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Summary

The final step in bread making is the actual baking process in which the raw dough,

under the influence of heat, is transferred into a light, porous, readily digestible and

flavored product. This transformation involves various reactions which change the

structural nature of dough and are highly complex due to a vast series of physical,

chemical and biochemical interactions.

The production of superior quality bread requires close monitoring of the sup-

plied heat, rate of application of heat, duration of baking etc. Though many facts

of the chemical and physical changes during baking are already known, there are

still processes remaining to be understood. To study the physical changes during

baking such as heat and mass transfer, a good mathematical model is very helpful.

Though lots of researches are going on in this area, there are only a few good, com-

plete models. A good model helps to reduce the number of practical experiments

and to set up correct parameters so as to produce the desired result which in case,

is the bread of good quality.
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Baking can be considered as a simultaneous heat and mass transfer problem where

heat is transmitted to the dough piece in different ways namely radiation, convec-

tion and conduction and mass is transmitted by diffusion in the form of liquid water

and water vapor. In the present study, a one dimensional model proposed by Thor-

valdsson and Janestad [Thorvaldsson et.al, 1999] is studied and the validity of the

model is verified through different numerical approaches such as finite difference

and finite element schemes. It is noteworthy that although the suggested scheme

is very much sensitive to the size of time interval, for a range of time intervals,

the results obtained through simulation well explains the heat and mass transfer

during baking. When the time interval is decreased to a smaller value, the schemes

become inconsistent and the result seems to be divergent. This may be due to

the adoption of algebraic inequalities to correct the water and vapor levels after

diffusion and evaporation, which makes some sudden fluctuations in the water and

vapor levels for small time intervals. The adoption of algebraic inequalities to deal

with the phase change makes this change more instantly. The study is then ex-

tended to a two dimensional model which is a new approach and the corresponding

numerical model is simulated. The two dimensional study revealed the similarity

of one and two dimensional models which will help to further investigate the two

dimensional model since it is easier to implement the one dimensional model. Then

an improved procedure is suggested in order to reduce the sensitivity of the scheme

on the length of the time interval and thus to increase the convergence range of

the model.

Chapter One discusses one and two dimensional mathematical models and the

theory behind them. Chapter Two explains how to implement the model using fi-

nite element scheme and finite difference scheme and the algebraic inequalities and

equations which control the balance between the liquid water and the vapor content
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according to the saturated vapor content which varies as temperature increases.

Computational results for one and two dimensional models and the stability of the

schemes are discussed and compared in Chapter Three. Since the numerical model

is not convergent in certain ranges of the time interval, an improved methodology

is suggested in Chapter Four, to simulate the model for small time intervals and

its results are also presented.
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Everyone is kneaded out of the same dough but not baked in the same

oven . . .
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Introduction

Food is an inevitable part of our daily life. Food supplies the necessary energy to

our body to carry out metabolic activities and other needs. Food industry is under

pressure both to provide food that is more natural and less processed and which

has a higher level of safety. Production of food, that meets environmental and eco-

nomic factors with minimum expenditure of energy is a key factor in food industry.

One of the ways in which these challenges can be met is by developing a highly ca-

pable computer simulation of the process which can be used to control and design

the actual process. The simulation can be used as a powerful tool to understand

the quality of product with available resources. It also reduces the number of ex-

periments that need to be performed and optimizes the baking process which will,

in turn, eliminate the unnecessary wastage of resources, time and money.

A lot of the foods are well baked or heat treated ones. During baking or heat

treatment, a large number of changes are taking place inside the food. This in-

cludes chemical, rheological and structural changes like volume expansion, crust

1



Introduction 2

formation, enzymatic activities etc.

The common method of baking is by using an oven at a controlled temperature.

Baking is a simultaneous heat and mass transfer problem which transforms a rough

dough in to a light, digestive and flavored bread. In this process heat is transferred

through the dough with the help of basic heat transfer mechanisms- conduction

across the medium, convection between a surface and a moving fluid and radiation

through electromagnetic radiation between two surfaces at two different tempera-

tures.

Together with the heat and mass transfer the entire process of baking is a complex

procedure where the increase in temperature plays a vital role in mass transfer

in the form of liquid water and water vapor. The complexity increases since the

whole system need to be controlled so as to produce the final product which has

all the qualities of an eatable food.

The need of a good numerical model to simulate, control and monitor the bak-

ing process paves the path for a lot of research in baking practice. Till now many

models have been proposed by the researchers like Hirsekorn [Hirsekorn, 1971],

Hayakawa et al. [Hayakawa and Hwang, 1981], Zanoni [Zanoni and Peri, 1993] and

many others. The models proposed are based on individual assumptions and

though they succeeded in modelling the processes based on their own assump-

tions, a general approach was not always considered [Wang and Sun., 2003].

In most of the models for bread baking or drying, the liquid water and water

vapor diffusion are treated together in which the decreasing water content at

the surface produces the concentration gradient. But in 1988 De Varies et al.
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[De Varies U., Sluimer and Blocksma, 1988] described a evaporation - condensa-

tion model for baking process and according to that the diffusion of vapor towards

the center of the dough also contributes to the concentration gradient. Water

evaporates at the warmer sides of the dough when the temperature of the dough

is increased and the water vapor concentration is lower than the vapor saturation

concentration at a temperature. Then, this vapor diffuses in the gas phase and

during its transition from a hotter region to a cooler region it condenses back and

becomes water. The evaporation of water takes place when it crosses the boiling

point which is pressure dependent or when it has enough latent heat, as long as

the total vapor pressure is less than the corresponding saturation pressure which is

temperature dependent. In short, when temperature inside the dough increases as

the time increases, water content evaporates to water vapor and when this vapor

exceeds saturated vapor content, it condense back to water. In addition to this

evaporation condensation process, vapor and water undergo diffusion also.

The current model which is the subject of interest is a one dimensional model

proposed by Thorvaldsson and Janestad [Thorvaldsson et.al, 1999] . The model

is analyzed using various numerical schemes and a two dimensional model is pro-

posed based on this current one dimensional model. Then both these models are

simulated with the help of MATLAB and the obtained results are discussed in

detail. Since the simulated results of both, one and two dimensional models shows

a sensitiveness towards the length of time interval, an improved methodology to

implement the model is also proposed in the present study after analyzing the

possible reasons for this time sensitiveness.



Chapter 1
The Mathematical Model and The

Theory

1.1 Introduction

A good model is one that will enable us to computationally reproduce the experi-

mental results through some numerical methods. The present study is based on a

one dimensional model, described by Thorvaldsson and Janestad [Thorvaldsson et.al, 1999]

that is based on the following three processes:

1. The heat transfer during baking.

2. The diffusion of liquid water.

3. The diffusion of water vapor.

1.2 One Dimensional Model

The one dimensional model proposed by Thorvaldsson and Janestad is as follows

[Thorvaldsson et.al, 1999],

4



1.2 One Dimensional Model 5

Figure 1.1: Diagram for one dimensional Model in an Oven

The bread sample of dimension 12cm× 12cm× 2cm is taken. The dough is placed

inside the oven which is maintained at a temperature of 210oC. If it is assumed

that the physical properties are not changing in any two directions (here, sides with

lengths 12cm are with homogeneous properties), an one dimensional heat and mass

transfer can be considered to investigate the heat transfer in one direction (here,

side with length 2cm). In this model, the surfaces that are exposed to oven heat

undergo heat transfer due to convection and radiation and in the inner part of the

dough, the heat is transferred through conduction. The model is governed by a set

of three differential equations. One for heat transfer, one for water vapor diffusion

and the last one for liquid water diffusion. The three equations in the system are

connected each other with a set of algebraic conditions which updates liquid water

and water vapor with the help of tabled values for saturated vapor pressure content.
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The equation for heat transfer can be derived from the energy conservation equa-

tion by including a term which accounts for the latent heat in water evaporation.

The temperature T (x, t) at the point x and in time t can be described as follows

[Thorvaldsson et.al, 1999], [Holman, 1968],

∂T

∂t
=

1

ρcp

∂

∂x

(
k
∂T

∂x

)
+

λ

cp

∂W

∂t
+

λW

cpρ

∂ρ

∂t
, 0 < x < xL/2, t > 0.

(1.1)

with boundary and initial conditions [Holman, 1968], [Balaban and Pigott, 1988],

−k

(
∂T

∂x

)

x=0

= hr(Tr − Ts) + hc(Tair − Ts)− λρDW

(
∂W

∂x

)

x=0

,

(1.2)
(

∂T

∂x

)

x=xL/2

= 0, t > 0,

T (x, 0) = T0(x), 0 6 x 6 xL/2.

where T (x, t) is the temperature in K, x is the space co-ordinate in m, ρ is the

density in kg/m3 which depends on the water content, cp is the specific heat in

J/kgK, k is thermal conductivity in W/mK, λ is the latent heat of evaporation of

water in J/kg and W (x, t) is the liquid water content in Kg water/ Kg product.

Tair, Ts, Tr are the temperatures in K in the surrounding air, at the surface of the

bread and at the radiation source respectively. T0 is the initial temperature, DW is

liquid water diffusivity in m2/s and ρ is the density of the water. The heat transfer

coefficient h in W/m2K is divided into two parts hr and hc, where hr is given by,

hr =
σ(T 2

r − T 2
s )(Tr − Ts)

1/εp + 1/εr − 2 + 1/Fi,j

(1.3)

where σ is the Stefan-Boltzmann constant and εp and εr are the emissivity of bread

and radiation source respectively. Fi,j is a shape factor which can be calculated

from the dimensions of the bread and the oven [De Witt, 1990]. Shape factor Fi,j



1.2 One Dimensional Model 7

can be defined as the fraction of radiation leaving the surface i that is intercepted

by the surface j. In this case Fi,j is the shape factor between the radiator and

surface of the bread which can be viewed as the aligned parallel rectangles.

Fi,j =
2

πab

[
ln

√
a1b1

1 + a2 + b2
+ a

√
b1 arctan

a√
b1

+ b
√

a1 arctan
b√
a1

(1.4)

−a arctan a− b arctan b

]
.

where

a =
asp

L
, a =

bsp

L
,

a1 = 1 + a2, b1 = 1 + b2.

where, asp and bsp are the length and width of the sample and L is the distance

between radiator source and sample source. Other parameters and the formulas

can be found in the paper by Thorvaldsson et al. [Thorvaldsson et.al, 1999].

