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Abstract 
 

In this thesis, our main objective is to assist forward proxies to provide better 

content reusability and caching, as well as to enable reverse proxies to perform 

content delivery optimization. In both cases, it is hoped that the latency of web object 

retrieval can be improved through better reuse of content and the demand for 

network bandwidth can be reduced. We achieve this objective through a deeper 

understanding of the attributes for delivery. We analyze how objects’ content 

settings affect the effectiveness of their cacheability from the perspectives of both the 

caching proxy and the origin server. We also propose a solution, called the TTL 

(Time-to-Live) Adaptation, to help origin servers to enhance the correctness of their 

content settings through the effective prediction of objects’ TTL periods with respect 

to time. From the performance evaluation of our TTL adaptation, we show that our 

solution can effectively improve objects’ cacheability, thus resulting in more efficient 

content delivery.   
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Summary 

In this thesis, our objectives are to enable forward proxies to provide effective 

caching and better bandwidth utilization, as well as to enable reverse proxies to perform 

content delivery optimization for the purpose of improving the latency of web object 

retrieval. We achieve this objective through a deeper understanding of their attributes for 

delivery. We analyze how objects’ content settings affect the effectiveness of their 

cacheability from the perspectives of both the caching proxy and the origin server. We 

also propose a solution, called the TTL (Time-to-Live) Adaptation, to help origin servers 

to enhance the correctness of their content settings through the effective prediction of 

objects’ TTL periods with respect to time. From the performance evaluation of our TTL 

adaptation, we show that our solution can effectively improve objects’ cacheability, thus 

resulting in more efficient content delivery.   

We analyze the cacheability effectiveness of objects based on their content 

modification traces and delivery attributes. We further model all the factors affecting the 

object’s cacheability as numeric values in order to provide a quantitative measurement and 

comparison. To ascertain the usefulness of these models, corresponding content 

monitoring and tracing experiments are conducted. These experiments illustrate the 

usefulness of our models in adjusting the policy of caching proxies, the design strategy of 

origin servers, and stimulate new directions for research in web caching. 

Based on the monitoring and tracing experiments, we found that most objects’ 

cacheability could be improved by proper settings of attributes related to content delivery 

(especially in the predicted time-to-live (TTL) parameter). Currently, Squid, an open 

source system for research, uses a heuristic policy to predict the TTL of accessed objects. 



 x

However, Squid generates a lot of stale objects because its heuristic algorithm simply 

relies on the object’s Last-Modified header field instead of predicting proper TTL based 

on the object’s change behavior. Thus, we proposed our TTL adaptation algorithm to aid 

origin servers in adjusting objects’ future TTLs with respect to time. Our algorithm is 

based on the Correlation Pattern Recognition Model to monitor and predict more accurate 

TTL for an object.  

To demonstrate the potentials of our algorithm in providing accurate TTL 

adjustment, we present the result from accurate TTL monitoring and tracing of real objects 

on Internet. It shows the following benefits in terms of bandwidth requirement, content 

reusability and retrieval accuracy in sending the most updated content to clients. Firstly, it 

reduces a lot of unnecessary bandwidth usage, network traffic and server workload when 

compared to the original content server’s conservative directives and Squid's TTL 

estimation using its heuristic algorithm. Secondly, it provides more accurate TTL 

prediction through the adjustment of objects’ individual change behavior. This minimizes 

the possibility of stale objects’ generation when compared to the rough settings of origin 

servers and Squid’s unitary heuristic algorithm. As a whole, our TTL adaptation algorithm 

significantly improves the prediction correctness of an object’s TTL and this directly 

benefits web caching. 
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Chapter 1     Introduction 

1.1 Background and Motivation 

As the World Wide Web continues to grow in popularity, Internet has become one 

of the most important data dissemination mechanisms for a wide range of applications. In 

particular, web content, which is composed of basic components known as web objects 

(such as html file, image objects, …, etc.) is an important channel for worldwide 

communication between content provider and its potential clients. However, web clients 

want the retrieved content to be the most up-to-date and, at the same time, with lesser 

user-perceived latency and bandwidth usage. Therefore, optimizing web content delivery 

though maximum, accurate content reuse, is an important issue in reducing the user-

perceived latency, while maintaining the attractiveness of the web content. (Note that 

since this thesis focuses on the discussion of web objects, the rest of the thesis might often 

refer web objects as objects, for simplicity reason.)  

The control points along a typical network path are origin servers (where the 

desired web content is located), intermediate proxy servers, and clients’ computer 

systems. Optimization can either be in the form of optimizing the retrieval of objects from 

the origin server, or be in the form of intermediate caching proxy. Caching proxy is 

capable of maintaining local copy of responses received in the past, thus reducing the 

waiting time of subsequent requests for these objects. However, due to the connectionless 

of the web, cached local copy of the data might be outdated. Hence, it is the challenge to 

content providers to design their delivery services such that both the freshness of the web 
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content and lower user-perceived latency can be achieved. This is exactly what efficient 

content delivery service would like to target. 

Improving the service of web content delivery can be classified into two situations: 

• For the first time delivery of web content to clients, or when cached web content in 

proxy servers has become stale. 

The requested objects will have to be retrieved directly from the origin servers. 

Content design has major impact on the latency of this first time retrieval period. 

Multimedia content and frequent content updating result in more attractive web 

content. This is translated to embedded object retrieval and dynamically generated 

content in content design.  

Cumbersome multimedia is the main reason for the slowdown in content transfer. 

Dynamically generated content adds extra workload to origin servers as well as 

increases network traffic. It forces every request from clients to be delivered from 

origin servers. Typically research topics for faster transfer of the required embedded 

objects from origin servers include web data compression, parallel retrieval of objects 

in the same web page, and the bundling of embedded objects in the same web page 

into one single object for transfer [1]. 

• Subsequent requests for the same object. 

Reusability of objects in a forward caching proxy that stores them during their first 

time request can efficiently reduce user-perceived latency, server workload and 

redundant network traffic. It is because the distance of content transfer in the network 

can be shortened significantly. This area of work is called web caching. Substantial 

research efforts in this area are currently ongoing [2], and large number of papers have 
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shown significant improvement in web performance through the caching of web 

objects [3,4,5,6,7,8]. Research also shows that 75% of web content can be cached, thus 

further maximizing its reusability potentials. Web caching has generally been agreed 

to play a major role in speeding up content delivery. Object’s cacheability determines 

its reusability, which is defined by whether it is feasible to be stored in cache.  

There are a lot of potentials in improving web content delivery through data reuse 

rather than just relying on the reduction of web multimedia content for the first time 

retrieval. This is an important task for caching proxy. Placing such proxy servers to cache 

data in front of LANs can reduce the access latency of end-user and lessen the workload 

of origin servers and network. Thus, bandwidth demand and latency bottlenecks are 

shifted, from narrow link between end-users (clients) and content providers (origin 

servers), to being between proxy caches and content providers [9]. With forward caching 

proxy, this can greatly reduce clients’ waiting time for content downloading, through data 

reuse. This will attract potential clients when competing with others in the same field.  

Despite the success of current research in improving the transfer speed of web 

content, their focuses are more on areas such as caching proxy architecture 

[10][11][12][13], replacement policy, and consistency problem of data inside 

[14][15][16][17][18]. Although there are research efforts that try to investigate the basic 

question of object cacheability – how cacheable are the requested objects, they are more 

towards the statistical analysis rather than to understand the reasons behind the 

observations. Not much work is found on delving into an object’s attributes and 

understanding the interacting effects that will optimize their positive influence on the 

object’s reusability and contribute to the optimization of web content delivery. Hence, in-

depth understanding of an object’s attributes in terms of how each affects object 
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reusability, and quantifying each effect using a mathematical model into practical 

measurement, will directly benefit caching proxies and origin servers. 

1.1.1 Benefits of cacheability quantification to caching proxy 

From the view of a caching proxy, having a measurement that can quantify the 

effect of object’s attributes on reusability can provide a more accurate estimate on the 

effectiveness of caching a web object. This can help to fine-tune the management of 

caching proxy, such as cache replacement policy, so as to optimize cache performance. 

Furthermore, web information changes rapidly and outdated information might be 

retrieved to clients if an object that is frequently updated is cached. Optimizing cache 

performance using a good cache policy is a key effort to minimize traffic and server 

workload, and at the same time, provide an acceptable service level to the users. 

Therefore, quantitative model for object's cacheability is required which can reflect 

individual factors affecting: (1) whether an object can be cached, and (2) how effective the 

caching of this object is. This measurement should also be able to distinguish the 

effectiveness of caching different objects, so as the replacement policy can pick the best 

objects to be cached, and not blindly caching everything. By effectiveness, one implicit 

requirement is that during the time an object is in cache, its content is “fresh” or “properly 

validated without actual data transfer”. This is important because objects that have to be 

re-cached frequently increase network traffic and user-perceived network latency. Also, if 

the effectiveness of caching an object is too low, perhaps it should not be cached at all. 

This is to avoid replacing objects with higher effectiveness by those of lower effectiveness 

from cache. Analyzing the various factors that affect the effectiveness of caching an object 
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is thus important. The name of this quantitative measurement used for caching proxy is 

called E-Cacheability Index. 

1.1.2 Benefits of cacheability quantification to origin server 

From the view of an origin server, the measurement can give content provider a 

reference to understand whether the content setting of their objects is effective for content 

delivery and caching reuse. It also suggests how these settings should be adjusted so as to 

increase the service competitiveness of their web content against other web sites in the 

same field. 

Web pages of similar content for the same targeted group of users normally 

perform differently, with some being more popular, and some less popular. One of the 

possible reasons for such a difference could be the way the content in a web page is 

presented or being set. For example, dynamic objects aim to increase the attractiveness of 

a web page, but typically at the expense of slowing down the access of the page. 

Inappropriate freshness settings of an object will cause unnecessary validation by the 

caching proxy with the origin server, thus increasing the client access latency and 

bandwidth demand. Even worse, it is also possible for stale content to be delivered to 

clients if the caching is too aggressive but not accurate. 

Our quantitative measurement can aid content providers to gauge their web content 

in terms of delivery, and in turn understand, tune and enhance the effective content 

delivert. Our measurement for the origin server is called Effective Content Delivery Index 

(ECD). 
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1.1.3 Incorrect settings of an object’s attributes for cacheability 

Research on content delivery reveals that for both caching proxy and origin server, 

the most important attribute that affects an object’s cacheability is the correctness of its 

freshness period, which is called time-to-live (TTL). This is one of the few most important 

content settings that, if not properly set, will directly affect the reusability of an object. 

Recent studies have also suggested that other content settings of an object, such as 

the response header’s timestamp values or cache control directives, are often not set 

carefully or accurately [19][20][21]. This affects the calculation of an object’s freshness 

period and possibly results in a lot of unnecessary network traffic. In addition, such wrong 

settings will potentially result in cache objects with fresh content to be requested 

repeatedly from the origin server, thus increasing its workload. 

We propose an algorithm in this thesis, TTL adaptation. It separately analyzes 

different characteristics of an object, and in turn adjusts the parameters for TTL prediction 

of web objects with respect to time. This algorithm is suitable to be implemented in the 

content web server or reverse proxy. 

 

1.2 Measuring an Object’s Attributes on Cacheability 

Our measurement on effectiveness in terms of content delivery is based on the 

modeling of all content settings of an object that affect its cacheability to obtain a numeric 

value index. These factors can be grouped into three attributes: availability, freshness and 

validation. They are briefly described below: 

• Availability of an object is an action used to indicate if the object can possibly be 

cached or not.  
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• Freshness of an object is a period during which the content of the cached copy of an 

object in proxy is valid (or the same as that in the original content server). 

• Validation of an object is an action that indicates the probability of the staleness of an 

object, using the frequency of the need to revalidate the object with the origin server as 

a measure.  

To the caching proxy, these three attributes of an object determine the object’s E-

Cacheability effectiveness measure – E-Cacheability Index. If the object is available to be 

cached, the longer the period of freshness and the lower the frequency of re-validation will 

result in a higher E-Cacheability Index value. The higher value of the E-Cacheability 

Index indicates higher effectiveness to cache this object. The higher the effectiveness is, 

the more useful it is to be cached in the caching proxy. On the other hand, objects with 

low effectiveness value can give hints on reasons why certain content settings have 

negative impact on the cacheability of an object. This will have impacts in other proxy 

caching research areas such as replacement. 

Thus the overall objective of the measurement used in the caching proxy, based on 

the assumption of the correctness of all the content settings, is to provide an index to 

describe the combinational effects of the content’s settings with regards to the 

effectiveness of caching this content. 

To the origin server, these three attributes of the object determine its effective 

content distribution (ECD). However, its emphasis is different when compared to the 

caching proxy. The measurement used in the origin server is based on the assumption that 

the content settings of objects might be incorrect. And the purpose of ECD is to find ways 

of adjusting these settings so as to increase the chance of reusability of content. This is 
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achieved by helping content providers to understand whether the content settings of their 

objects are effective for content delivery, and for cacheable objects, whether the freshness 

period of an object in the cache is set correctly to avoid either stale data or over-demand 

for server/network bandwidth. 

For cacheable content, if validation always returns an un-changed copy of the 

object, it will take up a lot of unnecessary bandwidth on the network. For non-cacheable 

content, requests that retrieve the same unchanged copy of the content will also result in a 

lot of unwanted traffic. Dynamic and secure content are just several examples of non-

cacheable content that return a lot of unchanged content. For instance, a secure page could 

include many decorative fixed graphics that cannot be cached because they are on a secure 

page. 

The validation attributes are represented here as (1) change probability for 

cacheable contents, (2) change rate, and (3) change percentage for non-cacheable contents. 

 

1.3 Proposed TTL-Adaptation Algorithm 

Research has shown that carelessness in the origin server can cause the freshness 

content setting to be inaccurate. Too short a freshness period will generate lots of 

unnecessary validation, which will waste a lot of bandwidth and lengthen user-perceived 

latency. Cases of unnecessary validation (where the content validated is not changed) are 

found to be about 90-95% out of all validation requests with origin servers on the network 

[3]. Too long a freshness period will increase the possibility of providing outdated web 

content to users, thus decreasing the credibility of web service. 
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With the above consideration, we propose a TTL adaptation algorithm to adjust the 

freshness setting for web content with respect to time. In our algorithm, we use the 

traditional statistical technique, the Gamma Distribution Model, which was proven as a 

suitable model for live-time distribution, to determine whether an object has any potential 

to be predicted. And our algorithm uses the Correlation Pattern Recognition Model to 

monitor and adjust the object’s future TTL accordingly. 

The adaptation algorithm determines the object’s prediction potential by capturing 

its change trends in the recent past period from the corresponding gamma distribution 

curve that fits to its change intervals distribution in that period. And the correlation 

coefficient, which is calculated between the recent past period and the near following 

future period, will be monitored and used for the replacement of regularity. It predicts 

TTL(s) in the near following period should be either similar to the one(s) in the recent past 

period if the regularity is similar or adaptively changes the prediction value(s) if the 

regularity is replaced. This continuous monitoring and adaptation enables the predicted 

object’s TTL to be close to its actual TTL with respect to time. Thus it effectively 

increases the correctness of an object’s freshness attribute, and in turn lessens the 

possibility of unnecessary validation as well as the credibility of web services. 

 

1.4 Organization of the Thesis 

The rest of this thesis is organized as follows. In Chapter 2, we outline related 

research work on web object’s cacheability, i.e. investigating an object’s attributes related 

to caching and their limitations. We also investigate several current possible solutions that 

study an object’s TTL and briefly comment their pros and cons. 
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In Chapter 3, we outline the factors in content settings that affect an object’s 

cacheability according to HTTP1.1. A cache decides if a particular response is cacheable 

by looking at different components of the request and response headers. In particular, it 

examines all of the followings: the request method, the response status codes and relevant 

request and response headers. In addition, because a cache can either be implemented in 

the proxy or the user’s browser application, the proxy or browser preferences will also 

affect an object’s cacheability to some extent. This thesis mainly focuses on the caching 

proxy, so we discuss the proxy preference as the 4th factor in our model. 

In Chapter 4, we will discuss the measurement of cacheability effectiveness from 

the perspective of a caching proxy. We propose EC, a relative numerical index value 

calculated from a formal mathematical model, to measure an object’s cacheability. Firstly, 

our mathematical model determines whether an object is cacheable, based on the effects of 

all factors that influence the cacheability of an object. Secondly, we expand the model to 

further determine a relative numerical index to measure the effectiveness of caching a 

cacheable object. Finally, we study the combinational effects of actual factors affecting an 

object’s cacheability through monitoring and tracing experiments. 

In Chapter 5, the measurement, Effective Content Delivery (ECD), is defined from 

the origin server’s viewpoint. It aims to use a numeric form of measurement as an index to 

help webmasters gauge their content and maximize content’s reusability. Our 

measurement takes into account: (1) for a cacheable object, its appropriate freshness 

period that allows it to be reused as much as possible for subsequent requests, (2) for a 

non-cacheable dynamic object, the percentage of the object that is modified, and (3) for a 

non-cacheable object with little or zero content modification, its non-cacheability is 

defined only because of the lack of some server-hinted information. Monitoring and 
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tracing experiments were conducted in this research on selected web pages to further 

ascertain the usefulness of this model. 

In Chapter 6, we propose our TTL adaptation algorithm to adjust an object’s future 

TTL period. The algorithm first uses the Gamma Distribution Model to determine whether 

the object has any potential for TTL prediction. Following that, the Correlation Pattern 

Recognition Model is applied to decide how to predict/adjust the object’s future TTL. We 

demonstrate the usefulness of our algorithm in terms of minimizing bandwidth usage, 

maximizing content reusability, and maximizing accuracy of sending the most updated 

content to clients through the monitoring of content modification in selected web pages. 

