

CACHEABILITY STUDY FOR WEB CONTENT DELIVERY

ZHANG LUWEI

NATIONAL UNIVERSITY OF SINGAPORE
2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CACHEABILITY STUDY FOR WEB CONTENT DELIVERY

ZHANG LUWEI
(B.Eng & B.Mgt, JNU)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2003

Name: Zhang Luwei

Degree: M.Sc.

Dept: Computer Science

Thesis Title: Cacheability Study for Web Content Delivery

Abstract

In this thesis, our main objective is to assist forward proxies to provide better

content reusability and caching, as well as to enable reverse proxies to perform

content delivery optimization. In both cases, it is hoped that the latency of web object

retrieval can be improved through better reuse of content and the demand for

network bandwidth can be reduced. We achieve this objective through a deeper

understanding of the attributes for delivery. We analyze how objects’ content

settings affect the effectiveness of their cacheability from the perspectives of both the

caching proxy and the origin server. We also propose a solution, called the TTL

(Time-to-Live) Adaptation, to help origin servers to enhance the correctness of their

content settings through the effective prediction of objects’ TTL periods with respect

to time. From the performance evaluation of our TTL adaptation, we show that our

solution can effectively improve objects’ cacheability, thus resulting in more efficient

content delivery.

Keywords:
Proxy Servers, Effective Web Caching, Content Delivery Optimization, Time to Live
(TTL), TTL Adaptation

 i

Acknowledgement

In the entire pursuit of my Master degree, I have benefited greatly from my

supervisor, Dr Chi Chi Hung, for his guidance and invaluable support. His sharp

observations and creative thinking always provide me precious advice and ensure that I

am on the right track in my research. I am grateful for his patience, friendliness and

encouragement.

I sincerely thank Wang Hong Guang, for offering me lots of necessary assistance

in both research inspiration on how to write this thesis.

I am grateful to Henry Novianus, Palit, whose enthusiasm in research has inspired

me in many ways. He is always ready to help me, especially in the technical aspects of my

research.

I would also like to thank Yuan Junli, who enlightened me whenever I encountered

any problems in my research.

Special thanks also to my dear husband, Ng Wee Ngee, for giving me tremendous

support and brightening my life constantly.

Finally, I would like to express my sincere gratitude to my loving and encouraging

family.

 ii

Table of Contents

Acknowledgement ..i

Table of Contents ... ii

Summary...ix

Chapter 1 Introduction...1

1.1 Background and Motivation ...1

1.1.1 Benefits of cacheability quantification to caching proxy4

1.1.2 Benefits of cacheability quantification to origin server5

1.1.3 Incorrect settings of an object’s attributes for cacheability6

1.2 Measuring an Object’s Attributes on Cacheability...6

1.3 Proposed TTL-Adaptation Algorithm...8

1.4 Organization of the Thesis ..9

Chapter 2 Related Work ..12

2.1 Existing Research on Cacheability ...12

2.2 Current Study on TTL Estimation ..15

2.3 Conclusion ..18

Chapter 3 Content Settings’ Effect on Cacheability ..20

3.1 Request Method ..20

3.2 Response Status Codes ...21

3.3 HTTP Headers ..21

3.4 Proxy Preference...24

3.5 Conclusion ..25

 iii

Chapter 4 Effective Cacheability Measure ...26

4.1 Mathematical Model - E-Cacheability Index..26

4.1.1. Basic concept ..27

4.1.2. Availability_Ind ..29

4.1.3. Freshness_Ind ...31

4.1.4. Validation_Ind ..32

4.1.5. E-Cacheability index...33

4.1.6. Extended model and analysis for cacheable objects38

4.2 Experimental Result..40

4.2.1. EC distribution ..42

4.2.2. Distribution of change in content for cacheable objects44

4.2.3. Relationship between EC and content type for cacheable objects..............46

4.2.4. EC for cacheable objects acting as a hint to replacement policy................48

4.2.5. Description of factors influencing objects to be non-cacheable49

4.2.6. All factors distribution for non-cacheable objects51

4.2.7. Non-cacheable objects affected by combination of factors52

4.3 Conclusion ..55

Chapter 5 Effective Content Delivery Measure ...56

5.1 Proposed Effective Content Delivery (ECD) Model ..56

5.1.1. Cacheable objects..57

5.1.2. Non-cacheable object..59

• Non-cacheable secure objects ...59

• Non-cacheable objects directed explicitly by server ..60

 iv

• Non-cacheable objects based on the caching proxy preference..........................61

• Non-cacheable objects due to missing headers...62

5.1.3. Complete model and explanation..63

5.2 Result and Analysis of Real-time Monitoring Experiment.................................65

5.3 Conclusion ..68

Chapter 6 Adaptive TTL Estimation for Efficient Web Content Reuse................70

6.1 Problems Clarification ..70

6.2 Re-Validation with HTTP Response Code 304: Cheap or Expensive?.............74

6.3 Two-Steps TTL Adaptation Model...77

6.3.1 Content Creation and Modification ..78

6.3.2 Stochastic Predictability Process ..80

6.3.3 Correlation Pattern Recognition Model ..82

6.4 Experimental Result..85

6.4.1 Experimental Environment and Setup ..85

6.4.2 PDF Classification ..86

6.4.3 TTL Behavior Stage..88

6.4.4 TTL Prediction Stage..91

6.4.5 Result Analysis and Comparison with Existing Solutions97

6.5 Conclusion ..102

Chapter 7 Conclusion and Future Work ..103

7.1 Conclusion ..103

7.2 Future Work ..105

Bibliography ..108

 v

Appendix..114

Gamma Distribution..114

 vi

List of Tables

4.1 Terms and Their Relevant Header Fields…………………………………………35

4.2 Request Methods of Monitored Data………………………………………….....41

4.3 Distribution of Status Codes of Monitored Data………………………………….41

4.4 Object Status and the Corresponding EC Value versus their Percentage………...42

4.5 Legend for the Numbers Along Category X-axis in Figure 4.4 and Figure 4.5…..47

4.6 Main Factors that Make Objects to be Non-cacheable…………………………...50

5.1 Web Sites Used in Our Simulation……………………………………………….66

6.1 Percentages of Different Change Regularities …………………………………...87

6.2 Comparison from the Results of My Algorithm, Squid’s Algorithm and Server

Directives with the Actual Situation ……………………………………………101

 vii

List of Figures

4.1 EC Distribution of all Objects…………………………………………………….43

4.2 Every 5 Minutes Content Change (Monitoring for Objects with Original Cache

Period is 0)………………………………………………………………………..45

4.3 Every 4 Hours Content Change (Monitoring for Objects with Original Cache

Period is 4 hours)………………………………………………………………….45

4.4 Relationship Between EC and Object’s Content Type…………………………...46

4.5 Relationship Between EC per Byte and Object’s Content Type…………………46

4.6 Relationship Between EC and Object’s Access Frequency………………………48

4.7 All Factors Distribution…………………………………………………………...51

4.8 Single Factor……………………………………………………………………...54

4.9 Two Combinational Factors………………………………………………………54

4.10 Three or More Combinational Factors……………………………………………54

4.11 Relative Importance of Factors Contributing to Object Non-Cacheability……….55

5.1 Cacheable, Non-Cacheable Objects Taken-Up Percentage………………………66

5.2 Average ECD of Every Web Page………………………………………………..66

5.3 Cacheable Objects’ Average Server Directive Cached Period vs Real Changed

Period (10 subgrap)……………………………………………………………….67

5.4 Average chpb for Cacheable Objects in Every Web Page………………………..68

5.5 Average Change Percentage………………………………………………………68

5.6 Average Change Rate……………………………………………………………..68

6.1 Normalized Validation Time w.r.t. Retrieval Latency of Web Objects ………….75

 viii

6.2 Gamma and Actual PDFs for Content Change Regularity ………………………90

6.3 Gamma Distribution Curve from Aug 12 to Aug 18 vs Actual Probabilities

Distribution Line from Aug 19 to Aug 25……….………………………………..92

6.4 Re-learning the Change Regularity for (3) - whitehouse from Aug 19 to Aug

25………………………………………………………………………………….93

6.5 Probability Distribution with Daily Real Change Intervals …………………………...94

6.6 Probability Distribution with Weekly’s Real Change Intervals ………………….95

6.7 Learning Process for Capturing the Change Regularity from Sep 2 to Sept

8…………………………………………………………………………………...96

6.8 Predicted Result from Sep 9 to Sep 29 Based on Learning Result in Sep2 to Sep

8..………………………………………………………………………………….97

6.9 Comparison of our Prediction Results with Those from Actual Situation, Squid’s

Algorithm and Server Directives …………………………………………………98

 ix

Summary

In this thesis, our objectives are to enable forward proxies to provide effective

caching and better bandwidth utilization, as well as to enable reverse proxies to perform

content delivery optimization for the purpose of improving the latency of web object

retrieval. We achieve this objective through a deeper understanding of their attributes for

delivery. We analyze how objects’ content settings affect the effectiveness of their

cacheability from the perspectives of both the caching proxy and the origin server. We

also propose a solution, called the TTL (Time-to-Live) Adaptation, to help origin servers

to enhance the correctness of their content settings through the effective prediction of

objects’ TTL periods with respect to time. From the performance evaluation of our TTL

adaptation, we show that our solution can effectively improve objects’ cacheability, thus

resulting in more efficient content delivery.

We analyze the cacheability effectiveness of objects based on their content

modification traces and delivery attributes. We further model all the factors affecting the

object’s cacheability as numeric values in order to provide a quantitative measurement and

comparison. To ascertain the usefulness of these models, corresponding content

monitoring and tracing experiments are conducted. These experiments illustrate the

usefulness of our models in adjusting the policy of caching proxies, the design strategy of

origin servers, and stimulate new directions for research in web caching.

Based on the monitoring and tracing experiments, we found that most objects’

cacheability could be improved by proper settings of attributes related to content delivery

(especially in the predicted time-to-live (TTL) parameter). Currently, Squid, an open

source system for research, uses a heuristic policy to predict the TTL of accessed objects.

 x

However, Squid generates a lot of stale objects because its heuristic algorithm simply

relies on the object’s Last-Modified header field instead of predicting proper TTL based

on the object’s change behavior. Thus, we proposed our TTL adaptation algorithm to aid

origin servers in adjusting objects’ future TTLs with respect to time. Our algorithm is

based on the Correlation Pattern Recognition Model to monitor and predict more accurate

TTL for an object.

To demonstrate the potentials of our algorithm in providing accurate TTL

adjustment, we present the result from accurate TTL monitoring and tracing of real objects

on Internet. It shows the following benefits in terms of bandwidth requirement, content

reusability and retrieval accuracy in sending the most updated content to clients. Firstly, it

reduces a lot of unnecessary bandwidth usage, network traffic and server workload when

compared to the original content server’s conservative directives and Squid's TTL

estimation using its heuristic algorithm. Secondly, it provides more accurate TTL

prediction through the adjustment of objects’ individual change behavior. This minimizes

the possibility of stale objects’ generation when compared to the rough settings of origin

servers and Squid’s unitary heuristic algorithm. As a whole, our TTL adaptation algorithm

significantly improves the prediction correctness of an object’s TTL and this directly

benefits web caching.

 1

Chapter 1 Introduction

1.1 Background and Motivation

As the World Wide Web continues to grow in popularity, Internet has become one

of the most important data dissemination mechanisms for a wide range of applications. In

particular, web content, which is composed of basic components known as web objects

(such as html file, image objects, …, etc.) is an important channel for worldwide

communication between content provider and its potential clients. However, web clients

want the retrieved content to be the most up-to-date and, at the same time, with lesser

user-perceived latency and bandwidth usage. Therefore, optimizing web content delivery

though maximum, accurate content reuse, is an important issue in reducing the user-

perceived latency, while maintaining the attractiveness of the web content. (Note that

since this thesis focuses on the discussion of web objects, the rest of the thesis might often

refer web objects as objects, for simplicity reason.)

The control points along a typical network path are origin servers (where the

desired web content is located), intermediate proxy servers, and clients’ computer

systems. Optimization can either be in the form of optimizing the retrieval of objects from

the origin server, or be in the form of intermediate caching proxy. Caching proxy is

capable of maintaining local copy of responses received in the past, thus reducing the

waiting time of subsequent requests for these objects. However, due to the connectionless

of the web, cached local copy of the data might be outdated. Hence, it is the challenge to

content providers to design their delivery services such that both the freshness of the web

 2

content and lower user-perceived latency can be achieved. This is exactly what efficient

content delivery service would like to target.

Improving the service of web content delivery can be classified into two situations:

• For the first time delivery of web content to clients, or when cached web content in

proxy servers has become stale.

The requested objects will have to be retrieved directly from the origin servers.

Content design has major impact on the latency of this first time retrieval period.

Multimedia content and frequent content updating result in more attractive web

content. This is translated to embedded object retrieval and dynamically generated

content in content design.

Cumbersome multimedia is the main reason for the slowdown in content transfer.

Dynamically generated content adds extra workload to origin servers as well as

increases network traffic. It forces every request from clients to be delivered from

origin servers. Typically research topics for faster transfer of the required embedded

objects from origin servers include web data compression, parallel retrieval of objects

in the same web page, and the bundling of embedded objects in the same web page

into one single object for transfer [1].

• Subsequent requests for the same object.

Reusability of objects in a forward caching proxy that stores them during their first

time request can efficiently reduce user-perceived latency, server workload and

redundant network traffic. It is because the distance of content transfer in the network

can be shortened significantly. This area of work is called web caching. Substantial

research efforts in this area are currently ongoing [2], and large number of papers have

 3

shown significant improvement in web performance through the caching of web

objects [3,4,5,6,7,8]. Research also shows that 75% of web content can be cached, thus

further maximizing its reusability potentials. Web caching has generally been agreed

to play a major role in speeding up content delivery. Object’s cacheability determines

its reusability, which is defined by whether it is feasible to be stored in cache.

There are a lot of potentials in improving web content delivery through data reuse

rather than just relying on the reduction of web multimedia content for the first time

retrieval. This is an important task for caching proxy. Placing such proxy servers to cache

data in front of LANs can reduce the access latency of end-user and lessen the workload

of origin servers and network. Thus, bandwidth demand and latency bottlenecks are

shifted, from narrow link between end-users (clients) and content providers (origin

servers), to being between proxy caches and content providers [9]. With forward caching

proxy, this can greatly reduce clients’ waiting time for content downloading, through data

reuse. This will attract potential clients when competing with others in the same field.

Despite the success of current research in improving the transfer speed of web

content, their focuses are more on areas such as caching proxy architecture

[10][11][12][13], replacement policy, and consistency problem of data inside

[14][15][16][17][18]. Although there are research efforts that try to investigate the basic

question of object cacheability – how cacheable are the requested objects, they are more

towards the statistical analysis rather than to understand the reasons behind the

observations. Not much work is found on delving into an object’s attributes and

understanding the interacting effects that will optimize their positive influence on the

object’s reusability and contribute to the optimization of web content delivery. Hence, in-

depth understanding of an object’s attributes in terms of how each affects object

 4

reusability, and quantifying each effect using a mathematical model into practical

measurement, will directly benefit caching proxies and origin servers.

1.1.1 Benefits of cacheability quantification to caching proxy

From the view of a caching proxy, having a measurement that can quantify the

effect of object’s attributes on reusability can provide a more accurate estimate on the

effectiveness of caching a web object. This can help to fine-tune the management of

caching proxy, such as cache replacement policy, so as to optimize cache performance.

Furthermore, web information changes rapidly and outdated information might be

retrieved to clients if an object that is frequently updated is cached. Optimizing cache

performance using a good cache policy is a key effort to minimize traffic and server

workload, and at the same time, provide an acceptable service level to the users.

Therefore, quantitative model for object's cacheability is required which can reflect

individual factors affecting: (1) whether an object can be cached, and (2) how effective the

caching of this object is. This measurement should also be able to distinguish the

effectiveness of caching different objects, so as the replacement policy can pick the best

objects to be cached, and not blindly caching everything. By effectiveness, one implicit

requirement is that during the time an object is in cache, its content is “fresh” or “properly

validated without actual data transfer”. This is important because objects that have to be

re-cached frequently increase network traffic and user-perceived network latency. Also, if

the effectiveness of caching an object is too low, perhaps it should not be cached at all.

This is to avoid replacing objects with higher effectiveness by those of lower effectiveness

from cache. Analyzing the various factors that affect the effectiveness of caching an object

 5

is thus important. The name of this quantitative measurement used for caching proxy is

called E-Cacheability Index.

1.1.2 Benefits of cacheability quantification to origin server

From the view of an origin server, the measurement can give content provider a

reference to understand whether the content setting of their objects is effective for content

delivery and caching reuse. It also suggests how these settings should be adjusted so as to

increase the service competitiveness of their web content against other web sites in the

same field.

Web pages of similar content for the same targeted group of users normally

perform differently, with some being more popular, and some less popular. One of the

possible reasons for such a difference could be the way the content in a web page is

presented or being set. For example, dynamic objects aim to increase the attractiveness of

a web page, but typically at the expense of slowing down the access of the page.

Inappropriate freshness settings of an object will cause unnecessary validation by the

caching proxy with the origin server, thus increasing the client access latency and

bandwidth demand. Even worse, it is also possible for stale content to be delivered to

clients if the caching is too aggressive but not accurate.

Our quantitative measurement can aid content providers to gauge their web content

in terms of delivery, and in turn understand, tune and enhance the effective content

delivert. Our measurement for the origin server is called Effective Content Delivery Index

(ECD).

 6

1.1.3 Incorrect settings of an object’s attributes for cacheability

Research on content delivery reveals that for both caching proxy and origin server,

the most important attribute that affects an object’s cacheability is the correctness of its

freshness period, which is called time-to-live (TTL). This is one of the few most important

content settings that, if not properly set, will directly affect the reusability of an object.

Recent studies have also suggested that other content settings of an object, such as

the response header’s timestamp values or cache control directives, are often not set

carefully or accurately [19][20][21]. This affects the calculation of an object’s freshness

period and possibly results in a lot of unnecessary network traffic. In addition, such wrong

settings will potentially result in cache objects with fresh content to be requested

repeatedly from the origin server, thus increasing its workload.

We propose an algorithm in this thesis, TTL adaptation. It separately analyzes

different characteristics of an object, and in turn adjusts the parameters for TTL prediction

of web objects with respect to time. This algorithm is suitable to be implemented in the

content web server or reverse proxy.

1.2 Measuring an Object’s Attributes on Cacheability

Our measurement on effectiveness in terms of content delivery is based on the

modeling of all content settings of an object that affect its cacheability to obtain a numeric

value index. These factors can be grouped into three attributes: availability, freshness and

validation. They are briefly described below:

• Availability of an object is an action used to indicate if the object can possibly be

cached or not.

 7

• Freshness of an object is a period during which the content of the cached copy of an

object in proxy is valid (or the same as that in the original content server).

• Validation of an object is an action that indicates the probability of the staleness of an

object, using the frequency of the need to revalidate the object with the origin server as

a measure.

To the caching proxy, these three attributes of an object determine the object’s E-

Cacheability effectiveness measure – E-Cacheability Index. If the object is available to be

cached, the longer the period of freshness and the lower the frequency of re-validation will

result in a higher E-Cacheability Index value. The higher value of the E-Cacheability

Index indicates higher effectiveness to cache this object. The higher the effectiveness is,

the more useful it is to be cached in the caching proxy. On the other hand, objects with

low effectiveness value can give hints on reasons why certain content settings have

negative impact on the cacheability of an object. This will have impacts in other proxy

caching research areas such as replacement.

Thus the overall objective of the measurement used in the caching proxy, based on

the assumption of the correctness of all the content settings, is to provide an index to

describe the combinational effects of the content’s settings with regards to the

effectiveness of caching this content.

