
A SMART TCP SOCKET FOR DISTRIBUTED
COMPUTING

SHAO TAO

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Name: Shao Tao
Degree: B.Sc.(2nd Upper Hons.)
Dept: School Of Computing
Thesis Title: A Smart TCP Socket for Distributed Computing

Abstract

Middle-ware in distributed computing coordinates a group of servers to
accomplish a resource intensive task; however, the server selection schemes
without resource monitoring are not yet sophisticated enough to provide sat-
isfying results at all time. This thesis presents a Smart TCP socket library
using server status reports to improve selection techniques. Users are able to
specify the server requirements by using a predefined meta language. Moni-
toring components such as the server probes and monitors will be in charge
of collecting the server status, network metrics and performing security ver-
ifications. A user request handler called wizard will make the best match
according to the user request and the available server resources. Both cen-
tralized and distributed modes are provided so that the socket library can be
adapted to both small distributed systems and a large scale GRID. The new
socket layer is an attempt to influence changes in the middle-ware design. It
allows multiple middle-ware implementations to co-exist without introducing
extra server load and network traffic. Thus, it enables middle-ware design-
ers to focus on improving the task distribution function and encourages the
popularity of GRID computing facilities.

Keywords: TCP Socket, Middle-ware, Bandwidth Measurement
Server Selection Technique, Active Probing, Resource Monitoring
Lexical and Syntactical Analysis

A SMART TCP SOCKET FOR DISTRIBUTED
COMPUTING

SHAO TAO
(B.Sc(2nd Upper Hons), NUS)

A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2004

Acknowledgements

It has been six years since the first day when I came to NUS. I received

enormous help and support from my family, my supervisor and many friends

around.

I have to thank my family for their encouragements through the years.

My father told me to always be an honest man. My mother supports me to

pursue higher academic achievements. And my brother shares the joy and

sadness with me.

My deepest thanks to my supervisor Prof. Ananda, for guiding me through

my honors year, now my master project and giving me a chance to teach in

the school. Prof. Ananda has provided insightful new ideas to this master

topic and leads me to the correct research direction when I was confused

from time to time.

Kind thanks to the friends and school mates around me for spending the

after-school days together and making my life here enjoyable.

Contents

Acknowledgements i

Summary vi

List of Tables viii

List of Figures x

List of Abbreviations xi

List of Publications xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 5

1.3 Objectives . 6

1.4 Thesis Contribution . 7

1.5 Thesis Outline . 8

2 Related Works 10

2.1 Status Report . 10

CONTENTS iii

2.2 Distributed Computing Libraries 12

2.3 Grid Middle-ware . 13

2.4 Load Balancing Tools . 15

3 Components and Structure 17

3.1 Overall Structure . 17

3.2 Server Probe and Status Monitor 19

3.2.1 Server Probe . 19

3.2.2 System Status Monitor 20

3.3 Network Monitor . 22

3.3.1 Network Metrics Measurements 22

3.3.2 One Way UDP Stream Measurements 23

3.3.3 Network Monitor Procedure 34

3.4 Security Monitor . 38

3.4.1 General Security Issues 38

3.4.2 Security Techniques . 39

3.5 Transmitter and Receiver . 41

3.5.1 Transmitter . 42

3.5.2 Receiver . 43

3.6 Wizard and Client Library . 44

3.6.1 Procedures of Wizard 44

3.6.2 Functions of Client Library 49

4 Implementation Issues 52

4.1 Server Probes . 52

4.2 Monitors and Wizard . 54

CONTENTS iv

4.3 Server Requirement Parser . 55

5 Performance Evaluation 60

5.1 Testbed Configuration . 60

5.1.1 Networks . 60

5.1.2 Machines . 62

5.2 System Resource Required . 62

5.3 Experiment Results . 64

5.3.1 Matrix Multiplication 64

5.3.2 Massive Download . 70

6 Future Work 76

7 Conclusion 79

References 82

Appendix 86

A Pipechar results 86

A.1 from sagit to cmui . 86

A.2 from sagit to tokxp . 88

A.3 from sagit to suna . 89

B Keywords and Functions 90

B.1 Server-side Variables . 90

B.2 User-side Variables . 91

B.3 Constants . 91

CONTENTS v

B.4 Math Functions . 91

C Experiment Programs 92

C.1 Distributed Matrix Multiplication 92

Summary

Middle-ware in distributed computing coordinates a group of servers to ac-

complish a resource intensive task. To accommodate various applications,

certain servers with particular resource usage feature and configuration will

be more preferable than others. Without resource monitoring, the server se-

lection techniques are mainly based on static configuration statements man-

ually prepared or random process such as round-robin function. These rigid

techniques cannot precisely evaluate the actual running status of servers.

Thus, they are not able to provide the optimal server group.

In this thesis, a Smart TCP socket library using server status reports

to improve selection techniques is presented. The library provides a meta

language for describing server requirements. With the rich set of parameters

and predefined functions, users can write highly sophisticated expressions.

It also provides a convenient client library which can be used stand alone

or combined with other libraries for better performance. The library’s a

flexible structure, that enables developers to plug in new components or up-

grade existing ones conveniently. Both centralized and distributed modes are

available so that the socket library can be adapted to both small distributed

systems and a large scale GRID.

List of Tables

1.1 Current Distributed Programming Tools 6

3.1 Server Status Entries . 19

3.2 Network Paths for RTT Measurements 30

3.3 Bandwidth Measurements using various Packet Size 34

3.4 Sample Network Monitor Records 37

3.5 Format of User Request . 44

3.6 Format of Reply Message from Wizard 49

4.1 Memory Usage before and after SuperPI 53

4.2 Ports used by Monitors and Wizard 54

4.3 Keys for Semaphores and Shared Memory Spaces 55

5.1 Configuration of the Testbed Machines 62

5.2 System Resource used with 11 Probes Running 63

5.3 2 vs 2 under zero Workload 67

5.4 4 vs 4 under zero Workload 68

5.5 6 vs 6 under zero Workload 68

5.6 4 vs 4 with Workload . 69

LIST OF TABLES viii

5.7 Experiment for 1vs1 massd . 72

5.8 Experiment for 2vs2 massd . 73

5.9 Experiment for 3vs3 massd . 75

List of Figures

1.1 Resource Referred by Server Name 2

1.2 Request for Multiple Sockets 3

1.3 User Requirements for Servers 4

1.4 An Example with Smart Socket Library 9

3.1 Overall Structure of the Smart TCP library 18

3.2 The relation between Server Probe and Monitor 21

3.3 Round Trip Time from sagit to suna, MTU=1500 Bytes . . . 27

3.4 RTT from sagit to suna, MTU=1000 bytes 28

3.5 RTT from sagit to suna, MTU=500 bytes 29

3.6 RTT Graphs for 6 Sample Network Paths 31

3.7 Bandwidth Measurements using various Packet Size 35

3.8 Operations of Network Monitor 36

3.9 Interactions between the Transmitter and Receiver 41

3.10 Format of Status Record Structures 46

4.1 Lexical Rules for Parsing Tokens 56

4.2 Semantic Rules for Parser . 59

LIST OF FIGURES x

5.1 Network Topology of the Testbed 61

5.2 Matrix Benchmarking Results 66

5.3 Benchmark for rshaper and massd 70

5.4 Experiments for massd: 1 vs 1 72

5.5 Experiments for massd: 2 vs 2 74

5.6 Experiments for massd: 3 vs 3 75

C.1 Matrix Multiplication . 93

C.2 Cooperation between the Master and Worker Programs 94

List of Abbreviations

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BSD Berkeley Software Distribution

BW Bandwidth

ICMP Internet Control Message Protocol

IO Input/Output

IP Internet Protocol

IPC Interprocess Communication

ISN Initial Sequence Number

LVS Linux Virtual Server

Mnet Network Monitor

MPI Message Passing Interface

Msec Security Monitor

Msys System Monitor

MTU Maximum Transfer Unit

NAC Network Admission Control

NAT Network Address Translation

NMAP Network Mapper

OS Operating System

xii

PVM Parallel Virtual Machine

Req/Rep Request/Reply

RTT Round Trip Time

Seq Num Sequence Number

SLoPS Self-Loading Periodic Streams

TCP Transmission Control Protocol

UDP User Datagram Protocol

List of Publications

1. “A TCP Socket Buffer Auto-tuning Daemon”, Shao Tao, L. Jacob,

A. L. Ananda. ICCCN 2003, Dallas TX USA, 2003.

2. “A Smart TCP Socket for Distributed Computing”, Shao Tao, A. L. Ananda.

to appear in ICPP-2005, Oslo Norway.

Chapter 1

Introduction

In this chapter, we will introduce the motivation behind this project and some

background information. The objectives of the project will be explained later,

followed by an outline of the remaining chapters.

1.1 Motivation

The TCP socket library provides a rich set of APIs for users to easily build

up network applications. Its availability in many operating systems enables

network applications to communicate with one another, even when running

on different architectures. With the growth of distributed programs on the

network, the traditional socket library shows a few limitations in function-

ality that can be improved. Most distributed computation applications like

graphic rendering, gene sequence analysis and cryptography calculation, con-

sider networked servers as an abstracted grouped computation service acces-

sible through sockets.

1.1 Motivation 2

Within a controlled computation network, where servers providing iden-

tical services are monitored, it is redundant for an application to specify the

names of the servers to use, as shown in Fig. 1.1. Also, a particular server

referenced by the server name may not be available at a particular moment.

A recovery mechanism must be established for such a case in order to make

use of alternative servers.

socket()

connect(alpha.some.net);

close(socket);

TCP socket library

server="alpha.some.net"

User Application

Alpha Beta Charlie

?
?

Figure 1.1: Resource Referred by Server Name

Distributed applications normally involve large amount of read and write

operations over multiple sockets. The standard socket library does not pro-

vide convenient interfaces for creating and closing a group of sockets. When

multiple servers are required, the same sequence of function calls are made

multiple times for creating each new socket as depicted in Fig. 1.2. For

such applications, a wrapper socket function would be preferable than du-

plicating code segments. Instead of returning a single socket, the wrapper

function returns a list of sockets that will participate in a single computation

1.1 Motivation 3

task. The functions implemented over these sockets are determined by the

programming paradigm and algorithm.

"I need N servers"

User Application

Server 1

Server N

Server 2

socket()

close(socket);

connect(sn.some.net);

socket()

close(socket);

connect(s2.some.net);

socket()

close(socket);

connect(s1.some.net);

TCP socket library

Figure 1.2: Request for Multiple Sockets

Fig. 1.3 reveals another limitation of the standard TCP socket library

- users have no methods to specify the requirement for the servers. In a

cluster of servers targeting on the same task, performance may vary due to

the system configuration or current workload of servers. Applications may

have different requirements for various system resources at different intensity

levels. A memory intensive program should be run on machines with suffi-

cient amount of free memory space. A data intensive program would achieve

better performance on servers with less hard disk Input/Output activities

and network load. An interface is necessary to inform socket library about

the server qualification standard for a particular application.

1.1 Motivation 4

Server 1

CPU_free = 90%

memory = 128MB

Load = 0

Server 3

CPU_free = 100%

memory = 512MB

Load = 0

CPU_free = 95%

memory = 1G

Load = 0.3

Server 2

No interface for server

validation

CPU_free > 90%

Load < 0.5

1 server with:

User Application socket()

close(socket);

connect(s?.some.net);

TCP socket library

?

?

?
memory > 256MB

Figure 1.3: User Requirements for Servers

1.2 Background 5

1.2 Background

Abundant amount of research works have been done to improve distributed

and parallel programming environments, including message passing libraries,

independent task schedulers, frameworks for large scale resource management

and system patches for automatic process migration at kernel level. A list of

these utilities is shown in Table. 1.1.

The message passing library allows users to develop distributed appli-

cations with the convenient function calls for passing messages and data

structures among the computational nodes. PVM[pvm04], MPI[mpi04] and

P4[p4system93] libraries belong to this category. The task schedulers like

Ants[ants04], Condor [condor04] and Linux Virtual Server [lvserver04] are in-

dependent programs focusing on redistributing users’ tasks among multiple

servers according to the deployed load balancing algorithms used. The Con-

dor tool set allows users to give Classified Advertisement [rajesh98] to describe

their job properties and assigns the task to matched servers.

The Globus project[globus04] provides a framework to standardize the

representation of services and system resources in order to provide uniform

interfaces for service publication/discovery, resource management and effi-

cient data exchange. Another category contains the patches for automatic

system load balancing at system level. OpenMosix[openmosix04] project be-

longs to this category, available for Linux kernel 2.2 and 2.4 series under

the i386 architecture. It requires the program at application level to use the

fork() system call to create multiple processes at run time.

The Smart socket library in this project is an approach in programming

1.3 Objectives 6

Name Type Description

PVM, MPI, P4 programming library message passing for application
Smart library programming library server selection by user

focusing on network layer
LVS, Ants, Condor Task scheduler tasks distribution among servers
Globus framework for GRID service format definition of service
OpenMosix kernel patch automatic process migration

Table 1.1: Current Distributed Programming Tools

library category. Instead of providing convenient message passing interfaces

for application, we focus on the network layer and provide interfaces for users

to state the characteristics of the servers desirable for their applications.

1.3 Objectives

The new Smart socket library is designed with the following objectives for

sever selection in a scalable distributed environment:

• The workload status of servers should be extracted with low overhead.

• There should be an organized format to present the user’s requirement

for server resources.

• Users can easily employ the new socket library in a small scale local

computation environment and a large scale environment with numerous

servers scattered globally.

• The convenient socket library interface must be provided for easy ap-

plication development.

1.4 Thesis Contribution 7

• The structures of the components must be flexible in order for future

enhancements as well as cooperating with other distributed facilities.

1.4 Thesis Contribution

This project has made the following contributions:

• A basic structure for status-aware server selection at application level is

implemented. The status information can be extracted from operating

system interface, the network monitors or security agents.

• A meta language for describing user’s requirement on servers is im-

plemented. With the abundant build-in parameters and mathematical

functions, user are able to write complex representations conforming to

sophisticated algorithms.

• The convenient client library can be used, stand alone or combined with

other tools such as the PVM library, complementing the deficiencies of

the existing utilities.

• The server probes, network monitors, security agents and the server

selection algorithms used by the wizard program can be replaced con-

veniently as long as the information messages conform to the predefined

format.

• A distributed mode matrix multiplication program and a concurrent

downloading program have been developed to verify the applicability

of this library.

1.5 Thesis Outline 8

With the Smart socket library, users can explicitly select servers for the

applications. An example is given in Fig. 1.4, in which a user requests for 3

servers. Each server must have 100 MBytes free memory and the CPU usage

must be less than 10%. Also, the network delay to each server should be

less than 20 ms and the host named “hacker.some.net” must not be selected.

