. Otherwise select

the next unfathomed node and proceed to Step 2.

4. Select an arc (v, v′) which is violated in the current solution. Create two

descendent nodes: the first node must contain arc (v, v′), and the second must

not contain (v, v′). Update the candidate sets in each subproblem accordingly.

Store these two nodes into the list of unfathomed nodes. Proceed to Step 3.

In Step 2.b of the above procedure, we can apply a simple repairing heuristic

on the current solution to obtain a feasible upper bound. This is accomplished by

taking the solution K ′ and applying procedure Path to obtain a feasible build-type

θ′ for the customer pool. We then apply procedure Group by fixing θ′ to obtain

the optimal customer pool on this path.

113

In Step 4, the descendent nodes derive their candidate sets from their parent

node. This derived candidate set is simply the customer pool K ′ in the solution

of the parent node, since by applying Lemmas 2 and 3 it is known that k /∈ K ′

will not appear in the optimal solutions of the more constrained descendent nodes.

The candidate sets associated with each node thus becomes smaller as we proceed

deeper in the tree. This serves to reduce the solution space in procedure Group

when solving each node.

6.3 Solving Problem IBP

In this section we consider the solution of the mixed integer problem IBP by

extending the column generation approach for BP. Since BP is a linear relaxation

of problem IBP, it is unlikely that the optimal solution of BP will yield a proper

set-partition in general. In fact, one can expect that each customer will appear

in different customer pools in the relaxed solution, which is clearly infeasible. To

repair this the integer restrictions in IBP can be enforced on the LP column

generation solution, and a feasible solution can be obtained. However, it is well-

known (see Vance136) that since only a small fraction of all the columns is available

to the MIP, this approach may not produce a solution that is close to being the

problem in which all possible customer pool-build type assignments are considered.

The branch-and-price method13 can implicitly consider all possible customer

pool-build-type assignments. Branch-and-price has been widely and successfully

applied to large-scale problems like generalized assignment121, crew scheduling136

114

and vehicle routing 40. The essential difference between a branch-and-bound and

branch-and-price method is that in the latter, the linear relaxation at each node

in the tree is solved using the column generation method, hence allowing new

columns to be added into the problem. However, devising a branch-and-price

procedure presents some inherent difficulties (Applegren4). First, variable fixing in

conventional branch-and-bound methods may destroy the structure of the pricing

problem. Secondly, solving the LPs to optimality at each node may not be efficient.

Different rules thus applies for managing the branch-and-price tree and is often

problem-specific.

The rest of this section presents the essential ingredients for designing the

branch-and-price solution method. §6.3.1 develops the special branching rules re-

quired for the problem, and §6.3.2 discusses various tools that are important in

increasing the efficiency of the branch-and-price algorithm. These tools include:

(a) a pricing problem heuristic used to obtain good (though not necessarily op-

timal) solutions of SBP quickly, (b) the computation of an initial upper bound,

which can be used to prune inferior sections of the branch-and-price tree and (c)

the computation of lower bounds at each branch-and-price node to counter the

so-called ‘tailing-off’ effect, which will be discussed later.

6.3.1 The Branch-and-Price Scheme

In order to obtain a proper set-partition, we need a branching scheme that excludes

the current fractional solution, validly partitions the solution space of the problem,

115

and does not complicate the pricing problem too much. The third requirement

renders standard branching rules based on variable fixing ineffective, because fixing

a variable to 0 corresponds to forbidding a certain solution to the pricing problem.

Deeper down in the search tree this implies that a set of solutions to the pricing

problem must be excluded, which in general is very complicated if not impossible.

We adopt a branching scheme proposed by Ryan and Foster118 for pure parti-

tioning problems, which is based on the following proposition:

Proposition 1. If A is a 0− 1 matrix, and a basic solution Ay = 1 is fractional,

i.e., at least one of the components of y is fractional, then there exists two rows r

and s of the master problem such that

0 <

|I|∑

i=1

Ar,i · As,i · y(i) < 1.

Proposition 1 implies a branching scheme based on identifying pairs of rows or

elements (r, s) in which the above inequality holds. If no branching pair can be

identified, then the solution to the master problem must be integral. Otherwise,

branching is done by dividing the solution space into one set in which r and s

appear together, and into another set in which they must appear separately. In

our problem A is the constraint sub-matrix formed by the first |K| rows in IBP

i.e. (6.11), and y the vector of all columns Yi, i = 1 · · · |I|.

We apply the branching scheme to formulation BP rather than to IBP directly.

Although we do not require Xi,θ,j or even
∑

θ,j

Xi,θ,j to be integral, this branching

rule is appropriate since we are only concerned with obtaining proper set partitions

in the solution. Thus in each iteration of the solution procedure, we scan for pairs

116

of customers k′ and k′′ that appear together in some customer pool and separately

in another pool in the solution of BP. Branching is then based on the pair (k′, k′′),

so that the left branch requires all legitimate customer pools to contain k′ and

k′′ together, and the right branch requires its solution to be such that k′ and k′′

never appear together in the same customer pool. Clearly a proper set-partition is

formed when no such customer pairs can be identified.

We now consider the solution of the sub-problems on both branches. For the

branch that enforces k′ and k′′ together in the solution, this can be easily achieved

by considering the two customer demands together as a single demand, effectively

reducing |K| by one. The pricing problem SBP and the solution approach in §6.2.3

remains essentially unchanged.

On the other branch, the pricing problem becomes considerably more compli-

cated. The generated columns must now not only respect the AVM restrictions,

but also in general a list of customer pool restrictions imposed on the node. We

account for the restrictions by embedding them in the branch and bound procedure

described in §6.2.3. This implies that in Step 2 of procedure Branch the solution

arising from procedure Group may violate either the AVM restrictions, the cus-

tomer pool restrictions or both. Branching can then be done based on either class

of violations. Suppose k′ and k′′ appears together in the solution. Branching based

on this pair of elements would then require k′ (or k′′) to appear in the solution

on one branch. The candidate set of customers on this branch is then updated by

eliminating all other customers which appears in the list of customer pool restric-

117

tions for the current master problem. On the other branch, k′ (or k′′, if k′′ was

chosen to remain in the first branch) is simply eliminated from its candidate set of

customers.

6.3.2 LP Solution, Termination and Bounds

The computationally most intensive component of a branch-and-price algorithm is

the solution of the linear programs, which includes the solution of many pricing

problems. Thus, it is imperative that the solution of these linear programs are

efficient in order for the branch-and-price algorithm to be efficient. Further, the

use of strong upper and lower bounds can help to effectively prune branches in

the branch-and-price tree, thus reducing the search space and effort considerably.

Below we look at some measures related to implementing the branch-and-price

method effectively.

(a) Pricing Problem Heuristic

In each iteration of the column generation procedure, the pricing problem is solved

to generate new columns with negative reduced costs. Because any columns that

satisfy this criteria will suffice, and since procedure Branch is computationally ex-

pensive because of the tree search, we simply apply a greedy construction heuristic

to generate columns as long as such columns can be found. Procedure Branch

is called only when the heuristic fails to locate any columns. The heuristic we

implement constructs customer pools Ki in a greedy manner. The construction

118

procedure is as follows.

Heuristic Construct

1. Initialize the current pool Ki = {}, i.e. an empty set. Initialize the remaining

pool K ′ to be the full candidate pool of customers of the node.

2. Apply procedure Path to solve for the minimum reduced cost of each pool

{Ki ∪k}, ∀k ∈ K ′. Let {Ki ∪ k̂} yield the lowest reduced cost z with shortest

path solution βv∗ among all pools {Ki ∪ k}, k̂, k ∈ K ′. If z ≤ 0, proceed to

Step 3. Otherwise proceed to step 4.

3. Generate entering columns where: αk = 1 ∀k ∈ {Ki ∪ k̂}, and βv∗ = 1.

4. Update Ki := {Ki ∪ k̂}, and K ′ := {K ′\k̂}. If |K ′| > 0 go to Step 2.

Otherwise the procedure terminates.

The Construct heuristic calls procedure Path at most |K|! times, and generates up

to |K| columns with negative reduced costs.

