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Summary 
 
 

Information Extraction (IE) is designed to extract specific data from high volumes of text, 

using robust means. IE becomes more and more important nowadays as there are huge 

amount of online documents appearing on the Web everyday. People need efficient 

methods to manage all kinds of text sources effectively. IE is one kind of such techniques 

which can extract useful data entries to store in databases for efficient indexing or 

querying for further purposes. There are two broad approaches for IE. One is the 

knowledge engineering approach in which a person writes special knowledge to extract 

information using grammars and rules. This approach requires skill, labor, and familiarity 

with both domain and tools. The other approach is the automatic training approach. This 

method collects lots of examples of sentences with data to be extracted, and runs a 

learning procedure to generate extraction rules. This only requires someone who knows 

what information to extract and large quantity of example text to markup. In this thesis, 

we focus on the latter approach, i.e. automatic training method for IE. Specifically, we 

focus on pattern extraction rule induction for IE tasks. 

    One of the difficulties in some of the current pattern rule induction IE systems is that it 

is difficult to make the correct decision of the starting point to kick off the rule induction 

process. Some systems randomly choose one seed instance and generalize pattern rules 

from it. The shortcoming of doing this is that it may need several trials to find a good 

seed pattern rule. In this thesis, we first introduce GRID, a Global Rule Induction 

approach for text Documents, which emphasizes the utilization of the global feature 

distribution in all of the training examples to start the rule induction process. GRID uses 



 V

named entities as semantic constraints and uses chunks as contextual units, and 

incorporates features at lexical, syntactical and semantic levels simultaneously. GRID 

achieves good performance on both semi-structured and free text corpora. 

    Second, we show that GRID can be employed as a general classification learner for 

problems other than IE tasks. It is applied successfully in definitional question answering 

and video story segmentation tasks. 

    Third, we introduce two weakly supervised learning paradigms by using GRID as the 

base learner. One weakly supervised learning scheme is realized by combining co-

training GRID with two views and active learning. The other weakly supervised learning 

paradigm is implemented by cascading use of a soft pattern learner and GRID. From the 

experimental results, we show that the second scheme is more effective than the first one 

with less human annotation labor. 
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Chapter 1  

 

Introduction 
 
1.1 Information Extraction 

The World Wide Web is swiftly becoming a vast information resource that contains a 

great variety and quantity of on-line information. People encounter a large amount of fast 

growing information in the form of structured, semi-structured and free texts. This creates 

a great need for computing systems with the ability to process those documents to 

simplify the text information. One type of appropriate processing is called Information 

Extraction (IE) technology. Generally, an information extraction system takes an 

unrestricted text as input and “summarizes” the text with respect to a pre-specified topic 

or domain of interest: it finds useful information about the domain and encodes the 

information in a structured form, suitable for populating databases [Cardie, 1997]. 

Different from information retrieval systems, IE systems do not recover from a collection 

a subset of documents which are hopefully relevant to a query (or query expansion). 

Instead, the goal of information extraction is to extract from the documents facts about 

pre-defined types of events, entities and relationships among entities. These extracted 

facts are usually entered into a database, which may be further processed by standard 

database technologies. Also the facts can be given to a natural language summarization 



                                                                                                           Chapter 1 Introduction 

 2

system or a question answering system for providing the essential entities or relationships 

of the events which are happening in the text documents. 

    It has been about twenty years since the first Message Understanding Conference 

(MUC, the main evaluation event for information extraction technology sponsored by the 

US government, at first by Navy and later by DARPA [MUC-3 1991; MUC-4 1992; 

MUC-5 1993; MUC-6 1995; MUC-7 1998]) was held in 1987. The topics of the series of 

MUCs are listed in Table 1.1. 

Message Understanding Conferences Topics 

MUC-1(1987) and MUC-2(1989) messages about naval operations 

MUC-3(1991) and MUC-4(1992) news articles about terrorist activity 

MUC-5(1993) news articles about joint ventures and microelectronics 

MUC-6(1995) news articles about management changes 

MUC-7(1998) news articles about space vehicle and missile launches 

                    Table 1.1 Topics of the series of Message Understanding Conferences 

    An example of the information extraction task which was the focus of MUC-3 and 

MUC-4 is shown in Figure 1.1 and 1.2. The goal is to extract information of Latin 

American terrorist incidents from news articles. The source message is shown in Figure 

1.1 and the filled template is presented in Figure 1.2. 

 

 

 

 

 

                      Figure 1.1 A sample message from MUC-3 and MUC-4 evaluation 

DEV-MUC3-0126 (BELLCORE) 
 
   SAN SALVADOR, 15 MAR 89 (AFP) -- [TEXT] URBAN GUERILLAS ATTACKED THE
PRESIDENCY IN SAN SALVADOR WITH MORTAR FIRE TONIGHT, CAUSING SOME 
DAMAGE BUT NO CASUALTIES, ACCORDING TO INITIAL OFFICIAL REPORTS. 
THE ATTACK OCCURRED AT 1835 (0035 GMT).  EIGHT EXPLOSIONS WERE HEARD.
IT WAS NOT REPORTED WHETHER PRESIDENT JOSE NAPOLEON DUARTE WAS AT 
HIS OFFICE AT THE TIME OF THE ATTACK.  THE ATTACK WAS PRESUMABLY 
CARRIED OUT BY FARABUNDO MARTI NATIONAL LIBERATION FRONT URBAN 
GUERRILLAS. 
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              Figure 1.2 The filled template corresponding to the message shown in Figure 1.1 

    There are typically 5 subtasks defined by MUC-6 and MUC-7 for the information 

extraction task. They are recognized as independent, complicated problems: 

(a) Named Entity (NE): Find and categorize proper names appearing in the text. There 

are 7 classes of NEs defined in MUC-7: person, organization, location, money, 

percentage, time and date. Usually named entities play important roles for the events 

appearing in the text documents. The current state-of-the-art performance of named 

entity recognition achieves an accuracy of around 95% in terms of F1 measure [Bikel, 

Schwartz and Weischedel, 1999]. 

0.  MESSAGE: ID                                                DEV-MUC3-0126 (BELLCORE, MITRE) 
1.  MESSAGE: TEMPLATE                               1 
2.  INCIDENT: DATE                                         15 MAR 89 
3.  INCIDENT: LOCATION                               EL SALVADOR: SAN SALVADOR (CITY)
4.  INCIDENT: TYPE                                         ATTACK 
5.  INCIDENT: STAGE OF EXECUTION        ACCOMPLISHED 
6.  INCIDENT: INSTRUMENT ID                    "MORTAR" 
7.  INCIDENT: INSTRUMENT TYPE              MORTAR: "MORTAR" 
8.  PERP: INCIDENT CATEGORY                   TERRORIST ACT 
9.  PERP: INDIVIDUAL ID                     "URBAN GUERILLAS" / "FARABUNDO MARTI
                                                 NATIONAL LIBERATION FRONT URBAN GUERRILLAS"
10. PERP: ORGANIZATION ID           "FARABUNDO MARTI NATIONAL LIBERATION 
                                                                  FRONT" 
11. PERP: ORGANIZATION CONFIDENCE   SUSPECTED OR ACCUSED:      
                                                "FARABUNDO MARTI NATIONAL LIBERATION FRONT"
12. PHYS TGT: ID                    "PRESIDENCY" 
13. PHYS TGT: TYPE            GOVERNMENT OFFICE OR RESIDENCE: "PRESIDENCY"
14. PHYS TGT: NUMBER                       1: "PRESIDENCY" 
15. PHYS TGT: FOREIGN NATION        - 
16. PHYS TGT: EFFECT OF INCIDENT    SOME DAMAGE: "PRESIDENCY" 
17. PHYS TGT: TOTAL NUMBER          - 
18. HUM TGT: NAME                   "JOSE NAPOLEON DUARTE" 
19. HUM TGT: DESCRIPTION            "PRESIDENT": "JOSE NAPOLEON DUARTE" 
20. HUM TGT: TYPE             GOVERNMENT OFFICIAL: "JOSE NAPOLEON DUARTE"
21. HUM TGT: NUMBER                 1: "JOSE NAPOLEON DUARTE" 
22. HUM TGT: FOREIGN NATION         - 
23. HUM TGT: EFFECT OF INCIDENT     NO INJURY OR DEATH: "JOSE NAPOLEON 
                                                                        DUARTE" 
24. HUM TGT: TOTAL NUMBER           - 
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(b) Template Element (TE): find the descriptions of all entities of specified types, e.g. for 

a person, whether it is a civilian or a military official; for an organization, whether it’s 

a commercial entity or a government agency.  

(c) Co-reference (CO): find and link together all references to the “same” entity in a 

given text. For example, given three sentences of “Computational Linguists from 

many different countries attended Dan’s EUROLANG tutorial. The participants 

managed to attend the presentation even though they spent all the night in the disco; 

they also managed to follow the presentation without falling asleep and found it very 

interesting.”, co-reference resolution aims to link “computational linguists”, “the 

participants” and “they” to the same entity. The best reported F1 measure for the co-

referencing task in MUC-7 [MUC-7, 1998] is around 62%. But none of the systems in 

MUC-7 adopted a learning approach to co-reference resolution. The state-of-the-art 

of machine learning approach to co-reference resolution can achieve a comparable 

performance to MUC-7 systems of 60% [Soon, Ng and Lim, 2001]. 

(d) Template Relation (TR): find broader relationships among entities, such as the 

“employment” relation between persons and companies.  

(e) Scenario Template (ST): It is the top-level IE task to find instances of events or facts 

of specified types. Events are complex relations with multiple arguments, such as a 

terrorism attack, relating the particular terrorist activity with the date/location/victim 

of the attack. 

    Table 1.2 presents the best results reported in the tasks of information extraction in a 

series of MUC evaluations. In this thesis, we will focus on the top-level task, ST. For 

example, given a news article related to terrorism, the IE system aims to extract slot 
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information for “perpetrator”, “victim” or “physical target” etc. to fill a pre-defined 

template as shown in Figure 1.2. Note that in order to perform well on ST task the system 

must be able to perform all the lower-level tasks. On the other hand, for optimal 

performance on a higher-level task, optimal performance on lower-level tasks may not be 

necessary: i.e., to find all events (ST), one need not have to find all proper names (NE) in 

text, just those names that participate in the events that are sought. How to obtain good 

performance on other tasks is outside the scope of this thesis. 

Evaluation Named Entity Coreference 
Template 

Element 

Template 

Relation 

Scenario 

Template 

MUC-3 
 

   R<50% 

P<70% 

MUC-4     F<56% 

MUC-5 
    JV: F<53% 

ME: F<50% 

MUC-6 F<97% 
R<63% 

P<72% 
F<80% 

 
F<57% 

MUC-7 F<94% F<62% F<87% F<76% F<51% 

Legend: R: recall; P: precision; F: F-measure with recall and precision weighted equally; JV: joint 
venture; ME: microelectronics 
                      Table 1.2 Best results reported in MUC-3 through MUC-7 by task 

    From another point of view, the process of information extraction has two major parts 

[Grishman, 1997]. First, the system extracts individual “facts” from the text of a 

document through local text analysis. Second, it integrates these facts, producing larger 

facts or new facts (through inference). As a final step after the facts are integrated, the 

pertinent facts are translated into the required output format. The overall flow of an 

information extraction system is presented in Figure 1.3. This thesis is mainly focusing 
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on local text analysis. The discourse analysis in the second phase is outside the scope of 

this study. 

    Generally speaking, there are two basic approaches to the design of IE systems, which 

are called the Knowledge Engineering Approach and the Automatic Training Approach 

[Appelt and Israel, 1999]. The Knowledge engineering approach is characterized by the 

development of the grammars used by a component of the IE system by a “knowledge 

engineer”, i.e. a person who is familiar with the IE system, and the formalism for 

expressing rules for that system. The knowledge engineering approach requires a fairly 

arduous test-and-debug cycle, and it is dependent on having linguistic resources at hand,  

    

 

 

 

 

             Figure 1.3 Overall flow of an information extraction system 

discourse analysis 

lexical analysis 

name recognition 

partial syntactic analysis 

scenario pattern matching 

coreference analysis 

inference 

template generation 

document 

local text analysis 
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such as appropriate lexicons, as well as someone with the time, inclination, and ability to 

write rules. If any of these factors are missing, then the knowledge engineering approach 

becomes problematic. The main problem of the knowledge engineering approach is poor 

portability. It is very difficult to port IE systems by knowledge engineering approaches to 

new applications and domains automatically.  

    The automatic training system is quite different. It is not necessary to have someone on 

hand with detailed knowledge of how the IE system works and how to write rules for it. 

Typically, a training algorithm is run based on a suitable annotated training corpus. 

Rather than focusing on producing rules, the automatic training approach focuses on 

producing training data. Corpus statistics or rules are then derived automatically from the 

training data, and used to process novel data. As long as someone familiar with the 

domain is available to annotate texts, systems can be customized to a specific domain 

without intervention from any developers. The automatic training approach is favorable 

when large amounts of training data can be obtained easily. This thesis will focus on the 

automatic training approach for information extraction. 

    For the automatic training approach for information extraction tasks, there are many 

machine learning techniques which can be applied, such as Decision Trees [Sekine, et al. 

1998; Paliouras, et al. 2000], Hidden Markov Models [Freitag and McCallum, 1999; 

Freitag and McCallum, 2000], Support Vector Machines [Han, et al. 2003; Moschitti, 

Morarescu and Harabagiu, 2003], Maximum Entropy [McCallum, et al. 2000; Chieu and 

Ng, 2002a], Bayesian Networks [Bouckaert, 2003], Finite State Transducers 

[Kushmerick, Weld and Doorenbos, 1997; Hsu and Dung, 1998]. And other machine 

learning techniques include Symbolic Relational Learning [Califf, 1998] such as 
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Inductive Logic Programming (ILP) [Muggleton, 1992], we call symbolic relational 

learning paradigm as pattern rule induction method in general in this thesis [Muslea, 

1999]. This dissertation will focus on the pattern rule induction method for information 

extraction. 

    From another point of view, two directions of IE research can be identified: Wrapper 

Induction (WI) and NLP-based methodologies. WI techniques [Kushmerick, 1997] have 

historically made scarce use of linguistic information and their application is mainly 

limited to rigidly structured documents, which contains heavy mark-up, in the form of 

SGML/HTML/XML etc. tags. NLP-based methodologies tend to make full use of all 

kinds of linguistic information and their main application is for unstructured documents 

such as news articles. In this thesis we focus more on NLP-based methodologies to 

extract facts from unstructured and semi-structured text such as seminar announcements 

with no mark-up tags. 

1.2 Motivations 

Different from the bag of words approach [Salton and McGill, 1983] employed in most 

information retrieval and text categorization systems, information extraction systems 

depend largely on relations of relevant items of surrounding context to find the extracted 

slots information. Since manually constructing useful extraction pattern rules is time-

consuming, error-prone and it is tedious to port them to a new domain, various machine 

learning algorithms have been used successfully as attractive alternatives in building 

adaptive information extraction systems [Muslea, 1999]. We consider the following 

points as the motivations of this thesis: 
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(a) There are many IE systems which are based on rule-based relational learning methods 

that target at domains with rich relational structures. Such methods generate rules to 

extract slots either bottom-up [Califf, 1998; Califf and Mooney, 1999; Ciravegna, 

2001] or top-down [Soderland, 1999]. Some methods combine the bottom-up and 

top-down approaches [Muggleton, 1995; Zelle, Mooney and Konvisser, 1994]. One 

of the difficulties in rule induction learning systems is that it is difficult to select a 

good seed instance to start the rule induction process. Some systems simply selected 

seed instances in an arbitrary order [Soderland, et al. 1995; Soderland, 1999]. By 

doing so, the system often requires to make several false starts in order to learning a 

high coverage concept definition [Soderland, 1997a]. In general, we expect the choice 

of good quality prominent features will not only minimize the false starts in inducing 

rules, it will also ensure that the resulting rules have higher coverage and thus more 

general. Thus in this thesis, we aim to make use of the global distribution of features 

to select the good feature in order to kick off the rule induction process. We expect 

the final learned rule set to be smaller, more optimal and with higher performance as 

compared to those rules induced from other reported systems on the same domain. 

(b) Another problem with some rule induction learning systems for IE is that they 

perform rule generalization from the order of lexical, syntactic, to semantic level 

sequentially [Califf and Mooney, 1999]. The main difficulty with fixed order of rule 

generalization is that current methods often miss good rules that do not have good 

coverage at the level of lexical level, but may have good coverage at the semantic 

level. Such rules tend to be discarded early in the rule induction process. This 

research is concerned with utilizing some global statistical information in the training 
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data to initiate the rule induction process from good starting point and find the 

appropriate generalization level instead of following the fixed order of generalization 

[Xiao, Chua and Liu, 2003; Xiao, Chua and Liu, 2004]. In Chapter 4, a supervised 

covering pattern rule induction algorithm, GRID (Global Rule Induction for text 

Documents), will be described in detail. 

(c) While supervised learning methods need a large amount of manually annotated 

training instances that are expensive to obtain, there are much research in recent years 

that focuses on bootstrapping an IE system with a small set of annotated instances or 

a small set of seed words [Blum and Mitchell, 1998; Collins and Singer, 1999; 

Agichtein and Gravano, 2000]. Co-training is one such bootstrapping strategy and it 

begins with a small amount of annotated data and a large amount of un-annotated data. 

Usually, co-training systems train more than one classifier from the annotated data, 

use the classifiers to annotate some un-annotated data, train the new classifiers again 

from all the annotated data, and repeat above process. Co-training with multi-view 

has been widely applied in natural language learning. It reduces the need for 

annotated data by exploiting disjoint subsets of features (views) such as contextual 

view and content view, each of which is sufficient for learning. One of the problems 

when applying the co-training algorithms for natural language learning from large 

datasets is the scalability problem. Degradation in the quality of the bootstrapped data 

arises as an obstacle to further improvement [Pierce and Cardie, 2001]. Thus, in 

Chapter 6, based on GRID algorithm, a bootstrapping paradigm called 

GRID_CoTrain which combines co-training with active learning is proposed. Active 

learning methods attempt to select for annotation and training only the most 
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informative examples and therefore are potentially very useful in natural language 

applications. In GRID_CoTrain, several active learning strategies in co-training 

model are investigated. 

(d) The best performance in GRID_CoTrain with active learning has to involve a human 

in the loop to manually annotate some instances or correct some annotation errors. To 

alleviate the manual labor work, a novel bootstrapping scheme with cascading use of 

a soft pattern learner (SP) [Cui, Kan and Chua, 2004] and GRID for realizing weakly 

supervised information extraction is proposed in Chapter 7. The cascaded learners 

(GRID+SP) can approach the performance of the fully supervised IE system GRID 

while using much less hand-tagged instances [Xiao, Chua and Cui, 2004]. In our 

experiments, we also show that GRID+SP performs better than GRID_CoTrain while 

requiring less human labor.  

1.3 Contributions 

As discussed earlier, the primary motivations of this thesis involve proposing an effective 

pattern rule induction algorithm for supervised learning of information extraction tasks 

and extending it with other machine learning methods to realize weakly supervised 

information extraction. 

    Let us summarize this chapter by explicitly stating our major contributions: 

(a) We propose GRID, which utilizes the global feature distribution in training corpus to 

derive better pattern rules for information extraction tasks. GRID examines all the 

training instances at the representation levels of lexical, syntactic and semantic 

simultaneously and selects a global optimal feature to start the rule induction process. 

GRID also makes full use of linguistic resources such as (shallow or full) parsing and 
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named entity recognition. The features used are general and applicable to a wide 

variety of domains, ranging from semi-structured corpus to free-text corpus (Chapter 

4). The experimental results reveal that the pattern rule set learned by GRID is 

smaller, more optimal and has higher F1 performance as compared to the set induced 

by several systems. 

(b) GRID is a general learner and it can be applied to new tasks other than information 

extraction. We apply GRID successfully to definitional question answering task and 

story segmentation in news videos (Chapter 5). 

(c) In order to alleviate the human annotation labor, we extend GRID to a weakly 

supervised learning paradigm by combining co-training and active learning 

technologies. GRID_CoTrain is a weakly supervised learner by co-training classifiers 

in two views: contextual view and content view. By incorporating active learning 

strategies, GRID_CoTrain can achieve comparable performance by using a much 

smaller set of seed words as compared to a fully supervised system (Chapter 6). 

(d) Finally, we develop another bootstrapping method (GRID+SP) to automatically 

annotate the unlabeled examples required by the bootstrapping process. This method 

is implemented by cascading use of a soft pattern learner (SP) and GRID with less 

human intervention as compared with the active learning strategies in GRID_CoTrain 

(Chapter 7). 

1.4 Organization 

The rest of this dissertation is organized as follows. Chapter 2 presents background 

knowledge on the pattern rule induction method for information extraction and the basic 

machine learning paradigms for IE, such as supervised learning, weakly supervised 
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learning and active learning. Chapter 3 surveys related information extraction systems 

using pattern rule induction for information extraction tasks. Chapter 4 describes the 

representation of GRID and presents the learning method in detail as well as the 

experimental evaluations. Chapter 5 presents the application of GRID to other two tasks: 

definitional question answering and story segmentation in news videos. Chapter 6 

describes the application of co-training with multi-view to GRID, GRID_CoTrain, and 

presents the incorporation of co-training with active learning and discusses the 

experimental evaluation of GRID_CoTrain using active learning. Chapter 7 introduces 

another alternative bootstrapping paradigm (GRID+SP) for realizing weakly supervised 

information extraction by combining GRID with a newly proposed soft pattern learner 

(SP). Finally Chapter 8 summarizes this thesis and suggests avenues for future research. 
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Chapter 2 

 

Background 

 
In this Chapter, we introduce background knowledge of pattern rule induction method for 

information extraction and some related machine learning paradigms such as active 

learning for information extraction. 

2.1   Inductive Learning 

Inductive learning has received considerable attention in the machine learning 

community; see [Mitchell, 1997] Chapters 2 and 3 for surveys. At the highest level, 

inductive learning is the task of computing, from a set of examples of some unknown 

target concept, a generalization that (in some domain-specific sense) explains the 

observations. The idea is that a generalization is good if it explains the observed 

examples and more importantly makes accurate predictions when additional previously 

unseen examples are encountered. 

    For example, given an inductive learning system for information extraction for 

semantic slot of “victim” in terrorism domain, the system is told that “Mr. Smith was 

killed”, and “Ms. Jordan was killed”. The learner might then hypothesize that the general 

rule underlying the observations is “Person was killed  Person is victim”. This 
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assertion is reasonable, because it is consistent with the examples seen so far. If asked 

“Mr. Hosen is a victim?” with the fact of “Mr. Hosen was killed”, the learner would then 

presumably respond “Yes”. 

    We proceed by presenting inductive learning by bottom-up, top-down and combining 

these two. 

2.1.1 Bottom-up inductive learning 

Bottom-up inductive learning is to conduct rule induction learning from specific to 

general, for example, the generalization example in Section 2.1 is bottom-up where we 

generalize “person” from “Mr. Smith” and “Ms. Jordan”. The AQ algorithm [Michalski, 

1983] is a typical covering algorithm that generates rules from specific to general. 

Covering algorithms aims to generate rules that cover all training examples by learning 

one rule at a time. Each of the learned rules covers part of the training examples. The 

examples covered by the last learned rule are removed from the training set before 

subsequent rules are learned. AQ algorithm begins with a set of labeled training instances 

and builds a disjunctive set of concept descriptions, which taken together cover all the 

positive instances and none of the negative ones. Each step of AQ algorithm selects a 

positive instance not yet covered and derives a general concept description from this seed. 

