
I/O-EFFICIENT ALGORITHM FOR CONSTRAINED

DELAUNAY TRIANGULATION WITH

APPLICATIONS TO PROXIMITY SEARCH

XINYU WU

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER IN COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

ii

Acknowledgement

Although only one name appears on the cover, this thesis would not be possible

without support of various people who accompanied me during last two and a half

years. I take this opportunity to express my thanks to all of them.

First and foremost, I would like to express my sincere gratitude to Dr. David

Hsu and Dr. Anthony Tung for their guidance, encouragement, and friendship

throughout my time as master candidature. As my supervisors, they have con-

stantly motivated me to explore new knowledge and reminded me to remain fo-

cusing on achieving my main goal as well. Dr. Tung initiated the idea of using

the constrained Delaunay triangulation to facilitate obstructed proximity search

and introduced me to this exciting research direction. During my study, I enjoyed

numerous memorable conversations with Dr. Hsu. Without his insightful obser-

vations and comments, this thesis would never have been completed. But more

importantly, I want to thank my supervisors for teaching me the values of per-

sistence, discipline and priority. These lessons will benefit me for the rest of my

life.

I am grateful to Huang Weihua, Henry Chia, Yang Rui, Yao Zhen, Cui Bin,

iii

and all other friends and colleagues in the TA office and Database group for their

friendship and willing to help in various ways. Working with them has certainly

been a wonderful experience. Further, I want to thank the university for providing

me with world-class facilities and resources.

My special thanks go to my beloved family in China for being supportive to

every decision I made.

Finally, my wife Liu Li helped me with most of the real-life data sets used in

the experiments. But that is the least thing I want to thank her for. I will have

to devote my whole life to repaying her unconditional love, understanding, and

support.

CONTENTS

Acknowledgement ii

Abstract ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions . 6

1.3 Outline . 7

2 Previous Work 9

2.1 Main Memory DT/CDT Algorithms 9

2.2 DT/CDT Algorithms in Other Computational Models 13

2.3 Obstructed Proximity Search Problem 18

3 External-Memory Constrained Delaunay Triangulation 25

3.1 Introduction . 25

3.2 Preliminaries . 26

iv

v

3.3 Disk Based Method . 28

3.3.1 Overview . 28

3.3.2 Computing the Delaunay Triangulation 29

3.3.3 Inserting Constraint Segments 34

3.3.4 Removing Triangles in Polygonal Holes 38

3.4 Implementation . 38

3.4.1 Divide and Conquer . 39

3.4.2 Merge and Conform . 42

3.5 Experimental Evaluation . 45

3.5.1 Delaunay Triangulation . 46

3.5.2 Constrained Delaunay Triangulation 50

3.6 Discussion . 54

4 Obstructed Proximity Search 55

4.1 Introduction . 55

4.2 Experimental Evaluation . 57

4.3 Obstructed Proximity Search Queries 63

4.3.1 Obstructed Range Query . 64

4.3.2 Obstructed k-Nearest-Neighbors Query 70

5 Conclusion 72

5.1 Summary of Main Results . 73

5.2 Future Work . 73

LIST OF FIGURES

1.1 A set of points (left) and its Delaunay triangulation (right). 2

1.2 A terrain surface constructed using Delaunay-based spatial interpo-

lation. 3

1.3 Input data points and constraint edges (left) and the corresponding

Delaunay triangulation (right). 4

2.1 The rising bubble. 12

2.2 a diamond shape. 16

2.3 A set of polygonal obstacles (left) and the visibility graph (right). . 19

3.1 the triangle 4pqr fails the in-circle test in the unconstrained case

because s lies in the interior of its circumcircle. In the constrained

case, 4pqr survives the test as s is not visible to the its vertices. . . 27

3.2 Example of CDT of the open space. Triangles inside the holes are

deleted. 27

vi

vii

3.3 The dividing step: partition the input PSLG into blocks of roughly

equal size so that each fits into the memory. In the zoomed-in pic-

ture, small circles indicate Steiner points created at the intersections

of input segments and block boundaries. 30

3.4 The conquering step: compute DT in each block. The triangle t1 is

safe, and both t2 and t3 are unsafe. 31

3.5 The merging step: compute the DT of the seam. After merging Bi

and Bj, t2 becomes invalid and is deleted, but t3 remains valid. . . . 33

3.6 The DT of input data points. There are three types of triangles: tri-

angles in light shade are the safe triangles obtained in the conquering

step; triangles in dark shade are the valid unsafe triangles that are

preserved during the merging step; the rest are crossing triangles. . 35

3.7 Inserting constraint segment pq only requires re-triangulating grey

region consisting of triangles intersecting with pq. 36

3.8 The conforming step: insert constraint segments Ki from Bi and

update the triangulation. 37

3.9 The final CDT of the input PSLG. 37

3.10 The final CDT of the input PSLG. 39

3.11 Data distributions for testing DT. 47

3.12 Running time and I/O cost comparison of DT algorithms on three

data distributions. 48

3.13 Comparison of our algorithm with a provably-good external-memory

DT algorithm. 50

3.14 Examples of generated PSLGs using different distributions. 50

3.15 Running time and I/O cost comparison of CDT algorithms on three

data distributions. 52

viii

3.16 Comparison between Triangle and our algorithm on Kuzmin PSLGs

with different segments/points ratios. 53

4.1 Indonesian Archipelago . 57

4.2 Data Set 1: (a) a group of islands; (b) The visibility graph; (c) The

CDT of the open space; (d) An SSSP tree rooted at an input vertex

based on the visibility graph; and (e) the SSSP tree rooted at the

same vertex based on the CDT. 59

4.3 Data Set 2. 60

4.4 Data Set 3. 61

4.5 The approximation ratio for the three data sets 62

4.6 Obstacle o having all its vertices out of rt CDT distance range still

affects the geodesic path. 66

4.7 x1x2 is shorter than half the total length of paths A and B 67

4.8 The shortest geodesic path (solid) and a shorter path that cuts

through the removed obstacle (dotted) 68

ix

Abstract

Delaunay Triangulation (DT) and its extension Constrained Delaunay Triangula-

tion (CDT) are spatial data structures that have wide applications in spatial data

processing. Our recent survey, however, shows that there is a surprising lack of

I/O-efficient algorithms for computing DT/CDT on large spatial databases. In

view of this, we propose an external-memory algorithm for computing CDT on

spatial databases with DT being computed as a special instances.

Our proposal is based on the divide and conquer paradigm which compute

DT/CDT of in-memory partitions before merging them into the final result. This

is made possible by discovering mathematical properties that precisely characterize

the set of triangles that are involved in the merging step. Extensive experiments

show that our algorithm outperforms another provably good external-memory algo-

rithm by roughly an order of magnitude when computing DT. For CDT, which has

no known external-memory algorithm, we show experimentally that our algorithm

scale up well for large databases with size in the range of gigabytes.

Obstructed proximity search has recently attracted much attention from the

spatial database community due to its wide applications. One main difficulty for

x

processing obstructed proximity search queries lies in how to prune irrelevant data

effectively to limit the search space. The performance of the existing pruning

strategies is unsatisfactory for many applications. We propose a novel solution

based on the spanner graph property of the CDT to address this key weakness. In

particular, we show how our pruning strategy can be used to process the obstructed

k-nearest-neighbors and range queries.

1

CHAPTER 1

Introduction

In this thesis we present an I/O-efficient algorithm for construction of large-scale

constrained Delaunay triangulations. We also propose effective methods based on

the constrained Delaunay triangulation for processing obstructed proximity search

queries in spatial database systems.

1.1 Motivation

Delaunay triangulation (DT) is a geometric data structure that has been studied

extensively in many areas of computer science. A triangulation of a planar point

set S is a partition of a region of the plane into non-overlapping triangles with

vertices all in S. A Delaunay triangulation has the additional nice property that it

tends to avoid long, skinny triangles, which lead to bad performance in applications

(Figure 1.1). In this work, we develop an efficient algorithm that computes DT and

its extension, constrained Delaunay triangulation, for data sets that are too large

2

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14p15

p16p17

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14p15

p16p17

Figure 1.1: A set of points (left) and its Delaunay triangulation (right).

to fit in the memory.

DT is an important tool for spatial data processing:

Spatial data interpolation. In geographical information systems (GIS), a com-

mon task is terrain modelling from measurements of the terrain height at

sampled points. One way for constructing a terrain surface is to first com-

pute the DT of the sample points and then interpolate the data based on the

triangulation [22, 23, 37]. Figure 1.2 shows a terrain surface constructed this

way. The same interpolation method easily extends to other spatial data,

such as readings from a sensor network.

Mesh generation. Many physical phenomena in science and engineering are mod-

elled by partial differential equations, e.g., fluid flow or wave propagation.

These equations are usually too complex to have closed form solutions, and

need numerical methods such as finite element analysis to approximate the

solution on a mesh. DT is a preferred method for mesh generation [1]. As an

example, in the Quake project, finite element analysis is applied to billions of

points to simulate the shock wave of earthquakes, and DT is used to generate

3

Figure 1.2: A terrain surface constructed using Delaunay-based spatial interpola-
tion.

the meshes needed for simulation [3].

Proximity search. Voronoi diagram is an efficient data structure for nearest

neighbor search. Since the DT of a point set is in fact the dual graph of

the corresponding Voronoi diagram [7, 37] and is easier to compute, it is

common to compute the DT first and obtain the Voronoi diagram by taking

the dual.

The application of DT extends further if we allow in the input data constraint

edges that must be present in the final triagulation. Intuitively, this extension,

called the constrained Delaunay triangulation (CDT), is as close as one can get to

the DT, given the constraint edges (Figure 1.3). Constraint edges occur naturally

in many applications. We give two representative examples. In spatial data inter-

polation, allowing constraint edges helps to incorporate domain knowledge into the

triangulation. For example, if the data points represent locations where pedestrian

traffic flow is measured, the constraint line segments and polygons may represent

obstacles to the pedestrians. It therefore makes sense to interpolate “around” the

obstacles rather than through them. Likewise, in mesh generation for finite ele-

ment analysis, constraint edges mark the boundaries between different mediums,

4

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14p15

p16p17

p1
p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14p15

p16p17

Figure 1.3: Input data points and constraint edges (left) and the corresponding
Delaunay triangulation (right).

e.g., regions where water cannot flow through.

The importance of DT and CDT to applications has led to intensive research.

Many efficient DT algorithms have been proposed, and they follow three main ap-

proaches: divide-and-conquer, incremental construction, and plane sweep [7, 8]. Of

the three approaches, the first two are also applicable to CDT, as well. Unfor-

tunately, although many applications of DT and CDT involve massive data sets,

most algorithms assume that the input data is small enough to fit entirely in the

memory, and their performance degrades drastically when this assumption breaks

down.

If the input data do not fit into the memory, incremental construction is unlikely

to be efficient, because a newly-inserted point may affect the entire triangulation

and results in many I/O operations. The only remaining option is then divide-

and-conquer. The basic idea is to divide the data into blocks, triangulate the data

in each block separately, and then merge the triangulations in all the blocks by

“stitching” them together along the block boundaries. The key challenge here is

to devise a merging method that is efficient in both computational time and I/O

5

performance, when the whole triangulation can not fit in the memory completely.

One of our motivations for designing large-scale CDT algorithm is to facilitate

obstructed proximity search. Despite the presence of obstacles in many applica-

tions, most traditional spatial proximity search queries, such as k-nearest-neighbors

and range queries, measure the distance using simple metric, e.g., the L1 distance or

Euclidean distance. The advantage of adopting these simple metrics is the compu-

tational efficiency. However, many real-life scenarios cannot be modelled accurately

by these simple metrics due to the blocking of obstacles. For example, a nearest gas

station under the Euclidean metric may not mean so much to a car driver if it is

across the river. Obstructed proximity search queries addresses this inaccuracy by

measuring, between two points, the length of the shortest obstacle-avoiding path.

In the literature, this length is often called the geodesic distance, and the short-

est obstacle-avoiding path the shortest geodesic path. The obstructed proximity

search queries have wide applications in geographical information systems, facility

location planning, and virtual environment walk-through. In addition, they can

also serve as a useful tool for spatial data mining algorithms such as clustering and

classification [41].

Because of its importance, obstructed proximity search queries have recently

attracted a lot of attention from the spatial database community [44, 45]. The ba-

sic operation of all obstructed proximity search is to compute the shortest geodesic

path. This can be done by constructing and searching the so-called visibility graph.

Unfortunately the visibility graph has super-quadratic complexity in both time and

space and therefore cannot be pre-materialized. One way to circumvent this is to

prune irrelevant data and build local visibility graph online. However, the existing

pruning strategies are often not effective enough and result in great computational

waste in computing local visibility graph. The need to design better pruning strat-

6

egy is becoming more and more apparent.