(b) Upper Bound Computation

A strong initial upper bound can be used to prune inferior sections of the branch-

and-price tree, especially at the initial stages of the search. We implemented an

iterative heuristic search procedure to construct feasible solutions requiring modest

computation times. The heuristic essentially constructs customer pools and uses

these to form feasible solutions according to some AVM requirements. Define the

level of combined AVM restrictions η(Ki) of pool Ki as the percentage of infeasible

119

build-types for the pool among all build-types. The tolerance level t, 0 ≤ t ≤ 1 is

simply defined as the maximum allowable level of η(Ki). The heuristic Search is

stated as follows, where the output of the algorithm is Zbest, the best upper bound

obtained.

Heuristic Search

1. Set tolerance t = tmin and Zbest = ∞. Initialize also the set of customer pools

of a feasible solution Sol. := {}. Set a desired N , the number of candidates

evaluated per iteration.

2. If t ≤ tmax, Initialize the counter n = 0 and go to Step 3. Otherwise the

procedure terminates.

3. Initialize pool K ′ := {}, and the remaining set K := K.

4. Randomly select k ∈ K. If the AVM restriction level η(k ∪ K ′) < t then

update K ′ := K ′ ∪ k, K := {K\k} and repeat step 4. Otherwise go to Step

5.

5. Update the solution set Sol. := {Sol.∪K ′}. If K 6= {} reset K ′ = {} and go

to Step 4. Otherwise go to Step 6.

6. Compute Z(Sol.), the optimal solution associated with set Sol.. If Z(Sol.) ≤

Zbest update Zbest = Z(Sol.). Update n := n + 1. If n < N go to Step 3.

Otherwise go to Step 6.

120

7. Update t = t+∆, where ∆ is some fixed step-size increment. Reset Sol. := {}.

Go to Step 2.

In the above procedure, tmin and tmax are some pre-determined minimum and

maximum tolerance levels of any customer pool Ki. In each iteration the heuristic

confines the customer pools constituting the solution Sol. to be of a certain η level.

The solution Z(Sol.) for the set Sol. is computed by solving a restricted version

of BP, whereby only the columns associated with the customer pools in Sol. are

allowed in the solution. Heuristic Search then evaluates such solutions over the

range of tmin ≤ η ≤ tmax, and returns the best upper bound obtained.

(c) Lower Bound Computation

Another potential cause of excessive computational effort in the solution the linear

program is the well-known ‘tailing-off effect’ of the column generation process,

i.e. a large number of pricing iterations is required to prove LP optimality. In

implementation, the most common response is then usually some ‘cut-off’ rule of

the form “stop if the change in the objective function does not exceed x% over p

consecutive iterations”51 . However, as Farley42 noted, such a rule suffers from the

danger of stopping the algorithm at a stall point. Further, in the branch-and-price

scheme, this may cause the node to be prematurely pruned, thus incurring the risk

of losing some potentially good or even optimal solutions.

Recall that at each node of the branch-and-price tree, the linear relaxation forms

a lower bound to the solution of all its descendent nodes. To control the size of the

121

tree, it is best to work with strong lower bounds. However, the method will work

with any bound. The tradeoff is thus between the computational effort required to

obtain strong bounds and evaluating a smaller search tree. Barnhart13 noted that

a way to exploit this tradeoff is by choosing to prematurely terminate the column

generation process and work with lower bounds on the final LP value, rather than

solving the LP to optimality. For our problem we use a slight modification of the

method proposed by Lasdon87 to compute the lower bound. Multiplying (6.16)

by the multipliers λk and (6.17) by the multipliers πv, and subtracting from the

objective function of BP (6.15) yields:

Z −
∑

p∈P

∑

v∈Vp

πv ·mv −
∑

k∈K

λk =
∑

i,θ,j

xi,θ,j ·

Ci,θ,j −

∑

k∈K

αk
i · λk −

∑

p∈P

∑

v∈Vp

βv
θπv

The term in the parentheses on the right of the above is simply the reduced cost

of xi,θ,j. Replacing this term with the minimum reduced cost Z∗
r.c. (with respect to

the current multiplier set) it is clear that:

Z −
∑

p∈P

∑

v∈Vp

πv · mv −
∑

k∈K

λk ≥
∑

i,θ,j

xi,θ,j · (Z∗
r.c.)

Z −
∑

p∈P

∑

v∈Vp

πv · mv −
∑

k∈K

λk ≥ Z∗
r.c. ·

∑

i,θ,j

xi,θ,j

Further, the cardinality constraint:
∑

i,θ,j

xi,θ,j ≤ |K| holds in the optimum solu-

tion of BP by considering the aggregation of all the constraints in (6.16). We can

then establish that:

Z ≥
∑

p∈P

∑

v∈Vp

πv ·mv +
∑

k∈K

λk + Z∗
r.c. · |K| = ZL

where ZL is our required bound. Since the above holds for all values of Z in BP,

it holds for the optimum solution Z∗, and thus ZL is a valid lower bound.

122

6.4 Computational Results

For our computational experiments we generated twelve random problem instances

from the HDD scenario. The HDD consists of three critical components i.e. |P | = 3,

the HSA, disc and the PCB sub-assemblies. Table 6.1 summarizes the problem pa-

rameters in each of the instances, where |K|, |V | indicate the number of customers

and vendors per component respectively. The column labeled η denotes the total

number of AVM restrictions (infeasible build-types) per customer as a percentage

of the total number of build-types. Cols and Rows are the number of columns and

rows in the formulation BP respectively.

Table 6.1: Problem Instances For Hard-Disk Drive Build-Planning Problem

instance |K| |V | η(%) Cols Rows

1 18 10 2.73 262144000 48

2 15 15 1.25 110592000 60

3 35 5 6.67 4.29497× 1012 50

4 35 10 1.82 3.43597× 1013 65

5 15 10 6.36 32768000 45

6 15 10 2.73 32768000 45

7 30 5 6.67 1.34218× 1011 45

8 30 10 1.82 1.07374× 1012 60

9 20 10 1.82 1048576000 50

10 40 8 5.56 5.6295× 1014 64

11 40 5 6.67 1.37439× 1014 55

12 50 10 2.73 1.125918 80

123

The solution algorithms in our implementation were all coded using C++. The

CPLEX 8.0 LP and network callable libraries were invoked to solve the decomposed

sub-problems in the column generation scheme. The computations were performed

on a Pentium IV, 2.4 GHz PC with 512 MB RAM. Table 6.2 presents the computa-

tional results obtained. The columns No-pooling, All-pooling and Search tabulates

upper bounds obtained by three different heuristics that were implemented. All

upper bounds obtained are presented as ratios to the optimal solution obtained.

In instances where the optimal solution is not found, the ratio is taken with re-

spect to the tightest lower bound obtained in the branch-and-price tree. In the

No-pooling heuristic, the only valid customer pools are the individual customer

demands k ∈ K. Thus the build-plans allocates resources to individual customers

prior to demand realization, and no risk-pooling opportunities are exploited. On

the other hand, in the All-pooling heuristic, all the customer demands are always

grouped together as a single customer pool. Heuristic Search follows from §6.3.2.

The columns B&P (3600s) and B&P (7200s) display the ratios after 3600 and

7200 seconds of executing the branch-and-price code respectively. A value of ‘1’

indicates that the optimum solution is achieved before the stipulated computation

period. Similarly, the column B&P either displays that the optimum solution is

achieved (i.e. value ‘1’) or indicates the ratio of the upper bound to the tightest

lower bound found, taken at 10,000s.

124

Table 6.2: Computational Results For Hard-Disk Drive Build-Planning Problem

instance No-pooling All-pooling Search B&P(3600s) B&P(7200s) B&P

1 1.15 11.65 1.09 1 1 1

2 4.04 771.41 1.13 1 1 1

3 1.10 7.17 1.09 1 1 1

4 253.07 4078.76 65.38 18.46 11.92 1

5 3.68 799.36 1.44 1 1 1

6 1.09 58.53 1.03 1 1 1

7 1.29 44.22 1.22 1 1 1

8 5.07 722.81 2.26 1.03 1 1

9 5.13 894.17 1.27 1 1 1

10 8.05 831.26 1.73 1.15 1.15 1.13

11 31.90 6006.13 13.38 2.66 2.09 1.09

12 13.06 1722.9 1.53 1.16 1.12 1.12

Table 6.3: CPU time (s) For Hard-Disk Drive Build-Planning Problem

instance Col. Gen.(LP) GLP Search B&P Nodes Explored

1 3 NA 30 43 2

2 9 NA 36 580 142

3 2 NA 198 207 22

4 112 NA 591 9665 937

5 13 NA 102 3335 1004

6 1 NA 33 36 5

7 4 NA 111 126 20

8 53 NA 183 5999 506

9 60 NA 26 100 2

10 226 NA 33 10000 6400

11 48 NA 378 10000 4913

12 227 NA 914 10000 6394

Table 6.3 displays the CPU time (in seconds) requirements of the solution

procedures. The columns headed Col.Gen.(LP) and GLP refer to the solution

125

times of the linear problem BP using the column generation method and using the

CPLEX general-purpose solver directly. The columns Search and B&P refer to the

computation times for problem IBP using the heuristic Search and the branch-and-

price method respectively. Nodes Explored indicate the number of branch-and-price

nodes that were evaluated during the search process.