Equations for the diffusion of liquid water and vapor water can be derived from

Fick’s Law and the equations are [Bird, Stweart and Lightfot, 1960], [Hines, 1985],

∂V

∂t
=

∂

∂x

(
DV

∂V

∂x

)
, 0 < x < xL/2, t > 0 (1.5)

with boundary and initial conditions,

(
∂V

∂x

)

x=0

= hV (V (0, t)− Vair), (1.6)

(
∂V

∂x

)

x=xL/2

= 0, t > 0,

V (x, 0) = V0(x), 0 6 x 6 xL/2.
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and

∂W

∂t
=

∂

∂x

(
DW

∂W

∂x

)
, 0 < x < xL/2, t > 0 (1.7)

with boundary and initial conditions,
(

∂W

∂x

)

x=0

= hW (W (0, t)−Wair), (1.8)

(
∂W

∂x

)

x=xL/2

= 0, t > 0,

W (x, 0) = W0(x), 0 6 x 6 xL/2.

where V (x, t) and W (x, t) are water vapor and liquid water content and hV and

hW are mass transfer coefficients of vapor and water at the surface. hV depends on

the temperature content and hW depends on water as well as temperature content.

DW is the diffusion coefficient for water which is a constant and DV is diffusion

coefficient for vapor which depends on the temperature content. Vair and Wair are

vapor content and water content of the oven air respectively. V0 and W0 are initial

content of vapor and water respectively.

The above two equations describe the diffusion of water and vapor in the dough

during baking and the phase change is carried out with the help of a set of algebraic

inequalities which are explained in section 1.4. Therefore V and W in these two

equations are ”adjusted” water and vapor. rather than the actual water and vapor

content at a time.

1.3 Two Dimensional Model

A two dimensional mathematical model can be obtained by extending the one di-

mensional model. The bread sample of the dimensions 12cm× 2cm× 2cm is taken
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Figure 1.2: Diagram for two dimensional model in an Oven

for modeling. Like in the one dimensional case, the model is considered as a two

dimensional model if it is assumed that the physical properties of the third side

(side with length 12cm) remains the same. The two dimensional mathematical

model is as follows,

Temperature distribution in the model is calculated from the equations,

∂T

∂t
=

1

ρcp

(
∂

∂x
,

∂

∂y

)T

k

(
∂T

∂x
,
∂T

∂y

)
+

λ

cp

∂W

∂t
+

λW

cpρ

∂ρ

∂t
, (1.9)

0 < x, y < L/2, t > 0.

with boundary and initial conditions,

−k

(
∂T

∂x

)

x=0

= hr(x)(Tr − Ts(0, y)) + hc(Tair − Ts(0, y))− λρDW

(
∂W

∂x

)

x=0

,

−k

(
∂T

∂y

)

y=0

= hr(y)(Tr − Ts(x, 0)) + hc(Tair − Ts(x, 0))− λρDW

(
∂W

∂y

)

y=0

,

(1.10)
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(
∂T

∂x

)

x=xL/2

= 0, t > 0,

(
∂T

∂y

)

y=yL/2

= 0, t > 0,

T (x, y, 0) = T0(x, y), 0 6 x, y 6 L/2.

where T (x, y, t) is the temperature in K, x and y are the space co-ordinates in m.

The diffusion equations for liquid water and water vapor in the two dimensional

model are as follows,

∂V

∂t
=

(
∂

∂x
,

∂

∂y

)T

DV

(
∂V

∂x
,
∂V

∂y

)
, 0 < x, y < L/2, t > 0 (1.11)

with boundary and initial conditions,

(
∂V

∂x

)

x=0

= hV (x)(V (0, y, t)− Vair),

(
∂V

∂y

)

y=0

= hV (y)(V (x, 0, t)− Vair),

(
∂V

∂x

)

x=xL/2

= 0, t > 0,

(
∂V

∂y

)

y=yL/2

= 0, t > 0,

V (x, y, 0) = V0(x, y), 0 6 x, y 6 L/2.

(1.12)

and

∂W

∂t
=

(
∂

∂x
,

∂

∂y

)T

DW

(
∂W

∂x
,
∂W

∂y

)
, 0 < x, y < L/2, t > 0 (1.13)



1.4 Conditions for Vapor and Water Update 11

with boundary and initial conditions,

(
∂W

∂x

)

x=0

= hW (x)(W (0, y, t)−Wair),

(
∂W

∂y

)

y=0

= hW (y)(W (x, 0, t)−Wair),

(
∂W

∂x

)

x=xL/2

= 0, t > 0,

(
∂W

∂y

)

y=yL/2

= 0, t > 0,

W (x, y, 0) = W0(x, y), 0 6 x, y 6 L/2.

(1.14)

where V (x, y, t) and W (x, y, t) are water vapor and liquid water content in time t

at the point (x, y). The remaining parameters are the same as those in the case of

the one dimensional problem and the phase change is carried out using the same

set of algebraic inequalities (Section 1.4) which are used in one dimensional case.

1.4 Conditions for Vapor and Water Update

To deal with the phase change or to correct vapor and water contents according

to the increasing temperatures, a set of algebraic conditions are used, as discussed

below. When temperature increases, water becomes water vapor and starts to

diffuse more easily through the dough. This diffusion also helps to transfer the

temperature more rapidly. So when the temperature increases there is a change in

the composition of liquid water and water vapor content. The amount of the vapor

which can be presented at a particular temperature is calculated from the saturated

vapor pressure. This saturated vapor pressure is obtained from the standard vapor

pressure tables [Nordling and Österman, 1996]. The vapor content is calculated
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from the vapor pressure using the ideal gas equation,

PṼ = nRT (1.15)

where

P = Pressure of the gas

Ṽ = V olume of gas

n = No. of moles of gas

R = Universal gas constant in J.mol−1.K−1

From the above ideal gas equation, the water vapor density can be estimated as,

ρv =
PM

RT
(1.16)

where

M = Molar mass of the gas in Kg/mol

Since the vapor concentrations is much smaller than 1, and if ρd is the pure dough/

bread density and ρm is the density of dough/ vapor mixture, the vapor concen-

tration can be calculated as,

V ≈ ρv

ρm

− ρv

ρd

(1.17)

In this model, due to the difficulty to model the bubble growth inside the bread

during baking, a fix ratio between the pure dough and the mixture is assumed

(although it is not true in practice, it is a common assumption).

Now using equation (1.16), the equation (1.17) be written as,

V =
PM

RTρd

C (1.18)
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where C is a constant (about 0.75) which is offset by assuming the evaporation is

higher than the saturation condition proportionally.

Vapor and water contents of the dough are then updated using this saturated

vapor with the help of following algebraic inequalities and equations.

if (Water content + V apor Content) < Saturated V apor Content (1.19)

Updated V apor = (Water content + V apor Content)

Updated Water = 0

and,

if (Water content + V apor Content) ≥ Saturated V apor Content

(1.20)

Updated V apor = Saturated V apor

Updated Water = (Water content + V apor Content)

−Saturated V apor

Using the updated values of water and vapor contents the diffusion equation is

solved.



Chapter 2
Implementation of the Mathematical

Model

2.1 Introduction

The mathematical model of any physical or chemical process can be a good and

complete model, when it is implemented successfully, through proper schemes and

the results obtained are satisfactory.

Here the mathematical model for baking, is implemented through different nu-

merical schemes. The implementation of the model is carried out through the

following procedure [Thorvaldsson et.al, 1999],

1. Temperature is calculated from the heat transfer equation (1.1), with the

help of conditions in (1.2).

2. The saturated water vapor is estimated using a steam table for new temper-

ature with the help of equation (1.18) and using this saturated vapor, water

vapor and liquid water contents are updated using the inequalities (1.19) and

14
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(1.20).

3. Vapor content is calculated from the diffusion equation (1.5), with the help

of the conditions (1.6).

4. After this diffusion, the amounts of vapor and water are again updated using

the same procedure which is described in step 2.

5. Then water content is calculated from the diffusion equation (1.7) with (1.8).

6. This entire procedure is repeated for each time step.

2.2 One Dimensional Model

The one dimensional model which is explained in the previous chapter is validated

through Finite Difference Scheme and Finite Element Scheme. The implementation

is explained below;

2.2.1 Finite Difference Scheme

Implementation of one dimensional model through finite difference scheme is car-

ried out as below. Firstly the computational domain is discretized into a finite

number of points say N in space direction and M in time direction where the so-

lutions for unknown values are approximated. Then the differential equations are

approximated using corresponding difference equations.

In the present study, the time derivative is approximated using a backward differ-

ence scheme and the space derivative is approximated using a general ”θ” method

from which the explicit, implicit and the Crank-Nicholson difference schemes can

be derived. The difference approximations for time and space derivatives are as
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follows,

∂U(xi, tj+1)

∂t
=

Ui,j+1 − Ui,j

∆t

∂2U(xi, tj+1)

∂x2
= (1− θ)

(
Ui−1,j+1 − 2Ui,j+1 + Ui+1,j+1

(∆x)2

)
+ (θ)

(
Ui−1,j − 2Ui,j + Ui+1,j

(∆x)2

)

Here ∆t is the time increment and ∆x is the spatial increment. When θ = 0 the

method is an implicit difference scheme where as θ = 1 gives an explicit scheme.

The Crank-Nicholson difference scheme is obtained by taking θ = 0.5. The Robin

type boundary conditions are discretized using a central difference,

∂U

∂x
≈ Ui+1,j − Ui−1,j

2∆x

Discretization of Governing Equations

Equations for heat transfer and diffusion of liquid water and water vapor are ap-

proximated in the discretized computational domain.

Heat Transfer Equation

Equation for heat transfer is discretized as follows,

∂T

∂t
=

1

ρcp

∂

∂x

(
k
∂T

∂x

)
+

λ

cp

∂W

∂t
+

λW

cpρ

∂ρ

∂t
,

Since

∂W

∂t
=

∂

∂x

(
DW

∂W

∂x

)

For simplicity, this heat transfer equation can be rewritten by ignoring the last term

since it doesn’t make a significant contribution to the total heat transfer (which



2.2 One Dimensional Model 17

is verified using simulations) and thus the governing equation for heat transfer

becomes [Thorvaldsson et.al, 1999],

∂T

∂t
=

1

ρcp

∂

∂x

(
k
∂T

∂x

)
+

λ

cp

∂

∂x

(
DW

∂W

∂x

)
.