There are 12 available servers located in four networks: A, B, C and D,

with a network delay of 100 ms, 5 ms, 10 ms and 15 ms each. The wizard

program scans through each network sequentially for candidates. All servers

in network A are eliminated due to the long network delay. Host B2, C1 and

D1 are qualified based on the requirements. Host C2 is not chosen since it is

blacklisted.

1.5 Thesis Outline

Chapter 2 will present the related works done by other researchers. Chap-

ter 3 will introduce the design issues and key components in the project.

In Chapter 4, we will discuss some of the implementation issues. The ex-

periment results will be shown in Chapter 5 to verify the effectiveness and

applicability of this project. The limitations and future work of the project

are described in Chapter 6, followed by the conclusion in Chapter 7.

1.5 Thesis Outline 9

R
eq

 =
 "

R
eq

.t
x

t"

C
P

U
_

fr
e

e
 >

 9
0

%

m
e

m
o

ry
_

fr
e

e
 >

 1
0

0
M

B

S
e

rv
e

r
!=

 "
h

a
c
k
e

r.
s
o

m
e

.n
e

t"

N
e

t_
d

e
la

y
 <

 2
0

m
s

S
er

v
ic

e
P

o
rt

 =
 1

2
3

4

S
er

v
er

 N
u

m
b

er
 =

 3

p
o

rt
 =

 1
2

3
4

,
re

q
 =

 "
re

q
.t

x
t"

)

g
et

_
so

ck
et

s(
n

u
m

 =
 3

,
o

p
t

=
 1

,

fr
ee

_
so

ck
s(

so
ck

_
fd

[]
,

n
u

m
)

N
ew

 S
o

ck
et

 L
ib

ra
ry

1
2

3

N
et

w
o

rk
 A

cp
u

=
4

5
%

m
em

=
5

0
M

B

1

cp
u

=
9

5
%

m
em

=
1

2
0

M
B

2

cp
u

=
0

%

m
em

=
2

0
M

B

3

N
et

w
o

rk
 B

cp
u

=
1

0
0

%

m
em

=
5

1
2

M
B

1

cp
u

=
1

0
0

%

m
em

=
2

5
6

M
b

2

cp
u

=
1

0
0

%

m
em

=
1

2
8

M
B

3

N
et

w
o

rk
 D

cp
u

=
1

0
0

%

m
em

=
2

5
6

M
B

1

m
em

=
1

2
8

M
B

cp
u

=
2

0
%

3

cp
u

=
1

0
0

%

m
em

=
5

1
2

M
b

2

h
ac

k
er

.s
o

m
e.

n
et

N
et

w
o

rk
 C

U
se

r
A

p
p

li
ca

ti
o

n

d
el

ay
 =

 1
0

0
m

s

d
el

ay
=

1
5

m
s

d
el

ay
=

5
m

s

d
el

ay
=

1
0

m
s

S
er

v
er

s
=

 B
2

,
C

1
,

D
1

Figure 1.4: An Example with Smart Socket Library

Chapter 2

Related Works

This project involves several aspects of distributed computing, such as re-

source monitoring, programming interface development and user query han-

dling. In this chapter, we will present some related projects and the compar-

isons between our project and these previous works.

2.1 Status Report

The /proc file system[erik01] in Linux system is used to extract the system

parameters from the servers. It provides access to system information about

the hardware devices like CPU, memory, network interface and hard disk.

Device drivers and kernel modules can create corresponding entries in /proc

for providing device information or debugging purposes. It is an efficient way

for kernel level information retrieval in the Linux system.

The Trust Agent from Cisco Systems is a probing agent running on the

ending host. It interacts with the softwares in the local host to report infor-

2.1 Status Report 11

mation like system version, patch level and computer virus infection records.

Currently, Cisco Trust Agent supports only Windows systems. The server

probe developed in this project supports only Linux systems due to the de-

pendence on procfs. However, based on the simple message passing mecha-

nism, a windows agent can be quickly built based on Windows APIs.

The system probe in the Smart TCP socket library is similar to the Cisco

trust agent. It is installed in each server being monitored and performs

active self-probing periodically. The system resource usage is extracted from

/proc entries, written into a server status report and sent back to the system

monitor.

For the network metrics measurement, the network delay and available

bandwidth are critical for this project. Numerous popular tools are avail-

able to the public for bandwidth estimation, including pipechar [ncs03] and

pathload [manish02pl]. Pathload uses an end-to-end technique containing a

sender and a receiver. The sender transmits multiple data streams with dif-

ferent data rate, following which the arriving time of the data packets are

recorded. If the transmission time dramatically increases, after transmission

rate exceeds a certain value, that value will be used as the estimated avail-

able bandwidth. Pathload is a two-end probing technique, which needs the

sender and receiver programs running on both ends of the target network

link. This technique is highly accurate but less flexible compared with the

single end probing techniques.

Pipechar developed by Lawrence Berkeley National Laboratory is an one-

end probing technique. It uses the packet pair method to estimate the link

capacity and bandwidth usage. It sends out two probing packets and mea-

2.2 Distributed Computing Libraries 12

sures the echo time. The bandwidth value is calculated based on the gap

in the echo time. As a single end packet pair based tool, pipechar is very

flexible but less robust to network delay fluctuations.

The Smart socket library uses an one-end probing technique derived from

the packet pair method, named one way UDP stream, to probe the target

network link. The differences between probing packet sizes and delays are

used to estimate the available bandwidth.

2.2 Distributed Computing Libraries

MPI(Message Passing Interface Standard)[mpi04] and PVM(Parallel Virtual

Machine)[pvm04] are the two common libraries available for distributed ap-

plication development. MPI is a standard defining a set of application pro-

gramming interfaces for efficient communication in heterogeneous environ-

ment. There is no virtual server or resource management ideas concerned in

the original design. Users must use the communication functions in the MPI

implementation to coordinate the processes in the applications.

PVM is an application library that enables the user program to spawn

multiple processes in a cluster of servers and provides inter-communication

among these processes. The design of PVM is based on the concept of virtual

machine. It includes programming interfaces for exchanging different types of

data, managing the spawned processes and controlling the servers used by the

current program. The user can manually monitor or manage the machines

through the PVM console and the applications can modify the server pool at

run time. A detailed comparison between MPI and PVM is given in [geist96].

2.3 Grid Middle-ware 13

MPI and PVM are application level libraries focusing on message passing

and process management. The client library in the Smart TCP socket library

enhances the network layer functions, focusing on server selection and socket

management according to the user’s requirement. As the Smart library is

working at a different layer compared with many other distributed libraries,

it has a great compatibility, which allows users to apply other distributed

libraries such as PVM and the Smart library in the same application.

2.3 Grid Middle-ware

The Globus Alliance project[globus04] started with a goal of “enabling the

application of Grid concepts to scientific and engineering computing”. The

Globus project provides the Globus Toolkit for quick building Grids and Grid

applications. This toolkit contains a group of components: Globus Resource

Allocation Manager for resource and process management, Globus Secu-

rity Infrastructure for user authentication service, Monitoring Discovery Ser-

vice(MDS) for accessing system configuration, network datasets, and Heart

Beat Monitors for detecting system failure. The Globus project presents a

new layering of network based on the resource sharing concept for scientific

computing[ogsa04]. The Globus Grid Architecture contains the following lay-

ers: Application, Collective, Resource, Connectivity and Fabric. According

to this new network layering, our project is working at the connectivity and

resource layer, which focuses on providing better computation resources for

user tasks.

The resource monitoring function in the Smart socket library is similar

2.3 Grid Middle-ware 14

to the MDS component in Globus toolkit. Globus toolkit provides interfaces

for applications to access the resource information. The Smart socket library

manages the resource information internally, hides the lower layer details

from users and provides clean programming interfaces for application devel-

opment. The objectives for resource monitoring in the Globus toolkit and the

Smart socket library are different. The Globus toolkit tends to provide users

an overview of the resources in the GRID environment. The Smart socket li-

brary automatically monitors the resources, minimizes the user’s involvement

and tries to provide the optimal resource for the upper level applications.

The Condor[condor04] project developed a set of utilities for providing

services like resource monitoring, task planning/scheduling and process mi-

gration. The user level applications need not be modified in order to use

the Condor tool set. The Condor tool set provides Classified Advertise-

ment(classad) for users to specify server requirements and for servers to

specify the backward requirements on users’ tasks. The matchmaker will

try to pick the best resources for that matched task. Another great fea-

ture provided by Condor is that it provides process migration, which is used

when one part of the task cannot be finished on a particular server in time.

Though both the classad from the Condor project and the meta language

defined in the Smart socket library can be used to describe the requirements

on server resources and network metrics, there are some differences. In clas-

sad, different types of parameters may be defined including numerical type,

character string type and so on. Users can specify the requirements on the

server resources; meanwhile, servers can also define the characteristics of the

user tasks that can be run locally. The query handler called match-maker

2.4 Load Balancing Tools 15

allocates the best matched servers for each task. The meta language in the

Smart socket library provides mainly numerical type parameters. It covers

a larger parameter range, from system load, CPU usage, disk input/output

activities to network metrics. A set of predefined mathematical functions are

available, which can be used to give complicated requirement specifications

if necessary.

2.4 Load Balancing Tools

Although load balancing is not a major concern for this project, it could be

considered as an advanced feature for future development.

The Linux Virtual Server[lvserver04] is a utility running in the gateway of

a server cluster. It accepts the application request and forwards the request to

the servers running behind the gateway. The decision making could be based

on round-robin, Hash function or accounting information like number of tasks

completed by each server or number of connections currently established to

the servers. This utility has been included in the new Linux kernel 2.6 series.

OpenMosix[openmosix04] has a very different way to parallelize appli-

cations compared with the other distributed application tools. OpenMosix

modifies the Linux kernel to add the daemons inside. The Linux systems

with OpenMosix patch communicate with each other and build a cluster

automatically. If the user application can create multiple processes during

execution, some of the processes will migrate to run on other servers in the

cluster. In future work, the Smart socket library can be modified to provide

abstract socket interfaces for process involving network communication, such

2.4 Load Balancing Tools 16

that the process suspension/resumption and data migration can be realized

smoothly.

Chapter 3

Components and Structure

In this section, the key components of the Smart socket library and the

bandwidth measurement method will be presented in detail.

3.1 Overall Structure

The Smart TCP socket library contains 7 components. The overall structure

diagram is given in Fig. 3.1. Server probes are running on the servers in

the computing environment. System monitor, network monitor and security

monitor run on the monitor machine. On the same monitor machine, there

will be a transmitter to send the information collected by the monitors to

the wizard machine. On the wizard machine, we have wizard program and

receiver program running. Receiver writes the message received from the

transmitter to the memory space shared with wizard. Wizard will wait for

user’s request from the client machine and process it using the status reports.

An insight view of these components will be given in the rest of this chapter.

3.1 Overall Structure 18

Wizard

Receiver

Wizard Machine

Msys

Mnet
Msec

Transmitter

Monitor Machine

Msys

Mnet
Msec

Transmitter

Monitor Machine

Msys

Mnet
Msec

Transmitter

Monitor Machine

Status Reports(sys, net, sec)

Server

Probes

Server

Probes

Server

Probes

Server

Status

Client Machine

(with client library)

User request

and wizard reply

Figure 3.1: Overall Structure of the Smart TCP library

3.2 Server Probe and Status Monitor 19

3.2 Server Probe and Status Monitor

3.2.1 Server Probe

The proc file system in Linux provides a convenient way for users to access

the system information, such as settings of devices, hardware configurations

and the system resource usage. The server resource usage status includes the

following critical parameters in Table. 3.1.

Entries File Meaning

load 1, load 5, load 15 /proc/loadavg system load in 1, 5, 15 minutes
user, nice, system, idle /proc/stat CPU usage rate
total, used, free /proc/meminfo memory usage
allreq, rreq, rblocks /proc/stat disk IO
wreq, wblocks
name, rbytes, rackets /proc/net/dev network interface IO
tbytes, tpackets

Table 3.1: Server Status Entries

The /proc entries will be scanned regularly and the scanned results will

be sent back to the server status monitor - system monitor. The monitored

parameters are selected to facilitate different types of applications: CPU

bound, memory bound and IO bound. Large calculation tasks may require

more CPU time and tremendous amount of free memory space. Data trans-

mission tasks will prefer those servers with more network bandwidth and low

disk read/write activities.

Once the status is collected, the server probes will send the status report

to the system monitor running on a dedicated server. As the system monitor

running in the local network has the minimal network delay and very few

packet losses, the transport layer protocol in use is UDP in order to reduce

3.2 Server Probe and Status Monitor 20

the overhead of the probing. If more parameters are required from the server

probes, the size of server reports could increase dramatically. In that case,

the reliability of the TCP protocol is preferable over the efficiency of UDP.

Currently every server probe requires 130 KBytes of memory space and

the CPU usage is less than 0.2% on a Pentium-3 866 MHz machine. The

server status report message is less than 200 bytes long. With a probing in-

terval of 5 seconds, the required network bandwidth for status reporting from

a single server is less than 40 bytes/sec. The server status report parameters

are formatted into a character string for transmission. For example, if the

network interface has a data transmission throughput of 200,000 bytes/sec.

It will be transmitted as a string of “2000000”, 7 characters long. In binary

format, this number could be represented as an Integer type, typically 4 bytes

long. Transmitting numbers as strings will require larger memory than what

the actual figures would require in binary format. However, the advantage is

that the probes can run on both machines with Big Endian(IBM, Motorola)

and Little Endian(VAX, x86), without any modification, as the there is no

memory alignment issue in transmitting character strings on networks.

3.2.2 System Status Monitor

The system status monitor receives the server status reports from system

probes and writes them into the shared memory space, as demonstrated in

Fig. 3.2.

The status reports are transmitted at an interval set by the administrator,

normally 5 to 10 seconds. Once a report is received, the system monitor will

3.2 Server Probe and Status Monitor 21

compare the server’s address with the records in the shared memory space.

If the server’s address already exists, the original record will be updated with

the new data. Otherwise, a new server record will be inserted into the server

status database.

Server Probes

Update

Record

Server Network 1

Server Network 2

Server Status Report

(UDP Packets)
Server Status Monitor

shared memory

Server 1

Server 2

Server 3

Server 4

Server n

Load

Memory

CPU

Network

Disk

Server Status

��
��
��
��

�
�
�
�

Figure 3.2: The relation between Server Probe and Monitor

A report timer is maintained in the system monitor side and each server

status record in the status database is tagged with the time stamp showing

when the record was recently updated. The monitor scans through the sta-

tus database accordingly to remove the stale records regularly. This allows

servers to join and leave the distributed environment at any time. If the

server probe stops sending back the server report, the monitor will conclude

that the server is not participating in any computation tasks. No more task

will be assigned to that expired server, until the server probe resumes.

The server status database in the shared memory is also accessed by the

3.3 Network Monitor 22

transmitter, which will transfer the status database to the wizard machine.