We show that our TTL adaptation algorithm can significantly improve the prediction 

accuracy of an object’s TTL. 

In Chapter 7, we conclude the work we have done and present some ideas for 

future work. 
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Chapter 2     Related Work 

In this chapter, we will outline related work to our research on web object’s 

cacheability.  The focus here is to study the influence of an object’s attributes to caching 

and analyze their limitations. We also investigate some current solutions that study an 

object’s time to live (TTL) and briefly comment on their pros and cons. 

 

2.1 Existing Research on Cacheability 

Research on Cacheability is focused on the conditions required for a web object to 

be stored in a cache. Cacheability is an important concern for web caching systems as they 

cannot exploit the temporal locality of objects that are deemed uncacheable. In general, 

the determination of whether an object is cacheable is via multiple factors such as URL 

heuristics, caching-related HTTP header fields and client cookies. 

One of the earliest studies on web caching is the Harvest system [22], which 

encountered difficulty in specifying uncacheable objects. It tried to solve this by scanning 

the URL name to detect CGI scripts, and discarded large cacheable objects because of size 

limitation. Their implementations were popular at the advent of the web [23]. 

Several trace based studies investigated the impacts of caching-related HTTP 

headers on cacheability decisions. One of the earliest studies was performed by University 

of California at Berkeley (UCB) in 1996 [24], in which they collected traces from their 

Home IP service at UCB for 45 consecutive days (including 24 million HTTP requests). 

They analyzed some of the header content settings with respect to caching, including 

“Pragma: no-cache”, “Cache-Control”, “If- Modified-Since”, “Expires” and “Last-
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Modified”. They also analyzed the distribution of file type and size. However, they did not 

look at all HTTP response status codes, and HTTP methods. They also did not discuss 

cookies, which make an object non-cacheable in HTTP 1.1. Ignoring cookies, their results 

showed that the uncacheable results were quire low, similarly for the CGI response. 

Feldmann et al. noticed the biasness of the results from [24] and considered 

cookies in their experiments [25]. They collected traces from both dialup modems to a 

commercial ISP and clients on a fast research LAN. They obtained more statistics on the 

reasons for uncacheability. These include whether a cookie was present, whether the URL 

had a ’?’, and on header content such as Client Cache-Control, Neither GET nor HEAD, 

Authorization present, Server Cache-Control. Their results showed that the uncacheable 

results due to cookies could be up to 30%. Later studies on different traces [26][27] 

showed that the overall rate of uncacheability was as high as 40%. However, they did not 

look at all HTTP response status codes. They also did not mention the Last-Modified 

header in the response, which is essential for browsers and caching proxies to verify an 

object’s freshness.  

Other research studies are based on active monitoring [28]. Investigations are 

made on the cacheability of web objects after actively monitoring a set of web pages of 

popular websites. The study obtained a low proportion of uncacheable objects ([24]), even 

though cookies were included into the request headers in their experiment. The 

explanation of the result was that most of web content that required cookies actually 

returned the same content for following references if the cookies were set to the value of 

the “Set-Cookie” header of the first reference. However, their requests did not consider 

users’ actions, and thus it is possible that the following references after the first reference 

may possibly cause different cookie value settings once users entered some information. 
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Such content customizations could not be detected under their data collection method. 

Their results also showed one important point in that dynamically generated web objects 

may not always contain content modifications. 

Another research paper [29] investigated even more details about object non-

cacheability such as dynamic URLs, non-cacheable HTTP methods, non-cacheable HTTP 

response status codes, and non-cacheable HTTP response headers. It also tried to find out 

the causes behind some of their observations, such as why the server does not put the 

Last-modified header with the file. However, it did not group reasons into complete 

entities and analyzed their combinational effects. Instead, it only focused on the discussion 

for each individual reason separately.  

The research papers discussed above only focused on non-cacheable objects. They 

did not discuss on how cacheability affects cacheable objects, therefore not offering a 

balanced view. 

The research by Koskela [30] presented a model-based approach to web cache 

optimization that predicts the cacheability value of an object using features extracted from 

the object itself. In this aspect, it is similar to our work. The features he used include a 

certain number of HTML tags existing in the document, header content such as Expires 

and Last-modified, content length, document length and content type. 

However, it was mentioned by Koskela that building the model requires vast 

amount of data to be collected and estimating the parameters in the model can be a 

computationally intensive task. In addition, even though Koskela delves into an object’s 

attributes, his focus on web settings is relatively narrow, only on a few header fields. His 

research is only valuable to the optimization of web caches, and those attributes he omits 

can potentially aid content providers to optimize their web content for delivery. 
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More complete analysis on content uncacheability can be found in [31][32]. [31] 

concluded that main reasons resulting in uncacheability included responses from server 

scripts, responses with cookies and responses without “Last-Modified” header. [32] 

proposed a complex method to classify content cacheability using neural networking. 

From previous studies on cacheability of content, it has been discovered that a 

large portion of uncacheable objects are dynamically-generated or, have personalized 

content. This observation implies then of the potential benefits of caching dynamic web 

content. 

 

2.2 Current Study on TTL Estimation 

In traditional web caching, the reusability of a cached object is in proportion to its 

TTL value. The maximum value of the TTL is the interval between caching time and the 

next modification time. To improve on the reusability of a cached object, proxies are 

expected to perform, as accurate as possible, estimations of the TTL value of each 

cacheable object. Most of the rules of TTL estimation are derived from the statistical 

measures of object modification modeling. Rate of change (also known as average object 

lifespan) and time sequence of modification events for individual objects are the most 

popular subjects in object dynamics characterization. 

Research on web information system has shown that the change intervals of web 

content can be predicted and localized. Several early studies investigated the characteristic 

of content change patterns. Douglis’ [33] study on the rate of change of content in the web 

was based on traces. He used the Last-modified header content to detect the changes in his 

experiment. Investigations focused on the dependencies between the rate of change and 



 16 

other content characteristics, such as access rate, content type and size. Craig [34], on the 

other hand, calculated the rate of change based on MD5 checksum. The research in [28] 

monitored daily the content changes on a selected group of popular websites, and noticed 

the change frequency of HTML objects tend to be higher in commercial sites than those in 

education sites. Yet another research [35] discovered that, based on monitoring on a 

weekly basis, web objects with a higher density of outgoing links to larger websites, tend 

to have a higher rate of change. All of the experiments (including later efforts in [27] and 

[36] confirming the results in [33]) showed that images and unpopular objects almost 

never change. They also showed that HTML objects were more dynamic than images.  

Time sequence of modification events for a web object is another focus in the 

characterization of content dynamics. The lifespan of one version of an object is defined to 

be the interval between its last modification and its next modification. Therefore, the 

modification event sequence can also be viewed as the lifespan sequence. Research 

conducted in [37] noticed that the lifespan of a web object is variable. The study in [38] 

investigated the modification pattern of individual objects as a time series of lifespan 

samples and then applied the moving average model to predict future modification events. 

Both studies above pointed out that better modeling on object lifespan can improve TTL-

based cache consistency. 

Since then, researchers have put in considerable effort on modeling the whole web 

content because it is very important for information system to keep up with the growth 

and changes in the web. Brewington [35] modeled the web change as a renewal process 

based on two assumptions. One of the assumptions was that the change behavior of each 

page is according to an independent Poisson process. The other assumption was that every 

time a page renews its Poisson parameter, the parameter will follow a Weibull distribution 
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across the whole population of web pages. He proposed an up-to-date measure for 

indexing a large set of web objects. However, as his interest was to reduce the bandwidth 

usage of web crawlers, the prediction of content change on individual objects, which is 

what web caching research is interested in, was not addressed. 

Cho [39] proposed several improved frequency estimators for web page based on a 

simple estimator (number of detected changes/monitoring periods). Theoretical analysis 

for the precision of each estimator was based on the assumption that the change behavior 

of each page is according to an independent Poisson process. She also compared the 

accuracy of each estimator using data from both simulation and real monitoring. In his 

simulation, he generated synthetic samples from a series of gamma distributions and 

compared the effectiveness of multiple estimators. She pointed out that the purpose to 

choose a series of gamma distributions instead of exponential distributions was to consider 

the performance of each estimator under a “not quite Poisson” distribution for the page 

change occurrence. Both of them observed the change daily because they were interested 

in the update time of a web information system. It is a limitation to the study, as such a 

large time interval is too long to capture the essential modification patterns of web content 

for caching. 

Squid [40], as an open source system for research, uses a heuristic policy known as 

the last-modified factor (LM-factor) [41] to predict every accessed object’s TTL. The 

algorithm is based on the traditional caching standpoint that most of the objects are static, 

which means changes in older objects do not occur quickly. Therefore, its principle is that 

young objects are more likely to be changed soon because they have been created or 

changed recently. Similarly, old objects that have not been changed for a long time are 

less likely to be changed soon. 
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From the studies above, one common observation is that different objects have 

different patterns of modification. In the traditional TTL-based web-caching, accurate 

predictions is necessary to avoid redundant revalidations of objects whose next 

modification time has not arrived yet. However, it is more and more evident that current 

modification prediction heuristics cannot achieve acceptable levels of accuracy for web 

objects, all of which have different modification patterns. For instance, our real-life 

experience revealed that, contrary to the LM-factor algorithm, the longer the object does 

not change, the greater the possibility for it to change. Thus Squid either generates a lot of 

stale objects or causes unnecessary revalidation of object freshness.  

The rate of change in today’s web objects is very rapid, which inspires us to 

change the standpoint from the static perspective of an object to the dynamic perspective. 

In order to improve the above situation, there is a need to analyze individual object’s 

change behavior separately and predict unique TTL for different objects according to each 

object’s individual changing trend. Furthermore, to be as close to the actual TTL as 

possible, the prediction parameters should be continuously monitored and adaptively 

changed if required. Thus it is necessary to propose this kind of adaptive prediction 

algorithm – our TTL adaptation algorithm. Our algorithm is suitable to be implemented 

either in the reverse proxy or in the origin content server.  

 

2.3 Conclusion 

Previous research has focused on the statistical analysis on an object’s attributes 

related to cacheability. Compared with our object’s cacheability measurement, most of 

them do not delve into all attributes of an object attributes with regards to cacheability. 
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They discussed individual attributes separately, and have not studied the combinational 

effects of relevant attributes. They also only focused on non-cacheable objects and did not 

study how cacheability affects cacheable objects.  

Except for Squid’s LM-factor algorithm, existing studies on the object’s Time-To-

Live (TTL) mainly focus on getting an object’s change frequency distribution for further 

web caching research. They did not use their distribution result to predict the value of 

object’s future TTL. Compared with our algorithm that adjusts individual object’s TTL 

based on the change of its own character, Squid’s algorithm uses heuristic method to 

estimate that all objects that have not changed for a long time must have long future TTL 

and all recently changed objects must have short or zero future TTL. This argument, as we 

have shown in the later part of the thesis, might not hold. 
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Chapter 3     Content Settings’ Effect on Cacheability  

 

In this chapter, we outline the factors in content settings that affect an object’s 

cacheability according to HTTP1.1[42]. A cache decides if a particular response is 

cacheable by looking at different components of the request and response headers. In 

particular, it examines all of the followings: (1) request method, (2) response status codes, 

and (3) relevant request and response headers. In addition, because a cache can either be 

implemented in the proxy or the user’s browser application, the proxy or browser 

preferences will also affect an object’s cacheability to some extent. This thesis mainly 

focuses on the caching proxy, so we discuss the proxy preferences as the 4th additional 

group of factors besides the three listed above. 

 

3.1 Request Method 

Request methods are significant factors to determine cacheability; they include 

GET, HEAD, POST, PUT, DELETE, OPTION and TRACE. Of these, there are only 

three kinds of methods that have potentially cacheable response contents: GET, HEAD, 

and POST. GET is the most popular request method, and responses to GET requests are 

by default cacheable. HEAD and POST methods are rare. The former response messages 

do not include bodies, so there is really nothing to cache, except using the response 

headers to update a previously cached response’s metadata. The latter is cacheable only if 

the response includes an expiration time or one of the Cache-Control directives that 

overrides the default. 
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3.2 Response Status Codes 

One of the most important factors in determining cacheability is the HTTP server 

response code. The three-digit status code, whose first digit value ranges from 1 to 5, 

indicates whether the request is successful or if some kind of errors occurs. Generally, 

they are divided into three categories: cacheable, negatively cacheable and non-cacheable. 

In particular, negatively cacheable means that, for a short amount of time, caching proxy 

can send the cached result (only the status code and header) to the client without fetching 

it from the origin server. 

The most common status code is 200 (OK), which means that the request is 

successfully processed. The relevant response from this request is cacheable by default 

and there is a body attached. 203 (Non-Authoritative Information), 206 (Partial Content), 

300 (Multiple Choices), 301(Moved Permanently), and 410 (Gone) are also cacheable. 

However, except for 206, they are only announcements without body. 

204 (No Content), 305 (Use Proxy), 400 (Bad Request), 403 (Forbidden), 404 (Not 

Found), 405 (Method Not Allowed), 414 (Request-URI Too Long), 500 (Internal Server 

Error), 502 (Bad Gateway), 503 (Service Unavailable), 504 (Gateway Timeout) are 

negatively cacheable status codes. 

 

3.3 HTTP Headers 

It is not sufficient to use only the request method and response code to determine if 

a response is cacheable or not. The final cacheability decision should be determined 

together with the directives in HTTP headers, to show the combinational effects on an 

object’s cacheability.  
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Although the directives in both request and response headers affect an object’s 

cacheability, our discussion in this section focuses only on the directives that appear in a 

response. With one exceptional request directive (“Cache-control: no-store” in request) 

that we will discuss below, request directives don’t affect object cacheability. 

• Cache-control 

It is used to instruct caches how to handle requests and responses. Its value is one or 

more directive keywords that we will mention later. This directive can override the 

default of most status codes and request methods when determining cacheability. 

There are several keywords as detailed below: 

− “Cache-control: no-store” directive keyword, appearing either in request or 

response, is a relatively strong keyword to cause any response to become non-

cacheable. It is a way for content providers to decrease the probability that 

sensitive information is inadvertently discovered or made public. 

− “Cache-control: no-cache” and “Pragma: no-cache” don’t affect whether a 

response is available to be cached or not. It instructs that the response can be 

stored but may not be reused without validation. In other words, a cache should 

validate the response for every request if the content of the request has been 

cached. The latter is the backward compatibility with HTTP1.0. Both HTTP 

versions have the same meaning for this. 

− “Cache-control: private” makes a response to be non-cacheable for a share 

cache, like caching proxy, but cacheable for a nonshared cache, such as browser. 

It is useful if the response contains content customized for just one person, thus 

the origin server can use it to track individuals. 
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− “Cache-control: public” makes a response to be cacheable by all caches. 

− “Cache-control: max-age” and “Cache-control: s-maxage” directives hint the 

object is cacheable. They are alternate ways to specify the expiration time of an 

object. Furthermore, they have the first priority over all other expiration 

directives. The slight difference is that the latter only applies to shared caches. 

− “Cache-control: must-revalidate” and “Cache-control: proxy-revalidate” hint 

the object is cacheable. They force the response to do validation when expired. 

Similarly, the latter only applies to shared caches. 

• “Last-Modified” 

It makes a response cacheable for a caching proxy that uses the LM factor to 

calculate an object’s freshness period, such as that in Squid. And it is one of the 

most important headers to be used for validation. 

• “Etag” 

It doesn’t affect whether a response is available to be cached. But if other factors 

cause an object to be cached, the header hints that the cache should perform 

validation on the object after its expiration time. 

• “Expires” 

It indicates that a response is cacheable. It specifies the expiration time of an object. 

However, its priority is lower than those of “Cache-control: max-age” and “Cache-

control: s-maxage”. 

• “Set-cookie” 

It indicates that the response is non-cacheable. A cookie is a device that allows an 

origin server to maintain session information for an individual user among his 
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requests [43]. However, if it is placed in “Cache-control: no-cache = Set-cookie”, it 

only means that this header may not be cached but this will not affect the whole 

object’s cacheability. 

 

3.4 Proxy Preference 

A cache is implemented in the caching proxy, so proxy preference also determines 

an object’s cacheability. In this thesis, we will use the Squid proxy as an example for 

caching proxy because it is the open proxy system for research purposes and is the world's 

most popular caching proxy being deployed today. For Squid, except for the protocol’s 

rules discussed above, its preferences that determine a response to be non-cacheable 

(when the request method is GET and response code is 200) include: 

•  ‘Miss public when request includes authorization’  

It means that without “Cache-control: public”, response directive including “WWW-

Authenticate” means that the server can determine who is allowed to access its 

resources. Since a caching proxy does not know which users are authorized, it 

cannot give out invalidated hints. So caching it may be meaningless. 

• “Vary”  

It is used to list a set of request headers that should be used to select the appropriate 

variant from a cached set [44]. It determines which resource the server returns in its 

response. Squid still has not implement it yet, and this makes an object to be non-

cacheable.  

• “Content-type: type-multipart /x-mixed-replaced”  
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It is used for continuous push replies, which are generally dynamic and probably 

should be non-cacheable. 

• “Content-Length > 1Mbytes”  

It indicates that it is less valuable to cache a response with large body size because 

such an object occupies too much space in the cache, and may result in more useful 

smaller objects being replaced from cache.  

• “From peer proxy, without Date, Last-Modified and Expires”  

It seems non-beneficial to cache a reply from peer without any Date information, 

since it cannot be judge whether the object should be forwarded or not. 