1.2 Objectives and Contributions

Motivated by the observation that there is limited work on practical algorithms for

external-memory DT and CDT despite their importance, the first objective of this

thesis is to design a scalable method for the construction of CDT, with DT as a

special case. We believe that our work makes the following contributions:

• We present an efficient external-memory algorithm for CDT using the divide-

and-conquer approach (Section 3.3). We give a precise characterization of

the set of triangles involved in merging, leading to an efficient method for

merging triangulations in separate blocks. Our algorithm makes use of an

internal-memory algorithm for triangulation within a block, but the merging

method is independent of the specific internal-memory algorithm used. In

this sense, we can convert any internal-memory DT/CDT algorithm into an

external-memory one, using our approach.

• We describe in details the implementation of our algorithm (Section 3.4).

One interesting aspect of our implementation is that after computing the tri-

angulation in each block and identifying the triangles involved in merging,

we can merge the triangulations using only sorting and standard set opera-

tions and maintain no explicit topological information. These operations are

easily implementable in a relational database. They require no floating-point

calculation, thus improving the robustness of the algorithm.

• We have performed extensive experiments to test the scalability of our algo-

rithm for both DT and CDT (Section 3.5). For DT, we compare our algorithm

7

with an existing external-memory algorithm that is provably good, and show

that our algorithm is faster by roughly an order of magnitude. For CDT,

to our knowledge, there is no implemented external-memory algorithm. We

compare the performance of our algorithm with an award-winning internal-

memory algorithm [39] and show that the performance of our algorithm de-

grades much more gently when the data size increases.

The second objective of this thesis is to improve the efficiency of processing

obstructed proximity search queries. The main problem of such queries is how

to prune irrelevant data effectively to limit the size of the local visibility graph.

The existing pruning strategy is not powerful enough for many applications. We

present a more effective solution based on the spanner graph property of the CDT

(Section 2.3). Our contribution towards the second objective are the following:

• We have conducted extensive experiments on real-life data set to examine

the true stretch factor of the CDT as spanner graph of the visibility graph

(Section 4.2). Our experiment lends support to the general belief that the

CDT indeed approximates the visibility graph significantly better than the

theoretically proven bound.

• We introduce a provably good pruning strategy based on CDT for processing

obstructed proximity search queries. In particular, we apply our strategy

successfully to k-nearest-neighbors and range queries (Section 4.3).

1.3 Outline

The remaining of the thesis is organized as follows: Chapter 2 is a literature re-

view of the previous work in DT/CDT construction algorithms and the obstructed

8

proximity search problem; In Chapter 3, we present our external-memory CDT

algorithm in detail and provide extensive experimental evaluation of its perfor-

mance. In Chapter 4, we first examine the stretch factor of CDT as the spanner

graph through experiments on real-life data sets, and then propose a new pruning

strategy for processing obstructed proximity search queries. Chapter 5 concludes

our work with a summary of the main results and suggests directions for future

research.

9

CHAPTER 2

Previous Work

Due to its importance for applications, DT has received much attention. Intensive

research has led to many efficient algorithms, using various approaches. In this

chapter, we review some of the current main memory, external-memory and parallel

algorithms for computing DT and CDT. Also found in this chapter is a brief survey

of the proximity search problem in the presence of obstacles.

2.1 Main Memory DT/CDT Algorithms

Efficient main memory algorithms for computing DT have been discovered for a long

time. Three types of commonly used algorithms are divide-and-conquer algorithms,

plane sweep algorithms and incremental algorithms. The divide-and-conquer ap-

proach recursively divides the input data into roughly equal parts, computes the

triangulation for each part, and then merge the resulting triangulations. The plane

sweep approach sorts the data according to their x-coordinates and processes the

10

data from left to right in the sorted order [21]. The randomized incremental con-

struction processes the input data vertices one by one and updates the triangulation

when a data vertices is inserted [31]. See [8] for a good survey. Many of these

algorithms achieve the O(n log n) running time, which is optimal asymptotically.

n is the number of input vertices.

Experiments show that of the three approaches, divide-and-conquer is the most

efficient and robust one in practice [40]. Although the external-memory algorithm

we propose follows a different design principle of minimizing disk I/O, it is also

based on the divide-and-conquer paradigm and therefore share certain common

characteristics with the main memory divide-and-conquer approach. We discuss

the main memory divide-and-conquer approach in some depth here.

Shamos and Hoey [38] found a divide-and-conquer algorithm for computing

Voronoi diagram, based on which DT can be easily built as it is the dual graph

to Voronoi diagram. Lee and Schachter [34] first gave a divide-and-conquer algo-

rithm directly constructing DT. Nevertheless, their original algorithm and proof are

rather intricate, and Guibas and Stolfi [25] introduced an ideal data structure to

fill out many tricky details. The original algorithm partitions the data into vertical

strips. Dwyer [18] provided a simple yet effective optimization by alternating verti-

cal and horizontal cuts to partition the data into cells of size O(log n) and merging

DT of cells first into vertical strips and stitching strips into the whole triangula-

tion. The optimized algorithm achieves better asymptotic performance on some

distributions of vertices and runs faster in practice as well. Inspired by Dwyer’s

idea, our external-memory algorithm also partitions the data with alternating cuts,

though the cell size is determined by other factors.

The central step of the divide-and-conquer algorithm is to merge two half tri-

angulations, here denoted by L and R, into the whole triangulation. Firstly, the

11

lower common tangent e1 of L and R is found. e1 must be in DT, as we can always

construct an empty circle pertaining to cord e1 by starting with any such circle and

growing it away from the triangulation. e1 is the first edge crossing the separating

line between L and R. Inductively suppose that ei is the i-th cross edge and all the

cross edges below ei are correctly constructed. If ei is the upper common tangent

of L and R, then the merging step is finished. Otherwise we can imagine growing

an empty cycle pertaining to cord ei upwards until it touches the first vertex v,

referring to Figure 2.1. It can be shown that v must be connected to the end of

ei that lies on the same side of v. The algorithm then creates a new cross edge

ei+1 connecting v with the other end of ei. All the original edges in triangulations

of L and R that cross ei+1 are deleted. The merging step works from bottom up

until the upper common tangent is met. As one might expect, the algorithm has

to store some connectivity information like pointers from an edge to its incident

edges [25] or from a triangle to its incident triangles [39] so that the updates can

be efficiently performed.

Lee and Lin [33] first investigated the CDT and proposed an O(n2) algorithm

for its construction. Later, Chew [13] described a divide-and-conquer algorithm

that reduced the time bound to asymptotically optimal O(n log n), n being the

number of vertices. The algorithm is however very demanding to implement. The

most popular and probably the easiest to implement algorithm for constructing

constrained CDT is the incremental algorithm [4, 20, 42]. An incremental CDT

algorithm first computes DT of the input point set. Then the segments are in-

serted in to the triangulation. Each insertion of the segment may affect a certain

region in the triangulation. Specifically, the region comprises all the triangles that

cross the segment. As the segment must be included in the CDT, all the edges

crossing the segment are removed. The affected region is hence cut by the segment

12

L R

ei

Figure 2.1: The rising bubble.

into two sub-regions. It can be shown that only these two sub-regions need to be

re-triangulated to conform the triangulation to the segment. The complexity of an

insertion includes two parts. The first part is to locate the affected region. Theoret-

ically, one can build a O(n) index structure to answer location queries in O(log n)

time. However, this does not usually work well in practice due to preprocessing

and storage requirements. One practical solution is the jump-and-walk algorithm

proposed by Mücke et al. [36]. The second step is to re-triangulate the affected

region. Wang [42] discovered a difficult algorithm that runs in asymptotically opti-

mal O(k) time, k being the number of vertices of the affected region. k is normally

a small number unless the segment is very long, and a simple O(k2) algorithm [20]

is usually adopted in practice.

13

2.2 DT/CDT Algorithms in Other Computational

Models

The algorithms listed above all assume a sequential random access model of com-

putation and do not consider the efficiency with respect to disk access. When the

data is too massive to fit into the memory, they completely rely on the virtual

memory of the OS and perform poorly due to huge amount of I/O operations.

The situation is even worse for constrained DT. As in the conventional incremental

algorithm, each insertion of the segment involves a location query which is very

expensive when the triangulation is stored on disk. In this section, we survey the

external-memory algorithms for constructing DT.

Another class of DT algorithms that caught our attention are parallel algo-

rithms. We discuss parallel algorithms because they share similar design principles

with the external-memory algorithm and many techniques used in parallel algo-

rithms can be easily extended to external-memory algorithm or vice versa.

External-Memory Algorithms

The memory of a modern computer system is typically organized into a hierarchy.

From top to bottom, we have CPU registers, L1 cache, L2 cache, main memory,

and disc. Each level is faster, smaller, and more expensive per byte than the next

level. For large-scale information-processing applications, the I/O communication

between fast main memory and slower external storage devices such as disks and

CD-ROMs often forms the bottle-neck of the overall execution. In this context,

a theoretical simplified memory hierarchy was proposed to analyze the program

performance [24]. In this model, there are only two kinds of memory: the very fast

main memory and the very slow disk. A disk is divided into contiguous blocks.

14

The size of each block is B; The size of the problem instance is N ; and the size of

the memory is M . For the purpose of analyzing external-memory algorithm, M is

assumed to be smaller than N . All the I/O-efficient DT algorithms that we know

are designed based on this model. However, before we survey these algorithms we

need to stress two limitations of this model. Firstly, the model assumes a unit cost

for accessing any block of data in disk and does not consider the fact that reading

contiguous blocks is typically much cheaper than random reads. Secondly, the I/O

analysis done under this model often focuses too much on asymptotical bound in

terms of M and N and neglects the hidden constant factor. Thus an asymptotically

optimal algorithms may not yield good practical performance.

In [24], Goodrich et al.. introduced several I/O-efficient algorithms for solv-

ing large scale geometric problems. They described an algorithm for solving the

3-d convex hull problem with an I/O bound of O((N/B) logM/B(N/B)). By well-

known reductions [9], the algorithm can also be used to solve DT problem with

the same I/O performance, which is asymptotically optimal. However, the algo-

rithm is “esoteric” as they described. Crauser et al.. developed a new paradigm

based on gradation for optimal geometric computation using external-memory and

achieved the same optimal I/O bound for DT construction [16]. Both algorithms

presented in [24] and [9] are cache-aware in the sense that they need to know the

parameters M and B in advance. Subsequently, Piyush and Ramos [30] studied the

cache-oblivious version of DT construction, where the algorithm only assumes an

optimal replacement strategy to decide which block is to be evicted from internal

memory instead of the actual values of M and B. Moreover, they implemented a

simplified version of their algorithm and reported the running time of their pro-

gram. That is the only experimental study of an external-memory DT algorithm

that we have found in the literature. All the above algorithms are based on random

15

sampling. For a concrete example, we summarize the algorithm Piyush and Ramos

implemented in [30] below.

The algorithm adopts a divide-and-conquer approach. Given the input of n

vertices, it first draws a random sample of the vertices that is small enough to fit

into the memory and computes DT of the sample using any efficient main memory

algorithm. For convenience, the sample actually includes 4 points in infinity so that

the triangulation covers the whole space. Then the algorithm computes the conflict

list of each triangle in DT of the sampled vertices. The conflict list of a triangle

is the set of all vertices that invalidates the triangle, that is, the set of all vertices

that lie within the circumcircle of the triangle. For each pair of triangles in the

sample that share a common edge, connect the two common vertices together with

the circumcenters of the two triangles to form a diamond. See Figure 2.2. It is easy

to see that all such diamonds form a partition of the space, therefore any triangle

in the final triangulation of the whole vertices set must has its circumcenter in one

of those diamonds, ignoring the case where the circumcenter lies on the boundary

between diamonds for brevity. So in the conquering step, the algorithm finds all

the triangles circumcentered in each diamond. To do this, the algorithm loads all

the vertices in the union of the conflict lists of the two triangles that define the

diamond, calls a main memory algorithm to compute DT of these vertices, and

scan from the triangulation for triangles circumcentered in the diamond. It can

be shown that these triangles are precisely those in the overall triangulation whose

circumcenters lie in the diamond.

Note that in the conquering step, one cannot be theoretically certain that the

vertices from the union of conflict lists fit into the memory. At best, one can

argue this is the case with high probability. As experiments demonstrate, it is

good enough for practical purposes. There are two sources of inefficiency in the

16

Figure 2.2: a diamond shape.

algorithm, though. One is the computation of the conflict set of a triangle. The

algorithm does this in an inverse way. For each point, it finds the triangles con-

flicts with this point. Then the conflict lists are produced by sorting. Still, this

requires doing point location for every input vertex. The other inefficiency lies in

the computation of triangles circumcentered in a diamond. The area of a diamond

is usually greatly smaller than the area of the union of the circumdiscs of the two

triangles that define the diamond. Therefore, it is wasteful to load all the vertices

in the union of the conflict lists and triangulate all of them only to find triangles

circumcentered in the diamond. Moreover, a vertex conflicts with multiple triangles

in DT of the sample; each edge in these triangles corresponds to a diamond; and

the vertex needs to be loaded once for each such diamond, which is a big waste in

both time and space.