    CRYSTAL [Soderland, et al., 1995] is the first system to treat the information 

extraction task as a supervised learning problem in its own right. CRYSTAL is also a 

covering algorithm, learning rules from specific to general. Rules in CRYSTAL are 

generalized sentence fragments. The feature set used by CRYSTAL is implicit in its 

search operators. It consists of literal terms, syntactic relations, and semantic noun classes 

(these semantic classes are manually designed input to the algorithm). Thus, one 
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generalization step CRYSTAL can take is to replace a literal term constraint with the 

semantic class to which it belongs. CRYSTAL is a multi-slot extraction algorithm, which 

extracts multiple distinct field instances in concert. Webfoot is a modification of 

CRYSTAL for HTML [Soderland, 1997b]. Instead of sentences, Webfoot trains on text 

fragments that are the result of a heuristic segmentation based on HTML tags. 

    Details of CRYSTAL’s strategy to find appropriate level of generalization are outlined 

as following: 

    CRYSTAL begins by randomly selecting a positive instance of target concept as a seed. 

It then takes the most specific concept definition that covers this instance and generalizes 

it. Intuitively, the generalization could be performed by dropping the constraints from the 

specific concepts gradually. Each proposed generalization is tested on the training set to 

ensure that the proportion of negative instances does not exceed a user-specified error 

tolerance. The most general definition within error tolerance is added to the rule base and 

another seed is selected from positive instance not yet covered by the rule base. This is 

repeated until all positive instances have been covered or have been selected as seed 

instances. One problem of generalization is that there are many combinations of term 

constraints when relaxing the constraints from specific instances. For example, given an 

instance of “Jack Harper, a company founder”, there are 5 term constraints (Jack Harper 

is treated as one term; comma is also treated as one term). There are 32 (25) possible 

ways to relax this constraint by relaxing a subset of the terms. There are also four (22) 

possible relaxations of the two-word head terms constraints and eight (23) for the three-

word modifier terms constraints. There are so many possibilities of generalizations for 

such a simple example. For some initial seed concepts, there are more than one billion 
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ways to generalize it [Soderland, 1997a]. To solve this problem, the key insight of 

CRYSTAL is to guide the relaxation process by finding the most similar initial concept 

definition. CRYSTAL performs the proposed generalization by dropping constraints that 

are not shared by similar definitions. This is equivalent to relaxing constraints just 

enough to cover the most similar positive instance, since each initial concept definition 

corresponds to a positive training instance.  

    RAPIER [Califf, 1998] is another bottom-up IE learner designed to handle informal 

texts, such as those found in Usenet job postings. Each rule in RAPIER has three parts: a 

pre-filler pattern that must match the text immediately preceding the filler; a filler pattern 

that must match the actual slot filler; and a post-filler pattern that must match the text 

immediately following the filler. First, for each filler slot, most specific patterns are 

created for each example, specifying word and tag for the filler and its complete context. 

Given this maximally specific rule-base, RAPIER attempts to compress and generalize 

the rules for each slot. New rules are created by selecting pairs of existing rules and 

generalized rules from the pairs. To avoid the extremely large search space of rule 

generalization, RAPIER starts by computing the generalizations of the filler patterns of 

each rule pair and creates rules from those generalizations. RAPIER maintains a list of 

the best n rules created and specializes in the rules under consideration by adding pieces 

of the generalizations of the pre- and post-filler patterns of the seed rules, working 

outward from the fillers. The rules are ordered using an information value metric 

[Quinlan, 1990] weighted by the size of the rule (preferring smaller rules). When the best 

rule under consideration produces no negative examples, specialization ceases; that rule 
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is added to the rule base, and all rules empirically subsumed by it are removed. Note that 

RAPIER is a compression algorithm not a covering algorithm. 

    (LP)2 [Ciravegna, 2001] is the most recent covering bottom-up covering algorithm for 

information extraction tasks. Different from usual pattern rule induction systems, (LP)2 is 

tag-based learning instead of slot-based, i.e. the rules in (LP)2 are to insert one side of tag 

into the test texts. For example, to extract a semantic slot of “starting time (stime)” from a 

seminar announcement, (LP)2 may have two sets of rules, one for inserting the tag 

“<stime>” to the texts, the other is to insert the other half tag “</stime>” to texts. 

Training in (LP)2 is performed in two steps: initially a set of tagging rules is learned; then 

additional rules are induced to correct mistakes and imprecision in tagging. Rule 

induction is performed from specific to general in the training corpus. Generalization 

consists in the production of a set of rules derived by relaxing constraints in the initial 

specific rule pattern. Conditions are relaxed both by reducing the pattern in length and by 

substituting constraints on words with constraints on some parts of the additional 

knowledge such as the pre-defined dictionary (or gazetteer). Each generalization is tested 

on the training corpus and an accuracy score L=wrong/matched is calculated. For each 

initial instance, (LP)2 keeps the k best generalizations that have better accuracy, or cover 

more positive examples, or cover different parts of input, or have an error rate that is less 

than a specified threshold. The other generalizations are discarded. 

2.1.2 Top-down inductive learning 

FOIL [Quinlan, 1990] is a prototypical example of a top-down covering inductive logic 

programming algorithm. It learns a function-free, first-order, Horn-clause definition of a 

target predicate in terms of itself and other background predicates. FOIL learns the rules 
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one clause at a time using a greedy covering algorithm. The clause finding step is 

implemented by a general-to-specific hill-climbing search that adds antecedents to the 

developing clause one at a time. At each step, it evaluates possible literals that might be 

added and selects one that maximizes an information gain heuristic. The algorithm 

maintains a set of tuples that satisfy the current clause and includes bindings for any new 

variables introduced in the body. 

    WHISK [Soderland, 1999] is a top-down rule induction algorithm for information 

extraction tasks. WHISK is designed to handle text styles ranging from highly structured 

to free text, including text that is neither rigidly formatted nor composed of grammatical 

sentences. WHISK induces rules top-down, first finding the most general rule that covers 

the seed, then extending the rule by adding terms one at a time. The seed instance is 

randomly selected from the training instance pool. The metric used to select a new term is 

the Laplacian expected error of the rule, i.e. the number of errors plus 1 among those 

extractions by this rule divided by the total number of extractions plus 1. WHISK grows a 

rule from a seed tagged instance by starting with an empty rule and anchoring the 

extraction boundaries one slot at a time. To anchor an extraction, WHISK considers a 

rule with terms added just within the extraction boundary (base rule 1) and a rule with 

terms added just outside the extraction boundary (base rule 2). In case that these base 

rules are not constrained enough to make any correct extractions, more terms are added 

until the rule at least covers the seed. The base rule is selected that covers the greatest 

number of positive instances among the hand-tagged training set. The best rule is selected 

from base rules whose Laplacian measure is less than the threshold value. WHISK 

performs a form of hill climbing and cannot guarantee that the rule it grows are optimal, 
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where optimal is defined as having the lowest Laplacian expected error on the hand-

tagged training instances. 

2.1.3 Combining top-down and bottom-up learning 

CHILLIN [Zelle, Mooney and Konvisser, 1994] is an example of an ILP algorithm that 

combines elements of both top-down and bottom-up induction techniques. CHILLIN's 

input consists of sets of ground facts representing positive and negative examples, and a 

set of background predicates defined by definite clauses. Basically, CHILLIN tries to 

construct a small, simple theory covering the positive, but not the negative examples by 

repeatedly compacting its current version of the program. Compactness is measured as 

the syntactic size of the theory.  

    The algorithm starts with a most specific theory, namely the set of all positive 

examples. Then it generalises the current theory, aiming to find a generalization which 

allows to remove a maximum number of clauses from the theory while all positive 

examples remain provable. The generalization algorithm finds a random sampling of 

pairs of clauses in the current program. These pairs are generalized by constructing their 

least-general-generalizations. If a generalization covers negative examples, it is 

specialised by adding antecedents using a FOIL-like algorithm. If the specialization with 

background predicates is not sufficient for preventing negative examples from being 

covered, CHILLIN tries to invent new predicates for further specialization of the clause. 

At each step, CHILLIN considers a number of possible generalizations and implements 

the one that best compresses the theory. CHILLIN is able to learn recursive predicates. It 

avoids generating theories leading to endless recursion by imposing syntactic restrictions 
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on recursive predicates. However, CHILLIN may learn recursive predicates covering 

negative examples. 

    PROGOL [Muggleton, 1995] also combines bottom-up and top-down search and is a 

covering algorithm. As in the propositional rule learner AQ, individual clause 

construction begins by selecting a random seed example. Using mode declarations 

provided for both the background predicates and the predicate being learned, PROGOL 

constructs a most specific clause for that random seed example, called the bottom clause. 

The mode declarations specify for each argument of each predicate both the argument’s 

type and whether it should be a constant, a variable bound before the predicate is called, 

or a variable bound by the predicate. Given the bottom clause, PROGOL employs an A*-

like search through the set of clauses containing up to k literals from the bottom clause in 

order to find the simplest consistent generalization to add to the definition. Advantages of 

PROGOL are that the constraints on the search make it fairly efficient, especially on 

some types of tasks for which top-down approaches are particularly inefficient, and that 

its search is guaranteed to find the simplest consistent generalization if such a clause 

exists with no more than k literals. The primary problems with the system are its need for 

mode declarations and the fact that too small a k may prevent PROGOL from learning 

correct clauses while too large a k may allow the search to explode. 

2.2 Learning Methods 

This section presents a taxonomy of related machine learning methods for learning 

pattern rules for information extraction. 
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2.2.1 Supervised learning for IE 

Any situation in which both inputs and outputs of a component of a learning agent can be 

perceived is called supervised learning. Often, the outputs are provided by a friendly 

teacher [Russell and Norvig, 2003]. In information extraction tasks, supervised learning 

methods use labeled or annotated examples for training the learning agents and test them 

on the remaining unseen examples. The IE systems we mentioned earlier such as 

CRYSTAL, RAPIER, (LP)2, WHISK are all supervised learning systems. Since 

annotation is particularly time-consuming, it is not feasible for users to annotate large 

numbers of documents. However, un-annotated data is fairly plentiful. Thus IE 

researchers have investigated active learning techniques to automatically identify 

documents for the user to annotate. In recent years, there are more and more researches 

that focus on realizing weakly supervised learning with the help of active learning for 

information extraction. 

2.2.2 Active learning 

Active learning explores methods that, rather than relying on a benevolent teacher or 

random sampling, actively participate in the collection of training examples. The primary 

goal of active learning is to reduce the number of supervised training examples needed to 

achieve a given level of performance. Active learning systems may construct their own 

examples, request certain types of examples, or determine which of a set of unsupervised 

examples are most usefully labeled [Thompson, Califf and Mooney, 1999]. 

Active learning or selective sampling [Cohn, Atlas and Ladner, 1994] is discussed in 

this thesis. In this case, learning begins with a small pool of annotated examples and a 

large pool of un-annotated examples, and the learner attempts to choose the most 
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informative additional examples for annotation. Results on a number of natural language 

learning tasks have demonstrated that this kind of selective sampling of active learning is 

effective in reducing the need for labeled examples [Thompson, Califf and Mooney, 

1999]. There are two basic approaches to accomplish this task: certainty-based methods 

[Lewis and Catlett, 1994] and committee-based methods [Freund, et al., 1997]. 

In the certainty-based paradigm, a system is trained on a small number of annotated 

examples to learn an initial classifier. Next, the system examines un-annotated examples, 

and attaches certainties to the predicted annotation of those examples. The k examples 

with the lowest certainties are then presented to the user for annotation and retraining. 

Many methods for attaching certainties have been used [Lewis and Catlett, 1994; Thelen 

and Riloff, 2002] and they typically attempt to estimate the probability that a classifier 

consistent with the previous training data will classify a new example correctly. 

In the committee-based paradigm, a diverse committee of classifiers is created, from a 

small number of annotated examples. Each committee member attempts to label 

additional examples. The examples whose annotations result in the most disagreement 

amongst the committee members are presented to the user for annotation and retraining. 

A diverse committee, consistent with the previous training data, will produce the highest 

disagreement on examples whose label is most uncertain with respect to the possible 

classifiers that could be obtained by training on that data. 

For example, [Thompson, Califf and Mooney, 1999] proposed an active learning 

strategy, RAPIER+Active, for information extraction. RAPIER+Active is a certainty-

based sample selection method. The certainty of an individual extraction rule is based on 

its coverage of the training data: pos – 5﹡neg, where pos is the number of correct fillers 
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generated by the rule and neg is the number of incorrect ones. Given this notion of rule 

certainty, RAPIER+Active determines the certainty of a filled slot for an example being 

evaluated for annotation certainty. Once the confidence of each slot has been determined, 

the confidence of an example is found by summing the confidence of all slots. 

RAPIER+Active then performs the certainty-based method of selective sampling. The 

experimental results show that RAPIER+Active outperforms the fully supervised version 

of RAPIER with about half of the annotated training examples in RAPIER. 

2.2.3 Weakly supervised learning by co-training 

Co-training [Blum and Mitchell, 1998] is a weakly supervised paradigm that learns a task 

from a small set of labeled data and a large pool of unlabeled data using separate, but 

redundant views of the data (i.e. using disjoint feature subsets to represent the data). To 

ensure provable performance guarantees, the co-training algorithm assumes that the 

views satisfy two fairly strict conditions. First, each view must be sufficient for learning 

the target concept. Second, the views must be conditionally independent to each other 

given the class. Co-training has been applied successfully to natural language processing 

tasks that have a natural view factorization, such as web page classification [Blum and 

Mitchell, 1998] and named entity classification [Collins and Singer, 1999]. 

    In [Collins and Singer, 1999], the authors proposed a co-training algorithm for named 

entity classification using two views: one is called contextual view and the other is 

content view. Contextual view considers words surrounding the string in the sentence in 

which it appears (an example of a contextual rule is that it states that any proper name 

modified by an appositive whose head is president is a person). Content view describes 

the actual item to be extracted. It might be a simple look-up for the string (an example of 
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a rule is “Honduras is a location”) or a rule that looks at words within a string (an 

example of such a rule is that any string containing Mr. is a person). The key to using co-

training with multi-view for named entity recognition is the redundancy of the unlabeled 

data. In many cases, inspection of either the content or context information alone is 

sufficient to classify an example. For example, in “…, says Mr. Cooper, a vice president 

of …”, both a content feature (that the string contains Mr.) and a contextual feature (that 

president modifies the string) are strong indications that Mr. Cooper is an entity of type 

Person. Even if an example like this is not labeled, it can be interpreted as a “hint” that 

Mr. and president imply the same category. This idiosyncrasy enables the co-training of 

two classifiers (one is contextual rule, the other is content rule) using a small set of seed 

rules and a large set of unlabeled data for named entity recognition. The authors 

presented a typical co-training algorithm (DL_CoTrain) with contextual and content rules 

using decision list for named entity classification as follows: 

(a) Given a small set of hand-crafted initial seed rules, such as “full-string=New 

York Location”.  

(b) Set the content decision list equal to the set of seed rules. 

(c) Label the training set using the current set of content rules. Examples where no 

rule applies are left unlabeled. 

(d) Use the labeled examples to induce a decision list of contextual rules. The detail 

of learning a decision list is described in [Yarowsky, 1995]. 

(e) Label the training set using the current set of contextual rules. Examples where no 

rule applies are left unlabeled. 
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(f) On this new labeled set, select k content rules. Set the content rules to be the seed 

set plus the rules selected. 

(g) If the number of rules is less than the pre-specified number, return to step (c). 

Otherwise, label the training data with the combined content/contextual decision 

list, then induce a final decision list from the labeled examples where all rules are 

added to the decision list. 

2.3 Summary 

Inductive learning is well-studied for analyzing and building systems that improve over 

time or performing generalization from the training examples. The framework provides a 

rich variety of analytical techniques and algorithmic ideas. 

    In this Chapter, we showed the background of basic rule induction methods for 

information extraction tasks, and also discussed some basic machine learning paradigms 

for information extraction. In the next Chapter, we will introduce more information 

extraction systems using the pattern rule induction methods. 
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Related Work 
 

Pattern rule induction is widely applied in information extraction research. A key 

component of an IE system is its set of pattern extraction rules that is used to extract from 

each document the information relevant to a particular extraction task. As manually 

constructing useful pattern rules needs a linguistic expert who is familiar with the IE 

system and the formalism for expressing rules for that system, a number of research 

efforts in recent years have focused on learning the pattern extraction rules from training 

examples provided by the common user. In this Chapter, we review several IE systems 

based on pattern rule induction techniques. We begin by analyzing pattern rule induction 

systems designed for free text documents, followed by those designed to handle the more 

structured types of online documents. Lastly, we introduce the wrapper induction systems 

which are designed to extract and integrate data from multiple Web-based sources. For 

each system, we focus on the following 5 aspects: (a) working domain; (b) pattern rule 

representation; (c) extraction granularity; (d) syntactic or semantic constraints; and (e) 

generalization and/or specialization approaches. 
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3.1 Information Extraction Systems for Free Text 

In this section, we review pattern rule induction systems designed to process documents 

that contain grammatical, plain text. Their pattern extraction rules are based on syntactic 

and semantic constraints that help identify the relevant information within a document. 

Consequently, in order to apply the pattern extraction rules, one has to pre-process the 

original text with a syntactic analyzer and a semantic tagger. A typical processing of 

learning pattern extraction rules for free texts is described as following: 

Sentence Splitting  Tokenization  Training Instances Selection  PoS Tagging  

Named Entity Extraction  Parsing (shallow/full)  Pattern Rule Induction 

    Basically, the pattern extraction rules in IE are categorized into two types: single-slot 

rules and multi-slot rules. In some cases, the target is uniquely identifiable (single-slot 

rules), while in other cases, the targets are linked together in multi-slot association frames. 

Multi-slot rules can extract the multi-target simultaneously. 

(1) AutoSlog/AutoSlog-TS [Riloff, 1993; Riloff, 1996] 

AutoSlog generates extraction patterns using annotated tests and a set of heuristic 

linguistic patterns. AutoSlog-TS is based on the AutoSlog system and eliminates its 

dependency on annotated texts and only requires the pre-classified texts as input. 

• Working Domain: Terrorism attacks in MUC-4 [MUC-4 proceedings, 1992]; 

• Pattern Rule Representation: (only single-slot rules) 

Patterns are represented as concept nodes. Given a sentence of “The Parliament 

was bombed by the guerrillas”, the concept node is represented as: 

            Name: target-subject-passive-verb-bombed 

            Trigger: bombed (the trigger words could be verbs or nouns) 
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            Variable Slots: (target (*S* 1)) --- S denotes for “subject” 

            Constraints: (class phys-target *S*) 

            Constant Slots: (type bombing) 

            Enabling Conditions: ((passive)) 

            Below are some of the pre-defined linguistic patterns used by AutoSlog: 

            <subject> passive-verb; e.g. <victim> was murdered 

            <subject> active-verb; e.g. <perpetrator> bombed 

           <subject> verb infinitive; e.g. <victim> attempt to kill 

• Extraction Granularity: 

The granularity of extraction in AutoSlog/AutoSlog-TS is the syntactic field that 

contains the target phrase, such as subject, object etc.. 

• Syntactic/Semantic Constraints: 

AutoSlog/AutoSlog-TS utilizes syntactic constraints such as the subject, object 

etc. obtained from parsing the sentences.  

• Generalization/Specialization Approach 

No obvious generalization or specialization scheme is applied. 

(2) CRYSTAL [Soderland, et. al., 1995] 

CRYSTAL is an IE system that automatically induces a dictionary of “concept-node 

definitions” that are sufficient to identify relevant information from a training corpus. 

Each of these concept-node definitions is generalized as far as possible without producing 

errors, so that a minimum number of dictionary entries cover all of the positive training 

instances. 

• Working Domain: Hospital discharge reports; 
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• Pattern Rule Representation: (both multi-slot and single-slot rules) 

Given a sentence of “The patient denies any episodes of nausea”, the concept 

node by CRYSTAL is represented as following: 

           Concept Node Type: Sign or Symptom 

           Subtype: Absent 

           Extract from: Direct Object 

           Active Voice Verb: deny 

       Subject Constraints: words include “patient”; head class: <patient or disabled group> 

       Verb Constraints: words include “denies” 

        Direct Object Constraints: head class <sign or symptom> 

• Extraction Granularity: 

The granularity of extraction in CRYSTAL is the syntactic field that contains the 

target phrase. Both exact word and semantic class are used. 

• Semantic/Syntactic Constraints: 

Syntactic analysis, semantic lexicon and semantic hierarchy are employed. 

• Generalization/Specialization: 

CRYSTAL employs a semantic hierarchy to perform generalization/specialization. 

Unifying two class constraints may involve moving up the semantic hierarchy to 

find a common ancestor of classes in the two constraints. Class constraints are 

dropped entirely when they reach the root of the semantic hierarchy. If a 

constraint on a particular syntactic buffer is missing from one of the two 

definitions, that constraint is dropped from the unified constraints. 

(3) LIEP [Huffman, 1995] 
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LIEP is another IE system that can learn dictionaries of extraction patterns directly from 

the annotated user-provided examples of texts and extract the events. It learns patterns 

that recognize relationships between key constituents based on local syntax. 

• Working Domain: newswire articles about business management change 

• Pattern Rule Representation: (multi-slot rules only) 

Pattern rules are represented as forms of paths through a finite-state machine. 

Given a sentence of “Bob Smith was named CEO by Foo. Inc.”, the LIEP pattern 

is described as following: 

n_was_named_t_by_c: 

    noun-group(PNG, head(isa(person-name))), “Bob Smith” 

    noun-group(TNG, head(isa(title))),   “CEO” 

    noun-group(CNG, head(isa(company-name))),   “Foo. Inc.” 

    verb-group(VG, type(passive), head(named or elected or appointed)),  “named” 

    preposition(PREP, head(of or at or by)),   “by” 

    Subject(PNG, VG),  

    object(VG, TNG),  

    post_nominal_prep(TNG, PREP),  

    prep_object(PREP, CNG) 

 management_appointment(M, person(PNG), title(TNG), company(CNG)). 

• Extraction Granularity: 

Entities are generally expressed by noun phrases. Noun groups are divided into 

PNG (person), TNG (title) and CNG (company). LIEP identifies the extracted 

phrase of interest. 
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• Syntactic/Semantic constraints: 

LIEP uses both the syntactic and semantic information. Syntactic information 

such as subject, object etc. is obtained from a parser. Noun groups are divided 

into semantic groups such as persons, companies etc.. 

• Generalization/Specialization 

LIEP employs pattern generalization when the later training examples have the 

same syntactic relationships as a previously learned pattern, but with different 

constituent head words or properties. For example, if two training examples have 

the same syntactic structures but with different verb phrase head word; one is 

“named”, the other is “appointed”; LIEP will generate a “genclass” for the 

learned pattern. The “genclass” is equal to “named, appointed”. Once such a 

generalized pattern is formed, LIEP tests it by computing its F-measure and 

comparing it to the F-measure of the original pattern. If the generalized pattern’s 

F-measure is better, it is added and the old pattern is thrown away; otherwise the 

generalization is thrown away, and a fully new pattern rule is learned from later 

training examples. 

 (4) PALKA [Kim and Moldovan, 1995] 

PALKA (Parallel Automatic Linguistic Knowledge Acquisition) system automatically 

acquires linguistic patterns from a set of domain-specific training texts and desired 

outputs. Patterns are constructed in the form of FP-structures (Frame-Phrasal patterns) 

from training texts, and the acquired patterns are tuned further through the generalization 

of semantic constraints. 

• Working Domain: Terrorism attacks in MUC-4 
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• Pattern Rule Representation: (both single-slot and multi-slot rules) 

Pattern rules in PALKA are represented as FP-structure, where FP-structure = 

MeaningFrame + PhrasalPattern. A meaning frame is a pre-defined information 

type. FP-structure can express exact word constraints only on verbs. 