Note that in Table 6.3, for all twelve of our problems, CPLEX was unable to

solve even the linear problems BP given our computational resources. This was

due to the large column count of the models, and as a result CPLEX was unable

to load the entire problem into memory. On the other hand, the column gener-

ation algorithm was able to solve all the instances using only meagre amounts of

computation times. For problem IBP, nine out of the twelve problems were solved

to completion by the branch-and-price method, using reasonably small amounts of

CPU times. The remaining three problems were terminated at 10,000s, and yielded

upper bounds which were reasonably tight compared to the lower bounds obtained.

The computational results in Table 6.2 indicates that the All-pooling heuris-

tic generally produce inferior quality solutions (averaging 1,300 times the optimal

costs). On the other hand the No-pooling heuristic performed consistently much

better than the All-pooling heuristic (averaging 27 times the optimal costs). This

verifies that the risk-pooling benefits diminishes rapidly in the presence of AVM

restrictions. Although the AVM restriction levels η used for each customer is rel-

atively low (η ≤ 7%), the combined restriction level of a customer pool tends

to reduce the number of feasible build-types for the pool significantly. Lastly the

126

Search heuristic is shown to produce even better solution quality of about 7.7 times

of the optimal costs on average, at the expense of relatively small amounts of CPU

times. This indicates that although the AVM restrictions are present, there are still

significant opportunities for improvement by exploiting the risk-pooling benefits.

6.5 Concluding Remarks

We have studied in this chapter the build-pack planning problem with stochastic

demands. In this problem, the customer demand that occurs in the future is un-

certain, and the objective is to develop a build plan that hedges against the future

uncertainty. We assume that only the distribution the demands is known. A par-

titioning policy approach is adopted for the solution, where the customer demands

are grouped as customer pools, and the mix of build-types is determined for each

group prior to demand realization. When the demand is realized the grouping is

not changed. The problem is then to find a good partition that results in the lowest

production costs on expectation. For a given partition, the remaining problem of

determining the build-type levels is then a news-vendor type problem with supply

constraints. A MIP formulation is developed for this problem, and the column gen-

eration method is used to solve the LP relaxation of the formulation, where each

decision variable determines a grouping and a build-type assignment. The pricing

problem was solved using a specialized kind of branch-and-bound algorithm.

To obtain the optimal partition we need to solve the original MIP, as the LP

solution in general does not yield proper set partitions. To obtain a feasible solu-

127

tion we can execute a normal branch-and-bound algorithm using the current set of

columns available, but to achieve the optimal solution we need to be able to gener-

ate new columns at each branch-and-bound node. Thus we adopt the approach of

branch-and-price, and in our scheme we branch on pairs of customers rather than

on the original columns. This serves to preserve the column generation scheme,

and only a slight modification is required in the pricing problem.

Our computational results demonstrated that grouping all the customers to-

gether in the build-planning phase can result in quite inferior solutions, because

the effect of combining the AVM restrictions together may severely restrict the set of

feasible build-types. On the other hand, ignoring the advantages of risk-pooling by

planning for each customer individually also results in inferior solutions, although

our computations demonstrate that they are generally better than the former case.

The branch-and-price method can achieve much better quality solutions, if not

optimal. The computational efficiency of the branch-and-price method depends

on the implementation of many other tools that can help limit the search of the

branch-and-price tree. In our implementation we used some tools to compute lower

and upper solution bounds. Other tools may be incorporated to further improve

the solution efficiency.

128

Chapter 7

Extensions to the Stochastic

Model

In this chapter we consider two realistic extensions to the build-pack planning

problem with stochastic demands. In particular we will show how the solution

framework developed in Chapter 6 can be modified in these cases. In §7.1, we

consider the problem when there are homogenous lot requirements, which may be

an actual customer requirement on the batches of finished goods. To adapt the

branch-and-price framework for this problem, a different set of branching rules is

required to preserve the structure of the pricing problem. In §7.2, the normality

assumptions of the customer demand distributions are relaxed, and the demands

are allowed to be non-homogenous and following arbitrary discrete distributions.

In this case, we present the method to evaluate the expected costs associated with

the customer pools during the pricing problem solution.

129

7.1 Homogenous Lot Requirements

7.1.1 Problem Scenario

In this case, the demand of each customer can only be fulfilled using a single

build-type. This requirement is commonly found in practice, where very frequently

customers prefer each lot or a few lots of their finished products to be of the

same make. The primary purpose of such a requirement is usually to improve lot

traceability and is often part of a quality management program. In our case, the

disk-drives assigned to fulfill a particular order must all have the same combination

of component suppliers in the assembly.

7.1.2 Adapting the Branch-and-Price Solution Framework

There is a simple way to adapt the branch-and-price solution approach to account

for the homogenous lot requirement. First note that the linear relaxation BP and

its solution method remains essentially unchanged. In the solution of BP , if each

customer demand is served using only at most one build-type θ, then the optimal

solution is found. Otherwise, the branch-and-price procedure is applied. In this

case however, a different branching scheme from that in §6.3 is required. We adopt

a scheme analogous to those used in branch-and-price methods for integer multi-

commodity network flow problems14 . Here we scan for a customer order k which

uses two vendors v and v′ for the same component p, where v, v′ ∈ Vp in the relaxed

solution. Branching then creates two new nodes based on the pair (k, v). The left

130

branch enforces k to use only v for component p, while the right branch disallows

k to use v for component p. As a consequence of this branching scheme, it is

interesting to note that on either branch, the only changes made to the new master

problems are the AVMs of customer k. Procedure Branch(see §6.2.3) for solving

the pricing problem thus remains essentially unchanged. The branch-and-price

procedure terminates when no more such (k, v) pairs can be found.

We now go on to show that the branching scheme described is appropriate

for solving IBP. In particular, we show that proper set-partitions are formed

when each customer is served by only one build-type. Suppose after solving the

linear relaxation at some node of the branch-and-price tree, no (k, v) pairs can

be identified, i.e. all customers are partitioned properly by a set of build-types.

Denote the set Kθ′ as the set of all customers that appears in the solution of the

LP solution at this node that uses build-type θ′. In general there can be several

columns with different customer pools Ki, where Ki ⊆ Kθ′ appearing in the LP

solution that are all assigned the build-type θ′. It can then be verified that in the

LP solution, among all columns with Ki assigned to θ′, only those with Ki = Kθ′

will be active. This follows from the fact that the marginal expected cost of Kθ′

is the least (most negative) among all subsets Ki ⊆ Kθ′ . Taking first derivatives

with respect to Q on the news-vendor expected costs expression (6.6), the marginal

expected cost
∂Ci(·)
∂Q

associated with Ki is:

131

∂Ci(·)
∂Q

= ∂
∂Q

(
h · (Q − µ(i)) + σ(i) · (g + h) · G

(
Q−µ(i)

σ(i)

))

= h + (g + h) · (Φ (z) − 1)

where z denotes the standard normal random variable, z =
Q − µ(i)

σ(i)
. The above re-

sult is well-established in the analysis of style goods (see Silver, Pyke and Peterson126).

Since z is decreasing in both µ(i) and σ(i), and Φ(z) diminishes for decreasing z, it

follows that the minimum marginal costs at any given Q is associated with maxi-

mum µ(i) and σ(i). Thus, the minimum marginal cost at any given Q is achieved by

Kθ′ , since µθ′ =
∑

i∈Kθ′

µ(i) ≥ µ(i) ∀Ki ⊆ Kθ′ . Similarly σ2
θ′ =

∑

i∈Kθ′

σ2
i ≥ σ2

i ∀Ki ⊆

Kθ′ . Since we can consider all k ∈ Kθ′ to be competing for a single resource θ′, it

then follows that a greedy procedure that always allocates resource θ′ to customer

pool Kθ′ among all Ki ⊆ Kθ′ is optimal.