We are not aware of any external-memory algorithm for constructing con-

strained DT in the literature.

17

Parallel Algorithms

Another class of DT algorithms that caught our attention are parallel algorithms

which use several processors working simultaneously to solve large scale problems.

We discuss parallel algorithms here because they share similar certain design prin-

ciples with external algorithms. For example, one of the main objectives in de-

signing parallel algorithms is to minimize inter-processor communication, which

naturally corresponds to minimizing disk access in the single processor model.

However, I/O efficiency and parallel efficiency are not equivalent. For example,

parallel algorithms need to address the inter-processor synchronization problem,

while external-memory algorithms cannot simultaneously load everything into the

memory to partition the data.

Most parallel DT algorithms work by decomposing the problem domain into

sub-domains of roughly equal size, distributing sub-domains to different proces-

sors, and merging the sub-solutions into the overall triangulation. Unsurprisingly,

the major difficulty in parallelizing DT algorithm lies in the merging phase. And

most research has been centered around improving the efficiency. Many parallel

DT algorithms such as [15] use special techniques like bucketing to achieve good

performance on uniformly distributed data set. We do not discuss them here as

their performances degrade significantly when the data distribution is non-uniform.

Of those algorithms that are insensitive to data distribution, Blelloch et al.. [10]

proposed the ”marriage before conquest” strategy which pre-computes the inter-

processor region boundary to separate the computation of the interior region of

the processors. For every boundary, the algorithm needs to project the point set

twice, first onto a 3D paraboloid and then to a plane perpendicular to x- and y-

coordinates, and compute the lower 2D convex hull of the projection of the point

set on the plane. They showed that the points whose projected images lie on the

18

convex hull precisely define the boundary. An external-memory algorithm using

this strategy may not be efficient for the need to compute convex hull of point

sets that do not fit into the memory. Chew et al. [14] introduced an incremental

insertion parallel algorithm that can compute the CDT, but their focus of using

constraint is to minimize inter-processor communication. The divide-and-conquer

approach that we adopt is related to that used in the work of Chen et al. on paral-

lel DT computation [11], but our merging method is more efficient, and we handle

CDT as well as DT.

2.3 Obstructed Proximity Search Problem

Spatial proximity search such as k-nearest-neighbors (kNN) and range queries in

the presence of obstacle has recently emerged as a new research frontier due to its

broad applications in spatial database systems. The first part of this section gives

a background knowledge of the current techniques for the construction of geodesic

shortest path which is the basic operation for all obstructed proximity search. In

the second part, we review some of the existing work on processing obstructed

queries in spatial database systems. Specifically, we focus on the kNN and range

queries.

Geodesic Shortest Path Algorithms

We assume the obstacles are modelled as polygons and consider both exact and

approximation algorithms for computing geodesic shortest path.

19

Figure 2.3: A set of polygonal obstacles (left) and the visibility graph (right).

Exact Algorithms

There have been two fundamentally different approaches for computing the exact

geodesic shortest path—the visibility graph search and continuous Dijkstra method.

Given a set O of polygonal obstacles and a set of sites S, the visibility graph G

contains all the vertices in O and S as its nodes. Two nodes ni and nj are connected

if and only if they are mutually visible, i.e., the line segment intersecting ni and

nj does not intersect the interior of any obstacle.

Using simple local optimality argument, one can easily show that the geodesic

shortest path must lie on the visibility graph. Also note that any path on the visibil-

ity graph must be obstacle-avoiding by definition of the visibility graph. Therefore

the shortest path between two vertices on the visibility graph is exactly the geodesic

shortest path. Thus we can construct the visibility graph first and use Dijkstra’s al-

gorithm to compute the geodesic shortest path. The naive algorithm to construct

visibility construction runs in O(n3) by simply checking for every pair of points

whether the line segment connecting them intersects any obstacle edge, n being

the total number of input vertices. Lee [32] gave an O(n2 log n) algorithm which

20

was based on a radial sweep about each vertex. The time complexity comes from

the use of n independent radial sortings of the vertices. Later the time complexity

was improved to asymptotically optimal O(n2) by Welzl [43] and Asano et al. [6].

The fatal shortcoming the approach of computing geodesic distance by visibility

graph search is that the visibility graph can have as many as Ω(n2) number of edges.

The space requirement makes constructing the whole visibility graph impractical

for any reasonably large data set.

The continuous Dijkstra method achieves the asymptotically optimal running

time of O(n log n) and has the same space complexity [27]. It computes geodesic

shortest path by simulating the ”wavefront” propagation out from a source point.

At any given time the wavefront maintains a set of curve pieces just like the ripple

generated by throwing a stone into the water. The algorithm is very sophisticated

and mainly for theoretical interest.

Approximation Algorithms

There have been several asymptotically efficient methods to approximate the geodesic

shortest path [35, 5]. However the derivation of their asymptotical bound often re-

quires sophisticated analysis. The algorithms are complicated to implement and

have big constant factors. Here we concentrate on one type of simple algorithms

that use geodesic t−spanners to compute the approximate geodesic distance. A

t−spanner is a graph G that contains all the input vertices such that for every

pair of input vertices, there is a path on G whose length is at most t-times their

true distance. Note that the true distance can be according to any predetermined

metric, e.g., Euclidean, network, or geodesic. So when we say a t−spanner, we

must specify the underlying metric.

The first geometric spanner result was given by Chew. In [12], he demonstrated

21

that the DT can be constructed according to L1 metric is a spanner graph that

approximates the Euclidean distance between any pair of points with stretch factor

t =
√

10 ≈ 3.16. Dobkin, Friedman and Supowit [17] showed the length of the

shortest path between two vertices on DT approximates their Euclidean distance

with a stretch factor of (1 +
√

5)π/2 ≈ 5.08. Later the bound was improved

to 2π/(3 cos(π/6)) ≈ 2.42 by Keil and Gutwin [29]. Karavelas and Guibas [28]

generalized the proof in [17] to prove the same stretch factor for the CDT as

a spanner graph for the visibility graph. That is, the length of the shortest path

between two vertices on the CDT is at maximum 5.08 times their geodesic distance.

The true stretch factor of both DT and CDT are generally believed to be much

smaller than the theoretically proven bound. The worst-case lower bound of the

stretch factor for DT and CDT is π/2, which is also due to Chew. In Chapter 4, we

present extensive experimental results on real life data which indeed lends support

to the general belief that the stretch factor is very small.

Obstructed Proximity Search Queries

Conventional spatial databases usually store the objects in R-tree [26]. Efficient

Euclidean proximity search are supported by utilizing the lower bound and up-

per bound properties of R-tree. Recently, there has been some efforts to integrate

geodesic shortest path algorithms into the spatial database systems to handle ob-

structed proximity search queries [44, 45]. The existing obstructed query processing

methods use the visibility graph to compute the exact geodesic distance. The vis-

ibility graph of the whole data set cannot be pre-materialized due to its extreme

size. These methods try to circumvent this difficulty by online constructing the

local visibility graph of only the obstacles and sites that are relevant to the queries.

To do this, they need a lower bound to geodesic distance to prune the obstacles and

22

sites. Invariably, the Euclidean distance is chosen as the lower bound. The simple

argument is that the geodesic distance is at least as long as the Euclidean distance.

Below we focus on the processing of two obstructed spatial queries—obstructed

k−nearest-neighbors (k-ONN) and range query.

Obstructed Range Query

Given a query point p, a set of sites S, a set of obstacles O, and a range r, the

obstructed range query returns all the sites within geodesic distance r to p. Zhang

et al. described a simple algorithm in [45] to process the obstructed range query.

The algorithm first performs a Euclidean range query to collect all the obstacles

and sites that intersect the disc centered at p with radius r. By the lower bound

property of the Euclidean distance, any site outside the disc cannot be within the

geodesic range; and no obstacle outside the disc can affect the range query result.

Obviously, not all the sites intersecting the disc fall into the geodesic range due to

the blocking of obstacles. The algorithm then constructs a local visibility graph of

only the selected obstacles and sites and employs the Dijkstra’s algorithm on the

visibility graph to find the sites within the geodesic range.

Obstructed k−Nearest-Neighbors Query

The k-ONN query returns the k nearest sites to the query point p in geodesic

distance. The k-ONN query is harder than range query because of the lack of

lower bound. The range r of the range query is a natural lower bound. Xia et al.

and Zhang et al. gave two incremental algorithms for processing k-ONN queries.

The two algorithms are similar in nature. Each algorithm successively look at the

sites according to their Euclidean distance in ascending order. The termination

condition for both is when the k-th nearest neighbor the algorithm has found so far

23

has geodesic distance shorter than the Euclidean distance of the next site to look at.

Both algorithms incrementally retrieve obstacles that block the provisional geodesic

shortest paths and recompute the visibility graph, but their retrieval strategies are

different.

Zhang et al.’s algorithm grows a disc centered at p outwards, the new radius

being set to be the provisional geodesic distance to the kth nearest neighbor in the

last iteration. Then the algorithm loads new obstacles and sites that intersect the

larger disc. It terminates when the provisional geodesic shortest paths to the k

nearest neighbors remain the same in two subsequent iterations. Xia et al.’s algo-

rithm has two levels of iterations. In each outer iteration, the algorithm works the

same way as Zhang et al.’s algorithm to load new sites and obstacles. But instead

of computing the geodesic distances by directly constructing the visibility graph of

everything as the first algorithm does, it uses an incremental refinement algorithm

to do the work. In each inner iteration, it adds the obstacles that intersect the

provisional shortest paths into a list of obstacles it maintains. This can be done

in main memory. Then the algorithm only constructs the visibility graph of the

obstacles in the list and all the retrieved sites, and re-compute the shortest geodesic

paths. The inner loop repeats until no new obstacle intersects any of the shortest

provisional paths to the current k nearest neighbors. The two algorithms are in-

comparable in strengths. While the first algorithm is likely to construct visibility

graphs that contain irrelevant obstacles, the second algorithm may generate too

many inner cycles in the refinement process.

There three major drawbacks of these methods. The first drawback is that

the Euclidean distance does not approximate the geodesic distance well in general.

The lower bound is often too loose, and causes these methods to compute very

large visibility graphs consisting mostly of irrelevant data. Secondly, in order to

24

prune irrelevant obstacles and sites, these methods need to invoke Euclidean range

query, which is costly. This is especially bad for incremental algorithms which

require performing the Euclidean range query repetitively. The last problem of

these methods is that they do not offer a tradeoff between optimality of the query

result and the computational cost. Due to the quadratic complexity of the visibility

graph, sometimes it is simply infeasible to compute the exact geodesic path due to

computational resource limitation. Instead of having the execution of a query for

exact result terminated by the OS, one may wish to have a quick and reasonably

good result. In Chapter 4, we propose new methods for processing obstructed

proximity search query based on the CDT that address these three weaknesses.

25

CHAPTER 3

External-Memory Constrained Delaunay
Triangulation

3.1 Introduction

Despite the importance of DT/CDT for various spatial database applications, our

recent survey show that there is a surprising lack of I/O-efficient algorithms for com-

puting large-scale DT/CDT. In this chapter, we propose a novel external-memory

DT/CDT construction algorithm based on the divide and conquer paradigm. The

algorithm makes clever use of several key properties of DT/CDT to achieve high ef-

ficiency. In particular it does not need the connectivity information in the merging

step and avoids expensive geometric computation as much as possible.

The chapter is organized as follows: Section 3.2 Section 3.3 establish the theo-

retical foundation and gives an outline of the algorithm. Section 3.4 describes the

implementation of the algorithm in detail. In Section 3.5, we report our extensive

experimental study of our algorithm. Section 3.6 ends the whole chapter with a

brief discussion of the general assumptions of the algorithm.

26

3.2 Preliminaries

Let S be a set of points in the plane. The convex hull of S is the smallest convex

set that contains S, and a triangulation of S is a partition of the convex hull into

non-overlapping triangles whose vertices are in S (Figure 1.1). The boundary of

a triangulation then clearly coincides with the boundary of the convex hull. In

general, a point set admits different triangulations, and we can impose additional

conditions to obtain desirable properties and make the triangulation unique. The

Delaunay triangulation of S, DT (S), is a triangulation with the additional property

that for every triangle t in the triangulation, the circumcircle R(t) of t contains

no points in S in its interior. One can show that DT tends to avoid long, skinny

triangles, resulting in many benefits in practice [9].