Given a sentence of “The Parliament was bombed by guerrillas.”, the FP-structure 

is described as follows: 

MeaningFrame: (BOMBING  agent:          ANIMATE 

                                                 target:          PHYS-OBJ 

                                                 instrument:  PHYS-OBJ 

                                                 effect:          STATE) 

PhrasalPattern: ((PHYS-OBJ) was bombed by (PERP)) 

FP-structure: 

(BOMBING    target: PHYS-OBJ 

                        agent:  PERP 

                        pattern: ((target) was bombed by (agent)) 

• Extraction Granularity: 

The syntactic field that contains the target phrase. 

• Syntactic/Semantic Constraints: 

Syntactic information is obtained by a parser and semantic information is 

obtained by a pre-defined semantic concept hierarchy. 

• Generalization/Specialization: 

Both generalization and specialization approaches are employed in PALKA. 

When a positive example is encountered, the semantic constraint is generalized, 
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and when a negative example is encountered, the semantic constraint is 

specialized. The generalization is performed by moving up the semantic concept 

hierarchy tree and the specialization is performed by going down the tree. 

(5) HASTEN [Krupka, 1995] 

The extraction patterns generated by HASTEN are called Egraphs, and they can be seen 

as lists of (SemanticLabel, StructuralElement) pairs. HASTEN uses a similarity metric to 

compare an Egraph with the input text. 

• Working Domain: Management succession of MUC-6. 

• Pattern Rule Representation: (both single-slot and multi-slot rules) 

Pattern rules in HASTEN are represented as Egraphs. Given a sentence of “The 

Parliament was bombed by guerillas.”, the Egraph is represented as following: 

                   BOMBING: 

                              TARGET:             NP “semantic = physical-object” 

                              ANCHOR:            VG “root = bomb” 

                              PERPETRATOR:  NP “semantic = terrorist-group” 

“TARGET, ANCHOR, PERPETRATOR” are SemanticLabels, and the values 

following the labels are the StructuralElement. HASTEN uses a similarity metric 

to compare an Egraph with the input text. In the first step, the system matches the 

structural elements and binds the semantic labels of the successfully matched 

structural elements. It then uses a set of fixed weight factors to compute the 

percentage of the matched Egraph, and it compares the final score with a pre-

defined threshold value. 

• Extraction Granularity: 
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HASTEN identifies the exact phrase of interest. 

• Syntactic/Semantic Constraints: 

Both syntactic structural and semantic classes are used in HASTEN. 

• Generalization/Specialization: 

No obvious generalization/specialization approaches are discussed in the 

reference paper. 

    All the systems discussed above used induced pattern rules to extract relevant data 

from grammatical, free text. Even though all of them use syntactic and semantic 

constraints to identify the items of interest, there are several important differences among 

them. First, the granularity of the extraction is different: LIEP and HASTEN identify the 

exact phrase of interest, while AutoSlog/AutoSlog-TS, PALKA, and CRYSTAL 

determine only the syntactic field that contains the target phrase. Second, except for 

CRYSTAL, all of the other systems allow semantic constraints only on the slots to be 

extracted. Lastly, PALKA, CRYSTAL, and HASTEN can generate both single- and 

multi-slot rules, while AutoSlog/AutoSlog-TS learns only single-slot rules and LIEP can 

only induce multi-slot rules. 

3.2 Information Extraction from Semi-structured Documents 

With the expansion of the Web, users can access collections of documents that consist of 

a mixture of grammatical, telegraphic and/or ungrammatical text. Semi-structured text 

has the characteristics that the patterns of occurrences are quite repeatable and the 

syntactic cues are quite minimal. Typical semi-structured texts include: rental ads, job 

postings, product pages etc.. Development of systems to perform IE tasks on corpora of 

such semi-structured texts has immediate practical application. However, the IE 
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techniques developed for free texts cannot be applied directly to semi-structured 

documents since semi-structured texts have less linguistic patterns. Here we discuss four 

representative systems designed to handle semi-structured documents. The systems 

extract pattern rules that combine syntactic/semantic constraints with delimiters that 

“bound” the text to be extracted. Although it seems useful to extract pattern rules that 

take advantage of repeated HTML tags, the four systems do not utilize constraints of 

HTML tags. 

(1) WHISK [Soderland, 1999] 

WHISK is designed to handle text styles ranging from highly structured to free text, 

including text that is neither rigidly formatted nor composed of grammatical sentences. 

When used in conjunction with a syntactic analyzer and semantic tagging, WHISK can 

also handle extraction from free text such as news stories. 

• Working Domains: Rental advertisement and management succession (MUC-6) 

• Pattern Rule Representation: (both single-slot and multi-slot rules) 

Pattern rules in WHISK are represented as Perl-like regular expressions. For 

example, given a sentence of “Mr. A succeeds Mr. B, Chairman of XYZ Inc.”, the 

pattern rule in WHISK is described as following: 

Pattern: * (person) * succeeds * (person) * (corp) 

Output: Succession {PersonIn $1} {PersonOut $2} {Org $3} 

• Extraction Granularity: 

WHISK rules specify exact delimiters on the target phrase, i.e. the extract phrase 

of interest. 

• Syntactic/Semantic Constraints: 
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WHISK does not need to perform syntactic analysis for handling semi-structured 

texts. For free text, syntactic information is obtained through parsing result. Pre-

defined semantic classes are employed in both semi-structured and free texts. For 

example, the semantic class of “Bedroom” is defined as following: 

Bedroom ::= ( br || brs || bdrm || bedrooms || bedroom ) 

• Generalization/Specialization: 

WHISK induces pattern rules top-down, first finding the most general rule that 

covers the seed, then extending the rule by adding terms one at a time. The metric 

used to select a new term is the Laplacian expected error of the rule. The WHISK 

rules could be generalized by substituting predefined semantic classes 

(“Bedroom”) for original lexical tokens (“br”). 

(2) RAPIER [Califf and Mooney, 1997] 

RAPIER employs a bottom-up learning algorithm.  It incorporates techniques from 

several inductive logic programming systems and acquires unbounded patterns that 

include constraints on the words, part-of-speech tags, and semantic classes present in the 

filler and the surrounding text. 

• Working Domains: Job postings and seminar announcements. 

• Pattern Rule Representation: (single-slot rule only) 

The RAPIER extraction patterns consist of three distinct slots: the Pre- and Post- 

“filler patterns” play the role of left and right delimiters, while the “Filler Pattern” 

describes the structure of the information to be extracted. 

Given an excerpt of a job posting as follows: 
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AI. C Programmer. 38-44K. Leading AI firm in need of an energetic individual to 

fill the following position:…… 

The extracted data are: 

Computer-science-job:   title: C programmer; salary: 38-44K; area: AI 

The pattern rule in RAPIER for extracting the “area” slot is represented as 

following: 

Pre-filler pattern:   word: leading 

Filler pattern:         list: len:2 

                               tags: [nn, nns] 

Post-filler pattern:   word: [firm, company] 

The pre- and post- filler patterns specify that information to be extracted is 

immediately preceded by the word “leading” and is immediately followed either 

by “firm” or by “company”. The “Filler pattern” imposes constraints on the 

structure of the information to be extracted: it consists of at most two words that 

were labeled “nn” or “nns” by the Part-of-Speech (PoS) tagger. 

• Extraction Granularity: 

As we can see from the above example, RAPIER rules enforce phrase length 

constraints. The extraction granularity by RAPIER rules is the phrase whose 

length (the number of words) is less than the rule length constraint. 

• Syntactic/Semantic Constraints: 

RAPIER does not perform syntactic analysis for handling the semi-structured 

texts. It obtains the semantic class information from WordNet [Miller, et. al., 

1995] from which the hypernym links are used. 
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• Generalization/Specialization: 

The generalization scheme in RAPIER is realized from PoS tagging as PoS is 

more general than word itself and the patterns with PoS taggers can cover more 

examples. 

(3) SRV [Freitag, 1998] 

SRV is a top down relational algorithm for information extraction from a class of pages 

that contain one or more pages devoted to single entities. The SRV system takes the 

documents to be used for extraction; extracts the individual terms or tokens and classifies 

them into one of the core features. The features can be simple (mapping token to a value) 

or relational (token to another token). The system learns over an explicitly provided set of 

such features.  A set of rules are developed from the training set. A part of this training 

set is used for validation. The SRV is tested on web site pages from four well-known 

universities. 

• Working Domain: University web pages. 

• Pattern Rule Representation: (single-slot rules only) 

Pattern extraction rules in SRV are represented as first-order logic extraction 

patterns that are based on attribute-value tests and the relational structure of the 

documents. 

Given two instances of “… to purchase 4.5 mln Trilogy shares at …” and “… 

acquire another 2.4 mln Roach shares …”, SRV has a pattern rule to extract the 

company name as following: 

Acquisition:- length (<2), 

                      some (?A [] capitalized true), 

                      some (?A [next-token] all-lower-case true), 

                      some (?A [right-AN] wn-word ‘stock’). 

The “right-AN” construct refers to the “right AN link” in a link grammar, which 

connects a noun modifier with the noun it modifies. “wn-word” is the WordNet 

synset. 

• Extraction Granularity:  
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Similar to RAPIER system, SRV extracts the phrase whose length is less than the 

length constraint in the pattern rule. 

• Syntactic/Semantic Constraints: 

SRV takes advantage of orthographic features, token length and link grammars. 

Furthermore, it imposes constraints based on the WordNet semantic classes. 

• Generalization/Specialization: 

We can consider the semantic class used in SRV is a kind of generalization. 

Pattern rules with the semantic class can cover more examples. 

(4) (LP)2 [Ciravegna, 2001] 

(LP)2 is a covering algorithm for adaptive IE from text documents. It induces symbolic 

rules that insert SGML tag into texts by learning from examples found in a user-defined 

tagged corpus. In (LP)2, training is performed in two steps: first a set of tagging rules is 

learned to identify the boundaries of slots; next, additional rules are induced to correct 

mistakes in the first step of tagging. 

• Working Domain: Seminar announcements and Job postings. 

• Pattern Rule Representation: (single-slot rules only) 

(LP)2 learns symbolic rules through user tagged training examples. For example, 

given a user tagged example of “…the seminar at <stime> 4 pm will…”, (LP)2 

learns a rule for inserting <stime> to test instance as following: 

at digit timeid  insert <stime> between “at” and digit 

where timeid could be “am”, “A.M.” or “pm” etc.. We can see the rules in (LP)2 is 

not slot-based but tagged-based. Every rule in (LP)2 inserts either opening tag “< 

>” or closing tag “< />”. 

• Extraction Granularity: 

(LP)2 extracts the desired information from texts based on word tokens. 

• Syntactic/Semantic Constraints: 

(LP)2 employs the PoS information and the pre-defined semantic classes for rule 

generalization. 

• Generalization/Specialization: 

Generalization in (LP)2 consists in the production of a set of rules derived by 

relaxing constraints in the initial rule pattern. Conditions are relaxed both by 
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reducing the pattern in length and by substituting constraints on words with 

constraints on some parts of the additional knowledge. Each generalization is 

tested on the training corpus and an accuracy score L=wrong/matched is 

calculated. For each initial instance the k best generalizations are kept that: (1) 

report better accuracy; (2) cover more positive examples; (3) cover different parts 

of input; (4) have an error rate that is less than a specified threshold. The other 

generalizations are discarded. 

    The four types of extraction rules presented above differ in several ways. First, 

RAPIER, SRV and (LP)2 can generate only single-slot rules while WHISK generates 

multi-slot rules. Single-slot learners require less training examples than multi-slot 

learners [Ciravegna, 2000] while single-slot learners need more rules for extracting a 

multi-target instance than multi-slot learners do. Next, RAPIER, SRV and (LP)2 are 

capable of imposing a richer set of constraints than WHISK: RAPIER and (LP)2 make 

use of a part-of-speech tagger, while SRV takes advantage of orthographic features, 

token’s length and link grammars. Furthermore, RAPIER and SRV can impose 

constraints based on WordNet semantic classes. 

3.3 Wrapper Induction Systems 

Different from the traditional IE community, the wrapper systems aim to extract and 

integrate data from multiple structured Web-based texts. Structured text uses markup to 

represent an ordered hierarchy of content objects. The structure elements describe the 

structure of text without describing how the content is presented. Examples of such 

structure markup languages are SGML and XML. They include a schema or document 

type declaration that defines and restricts the component elements. In this context, the 

aim of information extraction (IE) techniques is to select pertinent sentences within a text 

and to extract from these sentences structured facts which can be stored in databases. A 

typical wrapper application extracts data from Web pages based on predefined HTML 

templates (e.g., electronic commerce, weather, or restaurant review pages). The wrapper 
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induction systems generate delimiter-based rules that do not use linguistic constraints. 

Most wrappers utilize the HTML/XML tags as pattern rule constraint elements, such as 

STALKER [Muslea, Minton and Knoblock, 1999]. 

(1) HLRT [Kushmerick, Weld and Doorenbos, 1997] 

HLRT is the first wrapper induction system and it generates extraction rules similar to 

those of WHISK, except that it uses only delimiters that immediately precede and follow 

the actual data.  

• Working Domain: Email services and restaurant information.  

• Pattern Rule Representation: (multi-slot rules only) 

Pattern rules in HLRT are similar to WHISK which are based on Perl-like regular 

expressions. Given two excerpts from a restaurant webpage of  

“D1: 1. Joe’s: (313)323-5545 2. Li’s:(406)545-2020” 

“D2: 1. KFC: 818-224-4000 2. Rome: (656)987-1212”;  

HLRT generates the rule as following: 

* ‘.’ (*) ‘:’ * ‘(’ (*) ‘)’ 

Output: Restaurant{Name @1} {AreaCode @2} 

Apparently, the above rule fails on D2 because of the different phone number 

formatting. 

• Extraction Granularity: 

The extractions in HLRT are based on words or tokens. 

• Syntactic/Semantic Constraints: 

HLRT does not apply the syntactic or semantic information for wrapper rule 

induction. 

• Generalization/Specialization: 

No generalization/specialization approaches are applied in HLRT. 

(2) SoftMealy [Hsu and Dung, 1998] 

SoftMealy is a wrapper induction algorithm that generates pattern rules expressed as 

finite-state transducers. It can be induced from a handful of labeled examples.  

• Working Domain: University Computer Science faculty webpages 

• Pattern Rule Representation: (multi-slot rules only) 
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Pattern rules in SoftMealy are expressed through finite-state transducers and 

contextual rules. Rules allow both the use of semantic classes and disjunctions. 

Given the same two excerpts as those in HLRT examples from a restaurant 

webpage of  

“D1: 1. Joe’s: (313)323-5545 2. Li’s:(406)545-2020” 

“D2: 1. KFC: 818-224-4000 2. Rome: (656)987-1212”;  

SoftMealy generates a rule as following: 

      ‘.’ (*) EITHER ‘:’ (Nmb) ‘_’ 

                         OR       ‘:’ * ‘(’ (Nmb) ‘)’ 

           Output:  Restaurant {Name @1} {AreaCode @2} 

           SoftMealy’s extraction patterns are more expressive than the HLRT ones.  

           Limitations of both SoftMealy and HLRT consist of their inability to use            

delimiters that do not immediately precede and follow the relevant items. 

• Extraction Granularity: 

The extractions in SoftMealy are based on words or tokens. 

• Syntactic/Semantic Constraints: 

Pattern rules allow semantic constraints. No syntactic analysis is applied. 

• Generalization/Specialization: 

The generalization algorithm in SoftMealy induces contextual rules by taxonomy 

tree climbing. The algorithm generalizes each rule element by replacing each 

token with their least common ancestor with other tokens in the same taxonomy 

tree. After the generalization, duplicated instances will be removed and the 

remaining instances constitute the output contextual rules. 

(3) STALKER 

STALKER is a wrapper induction system which performs hierarchical information 

extraction. It introduces Embedded Catalog Tree (ECT) formalism to describe the 

hierarchical organization of the documents. The ECT specifies the output schema for the 

extraction task, and it is also used to guide the hierarchical information extraction process. 

• Working Domain: Email services and restaurant information (the same test sets 

that are used in HLRT). 

• Pattern Rule Representation: (single-slot rules only) 
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Pattern rules in STALKER are represented as Embeded Catalog Trees (ECT). For 

example, given a sample document as following: 

Name: Taco Bell <br> <p> <br> 

- LA: 400 Pico; (213) 323-5545, (800) 222-1111. 

              211 Flower; (213) 424-7654. <p> 

-    Venice: 20 Vernon; (310) 888-1010. <p> <hr> 

            The Embedded Catalog Tree is represented as following: 

            Document := Restaurant LIST(City) 

            City           := CityName LIST(Location) 

            Location    := Number Street LIST (Phone) 

            Phone        := AreaCode PhoneNumber 

            where the pattern extraction rules for Restaurant, LIST(City) and CityName are: 

            Restaurant extraction rule:    * ‘Name:’ (*) ‘<br>’ 

            LIST(City) extraction rule:   * ‘<br>’ * ‘<br>’ (*) ‘<hr>’ 

            LIST(City) iteration rule:      * ‘_’ (*) ‘<p>’ 

            CityName extraction rule:     * (*) ‘:’ 

            Although STALKER can only present single-slot rules, it uses the ECT to group 

together the individual items that are extracted from the same multi-slot template 

(i.e., from the same ECT parent). 

• Extraction Granularity: 

Extractions in STALKER are based on words or tokens. 

• Syntactic/Semantic Constraints: 

STALKER applies the semantic constraints. No syntactic analysis is used. 

• Generalization/Specialization: 

No obvious generalization/specialization approaches are applied in STALKER. 

    STALKER is different from WHISK in two ways. First, even though STALKER uses 

semantic constraints, it does not enforce any linguistic constraints. Second, the 

STALKER rules are single-slot which can be grouped together using the ECTs. 

   In addition to the NLP-based information extraction systems that we have reviewed, 

there are also modeling-based and ontology-based approaches to Web data extraction 

[Laender, et.al., 2002b]. Given a target structure for objects of interest, modeling-based 
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systems try to locate in Web pages portions of data that implicitly conform to that 

structure. The structure is provided according to a set of modeling primitives (e.g. tuples, 

lists) that conform to an underlying data model. The systems used algorithms similar to 

those used by the wrapper induction systems to identify objects with the given structure 

in the target pages. Systems that adopt this approach are NoDoSE [Adelberg, 1998] and 

DEByE [Laender, et.al., 2002a]. An ontology-based system performs extraction directly 

on the data. Given a specific domain application, an ontology can be used to locate 

constants present in the page and to construct objects with them. The most representative 

ontology-based approach is the one developed by [Embley, et.al., 1999]. 

  

3.4 Summary 

In this Chapter, we mainly reviewed three categories of NLP-based IE systems: IE 

systems for free texts, IE systems for semi-structured texts and the wrapper induction 

systems for structured texts. We analyzed these related systems based on five aspects: 

their working domains, their pattern rule representations, the extraction granularities, 

whether to use syntactic and/or semantic constraints and how to generalize and/or 

specialize the pattern rules. In the next Chapter, we will introduce GRID, a Global Rule 

Induction approach to text Documents. GRID learns single-slot pattern rules and it works 

on both semi-structured documents and free texts. GRID extracts information based on 

the noun phrase boundaries. It applies lexical chaining to generalize pattern rules with the 

help of WordNet. The semantic constraints in GRID are obtained from a rule-based 

named entity recognizer. Shallow/full parsing is also used in GRID. 
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Chapter 4 

 
GRID: Global Rule Induction for text Documents 
 

As discussed earlier, most of the rule induction algorithms for information extraction 

randomly select a seed instance to start the rule induction or generalization. The search 

for a good seed often uses only local information and is often arbitrary. Thus it may 

happen that some false starts are needed to select a good seed in order to learn good 

quality, high coverage pattern rules, and often such seeds are not found. In this chapter, 

we introduce GRID (Global Rule Induction for text Documents) which emphasizes the 

use of global feature distribution in all of the training examples in order to make better 

decision on pattern rule induction. The main contributions and innovative features of 

GRID are: 

• GRID emphasizes the use of global feature distribution information on the whole 

set of training examples in order to make better decisions on pattern rule 

extraction. It examines all training instances at the representation levels of lexical, 

syntactic and semantic simultaneously and selects a global optimal feature to start 

the rule induction. The features used by GRID are general and applicable to a 

wide variety of domains, ranging from semi-structured to free-text corpora. 
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• GRID adopts chunks (noun or verb phrases) information provided by a shallow 

parser as units to determine the context of the rules. As chunk is of higher 

syntactic level than word or token, it provides a more appropriate unit to model 

context. 

• GRID incorporates named entity recognition to provide semantic constraints for 

pattern rule induction and uses a novel statistics-based lexical chaining method to 

generalize pattern rules. 

4.1 Pre-processing Of Training and Test Documents 

GRID is a supervised covering rule induction algorithm that learns from a training corpus 

where the users have tagged the sentences containing information of specific slot type 

such as the name of speaker, venue in a seminar announcement etc.. For each slot type, 

the tagged instances of that type are regarded as positive examples, while the remaining 

sentences in the documents are regarded as negative examples. GRID uses chunking 

information derived from shallow parsing as the basic granularity of context information. 

This is to avoid the difficulties in deciding slot boundaries if words were to be used as 

units for context [Ciravegna, 2001]. Other approaches use higher syntactic units 

compared with chunks such as subjects and objects as context [Riloff, 1993; Riloff, 1996; 

Soderland, et al., 1995]. But it is not easy to find a robust parser to obtain the subject and 

object information. 

    Before learning may commence, both training and testing documents are pre-processed 

by the same basic NLP modules such as sentence splitter, tokenization, morphological 

analysis, shallow parsing and named entities extraction. We use the NLProcessor (a 



                                               Chapter 4 GRID: Global Rule Induction for text Documents 

 48

shallow parser) from Infogistics company1 to perform the syntactic analysis to generate 

information on Part-of-Speech (PoS), noun group and verb group chunking. For example, 

given a sentence “A bomb was thrown near the house”; after the shallow parsing by 

NLProcessor, we will get the result “[A_DT bomb_NN] <was_VBD thrown_VBN> 

near_IN [the_DT house_NN]” in which the “[ ]”s are noun phrases and “( )”s are verb 

phrases. DT, NN VBD, VBN and IN are the PoS tags for delimiter, noun, verb past, verb 

past participle and preposition respectively2. We use [ ] or ( ) as the chunk units in our 

later experiments. We also employ a rule-based named entity recognition module similar 

to that used in [Chua and Liu, 2002] to derive the semantic classes of some noun groups, 

such as person, organization, location, and time etc.. The named entity recognition 

module uses rules which are based on both local sentence-level and global context 

information from the same document. Sometimes we are unable to identity the semantic 

type of a noun phrase if we consider only local sentence-level context information. For 

example, in the sentence of “Herminio Para announced a new system”, “Herminio Parra” 

could be a person or an organization name. Thus we need to employ global information 

from the whole document to resolve the above ambiguity [Chieu and Ng, 2002b]. The 

types of global information we used are described as follows: 

(a) Acronyms: Words made up of all capitalized letters will be stored as acronyms 

(e.g. PCD). The system will then look for sequence of initial capitalized words 

that match the acronyms found in the whole document. For example, if PCD and 

Party of Christian Democratization are both found in the same document and if 

Party of Christian Democratization can be identified as an organization name, 

                                                 
1 http://www.infogistics.com/textanalysis.html 
2 http://www.infogistics.com/tagset.html 
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then “PCD” will also be identified as an organization name and they are linked to 

the same entity. 

(b) Sequence of Initial Capitals: In the sentence of “Also Panama Defense Forces is 

the target of this attack.”, “Also Panama Defense Forces” may be identified as an 

organization name while in fact only “Panama Defense Forces” is the 

organization name. It is unlikely that other occurrences of “Panama Defense 

Forces” in the same document also co-occur with “Also”. This feature attempts to 

capture such knowledge. For every sequence of initial capitalized words, its 

longest substring that also occurs in the same document as a sequence of initial 

capitals is identified. For this example, “Panama Defense Forces” is the longest 

substring of “Also Panama Defense Forces” in the same document. In this case, 

the named entity recognizer identifies “Panama Defense Forces” as the 

organization name instead of identifying “Also Panama Defense Forces” as the 

organization name.  