(2.1)

Taking k and DW outside the derivative since they are constants (by using the

chain rule) and then discretizing,

Ti,j+1 − Ti,j

∆t
=

k

ρcp

(
(1− θ)

(
Ti−1,j+1 − 2Ti,j+1 + Ti+1,j+1

(∆x)2

)
+ (θ)

(
Ti−1,j − 2Ti,j + Ti+1,j

(∆x)2

))

+
λDW

cp

(
Wi−1,j − 2Wi,j + Wi+1,j

(∆x)2

)

Equivalently,

−α1Ti−1,j+1 + (1 + 2α1)Ti,j+1 − α1Ti+1,j+1 (2.2)

= α2Ti−1,j + (1− 2α2)Ti,j + α2Ti+1,j + α3(Wi−1,j − 2Wi,j + Wi+1,j)

i = 0, 1, 2, 3....N.

where

α1 =
k∆t

ρcp(∆x)2
(1− θ) α2 =

k∆t

ρcp(∆x)2
(θ) α3 =

λDW ∆t

cp(∆x)2

and the boundary conditions at i = 0 and i = N are (using equation(1.2)),

−k

(
T1,j − T−1,j

2∆x

)
= hr(Tr − T0,j) + hc(Tair − T0,j)− λρDW hW (W0,j −Wair)

TN+1,j − TN−1,j

2∆x
= 0

(2.3)

the boundary conditions for water diffusion are,

W1,j −W−1,j

2∆x
= hW (W0,j −Wair) (2.4)

WN+1,j −WN−1,j

2∆x
= 0

j = 1, 2, ...M
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or it can be written as,

T−1,j = T1,j −
(

2∆x(hr + hc)

k

)
T0,j +

2∆xhr

k
Tr +

hc

k
Tair − 2∆xλρDW hW (W0,j −Wair)

TN+1,j = TN−1,j

W−1,j = W1,j − 2∆xhW (W0,j −Wair)

WN+1,j = WN−1,j

(2.5)

Clearly from equation (2.1) it can be seen that for calculating the T at (j + 1)th

time level it requires other two (j + 1)th level unknown values of T and known

values at (j)th level. That is, even though initial data Ti,0 i=0,1,2....M are known,

it is not possible to get the values of the unknown at the (j + 1)th level with a

single explicit step (using the equation (2.1) only once) but by using the equation

for i=0,1,2....N and solving linear system thus formed for the unknowns with the

help of boundary conditions of heat transfer equation and diffusion equation. At

boundary, equation (2.1) becomes,

−α1T−1,j+1 + (1 + 2α1)T0,j+1 − α1T1,j+1

= α2T−1,j + (1− 2α2)T0,j + α2T1,j + α3(W−1,j − 2W0,j + W1,j)

(2.6)

−α1TN−1,j+1 + (1 + 2α1)TN,j+1 − α1TN+1,j+1

= α2TN−1,j + (1− 2α2)TN,j + α2TN+1,j + α3(WN−1,j − 2WN,j + WN+1,j)

here the ghost points T−1,j, T−1,j+1, TN+1,j, TN+1,j+1, W−1,j and WN+1,j are replaced

using the equation (2.5) and thus the following linear system is obtained,

AX = B (2.7)
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where

A =




1 + 2α1

(
1 + 2∆x(hr+hc)

k

)
−2α1 0 − − 0 0 0

−α1 1 + 2α1 −α1 − − 0 0 0

− − − − − − − −
0 0 0 − − −α1 1 + 2α1 −α1

0 0 0 − − 0 −2α1 1 + 2α1




,

(2.8)

B =




α2T−1,j + (1− 2α2)T0,j + α2T1,j + α3(W−1,j − 2W0,j + W1,j) + C

α2T0,j + (1− 2α2)T1,j + α2T2,j + α3(W0,j − 2W1,j + W2,j)

....

α2TN−2,j + (1− 2α2)TN−1,j + α2TN,j + α3(WN−2,j − 2WN−1,j + WN,j)

α2TN−1,j + (1− 2α2)TN,j + α2TN−1,j + α3(WN−1,j − 2WN,j + WN−1,j)




,

(2.9)

X =




T0,j+1

T1,j+1

....

TN−1,j+1

TN,j+1




and

C = α1

(
2∆xhr

k
Tr +

2∆xhc

k
Tair − 2∆xλρDW hW (W0,j −Wair)

)
.

(2.10)

The unknown values of temperature at discrete points are obtained by solving this

linear system. This is repeated for each time interval till it reaches the final time.
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Diffusion Equation for Water Vapor

The diffusion equation for vapor is discretized in the following way,

Vi,j+1 − Vi,j

∆t
=

(
DV

∂V
∂x

)
i+1,j

− (
DV

∂V
∂x

)
i,j

∆x

(2.11)

=
(DV )i+1,jVi+1,j − ((DV )i+1,j + (DV )i,j) Vi,j + (DV )i,jVi−1,j

(∆x)2

If we use θ method it can be written as,

Vi,j+1 − Vi,j

∆t
= (θ)

(
(DV )i+1,jVi+1,j − ((DV )i+1,j + (DV )i,j)Vi,j + (DV )i,jVi−1,j

(∆x)2

)

+(1− θ)

(
(DV )i+1,j+1Vi+1,j+1 − ((DV )i+1,j+1 + (DV )i,j+1)Vi,j+1 + (DV )i,j+1Vi−1,j+1

(∆x)2

)

(2.12)

or it can be written as,

−α1(DV )i,j+1Vi−1,j+1 + (1 + α1((DV )i+1,j+1 + (DV )i,j+1))Vi,j+1 − α1(DV )i+1,j+1Vi+1,j+1

= α2(DV )i,jVi−1,j + (1− α2((DV )i+1,j + (DV )i,j))Vi,j + α2(DV )i+1,jVi+1,j

(2.13)

i = 0, 1, 2, 3....N.

Where

α1 =
∆t

(∆x)2
(1− θ) and α2 =

∆t

(∆x)2
(θ).

The boundary conditions are

V1,j − V−1,j

2∆x
= hV (V0,j − Vair) (2.14)

VN+1,j − VN−1,j

2∆x
= 0

j = 1, 2, ...M.
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Then at each time interval a linear system AX = B is formulated by varying

i = 0, 1, 2, ...N and with the help of the boundary conditions like it is mentioned

in the case of heat transfer equation. This is solved for the unknown value of the

vapor at each time interval. Here,

A =




(1 + α1β) −α1ξ0 0 − − 0 0 0

−α1β1 (1 + α1ξ1) −α1β2 − − 0 0 0

− − − − − − − −
0 0 0 − − −αN−1 (1 + α1ξN−1) −α1βN

0 0 0 − − 0 −α1ξN (1 + α1ξN)




,

(2.15)

where

β = ((DV )1,j+1 + (DV )0,j+1(1 + 2∆xhV )) (2.16)

βi = (DV )i,j+1

ξi = ((DV )i,j+1 + (DV )i+1,j+1).

B =




α2(DV )0,jV−1,j + (1− α2η0)V0,j + α2(DV )1,jV1,j + 2α1(DV )0,j+1∆xhV Vair

α2(DV )1,jV0,j + (1− α2η1)V1,j + α2(DV )2,jV2,j

....

α2(DV )N−1,jVN−2,j + (1− α2ηN−1)VN−1,j + α2(DV )N,jVN,j

α2(DV )N,jVN−1,j + (1− α2ηN)VN,j + α2(DV )N,jVN−1,j




,

(2.17)

where

ηi = ((DV )i,j + (DV )i+1,j)
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and

X =




V0,j+1

V1,j+1

....

VN−1,j+1

VN,j+1




.

Diffusion equation for Liquid Water

The liquid water diffusion equation is discretized as follows (Since DW is a constant,

it is pulled outside the derivative by using the chain rule),

Wi,j+1 −Wi,j

∆t
= DW

(
(1− θ)

(
Wi−1,j+1 − 2Wi,j+1 + Wi+1,j+1

(∆x)2

)

(2.18)

+θ

(
Wi−1,j − 2Wi,j + Wi+1,j

(∆x)2

))

or

−α1Wi−1,j+1 + (1 + 2α1)Wi,j+1 − α1Wi+1,j+1 = α2Wi−1,j + (1− 2α2)Wi,j + α2Wi+1,j

(2.19)

i = 0, 1, 2, 3....N

where

α1 =
DW ∆t

(∆x)2
(1− θ) and α2 =

DW ∆t

(∆x)2
(θ).

The boundary conditions are

W1,j −W−1,j

2∆x
= hW (W0,j −Wair) (2.20)

WN+1,j −WN−1,j

2∆x
= 0

j = 1, 2, ...M.
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The corresponding linear system is AX = B, where,

A =




(1 + α1(2 + 2∆xhW )) −2α1 0 − − 0 0 0

−α1 (1 + 2α1) −α1 − − 0 0 0

− − − − − − − −
0 0 0 − − −α1 (1 + 2α1) −α1

0 0 0 − − 0 −2α1 (1 + 2α1)




,

(2.21)

B =




α2W−1,j + (1− 2α2)W0,j + α2W1,j + 2α1∆xhW Wair

αW0,j + (1− 2α2)V1,j + α2W2,j

....

α2WN−2,j + (1− 2α2)WN−1,j + α2WN,j

α2WN−1,j + (1− 2α2)WN,j + α2WN−1,j




,

(2.22)

X =




W0,j+1

W1,j+1

....

WN−1,j+1

WN,j+1




and

W−1,j = W1,j − 2∆xhW (W0,j −Wair). (2.23)

The linear system is solved for each time interval for the liquid water.