DT can be generalized, if the input data contains not only points, but also line

segments acting as constraints. A planar straight line graph (PSLG) is a set S

of points and a set K of non-intersecting line segments with endpoints in S. The

points can be used to model service sites, and the line segments can be linked

together to model polygonal obstacles of arbitrary shapes. Given a PSLG (S, K),

we say two points p and q in S are visible to each other if the line segment between p

and q does not intersect with any segment of K. Using this notion of visibility, the

constrained Delaunay triangulation of (S,K), denoted by CDT (S, K), is defined

as follows:

Definition Given a PSLG (S, K), a triangulation T of S is a constrained Delaunay

triangulation of (S, K), if

• every constraint segment k ∈ K is an edge of some triangle in T , and

• for each triangle t ∈ T , there is no point p ∈ S such that p is both in the

interior of the circumcircle of t and visible to all three vertices of t.

27

p p

Figure 3.1: the triangle 4pqr fails the in-circle test in the unconstrained case
because s lies in the interior of its circumcircle. In the constrained case, 4pqr
survives the test as s is not visible to the its vertices.

Figure 3.2: Example of CDT of the open space. Triangles inside the holes are
deleted.

Note that if there is no constraint segment passing through the circumcircle of t,

then the second condition above is equivalent to the the empty-circle property for

DT, and so it is a natural extension of the empty-circle property when constraint

segments are present (Figure 3.1).

In some applications, we are interested in the CDT of the open space (Figure 3.2.

Specifically, when the input data contains polygonal holes whose interiors are of

no interest to us, we sometimes want to remove the triangles inside these holes

from the CDT. This is beneficial for certain simulations that involve impenetrable

regions. We are going to see one such application in Chapter 4.

28

3.3 Disk Based Method

3.3.1 Overview

The input to our algorithm is a PSLG (S, K), which consists of a set S of points

in the plane and a set K of non-intersecting constraint segments. We assume that

(S,K) is so large that it cannot fit into the main memory, and our problem is to

compute CDT (S, K).

Our proposed algorithm initially ignores the constraint segments K and com-

putes DT (S). Then it adds the constraint segments back and updates the triangu-

lation to construct CDT (S,K). To reduce the memory requirement, our algorithm

uses a divide-and-conquer approach. Specifically, it goes through four main steps:

1. Divide: Partition the input PSLG (S, K) into small blocks so that each fits

in the memory;

2. Conquer: Use an internal-memory DT algorithm to compute the DT for

each block;

3. Merge: Stitch together DTs from all the blocks and build the complete

DT (S);

4. Conform: Insert constraint segments block by block and update the trian-

gulation to build CDT (S, K).

Both the merging and conforming steps potentially require updating the entire tri-

angulation, which leads to high I/O cost, because the triangulation is too large to be

stored in the memory. Our goal is therefore to design an algorithm that minimizes

the number of unnecessary I/O operations during merging and conforming.

We now give details on the four steps. Section 3.3.2 describes the first three

steps, which compute DT (S). Section 3.3.3 describes the last step, which enforces

29

the constraints. Lastly, Section 3.3.4 shows how to compute the CDT of the open

space by removing triangles in polygonal holes.

3.3.2 Computing the Delaunay Triangulation

In the dividing step, we partition the rectangular region containing (S, K) into

rectangular blocks Bi, i = 1, 2, . . . so that the number of points and segments in

each block is small enough for the data to fit into the memory (Figure 3.3). As a

convention, each block contains the right and top edges, but not the left and bottom

edges. We assume that every segment is completely contained within a block. If a

segment goes through multiple blocks, we can split it by adding additional points

at the intersections of the segments and block boundaries. These additional points

are called Steiner points by the convention in the literature. See Section 3.4 for

details and alternatives.

The conquering step is straightforward. Let Si ⊆ S be the subset of points that

lie in Bi. We simply invoke an internal-memory DT algorithm to construct DT (Si)

for each block. Suppose that t is a triangle in DT (Si) and R(t) is its circumcircle.

If R(t) lies entirely within Bi, then no point in another block can enter R(t) and

fail the empty-circle test of t (Figure 3.4). Thus t remains valid after merging. If

R(t) crosses the boundary of Bi, a point in another block may fall inside R(t) and

cause t to be invalidated during merging. This fact is summarized in the lemma

below:

Lemma 3.3.1 Let Si ⊆ S be the subset of points in block Bi. For a triangle

t ∈ DT (Si), if the circumcircle of t lies entirely within Bi, t must remain valid

after merging; otherwise, t may be invalidated.

For convenience, we make the following definition:

30

Bi Bj

Figure 3.3: The dividing step: partition the input PSLG into blocks of roughly
equal size so that each fits into the memory. In the zoomed-in picture, small circles
indicate Steiner points created at the intersections of input segments and block
boundaries.

Definition Let Si ⊆ S be the subset of points in block Bi. A triangle t ∈ DT (Si)

is safe if its circumcircle lies within Bi; otherwise, t is unsafe.

Distinguishing between safe and unsafe triangles is valuable, because safe triangles

are unaffected by merging and can be reported directly in the conquering step.

Only the unsafe triangles need to be loaded into the memory in the merging step,

thus significantly reducing the memory requirement.

We now move on to the more difficult step, merging. If we merge DT (Si) with

DT (Sj) in an adjacent block. Some unsafe triangles in DT (Si) may be invalidated,

because the points in Sj fail the empty-circle tests for those triangles. In addition,

31

Bi

Bj

t1

t2

t3

Figure 3.4: The conquering step: compute DT in each block. The triangle t1 is
safe, and both t2 and t3 are unsafe.

some new triangles must be created to stitch together DT (Si) and DT (Sj).

First let us consider the triangles that are created during merging. We start

with some terminology.

Definition A triangle whose vertices all lie in the same block is called a non-

crossing triangle; otherwise, it is called a crossing triangle.

Suppose that t is a non-crossing triangle in DT (S), the final DT of S. Then t must

satisfy the empty-circle test, meaning that no point in S lies within the circumcircle

of t. Assuming that t lies within block Bi, we know by the definition of the DT

that t is also a triangle in DT (Si), because Si ⊆ S. So we have the next lemma:

Lemma 3.3.2 Let Si ⊆ S be the subset of points in block Bi. If t ∈ DT (S)

is a non-crossing triangle that lies inside Bi, then t ∈ DT (Si). Hence merging

DT (S1), DT (S2), . . . cannot create any new non-crossing triangle.

Lemma 3.3.2 implies that we only need to focus on crossing triangles. Denote

by S ′ the set of point in S such that every point in S ′ is either a vertex of an unsafe

triangle or on the boundary of DT (Si), for some block Bi. The set S ′ is called the

32

seam. According to the lemma below, we can obtain all the crossing triangles by

computing DT (S ′) (Figure 3.5).

Lemma 3.3.3 A triangle t is a crossing triangle in DT (S) if and only if t is also

a crossing triangle in DT (S ′).

Proof: First we show that if t ∈ DT (S), then t ∈ DT (S ′). DT (S ′) can be ob-

tained by deleting all the points in S\S ′ from DT (S) and re-triangulating. Deleting

a point p from a DT only affects those triangles incident to p; a triangle t not inci-

dent to p remains unchanged, because the empty-circle property for t is unaffected

by deletion of points. For any point p ∈ S\S ′, p cannot be incident to any crossing

triangle; otherwise, p would have already been included in S ′. Therefore all the

crossing triangles in DT (S) remain after the deletion of points in S\S ′. It then

follows that for any crossing triangle t ∈ DT (S), t ∈ DT (S ′). To prove the other

direction, simply observe that adding a point back only creates those triangles that

are deleted.

Next let us identify those unsafe triangles in DT (Si) that are invalidated dur-

ing merging. One possibility is to test whether an unsafe triangle t overlaps some

crossing triangle in DT (S ′). However, the overlapping test is difficult because it is

unclear which crossing triangles t may overlap. Checking against all crossing trian-

gles is clearly inefficient. Furthermore the overlapping test requires numerical cal-

culation which increases computational cost and decreases robustness. Fortunately

the following lemma helps to solve the problem much more easily and efficiently.

Lemma 3.3.4 DT (S ′) contains all the valid unsafe triangles and no invalid unsafe

triangles.

33

Bi

Bj

Figure 3.5: The merging step: compute the DT of the seam. After merging Bi and
Bj, t2 becomes invalid and is deleted, but t3 remains valid.

Proof: First we show that DT (Si) contains no invalid unsafe triangles. If t is

an invalid unsafe triangle from some block, it must intersect a crossing triangle in

DT (S). Since DT (S ′) and DT (S) have exactly the same set of crossing triangles

by Lemma 3.3.3, t intersects some crossing triangle in DT (S ′). This is impossible,

because DT (S ′) is a well-formed triangulation. Hence DT (Si) contains no invalid

unsafe triangles.

Next we show that DT (S ′) contains all the valid unsafe triangles. All such tri-

angles must be present in DT (S), as they are valid. Now we apply the same point

deletion argument in the proof of Lemma 3.3.3. We obtain DT (S ′) from DT (S) by

deleting all the points in S\S ′. Since unsafe triangles are unaffected by the deletion

of these points, all the valid unsafe triangles remain in DT (S ′).

Now let U denote the set of unsafe triangles for all the blocks. We can sort the

triangles in U and DT (S ′) in lexicographical order according to the indices of their

vertices and perform a set intersection of U and DT (S ′). The result is exactly the

set of valid unsafe triangles that need to be reported.

To summarize, in the dividing step, we partition the input data into blocks

34

Bi, i = 1, 2, In the conquering step, we compute DT (Si) for each block Bi.

We report all the safe triangles as valid triangles for DT (S) and store the set U of

unsafe triangles. In the merging step, we need only U and the seam S ′. This is an

important reason for the memory space efficiency of our algorithm, as typically U

and S ′ are much smaller than the original input S. After computing DT (S ′), we

report all the crossing triangles in DT (S ′) as valid triangles in DT (S). We then

compute the set intersection of U and DT (S ′) and report the resulting triangles.

The theorem below establishes the correctness of these steps.

Theorem 3.3.5 The combination of dividing, conquering, and merging steps com-

putes DT (S) correctly.

Proof: DT (S) consists of two types of triangles: non-crossing triangles, each of

which is contained entirely within some block Bi, and crossing triangles. According

to Lemma 3.3.3, all the crossing triangles in DT (S) are obtained in the merging

step by computing DT (S ′). Non-crossing triangles are further divided into safe

and unsafe triangles. By Lemma 3.3.1 and 3.3.2, all the safe triangles in DT (S)

are reported in the conquering step. From Lemma 3.3.4, we can infer that all the

unsafe triangles in DT (S) are computed correctly by taking the set intersection of

U and DT (S ′). Therefore all the triangles in DT (S) are captured correctly.

3.3.3 Inserting Constraint Segments

Now we add the constraints segments back and compute CDT (S, K). To do this

efficiently, we need the following result [42]:

Lemma 3.3.6 Let CDT (S, K) be the CDT of a point set S and a constraint seg-

ment set K, and let pq be a new segment such that the endpoints of the segment,

35

Bj

Bi

Figure 3.6: The DT of input data points. There are three types of triangles:
triangles in light shade are the safe triangles obtained in the conquering step;
triangles in dark shade are the valid unsafe triangles that are preserved during
the merging step; the rest are crossing triangles.

p and q, are in S and pq does not intersect with any segment in K. To compute

CDT (S, K
⋃{pq}), we only need to re-triangulate the region covered by the triangles

overlapping pq (Figure 3.7).

This lemma says that adding an new constraint segment pq into an existing CDT

only affects those triangles overlapping pq Figure 3.7. This greatly restricts the set

of triangles that need to be considered and localizes the updates. Using this result,

we can add the segments in blocks and process each block Bi almost independently.

Let Ki ⊆ K be the subset of segments in block Bi. Conceptually we compute a

series of triangulations T0, T1, T2, . . ., where T0 is simply DT (S) and Ti for i ≥ 1 is

an updated triangulation after Ki is inserted into Ti−1.

We now explain how to process Bi and compute Ti. First we load all triangles

in Ti−1 that lie inside or cross the boundary of Bi. This set of triangles forms a

triangulation Q. We insert the segments Ki into Q and compute the CDT using

an internal-memory CDT algorithm. The result is a new triangulation Q′. By

Lemma 3.3.6, loading Q is sufficient, because all segments in Ki lie Bi according

36

p

q

p

q

Figure 3.7: Inserting constraint segment pq only requires re-triangulating grey re-
gion consisting of triangles intersecting with pq.

to our assumption and cannot affect any triangles in other blocks. Furthermore,

the new triangles in Q′ do not affect any triangles in other blocks, either. This

entire process can thus be completed in the memory, and in the end, we report

the triangles in Q′ and obtain the updated triangulation Ti. Of course, since the

intermediate triangulation Ti resides on the disk, we must be careful to minimize

the I/O operations when loading triangles from Ti−1 and reporting triangles in

Q′. These data organization issues are discussed in the next section. Figure 3.8

illustrates the result of conforming the triangulation to Ki.

