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Summary

This thesis deals with computational analysis of a line-start permanent magnet syn-

chronous motor (PMSM) using finite element method (FEM). Electric machines

receive power from external sources through electric circuits. The objective is to

couple all the circuits directly with field calculations in order to make it a voltage

source driven system as opposed to a current source driven system normally used in

FEM computations. We studied both static as well as dynamic operations of this

machine under various starting conditions for the dynamic analysis of PMSM. Mo-

tor parameters are important elements in the dynamic operations. We have studied

many existing methods of parameter determinations and critically examined their

suitability and shortcomings. We have developed two new methodologies for the

determination of two-axis motor parameters using mathematical models and ex-

perimental measurements.

Field - circuit coupled time stepping FEM is used to study the dynamics of

PMSM. In the computation, 2D models combined with various circuits are used.

Maxwell’s equation is used to model the 2D electromagnetic fields. The 3D effects

due to the stator end windings and rotor end rings are simplified by circuit models.

The parameters of these end effects, which are calculated by analytical methods,

are included in the circuits. The semiconductor components in the external elec-

tric circuits are modelled as resistors with different resistance values depending on

their operating status. Electric machines are electro-mechanical conversion devices;
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hence mechanical movement of the machine governed by the kinetic equation is also

included in our computational process.

Finite element method is implemented for the field equations. The space

dependent quantities in the equations are formulated by the principle of weighted

residuals. The time dependent quantities are evaluated by the backward Euler’s

method. Various circuit equations are assembled and solved simultaneously with

the field equations. The nonlinearities brought along by permanent magnets and

the soft magnetic materials are handled by Newton-Raphson’s method, and cubic

splines are used to represent the characteristics of the nonlinear materials. The

resultant global system of equations is non-symmetric; and a bi-conjugate gradient

method is used to get the solution of these equations in each Newton-Raphson it-

eration. With the electromagnetic field solutions, the motor torque at each instant

of time step is calculated using the method of Maxwell stress tensor. The dynamics

of the PMSM is computed using a step by step procedure.

The starting process is complicated by the asynchronous torque and rapidly

changing slip. This has been computed using co-ordinate transformation and

through eddy current modelling. Both the process of self-starting and the starting

under controls are computed. The control schemes included the V/f control and

the vector control. The good match of the computational results with the experi-

mental results suggests that the time stepping FEM with coupled circuits can be

a good tool for computing the dynamics of a PMSM.

In the determination of PMSM parameters, experimental methods used re-

cently by many researchers have been reviewed. These methods include the DC

current decay method, sensorless no-load test method and the load test method.
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Analysis and experimentations show many shortcomings and inaccuracies involved

in those methods. Some methods cannot provide complete parameter information;

some involved complicated and weak experimental procedures that bring inaccu-

racies in the results. To overcome the drawbacks of the previous methods, two

new methods have been proposed based on the load test method. Linear regression

model and Hopfield neural network are used in combination with the load test to

determine the machine parameters. Results obtained by these new methods are

compared with those obtained by other researchers. The comparison shows great

improvements made by these new methods in the parameter determination.

FEM is also applied to calculate the parameters. The saturation effects of

stator current on the parameters are taken into account in the calculations as well.

The agreement between the FEM results and the experimental results indicates

that FEM is useful and applicable in predicting the PMSM parameters.
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Chapter 1

Introduction

1.1 Permanent Magnet Machines

Electrical machines are electromagnetic devices used for electromechanical energy

conversion. Most machines have two principal parts: a non-moving part called

the stator and a moving part called the rotor. In order to enable the rotor to

rotate, two magnetic fluxes are needed to establish the air gap magnetic field. One

flux is from the rotor and the other is from the stator. Two methods are usually

used to generate flux, electromagnetic excitation and permanent magnet excitation.

The former method is used in conventional DC and synchronous machines, and

the latter one is used in permanent magnet(PM) machines. Permanent magnet

machines are broadly classified into three categories [1, 2]:

• Synchronous machines (PMSMs): The PMSM owes its origin to the replace-

ment of the exciter of the wound synchronous machine with permanent mag-

nets. These machines have a uniformly rotating stator field as in induction

machines. The stator is fed with 3-phase sinusoidal shaped currents. All

phase windings conduct current at a time with phase differences.