The above three linear systems are solved according to the algorithm or using

the procedure given in the beginning of this chapter to validate the model for one

dimensional bread baking.
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2.2.2 Finite Element Scheme

The finite element scheme is implemented as follows,

System of Equations

The governing equations can be written as a system of equations as follows,

∂

∂t




T

V

W


 =

∂

∂x







k
ρcp

0 λDW

cp

0 DV 0

0 0 DW




∂

∂x




T

V

W





 (2.24)

or

∂U

∂t
=

∂

∂x

(
A

∂U

∂x

)
(2.25)

where

U =




T

V

W


 and A =




k
ρcp

0 λDW

cp

0 DV 0

0 0 DW


 . (2.26)

After approximating ∂
∂t

using the backward difference finite difference formula and

integrating after multiplying the test function P ∈ (H1 ×H1 ×H1), the following

expression is obtained:

∫

Ω

U j − U j−1

∆t
Pdx =

∫

Ω

∂

∂x

(
A

∂U j

∂x

)
Pdx (2.27)

Variational Formulation

The variational formulation of each equation of the system (2.24) can be formulated

from (2.27) using integration by parts.
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Heat Transfer Equation:

The variational formulation of the heat transfer equation is as follows,
∫

Ω

T j − T j−1

∆t
Pdx =

∫

Ω

(
1

ρcp

∂

∂x

(
k
∂T

∂x

)
+

λ

cp

∂

∂x

(
DW

∂W

∂x

))
Pdx (2.28)

=

∫

Ω

(
c1

∂2T

∂x2
+ c2

∂2W

∂x2

)
Pdx

where c1 = k
ρcp

and c2 = λDW

cp
(k and DW are pulled out since they are constants).

ie,
∫

Ω

T jPdx−
∫

Ω

T j−1Pdx = c1∆t

∫

Ω

∂2T

∂x2
Pdx + c2∆t

∫

Ω

∂2W

∂x2
Pdx

(2.29)

= c1∆t

[
P (xL/2)

(
∂T

∂x

)

x=xL/2

− P (0)

(
∂T

∂x

)

x=0

]
− c1∆t

∫ xL/2

0

∂T

∂x

∂P

∂x
dx

+c2∆t

[
P (xL/2)

(
∂W

∂x

)

x=xL/2

− P (0)

(
∂W

∂x

)

x=0

]
− c2∆t

∫ xL/2

0

∂W

∂x

∂P

∂x
dx

=
c1∆t

k
P (0)

[
hr(Tr − T (0, t)) + hc(Tair − T (0, t))− λρDW

(
∂W

∂x

)

x=0

]

−c1∆t

∫ xL/2

0

∂T

∂x

∂P

∂x
dx− c2∆tP (0) [hW (W (0, t)−Wair)]− c2∆t

∫ xL/2

0

∂W

∂x

∂P

∂x
dx.

After performing necessary substitutions and then rearranging the terms in such

a way that one side of the equation contains unknown terms at the jth level and

the other side contains terms at the (j − 1)th time level, the following equation is

obtained,
∫ xL/2

0

(
c1∆t

∂T j

∂x

∂P

∂x
+ T jP

)
dx +

c1∆t

k
(hr + hc)T (0, t)P (0)

(2.30)

=

∫ xL/2

0

T j−1Pdx− c2∆t

∫ xL/2

0

∂W j−1

∂x

∂P

∂x
dx +

c1(0)∆t

k
(hrTr + hcTair)P (0, t)

−λρDW hW

k
c1(0)∆t(W (j−1)(0, t)−Wair)P (0)− c2∆thW (W j−1(0, t)−Wair)P (0)
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which is the variational form for the heat transfer equation.

Vapor Diffusion Equation:

The variation form of vapor diffusion equation is derived as follows,

∫

Ω

V j − V j−1

∆t
Pdx =

∫

Ω

∂

∂x

(
DV

∂V

∂x

)
Pdx (2.31)

Or

∫

Ω

V jPdx−
∫

Ω

V j−1Pdx = ∆t

∫

Ω

∂

∂x

(
DV

∂V

∂x

)
Pdx

(2.32)

= ∆t

[
P (xL/2)

(
DV

∂V

∂x

)

x=xL/2

− P (0)

(
DV

∂V

∂x

)

x=0

]
−∆t

∫ xL/2

0

DV
∂V

∂x

∂P

∂x
dx

= −(DV )0∆tP (0) [hV (V (0, t)− Vair)]−∆t

∫ xL/2

0

DV
∂V

∂x

∂P

∂x
dx.

After rearranging the terms,

∫ xL/2

0

(
∆tDV

∂V j

∂x

∂P

∂x
+ V jP

)
dx + ∆t(DV )0hV V (0, t)P (0)

=

∫ xL/2

0

V j−1Pdx + ∆t(DV )0hV VairP (0),

(2.33)

which is the variational formulation for vapor diffusion equation.

Liquid Water Diffusion Equation:

Derivation of the variational of diffusion equation for liquid water is in a way similar

to derivation of the variational form of vapor diffusion, since both the equations

are same except for the vapor and water terms. So we can write the variational
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form of liquid water diffusion as below,

∫ xL/2

0

(
∆tDW

∂W j

∂x

∂P

∂x
+ W jP

)
dx + ∆tDW hW W (0, t)P (0)

=

∫ xL/2

0

W j−1Pdx + ∆tDW hW WairP (0)

(2.34)

Triangulation

After the variational formulation, next step of finite element scheme is to generate a

triangulation or the discretization of region into several smaller regions. Here since

the problem is one - dimensional a uniform cartesian grid xi = ih, i = 0, 1, 2, ....N ,

h = 1/N is used and those smaller regions are [xi−1, xi].

Basis Function

Basis function is the function with which the unknown function in a given region

is approximated. In this simulation a piecewise linear basis function is used based

on the triangulation.

φi(x) =





x−xi−1

h
(xi−1 ≤ x ≤ xi)

xi+1−x
h

(xi ≤ x ≤ xi+1)

0 (otherwise)

(2.35)

They are also known as hat functions.
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Approximate Solution and Reformulation of Weak Form

Now the approximate solution can be expressed as the linear combination of basis

functions as follows,

T =
N∑

i=0

Tiφi (2.36)

V =
N∑

i=0

Viφi

W =
N∑

i=0

Wiφi

Then substituting in the equations (2.30), (2.33) and (2.34) and reformulating we

get the following equations;

Heat Transfer Equation:

c1∆t

N∑
i=0

Ti

(∫ xL/2

0

∂φi

∂x

∂P

∂x
dx

)
+

N∑
i=0

Ti

(∫ xL/2

0

φiPdx

)
+

c1∆t

k
(hr + hc)T0P (0)

(2.37)

=
N∑

i=0

Ti

(∫ xL/2

0

φiPdx

)
− c2∆t

N∑
i=0

Wi

(∫ xL/2

0

∂φi

∂x

∂P

∂x
dx

)
+

c1(0)∆t

k
(hrTr + hcTair)P (0)

−λρDW hW

k
c1(0)∆t(W0 −Wair)P (0)− c2∆thW (W0 −Wair)P (0)

Now P (x) is chosen as φ1, φ2, ..., φN respectively to get the stiffness matrix A. For

element ei = (xi, xi+1), i = 0, 1...N , the local stiffness matrix is given by,

Ke
i =




∫ xi+1

xi
c1∆tφ′2i dx

∫ xi+1

xi
c1∆tφ′iφ

′
i+1dx

∫ xi+1

xi
c1∆tφ′i+1φ

′
idx

∫ xi+1

xi
c1∆tφ′2i+1dx




+




∫ xi+1

xi
φ2

i dx
∫ xi+1

xi
φiφi+1dx

∫ xi+1

xi
φi+1φidx

∫ xi+1

xi
φ2

i+1dx


 (2.38)
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and the local load vector is

F e
i =


 L(φi)

L(φi+1)


 (2.39)

where

L(φi) = Ti

(∫ xi+1

xi

φiφidx

)
+ Ti+1

(∫ xi+1

xi

φiφi+1dx

)
(2.40)

−∆tWi

(∫ xi+1

xi

c2φ
′
iφ
′
idx

)
− c2∆tWi+1

(∫ xi+1

xi

φ′iφ
′
i+1dx

)
.

Due to the Robin boundary condition at the boundary x = 0 the 1st elementary

matrix has an extra term, as follows,

Ke
0 = Ke

0 +
c1∆t

k
(hr + hc)


 1 0

0 0


 (2.41)

and

F e
0 = F e

0 + [
c1(0)∆t

k
(hrTr + hcTair)− λρDW hW

k
c1(0)∆t(W0 −Wair) (2.42)

−c2∆thW (W0 −Wair)]


 1

0


 .

To get stiffness matrix, the local stiffness matrices are added together in such a

way that the second row of the ith element matrix is added with the first row of

(i + 1)th elementary matrix.

Vapor Diffusion Equation:

∆t

N∑
i=0

(DV )iVi

(∫ xL/2

0

∂φi

∂x

∂P

∂x
dx

)
+

N∑
i=0

Vi

(∫ xL/2

0

φiPdx

)
+ (DV )0∆thV V0P (0)

=
N∑

i=0

Vi

(∫ xL/2

0

φiPdx

)
+ (DV )0∆thV VairP (0)

(2.43)
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Similarly we will get the following local stiffness matrix,

Ke
i = ((DV )i∆t)




∫ xi+1

xi
φ′2i dx

∫ xi+1

xi
φ′iφ

′
i+1dx

∫ xi+1

xi
φ′i+1φ

′
idx

∫ xi+1

xi
φ′2i+1dx




+




∫ xi+1

xi
φ2

i dx
∫ xi+1

xi
φiφi+1dx

∫ xi+1

xi
φi+1φidx

∫ xi+1

xi
φ2

i+1dx


 (2.44)

and the local load vector is

F e
i =


 L(φi)

L(φi+1)


 (2.45)

where

L(φi) = Vi

(∫ xi+1

xi

φiφidx

)
+ Vi+1

(∫ xi+1

xi

φiφi+1dx

)
(2.46)

and on the boundary,

Ke
0 = Ke

0 + (DV )0∆thV


 1 0

0 0


 (2.47)

and

F e
0 = F e

0 + (DV )0∆thV Vair


 1

0


 .

(2.48)

Liquid Water Diffusion Equation:

∆t

N∑
i=0

DW Wi

(∫ xL/2

0

∂φi

∂x

∂P

∂x
dx

)
+

N∑
i=0

Wi

(∫ xL/2

0

φiPdx

)
+ DW ∆thW W0P (0)

=
N∑

i=0

Wi

(∫ xL/2

0

φiPdx

)
+ DW ∆thW WairP (0)

(2.49)
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The local and global stiffness matrix is obtained exactly in the same way as above.