 

3.5 Conclusion 

Whether an object can be cached in an intermediate proxy is determined by its 

cacheability content settings. These settings include request method, response status codes 

and its relevant headers. Proxy preference also plays an important role in deciding 

cacheability.  According to all these factors, we will propose two measurement models in 

Chapter 4 and Chapter 5 to measure how effective an object’s content settings on 

cacheability is, from the aspect of the caching proxy and the origin server respectively.  
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Chapter 4     Effective Cacheability Measure  

 

In this chapter, we will discuss our effective measurement from the perspective of 

the caching proxy. We propose Effective Cacheability measure, also call E-Cacheability 

Index, a relative numerical measurement calculated from a formal mathematical model, to 

measure an object’s cacheability quantitatively. In particular, the followings will be 

discussed: 

• the cacheability of information that passes through a  proxy cache, 

• define an objective, quantitative measure and its associated model to quantify 

the cacheability potentials of web objects from the view point of a proxy cache, 

• evaluate the importance of cacheability meansure to its deployment in proxy 

cache. The larger the value is, the higher will be the potential for an object to 

be kept in proxy cache for possible reuse without contacting the original server, 

and 

• evaluate different factors affecting the cacheability of web objects. 

 

4.1 Mathematical Model - E-Cacheability Index 

The final decision on the cacheability of an object is actually made in the caching 

proxies. Apart from obeying the HTTP protocol’s directives, caching proxies also have 

their own preferences to determine whether they should cache the object according to their 

own architecture and policies. In other words, even though a response is cacheable by 

protocol rules, a cache might choose not to store it.  
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Many caching proxy software include heuristics and rules that are defined by the 

administrator to avoid caching certain responses. As such, caching some objects is more 

valuable than caching others. An object that gets requests frequently (and results in higher 

cache hits) is more valuable than an object that is requested only once. If the cache can 

identify non-frequently used responses, it will save resources and increase performance by 

not caching them.  

Thus, to better understand an object’s cacheability, we should first analyze the 

combinational effects of relevant content settings on the effectiveness of caching an 

object. For this purpose, our method employs an index, called the E-Cacheability Index 

(Effective Cacheability Index), which is a relative numerical value derived from our 

proposed formal mathematical model of object cacheability. This E-Cacheability Index is 

based on its three properties – object availability to be cached, its freshness and its 

validation value. 

4.1.1. Basic concept 

From basic proxy concept, we understand that three attributes determine an 

object’s E-Cacheability Index. They are object availability to be cached, data freshness 

and validation frequency. Their relationship is shown in the equation below. 

 

E-Cacheability Index = Availability_Ind * (Freshness_Ind + Validation_Ind)         (4.1) 

 

Unlike normal study on object cacheability, which just determines if an object can 

be cached), E-Cacheability Index goes one step further. It also measures the effectiveness 
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of caching an object by studying the combinational effect of the three factors of caching 

availability, data freshness, and validation frequency.   

In the equation above, the Availability_Ind of an object is used to indicate if the 

object is available for caching or not. If the object is not available, the E-Cacheability 

Index of the object is zero. Thus, all non-cacheable objects have an E-Cacheability Index 

of zero, and under this case, the meaning of the other terms (Freshness_Ind and 

Validation_Ind) is undefined. Hence, Availability_Ind is in the most dominant position in 

our measurement. 

After the indication of whether the object is cacheable from the Availability_Ind 

attribute, the Freshness_Ind and Validation_Ind attributes are then important to measure 

how effective the caching of this object is.  

Freshness_Ind is a period that indicates the duration of the data freshness of the 

object, and Validation_Ind is an index that indicates the probability of the staleness of an 

object, using the frequency of the need to revalidate the object.  

It seems at the first glance that the validation effect should be included in the 

freshness definition. However, we separate these two factors because not all objects need 

to perform validation after its freshness period. For example, an object that has no 

validation header directives, such as “Last-Modified”, “Etag”, “Cache-Control: must-

revalidate” will be evicted from the caching proxy. In addition, the caching proxy has a 

maximum cache period. So, even if an object has no validation information, it will be 

evicted. 

Thus, the E-Cacheability Index is defined by these two attributes once an object is 

determined to be available for caching. The longer the period of data freshness and the 

lower the frequency of re-validation result in a higher E-Cacheability Index. Larger value 
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of the E-Cacheability Index indicates higher potentials to cache this object. The higher the 

effectiveness, the more useful the object is in this aspect of consideration to be cached in 

the proxy.  

Furthermore, for objects with smaller E-Cacheability Index, detailed analysis can 

give hints on which content settings have larger influence on the effective cacheability of 

an object. This can help to optimize the content settings for better caching.  

In Equation (4.1), the “*” operator is used to handle the situation when an object is 

non-cacheable. As being seen in later sections, it will enforce the resulting index to be 

zero for non-cacheable objects. The “+” operator is used to separate the two situations of 

reusing the cached content by shifting the index to two exclusive regions – the region of 

negative values to indicate the need for revalidation each time an object is used, and the 

region of value greater than or equal to one to give a quantitative measure of the caching 

effectiveness.  

In the next section, we will describe, based on the actual request methods, response 

codes, header fields, and proxy preferences that were discussed in Chapter 3, the detailed 

composition of each term in the equation above. We will use I in the equations to indicate 

request information, and O to indicate response information. 

4.1.2. Availability_Ind 

In this section we will discuss in detail on the term Availability_Ind in Equation 

(4.1). This term is defined as the overall composition of all factors that will possibly affect 

the caching availability of an object. The possible value of this term is 0 (non-cacheable) 

or 1 (cacheable). 

The Availability_Ind of an object to be cached is dependent on several factors: 
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• The request method must be a method that allows its response to be cached.  

• The status code of the response must be one that indicates that the object is 

cacheable.  

• All header fields within the response that influence the availability of the 

object to be cached are considered. 

• Proxy preferences within the response that influence the availability of the 

object to be cached are considered. 

• If the relevant header fields in the request exist, it will mean that the object is 

cacheable and the response should act according to these information. 

The Availability_Ind equation to consider all the above factors is shown below: 

 

 Availability_Ind = IRM(A) *OSC(A) * OHD(A)  * Opp(A) *  IHD(A)         (4.2) 

 

where IRM(A) refers to the request method sent, OSC(A) refers to the response code 

related to object availability, OHD(A) refers to the header fields in the response that 

influence the availability of cacheability of the object, Opp(A)  refers to the proxy preference 

in the response, and IHD(A) refers to the relevant header fields that influence availability in 

the request. The value of Availability_Ind is either zero (non-cacheable) or one 

(cacheable). 

Equation (4.2) uses the associative operator (*), signifying that an object is non-

cacheable (not available for caching) if there exists at least one factor that suggests the 

non-availability of the object in cache. 
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4.1.3. Freshness_Ind 

The term Freshness_Ind in Equation (4.1) is defined as the overall composition of 

all factors that will possibly affect the data freshness of an object. The possible value of 

this term is zero for non-cacheable object to value greater than zero for cacheable objects. 

The Freshness_Ind of an object can be determined by several factors: 

• The request method must be one that allows its response to be cached.  

• The status code of the response must be one that indicates that the object is 

cacheable. 

• The header fields in the response that influences the freshness of an object will 

determine the freshness period of an object  

The Freshness_Ind equation that considers all the above factors is shown below: 

 

Freshness_Ind = IRM(F) *OSC(F) *  OHD(F)                (4.3) 

 

where IRM(F) refers to the request method sent, OSC(F) refers to the response code 

related to data freshness, and OHD(F) refers to the relevant header fields that influence the 

data freshness in the response.  

Equation (4.3) associative operator (*) indicates that a non-cacheable response will 

result in the entire equation to be zero (IRM(F) and OSC(F)). Otherwise, the Freshness_Ind 

value of the object will be determined by the relevant header fields in the response 

(OHD(F)). 
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4.1.4. Validation_Ind 

The term Validation_Ind in Equation (4.1) is defined as the overall composition of 

all factors that will possibly affect how valuable an object is in terms of its validation 

requirement. The possible values of this term is 0 (non-cacheable), -1 (if object must be 

revalidated each time even though it is cacheable), and greater than 1 (if object is 

cacheable). 

The Validation_Ind of an object is determined by various factors: 

• The request method must be one that allows its response to be cached.  

• The status code of the response must be one that indicates that the object is 

cacheable. 

• There are 3 terms to determine the length of the validity of an object: 

• All header fields in the request that influence the validity of an object. 

• All header fields in the response that influence the validity of an object. 

• All proxy preferences in the response that influence the validity of an 

object. 

The Validation_Ind equation that considers all the above factors is shown below: 

 

Validation_Ind = IRM(V) * OSC(V) * OR_val-op (IHD(V), Ipp(V), OHD(V)) (4.4) 

 

where IRM(V) refers to the request method, OSC(V) refers to the status code, IHD(V) 

refers to the relevant header fields in the request that influence validation, OHD(V) refers to 

the relevant header fields in the response that influence validation, and Ipp(V)  refers to the 
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proxy preferences in the request that influence validation. For function OR_val-op (a1, … 

an), where ai  � {-1, 0, 1}, its value is as follows: 

       -1   there exists at least one ai with value -1 

OR_val-op(a1, … an) =      1    there exists at least one ai with value 1 and no ai with value 

 -1 

          0    all ai with value 0 

Equation (4.4) indicates that a non-cacheable response will result in the equation 

being zero (IRM(V), OSC(V)). Otherwise, the value in the equation will either be 1 or -1 

depending on the input parameters of the OR_val-op operator. 

4.1.5. E-Cacheability index 

Based on Equation (4.1), substituting the terms of all factor equations in (4.2), 

(4.3) and (4.4) into the equation, we have (in the rest of the chapter, we will use “EC” to 

shorten “E-Cacheability Index”): 

 

EC =  IRM(A) *OSC(A) *OHD(A) *Opp(A) * IHD(A) * (IRM(F) *OSC(F) * OHD(F) +  

IRM(V) *OSC(V) * OR_val-op (IHD(V), Ipp(V), OHD(V))) 

 

Since the request term in Availability_Ind, Freshness_Ind and Validation_Ind 

equations must be the same and is defined for the same object, let IRM(A) = IRM(F) = IRM(V) = 

IRM. Following the same argument, the status code of the response is the same response 

since all three factors are defined for the same object. Hence, let OSC(A) = OSC(F) = OSC(V) = 

OSC. Then, 

 



 34 

EC =  IRM * OSC * OHD(A) * Opp(A)  * IHD(A) * (IRM * OSC * OHD(F) +  

  IRM * OSC * OR_val-op (IHD(V),  Ipp(V), OHD(V))) 

      =  IRM
2 * OSC

2 * OHD(A) * Opp(A)  * IHD(A)  * (OHD(F)  + OR_val-op(IHD(V), Ipp(V), OHD(V) ))   (4.5) 

 

The value of IRM and OSC can be easily determined: 

IRM  =    1 , if method is GET, POST or HEAD 

  0 , otherwise 

OSC =    1 , if status code is 200, 203, 206, 300, 301, 410 

  0 , otherwise 

 

Given the values of IRM and OSC above, Equation (4.5) can be simplified as: 

 

EC = IRM  *OSC * OHD(A) *  Opp(A) *  IHD(A)  * (OHD(F) + OR_val-op (IHD(V), Ipp(V), OHD(V)))   (4.6) 

 

Equation (4.6) is the final mathematical formula to compute the effectiveness of 

caching an object. For the remaining terms, their corresponding header fields and proxy 

preferences, together with the value for each field and preference indicating their 

existence, are grouped in Table 4.1 below (we use groups C1-C7 to represent each of these 

terms). We use )( jix to represent their values, and their details will be discussed. (i 

represents factor C1-C7, j represents the sub-term (either a header field or a proxy 

preference)). 
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Term in 
Equation Relevant Header Fields/ Proxy Preferences Existent 

Factor 
Non-
exist 

 
C1: 
OHD(A) 

(1) Set-cookie  
(2) Cache-Control: private 
(3) Cache-Control: no-store  

0 
0 
0 

1 
1 
1 
 

 
 
 

C2: Opp(A) 

(1) Miss public when request includes Authorization 
(2) Vary 
(3) Content-Type: multipart/x-mixed-replace 
(4) Content-Length = 0 
(5) Content-Length >1Mbytes  
(6) From peer proxy, without Date, Last-Modified and 

Expires 

0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 

C3: IHD(A) Cache-Control: no-store      0 1 
 

C4: 
OHD(F) 

(1) Cache-control: max-age 
(2) Expires 
(3) Last-Modified (LM-Factor (an algorithm)) 

where priority of (1) > (2) > (3) 

Seconds 
Seconds 
Seconds 

0 
0 
0 

C5: IHD(V) (1) Cache-Control: must-revalidate or Cache-Control: 
proxy-revalidate 

-1 
 

0 
 

 
C6: 
OHD(V) 

(1) Cache-Control: no-cache, Pragma: no-cache 
(2) Cache-Control: must-revalidate or Cache-Control: 

proxy-revalidate 
(3) Last-Modified 

 

-1 
-1 
 

1 

0 
0 
 

0 

Table 4.1  Terms and Their Relevant Header Fields 

 

From Table 4.1, according to HTTP 1.1 (C1 represents OHD(A), C3 represents 

IHD(F)) and Squid proxy preference (C2 represents Opp(A) ), the existence of any of the 

header fields of C1, C2 and C3, would cause the response object to be non-cacheable. 

Thus, we propose the value to C1, C2 and C3 )( jix
 as 1 if it exists in the header of the 

object, or 0 if it does not exist. The Availability_Ind  is defined as follows: 

         C1 * C2 * C3 =∏
=

3

1

C

Ci
ix    

= xC1(1) * xC1(2) * xC1(3) * xC2(1) * xC2(2) * xC2(3) * xC2(4) * xC2(5) * xC2(6) * xC3(1) 
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Only after the determination of IRM, OSC, and OHD(A) will the Freshness_Ind and the 

Validation_Ind be computed to obtain the effective cacheability measure of the object.  

The freshness information is obtainable through any of C4(1) or C4(2) or C4(3). 

The unit of measure is delta-second (but notice that any value will do) and the value is 

obtained according to the calculation method of TTL (Time to Live) in rfc2616. 

Meanwhile, according to rfc 2616, the existence of C4(1) will override both C4(2) and 

C4(3), and the existence of C4(2) will override C4(3).  Using )1(4Cx , )2(4Cx  and )3(4Cx  to 

represent C4(1), C4(2) and C4(3), the Freshness_Ind is defined by the value of the 

OR_fresh_op function: 

      )1(4Cx     (if )1(4Cx  exists) 

OR_fresh-op( )1(4Cx , )2(4Cx , )3(4Cx ) =     )2(4Cx     (if )1(4Cx   does not exist)  

  )3(4Cx     (if both )1(4Cx and )2(4Cx do not exit ) 

Similarly, we use )( jix  to represent the validation-related header fields in C5 and 

C6. The existence of C5(1) is indicated with -1, and is 0 otherwise. Such case is for C6(1) 

and C6(2). The reason to include the case of value being -1 is that according to rfc2616, 

the cache MUST perform validation each time a subsequent request for this object arrives, 

even if there is other freshness information. For term C6(3), its value is 1 if it exists and is 

0 otherwise. Therefore, the Validation_Ind is given as follows: 

               -1        one of )2(7)1(7)1(5 ,, CCC xxx exists 

OR_val-op( )3(6)2(6)1(6)1(5 ,,, CCCC xxxx ) 

   

         0         none of validation-related header exists 

=    1       )2(7)1(7)1(5 ,, CCC xxx not exist, )3(6Cx  exists 
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Since the existence of C5(1), C6(1) and C6(2) will override all other header fields 

that might exist at the same time, the formula “Freshness_Ind + Validation_Ind” will be 

given as follows: 

 

),,,(_),,(_ )3(6)2(6)1(6)1(5)3(4)2(4)1(4 CCCCCCC xxxxopvalORxxxopfreshOR −+−  

= ),,,(_ )3(6)2(6)1(6)1(5 CCCC xxxxopvalOR −  if one of )2(7)1(7)1(5 ,, CCC xxx exists 

= 1),,(_ )3(4)2(4)1(4 +− CCC xxxopfreshOR  if none of )2(7)1(7)1(5 ,, CCC xxx exists, 

 while  )3(6Cx  exists   

  

Finally, our mathematical model will be represented as follows: 

EC = )__(*
3

1

opvalORopfreshORx
C

Ci
i −+−∏

=

 

     = xC1(1) * xC1(2) * xC1(3) * xC2(1) * xC2(2) * xC2(3) * xC2(4) * xC2(5) * xC2(6) * xC3(1) 

)),,,(_),,(_(* )3(6)2(6)1(6)1(5)3(4)2(4)1(4 CCCCCCC xxxxopvalORxxxopfreshOR −+−   

 

From the analysis above, we can deduce that the possible values of E-Cacheability 

Index is as follows: 

               0        non-cacheable  

EC =      -1       cacheable, but should validate in every request 

              ≥ 1  cacheable  

When EC = 0, it is non-cacheable. 

When EC = -1, it is cacheable, according to HTTP1.1. However, since the object 

has to be validated every time it is requested, and it may have insufficient freshness or 
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validation information, the benefit of caching it will not be much. Many caching proxies, 

such as Squid, treat this kind of objects as non-cacheable. In our experiment, we will 

discuss this in the non-cacheable section, in accordance with the Squid’s preference. 

For EC ≥ 1, EC = 1 means that the freshness period of the object is 0, which results 

in the need for revalidation each time a request for the object arrives at the caching proxy. 

However it is different from EC = -1 because of the sufficient information for validation. 

The larger EC is, the longer will be the period that the object can be cached, until it finally 

expires.  

4.1.6. Extended model and analysis for cacheable objects 

After the E-Cacheability Index classifies an object to be cacheable, we can further 

analyze the condition of EC ≥ 1.  