• Brushless DC machines(BLDC): The BLDC owes its origin to an attempt

to invert the brushed DC machine to remove the need for the commutator

and brush gear. Rectangular-shaped phase currents are applied to the stator.

1
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The field excitation in the rotor is provided in the form of permanent magnet

excitation. Only two phase windings out of three conduct current at any

given instant of time. The structures of PMSM and BLDC are shown in

Figs. 1.1 and 1.2.

• Brushed DC machines (PMDC): The construction of a PMDC commutator

machine is similar to a conventional DC machine with the electromagnetic

excitation system replaced by permanent magnets. A PMDC commutator

motor can be compared with a separately excited DC motor. The only dif-

ference is in the excitation flux in the air gap: for PMDC commutator motor

excitation flux is constant whilst a separately excited DC motor’s excitation

flux can be controlled. The structures of a conventional DC machine and a

PMDC commutator machine are shown in Fig. 1.3.

Figure 1.1: Typical Configurations of PMSM Machine
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Figure 1.2: Typical Configurations of BLDC Machine

(a) (b)

Figure 1.3: Typical Configurations of (a) A DC Machine (b) A PM DC Machine

1.2 Permanent Magnet Materials

The most distinguishing part of a permanent magnet machine is that the permanent

magnet is placed inside to provide the field excitation. The design, performance

and application of a permanent magnet machine are closely related to the char-

acteristics of permanent magnet materials. The basic operational characteristic of

a magnet material is the portion of its hysteresis loop in the second quadrant. It

is also called the demagnetization curve. Fig. 1.4 illustrated the basic magnetic
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properties of permanent magnets.

Figure 1.4: Demagnetization curve and energy product of permanent magnets

When a permanent magnet has been magnetized, it remains magnetized even

if the applied magnetic field intensity is decreased to zero. The magnetic flux den-

sity at this point is called the remanence flux density, Br. If a reverse magnetic

field intensity is applied, the flux density decreases. If the value of the reverse

magnetic field is large enough, the flux density eventually becomes zero. The field

intensity value at this point is called the magnetic coercive force or coercivity, Hc.

When the reverse field intensity is removed, the flux density recovers according to

a minor hysteresis loop. Reapplying a reverse field intensity again reduces the flux

density to the original value thus completing the hysteresis loop. The hysteresis

loop is usually a very narrow loop so that it can be approximated by a straight

line called recoil line. The gradient of this line is called recoil permeability, µr. It

is this permeability that determines the change in flux density if the external field
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changes according to µr = ∆B/∆H. The operating point of a permanent magnet

is the intersection point of a B-H curve of the external magnetic circuit (load line)

and the demagnetisation curve of a permanent magnet. The operation point moves

along the demagnetisation curve with changes in the outer magnetic circuit. The

absolute value of the product of the flux density B and the field intensity H at

each point along the demagnetization curve can be represented by the energy prod-

uct and this quantity is one of the indexes of the strength of the permanent magnet.

The characteristics of permanent magnet materials vary with the structure

and processing of the materials. The most common type of magnets used in

permanent magnet machines are Alnico, ferrites, samarium-cobalt (SmCo) and

neodymium-iron-boron (NdFeB), their typical characteristic demagnetization curves

are shown in Fig. 1.5.

Figure 1.5: Characteristics of Permanent Magnet Materials
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Permanent magnets have been used in electric machines almost from the

beginning of the development of these machines as replacements for wound field

excitation systems. But the low energy densities of permanent magnets prevented

the use of permanent magnets in any types of machines other than very low power

control machines and signal transducers [3]. Modern permanent magnet machines

began with the development of Alnico magnets by Bell Labortories in the 1930’s.

This kind of magnets have the lowest temperature coefficient of Br and the highest

operating temperature. It has a Br value of up to 1.4 Tesla but with only a Hc

less than 120 kA/m. The applications of Alnico permanent magnet were limited.

However, the introduction of Alnico is the very start of widespread use of perma-

nent magnets in various devices.

Ferrite magnets were developed in 1950’s and have been used for decades. It

promoted the widespread use of permanent magnets in commercial and aerospace

applications. This kind of magnets has a Br value of around 0.3∼0.45 Tesla but

with a very high Hc up to 200 KA/m or more. Ferrite magnets have the lowest

cost and low core losses. They can be operational up to 100oC [4].