To the origin server, these three attributes of the object determine its effective

content distribution (ECD). However, its emphasis is different when compared to the

caching proxy. The measurement used in the origin server is based on the assumption that

the content settings of objects might be incorrect. And the purpose of ECD is to find ways

of adjusting these settings so as to increase the chance of reusability of content. This is

 8

achieved by helping content providers to understand whether the content settings of their

objects are effective for content delivery, and for cacheable objects, whether the freshness

period of an object in the cache is set correctly to avoid either stale data or over-demand

for server/network bandwidth.

For cacheable content, if validation always returns an un-changed copy of the

object, it will take up a lot of unnecessary bandwidth on the network. For non-cacheable

content, requests that retrieve the same unchanged copy of the content will also result in a

lot of unwanted traffic. Dynamic and secure content are just several examples of non-

cacheable content that return a lot of unchanged content. For instance, a secure page could

include many decorative fixed graphics that cannot be cached because they are on a secure

page.

The validation attributes are represented here as (1) change probability for

cacheable contents, (2) change rate, and (3) change percentage for non-cacheable contents.

1.3 Proposed TTL-Adaptation Algorithm

Research has shown that carelessness in the origin server can cause the freshness

content setting to be inaccurate. Too short a freshness period will generate lots of

unnecessary validation, which will waste a lot of bandwidth and lengthen user-perceived

latency. Cases of unnecessary validation (where the content validated is not changed) are

found to be about 90-95% out of all validation requests with origin servers on the network

[3]. Too long a freshness period will increase the possibility of providing outdated web

content to users, thus decreasing the credibility of web service.

 9

With the above consideration, we propose a TTL adaptation algorithm to adjust the

freshness setting for web content with respect to time. In our algorithm, we use the

traditional statistical technique, the Gamma Distribution Model, which was proven as a

suitable model for live-time distribution, to determine whether an object has any potential

to be predicted. And our algorithm uses the Correlation Pattern Recognition Model to

monitor and adjust the object’s future TTL accordingly.

The adaptation algorithm determines the object’s prediction potential by capturing

its change trends in the recent past period from the corresponding gamma distribution

curve that fits to its change intervals distribution in that period. And the correlation

coefficient, which is calculated between the recent past period and the near following

future period, will be monitored and used for the replacement of regularity. It predicts

TTL(s) in the near following period should be either similar to the one(s) in the recent past

period if the regularity is similar or adaptively changes the prediction value(s) if the

regularity is replaced. This continuous monitoring and adaptation enables the predicted

object’s TTL to be close to its actual TTL with respect to time. Thus it effectively

increases the correctness of an object’s freshness attribute, and in turn lessens the

possibility of unnecessary validation as well as the credibility of web services.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we outline related

research work on web object’s cacheability, i.e. investigating an object’s attributes related

to caching and their limitations. We also investigate several current possible solutions that

study an object’s TTL and briefly comment their pros and cons.

 10

In Chapter 3, we outline the factors in content settings that affect an object’s

cacheability according to HTTP1.1. A cache decides if a particular response is cacheable

by looking at different components of the request and response headers. In particular, it

examines all of the followings: the request method, the response status codes and relevant

request and response headers. In addition, because a cache can either be implemented in

the proxy or the user’s browser application, the proxy or browser preferences will also

affect an object’s cacheability to some extent. This thesis mainly focuses on the caching

proxy, so we discuss the proxy preference as the 4th factor in our model.

In Chapter 4, we will discuss the measurement of cacheability effectiveness from

the perspective of a caching proxy. We propose EC, a relative numerical index value

calculated from a formal mathematical model, to measure an object’s cacheability. Firstly,

our mathematical model determines whether an object is cacheable, based on the effects of

all factors that influence the cacheability of an object. Secondly, we expand the model to

further determine a relative numerical index to measure the effectiveness of caching a

cacheable object. Finally, we study the combinational effects of actual factors affecting an

object’s cacheability through monitoring and tracing experiments.

In Chapter 5, the measurement, Effective Content Delivery (ECD), is defined from

the origin server’s viewpoint. It aims to use a numeric form of measurement as an index to

help webmasters gauge their content and maximize content’s reusability. Our

measurement takes into account: (1) for a cacheable object, its appropriate freshness

period that allows it to be reused as much as possible for subsequent requests, (2) for a

non-cacheable dynamic object, the percentage of the object that is modified, and (3) for a

non-cacheable object with little or zero content modification, its non-cacheability is

defined only because of the lack of some server-hinted information. Monitoring and

 11

tracing experiments were conducted in this research on selected web pages to further

ascertain the usefulness of this model.

In Chapter 6, we propose our TTL adaptation algorithm to adjust an object’s future

TTL period. The algorithm first uses the Gamma Distribution Model to determine whether

the object has any potential for TTL prediction. Following that, the Correlation Pattern

Recognition Model is applied to decide how to predict/adjust the object’s future TTL. We

demonstrate the usefulness of our algorithm in terms of minimizing bandwidth usage,

maximizing content reusability, and maximizing accuracy of sending the most updated

content to clients through the monitoring of content modification in selected web pages.

We show that our TTL adaptation algorithm can significantly improve the prediction

accuracy of an object’s TTL.

In Chapter 7, we conclude the work we have done and present some ideas for

future work.

 12

Chapter 2 Related Work

In this chapter, we will outline related work to our research on web object’s

cacheability. The focus here is to study the influence of an object’s attributes to caching

and analyze their limitations. We also investigate some current solutions that study an

object’s time to live (TTL) and briefly comment on their pros and cons.

2.1 Existing Research on Cacheability

Research on Cacheability is focused on the conditions required for a web object to

be stored in a cache. Cacheability is an important concern for web caching systems as they

cannot exploit the temporal locality of objects that are deemed uncacheable. In general,

the determination of whether an object is cacheable is via multiple factors such as URL

heuristics, caching-related HTTP header fields and client cookies.

One of the earliest studies on web caching is the Harvest system [22], which

encountered difficulty in specifying uncacheable objects. It tried to solve this by scanning

the URL name to detect CGI scripts, and discarded large cacheable objects because of size

limitation. Their implementations were popular at the advent of the web [23].

Several trace based studies investigated the impacts of caching-related HTTP

headers on cacheability decisions. One of the earliest studies was performed by University

of California at Berkeley (UCB) in 1996 [24], in which they collected traces from their

Home IP service at UCB for 45 consecutive days (including 24 million HTTP requests).

They analyzed some of the header content settings with respect to caching, including

“Pragma: no-cache”, “Cache-Control”, “If- Modified-Since”, “Expires” and “Last-

 13

Modified”. They also analyzed the distribution of file type and size. However, they did not

look at all HTTP response status codes, and HTTP methods. They also did not discuss

cookies, which make an object non-cacheable in HTTP 1.1. Ignoring cookies, their results

showed that the uncacheable results were quire low, similarly for the CGI response.

Feldmann et al. noticed the biasness of the results from [24] and considered

cookies in their experiments [25]. They collected traces from both dialup modems to a

commercial ISP and clients on a fast research LAN. They obtained more statistics on the

reasons for uncacheability. These include whether a cookie was present, whether the URL

had a ’?’, and on header content such as Client Cache-Control, Neither GET nor HEAD,

Authorization present, Server Cache-Control. Their results showed that the uncacheable

results due to cookies could be up to 30%. Later studies on different traces [26][27]

showed that the overall rate of uncacheability was as high as 40%. However, they did not

look at all HTTP response status codes. They also did not mention the Last-Modified

header in the response, which is essential for browsers and caching proxies to verify an

object’s freshness.

Other research studies are based on active monitoring [28]. Investigations are

made on the cacheability of web objects after actively monitoring a set of web pages of

popular websites. The study obtained a low proportion of uncacheable objects ([24]), even

though cookies were included into the request headers in their experiment. The

explanation of the result was that most of web content that required cookies actually

returned the same content for following references if the cookies were set to the value of

the “Set-Cookie” header of the first reference. However, their requests did not consider

users’ actions, and thus it is possible that the following references after the first reference

may possibly cause different cookie value settings once users entered some information.

 14

Such content customizations could not be detected under their data collection method.

Their results also showed one important point in that dynamically generated web objects

may not always contain content modifications.

Another research paper [29] investigated even more details about object non-

cacheability such as dynamic URLs, non-cacheable HTTP methods, non-cacheable HTTP

response status codes, and non-cacheable HTTP response headers. It also tried to find out

the causes behind some of their observations, such as why the server does not put the

Last-modified header with the file. However, it did not group reasons into complete

entities and analyzed their combinational effects. Instead, it only focused on the discussion

for each individual reason separately.

The research papers discussed above only focused on non-cacheable objects. They

did not discuss on how cacheability affects cacheable objects, therefore not offering a

balanced view.

The research by Koskela [30] presented a model-based approach to web cache

optimization that predicts the cacheability value of an object using features extracted from

the object itself. In this aspect, it is similar to our work. The features he used include a

certain number of HTML tags existing in the document, header content such as Expires

and Last-modified, content length, document length and content type.

However, it was mentioned by Koskela that building the model requires vast

amount of data to be collected and estimating the parameters in the model can be a

computationally intensive task. In addition, even though Koskela delves into an object’s

attributes, his focus on web settings is relatively narrow, only on a few header fields. His

research is only valuable to the optimization of web caches, and those attributes he omits

can potentially aid content providers to optimize their web content for delivery.

 15

More complete analysis on content uncacheability can be found in [31][32]. [31]

concluded that main reasons resulting in uncacheability included responses from server

scripts, responses with cookies and responses without “Last-Modified” header. [32]

proposed a complex method to classify content cacheability using neural networking.

From previous studies on cacheability of content, it has been discovered that a

large portion of uncacheable objects are dynamically-generated or, have personalized

content. This observation implies then of the potential benefits of caching dynamic web

content.

2.2 Current Study on TTL Estimation

In traditional web caching, the reusability of a cached object is in proportion to its

TTL value. The maximum value of the TTL is the interval between caching time and the

next modification time. To improve on the reusability of a cached object, proxies are

expected to perform, as accurate as possible, estimations of the TTL value of each

cacheable object. Most of the rules of TTL estimation are derived from the statistical

measures of object modification modeling. Rate of change (also known as average object

lifespan) and time sequence of modification events for individual objects are the most

popular subjects in object dynamics characterization.

Research on web information system has shown that the change intervals of web

content can be predicted and localized. Several early studies investigated the characteristic

of content change patterns. Douglis’ [33] study on the rate of change of content in the web

was based on traces. He used the Last-modified header content to detect the changes in his

experiment. Investigations focused on the dependencies between the rate of change and

 16

other content characteristics, such as access rate, content type and size. Craig [34], on the

other hand, calculated the rate of change based on MD5 checksum. The research in [28]

monitored daily the content changes on a selected group of popular websites, and noticed

the change frequency of HTML objects tend to be higher in commercial sites than those in

education sites. Yet another research [35] discovered that, based on monitoring on a

weekly basis, web objects with a higher density of outgoing links to larger websites, tend

to have a higher rate of change. All of the experiments (including later efforts in [27] and

[36] confirming the results in [33]) showed that images and unpopular objects almost

never change. They also showed that HTML objects were more dynamic than images.

Time sequence of modification events for a web object is another focus in the

characterization of content dynamics. The lifespan of one version of an object is defined to

be the interval between its last modification and its next modification. Therefore, the

modification event sequence can also be viewed as the lifespan sequence. Research

conducted in [37] noticed that the lifespan of a web object is variable. The study in [38]

investigated the modification pattern of individual objects as a time series of lifespan

samples and then applied the moving average model to predict future modification events.

Both studies above pointed out that better modeling on object lifespan can improve TTL-

based cache consistency.

Since then, researchers have put in considerable effort on modeling the whole web

content because it is very important for information system to keep up with the growth

and changes in the web. Brewington [35] modeled the web change as a renewal process

based on two assumptions. One of the assumptions was that the change behavior of each

page is according to an independent Poisson process. The other assumption was that every

time a page renews its Poisson parameter, the parameter will follow a Weibull distribution

 17

across the whole population of web pages. He proposed an up-to-date measure for

indexing a large set of web objects. However, as his interest was to reduce the bandwidth

usage of web crawlers, the prediction of content change on individual objects, which is

what web caching research is interested in, was not addressed.

Cho [39] proposed several improved frequency estimators for web page based on a

simple estimator (number of detected changes/monitoring periods). Theoretical analysis

for the precision of each estimator was based on the assumption that the change behavior

of each page is according to an independent Poisson process. She also compared the

accuracy of each estimator using data from both simulation and real monitoring. In his

simulation, he generated synthetic samples from a series of gamma distributions and

compared the effectiveness of multiple estimators. She pointed out that the purpose to

choose a series of gamma distributions instead of exponential distributions was to consider

the performance of each estimator under a “not quite Poisson” distribution for the page

change occurrence. Both of them observed the change daily because they were interested

in the update time of a web information system. It is a limitation to the study, as such a

large time interval is too long to capture the essential modification patterns of web content

for caching.

Squid [40], as an open source system for research, uses a heuristic policy known as

the last-modified factor (LM-factor) [41] to predict every accessed object’s TTL. The

algorithm is based on the traditional caching standpoint that most of the objects are static,

which means changes in older objects do not occur quickly. Therefore, its principle is that

young objects are more likely to be changed soon because they have been created or

changed recently. Similarly, old objects that have not been changed for a long time are

less likely to be changed soon.

 18

From the studies above, one common observation is that different objects have

different patterns of modification. In the traditional TTL-based web-caching, accurate

predictions is necessary to avoid redundant revalidations of objects whose next

modification time has not arrived yet. However, it is more and more evident that current

modification prediction heuristics cannot achieve acceptable levels of accuracy for web

objects, all of which have different modification patterns. For instance, our real-life

experience revealed that, contrary to the LM-factor algorithm, the longer the object does

not change, the greater the possibility for it to change. Thus Squid either generates a lot of

stale objects or causes unnecessary revalidation of object freshness.

The rate of change in today’s web objects is very rapid, which inspires us to

change the standpoint from the static perspective of an object to the dynamic perspective.

In order to improve the above situation, there is a need to analyze individual object’s

change behavior separately and predict unique TTL for different objects according to each

object’s individual changing trend. Furthermore, to be as close to the actual TTL as

possible, the prediction parameters should be continuously monitored and adaptively

changed if required. Thus it is necessary to propose this kind of adaptive prediction

algorithm – our TTL adaptation algorithm. Our algorithm is suitable to be implemented

either in the reverse proxy or in the origin content server.

2.3 Conclusion

Previous research has focused on the statistical analysis on an object’s attributes

related to cacheability. Compared with our object’s cacheability measurement, most of

them do not delve into all attributes of an object attributes with regards to cacheability.

 19

They discussed individual attributes separately, and have not studied the combinational

effects of relevant attributes. They also only focused on non-cacheable objects and did not

study how cacheability affects cacheable objects.

Except for Squid’s LM-factor algorithm, existing studies on the object’s Time-To-

Live (TTL) mainly focus on getting an object’s change frequency distribution for further

web caching research. They did not use their distribution result to predict the value of

object’s future TTL. Compared with our algorithm that adjusts individual object’s TTL

based on the change of its own character, Squid’s algorithm uses heuristic method to

estimate that all objects that have not changed for a long time must have long future TTL

and all recently changed objects must have short or zero future TTL. This argument, as we

have shown in the later part of the thesis, might not hold.

 20

Chapter 3 Content Settings’ Effect on Cacheability

In this chapter, we outline the factors in content settings that affect an object’s

cacheability according to HTTP1.1[42]. A cache decides if a particular response is

cacheable by looking at different components of the request and response headers. In

particular, it examines all of the followings: (1) request method, (2) response status codes,

and (3) relevant request and response headers. In addition, because a cache can either be

implemented in the proxy or the user’s browser application, the proxy or browser

preferences will also affect an object’s cacheability to some extent. This thesis mainly

focuses on the caching proxy, so we discuss the proxy preferences as the 4th additional

group of factors besides the three listed above.

3.1 Request Method

Request methods are significant factors to determine cacheability; they include

GET, HEAD, POST, PUT, DELETE, OPTION and TRACE. Of these, there are only

three kinds of methods that have potentially cacheable response contents: GET, HEAD,

and POST. GET is the most popular request method, and responses to GET requests are

by default cacheable. HEAD and POST methods are rare. The former response messages

do not include bodies, so there is really nothing to cache, except using the response

headers to update a previously cached response’s metadata. The latter is cacheable only if

the response includes an expiration time or one of the Cache-Control directives that

overrides the default.

 21

3.2 Response Status Codes

One of the most important factors in determining cacheability is the HTTP server

response code. The three-digit status code, whose first digit value ranges from 1 to 5,

indicates whether the request is successful or if some kind of errors occurs. Generally,

they are divided into three categories: cacheable, negatively cacheable and non-cacheable.

In particular, negatively cacheable means that, for a short amount of time, caching proxy

can send the cached result (only the status code and header) to the client without fetching

it from the origin server.

The most common status code is 200 (OK), which means that the request is

successfully processed. The relevant response from this request is cacheable by default

and there is a body attached. 203 (Non-Authoritative Information), 206 (Partial Content),

300 (Multiple Choices), 301(Moved Permanently), and 410 (Gone) are also cacheable.

However, except for 206, they are only announcements without body.

204 (No Content), 305 (Use Proxy), 400 (Bad Request), 403 (Forbidden), 404 (Not

Found), 405 (Method Not Allowed), 414 (Request-URI Too Long), 500 (Internal Server

Error), 502 (Bad Gateway), 503 (Service Unavailable), 504 (Gateway Timeout) are

negatively cacheable status codes.

3.3 HTTP Headers

It is not sufficient to use only the request method and response code to determine if

a response is cacheable or not. The final cacheability decision should be determined

together with the directives in HTTP headers, to show the combinational effects on an

object’s cacheability.

 22

Although the directives in both request and response headers affect an object’s

cacheability, our discussion in this section focuses only on the directives that appear in a

response. With one exceptional request directive (“Cache-control: no-store” in request)

that we will discuss below, request directives don’t affect object cacheability.

• Cache-control

It is used to instruct caches how to handle requests and responses. Its value is one or

more directive keywords that we will mention later. This directive can override the

default of most status codes and request methods when determining cacheability.

There are several keywords as detailed below:

− “Cache-control: no-store” directive keyword, appearing either in request or

response, is a relatively strong keyword to cause any response to become non-

cacheable. It is a way for content providers to decrease the probability that

sensitive information is inadvertently discovered or made public.

− “Cache-control: no-cache” and “Pragma: no-cache” don’t affect whether a

response is available to be cached or not. It instructs that the response can be

stored but may not be reused without validation. In other words, a cache should

validate the response for every request if the content of the request has been

cached. The latter is the backward compatibility with HTTP1.0. Both HTTP

versions have the same meaning for this.

− “Cache-control: private” makes a response to be non-cacheable for a share

cache, like caching proxy, but cacheable for a nonshared cache, such as browser.

It is useful if the response contains content customized for just one person, thus

the origin server can use it to track individuals.

 23

− “Cache-control: public” makes a response to be cacheable by all caches.

− “Cache-control: max-age” and “Cache-control: s-maxage” directives hint the

object is cacheable. They are alternate ways to specify the expiration time of an

object. Furthermore, they have the first priority over all other expiration

directives. The slight difference is that the latter only applies to shared caches.

− “Cache-control: must-revalidate” and “Cache-control: proxy-revalidate” hint

the object is cacheable. They force the response to do validation when expired.

Similarly, the latter only applies to shared caches.

• “Last-Modified”

It makes a response cacheable for a caching proxy that uses the LM factor to

calculate an object’s freshness period, such as that in Squid. And it is one of the

most important headers to be used for validation.

• “Etag”

It doesn’t affect whether a response is available to be cached. But if other factors

cause an object to be cached, the header hints that the cache should perform

validation on the object after its expiration time.