The theorem below shows the correctness of our CDT algorithm.

Theorem 3.3.7 Our algorithm computes CDT (S, K) correctly.

Proof: We use induction to show that Ti is a correct CDT for S and K =
⋃

i Ki.

By Theorem 3.3.5, T0 = DT (S) is correct. Assume that Tj−1 is a correct CDT of

(S,
⋃j−1

i=1 Ki). To process block Bi, we insert the constraint segments Ki to Tj−1.

37

Bj

Bi

Figure 3.8: The conforming step: insert constraint segments Ki from Bi and update
the triangulation.

Bj

Bi

Figure 3.9: The final CDT of the input PSLG.

Lemma 3.3.6 ensures that re-triangulating captures all the changes that occur as

a result of inserting Kj and Tj is the CDT of (S,
⋃j

i=1 Ki. It follows that the algo-

rithm computes correctly CDT (S, K) when all Ki, i = 1, 2, . . . are inserted.

Figure 3.10 shows the final CDT (S, K) after the insertion of all the segments

in K.

38

3.3.4 Removing Triangles in Polygonal Holes

Some applications require to compute the CDT of the open space. In this case,

we need to remove the triangles inside the polygonal holes. This task is simple for

main memory algorithms. The conventional method [39] empties each polygonal

hole by locating one triangle inside it, and then expand from the source triangle by

a breadth-first search to remove the triangles until the progress is blocked by the

boundary of the hole. The problem become much subtler when the triangulation

does not fit into the memory, as in this case, the breadth-first search can lead to

heavy I/O operations. In view of the difficulty of removing triangles from the overall

CDT, we propose a method that deletes triangles as we process each individual

block. Specifically, we register for each block the polygonal holes it contains in the

dividing step. In the conforming step, we remove the triangles inside the polygonal

holes of a block right after we insert all the constraints of this block. As we have

seen in 3.3.3, the triangulation involved in the conforming each block can be stored

in main memory. Hence, we can apply any main memory technique for the removal

of triangles.

Apparently, there may be holes that overlap different blocks. In this case, we in-

troduce artificial boundaries and additional points to split the hole into components

each of which fits squarely into some block.

3.4 Implementation

This section describes the implementation of our algorithm. In our implementation,

a point in the plane is represented by its x- and y-coordinates, a segment by two

indices to its endpoints, and a triangle by three indices to its three vertices. Our

implementation consists of insertion and deletion to multiple tables and they are

39

Figure 3.10: The final CDT of the input PSLG.

Table 3.1: List of data tables.
Table Description Fields
S Set of data points and Steiner points each indexed

by a primary key, i
i, x, y

Si Set of data and Steiner points in Bi i, x, y
S ′ Seam i, x, y
K Segments set, i1 and i2 are primary key in S i1, i2
Ki Set of segments in Bi i1,i2
U Set of unsafe triangles represented by the primary

key of their vertices
i1, i2, i3

listed in Table 3.1 for ease of discussion. We will give more details on these tables

as we go along. Our discussion here will come in two parts: (1) divide and conquer

(2) merge and conform.

3.4.1 Divide and Conquer

The input to our external-memory CDT algorithm consists of a set of points S,

and a set of constraint segments K. We first describe how the set of points and

40

constraint segments are divided into partitions.

Let N be the number of input points and M be the block size, which is governed

by the physical memory space. For simplicity, let us assume N = r2M for some

integer r. We divide S into r2 rectangular blocks. First we sort all the points in S

according to their x-coordinate values and divide the the point sets vertically into

r disjoint columns, each containing rM points. Then the points in each column are

re-sorted according to their y-coordinate values and cut horizontally into blocks of

size M . If such integer r does not exist, we can do a rounding off to make sure

each block does not contain more than M points.

This way of partitioning data with alternating vertical and horizontal cuts is

chosen so that the shape of each block is close to square for a uniform distribution of

points in a square area. This is preferable because generally the computational cost

(time and I/O) of the merging step is closely related to the sum of the circumference

lengths of all the blocks, which is minimized when all the blocks are square. As

our experiments show, the alternating cut also works well for non-uniform data

distributions.

In the previous section, we stated one assumption on the segment set K is that

none of the segments overlaps different blocks. This assumption is of course not true

in general. Here we give two ways to handle those overlapping segments. One way

is to delay the insertion of those overlapping constraint segments and compute the

CDT first with the segments that completely lie in some single block, then insert the

overlapping constraint segments one by one into the triangulation. Alternatively

one can break all the overlapping constraint segments into pieces by creating Steiner

points at the intersections of the constraint segments and boundaries of the blocks.

The first approach computes the true CDT of the input PSLG. However as we

know, each insertion of constraint segment involves locating the segment in the

41

triangulation which is computationally expensive when the whole CDT does not fit

into the memory. The second approach computes the CDT of the input point sets

and the Steiner points. We adopted the second approach in our implementation

because it enables us to process all the segments in batches in the conforming

step, which is much more I/O-efficient. A small number of Steiner points are often

allowed and sometimes necessary in most applications. For conciseness, we hereby

use S for the union of the set of input points and the set of Steiner points, and Si

for the set of points within block Bi. By the convention we adopted in 3.3.2, Si

includes Steiner points on the right and top edges of Bi.

Having sorted all the points in S, we assign a unique primary key i to each

point based on that order. This is important for us to map most of our processing

into database operation instead of geometrical computation. Correspondingly, each

segment in K will then be represented by the primary keys of those points marking

its ends. From here on, we can see S and K as tables. Similarly, we add in the

corresponding primary key for each point into Si for each block.

The conquering step is quite simple. By our way of partitioning the data, input

points from the same block Bi are stored sequentially on disk. The conquering

step first load the set Si and compute DT (Si). Then as described in the previous

section, we need to classify the triangles as safe or unsafe in DT (Si). The status of

the triangle is decided by checking whether its circumcircle intersects the boundary

of Bi. If it does intersect, the triangle is considered safe, else the triangle will be

considered unsafe. All safe triangles are directly reported to the final triangulation

DT (S); all the unsafe triangles are added into the list U , and all the vertices which

are either incident to some unsafe triangle or lying on the boundary of DT (Si) for

some block Bi are added into the seam, S ′. Some points can be reported to S ′

multiple times, so S ′ so duplicate points should be filtered off from S ′.

42

Algorithm 1 Conquer
Input:

boundaries /* the boundaries for all blocks */
Si /* the partitioned point set for each block Bi*/

Output:
DT (S) /* the final DT of the point set stored on disk */
S ′ /* the set of points that will be needed in merging step */
U /* the set of unsafe triangles */

1: S ′ = ∅
2: U = ∅
3: for all blocks Bi do
4: compute DT (Si)
5: for all t ∈ DT (Si) do
6: if circumcircle R(t) crosses the boundary of Bi then
7: add the vertices of t into S ′

8: add t into U
9: else

10: report t to the final DT (S)
11: end if
12: end for
13: end for
14: remove duplicate points in S ′

Again U and S ′ can be seen as tables with each triangle in U represented by

the primary key of its vertices while points in S ′ are kept in sorted order of the

primary key together with the x, y coordinates.

3.4.2 Merge and Conform

The merging step of our algorithm computes all the crossing triangles and valid

unsafe triangles in DT (S). By Lemma 3.3.3, we can find all the crossing triangles

from DT(S’).

Lemma 3.3.4 states that the set of valid unsafe triangles are also stored in

DT (S ′). Thus we only need to compute DT (S ′) to find these two sets of triangles,

which saves a lot of memory space as S ′ is usually significantly smaller than S. Note

that since S ′ might not fitted into the main memory, we might have to recursively

43

Algorithm 2 Merge
Input:

S ′ /* the set of points needed in merging */
U /* the set of unsafe triangles */

Output:
DT (S) /* the final DT of the point set stored on disk */

1: compute DT (S ′)
2: for all t ∈ DT (S ′) do
3: if t is a crossing triangle then
4: report t to the final DT (S)
5: end if
6: end for
7: for all t ∈ DT (S ′) ∩ U do
8: report t to the final DT (S)
9: end for

perform another external-memory DT of S ′. We will give more details on this in

the discussion section later.

We scan through DT (S ′) to select the crossing triangles. A triangle is crossing

if it overlaps different blocks. The valid unsafe triangles can be expressed as the set

intersection U ∩ DT (S ′), U being the set of unsafe triangles obtained in the con-

quering step. This can be easily computed since both U and dt(S ′) are represented

by the primary key of their vertices 1.

We next look at the conform step. Section 3.3.3 briefly describes how to process

the segments block by block and progressively update the triangulation to obtain

CDT (S, K). Let Ki ⊆ K be the subset of segments in block Bi. Lemma 3.3.6

shows that inserting all segments in Ki only affects the triangulation Q formed by

triangles lie completely in or cross the boundary of Bi. The result of conforming

Q to Ki is Q′. Once Q and Ki are loaded, we can simply call an internal memory

CDT subroutine to compute Q′. Here we focus on how to load Q and report Q′.

The loading and reporting must be done carefully. Otherwise imagine that we

1For easy comparison, we stored the vertices of each triangle in a anti-clockwise order starting
with the vertices that have the smallest x-coordinate

44

simply report all the triangles in Q′ sequentially to the disk. Some of the triangles

in Q′ overlap other blocks. It will be very difficult to load these triangles when we

process the blocks they overlap.

We can classify the triangles in Q and Q′ into two groups: triangles totally

contained in Bi, and those overlapping other blocks. The triangles totally contained

in Bi can be sequentially loaded and reported straight away, as they cannot be

affected by segments in other blocks by Lemma 3.3.6. The triangles overlapping

other blocks are managed using a cache mechanism.

After DT (S) is constructed in the conquer step, we duplicate the crossing trian-

gles for each block it overlaps so that for any block Bi, we can sequentially load all

crossing triangles in DT (S) that overlap Bi. Thus Step 5 in the conform function

can be done with minimal I/O time.

To capture the changes due to the insertion of segments, we maintain two

sets C1 and C2 of triangles in main memory as caches. C1 stores newly created

triangles overlapping unprocessed blocks, while C2 stores dirty triangles overlapping

unprocessed blocks. Denote the set of triangles in Q that overlap other blocks by

A. Both A and A′ are initialized to be empty. We first read into A all crossing

triangles in DT (S) that overlap Bi. Then we add all triangles overlapping Bi from

C1 into A, and delete all dirty triangles found in C2 from A. A combined with all

triangles in DT (S) that lie entirely in Bi clearly gives us Q.

After we conform Q to Ki to obtain Q′, we can report all the triangles that do

not overlap any other block to the final CDT (S, K). All the remaining triangles

overlap other blocks. Denote them by A′. We append C1 with the set difference

A′\A as all triangles in A′\A are newly created ones. Similarly, we append C2 with

A\A′. It is safe to immediately report all triangles in C1 that do not overlap any

unprocessed block, and delete all such triangles from C2 as they are no longer in use.

45

Algorithm 3 Conform
Input:

DT (S) /* the DT of S stored on disk*/
Ki /* the segments contained in each block */

Output:
CDT (S, K) /* the final CDT stored on disk */

1: C1 = ∅
2: C2 = ∅
3: for all blocks Bi do
4: A = ∅
5: load interior triangles in Bi from DT (S)
6: load crossing triangles overlapping Bi from DT (S) into A
7: add all triangles in C1 overlapping Bi into A
8: delete all triangles found in C2 from A
9: combine A with interior triangles to form Q

10: conform Q to Ki to get Q′

11: report all triangles in Q′ that lie within Bi to the final CDT (S,K)
12: A′ = the set of triangles remained in Q′

13: C1 = C1 ∪ (A′\A)
14: C2 = C2 ∪ (A\A′)
15: report all triangles in C1 that do not overlap any unprocessed block to the

final CDT (S,K)
16: delete all triangles in C2 that do not overlap any unprocessed block
17: end for

Alternatively, one can choose lazy evaluation depending on the caches’ capacity.

3.5 Experimental Evaluation

Our program is implemented in C++. For internal-memory DT/CDT, it uses

Triangle [39], which is awarded the J. H. Wilkinson Prize for Numerical Software

for its efficiency and robustness.

We tested our implementation extensively on both DT and CDT. For DT, we

compare our algorithm with both Triangle and a provably good external-memory

algorithm, which, as we have mentioned in Section 2.2, appears to be only one

in the literature with implementation and experimental studies. For CDT, since

46

there is no implemented external-memory algorithm, we compare our algorithm

with Triangle and test for scalability on large data sets.