(c) Initial Capitals of Other Occurrences: The capitalization of the initial letter of a 

word may be due to its position rather than its meaning (first word of a sentence; 

in headline). In these cases, the case information of other occurrences of the same 

word might be used to confirm its type. For example, in the sentence that starts 

with “Leon was killed in the attack …”, because Leon is the first word, the initial 

capital might be due to its position (as in “They were killed in the attack…”). If 

however somewhere in the same document we see “Until March 1987 Leon 

distributed leaflets on…”, then we can be surer that Leon is a person. 
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(d) Organization Suffixes and Person Prefixes of Other Occurrences: Sometimes we 

cannot distinguish whether a phrase is a person or an organization name according 

to the local sentence-level feature. For example, in the sentence “Herminio Parra 

announced a new system…”, we do not know whether “Herminio Parra” is a 

person or an organization name. On the other hand, if we found “Professor 

Herminio Parra” in the same document, then “person” will be more probable. 

    In order to find more relevant instances to learn pattern rules, we also employ a 

pronominal anaphora resolution algorithm3 [Lappin and Leass, 1994] to substitute some 

pronouns. For example, if we have “Mr. A is a general in the army. He was killed by 

terrorists”, “He” will be substituted by “Mr. A”. Given that “Mr. A” appears in the 

template answer keys, the instance of “Mr. A was killed by terrorists” will be considered 

as a positive training instance. Likewise, for test documents, we also do such 

substitutions in order to find more possible extraction patterns. 

4.2 The Context Feature Vector 

For every tagged training instance, GRID generates a context feature vector centered 

around the tagged slot (such as the “starting time” in a seminar announcement) from 

which to generate the pattern rules. The context feature vector is of the general form: 

        <c-k> …<c-2> <c-1> <c0> (tagged_slot) <c+1> <c+2> … <c+k>                         (4.1) 

Here <ci> {i=-k to +k; i ≠0} represents the context units of the tagged slot, and k is the 

number of context units considered. <c0> represents the central tagged slot itself. <ci> 

can be a token, a noun or a verb phrase or even a syntactic unit such as subject or object 

                                                 
3 http://www.comp.nus.edu.sg/~qiul/NLPTools/JavaRAP.html 



                                               Chapter 4 GRID: Global Rule Induction for text Documents 

 51

and it can be of various feature types, including: words, PoS (if it’s a single token), 

various types of verbs and noun chunks, and semantic classes. 

    One key characteristic of GRID is its representation of context feature vector, in which 

we code all elements (including both the tagged slot and the context elements) at their 

appropriate lexical, syntactic and semantic representations simultaneously. The context 

feature vector for a single tagged instance can therefore be represented as follows: 

<(-k,f-k
1), ..., (-k,f-k

m),..., (-1, f-1
1), …, (-1, f-1

m), (0,f0
1),…, (0,f0

m), (1,f1
1), …, (1,f1

m), …, (k,fk
1),..., (k,fk

m)>           (4.2) 

where m is the number of linguistic features for each element. 

    As shown in Equation (4.2), each element is represented as a tuple (g, fg
i). The first 

part of the tuple, i.e. g, indicates the position of the element within the tagged instance. 

g=0 gives the position of tagged slot, and positive g (or negative g) gives the gth right (or 

left) hand context element from the tagged slot. If there are m features, and k context 

elements, then we have a context vector of size (2k+1)× m. 

    The second part of the tuple, i.e. fg
i, gives the possible appropriate linguistic 

representation for each element. The overall feature set consists of 12 (i.e. m=12) lexical, 

syntactic and semantic features are given in Table 4.1. The first two representations (Lex. 

String and PoS) respectively give the original lexical form, and the Part-of-Speech 

information of the element if it is a single token. The two features are of string type. The 

next 8 representations (NP_Person, NP_Org., NP_Loc., NP_Date, NP_Time, NP_Perc., 

NP_Mon., and NP_Num.) cover the general named entities (NE) of type Person, 

Organization, Location, Date, Time, Percentage, Money and Number (“NP” stands for 

“Noun Phrase” and “VP” stands for “Verb Phrase”). The first 7 types are the standard 

named entities defined in MUC [MUC-7, 1998]. Here we added the NP type of “number” 
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to capture all numbers. The last 2 representations (VP_Act. and VP_Pass.) indicate the 

active and passive voice of VP. The values from the third feature to the twelfth feature 

are stored as “true” or “false”. We also store these representations as string type and for 

NP and VP, we also store the head noun and root verb for fg
1, fg

11 and fg
12. The set of 

representations is selected to model all possible patterns used in rule induction. They are 

selected to capture all essential syntactic and semantic types, and are based partly on 

related works [Riloff, 1996; Soderland, 1999] that were demonstrated to be effective. 

These features are not specific to any domain. 

Feature Description Feature Description
fg

1 Lex. String fg
2 PoS 

fg
3 NP_Person fg

4 NP_Org. 
fg

5 NP_Loc fg
6 NP_Date 

fg
7 NP_Time fg

8 NP_Perc. 
fg

9 NP_Mon. fg
10 NP_Num. 

fg
11 VP_Pass. fg

12 VP_Act. 
              Table 4.1 Features that GRID employed 

4.3 Global Representation of Training Examples 

In order to find a good seed instance to start the rule induction process, GRID utilizes a 

global approach to finding pattern rules by making full use of the feature statistics in the 

tagged examples. It does not generalize the rule from one single instance like some rule 

induction IE systems do, such as (LP)2 [Ciravegna, 2001]. Instead, it incorporates the 

global information in all positive training examples and selects the most prominent 

generalized/non-generalized feature to construct the rule. The initial rule generated for 

each slot type in GRID will thus have the highest coverage in the current active training 

instance pool. 

    Given the cluster of training instances of a specific slot type, GRID generates a context 
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feature vector for each instance using Equation (4.2).  

    By arranging all the instances modeled using Equation (4.2) in the same table, we 

obtain the global context feature representation for the whole training corpus as shown in 

Figure 4.1. We align these elements according to their corresponding context positions. 

Note that not all of the feature representations are present for each element. The 

occurrences of the common element features at a specific position g (g is positive number) 

are cumulated as egi. From Figure 4.1, we can easily obtain the global distribution 

frequency of any element feature and at any position, and derive the set of instances 

covered by any feature set f. We consider different features play different importance in 

various domains, for example, in the free text terrorist attacks corpus, verb features play 

crucial roles. Thus for each feature, we give it a weight coefficient βgi empirically.  

     It is important to select a good feature to kick off the rule induction for a covering 

algorithm. One intuition is to select element feature that has the highest value of βgi × egi 

in the active positive training set. By adding this element feature fg
i into an active feature 

inst.1: <(-k, f-k
m), ..., (-g, f-g

j),..., (0,f0
1), (0,f0

2) …,(0,f0
m), …, (g,fg

j),..., (k,fk
m)> 

   inst. 2: <(-k, f-k
m), ..., (-g, f-g

j),..., (0,f0
1), (0,f0

2) …,(0,f0
m), …, (g,fg

j),..., (k,fk
m)> 

         .         .            ...       .       …      .          .       ...    .        ...      .      ...     .   
         .         .            ...       .       …      .          .       ...    .        ...      .      ...     . 
         .         .            ...       .       …      .          .       ...    .        ...      .      ...     . 

inst.h: <(-k, f-k
m), ..., (-g, f-g

j),..., (0,f0
1), (0,f0

2) …,(0,f0
m), …, (g,fg

j),..., (k,fk
m)> 

  
   Figure 4.1 Global distribution of instances and representations  

set f, we can generate a pattern rc(f) in terms of the feature set f including current fg
i so 

that rc(f) covers a number of active training instances which have the most prominent 

feature fg
i. However, the quality of rc(f) is determined not only by its coverage in the 

positive training set but also by the number of instances in the negative set that it covers 

which would be regarded as errors. Let nk denote the number of both positive and 

e01 e02 e0m egj ekm

Positive Instances 

… ……… e-gj … e-km 
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negative examples covered by the rule rc(f), and mk be the number of negative examples 

or errors covered by that rule. A good measure of the quality of the rule is the Laplacian 

expected error [Soderland, 1999] defined as: 

                  
1
1

))((
+
+

=
k

k
c n

m
frLaplacian                                                               (4.3) 

    The element feature that has the highest βgi × egi value does not necessarily lead to a 

rule with the lowest Laplacian measure. On the other hand, it is too costly to evaluate the 

Laplacian measures of all possible element features. As a compromise, we evaluate the 

Laplacian measure of the top w element features with high βgi × egi values in the active 

positive training set. Our ultimate aim is to select rule that has prominent feature fg
i with 

high βgi × egi value and whose Laplacian(rc(f)) satisfies the pre-defined error tolerance 

value. It is worth noting that adding more features into f helps to constrain the rule, and 

ideally lead to improvement in rule precision. 

4.4 The Overall Rule Induction Algorithm 

The pattern rules in GRID are represented as follows: 

constraint1 constraint2 … constrainti … constraintn  insert SGML tags       (4.4) 

At the left hand side, there are some pattern constraint conditions which could be any 

feature element in Table (4.1). At the right hand side, there is rule action which is to 

insert opening tag “< >” and closing tag “< />” for each semantic slot. Usually, the 

SGML tags are inserted beside noun phrase boundaries. For example, a pattern rule of 

“start at NP_Time  NP_Time is starting time” is to insert the tags of “<stime>” and 

“</stime>” beside the boundaries of the noun phrase whose named entity type is “Time” 

when the left side of the pattern rule is matched with the instance.  
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We now present the overall algorithm for GRID to induce pattern rules as follows: 

a) Group tagged instances of the same slot type into one cluster. 

b) Generate context feature vectors for all positive instances in every cluster. The 

resulting kth cluster is Ck, with the positive instance set Pk and negative instance set Nk.  

    Let rk be the set of rules extracted so far to cover Pk; and set rk = null.    

c) For every cluster Ck, perform the followings: 

(c1) Loop-1:  // to generate new rules 

              Let fc=null be the current feature set; 

     rc(fc) be the current rule; and 

                      Pc, Nc be the set of instances covered by rc(fc). 

     Initially, set: Pc = Pk, Nc = Nk  

                      RuleAttempt = 0; 

(c2) Loop-2:  // to refine current rule rc(fc) 

      Find top w element features {fg
i} (based on βgi × egi values) that covers at least  

             one instance in Pc;  

             Select the fi
j that minimizes the Laplacian measure of the current rule rc(fc ∪ fi

j);    

             Add fi
j to fc, i.e. fc = fc ∪ fi

j 

                   RuleAttempt++;  

       (c3) IF Laplacian(rc(fc)) < σ (error tolerance) 

      THEN  // the quality of resulting rule is good 

       Add rule rc to rule set rk; or rk = rk ∪ rc;  

   Update Pk = Pk–{all instances covered by rule rc}; 

   Go to Loop-1 to generate another rule. 
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      ELSE  // more work is needed to constraint rule rc 

           Update Pc by removing those instances that are not covered by rc; 

     IF RuleAttempt ≥ λ (max. rule attempt for constraining rules) 

     THEN // relaxing error tolerance; 

           Increase σ; 

           Go to Loop-1 to generate new rule with bigger error tolerance; 

     ELSE   

           Go to Loop-2 to find new feature f’i
j to refine rule rc. 

 Repeat until Pk is empty. 

    The “RuleAttempt” is related to the length of the generated rule which the user could 

pre-specify. For example, if we set the rule length to “4”, then “RuleAttempt” could be 8. 

That is to say, we constrain the rule to the maximum size of 4 contextual units (4 for left 

side and 4 for right side around the tagged slot respectively). Based on the above 

algorithm, GRID will generate rules that incorporate the most prominent features. If 

using a single feature cannot satisfy the error tolerance for quality, then more features 

will be added to tighten the constraints until the quality of the resulting rule is good 

enough. GRID is a covering algorithm and each instance in the positive training pool is 

involved to induce one rule. We can also see that GRID is a local search algorithm. It 

performs a form of hill climbing and once the rule with current features satisfies the error 

tolerance it will be output even though adding even more features would result in a lower 

Laplacian value. In case there is noise in the positive training examples, we can apply 

some “post-pruning” strategies to control the whole quality of the learned rules. For 

example, after the entire rule set has been generated, some of the rules may have low 
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coverage on the training set. A post-pruning step that discards all rules with Laplacian 

expected error greater than a threshold has the effect of removing the least reliable rules. 

    During the test phase, we apply the learned GRID pattern rules to unseen test instances 

that are also preprocessed by the series of NLP modules as we do for training instances 

(see Section 4.1). When the left side constraints (see Equation (4.4)) are matched with the 

test instances, then the opening tag “< >” and the closing tag “< />” of a slot will be 

inserted beside a noun phrase boundaries to indicate a detected entity. However, we 

observe that sometimes there may be additional tokens or adverbs within the constraints 

in the unseen instances. In such cases, the left side constraints of the pattern rules will not 

be matched and the entity will be missed. To overcome this problem, we perform a 

flexible matching between the learned pattern rules and the test instances. We allow up to 

one shift in context of new test instances when matching against the learned pattern rules. 

For example, the rule of “NP VP_active (kill)  NP is perpetrator” will match the 

instance of “FLMN also killed another three persons.”, where there is an extra term 

“also” between NP and VP_active in the “correct” test instance.  

    We also try the idea of applying edit distance [Sankoff and Kruskal, 1999] to perform 

inexact matching of rules. However, the substitution scheme used in edit distance is not 

appropriate for information extraction task. For example, if we allow one element 

substitution in the pattern rule, the rule of “NP VP_active (kill)  NP is perpetrator” will 

also match the instance of “NP VP_passive (kill)” since there is only one different 

element but the NP in the instance is not a “perpetrator” but “victim”. Thus we do not use 

the edit distance to perform partial matching of rules. Instead we found that the simple 

one shift matching is more effective. 
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4.5 Rule Generalization 

Lexical chaining is a process of placing the individual words into chains of other words 

of similar meaning. Lexical chaining has been successfully applied in a variety of text 

retrieval applications, such as text categorization task. In this research, we employ the 

lexical chaining technology for pattern rule generalization.  

    At the end of rule induction learning, we extract a set of pattern rules. In general, the 

rule set obtained is not optimal as it did not consider the lexical and semantic 

relationships between features used in different rules. For example, for the <victim> slot 

in the terrorism attack domain, we may generate similar pattern rules but with one 

different slot element of same semantic types, such as the “murder of <victim>” and the 

“assassination of <victim>”. As these rules share similar semantic meaning, they should 

be merged into a more general rule where the root noun is of the semantic class of 

{murder, assassination}. The generalized rule’s score is then re-evaluated by the 

Laplacian measure.  

    Thus we apply a lexical chaining algorithm in terms of corpus statistics to group 

element features of NP and VP that share the same synsets in WordNet [Miller, et al., 

1999] or semantic types. This step helps to generalize the rules by generalizing some 

verbs or nouns to their semantic classes and improve the rule performance in information 

extraction. The detailed algorithm of the lexical chaining for verb or noun is as follows: 

1) Initialize: 

a) WS {(w1,f1), (w2,f2), …,(wn,fn)},  

 where fi is the frequency of word wi in a given corpus containing n unique words. 

b) Set the output group Gout  φ 
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2) Generate all possible semantic groups: 

a) For each word wi in WS, use WordNet to find its synonyms, i.e. Syn(wi); 

b) Generate all possible groupings of words as: 

 Gall {(G1, c1), (G2, c2), …, (Gn, cn)} 

 where Gi contains all words that have the common synonym set; i.e. Syn(wi) ∩  

     Syn(wj) ≠ ∅ ; (the synonyms include the ones in all word senses) 

 and ci = ∑
∈ ik Gw

kf  the prominence measure of Gi. 

3) Select the prominent groups as the semantic groups: 

a) From Gall, select the group with maximum ci as: 

 (Gmax, cmax) }{maxarg i
GG

c
alli∈

 

b) If cmax < τ then terminate. 

c) Else move Gmax to Gout, ie 

 Gout  Gout U (Gmax, cmax),  Gall  Gall - Gmax 

d) For each remaining group Gj in Gall, perform the followings: 

  allj GG ∈∀ , set Gj Gj-Gmax, cj cj- ∑
∩∈ maxGGw j

c , 

  and if Gj ≠ ∅, then Gall  Gall – Gj 

f) Repeat the process from Step (3a) until Gall = null. 

We can see that the assumption of this lexical chaining algorithm is that words tend to 

have one sense per discourse and one sense per collocation [Yarowsky, 1995]. At the end 

of applying the above lexical chaining algorithm, we obtain a set of semantic groups, 

each containing a cluster of related words. These semantic groups are used as the basis to 

generalize the elements in the learned pattern rules.  
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    As the WordNet dictionary is a general lexicon knowledge base for any domain, the 

semantic group defined using WordNet may have different meanings in different contexts. 

In order to improve the quality of the lexical chaining process in deriving better semantic 

groups, we may want to apply more specific domain knowledge such as the ontological 

knowledge of the terrorist attack domain. The ontology of a problem domain concerns the 

entities and their relationships in that domain. It includes a vocabulary of terms, 

definitions and indications of how concepts are inter-related which collectively impose a 

structure on the domain. Kavalec and Svatek [2002] suggested that it is a promising 

approach to combine information extraction with ontologies. On the one hand, ontologies 

can help to improve the quality of information extraction and, on the other hand, the 

extracted information can in turn be used to improve and extend the ontology. In this 

thesis, we only consider the first aspect of using ontology knowledge to improve the 

quality of information extraction. We employ an existing ontology knowledge base from 

SUMO ontology [www1] (ontologies of terrorism) and use them as conceptual hierarchy 

dictionaries for the terrorism domain data of MUC-4. 

    The ontology of terrorism includes the descriptions of terrorist groups, the types of 

terrorist attacks, terrorist targets and the ontology of terrorist actions. We built conceptual 

hierarchy dictionaries based on the ontological knowledge. Figure 4.2 and Figure 4.3 

show examples of the hierarchy of terrorist groups and the terrorist attacks edited and 

presented using Protégé format [www2]. 

    Many classes in the ontologies have sub-classes. For example, in Figure 4.3, class 

“Building” has several sub-classes such as “Garage”, “Hotel”, “Store” etc.. We may 

utilize these class hierarchies to generalize our pattern rules. Take an example, if we have 
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“grocery store” as an element in a pattern rule; we can expand that element to all of the 

sub-classes of “Building” as a semantic class based on definition in Figure 4.3.  In this 

way, we can extract more relevant and useful instances when applying this generalized 

rule to other unseen instances. 

                                                    

                                       Figure 4.2 Excerpt of the terrorist group ontology     

     

                                       Figure 4.3: Excerpt of the terrorist targets ontology 
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The domain ontology can also serve as knowledge source to verify the correctness of 

the rules. In the ontology of terrorist groups, each group is depicted by its long name, 

short name, alias names, location country, leader, target countries and member number. 

These facts can be used to verify a rule’s correctness. For example, if a noun phrase is 

classified as “victim” while we find that the noun phrase is among the terrorist group list, 

we will discard that rule and consider it as a wrong classification. 

4.6 An Example of GRID Learning 

In this section, we present a simple example to illustrate how GRID learns pattern 

extraction rules. For simplicity, we use an example in a semi-structured domain, and 

present only a subset of feature representations and context elements. Suppose we want to 

extract the semantic slot <stime>, which indicates the “starting time” in a seminar 

announcement. Table 4.2 shows the 5 positive instances where the desired slots are 

tagged. The example instances are selected from the CMU seminar announcement corpus 

[www3].      

    We employ GRID with w=1 (i.e. start with the most frequent feature). By examining 

the feature frequency for the context elements at every position around the tagged slot for  

the 5 positive instance in Table 4.2, we can infer that the tagged slot  “NP_Time” (the 

named entity module can identify this feature) appears most frequently (it occurs 5 times) 

and thus has the highest coverage in the training example pool. This feature is then being 

selected, and the generated pattern rule is: 

“NP_Time  NP_Time is starting time”                                                                        (4.5) 

    This rule, however, does not satisfy the Laplacian measure as we can see that there are 

many “NP_Time”s in the corpus that belong to other semantic type such as the “ending 
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time”. So the rule has to be constrained further. Next we examine the context information 

beside the tagged slot. We see that the token of “:” at the 1st left context position appears 

3 times, and is therefore being selected next. The pattern rule is now constrained as: 

“: NP_Time  NP_Time is starting time”                                                                     (4.6) 

context position -2 -1 0 

instance 1 Time : <stime> 3:30 PM </stime> 

instance 2 Time : <stime> 2 p.m. </stime> 

instance 3 Time : <stime> 4 p.m </stime> 

instance 4 start at <stime> 10 am </stime> 

instance 5 begin from <stime> 11:30 AM </stime> 

                      Table 4.2 An example for extracting slot <stime> 

    For the CMU seminar announcement corpus, this rule is sufficient to meet our 

Laplacian measure, i.e. 0.1, and thus the first rule learned is as following: 

“: NP_Time  NP_Time is starting time”                                                                     (4.7) 

    Once we obtain this rule, we remove the first 3 instances which are covered by rule 

(4.6) from the positive training example pool. We iterate the above process on the 

remaining two positive examples and finally obtain another two rules as follows: 

“start at NP_Time  NP_Time is starting time”                                                            (4.8) 

“begin from NP_Time  NP_Time is starting time”                                                     (4.9) 

    During test phase, if any of these learned pattern rule applies, the opening tag <stime> 

and the closing tag </stime> will be inserted beside the NP_Time’s boundaries. We can 

see from the above example that the first rule GRID generated covers the most number of 

positive examples in current active training instances and satisfies the Laplacian measure. 
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4.7 Experimental Results 

To verify the generality and effectiveness of GRID, we test GRID on a number of IE 

tasks including the semi-structured web page corpora, and the free text corpus such as the 

MUC-4 corpus [MUC-4, 1992]. In each experiment, GRID is trained on a subset of the 

corpus and the learned rules are tested on the remaining unseen texts, as defined in the 

respective corpus. The test documents are pre-processed by the same set of NLP tools as 

described in Section 4.1 and 4.2. 

4.7.1 Performance of GRID on free-text corpus 

As discussed earlier, GRID is designed to overcome some of the major shortcomings of 

existing rule-induction-based IE systems. In particular, GRID is designed with the 

following features: 

(a) It takes advantage of the global statistics of all training instances at the 

representational levels of lexical, syntactic and semantic simultaneously in 

selecting good starting points to commence pattern rule induction. In particular, it 

considers top w features with high coverage as candidate seeds for rule induction. 

(b) It adopts chunk, instead of tokens, as units for the context unit of rules. In free 

text domain, we also examine the effect of full parsing for GRID. 

(c) It employs a named entities recognizer to get the semantic information and it 

performs lexical chaining to generalize the VPs and NPs that share the same 

semantics in WordNet and utilizes the specific ontology knowledge as additional 

dictionary for rule generalization. 

    We use the free-text MUC-4 corpus to evaluate the effectiveness of each or 

combinations of the above features. We also present the results of the overall testing on 
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the semi-structured web-based corpus in Section 4.6.2. There are 1,500 training 

documents and two official test sets, i.e. TST3 and TST4, containing 100 documents each. 

There are 700 training documents which are relevant to terrorism attacks. We train GRID 

using the 700 documents with relevant templates, and test it on the two official test sets. 