• “Expires”

It indicates that a response is cacheable. It specifies the expiration time of an object.

However, its priority is lower than those of “Cache-control: max-age” and “Cache-

control: s-maxage”.

• “Set-cookie”

It indicates that the response is non-cacheable. A cookie is a device that allows an

origin server to maintain session information for an individual user among his

 24

requests [43]. However, if it is placed in “Cache-control: no-cache = Set-cookie”, it

only means that this header may not be cached but this will not affect the whole

object’s cacheability.

3.4 Proxy Preference

A cache is implemented in the caching proxy, so proxy preference also determines

an object’s cacheability. In this thesis, we will use the Squid proxy as an example for

caching proxy because it is the open proxy system for research purposes and is the world's

most popular caching proxy being deployed today. For Squid, except for the protocol’s

rules discussed above, its preferences that determine a response to be non-cacheable

(when the request method is GET and response code is 200) include:

• ‘Miss public when request includes authorization’

It means that without “Cache-control: public”, response directive including “WWW-

Authenticate” means that the server can determine who is allowed to access its

resources. Since a caching proxy does not know which users are authorized, it

cannot give out invalidated hints. So caching it may be meaningless.

• “Vary”

It is used to list a set of request headers that should be used to select the appropriate

variant from a cached set [44]. It determines which resource the server returns in its

response. Squid still has not implement it yet, and this makes an object to be non-

cacheable.

• “Content-type: type-multipart /x-mixed-replaced”

 25

It is used for continuous push replies, which are generally dynamic and probably

should be non-cacheable.

• “Content-Length > 1Mbytes”

It indicates that it is less valuable to cache a response with large body size because

such an object occupies too much space in the cache, and may result in more useful

smaller objects being replaced from cache.

• “From peer proxy, without Date, Last-Modified and Expires”

It seems non-beneficial to cache a reply from peer without any Date information,

since it cannot be judge whether the object should be forwarded or not.

3.5 Conclusion

Whether an object can be cached in an intermediate proxy is determined by its

cacheability content settings. These settings include request method, response status codes

and its relevant headers. Proxy preference also plays an important role in deciding

cacheability. According to all these factors, we will propose two measurement models in

Chapter 4 and Chapter 5 to measure how effective an object’s content settings on

cacheability is, from the aspect of the caching proxy and the origin server respectively.

 26

Chapter 4 Effective Cacheability Measure

In this chapter, we will discuss our effective measurement from the perspective of

the caching proxy. We propose Effective Cacheability measure, also call E-Cacheability

Index, a relative numerical measurement calculated from a formal mathematical model, to

measure an object’s cacheability quantitatively. In particular, the followings will be

discussed:

• the cacheability of information that passes through a proxy cache,

• define an objective, quantitative measure and its associated model to quantify

the cacheability potentials of web objects from the view point of a proxy cache,

• evaluate the importance of cacheability meansure to its deployment in proxy

cache. The larger the value is, the higher will be the potential for an object to

be kept in proxy cache for possible reuse without contacting the original server,

and

• evaluate different factors affecting the cacheability of web objects.

4.1 Mathematical Model - E-Cacheability Index

The final decision on the cacheability of an object is actually made in the caching

proxies. Apart from obeying the HTTP protocol’s directives, caching proxies also have

their own preferences to determine whether they should cache the object according to their

own architecture and policies. In other words, even though a response is cacheable by

protocol rules, a cache might choose not to store it.

 27

Many caching proxy software include heuristics and rules that are defined by the

administrator to avoid caching certain responses. As such, caching some objects is more

valuable than caching others. An object that gets requests frequently (and results in higher

cache hits) is more valuable than an object that is requested only once. If the cache can

identify non-frequently used responses, it will save resources and increase performance by

not caching them.

Thus, to better understand an object’s cacheability, we should first analyze the

combinational effects of relevant content settings on the effectiveness of caching an

object. For this purpose, our method employs an index, called the E-Cacheability Index

(Effective Cacheability Index), which is a relative numerical value derived from our

proposed formal mathematical model of object cacheability. This E-Cacheability Index is

based on its three properties – object availability to be cached, its freshness and its

validation value.

4.1.1. Basic concept

From basic proxy concept, we understand that three attributes determine an

object’s E-Cacheability Index. They are object availability to be cached, data freshness

and validation frequency. Their relationship is shown in the equation below.

E-Cacheability Index = Availability_Ind * (Freshness_Ind + Validation_Ind) (4.1)

Unlike normal study on object cacheability, which just determines if an object can

be cached), E-Cacheability Index goes one step further. It also measures the effectiveness

 28

of caching an object by studying the combinational effect of the three factors of caching

availability, data freshness, and validation frequency.

In the equation above, the Availability_Ind of an object is used to indicate if the

object is available for caching or not. If the object is not available, the E-Cacheability

Index of the object is zero. Thus, all non-cacheable objects have an E-Cacheability Index

of zero, and under this case, the meaning of the other terms (Freshness_Ind and

Validation_Ind) is undefined. Hence, Availability_Ind is in the most dominant position in

our measurement.

After the indication of whether the object is cacheable from the Availability_Ind

attribute, the Freshness_Ind and Validation_Ind attributes are then important to measure

how effective the caching of this object is.

Freshness_Ind is a period that indicates the duration of the data freshness of the

object, and Validation_Ind is an index that indicates the probability of the staleness of an

object, using the frequency of the need to revalidate the object.

It seems at the first glance that the validation effect should be included in the

freshness definition. However, we separate these two factors because not all objects need

to perform validation after its freshness period. For example, an object that has no

validation header directives, such as “Last-Modified”, “Etag”, “Cache-Control: must-

revalidate” will be evicted from the caching proxy. In addition, the caching proxy has a

maximum cache period. So, even if an object has no validation information, it will be

evicted.

Thus, the E-Cacheability Index is defined by these two attributes once an object is

determined to be available for caching. The longer the period of data freshness and the

lower the frequency of re-validation result in a higher E-Cacheability Index. Larger value

 29

of the E-Cacheability Index indicates higher potentials to cache this object. The higher the

effectiveness, the more useful the object is in this aspect of consideration to be cached in

the proxy.

Furthermore, for objects with smaller E-Cacheability Index, detailed analysis can

give hints on which content settings have larger influence on the effective cacheability of

an object. This can help to optimize the content settings for better caching.

In Equation (4.1), the “*” operator is used to handle the situation when an object is

non-cacheable. As being seen in later sections, it will enforce the resulting index to be

zero for non-cacheable objects. The “+” operator is used to separate the two situations of

reusing the cached content by shifting the index to two exclusive regions – the region of

negative values to indicate the need for revalidation each time an object is used, and the

region of value greater than or equal to one to give a quantitative measure of the caching

effectiveness.

In the next section, we will describe, based on the actual request methods, response

codes, header fields, and proxy preferences that were discussed in Chapter 3, the detailed

composition of each term in the equation above. We will use I in the equations to indicate

request information, and O to indicate response information.

4.1.2. Availability_Ind

In this section we will discuss in detail on the term Availability_Ind in Equation

(4.1). This term is defined as the overall composition of all factors that will possibly affect

the caching availability of an object. The possible value of this term is 0 (non-cacheable)

or 1 (cacheable).

The Availability_Ind of an object to be cached is dependent on several factors:

 30

• The request method must be a method that allows its response to be cached.

• The status code of the response must be one that indicates that the object is

cacheable.

• All header fields within the response that influence the availability of the

object to be cached are considered.

• Proxy preferences within the response that influence the availability of the

object to be cached are considered.

• If the relevant header fields in the request exist, it will mean that the object is

cacheable and the response should act according to these information.

The Availability_Ind equation to consider all the above factors is shown below:

 Availability_Ind = IRM(A) *OSC(A) * OHD(A) * Opp(A) * IHD(A) (4.2)

where IRM(A) refers to the request method sent, OSC(A) refers to the response code

related to object availability, OHD(A) refers to the header fields in the response that

influence the availability of cacheability of the object, Opp(A) refers to the proxy preference

in the response, and IHD(A) refers to the relevant header fields that influence availability in

the request. The value of Availability_Ind is either zero (non-cacheable) or one

(cacheable).

Equation (4.2) uses the associative operator (*), signifying that an object is non-

cacheable (not available for caching) if there exists at least one factor that suggests the

non-availability of the object in cache.

 31

4.1.3. Freshness_Ind

The term Freshness_Ind in Equation (4.1) is defined as the overall composition of

all factors that will possibly affect the data freshness of an object. The possible value of

this term is zero for non-cacheable object to value greater than zero for cacheable objects.

The Freshness_Ind of an object can be determined by several factors:

• The request method must be one that allows its response to be cached.

• The status code of the response must be one that indicates that the object is

cacheable.

• The header fields in the response that influences the freshness of an object will

determine the freshness period of an object

The Freshness_Ind equation that considers all the above factors is shown below:

Freshness_Ind = IRM(F) *OSC(F) * OHD(F) (4.3)

where IRM(F) refers to the request method sent, OSC(F) refers to the response code

related to data freshness, and OHD(F) refers to the relevant header fields that influence the

data freshness in the response.

Equation (4.3) associative operator (*) indicates that a non-cacheable response will

result in the entire equation to be zero (IRM(F) and OSC(F)). Otherwise, the Freshness_Ind

value of the object will be determined by the relevant header fields in the response

(OHD(F)).

 32

4.1.4. Validation_Ind

The term Validation_Ind in Equation (4.1) is defined as the overall composition of

all factors that will possibly affect how valuable an object is in terms of its validation

requirement. The possible values of this term is 0 (non-cacheable), -1 (if object must be

revalidated each time even though it is cacheable), and greater than 1 (if object is

cacheable).

The Validation_Ind of an object is determined by various factors:

• The request method must be one that allows its response to be cached.

• The status code of the response must be one that indicates that the object is

cacheable.

• There are 3 terms to determine the length of the validity of an object:

• All header fields in the request that influence the validity of an object.

• All header fields in the response that influence the validity of an object.

• All proxy preferences in the response that influence the validity of an

object.

The Validation_Ind equation that considers all the above factors is shown below:

Validation_Ind = IRM(V) * OSC(V) * OR_val-op (IHD(V), Ipp(V), OHD(V)) (4.4)

where IRM(V) refers to the request method, OSC(V) refers to the status code, IHD(V)

refers to the relevant header fields in the request that influence validation, OHD(V) refers to

the relevant header fields in the response that influence validation, and Ipp(V) refers to the

 33

proxy preferences in the request that influence validation. For function OR_val-op (a1, …

an), where ai � {-1, 0, 1}, its value is as follows:

 -1 there exists at least one ai with value -1

OR_val-op(a1, … an) = 1 there exists at least one ai with value 1 and no ai with value

 -1

 0 all ai with value 0

Equation (4.4) indicates that a non-cacheable response will result in the equation

being zero (IRM(V), OSC(V)). Otherwise, the value in the equation will either be 1 or -1

depending on the input parameters of the OR_val-op operator.

4.1.5. E-Cacheability index

Based on Equation (4.1), substituting the terms of all factor equations in (4.2),

(4.3) and (4.4) into the equation, we have (in the rest of the chapter, we will use “EC” to

shorten “E-Cacheability Index”):

EC = IRM(A) *OSC(A) *OHD(A) *Opp(A) * IHD(A) * (IRM(F) *OSC(F) * OHD(F) +

IRM(V) *OSC(V) * OR_val-op (IHD(V), Ipp(V), OHD(V)))

Since the request term in Availability_Ind, Freshness_Ind and Validation_Ind

equations must be the same and is defined for the same object, let IRM(A) = IRM(F) = IRM(V) =

IRM. Following the same argument, the status code of the response is the same response

since all three factors are defined for the same object. Hence, let OSC(A) = OSC(F) = OSC(V) =

OSC. Then,

 34

EC = IRM * OSC * OHD(A) * Opp(A) * IHD(A) * (IRM * OSC * OHD(F) +

 IRM * OSC * OR_val-op (IHD(V), Ipp(V), OHD(V)))

 = IRM
2 * OSC

2 * OHD(A) * Opp(A) * IHD(A) * (OHD(F) + OR_val-op(IHD(V), Ipp(V), OHD(V))) (4.5)

The value of IRM and OSC can be easily determined:

IRM = 1 , if method is GET, POST or HEAD

 0 , otherwise

OSC = 1 , if status code is 200, 203, 206, 300, 301, 410

 0 , otherwise

Given the values of IRM and OSC above, Equation (4.5) can be simplified as:

EC = IRM *OSC * OHD(A) * Opp(A) * IHD(A) * (OHD(F) + OR_val-op (IHD(V), Ipp(V), OHD(V))) (4.6)

Equation (4.6) is the final mathematical formula to compute the effectiveness of

caching an object. For the remaining terms, their corresponding header fields and proxy

preferences, together with the value for each field and preference indicating their

existence, are grouped in Table 4.1 below (we use groups C1-C7 to represent each of these

terms). We use)(jix to represent their values, and their details will be discussed. (i

represents factor C1-C7, j represents the sub-term (either a header field or a proxy

preference)).

 35

Term in
Equation Relevant Header Fields/ Proxy Preferences Existent

Factor
Non-
exist

C1:
OHD(A)

(1) Set-cookie
(2) Cache-Control: private
(3) Cache-Control: no-store

0
0
0

1
1
1

C2: Opp(A)

(1) Miss public when request includes Authorization
(2) Vary
(3) Content-Type: multipart/x-mixed-replace
(4) Content-Length = 0
(5) Content-Length >1Mbytes
(6) From peer proxy, without Date, Last-Modified and

Expires

0
0
0
0
0
0

1
1
1
1
1
1

C3: IHD(A) Cache-Control: no-store 0 1

C4:
OHD(F)

(1) Cache-control: max-age
(2) Expires
(3) Last-Modified (LM-Factor (an algorithm))

where priority of (1) > (2) > (3)

Seconds
Seconds
Seconds

0
0
0

C5: IHD(V) (1) Cache-Control: must-revalidate or Cache-Control:
proxy-revalidate

-1

0

C6:
OHD(V)

(1) Cache-Control: no-cache, Pragma: no-cache
(2) Cache-Control: must-revalidate or Cache-Control:

proxy-revalidate
(3) Last-Modified

-1
-1

1

0
0

0

Table 4.1 Terms and Their Relevant Header Fields

From Table 4.1, according to HTTP 1.1 (C1 represents OHD(A), C3 represents

IHD(F)) and Squid proxy preference (C2 represents Opp(A)), the existence of any of the

header fields of C1, C2 and C3, would cause the response object to be non-cacheable.

Thus, we propose the value to C1, C2 and C3)(jix
 as 1 if it exists in the header of the

object, or 0 if it does not exist. The Availability_Ind is defined as follows:

 C1 * C2 * C3 =∏
=

3

1

C

Ci
ix

= xC1(1) * xC1(2) * xC1(3) * xC2(1) * xC2(2) * xC2(3) * xC2(4) * xC2(5) * xC2(6) * xC3(1)

 36

Only after the determination of IRM, OSC, and OHD(A) will the Freshness_Ind and the

Validation_Ind be computed to obtain the effective cacheability measure of the object.

The freshness information is obtainable through any of C4(1) or C4(2) or C4(3).

The unit of measure is delta-second (but notice that any value will do) and the value is

obtained according to the calculation method of TTL (Time to Live) in rfc2616.

Meanwhile, according to rfc 2616, the existence of C4(1) will override both C4(2) and

C4(3), and the existence of C4(2) will override C4(3). Using)1(4Cx ,)2(4Cx and)3(4Cx to

represent C4(1), C4(2) and C4(3), the Freshness_Ind is defined by the value of the

OR_fresh_op function:

)1(4Cx (if)1(4Cx exists)

OR_fresh-op()1(4Cx ,)2(4Cx ,)3(4Cx) =)2(4Cx (if)1(4Cx does not exist)

)3(4Cx (if both)1(4Cx and)2(4Cx do not exit)

Similarly, we use)(jix to represent the validation-related header fields in C5 and

C6. The existence of C5(1) is indicated with -1, and is 0 otherwise. Such case is for C6(1)

and C6(2). The reason to include the case of value being -1 is that according to rfc2616,

the cache MUST perform validation each time a subsequent request for this object arrives,

even if there is other freshness information. For term C6(3), its value is 1 if it exists and is

0 otherwise. Therefore, the Validation_Ind is given as follows:

 -1 one of)2(7)1(7)1(5 ,, CCC xxx exists

OR_val-op()3(6)2(6)1(6)1(5 ,,, CCCC xxxx)

 0 none of validation-related header exists

= 1)2(7)1(7)1(5 ,, CCC xxx not exist,)3(6Cx exists

 37

Since the existence of C5(1), C6(1) and C6(2) will override all other header fields

that might exist at the same time, the formula “Freshness_Ind + Validation_Ind” will be

given as follows:

),,,(_),,(_)3(6)2(6)1(6)1(5)3(4)2(4)1(4 CCCCCCC xxxxopvalORxxxopfreshOR −+−

=),,,(_)3(6)2(6)1(6)1(5 CCCC xxxxopvalOR − if one of)2(7)1(7)1(5 ,, CCC xxx exists

= 1),,(_)3(4)2(4)1(4 +− CCC xxxopfreshOR if none of)2(7)1(7)1(5 ,, CCC xxx exists,

 while)3(6Cx exists

Finally, our mathematical model will be represented as follows:

EC =)__(*
3

1

opvalORopfreshORx
C

Ci
i −+−∏

=

 = xC1(1) * xC1(2) * xC1(3) * xC2(1) * xC2(2) * xC2(3) * xC2(4) * xC2(5) * xC2(6) * xC3(1)

)),,,(_),,(_(*)3(6)2(6)1(6)1(5)3(4)2(4)1(4 CCCCCCC xxxxopvalORxxxopfreshOR −+−

From the analysis above, we can deduce that the possible values of E-Cacheability

Index is as follows:

 0 non-cacheable

EC = -1 cacheable, but should validate in every request

 ≥ 1 cacheable

When EC = 0, it is non-cacheable.

When EC = -1, it is cacheable, according to HTTP1.1. However, since the object

has to be validated every time it is requested, and it may have insufficient freshness or

 38

validation information, the benefit of caching it will not be much. Many caching proxies,

such as Squid, treat this kind of objects as non-cacheable. In our experiment, we will

discuss this in the non-cacheable section, in accordance with the Squid’s preference.

For EC ≥ 1, EC = 1 means that the freshness period of the object is 0, which results

in the need for revalidation each time a request for the object arrives at the caching proxy.

However it is different from EC = -1 because of the sufficient information for validation.

The larger EC is, the longer will be the period that the object can be cached, until it finally

expires.

4.1.6. Extended model and analysis for cacheable objects

After the E-Cacheability Index classifies an object to be cacheable, we can further

analyze the condition of EC ≥ 1.

An object that is expired does not mean that it is useless for caching. If it has

validation information, this might be able to lengthen its stay in cache by re-calculating its

freshness period one more time. And this can potentially lead to more effective caching. In

other words, an object with shorter freshness period in the first retrieval doesn’t mean that

it will be less effectively cached than an object with longer freshness period in the first

retrieval. According to the model discussed in Section 4.1.5, if the value EC ≥ 1, we can

perform more precise calculation to further measure its relative EC. Here we will propose

an extended mathematical model to obtain the value for such cases. It is very useful

especially when the validation equation (mentioned in Section 4.1.5) is equal to 1.

From the model analyzed in Section 4.1.5, we have already classified objects as

cacheable or non-cacheable. For objects with EC ≥ 1, their E-Cacheability Index can be

further considered as the benefit gained from caching over the cost of caching them.