An object that is expired does not mean that it is useless for caching. If it has 

validation information, this might be able to lengthen its stay in cache by re-calculating its 

freshness period one more time. And this can potentially lead to more effective caching. In 

other words, an object with shorter freshness period in the first retrieval doesn’t mean that 

it will be less effectively cached than an object with longer freshness period in the first 

retrieval.  According to the model discussed in Section 4.1.5, if the value EC ≥ 1, we can 

perform more precise calculation to further measure its relative EC. Here we will propose 

an extended mathematical model to obtain the value for such cases. It is very useful 

especially when the validation equation (mentioned in Section 4.1.5) is equal to 1.  

From the model analyzed in Section 4.1.5, we have already classified objects as 

cacheable or non-cacheable. For objects with EC ≥ 1, their E-Cacheability Index can be 

further considered as the benefit gained from caching over the cost of caching them. 
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Benefit and cost are defined separately by both the first retrieval effect and the 

revalidation effect. So the E-Cacheability Index can be re-defined as follows: 

 

�

�
∞

=

∞

=

+

−+
==

1

1
0

*

]*)(*)[(*

cos

n

n
vr

n

n
vrnr
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t
benefit

EC  (4.7) 

w --- the weight of the object retrieval latency. If two objects’ information are the same 

except that they have different object retrieval latencies, it is obvious that the longer 

the latency, the larger is its effective cacheability. Since the object retrieval latency 

value takes an important part of EC, it can be assigned to: rTw = .  

t0 ---  the cache time indicated by server after the first retrieval. 

Tr --- the retrieval time spent on transfer. It is usually greater than the validation transfer 

time without content. 

tn ---  the caching time after revalidation 

Tv --- the validation time spent on transfer 

p --- the probability for the content to be unchanged. In other words, the validation result 

is “304---Not modified”. 

n  --- validation times 

Assuming that t1=t2=…=tn=t and because �
∞

= −
=

1 1n

n

p
p

p , Formula (4.7) can be simplified 

to:  

p
p

TT

T
p

p
TTtTt

EC

vr

rvrr

−
+

−
−+

=

1
*

)
1

*)(*( 0

          (4.8) 
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Here we use an example to illustrate the model clearly. Given two objects. Object 

A has no validation information, whereas object B has validation information. Their 

retrieval time is the same at 60 seconds. Object A can be cached for 2 hours before 

expiring. Object B can be cached for 1.5 hours, and after a 10 seconds validation delay, it 

can be cached for another 1.5 hours and then its content will be changed. We deduce that 

the probability of content of A being unchanged at its origin is 0, while the probability for 

that of B is 0.5.  

Using the model, we can obtain the relative value: ECA = 432,000 and ECB = 

509,142.86. This case demonstrates that validation may aid an object with a shorter 

cached period in its first retrieval time to be more effectively cached than an object that 

has no validation information but has a longer cached period in its first retrieval time. 

 

4.2 Experimental Result  

In this section, we performed trace simulation and analyzed objects’ effective 

cacheability using the E-Cacheability Index (Equation (4.6) and Equation (4.7)) as given 

in Section 4.1.5 and Section 4.1.6. We obtained the raw trace data from National 

Laboratory for Applied Network Research (NLANR) [45]. We picked one day’s sv trace 

(Oct, 17, 2001) that contains 86,718 total requests and 4.88 MB of data. We also modified 

Squid to record header information of HTTP requests that can be used as the input to our 

model. Then we repeated these 86,718 requests through the modified Squid and the 

corresponding information was recorded.  

After we got the trace result, we first classified the objects’ cacheability. Next, we 

proceeded to analyze the factors contributing to objects being classified as non-cacheable 
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or cacheable according to our mathematical model in Section 4.6. Finally, for objects that 

are classified as cacheable, we perform further analysis using our model in Section 4.7. 

The result of the various request methods that are from IRM of our model is shown 

in Table 4.2. The table shows that the GET request method is used much more frequently 

(99.83% of all request methods) than all other request methods. 

Method GET POST HEAD 
Percentage 99.83% 1.32% 0.32% 

Table 4.2 Request Methods of Monitored Data 
 

Of all requests that use the GET method, 93.78% of the replies return the status 

code 200 (Through the trace, 86.21% of these replies with status code 200 are cacheable, 

while the remaining 13.79% are non-cacheable). The distribution of status codes of replies 

of the GET method, as represented by OSC, can be seen below in Table 4.3: 

Status Code Percentage 
200 OK  93.78% 
Other codes: 
203 Non-Authoritative Information, 300 Multiple Choices,  
301 Moved Permanently, 410 Gone  

0.46% 

Non-cacheable codes: 
303 See Other, 304 Not Modified, 400 Unauthorized,  
406 Not Acceptable, 407 Proxy Authenticate Required 

0.91% 

Negatively cacheable codes: 
204 No Content, 305 Use Proxy, 400 Bad Request,  
403 Forbidden, 404 Not Found, 405 Method Not Allowed,  
414 Request-URI Too Large, 500 Internal Server Error,  
501 Not Implement, 502 Bad Gateway,  
503 Service Unavailable, 504 Gateway Time-out  

5.74% 

Table 4.3 Distribution of Status Codes of Monitored Data 

 

In Section 4.2.2, 4.2.3, and 4.2.4, we will discuss experimental results for 

cacheable object. We will re-scale the percentage of cacheable replies (86.21% as was 

mentioned above) and detail all percentage calculations with respect to 100%. Then in 
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Section 4.2.5, 4.2.6, and 4.2.7, we will discuss experimental results for non-cacheable 

objects. We will also do the same re-scaling (rescale non-cacheable percentage 23.79% to 

100%) in our analysis of the data. 

4.2.1. EC distribution  

Firstly, we summarize all the simulation results that used our proposed 

mathematical model (Equation 4.6) in Figure 4.1. The extension model (Equation 4.7) will 

not be used here. It will be used to perform further analysis on objects’ relative E-

Cacheability Index in Section 4.2.3. According to our model, the possible values for an 

object’s cacheability are as follows (refer to Table 4.1): -1 means that the object is 

cacheable but its cacheability will be decided by proxy preference (Squid treats it as non-

cacheable); 0 means non-cacheable; 1 means that the object’s cached period is 0 but there 

is validation information; and value greater than 1 means that the object is cacheable. 

Figure 4.1 and Table 4.4 show the distribution of these cases. In Figure 4.1, the x-axis, 

except for -1,0,1 which indicates an object is cacheable or not, represents the cached 

periods of objects when the EC measure is greater than 1. 

 

Status of Object EC Value Percentage (%) 
Cacheable but decided by proxy preference -1 1.98 
Non-cacheable 0 11.81 
Cached period = 0, 
But object has validation information 

1 7.07 

Cacheable > 1 79.14 
Table 4.4 Object Status and the Corresponding EC Value versus their Percentage 
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Figure 4.1 EC Distribution of all Objects 

(X-axis represents the day of cached period (day), except first 3 values –1,0,1; y-axis 
represents the percentage of the objects) 

 

Figure 4.1 and Table 4.4 shows that there are about 1.98% (EC = -1) non-

cacheable objects due to Squid’s preference, making up a total of 13.79% (EC � 0) non-

cacheable objects. With respect to the remaining 86.21% cacheable objects, besides 7.07% 

objects with cached period of 0 and validation information, the distribution of most 

object’s cached periods is either in the period of � 3 days, or > 1 month, as is shown in the 

figure. 

The above result highlights that, based on our sample data, a high percentage of 

objects in the web are cacheable (86.21%). Using our EC model, it can further be broken 

down that a large portion of these cacheable objects (42.84% of all objects considered) 

have high EC values. It can be seen therefore that knowing whether an object is cacheable 

or not may not be sufficient enough for a caching proxy to be effective, as the space of a 

caching proxy is finite. Our EC model can sift out those more effective cacheable objects 

that should be cached, and this can improve the effectiveness of caching proxies. 
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4.2.2. Distribution of change in content for cacheable objects 

In this section, we focus on cacheable data and discuss why we should further 

modify the E-Cacheability Index by using our extended mathematical model (Equation 4.7 

in Section 4.1.6) to precisely measure their E-Cacheability Index.  

In all the cacheable objects, about 7.07% of them have a freshness period of 0 but 

with revalidation information, thus resulting an EC value of 1. Among them, C4 (1) 

(Cache-Control: max-age = 0) made up 0.07%; C4 (2) Expires equaling Date made up 

about 5.13%, while the remaining 1.87% of objects has this EC value calculated through 

the C4 (3) LM-algorithm.  

As discussed in our extended mathematical model in Section 4.1.6, since these 

objects have validation information, they can be revalidated freely. Even if their freshness 

period in the first time calculation is 0, it does not mean that they cannot be cached 

effectively. Since validation might lengthen their freshness periods, consequent requests 

can still get the fresh copy from the origin with less bandwidth and faster speed.  

Figure 4.2 shows our experimental result on the effectiveness of caching such 

objects. We monitored those objects with EC = 1 in 5 minutes interval for a duration of 

about 90 minutes. The graph shows only those objects that are unchanged in the interval 

of 90 minutes. In particular, the moment when an object is changed, it will no longer be 

considered in the graph. It is because we are only interested in collecting data on how long 

an object that has freshness period of 0 can continue to be valid in the cache (i.e. until it is 

updated). Thus, the graph only shows those objects that did not change in the 5th minute. 

Observations continued to be made only on this group of remaining objects, to see which 

of them would be changed in the next revalidation, and so on.  
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For example, to obtain Figure 4.2, our program will perform the followings to 

achieve the result we mentioned above. Suppose there are 40 objects with EC = 1 in our 

monitoring list. Initially, we get these objects’ bodies and keep a local copy of them. After 

5 minutes, we retrieve the bodies of these 40 objects again. Comparing with the previously 

saved copies, we discover that there are 35 objects that remain unchanged. We will then 

note down in the graph, that 87.5% of objects remain unchanged. Next, we will remove 

the 5 modified objects from our monitoring list. After another 5 minutes, we will continue 

to monitor these 35 remaining objects. This procedure will last for 90 minutes. 

From Figure 4.2, we notice that about 4.3% out of all these objects have real 

freshness period that is more than 1½ hours, and not 0, which means that this percentage 

of objects are actually quite cacheable. The graph also shows that even though the cached 

periods of such objects are 0, a large percentage of them remains unchanged for a certain 

period of time. There are several reasons why these objects have cached periods of 0, 

ranging from the origin server being set not to allow its objects to be cached, to the origin 

server not setting the header contents correctly. With our EC measure, we can sift out 

these objects, and perhaps investigate as to why they have a cached period of 0. 
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Figure 4.2 Every 5 Minutes Content Change Figure 4.3 Every 4 Hours Content Change  

 Monitoring for Objects with  Monitoring for Objects with 
 Original Cached period of 0 Original Cached period of 4 hrs 

(X-axis represents minutes, y-aixs repres- (X-axis represents hours, y-axis represents  
-ents percentage of unchanged objects) percentage of unchanged objects) 
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To further analyze the relationship between the real freshness period (cached 

period defined by the first retrieval time) and effective cacheability, we choose objects 

whose explicit freshness period is about 4 hours with validation information (this takes up 

11.2% out of the total objects of EC > 1 in our experiment). The analysis method is the 

same as that for the objects with EC = 1. We perform validation in 4 hours interval for 

about 1 day. The percentage of objects that remains unchanged is shown in Figure 4.3. 

Comparing Figure 4.3 with Figure 4.2, it seems that the longer the explicit freshness 

period, the higher the possibility to lengthen freshness periods through performing 

validation. This is observed from the graphs that the percentage of objects that have 

changed is at a much slower rate in Figure 4.3 than those in Figure 4.2. 

4.2.3. Relationship between EC and content type for cacheable objects 

E-Cacheability Index can reveal the effectiveness cacheability in different content 

types. The legend for the numbers along the x-axis in Figure 4.4 and Figure 4.5 is shown 

in Table 4.5; the percentage of each legend taken out of all cacheable data is also included 

in Table 4.5:  
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Figure 4.4  Relationship Between EC and   Figure 4.5 Relationship Between EC per 
  Object’s Content Type           Byte and Object’s Content Type 
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Legend 1 2 3 4 5 6 7 8 9 
Content 
type 

audio/ 
mpeg 

text/html image/ 
jpeg 

image/gif application
/ 
octet-
stream 

video/ 
quicktime 

application/
-
xshockwav
e-flash 

text/ 
plain 

vide
o/ 
mpe
g 

Perc- 
entage(

%) 

0.76 4.75 23.07 64.28 0.84 0.03 0.61 1.12 0.04 

Legend 10 11 12 13 14 15 16 17  
Content 
type 

applica 
tion/x-
javascri
pt 

applica 
tion/zip 

audio/ 
x-pn-real 
audio 

Application
/pdf 

text/ 
css 

application/x-
zip-
compressed 

audio/x-
mpeg 

others  

Perc -
entage(

%) 

1.89 0.62 0.01 0.07 0.93 0 0 0.99  

Table 4.5  Legend for the Numbers Along Category X-axis in Figure 4.4 and Figure 4.5 

 

Figure 4.4 and Figure 4.5 show certain relationship between the E-Cacheability 

Index and content type.  It is commonly agreed that image files do not change so often, so 

their E-Cacheability Index is expected to be much larger than those of other content types.  

They are thus the most effectively cached candidates; they make up the largest portion of 

cached objects.  

HTML framework objects are usually changed at a very slow rate, as web masters 

often make only slight changes in web pages. The file type contents, such as the templates 

for HTML, javascript application and audio mpeg files also have quite effective 

cacheability. 

 Thus, from Figure 4.4, it can be seen that those content types that are most 

effectively cacheable logically have high EC values. Since the content size of the text file 

and some executive application files are comparatively smaller than that of other content 

types, their E-Cacheability Index per byte is larger than others’ correspondingly. 
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4.2.4. EC for cacheable objects acting as a hint to replacement policy 

In this section, we discuss how to use E-Cacheability Index as a hint for cache 

management such as web cache replacement policy. 
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Figure 4.6  Relationship Between EC and Object’s Access Frequency 

 

Several approaches for replacement are widely used in web caching. One well-

known approach is the LFU (Least Frequently Used) approach – a simple algorithm that 

ranks the objects in terms of frequency of access and removes the object that is the least 

frequently used [33]. Here we want to see whether there is relationship between our E-

Cacheability Index and object’s access frequency. 

The largest access frequency was less than 50 times in our monitoring experiment. 

Lots of image files were accessed more than 10 times in our study. In the access frequency 

range of 20 to 30 times, most objects are JPEG files. Since the cached period for this kind 

of files is longer and their changing rate is lower (or the probability for contents to remain 

unchanged is higher), their E-Cacheability Index is higher, according to Equation 4.7 in 

Section 4.1.6.  

Lots of text files, application files (like javascript file), and some image files are 

congregated in the access frequency range of 30-50 times. Though their access frequency 

is quiet high, the cached period of many text files and application files may be shorter than 
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image files and their E-Cacheability Index may be lessened relatively. Refer to those 

objects that are accessed only once, some are still in the classification of EC = 1, which 

lessen the average E-Cacheability Index of this kind of objects.  

From Figure 4.6, it seems that when the access frequency is less than 30 times in 

our experiment, the E-Cacheability Index is quite suitable in aiding the LFU replacement 

approach. Objects with higher EC value imply that they have a higher chance to be 

accessed, and hence the object will be a good candidate for caching. This can potentially 

improve the cache performance. In addition, the EC can also be viewed to a certain extent 

as the server hints for proxy cache replacement policy as the origin server can set the 

fields in such a way so as to hint to the proxy cache if an object will be cached effectively. 

4.2.5. Description of factors influencing objects to be non-cacheable 

As shown in Figure 4.1, under the status code 200, there are 13.79% objects that 

are non-cacheable. We use our mathematical model proposed in Section 4.1.5 and 4.1.6, 

and concentrate on the factors listed in Table 4.1 to analyze the cases. The factors consist 

of the existence or absence of various header fields affecting availability and freshness and 

validation of an object. More importantly, they might exist simultaneously instead of 

exclusively. Understanding the existence relationship among these factors is important 

because fixing one factor might or might not help in the overall object cacheability. This is 

what we will focus on: factors’ combinational effects and their simultaneous existence 

relationship.  Referring to Table 4.1, C1, C2, C3 are relevant to availability, C4, C5, C6 

and C7 are relevant to freshness and validation. To simplify our discussion, we use 

numbers to represent these factors that were mentioned in Table 4.1. The representation is 

shown in Table 4.5. 
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Factor 
number 1 2 3 4 5 6 7 8 9 10 

Factor 
contents C1(1) C1(2) C1(3) C2(1) C2(2) C2(3) C2(4) C2(6) C6(1) C6(3) 

Table 4.6 Main Factors that Make Objects to be Non-cacheable 

 

• Factor 1 C1 (1), Set Cookie header is used by servers to initiate HTTP state 

management with a client. Sever often traces some designated clients and this often 

makes it non-cacheable in the public caching proxy.   

• Factor 2 C1 (2), Cache-Control: private indicates that the response is intended strictly 

for a specific user.  

• Factor 3 C1 (3), Cache-Control: no-store identifies sensitive information, which tells 

cache servers not to store the messages locally, particularly if its contents may be 

retained after the exchange.  

• Factor 4 C2 (1), the public caching proxy is of no use to cache a reply to a request 

containing an Authorization field without Cache-Control: public. Since the reply can 

only be served to the designated client, such client will often have a local copy in its 

local cache. 

• Factor 5 C2 (2), The Vary header lists other HTTP headers that, in addition to the URI, 

determine which resource the server returns in its response. Squid still has not 

implemented it yet, which makes object non-cacheable.  