The output templates are scored using the scorer provided by MUC-4. We perform 

shallow parsing of the sentences to extract the feature set as listed in Table 4.1 for each 

context information unit. We perform tests by varying the following parameters: (a) 

number of top context features, w, to be considered in selecting starting seed; (b) the 

context unit type and size; (c) whether the use of full parsing is effective; and (d) whether 

lexical chaining based on ontology knowledge for rule generalization is useful. Finally, 

we compare the performance of our system with other reported systems. 

4.7.1.1 Effect of different w 
One important parameter in GRID algorithm is w, which defines the number of high 

support features to be considered during the rule induction process. In this section, we 

present the GRID performance on the MUC-4 terrorism attacks corpus using various w 

values. The task is to extract the perpetrator name, victim, weapon and location etc. from 

the terrorism attack documents according to the template slots defined by MUC-4. The 

context length k (see Equation (4.1)) is set to 4 empirically according to the experiments 

in the next subsection. We vary the value of w from 1 to 8. The results are presented in F1 

measure via MUC-4 scorer. Figure 4.4 presents the average F1 measure of TST3 and 

TST4 under various w values. It shows that the performance of GRID improves steadily 

until w reaches 3. Thus in the following experiments, we set w equal to 3. 



                                               Chapter 4 GRID: Global Rule Induction for text Documents 

 66

46
46.2

46.4
46.6
46.8

47
47.2
47.4

47.6
47.8

1 2 3 4 5 6 7 8

w

F1
-m

ea
su

re

 

              Figure 4.4 Effect of w on performance of GRID 

4.7.1.2 Effect of the context unit 

In order to investigate the effect of context unit using chunks and the performance of 

different context length, we conduct a series of experiments based on different context 

length of words or chunks. Chunking information is obtained by a shallow parser from 

Infogistics company; normally, a chunk could be a noun phrase or verb phrase. Figure 4.5 

shows the performance of GRID based on different context length and context unit. We 

try various context length k (left k and right k word/chunk) from 1 to 5 based on word or 

chunk unit. From the figure, it is clear that chunk-based system performs better than the 

word-based ones. The difference is significant for the free text corpus. The experiment 

shows that when the context length reaches 4, the performance becomes steady. Hence 

for subsequent experiments, we adopt chunk as the context unit, and set the context 

length (k) to 4. 
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Figure 4.5 Performance of various word/chunk-based context unit on MUC-4 corpus 

4.7.1.3 Effect of performing full parsing vs shallow parsing 

In this experiment, we employ a full parser [www4] and incorporate four more features to 

the feature set as listed in Table 4.1. The four features are: NP_Agent, NP_Patient, VAg 

and Vpa. NP_Agent and NP_Patient stand for agent noun and patient noun phrase 

respectively. VAg and VPa stand for the associated verbs of agent and patient 

respectively. For example, we have two sentences: “Members of that security group are 

combing the area.” and “A bomb was thrown near the house”. In the first sentence, the 

NP_Agent is “members” and its associated VAg is “comb”; while in the second sentence, 

the NP_Patient is “bomb” and its associated Vpa is “threw”. These four features can be 

obtained through traversing the full parsing tree. Table 4.3 compares the performance 

between systems with shallow parsing and full parsing. The results are based on lexical 

chaining by WordNet which is the standard approach used in most systems. We can see 

that for free text documents, full parsing leads to significantly better overall performance. 
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In particular, with full parsing, the F1 measure increase significantly from 40.3% to over 

47%. However, for semi-structured text such as ‘CMU Seminar’ and ‘Austin Job Listing’, 

full parsing does not produce any improvement in results, This is because for semi-

structured corpora, there are less linguistic variations between sentences and thus the use 

of full parsing does not bring in much more information than shallow parsing. 

    
MUC-4 (averaged 

TST3 & TST4) 
CMU Seminars 

Austin Job 

Listings 

without full parsing 

(shallow parsing) 
40.3 89.2 80.8 

with full parsing 47.5 89.3 80.9 

       Table 4.3 Performance on different domains with and without full parsing 

4.7.1.4 Effect of rule generalization with lexical chaining 
To illustrate the benefit of rule generalization by performing lexical chaining using the 

corpus statistics and the synset of WordNet, we conduct experiments to compare the 

performance difference between systems with and without lexical chaining. We use full 

parsing for MUC-4 domain. Table 4.4 shows the performance in terms of F1 measure of 

GRID on different domains with and without lexical chaining. It is shown that rule 

generalization by lexical chaining is effective for the free text corpus. One of the reasons 

is that verb plays an important role in free text corpus, such as MUC-4 corpus. By 

performing rule generalization, we can obtain more general semantic classes for verbs, 

thus leading to better rule performance. 
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    The results also indicate that lexical chaining using WordNet plus the domain specific 

ontology knowledge performs better than using WordNet alone for the MUC-4 task. The 

ontology dictionary can provide additional knowledge for better rule generalization as we 

discussed in Section 4.5 and can identify more entities during the test phase. For example, 

according to the terrorist organizations from the ontology dictionary, we can identify the 

“perpetrator” organization in a test document even it does not appear in the training 

examples. The improvement is moderate in this case because the terrorism ontology 

dictionary we use is general and not tuned for MUC-4. The use of a more specific domain 

knowledge is expected to perform better. 

 
MUC-4 (averaged 

TST3&TST4) 
CMU Seminars Austin Job Listings 

without lexical chaining 44.1 87.7 79.5 

with lexical chaining using WordNet 47.5 89.3 80.9 

lexical chaining by WordNet + ontology 48.5 --- --- 

     Table 4.4 Performance of GRID on different domains with and without lexical chaining 

4.7.1.5 Comparison of performance of GRID with other reported systems on MUC-4 

We evaluate GRID’s performance on MUC-4 corpus in two ways. First is to use the 

evaluation measures in AutoSlog-TS [Riloff, 1996] and second is to use the standard 

evaluation method in MUC-4. Although AutoSlog-TS uses an unsupervised approach, 

which differs from ours, we nevertheless compare ours with it for two reasons. First, its 

results are openly published as have been shown to perform better than its supervised 

version called AutoSlog [Riloff, 1993]. Second, its methodology is well documented. We 

used 1,500 texts (the standard training documents of MUC-4 plus TST1 and TST2 tasks) 
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for training, in which about 50% of the texts are relevant with their associated answer 

keys given in the MUC-4 corpus. Our target slots are perpetrator, victim and physical 

target. During testing, we use 100 texts composing 25 relevant texts and 25 irrelevant 

texts from the TST3 test set, plus 25 relevant texts and 25 irrelevant texts from the TST4 

test set. We also perform the same scoring scheme as that in AutoSlog-TS. We score the 

output by assigning each extracted item to one of the five categories of: correct, missed, 

mislabeled, duplicate, or spurious. We compute three performance metrics on the test 

data in terms of: recall, precision and F1 measure. Table 4.5 and Table 4.6 respectively 

give the detailed results of GRID and AutoSlog-TS on MUC-4 based on AutoSlog-TS 

evaluation criteria; while Table 4.7 presents the comparison between GRID and 

AutoSlog-TS. 

Slot Correct Missed Mislabeled Duplicated Spurious 
Perp. 31 26 3 15 43 
Victim 42 23 5 23 40 
Target 33 22 15 17 31 
Total 106 71 23 55 114 

                                         Table 4.5 Results of GRID on MUC-4 corpus 

Slot Correct Missed Mislabeled Duplicated Spurious 
Perp. 30 27 2 12 97 
Victim 40 25 7 19 85 
Target 32 23 17 16 58 
Total 102 75 26 47 240 

                                        Table 4.6 Results of AutoSlog-TS on MUC-4 corpus 

AutoSlog-TS GRID Slot Recall Precision F1 Recall Precision F1 
Perp. 53 30 38 54 50 52 

Victim 62 39 48 65 59 62 
Target 58 39 47 60 52 56 

Average 58 36 44 60 54 57 
                            Recall (R) = correct/(correct+missing) 
                       Prec. (P) = (correct+duplicate)/(correct+duplicate+mislabeled+spurious) 
                       F1 = 2*P*R/(P+R). 
                                 Table 4.7 Comparison between GRID and AutoSlog-TS  
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        From Table 4.7, we can see that GRID performs much better than AutoSlog-TS. 

Further analysis of the rule sets generated by both methods reveals that GRID generates 

much fewer pattern extraction rules than AutoSlog-TS. AutoSlog-TS generated 11,225 

rules and after human inspection, retained about 210 rules. In contrast, GRID generated 

only about 180 pattern rules, and no manual re-evaluation is needed to achieve superior 

performance. The results are encouraging and indicate that our global approach to rule 

induction is effective. 

    We can draw further observations on the quality of the rules generated by GRID 

system as compared to AutoSlog-TS as follows: 

(a) It was found that some pattern rules in AutoSlog-TS are combined as one rule in 

GRID via lexical chaining. For example, two patterns in AutoSlog-TS: “murder of 

<NP>” and “assassination of <NP>” are combined as one extraction pattern in which 

murder and assassination were replaced by a semantic class (synset) on killing action. 

(b) Without a ranking scheme and human intervention, GRID generates similar pattern 

rules as the 25 top-ranked rules reported in AutoSlog-TS system. For example, the 5 

top pattern rules generated by GRID for identifying “victim” are as follows (NP 

denotes “noun phrase” and VP denotes “verb phrase”): 

SemanticMurder (including “murder, killing, assassination”) of NP  NP is a victim 

NP_Person VP_Passive_Past with semantic class “kill”  NP_Person is a victim 

NP_Person VP_Passive_Past with semantic class “wound”  NP_Person is a victim 

NP_Person VP_Passive_Past with semantic class “kidnap”  NP_Person is a victim 

VP_Active_Past with semantic class “kill” NP_Person  NP_Person is a victim 
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They are similar to those found in the 25 top-ranked rules found in AutoSlog-TS. 

        Table 4.8 Comparisons of GRID with other systems on the TST3 and TST3 test sets  

Table 4.8 shows the performance of GRID on MUC-4 corpus based on MUC-4 

evaluations. The standard templates in MUC-4 are more complicated than those in 

AutoSlog systems. There are string slots, text conversion slots and set fill slots. For text 

conversion slots and set fill slots, they can be inferred from strings in the documents 

[Chieu, Ng and Lee, 2003]. All experiments of GRID are based on full parsing and the 

parameters described earlier. From Table 4.8 we can see that GRID can achieve the 

performance of the state-of-the-art machine learning system called ALICE [Chieu, Ng 

and Lee, 2003]. Furthermore, the use of domain-specific ontology (GRID+ontology) can 

further improve the performance of GRID by about 1%. Notably, the top performing 

systems listed in Table 4.8 are “GE” and “GE-CMU”. However, both systems are 

“manual” systems that involved “10½ person months” manual efforts on MUC-4 

evaluations using the GE NLTOOLSET. This is in addition to the “15 person months” 

manual efforts they spent on MUC-3 evaluations. For a fully automated learning 

TST3 Recall Precision F1 TST4 Recall Precision F1 

GE 58 54 56 GE 62 53 57 

GE-CMU 48 55 51 GE-CMU 53 53 53 

UMASS 45 56 50 GRID+ontology 46 51 48 

GRID+ontology 46 52 49 SRI 44 51 47 

GRID 45 53 49 Alice-ME 46 46 46 

Alice-ME 46 51 48 GRID 45 47 46 

SRI 43 54 48 NYU 46 46 46 
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approach, such as GRID or Alice, the resulting IE system is more portable across 

domains. 

4.7.2 Results on semi-structured text corpora 

We report the results of GRID compared to other reported systems on two publicly 

available corpora: the CMU seminar announcements and the Austin job listings [www3]. 

Based on the experiments in the last section regarding the effects of different 

performance of the four settings, we also perform similar experiments on the semi-

structured corpora. We find that the employment of full-parsing cannot improve systems’ 

performance (only about 0.1% improvement in average, see Table 4.3). Thus in this 

section, we only use shallow parsing for the documents in these semi-structured domains. 

The utilization of lexical chaining can achieve 1.5% improvement (see Table 4.4); then 

thus we employ lexical chaining on these two tasks. Finally, we find that the best 

performance can be obtained with context chunk size equal to 4 and w equal to 3. 

For these two tasks, we perform 5 trials validation experiments. In each trial, we 

randomly partition the data into two halves, using one half for training and the other half 

for testing. Our results in Table 4.9 and Table 4.10 are the average of these 5 trials. We 

use MUC-7 scorer [Douthat, 1998] to score each slot. The results of the first task in terms 

of F1 measure are summarized in Table 4.9, along with the results of other state-of-the-art 

IE systems. We extract results for ME2 and SNoW systems from [Chieu and Ng, 2002a], 

and those of the other systems from [Ciravegna, 2001]. Considering the average accuracy 

for all the slots, it can be seen that GRID outperforms other reported systems on the same 

task. In this domain, GRID performs worse on slot of <location>. The main reason is that 

the named entity recognizer we used is designed to extract the general location types,  
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 speaker location stime etime All(averaged)
GRID 85.7 76.2 99.6 96.0 89.3 
ME2 72.6 82.6 99.6 94.2 87.3 
(LP)2 77.6 75.0 99.0 95.5 86.8 

SNoW 73.8 75.2 99.6 96.3 86.2 
BWI 67.7 76.7 99.6 93.9 84.5 

HMM 76.6 78.6 98.5 62.1 79.0 
Rapier 53.0 72.7 93.4 96.2 78.8 
SRV 56.3 72.3 98.5 77.9 76.3 

Whisk 18.3 66.4 92.6 86.0 65.8 
  Table 4.9 F1 measure obtained by GRID on CMU seminars 

   slot GRID (LP)2 Rapier BWI 
Id 100 100 97.5 100 

Title 45.3 43.9 40.5 50.1 
Company 79.1 71.9 69.5 78.2 

Salary 80.7 62.8 67.4  
Recruiter 81.2 80.6 68.4  

State 90.1 84.7 90.2  
City 93.5 93.0 90.4  

Country 94.8 81.0 93.2  
Language 88.1 91.0 80.6  
Platform 78.2 80.5 72.5  

Application 76.7 78.4 69.3  
Area 65.1 66.9 42.4  

Req-yeas-e 70.2 68.8 67.1  
Des-years-e 71.1 60.4 87.5  
Req-degree 86.3 84.7 81.5  
Des-degree 73.4 65.1 72.2  
Post date 99.5 99.5 99.5  

AllSlots(averaged) 80.8 77.2 75.9  
           Table 4.10 F1 measure obtained by GRID on job listings 

such as the countries, cities etc., whereas the locations in this corpus are not in general 

location forms. Most locations refer to meeting room numbers such as “PH 223D”. Thus 

GRID misses out some of these locations. 

    The second task performs IE on 300 job announcements. The task consists of 

identifying for each job listing: message id, job title, salary offered, company offering the 

job, recruiter, state, city and country where the job is offered, programming language, 

platform, application area, required and desired years of experience, required and desired 
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degree, and posting date. The results are presented in Table 4.10. The results of other 

reported systems are taken from [Ciravegna, 2001]. As BWI [Freitag and Kushmerick, 

2000] was only tested on a very limited subset of slots, we do not compare GRID with it. 

Again, it can be shown that GRID outperforms (LP)2 and Rapier system with respect to 

the overall average F1 measure. From the experimental results on these two webpage 

corpora, we observe that the named entity identification module can improve the 

accuracy especially in slots of <speaker>, <stime>, <etime>, <salary>, <company> and 

<recruiter> since it can recognize persons, time, money and organizations. GRID 

performs worse on those slots that do not conform to general named entity types, such as 

<title>, <application>. Some specific domain knowledge can help to improve the 

precision on these types of slots. 

4.8 Discussion 

We can see that the features employed in GRID are general and effective for both the 

semi-structured corpora and free-text corpus. We believe that the excellent performance 

of GRID is mainly due to the following reasons: (a) the use of global feature distribution 

at various lexical, syntactic and semantic representations to determine the best element 

feature to start the rule induction process; (b) the introduction of semantic constraints by 

the named entity recognizer; (c) the use of chunking analysis to delimit the boundaries of 

the slots; and (d) the use of lexical chaining to perform rule generalization. This is 

demonstrated in the free text corpus in which the rules induced by GRID are more 

general and cover more cases in the test set. We believe that GRID can perform even 

better on semi-structured corpora if we have a proper domain specific named entity 
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recognizer that can identity semantics of slots such as titles, applications etc., as 

discussed earlier. 

    After observing the errors on the free-text corpus that GRID may occur, we make the 

following error analysis: (a) Some errors are accumulated from the previous basic NLP 

modules, such as PoS tagging, chunking and named entity recognition. (b) Most of errors 

are incurred due to problems in pattern rule matching because of insufficient training 

examples and the limitation of rule representation. (c) The lexical chaining and WordNet-

based rule generalization can overcome part of problem (b), but a number of errors are 

incurred in rule generalization using WordNet. For example, “kidnap” and “seize” are in 

the same synset in WordNet dictionary, thus we group “kidnap” and “seize” into one 

semantic class during the lexical chaining process. This gives rise to a rule of “NP 

VP_passive (semantic_kidnap)  NP is a victim”. When applying this rule to the 

instance of “the cocaine was seized…”, “the cocaine” will be wrongly tagged as “victim”. 

Fortunately this “false positive” error occur only in a small number of instances, and the 

error incurred is small in proportion to the effectiveness of the overall generalization by 

synset. We believe that the use of good ontology will help in this respect. (d) The other 

source of errors is attributed to the use of limited NLP understanding on free text 

document. GRID fails in cases where deep discourse understanding is needed. For 

example, in the sentence: “Mr. Pastrana said the bomb exploded outside the building of 

the secret police, known from the Spanish initials as DAS, in western Bogota at 7:35 A. 

M..”. In MUC-4 answer keys, “DAS” is “target”. However, GRID fails to identify it 

because it cannot associate “DAS” with “the secret police”. To overcome this problem, 

we need to explore discourse analysis and knowledge based method. 
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    For semi-structured and structured texts, the error analysis of (c) and (d) are not so 

crucial. The more specific named entity recognizer is needed for the seminar 

announcement documents, such as for the identification of the seminar locations. The 

other limitation is the insufficient training example from which we cannot learn enough 

pattern rules to cover all of the unseen test instances. One of the future works is that we 

might need to utilize the HTML tags to learn more structured pattern rules. 

4.9 Summary 

The ability to extract the desired pieces of information from natural language texts is an 

important task with a various number of potential applications. This chapter presents a 

global rule induction algorithm, GRID, which makes use of global feature distribution in 

the whole training examples. A major difference between GRID and other pattern rule 

learning systems is that GRID learns the rule by starting from a global optimal feature in 

current active training examples. The first rule generated by GRID thus covers the most 

number of positive training examples in current active training instances set and satisfies 

the pre-defined error tolerance. The main contribution of this research is in employing 

global information to extract high quality pattern rules. It extracts rule at the global level 

by examining the global statistics of all instances represented at the lexical, syntactic and 

semantic levels simultaneously. The features used in GRID are not specific to any 

domain. Our tests on both semi-structured corpora and free text corpus indicate that our 

approach is effective. 

    In the next Chapter, we will describe the applications of GRID in two tasks other than 

information extraction. We will then present two bootstrapping paradigms which employ 

GRID as the basic learner in Chapter 6 and 7. 
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Chapter 5 

 
Applications of GRID on Other Tasks 
 

Although GRID is originally designed for information extraction tasks, it is a general 

pattern rule learner that can be applied to other problems. In this chapter, we introduce 

two applications of GRID on tasks other than text-based information extraction. One task 

is to use GRID to learn the pattern rules for identifying the definitional sentences in 

definitional question answering. The other task is to apply GRID to story segmentation in 

news videos. 

5.1 GRID for Definitional Question Answering 

Nowadays, there are more and more new terms and personalities introduced in popular 

media everyday, such as Clay Aiken, SARS, which are of great interest to the public. 

Definitional questions, i.e. questions like “What is a taikonaut?” or “Who is Clay Aiken?”, 

have recently drawn much attention in research community [Voorhees, 2003a]. The new 

terms and personalities, though they appear in mass media, cannot be found in the 

authoritative sources of definitions, such as dictionaries or encyclopedias. We focus on 

identifying definitional sentences from new articles in this section. A definitional 

sentence contains descriptive information that can be included in an extended definition 
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of the term. Definitional sentences usually present some lexical or linguistic patterns. 

These patterns can be hand-crafted or automatically machine learned. For example, we 

can identify pattern rules such as: “Gunter Bloebel, who is known as…” as typical 

definitional sentence pattern. However, it is time-consuming to manually construct 

definitional sentence patterns which tend to result in low recall. In this section, we 

present a supervised learning approach to identifying definitional sentences using GRID. 

5.1.1 Data Preparation 

Given a group of training sentences, GRID learns local contextual patterns surrounding 

the given search term. We do not handle long-distance dependencies, as our observations 

show that definition sentences are identified mainly by adjacent words and punctuations. 

The process of generating pattern instances is presented in Figure 5.1. The labeled 

definition sentences are first processed with Part-of-Speech (PoS) tagging and chunking 

by a natural language tagger and chunker, NLProcessor, which we use in Section 4.1. We 

then perform selective substitution of certain lexical items by their syntactic classes in 

order to generate representative patterns. The substitution attempts to replace words that 

are specifically related to the search term with more general tags so that the patterns can 

be applied to other sentences. The substitution rules that we use and some examples are 

listed in Table 5.1. 

    In Table 5.1, centroid words are those words that are highly correlated to the search 

term, as judged by mutual information. We adopt a local centrality metric of words with 

respect to the search term based on their co-occurrences with the search term within 

sentences. The rationale is that the search terms tend to appear with their descriptive 
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sentences within news articles. As a news article usually describes multiple terms and 

persons, descriptive sentences are likely to repeat a term rather than using other forms of  

 

 

 

 

 

 

                                 Figure 5.1 Illustration of generating pattern instances 

 

                   Token Substitution Examples (from the 
example sentence in this 

section) 
Any part of the 
search term 

<SCH_TERM> “Iqra”  <SCH_TERM> 

Centroid Words:  
(Topical words 
related to the search 
term) 

Corresponding 
syntactic 
classes 

“channel”  NN 

Noun phrases by 
chunking 

NP “Arab Radio and Television company” 
 NP 

Adjectival and 
adverbial modifiers 

To be deleted   

is, am, are, was, 
were 

BE$ is  BE$ 

a, an, the DT$ “the”  DT$ 
(all numeric values) CD$  
All other words and 
punctuations 

no substitution “Owned”, “by”, “of”, etc. 
are unchanged. 

 
                Table 5.1 Substitution heuristics for definitional question answering 

1) Definition sentences (bold terms are search terms) 
   …… galaxies, quasars, the brightest lights in distant universe …… 
   …… according to Nostradamms, a 16th century French apothecary ……. 
   …… severance package, known as golden parachutes, included …… 
   …… A battery is a cell which can provide electricity. 
   …… 
2) Reduced pattern instances (capitalized tags are chunks and syntactic classes): 
   NN, <Search_Term>, DT$ NN 
   according to <Search_Term>, DT$ NNP 
   known as <Search_Term>, VB 
   <Search_Term> BE$ DT$ 
   …… 
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reference. Our sentences also have been processed by an anaphora resolution module as 

in Section 4.1. As such, co-occurrence based metric is able to capture the local 

importance of words to the search terms without losing recall. 

     The co-occurrences of words can be measured by using the metrics described in [Lin 

and Hovy, 2000], which constructs topic signatures for document summarization. We 

employ mutual information as the measurement of co-occurrences for simplicity. All the 

words, after removing stop words, are stemmed before calculating their centrality. The 

equation for calculating the centrality Centralitysch_term(wi) of a word wi is as follows: 

)(
)1)_(log()1)(log(

)1)_,(log()(_ i
i

i
itermsch widf

termschsfwsf
termschwCowCentrality ×

+++
+

=                           (5.1) 

 
where Co(wi, sch_term) denotes the number of sentences where wi co-occurs with the 

search term sch_term; and sf(wi) gives the number of sentences containing the word wi. 