To allow concurrent access and avoid conflicts, System V IPC mechanisms

are used. The combination usage of System V semaphores and shared mem-

ory will resolve the concurrent read/write conflict situation and avoid false

memory access problems.

3.3 Network Monitor

3.3.1 Network Metrics Measurements

The network metrics involved include the network delay and the available

bandwidth of a network path. The packet loss rate is relatively low under

today’s high speed networking technology.

A lot of previous works have been done on measuring the network avail-

able bandwidth, including nettest, iperf, pipechar and pathload. Nettest and

iperf are built based on path flooding method. Pipechar makes use of packet

chain method and pathload uses the Self-Loading Periodic Streams(SLoPS)

method. Nettest and Iperf uses end-to-end method: the sender program

sends a TCP/UDP stream of packets as fast as possible and the receiver

measures the receiving rate of the packets as the available bandwidth along

the network path. This method is intrusive as it imposes heavy workload

on the probed network. Pipechar sends a chain of UDP packets back to

back and uses ICMP error messages to measure the gap created by the bot-

tleneck network links. On network paths with a high delay variation, the

estimated results will be inaccurate. Pathload uses a non-intrusive method

3.3 Network Monitor 23

called SLoPS. The basic idea of SLoPS is to send streams of UDP packets

at different data rate and monitor the network delay for each stream. If the

sending rate is higher than the available bandwidth on the network path,

the delay will be increased as the queue will be built up at the bottle link.

According to our experiments, pipechar and pathload produce most accurate

results. However, for networks under heavy load or with high delay varia-

tions, pipechar will report wrong results, because its probing algorithm is

highly sensitive to network delay variations.

A modified one-way UDP stream method is used to measure the band-

width and network delay in our project. We will take a look at this method

in the following section.

3.3.2 One Way UDP Stream Measurements

The bandwidth measurement method used in this thesis, called one way UDP

stream method, is a derivation of packet pair dispersion technique[carter96].

It does not require end to end connection to be established. Only the sender

is responsible for sending the probing packets and measuring the network

statistics. The advantage is the flexibility, although the result may not be

as accurate to the end to end methods used by some network bandwidth

measurement tools.

The main idea behind this method is that the network delay for trans-

mitting a particular amount of data is related to the available bandwidth at

that moment, which can be represented by the following formula:

3.3 Network Monitor 24

Network Delay =
Data Size

Available Bandwidth
(3.1)

However due to the measuring technique in the programs, the measured

Network Delay is also affected by the system overhead and some network

delay factors unrelated to the amount of data transmitted in the probing.

In that case, the simplified version of the bandwidth formula(3.1) should be

further extended to Formula(3.2)

Network Delay =
Data Size

Available Bandwidth
+

System Overhead + Network Overhead (3.2)

From Computer Networking [kurose03], the network delay for a a packet in

a packet switch network is contributed by 4 factors as shown in Equation(3.3).

ddelay = dproc + dtrans + dprop + dqueue (3.3)

In Equation(3.3), the Network Delay is a combination of Processing Delay

- time to determine packet forwarding path, Transmission Delay - time for

transmitting the data from host/router to the network link, Propagation

Delay - time for the data bits to propagate from one end of the network link

to the other end and Queuing Delay - time that data bytes have to wait in

the router’s queue. Processing Delay is determined by the packet size and

processing speed of the networking device. Propagation Delay is determined

by the network link distance and the signal propagation speed[steve01] in

3.3 Network Monitor 25

the transmission medium. Queuing Delay is related with the amount of

cross traffic along the network path and routers’ scheduling algorithms.

Equation(3.3) contains the network delay factors related with system pro-

cessing speed, the data size and the cross traffic. Processing Delay and Prop-

agation Delay are usually negligible as the processing speed of the network

device is fast and propagation speed of signal is rather high. The two dom-

inating factors are dtrans and dqueue. In a simplified model, assuming S is

the size of the data, R is the transmission rate of the network path and Q is

queue length, we have:

dtrans =
S

R
, dqueue =

Q

R

So let T be the network delay to transmit data of size S, we can derive

that:

T = dtrans + dqueue =
S

R
+

Q

R

If we divide data size S by network delay T , we get:

B =
S

T
=

S
S
R

+ Q

R

=
S

S + Q
R

The result B can be considered as the available bandwidth to the data

stream for transmitting S, which is proportional to the ratio between data

size S and the queue length Q. In the actual scenario, we may consider

the network path as a multi-hop route, where the narrow link and bottle

link may not necessarily be the same and the queue lengths at routers vary

3.3 Network Monitor 26

from time to time. In such cases, we need to measure the network delay and

packet loss precisely and an end-to-end measurement method is preferred.

A sophisticated model has been presented in Manish’s paper[manish02]. In

this thesis, due to the consideration about the flexibility, the simple model

is used to serve the purpose.

As the network delay we measure contains the overhead from system and

network, we can further improve the representation of network delay T to

be:

T =
S

B
+ Overheadsys + Overheadnet (3.4)

According to Equation(3.4), the overhead in network delay will affect the

estimated value of available bandwidth B. In our algorithm, we send out two

data streams with different sizes S1 and S2 and measure the network delays

as T1 and T2. We will have

T1 =
S1

B
+ Overheadsys + Overheadnet

T2 =
S2

B
+ Overheadsys + Overheadnet

That implies Formula(3.5)

B =
S2 − S1

T2 − T1

(3.5)

The available bandwidth measurement Equation(3.5) has been tested to

be effective in a previous work[shaotao03]. However, the delay Equation(3.4)

3.3 Network Monitor 27

cannot be used to explain the network delays we measured in certain situa-

tion, which will be described below.

A program was written to send out a series of UDP probe packets of

different sizes and receive the ICMP port unreachable error message returned.

The time between the moment we send out the UDP packet and the moment

we receive the ICMP error message is recorded as the network delay for that

UDP probing packet. We start from UDP packet with 1 byte in data payload

part and increase the UDP payload size until 6000 bytes with a step size equal

to 10 bytes in order for a high resolution.

One experiment was conducted between two machines in campus network,

sagit and suna. The result graph of Round Trip Time(RTT) over UDP packet

size is given in Fig. 3.3.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

R
T

T
(m

s
)

UDP Packet Size(bytes)

Sagit to Suna, MTU=1500 bytes

"sagit_to_suna3.dat"

Figure 3.3: Round Trip Time from sagit to suna, MTU=1500 Bytes

3.3 Network Monitor 28

We find that the Round Trip Time of the probing packets is not linearly

proportional to the UDP packet size. Instead, there is a threshold point for

the increasing packet size. The increasing rate of the round trip time is much

higher when the UDP packet size is below the threshold. We further notice

that the threshold is very close to the Maximum Transfer Unit(MTU) value.

To verify this, another two sets of the same probing experiments were done

from host sagit to host suna, the plotted graphs are given as Fig. 3.4 and

Fig.3.5.

In Fig. 3.4, when the MTU value of the network interface was set to be

1000 bytes, the threshold appeared around 1000 bytes.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_suna_mtu1000.dat"

Figure 3.4: RTT from sagit to suna, MTU=1000 bytes

In Fig. 3.5, after the MTU value was set to be 500 bytes, the RTT over

packet size threshold value also changed to be 500 bytes.

3.3 Network Monitor 29

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_suna_mtu500.dat"

Figure 3.5: RTT from sagit to suna, MTU=500 bytes

To prove that this is not just a unique case for one machine or one net-

work path, another set of measurements were repeated on different pairs of

machines and network links. The network paths and machines involved in

the further measurements are listed in Table. 3.2.

The graphs of these 6 sample measurements are shown in Fig. 3.6. The re-

sult from these samples provides the following observations about the thresh-

old of probing packet size, which affects RTT measurements. Assuming the

threshold is called M :

1. The threshold M exists only on the physical network interface. The

experiments on loopback interface or other virtual interfaces(e.g. NAT

in VMware) did not reveal the effects of M.

3.3 Network Monitor 30

Index Network Link RTT by ping Description

a sagit → tokxp 126 ms NUS campus to APAN Japana

b sagit → cmui 238 ms NUS campus to CMU USA b

c sagit → ubin 0.262 ms local network segment
d tokxp → jpfreebsd 0.552 ms APAN Japan to ftp server in Japan
e helene → atlas 0.196 ms the same switch
f sagit → localhost 0.041 ms test on loopback interface

Table 3.2: Network Paths for RTT Measurements

aAsia Pacific Advanced Network, Japan Consortium
bCarnegie Mellon University, USA

2. The value of M is very close to the MTU value on the network interface.

3. When the probing packet size S ≤ the threshold M, the round trip

time has a higher ascending rate. If S ≥ M, the slope of the RTT over

packet size curve will be reduced to a lower value.

4. If the base RTT value is significantly large, in the factor of 10 ms, or

the variation of the RTT value is high, the effects of threshold M will

be shadowed, which makes M hardly noticeable.

Through these measurements, we believe that the network delay repre-

sentation in Formula(3.4) must be modified to exhibit this effect. We made

the following conjecture. The existence of the RTT-packet size threshold

could come from the initialization procedure, when the kernel starts to pass

the probing data bytes to the physical network interface. The initialization

time is determined by the size of first network frame in the data stream and

the initialization speed. If we call the initialization speed Speedinit and add

this new factor into Formula. 3.4, we can get Formula. 3.6, which can explain

the change of the RTT slope.

3.3 Network Monitor 31

 125

 130

 135

 140

 145

 150

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_tokxp_mtu1500.dat"

(a)

 238

 240

 242

 244

 246

 248

 250

 0 500 1000 1500 2000 2500 3000 3500 4000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_cmui_mtu1500.dat"

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_ubin_mtu1500.dat"

(c)

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"tokxp_to_jpfreebsd_mtu1500.dat"

(d)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"helene_to_atlas_mtu1500.dat"

(e)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1000 2000 3000 4000 5000 6000 7000

R
T

T
(m

s
)

UDP Packet Size(bytes)

"sagit_to_localhost_mtu1500.dat"

(f)

Figure 3.6: RTT Graphs for 6 Sample Network Paths

3.3 Network Monitor 32

T =















S
B

+ S
Speedinit

+ Overheadsys + Overheadnet, if S ≤ MTU

S
B

+ MTU
Speedinit

+ Overheadsys + Overheadnet, if S > MTU
(3.6)

By Formula. 3.6, assuming the slope of RTT during the time when probing

packet size S ≤ MTU is Slope1, we have Slope1 = 1

B
+ 1

Speedinit

; recall that B

is the available bandwidth of the network path. When S > MTU , the slope

of RTT curve Slope2 is represented by Slope2 = 1

B
; the initialization time is a

constant during that stage. According to Formula(3.5), the slope of the RTT

curve will be used as an estimation of the inverse of the available bandwidth

1

B
. In the early stage while packet size S ≤ MTU , the calculated RTT slope

value is not 1

B
but 1

B
+ 1

Speedinit

. As a result, if the probing UDP packet size

is less than the MTU value, the available bandwidth we calculated B′ will

have:

1

B′
=

1

B
+

1

Speedinit

(3.7)

As we can see from Equation(3.7), 1

B′
is larger than 1

B
and 1

Speedinit

, given

that B is the actual available bandwidth and Speedinit is the initialization

speed. That will imply B′ < B and B′ < Speedinit, which means if the

probing UDP packet size S < MTU , the estimated bandwidth B′ < B. In

another word, when the probing packet size is smaller than the MTU, the

bandwidth measured will be less than the actual bandwidth value under the

effects of Speedinit.

According to this result, the size of the probing packet must be carefully

3.3 Network Monitor 33

selected. For the probing packet size S, we propose the following rules:

• The packet size S > MTU .

• The sizes of the two UDP probing packets, S1 and S2, should be as

small as possible. A larger packet size will cause more fragments, which

allows more cross traffic packets to intervene the measurements and

create confusing results.

• S1 and S2 should be selected in the way that the number of fragments

generated from these two packets is as close as possible. Although

the Overheadsys and Overheadnet are considered to be constant in

Formula(3.6), the size of the packet may still affect these two factors.

This is because packets with different sizes will require different system

processing time in the system and routers.

To compare the results under various probing packet sizes, 7 groups of S1

and S2 were chosen for experiments as shown in Table. 3.3. The experiment

results are presented as a bar chart in Fig. 3.7. From the results, we can

see the negative effects from initialization speed Speedinit, during the time

when both S1 and S2 are less than MTU value. The bandwidth measured by

the first 3 groups is around 20 Mbps, when the actual bandwidth is around

95 Mbps(measured by pathload). As Speedinit is estimated as 25 Mbps, the

first frame from a single UDP packet will be processed at this speed. When

both S1 and S2 are larger than the MTU value, the measured bandwidth is

much closer to the actually available bandwidth, as we can see from the next

4 groups. The 7th group has the best the result, because the probing packet

3.3 Network Monitor 34

sizes S1 = 1600 bytes and S2 = 2900 bytes are the best probing packet size

within the set, based on our conclusion above.

Packet Size(Bytes) Min Bw(Mbps) Max Bw Avg Bw

100∼500 18.68 21.10 20.01
500∼1000 17.45 19.71 18.39
100∼1000 17.88 18.79 18.33
2000∼4000 85.77 91.81 88.12
4000∼6000 78.28 90.72 85.18
2000∼6000 82.26 85.21 83.54
1600∼2900a 86.49 99.03 92.86

pipechar 95.346
pathload 96.1∼101.3

Table 3.3: Bandwidth Measurements using various Packet Size

aOptimal Packet Size under MTU = 1500 bytes

3.3.3 Network Monitor Procedure

In a large computing environment involving many server groups, each server

group has an individual network monitor. The network monitor collects the

network status information from the network paths linking local servers to

remote servers. The operation diagram is given in Fig. 3.8.

Each network monitor is informed about the neighboring network moni-

tors around and probes one another for the delay and bandwidth values along

the network paths. The network status record formatted as a table shows

the (delay, bandwidth) pairs to each neighboring network monitor. This ta-

ble contains the network status for network paths from local server group

to all the other groups. This information can be utilized by those applica-

tions in which the network delay or bandwidth is one of the major concerns.

3.3 Network Monitor 35

110

100

90

80

70

60

10

20

30

40

50

Measured

Bandwidth

(Mbps)

2000−4000100−500 500−1000 100−1000 1600−29002000−60004000−6000

Probing Packet Size(Bytes)

(Actual Bandwidth 95.3 ~ 96.1 Mbps)

0

88.12
85.18 83.54

18.3318.39
20.01

92.86

Figure 3.7: Bandwidth Measurements using various Packet Size

3.3 Network Monitor 36

Sec

Monitor Machine

Net Sys

Monitor Machine

SecSys

Net

Monitor Machine

Net

Sec

Sys

Monitor

ServerServer Group 1

Server Group 2 Server Group 3

Meausure delay, bandwidth

Figure 3.8: Operations of Network Monitor

3.3 Network Monitor 37

The network status records for the sample structure in Fig. 3.8 is listed in

Table. 3.4.