• Factor 6 C2 (3), Content-type: type-multipart /x-mixed-replaced is used for continuous 

push replies, which are generally dynamic and probably should not be cacheable. 

• Factor 7 C2 (4), the reply Content-Length is 0, thus there is no point in caching.  
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• Factor 8 C2 (6), it seems that there is no benefit to cache a reply from peer without any 

Date information, since it cannot be judged whether the object should be forwarded or 

not.  

• Factor 9 C6 (1), when the header includes Cache-Control: no-cache or Pragma: no-

cache, it instructs the cache servers not to use the response for subsequent requests 

without revalidating it. Whether the object is cacheable or not depends on the proxy’s 

preference.   

• Factor 10 C6(3), missing all the freshness information, especially Last-Modified, 

would result in the inability to calculate freshness or perform validation.  

4.2.6. All factors distribution for non-cacheable objects 
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Figure 4.7     All Factors Distribution 
 

From the discussion in Section 4.1.5, according to our mathematical model, we 

observed that factors 1-8 are relevant to availability and factors 9-10 are relevant to 

freshness and validation. Figure 4.7 (y-axis is the factor number; x-axis is the percentage 

taken up by the indicated factor) shows that factor 1 has the highest occurrence frequency 

among all factors affecting availability and factor 10 is the most important factor affecting 

freshness and validation. Factor 2 is another important reason that decides an object's 
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cacheability and availability. Factor 8 also has significant impact as it prevents this 

category of objects from bouncing back-and-forth between siblings forever because they 

do not have the Date field, the most popular and required field to describe objects. In our 

study, 5.25% of objects do not have the Date field, which directly contributes to this factor 

and hence renders the objects to be non-cacheable. 

With regards to validation, there are only 7.99% non-cacheable objects with C8 (4) 

(Etag), 0.81% with C8 (2)(Cache-Control: must-revalidate) and 0.03% with C8 (2) 

(Cache-Control: proxy-revalidate). This shows that they are not so important in affecting 

an object’s cacheability if an object is already non-cacheable. So we did not indicate these 

factors in Figure 4.7. 

4.2.7. Non-cacheable objects affected by combination of factors    

The ultimate purpose of our study on the factors that affect an object’s cacheability 

is to find ways to improve caching. To a non-cacheable object, we can easily find out the 

factors that cause an object to be non-cacheable using our mathematical model proposed 

in Section 4.1.5. However, from our experiment, we realize that these factors often occur 

together. If we only concentrate on single factor impact without analyzing the relationship 

among them, we might not be able to have solution for caching improvement. On the 

contrary, if we can summarize the effects of the various combinations of factors, it will 

serve as good hints on which factors should be fixed first/together so as to improve the 

overall object cacheability. 

As shown in Figure 4.8, Figure 4.9, and Figure 4.10, factor 10 is the most 

important reason causing objects to be non-cacheable. In other words, the missing header 

field Last-Modified is the major reason of objects being non-cacheable. Since very few 
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objects include Cache-Control: max-age and Expires, this will enhance the role of the 

freshness guidance – Last-Modified. This header field also acts as the validation 

checksum. HTTP1.1 suggests that all objects should include this header field. Still, there 

are several reasons for missing the Last-Modified Data: 

• The object is dynamically generated. 

• The origin server asks the browser to fetch the object directly from it; it uses 

this approach to calculate the actual accesses or log user behavior. 

• There is some mis-configuration problem with the web server. 

Figure 4.8 shows that the 35.9% of all data being non-cacheable is caused by this 

single factor. Thus if this factor occurs without any combination with other factors, we 

may have the chance to fix this factor and improve the object’s effective cacheability.  

With regards to the combination of factors causing objects to be non-cacheable, we 

analyze the reasons of such combinations shown in Figure 4.9 and Figure 4.10. Factor 1 

occurs most frequently, followed by factors 10, 9 and 2.  

The combination of factors 1 and 10 affecting cacheability is probably due to the 

objects being generated dynamically and the server uses a state connection with the client. 

The combination of factors 1 and 9 is probably due to the server having a tight 

connection with the client for user behavior tracing. 

In Figure 4.10, the simultaneous occurrence of factors 1,9,10 indicates that servers 

emphasize the dynamic nature of these objects. As a result, there is no benefit to cache 

these objects at all. The case of factor 1 occurring with factor 2 is quite normal as it 

explicitly informs others that the server only cares for the designated client and others 

cannot share any information in this communication. 
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Factor 9 is one of the important factors that make objects to be non-cacheable. 

This is the proxy’s preference. HTTP1.1 does not use “MUST NOT” to define this rule. It 

doesn’t exactly prohibit cache servers from caching the response; it merely forces them to 

revalidate a locally cached copy. We may make these objects cached if they do not have 

other non-cacheable factors occurred. Thus, it is similar to the case Cache-Control: max-

age=0. Cache servers need only revalidate their local cached copies with the origin server 

when a request arrives. This action can use this revalidation technique to improve an 

object’s effective cacheability. Figure 4.9 shows that the most common case is the 

combination of factors 9 and 10. It seems that the server emphasizes that these objects are 

all dynamically generated.   
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One of the main purposes of this study is to rank their importance in terms of 

improvement gained from fixing a given factor. In other words, we want to find out which 

factor will contribute to the largest improvement in cacheability if it is fixed. To do this, 

we perform multi-factors analysis and the result is shown in Figure 4.11. The graph shows 

that with this measurement parameter for optimization, factor 10 should be fixed first, 

followed by factor 9 and then factor 2.  
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Figure 4.11 Relative Importance of Factors Contributing to Object Non-Cacheability 

4.3 Conclusion 

Despite the fact that there is a lot of research currently ongoing in web caching, 

most of them concentrate on whether an object should be cached. There is no further 

analysis on the cacheability of a cached object. The proposed Effective Cacheability (E-

Cacheability Index) mathematical model presented in this chapter attempts to go one step 

further, by (i) first determining whether an object can be cached, and (ii) further 

determining the effectiveness of caching such an object, if it is cached. This further 

determination is in the form of a relative value, which can be used as a quantitative 

measurement for the effectiveness of caching the object.  

In addition, most research only analyzed the influence of individual factors that 

affect the cacheability of an object. Little work is made in performing a detailed analysis 

on the relationship among these individual factors, and the effects of their simultaneous 

occurrence. This chapter conducted a detailed study and monitoring experiment to analyze 

the combinational effects of multiple factors that affect the cacheability of an object. This 

study further emphasized the usefulness of the E-Cacheability Index such as using E-

Cacheability Index as a hint for replacement policies in the cache,  
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Chapter 5     Effective Content Delivery Measure  

 

In this chapter, we would like to propose a similar measure for content cacheability, 

called the Effective Content Delivery (ECD) measurement, from the origin server’s 

perspective. It aims to use numerical measurement as an index to describe object’s 

cacheability in website, so that the webmasters can gauge their content and maximize the 

content’s reusability. Our measurement takes into account the followings: 

• For a cacheable object, we study its appropriate freshness period that allows it to be 

reused as much as possible for subsequent requests, and that subsequent validations 

should not be unnecessary. 

• For a non-cacheable dynamic or secure object, we study the percentage of the object 

that gets changed, and  

• For a non-cacheable object with low or zero content change, we study its cacheability 

when the non-cacheable decision is made due to the lack of some server-hinted 

information.  

Trace and monitoring experiments were conducted in our study on web pages on 

Internet to further ascertain the usefulness of our model.  

 

5.1 Proposed Effective Content Delivery (ECD) Model 

The Internet is rapidly gaining its importance as a core channel for communication 

in many businesses. This has resulted in websites becoming more complex and with 
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embedded objects to enhance the presentation of websites in order to attract their potential 

consumers.  

 “Content Delivery Measure” might have several possible assessing mechanisms, 

such as response time and so on. And one essential way for delivery improvement is to dig 

into content itself, through maximizing the potentials of content cacheability which in 

turns can reduce the delivery latency. If content can be moved closer to clients, this will 

result in shorter retrieval distance as well as higher delivery efficiency.  

Therefore, the model is proposed based of objects cacheability. There are two 

categories of objects that we study, cacheable objects and non-cacheable objects. Due to 

the distinct nature of these two exclusive classes, their effectiveness needs to be studied 

separately. In our study, we propose a quantitative measurement of object cacheability for 

effective web content delivery, called the Effective Content Delivery (ECD) Index. In 

any of these two cases, the ECD measure indicates that the content settings of an object is 

more effective if the ECD measure gives a higher value, and vice versa. Each of these 

cases will be discussed in the sub-sections below. 

5.1.1. Cacheable objects 

In this category, the ECD is defined for cacheable objects. Its main focus is to 

maximize object reusability so as to be able to be retrieved from the cache by subsequent 

requests as long as possible, thereby reducing the waiting time of users.  

From our analysis in chapter 4, once an object is available to be cached, its 

freshness period and validation condition should be considered. To the origin server, 

objects with higher freshness periods and lower useless validation times tend to have a 

larger ECD measure.  
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Useless validations are validations that return an unchanged object from the origin 

server and this will result in unnecessary bandwidth consumption. If each time a 

validation is performed after an object has expired, and the result returned is the same 

copy of the object for another period of freshness, the freshness period might not be set 

properly.  

The higher the rate-of-change of content for a given number of validations, the 

higher will be the ECD measure. A cacheable object with a high ECD measure tends to 

have an appropriate freshness period and a high change possibility, which indicates that 

the freshness period is set properly, as the copy of the object changes each time validation 

is made. 

The following example explains how to set the change possibility. We use chpb to 

represent the change possibility. 

 

Case 1: chpb = 1  If  Tv = Trc   Chpb = 100%  

  

    If Trc < Tv  Chpb = Trc/Tv – 1   

Case 2: -1 < chpb < 0 

    If Tv < Trc < 2Tv Chpb = 1- (Trc - Tv)/Tv 

   

Case 3: 0< chpb < 1  If Trc >= 2Tv  Chpb = Tv/(100*(Trc - Tv)) 
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We can conclude that the larger the chpb value is, the more effective is the content 

delivery. 

For example: Tv=3h,   if Trc =2h ==> chpb = -1/3,   

         if Trc = 5h ==> chpb = 1/3,  

         if Trc = 8h ==> chpb = 0.006 

5.1.2. Non-cacheable object 

In this category, the ECD is defined for non-cacheable objects. Non-cacheable 

objects might not necessarily mean that their contents are constantly changing each time 

they are accessed. The change rate (how often the content really changes when it is 

accessed) and content change percentage (how much the content really changes when 

compared to the original content) are essential aspects in our analysis.  

Although both factors need to be considered, their significance is different to 

different types of non-cacheable objects. Non-cacheable objects can be classified into four 

types, differentiated by the reasons that make them non-cacheable. They are (i) non-

cacheable secure objects, (ii) non-cacheable objects directed explicitly from server, (iii) 

non-cacheable objects based on proxy preference, and (iv) non-cacheable objects due to 

missing headers. ECD for each of these four categories of objects will be discussed in 

details below: 

 

• Non-cacheable secure objects   

Secure objects usually refer to web objects that are encrypted for point to point 

transmission. A good example is information related to the submission of a user’s private 

particulars on Internet (for example a credit card number, or a pin number for Internet 



 60 

banking). As the information requires confidentiality, such interactions need to be made 

on secure data transmission. However, it is observed that many websites enforce 

information confidentiality not just on the sensitive information but for the entire page, 

which have decorative objects and company logos that are definitely static and public. If 

the percentage of this relatively static, public portion of the page is higher than that of the 

secure portion, it will result in unnecessary bandwidth usage because of the improper 

reusability setting of content.  

Higher value of the change percentage (Cperc) (the percentage of a page's content 

that is changed) of a page indicates that at each content page transfer, the unnecessary 

work performed by the origin server and the amount of unnecessary bandwidth consumed 

will be lower. Therefore, objects with a higher Cperc should have a higher ECD measure. 

However, it must be highlighted that due to the secure https protocol for the entire 

page, such page cannot be cached. Thus, if webmasters can separate the non-cacheable 

and cacheable portions of such pages, reuse of the cacheable portions will result in 

bandwidth saving and reduced access latency.   

 

• Non-cacheable objects directed explicitly by server  

In the header settings of such objects, there are explicit server hints specifying that 

they are completely unavailable for caching. Examples of such hints are the settings of 

“Cache-Control: private” or “Cache-Control: no-store”.  

Such hints are representations of strong preferences directed from servers. They 

indicate that the whole objects are definitely non-cacheable. Furthermore, any 

intermediate proxies cannot interfere or modify them.  
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Besides considering the rate of content change, the percentage of content change in 

these pages is also an important factor. Therefore, the focus of ECD here is on the change 

percentage (Cperc) of content in these pages. If there is a high percentage of the page 

content that gets changed, it will be appropriate for the entire page to be retrieved from the 

origin server. Thus there is little benefit to cache portions of it because the server’s setting 

is quite appropriate. And this will result in a high ECD measure of such a page. However, 

if the percentage is low, the delivery of this content from the server will be considered as 

ineffective, as a great portion of the page could be cached and reused. Thus, the ECD 

measure of such a page is low.  

Similar to “non-cacheable secure objects”, webmasters could possibly observe the 

ECD measure due to the percentage of change and make the necessary adjustment to get a 

higher ECD measure. This can be done by removing unnecessary objects in the page or by 

separating the objects into cacheable (for non-changing part) and non-cacheable 

(frequently changing part) groups. 

 

• Non-cacheable objects based on the caching proxy preference  

Besides the protocol rules (here we focus on HTTP1.1) that decide whether an 

object is cacheable or not, the caching proxy also makes decision based on its proxy 

preferences. Different proxies have different proxy preferences.  

Objects in this category are not explicitly directed as non-cacheable. However, 

some wrong or inappropriate settings might cause the proxy misunderstand the object 

cacheability according to the proxy preferences. For example, the inappropriate setting in 

Last-Modified leads to negative freshness period calculated by the Squid proxy and this 

makes the object to be treated as non-cacheable. 
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To study whether the proxy’s preferences is accurate enough to make decision on 

object cacheability, we apply the change rate (Crate) of an object to measure the rate of 

change of the object whenever it is accessed. The change rate (Crate) is the number of 

times an object really changes over its total access times. Higher values indicate that 

content validation for a cacheable object or the re-transfer for a non-cacheable object does 

not yield unnecessary work by the origin server (the fresh copy of the object is indeed 

different from the previous copy).  

For example, a 100% change rate means that the content really changes in every 

validation request. A 0% change rate means that every time a caching proxy sends a 

validation request to the origin server, it always receives the response that the object is 

unchanged. In the latter case, making this object with 0% change rate as non-cacheable is 

inappropriate, as this will result in unnecessary work to the origin server and redundant 

traffic in the network.  

 

• Non-cacheable objects due to missing headers  

The study conducted in [27] found that 33% of HTML resources do not change. 

However, this portion of the resources cannot be cached because the origin server does not 

include cache directives that will enable the resource to be cached. Similar to the first 

case, [19][20][21] pointed out that cache control directives and response header timestamp 

values are often not set carefully or accurately. To solve this problem, webmasters require 

some helpful measurement to give hints on how these settings can be optimized. As these 

objects’ measurements are similar to those of “non-cacheable objects based on the caching 

proxy preference”, we also measure the change rate (Crate) of the object.  
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5.1.3. Complete model and explanation 

An object’s cacheability is vital to the webmaster who wishes to design a webpage 

that is not too slow to be accessed. One aspect to achieve this goal is for him to take note 

of the cacheability of objects within the webpage. As mentioned in the previous section, 

objects should first be judged in which class (cacheable or non-cacheable) it belongs to 

because the ECD measure for these two types of objects is different. Thus, the model that 

we will propose in this section will use cacheability as the first and foremost term to be 

considered in the equation.  

For cacheable objects, there are two main factors affecting the ECD measurement: 

(1) judging an object’s cacheability whether an object is cacheable or not, and how long it 

can be cached, and (2) the object’s change possibility when its freshness period has 

expired and the cache has to validate with the origin server. Furthermore, the cacheability 

of an object depends on two factors – Availability_Ind and Freshness_Ind, which were 

explained in detail in Sections 4.1.2 and 4.1.3.  

For non-cacheable objects, the change rate and change percentage mentioned in 

Section 5.1.2 should both be considered for every object, so it overall effective value 

should be the combination (multiplication) of these two factors. However, as was 

mentioned in Section 5.1.2, the two factors have differing significance for different types 

of non-cacheable objects. The formula for ECD is thus given below: 

For cacheable object: 

 ECD = (Availability_Ind * Freshness_Ind) ×  chpb 

For non-cacheable object: 

 ECD = (Cprec×  Crate) 
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The “*” operator handles the situation when the object is non-cacheable. The 

existence of non-cacheability factors will enforce the resulting index to be zero, otherwise 

is 1. “×” is the normal “multiply” operator for the corresponding calculation. 

From the discussion of the factors affecting the Availability_Ind and 

Freshness_Ind in Chapter 4, the equation for cacheable object can further be expanded 

into the following: 

For cacheable object: 

ECD = ))_*((
3

1

chpbopfreshORx
C

Ci
i ×−∏

=

 

 = ( )1(3)6(2)5(2)4(2)3(2)2(2)1(2)3(1)2(1)1(1 ********* CCCCCCCCCC xxxxxxxxxx  
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The value of the change percentage (Cperc) is in percentage. The higher the value of 

Cperc, the lesser is the origin server’s unnecessary work and the network traffic.  

 

  > 0 and < 1    less effective, content does not totally change 

Cperc =  1              most effective, content changes completely 

 

Similar to Cperc, the change rate (Crate) is also in percentage, and the higher the 

value, the more effective is the content settings. 