 39

Benefit and cost are defined separately by both the first retrieval effect and the

revalidation effect. So the E-Cacheability Index can be re-defined as follows:

�

�
∞

=

∞

=

+

−+
==

1

1
0

*

]*)(*)[(*

cos

n

n
vr

n

n
vrnr

pTT

pTTtTtw

t
benefit

EC (4.7)

w --- the weight of the object retrieval latency. If two objects’ information are the same

except that they have different object retrieval latencies, it is obvious that the longer

the latency, the larger is its effective cacheability. Since the object retrieval latency

value takes an important part of EC, it can be assigned to: rTw = .

t0 --- the cache time indicated by server after the first retrieval.

Tr --- the retrieval time spent on transfer. It is usually greater than the validation transfer

time without content.

tn --- the caching time after revalidation

Tv --- the validation time spent on transfer

p --- the probability for the content to be unchanged. In other words, the validation result

is “304---Not modified”.

n --- validation times

Assuming that t1=t2=…=tn=t and because �
∞

= −
=

1 1n

n

p
p

p , Formula (4.7) can be simplified

to:

p
p

TT

T
p

p
TTtTt

EC

vr

rvrr

−
+

−
−+

=

1
*

)
1

)((0

 (4.8)

 40

Here we use an example to illustrate the model clearly. Given two objects. Object

A has no validation information, whereas object B has validation information. Their

retrieval time is the same at 60 seconds. Object A can be cached for 2 hours before

expiring. Object B can be cached for 1.5 hours, and after a 10 seconds validation delay, it

can be cached for another 1.5 hours and then its content will be changed. We deduce that

the probability of content of A being unchanged at its origin is 0, while the probability for

that of B is 0.5.

Using the model, we can obtain the relative value: ECA = 432,000 and ECB =

509,142.86. This case demonstrates that validation may aid an object with a shorter

cached period in its first retrieval time to be more effectively cached than an object that

has no validation information but has a longer cached period in its first retrieval time.

4.2 Experimental Result

In this section, we performed trace simulation and analyzed objects’ effective

cacheability using the E-Cacheability Index (Equation (4.6) and Equation (4.7)) as given

in Section 4.1.5 and Section 4.1.6. We obtained the raw trace data from National

Laboratory for Applied Network Research (NLANR) [45]. We picked one day’s sv trace

(Oct, 17, 2001) that contains 86,718 total requests and 4.88 MB of data. We also modified

Squid to record header information of HTTP requests that can be used as the input to our

model. Then we repeated these 86,718 requests through the modified Squid and the

corresponding information was recorded.

After we got the trace result, we first classified the objects’ cacheability. Next, we

proceeded to analyze the factors contributing to objects being classified as non-cacheable

 41

or cacheable according to our mathematical model in Section 4.6. Finally, for objects that

are classified as cacheable, we perform further analysis using our model in Section 4.7.

The result of the various request methods that are from IRM of our model is shown

in Table 4.2. The table shows that the GET request method is used much more frequently

(99.83% of all request methods) than all other request methods.

Method GET POST HEAD
Percentage 99.83% 1.32% 0.32%

Table 4.2 Request Methods of Monitored Data

Of all requests that use the GET method, 93.78% of the replies return the status

code 200 (Through the trace, 86.21% of these replies with status code 200 are cacheable,

while the remaining 13.79% are non-cacheable). The distribution of status codes of replies

of the GET method, as represented by OSC, can be seen below in Table 4.3:

Status Code Percentage
200 OK 93.78%
Other codes:
203 Non-Authoritative Information, 300 Multiple Choices,
301 Moved Permanently, 410 Gone

0.46%

Non-cacheable codes:
303 See Other, 304 Not Modified, 400 Unauthorized,
406 Not Acceptable, 407 Proxy Authenticate Required

0.91%

Negatively cacheable codes:
204 No Content, 305 Use Proxy, 400 Bad Request,
403 Forbidden, 404 Not Found, 405 Method Not Allowed,
414 Request-URI Too Large, 500 Internal Server Error,
501 Not Implement, 502 Bad Gateway,
503 Service Unavailable, 504 Gateway Time-out

5.74%

Table 4.3 Distribution of Status Codes of Monitored Data

In Section 4.2.2, 4.2.3, and 4.2.4, we will discuss experimental results for

cacheable object. We will re-scale the percentage of cacheable replies (86.21% as was

mentioned above) and detail all percentage calculations with respect to 100%. Then in

 42

Section 4.2.5, 4.2.6, and 4.2.7, we will discuss experimental results for non-cacheable

objects. We will also do the same re-scaling (rescale non-cacheable percentage 23.79% to

100%) in our analysis of the data.

4.2.1. EC distribution

Firstly, we summarize all the simulation results that used our proposed

mathematical model (Equation 4.6) in Figure 4.1. The extension model (Equation 4.7) will

not be used here. It will be used to perform further analysis on objects’ relative E-

Cacheability Index in Section 4.2.3. According to our model, the possible values for an

object’s cacheability are as follows (refer to Table 4.1): -1 means that the object is

cacheable but its cacheability will be decided by proxy preference (Squid treats it as non-

cacheable); 0 means non-cacheable; 1 means that the object’s cached period is 0 but there

is validation information; and value greater than 1 means that the object is cacheable.

Figure 4.1 and Table 4.4 show the distribution of these cases. In Figure 4.1, the x-axis,

except for -1,0,1 which indicates an object is cacheable or not, represents the cached

periods of objects when the EC measure is greater than 1.

Status of Object EC Value Percentage (%)
Cacheable but decided by proxy preference -1 1.98
Non-cacheable 0 11.81
Cached period = 0,
But object has validation information

1 7.07

Cacheable > 1 79.14
Table 4.4 Object Status and the Corresponding EC Value versus their Percentage

 43

5.36%
0.14% 0.23% 0.13% 0.14% 0.32% 0.24%0.32%

7.07%

1.98%

11.81% 15.40%

2.20%

42.84%

1.34%0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

-1 1
1--

2
3--

4
5--

6
7--

8
9-

-10

11
--1

2
13

-1
4

15
-1

6
17

-1
8

19
-2

0
21

-2
2

23
-2

4
25

-2
6

27
-2

8
29

-3
0

>30

Effectively cacheability

P
er

ce
nt

ag
e

 0 1
^

Figure 4.1 EC Distribution of all Objects

(X-axis represents the day of cached period (day), except first 3 values –1,0,1; y-axis
represents the percentage of the objects)

Figure 4.1 and Table 4.4 shows that there are about 1.98% (EC = -1) non-

cacheable objects due to Squid’s preference, making up a total of 13.79% (EC � 0) non-

cacheable objects. With respect to the remaining 86.21% cacheable objects, besides 7.07%

objects with cached period of 0 and validation information, the distribution of most

object’s cached periods is either in the period of � 3 days, or > 1 month, as is shown in the

figure.

The above result highlights that, based on our sample data, a high percentage of

objects in the web are cacheable (86.21%). Using our EC model, it can further be broken

down that a large portion of these cacheable objects (42.84% of all objects considered)

have high EC values. It can be seen therefore that knowing whether an object is cacheable

or not may not be sufficient enough for a caching proxy to be effective, as the space of a

caching proxy is finite. Our EC model can sift out those more effective cacheable objects

that should be cached, and this can improve the effectiveness of caching proxies.

 44

4.2.2. Distribution of change in content for cacheable objects

In this section, we focus on cacheable data and discuss why we should further

modify the E-Cacheability Index by using our extended mathematical model (Equation 4.7

in Section 4.1.6) to precisely measure their E-Cacheability Index.

In all the cacheable objects, about 7.07% of them have a freshness period of 0 but

with revalidation information, thus resulting an EC value of 1. Among them, C4 (1)

(Cache-Control: max-age = 0) made up 0.07%; C4 (2) Expires equaling Date made up

about 5.13%, while the remaining 1.87% of objects has this EC value calculated through

the C4 (3) LM-algorithm.

As discussed in our extended mathematical model in Section 4.1.6, since these

objects have validation information, they can be revalidated freely. Even if their freshness

period in the first time calculation is 0, it does not mean that they cannot be cached

effectively. Since validation might lengthen their freshness periods, consequent requests

can still get the fresh copy from the origin with less bandwidth and faster speed.

Figure 4.2 shows our experimental result on the effectiveness of caching such

objects. We monitored those objects with EC = 1 in 5 minutes interval for a duration of

about 90 minutes. The graph shows only those objects that are unchanged in the interval

of 90 minutes. In particular, the moment when an object is changed, it will no longer be

considered in the graph. It is because we are only interested in collecting data on how long

an object that has freshness period of 0 can continue to be valid in the cache (i.e. until it is

updated). Thus, the graph only shows those objects that did not change in the 5th minute.

Observations continued to be made only on this group of remaining objects, to see which

of them would be changed in the next revalidation, and so on.

 45

For example, to obtain Figure 4.2, our program will perform the followings to

achieve the result we mentioned above. Suppose there are 40 objects with EC = 1 in our

monitoring list. Initially, we get these objects’ bodies and keep a local copy of them. After

5 minutes, we retrieve the bodies of these 40 objects again. Comparing with the previously

saved copies, we discover that there are 35 objects that remain unchanged. We will then

note down in the graph, that 87.5% of objects remain unchanged. Next, we will remove

the 5 modified objects from our monitoring list. After another 5 minutes, we will continue

to monitor these 35 remaining objects. This procedure will last for 90 minutes.

From Figure 4.2, we notice that about 4.3% out of all these objects have real

freshness period that is more than 1½ hours, and not 0, which means that this percentage

of objects are actually quite cacheable. The graph also shows that even though the cached

periods of such objects are 0, a large percentage of them remains unchanged for a certain

period of time. There are several reasons why these objects have cached periods of 0,

ranging from the origin server being set not to allow its objects to be cached, to the origin

server not setting the header contents correctly. With our EC measure, we can sift out

these objects, and perhaps investigate as to why they have a cached period of 0.

100%

4.43%4.55%4.58%6.01%6.02%
7.14%

14.29%
12.02%

35.71%

42.86%

22.00%

35.10%

0%

20%

40%

60%

80%

100%

120%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90timeval(second)

U
nc

ha
ng

e
Pe

rc
en

ta
ge

100%

83.30%
76.40%

63.66%

47.74%

34.30%
38.80%

0%

20%

40%

60%

80%

100%

120%

0 4 8 12 16 20 24

timeval(hour)

U
nc

ha
ng

e
P

er
ce

nt
ag

e

Figure 4.2 Every 5 Minutes Content Change Figure 4.3 Every 4 Hours Content Change

 Monitoring for Objects with Monitoring for Objects with
 Original Cached period of 0 Original Cached period of 4 hrs

(X-axis represents minutes, y-aixs repres- (X-axis represents hours, y-axis represents
-ents percentage of unchanged objects) percentage of unchanged objects)

 46

To further analyze the relationship between the real freshness period (cached

period defined by the first retrieval time) and effective cacheability, we choose objects

whose explicit freshness period is about 4 hours with validation information (this takes up

11.2% out of the total objects of EC > 1 in our experiment). The analysis method is the

same as that for the objects with EC = 1. We perform validation in 4 hours interval for

about 1 day. The percentage of objects that remains unchanged is shown in Figure 4.3.

Comparing Figure 4.3 with Figure 4.2, it seems that the longer the explicit freshness

period, the higher the possibility to lengthen freshness periods through performing

validation. This is observed from the graphs that the percentage of objects that have

changed is at a much slower rate in Figure 4.3 than those in Figure 4.2.

4.2.3. Relationship between EC and content type for cacheable objects

E-Cacheability Index can reveal the effectiveness cacheability in different content

types. The legend for the numbers along the x-axis in Figure 4.4 and Figure 4.5 is shown

in Table 4.5; the percentage of each legend taken out of all cacheable data is also included

in Table 4.5:

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

content type

E
C

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

1.60E+04

1.80E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17content type

E
C

Figure 4.4 Relationship Between EC and Figure 4.5 Relationship Between EC per
 Object’s Content Type Byte and Object’s Content Type

 47

Legend 1 2 3 4 5 6 7 8 9
Content
type

audio/
mpeg

text/html image/
jpeg

image/gif application
/
octet-
stream

video/
quicktime

application/
-
xshockwav
e-flash

text/
plain

vide
o/
mpe
g

Perc-
entage(

%)

0.76 4.75 23.07 64.28 0.84 0.03 0.61 1.12 0.04

Legend 10 11 12 13 14 15 16 17
Content
type

applica
tion/x-
javascri
pt

applica
tion/zip

audio/
x-pn-real
audio

Application
/pdf

text/
css

application/x-
zip-
compressed

audio/x-
mpeg

others

Perc -
entage(

%)

1.89 0.62 0.01 0.07 0.93 0 0 0.99

Table 4.5 Legend for the Numbers Along Category X-axis in Figure 4.4 and Figure 4.5

Figure 4.4 and Figure 4.5 show certain relationship between the E-Cacheability

Index and content type. It is commonly agreed that image files do not change so often, so

their E-Cacheability Index is expected to be much larger than those of other content types.

They are thus the most effectively cached candidates; they make up the largest portion of

cached objects.

HTML framework objects are usually changed at a very slow rate, as web masters

often make only slight changes in web pages. The file type contents, such as the templates

for HTML, javascript application and audio mpeg files also have quite effective

cacheability.

 Thus, from Figure 4.4, it can be seen that those content types that are most

effectively cacheable logically have high EC values. Since the content size of the text file

and some executive application files are comparatively smaller than that of other content

types, their E-Cacheability Index per byte is larger than others’ correspondingly.

 48

4.2.4. EC for cacheable objects acting as a hint to replacement policy

In this section, we discuss how to use E-Cacheability Index as a hint for cache

management such as web cache replacement policy.

0.00E+00

4.00E+08

8.00E+08

1.20E+09

1.60E+09

2.00E+09

2.40E+09

1 2~10 11~20 20~30 30~50

Access Frequency

E
C

Figure 4.6 Relationship Between EC and Object’s Access Frequency

Several approaches for replacement are widely used in web caching. One well-

known approach is the LFU (Least Frequently Used) approach – a simple algorithm that

ranks the objects in terms of frequency of access and removes the object that is the least

frequently used [33]. Here we want to see whether there is relationship between our E-

Cacheability Index and object’s access frequency.

The largest access frequency was less than 50 times in our monitoring experiment.

Lots of image files were accessed more than 10 times in our study. In the access frequency

range of 20 to 30 times, most objects are JPEG files. Since the cached period for this kind

of files is longer and their changing rate is lower (or the probability for contents to remain

unchanged is higher), their E-Cacheability Index is higher, according to Equation 4.7 in

Section 4.1.6.

Lots of text files, application files (like javascript file), and some image files are

congregated in the access frequency range of 30-50 times. Though their access frequency

is quiet high, the cached period of many text files and application files may be shorter than

 49

image files and their E-Cacheability Index may be lessened relatively. Refer to those

objects that are accessed only once, some are still in the classification of EC = 1, which

lessen the average E-Cacheability Index of this kind of objects.

From Figure 4.6, it seems that when the access frequency is less than 30 times in

our experiment, the E-Cacheability Index is quite suitable in aiding the LFU replacement

approach. Objects with higher EC value imply that they have a higher chance to be

accessed, and hence the object will be a good candidate for caching. This can potentially

improve the cache performance. In addition, the EC can also be viewed to a certain extent

as the server hints for proxy cache replacement policy as the origin server can set the

fields in such a way so as to hint to the proxy cache if an object will be cached effectively.

4.2.5. Description of factors influencing objects to be non-cacheable

As shown in Figure 4.1, under the status code 200, there are 13.79% objects that

are non-cacheable. We use our mathematical model proposed in Section 4.1.5 and 4.1.6,

and concentrate on the factors listed in Table 4.1 to analyze the cases. The factors consist

of the existence or absence of various header fields affecting availability and freshness and

validation of an object. More importantly, they might exist simultaneously instead of

exclusively. Understanding the existence relationship among these factors is important

because fixing one factor might or might not help in the overall object cacheability. This is

what we will focus on: factors’ combinational effects and their simultaneous existence

relationship. Referring to Table 4.1, C1, C2, C3 are relevant to availability, C4, C5, C6

and C7 are relevant to freshness and validation. To simplify our discussion, we use

numbers to represent these factors that were mentioned in Table 4.1. The representation is

shown in Table 4.5.

 50

Factor
number 1 2 3 4 5 6 7 8 9 10

Factor
contents C1(1) C1(2) C1(3) C2(1) C2(2) C2(3) C2(4) C2(6) C6(1) C6(3)

Table 4.6 Main Factors that Make Objects to be Non-cacheable

• Factor 1 C1 (1), Set Cookie header is used by servers to initiate HTTP state

management with a client. Sever often traces some designated clients and this often

makes it non-cacheable in the public caching proxy.

• Factor 2 C1 (2), Cache-Control: private indicates that the response is intended strictly

for a specific user.

• Factor 3 C1 (3), Cache-Control: no-store identifies sensitive information, which tells

cache servers not to store the messages locally, particularly if its contents may be

retained after the exchange.

• Factor 4 C2 (1), the public caching proxy is of no use to cache a reply to a request

containing an Authorization field without Cache-Control: public. Since the reply can

only be served to the designated client, such client will often have a local copy in its

local cache.

• Factor 5 C2 (2), The Vary header lists other HTTP headers that, in addition to the URI,

determine which resource the server returns in its response. Squid still has not

implemented it yet, which makes object non-cacheable.

• Factor 6 C2 (3), Content-type: type-multipart /x-mixed-replaced is used for continuous

push replies, which are generally dynamic and probably should not be cacheable.

• Factor 7 C2 (4), the reply Content-Length is 0, thus there is no point in caching.

 51

• Factor 8 C2 (6), it seems that there is no benefit to cache a reply from peer without any

Date information, since it cannot be judged whether the object should be forwarded or

not.

• Factor 9 C6 (1), when the header includes Cache-Control: no-cache or Pragma: no-

cache, it instructs the cache servers not to use the response for subsequent requests

without revalidating it. Whether the object is cacheable or not depends on the proxy’s

preference.

• Factor 10 C6(3), missing all the freshness information, especially Last-Modified,

would result in the inability to calculate freshness or perform validation.

4.2.6. All factors distribution for non-cacheable objects

46.55%

19.28%

1.84%

3.45%

5.25%

44.33%

76.60%

0.00%

0.00%

0.00%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

1
2
3
4
5
6
7
8
9

10

Fa
ct

or

Percentage

Figure 4.7 All Factors Distribution

From the discussion in Section 4.1.5, according to our mathematical model, we

observed that factors 1-8 are relevant to availability and factors 9-10 are relevant to

freshness and validation. Figure 4.7 (y-axis is the factor number; x-axis is the percentage

taken up by the indicated factor) shows that factor 1 has the highest occurrence frequency

among all factors affecting availability and factor 10 is the most important factor affecting

freshness and validation. Factor 2 is another important reason that decides an object's

 52

cacheability and availability. Factor 8 also has significant impact as it prevents this

category of objects from bouncing back-and-forth between siblings forever because they

do not have the Date field, the most popular and required field to describe objects. In our

study, 5.25% of objects do not have the Date field, which directly contributes to this factor

and hence renders the objects to be non-cacheable.

With regards to validation, there are only 7.99% non-cacheable objects with C8 (4)

(Etag), 0.81% with C8 (2)(Cache-Control: must-revalidate) and 0.03% with C8 (2)

(Cache-Control: proxy-revalidate). This shows that they are not so important in affecting

an object’s cacheability if an object is already non-cacheable. So we did not indicate these

factors in Figure 4.7.

4.2.7. Non-cacheable objects affected by combination of factors

The ultimate purpose of our study on the factors that affect an object’s cacheability

is to find ways to improve caching. To a non-cacheable object, we can easily find out the

factors that cause an object to be non-cacheable using our mathematical model proposed

in Section 4.1.5. However, from our experiment, we realize that these factors often occur

together. If we only concentrate on single factor impact without analyzing the relationship

among them, we might not be able to have solution for caching improvement. On the

contrary, if we can summarize the effects of the various combinations of factors, it will

serve as good hints on which factors should be fixed first/together so as to improve the

overall object cacheability.