We also use the inverted document frequency of wi, idf(wi), as a measurement of its 

global importance4. Centrality scores for all words appearing in the input sentences are 

calculated and those words whose scores exceed the average plus a standard deviation 

form a set of centroid words. 

    The scheme of substitution by general information such as PoS and syntactic classes 

helps to capture obscure patterns. To demonstrate this, we present an example of a 

definition pattern that is not likely to be covered by previous work. The example does not 

describe a direct definition but indicates some important properties of the search term, 

which should be included in its extended definition. Given a definition sentence for 

“Iqra”: 

                                                 
4 We use the statistics from Web Term Document Frequency and Rank site 
(http://elib.cs.berkeley.edu/docfreq/) to approximate words’ IDF.  
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    The channel Iqra is owned by the Arab Radio and Television company and is the brainchild of 

the Saudi millionaire, Saleh Kamel.  

    After substitution, the sentence is transformed into a token sequence comprising 

syntactic tags, words and punctuations as follows: 

           DT$ NN <SCH_TERM> BE$ owned by DT$ NP and BE$ DT$ brainchild of NP. 

    In order to generate general patterns, we need to consider the “context” around the 

<SCH_TERM>. The context is modeled as a window centered on <SCH_TERM> 

according to the pre-defined window size w, i.e. the number of slots (or tokens) on both 

sides of <SCH_TERM>. Thus we get fragments of size 2w+1 including the search term. 

We refer to such fragments as pattern instances on which the general GRID-learned 

pattern rules are to be generated. For example, the pattern instance from the above 

sentence is (w=3): 

          DT$ NN <SCH_TERM> BE$ owned by 

    Accumulating all the pattern instances extracted from the training definitional 

sentences and aligning them according to the positions of <SCH_TERM> (as shown in 

Figure 5.2), we can easily apply GRID algorithm to them and generate pattern rules 

automatically. 

inst1: Slot-w, Slot-w+1, …, Slot-j, …, Slot-1, <SCH_TERM>, Slot1, …,  Slotj, …, Slotw-1, Slotw 
inst2: Slot-w, Slot-w+1, …, Slot-j, …, Slot-1, <SCH_TERM>, Slot1, …,  Slotj, …, Slotw-1, Slotw 
inst3: Slot-w, Slot-w+1, …, Slot-j, …, Slot-1, <SCH_TERM>, Slot1, …,  Slotj, …, Slotw-1, Slotw 
….    …     …      …   …   …   …           ……             …    …    …   …   …     … 
….    …     …      …   …   …   …           ……             …    …    …   …   …     … 
instn: Slot-w, Slot-w+1, …, Slot-j, …, Slot-1, <SCH_TERM>, Slot1, …,  Slotj, …, Slotw-1, Slotw 
 

                  Figure 5.2 Global distribution of positive training pattern instances 

e-w e-w+1 e-j e-1 e1 ej ew-1 ew
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5.1.2 Experimental Results 

    In order to evaluate the effectiveness of GRID in learning pattern rules for definitional 

question answering problem, we use the community standard TREC-12 definitional QA 

data set [Voorhees, 2003b]. This “TREC corpus” or the TREC QA corpus5, consists of 

over one million news articles. A total of 50 definitional questions, along with answers in 

the form of answer nuggets, are provided with the corpus. Among the questions, there are 

30 questions about people, 10 about organizations and 10 about other terms. 

    In order to provide additional training data for rule generation outside of TREC corpus, 

an auxiliary corpus of web documents are collected based on questions from Lycos. This 

“Lycos corpus” comprises 26 questions on people and other terms most frequently 

searched for in Lycos (http://50.lycos.com). For each question, we use Google’s site 

search to get up to 200 news articles from each eight prominent news sites (e.g. CNN and 

BBC). The text body of each news page, embedded between HTML paragraph tags, is 

extracted. We asked seven subjects to label all definition sentences. The labeled 

sentences are processed into 596 positive and 15,442 negative training instances. We 

used these labeled training instances to learn pattern rules using GRID. 

    In order to get comparable evaluation results, we adopt the same evaluation metrics as 

used in the TREC-12 task. For each question, TREC gives a list of essential nuggets and 

acceptable nuggets for answering this question. An individual definition question is 

scored using nugget recall (NR) and an approximation to nugget precision (NP) based on 

length. These scores are combined using the F5 (β=5) measure, where recall is five times 

as important as precision. 

                                                 
5 The AQUAINT Corpus of English News Text. 
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2002T31 
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    For convenience of comparison, we use a set of hand-crafted pattern rules (listed in 

Table 5.2) as our baseline. These rules were employed in [Yang, et. al., 2003], a system 

which tied for second place in the TREC-12 definitional QA task. The hand-crafted 

pattern rules are quite exhaustive which took one person several months of reading the 

news articles and refining the pattern rules. Table 5.3 shows the performance comparison 

between GRID-learned pattern rules and the hand-crafted rules. We can see an 

improvement of 6.56% in the F5 measure over the hand-crafted rules when using GRID-

generated pattern rules. 

ID Regular expressions of rules 

1 <SCH_TERM> ( who | which | that )* ( is | are) (called | known as )* 

2 <SCH_TERM> , ( a | an | the ) 

3 <SCH_TERM> ( is | are ) ( a | an | the ) 

4 <SCH_TERM> , or 

5 <SCH_TERM> ( - | : ) 

6 <SCH_TERM> ( is | are ) ( used to | referred to | employed to | defined as | described as ) 

7 “ (.+) ” by <SCH_TERM> 

8 ( called | known as | referred to ) <SCH_TERM> 

Legend: 
|: Any one of the elements within the round brackets. *: Optional field. (.+): Any characters. 
                           Table 5.2 List of hand-crafted rules for TREC12 

Use of Patterns NR NP F5 measure (% improvement) 

Baseline (hand-crafted rules) 0.5100 0.1953 0.4669 

GRID-learned rules 0.5361 0.2216 0.4975 (+6.56%) 

                                      Table 5.3 Comparison of definition patterns 
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    From the experimental results, we observe that GRID can capture most typical pattern 

rules for definitional sentences. For instance, the rule “<SCH_TERM>, DT NN” 

generated by GRID can match the sentence “Goth, a subculture ……”. Figure 5.3 shows 

an excerpt of the learned rules for definitional sentences identification by GRID. 

    Since definition sentences exhibit more syntactic flexibility that is difficult to capture 

by a “strict” matching scheme such as GRID, we do not obtain the best performance in 

definitional question answering task. [Cui, Kan and Chua, 2004] presents a novel soft 

matching pattern learner which achieves better performance than GRID. 

 

 

 

 

 Figure 5.3 Sample rules generated by GRID for definitional sentences idenfication 

5.2 GRID for Video Story Segmentation Task 

The ever-increasing amount of broadcast news video from the internet requires people to 

manage the video effectively. One effective way to organize video is to segment it into 

small, single-story units and classify these units according to their semantics. In this 

section, we introduce the application of GRID learning to the story segmentation of new 

videos. 

5.2.1 Two-level Framework 

Our experiment is based on the multi-modal two-level news story segmentation 

framework as presented in [Chaisorn, et.al. 2004]. The hierarchical structure for our story 

<SCH_TERM> , DT NN 
<SCH_TERM> , DT NNP 
<SCH_TERM> , who won 

<SCH_TERM> , (known | listed) as 
who BE <SCH_TERM> ’s 
<SCH_TERM> BE DT NN 
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segmentation scheme is in Figure 5.4. The two levels are: shot classification level and 

story segmentation level. The basic unit of analysis is the shot, and we model each shot 

using a combination of high-level object-based features, temporal features and low-level 

visual features. At the shot level, we employ a decision tree to classify the shots into the 

pre-defined shot types. At the story level, we use GRID to detect story boundaries using 

the shot genre information, as well as time-dependent features based on scene change and 

cue-phrases. 

 

 

 

 

 

                                          Figure 5.4 Overall system components 

5.2.2 The News Video Model and Shot Classification 

The details of slot classification and story segmentation can be found in [Chaisorn, et. al., 

2004]. Here we summarize the approach. We aim to propose an appropriate model for 

new video, and to determine the complete set of categories to cover all shot types. The 

categories must be meaningful so that the category tag assigned to each shot is reflective 

of its content and facilitates the subsequent stage of segmenting story units. To achieve 

this, we use the class taxonomy of TV Any-Time mode as the guide. We arrive at the 

following set of 12 shot categories: Intro/Highlight, Anchor, 2Anchor, Meeting/Gathering, 

Speech/Interview, Live-reporting, Sports, Text-scene, Special, Finance, Weather, and 

Shot Detection & 
Feature Extraction 

Decision-tree based 
Shot Tagging 

GRID-based Story 
Segmentation 

Input news video 

Shot 
Tags 

Story Units
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Commercial. In addition to these categories, we introduce five additional categories 

which are: “LEDS”: to represent lead-in/out shots; “TOP”: to model top story logo shots; 

“SPORT”: to capture sport logo shots; “PLAY”: to represent play of the day logo shots; 

and “HEALTH”: to model health logo shots. Thus, the total number of shot categories is 

17 which cover all essential types of shots in this collection. Some categories are quite 

specific such as the Anchor or Speech categories. Others are more general like Sports or 

Live-reporting categories. Each shot category is represented by unique Tag_ID (1, 2, …, 

17). 

    News is a rather structured media with regular structures. It consists of a wide variety 

of shot types arranged in a well-defined sequence designed to convey the information 

clearly to a wide variety of audiences. Certain shot types like commercials, studio anchor 

person, finance and weather shots etc., have well-defined and rather fixed temporal-visual 

characteristics. They can best be detected using specific detectors. Thus we perform the 

classification for the 17 shot categories using a range of techniques. Specifically, we first 

classify the commercial, anchor/2anchor shots, visual-based shots; and for the rest of 

shots, we employ a decision-tree based learning method to classify them. The details of 

the shot classification are as following: 

(a) Commercial Detection: Commercial blocks and individual commercials are usually 

preceded and ended with a sequence of black frames and audio silence. Also, the 

ASR (Automatic Speech Recognition) recognition rate during the commercials is 

usually low, as there is more background music/noise. Hence, commercials tend not 

to have any recognized ASR outputs. The process of commercials detection is 

therefore accomplished in the following two steps: (i) black frames detection using 
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color histogram; and (ii) commercials block detection using clustering technique 

based on a combination of black frames, silence and low ASR confidence level. 

(b) Anchor/2Anchor Shot Detection:  For most news video, we observe that anchor 

persons always appear in three different positions, i.e. left, center, or right position. 

Thus, in order to eliminate those shots with face detected but are unlikely to be 

Anchor shots, we use the number of faces detected, their sizes and positions to 

identify the Anchor and 2Anchor shots. 

(c) Visual-based Shot Detection: Visual-based shots are the shots that have distinct visual 

characteristics depending on their program categories and broadcast stations. They 

are regularly aired in certain time slots within the broadcast news. Examples of these 

visual-based shot categories are: “Finance”, “Weather”, LEDS, “health” logo, 

“SPORT” logo, and “TOP” (Top stories) logo. We use the 176-Luv-color-histogram 

as the feature, and employ image matching and video sequencing techniques 

developed in our lab to perform the detection. 

(d) Rule-based Shots Detector using Decision Tree: The remaining shots are classified 

using Decision Tree. The feature vector used for each shot is of the form: 

                                        ),,,,,,( ctsfdmaSi =                                                           (5.2) 

      where a is the class of audio, a∈ {t = speech, m = music, s = silence, n = noise, tn = 

speech + noise, tm = speech + music, mn = music + noise}; m is the motion activity 

level, m ∈ {l = low, m = medium, h = high}; d is the shot duration, d ∈ {s = short, m 

= medium, l = long}; f is the number of faces, f ≥ 0; s is the shot type, s ∈ {c = 
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closed-up, m = medium, l = long, u = unknown}; t is the number of faces, t ≥ 0; and c 

is set to “true” if the videotexts present are centralized, c ∈ {t = true, f = false}. 

5.2.3 Story Segmentation 

After the shot classification, we perform story segmentation based on the combination of 

video, audio and ASR features. For each shot, we use 3 features to model it. The 3 

features are as following: 

(i) Shot categories: As we discussed earlier, we defined 17 shot categories to cover all 

type of news video. The value of this feature would be the Tag_ID of the shot (1, 

2, …, 17). 

(ii) Scene change: This feature indicates whether there is a change of scene between the 

previous and current shots. We represent with “c” for a change and “u” otherwise. 

(iii) Cue-phrase: From the ASR results of the speech track in videos; we analyzed the 

statistics of cue-phrases that typically appear at the beginning of news stories (Begin-

Cue). For each shot, we represent Begin-Cue as 1 (for presence of Begin-Cue) or 0 

otherwise. An example of Begin-Cue is “good evening I’m <person_name>”. An 

example of Misc-Cue is “when we come back”. 

   We summarize the input features to GRID as listed in Table 5.4. We use left two and 

right two shots as the context information for GRID. Each shot has 3 features as listed in 

Table 5.4. We collect the video shots which there are story boundaries as GRID’s 

positive training instances. The video shots which there are not story boundaries are used 

as negative instances. We align the positive instances according to the story boundaries 

positions (STORY_BD) as presented in Figure 5.5. 
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Feature Description Possible Values 

fg
1 Shot categories (Tag_ID) 1, 2, 3, …, 17 

fg
2 Scene change “c” or “u” 

fg
3 Cue-phrase “1” or “0” 

 
        Table 5.4 Features used in GRID for video story segmentation 

 

 

 

 

 

 

             Figure 5.5 Feature distribution in video story segmentation 

5.2.4 Experimental Result 

We test GRID’s application on story segmentation task using the TRECVID 2003 [www5] 

corpus. The training and test data are CNN and ABC news video of year 1998. 

Altogether, there are about 120 hours. About 60 hours of the videos is used for training, 

and the rest for testing. The shot classification is tested on a subset of development set 

(~12 hours of video). The average performance of shot classification in terms of F1 value 

is 92.95 [Chaisorn, et.al., 2004]. The result of the story segmentation is presented in 

Table 5.5. From Table 5.5, we can see that GRID performs comparably with the top 

ranked system which is implemented by NUS in TRECVID 2003 segmentation task 

Legend: g is the context position as in Section 4.3. 
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which can achieve 77.5% F1-measure [Chua, et.al. 2003]. Figure 5.6 shows an excerpt of 

GRID rules for video story segmentation task. 

News video Precision Recall F1 

ABC 71.95 84.51 77.72 

CNN 76.76 68.47 72.38 

Average 74.36 76.49 75.05 

    Table 5.5 Results of GRID application on video story segmentation 

 

 

 

 

      Figure 5.6 An excerpt of GRID rules for video story segmentation 

    Observing the learned pattern rules by GRID in TRECVID 2003 task, we find that 

GRID can obtain many rules that humans can summarize through watching videos. For 

example, usually there is a story segmentation between two weather reports; GRID can 

learn a pattern rule of “LEDS <story_boundary> sport” which means if the previous shot 

is lead in/out shot and the following shot is a sport logo shot, then between these two 

shots, there is a story boundary. Different from the training examples for information 

extraction, in video story segmentation experiments, we find that there are many common 

patterns which appear both in positive training examples and negative training examples. 

GRID misses some of useful patterns which occur many times in negative training 

examples (too many times in negative examples will result in high Laplacian value, thus 

it is not a good pattern for GRID). Further research can be done to modify GRID to make 

<story_boundary> ANCHOR 
<story_boundary> 2ANCHOR 

LEDS <story_boundary> SPORT 
ADV <story_boundary> LEDS 

LEDS <story_boundary> ANCHOR 2ANCHOR
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it more appropriate for video story segmentation task, for example, use another suitable 

measurement for evaluating rules instead of Laplacian metric. 

5.3 Summary 

In this Chapter, we applied GRID as a general learner to definitional question answering 

problem and video story segmentation task. In both tasks, GRID achieved good 

performance and we believe that GRID can be employed as a general classification 

learner in other fields. In the following two Chapters, we will extend GRID from 

supervised learning paradigm to two weakly supervised paradigms to alleviate the human 

labor of annotation. 
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Chapter 6 

 
Bootstrapping GRID with Co-Training and 
Active Learning 
 

In Chapter 4, we introduced the supervised rule induction algorithm GRID for 

information extraction and presented its applications on tasks other than information 

extraction in Chapter 5. As supervised learning requires a large amount of manually 

annotated training data which are usually expensive to obtain, weakly supervised learning 

has drawn much attention in the IE community in recent years. In this Chapter, we 

present GRID_CoTrain, a weakly supervised paradigm by bootstrapping GRID with co-

training and active learning. We also utilize external knowledge resource such as 

WordNet and existing ontology knowledge to optimize the learned pattern rules. 

6.1 Introduction 

As we discussed earlier, the mentioned IE systems such as GRID, WHISK and (LP)2 are 

all supervised learning systems. Since it is time-consuming and error prone to manually 

annotate training data for supervised systems, there are many research efforts in recent 

years that focus on bootstrapping an IE system using a small set of annotated data and 
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plentiful un-annotated data to implement weakly supervised learning [Xiao, et. al. 2002; 

Agichtein and Gravano, 2000; Collins and Singer, 1999; Blum and Mitchell, 1998]. Co-

training is one such bootstrapping strategy. Co-training begins with a small number of 

labeled data and a large number of unlabelled data. It trains more than one classifier from 

the labeled data, uses the classifiers to label some unlabelled data, trains again the new 

classifiers from all the labeled data, and repeats the above process. Co-training with 

multiple views learners reduce the need for labeled data by exploiting disjoint subsets of 

features (views) such as contextual and content views, each of which is sufficient for 

learning. Initial studies of co-training focused on the applicability of co-training on 

clarifying the assumptions needed to ensure its effectiveness. Blum and Mitchell (1998) 

presented a PAC-style analysis of co-training and made two important conclusions: first, 

each view of the data should itself be sufficient for learning the classification task; and 

second, the views should be conditionally independent of each other. More formally, 

given that X is the training feature set and Y is the classification, we assume that X=X1×X2, 

where there exist functions g1: X1  Y and g2: X2 Y such that f(X) = g1(X1) = g2(X2) for 

all X=X1|X2. In the real world domain, this ideal assumption is not fully satisfied as there 

are some ambiguities in the classes of noun phrases [Jones, et al. 2003]. For example, the 

noun phrase “Columbia” could be a “location” (in the context of “headquartered in 

Columbia”) or an “organization” (in the context of “Columbia published …”). Although 

the tight constraints are not fully satisfied in most information extraction tasks, Nigam 

and Ghani [2000] found that co-training with separate feature sets still performed better 

than the ones which do not split the feature sets. [Jones, et al. 2003] showed that 
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combination of active learning and bootstrapping (using CoEM algorithm) made the 

information extractor robust although the ambiguities of noun phrase classes exist.  

    One of the problems when applying co-training algorithms for natural learning from 

large datasets is the scalability problem. Degradation in the quality of the bootstrapped 

data arises as an obstacle to further improvement [Pierce and Cardie, 2001] in the 

learning process. In this Chapter, we combine co-training with active learning to 

overcome this problem. Active learning methods attempt to select only the most 

informative examples for annotation and training and therefore are potentially very useful 

in natural language applications. In the experiments, we include a human to annotate 

some instances after every few iterations in an active learning framework. We investigate 

several active learning strategies in the co-training model to determine which instances 

should be annotated by the human. The strategies considered include: uniform random 

selection, density selection, committee-based sampling and confidence-based sampling. 

    On the other hand, during the course of bootstrapping, the quality of the learned pattern 

rules is crucial for the effectiveness of the final learner. One of the major issues in 

learning rules concerns the tradeoff between specific, unambiguous extraction rules and 

the need for general rules that can be applied widely. While the concept hierarchy defined 

in WordNet is too general, specific domain knowledge is useful for better rule 

generalization. We need an effective rule generalization strategy using existing domain 

ontology knowledge in learning of the pattern rules from a small set of labeled instances. 

Another issue is that the errors incurred by the learned rules in the earlier iterations will 

be accumulated in the later iterations. Existing ontology knowledge may also help us to 

verify the correctness of some of the automatically learned rules. 
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    In this Chapter, we describe a bootstrapping pattern rule-based IE system, called 

GRID-CoTrain, which co-trains the context and content views with active learning using 

an existing pattern rule learner GRID. In Section 6.2, we describe some related research 

of bootstrapping for IE tasks. Section 6.3 describes the bootstrapping algorithm in detail. 

In Section 6.4, the strategies of rule optimization using the general WordNet lexicon plus 

the domain ontology knowledge base is described. Section 6.5 presents our experimental 

results on the terrorism domain. Finally, we conclude this Chapter in Section 6.6. 

6.2 Related Bootstrapping Systems for IE Tasks 

In recent years, many researchers have used bootstrapping technology for various 

information extraction tasks. The Snowball system [Agichtein and Gravano, 2000] 

introduces the strategies for generating patterns and extracting tuples from plain-text 

documents that require only a handful of training examples from users. They use a simple 

relation which is “organization-location” (where is the organization located) for 

evaluation. Multi-level bootstrapping is used in [Riloff and Jones, 1999] for generating 

both the semantic lexicon and extraction patterns simultaneously. To alleviate the 

deterioration in performance due to non-category words entering the semantic lexicon, 

the outer bootstrapping mechanism compiles the results from the inner bootstrapping 

process and identifies the most reliable lexicon entries. As input, it requires only un-

annotated training texts and a handful of seed words for a category. [Collins and Singer, 

1999] described two bootstrapping algorithms, DL_CoTrain (DL stands for decision list) 

and AdaBoost for named entity classification. In [Pierce and Cardie, 2001], the authors 

pointed out that there are some limitations to co-training for natural language learning 

from large datasets. They proposed a “corrected co-training” to solve the scalability 
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problem during the course of bootstrapping and suggested the combination of weakly 

supervised learning (such as co-training) with active learning. [Muslea, et al. 2003] 

described an active learning model with a strong view and a weak view, Aggressive Co-

Testing, for wrapper induction. A strong view consists of features that are adequate for 

learning the target concept (such as contextual view); in contrast, in a weak view, one can 

only learn a concept that is more general or specific than the target concept (such as the 

content view). Take for an example, to extract the telephone number from a webpage, a 

strong view rule could be “* Phone: (number)” which indicates “skip any token until 

“phone” appears followed by numbers”. This strong view rule is sufficient to extract the 

telephone numbers from structured web pages. A weak view rule, such as “(number) – 

number number”, is not sufficient to identify whether it’s a fax number or a telephone 

number. Aggressive Co-Testing exploits both strong and weak views and uses the weak 

views both for detecting the most informative examples in the domain and for improving 

the accuracy of the predictions. [Yangarber, 2003] introduced competition among several 

scenarios simultaneously. This provides natural stopping criteria for the unsupervised 

learners, while maintaining good precision levels at termination.  

    In GRID_CoTrain, we plan to combine co-training with active learning. Co-training is 

performed by training content rules and contextual rules. After several iterations, a 

human being is in charge of labeling several instances that are selected by several active 

learning strategies. We will investigate the performances of various sampling selection 

methods in the experimental evaluation section. 
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6.3 Pattern Rule Generalization and Optimization 

Usually, in IE systems, the pattern rules need to be generalized to cover more unseen 

instances and to be specialized to remove false extractions by too general rules. [Kim and 

Moldovan, 1995] introduced a generalization and specialization strategy through a pre-

defined concept hierarchy tree. Other IE systems such as WHISK [Soderland, 1999] and 

CRYSTAL [Soderland, et. al., 1995] used pre-defined semantic classes to generalize 

pattern rules. In [Chai and Biermann, 1997], the authors proposed a corpus based 

statistical generalization tree model in rule optimization. The rule optimization was 

implemented by the generalized noun entities in WordNet. The degree of generalization 

is adjusted to fit the user’s needs by the use of statistical generalization tree model. As the 

conceptual definition in WordNet is domain independent and generic, we utilize the 

synset in WordNet for rule generalization. In addition, we deploy a specific existing 

domain dependent ontology for better rule generalization. We use MUC-4 corpus as our 

evaluation corpus and utilize existing ontology knowledge on terrorism from 

Teknowledge Company [www1] as the conceptual hierarchy thesaurus. 