7.2 Demands Following Arbitrary Distributions

In the basic model (Chapter 6) the customer demands were assumed to approximate

normal probability distributions. In this section we consider demands following ar-

bitrary discrete distributions. Using discrete distributions to consider stochasticity

is also popularly known in the mathematical programming community as scenario-

based modeling, where the uncertainty is modeled as a set of outcomes each with an

associated probability of occurrence. Such a modeling approach allows the problem

to be formulated as a large-scale linear program, which can in turn be solved using

decomposition algorithms such as the L-shaped method. In essence, the L-shaped

132

method partitions the problem into two stages, where the first stage decisions are

made prior to demand realization, and the second stage decisions are known as ‘re-

course’ actions. The method is based on generating cuts in the first-stage problem

to approximate the expected recourse function, which is known to be piece-wise

linear convex in the first-stage decisions. Such an approach, however, is known

to be computationally efficient only when the number of possible outcomes (the

sample space) are of limited size. Furthermore, the application of such a modeling

approach presents an additional difficulty in our build-pack problem. This stems

from the fact that our first-stage decision are the build-plans, i.e. determining

how much of which build-types θ to produce. Recall that a key characteristic of

our problem is the high-proliferation of the build-types. It follows then that our

first-stage problem necessarily contains a large number of columns in θ, ∀θ ∈ ϑ.

To address this, column generation may be applied to solve the first stage without

explicit enumeration of all the variables. However, the cuts generated in the sec-

ond stage problem and augmented in the first stage are in θ, and this destroys the

structure of the pricing problem.

In the following we show how our solution framework for a partitioning policy

as developed in Chapter 6 can be modified to accommodate discrete demand dis-

tributions. Furthermore, we assume that customer demands are non-homogenous,

i.e. each customer demand k is associated with a shortage penalty cost gk. We

first note that formulation BP is still valid in this case, since as mentioned in §6.1

piece-wise linear convexity of expected cost function Ci(·) holds for any discrete

133

distributions. The challenge is then in evaluating Ci(·) for any customer pool Ki

when solving the pricing problem.

7.2.1 Computing the Expected Cost Function Ci(·)

We consider how to evaluate the expected cost function Ci(Qi) for a given the

customer pool Ki. First we re-cast the expected cost function as Ci(Qi) =
∑

k∈Ki

gk ·

µk − Si(Qi), where Si(·) is defined as the expected savings function.

Let ω be an outcome or scenario, where ω ∈ Ω, Ω being the set of all possible

outcomes, and ξ is the random vector of customer demands. Si(Qi, ξ(ω)) then

denotes the maximum savings associated with a build level of Qi when the demand

realization is ξ(ω). In the following we introduce the idea of a recourse network110

which is useful for describing our problem. The recourse network in our case is a

single-level tree, where a single incoming arc feeds a source node, and the source

node emanates |Ki| + 1 outgoing arcs. The first |Ki| outgoing arcs represents

each customer demand k, with random arc capacities dk and constant weights gk.

The (|Ki| + 1)th outgoing arc represents excess inventory, with weight −h and

unbounded from above. Qi is pushed through the incoming arc and distributed

into the outgoing arcs. The left of Figure 7.1 shows an example of the recourse

network for three customer demands, where the pair of values {gk, (dk)} indicates

the weight and random capacity of each arc respectively. In the recourse tree we

assume the demands (the out-going arcs) are indexed so that g1 ≥ g2 ≥ · · · ≥ g|Ki|.

The computation of Si(Qi, ξ(ω)) is then equivalent to a deterministic problem of

134

maximizing the weighted flow on the recourse tree, where the random arc capacities

are replaced with the realisations dk(ω). A greedy algorithm allocating as much

of Qi as possible in sequence of rank to d1(ω), d2(ω) etc solves this deterministic

problem.

Figure 7.1: The Recourse Network and its Deterministic Equivalent Representation

For Three Customers

Recall that in our problem we are interested in computing Ci(Q
∗
i) (or Si(Q

∗
i)),

i.e. the minimum expected cost (maximum expected savings) for the optimal build-

level Q∗
i over all demand realisations. We thus need some method to compute the

expected costs Ci(·) as Qi varies. Let the expected saving over all realizations

be Si(Qi) = EξSi(Qi, ξ(ω)) for some Qi. It turns out that the greedy algorithm

for computing the maximum total weighted flow in the deterministic network flow

problem can be easily adapted for the stochastic version of the problem. Powell110

135

suggests a procedure for computing the expected savings parametrically as a func-

tion of Qi using incremental flows through the recourse network. A major step in

this procedure is to compute the probability that a particular unit of flow entering

the network uses a particular path. For customer pool Ki, let

fi(j, n) = Probability that the jth unit of flow entering the source

node takes path n

si(j) = Expected marginal saving for the jth unit of flow entering

the source node

Then the expected recourse function is obtained by:

Si(Qi) = EωSi(Qi, ξ(ω)) =

Qi∑

j=1

si(j) =

Qi∑

j=1

Ni∑

n=1

g̃i,n · fi(j, n)

where g̃i,n denotes the weight on path n for the recourse tree associated with Ki.

Thus g̃i,k = gk for k = 1 · · · |Ki|, g̃i,|Ki+1| = −h, and Ni = |Ki| + 1 is the total

number of paths. fi(j, n) is computed using the following equation:

fi(j, n) = P{ci,n ≥ j ∩ ci,n−1 < j} = P{ci,n ≥ j} − P{ci,n−1 ≥ j} (7.1)

where ci,n denotes the total capacity of the first n ranked paths. The condition in

(7.1) says that the jth unit of flow is on path n if and only if the first n− 1 ranked

paths have total capacity of less than j and the first n ranked paths have a total

capacity of at least j.

Thus, given the customer pool Ki, the functional form of Si(Qi) can be found

by repeatedly applying (7.1), increasing a unit of flow of Qi each time until Si(Qi)

reaches its maximum value. Since Si is piece-wise linear concave in Qi for discrete

136

distributions, we can represent Si(Qi) as the maximum weighted flow solution

through a set of deterministic arcs aj, j = 1 · · · J(i) with unit capacity each and

weights wj = si(j), in a single-level tree structure with Qi as the input, and J(i)

such that si(J(i)) ≥ 0 and si(J(i) + 1) < 0. The right of Figure 7.1 illustrates

the example of the deterministic equivalent representation corresponding to the

three-customer example. The cumulative capacities of these arcs correspond to

the ‘breakpoints’ in the piece-wise linear function and the weights on the arcs

correspond to the marginal contribution to the expected savings function. The

optimal input level Q∗
i corresponds to the maximum attainable expected savings,

i.e. Si(Q
∗
i).

7.2.2 Solving the Pricing Problem

We first consider solving the pricing problem SBP for a fixed customer pool Ki.

Re-writing (6.19) in terms of Si(Qi), the reduced cost expression becomes:

Zi =
∑

k∈Ki

gk · µk − Si(Qi) −
∑

k∈K

γk · αk
i −

∑

p∈P

∑

v∈V p

πv · βv ·Qi

where Zi as before denotes the reduced cost for the customer given Ki. Define xj

as the flow level on arc aj in the deterministic single-level tree representation of

Ci(Qi), j = 1 · · · J(i). From the preceding discussion, Si(Qi) can be described as

the sum of weighted flows in this tree network, i.e. Si(Qi) =

J(i)∑

j=1

wj · xj, where the

total flow

J(i)∑

j=1

xj = Qi. The pricing problem then becomes:

137

min
βv,xj ,Qi

Zi =
∑

k∈Ki

gk · µk −
∑

k∈K

γk · αk
i −

J(i)∑

j=1

wj · xj +
∑

p∈P

∑

v∈V p

(−πv) · βv · Qi

subject to:

J(i)∑

j=1

xj = Qi, and (6.20) to (6.22).

Note that for a fixed Ki, the first two terms in the above expression for Zi are

unchanging. The third term decreases Zi by wj per unit flow on arc aj in the

deterministic single level tree. The last term penalizes the objective by increasing

Zi by −πv per unit flow on arc βv in the shortest path network of problem SPP.

It follows then that the overall problem is equivalent to maximizing the weighted

flow on the cascaded network as shown in Figure 7.2, with

J(i)∑

j=1

xj = Qi acting as

the flow-balance condition between the individual networks.