As shown in Figure 4.8, Figure 4.9, and Figure 4.10, factor 10 is the most

important reason causing objects to be non-cacheable. In other words, the missing header

field Last-Modified is the major reason of objects being non-cacheable. Since very few

 53

objects include Cache-Control: max-age and Expires, this will enhance the role of the

freshness guidance – Last-Modified. This header field also acts as the validation

checksum. HTTP1.1 suggests that all objects should include this header field. Still, there

are several reasons for missing the Last-Modified Data:

• The object is dynamically generated.

• The origin server asks the browser to fetch the object directly from it; it uses

this approach to calculate the actual accesses or log user behavior.

• There is some mis-configuration problem with the web server.

Figure 4.8 shows that the 35.9% of all data being non-cacheable is caused by this

single factor. Thus if this factor occurs without any combination with other factors, we

may have the chance to fix this factor and improve the object’s effective cacheability.

With regards to the combination of factors causing objects to be non-cacheable, we

analyze the reasons of such combinations shown in Figure 4.9 and Figure 4.10. Factor 1

occurs most frequently, followed by factors 10, 9 and 2.

The combination of factors 1 and 10 affecting cacheability is probably due to the

objects being generated dynamically and the server uses a state connection with the client.

The combination of factors 1 and 9 is probably due to the server having a tight

connection with the client for user behavior tracing.

In Figure 4.10, the simultaneous occurrence of factors 1,9,10 indicates that servers

emphasize the dynamic nature of these objects. As a result, there is no benefit to cache

these objects at all. The case of factor 1 occurring with factor 2 is quite normal as it

explicitly informs others that the server only cares for the designated client and others

cannot share any information in this communication.

 54

Factor 9 is one of the important factors that make objects to be non-cacheable.

This is the proxy’s preference. HTTP1.1 does not use “MUST NOT” to define this rule. It

doesn’t exactly prohibit cache servers from caching the response; it merely forces them to

revalidate a locally cached copy. We may make these objects cached if they do not have

other non-cacheable factors occurred. Thus, it is similar to the case Cache-Control: max-

age=0. Cache servers need only revalidate their local cached copies with the origin server

when a request arrives. This action can use this revalidation technique to improve an

object’s effective cacheability. Figure 4.9 shows that the most common case is the

combination of factors 9 and 10. It seems that the server emphasizes that these objects are

all dynamically generated.

0

4.73%

1.80%
0

1.00%
0.00%0.00%0.00%0.12%

35.90%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10
single factor

pe
rc

en
ta

ge

7.82%

3.08%

6.01%

0.86%

5.59%

4.06%

2.45%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

9,10 2,10 1,10 2,9 1,9 1,2 5,10

2 combinational factors

pe
rc

en
ta

ge

2.97%

0.49%

15.27%

5.35% 5.25%

0.96%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

1,2,9 2,9,10 1,9,10 1,2,10 1,8,10 others
3 or more combinational factors

pe
rc

en
ta

ge

 Figure 4.8 Single Factor Figure 4.9 Two Combina- Figure 4.10 Three or More

 tional Factors Combinational
 Factors

One of the main purposes of this study is to rank their importance in terms of

improvement gained from fixing a given factor. In other words, we want to find out which

factor will contribute to the largest improvement in cacheability if it is fixed. To do this,

we perform multi-factors analysis and the result is shown in Figure 4.11. The graph shows

that with this measurement parameter for optimization, factor 10 should be fixed first,

followed by factor 9 and then factor 2.

 55

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

Factor Number
R

el
at

iv
e

Im
p

o
rt

an
ce

Figure 4.11 Relative Importance of Factors Contributing to Object Non-Cacheability

4.3 Conclusion

Despite the fact that there is a lot of research currently ongoing in web caching,

most of them concentrate on whether an object should be cached. There is no further

analysis on the cacheability of a cached object. The proposed Effective Cacheability (E-

Cacheability Index) mathematical model presented in this chapter attempts to go one step

further, by (i) first determining whether an object can be cached, and (ii) further

determining the effectiveness of caching such an object, if it is cached. This further

determination is in the form of a relative value, which can be used as a quantitative

measurement for the effectiveness of caching the object.

In addition, most research only analyzed the influence of individual factors that

affect the cacheability of an object. Little work is made in performing a detailed analysis

on the relationship among these individual factors, and the effects of their simultaneous

occurrence. This chapter conducted a detailed study and monitoring experiment to analyze

the combinational effects of multiple factors that affect the cacheability of an object. This

study further emphasized the usefulness of the E-Cacheability Index such as using E-

Cacheability Index as a hint for replacement policies in the cache,

 56

Chapter 5 Effective Content Delivery Measure

In this chapter, we would like to propose a similar measure for content cacheability,

called the Effective Content Delivery (ECD) measurement, from the origin server’s

perspective. It aims to use numerical measurement as an index to describe object’s

cacheability in website, so that the webmasters can gauge their content and maximize the

content’s reusability. Our measurement takes into account the followings:

• For a cacheable object, we study its appropriate freshness period that allows it to be

reused as much as possible for subsequent requests, and that subsequent validations

should not be unnecessary.

• For a non-cacheable dynamic or secure object, we study the percentage of the object

that gets changed, and

• For a non-cacheable object with low or zero content change, we study its cacheability

when the non-cacheable decision is made due to the lack of some server-hinted

information.

Trace and monitoring experiments were conducted in our study on web pages on

Internet to further ascertain the usefulness of our model.

5.1 Proposed Effective Content Delivery (ECD) Model

The Internet is rapidly gaining its importance as a core channel for communication

in many businesses. This has resulted in websites becoming more complex and with

 57

embedded objects to enhance the presentation of websites in order to attract their potential

consumers.

 “Content Delivery Measure” might have several possible assessing mechanisms,

such as response time and so on. And one essential way for delivery improvement is to dig

into content itself, through maximizing the potentials of content cacheability which in

turns can reduce the delivery latency. If content can be moved closer to clients, this will

result in shorter retrieval distance as well as higher delivery efficiency.

Therefore, the model is proposed based of objects cacheability. There are two

categories of objects that we study, cacheable objects and non-cacheable objects. Due to

the distinct nature of these two exclusive classes, their effectiveness needs to be studied

separately. In our study, we propose a quantitative measurement of object cacheability for

effective web content delivery, called the Effective Content Delivery (ECD) Index. In

any of these two cases, the ECD measure indicates that the content settings of an object is

more effective if the ECD measure gives a higher value, and vice versa. Each of these

cases will be discussed in the sub-sections below.

5.1.1. Cacheable objects

In this category, the ECD is defined for cacheable objects. Its main focus is to

maximize object reusability so as to be able to be retrieved from the cache by subsequent

requests as long as possible, thereby reducing the waiting time of users.

From our analysis in chapter 4, once an object is available to be cached, its

freshness period and validation condition should be considered. To the origin server,

objects with higher freshness periods and lower useless validation times tend to have a

larger ECD measure.

 58

Useless validations are validations that return an unchanged object from the origin

server and this will result in unnecessary bandwidth consumption. If each time a

validation is performed after an object has expired, and the result returned is the same

copy of the object for another period of freshness, the freshness period might not be set

properly.

The higher the rate-of-change of content for a given number of validations, the

higher will be the ECD measure. A cacheable object with a high ECD measure tends to

have an appropriate freshness period and a high change possibility, which indicates that

the freshness period is set properly, as the copy of the object changes each time validation

is made.

The following example explains how to set the change possibility. We use chpb to

represent the change possibility.

Case 1: chpb = 1 If Tv = Trc Chpb = 100%

 If Trc < Tv Chpb = Trc/Tv – 1

Case 2: -1 < chpb < 0

 If Tv < Trc < 2Tv Chpb = 1- (Trc - Tv)/Tv

Case 3: 0< chpb < 1 If Trc >= 2Tv Chpb = Tv/(100*(Trc - Tv))

 59

We can conclude that the larger the chpb value is, the more effective is the content

delivery.

For example: Tv=3h, if Trc =2h ==> chpb = -1/3,

 if Trc = 5h ==> chpb = 1/3,

 if Trc = 8h ==> chpb = 0.006

5.1.2. Non-cacheable object

In this category, the ECD is defined for non-cacheable objects. Non-cacheable

objects might not necessarily mean that their contents are constantly changing each time

they are accessed. The change rate (how often the content really changes when it is

accessed) and content change percentage (how much the content really changes when

compared to the original content) are essential aspects in our analysis.

Although both factors need to be considered, their significance is different to

different types of non-cacheable objects. Non-cacheable objects can be classified into four

types, differentiated by the reasons that make them non-cacheable. They are (i) non-

cacheable secure objects, (ii) non-cacheable objects directed explicitly from server, (iii)

non-cacheable objects based on proxy preference, and (iv) non-cacheable objects due to

missing headers. ECD for each of these four categories of objects will be discussed in

details below:

• Non-cacheable secure objects

Secure objects usually refer to web objects that are encrypted for point to point

transmission. A good example is information related to the submission of a user’s private

particulars on Internet (for example a credit card number, or a pin number for Internet

 60

banking). As the information requires confidentiality, such interactions need to be made

on secure data transmission. However, it is observed that many websites enforce

information confidentiality not just on the sensitive information but for the entire page,

which have decorative objects and company logos that are definitely static and public. If

the percentage of this relatively static, public portion of the page is higher than that of the

secure portion, it will result in unnecessary bandwidth usage because of the improper

reusability setting of content.

Higher value of the change percentage (Cperc) (the percentage of a page's content

that is changed) of a page indicates that at each content page transfer, the unnecessary

work performed by the origin server and the amount of unnecessary bandwidth consumed

will be lower. Therefore, objects with a higher Cperc should have a higher ECD measure.

However, it must be highlighted that due to the secure https protocol for the entire

page, such page cannot be cached. Thus, if webmasters can separate the non-cacheable

and cacheable portions of such pages, reuse of the cacheable portions will result in

bandwidth saving and reduced access latency.

• Non-cacheable objects directed explicitly by server

In the header settings of such objects, there are explicit server hints specifying that

they are completely unavailable for caching. Examples of such hints are the settings of

“Cache-Control: private” or “Cache-Control: no-store”.

Such hints are representations of strong preferences directed from servers. They

indicate that the whole objects are definitely non-cacheable. Furthermore, any

intermediate proxies cannot interfere or modify them.

 61

Besides considering the rate of content change, the percentage of content change in

these pages is also an important factor. Therefore, the focus of ECD here is on the change

percentage (Cperc) of content in these pages. If there is a high percentage of the page

content that gets changed, it will be appropriate for the entire page to be retrieved from the

origin server. Thus there is little benefit to cache portions of it because the server’s setting

is quite appropriate. And this will result in a high ECD measure of such a page. However,

if the percentage is low, the delivery of this content from the server will be considered as

ineffective, as a great portion of the page could be cached and reused. Thus, the ECD

measure of such a page is low.

Similar to “non-cacheable secure objects”, webmasters could possibly observe the

ECD measure due to the percentage of change and make the necessary adjustment to get a

higher ECD measure. This can be done by removing unnecessary objects in the page or by

separating the objects into cacheable (for non-changing part) and non-cacheable

(frequently changing part) groups.

• Non-cacheable objects based on the caching proxy preference

Besides the protocol rules (here we focus on HTTP1.1) that decide whether an

object is cacheable or not, the caching proxy also makes decision based on its proxy

preferences. Different proxies have different proxy preferences.

Objects in this category are not explicitly directed as non-cacheable. However,

some wrong or inappropriate settings might cause the proxy misunderstand the object

cacheability according to the proxy preferences. For example, the inappropriate setting in

Last-Modified leads to negative freshness period calculated by the Squid proxy and this

makes the object to be treated as non-cacheable.

 62

To study whether the proxy’s preferences is accurate enough to make decision on

object cacheability, we apply the change rate (Crate) of an object to measure the rate of

change of the object whenever it is accessed. The change rate (Crate) is the number of

times an object really changes over its total access times. Higher values indicate that

content validation for a cacheable object or the re-transfer for a non-cacheable object does

not yield unnecessary work by the origin server (the fresh copy of the object is indeed

different from the previous copy).

For example, a 100% change rate means that the content really changes in every

validation request. A 0% change rate means that every time a caching proxy sends a

validation request to the origin server, it always receives the response that the object is

unchanged. In the latter case, making this object with 0% change rate as non-cacheable is

inappropriate, as this will result in unnecessary work to the origin server and redundant

traffic in the network.

• Non-cacheable objects due to missing headers

The study conducted in [27] found that 33% of HTML resources do not change.

However, this portion of the resources cannot be cached because the origin server does not

include cache directives that will enable the resource to be cached. Similar to the first

case, [19][20][21] pointed out that cache control directives and response header timestamp

values are often not set carefully or accurately. To solve this problem, webmasters require

some helpful measurement to give hints on how these settings can be optimized. As these

objects’ measurements are similar to those of “non-cacheable objects based on the caching

proxy preference”, we also measure the change rate (Crate) of the object.

 63

5.1.3. Complete model and explanation

An object’s cacheability is vital to the webmaster who wishes to design a webpage

that is not too slow to be accessed. One aspect to achieve this goal is for him to take note

of the cacheability of objects within the webpage. As mentioned in the previous section,

objects should first be judged in which class (cacheable or non-cacheable) it belongs to

because the ECD measure for these two types of objects is different. Thus, the model that

we will propose in this section will use cacheability as the first and foremost term to be

considered in the equation.

For cacheable objects, there are two main factors affecting the ECD measurement:

(1) judging an object’s cacheability whether an object is cacheable or not, and how long it

can be cached, and (2) the object’s change possibility when its freshness period has

expired and the cache has to validate with the origin server. Furthermore, the cacheability

of an object depends on two factors – Availability_Ind and Freshness_Ind, which were

explained in detail in Sections 4.1.2 and 4.1.3.

For non-cacheable objects, the change rate and change percentage mentioned in

Section 5.1.2 should both be considered for every object, so it overall effective value

should be the combination (multiplication) of these two factors. However, as was

mentioned in Section 5.1.2, the two factors have differing significance for different types

of non-cacheable objects. The formula for ECD is thus given below:

For cacheable object:

 ECD = (Availability_Ind * Freshness_Ind) × chpb

For non-cacheable object:

 ECD = (Cprec× Crate)

 64

The “*” operator handles the situation when the object is non-cacheable. The

existence of non-cacheability factors will enforce the resulting index to be zero, otherwise

is 1. “×” is the normal “multiply” operator for the corresponding calculation.

From the discussion of the factors affecting the Availability_Ind and

Freshness_Ind in Chapter 4, the equation for cacheable object can further be expanded

into the following:

For cacheable object:

ECD =))_*((
3

1

chpbopfreshORx
C

Ci
i ×−∏

=

 = ()1(3)6(2)5(2)4(2)3(2)2(2)1(2)3(1)2(1)1(1 ********* CCCCCCCCCC xxxxxxxxxx

)),,(_*)3(4)2(4)1(4 chpbxxxopfreshOR CCC ×−

The value of the change percentage (Cperc) is in percentage. The higher the value of

Cperc, the lesser is the origin server’s unnecessary work and the network traffic.

 > 0 and < 1 less effective, content does not totally change

Cperc = 1 most effective, content changes completely

Similar to Cperc, the change rate (Crate) is also in percentage, and the higher the

value, the more effective is the content settings.

 0 least effective, validation object does unnecessary job

Crate = > 0 & < 1 less effective, content does not change in every validation

 most effective, content changes in every validation

 65

5.2 Result and Analysis of Real-time Monitoring Experiment

We chose 10 websites that are the most popular websites in computing industry

that are listed in hot100.com [46] on April 17, 2002 (See Table 5.1). Attractive content

might make them lead in the industry. However, different content settings that result in

different content retrieval time might also be the other reason for their popularity. Here,

we would like to try to compare their effectiveness in content settings by calculating their

respective ECDs. Hopefully, this can help webmasters to enhance their website design.

Data were extracted and monitored from the first two levels of embedded objects

of these 10 hot computing websites. They were collected using the “wget” software in

Linux version. After they were filtered into unique ones, they were classified to 10 groups

according to their homepages.

Squid, as the state-of-the-art caching proxy, was instrumented in the experiment to

separate the objects into five types: (i) cacheable with validation information objects, (ii)

non-cacheable secure objects, (iii) non-cacheable objects directed explicitly by server, (iv)

non-cacheable objects based on proxy preference, and (v) non-cacheable objects due to

missing headers. All these requests were successfully processed between the caching

proxy and the origin server (server return code was 200).

For the cacheable objects, Squid automatically monitors and validates them as

soon as they are not fresh according to its server-hinted freshness period. Every validation

timestamp, server return code and all other related returned information were recorded.

Such action was executed for one hundred times for all of these objects. For non-

cacheable objects, no matter which type they belong to, the whole bodies were transferred

and stored locally. They were compared with copies of their previous bodies in every one

 66

minute interval for 100 times to determine whether they were changed and what

percentage they changed. After all these were finished, detail analysis was performed to

extract useful statistics. To produce meaningful results, distribution or bar grafts were

applied.

Figure 5.1 and Figure 5.2 represent the effectiveness of content delivery of the top

10 web pages. Figure 5.1 shows relative percentages of cacheable and non-cacheable

objects. Because the percentage of cacheable image files in techdepot(2) is the largest

among these 10 web pages, their longer freshness period enables its ECD value to be the

highest one. This means that it has most effective content settings regarding to delivery.

High percentages of cacheable objects in explorermicro(1), youlearn(8), pcpartsfinder(10)

enable them to be re-delivered content more effectively.

No. URL No. URL
1 shop.explorermicro.com 6 www.extremetech.com
2 www.techdepot.com 7 www.ebay.com
3 www.planetlearn.com 8 www.youlearn.com
4 www.nextag.com 9 www.mindmodel.com
5 www.voicerecognition.com 10 www.pcpartsfinder.com

Table 5.1 Web Sites Used in Our Simulation

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10homepage

pe
rc

en
ta

ge

cach
eabl
e%

nonc
ache
able
%

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10
homepage

E
C

D

Figure 5.1 Cacheable, Non-Cacheable Objects Figure 5.2 Average ECD of Every Web
 Taken-Up Percentage (left column Page
 is Cacheable, Right One is Non-

 Cacheable)

 67

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

1 5 9 13 17 21 25

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

1 3 5 7 9

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

1 2 3 4 5 6 7 8
0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1 2 3 4 5 6 7
0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

1 4 7 10 13
(1) explorermicro (2) techdepot (3) planetlearn (4) nextag (5) voicerecognition

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1 4 7 10 13

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

1 5 9 13 17 21 25
0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1 5 9 13 17 21
-1.00E+05

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

1 4 7 10 13

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

1 2 3 4 5 6
(6) extremetech (7)ebay (8) youlearn (9) mindmodel (10) pcpartsfinder

Figure 5.3 Cacheable Objects’ Average Server Directive Cached Period vs Real Changed

Period (10 subgrap) (x-axis is tracing times, y-axis is ECD)

Figure 5.3 shows the difference between the average server directive cached period

for cacheable objects and their real changed period. The broken line represents the real

changed period, while the solid line represents the server directive cached period.

From the figure, we can deduce that most server directive cached period is very

different from the real changed period. Most of them are quite conservative, which results

in a lot of useless validations and wastes network bandwidth. Even worse, some servers

even set a wrong directive, which causes the cache to serve outdated data to the clients.