Net Monitor netmon-1 netmon-2 netmon-3
Net Status mon2(delay, bw) mon1(delay, bw) mon1(delay, bw)

mon3(delay, bw) mon3(delay, bw) mon2(delay, bw)

Table 3.4: Sample Network Monitor Records

The assumption is that in the local area network, the bandwidth and

delay is sufficient for most applications. Only in larger area networks, where

multiple servers from various locations are joining to work for the same task,

the network condition will influence the performance. In those cases, users

may specify a request of “(delay < 20ms) and (bandwidth > 10Mbps)” to

avoid sub-optimal servers. The user request handler - wizard will look at

the statistics collected by network monitors to check the availability of those

qualified servers. Traditional server selection techniques normally do the

round-robin blindly, or count the number requests/connections handled by

each server, ignoring the user’s requirement. From the user’s perspective, the

algorithms utilizing network status records can provide better response time

and higher throughput, which is a major improvement from the traditional

server selection techniques. Classic server selection techniques normally do

the round-robin blindly, or count how many requests have been handled by

the server, how many connections the server has made, and ignore the user’s

requirement.

The probing setting must be carefully configured by the administrator.

The probing interval should be determined by the number of the server

groups. More server groups in the computing environment will create more

3.4 Security Monitor 38

network paths to probe. The total number of probes is P 2

n = n × (n − 1),

given that n is the number of server groups. The probing interval should

get larger as the number of network paths increases. The network probing

procedure should be done in a sequential order. Multiple probes should not

run simultaneously. Or else it will introduce high extra network traffic and

cause interference between concurrent probes.

3.4 Security Monitor

3.4.1 General Security Issues

The security issue is not one of the main concerns in Smart TCP socket

library. The network access control, operating system patching and the ap-

plication hot-fix should be handled by other system components. In the cur-

rent implementation of the Smart TCP socket library, the security monitor

reads the security records from an dummy security log. The log file contains

the server names and the correspondingly security levels, which is an integer

representing the clearance level of each server. We leave a framework of the

security component to be open, such that third party security components

can be plugged in with minimal modification.

The security information will be reported from those security “probes”.

Cisco has presented a Network Admission Control(NAC) mechanism[cisco04]

to protect the servers in a network from being attacked by worms, computer

viruses and various hacker attacks. The Cisco Security Agent will be installed

to the network servers to collect the operating system version, patch level and

3.4 Security Monitor 39

hot-fix information. Other software clients such as anti-virus software can be

integrated with Cisco Security Agent to provide further information about

viruses or worms found in the servers. These reports will be sent to a Trust

Agent for further action. If the security reports collected by the security

agents and anti-virus software can be sent to the security monitors in our

Smart TCP socket library, users can also create precise requests on server

security.

3.4.2 Security Techniques

Currently there are two conventional methods to collect system/network se-

curity information. One is nmap(Network Mapper) based probings for net-

work scanning; the other method is registry scanning to diagnose local ma-

chines. In nmap based probing, the probing software sends out packets and

analyzes the response from the target host and compares the server’s response

with the local fingerprint database. This fingerprint database stores the typ-

ical responses that most main stream operating systems may generate. The

classic probing measures, including TCP FIN probe, TCP ISN Sampling,

ICMP Message quoting, are fully explained in Fyodor’s paper[fyodor98]. To-

gether with Port Scanning techniques the various services running on the

servers can be checked for any security holes. A sample output from nmap

program is listed below:

Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)

Interesting ports on debian (127.0.0.1):

(The 1550 ports scanned but not shown below are in state: closed)

3.4 Security Monitor 40

Port State Service

9/tcp open discard

13/tcp open daytime

22/tcp open ssh

37/tcp open time

Remote operating system guess: Linux Kernel 2.4.0 - 2.4.17 (X86)

Uptime 2.245 days (since Sat Jun 26 10:41:28 2004)

Nmap run completed -- 1 IP address (1 host up) scanned in 2 seconds

The registry can be scanned to collect local security information, a tech-

nique commonly used in Windows systems. One example is the Network

Security Scanner(NSS) from GFI[gfi04]. The scanner checks the registry to

extract security report about OS version, patch list, service ports opened

and possible vulnerabilities in the local machine. Compared with the net-

work probing method, the registry scanning method is more time efficient

and accurate. However, it supports only Windows based systems.

Apart from the possibility to integrate the security agents into new socket

library, the task of controlling the network access, managing network services,

detecting the service bugs and installing hot-fixes should be handled by a

separate group of programs.

3.5 Transmitter and Receiver 41

3.5 Transmitter and Receiver

The transmitter and receiver work together to transfer the information from

the monitor machines to the wizard machine. The operations of these two

components are demonstrated in Fig. 3.9.

Sys Monitor Net Monitor Sec Monitor

Transmitter

SYS NET SEC

(Server Probes)

Net Monitor

Net Monitor

Net Monitor

Security

Status

File

Monitor Machine

SYS NET SEC

Wizard

Receiver

Wizard Machine

Transmitter

Transmitter

Transmitter

Read

Write

SYS
Shared memory

for System Status

NET Shm for Net Status

SEC Shm for Security Status

Transfer

(Other Transmitters)

Request

Transmission

Figure 3.9: Interactions between the Transmitter and Receiver

3.5 Transmitter and Receiver 42

3.5.1 Transmitter

The transmitters are running on the monitor machines where the 3 monitors:

system, network, security monitors reside. The 3 monitors write the 3 types

of status records into the shared memory regions. The transmitter reads the

contents of those 3 memory regions and transfers the data to the receiver

running on the wizard machine.

The records are copied out from the memory space and sent in binary

format. The character string is not used to represent the data, as each mon-

itor may handle a large number of servers. The binary to ASCII conversion

is resource consuming and less efficient. This binary transmission scheme re-

quires that the two machines with the transmitter and receiver running must

have the same hardware architecture in order to avoid the Endian issues. For

instance, the number 0xAABB in big endian machines will become 0xBBAA

in little endian machines. The data type units should also be consistent in

the two machines. A 64-bit long integer in machine A may result in a value

overflow in machine B, in which a long integer has only 32 bits.

TCP protocol is used to transmit the server status and network status

information transmitters to receivers. The format for data transmission is

[type, size, data]. Type and size fields are transmitted first, so the re-

ceiver can determine the amount of memory that should be allocated to store

the data field. Since the data field is in binary format, the contents can be

directly copied to shared memory space in the receiver.

The transmitter has different behaviors under the centralized and the

distributed mode. In the centralized mode, the transmitter actively sends

3.5 Transmitter and Receiver 43

data reports from system, network, security monitors to the receiver at a

regular interval. In the distributed mode, the transmitter will listen in passive

mode, waiting for the transmission request from the wizard. The reports are

sent back only when a transmission request from the wizard is received.

The idea is that in the centralized mode, when the servers are located in a

small area, we can instantly get the status updated and improve the request

processing time. In the distributed mode, the server groups are located

sparsely in a large area. The user request will come less frequently, so regular

transmission of the large amount of status records may cause unnecessary

network load. The two operating modes of transmitters and receivers make

them adaptable to different situations.

3.5.2 Receiver

The receiver listens on the service port to wait for incoming reports from

the transmitter. According to the contents of the incoming data stream, the

receiver creates the corresponding data structures to store the information

and updates the data structures in the shared memory. In this way, the

receiver can maintain the identical shared memory contents as what is in

the transmitter. The wizard can directly use the contents as if they were

generated locally.

In the centralized mode, there is one receiver running together with the

wizard in the same machine. The receiver periodically obtains the status

reports from the transmitters and refreshes the shared memory accordingly.

In the distributed mode, there could be multiple receivers and wizards. A

3.6 Wizard and Client Library 44

wizard triggers all transmitters participating in the computing task to send

updated reports to the receiver, upon the incoming of a new user request.

3.6 Wizard and Client Library

The wizard program will be used to handle the server requirement from the

client library directly. These two components will be described in this section.

3.6.1 Procedures of Wizard

The wizard program, running as a daemon, waits for the user request at the

service port and processes the user requests sequentially. The underlying

protocol used is UDP protocol due to the low overhead. Also when the in-

coming user requests become enormous, the TCP based server will have quite

a few “TIME WAIT” connections left. “Too many files opened” error may

occur during peak time to prevent new connections from being established.

The main procedure of the wizard contains the following steps:

1. The wizard listens on the service port for the user’s request. The format

of user request is shown in Table. 3.5

Sequence Num Server Num Option Request Detail

Table 3.5: Format of User Request

Sequence Num is the random number generated by the client library

to identify the current user’s request. In the reply message for that

particular request, the same sequence number will be used. This can

ensure that when multiple user requests are issued from a single client

3.6 Wizard and Client Library 45

machine, the client library can make a correct match between requests

and replies.

Server Num is the number of servers required. The wizard will try to

find the exact number of available servers as candidates. There is an

upper bound for this number, because the server list is sent back in the

UDP message, which is not reliable when the message becomes long.

Currently the limit is set to be 60.

Option field is used to provide additional user options in special situa-

tions, like when the number of returned servers is less than requested

or when the user wants to use some predefined server requirement tem-

plates. Request Detail contains the detailed user request in character

string format. It is the full description about what kind of servers are

wanted.

2. The wizard reads the shared memory contents to get the data structures

updated. In the centralized mode, the shared memory area is updated

by the receiver program periodically. In the distributed mode, the

wizard has to issue an update request to the transmitters of all server

groups for updates. There are 3 data structures in wizard : sysdb for

system status of the servers, netdb for network metrics of the monitors

and secdb for the security levels of the servers. Fig. 3.10 illustrates the

format of the 3 structures.

3. The server status will be loaded and compared with the user’s require-

ment. The processing of user’s requirement has two steps: lexical anal-

ysis and syntactical analysis[lexyacc92]. The lexical analysis will parse

3.6 Wizard and Client Library 46

Sysdb
(from all transmitters) (from one transmitter)

Sysblk
(from one server probe)

Server Status

(from all transmitters)

Netdb
(from one transmitter)

Netblk

(from all transmitters)

Secdb

(from one transmitter)

Secblk

Sysblk−2

Sysblk−N

Count

Type

Sysblk−1

Server−N

Server−2

Server−1

Probe addr

Network IO

Harddisk IO

Memory

Load

CPU

Type

Count

Netblk−1

Netblk−2

Netblk−N

Transmitter

Count

Type

Transmitter

Type

Count

Mon−1

Mon−2

Mon−N

bandwidthdelay

10ms

20ms

10Mbps

40Mbps

15Mbps9ms

Type

Count

Secblk−1

Secblk−2

Secblk−N

Type

Count

Transmitter

Security levelServers

Server−N

Server−2

Server−1 level−1

level−2

level−N

Figure 3.10: Format of Status Record Structures

3.6 Wizard and Client Library 47

the user request contents into small units named tokens.

• “#.*” - any strings after a “#” sign are considered as comments,

ignored by the parser. Users may write the comments to group

the statements in proper order.

• “ ” and “\t” are white space characters, which are ignored.

• “[0-9]+|[0-9]+\.[0-9]” is classified as numerical type.

• “[a-zA-Z]+[a-zA-Z_0-9]*” is be parsed as a variable. There

are 3 types of variables: temp variables, user-side variables and

server-side variables. Temp variables are defined at the require-

ment context, used to assist the description of the requirement

details. Server-side variables are predefined at the wizard side,

whose value will be given by the status reports from the monitors.

The third type is the user-side variables, whose values are assigned

by the user. Currently, there are two groups of user-side variables:

trusted-servers and untrusted servers. The trusted servers will al-

ways be selected first when available and the untrusted servers

will be avoided by the wizard.

• “<num>.<num>.<num>.<num>” and “<string>.<string>...<string>”

are considered as network address, which represents the address

of the servers in user’s preference list. The actual validation of

the network address will be done by the socket function call in

system.

• “>, >=, <, <=, ==, !=, &&, ||” are parsed as the logical op-

erator. The return value for logical operation can be either True

3.6 Wizard and Client Library 48

or False.

After the lexical analysis step is done, the syntax of the user require-

ment will be checked. The basic rules for the statements are given as

below:

• Users can use variables to do mathematical calculations. The

value of the mathematical operations will be the numerical. In

this case, the normal operations as +, −, ×, ÷ will remain the

same.

• A statement can be either a logical statement or non-logical. The

return value of a logical statement will be used to decide whether

a server is qualified. A statement is logical, only if the main op-

erator is a logical operator. For example "(a+b)<=b" is a logical

statement but "a+(b<c)" is not a logical statement.

• The simple assignment statement can be used to define temp vari-

ables. If an uninitialized temp variable is used in the logical state-

ment, the whole statement will be considered as a false statement.

• If multiple lines of statements are specified, the server is qualified,

only when all the logical statements return the true value.

4. Once the available servers are selected, a server list will be built and

sent back to the client. The format of the reply message is given in

Table. 3.6.

Sequence Num is the sequence number of the reply message, which is

identical to the one in the original request message. Server Num will be the

3.6 Wizard and Client Library 49

Sequence Num Server Num Server-1 . . . Server-n

Table 3.6: Format of Reply Message from Wizard

number of servers returned. Following that, it is the list of candidate server

addresses.

3.6.2 Functions of Client Library

The client library interacts with the user directly. The user provides the

server specifications and the client library will find the optimal servers with

the help from the wizard. The main procedure of the client library contains

the following steps:

1. The client library reads the user’s requirement from the requirement

file. A sample user requirement may look like the following:

host_system_load1 < 1

host_memory_used <= 250*1024*1024

host_cpu_free >= 0.9

#ldjfaldjfalsjff #akldjfaldfj

#some comments

host_network_tbytesps < 1024*1024 # for network IO

comments

user_denied_host1 = 137.132.90.182

user_preferred_host1 = sagit.ddns.comp.nus.edu.sg

#

This user requirement contains 4 server-side variables: host system load1,

host memory used, host cpu free, host network tbytesps and 2 user-side

3.6 Wizard and Client Library 50

variables: user denied host1, user preferred host1. There are in total 22

server-side variables and 10 user-side variables available. Together with

the built-in functions such as exp, sin, cos and log10, users can write

very sophisticated expressions about the servers. In the example above,

the user requires that the server’s system load in the last 1 minute

should be less than 1, memory space used in the server should be be-

low 250 Mbytes, the free CPU time should be at least 0.9. Also the user

will deny the selection of the server with IP address “137.132.90.182”

and the preferred server is “sagit.ddns.comp.nus.edu.sg”.

2. The client library then attaches the random sequence number, server

number plus the option supplied by the user to the requirement details.

The user request message as described in Table. 3.5 will be sent as a

UDP message to the wizard.