Our experimental platform is an Intel Pentium 4 PC, which has one 1.4GHz

CPU and 512MB memory, and runs RedHat Linux Fedora I. The code is compiled

with option -O. We use the Linux time command to measure the running time and

the vmstat command to measure the I/O operations. One drawback of vmstat

is that it only monitors the overall I/O activity of the whole system. So we kept

all other system activities at the minimum when performing the experiments to

maximize measurement accuracy.

3.5.1 Delaunay Triangulation

Data Distribution

We ran our program on point sets with three different distributions: Kuzmin,

Line Singularity and Uniform (Figure 3.11). These are standard distributions for

evaluating the performance of DT algorithms [10, 11].

Kuzmin distribution. The Kuzmin distribution models the distribution of star

clusters in flat galaxy formations. It is a radically symmetric distribution

with the distribution function

M(r) = 1− 1√
1 + r2

, (3.1)

where r is the distance to the center. This distribution converges to the center

faster than the normal distribution.

Line Singularity distribution. Line Singularity is an example of distributions

that converge to a line. It has a parameter b, which is set to 0.01 in our

47

Kuzmin Line Singularity Uniform

Figure 3.11: Data distributions for testing DT.

experiments. To take a sample (x, y) from the Line Singularity distribution,

we pick a uniform random sample (u, v) and apply the formula

(x, y) = (
b

u− bu + b
, v). (3.2)

Uniform distribution. The uniform distribution consists of points picked uni-

formly at random from the unit square.

Both Kuzmin and Line Singularity are highly skewed distributions, and so stan-

dard partition techniques such as bucketing do not work well. For each distribution,

we ran several experiments with different data size ranging from 5 to 80 million

points. The data size of 12 million points was chosen because Triangle is usually

killed by the operating system on data sets of roughly 13 million points. In the

experiments, we set the block size in our program for data partitioning to be 2

million points.

Results

Figure 3.12a compares the running time of Triangle and our algorithm for all

three distributions. We consider both CPU time and I/O time.

48

Kuzmin Line Singularity Uniform

0

100

200

300

400

500

600

700

800

900

5 10 12 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

0

100

200

300

400

500

600

700

800

900

5 10 12 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

0

100

200

300

400

500

600

700

800

900

5 10 12 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

(a) Running time.

0

1000

2000

3000

4000

5000

6000

7000

8000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

0

1000

2000

3000

4000

5000

6000

7000

8000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

0

1000

2000

3000

4000

5000

6000

7000

8000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

(b) I/O cost.

Figure 3.12: Running time and I/O cost comparison of DT algorithms on three
data distributions.

First, observe that both algorithms perform almost identically on all three dis-

tributions, indicating that they are insensitive to data distributions.

From Figure 3.12a, we see that our external-memory algorithm generally out-

performs Triangle in total running time on data sets of more than 5 million

points. As the data size increases, Triangle spends more and more time on I/O.

This is not surprising. As an internal-memory algorithm, Triangle stores all the

data, such as points, triangles, etc., in arrays. As the data size grows, the arrays

become too large to fit completely in the memory, and part of the data must be

swapped to the disk. Yet Triangle continues to access these large arrays ran-

domly. As a result, the CPU must stall frequently and wait for the data to be

loaded from the disk. In contrast, I/O time for our external-memory algorithm is

49

much smaller and grows gently with the data size. This is attributed to the effi-

cient data management by our algorithm. Figure 3.12b, which shows the amount

of data throughput between the memory and the disk, further confirms this view.

Our algorithm shows a steady linear growth in I/O cost, while Triangle shows

a much faster super-linear growth. Furthermore Triangle cannot handle very

large data sets: the process was killed by the operating system if the data sets

contained more then 13 million points. What Figure 3.12b cannot show is that our

algorithm not only generates fewer I/O operations, but also access the disk access

sequentially most of the time, resulting lower I/O cost per operation on the aver-

age. Overall, our algorithm is faster in total running time, as a result of effective

I/O management, and can process much larger data sets.

We also compared our algorithm with another external-memory DT algorithm

by Kumar and Ramos [30]. Kumar and Ramos’ algorithm is provably efficient.

Unfortunately, we cannot obtain their running code, so we use their experimental

result [30] for comparison. All the data sets they used are generated with uniform

distribution except one real data set with 79 million points. We do not have the

real data set, so all comparison are performed on uniformly distributed data. In

their experiments, they used a dual-processor Athlon MP 1800 system with 1GB

memory. Despite the slight disadvantage of our hardware system, our algorithm

demonstrated roughly an order of magnitude speedup in total running time Fig-

ure 3.13. The reason, we believe, is that our data partitioning and merging methods

are more effective and avoid processing the same data multiple times.

50

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

no. points (million)

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
.)

Kumar & Ramos
our algo.

Figure 3.13: Comparison of our algorithm with a provably-good external-memory
DT algorithm.

Kuzmin Line Singularity

Figure 3.14: Examples of generated PSLGs using different distributions.

3.5.2 Constrained Delaunay Triangulation

Data Distribution

The point sets for the input PSLGs are again generated with Kuzmin, Line Singu-

larity, and Uniform distributions. There are two parameters for data generation:

the total number of points N and the ratio of the number of constraints segments

versus the number of points 0 ≤ α ≤ 1, which is used to control the density of

segments. Below we describe how the data sets are generated for each distribution:

Kuzmin PSLG We first randomly generate
√

N/3 values for radius r using the

51

distribution function M(r) of the Kuzmin distribution. Then we generate
√

N/3 values for angle θ from [0, 2π). Each combination of (a, r) represents

a point in the polar coordinate system. Together these combinations form

a spiderweb with N/3 cells. In each cell, we randomly sample three points,

which are then connected with constraint segments to form a triangle with

probability α. See Figure 3.14 for an example.

Line Singularity PSLG (Figure 3.14 right) We first generate a Uniform PSLG

with the same parameters N and α, and then map each point (u, v) in the

PSLG to (x, y) using (3.2).

Uniform PSLG We uniformly and randomly partition the unit square into a grid

of N/3 cells. In each cell, we sample three points and decide with probability

α whether to create constraint segments to connect them.

Results

For CDT, we compare with Triangle only, since there are no practical external-

memory algorithms (see Section 2.2). Our experiments consist of two parts. In the

first part, we fix the segments to points ratio α, and vary the number of points N .

In the second part, we fix N and vary α.

In the first part, we set α = 50%, and ran data set with 5 to 50 million points

for all three distributions. The data sets with 8 million points were chosen because

Triangle got killed by the OS on the data set with 9M points and α = 50%. The

charts (Figure 3.15) are organized in the same way as for DT.

As Figure 3.15 shows, the performance of both algorithms is very similar for

all three distributions, which means that both are insensitive to data distributions

for CDT as well. The performance comparison yields similar conclusion as that

for DT, only that the advantage of the external-memory algorithm becomes even

52

Kuzmin Line Singularity Uniform

0

500

1000

1500

2000

2500

3000

3500

5 8 10 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

0

500

1000

1500

2000

2500

3000

3500

5 8 10 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

0

500

1000

1500

2000

2500

3000

3500

5 8 10 20 30 40 50
Number of points (million)

T
im

e
(s

ec
.)

A B C D E F G H I J

(a) Running time.

0

5000

10000

15000

20000

25000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

0

5000

10000

15000

20000

25000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

0

5000

10000

15000

20000

25000

5 15 25 35 45
Number of points (million)

I/O
(M

B
)

(b) I/O cost.

Figure 3.15: Running time and I/O cost comparison of CDT algorithms on three
data distributions.

more obvious. Triangle builds the DT first and constructs the CDT by inserting

the segments one by one. Each insertion requires searching the triangulation and

finding the location to insert the segment. When the triangulation cannot be stored

in the memory completely, the search incurs significant I/O cost, which explains

the dramatic increase in running time and I/O cost. Our external-memory CDT

program processes the segments in batches. For each batch of segments, only a

much smaller triangulation of the corresponding block needs to be searched. As a

result, the search can be done entirely in the memory, which greatly reduces the

running time and I/O cost.

Next, we fix the number of points N at 8 million and vary the segments to points

ratio α from 10% to 90%. The performance of both algorithms is very similar for all

53

Kuzmin Line Singularity Uniform

0

500

1000

1500

2000

2500

3000

10% 30% 50% 70% 90%
No. segments/No. points

T
im

e
(s

ec
.)

A B C D E F G H I J

0

500

1000

1500

2000

2500

3000

10% 30% 50% 70% 90%
No. segments/No. points

T
im

e
(s

ec
.)

A B C D E F G H I J

0

500

1000

1500

2000

2500

3000

10% 30% 50% 70% 90%
No. segments/No. points

T
im

e
(s

ec
.)

A B C D E F G H I J

(a) Running time.

0

2000

4000

6000

8000

10000

12000

10% 30% 50% 70% 90%
segments/points

I/O(MB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10% 30% 50% 70% 90%
segments/points

I/O(MB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10% 30% 50% 70% 90%
segments/points

I/O(MB)

(b) I/O cost.

Figure 3.16: Comparison between Triangle and our algorithm on Kuzmin PSLGs
with different segments/points ratios.

three distributions. As Figure 3.16 illustrates, for all three data distributions, both

Triangle and our algorithm demonstrate linear growth in running time and I/O

cost with respect to α, but the rate of growth for our algorithm is much smaller.

Although Triangle processes segments one by one while our algorithm does it in

batches, both algorithms are incremental construction in nature. Since the size of

triangulation is not affected by the number of segments, one would expect that the

average cost to insert a segment into the triangulation remains relatively constant

as the density of constraint segments increases. This explains the linear growth in

computational cost.

54

3.6 Discussion

Currently the merging step of our algorithm computes the DT of the seam, DT (S ′),

in the memory. This has worked well in all of our experiments, despite the large

input data size. Typically the seam size is less than 0.6% that of the original

input data. The largest seam encountered has only 281934 points, well within the

memory capacity. Nevertheless, as the data size grows, the seam will eventually fail

to fit in the memory. In this case, we propose to apply our algorithm recursively

to S ′. For truly massive data sets, we can apply the recursion multiple times and

obtain the final triangulation, as long as each recursive step reduces the seam size

by a significant fraction. The recursive extension of our algorithm works well,

except for some pathological cases, e.g., all the points lying on a parabolic curve.

Such a pathological case would fail all external-memory algorithms based on divide-

and-conquer, unless all the data fit in the memory. However, one simple way for

breaking such pathological cases in practice is to insert a few randomly sampled

points into the input data as a preprocessing step.

55

CHAPTER 4

Obstructed Proximity Search

4.1 Introduction

One of the motivations for designing and implementing our CDT algorithm was

to facilitate proximity search in the presence of obstacles. The basic operation

of obstructed proximity search is to compute the geodesic shortest path between

two given points. As we discussed in Section 2.3, there are two main approaches

for computing the exact Geodesic shortest path—the visibility graph search and

continuous Dijkstra method. The former approach constructs the visibility graph of

the input vertices and runs Dijkstra’s algorithm on the visibility graph to compute

the shortest path. Unfortunately, the visibility graph can have Ω(n2) edges, where

n is the number of vertices in the input PSLG. The space requirement makes this

approach impractical for any reasonably large data set. The continuous Dijkstra

method achieves asymptotically optimal O(n log n) bound in running time and

space. But the algorithm is too complex to implement and has a big constant

factor.

In many applications, we are satisfied with an obstacle-avoiding path that is

not necessarily the shortest, but reasonably short. This is usually accomplished by

56

using spanner graphs of the visibility graph. In this chapter, we focus on using the

CDT as the spanner graph to solve the approximate geodesic shortest path problem.

For convenience, let us call the length of the shortest path on the CDT between

two vertices their CDT distance. Karavelas and Guibas [28] generalized the proof

in [17] to prove that the CDT distance approximates the geodesic distance with a

stretch factor of 5.08. However, the true stretch factors of both DT and CDT as

spanner graphs are generally believed to be much smaller. The best-known lower

bound for the worst-case stretch factor is π/2.

Computing the geodesic path is one of the basic operations for obstructed prox-

imity search. Existing methods for processing obstructed proximity search queries

construct local visibility graph to compute exact shortest geodesic path. They rely

on the Euclidean distance as the lower bound to prune the irrelevant obstacles and

sites. These methods suffer from that the Euclidean distance does not approximate

geodesic distance well in general. Moreover they do not offer tradeoff between the

optimality of the result and the computational cost. In this chapter, we propose

new query processing methods based on the spanner property of CDT to overcome

these problems.

This chapter is organized in the following way: in Section 4.2, we present ex-

periments on real data sets to show that in practice the stretch factor of the CDT

as spanner graph for the visibility graph is much better than the proven theoretical

bound. In Section 4.3, we introduce a more efficient pruning strategy based on the

CDT and describe methods that use the CDT as the preprocessing step to answer

the approximate and exact obstructed k-nearest-neighbors and range queries.