Figure 5.4 indicates the average change possibility for cacheable object in every

monitored web page. The change possibilities of these pages are all quite low. Ebay(7),

mindmodel(9) even have negative change possibility, indicating that there might be

incorrect content settings in these two web pages. The change possibility in techdepot(2)

 68

is quite high. This is one of the reasons that give it a high ECD value. It indicates that the

content settings for its cacheable objects are quite effective.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

homepage

av
er

ag
e

p

4.80%

1.14%

35.72%

43.72%

1.65%

39.12%

6.07%
4.50%

6.30%

35.95%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

1 2 3 4 5 6 7 8 9 10

homepage

dy
na

m
ic

 o
bj

ec
t c

ha
ng

e
pe

rc

41.67%

18.70%

26.10%

51.38%52.93%

48%

77.63%

44.46%

67.73%
71.47%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 3 4 5 6 7 8 9 10
homepage

ca
ch

ea
bl

e
ob

je
ct

 c
ha

ng
e

ra
te

 Figure 5.4 Average chpb Figure 5.5 Average Change Figure 5.6 Average Change
 for Cacheable Percentage Rate
 Objects in

 Every Web Page

Referring to non-cacheable objects, Figure 5.5 and Figure 5.6 show their average

change percentage and average change rate respectively. It seems that the relative static

part of the page takes up more than 50% of the content. In other words, if the content

provider can separate them to be cacheable and non-cacheable, it will result in substantial

saving in network bandwidth. Figure 5.6 also shows that the change rate is quite low in

techdepot(2) although its total ECD is quite high. It suggests to enhance its content setting

in non-cacheable objects.

5.3 Conclusion

In this chapter, we proposed the Effective Content Delivery (ECD) model index as

a mean to measure the effectiveness of websites’ content in terms of delivery.

 69

The model results in a simple numerical value. This kind of content self-checking

gives webmaster hints on whether the content setting is appropriate for effective delivery.

If the value is not satisfactory, the model can also help to trace the reasons behind, so that

the webmaster can do proper adjustment based on the analysis result. The measurement

details the three main elements of consideration in the model and gives reasons for their

importance.

In order to show that our model gives good measurement for the content delivery

effectiveness of websites, we also conducted real-time monitoring experiments on many

actual commercial websites. We analyzed the differences in the content delivery of

popular websites using our model, and showed that many of the more popular websites

indeed score a higher value on our ECD model index. This model index could possibly be

a useful tool for webmasters to understand, plan and enhance the web content settings of

their websites in order to achieve a higher ECD measure.

 70

Chapter 6 Adaptive TTL Estimation for Efficient Web

Content Reuse

In this chapter, we propose a novel adaptive mechanism for accurate TTL (or

Time-To-Live) estimation. Our proposal here is based on problems analyzed in previous

chapters that most current mechanisms setting the TTL of object are not that satisfied.

6.1 Problems Clarification

The idea behind content delivery and distribution is to either cache or replicate

copies of data to some proximity server near the client for faster access. Potentially, this

can save network and server I/O bandwidth, provide better accessibility of web objects,

and reduce client's perceived latency. One key pre-condition for this approach is the

accurate setting of the TTL of a web object. The TTL of an object is the time period

specified as an attribute to the copy of the object such that any use of the content within

this period can be made without the need to contact (or revalidate) the original content

server [33]. Note that the TTL is closely related to another attribute of the object, the life-

span. The life-span of an object refers to the time period during which the content of an

object is guaranteed to be "fresh" and is valid to be used [6]. While the life-span depends

solely on the content nature (i.e. when the content is changed), the TTL setting might

depend on not only on the life-span but also many more factors such as server storage

policy, requirement for monitoring and tracking of client behavior, and the risk level of

retrieving outdated content by clients.

 71

Setting accurate TTL value for a web object is actually a complicated task. Since

most (if not all) content servers do not guarantee 100% accuracy about the TTL of objects

they provide on Internet, this setting process can actually be viewed as the content

freshness risk analysis. Correct TTL setting, of course, can get the benefits that we

mention above. However, in general, improper setting is often observed on Internet. This

will result in one of the two possible consequences. If it is too aggressive, meaning that

the TTL is set to be longer than it should be, there will be risk of retrieving outdated

object content. On the other hand, if it is too conservative, meaning that the TTL setting is

much smaller than it should be, the benefits of reduction of bandwidth usage, I/Os, and

perceived latency might not be able to obtain.

Currently, there are two main places where the TTL setting will be done. The first

place is the content server. This is done through server directives. In theory, this should be

the ideal place to perform the TTL setting, as the content server, together with the site

administrator, should have the best knowledge about the modification dynamics of a web

object. However, what is observed on Internet is quite difficult. As we will show in the

later part of this paper, the server directives are often found to be too conservative,

resulting in over-demanding for network bandwidth. Furthermore, this is often done in an

ad-hoc manner.

The second place is in the proxy cache where the TTL of an object might be

calculated through predefined rules or formulas. For example, heuristic rules based on

keyword matching in the URL name such as the presence of "cgi-bin", the suffix

".cgi(*.asp/*.php)", or a question mark "?" are often used to identify dynamic objects with

TTL value of zero. SQUID, the most popular proxy cache being deployed, calculates the

TTL of an object based on its Last-Modified time and the current time. (In SQUID, the

 72

TTL setting for an object depends on the difference between the Last-Modified time and

the current time. The argument behind is that the longer an object is not changed, the

lesser will be the probability for it to be changed in future [47].) These are often found to

be too simple because this setting mechanism is independent of the past history of the life-

span of an object. Thus, it still results in one of the two TTL setting problems mentioned

above (either too conservative to cause unnecessary bandwidth usage or too aggressive to

cause reuse of outdated content).

Speculation on the improper TTL setting phenomenon in the content server

suggests the following explanations. Firstly, the life-span value of an object is not a

constant; hence adaptive TTL prediction will be needed. Note that it is interesting to

observe that while quite a lot of efforts have been spent on the prediction of object's TTL,

we cannot find literature to study the adaptability of predicted TTL of web objects.

Secondly, TTL prediction is often too difficult for most system administrators to handle.

And there lacks of an automatic adaptive mechanism to accurately set the TTL of web

objects based on both the content modification history and input from the content

provider. Thirdly, while web site administrators and content providers are experts in

content management and creation, they often do not have good understanding on how

performance can be lost in content delivery. The challenge comes from the dilemma that

most efficient content management technologies such as ASP and database have negative

side-effects on content delivery. Balancing these two aspects is often found not to be easy.

Lastly, there are also observed cases where the improper setting is due to the carelessness

of webmaster. This might even result in the data integrity problem of reusing the stale

copies of web content in proxy/browser cache.

 73

To address this problem, we start with the assumption that any predictable life-

span of an object should generally be seen as a random variable defined over some

probability distribution function (PDF) (such as Gamma or WeiBull functions which will

be changed with respect to time. Then the TTL estimation of a web object can be viewed

as two-steps process. The first step is to define the validity of predictability potentials,

together with its associated expectation value (if any), of the life-span of a web object

through stochastic process. Then the second step is to take care of the changing behavior

of the PDF of the life-span through correlation pattern recognition modeling. Through

active monitoring on the content updating dynamics of real web objects on Internet, we

show that our TTL adaptation mechanism is far more accurate than both directives sent

out by content servers and TTL settings by current proxy caches. This result is important

because it allows content servers and proxy caches to conduct their own content freshness

risk analysis for more efficient web caching.

In this chapter, we sometimes interchange the use of the two terms "TTL" and

"life-span" because most (if not all) related works, HTTP protocol definition, and

proxy/web servers do not provide any differentiation between them and they often just use

the term TTL. This is possible because without additional constraints to TTL setting, such

approximation for their equality is quite reasonable. However, we would like to point their

fundamental difference in the beginning of this section.

The outline for the rest of the chapter is as follows: we start by justifying our study

of TTL adaptation mechanism through research on existing re-validation situation. After

presenting our concept on “Two-Steps” TTL adaptation model, we use live experiment to

verify the model’s practicability and feasibility.

 74

6.2 Re-Validation with HTTP Response Code 304: Cheap or

Expensive?

Before we go into the study of our TTL adaptation mechanism of web objects, we

would like to justify the problem statement of our research here. Is it important to study

the TTL predication of web objects, given that there is a re-validation mechanism

supported by the HTTP protocol? When the object content for a web request is found in

the local client/proxy cache and its expire-time has already passed, a conditional GET

request (typically, this is an If-Modified-Since (IMS) GET request) can be sent

to the content server. The object body is returned to the client/proxy only if the local

cached copy is different from the master copy in the content server.

It is true that under the situation where the local copy of the object is still fresh, the

reply of such conditional GET request does not consume a lot of bandwidth. However, the

cost, in terms of the latency, is actually quite high. Some of the previous work on web

caching consistency did preliminary analysis on the proxy traces to find out the relative

statistical magnitudes of the service latency for the HTTP response code 200 and 304.

But the result of their work is too limited to give insight about the cost of object validation

without body fetching because their requests for the response code 200 and 304 might

not refer to the same object or study under the same network/server workload.

To gain a deeper understanding on the cost of validation without body fetching (i.e.

HTTP 304 response code Not-Modified), we took traces from the NLANR ftp site

[NLANR], extracted the URL names, and repeated the actual retrieval of objects. The total

number of objects tested is 1,013,335. The network to conduct the experiment is the high

speed Singapore Advanced Research Network. What we would like to measure is the time

 75

for the first byte to arrive at the client side and that for the whole object to be retrieved.

Here, we approximate this first byte retrieval time to be the latency of the HTTP response

code 304 (Not-Modified) and the whole object retrieval time to the latency of the

HTTP response code 200 (GET). This approximation is quite reasonable. One additional

advantage of this approach is that the bandwidth and server I/O allocation for the two

responses are guaranteed to be the same. Note that issuing two web requests (one for

response code 200 and the other for code 304) even within a short period of time might

still suffer from the fluctuation of the network and server workload and this might result in

inconsistent measurement. Figure 6.1 (a) and (b) show the result.

0%

10%

20%

30%

40%

50%

60%

70%

0%
-10

%

10
%

-20
%

20
%

-30
%

30
%

-40
%

40
%

-50
%

50
%

-60
%

60
%

-70
%

70
%

-80
%

80
%

-90
%

90
%-10

0%

Validation (Without Body Retrieval) Lateny /Object Retrieval Latency

D
is

tr
ib

ut
io

n
of

 O
bj

ec
ts

 (
in

 %
)

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10

up
 to

 20

up t
o 3

0

up t
o 4

0

up
 to

 50

more
tha

n 5
0

Number of Chunks in Object Transfer

Percentage of Objects
Average % of Validation Latency w.r.t. Object Retrieval Latency

 (a) (b)

Figure 6.1: Normalized Validation Time w.r.t. Retrieval Latency of Web Objects

Figure 6.1(a) shows the distribution of the normalized validation time of object

with respect to its entire object retrieval latency. This clearly shows that the validation

time is actually of similar order as the entire object retrieval time. About 59.25% of the

web objects show that the validation time is similar to the entire object retrieval time. And

only 2.09% of the web objects have validation time that is less than 10% of the entire

object retrieval time. This is expected because most of the objects on Internet are small.

 76

Since data are sent through Internet in a chunk by chunk manner and the typical chunk

size is about 1.1Kbytes to 1.3 Kbytes, this explains the huge percentage of objects with

validation time being close to the object retrieval time. Only when the objects are very

large (e.g. JPEG images), then the normalized validation time becomes insignificant.

However, there is a counter-argument to this situation. Most large objects are images and

they are found to be quite static. It is quite unlikely that they need frequent re-validation.

Figure 6.1(b) plots the distribution of the normalized validation time and the object

frequency distribution against the number of data chunks found in the actual content

transfer of a web object. The figure supports our observation and argument in Figure

6.1(a). There are about 43.5% of the objects that are transferred in one single data chunk

and only 14.07% of the objects are transferred in more than 10 data chunks. Furthermore,

the relatively small data transfer time for chunk other than the first one, as compared to the

network setup time, can be reflected by the 100%, 98.63% and 76.25% of the normalized

validation time for object transfer with one chunk, two chunks, and three chunks

respectively.

All these results highlight the importance of understanding (and hopefully

predicting) the TTL of web objects and show the high cost of content re-validation on the

fly. Prediction accuracy is important here because aggressive caching with too large

estimated content TTL might result in the use of outdated data whereas conservative

caching with too small estimated TTL might result in unnecessary bandwidth

consumption and high retrieval delay. Similar arguments apply to web information

systems as well.

 77

6.3 Two-Steps TTL Adaptation Model

In this section, we would like to propose a two-steps TTL adaptation mechanism

for efficient and accurate TTL prediction of a web object. The two steps are the stochastic

predictability and the adaptive updating. In the stochastic predictability process, we will

first capture the probability distribution function (PDF) of the life-span using stochastic

process such as Gamma or WeiBull modeling. Based on the pattern of the distribution, the

regularity of the life-span for TTL value prediction as well as its expectation value can be

determined. In the adaptive updating process, correlation pattern recognition model will be

used to determine any updating of the PDF of the life-span for future prediction.

Given an information source on the web, it is not difficult to imagine that its

content updating will be both regular and irregular. To attract audience to (re-)visit a

website, the content provider needs to constantly provide the latest information on the web.

Some good examples are the newspaper and online banking/stock information. Hence,

certain kind of content updating schedule can be expected and it is usually quite

predictable.

However, if the study period of life-span of a web object is long enough, it is not

difficult to find that a single PDF is far from enough to accurately describe the change

pattern of its content. In fact, multiple PDFs are actually involved and the one being used

depends on the actual work schedule. For example, during the work hours of the working

day, content such as CNN news portal might be updated every fifteen minutes. However,

during the lunch time, night time, or weekend, the actual content updating might be slower

(with different PDFs) and sometimes even stop. Another factor that complicates the

situation further is the continuously changing to the requirement for content updating to

 78

meet the client's need. Furthermore, there are situations where irregular, sudden change to

the content is made. All these suggest the need to check the validity of PDF defined by

previous content updating history for future life-span prediction. Whenever necessary, the

PDF should be automatically adapted to reflect the new situation.

To achieve this goal, we first assume that objects might be changed according to

some kind of regular pattern for a given period of time. For example, if a program updates

an object n fixed periods in one day, the regularity of content change for this object will

be n per day. And this regularity can be captured by stochastic process such as Gamma

distribution model. After that, the correlation pattern recognition model can be used to

check whether the regularity is stable and valid with respect to time. If the regularity is

found to be changed, the model will capture the change and adaptively update the

parameters for the new PDF. This makes the prediction more accurate because it caters for

changes to the regularity, which indeed happens in actual situations.

6.3.1 Content Creation and Modification

Before we go into the details of our two-steps TTL adaptation mechanism, it will

be helpful to have some basic understanding on the content creation process for the web

and the factors affecting its modification process.

Despite the wide variation of applications on Internet, the primary usage of the

web is still for information publishing and dissemination. Thus, a URL address can be

viewed as a pointer to an information source and a web request with the URL address is to

get the content data for presentation at the client end. From the viewpoint of a client, a

web server functions as a content presentation generator fContent_Pres_Gen. It takes inputs

from the client and network/server workloads. Together with predefined rules and data set

 79

in the web server, fContent_Pres_Gen will generate the final content presentation to be replied

back to the client. Sometimes, this content generation process might invoke application

execution (such as database access) in the web server.

The content presentation Content_Pres for a given web object with address URL

can be represented as follows:

Content_Pres = fContent_Pre_Gen(DS, CI
�

, RI
�

, SI
�

, DI
�

, T)

Each input to fContent_Pres_Gen can be viewed as a class of input with shared common

features to the content generation process.

Data Source DS:

This refers to the data content source pointed to by the web address URL. Note

that the final presentation of a web object might not be the same as its content source

because content optimization, adaptation, and personalization that are based on the rest of

the parameters might take place.

Client Profile Vector CI
�

:

This vector CI
�

 includes all inputs related to the client's personal profile. Examples

are the client's IP address, browser type, language preference, browser type, and cookie's

value.

Request Input Vector
→

RI :

It refers to the information related to the intrinsic properties of the given request

URL such as the request method and object relationship with the referral. It might also

include parameters associated with the request such as query parameters, access

authentication input, and post data in the request body. Request preferences such as the

acceptance, encoding, caching and revalidation, and security all belong to this category.

 80

Server Setting Vector
→

SI :

This includes server setting properties such as the message encoding method, file

system and web resource ACLs. Sometimes, server status, such as the system resource

usage and access history, might also cause different content presentations to be generated.

Application Source Vector
→

DI :

This vector describes all the applications involved in creating the final presentation

(as the program output) of the request. Typical applications executed for a request are

database access and encryption engine.

Request Time T:

This variable specifies the time when the client makes such request with address

URL.

As we can see, the life-span and the TTL of a web object are affected by multi-

factors instead of a single one.

6.3.2 Stochastic Predictability Process

Many stochastic distributions of real life periods such as the life period of electric

bulbs and batteries can be captured by Gamma distribution. The gamma distribution

contains the exponential and Erlang distribution as special cases, and converges to a

normal distribution as αi goes to infinity. Therefore, it is natural to approximate the

change interval time distribution of an object with a Gamma distribution. From the

Gamma model, we can estimate when the next change of a given object will come and

determine whether the frequency of change will increase, decrease or stay the same in the

near future.

 81

The Gamma Distribution Model [48] is defined as follows (Its mathematical

definition can be found in the appendix of this thesis):

Gamma(∆tij : αi, βi) :)(

)(/)(1

),,(
αβ

µ
α

βµα

βα
Γ

−∆ −∆−−

=∆
tettf

 where �
∞ ∆−− ∆∂∆=Γ
0

1)(tet tαα

αi is the shape parameter: If αi equals to 1, the Gamma distribution will recess to

exponential distribution. If αi goes to infinite, Gamma distribution will recess to normal

distribution. βi is the scale parameter: Its value is to reflect the size of unit in which every

change interval is measured when compared to the standard Gamma distribution. µi is the

location parameter. The Gamma distribution shifts to the right by the smallest possible

change interval time. Hence, it can also be deemed as a safe period where the object will

not change.

Content providers usually have a content updating schedule to achieve a

compromise among the changing process of information sources, the workload of content

updating, and the popularity of the site. Generally, the content providers have two

methods to update the content. The first one is usually done using some program to do

automatic content uploading to the site at relatively fixed time intervals. This happens

despite the various factors affecting the content updating plan. As a result, the next change

interval of a web object tends to be inherent to its previous change interval history and this

change is quite stable. This is the rationale behind the use of stochastic process to describe

it.

 Note that in our study, we use Gamma distribution to describe the stochastic

process of content change. However, this does not limit our mechanism, result, and

contribution if other distribution such as WeiBull is used instead. Our focus of research

 82

here is to investigate the validity of the distribution and provide the adaptability of PDF to

the system rather than to claim a particular stochastic process function.

6.3.3 Correlation Pattern Recognition Model

Even though the regularity of change of an object is observed to be stable within

some time period, the factors described in Section 6.3.1 might change suddenly or be

interfered occasionally. For example, the persistent connection in CI
�

 suddenly terminates

because of network congestion; server system resource in SI
�

 is insufficient to execute the

updating program in time because of heavy workload. This results in the change interval

of such cases being different from previous change intervals. Hence, given a sufficiently

long period, the discrepancy in the outcome of factors should be tracked all the time and

the regularity of change needs to be verified and updated whenever necessary. This is to

make the prediction of an object's TTL as close to the actual situation of change as

possible. As a result, we need a method to measure the prediction correctness and to

replace the current predicted regularity of change if the difference between the predicted

situation and the actual one is greater than certain pre-defined threshold value.

With the prediction algorithm for content change, we need to identify the

persistent regularity of change of an object. The object’s initial prediction reference is

obtained from the Gamma distribution curve, where the data is obtained from the most

recent actual change intervals recorded in the log file. Taking two periods, and using their

Gamma curves, we can then determine whether their regularity is persistent by

determining their similarity. This is basically in the form of correlation pattern recognition

process.