6.4 Bootstrapping Algorithm GRID_CoTrain 

We use GRID as the base learner in the bootstrapping scheme. The bootstrapping scheme 

is co-trained by two views, one is the content view and the other is the contextual view. 

6.4.1 Bootstrapping GRID Using Co-training with Two Views 

Co-training with multiple views is a weakly supervised paradigm for learning a 

classification task from a small set of labeled data and a large set of unlabeled data, using 

separate, but redundant, views of the data. The main task of information extraction is to 
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extract specific semantic entities from the text documents and to determine their 

relationship in filling in a template. The extraction of semantic entities requires the use of 

context, which can be expressed in the general form as: 

                <c-k>…<c-2><c-1> <c0> (sem_entity) <c＋1><c＋2>…<c＋k>                           (6.1) 

where <ci> {i = -k to +k; i≠0} refers to the context token at position i of the semantic 

entity, and k is the number of context tokens considered. <c0> represents the central 

semantic entity itself. 

    In this Chapter, we consider the <c0> (sem_entity) as the content view X1; the left and 

right context information (i.e. <ci> {i = -k to +k; i≠0}) are considered as contextual view 

X2. Figure 6.1 indicates the basic procedure of GRID-CoTrain with two views. 

Given instance space: X 
    Distribution D over X:  m

ii iyxD 1)},{( ==  ; Y is the classifications. 
    X = X1 × X2 (two views: content view X1 and contextual view X2) 
    GRID (G) is the base learner; 
    Apply G to the two views, X1(G), X2(G) to create two classifiers: g1 , g2; 
    Combine co-training (two classifiers g1 and g2) with active learning 
      to get mapping F: X  Y 

 
                                Figure 6.1 Overall paradigm of GRID-CoTrain 

    We present the detailed algorithm of GRID_CoTrain as following: 

(a) Initialization: We define two pools in this algorithm. One is lexicon pool which 

contains list of words/phrases for content view for each category. The other is pattern 

pool which contains list of patterns for contextual view derived so far for different 

category. 

      Initially, we set the lexicon pool to the set of user selected seed words for each 

category. The initial set of content rules equal to the set of “seed” words for each type. 

For example, “FMLN” is one of the seed words for the category of “perpetrator” in 
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the MUC-4 corpus. The corresponding content rule is “full string = FMLN  FMLN 

is a perpetrator”. The pattern pool is initially set to null. 

(b) Label the training set using the current set of content rules. Instances where no rule 

can be applied are left unlabeled. 

(c) Use the labeled examples to induce the pattern rules by employing the GRID 

algorithm. In the weakly supervised learning model of GRID_CoTrain, we do not 

have enough positive and negative examples to evaluate the pattern rules in which it is 

different from what we do in the supervised model of GRID. Instead of using the 

Laplacian measure in the supervised version, we use an RlogF metric [Riloff and 

Jones, 1999] to score each pattern rule. The score for each pattern is computed as: 

            )(log)(log 2 i
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FpatternFR ∗=                                                                (6.2) 

     where Fi is the number of category members extracted by patterni and Ni is the total  

     number of noun phrases extracted by patterni. 

    We select the top n=3 extraction patterns for each category and put them in the pattern 

pool accordingly. Intuitively, the RlogF measure is a weighted conditional probability; 

a pattern receives a high score if a high percentage of its extractions are category 

members. 

(d) Label the training set using the current set of pattern rules in the pattern pools for each 

category. Examples where no rule applies are left unlabeled. For each extracted noun 

phrase or word, we use the average logarithm metric used in [Thelen and Riloff, 2002] 

to score it. The score for each phrase or word is computed as: 
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     where Pi is the number of patterns that extract phrasei and Fj is the number of distinct 

category members extracted by patternj.  

     We select the top 3 phrases or words for each category and put them in the lexicon 

pool accordingly. Generate the content rules for the noun phrases or words added to 

the lexicon pools as in step (a). Set the content rules to be the seed set plus the words 

or the noun phrases added to the lexicon pools and go to step (b). The algorithm can 

be stopped when it runs a fixed number of iterations or when there is no new entries 

added to the lexicon pools and pattern pools. 

6.4.2 Active Learning Strategies in GRID_CoTrain 

As discussed in Section 6.1, one problem in co-training paradigm is the degradation in 

quality of automatically bootstrapped data which presents an obstacle to further 

improvement in performance. In GRID_CoTrain, we combine the active learning 

strategies with co-training to tackle this problem. Active learning is to determine which 

unlabeled instances to label next in order to maximize the learning objective with least 

labeling effort. We restrict our study to selective sampling of active learning here. 

Sample frequency is usually used in selective sampling strategies. Given a training 

example of “<c-k>…<c-2><c-1> <c0> (sem_entity) <c＋1><c＋2>…<c＋k>”, we consider the 

frequency of the <c0> (sem_entity) as our criteria for selective sampling. Some 

researchers used the frequency of occurrences of context information as the criteria for 

selective sampling [Jones, et. al., 2003]. We investigate several active learning strategies 

for GRID-CoTrain.  

    The active learning strategies we investigate are as following: 

(a) Uniform random selection: It selects the <sem_entity> that appear in the training 
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examples at least once randomly with equal probability. The actual sample frequency 

is ignored. This sampling selection could be considered as baseline among the various 

strategies. 

(b) Density selection: This sampling selection considers the actual sample frequency. The 

most frequent <sem_entity> in the unlabeled examples set is selected for annotation 

first. This method is based on the assumption that labeling frequent occurring samples 

would be beneficial for the learner. 

(c) Certainty-based selection [Lewis and Catlett, 1994]: This sampling selection selects      

samples with lowest certainties and presents them to the user for annotation. We      

use the Equation (6.3) as the certainty metric. 

(d) Committee-based selection [Freund et al. 1997]: In this paradigm, we regard the 

committee-based sampling as feature set disagreement. Since we learn two       

classifiers based on content view and context view, one way is to select samples 

where       a human can provide useful information to identify samples where these 

two      classifiers disagree. If there are such instances, we present them to the human       

annotator. 

    We trust the classification of the samples annotated by the human annotator. So the 

samples that are labeled by the human are considered as correctly labeled training 

samples and the tagged noun phrases are put into their according lexicon pools. The 

labeled samples are put into the labeled training pool for the base learner in the later 

iterations. In Section 6.6, we will present the performances of different active learning 

strategies in the terrorism domain. In our study, after every 5 iterations, we ask a human 

user to annotate up to 20 samples selected by the active learning strategies. 
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6.5 Rule Generalization Using External Knowledge 

At the end of every 10 iterations in the course of bootstrapping, we utilize some rule 

optimization strategies such as rule generalization. We employ two levels of rule 

generalization strategies to improve information extraction performance. One is based on 

the general lexical knowledge base WordNet. The other is the domain specific ontology 

knowledge for fine-grained rule generalization. 

6.5.1 Rule Generalization Using WordNet 

As discussed in Chapter 4, at the end of the rule induction learning, we extract a set of 

satisfied pattern extraction rules. In general, the rule set obtained is not optimal as it did 

not consider the lexical and semantic relationships between features used in different 

rules. For example, for the <victim> slot in the terrorism attack domain, we may generate 

similar rules but with one different slot element, such as the “murder of <victim>” and 

“assassination of <victim>”. As these rules share similar semantic meaning, they should 

be merged into a more general rule where the root noun is of the semantic class {murder, 

assassination}. The generalized rule’s score is re-computed according to Equation (6.2). 

    To achieve this, we aim to perform lexical chaining on those rules that contain feature 

representations of verb phrases or noun phrases. We employ a lexical chaining algorithm 

as described in Chapter 4 (Section 4.4) to determine if the root verbs or head nouns can 

be replaced by their semantic groups. The process uses synsets in WordNet along with 

corpus statistics to find the common semantic group of different lexical tokens. At the 

end of lexical chaining process, we obtain a set of semantic groups, each containing a 

cluster of related words. These semantic groups are used as the basis to generalize some 

features related to nouns and verbs.  
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6.5.2 Fine-grained Rule Generalization Using Specific Ontology 

Knowledge 

Similar to the rule generalization using specific ontology knowledge as discussed in 

Section 4.5, we use the same terrorism ontology knowledge [www1] as the source for 

fine-grained rule generalization for GRID_CoTrain. For example, class “building” has 

several sub-classes such as “Garage”, “Hotel”, “Store” etc. in the ontology knowledge 

dictionary (refer to Figure 4.3). We may utilize these class hierarchies to generalize our 

pattern rules in content view. For example, if we have “grocery store” as “target” in the 

content view, we can expand it to all of the sub-classes of “Building” based on definition 

in Figure 4.3. In this way, we can extract more relevant and useful sample during the 

bootstrapping process. 

6.6 Experimental Evaluation 

To evaluate the active learning and rule generalization strategies in GRID_CoTrain, we 

perform experiments on terrorism news articles from the MUC-4 corpus [MUC-4 

Proceedings, 1992]. For training, we use the training corpus and the TST1 and TST2 

documents.  Altogether, there are 1500 documents of the terrorism texts of which 50% 

are relevant to terrorism attacks. The TST3 and TST4 documents are used for testing the 

learned rules. We compare our bootstrapping algorithm of GRID_CoTrain with the 

supervised results of GRID in Chapter 4. We run the two algorithms on three semantic 

categories (perpetrator, victim, and target). The seed word lists use for the bootstrapping 

experiments are presented in Figure 6.4. 
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                         Figure 6.4 Seed word list for bootstrapping 

    First, we evaluate the different active learning strategies discussed in Section 6.4.2. We 

score the results the same as we did in AutoSlog-TS and Section 4.6.1.5 in which each 

extracted item is assigned to one of the five categories of: correct, missed, mislabeled, 

duplicate, or spurious. We compute the F1-measure as following: 

    Recall(R) = correct / (correct + missing) 

    Precision (P) = (correct + duplicate) / (correct + duplicate + mislabeled + spurious) 

    F1 = 2 × P × R / (P + R) 

    We run GRID_CoTrain algorithm 100 times and ask a human to annotate up to 20 

samples manually after every 5 iterations where the samples are selected using different 

strategies of active learning. The learned rule sets are re-evaluated every 10 iterations. 

Figures 6.5, 6.6 and 6.7 show the F1 value of the three concept slots for GRID_CoTrain 

based on different active learning strategies respectively. All of the results are obtained 

after rule generalization by WordNet plus domain ontology knowledge.  

    From the Figures we can draw the following conclusions: 

(a) Bootstrapping with co-training by content view and context view without active 

learning performs well in the first 50 iterations. However, as the automatically 

annotated samples become larger, the performance decreases. This is partly due to the 

errors accumulated by automatically labeled samples. 

Perpetrator: fmln, armed forces, shining path, armed men, eln, guerrilla 
Victim: peasants, jesuit priests, mayor of achi, carlos julio torrado, enrique 

lopez albujar 
Target: government house, stores, electric towers, headquarters, electricity 

facilities 
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(b) The use of the active learning helps GRID_CoTrain to improve its performance 

steadily as we perform more bootstrapping iterations, as compared to the non-active 

learning system. Among the active learning strategies, we found the certainty-based 

and committee-based strategies to be the most effective.  

(c) GRID_CoTrain performs almost comparable to the supervised learning by using the 

active learning strategies. Thus the human-involved active learning maintains the 

quality of the learned rules, and yet the effort on the part of human annotator remains 

small (needs only about 20% in our experiments) in proportion to the amount of 

labeled data needed for training the fully supervised version of GRID. 
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             Figure 6.5 Performances of different active learning strategies for slot “perpetrator” 
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                Figure 6.6 Performances of different active learning strategies for slot “victim” 
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                  Figure 6.7 Performances of different active learning strategies for slot “target” 

    To evaluate the effect of specific ontology knowledge on rule generalization, we 

perform further experiment to compare rule generalization using WordNet only and using 

WordNet plus the domain ontology knowledge. We use the committee-based active 

learning strategy (averaged F1 for the three concept slots) as the experimental setting for 

evaluating the rule generalization method with/without domain knowledge. Figure 6.8 
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shows that the specific domain ontology knowledge can improve the performance of IE 

by 2%. 
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                            Figure 6.8 Comparison of two rule generalization methods 

6.7 Summary 

Based on our previous pattern rule induction algorithm, GRID, this Chapter described a 

bootstrapping pattern induction algorithm, GRID_CoTrain, which combines co-training 

with two contextual and content views and several active learning strategies. 

GRID_CoTrain required about 20% human annotation instances through the use of active 

learning strategy during the bootstrapping process to achieve comparable performance of 

the fully supervised learner of GRID. We also found that the use of existing domain 

ontology knowledge can improve the rule induction performance of an information 

extraction system. In the next Chapter, we will present an alternative bootstrapping 

scheme (GRID+SP) that combines GRID and a soft pattern learning module (SP) to 

realize a weakly supervised learner for the IE tasks. GRID+SP outperforms 

GRID_CoTrain while requiring less human annotation labor to achieve comparable 

performance of the supervised learning results.  
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Chapter 7 

 

Cascading Use of GRID and Soft Pattern 
Learning 
 
In the previous Chapter, we introduced GRID_CoTrain, a bootstrapping scheme that 

combines co_training and active learning using GRID as the base learner. From the 

experiments, we could see that active learning strategies that include human to annotate 

about 20% of training instances could achieve comparable performance of the fully 

supervised version of GRID system. We consider this manual labor is still too high. In 

this Chapter, we present a new bootstrapping paradigm with cascading learners using a 

probabilistic soft pattern learner (SP) with the hard pattern learner, i.e. GRID. The 

combination of SP and GRID can reduce much of the human labor of annotation. With 

about 5%-10% of manually tagged seed instances, the cascaded learner, GRID+SP, can 

obtain performance close to the fully supervised learner. 

7.1 Introduction 

The rules generated by GRID, which are introduced in Chapter 4 are used to match the 

test instances by performing exact matching for each slot, which we call “hard matching”. 

Utilizing hard matching pattern rules can obtain precise results from test instances. 
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However, it may be problematic in dealing with natural language text, such as news 

articles, which often exhibits great variations in both lexical and syntactic constructions. 

For instance, in the terrorism domain, given a common pattern rule of “<victim> be 

kidnapped by …”, it cannot pick up the instance “<victim> , kidnapped by …” due to the 

mismatch in only one token. Such hard matching techniques often result in low recall, 

especially in the case when there are insufficient tagged training instances. To achieve the 

flexibility in pattern matching for natural language text, soft matching pattern rules have 

been proposed for question answering [Cui, et. al., 2004]. Soft pattern rules match test 

instances using a probabilistic model, which can better accommodate variations in 

expressions and favor high recall. However, differing from the question answering 

problem, both recall and precision are equally important in IE tasks. Moreover, the IE 

task needs to precisely locate the boundaries of the extracted slots. As such, the 

performance of soft pattern rules alone may not be sufficient for IE tasks. 

    In this Chapter, we aim to take advantage of both the soft and hard matching pattern 

rules to combat the existing problems caused by hard matching methods. Meanwhile, we 

want to minimize the number of hand-tagged training instances needed to start the 

learning process by adopting a bootstrapping strategy such as that proposed in [Riloff and 

Jones, 1999]. In contrast to current work, we propose a weakly supervised IE framework 

which makes use of both soft and hard matching pattern rules in both training and test 

phases. Starting with only a small set of tagged training instances, we first generate a set 

of soft pattern rules and utilize them to tag more training instances. The idiosyncrasy of 

soft pattern rules ensures sufficient coverage of automatically tagged instances. Next, we 

conduct the hard matching pattern rule induction algorithm introduced in Chapter 4, 
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GRID, over both manually and automatically tagged instances to generate more accurate 

rules. These hard pattern rules are utilized to tag training instances for soft pattern rule 

generation in the next iteration. The process runs iteratively until the termination criteria 

are met. At the end of the training process, we obtain two sets of pattern rules, namely the 

hard and soft pattern rules. During test phase, both sets of pattern rules are used in a 

cascaded way — with hard pattern rules followed by soft pattern rules — to extract target 

slots on new documents. We conduct two experiments on both semi-structured and free 

texts to demonstrate the effectiveness of our method. The experimental results show that 

the bootstrapping scheme with two cascaded pattern rule learners could achieve a  

performance close to that achievable by fully supervised learning while using only 

5~10% of the hand-tagged data, which are less than the human labor needed in the 

bootstrapping scheme with co-training and active learning in the last Chapter.  

    The main contribution of our new bootstrapping paradigm is in incorporating the soft 

matching pattern rules in the weakly supervised framework for IE. 

7.2 System Design 

Figure 7.1 shows the overall system architecture of our weakly supervised IE system. The 

training phase of the system is carried out as follows: 

(a) Given a small set of hand-tagged instances (seed instances) provided by the user. 

(b) We generate soft pattern rules using the seed instances, and denote the soft pattern 

rules as SPi. 
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    Figure 7.1 Architecture of the weakly supervised IE system by soft and hard pattern learners 

(c) We apply the learned soft pattern rules (SPi) to automatically tag un-annotated data. 

We employ a simple cut-off strategy that keeps only the highly ranked tagged 

instances by the soft pattern rules. 

(d) We generate hard pattern rules using GRID over the automatically tagged instances 

and seed instances. The resulting hard pattern rules are denoted as HPi. 
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(e) If the termination condition is satisfied, the process ends with a set of learned soft and 

hard pattern rules. Otherwise, the hard pattern rules HPi are used to tag the training 

data again. We start a new round of training from Step (b) using the newly tagged 

training instances and seed instances. 

    In the test phase, we apply both the hard and soft pattern rules to match against test 

instances. Specifically, soft matching pattern rules would assign a probabilistic score to 

an instance that is not matched by any of the hard matching pattern rules. Only those 

fields that are matched by hard pattern rules or have high scores in soft pattern matching 

would be extracted. 

7.3 Data Preparation 

Similar to the data preparation part in Chapter 4, before the pattern rule learning 

commences, we pre-process the training and test sentences by using a natural language 

chunker6 to perform Part-of-Speech (PoS) tagging and chunking. We also use a rule-

based named entity tagger [Chua and Liu, 2002] to capture semantic entities. Given a 

tagged instance, we consider the left and right k chunks around the tagged slot as context: 

        <c-k>…<c-2><c-1> <c0> (tagged_slot) <c+1><c+2>…<c+k>                           (7.1) 

Here <ci> {i=-k to +k; i≠0} represents the contextual chunks (or slots) of the tagged slot, 

where k is the number of contextual slots considered. <c0> (tagged_slot) represents the 

central tagged slot itself. <ci> can be of various feature types, namely words, punctuation, 

chunking tags like verb and noun phrases, or semantic classes. We use the left and right k 

chunks beside every noun phrase to prepare for the un-tagged instances since we assume 

that information extraction is to classify the noun phrases in text documents. We perform 

                                                 
6 We used NLProcessor from http://www.infogistics.com/ 
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selective substitution to generalize the specific terms in each slot so as to make the 

learned pattern rules general enough to be applied to other instances. Table 7.1 shows the 

substitution heuristics employed in our system with examples. 

Tokens Substitution Examples 

9 types of 
named 
entities 

NP_Person, 
NP_Location, 

NP_Organization,
NP_Date,  
NP_Day, 
NP_Time, 

NP_Percentage, 
NP_Money, 
NP_Number. 

“Friday” NP_Day 
“Feb.27” NP_Date 

Noun 
Phrase NP_HeadNoun 

“the seminar” 
NP_seminar 

Verb Phrase 
(passive or 

active) 

VPpas_RootVerb,
VPact_RootVerb

“will speak” 
VPact_speak, 

“will be held” 
VPpas_hold 

Preposition
Phrase 

PP 
“in cilivlian clothes” 

 PP 
Adjectival 

and 
adverbial 
modifiers 

To be deleted  

All other 
words and 

punctuations
No substitution “Time”, “at”, “by”, 

etc. are unchanged. 

                               Table 7.1 Substitution heuristics for information extraction 

Figure 7.2 gives 5 examples of original training instances for “starting time” (stime) in 

the seminar announcement domain. We substitute the more general syntactic or semantic 

classes for the lexical tokens according to the heuristics in Table 7.1. 

7.4 Soft Pattern Learning 

Soft pattern rules have been successfully applied to text mining [Nahm and Mooney, 

2001] and question answering [Cui, et. al., 2004]. We employ a variation of the soft 
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pattern rules generation and matching method presented in [Cui, et. al., 2004]. We expect 

soft pattern rules to offer high coverage in matching against a variety of instances in both 

training and test phases. 

 

 

 

 

 

 
                      Figure 7.2 Illustration of generalizing instances 

    For each type of tagged slot (Slot0) such as the “stime” in Figure 7.2, we accumulate all 

the tagged instances and align them according to the positions of Slot0. As a result, we 

obtain a virtual vector Pa representing the contextual soft pattern rule as: 

     <Slot-k, … , Slot-2, Slot-1, Slot0, Slot1, Slot2, …, Slotk: Pa>                                       (7.2) 

where Sloti is a vector of tokens occurring in that slot with their probabilities of 

occurrences: 

    <(tokeni1, weighti1), (tokeni2, weighti2) ….(tokenim, weightim): Sloti>                       (7.3) 

where tokenij denotes any word, punctuation, syntactic or semantic tags contained in Sloti; 

and weightij gives the proportion of occurrences of the jth token to the ith slot. weightij can 

be expressed as the conditional probability of the token occurring in that slot. Thus it can 

be approximated by: 
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)|Pr(                                                      (7.4) 

(1) Original instances for slot <stime>: 
     Time : <stime> 2:30 PM </stime> 
      … will be at <stime> 3 pm </stime> … 
     …Friday, February 17 <stime> 12:00pm </stime> - 1:00pm 
     … will be at <stime> 4pm </stime> , Monday, Feb. 27 … 
    Time: <stime> 12:00 PM </stime> - 1:30 PM 
(2) Substituted instances: 
    Time : <stime> NP_Time </stime> 
    VPact_be at <stime> NP_Time </stime>  
    NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time 
    VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date 
    Time : <stime> NP_Time </stime> - NP_Time 
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where f(tokenis) stands for the number of occurrences of tokenis within Sloti. Figure 7.3 

shows the generated soft pattern rules for the examples given in Figure 7.2. 

 

 

 

 

 

 
                     Figure 7.3 An excerpt of soft pattern rules 

    What results from the generalization process is a virtual vector Pa representing the soft 

pattern rule. The soft pattern vector Pa is then used to compute the degree of match for 

the unseen instances. The unseen instances are also first pre-processed with the identical 

procedures as outlined in Section 7.3. Using the same window size k, the token fragment 

S surrounding the potential slot (noun phrase) is derived:  

  <token-k,…, token-2, token-1, Potential_Slot, token1, token2, …, tokenk: S>                (7.5) 

    The degree of match for the unseen instance against the soft pattern rule is measured 

by the similarity between the vector S and the virtual soft pattern vector Pa. In particular, 

the match degree is the combination of the individual slot content similarities and the 

fidelity degree of sequences measured by a bigram model. The final pattern match weight 

is computed as following: 

lengthfragment
weightPaweightPa

weightPattern SeqSlots

_
__

_
×

=                                       (7.6) 

(1) Training instances: 
Time : <stime> NP_Time </stime> 
VPact_be at <stime> NP_Time </stime>  
NP_Day , NP_Date <stime> NP_Time </stime> - NP_Time 
VPact_be at <stime> NP_Time </stime> , NP_Day , NP_Date 
Time : <stime> NP_Time </stime> - NP_Time 
 
(2) Soft pattern rules based on the instances: 
……      <Slot-2>       <Slot-1>         <Slot0>         <Slot1> …... 