                 0          least effective, validation object does unnecessary job 

Crate =      > 0 & < 1  less effective, content does not change in every validation 

 most effective, content changes in every validation 
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5.2 Result and Analysis of Real-time Monitoring Experiment 

We chose 10 websites that are the most popular websites in computing industry 

that are listed in hot100.com [46] on April 17, 2002 (See Table 5.1). Attractive content 

might make them lead in the industry. However, different content settings that result in 

different content retrieval time might also be the other reason for their popularity. Here, 

we would like to try to compare their effectiveness in content settings by calculating their 

respective ECDs. Hopefully, this can help webmasters to enhance their website design.  

Data were extracted and monitored from the first two levels of embedded objects 

of these 10 hot computing websites. They were collected using the “wget” software in 

Linux version. After they were filtered into unique ones, they were classified to 10 groups 

according to their homepages.  

Squid, as the state-of-the-art caching proxy, was instrumented in the experiment to 

separate the objects into five types: (i) cacheable with validation information objects, (ii) 

non-cacheable secure objects, (iii) non-cacheable objects directed explicitly by server, (iv) 

non-cacheable objects based on proxy preference, and (v) non-cacheable objects due to 

missing headers. All these requests were successfully processed between the caching 

proxy and the origin server (server return code was 200).  

For the cacheable objects, Squid automatically monitors and validates them as 

soon as they are not fresh according to its server-hinted freshness period. Every validation 

timestamp, server return code and all other related returned information were recorded. 

Such action was executed for one hundred times for all of these objects. For non-

cacheable objects, no matter which type they belong to, the whole bodies were transferred 

and stored locally. They were compared with copies of their previous bodies in every one 
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minute interval for 100 times to determine whether they were changed and what 

percentage they changed. After all these were finished, detail analysis was performed to 

extract useful statistics. To produce meaningful results, distribution or bar grafts were 

applied. 

Figure 5.1 and Figure 5.2 represent the effectiveness of content delivery of the top 

10 web pages. Figure 5.1 shows relative percentages of cacheable and non-cacheable 

objects. Because the percentage of cacheable image files in techdepot(2) is the largest 

among these 10 web pages, their longer freshness period enables its ECD value to be the 

highest one. This means that it has most effective content settings regarding to delivery. 

High percentages of cacheable objects in explorermicro(1), youlearn(8), pcpartsfinder(10) 

enable them to be re-delivered content more effectively. 

No. URL No. URL 
1 shop.explorermicro.com 6 www.extremetech.com 
2 www.techdepot.com 7 www.ebay.com 
3 www.planetlearn.com 8 www.youlearn.com 
4 www.nextag.com 9 www.mindmodel.com 
5 www.voicerecognition.com 10 www.pcpartsfinder.com 

Table 5.1 Web Sites Used in Our Simulation 
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Figure 5.3 Cacheable Objects’ Average Server Directive Cached Period vs Real Changed 

Period (10 subgrap) (x-axis is tracing times, y-axis is ECD) 
 

Figure 5.3 shows the difference between the average server directive cached period 

for cacheable objects and their real changed period. The broken line represents the real 

changed period, while the solid line represents the server directive cached period.  

From the figure, we can deduce that most server directive cached period is very 

different from the real changed period. Most of them are quite conservative, which results 

in a lot of useless validations and wastes network bandwidth. Even worse, some servers 

even set a wrong directive, which causes the cache to serve outdated data to the clients.  

Figure 5.4 indicates the average change possibility for cacheable object in every 

monitored web page. The change possibilities of these pages are all quite low. Ebay(7), 

mindmodel(9) even have negative change possibility, indicating that there might be 

incorrect content settings in these two web pages. The change possibility in techdepot(2) 
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is quite high. This is one of the reasons that give it a high ECD value. It indicates that the 

content settings for its cacheable objects are quite effective. 
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Referring to non-cacheable objects, Figure 5.5 and Figure 5.6 show their average 

change percentage and average change rate respectively. It seems that the relative static 

part of the page takes up more than 50% of the content. In other words, if the content 

provider can separate them to be cacheable and non-cacheable, it will result in substantial 

saving in network bandwidth. Figure 5.6 also shows that the change rate is quite low in 

techdepot(2) although its total ECD is quite high. It suggests to enhance its content setting 

in non-cacheable objects. 

 

5.3 Conclusion 

In this chapter, we proposed the Effective Content Delivery (ECD) model index as 

a mean to measure the effectiveness of websites’ content in terms of delivery.  
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The model results in a simple numerical value. This kind of content self-checking 

gives webmaster hints on whether the content setting is appropriate for effective delivery. 

If the value is not satisfactory, the model can also help to trace the reasons behind, so that 

the webmaster can do proper adjustment based on the analysis result. The measurement 

details the three main elements of consideration in the model and gives reasons for their 

importance. 

In order to show that our model gives good measurement for the content delivery 

effectiveness of websites, we also conducted real-time monitoring experiments on many 

actual commercial websites. We analyzed the differences in the content delivery of 

popular websites using our model, and showed that many of the more popular websites 

indeed score a higher value on our ECD model index. This model index could possibly be 

a useful tool for webmasters to understand, plan and enhance the web content settings of 

their websites in order to achieve a higher ECD measure. 
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Chapter 6     Adaptive TTL Estimation for Efficient Web 

Content Reuse   

 

In this chapter, we propose a novel adaptive mechanism for accurate TTL (or 

Time-To-Live) estimation. Our proposal here is based on problems analyzed in previous 

chapters that most current mechanisms setting the TTL of object are not that satisfied. 

 

6.1 Problems Clarification 

The idea behind content delivery and distribution is to either cache or replicate 

copies of data to some proximity server near the client for faster access. Potentially, this 

can save network and server I/O bandwidth, provide better accessibility of web objects, 

and reduce client's perceived latency. One key pre-condition for this approach is the 

accurate setting of the TTL of a web object. The TTL of an object is the time period 

specified as an attribute to the copy of the object such that any use of the content within 

this period can be made without the need to contact (or revalidate) the original content 

server [33]. Note that the TTL is closely related to another attribute of the object, the life-

span. The life-span of an object refers to the time period during which the content of an 

object is guaranteed to be "fresh" and is valid to be used [6]. While the life-span depends 

solely on the content nature (i.e. when the content is changed), the TTL setting might 

depend on not only on the life-span but also many more factors such as server storage 

policy, requirement for monitoring and tracking of client behavior, and the risk level of 

retrieving outdated content by clients. 
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Setting accurate TTL value for a web object is actually a complicated task. Since 

most (if not all) content servers do not guarantee 100% accuracy about the TTL of objects 

they provide on Internet, this setting process can actually be viewed as the content 

freshness risk analysis. Correct TTL setting, of course, can get the benefits that we 

mention above. However, in general, improper setting is often observed on Internet. This 

will result in one of the two possible consequences. If it is too aggressive, meaning that 

the TTL is set to be longer than it should be, there will be risk of retrieving outdated 

object content. On the other hand, if it is too conservative, meaning that the TTL setting is 

much smaller than it should be, the benefits of reduction of bandwidth usage, I/Os, and 

perceived latency might not be able to obtain. 

Currently, there are two main places where the TTL setting will be done. The first 

place is the content server. This is done through server directives. In theory, this should be 

the ideal place to perform the TTL setting, as the content server, together with the site 

administrator, should have the best knowledge about the modification dynamics of a web 

object. However, what is observed on Internet is quite difficult. As we will show in the 

later part of this paper, the server directives are often found to be too conservative, 

resulting in over-demanding for network bandwidth. Furthermore, this is often done in an 

ad-hoc manner. 

The second place is in the proxy cache where the TTL of an object might be 

calculated through predefined rules or formulas. For example, heuristic rules based on 

keyword matching in the URL name such as the presence of "cgi-bin", the suffix 

".cgi(*.asp/*.php)", or a question mark "?" are often used to identify dynamic objects with 

TTL value of zero. SQUID, the most popular proxy cache being deployed, calculates the 

TTL of an object based on its Last-Modified time and the current time. (In SQUID, the 
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TTL setting for an object depends on the difference between the Last-Modified time and 

the current time. The argument behind is that the longer an object is not changed, the 

lesser will be the probability for it to be changed in future [47].) These are often found to 

be too simple because this setting mechanism is independent of the past history of the life-

span of an object. Thus, it still results in one of the two TTL setting problems mentioned 

above (either too conservative to cause unnecessary bandwidth usage or too aggressive to 

cause reuse of outdated content). 

Speculation on the improper TTL setting phenomenon in the content server 

suggests the following explanations. Firstly, the life-span value of an object is not a 

constant; hence adaptive TTL prediction will be needed. Note that it is interesting to 

observe that while quite a lot of efforts have been spent on the prediction of object's TTL, 

we cannot find literature to study the adaptability of predicted TTL of web objects. 

Secondly, TTL prediction is often too difficult for most system administrators to handle. 

And there lacks of an automatic adaptive mechanism to accurately set the TTL of web 

objects based on both the content modification history and input from the content 

provider. Thirdly, while web site administrators and content providers are experts in 

content management and creation, they often do not have good understanding on how 

performance can be lost in content delivery. The challenge comes from the dilemma that 

most efficient content management technologies such as ASP and database have negative 

side-effects on content delivery. Balancing these two aspects is often found not to be easy. 

Lastly, there are also observed cases where the improper setting is due to the carelessness 

of webmaster. This might even result in the data integrity problem of reusing the stale 

copies of web content in proxy/browser cache. 
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To address this problem, we start with the assumption that any predictable life-

span of an object should generally be seen as a random variable defined over some 

probability distribution function (PDF) (such as Gamma or WeiBull functions which will 

be changed with respect to time. Then the TTL estimation of a web object can be viewed 

as two-steps process. The first step is to define the validity of predictability potentials, 

together with its associated expectation value (if any), of the life-span of a web object 

through stochastic process. Then the second step is to take care of the changing behavior 

of the PDF of the life-span through correlation pattern recognition modeling. Through 

active monitoring on the content updating dynamics of real web objects on Internet, we 

show that our TTL adaptation mechanism is far more accurate than both directives sent 

out by content servers and TTL settings by current proxy caches. This result is important 

because it allows content servers and proxy caches to conduct their own content freshness 

risk analysis for more efficient web caching. 

In this chapter, we sometimes interchange the use of the two terms "TTL" and 

"life-span" because most (if not all) related works, HTTP protocol definition, and 

proxy/web servers do not provide any differentiation between them and they often just use 

the term TTL. This is possible because without additional constraints to TTL setting, such 

approximation for their equality is quite reasonable. However, we would like to point their 

fundamental difference in the beginning of this section. 

The outline for the rest of the chapter is as follows: we start by justifying our study 

of TTL adaptation mechanism through research on existing re-validation situation. After 

presenting our concept on “Two-Steps” TTL adaptation model, we use live experiment to 

verify the model’s practicability and feasibility. 
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6.2 Re-Validation with HTTP Response Code 304: Cheap or 

Expensive? 

Before we go into the study of our TTL adaptation mechanism of web objects, we 

would like to justify the problem statement of our research here. Is it important to study 

the TTL predication of web objects, given that there is a re-validation mechanism 

supported by the HTTP protocol? When the object content for a web request is found in 

the local client/proxy cache and its expire-time has already passed, a conditional GET 

request (typically, this is an If-Modified-Since (IMS) GET request) can be sent 

to the content server. The object body is returned to the client/proxy only if the local 

cached copy is different from the master copy in the content server. 

It is true that under the situation where the local copy of the object is still fresh, the 

reply of such conditional GET request does not consume a lot of bandwidth. However, the 

cost, in terms of the latency, is actually quite high. Some of the previous work on web 

caching consistency did preliminary analysis on the proxy traces to find out the relative 

statistical magnitudes of the service latency for the HTTP response code 200 and 304. 

But the result of their work is too limited to give insight about the cost of object validation 

without body fetching because their requests for the response code 200 and 304 might 

not refer to the same object or study under the same network/server workload.  

To gain a deeper understanding on the cost of validation without body fetching (i.e. 

HTTP 304 response code Not-Modified), we took traces from the NLANR ftp site 

[NLANR], extracted the URL names, and repeated the actual retrieval of objects. The total 

number of objects tested is 1,013,335. The network to conduct the experiment is the high 

speed Singapore Advanced Research Network. What we would like to measure is the time 
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for the first byte to arrive at the client side and that for the whole object to be retrieved. 

Here, we approximate this first byte retrieval time to be the latency of the HTTP response 

code 304 (Not-Modified) and the whole object retrieval time to the latency of the 

HTTP response code 200 (GET). This approximation is quite reasonable. One additional 

advantage of this approach is that the bandwidth and server I/O allocation for the two 

responses are guaranteed to be the same. Note that issuing two web requests (one for 

response code 200 and the other for code 304) even within a short period of time might 

still suffer from the fluctuation of the network and server workload and this might result in 

inconsistent measurement. Figure 6.1 (a) and (b) show the result.  
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Figure 6.1: Normalized Validation Time w.r.t. Retrieval Latency of Web Objects 

 

Figure 6.1(a) shows the distribution of the normalized validation time of object 

with respect to its entire object retrieval latency. This clearly shows that the validation 

time is actually of similar order as the entire object retrieval time. About 59.25% of the 

web objects show that the validation time is similar to the entire object retrieval time. And 

only 2.09% of the web objects have validation time that is less than 10% of the entire 

object retrieval time. This is expected because most of the objects on Internet are small. 
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Since data are sent through Internet in a chunk by chunk manner and the typical chunk 

size is about 1.1Kbytes to 1.3 Kbytes, this explains the huge percentage of objects with 

validation time being close to the object retrieval time. Only when the objects are very 

large (e.g. JPEG images), then the normalized validation time becomes insignificant. 

However, there is a counter-argument to this situation. Most large objects are images and 

they are found to be quite static. It is quite unlikely that they need frequent re-validation. 

Figure 6.1(b) plots the distribution of the normalized validation time and the object 

frequency distribution against the number of data chunks found in the actual content 

transfer of a web object. The figure supports our observation and argument in Figure 

6.1(a). There are about 43.5% of the objects that are transferred in one single data chunk 

and only 14.07% of the objects are transferred in more than 10 data chunks. Furthermore, 

the relatively small data transfer time for chunk other than the first one, as compared to the 

network setup time, can be reflected by the 100%, 98.63% and 76.25% of the normalized 

validation time for object transfer with one chunk, two chunks, and three chunks 

respectively. 

All these results highlight the importance of understanding (and hopefully 

predicting) the TTL of web objects and show the high cost of content re-validation on the 

fly. Prediction accuracy is important here because aggressive caching with too large 

estimated content TTL might result in the use of outdated data whereas conservative 

caching with too small estimated TTL might result in unnecessary bandwidth 

consumption and high retrieval delay. Similar arguments apply to web information 

systems as well. 
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6.3 Two-Steps TTL Adaptation Model 

In this section, we would like to propose a two-steps TTL adaptation mechanism 

for efficient and accurate TTL prediction of a web object. The two steps are the stochastic 

predictability and the adaptive updating. In the stochastic predictability process, we will 

first capture the probability distribution function (PDF) of the life-span using stochastic 

process such as Gamma or WeiBull modeling. Based on the pattern of the distribution, the 

regularity of the life-span for TTL value prediction as well as its expectation value can be 

determined. In the adaptive updating process, correlation pattern recognition model will be 

used to determine any updating of the PDF of the life-span for future prediction. 

Given an information source on the web, it is not difficult to imagine that its 

content updating will be both regular and irregular. To attract audience to (re-)visit a 

website, the content provider needs to constantly provide the latest information on the web. 

Some good examples are the newspaper and online banking/stock information. Hence, 

certain kind of content updating schedule can be expected and it is usually quite 

predictable.  

However, if the study period of life-span of a web object is long enough, it is not 

difficult to find that a single PDF is far from enough to accurately describe the change 

pattern of its content. In fact, multiple PDFs are actually involved and the one being used 

depends on the actual work schedule. For example, during the work hours of the working 

day, content such as CNN news portal might be updated every fifteen minutes. However, 

during the lunch time, night time, or weekend, the actual content updating might be slower 

(with different PDFs) and sometimes even stop. Another factor that complicates the 

situation further is the continuously changing to the requirement for content updating to 
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meet the client's need. Furthermore, there are situations where irregular, sudden change to 

the content is made. All these suggest the need to check the validity of PDF defined by 

previous content updating history for future life-span prediction. Whenever necessary, the 

PDF should be automatically adapted to reflect the new situation. 

To achieve this goal, we first assume that objects might be changed according to 

some kind of regular pattern for a given period of time. For example, if a program updates 

an object n fixed periods in one day, the regularity of content change for this object will 

be n per day. And this regularity can be captured by stochastic process such as Gamma 

distribution model. After that, the correlation pattern recognition model can be used to 

check whether the regularity is stable and valid with respect to time. If the regularity is 

found to be changed, the model will capture the change and adaptively update the 

parameters for the new PDF. This makes the prediction more accurate because it caters for 

changes to the regularity, which indeed happens in actual situations. 

6.3.1 Content Creation and Modification 

Before we go into the details of our two-steps TTL adaptation mechanism, it will 

be helpful to have some basic understanding on the content creation process for the web 

and the factors affecting its modification process. 

Despite the wide variation of applications on Internet, the primary usage of the 

web is still for information publishing and dissemination. Thus, a URL address can be 

viewed as a pointer to an information source and a web request with the URL address is to 

get the content data for presentation at the client end. From the viewpoint of a client, a 

web server functions as a content presentation generator fContent_Pres_Gen.  It takes inputs 

from the client and network/server workloads. Together with predefined rules and data set 
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in the web server, fContent_Pres_Gen will generate the final content presentation to be replied 

back to the client. Sometimes, this content generation process might invoke application 

execution (such as database access) in the web server. 