57

Figure 4.1: Indonesian Archipelago

4.2 Experimental Evaluation

There is a large gap between the best-known worst-case stretch factor, π/2 of

the CDT as the spanner graph of the visibility graph and the existing theoretical

bound, 5.08. To show that the length of the shortest path between two vertices

on CDT indeed approximates their geodesic distance very well, we conducted ex-

tensive experiments to compare the approximate shortest path and exact shortest

path on real data sets. The data sets we use are taken from the map of the In-

donesian archipelago, referring to Figure 4.1. There are over 14 thousand islands of

Indonesia, ranging from a tiny speck on the map to the island of Sumatera which

is approximately the size of California. Each island is represented by a simple

polygon. In total, the map consists of 78000 polygon vertices, which makes it very

expensive to construct the visibility graph of the whole archipelago. We chose three

very different groups of islands as our data sets to ensure that our study of the ap-

proximation ratio is comprehensive. Each data set contains around 2500 polygonal

vertices. The first data set is a dense distribution of tens of small islands (Fig-

ure 4.2); the second one is a very sparse distribution of tiny islands (Figure 4.3);

and the last one is a dense distribution of medium-sized islands (Figure 4.4).

58

To compute the exact shortest path, we implemented Lee’s O(n2 log n) algo-

rithm [32] using C++. We did not implement the asymptotically optimal O(n2)

algorithm such as the ones in [6, 19, 43] because they are very complex and does

not yield better performance in practice. We also used the GeoWin package of

LEDA [2] for displaying the results.

As Figures 4.2a, 4.2b, 4.3a, 4.3b, 4.4a, and 4.4b suggest, the size of the visibility

graph is significantly larger than that of the CDT. The entire open space is almost

covered by the edges of the visibility graph. After the visibility graph and CDT are

constructed, we can pick any vertex v, and run the Dijkstra’s algorithm to compute

the so-called single source shortest path (SSSP) tree, which represents the shortest

paths from v to all other vertices. Figures 4.2c, 4.2d, 4.3c, 4.3d, 4.4c, and 4.4d are

examples of SSSP trees on the visibility graph and CDT.

For each data set, we randomly pick 2000 pairs of vertices, and compute the

exact and approximate shortest geodesic paths between every pair on the visibil-

ity graph and CDT respectively. The comparison of the exact and approximate

geodesic distances are summarized in Figure 4.5.

From Figure 4.5, we see that the approximation ratio indeed never exceeds the

conjectured worst-case bound π/2. Moreover, it seems that the CDT approximates

particularly well at the narrow channels between obstacles. The approximation

ratio for densely distributed data sets such as 1 and 3 is generally better than that

for sparse distribution like 2. The reason is difficult to ascertain with certainty,

but one can make educated inferences. A geodesic path consists of a series of

line segment links. The ends of each link are visible to each other. The overall

approximation ratio for the whole path depends very much on how well these

links are approximated. If a link passes through a narrow channel, it is likely to

cut through many thin triangles in the CDT whose long edges form small angles

59

(a) (b)

(c) (d)

(e)

Figure 4.2: Data Set 1: (a) a group of islands; (b) The visibility graph; (c) The
CDT of the open space; (d) An SSSP tree rooted at an input vertex based on the
visibility graph; and (e) the SSSP tree rooted at the same vertex based on the
CDT.

60

(a) (b)

(c) (d)

(e)

Figure 4.3: Data Set 2.

61

(a) (b)

(c) (d)

(e)

Figure 4.4: Data Set 3.

62

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Exact Distance

A
p

p
ro

x.
 R

at
io

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Exact Distance

A
p

p
ro

x.
 R

at
io

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

Exact Distance

A
p

p
ro

x.
 R

at
io

Figure 4.5: The approximation ratio for the three data sets

63

with the straight-line link. As a result, travelling along these edges offers good

approximation to the link. In contrast, when a link passes through an open area,

the edges of those triangles it intersects often form much larger angle with the link.

A path along these edges does not approximate the link as well.

4.3 Obstructed Proximity Search Queries

Processing obstructed proximity search queries involves computing the geodesic

distance between vertices by constructing and searching the visibility graph. Due to

the quadratic complexity of the visibility graph, the global visibility graph cannot

be pre-materialized except for very small data sets. One practical approach to

circumvent this difficulty is to build a local visibility graph of only the relevant

data online. There are two things we should keep in mind about this approach.

First, the approach does not always work. There are certainly situations where

even the local visibility graph of only the relevant data is still too large. In this

case, there is not much we can do. It is simply almost impossible to compute the

exact geodesic distance. Second, it is very unlikely that we can determine precisely

what data are relevant beforehand. The best we can do is therefore to prune all the

data that we can be absolutely certain that are irrelevant. Thus the effectiveness

of this approach can only be improved by developing better pruning strategy.

The pruning strategies of existing work [44, 45] are all based on using the Eu-

clidean distance as the lower bound. The argument is that the Euclidean distance

between two points must be smaller than their geodesic distance. Thus if we are

looking for objects that are within r in geodesic distance to some query point p,

it is safe to prune anything whose Euclidean distance to p is larger than r. While

these pruning strategies are simple, they are often insufficient and inefficient. As

64

we stated earlier, the main weaknesses of these methods are the following.

• The Euclidean distance does not approximate geodesic distance well in gen-

eral. This often results in very large visibility graph consisting mostly of

irrelevant data.

• In order to filter out irrelevant data, these methods need to perform costly

Euclidean range query. This is especially bad for incremental algorithms, e.g.,

k-ONN in [44, 45].

• They do not offer tradeoff between the optimality of the solution and the

computational cost.

In this section, we propose CDT-based pruning strategy to address the above

three weaknesses. Our strategy is inspired by the spanner property of CDT. In

contrast to the visibility graph which has quadratic space complexity, the CDT is a

planar graph and only takes O(n) space and therefore can be fully pre-materialized.

We demonstrate our pruning strategy by describing methods that process k-ONN

and obstructed range queries efficiently.

4.3.1 Obstructed Range Query

Given a query point p and a range r, the obstructed range query returns all the

sites that are within geodesic distance r to p. Computing the geodesic distance

between two vertices requires computing the visibility graph which is expensive.

Thus we need to exclude as many as possible irrelevant sites and obstacles in the

construction of the visibility graph.

The main advantage of the CDT-based pruning strategy for processing ob-

structed range query is that the CDT distance offers a constant-bounded approx-

imation to the geodesic distance. This is in contrast to using Euclidean distance

65

as lower bound where the approximation can be arbitrarily bad. As a result, the

CDT-based pruning strategy can greatly reduce the size of the local visibility graph

used to compute exact geodesic distance.

Our CDT-based range query processing method consists of the following steps:

1. search the CDT to report sites that are within l1 in CDT distance to p and

obstacles each of which has at least one vertex that is within l2 in CDT

distance to p;

2. construct the visibility graph based on the reported sites and obstacles;

3. search the visibility graph to find all the sites that are within geodesic range.

Steps 2 and 3 require no explanations. Step 1 prunes irrelevant sites and ob-

stacles. Below we show how to set the CDT search range l1 and l2 and prove our

pruning strategy is correct.

First we treat the simple case where the query point coincides with some vertex

of the CDT. In this case, we set l1 = rt, where t is the stretch factor of CDT as

spanner graph, π/2 ≤ t < 5.08. It is safe to use l1 to prune the sites because any

site s that is with in geodesic range r to p cannot be more than rt in CDT distance

away from p. How to set l2 to prune obstacles? One may be tempted to think that

if all the vertices of an obstacle have CDT distances longer than rt, the obstacle

can be pruned. Unfortunately, this is not the case. Refer to Figure 4.6 for an

illustration. In this example suppose that s is a site that is within CDT range rt to

the query point p, and Obstacle o has all its vertices outside the rt CDT distance

range. The lower path is the true shortest geodesic path from p to s, but without

the presence of o, we have a shorter upper path, which actually cuts through the

obstacle o.

66

p
o

s

Figure 4.6: Obstacle o having all its vertices out of rt CDT distance range still
affects the geodesic path.

The reason for this counter-example is that the geodesic distance from p to

an obstacle can be shorter than the geodesic distance to any of its vertices. By

the geodesic distance from p to an obstacle, we treat the obstacle as a point set,

and take the minimum of the geodesic distances from p to all points of the point

set. One may attempt to fix this problem by introducing additional edges in order

to also approximate the distance to obstacles. But that greatly complicates the

underlying CDT structure and its construction, and can lead to large increase in

space requirement. Below we show that we can still prune obstacles based on CDT

alone by properly setting the value of l2.

Lemma 4.3.1 Let A and B be two distinct paths that connect two points p and q

on the plane. For any segment x1x2 that is completely caught in between A and B

(the segment can touch A or B), the length of the segment is no longer then half

the total length of A and B (Figure 4.7).

Proof: Extend both ends of the segment to meet A or B at x′1 and x′2. The

straight-line segment x′1x′2 is no longer than half the total lengths of paths A and

B because it is the shortest among all paths between them.

Theorem 4.3.2 Let s be a site that is within l1 = rt in CDT distance to p. Suppose

all the vertices of an obstacle o have CDT distances to p larger than rt(t + 3)/2.

67

(1) If the true geodesic distance between p and s is no larger than r, removing

o CANNOT affect the shortest geodesic path from p to s; and (2) If the geodesic

distance between p and s is larger than r, removing o can NOT reduce the geodesic

distance from p to s to less than r.

Proof: (1): In this case, the geodesic distance between s and p is no larger than r.

Assume to the contrary that the removal of Obstacle o as described in the theorem

can indeed create a new path from p to s that is no longer than the true geodesic

shortest path. This new path must intersect the deleted obstacle. Consider the

first segment of the obstacle that intersects this new path from p to s. The segment

must have one end that is caught in between the new path and the true shortest

geodesic path. Denote the intersection and the segment end by x and e. Refer

to Figure 4.8. According to the assumptions, both the shortest geodesic path and

the new path between p and s are shorter than r. Hence the segment xe must be

shorter than r by Lemma 4.3.1. The geodesic distance between p and x is also

less than r. Therefore the geodesic distance between p and e must be less than 2r.

By the spanner property of the CDT, the CDT distance between p and e must be

smaller than 2rt < rt(t+3)/2. But this contradicts to the assumption on the CDT

distance from p to the obstacle’s vertices.

(2): Still consider Figure 4.8. Now suppose the geodesic distance between s and

p

x1

x′

1

x2

x′

2

q

A

B

Figure 4.7: x1x2 is shorter than half the total length of paths A and B

68

p

x

e

s

Figure 4.8: The shortest geodesic path (solid) and a shorter path that cuts through
the removed obstacle (dotted)

p is larger than r. Assume to the contrary that the removal of the obstacle creates

a new path between s and p that is shorter than r. The geodesic distance from p

to x must be shorter than r. Since s survives the pruning, the geodesic shortest

path from p to s is no longer than rt. Thus the total length of the shortest geodesic

path and the new path between p and q is shorter than rt + r. By Lemma 4.3.1,

the segment xe is shorter than (rt+ r)/2. Combining the inequalities, the geodesic

distance between p and e is less than r(t+3)/2. Hence the CDT distance from p to

e must be less than rt(t + 3)/2. However, this is a contradiction to the assumption

on the CDT distances of the vertices of the obstacle to p.

By Theorem 4.3.2, it is safe to set l2 to be rt(t + 3)/2. The idea behind Theo-

rem 4.3.2 is that if removing an obstacle can shorten the geodesic distance between

a query point and a site which are already geodesically close, the obstacle must

have one vertex that is geodesically close to the query point.

Next we generalize the above solution to handle arbitrary query point in the

open space. When the query point p does not coincide with any vertex of the

CDT, the spanner property of CDT does not apply to p directly. To overcome this

problem, we locate the triangle in the CDT that contains p. Let v be the vertex

of the triangle that is the closest to p; and denote their Euclidean distance by d.

Then we search the CDT as in Step 1 from v with the geodesic range parameter r

69

being replaced by r′ = r + d, and setting l1 = r′t, and l2 = r′t(t + 3)/2 accordingly.

It is not difficult to verify that all the candidate sites are captured because for any

site s that is less than or equal to r in geodesic distance to p, the geodesic distance

between s and v is no greater than r + d. To ensure the correctness of pruning

obstacles, we need the following theorem which is akin to Theorem 4.3.2.

Theorem 4.3.3 Let p, v, r, r′, and d be as described above. Let s be a site that

is within l1 = r′t in CDT distance to v. Suppose all the vertices of an obstacle o

have CDT distances to v larger than r′t(t + 3)/2. (1) If the true geodesic distance

between p and s is less than or equal to r, removing o can Not affect the shortest

geodesic path from p to s; and (2) if the true geodesic distance between p and s is

larger than r, removing o can NOT reduce the geodesic distance from p to s to less

than r otherwise.