            

 Time 0.4 
VPact_be 0.4 
, 0.2 

 : 0.4 
at 0.4 
NP_Date  0.2 

 - 0.67 
, 0.33 
 

NP_Time  1 
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where the fragment_length is the normalization factor which is usually set to the length of 

the context length. The first part of Pattern_weight is the match degree of individual slots 

Pa_WeightSlots and it is computed as: 

∏
−=

==
w

wi
iiSlots SlottokenPaSweightPa )|Pr()|Pr(_                                                       (7.7) 

    The calculation of Pa_WeightSlots  assumes that all slots are independent to each other. 

Pr(tokeni|Sloti) is calculated by Equation (7.4). We can see Equation (7.7) is very flexible 

in matching the soft patterns because it considers only individual slots. Even if some slots 

are missing, it still can give a similarity measure to the test instance. 

    The second part of Pattern_weight considers the sequence of tokens, to filter out 

unlikely token sequences to increase precision. We adopt a bigram model to formulate 

this sequence measure. Specifically, given a token sequence T, we calculate the 

conditional probability of Pr(T|Pa) which models how likely the sequence occurs 

according to the underlying soft pattern rules. We calculate the sequence probability for 

the left and the right sequences starting from the central tagged slot. The probability of 

the right sequence is calculated as follows: 

Pr(right_seq|Pa) = Pr(token0, token1, token2…tokenw|Pa) 

                             = P(token0)P(token1|token0)…P(tokenw|tokenw-1)                           (7.8) 

where P(tokeni|tokeni-1) is estimated by counting the occurrences of the bigram     

<tokeni-1tokeni> and the unigram tokeni-1 as: 
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The process for calculating the probability of the left sequence is formally identical as the 

following: 
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Pr(left_seq|Pa) = Pr(token-1, token-2, token-3…token-w|Pa) 

                       = P(token-1)P(token-2|token-1)…P(token-w|tokenw-w+1)                         (7.10) 

 In addition, P(token0) and P(token-1) can be estimated based on the proportion of 

occurrences in the whole cluster of instances. The sequence weight of the token vector 

denoted by Pa_Weightseq consists of the weights of its left sequence and right sequence 

which are calculated by the following equation: 

)|_Pr()|_Pr()1(_ PaseqrightPaseqleftweightPa Seq ⋅+⋅−= αα          (7.11) 

Based on our observations, the right hand context of the central slot is more important in 

indicating an information extraction pattern rule, thus we set α to 0.7. 

    When applying soft pattern rules to automatically tag the training instances during the 

bootstrapping process, we assign a target tag to each potential slot whose soft pattern rule 

gives the highest score above a pre-defined threshold according to Equation (7.6).  

7.5 Hard Pattern Rule Induction by GRID 

We employ the hard pattern rule induction algorithm, GRID, to generalize the hard 

pattern rule over all instances hand-tagged by users and automatically annotated by the 

soft pattern rules. GRID generates a pattern rule rk(f) by adding slot features into the 

feature set f. Differing from what we discussed in Chapter 4, we use a modified 

Laplacian expected error (Laplacian’) to define the quality of the hard pattern rule as 

following: 
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where pk1 denotes the number of instances covered by rule rk(f) in the manually annotated 

set, and pk2 denotes the number of instances covered by the rule rk(f) in the automatically 
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annotated set. nk is the number of negative examples or errors covered by the rule. We 

consider all the manually annotated instances as correctly tagged and thus we put more 

weight to them than those automatically tagged set. We use GRID to generate pattern 

rules that cover all seed instances and discard some pattern rules generated from the 

automatically tagged instances whose Laplacian’ value is greater than a preset threshold. 

7.6 Cascading Matching of Hard and Soft Pattern Rules 

During Testing 

After the bootstrapping rule induction process, we obtain the sets of hard and soft pattern 

rules. We apply both sets of pattern rules in a cascaded way to assign appropriate tags to 

potential slots in new instances. The tag assigned to the given test instance t is selected by: 

1) tagg      matched by GRID ruleg; 

2) If not matched by any GRID rule,  

      tagi         
PaPa

i
i

Pat
∈

> θ)|Pr(maxarg  

    We apply the high-precision hard pattern rules generated by GRID first. In this case, 

we assign tagg to the instance if it matches ruleg. In order to increase the coverage by the 

hard pattern rules, we allow up to one shift in context vectors of new test instances when 

matching against the hard pattern rules. 

    For the remaining test instances that are not matched by any of the hard pattern rules, 

we score them using the soft pattern rules. A test instance is assigned tagi if it has the 

highest conditional probability of having t given the soft pattern rule i (represented by 

vector Pai) which is greater than a pre-defined threshold θ among all the soft pattern rules. 
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7.7 Experimental Evaluation 

To verify the generality and effectiveness of our bootstrapping framework, we conduct 

two experiments on both free and semi-structured texts. In our supervised IE system 

using GRID in Chapter 4, we perform some trial experiments for examining the effect of 

choosing the different context length k. We find the IE performance became stable when 

the context length reaches 4. As such, we set the context length k to 4 for all experiments 

afterwards. 

7.7.1 Results on Free Text Corpus 

The first evaluation is conducted on the terrorism domain using the MUC-4 free text 

corpus [MUC-4, 1992]. We employ the same evaluation measures as that in [Riloff, 1996; 

Xiao, et al., 2003]. The extracted target slots are “perpetrator” (Perp.), “victim” (Vic.) 

and “target” (Tar.). We vary the number of the human-annotated instances by randomly 

selected to be used in IE learning from the 772 relevant document set (the standard 

training documents for MUC-4 plus TST1 and TST2 tasks) used in supervised IE 

learning. The manual annotation is guided by the associated answer keys given in the 

MUC-4 corpus. During testing, we use the 100 texts composing 25 relevant and 25 

irrelevant texts from TST3 test set, plus 25 relevant and 25 irrelevant texts from the TST4 

test set.  

   As discussed in Section 7.2, we repeat the automated annotation process several times 

(i ≥1 in Figure 7.1). To examine the variation of performance along with the changing of 

the number of iterations, we plot the average F1 measures of the three target slots against 

the iteration number (see Figure 7.4). We also varied the number of manually tagged 

instances that are utilized as seed instances for starting the bootstrapping process. As can 
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be seen in Figure 7.4, the results improve as the number of iterations is increased. The 

system achieves a steady performance when the number of iterations reaches 4. 

Accordingly in the following experiments, we present the system’s performance based on 

4 bootstrapping iterations. 
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          Figure 7.4 Effect of the number of iterations  

 Perp. Vic. Tar. 

5%(SP) 36 
(42/32) 

45 
(49/42)

42 
(47/38)

5%(GRID) 34 
(35/33) 

44 
(40/49)

39 
(36/43)

5%(SP+GRID) 47 
(49/45) 

58 
(59/57)

50 
(50/50)

10%(SP) 38 
(45/33) 

46 
(51/42)

45 
(49/42)

10%(GRID) 37 
(39/35) 

46 
(41/52)

44 
(41/47)

10%(SP+GRID) 50 
(53/47) 

61 
(63/59)

53 
(52/54)

20%(SP) 40 
(46/35) 

48 
(54/43)

47 
(50/44)

20%(GRID) 40 
(41/39) 

47 
(44/50)

47 
(45/49)

20%(SP+GRID) 51 
(52/50) 

62 
(63/61)

54 
(55/53)

AutoSlog-TS 38 
(53/30) 

48 
(62/39)

47 
(58/39)

supervised(GRID) 52 
(48/57) 

62 
(58/67)

56 
(51/62)

 
              Table 7.2 Results on free text domain 

Results presented in terms of F1(recall/precision). 
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    Table 7.2 shows the performance of the system on the test data in terms of F1-measure 

(with recall/precision value in the brackets) using various amounts of manually tagged 

data after 4 iterations. To demonstrate the effectiveness of the combination of hard and 

soft pattern rules, we also run 4 iterations using only soft pattern rules (SP) or only GRID 

rules. 

    From Table 7.2, we can draw the following conclusions: 

(a) The cascaded learner by combining SP and GRID outperforms the learner SP or 

GRID alone. The soft pattern learner (SP) alone cannot achieve good precision while 

the hard pattern learner (GRID) alone cannot achieve high recall with a small set of 

hand-annotated instances. 

(b) Compared with another weakly supervised IE system on the same domain, AutoSlog-

TS, our cascaded learner outperforms it with the use of only 5% of the manually 

tagged instances. 

(c) As the percentage of hand-annotated instances increases from 5% to 20%, the 

performance of the cascaded learner (GRID+SP) increases steadily, indicating that 

the bootstrapping process is stable and consistent. 

(d) With 20% of hand-tagged training instances, the performance of the cascaded learner 

approaches that of the fully supervised IE tagger. When more manually tagged 

instances (>20%) are used, we found that the performance of the cascaded learner 

becomes steady. 

(e) By observing the automatically tagged instances by the soft pattern rules, we found 

that about 75% instances are correctly annotated in the first and second iteration. The 

percentage of correctly tagged instances by soft pattern rules increased to 90% after 



                                              Chapter 7 Cascading Use of GRID and Soft Pattern Learning 

 123

we run the bootstrapping process 4 times. The increase of the percentage of correctly 

tagged instances verifies that our automated annotation could provide relatively 

accurate training instances for later rule induction. 

(f) The cascaded learner GRID+SP outperforms GRID_CoTrain which is described in 

Chapter 6 with less human labor (from 20% down to 5%-10%). 

   Our system missed some cases that require deeper NLP analysis. For example, given a 

test sentence “THEY ARE THE TOP MILITARY AND POLITICAL FIGURES IN 

ALFREDO CRISTIANI'S ADMINISTRATION.” The system can not identify 

“ALFREDO CRISTIAN’S ADMINISTRATION” as the “perpetrator”. If we can 

associate the previously found “perpetrator” (maybe located far away) to “they”, then we 

may infer that the “ALFREDO CRISTIAN’S ADMINISTRATION” is the “perpetrator” 

too. 

7.7.2 Results on Semi-structured Corpus 

The second experiment is conducted on the semi-structured text documents. We use the 

CMU seminar announcements [www3] for the evaluation. The IE task for this domain is 

to extract the entities of “speaker” (SP), “location” (LOC), “starting time” (ST), and 

“ending time” (ET) from a seminar announcement. There are 485 seminar 

announcements. In the supervised IE experiments, we perform 5 runs and in each run we 

use one half for training and the other half for testing. Similarly, to evaluate our weakly 

supervised learning framework, we carry out 5 trials as well. In each run, we vary the 

percentage of manually annotated instances for training in the supervised experiments. 

Table 3 shows the performance (the average F1 measure and recall/precision for 5 runs) 

of the system with different percentage of manually tagged instances used to start the 
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training. We also compare the performances between the single learners and the cascaded 

learner. All results are based on 4 bootstrapping iterations.              

 SP LOC ST ET 

5%(SP) 70 
(74/66) 

65 
(70/61)

94 
(95/93)

90 
(93/88)

5%(GRID) 68 
(65/72) 

61 
(59/64)

93 
(91/94)

89 
(86/92)

5%(SP+GRID) 82 
(83/81) 

73 
(74/72)

98 
(98/98)

94 
(96/92)

10%(SP) 72 
(75/70) 

68 
(72/64)

96 
(96/95)

93 
(94/92)

10%(GRID) 72 
(67/77) 

67 
(63/72)

95 
(94/96)

93 
(91/96)

10%(SP+GRID) 84 
(84/83) 

75 
(75/74)

99 
(99/99)

95 
(97/94)

20%(SP) 75 
(77/74) 

71 
(75/67)

97 
(97/97)

95 
(96/95)

20%(GRID) 75 
(69/82) 

71 
(66/77)

97 
(95/99)

95 
(94/96)

20%(SP+GRID) 85 
(85/85) 

76 
(76/75)

99 
(99/99)

96 
(97/95)

supervised 
(GRID) 

86 
(84/88) 

76 
(73/80)

99 
(99/100)

96 
(95/97)

                     
            Table 7.3 Results on semi-structured corpus 

From Table 7.3, we have the following observations: 

(a) The cascaded learner (GRID+SP) with two pattern learners significantly outperforms 

the learner SP or GRID alone as the case for the free text corpus. With 10% of hand-

tagged instances, GRID+SP can approach the performance of the fully supervised IE 

tagger. Also the performance of the cascaded learner increases steadily with the 

number of hand-tagged instances increased from 5% to 20%. 

(b) We also found that with more hand-annotated instances (>20%), the performance of 

the bootstrapping system with cascading use of SP and GRID becomes stable and 

consistent. 

(c) We also randomly checked some automatically tagged instances by the soft pattern 

rules after each iteration and found that about 90% of the instances are correctly 

Results presented in terms of F1(recall/precision). 
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tagged by the soft pattern rules. 

   The lower performance of our system on the “location” slot is mainly due to the use of 

a general named entity recognizer which is good at identifying common locations such as 

cities, mountains etc.. In seminar announcements, many locations are room numbers such 

as “WeH 8220” thus we missed out some seminar venues. 

7.8 Summary 

In this Chapter, we presented a novel bootstrapping approach for information extraction 

by cascading use of soft and hard pattern rules. Our framework takes advantage of high-

recall by soft pattern rules and high-precision of hard pattern rules. We used soft pattern 

rules to automatically annotate more training instances so as to provide a more 

comprehensive basis for hard pattern rule induction. The integration of soft pattern 

matching in the extraction phase also brings in more target entities from the test instances 

that are likely to be missed by hard pattern matching [Xiao, et. al. 2004]. With much less 

manual labor (only need 5%-10% annotated data compared to the fully supervised 

version), the proposed bootstrapping system approaches the performance obtainable by 

the fully supervised learning on both the semi-structured and free text corpora. 
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Chapter 8 

 

Conclusions 
 
8.1 Summary of This Thesis 

This thesis presents a general pattern rule learning algorithm GRID which is designed for 

information extraction tasks but can be applied to other tasks such as definitional 

question answering and story boundary detection in news video. Different from most 

existing pattern rule learning systems for information extraction, GRID utilizes global 

statistical information of the training instances to kick off the rule induction process. 

GRID also uses named entities as semantic constraints and applies lexical chaining for 

pattern rule generalization. 

    In order to realize weakly supervised learning based on GRID learner, this research 

extends GRID with some other machine learning approaches such as co-training 

(CoTrain), active learning and soft pattern matching (SP). With much less human 

manually tagging labor, the weakly supervised paradigms, GRID_CoTrain and GRID+SP, 

can obtain comparable performance to the fully supervised learning version of GRID. 

    In the following sub-sections, we discuss some issues in information extraction and 

present directions for future work. 
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8.2 Some Issues in IE 

8.2.1 Slot-based vs tag-based IE 

We may consider a pattern rule as composed of a left hand side, containing a pattern of 

conditions on a sequence of adjacent words/tokens or syntactic/semantic units, and a right 

hand side that is an action to insert an XML tag in the texts. For example, a rule is to 

insert both the opening tag of “<speaker>” and the closing tag of “</speaker>” around a 

person of “Mr. Smith”. We call this kind of rule “slot-based”. Currently, most pattern rule 

learning systems such as WHISK, RAPIER, GRID etc. for IE are slot-based, i.e. to insert 

both side tags beside the extracted target. In (LP)2, the author proposed a “tag-based” IE 

approach in which each rule inserts a single XML tag, e.g. inserting <speaker> before 

“Mr. Smith”. This separation of recognition of tags (i.e. <speaker> is recognized 

independently from </speaker>) allows higher recall. This is because the separation of 

opening and closing tag allows easier generalization in rule writing. For example in a 

slot-oriented rule learning strategy in order to learn patterns equivalent to the regular 

expression (“at” | “starting from”) digit (“pm” | “am”) four examples will be needed: “at” 

+ “pm”, “at” + “am”, “starting from” + “pm”, “starting from” + “am”. In tag-based 

learning strategy, it just need two, e.g. “at” + “pm” and “starting from” + “am”, because 

the algorithm will write two rules for <stime> (“at” and “starting from”) and two for 

</stime> (“am” and “pm”). Thus tag-based learning systems require less training 

examples than the slot-based ones. On the other hand, the tag-based pattern rule learning 

systems need additional contextual rules to improve the tagging performance. For 

example rules like “put a </organization> tag after a capitalized word and before a 

lowercase word” will never be selected as a good rule because it will tag as 
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</organization> every sequence of capitalized word + lowercase word. But this rule is a 

good rule if its use is constrained by the presence of an <organization> tag in the 

immediate left context. This means that the rule becomes “end an organization name at 

the first lowercase word”, i.e. “after an <organization> tag put an </organization> tag 

right after the first capitalized word followed by a lowercase word”. 

    Slot-based pattern rule induction usually requires more training examples than tag-

based pattern rule induction does. Tag-based pattern rule induction requires additional 

contextual rules to link the opening tag and closing tag. In this thesis, we only conduct 

the slot-based rule induction in GRID. Extending GRID to tag-based rule induction could 

be one of the future works. 

8.2.2 Portability of IE systems 

One difficulty in information extraction is the cost of developing extraction systems for 

new domain, i.e. the portability problem in IE. Although system designers have been 

quite successful in separating a domain-independent core from domain-specific 

knowledge sources, the cost of customization remains considerable. Several knowledge 

sources need to be adapted: the largest are typically the patterns for identifying the events 

of interest; specialized rules for filling the template slots and the inference strategies; an 

additional lexicon or thesaurus will also be required. The cost is particularly high if these 

knowledge sources need to be manually built by the external experts who are expensive 

both in terms of time and cost. Therefore, there has been a push towards facilitating 

greater user customization, through visual interfaces, example-based methods, and 

corpus-trained systems. In this thesis, all the IE systems for automatically learning pattern 

extraction rules are corpus-trained which are categorized into learning from annotated 
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samples and learning from un-annotated samples with a small set of tagged instances. 

Another concern for separating the domain-independent core from the domain-specific 

knowledge sources in pattern rule learning systems is to divide the pattern rules into 

domain-dependent and domain-independent portions. The domain-independent part of 

the domain-phase consists of a number of rules that one might characterize as 

parameterized macros. The rules cover various syntactic constructs at a relatively coarse 

granularity, the objective being to construct the appropriate predicate-argument relations 

for verbs that behave according to that pattern. The domain-dependent rules comprise the 

cluster of parameters that must be instantiated by the “macros” to produce the actual rules. 

These domain-dependent rules specify precisely which verbs carry the domain-relevant 

information, and specify the domain-dependent restrictions on the arguments, as well as 

the semantics of the rule. 

    The system described in this thesis, GRID, is a data-driven machine learning IE system. 

It can be easily ported to other domains such as the bioinformatics. However, in order to 

achieve high effectiveness, some domain-dependent lexicon or semantic constraints are 

needed while porting GRID to other domains. 

8.2.3 Using Linguistic Information 

Information extraction can be regarded as one of the direct applications of natural 

language processing technologies. Traditional NLP techniques such as syntactic analysis, 

semantic analysis and discourse-level analysis are widely applied in many information 

extraction systems. But how much linguistic information do we need for realizing an 

efficient information extraction system? The answer is dependent on the text genre. 

[Krupka, 1995] did some experiments using SRV system in this vein and found that 
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providing linguistic information to SRV yielded little benefit. In RAPIER [Califf, 1998], 

the author also pointed that the use of an external linguistic dictionary, WordNet, did not 

help in improving the system performance. Both SRV and RAPIER were tested on semi-

structured documents, i.e. the job listing corpus. We drew the same conclusion in GRID 

experiments when we tried to perform full-parsing for the online semi-structured 

documents. But for the MUC text genre (free-text with more grammatical structures), 

deep NLP understanding is useful to improve the system performance as we can see in 

the GRID experiments with the comparison between shallow parsing and full parsing in 

MUC-4 domain. However, it is not easy to obtain robust deep NLP analysis such as co-

referencing resolution and discourse analysis. This may affect the performance of the IE 

systems on free text domains.  

    Although deep natural language understanding can help to improve information 

extraction performance in free text genre, experience from semi-structured documents 

seem to suggest that useful entities can be gleaned from a semi-structured document 

without deep understanding it. Therefore information extraction technology can be 

effectively applied to semi-structured and structured text corpora, especially the web-

based text documents, without the need to deal with deep linguistic analysis. 

8.3 Future Work 

8.3.1 IE from multi-event document 

In this thesis, most documents are single event-based except for a few documents in the 

MUC-4 corpus. Single event per document means that each document should produce a 

single filled template or case frame. For example, in the AUSTIN job postings domain in 

our experiment, a single document only contains one job posting. We therefore just 
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employed some heuristic rules to extract the slot values for the template from a document 

and did not do much research on how to determine whether the extracted slot values 

might belong to different events. There are several issues on the future work of IE from 

multi-event document.  

    First, the system needs to recognize the need to create multiple templates. One way to 

do this is to recognize when slots which should have only one filler have multiple 

potential filler extractions. This could be very effective in a domain such as the rental ads. 

It is less so in a domain like the job postings where almost any slot can have multiple 

fillers, such as the job titles may appear in multiple variations for the same job. Another 

concern would be to recognize the typical ordering of slots, or whether there are typical 

orderings. For example, if all fillers for slot A typically come before all fillers for slot B. 

Then in a document with fillers for slot A followed by fillers for slot B and followed by 

more fillers for slot A would provide clues that multiple templates should be created. 

Another option would be to learn text segmentation rules to recognize the transition from 

one event to another.  

    Second, there is a need to associate the correct filler with each of the multiple 

templates. For some domains this may be facilitated by learning rules which extract 

fillers for multiple slots. For examples, for domains like job listings, it may be possible to 

simply divide the document into sections describing each separate case and to apply rules 

only within each section. 

8.3.2 IE from Bioinformation 

The explosive growth of textual material in the biology area means that no one can keep 

up with what is being published. There is too much new, complex and non-standardised 
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terminology appearing in publications everyday. One effective approach to manage those 

key terms efficiently is to extract them using information extraction techniques and put 

them into databases for indexing or querying purposes. The information extraction 

techniques discussed in this thesis can provide the basic tools for bioinformation 

extraction, such as new protein and virus names extraction. Also the template extraction 

in information extraction can be mapped to medicine domain. For example, scientists 

working on drug discovery have an ongoing interest in reactions catalyzed by enzymes in 

metabolic pathways. These reactions may be viewed as a class of relation extraction, like 

corporate management succession events, in which various classes of entities such as 

enzymes, compounds with attributes such as names, concentrations are related by 

participating in the event in particular roles such as substrate, catalyst, product etc.. Thus 

the techniques in relation extraction in information extraction can be extended to the 

medicine domain smoothly. To cope with the bio-text, we may also need the domain 

knowledge such as the medical lexicon, specific semantic classes and the concept 

hierarchy etc. for bio-domain. 

8.3.3 IE and Text Mining 

Text mining is concerned with applying data mining techniques to unstructured text. Data 

mining assumes that the information to be “mined” is already in the form of a relational 

database. Unfortunately, for many applications, available electronic information is in the 

form of unstructured natural language documents rather than structured databases. 

Consequently, text mining is evolved to discover useful knowledge from unstructured 

text. Information extraction can play obvious role in text mining. Natural language 

information extraction methods can transform a corpus of textual documents into a more 
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structured database. On the other hand, the rules mined from a database can be used to 

predict additional information to extract from future documents, thereby improving the 

recall of IE [Nahm and Mooney, 2000]. Thus IE and text mining can be integrated in 

which they are mutually beneficial to each other as indicated in Nahm and Mooney 

[2000]. We hope the IE techniques described in this thesis can be helpful in text mining 

applications. 
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