Ke
i = (DW ∆t)




∫ xi+1

xi
φ′2i dx

∫ xi+1

xi
φ′iφ

′
i+1dx

∫ xi+1

xi
φ′i+1φ

′
idx

∫ xi+1

xi
φ′2i+1dx




+




∫ xi+1

xi
φ2

i dx
∫ xi+1

xi
φiφi+1dx

∫ xi+1

xi
φi+1φidx

∫ xi+1

xi
φ2

i+1dx


 (2.50)

and the local load vector is

F e
i =


 L(φi)

L(φi+1)


 (2.51)

where

L(φi) = Wi

(∫ xi+1

xi

φiφidx

)
+ Wi+1

(∫ xi+1

xi

φiφi+1dx

)
(2.52)

and on the boundary,

Ke
0 = Ke

0 + DW ∆thW


 1 0

0 0


 (2.53)

and

F e
0 = F e

0 + DW ∆thW Wair


 1

0


 . (2.54)

2.3 Two Dimensional Model

The results of one dimensional simulation shows that the model is more sensitive

towards time interval than the spatial one and since in finite difference and finite

element schemes, the partial derivative with respect to time is approximated using

the finite difference scheme, there is not much gain in using the finite element

scheme. So the two dimensional model is validated using the finite difference

scheme only.
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2.3.1 Finite Difference Scheme

The Finite Difference Scheme for the two dimensional model is carried out as below,

Heat Transfer Equation

If the domain is discretized into the discrete points (xj, yi) where i = 0, 1, 2, ...N1

and j = 0, 1, 2, ...N2, The two dimensional heat transfer equation can be given as

follows,

T n+1
i,j − T n

i,j

∆t
=

k

ρcp

[(1− θ1)

(
T n+1

i,j−1 − 2T n+1
i,j + T n+1

i,j+1

(∆x)2

)
+ (θ1)

(
T n

i,j−1 − 2T n
i,j + T n

i,j+1

(∆x)2

)

+(1− θ2)

(
T n+1

i−1,j − 2T n+1
i,j + T n+1

i+1,j

(∆y)2

)
+ (θ2)

(
T n

i−1,j − 2T n
i,j + T n

i+1,j

(∆y)2

)
]

+
λDW

cp

(
W n

i−1,j − 2W n
i,j + W n

i+1,j

(∆y)2
+

W n
i,j−1 − 2W n

i,j + W n
i,j+1

(∆x)2

)

or it can be reduced to,

−α1T
n+1
i−1,j + (1 + 2α1 + 2α2)T

n+1
i,j − α1T

n+1
i+1,j − α2T

n+1
i,j−1 − α2T

n+1
i,j+1 (2.55)

= α3T
n
i−1,j + (1− 2α3 − 2α4)T

n
i,j + α3T

n
i+1,j + α4T

n
i,j−1 + α4T

n
i,j+1

+α5(W
n
i−1,j − 2W n

i,j + W n
i+1,j) + α6(W

n
i,j−1 − 2W n

i,j + W n
i,j+1)

i = 0, 1, 2, 3....N1. j = 0, 1, 2, 3....N2.

where

α1 =
k∆t

ρcp(∆y)2
(1− θ2) α3 =

k∆t

ρcp(∆y)2
(θ2)

α2 =
k∆t

ρcp(∆x)2
(1− θ1) α4 =

k∆t

ρcp(∆x)2
(θ1)

α5 =
λDW ∆t

cp(∆y)2
α6 =

λDW ∆t

cp(∆x)2

If the unknowns at (n + 1)th level are taken in a continuous manner, a banded

matrix which is of size (N1 ∗N2)× (N1 ∗N2) is obtained and the distance between
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T n
i−1,j and T n

i,j and T n
i+1,j and T n

i,j is N2. And here the boundary conditions for heat

transfer equation at i = 0, j = 0, i = N1, and j = N2 are (using equation(1.10)),

−k

(
T n

1,j − T n
−1,j

2∆y

)
= hr(y)(Tr − T n

0,j) + hc(Tair − T n
0,j)− λρDW hW (W n

0,j −Wair)

(2.56)

−k

(
T n

i,1 − T n
i,−1

2∆x

)
= hr(x)(Tr − T n

i,0) + hc(Tair − T n
i,0)− λρDW hW (W n

i,0 −Wair)

(2.57)

T n
N+1,j − T n

N−1,j

2∆x
= 0

(2.58)

T n
i,N+1 − T n

i,N−1

2∆x
= 0

(2.59)

The boundary conditions for water diffusion equation are,

W n
1,j −W n

−1,j

2∆y
= hW (y)(W n

0,j −Wair) (2.60)

W n
i,1 −W n

i,−1

2∆x
= hW (x)(W n

i,0 −Wair) (2.61)

W n
N+1,j −W n

N−1,j

2∆y
= 0 (2.62)

W n
i,N+1 −W n

i,N−1

2∆x
= 0 (2.63)

In the equation (2.55), on the boundary i = 0, when j = 1, 2....N2−1, the boundary

conditions (2.56) and (2.60) are used to replace the ghost points T n
−1,j and W n

−1,j.

When j = 0, ghost points T n
−1,0, T n

0,−1, W n
−1,0 and W n

0,−1 are replaced using the

conditions (2.56), (2.60), (2.57) and (2.61). And when j = N2, with the conditions

(2.56), (2.60), (2.59) and (2.63), ghost points T n
−1,N2

, T n
0,N2+1, W n

−1,N2
and W n

0,N2+1

are replaced.

On the boundary i = N1, when j = 1, 1, ....N2 − 1, the ghost points T n
N1+1,j
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and W n
N1+1,j are replaced using the boundary conditions (2.58) and (2.62), when

j = 0, T n
N1,−1, T n

N1+1,0, W n
N1,−1 and W n

N1+1,0 are replaced using the conditions (2.57),

(2.61), (2.58) and (2.62).

When j = 0 and i = 1, 2....N1− 1, conditions (2.57) and (2.61) are used to replace

the ghost points T n
i,−1 and W n

i,−1 and when j = N2 and i = 1, 2, ....N1, the ghost

points T n
i,N2+1 and W n

i,N2+1 is replaced using the equations (2.59) and (2.63).

Thus using the above equations (2.55) and the boundary conditions, (2.56-63),

the linear system,

AX = B

is obtained, where A is a banded matrix with 5 bands. And by solving this linear

system the unknown values of temperature are obtained.

Diffusion Equation for Water Vapor

For two dimensional model the equation of water vapor diffusion can be discretized

as follows,

V n+1
i,j − V n

i,j

∆t
= (1− θ1)

(
(DV )n+1

i,j+1V
n+1
i,j+1 − ((DV )n+1

i,j+1 + (DV )n+1
i,j )V n+1

i,j + (DV )n+1
i,j V n+1

i,j−1

(∆x)2

)

(2.64)

+(θ1)

(
(DV )n

i,j+1V
n
i,j+1 − ((DV )n

i,j+1 + (DV )n
i,j)V

n
i,j + (DV )n

i,jV
n
i,j−1

(∆x)2

)

+(1− θ2)

(
(DV )n+1

i+1,jV
n+1
i+1,j − ((DV )n+1

i+1,j + (DV )n+1
i,j )V n+1

i,j + (DV )n+1
i,j V n+1

i−1,j

(∆y)2

)

+(θ2)

(
(DV )n

i+1,jV
n
i+1,j − ((DV )n

i+1,j + (DV )n
i,j)V

n
i,j + (DV )n

i,jV
n
i−1,j

(∆y)2

)
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or after rearranging,

−α1(DV )n+1
i,j+1V

n+1
i,j+1 + (1 + α1η

n+1
1 + α2η

n+1
2 )V n+1

i,j − α1(DV )n+1
i,j V n+1

i,j−1 − α2(DV )n+1
i+1,jV

n+1
i+1,j

−α2(DV )n+1
i,j V n+1

i−1,j = α3(DV )n
i,j+1V

n
i,j+1 + (1 + α3η

n
1 + α4η

n
2 )V n

i,j − α3(DV )n
i,jV

n
i,j−1

−α4(DV )n
i+1,jV

n
i+1,j − α4(DV )n

i,jV
n
i−1,j

(2.65)

i = 0, 1, 2, 3....N1. j = 0, 1, 2, 3....N2.

where,

η1 = ((DV )i,j+1 + (DV )i,j) η2 = ((DV )i+1,j + (DV )i,j) (2.66)

α1 =
∆t

(∆x)2
(1− θ1) α3 =

∆t

(∆x)2
(θ1)

α2 =
∆t

(∆y)2
(1− θ2) α3 =

∆t

(∆y)2
(θ2)

The boundary conditions are

V n
1,j − V n

−1,j

2∆y
= hV (y)(V n

0,j − Vair) (2.67)

V n
i,1 − V n

i,−1

2∆x
= hV (x)(V n

i,0 − Vair)

V n
N+1,j − V n

N−1,j

2∆y
= 0

V n
i,N+1 − V n

i,N−1

2∆x
= 0

Considering the unknowns continually and by using the equations (2.65) and the

boundary conditions (2.67), to replace the ghost points and then varying i =

0, 1, 2, 3....N1 and j = 0, 1, 2, 3....N2 (where N1 and N2 are spatial discrete points)

a linear system,

AX = B

is obtained in each time interval and this linear system is solved to obtain the

unknown values of the water vapor at discrete points.
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Diffusion Equation for Liquid Water Content

The discretization of the liquid water diffusion equation is done similar to that of

the vapor diffusion equation. Then the final equations are given as below,

−α1W
n+1
i,j+1 + (1 + 2α1 + 2α2)W

n+1
i,j − α1W

n+1
i,j−1 − α2W

n+1
i+1,j − α2W

n+1
i−1,j

= α3W
n
i,j−1 + (1− 2α3 − 2α4)W

n
i,j + α3W

n
i,j+1 + α4W

n
i−1,j + α4W

n
i−1,j

(2.68)

i = 0, 1, 2, 3....N1. j = 0, 1, 2, 3....N2

Where,

α1 =
DW ∆t

(∆x)2
(1− θ1) α3 =

DW ∆t

(∆x)2
(θ1)

α2 =
DW ∆t

(∆y)2
(1− θ2) α3 =

DW ∆t

(∆y)2
(θ2)

the boundary conditions,

W n
1,j −W n

−1,j

2∆y
= hW (y)(W n

0,j −Wair) (2.69)

W n
i,1 −W n

i,−1

2∆x
= hW (x)(W n

i,0 −Wair)

W n
N+1,j −W n

N−1,j

2∆y
= 0

W n
i,N+1 −W n

i,N−1

2∆x
= 0

Thus a linear system for unknowns,

AX = B

is formulated by using above equation (2.68) and its boundary conditions(2.69).