Figure 7.2: Cascaded Equivalent Network of Pricing Problem for Fixed Ki

138

The results established in §6.2.2 for solving SBP when build-type θ is fixed,

however, does not readily extend in the case of discrete distributions. This is due

to the fact that the expected costs function Zθ(Ki) for a given θ (see §6.2.2) for

arbitrary distributions in general may not exhibit submodularity. Solving the pric-

ing problem to optimality is thus NP-hard in itself. We suggest devising heuristics

or search procedures based on fixing Ki to generate entering columns in each iter-

ation. Enumeration of all Ki ∈ K is only performed to prove optimality when the

heuristic fails to locate any negative reduced cost columns.

7.3 Concluding Remarks

In this chapter we considered two extensions of the build-pack planning prob-

lem with stochastic demands that allows the branch-and-price solution framework

developed in Chapter 6 to be adapted. The first extension imposes a special re-

quirement on the problem to allow only one build-type to be used for a particular

customer’s order. In the branching scheme presented in Chapter 6, the optimal

solution produces a proper set partition of customer pools, but allows a mix of

build-types to be used for each pool. In this scenario only one build-type can

be used for each customer pool. We adopted a branching rule that exploits the

network structure of the AVM restrictions. This rule is similar to those used in

integer multi-commodity network flow problems, where sometimes each commod-

ity is restricted to use only one path, i.e. shipments cannot be ‘split’. In our case

each path corresponds to a build-type, and the constituent arcs corresponds to the

139

product components of the build-type. The advantage of such a branching rule

is that the structure of the pricing problem that was developed in Chapter 6 is

virtually unchanged, and only the AVM information needs to be updated in each

node.

In the second extension, we relaxed the distributional assumption of normality

and considered a scenario-based framework which is more common in stochastic

planning literature. In this case customer demands are independent and consists of

a finite number of possible outcomes. The large set of all possible outcomes owing

to the combinations renders the SLP model very cumbersome.

When the demands are arbitrarily distributed, the expected costs function gen-

erally cannot be given explicitly as in the case of the news-vendor problem with

normally distributed demands. Typically the L-shaped method is then used to solve

the problem by generating cuts to approximate the expected costs function, which

is piece-wise linear in the decision variables. In our approach we compute these

piece-wise linear functions parametrically for given customer pools. This is done

by systematically varying the build-level decision variables as inputs and observing

the expected costs as output. Because of its piece-wise linearity and convexity, the

costs function can be modeled as a single-level tree of arcs, or a recourse network,

with unit capacity bounds serving as ‘breakpoints’ in the piece-wise linear function.

In this manner, our branch-and-price solution framework can still be adopted.

In the case when we solve the pricing problem for a given customer pool, the prob-

lem was shown to be a network flow problem by cascading the AVM network and

140

the recourse network. However, the pricing problem for the case of a given build-

type cannot be solved easily, since the sub-modularity property is not necessarily

preserved. Thus, procedure Group cannot guarantee the optimal solution in this

case. Further research can be considered to identify the conditions in which sub-

modularity holds, or development of other algorithms to solve the pricing problem

efficiently.

141

Chapter 8

Conclusion and Future Research

Manufacturers competing in a thin-margin, commoditized market often offer their

customers product flexibility options as a competitive advantage to defend their

profit margins. These incentives however usually add complications to the basic

production planning process. In this work we have considered the impact of one

such complication known as the approved vendor matrix, based on the scenario

of an actual manufacturer of hard disk drives. We define this class of problems

the Build-Pack PPS problems, because there are two types of planning decisions

i.e. what to build, and who to pack for. In particular we have studied two impor-

tant problems: the multi-period build-pack scheduling problem, and the build-pack

planning problem with stochastic demands.

For the multi-period build-pack scheduling problem, a mathematical model of

the problem as an E/T production planning problem was developed. The model

is then solved using the column generation method by exploiting special structural

142

properties in the pricing problem. Alternative formulations were also considered.

We have shown that the same problem can be formulated as a multicommodity net-

work flow (MCF) problem, hence enabling solution techniques for MCF problems

to be applied to our problem.

An extension of the multi-period build-pack scheduling problem was then in-

troduced, whereby the maximum number of work-cell set-ups in each production

period are limited. We modified our E/T production planning formulation into a

mixed-integer program to accommodate this class of restrictions. We then devel-

oped some simple linear programming rounding procedures to obtain good feasible

solutions to the problem. Possible future research opportunities may include the

devising of solution procedures for the Build-Pack problem with these set-up limi-

tations. In our solution of the E/T planning model in Chapter 3, we have applied

the column generation technique, and an extension to solve the build-pack problem

with integer restrictions would be applying the branch-and-price method. This al-

lows the generation of new columns deploying branch-and-bound simultaneously.

However, the major challenge of the branch-and-price approach is in devising ap-

propriate branching rules, so that the structure of the pricing problem would not

be destroyed. This would require further investigation.

For the multi-period scheduling problem we have considered a fixed rather than

rolling planning horizon in our model. This was adapted from the practice of the

hard-disk drive manufacturer, which faces demand in weekly buckets. At the be-

ginning of each work week a new schedule is generated to fulfill the week’s demand.

143

As the work week starts, demand is actualized and new information arrives. Re-

scheduling takes place at the end of each period to account for the changes, and

the production plan for the rest of the week is updated. The planning horizon thus

‘shrinks’ as the week progresses, and using a rolling horizon model here does not

seem plausible. In actual implementation the value of our work is to provide the

initial schedule to guide the production planners at the beginning of the week. We

offer rolling horizon considerations as a possible future extension for this work.

The next problem we studied is the build-pack planning problem with stochastic

demands. We developed a realistic medium-term planning model which accounts

for the AVM, and also the future uncertainty of the customer demands. Our mod-

eling approach and solution scheme allows for a large number of random outcomes

to be considered, which usually proves difficult for general-purpose stochastic linear

programming methods to handle. The column generation method is used for solv-

ing the linear relaxation of our model. This is necessary due to the large number of

columns in our model, arising from the large number of partitions combined with

the high build-type proliferation of the problem. The branch-and-price solution

procedure is then used to solve our model, and computational experiments shows

that the method is capable of achieving good solutions in reasonable computation

time.

Possible extensions for the stochastic problem include the study of the structural

properties of the pricing problem when demands follow arbitrary distributions. As

was mentioned in Chapter 7, the applicability of procedure to solve the pricing

144

problem hinges on the property that the problem is submodular when the build-

type is fixed. This is shown to be valid for the normal distribution. It may then

be of interest to consider the class of distributions that are valid for this property

to hold true. On the other hand, we believe there is much room for study of more

efficient heuristic methods (if not optimal methods) to solve the pricing problem

under arbitrary distributional assumptions.

For the stochastic problems, we have employed the use of what is known as

a ‘two-stage’ model. Such analysis assimilates production-planning of style-goods

(with resource constraints), and is appropriate for medium term study of items

facing rapidly shrinking product life-cycles. Another suitable application other

than HDD may be the product-mix planning in a semiconductor foundry, since the

wafer technology product-mix is known to change rapidly according to customer

demands. However, if shorter-term production planning and scheduling is of inter-

est, a multi-period model may be more appropriate, as the periodic availability of

resources may present ‘shifting-bottlenecks’ that cannot be detected by the simpler

two-stage model, which considers only total availability of the resources over the

planning horizon. Adapting the partitioning-policy approach for a multi-period

setting presents several challenges and issues, for example, whether customer pools

should change from period to period, and if it does, how to assign end-of-period

inventories to the new customer pools. We offer the multi-period extension of the

partitioning-policy as an avenue of future research.

145

Bibliography

[1] P. Ahlstrom, R. Westbrook, “Implications of mass customization for opera-

tions management,” International Journal of Operations and Production Man-

agement (v19, n3, 1999) pp 262-275.

[2] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows : Theory, Algo-

rithms, and Applications (Englewood Cliffs, N.J. Prentice Hall 1993).

[3] D. Alford, P. Sacket, and G. Nelder,“Mass-customisation: an automotive per-

spective,” International Journal of Production Economics, (v65, n1, 2000)

pp99-110.

[4] L.H. Appelgren, “A Column Generation Algorithm for a Ship Scheduling Prob-

lem,” Transportation Science (v3, n1, 1969) pp53-68.