A revolution in permanent magnets commenced about 1960’s with the intro-

duction of samarium-cobalt (Sm-Co) family of hard magnets. It has a high value

of Br which is around 0.8∼1.1 Tesla and a strong Hc about 800 KA/m. However

the high cost of both samarium and cobalt makes this magnet one of the most

expensive magnetic materials in use today.

The revolution in magnetic materials accelerated with the discovery of an-

other new rare-earth magnet, neodymium-iron-boron (NdFeB) types. This kind of

magnets have higher Br values up to about 1.25 Tesla. The maximum tempera-
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ture for NdFeB ranges from 100o to 180o depending on the detailed composition [4].

The cost of this magnet is still high but it is more efficient in terms of flux per dollar.

1.3 Line-Start Permanent Magnet Synchronous

Machines

A line-start permanent magnet synchronous machine is characterized in structure

with squirrel cage bars (or damper windings) in the rotor for asynchronous starting,

as shown in Fig. 1.6. It is an induction machine with added permanent magnets in

the rotor, but it has a higher efficiency than induction machine and may represent

an alternative to the induction machine.

Figure 1.6: Cross Section of a Line-Start Permanent Magnet Synchronous Machine
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Line-start permanent magnet synchronous machines have several advantages

for industrial applications. The presence of the magnets means that the magnetiz-

ing current is unnecessary, which improves the power factor of the machine. The

absence of field ohmic losses and the much lower rotor losses once synchronized

make the efficiency of the machine high.

When a line-start permanent magnet synchronous machine is run up from

zero speed to the rated speed, several factors have to be considered, such as start-

ing current, starting torque, run-up time, etc. The maximum current occurs at

run-up as in a normal induction machine. The heavy inrush of current at starting

may cause demagnetization of the magnets unless suitable precautions are taken

in the design of such machines. Although the squirrel cage bars can protect the

magnets from demagnetization during the transients associated with the start-up,

the magnet thickness must be designed such that it can withstand the maximum

possible demagnetization current. In practice, this high starting current should be

prevented from happening often so as to protect the permanent magnet. Therefore

frequent self-starting of the machine should be avoided or the machine should be

started at low voltage and light loads.

Starting torque is another important issue during the starting of a line-start

permanent magnet synchronous machine. Three different torques appear in the

process of starting [5]:

• braking torque due to the magnet;

• pulsating torque due to rotor saliency acting as a braking torque;

• accelerating torque due to the rotor bars.



9

The squirrel cage bars in the rotor can provide the accelerating torque that

drive the machine to near synchronous speed. The magnet torque is a braking

torque that opposes the cage torque during run-up. The stronger the magnet field,

the greater the braking torque. The accelerating torque must overcome, not only

the applied load torque, but also the generated magnet braking toques due to the

presence of the permanent magnet flux and the rotor saliency. As the motor ap-

proaches synchronous speed, the level of accelerating cage torque is lowered and

the magnet torque reverses its role and becomes the sole source of accelerating

torque. This synchronizing toque from the permanent magnet must be big enough

so as to pull the machine into synchronism. For large capacity machines, a stronger

magnet field is needed for the synchronism. However, this high magnetic field will

result in a big braking torque at low speed and prevent the machine from starting.

Therefore for some line-start permanent magnet synchronous machines, especially

some large capacity machines, the self-starting is quite difficult or even impossible.

The ability of starting and synchronizing a considerable load and inertia

against friction and windage is crucial for self-starting permanent magnet syn-

chronous machine. Bigger load inertia causes larger starting current which may

bring demagnetization to the permanent magnet. With bigger load inertia, stronger

magnetic field is required to pull the machine into synchronism, which may result

in a big braking torque at low speed.

Pulsating torque is caused by the machine saliency during the run-up. It will

bring oscillation to the speed and hence mechanical variation to the shaft. This

pulsation torque persists right up to the moment of pull-in. Such oscillation may

be severe and cause damage to the shaft during the starting process.
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Heat is generated in the cage of the line start machines during start-up. This

heat is more of a problem in permanent magnet machines because of the proximity

of the cages to the magnets. Both the residual flux density and coercivity of some

permanent magnets reduce as a function of temperature. Indeed if the tempera-

ture excursion is beyond a certain value, permanent demagnetization can happen.