The content presentation Content_Pres for a given web object with address URL 

can be represented as follows: 

Content_Pres = fContent_Pre_Gen(DS, CI
�

, RI
�

, SI
�

, DI
�

, T) 

Each input to fContent_Pres_Gen can be viewed as a class of input with shared common 

features to the content generation process. 

Data Source DS: 

This refers to the data content source pointed to by the web address URL. Note 

that the final presentation of a web object might not be the same as its content source 

because content optimization, adaptation, and personalization that are based on the rest of 

the parameters might take place. 

Client Profile Vector CI
�

: 

This vector CI
�

 includes all inputs related to the client's personal profile. Examples 

are the client's IP address, browser type, language preference, browser type, and cookie's 

value. 

Request Input Vector 
→

RI : 

It refers to the information related to the intrinsic properties of the given request 

URL such as the request method and object relationship with the referral. It might also 

include parameters associated with the request such as query parameters, access 

authentication input, and post data in the request body. Request preferences such as the 

acceptance, encoding, caching and revalidation, and security all belong to this category. 
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Server Setting Vector 
→

SI : 

This includes server setting properties such as the message encoding method, file 

system and web resource ACLs. Sometimes, server status, such as the system resource 

usage and access history, might also cause different content presentations to be generated. 

Application Source Vector 
→

DI : 

This vector describes all the applications involved in creating the final presentation 

(as the program output) of the request. Typical applications executed for a request are 

database access and encryption engine. 

Request Time T: 

This variable specifies the time when the client makes such request with address 

URL. 

As we can see, the life-span and the TTL of a web object are affected by multi-

factors instead of a single one. 

6.3.2 Stochastic Predictability Process 

Many stochastic distributions of real life periods such as the life period of electric 

bulbs and batteries can be captured by Gamma distribution. The gamma distribution 

contains the exponential and Erlang distribution as special cases, and converges to a 

normal distribution as αi goes to infinity. Therefore, it is natural to approximate the 

change interval time distribution of an object with a Gamma distribution. From the 

Gamma model, we can estimate when the next change of a given object will come and 

determine whether the frequency of change will increase, decrease or stay the same in the 

near future. 
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The Gamma Distribution Model [48] is defined as follows (Its mathematical 

definition can be found in the appendix of this thesis): 

Gamma(∆tij : αi, βi) : )(

)( /)(1

),,(
αβ

µ
α

βµα

βα
Γ

−∆ −∆−−

=∆
tettf  

 where �
∞ ∆−− ∆∂∆=Γ
0

1)( tet tαα  

αi is the shape parameter: If αi equals to 1, the Gamma distribution will recess to 

exponential distribution. If αi goes to infinite, Gamma distribution will recess to normal 

distribution. βi is the scale parameter: Its value is to reflect the size of unit in which every 

change interval is measured when compared to the standard Gamma distribution. µi is the 

location parameter. The Gamma distribution shifts to the right by the smallest possible 

change interval time. Hence, it can also be deemed as a safe period where the object will 

not change. 

Content providers usually have a content updating schedule to achieve a 

compromise among the changing process of information sources, the workload of content 

updating, and the popularity of the site. Generally, the content providers have two 

methods to update the content. The first one is usually done using some program to do 

automatic content uploading to the site at relatively fixed time intervals. This happens 

despite the various factors affecting the content updating plan. As a result, the next change 

interval of a web object tends to be inherent to its previous change interval history and this 

change is quite stable. This is the rationale behind the use of stochastic process to describe 

it. 

 Note that in our study, we use Gamma distribution to describe the stochastic 

process of content change. However, this does not limit our mechanism, result, and 

contribution if other distribution such as WeiBull is used instead. Our focus of research 



 82 

here is to investigate the validity of the distribution and provide the adaptability of PDF to 

the system rather than to claim a particular stochastic process function. 

6.3.3 Correlation Pattern Recognition Model 

Even though the regularity of change of an object is observed to be stable within 

some time period, the factors described in Section 6.3.1 might change suddenly or be 

interfered occasionally. For example, the persistent connection in CI
�

 suddenly terminates 

because of network congestion; server system resource in SI
�

 is insufficient to execute the 

updating program in time because of heavy workload. This results in the change interval 

of such cases being different from previous change intervals. Hence, given a sufficiently 

long period, the discrepancy in the outcome of factors should be tracked all the time and 

the regularity of change needs to be verified and updated whenever necessary. This is to 

make the prediction of an object's TTL as close to the actual situation of change as 

possible. As a result, we need a method to measure the prediction correctness and to 

replace the current predicted regularity of change if the difference between the predicted 

situation and the actual one is greater than certain pre-defined threshold value. 

With the prediction algorithm for content change, we need to identify the 

persistent regularity of change of an object. The object’s initial prediction reference is 

obtained from the Gamma distribution curve, where the data is obtained from the most 

recent actual change intervals recorded in the log file. Taking two periods, and using their 

Gamma curves, we can then determine whether their regularity is persistent by 

determining their similarity. This is basically in the form of correlation pattern recognition 

process. 
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The basis of TTL prediction algorithm is that since the regularity of change of 

objects is relatively stable within a time period, the regularity should be able to extend to 

the near future. And this needs to be continuously proven, and updates accordingly if the 

regularity of change is modified.  

Correlation pattern recognition [49][50][51] is unique in that it provides a 

methodology to compare two groups of information with multi-dimensional data. It works 

based on the judgment of the correlation coefficient, which is defined as a statistical 

measure to quantify the "goodness-of-fit" in many curve-fitting procedures [52]. Here we 

use it as an indicator of fit, or similarity, between the Gamma distribution curves 

generated from two successive periods of content change interval data. Note that in our 

measurement, all segments in these curves have the same length.  

The calculation method for correlation coefficient is defined as follows: 

Given two groups of intervals: series X of length N as [X1, X2, ... , XN] and series 

Y of length N as [Y1, Y2, ... , YN]. X represents the Gamma distribution of content change 

intervals in a time period t, and Y represents that in the following period t+1. 

The series X has a mean E(X) , given by the average of its values 

E(X) = ( X1 + ... + XN ) / N. 

The mean is a measure of how far X is displaced from zero. Series X also has a 

variance, V(X), given by: 

V(X) = ( X12 + ... + XN2 ) / N - (E(X))2 

Mathematically, the variance of X is a measure of its size, after its mean is 

removed. For series Y, also of length N, the covariance between X and Y is defined by: 

COV(X,Y) = ( X1Y1 + ... + XNYN ) / N - E(X)E(Y) 
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The covariance provides a quantitative measure for the similarity between the two 

series X and Y. It will reach its maximum when Y and X are the same. To remove the 

effect of the sizes of the two series, the covariance should be normalized by dividing out 

their standard deviations, which are the square roots of their variances: 

Correlation Coefficient = COV(X,Y) / SQRT[V(X)V(Y)]  

The value of correlation coefficient ranges between 1.0 and -1.0, where the value 

of 1 indicates a perfect match (i.e. the two patterns are identical) and the value of -1 would 

indicate that an exact match cannot be found but that it is "upside-down". Values near zero 

mean there is no match at all.  

In practice, it has generally been agreed that values greater than or equal to 0.8 

correspond to patterns in the data that are easily discerned as "good matches" by human 

eye. The correlation coefficient is also a normalized statistical measure, which means that 

the actual numerical values of either the chart data points or pattern values have no effect 

on its value. Only the "shapes" of the pattern and chart segments affect it. All of these 

features make the correlation coefficient a good choice as an indicator of pattern 

matching.  

In our case, if the correlation coefficient calculated from the Gamma distribution 

curves of two continuous periods is greater than or equal to 0.8, the object’s regularity of 

change should be considered as stable. It is then reasonable to use TTL value(s) obtained 

from the previous period in the latter period. On the contrary, if the coefficient is less than 

0.8, it means the object’s regularity of change is different enough in the two time periods 

of measurement. In this case, using the TTL value from the old regularity as a reference in 

the new regularity period will be undesirable. If the object’s freshness period obtained 

from the period N-1 cannot be used as a prediction result in the period N, the algorithm 
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should use the freshness period of period N as the next prediction value for the next period 

(N+1). 

 

6.4 Experimental Result 

 
In this section, we would like to illustrate the usefulness of our TTL adaptation 

mechanism through real-time monitoring of content change in popular websites found on 

Internet. Firstly, we describe the experimental environment and setup. Then we classify 

websites into four different types according to the characteristics found in the PDF of their 

life-span. After that, we present the result obtained from the TTL behavior stage and 

prediction stage of our mechanism. We also compare and analyze the results obtained 

from the actual situation, existing algorithms/methodologies, and our approach. The result 

shows that our algorithm can effectively adjust an objects’ TTL due to the change in 

content updating regularity.  

6.4.1 Experimental Environment and Setup  

Our experiments were performed on a Pentium II 266 CPU machine, with 96M 

RAM and a SCSI 9GB hard disk. The TTL adaptation mechanism (described in Section 3) 

was implemented in this machine, and it was used as a reverse proxy for monitoring the 

content change. A total of 25 most popular websites were chosen from 100.hot [46] for 

our study. They represent some of the most famous websites in their corresponding 

industries. Examples of these sites include ebay, cnn, and yahoo. The monitoring period 

lasted for six weeks, with two weeks in August and four weeks in September, 2002.  
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6.4.2 PDF Classification 

There are two stages in our monitoring and prediction study: (i) TTL behavior 

stage to learn the change regularity of an object's life-span PDF, and (ii) TTL prediction 

stage with adaptive updating of the change regularity of the life-span PDF.  

Before we go into the details of the two stages, we would like to classify the life-

span PDF of objects and identify the interesting cases that most websites are likely to fall 

into. In our TTL adaptation mechanism, we will first decide whether an object has any 

potential for prediction. In our experiment, we use the Gamma distribution model to make 

this decision. And all the objects under study will be classified into either TTL 

unpredictable objects or TTL predictable objects. 

For TTL unpredictable objects, their change intervals distribution can further be 

grouped into two sub-types. The first type is completely random and chaotic. Its 

distribution curve has no apparent peak, meaning that no interval aggregates in some time 

interval ranges and no regularity can be tracked.  The second type is an exponential 

distribution, which means that its body might be dynamically generated and is different 

for every access. 

For TTL predictable objects, we observe four sub-types of change intervals 

distributions in our experiment: 

(1) Type 1: There is only one apparent peak, which suggests the object change 

mainly to be fitted in a fixed time interval. 

(2) Type 2: It is an exponential distribution, which means that its body can only be 

guaranteed to be fresh in one minute. This type should be differentiated from 

the second type of unpredictable objects by the existence of some server’s hint 
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in the HTTP header during object retrieval. For example, the existence of the 

header field “Cache-control: max-age=60”.  

(3) Type 3: There are multiple peaks in the distribution curve, which means that 

the object might be updated in different fixed periods. For example, it is 

updated every one hour from 9 am to 9 pm, but it is updated every 2 hours 

from 9:01 pm to 8:59 am of the following day.  

(4) Type 4: This is a combined exponential distribution with one or multiple peak 

distribution. It represents that either the object is updated in one or more fixed 

periods or the object might be dynamically generated and is different in every 

access. The reason why it still belongs to the same predictable type is that the 

object still has some change regularity. For example, one object is updated 

every 15 or 14 minutes, but it will dynamically generate different temporal 

advertisements in the first minute of every hour. Thus, this first minute will not 

be suitable to set any TTL.  

 
 Unpredictable object Predictable object 

Distribution 
Type 

Type 1: 
random 

and choas 

Type 2: 
exponential 

Type 1: 
1 peak 

Type 2: 
exponential 

Type 3:  
multiple peaks 

Type 4: 
Combination of 
exponential and 
multiple peaks 

Percentage 0 20% 28% 32% 8% 12% 
Table 6.1 Percentages of Different Change Regularities 

 
Table 6.1 shows the distribution of objects according to this PDF classification. It 

shows that 20% of the objects under study belong to the second type of unpredictable 

object, which means these objects might be all generated by program automatically. Due 

to the security and privacy reasons, they will be different in every access. Furthermore, in 

our study period, their change intervals are unpredictable. 
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80% of the objects under study belong to the predictable objects. This observation 

is expected because recent website design tends to change the structure and layout of the 

website more often in order to attract more customers, thus resulting in shorter life-span. 

Consequently, proper TTL prediction is important for credible web caching.  

Since predictable objects are valuable in our study, we will use the rest of the 

chapter to discuss their behavior. To make the analysis easier, representative URL for each 

of the four sub-types will be used in our discussion. Their URLs (the numbers correspond 

to their types) are: 

(1) http://www.asia1.com.sg  

(2) http://www.cnn.com/WORLD/index.html 

(3) http://www.whitehouse.gov/index.html 

(4) http://www.ebay.com/index.html 

6.4.3 TTL Behavior Stage 

In this stage, an object’s change regularity is captured by its Gamma distribution 

curve, which is drawn according to the probability distribution of its real change intervals. 

This is done as follows. In our monitoring process, after the time interval space of content 

change for each object is found, we will calculate the probability of real change interval 

and a data point will be obtained. A line will then be used to join these real change 

probability points and the result is the actual probability distribution curve Based on this 

line, a proper set of Gamma distribution parameters can be obtained through curve fitting 

to this line. This curve will represent the predicted object’s change regularity in this 

period. 
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Figure 6.2 gives our result in the object’s TTL behavior stage. It shows the content 

change regularity for the four representative URLs. In the figure, x-axis represents the data 

groups of real change intervals, and y-axis represents the probability of real change 

intervals. (Note that the meanings of the x-axis and y-axis are the same for all the figures 

in the rest of this chapter). “Real change interval” is the period between two successive 

change times of an object obtained by comparing its actual body. “Probability of real 

change intervals” is the percentage that an object is changed at the indicated period of 

time. “Object’s change regularities” can be obtained from the “actual probability 

distribution line”. Each data group range in the graphs in Figure 6.2 is less than five 

minutes, with most being one minute.  The period of study for these four curves is one 

week, from Aug 12, 2002 to Aug 18, 2002. 

The Gamma model is aimed to grasp an object’s change regularity. It will ignore 

those unimpressed trends or data and only focus on the main trend(s). Its function 

generates results based on this rule. For example, for URL (1) – asia1, its Gamma 

distribution curve and function generated as follows. The TTL values in data group 8 

takes up more than 50 percent out of all possible TTL values, and other values are very 

scattered along the x-axis. Thus the model will keep track on this main trend, and ignore 

other insignificant ones, which can be rephrased as setting those small enough data to 

zero. Data groups 7, 8, 9 and 10 will be used to generate proper values for � = 40.2658 

and � = 0.0726. The steeper and narrower the peak, the bigger is the value of � and 

smaller is the value of �. Furthermore, the y-axis is shifted to data group 7, indicating the 

location parameter µ = 11, and this is the time interval of the beginning value of data 

group 7. Since data group 7, 8, 9, and 10 only takes 78.63% of all the possible values, the 

corresponding Gamma function should multiply this weight.  
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Figure 6.2 Gamma and Actual PDFs for Content Change Regularity 

(x-axis represents the data groups of real content change intervals, y-axis represents the 
probability of real change intervals. The line with quadrangle points is the line of actual 

intervals, and the line with triangle points is the fitting Gamma distribution curve.) 
 
 

Figure 6.2 confirms the argument that the Gamma function can capture the main 

trend in the actual probability line very well. The Gamma functions used to fit the actual 

probability lines in Figure 6.2 are as follows: 

(1) F(x) = 0.7863(40.2658,0.0726,11) 

(2) F(x) = (0.2857,2.09,1) 

(3) F(x) = 0.4455(40.5,0.099,1) + 0.4216(13.3525,0.1607,40) 

(4) F(x) = 0.1690(0.295,1.65,1) + 0.7651(29.6072,0.1079,5) 

For (1) – asia1, we can deduce the change regularity for asia1; it is usually updated 

every 15 minutes. As a result, in this TTL behavior stage, its expected TTL value is 15 

minutes. 

With regards to the actual probability distribution line in (2) - cnn, we observe 

from Figure 6.2 that it is an exponential distribution. Therefore, � must be less than 1, and 

all the data group values can be taken into consideration when generating the Gamma 

distribution fitting curve. From the curve, we can deduce that cnn changes frequently. It 
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can be guaranteed to be fresh only within one minute even though sometimes its updating 

period is more than that. Its expected TTL is still one minute. 

For (3) - whitehouse, there are two main trends (two peaks) from the actual 

probability distribution line. Thus the Gamma model needs to use two functions to 

represent the case, each one of which trying to capture one trend. The two functions are 

combined together by adding them together. From the curve and our other experimental 

result, we can deduce that whitehouse has two updating periods: one is during the US 

daytime and it is 15 minutes, and the other is during the US nighttime and it is 60 minutes. 

Therefore its expected TTL is 15 minutes in the US daytime, and 60 minutes in the US 

nighttime. 

For (4) - ebay, there are many advertisements on this website. Sometimes, the 

trend for its content change might be unpredictable. At the other times, however, it can 

also be predictable. As a result, its Gamma distribution curve is a combined exponential 

distribution and normal distribution. With the help from our other experimental data, we 

find that the website updates only with a small part of the content in about every 10 

minutes. However, in the first minute of every hour, it will update most of the content. 

Due to this major update, different user accesses to this site will result in different updated 

or non-updated parts with different temporary advertisements. Thus, its expected TTL is 0 

for requests in the first minute of an hour, and 9 or 10 minutes for other requests. 

6.4.4 TTL Prediction Stage 

After we obtain the expected TTL from the study of object’s change regularity in 

the TTL behavior stage, we would like to use it as the prediction value in the subsequent 

periods as much as possible. And our continuous monitoring is aimed to determine 
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whether it is accurate to use the previous expected TTL as the future prediction value, and 

if necessary, to adaptively adjust the value according to the actual regularity replacement. 