At the boundary the ghost points are replaced by using the boundary conditions

as it is mentioned in the case of heat transfer equation. Then this linear system is

solved in each time interval to get the water content in each discrete points of the

domain.



Chapter 3
Computational Results and Discussions

3.1 Introduction

In previous chapters, the mathematical formulation of the model was discussed

with a detailed description of implementation. An efficient code was written in

Matlab for each numerical scheme (Appendix A and Appendix B) and in this chap-

ter the results of the simulation are analyzed and discussed.

In order to study the behavior of temperature, liquid water and water vapor with

respect to the time interval, the profiles are drawn with respect to time. The

critical points C1, C2, C3 and C4 are also taken in temperature and liquid water

profile in order to study the efficiency and performance of the numerical schemes.

The time when temperature of the bread reaches 100oC is considered as the first

critical point, C1. At this point water dries out and the crust starts forming. C2

is the critical point which gives the time when the water content reaches the peak

value. Critical point C3 denote the peak liquid water level. Finally C4 repre-

sents the dry out time or the time when the liquid water completely evaporates to

37
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vapor. [Zhou, 2004].

3.2 One Dimensional model

One dimensional model is implemented using finite difference scheme and finite

element scheme. The results of the simulation are given below.

3.2.1 Finite Difference Scheme

The simulation in finite difference scheme is carried out using the ”θ” method from

which the implicit and explicit schemes are obtained by varying ”θ”. When θ = 0

the scheme is explicit and θ = 1 gives the implicit scheme. It is observed from

the results that only when θ = 1, i.e., the implicit scheme gives the correct and

converged results. All other θ including θ = 0.5, i.e., the Crank-Nicholson scheme

produce wrong divergent results (Fig 3.1). This indicates that implicit scheme may

be more reliable for this model.

Another interesting fact is that the implicit scheme gives convergent values only

for a particular range of time intervals, say from ∆t = 15s to ∆t = 90s (Fig 3.2

and Fig 3.3). Though decreasing time interval is expected to produce a better

result, the simulation results do not give such results beyond the mentioned range

(Fig 3.4)(The reason for this will be elaborated in Chapter 4). As the time inter-

val increases the rise in water vapor level in the center of bread sample decreases.

So the satisfactory results can be seen only in the above mentioned range. The

increase or decrease in spatial interval does not have much effect on the result but

the profiles are more smooth for lower spatial interval (mesh size)(fig 3.5). The

critical points are also plotted for different time intervals (Fig 3.6).
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Figure 3.1: Temperature and Moisture profiles for model simulated through Crank-

Nicholson Scheme (Surface, halfway to center, center)
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Figure 3.2: Temperature and Moisture profiles for model simulated through Im-

plicit Scheme (Surface, halfway to center, center)
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Figure 3.3: Temperature and Moisture profiles for model simulated through Im-

plicit Scheme (Surface, halfway to center, center)
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Figure 3.4: Temperature and Moisture profiles for model simulated through Im-

plicit Scheme - Diverged solutions when ∆t=5s (Surface, halfway to center, center)
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Figure 3.5: Temperature and Moisture profiles for model simulated through Im-

plicit Scheme - Profiles for smaller spatial intervals(Surface, halfway to center,

center)
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Figure 3.6: Sensitivity of Finite Difference Scheme to the size of time intervals

(N=32):- Line - surface; Dotted line - half way to center; Starred line - center
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Figure 3.7: Sensitivity of Finite Difference Scheme to the spatial increment (∆t =

30):- Line - surface; Dotted line - half way to center; Starred line - center
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Figure 3.8: Temperature and Moisture profiles for model simulated through Finite

Element Scheme (Surface, halfway to center, center)



3.2 One Dimensional model 47

0 20 40 60 80 100
0

50

100

150

200

Time in min

T
e

m
p

e
ra

tu
re

 i
n

 C

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Time in min
W

a
te

r 
v
a

p
o

r 
c
o

n
te

n
t

0 20 40 60 80 100
0

0.5

1

1.5

Time in min

L
iq

u
id

 w
a

te
r 

c
o

n
te

n
t

dt = 5s
N = 32
Finite element method 

Figure 3.9: Temperature and Moisture profiles for model simulated through Finite

Element Scheme -Diverged solutions when ∆t = 5s (Surface, halfway to center,

center)
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3.2.2 Finite Element Scheme

The simulation of the one dimensional model was also carried out using the finite

element scheme and the profiles were drawn to illustrate the results. (Fig 3.8 and

Fig 3.9)

3.3 Two Dimensional Model

The two dimensional model which is developed as an extension of the one dimen-

sional model is simulated using finite difference scheme.

3.3.1 Finite Difference Scheme

Finite difference scheme is used to validate the model in two dimensional case. The

above explained ”θ” method is used here also and interestingly like one dimensional

case, except ”θ = 1” ie implicit scheme, all other values of ”θ” give wrong results

(Fig 3.10-12). The time interval also plays a vital role in the simulation. The lower

(Fig 3.13-15) and higher time intervals beyond a range leave out some unsatisfac-

tory results. In general the model reflects same behavior that of one dimensional

model. The critical values are also calculated at different points to analyze the

performance of the numerical scheme(Fig 3.16).

3.4 Profile Discussions

The simulated profiles are discussed in detail below. The profiles give the behavior

of the temperature and moisture during the process of baking.
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Figure 3.10: Temperature profile for 2-D model simulated through Finite Difference

Scheme(∆t = 30s and X axis fixed for surface, halfway to center and center).
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Figure 3.11: Water vapor profiles for 2-D model simulated through Finite Difference

Scheme(∆t = 30s and X axis fixed for surface, halfway to center and center).
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Figure 3.12: Liquid water profiles for 2-D model simulated through Finite Differ-

ence Scheme(∆t = 30s and X axis fixed for surface, halfway to center and center).

0

5

10 0 200 400 600 800 1000 1200

20

40

60

80

100

120

140

160

180

200

220

Time (in grid points=5400s/5)Y axis (in grid points=8)

T
e
m

p
e
ra

tu
re

 in
 C

Figure 3.13: Temperature profile for 2-D model simulated through Finite Difference

Scheme (∆t = 5s and X axis fixed for surface, halfway to center and center,
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Figure 3.14: Water vapor profiles for 2-D model simulated through Finite Differ-

ence Scheme(∆t = 5s and X axis fixed for surface, halfway to center and center,

Divergent result).
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3.4.1 Discussion on the Temperature Profile

As it is mentioned earlier, the result of the simulation of the present model gives

satisfactory results only when the time increment is greater than 15s (The reason

for this will be elaborated in Chapter 4). So the profile when ∆t = 30s is taken

for analysis.

The dough is placed in the oven which is maintained at a constant temperature of

210oC. As time increases, the temperature of the dough rises due to natural con-

vection, conduction and radiation. Since the surface of dough is exposed to oven

heat more than any other parts of the dough, temperature on the surface increases

much faster. When surface temperature increases, heat is transferred within the

dough through conduction and also due to diffusion of water vapor. The center

of dough does not attain the maximum temperature until the end of the baking

process. Mechanism that accounts for the slower rise of temperature in center is

the greater rate of heat loss caused by evaporation of water as compared with the

rate of heat absorption by the dough. While temperature on the surface rises fast

and in the center rises slow, the temperature halfway to center rises in a moderate

level, a little faster than the center portion. By around 65-70 minutes, temperature

of the dough, i.e., on surface, center and halfway to the center becomes a steady

value which means that the dough is baked completely.

3.4.2 Discussion on the Liquid Water and Water Vapor

Profiles

The mass transfer during baking is due to the diffusion of liquid water and water

vapor content. The profiles show that liquid water content decreases rapidly on the

surface while water vapor content increases since both are interrelated. The sudden
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rise in temperature on the surface accounts for this rapid change since the increased

temperature evaporates liquid water into water vapor. The vapor diffuses towards

center and surface and at the center it condenses back into water since interior

is in lower temperature compared to the surface. This explains the rise in water

levels at center and towards center before it drops down to zero. It can also be seen

that at around 45-50 min, though center holds temperature more than 100oC the

profile shows large amount of water levels. The reason for this can be explained

as below, since the water vapor diffusion is slower than evaporation, the heat is

used to increase the temperature rather than evaporating water. Or when the

partial water vapor pressure is satisfied, the evaporation ends and the temperature

increased [Thorvaldsson et.al, 1999]. Depending on liquid water profile, the vapor

profile also changes since water is evaporated to vapor. The changes in vapor profile

is also due to the diffusion of water vapor into air where the pressure gradient is

high because of higher temperature.

3.4.3 General Discussion

Baking process is explained here with the help of temperature and moisture profiles

drawn from the simulation of the mathematical model [Thorvaldsson et.al, 1999].

The bread sample is placed in an oven which is at a constant temperature of 210oC

and baked for about 90 minutes. The temperature close to the surface increases

rapidly whereas it rises slowly inside the dough and this higher temperature va-

porizes liquid water into water vapor which in turn raises the gradient of the water

vapor content close to the surface. This creates a difference in the gradient of the

vapor content between the surface and center, and vapor starts to move towards

the center, where the vapor content gradient is low, and to the surface to reduce

the vapor pressure. The temperature at the center is low compared to that of the
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area close to the surface which makes water vapor condense back to liquid water.

The oven is at a much higher temperature than the dough, so in order to sat-

isfy the water vapor pressure gradient, vapor diffuses out of the surface and the

surface starts to dry out. Water left over is then evaporated to satisfy the va-

por pressure and diffuses towards the surface and center till it dries out. The

condensation of diffused vapor at the center build up water gradient at the center

which in turn makes it diffuse towards the surface. This entire process continues till

the the entire water and vapor content dries out and the dough is baked into bread.

The analysis of critical points reveals that the model is very much sensitive to-

wards time interval (mesh size) while they are stable with respect to the spatial

interval(Fig 3.6-7). Except one, other critical points vary drastically with respect

to time interval. The first critical point C1, which gives the time to reach 100oC is

almost stable with time interval and it indicates that the profile for temperature

distribution during baking is not very sensitive. It can be seen from the profile

that the surface temperature reaches 100oC in around 6 minutes whereas the cen-

ter portion takes 20 minutes. Other profiles show that they vary with the time

intervals. For smaller time interval the peak water content at the center is much

above than that for higher intervals and as the length of time interval increases, the

amount of peak water content reduces. The increase in time interval also results in

reduction of time period to reach the peak water level. The dry-out time remains

almost constant at the center but on the surface and halfway to the center, it goes

higher with the increase in time intervals.