Proof: We still refer to Figure 4.8 for both cases.

(1): In this case, both the shortest geodesic path and the new path between

p and s are no longer than r. By Lemma 4.3.1, the segment xe is shorter than r.

The geodesic distance between p and x is also smaller than r. Hence the geodesic

distance between p and e must be shorter than 2r. By triangle inequality, the

geodesic distance between v and e must be shorter than 2r + d. According to the

spanner graph property, the CDT distance between v and e must be smaller than

(2r + d)t ≤ 2r′t < r′t(t + 3)/2, which is a contradiction to the assumption on the

CDT distance of the vertices of the removed obstacle to v.

(2): Since s is not pruned, the geodesic distance between s and v is less than

r′t = (r + d)t. By triangle inequality, the geodesic distance between s and p must

be less than (r + d)t + d. That the new path from p to s is shorter than r implies

that the segment xe is shorter than ((r +d)t+d+ r)/2. We also know the geodesic

distance between p and x is smaller than r. So the geodesic distance between e and

70

p is smaller than (r + d)(t + 1)/2 + r. Again by triangle inequality, the geodesic

distance between e and v must be smaller than (r + d)(t + 3)/2 = r′(t + 3)/2.

Therefore, the CDT distance between e and v can be no larger than r′t(t + 3)/2.

Again, a contradiction has been reached.

4.3.2 Obstructed k-Nearest-Neighbors Query

Given a query point p and a number k, the obstructed k-ONN query returns the

k nearest sites in geodesic distance to p. We process the k-ONN query in a similar

way as we handle the range query. The k-ONN query is slightly harder than the

range query in the sense that we do not have a predetermined geodesic bound with

which we can prune irrelevant sites and obstacles. However, such a bound is not

difficult to obtain. First let us assume the query point coincides with one of the

vertices of the CDT. In this case, we search CDT from p to find the k nearest

neighbors to p in CDT distance. Let s be the k-th nearest neighbor; and denote

by r the CDT distance between p and s. We use r as the geodesic range, set l1

and l2 according to r, and follow exactly Step 1 of processing range query to prune

obstacles and sites. Then we construct the visibility graph of all the sites and

obstacles that survived the pruning and search for the k nearest neighbors in the

visibility graph. All the true k geodesic nearest neighbors will be captured in range

because their geodesic distances to p can be not larger than r.

When the query point does not coincide any CDT vertex, we locate the vertex

v as described above in the range query subsection. Denote by d the Euclidean

distance between p and v. We search the CDT to find the k nearest neighbors

to v in CDT distance. Let s be the k-th nearest neighbor to v; and denote their

CDT distance by r0. Setting r = r0 + d, by triangle inequality, all of these k sites

71

are within r in geodesic distance from p. Then we exclude irrelevant sites and

obstacles using the pruning step of processing range query with arbitrary query

point. Finally we build the visibility graph and search for the geodesic k nearest

neighbors, the same way as for the case where p coincides some CDT vertex.

In addition to providing constant-bounded approximation to the visibility graph,

our CDT-based method for processing k-ONN also has the advantage that instead

of invoking range queries to incrementally discover the local visibility graph, it per-

forms the graph search on CDT to directly compute the local visibility graph within

which the k nearest neighbors can be found. Recall that the k-ONN algorithms

in [44, 45] are all incremental. They need to perform Euclidean range query, and

re-construct the visibility graph every iteration they enlarge the search space.

Finally processing obstructed proximity search queries based on the CDT can

offer a tradeoff between the optimality of the result and the computational cost.

This is valuable because often we do not want and optimal solution that takes

hours to compute, but a quick and reasonably good solution. Moreover, sometimes

the shortest geodesic path is even impossible to compute due to the quadratic

complexity of the visibility graph. In such cases, we propose to use CDT distance

as an intermediate result and let the user decide whether he wants to continue for

the optimal solution. For example, imagine that some user issues a query to find

the nearest hospital in an obstructed domain. The spatial database system can

first return the nearest hospital H in CDT distance and tell the user, “this is a

hospital that is at most 20 miles from you. The true nearest hospital will not be

much closer than this one. Do you want to find it?” Based on the CDT distance to

H, the system can also report to the user the estimated time required to construct

the visibility graph and find the true nearest hospital. Such a spatial database

system will be of great values in many applications.

72

CHAPTER 5

Conclusion

DT and CDT are fundamental geometric data structures that have broad applica-

tions. However there has been limited work devoted to practical external-memory

algorithms for DT/CDT. An I/O-efficient algorithm has to partition the data and

exploit the locality of the DT and CDT. The major challenge is therefore how to

efficiently merge sub-solutions of the partitions into the whole triangulation.

One of our motivations for designing large-scale CDT algorithm is to facilitate

obstructed proximity search. Obstructed proximity search in database systems

has recently emerged as a new research frontier. Its main difficulty lies in how to

prune irrelevant data to limit the search space. Existing pruning strategies all use

Euclidean distance as the lower bound, and are insufficient for many applications.

73

5.1 Summary of Main Results

We have presented an efficient external-memory algorithm for DT/CDT. The high-

light of our algorithm is a merging step which is completely combinatorial and

avoids all heavy geometric computations. This is made possible by a precise char-

acterization of the set of triangles involved in merging. We have tested the algo-

rithm extensively for both DT and CDT. Experimental results show that for DT,

our algorithm outperforms a provably good external-memory algorithm by roughly

an order of magnitude. For CDT, which has no previously implemented external-

memory algorithms, we show experimentally that our algorithms scales up well for

large databases.

We also demonstrated an interesting application of the CDT to processing ob-

structed proximity search such as k-ONN and range queries in spatial databases.

Our method is based on the spanner graph property of the CDT. There is a large

gap between the proven worst-case lower and upper bound for the stretch factor.

So we performed extensive experiments on real-life data sets to show that the CDT

indeed approximates the visibility graph very well in practice. We introduced a new

pruning strategy for obstructed proximity search and demonstrated how it can be

applied successively in solving the k-ONN and range queries.

5.2 Future Work

In the future, our work can be extended in the following ways:

• Many of the main theorems and lemmas in Section 3.3 can be generalized to

DT/CDT with dimensions higher than two as well. It is intriguing to design

and implement algorithms based on our method for DT/CDT of 3D or higher

dimensions and study their performance in practice.

74

• Currently our algorithm does not support online updates of the triangulation,

e.g., insertion and deletion of points or segments. Efficiently updating large-

scale triangulation online is a very challenging problem and has expansive

applications in areas like data interpolation and proximity search.

• A growing new trend in spatial query processing is to handle continuously

moving points. It is interesting to investigate how to utilize the spanner graph

property of CDT to process spatial queries of moving points in obstructed

domains.

BIBLIOGRAPHY

[1] Archimedes. http://www-2.cs.cmu.edu/ quake/archimedes.html.

[2] Leda—library for efficient data types and algorithms.

[3] The quake project. http://www-2.cs.cmu.edu/ quake/quake.html.

[4] M. V. Anglada. An improved incremental algorithm for constructing restricted

delaunay triangulations. Computers & Graphics, 21:215–223, 1997.

[5] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. H. M. Smid, and C. D.

Zaroliagis. Planar spanners and approximate shortest path queries among

obstacles in the plane. In European Symposium on Algorithms, pages 514–528,

1996.

[6] T. Asano, T. Asano, L. J. Guibus, J. Hershberger, and H. Imai. Visibility of

disjoint polygons. Algorithmica, 1:49–63, 1986.

[7] F. Aurenhammer. Voronoi diagrams-a survey of a fundamental geometric data

structure. ACM Computing Surveys, pages 345–405, 1991.

75

76

[8] F. Aurenhammer. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors,

Handbook of Computational Geometry, pages 201–290. Elsevier, 2000.

[9] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. 1:23–90,

1992.

[10] G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor. Design and im-

plementation of a practical parallel delaunay algorithm. Algorithmica, 24:243–

269, 1999.

[11] M.-B. Chen, T.-R. Chuang, and J.-J. Wu. A parallel divide-and-conquer

scheme for delaunay triangulation. In 9th International Conference on Parallel

and Distributed Systems, pages 571–576, 2002.

[12] L. P. Chew. There is a planar graph almost as good as the complete graph.

In Proceedings of the 2nd Symposium on Computational Geometry, pages 169–

177, 1986.

[13] L. P. Chew. Constrained delaunay triangulations. Algorithmica, 4:97–108,

1989.

[14] L. P. Chew, N. Chrisochoides, and F. Sukup. Parallel constrained delaunay

meshing. In Proceedings of the 1st Symposium on Trends in Unstructured Mesh

Generation, pages 89–96, 1997.

[15] P. Cignoni, C. Montani, and R. Scopigno. Dewall: A fast divide and conquer

delaunay triangulation algorithm in ed. Computer-Aided Design, 30:333–341,

1998.

[16] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized

external-memory algorithms for some geometric problems. Technical report,

Max-Planck-Institut für Informatik, 1998.

77

[17] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are al-

most as good as complete graphs. In Proceedings of the 28th Annual IEEE

Symposium on Foundations of Computer Science, 1987.

[18] R. A. Dwyer. A faster divide-and-conquer algorithm for constructing delaunay

triangulations. Algorithmica, 2:137–151, 1987.

[19] H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs

on Theorectical Computer Science, volume 10. Springer-Verlag, 1987.

[20] L. D. Floriani and E. Puppo. An on-line algorithm for constrained delaunay

triangulation. Computer Vision, Graphics and Image Processing, 54:290–300,

1992.

[21] S. Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153–

174, 1987.

[22] C. M. Gold. A review of potential applications of voronoi methods in ge-

omatics. In Proceedings of Canadian Conference on GIS, pages 1647–1656,

1994.

[23] C. M. Gold. Review: Spatial tesselations - concepts and applications of voronoi

diagrams. International Journal of Geographical Information System, 8:237–

238, 1994.

[24] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory

computational geometry. 1993.

[25] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivision

and the computation of voronoi diagrams. ACM Transactions on Graphics,

4:74–123, 1985.

78

[26] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

Proceedings of ACM SIGMOD, pages 47–57, 1984.

[27] J. Hershberger and S. Suri. An optimal algortihm for euclidean shortest paths

in the plane. 1995.

[28] M. I. Karavelas and L. J. Guibas. Static and kinetic geometric spanners with

applications. Symposium on Discrete Algorithms, 2001.

[29] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the com-

plete euclidean graph. Discrete and Computational Geometry, pages 13–28,

1992.

[30] P. Kumar and E. A. Ramos. I/o-efficient construction of voronoi diagrams.

2002. http://www.ams.sunysb.edu/ piyush/ramos/.

[31] C. L. Lawson. Software for c1 surface interpolation. pages 161–194, 1977.

[32] D. T. Lee. Proximity and reachability in the plane. Technical report, Depart-

ment of Electrical Engneering, University of Illinois, Urbana, 1978.

[33] D. T. Lee and B. J. Lin. Generalized delaunay triangulation for planar graphs.

Discrete and Computational Geometry, 1:201–207, 1986.

[34] D. T. Lee and B. J. Schachter. Two algorithms for constructing the delaunay

triangulation. International Journal of Computer and Information Sciences,

9:219–242, 1980.

[35] J. S. B. Mitchell. Geometric shortest paths and network optimization, 1998.

[36] E. P. Mücke, I. Saias, and B. Zhu. Fast randomized point location without

preprocessing in two- and three-dimensional delaunay triangulations. In Pro-

79

ceedings of the 11th Annual Symposium on Computational Geometry, pages

274–283, 1996.

[37] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations-

Concepts and Applications of Voronoi Diagrams. John Wiley and Sons, 1992.

[38] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the

16th Annual IEEE Symposium on Foundations of Computer Science, pages

151–162, 1975.

[39] J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and de-

launay triangulator. In First Workshop on Applied Computational Geometry,

pages 124–133, 1996.

[40] P. Su and R. L. S. Drysdale. A comparison of sequential delaunay triangulation

algorithms. In Proceedings of the 11th Annual Symposium on Computational

Geometry, pages 61–70, 1995.

[41] A. K. H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obsta-

cles. In Proceedings of the 17th International Conference on Data Engineering,

pages 359–367, 2001.

[42] C. A. Wang. Efficiently updating constrained delaunay triangulations. Nordic

Journal of Computing, 33:238–252, 1993.

[43] E. Welzl. Constructing the visibility graph for n line segments in o(n2) time.

Information Processing Letter, 20:167–171, 1985.

[44] C. Xia, D. Hsu, and A. K. H. Tung. A fast filter for obstructed nearest

neighbor queries. In 21st British National Conference on Databases, pages

203–215, 2004.

80

[45] J. Zhang, D. Papadias, K. Mouratidis, and M. Zhu. Spatial queries in the

presence of obstacles. In International Conference on Extending Database

Technology, pages 366–384, 2004.