Such detection and adjustment are all based on the correlation coefficient theory as we 

described in Section 6.3.3. 

To make our discussion easier, we sub-divide this prediction into two parts: 

adaptive learning and stable result prediction. 

 
6.4.4.1 Adaptive Learning 
 

With respect to the weekly data, when the correlation coefficient is less than 0.8, 

which means the change regularities in the two weeks are different, the future prediction 

value should be adaptively adjusted according to the latest change regularity. This is to 

lessen mistakes in the future prediction. Figure 6.3 and 6.4 show the result of this case. 
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Figure 6.3 Gamma Distribution Curve from Aug 12 to Aug 18 vs Actual Probabilities 

Distribution Line from Aug 19 to Aug 25 
 

 
The correlation coefficient calculated from Figure 6.3 shows that for the website of 

whitehouse, it is not appropriate to use the change regularity of the previous week (Aug 12 

to Aug 18) to predict the following week’s (Aug 19 to Aug 25) change situation. This is 
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due to the following week’s change situation being substantially different from the 

previous week’s regularity. In the previous weeks, there are two update time intervals 

every day for the website of (3) - whitehouse. However, there is only one update time 

interval in the following week. Thus, the predicted basic parameter set needs to be 

adjusted for this website. The other three websites’ correlation coefficients are still bigger 

than 0.8, meaning that their change regularities are still the same as those of the previous 

two continuous weeks. 
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Figure 6.4 Re-learning the Change Regularity for (3) - whitehouse from Aug 19 to 
Aug 25 

 
 

For (3) - whitehouse, it change regularity needs to be re-learnt to obtain proper 

prediction value.  The adjustment will be invoked by generating a new Gamma 

distribution curve to fit this week’s real change intervals line (from Aug 19 to Aug 25). 

Figure 6.4 shows the curve-fitting situation in the re-learning process. The prediction 

value for (3) - whitehouse will be adjusted to 60 minutes. 

 
6.4.4.2 Stable Result Prediction 

From our experiment, we found that overall speaking, no matter whether the 

prediction is a daily or weekly process, most objects’ change regularity are quite stable 
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within the whole September period of our study. This can be seen from the comparison 

among the actual probability lines in Figure 6.5, which are daily based, and in Figure 6.6, 

which are weekly based. 
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Figure 6.5 Probability Distribution with Daily Real Change Intervals 

 

 
Figure 6.5 shows the probability distribution with daily change intervals in one 

week, from Aug 19 to Aug 25. One line represents one day’s distribution situation. The 

group ranges of every line in the same graph are the same. It seems that the object’s daily 

real change lines are similar in the week. In addition, our experimental data for the daily 
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distribution in the subsequent five weeks also show that the daily distribution line is 

similar to each other in the same week. 

According to the correlation theory, the correlation coefficients for the Gamma 

distribution curves of daily change regularity in the same week are all bigger then 0.8. 

This implies that the change regularity is similar in every day of the same week. Thus the 

expected life-span period from the first day can be used as the prediction value for the 

following days of the same week. 
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Figure 6.6 Probability Distribution with Weekly’s Real Change Intervals 

 



 96 

Figure 6.6 shows the probability distribution for weekly change intervals in the 

successive weeks, from Sep 2 to Sep 29. One line represents one week’s distribution 

situation. Once again, the weekly change regularity is quite stable in this month. The 

results shown in Figure 6.5 and Figure 6.6 suggest that the objects’ change regularity can 

be daily or weekly based in our four weeks of experimental period.  

Comparing the results in Figure 6.5 and Figure 6.6, it seems that the similarity 

obtained weekly is better than that from daily. Thus, we use this for our next stage of 

content change monitoring -  using the change regularity from the first week of September 

to predict the change regularity of the following three weeks of September.   
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Figure 6.7 Learning Process for Capturing the Change Regularity from Sep 2 to Sept 8 
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(a) Week 1 
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(b) Week2 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11
 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11
 

(C) Week 3 
Figure 6.8 Predicted Result from Sep 9 to Sep 29 Based on Learning Result in Sep2 to 

Sep 8 
 

 
Figure 6.7 shows the behavior stage in the first week of September and Figure 6.8 

shows the prediction monitoring stage in the following three weeks. Every row of curves 

represents the prediction situation of the week. After obtaining the predicted value from 

the first week, the correlation coefficients calculated for the following three weeks show 

that the objects’ change regularities are stable in this month. Therefore, our prediction 

effect based on first week representational values is quite good for the month of 

September. 

6.4.5 Result Analysis and Comparison with Existing Solutions  

In the last section, we already showed that our approach of using Gamma 

distribution model as our basic reference is effective to capture an object's change 
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regularity for future value prediction. With the correlation pattern recognition model, we 

also show that either the validity of using previously obtained result can be justified or 

new prediction references can be obtained through proper adjustment.  
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Figure 6.9 Comparison of our Prediction Results with Those from Actual Situation, 
Squid’s Algorithm and Server Directives 

. 
 

In this section, we would like to further our study by comparing our predicted 

results with those from the Squid's algorithm, server directives and actual situation. 

Squid's algorithm is included in our study because it is the most popular proxy cache 
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currently being deployed and it has rules to determine an object's TTL. We are also 

interested in the server directives because we want to find out how accurate (or efficient) 

the content providers can predict TTLs for their content. The result is shown in Figure 6.9. 

We use the values deduced from Sept 2 to Sept 8 to predict the life periods from Sep 9 to 

Sep 29. The figure also shows the comparison situation in the latter period.  

In the figure, fill-in grey blocks are the results of the actual change intervals (In 

fact, it should be a line of the time interval points. To compare with other results easily, 

we fill in the area below the line). The broken lines are results of our algorithm. The bold 

lines are results of Squid’s algorithm. The normal lines are results calculated from the 

server directives. The x-axis represents the request times, and the y-axis represents the 

remaining object’s life period. For example, with reference to the actual situation, when 

ebay was requested for the first time, we observed that this body changed after 20 

minutes. That is, when the value along the x-axis is 1, the remaining life period along the 

y-axis is 20. When the value along the x-axis is 2, the y value (the remaining life period 

along the y-axis) will become 19, and other values can be analogically deduced. 

Therefore, the closer and lower the other three lines to the edge of the actual block, the 

better will be the prediction. It is because this means the prediction result is close to the 

actual change situation. 

From (1)(2)(4) graph in figure 6.9, we can see that many of our prediction results 

just overlap with the result of the actual situation, which means these results are exactly 

correct in those periods. But some are quite lower than the edge of the actual block, which 

means we still need to waste some bandwidth and do useless work (redundant validation) 

on the same fresh objects. Some lines are even higher than the blocks. These are 

prediction mistakes and will result in returning stale objects to clients in those periods.   
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Analyzing the Squid prediction results, most of its predictions are much lower than 

the edge of actual block, which means Squid will perform a lot of useless work and result 

in large amounts of network traffic and server burden. However, at most of the end of the 

triangle blocks, which means the object will change soon, Squid’s prediction results’ line 

are always higher than the blocks. This phenomenon is because Squid’s algorithm to 

predict objects’ TTL is only based on the assumption that the longer the object did not 

change, the lesser possibility for it to change, and without any detection process to verify 

this kind of assumption.  The period indicates the difference between Last-Modified 

timestamp and current timestamp.  

Furthermore, its assumption seems to be incorrect from our experiment. For 

example, ebay’s first version in our experiment has a 20 minutes lifetime. When it was 

been requested in 19th minute, it will have just a minute of lifetime left.  However, Squid 

will assume that since it has lived so long, it can live even longer. Its prediction of lifetime 

for the body retrieved by the request at the 19th minute will be 5 minutes. Therefore, this 

heuristic prediction will generate many mistakes, and will increase the chance to send 

stale objects to clients. 

Analyzing the servers’ directives, most of them are too conservative. Some do not 

even have an indication of the lifetime period of an object, which results in objects being 

uncacheable, or being cached too short, thus resulting in unnecessary network traffic.  

In graph (3) of Figure 6.9, our prediction results are the same as the results from 

Squid and server directives. Most of cnn objects’ lifetime is 1 min, others is chaotic. 

The statistic average comparison for these three kinds of results with the actual 

situation is shown in Table 6.2. The predicted values are obtained from the first week 

representational values. The actual situation is in the following three weeks in September.  
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 (1)Asia1 (2)cnn (3)whitehouse (4)ebay 
 Percentage of less than actual TTL prediction  
My algorithm 1.32% 83.83% 23.33% 43.93% 
Squid’s algorithm 77.72% 83.83% 80.37% 76.48% 
Server directives 100% 83.83% 100% 100% 
 Percentage of equal to actual TTL prediction (accuracy) 
My algorithm 94.2% 16.17% 60.88% 43.04% 
Squid’s algorithm 10.13% 16.17% 2.28% 8.63% 
Server directives 0 16.17% 0 0 
 Percentage of greater than actual TTL prediction (mistake) 
My algorithm 4.48% 0 15.79% 13.03% 
Squid’s algorithm 12.15% 0 17.35% 14.89% 
Server directives 0 0 0 0 

Table 6.2 Comparison from the Results of My Algorithm, Squid’s Algorithm and 
Server Directives with the Actual Situation 

 
 
The table shows that most of our algorithms’ results are better than Squid’s and the 

server’s results. Conservativeness in server directives and the Squid’s estimate will result 

in unnecessary bandwidth usage, increased network traffic and increased server burden. If 

we observe the proportion between the times of unnecessary requests (receiving the same 

body) because of conservative prediction, and the total times of every minute’s request in 

our experiment, and we use that as the measurement of wastage, we will find that the 

result from our algorithm will waste less than 100% on average. However, Squid’s and 

server’s result will cause wastage that is more than 10 times the amount of our algorithm. 

 The accuracy of our prediction, which means the predicted value is exactly the 

same with object’s actual TTL, is significantly higher than others. This indicates, on the 

whole, that the prediction base of our algorithm is close to the actual situation.  

Our adaptively monitoring procedure also lessened the mistakes in prediction, and 

increased the credibility of the caching proxy compared to Squid’s heuristic algorithm.  
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6.5 Conclusion 

The problems we noted in chapter 4 and chapter 5 reflect that most current 

mechanisms to set the TTL of objects are either ad-hoc or too conservative. More 

importantly, there is no measure in the prediction process to take care of the changing life-

span pattern of an object. The resulting discrepancy not only causes unnecessary network 

bandwidth consumption but also potential outdated content reuse. 

In this chapter, we study the sensitivity of the expectation life-span values for TTL 

prediction and to propose a novel adaptive mechanism for accurate TTL estimation. 

Through proper stochastic modeling (such as Gamma or WeiBull) on the probability 

distribution function (PDF) of the life-span value of a web object based on previously 

observed values, its predictability as well as expectation value (if any) can be obtained. 

Then with correlation pattern recognition model, any changing behavior of the life-span 

value of the object can be reflected as an update to its corresponding PDF. Both the details 

of the mechanism and its simple implementation in reverse proxy cache are given. 

Through active monitoring on the content updating dynamics of real web objects on 

Internet, we show that our TTL estimation is far more accurate than both directives sent 

out by content servers and TTL settings by current proxy caches. This result is important 

because it allows content servers and proxy caches to conduct their own content freshness 

risk analysis for more efficient web caching. 
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Chapter 7     Conclusion and Future Work   

 

In this chapter, we present the conclusions resulting from the work performed in 

this thesis, and suggest areas of future work for possible avenues of further research. 

 

7.1 Conclusion 

In this thesis, we delved into objects’ attributes, and analyzed how objects’ content 

settings will affect the effectiveness in their cacheability from both the perspectives of the 

caching proxy and origin server. Furthermore, we proposed our solution in helping origin 

servers to enhance their correctness content settings by the effective prediction of objects’ 

time to live period, which will improve objects’ cacheability and efficient content 

delivery.   

When analyzing cacheability effectiveness, we base on objects themselves and 

model all factors affecting their cacheability to obtain numeric values for quantitatively 

achieving a complete measurement. To further ascertain the usefulness of these models, 

corresponding appropriate simulation experiments were conducted. These experiments 

illustrate our models’ usefulness in aiding the adjustment of the caching proxy’s policy, 

origin servers’ design strategy, and even certain areas of web caching research. 

We observed that most objects’ cacheability can be improved by proper content 

settings, especially in properly setting an object’s time to live, from model measuring the 

effectiveness of objects’ cacheability. We proposed the use of Gamma Distribution Model 
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to capture an individual object’s change regularity and predict a more accurate future 

freshness period for the object.  

To demonstrate that our model can provide effective predictions, we presented our 

experimental architecture that offered the following benefits: ability to maximize content 

reusability, maximize accuracy to sent correct object to clients and minimum bandwidth 

requirement. Our experimental results, in comparison with origin servers’ rough settings 

and the Squid’s heuristic algorithm, demonstrates that our prediction algorithm 

significantly improves correctness in prediction of objects’ freshness periods, and directly 

benefit web caching.  

To summarize, we present the following specific contributions of this thesis below: 

• From the perspective of the caching proxy, our proposed Effective Cacheability (EC) 

mathematical model provides a measurement to measure the effectiveness of caching 

an object.  

• Still from the perspective of the caching proxy, we conducted a detailed study and 

monitoring experiment into analyzing the combinational effects of the many factors 

that affect the cacheability of an object, and to study the relationships between the 

individual factors. This study further emphasized the usefulness of having the 

Eeffective Cacheability (EC) mathematical model.  

• From the perspective of the origin server, our proposed Effective Content Delivery 

(ECD) model index can aid content providers in analyzing content settings when 

modifying the complexity and attractiveness of a website. We also conducted an 

experiment to demonstrate that the usefulness of the index. 
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• Since most current mechanisms to set the TTL of objects are either ad-hoc or too 

conservative, we proposed to take care of the changing life-span pattern of an object 

during the prediction process. This novel adaptive mechanism for accurate TTL 

estimation based on the concept of Two-Steps TTL Adaptation Model. These two 

steps are making use of existing two mathematical models, the Gamma Distribution 

Model and the Correlation Pattern Recognition Model. Our experiment demonstrated 

the feasibility and effectiveness of our algorithm, and the results reflected a significant 

improvement in the veracity of an object’s freshness period prediction, when 

compared with servers’ directives and the existing Squid heuristic algorithm. 

 

7.2 Future Work 

In this section, we present several directions for future work that are motivated 

from our work. 

• Exploit more benefits of our numeric measurement in aid of web caching research  

The experiment conducted for our proposed Effective Cacheability model has 

hinted on possible cache replacement research. The model can be used to determine 

what to cache in the cache, and when the cache is full, what to remove. Experiments 

can be performed to see whether the measurement can be an independent metric, or it 

can work with other metrics to enhance existing cache replacement policies. 

Meanwhile, experiments can be performed to investigate using the measurement in 

other web caching research areas, such as prefetching. 
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• Properly shorten regularity capturing period for a real-time prediction system  

We plan to implement our prediction algorithm into a real-time delivery system. 

That will result in our experiment architecture being modified to be more practical. 

The system should be implemented on the reverse proxy as an independent module, 

where it can aid the origin server in examining the content settings, and capture the 

historical behavior of objects.  

After our experiment proves that our algorithm is suitable for object change 

regularity prediction, we can shorten the regularity capture period, the learning object 

behavior stage, and pick up the best observation period to have effective prediction. 

For example, we observe that ebay change regularity is similar in every hour from 

Aug 12 to Aug 18: its time-to-live period is 1 minute in first minute of the hour, 

following is 9 minutes, following are all 10 minutes. Therefore 1 hour is the best 

learning period for ebay. It may be different among all objects. Our system should 

have automatic pick-up function. 

 

• Choose good detection period  

The adaptive monitoring period can be called upon to work in a suitable period for 

good detection of the behavior of objects. The period to detect whether our prediction 

result accords with actual situation is the same as its original learning period. Our 

simulation should have a memory function for every object. Since credibility of the 

object’s freshness is very important, the interval cannot be too long. But too short an 

interval may waste large amount of time on useless work. Therefore proper selection 
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on the rest interval is as important as the detection period. It should be one of 

emphasized function in the system.  

 

•  More detailed analysis on the factors that affect cacheability 

 The work in Section 4.2.5 can be furthered by using a more well-established 

Factor Analysis approach to analyze in detail the contributions of the various factors to 

the EC measure [53]. This will give clearer understanding of how each factor impacts 

the EC measure. 

 

• Further studies into the effectiveness of content delivery 

A more detailed approach to studying the effectiveness of content delivery may 

yield more specific and direct results that can be used by web server owners to 

improve upon their content. This includes performing more detailed analysis, or 

looking for better ways of measuring the effectiveness of content delivery. 

 

• Further comparisons between previous research on TTL versus Adaptive TTL 

Estimator 

Perhaps a suitable collection of TTL work representing some of the previous ideas 

should be considered and then comparisons of performance made between such work 

and tour adaptive TTL Estimation for efficient web content reuse. This can further 

prove that our TTL adaptation algorithm performs better than other previous TTL 

work. 
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Appendix 

Gamma Distribution 

Probability Density Function: 

The general formula for the probability density function (pdf) of the gamma 

distribution is 
)(
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where α is the shape parameter, µ is the location parameter, β is the scale 

parameter whose effect is to stretch out graph, is the gamma function which has the 

formula  
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The case where µ = 0 and β = 1 is called the standard gamma distribution. The 

equation for the standard gamma distribution reduces to  
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Since the general form of probability functions can be expressed in terms of the 

standard distribution, all subsequent formulas in this section are given for the standard 

form of the function.  

The following is the plot of the gamma probability density function.  
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