The two dimensional model shows almost the same behavior as that of one di-

mension, which was previously unknown. The critical values taken at the center
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slice is showing a little more stable behavior than that of one dimensional model

except for a few beginning time intervals. With the increment in time intervals,

the peak water level decreases from a higher value to a constant value one which

is the initial amount. The similar trend is seen in the time factor for peak water

content also. The graphs plotted for two dimensional simulation also shows similar

behavior with one dimensional case. This indicates that the study and the results

on one dimensional model can also be applied to two dimensional model. This fact

may help in further studies since it is more easy and takes less computational effort

to study a one dimensional model.

The non-convergent behavior of the simulations of these one and two dimensional

mathematical models for smaller time intervals is the negative aspect of this model

which other researchers are also encountered ( [Zhou, 2004], in the case of one

dimensional model). This encouraged to do further analysis of the model and to

develop some procedure to overcome this difficulty which is explained in the next

chapter.



Chapter 4
Improved Methodology for Simulation

4.1 Introduction

As it is concluded in last chapter, the convergence of the implicit scheme, only

for a particular range of values [Zhou, 2004] encouraged to do the further anal-

ysis of this model. The simulations of the model with respect to different sets of

parameters gave an indication that the algebraic inequalities which are inserted

between the governing equations to deal with the phase change might have caused

this non-convergent behavior. It seems that this algebraic inequalities are causing

some discontinuity in the interdependence of governing differential equations.

To clarify this inference and to test the stability of the governing partial differ-

ential equations, some simulations are done without using these algebraic inequal-

ities. Though the results are meaningless with respect to baking theory, it showed

that the governing differential equations are stable with respect to time and space.

So it became clear that the introduction of algebraic inequalities to adopt tabled

values make the system inconsistent. Here some suggestions are given to improve

the convergence range of the model as all previous schemes are sensitive towards

57
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the size of the time interval. The suggested procedure is also implemented using

computer codes and results of the simulation are discussed section 4.2.

4.2 Methodology, Simulation and Results

Simulation using the algorithm mentioned in chapter 2 results in a non-convergent

behavior of the model with respect to the size of the time intervals. More precisely,

the numerical scheme gives satisfactory results only in a particular range of time

intervals and when the interval or mesh size is less than 15 seconds, say at ∆t = 10s

and ∆t = 5s, numerical computation gives divergent results for temperature and

moisture profiles (Fig 3.4). The simulations show that sudden rise in liquid wa-

ter and water vapor contents and hence higher values for vapor and water for the

following time steps, can be one of the reasons for this unsatisfactory results for

smaller time intervals.

When the time interval is large, these higher values of moisture contents does

not have a great influence on the system of governing equations since for the next

time step, the increase in moisture values matches with the increase in temperature

with respect to the large time interval. It means that when the time increment

is longer, the temperature is getting higher in each steps and hence the moisture

values has to be higher. But in the case of smaller time intervals, the time is

increasing slowly and hence the temperature, so the moisture is also expected to

grow in a slow rate but the adoption of inequalities for updating scheme using

the tabled values makes the moisture growth more faster than expected or actual

growth, and this accumulated error gives a bad result for the whole system towards

the final time which can be clearly visible in the profiles with small time interval

(Fig 3.4).
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In the case of small time intervals, the algebraic inequalities makes the phase

change more instantly than the reality. So for these time intervals, the problem of

this sudden rise can be reduced by relaxing the saturated vapor content which is

derived from the table for saturated vapor pressure. This relaxation allows some

time for the phase change process to complete. This is done by introducing the

equation

∂V

∂t
= γ(V ∗ − V ), (4.1)

where V ∗ is the amount of vapor corresponding to the saturated vapor pressure

and γ is a rate constant.

The relaxation using above differential equation can be justified because in the

real baking process, evaporation to the saturation point is not instantaneous. Liq-

uid water vaporizes to water vapor to satisfy the vapor pressure and this process

is a time consuming simultaneous process with increase in temperature. The rate

constant γ can be viewed as a relaxation parameter which should be selected care-

fully so as to relax the vaporization process in a satisfactory way. In the present

simulation, the relaxation parameter is taken in the range of 0.01 - 0.015.

Equation (4.1) is solved as below,

V ∗ − V = C exp(−γt)

= (V ∗ − V 0) exp(−γt)

or

V = V 0 exp(−γt) + V ∗(1− exp(−γt)) (4.2)
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where V 0 is the initial water vapor content (at the (n + 1)th step of V , V 0 is the

value of V atvnth step). For each time step the above equation can be written as,

Vcorrection = V n exp(−γ∆t) + V ∗(1− exp(−γ∆t)) (4.3)

This Vcorrection is used instead of saturated vapor content in the procedure of up-

dating water and vapor with respect to the increased temperature as described in

section 2.4.

Simulations are then done with this new procedure and the results obtained are

more satisfactory than previous results for smaller values of time intervals. The

graphs below show the results for ∆t = 10s, ∆t = 5s and ∆t = 2s. Interestingly it

is observed that this relaxation technique works for semi-implicit numerical method

ie., when θ = 0.25 also.

4.3 Discussions

This new approach is based on the assumption that the baking is a slow continuous

process with simultaneous heat and mass transfer where the transition from one

phase to another occur slowly. So in the case of small time steps, the updating

scheme may increase the values of vapor and water more than the expected or

actual values (the phase transition is done instantly). Therefore in this relaxation

approach the tabled values for saturated vapor are relaxed before using them for

updating the water and vapor values. This relaxation approach for solving one

dimensional model for baking, almost succeeded in getting more meaningful results

for small time intervals where the original approach failed. Since the adoption of

algebraic inequalities is one of the reason for this time step size sensitiveness, a

well chosen differential equation in the place of these algebraic values may reduce

this sensitiveness of the model and make it more reliable.
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Figure 4.1: New improved results for Temperature and Moisture profiles using

relaxation scheme when ∆t = 2s. (Surface, halfway to center, center)
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Figure 4.2: New improved results for Temperature and Moisture profiles using

relaxation scheme when ∆t = 5s. (Surface, halfway to center, center)
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Figure 4.3: New improved results for Temperature and Moisture profiles using

relaxation scheme when ∆t = 10s. (Surface, halfway to center, center)
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Figure 4.4: New improved results for Temperature and Moisture profiles using

relaxation scheme when θ = 0.25. (Surface, halfway to center, center)



Chapter 5
Conclusion

The present study is focussed on the mathematical model for simultaneous heat and

mass transfer during bread baking. One dimensional model is taken as suggested

by Thorvaldsson and Janestad and from it a two dimensional model is developed

to examine the behavior of the problem in a two dimensional environment. Two

different numerical schemes, implicit finite difference scheme and finite element

scheme are used to implement this mathematical model for baking and an efficient

code is written in MATLAB to simulate the model and then to study its behav-

ior. Then the profiles for temperature and moisture distribution during baking are

plotted. Some critical values are also calculated to study the performance of the

schemes used.

The results of simulations show that the model is very much sensitive towards

the time interval rather than spatial interval. It gives satisfactory results only

when the size of time interval is of the range ∆t= 15 - 90s. When it goes below

15s, the profile becomes non-convergent. The computational experiments with dif-

ferent parameters indicated that the adoption of an updating scheme with the help

of tabled values and a set of algebraic equations to handle the phase change during
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baking may be one of the reason for this time sensitiveness. So in order to reduce

this non-convergent behavior or the time step size sensitiveness of the model, a

new procedure is adopted in the methodology to relax the sudden change in vapor

and water and thus to allow sometime to complete this phase change process. The

results obtained through this new procedure shows that this relaxation procedure

almost succeeded in obtaining meaningful results for smaller time intervals.

Within the workable range of the time intervals, the results obtained satisfactorily

explain the heat and mass movements during baking to convert raw dough into an

eatable, flavored bread. The developed two dimensional model also explains the

transfer as similar to that of one dimensional model. The critical values calculated

for two dimensional model indicate that it is also sensitive towards the size of the

time intervals but shows slightly better behavior. In general the two dimensional

model mimics the behavior of the one dimensional model and this fact may help in

the study of the model in future, since it is easier and computationally less complex

to study one dimensional model.

As it is mentioned the divergent results obtained when ∆t < 15s may be due

to the algebraic conditions applied for simulating evaporation and condensation of

water vapor. The satisfactory results obtained using the improved procedure (i.e.,

when the tabled value is relaxed) indeed points out that these algebraic equations

may be a cause. A differential equation in the place of these algebraic inequali-

ties and equations may solve this problem and further new methodology can be

adopted to solve these system of equations simultaneously since the actual baking

is a simultaneous heat and mass transfer problem.
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Appendix A
Flowchart for the Matlab Code

The mathematical models for baking are implemented numerically using the finite

difference and the finite element methods and then they are solved computationally

with the help of a code which is written in Matlab. The Matlab code consists of

five subprograms which are joined together with the help of a main program. The

subprograms are,

1. To evaluate the temperature at (n + 1)th time step by solving the heat equa-

tion using the values for nth time step.

2. To calculate the saturated vapor content for new temperature and then to

update the liquid water and vapor content.

3. To evaluate the vapor content after diffusion by solving the diffusion equation

for water vapor with updated water vapor content.