3. Once the request message is sent, the client library will wait for the

reply from the wizard in the format as given in Table. 3.6. The sequence

number will be compared with the original one, in order to ensure that

this is the expected reply message. The server number in the reply

message will also be checked. If the returned server number is equal

to the one in the request message, it means all the required number of

servers have been found. If the number is less, client library will take

different actions based on the option from the user.

4. The client library will try to make a connection to the service port of

each server in the candidate list. The connected sockets will be returned

to the original caller in the user’s program. The user’s program and

3.6 Wizard and Client Library 51

the actual service program running on the servers should be aware of

how to interact through the list of connected sockets. Hence, it is the

user’s responsibility to tell what kind of servers are optimal.

Chapter 4

Implementation Issues

A few key implementation issues of the library components will be discussed

in this chapter.

4.1 Server Probes

The 5 /proc file system nodes revealing the system configuration and work-

load status are listed below:

loadavg_fname = "/proc/loadavg"

cpuusage_fname = "/proc/stat"

memusage_fname = "/proc/meminfo"

diskio_fname = "/proc/stat"

netio_fname = "/proc/net/dev"

The /proc/loadavg file gives the average system load of last 1, 5 and 15

minutes which indicates the average workload. The proc entry /proc/stat

4.1 Server Probes 53

gives us the CPU time usage of the user process, system process, and the

idling processes. Compared with the CPU usage figures, the load average

values are considered as a better estimation measure for system workload,

because they describe how busy the server is in a long term instead of at

a particular moment. However, the CPU time usage figures can reflect any

change in CPU usage instantly. So the combination of these two sets of

parameters will be critical for CPU intensive tasks.

The memory usage information is provided in /proc/meminfo. It shows

the usage pattern of the physical memory. This information will be necessary

for those memory intensive computation tasks, such as SuperPI [superpi04].

A sample memory status comparison before and after running SuperPI is

given in Table. 4.1. Mem1 is the status before we started SuperPI and Mem2

shows how much more memory was acquired by the program. Depending on

the algorithms, memory intensive applications will experience poor perfor-

mance in the memory bound servers.

total used free shared buffers cached
Mem1 262213632 121085952 141127680 0 18284544 82911232
Mem2 262213632 258310144 3903488 0 745472 231075840

Table 4.1: Memory Usage before and after SuperPI

The information we collect from /proc/net/dev and /proc/stat is re-

quired for data intensive applications. The disk io entry in /proc/stat

shows the total number of read and write requests, and the number of disk

blocks accessed by read and write requests. Monitoring these figures can help

us to identify the current hard disk activities. The entry /proc/net/dev lists

all the network interfaces available for the current server and amount of data

4.2 Monitors and Wizard 54

going through each interface. For data intensive applications, both the hard

disk activity and the network bandwidth usage will be important.

The server probes scan through these 5 /proc files at a regular interval of

10 seconds and send the server status reports back to monitorsys - the system

status monitor. A server failure is detected, if any probe fails to report after

3 consecutive intervals.

4.2 Monitors and Wizard

The 3 monitors monitorsys, monitornet, monitorsec and the transmitter are

running in the monitor machine. The receiver and the wizard are running on

the wizard machine. This means altogether there would be 6 port numbers

to use. Table. 4.2 gives the current assignment of these port numbers.

Machine Monitor Machine Wizard Machine
Component Monsys Monnet Monsec Transpass Receiver Wizard

Port 1111 1112 1113 1110 1121 1120

Table 4.2: Ports used by Monitors and Wizard

The 3 monitors write the records into the shared memory space and the

transmitter transfers the data from the monitor machine to the receiver on

the wizard machine. The receiver then writes back the data received into

another set of shared memory spaces in the wizard machine for the wizard

to access. To enable concurrent read and update of the shared memory

contents, semaphores are used to lock and unlock the related resources. The

keys we assign for both semaphores and shared memories are the same for

one type of records. The shared memory keys and semaphore keys allocated

4.3 Server Requirement Parser 55

are shown in Table. 4.3.

Location Monitor Machine Wizard Machine
Type System Network Security System Network Security
Key 1234 1235 1236 4321 5321 6321

Table 4.3: Keys for Semaphores and Shared Memory Spaces

According to this key assignment scheme, there would be no conflict on

the system resources, even if we run all the monitors, transmitter, receiver,

and the wizard program in the same machine.

4.3 Server Requirement Parser

The server requirement for a particular application represents the qualifica-

tion rules for the wizard to decide which servers should be selected. The

requirement handling procedure contains two steps: lexical parsing and se-

mantic analysis. The parser is implemented by using flex[gnuflex00] and

bison[gnubison03] provided by GNU project[gnuproject04].

The server requirement is first parsed into small tokens. We have the

following token types: comment sign, white space, NUMBER, NETADDR,

UNDEF, VAR plus the logic operators as defined in the C programming lan-

guage. NETADDR is created for users to write IP addresses in the numerical

format or domain names in the string format. NUMBER is used to represent

values of the server status attributes. The variables defined in the parser

will be in VAR type, whose value has been given or will be provided by the

server reports or users. The UNDEF variables are those undefined variables

whose values are not given anywhere. Users should pick up the correct server

4.3 Server Requirement Parser 56

attributes to construct a proper requirement. The newline symbol ‘\n’ is

used to signal the end of a statement. The basic rules for token parsing are

given in Fig. 4.1.

#.* { ; /* ignore comments */ }

[\t] { ; /* ignore white spaces */ }

[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+ |

[a-zA-Z]+[a-zA-Z_0-9]*\.[\.a-zA-Z_0-9]* { return NETADDR; }

[0-9]+ |

[0-9]+\.[0-9]+ { return NUMBER; }

[a-zA-Z]+[a-zA-Z_0-9]* { return UNDEF or VAR; }

\&\& { return AND; }

\|\| { return OR; }

\> { return GT; }

\>\= { return GE; }

\=\= { return EQ; }

\!\= { return NE; }

\< { return ST; }

\<\= { return SE; }

\n { return ‘\n’; }

. { return yytext[0]; }

Figure 4.1: Lexical Rules for Parsing Tokens

For the semantic analysis, the detailed semantic rules are shown in Fig. 4.2.

These yacc rules are built based on the example in [brian84]. In the server

requirements, each line is considered as a statement, which can be logical or

non-logical. Logical statements are the ones whose last operator is a logical

operator, for example 6=, ≥ and <. These logical statements return boolean

values, true represented by numerical value of 1, and false represented by

0. The logical statements are mainly used to compare the values of server

4.3 Server Requirement Parser 57

attributes with the user’s specification. The parameters appearing in these

statements come from either the user side or the server side. The server side

parameters are the server attributes defined in the server reports, which is

extracted through the system interface. The user side parameters are those

provided for users to write additional requirements. At this moment, we have

two sets of user side parameters: preferred hosts and rejected hosts. Users

can tell the wizard which are the servers that should be used first and which

are the ones in blacklist that should be avoided.

In non-logical statements, users can write intermediate steps, such as

defining temporary variables and doing calculations. The return values for

non-logical statements will not be used to determine if the server is qualified.

Yet the variables that have been modified in these statements may affect

the final decision. Parenthesis are also provided for controlling the operation

precedence. Basically, logical statements contain logical comparisons and

non-logical statements contain mathematical operations like +, −, ×, ÷ and

assignment statements.

Finally, the return values of all the logical statements are examined. The

principle is that only if all the user requirements are fulfilled, the server

can be taken as a candidate. However, the user should be responsible for

the statements they give to the wizard program. A meaningless statement

like 100 > 0 will make any server as a qualified candidate. And it would

not be a good practice if we pick servers with CPU usage > 99% for CPU

intensive tasks. Users must be very clear about the the algorithms in the

applications, settings of the programming environment and the acceptable

performance result. An automatic analysis for the complexity of the program

4.3 Server Requirement Parser 58

code would be another challenge and is still under active research[alkindi00].

It is necessary for inexperienced users to perform a few experiments first,

in order to figure out under what condition the satisfying results can be

achieved.

4.3 Server Requirement Parser 59

list: /* nothing */

| list ’\n’

| list expr ’\n’ { printf("\t%lf\n", $2);

if(logic == 1)

{ server_ok *= $2; logic = 0; }

}

| list error ’\n’ { yyerrok; }

;

asgn: VAR ’=’ expr { $$ = $1->u.val = $3; $1->type = VAR; logic = 0; }

| UPARAM ’=’ expr { $$ = $1->u.val = $3; logic = 0;

store_uparams($1->name, $1->u.val); }

;

expr: NUMBER { logic = 0; }

| NETADDR { logic = 0; }

| UPARAM { $$ = $1->u.val; logic = 0; }

| PARAM { $$ = $1->u.val; logic = 0; }

| expr AND expr { $$ = ($1 && $3); logic = 1; }

| expr OR expr { $$ = ($1 || $3); logic = 1; }

| expr EQ expr { $$ = ($1 == $3); logic = 1; }

| expr NE expr { $$ = ($1 != $3); logic = 1; }

| expr ST expr { $$ = ($1 < $3); logic = 1; }

| expr SE expr { $$ = (($1 < $3) || ($1 == $3)); logic = 1; }

| expr GT expr { $$ = ($1 > $3); logic = 1; }

| expr GE expr { $$ = (($1 > $3) || ($1 == $3)); logic = 1; }

| VAR { if($1->type == UNDEF)

execerror("undefined variable", $1->name);

$$ = $1->u.val; logic = 0; }

| asgn

| BLTIN ’(’ expr ’)’ { $$ = (*($1->u.ptr))($3); logic = 0; }

| expr ’+’ expr { $$ = $1 + $3; logic = 0; }

| expr ’-’ expr { $$ = $1 - $3; logic = 0; }

| expr ’*’ expr { $$ = $1 * $3; logic = 0; }

| expr ’/’ expr {

if($3 == 0.0) { execerror("division by 0", ""); logic = 0; }

$$ = $1 / $3; logic = 0; }

| expr ’^’ expr { $$ = Pow($1, $3); logic = 0; }

| ’(’ expr ’)’ { $$ = $2; /* this op will not change logic value */ }

| ’-’ expr %prec UNARYMINUS { $$ = -$2; logic = 0; }

;

Figure 4.2: Semantic Rules for Parser

Chapter 5

Performance Evaluation

In this chapter, we will present the experiment related issues, including the

testbed configuration, the machines settings and the experimental results.

5.1 Testbed Configuration

5.1.1 Networks

The 11 machines in the testbed are located in 6 different network segments.

The private network segments 192.168.1.0/24 to 192.168.5.0/24 are lo-

cated in the Communication and Internet Research lab at NUS. The remote

host sagit is in the School of Computing network 137.132.81.0/24, con-

necting to the testbed through the gateway Dalmatian. All networks are 100

Mbps Ethernet. The complete network topology of the testbed is given in

Fig. 5.1.

5.1 Testbed Configuration 61

D
al

m
at

ia
n

1
9
2
.1

6
8
.1

.2

M
im

as

1
9
2
.1

6
8
.1

.3

T
el

es
to

1
9
2
.1

6
8
.1

.4

L
h
o
st

1
9
2
.1

6
8
.1

.6

H
el

en
e

1
9
2
.1

6
8
.4

.2

P
h
o
eb

e

1
9
2
.1

6
8
.3

.1

C
al

y
p
so

1
9
2
.1

6
8
.2

.1

D
io

n
e

1
9
2
.1

6
8
.2

.3

T
it

an
−

X

1
9
2
.1

6
8
.5

.1

P
an

d
o
ra

−
X

1
9
2
.1

6
8
.5

.3

S
ag

it

1
3
7
.1

3
2
.8

1
.2

3
3

1
9
2
.1

6
8
.1

.1
1
9
2
.1

6
8
.4

.1
1
9
2
.1

6
8
.3

.2
1
9
2
.1

6
8
.2

.4

1
3
7
.1

3
2
.8

1
.1

3
4

Figure 5.1: Network Topology of the Testbed

5.2 System Resource Required 62

5.1.2 Machines

There are in total 11 machines in the testbed running on the Linux operating

system. The hardware configurations of the Linux machines used in the

experiments are listed in Table. 5.1.

Hostname CPU/bogomips RAM OS

Sagit P3 866MHz/1730.15 128MB Debian Linux 3.0r2
Dalmatian P4 2.4GHz/4771.02 512MB Redhat Linux 8.0

Mimas P4 1.7GHz/3394.76 192MB Redhat Linux 9.0
Telesto P4 1.6GHz/3185.04 128MB Redhat Linux 7.3
Lhost P3 866MHz/1730.15 128MB Redhat Linux 9.0
Helene P4 1.7GHz/3394.76 256MB Redhat Linux 9.0
Phoebe P4 1.7GHz/3394.76 256MB Redhat Linux 9.0
Calypso P4 1.7GHz/3394.76 256MB Redhat Linux 9.0
Dione P4 2.4GHz/4771.02 512MB Redhat Linux 7.3

Titan-X P4 1.7GHz/3394.76 256MB Redhat Linux 7.3
Pandora-X P4 1.8GHz/3591.37 256MB Redhat Linux 9.0

Table 5.1: Configuration of the Testbed Machines

5.2 System Resource Required

To measure the system resource required by each of the library components, a

set of sample tests were done on the Dalmatian host. The system load, CPU

usage and memory usage were monitored through top command in Linux.

The network bandwidth usage was measured by traffic dumper, a network

traffic monitor developed using libpcap[libpcap04]. The detailed system re-

source usage figures are listed in Table. 5.2.

For system probes, the probing interval is set to be 2 seconds. The size of

the probing message is around 190 bytes. The network bandwidth usage for

5.2 System Resource Required 63

Program CPU Memory Net bandwidth

System Probe < 0.1% 8 KB 0.5 ∼ 0.6 KBps(UDP)
System Monitor 0.7% 8 KB 5.7 KBps(UDP)
Network Monitor < 0.1% 8 KB 5.6 KBps(UDP)
Security Monitor < 0.1% 8 KB (not used)

Transmitter < 0.1% 8 KB 1.2 KBps(TCP)
Receiver < 0.1% 92 KB 1.2 KBps(TCP)
Wizard 0.1% 96 KB < 1 KBps(UDP)

Table 5.2: System Resource used with 11 Probes Running

each system probe program is around 0.5 ∼ 0.6 KBps, which could be reduced

by increasing the probing interval. The system monitor collects the probing

messages sent by the probes. As a result, the number of server reports to

a particular system monitor will directly affect the resources consumed in a

monitor machine. With 11 probes reporting, the system monitor program

uses 0.7% of the CPU time. Each probe message will be parsed into a server

status structure, which is 204 bytes long. The total memory usage will be

determined by basic memory used by monitor itself and number of probing

reports received. The network bandwidth used by the system monitor is

equal to the sum of the bandwidth used by all the probes.