 83

The basis of TTL prediction algorithm is that since the regularity of change of

objects is relatively stable within a time period, the regularity should be able to extend to

the near future. And this needs to be continuously proven, and updates accordingly if the

regularity of change is modified.

Correlation pattern recognition [49][50][51] is unique in that it provides a

methodology to compare two groups of information with multi-dimensional data. It works

based on the judgment of the correlation coefficient, which is defined as a statistical

measure to quantify the "goodness-of-fit" in many curve-fitting procedures [52]. Here we

use it as an indicator of fit, or similarity, between the Gamma distribution curves

generated from two successive periods of content change interval data. Note that in our

measurement, all segments in these curves have the same length.

The calculation method for correlation coefficient is defined as follows:

Given two groups of intervals: series X of length N as [X1, X2, ... , XN] and series

Y of length N as [Y1, Y2, ... , YN]. X represents the Gamma distribution of content change

intervals in a time period t, and Y represents that in the following period t+1.

The series X has a mean E(X) , given by the average of its values

E(X) = (X1 + ... + XN) / N.

The mean is a measure of how far X is displaced from zero. Series X also has a

variance, V(X), given by:

V(X) = (X12 + ... + XN2) / N - (E(X))2

Mathematically, the variance of X is a measure of its size, after its mean is

removed. For series Y, also of length N, the covariance between X and Y is defined by:

COV(X,Y) = (X1Y1 + ... + XNYN) / N - E(X)E(Y)

 84

The covariance provides a quantitative measure for the similarity between the two

series X and Y. It will reach its maximum when Y and X are the same. To remove the

effect of the sizes of the two series, the covariance should be normalized by dividing out

their standard deviations, which are the square roots of their variances:

Correlation Coefficient = COV(X,Y) / SQRT[V(X)V(Y)]

The value of correlation coefficient ranges between 1.0 and -1.0, where the value

of 1 indicates a perfect match (i.e. the two patterns are identical) and the value of -1 would

indicate that an exact match cannot be found but that it is "upside-down". Values near zero

mean there is no match at all.

In practice, it has generally been agreed that values greater than or equal to 0.8

correspond to patterns in the data that are easily discerned as "good matches" by human

eye. The correlation coefficient is also a normalized statistical measure, which means that

the actual numerical values of either the chart data points or pattern values have no effect

on its value. Only the "shapes" of the pattern and chart segments affect it. All of these

features make the correlation coefficient a good choice as an indicator of pattern

matching.

In our case, if the correlation coefficient calculated from the Gamma distribution

curves of two continuous periods is greater than or equal to 0.8, the object’s regularity of

change should be considered as stable. It is then reasonable to use TTL value(s) obtained

from the previous period in the latter period. On the contrary, if the coefficient is less than

0.8, it means the object’s regularity of change is different enough in the two time periods

of measurement. In this case, using the TTL value from the old regularity as a reference in

the new regularity period will be undesirable. If the object’s freshness period obtained

from the period N-1 cannot be used as a prediction result in the period N, the algorithm

 85

should use the freshness period of period N as the next prediction value for the next period

(N+1).

6.4 Experimental Result

In this section, we would like to illustrate the usefulness of our TTL adaptation

mechanism through real-time monitoring of content change in popular websites found on

Internet. Firstly, we describe the experimental environment and setup. Then we classify

websites into four different types according to the characteristics found in the PDF of their

life-span. After that, we present the result obtained from the TTL behavior stage and

prediction stage of our mechanism. We also compare and analyze the results obtained

from the actual situation, existing algorithms/methodologies, and our approach. The result

shows that our algorithm can effectively adjust an objects’ TTL due to the change in

content updating regularity.

6.4.1 Experimental Environment and Setup

Our experiments were performed on a Pentium II 266 CPU machine, with 96M

RAM and a SCSI 9GB hard disk. The TTL adaptation mechanism (described in Section 3)

was implemented in this machine, and it was used as a reverse proxy for monitoring the

content change. A total of 25 most popular websites were chosen from 100.hot [46] for

our study. They represent some of the most famous websites in their corresponding

industries. Examples of these sites include ebay, cnn, and yahoo. The monitoring period

lasted for six weeks, with two weeks in August and four weeks in September, 2002.

 86

6.4.2 PDF Classification

There are two stages in our monitoring and prediction study: (i) TTL behavior

stage to learn the change regularity of an object's life-span PDF, and (ii) TTL prediction

stage with adaptive updating of the change regularity of the life-span PDF.

Before we go into the details of the two stages, we would like to classify the life-

span PDF of objects and identify the interesting cases that most websites are likely to fall

into. In our TTL adaptation mechanism, we will first decide whether an object has any

potential for prediction. In our experiment, we use the Gamma distribution model to make

this decision. And all the objects under study will be classified into either TTL

unpredictable objects or TTL predictable objects.

For TTL unpredictable objects, their change intervals distribution can further be

grouped into two sub-types. The first type is completely random and chaotic. Its

distribution curve has no apparent peak, meaning that no interval aggregates in some time

interval ranges and no regularity can be tracked. The second type is an exponential

distribution, which means that its body might be dynamically generated and is different

for every access.

For TTL predictable objects, we observe four sub-types of change intervals

distributions in our experiment:

(1) Type 1: There is only one apparent peak, which suggests the object change

mainly to be fitted in a fixed time interval.

(2) Type 2: It is an exponential distribution, which means that its body can only be

guaranteed to be fresh in one minute. This type should be differentiated from

the second type of unpredictable objects by the existence of some server’s hint

 87

in the HTTP header during object retrieval. For example, the existence of the

header field “Cache-control: max-age=60”.

(3) Type 3: There are multiple peaks in the distribution curve, which means that

the object might be updated in different fixed periods. For example, it is

updated every one hour from 9 am to 9 pm, but it is updated every 2 hours

from 9:01 pm to 8:59 am of the following day.

(4) Type 4: This is a combined exponential distribution with one or multiple peak

distribution. It represents that either the object is updated in one or more fixed

periods or the object might be dynamically generated and is different in every

access. The reason why it still belongs to the same predictable type is that the

object still has some change regularity. For example, one object is updated

every 15 or 14 minutes, but it will dynamically generate different temporal

advertisements in the first minute of every hour. Thus, this first minute will not

be suitable to set any TTL.

 Unpredictable object Predictable object

Distribution
Type

Type 1:
random

and choas

Type 2:
exponential

Type 1:
1 peak

Type 2:
exponential

Type 3:
multiple peaks

Type 4:
Combination of
exponential and
multiple peaks

Percentage 0 20% 28% 32% 8% 12%
Table 6.1 Percentages of Different Change Regularities

Table 6.1 shows the distribution of objects according to this PDF classification. It

shows that 20% of the objects under study belong to the second type of unpredictable

object, which means these objects might be all generated by program automatically. Due

to the security and privacy reasons, they will be different in every access. Furthermore, in

our study period, their change intervals are unpredictable.

 88

80% of the objects under study belong to the predictable objects. This observation

is expected because recent website design tends to change the structure and layout of the

website more often in order to attract more customers, thus resulting in shorter life-span.

Consequently, proper TTL prediction is important for credible web caching.

Since predictable objects are valuable in our study, we will use the rest of the

chapter to discuss their behavior. To make the analysis easier, representative URL for each

of the four sub-types will be used in our discussion. Their URLs (the numbers correspond

to their types) are:

(1) http://www.asia1.com.sg

(2) http://www.cnn.com/WORLD/index.html

(3) http://www.whitehouse.gov/index.html

(4) http://www.ebay.com/index.html

6.4.3 TTL Behavior Stage

In this stage, an object’s change regularity is captured by its Gamma distribution

curve, which is drawn according to the probability distribution of its real change intervals.

This is done as follows. In our monitoring process, after the time interval space of content

change for each object is found, we will calculate the probability of real change interval

and a data point will be obtained. A line will then be used to join these real change

probability points and the result is the actual probability distribution curve Based on this

line, a proper set of Gamma distribution parameters can be obtained through curve fitting

to this line. This curve will represent the predicted object’s change regularity in this

period.

 89

Figure 6.2 gives our result in the object’s TTL behavior stage. It shows the content

change regularity for the four representative URLs. In the figure, x-axis represents the data

groups of real change intervals, and y-axis represents the probability of real change

intervals. (Note that the meanings of the x-axis and y-axis are the same for all the figures

in the rest of this chapter). “Real change interval” is the period between two successive

change times of an object obtained by comparing its actual body. “Probability of real

change intervals” is the percentage that an object is changed at the indicated period of

time. “Object’s change regularities” can be obtained from the “actual probability

distribution line”. Each data group range in the graphs in Figure 6.2 is less than five

minutes, with most being one minute. The period of study for these four curves is one

week, from Aug 12, 2002 to Aug 18, 2002.

The Gamma model is aimed to grasp an object’s change regularity. It will ignore

those unimpressed trends or data and only focus on the main trend(s). Its function

generates results based on this rule. For example, for URL (1) – asia1, its Gamma

distribution curve and function generated as follows. The TTL values in data group 8

takes up more than 50 percent out of all possible TTL values, and other values are very

scattered along the x-axis. Thus the model will keep track on this main trend, and ignore

other insignificant ones, which can be rephrased as setting those small enough data to

zero. Data groups 7, 8, 9 and 10 will be used to generate proper values for � = 40.2658

and � = 0.0726. The steeper and narrower the peak, the bigger is the value of � and

smaller is the value of �. Furthermore, the y-axis is shifted to data group 7, indicating the

location parameter µ = 11, and this is the time interval of the beginning value of data

group 7. Since data group 7, 8, 9, and 10 only takes 78.63% of all the possible values, the

corresponding Gamma function should multiply this weight.

 90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

 (1) asia1 (2) cnn (3) whitehouse (4) ebay

Figure 6.2 Gamma and Actual PDFs for Content Change Regularity

(x-axis represents the data groups of real content change intervals, y-axis represents the
probability of real change intervals. The line with quadrangle points is the line of actual

intervals, and the line with triangle points is the fitting Gamma distribution curve.)

Figure 6.2 confirms the argument that the Gamma function can capture the main

trend in the actual probability line very well. The Gamma functions used to fit the actual

probability lines in Figure 6.2 are as follows:

(1) F(x) = 0.7863(40.2658,0.0726,11)

(2) F(x) = (0.2857,2.09,1)

(3) F(x) = 0.4455(40.5,0.099,1) + 0.4216(13.3525,0.1607,40)

(4) F(x) = 0.1690(0.295,1.65,1) + 0.7651(29.6072,0.1079,5)

For (1) – asia1, we can deduce the change regularity for asia1; it is usually updated

every 15 minutes. As a result, in this TTL behavior stage, its expected TTL value is 15

minutes.

With regards to the actual probability distribution line in (2) - cnn, we observe

from Figure 6.2 that it is an exponential distribution. Therefore, � must be less than 1, and

all the data group values can be taken into consideration when generating the Gamma

distribution fitting curve. From the curve, we can deduce that cnn changes frequently. It

 91

can be guaranteed to be fresh only within one minute even though sometimes its updating

period is more than that. Its expected TTL is still one minute.

For (3) - whitehouse, there are two main trends (two peaks) from the actual

probability distribution line. Thus the Gamma model needs to use two functions to

represent the case, each one of which trying to capture one trend. The two functions are

combined together by adding them together. From the curve and our other experimental

result, we can deduce that whitehouse has two updating periods: one is during the US

daytime and it is 15 minutes, and the other is during the US nighttime and it is 60 minutes.

Therefore its expected TTL is 15 minutes in the US daytime, and 60 minutes in the US

nighttime.

For (4) - ebay, there are many advertisements on this website. Sometimes, the

trend for its content change might be unpredictable. At the other times, however, it can

also be predictable. As a result, its Gamma distribution curve is a combined exponential

distribution and normal distribution. With the help from our other experimental data, we

find that the website updates only with a small part of the content in about every 10

minutes. However, in the first minute of every hour, it will update most of the content.

Due to this major update, different user accesses to this site will result in different updated

or non-updated parts with different temporary advertisements. Thus, its expected TTL is 0

for requests in the first minute of an hour, and 9 or 10 minutes for other requests.

6.4.4 TTL Prediction Stage

After we obtain the expected TTL from the study of object’s change regularity in

the TTL behavior stage, we would like to use it as the prediction value in the subsequent

periods as much as possible. And our continuous monitoring is aimed to determine

 92

whether it is accurate to use the previous expected TTL as the future prediction value, and

if necessary, to adaptively adjust the value according to the actual regularity replacement.

Such detection and adjustment are all based on the correlation coefficient theory as we

described in Section 6.3.3.

To make our discussion easier, we sub-divide this prediction into two parts:

adaptive learning and stable result prediction.

6.4.4.1 Adaptive Learning

With respect to the weekly data, when the correlation coefficient is less than 0.8,

which means the change regularities in the two weeks are different, the future prediction

value should be adaptively adjusted according to the latest change regularity. This is to

lessen mistakes in the future prediction. Figure 6.3 and 6.4 show the result of this case.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11

 (1) asia1 (2) cnn (3) whitehouse (4) ebay

Figure 6.3 Gamma Distribution Curve from Aug 12 to Aug 18 vs Actual Probabilities

Distribution Line from Aug 19 to Aug 25

The correlation coefficient calculated from Figure 6.3 shows that for the website of

whitehouse, it is not appropriate to use the change regularity of the previous week (Aug 12

to Aug 18) to predict the following week’s (Aug 19 to Aug 25) change situation. This is

 93

due to the following week’s change situation being substantially different from the

previous week’s regularity. In the previous weeks, there are two update time intervals

every day for the website of (3) - whitehouse. However, there is only one update time

interval in the following week. Thus, the predicted basic parameter set needs to be

adjusted for this website. The other three websites’ correlation coefficients are still bigger

than 0.8, meaning that their change regularities are still the same as those of the previous

two continuous weeks.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11

Figure 6.4 Re-learning the Change Regularity for (3) - whitehouse from Aug 19 to
Aug 25

For (3) - whitehouse, it change regularity needs to be re-learnt to obtain proper

prediction value. The adjustment will be invoked by generating a new Gamma

distribution curve to fit this week’s real change intervals line (from Aug 19 to Aug 25).

Figure 6.4 shows the curve-fitting situation in the re-learning process. The prediction

value for (3) - whitehouse will be adjusted to 60 minutes.

6.4.4.2 Stable Result Prediction

From our experiment, we found that overall speaking, no matter whether the

prediction is a daily or weekly process, most objects’ change regularity are quite stable

 94

within the whole September period of our study. This can be seen from the comparison

among the actual probability lines in Figure 6.5, which are daily based, and in Figure 6.6,

which are weekly based.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Mon Tue Wed Thu
Fri Sat Sun

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11

Mon Tue Wed Thu
Fri Sat Sun

 (1) asia1 (2) cnn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11

Mon Tue Wed Thu
Fri Sat Sun

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11

Mon Tue Wed Thu
Fri Sat Sun

 (3) whitehouse (4) ebay

Figure 6.5 Probability Distribution with Daily Real Change Intervals

Figure 6.5 shows the probability distribution with daily change intervals in one

week, from Aug 19 to Aug 25. One line represents one day’s distribution situation. The

group ranges of every line in the same graph are the same. It seems that the object’s daily

real change lines are similar in the week. In addition, our experimental data for the daily

 95

distribution in the subsequent five weeks also show that the daily distribution line is

similar to each other in the same week.

According to the correlation theory, the correlation coefficients for the Gamma

distribution curves of daily change regularity in the same week are all bigger then 0.8.

This implies that the change regularity is similar in every day of the same week. Thus the

expected life-span period from the first day can be used as the prediction value for the

following days of the same week.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11

9/2-9/8 9/9-9/15 9/16-9/22 9/23-9/29

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11

9/2-9/8 9/9-9/15 9/16-9/22 9/23-9-19

 (1) asia1 (2) cnn

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10 11

9/2-9/8 9/9-9/15 9/16-9/22 9/23-9/29

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11

9/2-9/8 9/9-9/15 9/16-9/22 9/23-9/29

 (3) whitehouse (4) ebay

Figure 6.6 Probability Distribution with Weekly’s Real Change Intervals

 96

Figure 6.6 shows the probability distribution for weekly change intervals in the

successive weeks, from Sep 2 to Sep 29. One line represents one week’s distribution

situation. Once again, the weekly change regularity is quite stable in this month. The

results shown in Figure 6.5 and Figure 6.6 suggest that the objects’ change regularity can

be daily or weekly based in our four weeks of experimental period.

Comparing the results in Figure 6.5 and Figure 6.6, it seems that the similarity

obtained weekly is better than that from daily. Thus, we use this for our next stage of

content change monitoring - using the change regularity from the first week of September

to predict the change regularity of the following three weeks of September.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

Figure 6.7 Learning Process for Capturing the Change Regularity from Sep 2 to Sept 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

(a) Week 1

 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11

(b) Week2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11

(C) Week 3
Figure 6.8 Predicted Result from Sep 9 to Sep 29 Based on Learning Result in Sep2 to

Sep 8

Figure 6.7 shows the behavior stage in the first week of September and Figure 6.8

shows the prediction monitoring stage in the following three weeks. Every row of curves

represents the prediction situation of the week. After obtaining the predicted value from

the first week, the correlation coefficients calculated for the following three weeks show

that the objects’ change regularities are stable in this month. Therefore, our prediction

effect based on first week representational values is quite good for the month of

September.

6.4.5 Result Analysis and Comparison with Existing Solutions

In the last section, we already showed that our approach of using Gamma

distribution model as our basic reference is effective to capture an object's change

 98

regularity for future value prediction. With the correlation pattern recognition model, we

also show that either the validity of using previously obtained result can be justified or

new prediction references can be obtained through proper adjustment.

0

2

4

6

8

10

12

14

16

samples

sa
m

e
ob

je
ct

 ti
m

e
to

 li
ve

real_result my_algo squid server

0

5

10

15

20

25

samples

sa
m

e
ob

je
ct

 t
im

e
to

 li
ve

real_result my_algo squid server

 (1) asia1 (2) cnn

0

20

40

60

80

100

120

140

samples

sa
m

e
ob

je
ct

 t
im

e
to

 l
iv

e

real_result my_algo squid server

0

5

10

15

20

25

Samples

sa
m

e
co

py
 ti

m
e

to
 li

ve

real_result my_algo squid svr

 (3) whitehouse (4) ebay

Figure 6.9 Comparison of our Prediction Results with Those from Actual Situation,
Squid’s Algorithm and Server Directives

.

In this section, we would like to further our study by comparing our predicted

results with those from the Squid's algorithm, server directives and actual situation.

Squid's algorithm is included in our study because it is the most popular proxy cache

 99

currently being deployed and it has rules to determine an object's TTL. We are also

interested in the server directives because we want to find out how accurate (or efficient)

the content providers can predict TTLs for their content. The result is shown in Figure 6.9.

We use the values deduced from Sept 2 to Sept 8 to predict the life periods from Sep 9 to

Sep 29. The figure also shows the comparison situation in the latter period.

In the figure, fill-in grey blocks are the results of the actual change intervals (In

fact, it should be a line of the time interval points. To compare with other results easily,

we fill in the area below the line). The broken lines are results of our algorithm. The bold

lines are results of Squid’s algorithm. The normal lines are results calculated from the

server directives. The x-axis represents the request times, and the y-axis represents the

remaining object’s life period. For example, with reference to the actual situation, when

ebay was requested for the first time, we observed that this body changed after 20

minutes. That is, when the value along the x-axis is 1, the remaining life period along the

y-axis is 20. When the value along the x-axis is 2, the y value (the remaining life period

along the y-axis) will become 19, and other values can be analogically deduced.

Therefore, the closer and lower the other three lines to the edge of the actual block, the

better will be the prediction. It is because this means the prediction result is close to the

actual change situation.