[5] S. Axsater, “Aggregation of product data for hierarchical production plan-

ning,” Operations Research (v29, n4, 1981) pp744-756.

[6] S. Axsater, “On the feasibility of aggregate production plans,” Operations

Research (v34, n5, 1986) pp796-800.

146

[7] R.P. Bagozzi, Principles of Marketing Management. Science Research Asso-

ciates, Chicago, IL, 1986.

[8] K.R. Baker, M.J. Magazine, and H.L.W. Nuttle, “The effect of commonality

on safety stocks in a simple inventory model,” Management Science (v32, n8,

1986) pp 982-988.

[9] K.R. Baker, “An experimental study of the effectiveness of rolling schedules

in production planning,” Decision Science (v8, n1, 1977) pp19-27.

[10] R. Balachandra, “Evaluating Modular Designs,” Decision Sciences Institute

2002 Proceedings, San Diego: CA., Nov 22-26, 2002.

[11] R. Balachandra, “Modular Design and Mass Production,” Proceedings of the

NEDSI Conference, San Juan, PR, Mar 18-22, 2002.

[12] R. Balachandra, “Modular design and technological innovation: the case

of hard disk drives,” Information Storage Industry Center. High-Technology

Manufacturing. Paper ISIC Report-2002-02.

[13] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance,

“Branch-and Price: Column Generation For Solving Huge Integer Programs.”

Operations Research (v46, n3, 1998) pp316-329.

[14] C. Barnhart, C.A. Hane, and P.H. Vance, “Using branch-and-price-and-cut to

solve origin-destination integer multicommodity flow problems,” Operations

Research (v48, n2, 2000) pp318-326.

147

[15] E.M.L. Beale, J.J.H. Forrest, and C.J. Taylor, “Multi-time-period stochastic

programming,” in Stochastic Programming, M.A.H. Dempster (ed.), Academic

Press, New York, 1980.

[16] J.F. Benders, “Partitioning Procedures for Solving Mixed Variables Program-

ming Problems,” Numerische Mathematik (v4, n2, 1962) pp238-252.

[17] W. Berry, T. Vollman, and C. Whybark, “Master production scheduling: prin-

ciples and practice,” APICS, Washington D.C., 1979.

[18] W. Berry, “Lot-sizing procedures for requirements planning systems: A frame-

work for analysis,” Production and Inventory Management, (v13, n2, 1972).

[19] J.R. Biggs, C.K. Hahn, and P.A. Pinto, “Performance of lot-sizing rules in

an MRP system with different operating conditions,” Academic Management

Review (v5, n1, 1980) pp 89-96.

[20] P.J. Billington, J.O. McClain and L.J. Thomas, “Mathematical programming

approaches to capacity-constrained MRP systems: review, formulation and

problem reduction,” Management Science (v29, n10, 1983) pp1126-1141.

[21] P.J. Billington, J.O. McClain and L.J. Thomas, “The interaction of lead-time

determination, lot-size decisions and capacity planning in MRP systems,” Pro-

ceedings of the Eleventh Annual Meeting of the American Institute of Decision

Sciences (1979).

148

[22] G.T. Bishop, “On a problem of production scheduling,” Operations Research

(v5, n6, 1957) pp717-743.

[23] G.R. Bitran, and A.C. Hax, “On the design of hierarchical production planning

systems,” Decisions Science (v8, n1, 1977) pp28-55.

[24] G.R. Bitran, E.A. Haas, H. Matsuo “Production Planning of Style Goods with

high set-up costs and forecast revisions,” Operations Research (v34, n2, 1986)

pp226-237.

[25] R.E. Bohn, “The Low-Profit Trap in Hard Disk Drives, and How to Get Out

of It,” Insight (March/April 2000) pp 6-9.

[26] E.H. Bowman, “Production scheduling by the transportation method of linear

programming,” Operations Research (v4, n1, 1956) pp100-103.

[27] M.D. Byrne, M.A. Bakir, “Production planning using a hybrid simulation-

analytical approach,” International Journal of Production Economics,” (v59,

n2, 1999), pp 305-311.

[28] J. Caie, and W. Maxwell, “Hierarchical machine load planning,” in Multi-level

production-inventory systems: Theory and practice, TIMS Studies in Manage-

ment Sciences, L. Schwarz(ed.), North-Holland, Amsterdam, 1981.

[29] R.S. Chen, K. Y. Lu, S. C. Yu, H.W. Tzeng, and C. C. Chang, “A case

study in the design of BTO/CTO shop floor control system,” Information and

Management (v41, n1, 2003) pp 25-37.

149

[30] S.C.K. Chu, “A Mathematical Programming Approach Towards Optimized

Master Production Scheduling,” Production Economics (v38, n2, 1995) pp

269-279.

[31] D. Collier, “A comparison of MRP lot-sizing methods considering capacity

change costs,” Journal of Operations Management (v1, n1, 1980) pp 23-29.

[32] D.A. Collier, “Aggregate safety stock levels and component part commonal-

ity,” Management Science (v28, n11, 1982) pp 1296-1303.

[33] D.W. Cravens, and R.B. Woodruff Marketing, Addison-Wesley, Reading, MA,

1986.

[34] W. Crowston, M. Wagner, and J. Williams, “Economic lot-size determination

in multi-stage assembly systems,” Management Science (v19, n5, 1973) pp

517-528.

[35] M.A. Cusumano, “The limits of lean,” Sloan Management Review (v35, n4,

1994) pp 27-32.

[36] G. Dantzig: Linear Programming and Extensions Princeton University Press

(1963).

[37] G.B. Dantzig, and P. Wolfe, “Decomposition Principles for Linear Programs,”

Operations Research (v8, n1, 1960) pp101-111.

[38] S. Davis, “From future perfect: mass customizing,” Planning Review (v17, n2,

1989) pp 16-21.

150

[39] R.F. Deckro, and J.E. Hebert “Goal programming approaches to solve linear

decision rule based aggregate production planning models,” IIE Transactions

(v16, n4, 1984) pp 308-315.

[40] M.J. Desrochers and M. Solomon, “A New Optimization Algorithm for the

Vehicle Routing Problem with Time Windows,” Operations Research (v40,

n2, 1992) pp342-354.

[41] B.P. Dzielinski, and R.E. Gomory, “Optimal programming of lot sizes, inven-

tory and labor allocation,” Management Science (v11, n2, 1965) pp874-890.

[42] A.A. Farley, “A Note on Bounding a Class of Linear Programming Prob-

lems, Including Cutting Stock Problems,” Operations Research (v38, n5, 1990)

pp922-924.

[43] E. Feitzinger, H. Lee, “Mass customization at Hewlett-Packard: the power of

postponement,” Harvard Business Review (v75, n1, 1997) pp 116-121.

[44] H. Gabbay, “Multi-stage production planning,” Management Science (v25,

n11, 1979) pp 1138-1149.

[45] E.P. Garcia, and L.A. Swanson, “Scheduling production in an MRP enivron-

ment when set ups are not significant.” Paper in ORSA/TIMS Joint National

Meeting (1989), Los Angeles.

151

[46] R. Garud, and A. Kumaraswamy, “Changing competitive dynamics in net-

work industries: an exploration of Sun Microsystems’ open systems strategy,”

Strategic Management Journal, (v14, n5, 1993) pp351-369.

[47] Y. Gerchak, and M. Henig “An inventory model with component commonal-

ity,” Operations Research Letters (v5, n3, 1986) pp 157-160.

[48] M. Ghiassi, C. Spera, “Defining the Internet-based supply chain system for

mass customized markets,” Computers and Industrial Engineering (v45, n1,

2003) pp 17-41.

[49] J.B. Ghosh and C.E. Wells, “Scheduling to Minimize Weighted Earliness and

Tardiness About a Common Due Date,” Computers and Operations Research

(v18, n6, 1991) pp465-475.

[50] J.B. Ghosh and C.E. Wells, “ON General Solution for a Class of Earli-

ness/Tardiness Problems,” Computers and Operations Research (v20, n2, ,

1993) pp141-149.

[51] P.C. Gilmore and R.E. Gomory, “A Linear Programming Approach to the

Cutting Stock Problem,” Operations Research (v9, n6, 1961) pp849-859.

[52] S.C. Graves, “Using Lagrangean Techniques to Solve Hierarchical Production

Planning Problems,” Management Science (v28, n3, 1982) pp260-275.