For the network monitor, the network metrics are measured by send-

ing probing packets periodically. The CPU and memory usage is negligible,

while the network bandwidth usage is determined by the size of the prob-

ing packets and the probing frequency. The current probing packet size is

1600 and 2900 bytes and one probe is done after every two seconds. The

bandwidth acquired is 2.8 KBps. For the transmitter, the CPU and memory

usage is insignificant. The receiver program requires much more memory

space, because it maintains the status reports and updates the contents in

5.3 Experiment Results 64

local shared memory. To transmit 11 server status reports, 1 network status

report and 2 security reports, the total bandwidth usage is 1.2 KBps, at

a transmission interval of 2 seconds. The wizard program consumes more

CPU time and memory than any other component, as it maintains all data

structures dynamically and processes the incoming user requests iteratively.

The average CPU usage is 0.1% and memory usage in the sample test is 96

KB. The network bandwidth acquired is related to the length of the request

and reply messages, determined by the list of selected servers, the number of

clients using the wizard, and the frequency of the incoming user requests. In

the sample run, given that the user request is 150 bytes long and the return

message contains 11 host entries, the measured bandwidth usage is less than

1 KBps.

5.3 Experiment Results

Two sample programs have been developed to verify the effectiveness of the

Smart TCP library – a matrix multiplication program and a massive down-

loading program which makes use of parallel TCP connections to multiple

servers.

5.3.1 Matrix Multiplication

A square matrix multiplication program was developed to conduct the exper-

iments of the Smart TCP library. It contains a local computation mode and

a distributed computation mode. For the local mode, the 2 input matrices

will be multiplied in a vector multiplication way. For the distributed mode,

5.3 Experiment Results 65

the entries in the input matrices are transferred to the available servers for

computation. The result entries will be sent back and stored for output. The

implementation of the matrix program is provided in Appendix. C.1.

The execution time of the matrix multiplication reflects the performance.

It is determined by the CPU power, amount of memory available, the algo-

rithm applied in the program and programming environment used, especially

the compiler type and the optimization option enabled.

Since all the 11 machines used in the matrix multiplication tests have dif-

ferent hardware configuration, the benchmarking step is conducted to mea-

sure the computational power for each of them. The benchmark matrix size

is 1500 × 1500 and block size 200 × 200. The full details are displayed in

Fig. 5.2. The chart shows that for our matrix multiplication program, the

P3 866MHz and P4 2.4GHz CPUs have better performance than the P4

1.6GHz ∼ 1.8GHz ones. This benchmark result can be used to analyze the

experimental results.

Four sets of matrix multiplication experiments were conducted for com-

parison of the execution time without and with the assistance of our socket

library, including 2 vs 2, 4 vs 4 and 6 vs 6 under zero workload and 4 vs 4

under non-zero workload.

1. 2 vs 2 without Workload. In this experiment, 2 servers were selected

to compute a matrix with the dimension 1500×1500 by using 600×600

blocks. With the help of the Smart socket library, the user can ask for

the servers with fastest processors for this CPU intensive task. The

server requirement contains bogomips > 4000, cpu_free > 0.9 and

5.3 Experiment Results 66

 0

 5
0

 1
0

0

 1
5

0

 2
0

0

 2
5

0

 3
0

0

Execution Time (sec)

S
e

rv
e

r
N

a
m

e

B
e

n
c
h

m
a

rk
 T

im
e

 f
o

r
1

1
 S

e
rv

e
rs

,
u

s
in

g
 M

a
tr

ix
 1

5
0

0
x
1

5
0

0

s
a

g
it

1
1

3
.6

7

d
a

lm

8
5

.8
8

d
io

n
e

7
6

.2
9

lh
o

s
t

1
3

8
.7

6

p
a

n
-x

1
6

1
.4

5

te
le

s
to

2
4

4
.6

2

m
im

a
s

2
3

2
.4

1

p
h

o
e

b
e

2
7

9
.2

7

h
e

le
n

e

1
6

5
.2

2

c
a

ly
p

s
o

2
4

9
.0

3

ti
ta

n
-x

2
4

4
.6

0

d
im

:
1

5
0

0
x
1

5
0

0

Figure 5.2: Matrix Benchmarking Results

5.3 Experiment Results 67

memory_free > 5(MB). The details of the experiment is provided in

Table. 5.3.

Item \ Library Random Smart Library

Matrix Size 1500 × 1500, blk=600 1500 × 1500. blk=600
No. of Servers 2 2
Requirement null (host cpu bogomips > 4000) &&

(host cpu free > 0.9) &&
(host memory free > 5)

Server List lhost, phoebe dalmatian, dione
Time used (sec) 100.16 63.00

Table 5.3: 2 vs 2 under zero Workload

The execution time for the two groups of servers were 100.16 seconds

without using the Smart library and 63 seconds with the Smart library.

The execution time was reduced by 37.1%.

2. 4 vs 4 without Workload. Four servers were selected to compute

the same 1500 × 1500 matrix with a block size of 200 × 200. From

the benchmark step, users have the knowledge that P3 866MHz and

P4 2.4GHz machines have better performance than P4 1.x GHz series.

With this hint, experienced users may modify the server requirement

to utilize P3 866MHz and P4 2.4GHz machines only. In Table. 5.4, the

experiments details are given.

By selecting the most suitable 4 servers out of the server pool, the

execution time dropped from 62.61 seconds to 49.95 seconds, with an

improvement of 20.2%.

3. 6 vs 6 without Workload. In the third experiment, we made use

of the blacklist option. The user specified the 5 servers which should

5.3 Experiment Results 68

Item \ Library Random Smart Library

Matrix Size 1500 × 1500, blk=200 1500 × 1500. blk=200
No. of Servers 4 4
Requirement null ((host cpu bogomips > 4000) ||

(host cpu bogomips < 2000)) &&
(host cpu free > 0.9) &&
(host memory free > 5)

Server List phoebe, pandora-x, dalmatian, dione
calypso, telesto sagit, lhost

Time used (sec) 62.61 49.95

Table 5.4: 4 vs 4 under zero Workload

not be used during the computation. The 5 slowest servers from the

benchmark list were eliminated as shown in the Server List entry in

Table. 5.5.

Item \ Library Random Smart Library

Matrix Size 1500 × 1500, blk=200 1500 × 1500. blk=200
No. of Servers 6 6
Requirement null (host cpu free > 0.9) &&

(host memory free > 5) &&
(user denied host1 = telesto) &&
(user denied host2 = mimas) &&
(user denied host3 = phoebe) &&
(user denied host4 = calypso) &&

(user denied host5 = titan-x)
Server List phoebe, pandora-x, dalmatian, dione

calypso, telesto, pandora-x, helene,
helene, lhost lhost, sagit

Time used (sec) 46.90 43.02

Table 5.5: 6 vs 6 under zero Workload

As we can see, the matrix multiplication time was only reduced by 8.3%.

The low improvement was caused by the increased communication over-

head with 6 servers during computation and the large number of fast

5.3 Experiment Results 69

servers selected in random set. Also, the same three hosts pandora-x,

helene, and lhost were selected by both the random function and the

Smart socket library, which further shortened the performance gap.

4. 4 vs 4 with Workload Enabled. To measure the effects of the Smart

socket library under non-zero workload, 7 servers with CPU P4 1.6GHz

to 1.8 GHz were used to form the server pool. The program Super PI

was used to generate the workload. With given parameter 25, the

Super PI program will occupy 150 MBytes of memory and CPU usage

will vary from 0% to 100%. The system load value will remain above 1.

Out of the 7 servers, 3 of them were busy ones with Super PI running,

including helene, telesto and mimas. The experiment comparison is

given in Table. 5.6.

Item \ Library Random Smart Library

Matrix Size 1500 × 1500, blk=200 1500 × 1500. blk=200
No. of Servers 4 4
Requirement null (host cpu free > 0.9) &&

(host memory free > 5) &&
(host system load1 < 0.5)

Server List mimas, helene, calypso, phoebe,
calypso, telesto titan-x, pandora-x

Time used (sec) 90.93 66.72

Table 5.6: 4 vs 4 with Workload

By avoiding the 3 busy servers, the matrix computation was completed

in 66.72 seconds, compared with 90.93 seconds of the 4 randomly se-

lected servers. The improvement was 26.6%.

5.3 Experiment Results 70

5.3.2 Massive Download

We also developed a massive download program massd by using the same

algorithm as the matrix multiplication program. The massd program can

download data from multiple servers simultaneously. The average through-

put of the massive download program was measured as the performance in-

dicator. Rshaper [rshaper01] was used to set the link bandwidth to a random

value, simulating the conditions on a real network. To verify the smooth

cooperation between massd and rshaper, we ran 10 sample tests. The result

in Fig. 5.3, shows that the maximum throughput that can be achieved by

massd can be precisely controlled by rshaper.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

T
ra

n
s
m

is
s
io

n
 T

h
ro

u
g

h
p

u
t

(K
B

/s
)

Transmission Time (sec)

Benchmark Time for massd, (data size - block size)

data=100, blk=1, bw=1
data=200, blk=1, bw=2
data=500, blk=1, bw=5

data=1000, blk=10, bw=10
data=2000, blk=10, bw=20
data=5000, blk=10, bw=50

(a)

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120

T
ra

n
s
m

is
s
io

n
 T

h
ro

u
g

h
p

u
t

(K
B

/s
)

Transmission Time (sec)

Benchmark Time for massd, (data size - block size)

data=10000, blk=100, bw=100
data=20000, blk=100, bw=200
data=50000, blk=100, bw=500

data=100000, blk=100, bw=1000

(b)

Figure 5.3: Benchmark for rshaper and massd

Each transmission was done by using the parameter (data, blk, blk).

Parameter data refers to the total amount of data to transmit and blk is

the size of basic block allocated to each server; the unit is KBytes. The

third parameter bw is the bandwidth value set by rshaper and was set to 1%

of data; the unit is KBytes/sec. From Fig. 5.3, we can see the bandwidth

5.3 Experiment Results 71

values set by rshaper were very close to the actual throughput we can get

from massd program. This means the overhead of the programs used in the

experiments has negligible side effects.

In the formal experiments, we selected 6 machines as the file servers:

mimas, telesto, lhost in group-1 and dione, titan-x, pandora-x in group-2.

All machines in the same group were assigned the same network bandwidth

by rshaper in the range from 0 Mbps to 10 Mbps. The bandwidth value

was generated randomly, so that the two groups of servers had different

bandwidth values. The group with the higher bandwidth is called the fast

server group and the other group is the slow server group. The transmission

throughput from the fast server group should be higher than the slow server

group. In the conventional socket library, users have to randomly select

servers, without the help from third-party utilities. By using the Smart

socket library, users can pick up the fast servers for data transmission with

high throughput by providing the proper requirement specification.

For comparison, 3 sets of experiments were done with 1, 2 and 3 file

servers used in each. The data size is 50000 KBytes and the block size is 100

KBytes.

1. 1 Server for massd. The experiment information is given in Ta-

ble. 5.7. The bandwidth assigned to group-1 servers is 6.72 Mbps and

group-2 servers have bandwidth of 1.33 Mbps. The amount of data to

transmit is 50000 KBytes. The randomly selected server is pandora-

x from group-1. With server requirement monitor_network_bw > 6,

only server with bandwidth larger than 6 Mbps will be selected by the

5.3 Experiment Results 72

Smart socket library. The machine lhost was selected.

Item Value

Group-1 bandwidth 6.72 Mbps
Group-2 bandwidth 1.33 Mbps
Random Servers pandora-x
Smart Servers lhost
Server Req monitor network bw > 6
Transmission Data 50000 KB by 100 KB

Table 5.7: Experiment for 1vs1 massd

The throughput comparison is given in Fig. 5.4. We can see that with

the help of the Smart socket library function, the optimal server was

used. The throughput was increased from 170 KB/s to 860 KB/s.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

T
ra

n
s
m

is
s
io

n
 T

h
ro

u
g
h
p
u
t
(K

B
/s

)

Transmission Time (sec)

Throughput Comparison for 1 Server

random 1s, (50000KB, 100KB)
smart 1f, (50000KB, 100KB)

Figure 5.4: Experiments for massd: 1 vs 1

2. 2 Servers for massd. When two servers are required, 3 types of

5.3 Experiment Results 73

choices are possible: two slow servers, 1 slow server plus 1 fast server

and two fast servers. When the random function chooses two optimal

servers, the performance will be similar for both random function and

the Smart library. In other cases, the Smart library will provide better

results. The experiment details are listed in Table. 5.8.

Item Value

Group-1 bandwidth 5.01 Mbps
Group-2 bandwidth 7.67 Mbps
Random1 Servers mimas, telesto
Random2 Servers telesto, titan-x
Smart Servers titan-x, pandora-x
Server Req monitor network bw > 7
Transmission Data 50000 KB by 100 KB

Table 5.8: Experiment for 2vs2 massd

In this experiment, group-2 had a higher bandwidth of 7.67 Mbps. With

the Smart library, 2 servers were picked up from this group, titan-x and

pandora-x. The two random server sets contain zero fast server and one

fast server each. The performance chart is shown in Fig. 5.5.

The first random set with no fast servers achieved an average through-

put of 660 KB/s and the second random set with one fast server had a

throughput of 795 KB/s. Both values are lower than the what we got

by using the Smart library, which is 994 KB/s.

3. 3 Servers for massd. In the last set of experiments, 3 data servers

were used. There are 4 possible combinations: 4 groups of servers with

0, 1, 2 and 3 fast servers each. We call the 4 combinations: random

set-1, random set-2, random set-3 and the smart set. The servers used

5.3 Experiment Results 74

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90

T
ra

n
s
m

is
s
io

n
 T

h
ro

u
g
h
p
u
t
(K

B
/s

)

Transmission Time (sec)

Throughput Comparison for 2 Servers

random1, 2s, (50000KB, 100KB)
random2, 1s-1f, (50000KB, 100KB)

smart, 2f, (50000KB, 100KB)

Figure 5.5: Experiments for massd: 2 vs 2

for each one of them are listed in Table. 5.9.

Fig. 5.6 illustrates the performance results for the 4 transmissions. The

throughput values are 387 KB/s, 520 KB/s, 634 KB/s and 796 KB/s

for random set-1, random set-2, random set-3 and Smart set. The

transmission with the assistance of the Smart socket library experienced

the highest throughput as expected.

In this chapter, we presented experiment procedures and performance

analysis of the new socket library. In the next chapter, we will discuss some

possible improvements that can be done in the future work.