From (1)(2)(4) graph in figure 6.9, we can see that many of our prediction results

just overlap with the result of the actual situation, which means these results are exactly

correct in those periods. But some are quite lower than the edge of the actual block, which

means we still need to waste some bandwidth and do useless work (redundant validation)

on the same fresh objects. Some lines are even higher than the blocks. These are

prediction mistakes and will result in returning stale objects to clients in those periods.

 100

Analyzing the Squid prediction results, most of its predictions are much lower than

the edge of actual block, which means Squid will perform a lot of useless work and result

in large amounts of network traffic and server burden. However, at most of the end of the

triangle blocks, which means the object will change soon, Squid’s prediction results’ line

are always higher than the blocks. This phenomenon is because Squid’s algorithm to

predict objects’ TTL is only based on the assumption that the longer the object did not

change, the lesser possibility for it to change, and without any detection process to verify

this kind of assumption. The period indicates the difference between Last-Modified

timestamp and current timestamp.

Furthermore, its assumption seems to be incorrect from our experiment. For

example, ebay’s first version in our experiment has a 20 minutes lifetime. When it was

been requested in 19th minute, it will have just a minute of lifetime left. However, Squid

will assume that since it has lived so long, it can live even longer. Its prediction of lifetime

for the body retrieved by the request at the 19th minute will be 5 minutes. Therefore, this

heuristic prediction will generate many mistakes, and will increase the chance to send

stale objects to clients.

Analyzing the servers’ directives, most of them are too conservative. Some do not

even have an indication of the lifetime period of an object, which results in objects being

uncacheable, or being cached too short, thus resulting in unnecessary network traffic.

In graph (3) of Figure 6.9, our prediction results are the same as the results from

Squid and server directives. Most of cnn objects’ lifetime is 1 min, others is chaotic.

The statistic average comparison for these three kinds of results with the actual

situation is shown in Table 6.2. The predicted values are obtained from the first week

representational values. The actual situation is in the following three weeks in September.

 101

 (1)Asia1 (2)cnn (3)whitehouse (4)ebay
 Percentage of less than actual TTL prediction
My algorithm 1.32% 83.83% 23.33% 43.93%
Squid’s algorithm 77.72% 83.83% 80.37% 76.48%
Server directives 100% 83.83% 100% 100%
 Percentage of equal to actual TTL prediction (accuracy)
My algorithm 94.2% 16.17% 60.88% 43.04%
Squid’s algorithm 10.13% 16.17% 2.28% 8.63%
Server directives 0 16.17% 0 0
 Percentage of greater than actual TTL prediction (mistake)
My algorithm 4.48% 0 15.79% 13.03%
Squid’s algorithm 12.15% 0 17.35% 14.89%
Server directives 0 0 0 0

Table 6.2 Comparison from the Results of My Algorithm, Squid’s Algorithm and
Server Directives with the Actual Situation

The table shows that most of our algorithms’ results are better than Squid’s and the

server’s results. Conservativeness in server directives and the Squid’s estimate will result

in unnecessary bandwidth usage, increased network traffic and increased server burden. If

we observe the proportion between the times of unnecessary requests (receiving the same

body) because of conservative prediction, and the total times of every minute’s request in

our experiment, and we use that as the measurement of wastage, we will find that the

result from our algorithm will waste less than 100% on average. However, Squid’s and

server’s result will cause wastage that is more than 10 times the amount of our algorithm.

 The accuracy of our prediction, which means the predicted value is exactly the

same with object’s actual TTL, is significantly higher than others. This indicates, on the

whole, that the prediction base of our algorithm is close to the actual situation.

Our adaptively monitoring procedure also lessened the mistakes in prediction, and

increased the credibility of the caching proxy compared to Squid’s heuristic algorithm.

 102

6.5 Conclusion

The problems we noted in chapter 4 and chapter 5 reflect that most current

mechanisms to set the TTL of objects are either ad-hoc or too conservative. More

importantly, there is no measure in the prediction process to take care of the changing life-

span pattern of an object. The resulting discrepancy not only causes unnecessary network

bandwidth consumption but also potential outdated content reuse.

In this chapter, we study the sensitivity of the expectation life-span values for TTL

prediction and to propose a novel adaptive mechanism for accurate TTL estimation.

Through proper stochastic modeling (such as Gamma or WeiBull) on the probability

distribution function (PDF) of the life-span value of a web object based on previously

observed values, its predictability as well as expectation value (if any) can be obtained.

Then with correlation pattern recognition model, any changing behavior of the life-span

value of the object can be reflected as an update to its corresponding PDF. Both the details

of the mechanism and its simple implementation in reverse proxy cache are given.

Through active monitoring on the content updating dynamics of real web objects on

Internet, we show that our TTL estimation is far more accurate than both directives sent

out by content servers and TTL settings by current proxy caches. This result is important

because it allows content servers and proxy caches to conduct their own content freshness

risk analysis for more efficient web caching.

 103

Chapter 7 Conclusion and Future Work

In this chapter, we present the conclusions resulting from the work performed in

this thesis, and suggest areas of future work for possible avenues of further research.

7.1 Conclusion

In this thesis, we delved into objects’ attributes, and analyzed how objects’ content

settings will affect the effectiveness in their cacheability from both the perspectives of the

caching proxy and origin server. Furthermore, we proposed our solution in helping origin

servers to enhance their correctness content settings by the effective prediction of objects’

time to live period, which will improve objects’ cacheability and efficient content

delivery.

When analyzing cacheability effectiveness, we base on objects themselves and

model all factors affecting their cacheability to obtain numeric values for quantitatively

achieving a complete measurement. To further ascertain the usefulness of these models,

corresponding appropriate simulation experiments were conducted. These experiments

illustrate our models’ usefulness in aiding the adjustment of the caching proxy’s policy,

origin servers’ design strategy, and even certain areas of web caching research.

We observed that most objects’ cacheability can be improved by proper content

settings, especially in properly setting an object’s time to live, from model measuring the

effectiveness of objects’ cacheability. We proposed the use of Gamma Distribution Model

 104

to capture an individual object’s change regularity and predict a more accurate future

freshness period for the object.

To demonstrate that our model can provide effective predictions, we presented our

experimental architecture that offered the following benefits: ability to maximize content

reusability, maximize accuracy to sent correct object to clients and minimum bandwidth

requirement. Our experimental results, in comparison with origin servers’ rough settings

and the Squid’s heuristic algorithm, demonstrates that our prediction algorithm

significantly improves correctness in prediction of objects’ freshness periods, and directly

benefit web caching.

To summarize, we present the following specific contributions of this thesis below:

• From the perspective of the caching proxy, our proposed Effective Cacheability (EC)

mathematical model provides a measurement to measure the effectiveness of caching

an object.

• Still from the perspective of the caching proxy, we conducted a detailed study and

monitoring experiment into analyzing the combinational effects of the many factors

that affect the cacheability of an object, and to study the relationships between the

individual factors. This study further emphasized the usefulness of having the

Eeffective Cacheability (EC) mathematical model.

• From the perspective of the origin server, our proposed Effective Content Delivery

(ECD) model index can aid content providers in analyzing content settings when

modifying the complexity and attractiveness of a website. We also conducted an

experiment to demonstrate that the usefulness of the index.

 105

• Since most current mechanisms to set the TTL of objects are either ad-hoc or too

conservative, we proposed to take care of the changing life-span pattern of an object

during the prediction process. This novel adaptive mechanism for accurate TTL

estimation based on the concept of Two-Steps TTL Adaptation Model. These two

steps are making use of existing two mathematical models, the Gamma Distribution

Model and the Correlation Pattern Recognition Model. Our experiment demonstrated

the feasibility and effectiveness of our algorithm, and the results reflected a significant

improvement in the veracity of an object’s freshness period prediction, when

compared with servers’ directives and the existing Squid heuristic algorithm.

7.2 Future Work

In this section, we present several directions for future work that are motivated

from our work.

• Exploit more benefits of our numeric measurement in aid of web caching research

The experiment conducted for our proposed Effective Cacheability model has

hinted on possible cache replacement research. The model can be used to determine

what to cache in the cache, and when the cache is full, what to remove. Experiments

can be performed to see whether the measurement can be an independent metric, or it

can work with other metrics to enhance existing cache replacement policies.

Meanwhile, experiments can be performed to investigate using the measurement in

other web caching research areas, such as prefetching.

 106

• Properly shorten regularity capturing period for a real-time prediction system

We plan to implement our prediction algorithm into a real-time delivery system.

That will result in our experiment architecture being modified to be more practical.

The system should be implemented on the reverse proxy as an independent module,

where it can aid the origin server in examining the content settings, and capture the

historical behavior of objects.

After our experiment proves that our algorithm is suitable for object change

regularity prediction, we can shorten the regularity capture period, the learning object

behavior stage, and pick up the best observation period to have effective prediction.

For example, we observe that ebay change regularity is similar in every hour from

Aug 12 to Aug 18: its time-to-live period is 1 minute in first minute of the hour,

following is 9 minutes, following are all 10 minutes. Therefore 1 hour is the best

learning period for ebay. It may be different among all objects. Our system should

have automatic pick-up function.

• Choose good detection period

The adaptive monitoring period can be called upon to work in a suitable period for

good detection of the behavior of objects. The period to detect whether our prediction

result accords with actual situation is the same as its original learning period. Our

simulation should have a memory function for every object. Since credibility of the

object’s freshness is very important, the interval cannot be too long. But too short an

interval may waste large amount of time on useless work. Therefore proper selection

 107

on the rest interval is as important as the detection period. It should be one of

emphasized function in the system.

• More detailed analysis on the factors that affect cacheability

 The work in Section 4.2.5 can be furthered by using a more well-established

Factor Analysis approach to analyze in detail the contributions of the various factors to

the EC measure [53]. This will give clearer understanding of how each factor impacts

the EC measure.

• Further studies into the effectiveness of content delivery

A more detailed approach to studying the effectiveness of content delivery may

yield more specific and direct results that can be used by web server owners to

improve upon their content. This includes performing more detailed analysis, or

looking for better ways of measuring the effectiveness of content delivery.

• Further comparisons between previous research on TTL versus Adaptive TTL

Estimator

Perhaps a suitable collection of TTL work representing some of the previous ideas

should be considered and then comparisons of performance made between such work

and tour adaptive TTL Estimation for efficient web content reuse. This can further

prove that our TTL adaptation algorithm performs better than other previous TTL

work.

 108

Bibliography

[1] C.E. Wills, M. Mikhailov and H. Shang. N For the Price of 1: Bundling Web

Objects for More Efficient Content Delivery. Proceedings of the 10th World Wide

Web Conference, 2001.

[2] J. Wang, (1999). A Survey of Web Caching Scehemes for the Internet. ACM

SIGCOMM Computer Review, 29(5): p36-46, 1999.

[3] B.M. Duska, D. Marwood, and M.J. Feelay, (1997). The Measured Access

Characteristics of World Wide Web Client Proxy Caches. Proceedings of USENIX

Symposium on Internet Technologies and Systems, 1997.

[4] G. Barish and K. Obraczka. World Wide Web caching: trends and techniques.

IEEE Communications Magazine, 38(5):178-- 184, May 2000.

[5] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams and E. A. Fox. Caching

proxies: limitations and potentials. Proceedings of 1995 World Wide Web

Conference,1995.

[6] P. Cao, J. Zhang and K. Beach. Active cache: caching dynamic contents on the

Web. Technical Report CS-TR1998 -1363, 1998.

[7] D. Wessels. Information Resource Caching FAQ. URL:

http://ircache.nlanr.net/Cache/FAQ/

[8] B. Liu, G. Abdulla, T. Johnson and E. A. Fox. Web response and proxy caching.

Proceedings of WebNet98, Orlando, November. 1998.

[9] E. Cohen and H. Kalpan. Refreshment Policies for Web Content Caches.

Proceedings of the INFOCOMM 2001 Conference.

 109

[10] A. Chankunthod, P.B. Danzig, C. Neerdaels, M.F. Schwattz, and K.J. Wornel,

(1996). A Hierarchical Internet Object Cache, Proceedings of USENIX

Symposium on Internet Technologies and System, 1996.

[11] P.S. Yu, and E.A. MacNair, (1998). Performance Study of a Collaborative Method

for Hierarchical Caching in Proxy Servers. Proceedings of the 7th World Wide

Web Conference, 1998.

[12] D. Povey, and J. Harrison, (1997). A Distributed Internet Cache. Proceedings of

the 20th Australian Computer Science Conference, 1997.

[13] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design considerations for

distributed caching on the Internet. Proceedings of Nineteenth International

Conference on Distributed Computing Systems, May 1999.

[14] A. Dingle, and T. Partl, (1996). Web Cache Coherence. 5th International World

Wide Web Conference, 1996.

[15] P. Cao, and C. Liu, (1997). Maintaining Strong Cache Consistency in the World

Wide Web. Proceedings of the 17th IEEE International Conference on Distributed

Computing Systems, 1997.

[16] B. Krishnamurthy, and C.E. Wills, (1997). Study of Piggyback Cache Validation

for Proxy Caches in the World Wide Web. Proceedings of the 1997 USENIX

Symposium on Internet Technology and Systems, 1997.

[17] B. Krishnamurthy, and C.E. Wills, (1998). Piggyback Server Invalidation for

Proxy Cache Coherency. Proceedings of the 7th World Wide Web Conference,

1998.

 110

[18] B. Krishnamurthy, and C.E. Wills, (1999). Proxy Cache Coherency and

Replacement – Towards a More Complete Picture. Proceedings of the 8th World

Wide Web Conference, 1999.

[19] E. Cohen and H. Kaplan. The Age Penalty and its Effect on Cache Performance.

Proceedings of VSITS 2001.

[20] J.C. Mogul. Errors in Timestamp-Based HTTP Header Values. Tech. Rep. 99/3,

Compaq Western Research Lab, December 1999

[21] B. Krishnamurthy and M. Arlitt. PRO-COW: Protocol Compliance on the Web.

Tech. Rep. 990803-05-TM, AT&T Labs-Research, 1999.

[22] A.Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, K.J. Worrell, A

Hierarchical Internet Object Cache. Proceedings of the USENIX Technical

Conference, Jun 1998.

[23] S. Manley, M. Seltzer. Web Facts and Fantasy. Proceedings of the 1997 USENIX

Symposium on Internet Technologies and Systems (USITS’97), Dec 1997

[24] S. Gribble and E. Brewer System Design Issues for Internet Middleware Services:

Deductions from a large Client Trace Proc. of the 1997 USENIX Symposium on

Internet Technologies and Systems (USITS’97), Dec 1997

[25] R. Caceres, F. Douglis, A.Feldmann, G. Glass, and M. Rabinovich, (1998). Web

Proxy Caching: The Devil is in the Details. SIGMETRICS. Workshop on Internet

Server Performance, June 1998.

[26] A. Feldmann, R. Cceres, F. Douglis, G. Glass, and M. Rabinovich. Performance of

Web Proxy Caching in Heterogeneous Bandwidth Environments. Proceedings of

IEEE Infocom ’99, Mar 1999.

 111

[27] A. Wolman, G.M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H.M. Levy.

On the Scale and Performance of Cooperative Web Proxy Caching. Proceedings of

the Seventeenth ACM Symposium on Operating Systems Principles, December

1999.

[28] C.E. Wills and M. Mikhailov. Towards a Better Understanding of Web Resources

and Server Responses for Improved Caching. Proceedings of the 8th International

World Wide Web Conference, May 1999.

[29] Xiaohui Zhang, Cacheability of Web Objects, Master thesis of computer science

department in Boston University, USA, 2000

[30] Timo Koskela, Jukka Heikkonen and Kimmo Kaski, Modeling the Cacheability of

HTML Documents, Proceedings of the 9th World Wide Web Conference, 2000.

[31] X. Zhang. Cacheability of Web Objects. Master Thesis of Computer Science

Department in Boston University, USA, 2000.

[32] T. Koskela, J. Heikkonen, and K. Kaski. Modeling the Cacheability of HTML

Documents. Proceedings of the 9th World Wide Web Conference, 2000.

[33] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey Mogul,

Rate of change and other metrics: a live study of the World Wide Web, USENIX

Symposium on Internet Technologies and Systems, December 1997, pp 147-158

[34] E. Craig Wills and Mikhail Mikhailov, Examining the Cacheability of User-

Requested Web Resources, Proceedings of the 4th International Web Caching

Workshop, San Diego, CA, March/April, 1999

[35] E. Brain Brewington, Cybenko George: How dynamic is the Web? Proceedings of

the 9th World Wide Web Conference, Computer Networks 33(1-6): 257-276, 2000

 112

[36] X. Chen, and P. Mohapatra. Lifetime Behavior and Its Impact on Web Caching.

IEEE Workshop on Internet Applications, 1999.

[37] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, K.J. Worrell. A

Hierarchical Internet Object Cache. Proceedgins of the USENIX Technical

Conference, 1996.

[38] V.N. Padmanabhan, L. Qiu. The Content and Access Dynamics of a Busy Website:

Findings and Implications. SIGCOMM 2000

[39] Junghoo Cho, Hector Garcia-Molina, Estimating Frequency of Change, Technical

report, Standford University, 2000

[40] Squid Frequently Ask Question, http://www.squid-

cache.org/Doc/FAQ/FAQ.html

[41] D. Wessels, (2001). Web Caching. O’Reilly & Associates, Inc, 1st Edition, 2001

[42] R.Fielding, J.Gettys, J.Mogul, H.Frystyk and T.Berners-Lee Hypertext Transfer

Protocol – HTTP/1.1 RFC 2068, Jan 1997

[43] David Kristol, and Montulli Lou, RFC 2965 HTTP State Management Mechanism,

October 2000

[44] Balachander Kreshnamurthy, Jennifer Rexford, Web protocols and Practice, 2000

[45] V.C. Alex, (1992). A Global File System. Proceedings of the 1992 USENIX File

System Workshop, 1992.

[46] hot100.com

[47] Netscape Proxy Server Administrator's Guide Version 3.5 for Unix

http://developer.netscape.com/docs/manuals/proxy/adminux/contents.htm

 113

 [48] L. Jay Devore, Probability and Statistics for Engineering and the Sciences, Fourth

Edition, 1995.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm

[49] K. S. Fu, Digital Pattern Recognition, Springer-Verlag, 1980.

[50] M. Li, B. H. Xu and Y. S. Wu, An H2-Optimal Control of Random Loading for a

Laboratory Fatigue Test, Journal of Testing and Evaluation, 26 (6), Nov. 1998, pp.

619-625.

[51] M. Li, Y. S. Wu, B. H. Xu, W. J. Jia and W. Zhao, An On-Line Correction

Technique of Random Loading with a Real-Time Signal Processor for a

Laboratory Fatigue Test, Journal of Testing and Evaluation, 28 (5), Sep. 2000, pp.

409-414.

[52] M.A. Rick Martinelli, Pattern Recognition in Time-series, Journal of Technical

Analysis in Stocks & Commodities, January issue, 1995.

http://www.maui.net/~haikulab/pattrec.htm

[53] http://www.statsot-tinc.com/textbook/stfacan.html

 114

Appendix

Gamma Distribution

Probability Density Function:

The general formula for the probability density function (pdf) of the gamma

distribution is
)(

)(
)(

/)(1

αβ
µ

α

βµα

Γ
−=

−−− xex
xf 0,; >≥ βαµx

where α is the shape parameter, µ is the location parameter, β is the scale

parameter whose effect is to stretch out graph, is the gamma function which has the

formula

�
∞ −−=Γ

0

1)(dtet tαα

The case where µ = 0 and β = 1 is called the standard gamma distribution. The

equation for the standard gamma distribution reduces to

)(
)(

1

α

α

Γ
=

−− xex
xf 0; >≥ αµx

Since the general form of probability functions can be expressed in terms of the

standard distribution, all subsequent formulas in this section are given for the standard

form of the function.

The following is the plot of the gamma probability density function.

 115