[53] H. Groenevelt, “The Just-in-Time System,” Handbooks in Operations Research

and Management Science (v4, Chap. 12, 1993) pp 629-670.

152

[54] N.G. Hall and M.E. Posner, “Earliness-tardiness Scheduling Problems:

Weighted Deviation of Completion Times About a Common Due Date,” Op-

erations Research (v39, n5, ,1991) pp836-846.

[55] N.G. Hall, W. Kubiak and S.P. Sethi, “Earliness-tardiness Scheduling Prob-

lems: Deviations of Completion Times About a Restrictive Common Due

Date,” Operations Research (v39, n5,1991) pp847-856.

[56] R.W. Hall, “Graphical models for manpower planning,” International Journal

of Production Research, (v24, n5, 1986) pp1267-1282.

[57] Q. Hao, B.H. Soong, D.W. wanf, Z.H. Yang, “Earliness-tardiness production

planning by JIT philosophy for job-lot manufacturing systems,” Production

Planning and Control (v9, n2, 1998)pp181-188.

[58] A.C. Hax and H.C. Meal, “Hierarchical Integration of Production Planning

and Scheduling,” Studies in Management Sciences (v1, Logistics, 1975, North-

Holland, Amsterdam and American Elsevier) pp6-25.

[59] K. Heaghney, and T. Noden, “Enterprise profit optimization creates value

through integrated decision-making,” Ascet (v4, May 2002).

[60] R.S. Hiller, “Stochastic programming approximation methods, with applica-

tions to multi-stage production planning,” Ph.D. disertaion, Operations Re-

search Center, Massachusetts Institute of Technology.

153

[61] B. Hirsch, K.D. Thoben, and J. Hoheisel, “Requirements upon human compe-

tencies in globally distributed manufacturing,” Computers in Industry (v36,

n1, 1998) pp 49-54.

[62] H. Ho, and C. Lim “Spot the Early Bird,” China Logistics (Oct 5, 2001).

[63] J.K. Ho, and W.A. McKenney, “Triangularity of the basis in linear programs

for materials requirements planning,” College of Business Administration, Uni-

versity of Tennessee (1987).

[64] K.H. Ho and R.P. Sundarraj, DECOMP: An Implementation of Dantzig-Wolfe

Decomposition for Linear Programming (New York, Springer-Verlag, 1989).

[65] S.D. Hodges and P.G. Moore, “The product-mix problem under stochastic

seasonal demand”, Management Science (v17, n2, 1970) pp107-114.

[66] D. Hofman, “Achieving supply chain excellence,” Ascet (v6, June 2004).

[67] A.J. Hoffman, and W. Jacobs, “Smooth patterns of production,” Management

Science (v1, n1, 1954) pp86-91.

[68] C.C. Holt, F. Modigliani., and H.A. Simon, “A linear decision rule for produc-

tion and employment scheduling,” Management Science (v2, n1, 1955) pp1-30.

[69] C.C. Holt, F. Modigliani., and J.F. Muth, “Derviation of a A linear decision

rule for production and employment,” Management Science (v2, n1, 1955)

pp159-177.

154

[70] S.V. Hoover, and R.F. Perry, Simulation: A Problem Solving Approach (1989)

Addison-Wesley, USA.

[71] S. Iwata, L. Fleischer, S. Fujishige, “A Combinatorial, strongly polynomial-

time algorithm for minimizing submodular functions,” Proceedings of the 32nd

Annual ACM Symposium on Theory of Computing (2000), pp97-106.

[72] S. Johnson, and G. Dantzig, “A A production smoothing problem,” Proceed-

ings of the 2nd Symposium in Linear Programming, pp151-176.

[73] A.P. Jones and R.M. Soland, “A branch and bound algorithm for multi-level

fixed charge problems,” Management Science (v16, n1, 1969) pp67-76.

[74] C.H. Jones, “Parametric production planning,” Management Science (v13,

n11, 1967) pp843-866.

[75] P. Kanchanasevee, G. Biswas, K. Kawamura, S. Tamura, “Contract-net based

scheduling for holonic manufacturing systems,” Proceedings of the SPIE-The

International Society for Optical Engineering (n3203, 1999) pp 108-115.

[76] J.J. Kanet, 1986. “Towards a better understanding of lead times in MRP

systems,” Journal of Operations Management (v11, n3, 1986)pp305-315.

[77] E.P.C. Kao, “A multi-product dynamic lot-size model with individual and

joint set-up costs,” Operations Research (v27, n2, 1979) pp279-289.

155

[78] E.P.C. Kao and M. Queyranne, “Aggregation in a Two-Stage Stochastic Pro-

gram for Manpower Planning in the Service Sector,” Working Paper, Center

for Health Management, University of Houston (1981).

[79] J.L. Kennington, “A Survey of Linear Cost Multicommodity Network Flows,”

Operations Research (v26, n2, 1978) pp209-236.

[80] D. Kira, M. Kusy and I. Rakita, , “A Stochastic Linear Programming Ap-

proach to Hierarchical Production Planning,” The Journal of the Operational

Research Society (v48, n2, 1997) pp207-211.

[81] S. Kotha, “From mass production to mass customization: the case of the

National Industry Bicycle Company of Japan,” European Management Journal

(v14, n5, 1996) pp 442-450.

[82] S. Kotha, “Mass customization: Implementing the emerging paradigm for

competitive advantage,” Strategic Management Journal (v16, n1, 1995) pp

21-42.

[83] M. Lambrechet, and J. VanderEeken, “A capacity constrained single facility

dynamic lot-size model,” European Journal of Operational Research (v2, n2,

1978) pp132-136.

[84] R. Lau, “Mass customization: the next industrial revolution,” Industrial Man-

agement (v37, n5, 1995) pp 18-19.

156

[85] G. Laurent, “A note on range programming: Introducing a satisfying ranging

in an LP,” Management Science (v22, n6, 1976) pp713-716.

[86] L.S. Lasdon and R.C. Terjung, “An Efficient Algorithm for Multi-Item

Scheduling,” Operations Research (v19, n4, 1971) pp946-970.

[87] L.S. Lasdon, Optimization Theory for Large Systems MacMillan, New York

(1970).

[88] S.M. Lee, and L.J. Moore, “A practical approach to production scheduling,”

Journal of Production and Inventory Management (v15, n1, 1974) pp 79-92.

[89] Y. Li, D.W. Wang, and W.H. Ip ,“Earliness-tardiness production scheduling

and planning, and solutions,” Production Planning and Control (v9, n.3, 1988)

275-285.

[90] A.G. Lockett, and A.P. Muhlemann, “A problem of aggregate scheduling and

application of goal programming,” International Journal of Production Re-

search (v16, n2, 1978) pp127-135.

[91] S. Love, “A facilities in series inventory model with nested schedules,” Man-

agement Science (v18, n5, 1972) pp327-339.

[92] I. Lustig, “Optimization: Achieving Maximum ROI within the Supply Chain”

Ascet (v1, 1999).

[93] A. S. Manne, “Programming of Economic Lot Sizes,” Management Science

(v4, n2, 1958) pp 1-22.

157

[94] B. H. Maskell, “Why MRP II Has Not Created World Class Manufacturing and

Where Do We Go from Here?” APICS-The Performance Advantage Magazine

(Sept. 1993)

[95] W. Maxwell and J. Muckstadt, “Coordination of production schedules with

shipping schedules” in Multi-level production-inventory systems: Theory and

practice, TIMS Studies in Management Sciences, L. Schwarz(ed.), North-

Holland, Amsterdam, 1981.

[96] J.T. Meij, “Separable programming as a solution methodlogy for aggregate

production planning,” International Journal of Production Research (v18, n2,

1980) pp233-243.

[97] J.M. Mellichamp, and R.M. Love, “Production switching heuristics for the

aggregate planning problem,” Management Science (v24, n12, 1978) pp1242-

1251.

[98] R. Metters, “Production planning with stochastic seasonal demand and ca-

pacitated production”, IIE Transactions (v29, n11, 1997) pp1017-1029.

[99] J.V. Murphy and E.Sherman, “Supply Chain Planning Software Enables Rev-

olutionary Change” Global Logistics and Supply Chain Strategies (April. 1998)

[100] R. Nellore, and R. Balachandra, “Factors Influencing Success in integrated

Product Development Projects,” IEEE Transactions on Engineering Manage-

ment (v48, n2, 2001) pp164-174.