4. To update the liquid water and the water vapor content after diffusion using

the saturated vapor content and algebraic inequalities

5. To evaluate the liquid water content after diffusion by solving the diffusion

equation for liquid water using the updated water content.
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Appendix B
Matlab Code for One Dimensional

Simulation

%#######################

%MAIN PROGRAMME

%######################

close all; clear all;

N=32; theta=0; dt=30; Time=5400; % N is number of spacial nodes

dx=0.01/N; M=Time/dt; % M is number of temporal nodes

%**********************************

% inputting the initial values

%**********************************

for i=1:1:N+1

T(i)=25;

V(i)=0;

W(i)=0.4061;

T1(1,i)=T(i);

V1(1,i)=V(i);

W1(1,i)=W(i);
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end

%************************************

% loop for time step starts

%************************************

for t=1:1:M

[T_new]=Tnew(T,V,W,N,dt,dx,theta);

[V_temp,W_temp,V_s,P]=correction(T_new,V,W,N,P) ;

[V_new]=Vnew(T_new,V_temp,W_temp,dx,dt,N,theta);

[V_new,W_temp]=Correction2(T_new,V_new,W_temp,V_s,N,P);

W_new=Wnew(T_new,V_new,W_temp,dx,dt,N,theta);

T=T_new;

V=V_new;

W=W_new;

for i=1:1:N+1

T1(t+1,i)=T(i);

V1(t+1,i)=V(i);

W1(t+1,i)=W(i);

end

end

%******************************************

% writing the output into a file

%******************************************

fid=fopen(’output.m’,’w’);

for t=1:M+1

for i=1:N+1

l=(t-1)*dt/60;

x=(i-1)*dx;

format short e;

fprintf(fid,’\n Time(%d,%d)=%e; T(%d,%d)=%e; V(%d,%d)=%e; W(%d,%d)=%e; ’
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,t,i,l,t,i,T1(t,i),t,i,V1(t,i),t,i,W1(t,i));

end

fprintf(fid,’\n’);

end

fclose(fid);

%****************************************

%Plotting the graphs

%****************************************

clear all;

output;

figure(1);

subplot(2,2,1)

plot(Time,T)

subplot(2,2,2)

plot(Time,V)

subplot(2,2,3)

plot(Time,W)

%#####################################

% Function to calculate New Temperature.

%#####################################

function [T_new,a] = Tnew(T,V,W,N,dt,dx,theta)

%**********************************

%constants below

%**********************************

k=0.07; cp=3500; lam=2.261*10^(6); hc=0.5;

sig=5.670*10^(-8); Dw=1.35*10^(-10);

T_air=210; T_r=210; W_air=0;

esp_p=0.9; esp_r=0.9;
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%*********************************

% loop starts

%********************************

a=zeros(N+1,N+1);

for i=2:N

r=k*dt/((170+284*W(i))*cp*dx*dx);

a(i,i-1)=-r*(1-theta);

a(i,i)=1+2*r*(1-theta);

a(i,i+1)=-r*(1-theta);

b(i)=r*theta*T(i-1)+(1-2*r*theta)*T(i)+r*theta*T(i+1)

+lam*Dw*dt/(cp*dx*dx)*(W(i+1)-2*W(i)+W(i-1));

end

%**********************************************

%for temp at 1st node where T_f is fictious node

%**********************************************

a1=(12/5.6); b1= (12/5.6);

a2=1+a1*a1; b2=1+b1*b1;

F_sp=(2./(pi*a1*b1))*(log(sqrt(a2*b2/(1+a1*a1+b1*b1)))+a1*sqrt(b2)*atan(a1/sqrt(b2))

+b1*sqrt(a2)*atan(b1/sqrt(a2))-a1*atan(a1)-b1*atan(b1));

hr=sig*((T_r+273.5)^(2)+(T(1)+273.5)^(2))*((T_r+273.5)+(T(1)+273.5))

/(1/esp_p+1/esp_r-2+1/F_sp);

hw=1.4*10^(-3)*T(1)+0.27*W(1)-4.0*10^(-4)*T(1)*W(1)-0.77*W(1)^(2);

temp=lam*(170+284*W(1))*Dw*hw;

T_f=T(2)+2*dx/k*(hr*(T_r-T(1))+hc*(T_air-T(1))-temp*(W(1)-W_air));

w_f=W(2)-2*dx*hw*(W(1)-W_air);

r=k*dt/((170+284*W(1))*cp*dx*dx);

a(1,1)=1+2*r*(1-theta)*(1+dx*hr/k+dx*hc/k);

a(1,2)=-2*r*(1-theta);

b(1)=r*theta*T_f+(1-2*r*theta)*T(1)+r*theta*T(2)+lam*Dw*dt/(cp*dx*dx)
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*(W(2)-2*W(1)+w_f)+r*(1-theta)*2*(dx/k)*(hr*T_r+hc*T_air-temp*(W(1)-W_air));

%**************************************

%for Temp at last node

%**************************************

T(N+2)=T(N);

r=k*dt/((170+284*W(N+1))*cp*dx*dx);

a(N+1,N)=-2*r*(1-theta);

a(N+1,N+1)=1+2*r*(1-theta);

b(N+1)=r*theta*T(N)+(1-2*r*theta)*T(N+1)+r*theta*T(N)+lam*Dw*dt/(cp*dx*dx)

*(W(N)-2*W(N+1)+W(N));

%***************************************

%solving

%***************************************

T_new=a\b’;

T_new=T_new’;

%###############################################

%Function to correct vapour and water content.

%###############################################

function [V_temp,W_temp,V_s,P]=correction(T_new,V,W,N)

R=8.314;

%********************************

% data points for interploation

%********************************

x=0:2:100;

y=[.611 .705 .813 .934 1.072 1.226 1.401 1.597 1.817 2.062 2.337 2.642 2.983

3.360 3.779 4.242 4.755 5.319 5.941 6.625 7.377 8.201 9.102 10.087 11.164

12.34 13.61 15. 16.5 18.14 19.92 21.83 23.9 26.14 28.55 31.15 33.94 36.95

40.18 43.63 47.33 51.31 55.56 60.11 64.93 70.09 75.58 81.43 87.66 94.28 101.31];

x=[x 105:5:180];
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y=[y 120.82 143.27 169.06 198.53 232.1 270.1 313. 361.2 415.4 475.8 543.1 617.8

700.5 791.7 892.0 1002.1];

x=[x 190 200 225 250 275 300];

y=[y 1254.4 1553.8 2548 3973 5942 8581];

%************************************************************

% interploation and calculation of saturated amount of vapor

%************************************************************

for i=1:1:N+1

P(i)=interp1(x,y,T_new(i),’spline’)*1000;

V_s(i)=18.*10^(-3)*P(i)/(R*(T_new(i)+273.5)*(170+281*W(i)))*0.7*3.8;

end

%****************************************

% correction in vapour and water content

%****************************************

for i=1:1:N+1

if W(i)+V(i)<V_s(i)

V_temp(i)=W(i)+V(i);

W_temp(i)=0;

else

V_temp(i)=V_s(i);

W_temp(i)=W(i)+V(i)-V_s(i);

end

end

%###################################

% Function to find new Vapour

%###################################

function [V_new]=Vnew(T_new,V_temp,W_temp,dx,dt,N,theta)

V_air=0;
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%**********************************

% V at internal points

%**********************************

for i=2:1:N

r=dt*9.0*10^(-12)*(T_new(i)+273.5)^(2)/(dx*dx);

a(i,i-1)=-r*(1-theta);

a(i,i)=1+2*r*(1-theta);

a(i,i+1)=-r*(1-theta);

b(i)=r*theta*V_temp(i-1)+(1-2*r*theta)*V_temp(i)+r*theta*V_temp(i+1);

end

%*************************

% V at 1st boundary

%*************************

temp=2*dx*3.2*10^(9)/((T_new(1)+273.5)^(3));

r=dt*9.0*10^(-12)*(T_new(1)+273.5)^(2)/(dx*dx);

V_f=V_temp(2)-temp*(V_temp(1)-V_air);

a(1,1)=1+r*(1-theta)*(2+temp);

a(1,2)=-2*r*(1-theta);

b(1)=r*theta*V_f+(1-2*r*theta)*V_temp(1)+r*theta*V_temp(2)+temp*r*(1-theta)*V_air;

%**************************

%V at last boundary

%**************************

V_temp(N+2)=V_temp(N);

r=dt*9.0*10^(-12)*(T_new(N+1)+273.5)^(2)/(dx*dx);

a(N+1,N)=-2*r*(1-theta);

a(N+1,N+1)=1+2*r*(1-theta);

b(N+1)=r*theta*V_temp(N)+(1-2*r*theta)*V_temp(N+1)+r*theta*V_temp(N+2);
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%********************

%solving

%*********************

V_new=a \b’;

V_new=V_new’;

%#############################################

%second correction of vapour and water content.

%#############################################

function [V_new,W_temp]=Correction2(T_new,V_new,W_temp,V_s,N,P)

R=8.314;

for i=1:1:N+1

V_s(i)=18.*10^(-3)*P(i)/(R*(T_new(i)+273.5)*(170+281*W(i)))*0.7*3.8;

end

for i=1:1:N+1

if W_temp(i)+V_new(i)<V_s(i)

V_new(i)=W_temp(i)+V_new(i);

W_temp(i)=0;

else

W_temp(i)=W_temp(i)+V_new(i)-V_s(i);

V_new(i)=V_s(i);

end

end

%#########################################

%Function to calculate new water content.

%#########################################

function [W_new]=Wnew(T_new,V_new,W_temp,dx,dt,N,theta)

W_air=0; Dw=1.35*10^(-10);
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%*******************************

%Internal nodes

%*******************************

for i=2:1:N

r=dt*Dw/(dx*dx);

a(i,i-1)=-r*(1-theta);

a(i,i)=1+2*r*(1-theta);

a(i,i+1)=-r*(1-theta);

b(i)=r*theta*W_temp(i-1)+(1-2*r*theta)*W_temp(i)+r*theta*W_temp(i+1);

end

%******************************

% W at 1st boundary

%******************************

temp=2*dx*(1.4*10^(-3)*T_new(1)+0.27*W_temp(1)-4.0*10^(-4)*T_new(1)*W_temp(1)

-0.77*W_temp(1)*W_temp(1));

w_f=W_temp(2)-temp*(W_temp(1)-W_air);

r=dt*Dw/(dx*dx);

a(1,1)=1+r*(1-theta)*(2+temp);

a(1,2)=-2*r*(1-theta);

b(1)=r*theta*w_f+(1-2*r*theta)*W_temp(1)+r*theta*W_temp(2)+r*(1-theta)*temp*W_air;

%*****************************

%W at last boundary

%*****************************

W_temp(N+2)=W_temp(N);

r=dt*Dw/(dx*dx);

a(N+1,N)=-2*r*(1-theta);

a(N+1,N+1)=1+2*r*(1-theta);

b(N+1)=r*theta*W_temp(N)+(1-2*r*theta)*W_temp(N+1)+r*theta*W_temp(N+2);
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%****************************

%solving

%****************************

W_new=a\b’;

W_new=W_new’;

%########## END ##########
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