5.3 Experiment Results 75

Item Value

Group-1 bandwidth 5.99 Mbps
Group-2 bandwidth 2.92 Mbps
Random1 Servers dione, titan-x, pandora-x
Random2 Servers mimas, titan-x, dione
Random3 Servers telesto, mimas, dione
Smart Servers lhost, telesto, mimas
Server Req monitor network bw > 5
Transmission Data 50000 KB by 100 KB

Table 5.9: Experiment for 3vs3 massd

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140

T
ra

n
s
m

is
s
io

n
 T

h
ro

u
g
h
p
u
t
(K

B
/s

)

Transmission Time (sec)

Throughput Comparison for 3 Servers

random1, 3s, (50000KB, 100KB)
random2, 2s-1f, (50000KB, 100KB)
random3, 1s-2f, (50000KB, 100KB)

smart, 3f, (50000KB, 100KB)

Figure 5.6: Experiments for massd: 3 vs 3

Chapter 6

Future Work

Despite of the various features, the current implementation of the Smart TCP

socket still consists of a few limitations. In this chapter, we suggest below

some possible improvements and extensions, in order to make this library

more applicable.

• Fault-tolerance. Error recovery should be handled at the application

level, as it involves process check-pointing and resumption. For the

network layer, we will look at the complications during the data trans-

mission. A new set of socket functions will be added to suspend and

resume the sockets, such that the program recovery and process mi-

gration steps can be done more smoothly. The reliable socket library

rsocks [rsocks01] is working at this area.

• Task division module. The Smart TCP socket library can perform

better if the task division module is intelligent enough to automatically

decide the proper server requirement for each task and requests for

77

sockets accordingly. This requires the task division module to examine

the program code and arrange the optimal resource usage. Finding

schemes on task division are still under active research and a lot of

work can be done towards this direction.

• Integration into the kernel. Currently the Smart TCP socket library

is developed and experimented at the application level. In application

level it is easier to make changes and debug, yet the overhead of these

library calls could be high. After we stabilize the code of the Smart

TCP socket, we can make an attempt to integrate it into the kernel

level. As the outcome, applications would experience less overhead

and fast response.

• Selected parameters. By default, the server probes measure all defined

parameters and report them back to the system monitor. If the num-

ber of parameters grows high, it will lead to measurement time, higher

system workload and higher network bandwidth usage. For a normal

application, it is unlikely that all system resources will be required at

the same priority level. Generally, only a small subset of the param-

eters are of concern for a particular application. The wizard and the

server monitor can be modified to summarize the most popular system

parameters and inform the probes to report only those parameters that

are mostly of concern. Currently, all the server attributes have numeri-

cal values. In later development, we may need to add in attributes with

string values in order to parse statements like "machine_type=i386".

• UDP vs TCP. Because of the low overhead, the UDP protocol is used to

78

transmit the server status report. For short server report and normal

network connections, it will be sufficient. For long server reports under

congested networks, some UDP packets may get lost, which makes

the server status unusable. In that situation, the probes should be

instructed to use TCP for reporting.

• Server report issues. In this thesis, we assume that all servers pro-

vide identical services in a controlled environment. However, in an

actual distributed computing environment, different servers may of-

fer distinct services. We can extend the function of the server probe

and allow it to report the types of services available on every server.

Also The wizard program examines the server reports one by one,

which makes it very difficult for users to write a requirement like

"3 servers with largest memory". The wizard needs to be mod-

ified to check multiple server reports for one requirement at a time

instead of sequential scanning.

Chapter 7

Conclusion

The middle-ware is becoming more complicated, particularly in the context of

GRID. One of the causes for this complexity is the server selection part. This

project tackles the problem at the network layer. We have presented a Smart

TCP socket library for the distributed computing environment, allowing users

to specify what is the best for the application and select the best servers

according to user requirement. With the help of our Smart TCP socket

library, users can focus on task division process and use the set of sockets

returned to handle each segment of the task. The new library provides the

following features:

High-level programming interface It provides an easy programming in-

terface for users to write network applications in a server-controlled

environment. The application is not compelled to be aware of the do-

main names or IP addresses of servers. All a user needs to tell is the

service type for the application and the server resource requirement.

The server resource requirement can be specified by using a meta lan-

80

guage defined for sophisticated mathematical expressions.

Convenience for server selection algorithms The server probe measures

a full range of system status parameters, from CPU usage rate, memory

space, hard disk IO to network bandwidth and send back the status re-

port to the server monitor. The abundant parameters being probed can

help users to develop new server selection schemes based on resource

monitoring.

This mechanism separates the server selection module out of the middle-

ware and integrate it into the socket level. That will make the new

middle-ware less complicated and greatly reduce the servers’ workload,

when multiple distributed applications using different probing-based

middle-wares are required on the same machine. The same set of server

probes, monitors and wizard can be used smoothly, as long as these

middle-wares use the same interfaces to communicate with the Smart

socket layer. The same copy of server reports could be used by different

middle-ware decision modules and different algorithms can be applied.

Real time report from servers The available servers periodically send re-

ports back to the monitor. The dynamically generated reports can help

middle-wares to make good decisions about which servers to use. Since

it reflects the actual server workload at real time, the selected servers

should generate much better performance than those selected based on

fixed server configuration files, especially under heavy load.

In case of a server failure, the monitor can easily detect it, remove

the failed node from the server pool and prevents subsequent tasks

81

from being assigned to the failed server. This is also the first step for

fault-recovery implementation, that may redirect the failed connection

to other running servers to resume the task. However, the checkpoint

function, and the recovery procedure should be accomplished in the

upper level.

Expandable framework A standard procedure for adding the host side

and user side parameters has been established. New parameters can

be added in the same way and new decision making algorithms can use

those new parameters immediately, according to users’ decision.

The Smart socket library is built upon the standard BSD socket library

and the inter-process communication part follows the classic System-V

standard. Both of these two system libraries are supported in most of

today’s popular UNIX systems. Also as the whole package is developed

in the user space, the Smart TCP socket library can be used in most

UNIX or UNIX-derived systems without any modification.

In conclusion, the Smart TCP socket layer is an attempt to influence new

changes in the GRID middle-ware design. If we can standardize the format

of the server status reports and the library interfaces, we can integrate the

system resource monitoring function into the network layer. This will allow

multiple middle-ware implementations to co-exist without introducing extra

server load and network traffic. The new socket interface enables the middle-

ware designers to focus on improving the task scheduler function and thus

encourages the popularity of GRID computing facilities.

Bibliography

[alkindi00] “Run-time Optimisation Using Dynamic Performance Predic-

tion”, A. M. Alkindi, D. J. Kerbyson, E. Papaefstathiou, G. R. Nudd,

High Performance Computing and Networking, LNCS, Vol. 1823,

Springer-Verlag, May 2000, pp. 280-289.

[ants04] “The ANTS Load Balancing System”, Jakob ∅stergaard,

http://unthought.net/antsd/info.html, 2004.

[brian84] “The UNIX Programming Environment”, Brian W. Kernighan and

Rob Pike, Prentice Hall, 1984.

[carter96] Robert L. Carter, Mark E. Crovella, Measuring Bottleneck

Link Speed in Packet-Switched Networks, Performance Evaluation

Vol. 27&28, 1996.

[cisco04] “Cisco NAC: The Development of the Self-Defending Network”,

http://www.cisco.com/warp/public/cc/so/neso/sqso/csdni wp.htm,

Cisco Systems, Inc. 2004.

[condor04] “Condor Project”, CS Department, UW-Madison,

http://www.cs.wisc.edu/condor/.

BIBLIOGRAPHY 83

[constantinos01] Constantinos Dovrolis, Parameswaran Ramanathan, and

David Moore What do packet dispersion techniques measure?, Inforcom

2001, Anchorage Alaska USA, 2001

[erik01] “Linux Kernel Procfs Guide”, Erik(J. A. K) Mouw,

http://www.kernelnewbies.org/documents/kdoc/procfs-

guide/lkprocfsguide.html, 2001.

[gfi04] “GFI LANguard Network Security Scanner 5 Manual”,

http://www.gfi.com/lannetscan, GFI Software Ltd., 2004.

[geist96] “PVM and MPI: a Comparison of Features”, G. A. Geist,

J. A. Kohl, P. M. Papadopoulos, May 30, 1996,

http://www.csm.ornl.gov/pvm/PVMvsMPI.ps.

[fyodor98] “Remote OS detection via TCP/IP Stack FingerPrinting”,

http://www.insecure.org/nmap/nmap-fingerprinting-article.html, Fyo-

dor, 1998.

[globus04] “Globus Alliance”, http://www.globus.org/.

[gnuflex00] “Flex: A fast lexical analyser generator”,

http://www.gnu.org/software/flex/, 2000.

[gnubison03] “Bison: A general-purpose parser generator”,

http://www.gnu.org/software/bison/, 2003.

[gnuproject04] “GNU Operating System - Free Software Foundation”,

http://www.gnu.org/, 2004.

BIBLIOGRAPHY 84

[kurose03] James F. Kurose, Keith W. Ross, Computing Networking: A Top-

Down Approach Featuring the Internet, Addison Wesley 2003.

[lexyacc92] “Lex & Yacc” 2nd edition, John R. Levine, Tony Mason, Doug

Brown, O’Reilly & Associates, 1992.

[libpcap04] “libpcap”, Lawrence Berkeley National Laboratory, Network Re-

search Group, emphhttp://www-nrg.ee.lbl.gov/

[lvserver04] “Linux Virtual Server Project”,

http://www.linuxvirtualserver.org/.

[manish02] Manish Jain, Constantinos Dovrolis “End-to-End Available

Bandwidth: Measurement Methodology, Dynamics, and Relation with

TCP Throughput”, ACM SIGCOMM 2002, Pittsburgh PA USA, 2002.

[manish02pl] “Pathload: a measurement tool for end-to-end available band-

width”, Manish Jain, Constantinos Dovrolis, PAM 2002.

[mpi04] “The Message Passing Interface (MPI) standard”, MCS Division,

Argonne National Laboratory, http://www-unix.mcs.anl.gov/mpi/.

[ncs03] “Network Characterization Service (NCS)”, Computational Re-

search Division, Lawrence Berkeley National Laboratory, http://www-

didc.lbl.gov/NCS/, 2003.

[openmosix04] “OpenMosix”, http://openmosix.sourceforge.net/.

[ogsa04] “The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration”, Ian Fos-

BIBLIOGRAPHY 85

ter, Carl Kesselman, Jeffrey M. Nick, Steven Tuecke,

http://www.globus.org/research/papers/ogsa.pdf.

[pvm04] “Parallel Virtual Machine”, Computer Science and

Mathematics Division, Oak Ridge National Laboratory,

http://www.csm.ornl.gov/pvm/pvm home.html, 2004.

[p4system93] “Monitors, messages, and clusters: The p4 parallel program-

ming system”, R. Butler and E. Lusk, Technical Report Preprint MCS-

P362-0493, Argonne National Laboratory, 1993.

[rajesh98] “Matchmaking: Distributed Resource Management for High

Throughput Computing”, Rajesh Raman, Miron Livny, and Marvin

Solomon, HPDC-98, 1998.

[rshaper01] “rshaper”, Allessandro Rubini, http://ar.linux.it/software/, Nov

2001.

[rsocks01] “Reliable Sockets”, Victor C. Zandy, Barton P. Miller,

http://www.cs.wisc.edu/ zandy/rocks/, 2001.

[shaotao03] Shao Tao, L. Jacob, A. L. Ananda “A TCP Socket Buffer Auto-

tuning Daemon”, ICCCN 2003, Dallas TX USA, 2003.

[steve01] Steve Steinke, Network Delay and Signal Propogation,

http://www.networkmagazine.com/article/NMG20010416S0006.

[superpi04] “Super PI”, Kanada Laboratory, http://pi2.cc.u-tokyo.ac.jp/.

Appendix A

Pipechar results

A.1 from sagit to cmui

sagit:/home/shaotao/master/ver_2/test/raw_socket# ./pipechar cmui

0: localhost [23 hops] () min forward time, min RTT, avg RTT

1: gw-a-15-810.comp.nus.edu.sg (137.132.81.6) 0.75 0.20 2.39ms

2: NoNameNode (192.168.15.6) 0.74 0.40 2.36ms

3: 115-18.priv.nus.edu.sg (172.18.115.18) 0.74 0.50 2.26ms

4: core-s15-vlan142.priv.nus.edu.sg (172.18.20.125) 0.73 0.60 2.47ms

5: core-au-vlan51.priv.nus.edu.sg (172.18.20.13) 0.75 0.60 2.23ms

6: svrfrm1-cc-vlan167.priv.nus.edu.sg (172.18.20.98) 0.73 0.60 2.41ms

7: border-pgp-m1.nus.edu.sg (137.132.3.131) 1.33 374.20 363.58ms

8: ge3-12.pgp-dr1.singaren.net.sg (202.3.135.129) 26.57 362.30 322.72ms

32 bad fluctuation

9: ge3-0-2.pgp-cr1.singaren.net.sg (202.3.135.17) -1.62 378.50 385.91ms

10: pos1-0.seattle-cr1.singaren.net.sg (202.3.135.5) 36.12 539.40 478.77ms

32 bad fluctuation

11: Abilene-PWAVE-1.peer.pnw-gigapop.net(198.32.170.43) -21.94 524.20 509.76ms

12: dnvrng-sttlng.abilene.ucaid.edu (198.32.8.50) 7.07 547.30 524.40ms

13: kscyng-dnvrng.abilene.ucaid.edu (198.32.8.14) 7.26 552.30 504.06ms

14: iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 15.84 562.00 523.04ms

15: chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 16.59 547.60 507.34ms

32 bad fluctuation

16: nycmng-chinng.abilene.ucaid.edu (198.32.8.83) -4.51 597.70 543.96ms

17: washng-nycmng.abilene.ucaid.edu (198.32.8.85) 13.15 566.70 567.81ms

18: beast-abilene-p3-0.psc.net (192.88.115.125) 0.04 618.70 nanms

19: bar-beast-ge-0-1-0-1.psc.net (192.88.115.17) 0.33 554.40 522.08ms

20: cmu-i2.psc.net (192.88.115.186) 9.99 585.60 501.58ms

32 bad fluctuation

21: CORE0-VL501.GW.CMU.NET (128.2.33.226) -5.86 618.80 468.77ms

22: CS-VL1000.GW.CMU.NET (128.2.0.8) 36.98 640.40 464.34ms

32 bad fluctuation

23: cmui (128.2.220.137) -343.88 591.50 454.09ms

PipeCharacter statistics: 66.17% reliable

From localhost:

| 96.644 Mbps 100BT (102.9328 Mbps)

1: gw-a-15-810.comp.nus.edu.sg (137.132.81.6)

|

| 158.757 Mbps <1.2081% BW used>

2: NoNameNode (192.168.15.6)