158

[101] New Business Systems Dept. (Maxtor Singapore), Production Planning and

Control Dept. (Maxtor Singapore), and Industrial and Systems Engineering

Dept. (National University of Singapore), “The Processes of Operational Pro-

duction Planning in Maxtor Singapore,” unpublished technical documenta-

tion, 2001.

[102] G.L. Nemhauser, and W.B. Widhelm, “A Modified Linear Program for

Columnar Methods in Mathematical Programming,” Operations Research

(v19, n4, 1971) pp1051-1060.

[103] E.F.D. Newsom, “Multi-item Lot Size Scheduling by Heuristic,” Management

Science (v21. n10, 1975) pp1194-1203.

[104] P.J. O’Grady and M.D. Byrne, “A combined switching algorithm and lin-

ear decision rule approach to production planning,” International Journal of

Production Research (v24, 1986) pp285-296.

[105] M.D. Oliff, and E.E. Brunch, “Multi-product production scheduling at

Owens-Corning Fiberglas,” Interfaces (v15, n5, 1985) pp 25-34.

[106] J. Orlicky, “Materials requirements Planning,” McGraw-Hill (1975), New

York.

[107] M.G. Orrbeck, D.R. Schuette, and H.E. Thompson, “The effect of worker

productivity on production smoothing,” Management Science (v14, n6, 1968),

pp332-342.

159

[108] R.J. Peters, K. Boskma and H.A.E. Kuper, “Stochastic Programming in

production planning: a case with non-simple recourse,” Statistica Neerlandica

31 (v31, n1, 1977) pp113-126.

[109] J. Pine, B. Victor, and A. Boyton, “Making mass customization work,” Har-

vard Business Review (v71, n5, 1993) pp 108-111.

[110] W.B. Powell and R.K.M. Cheung, “Network Recourse Decomposition

Method for Dynamic Networks with Random Arc Capacities,”Networks (v24,

n7, 1994a)pp 161-175.

[111] M.E. Posner, and W. Szware, “A transportation type aggregate production

model with backordering,” Management Science (v29, n2, 1983), pp188-199.

[112] T.R. Rakes, L.S. Franz, and A.J. Wynne, “Aggregate production planning

using chance-constrained goal programming,” International Journal of Pro-

duction Research (v22, n4 , 1984) pp 673-684.

[113] T.E. Ramsay Jr., “Integer programming approaches to capacitated concave

cost production planning problems,” unpublished Ph.D. thesis, georgia Insti-

tute of Technology, February 1980.

[114] J.B. ReVelle “Lean Manufacturing,” in Manufacturing handbook of best prac-

tices : an innovation, productivity, and quality focus (Chap. 8, 2001), pp 203-

226.

160

[115] L.P. Ritzman, L.J. Krajewski, W.L. Berry, S.H. Goodman, S.T. Hardy, and

L.D. Vitt, eds. Disaggregation problems in manufacturing and service organi-

sations Martinus Nijhoff, Boston, MA, 1979.

[116] R.T. Rockafella and R.J.B. Wets, “A Lagrangean finite generation Tech-

nique For solving Linear-quadratic Problems in Stochastic Programming,” in

A. Prekopa and R.J.B. Wets, Stochastic Programming 1984 Mathematical

Programming Study, North Holland (1985).

[117] D. Rogers, R. Plante, R. Wong, and J. Evans “Aggregation and disaggrega-

tion techniques and methodology in optimization,” Operations Research (v39,

n4, 1991) pp 553-582.

[118] D.M. Ryan and B.A. Foster, “An Integer Programming Approach to Schedul-

ing,” Computer Scheduling of Public Transport Urban Passenger Vehicle and

Crew Scheduling A. Wren (ed.), North-Holland, Amsterdam (1981) pp269-280.

[119] R. Sanchez, “Towards a Science of Strategic Product Design,” paper pre-

sented at the Second International Product Development Management Con-

ference on New Approaches to Development and Engineering, (May 30-31,

1994) Gotheburg, Sweden.

[120] R. Sanchez, and J.T. Mahoney “Modularity, flexibility and knowledge man-

agement in product and organization design,” Strategic Management Journal,

(v17, Winter Special Issue, 1996) pp 63-67.

161

[121] M.W.P. Savelsbergh, “A Branch-and-Price Algorithm for the Generalised

Assignment Problem,” Operations Research (v45, n6, 1997) pp 831-841.

[122] A. Schrijver, “A combinatorial algorithm minimizing submodular functions

in strongly polynomial time,” Preprint.

[123] A. Segerstedt, “A capacity-constrained multi-level inventory and production

control problem,” International Journal of Production Economics (v45, n3,

1996) pp449-461.

[124] Z. J. M. Shen, C. Coullard and M.S. Daskin, “A Joint Location-Inventory

Model,” Transportation Science (v37. n1, 2003) pp40-55.

[125] J. Shephard and L. Lapide, “Supply Chain Planning Optimization: Just the

Facts,” Ascet (v1, April 1999)

[126] E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Produc-

tion Planning and Scheduling John Wiley and Sons (1998).

[127] D. Simchi Levi, P. Kaminsky, E. Simchi-Levi, Designing and Managing the

Supply Chain: Concepts, Strategies, and Case Studies McGrawHill (2000).

[128] K. Singhal, and V. Adlakha, “Cost and shortage trade-offs in aggregate pro-

duction planning,” Decision Sciences (v20, n1, 1989) pp 158-164.

[129] R.M.V. Slyke, J.B. Wets, “L-shaped Linear Programs With Applications to

Optimal Control and Stochastic Programming”, SIAM Journal on Applied

Mathematics (v17, n4, 1969) pp638-663.

162

[130] R. Srinivasan, R. Jayaraman, J. Rappold, R. Roundy, and S. Tayur, “Pro-

curement of common components in prescence of uncertainty,” IBM Technical

Report 1998.

[131] M.K. Starr, “Modular Production - A New Concept,” Harvard Business Re-

view (v43, n6, 1965) pp 131-142.

[132] J.M. Swaminathan and S.R. Tayur, “Managing Broader Product Lines

Through Delayed Differentiation Using Vanilla Boxes,” Management Science

(v44, n12, 1998) pp161-172.

[133] J. Swaminathan, “Enabling customization using standard operations,” Cali-

fornia Management Review (v43, n3, 2001) pp 125-136.

[134] W.H. Taubert, “A search decision rule for the aggregate scheduling problem,”

Management Science (v14, n6, 1968) pp343-359.

[135] Valdero, “From planning to control: improving the high-tech supply chain,”

Ascet (v4, May 2002).

[136] P.H. Vance, “Crew Scheduling, Cutting Stock and Column Generation: Solv-

ing Huge Integer Programs,” Ph.D Thesis, School of Industrial and Systems

Engineering, Georgia Institute of Technology, Atlanta, GA.

[137] A. Veinott, “Minimum concave-cost solution of Leontief substitution mod-

els of multi-facility inventory systems,” Operations Research (v17, n2, 1969)

pp262-292.

163

[138] H. M. Wagner, and T.M. Whitin “Dynamic version of the economic lot size

model,” Management Science (v5, n1, 1958) pp89-96.

[139] W.E. Walker, “A heuristic adjacent extreme point algorithm for the fixed

charge problem,” Management Science, (v22, n5, 1976) pp587-596.

[140] D.W. Wang, “Earliness-Tardiness Production Planning Approaches for Man-

ufacturing Systems,” Computers and Industrial Engineering (v28, n3, 1995)

pp425-436.

[141] D.W. Wang and W. WANG, “Earliness-tardiness production planning ap-

proaches with due-window for manufacturing systems,” Computers and In-

dustrial Engineering, (v34, n4, 1995) pp825-836.

[142] R.J.B. Wets, “Stochastic Programs With fixed Recourse: The Equivalent

Deterministic Program,” SIAM Review (v16, n3, 1974) pp309-339.

[143] A. Zahorik, J. Thomas, and W. W. Trigeiro, “Network programming mod-

els for production scheduling in multi-stage, multi-item capacitated systems,”

Management Science (v30, n3, 1984) pp 308-325.

[144] W. Zangwill, “A backlogging model and multi-echelon model of a dynamic

economic lot-size production system - a network approach,” Management Sci-

ence (v15, n9, 1969) pp506-528.

[145] P.H. Zipkin, “Bounds on the effect of aggregating variables in linear pro-

grams,” Operations Research (v28, n2, 1980) pp 403-418.

164