A.1 from sagit to cmui 87

|

| 100.730 Mbps <0.0000% BW used>

3: 115-18.priv.nus.edu.sg (172.18.115.18)

|

| 159.374 Mbps <0.9511% BW used>

4: core-s15-vlan142.priv.nus.edu.sg(172.18.20.125)

|

| 162.706 Mbps <3.0585% BW used>

5: core-au-vlan51.priv.nus.edu.sg (172.18.20.13)

|

| 156.608 Mbps <2.3936% BW used>

6: svrfrm1-cc-vlan167.priv.nus.edu.sg(172.18.20.98)

|

| 151.314 Mbps !!! <94.9947% BW used>

7: border-pgp-m1.nus.edu.sg (137.132.3.131)

|

| 9.687 Mbps !!! <72.9038% BW used> May get 94.99% congested

8: ge3-12.pgp-dr1.singaren.net.sg (202.3.135.129)

| hop analyzed: 0.77 : 0.00

|

| 0.755 Mbps !!! ??? congested bottleneck <46.8769% BW used>

9: ge3-0-2.pgp-cr1.singaren.net.sg (202.3.135.17)

| hop analyzed: 0.51 : 8.39

|

| 9.934 Mbps !!! <90.8149% BW used>

10: pos1-0.seattle-cr1.singaren.net.sg(202.3.135.5)

| hop analyzed: 0.96 : 0.00

|

| 0.948 Mbps !!! ??? congested bottleneck <90.3784% BW used>

11: Abilene-PWAVE-1.peer.pnw-gigapop.net(198.32.170.43)

|

| 9.590 Mbps !!! <90.5481% BW used>

12: dnvrng-sttlng.abilene.ucaid.edu (198.32.8.50)

|

| 10.071 Mbps <2.5222% BW used>

13: kscyng-dnvrng.abilene.ucaid.edu (198.32.8.14)

|

| 10.132 Mbps <4.5150% BW used>

14: iplsng-kscyng.abilene.ucaid.edu (198.32.8.80)

| hop analyzed: 0.86 : 21.25

|

| 43.138 Mbps !!! <78.6142% BW used>

15: chinng-iplsng.abilene.ucaid.edu (198.32.8.76)

| hop analyzed: 1.05 : 1.36

|

| 1.350 Mbps !!! ??? congested bottleneck <86.3983% BW used>

16: nycmng-chinng.abilene.ucaid.edu (198.32.8.83)

|

| 5.292 Mbps !!! ??? congested bottleneck <99.7811% BW used>

17: washng-nycmng.abilene.ucaid.edu (198.32.8.85)

| hop analyzed: 0.00 : 2250.00

|

| 2477.365 Mbps !!! <99.7567% BW used>

18: beast-abilene-p3-0.psc.net (192.88.115.125)

|

| 970.166 Mbps !!! <78.2493% BW used> May get 90.33% congested

19: bar-beast-ge-0-1-0-1.psc.net (192.88.115.17)

|

| 9.851 Mbps !!! <27.9351% BW used> May get 96.69% congested

20: cmu-i2.psc.net (192.88.115.186)

| hop analyzed: 1.30 : 0.00

|

A.2 from sagit to tokxp 88

| 1.479 Mbps <10.3610% BW used> May get 81.96% congested

21: CORE0-VL501.GW.CMU.NET (128.2.33.226)

| hop analyzed: 1.01 : 0.00

|

| 1.434 Mbps !!! <30.1162% BW used> May get 22.04% congested

22: CS-VL1000.GW.CMU.NET (128.2.0.8)

| -0.209 Mbps *** static bottle-neck possible modern (0.5637 Mbps)

23: cmui (128.2.220.137)

A.2 from sagit to tokxp

sagit:/home/shaotao/master/ver_2/test/raw_socket# ./pipechar tokxp

0: localhost [15 hops] () min forward time, min RTT, avg RTT

1: gw-a-15-810.comp.nus.edu.sg (137.132.81.6) 0.74 0.20 2.12ms

2: NoNameNode (192.168.15.6) 0.74 0.40 2.13ms

3: 115-18.priv.nus.edu.sg (172.18.115.18) 0.74 0.50 2.71ms

4: core-s15-vlan142.priv.nus.edu.sg (172.18.20.125) 0.74 0.60 2.47ms

5: core-au-vlan51.priv.nus.edu.sg (172.18.20.13) 0.74 0.60 2.56ms

6: svrfrm1-cc-vlan167.priv.nus.edu.sg (172.18.20.98) 0.74 0.60 2.59ms

7: border-pgp-m1.nus.edu.sg (137.132.3.131) 0.72 1.10 2.93ms

8: ge3-12.pgp-dr1.singaren.net.sg (202.3.135.129) 0.72 1.20 2.78ms

9: fe4-1-0101.pgp-ihl1.singaren.net.sg (202.3.135.34) 0.79 1.40 3.11ms

10: atm3-040.pgp-sox.singaren.net.sg (202.3.135.66) 0.72 1.80 3.62ms

11: ascc-gw.sox.net.sg (198.32.141.28) 0.82 1.90 3.46ms

12: s1-1-0-0.br0.tpe.tw.rt.ascc.net (140.109.251.74) 0.70 48.80 52.06ms

13: s4-0-0-0.br0.tyo.jp.rt.ascc.net (140.109.251.41) 0.76 78.60 87.67ms

14: tpr2-ae0-10.jp.apan.net (203.181.248.154) 0.68 126.30 139.56ms

15: tokxp (203.181.248.24) 0.04 126.70 128.28ms

PipeCharacter statistics: 97.70% reliable

From localhost:

| 97.561 Mbps 100BT (97.0672 Mbps)

1: gw-a-15-810.comp.nus.edu.sg (137.132.81.6)

|

| 151.243 Mbps <0.8064% BW used>

2: NoNameNode (192.168.15.6)

|

| 99.270 Mbps <0.1344% BW used>

3: 115-18.priv.nus.edu.sg (172.18.115.18)

|

| 150.626 Mbps <0.0000% BW used>

4: core-s15-vlan142.priv.nus.edu.sg(172.18.20.125)

|

| 147.294 Mbps <0.2692% BW used>

5: core-au-vlan51.priv.nus.edu.sg (172.18.20.13)

|

| 153.392 Mbps <0.8097% BW used>

6: svrfrm1-cc-vlan167.priv.nus.edu.sg(172.18.20.98)

|

| 151.314 Mbps <2.7211% BW used>

7: border-pgp-m1.nus.edu.sg (137.132.3.131)

|

| 153.667 Mbps <0.9695% BW used>

8: ge3-12.pgp-dr1.singaren.net.sg (202.3.135.129)

|

| 152.342 Mbps <9.0680% BW used>

9: fe4-1-0101.pgp-ihl1.singaren.net.sg(202.3.135.34)

A.3 from sagit to suna 89

|

| 152.710 Mbps <9.0680% BW used>

10: atm3-040.pgp-sox.singaren.net.sg(202.3.135.66)

|

| 151.983 Mbps <12.1655% BW used>

11: ascc-gw.sox.net.sg (198.32.141.28)

|

| 153.250 Mbps <14.3550% BW used>

12: s1-1-0-0.br0.tpe.tw.rt.ascc.net (140.109.251.74)

|

| 152.537 Mbps <7.4891% BW used>

13: s4-0-0-0.br0.tyo.jp.rt.ascc.net (140.109.251.41)

|

| 104.591 Mbps !!! ??? congested bottleneck <95.7833% BW used>

14: tpr2-ae0-10.jp.apan.net (203.181.248.154)

| 1800.000 Mbps OC48 (2481.9865 Mbps)

15: tokxp (203.181.248.24)

A.3 from sagit to suna

sagit:/home/shaotao/master/ver_2/test/raw_socket# ./pipechar suna

0: localhost [3 hops] () min forward time, min RTT, avg RTT

1: 1.9s gw-a-15-810.comp.nus.edu.sg(137.132.81.6) 0.76 0.20 2.16ms

2: 1.4s sf0.comp.nus.edu.sg (137.132.90.52) 0.76 0.50 2.82ms

3: 2.9s sf0.comp.nus.edu.sg (137.132.90.52) 0.74 0.50 2.31ms

PipeCharacter statistics: 95.05% reliable

From localhost:

| 95.238 Mbps 100BT (102.9328 Mbps)

1: gw-a-15-810.comp.nus.edu.sg (137.132.81.6)

|

| 100.716 Mbps <0.1321% BW used>

2: sf0.comp.nus.edu.sg (137.132.90.52)

| 96.774 Mbps 100BT (100.7303 Mbps)

3: sf0.comp.nus.edu.sg (137.132.90.52)

Appendix B

Keywords and Functions

B.1 Server-side Variables

‘‘host_system_load1’’, 0,

‘‘host_system_load5’’, 0,

‘‘host_system_load15’’, 0,

‘‘host_cpu_bogomips’’, 0,

‘‘host_cpu_user’’, 0,

‘‘host_cpu_nice’’, 0,

‘‘host_cpu_system’’, 0,

‘‘host_cpu_free’’, 0,

‘‘host_memory_total’’, 0,

‘‘host_memory_used’’, 0,

‘‘host_memory_free’’, 0,

‘‘host_disk_allreqps’’, 0,

‘‘host_disk_rreqps’’, 0,

‘‘host_disk_rblocksps’’, 0,

‘‘host_disk_wreqps’’, 0,

‘‘host_disk_wblocksps’’, 0,

‘‘host_network_rbytesps’’, 0,

‘‘host_network_rpacketsps’’, 0,

‘‘host_network_tbytesps’’, 0,

‘‘host_network_tpacketsps’’, 0,

B.2 User-side Variables 91

‘‘monitor_network_bw", -1

‘‘monitor_network_rtt", -1

B.2 User-side Variables

‘‘user_picked_host1’’, -1,

‘‘user_picked_host2’’, -1,

‘‘user_picked_host3’’, -1,

‘‘user_picked_host4’’, -1,

‘‘user_picked_host5’’, -1,

‘‘user_denied_host1’’, -1,

‘‘user_denied_host2’’, -1,

‘‘user_denied_host3’’, -1,

‘‘user_denied_host4’’, -1,

‘‘user_denied_host5’’, -1,

B.3 Constants

‘‘PI’’, 3.1415926,

‘‘E’’, 2.7182818,

‘‘GAMMA’’, 0.5772156,

‘‘DEG’’, 57.2957795,

‘‘PHI’’, 1.6180339 ,

B.4 Math Functions

‘‘sin’’, sin,

‘‘cos’’, cos,

‘‘atan’’, atan,

‘‘log’’, Log,

‘‘log10’’, Log10,

‘‘exp’’, Exp,

‘‘sqrt’’, Sqrt,

‘‘int’’, integer,

‘‘abs’’, fabs,

Appendix C

Experiment Programs

C.1 Distributed Matrix Multiplication

The matrix multiplication program contains both a local computation mode
and a distributed computation mode. In the local mode, the two input
matrices are multiplied in the vector multiplication style and the result entries
are recorded into the output matrix. The local mode multiplication algorithm
is given in Algorithm. 1.

Algorithm 1 Matrix Multiplication in Local mode

1: dim - square matrix dimension size
2: matrixA - first input matrix
3: matrixB - second input matrix
4: matrixC - output matrix
5: for i = row0 to rowdim−1 do
6: for j = col0 to coldim−1 do
7: matrixC [i][j] =

∑dim−1

t=0
matrixA[i][t] × matrixB[t][j]

8: end for
9: end for

The diagram for showing how the computation is in Fig. C.1.
For every entry in the result matrix MatrixC , we need one slice from

input matrix MatrixA and another slice from the second input MatrixB.
We call the two slices SliceA and SliceB. For the local mode, width of
the slices will be 1. For the Distributed mode, the dimension of the slices
will be based on the parameters given in the scenario including: the matrix
dimension dim, the block dimension blkdim. The parameter blkdim is the
size of a unit block in MatrixC . Thus, assuming the difference between row1

and row2 or col1 and col2 is delta, the value of delta would be:

C.1 Distributed Matrix Multiplication 93

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
�� ��

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��row1

row2

dim

Slice A

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

dim

col1 col2

Slice B

��
��
��

��
��
��

row1

row2

col1 col2

Block C

X

row1

row2

col1 col2

Matrix CMatrix BMatrix A

dim

dim

Figure C.1: Matrix Multiplication

delta =



















dim if blkdim ≥ dim

blkdim if blkdim < dim and not last row/column
blkdim if blkdim < dim, last row/column, dim%blkdim = 0
dim%blkdim if blkdim < dim, last row/column, dim%blkdim 6= 0

The total number of blocks created for MatrixC in the Distributed mode
is nblock = (⌈ dim

blkdim
⌉)2. Each block will be identified by a vector structure

(blkid, row1, row2, col1, col2). The blkid is the sequence number for a block
ranging from 0 to nblock − 1. (row1, row2) is the identification of SliceA

and (col1, col2) is the identification of SliceB. With such a block structure,
the matrix multiplication can be considered as computing a group of small
matrix blocks, each one independent from another.

The distributed computation is accomplished by the master program
and worker programs. A master program running on client machine assigns
the block tasks to workers and collects the returned results. The worker

programs running on the server machines will receive the slices and block
structure, compute BlockC and send back the result.

The matrix blocks (SliceA, SliceB, BlockC) will be sent to the available
servers sequentially. Depending on the configuration of the servers and the

C.1 Distributed Matrix Multiplication 94

block size, the result blocks may come back at different time intervals asyn-
chronously. In order to copy back the result block to MatrixC , for each
result block, the corresponding blkid is also returned. By checking the blkid

value, the master program will be able to position the output at the right
place. This procedure is demonstrated in Fig. C.2.

Master

Worker WorkerWorkerWorker

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Blocks sent

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Blocks received

Unsent Blocks

��
��
��

��
��
��

Recvd Blocks

Block_C(blkid, row1, row2, col1, col2)

Slice_A (delta1 X dim)

Slice_B (dim X delta2)

One Task Block

��
��
��

��
��
��

Sent not Recvd Blocks

Figure C.2: Cooperation between the Master and Worker Programs

The master program keeps track of the number of blocks sent out and
received. Upon receiving a result block, it will assign another block to the
replier in case there are uncomputed blocks left. The whole computation
procedure will stop once all result blocks have been received correctly. The

C.1 Distributed Matrix Multiplication 95

distributed algorithm to compute the multiplication product of two square
matrix with the same dimension is given in Algorithm. 2.

Algorithm 2 Matrix Multiplication in Distributed mode

1: nblock - number of blocks to compute
2: nserver - number of workers
3: nsent - number of blocks sent to workers
4: nrecv - number of result blocks received from workers
5: for i = 0 to nserver do
6: if nsent < nblock then
7: send block[nsent] to server[i]
8: nsent = nsent + 1
9: else

10: break;
11: end if
12: end for
13: while nrecv < nblock do
14: listen on all the nserver sockets
15: if server[i] sends one completed block[t] back then
16: copy the block[t] to result matrix
17: nrecv = nrecv + 1
18: if nsent < nblock then
19: send block[nsent] to server[i]
20: nsent = nsent + 1
21: end if
22: end if
23: end while