Therefore for permanent magnet synchronous machines with very high bar current

during the self-starting process, the heat effects brought along by the current may

cause the demagnetization of the permanent magnet. For such machines frequent

self-starting should not be applied.

The starting performance of a line-start permanent magnet synchronous ma-

chine from the moment of switch-on to the onset of stable synchronous running

forms an important part of the assessment of such machines for practical applica-

tions. The machine can be self-starting when connected to supply mains directly.

However, a few aspects as described above during the self-starting process have to

be considered, including the starting current, the demagnetization of permanent

magnet, the torque, etc. The machine can also be started with supply fed from

an inverter, where many starting quantities can be controlled, such as the starting

current, torque and frequency.

1.4 Computational Analysis of Permanent

Magnet Machines

Permanent magnet machines are widely used in industrial applications for their

superior performances. Performance simulation is vital to machine design as it is a

fast and low-cost way of predicting machine performances. The act of making and

remaking prototypes for actual testing, due to design changes, is both costly and
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time consuming. This becomes especially important for large or special-purpose

equipment where trial and error methods are impossible or prohibitively expen-

sive. So analysis and simulation of machines are competitive when compared with

the experimental methods of development. It is for this reason that the study of

permanent magnet machine performance using mathematical methods has received

much attention in recent years [6] - [8]. Generally, two methods are used for evaluat-

ing the performance of electromagnetic devices: analytical and numerical methods.

1.4.1 Analytical Methods

Traditional analytical methods, such as lumped parameter models and equivalent

circuits, are computationally fast and designers can also have a good view of model

sensitivities to design parameters. These methods are simple and involved only a

few simple circuit equations to be evaluated. The circuit equations can be either

algebraic in a steady state condition or in the form of ordinary differential equations

in the transient conditions. Simple computer programs can also be easily written

for this purpose. Most available type of machines can be analyzed using a circuit

model once the machine parameters are known.

The main limitation of this method is that accurate determination of nec-

essary parameters is very difficult for permanent magnet machines. Most of the

standard methods used in conventional machines are not suitable for permanent

magnet machines because the field excitation cannot be varied or switched off.

Moreover, the parameters especially the transient parameters are dependent on

current and speed to some extent. So unless a proper method is developed to take

these factors into account it is impossible to determine all the machine parameters

accurately by experimental methods [9].
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Other analytical methods, such as the method of images, can give us the solu-

tions to electromagnetic field problems [10]. These closed form solutions are usually

expressed through exact mathematical formulation. However, these methods can

only be used to solve the field problem with simple geometries. For example, the

method of images can only be applied to a range of problems in electrostatics and

magnetostatics when they involve relatively simple sources and possess an easily

identifiable symmetry. In reality, almost all the field problems are very compli-

cated. The resultant mathematical expressions may be too complicated for the

engineers to gain some intuitive feelings for the field behaviours. Sometimes it is

even difficult to obtain a mathematical expression just because of the complexity

of the problem [11].

1.4.2 Numerical Analysis

The limitations of the analytical methods require us to surrender the expectations

of closed form analytical solutions and to seek rigorous numerical field values di-

rectly. Using numerical methods, the solution of the field is not an analytical

expression, but the field values at some points in the field domain. If we can obtain

more such field points, we can find out more information about the field to be

solved. Although numerical methods are approximate by definition, high degrees

of accuracy are now possible.

In the analysis of electric machines, it is essential to be able to consider any

aspects of the design in great detail. Some critical factors, such as losses, tempera-

ture rise and efficiency, are dependent on the distribution of electromagnetic fields.

The computation of these fields to the accuracy now desired cannot be achieved by
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analytical method. Numerical methods offer a more accurate and powerful design

tool. Most important aspects of the field computation, such as material properties,

non-linearities and structural details, can be taken into account. It is particularly

effective when dealing with such qualitative analysis as the optimization, demag-

netization and transient phenomena in the machine. With numerical methods few

simplifications are necessary. It is possible to calculate the field in the machine

very close to that in an actual operation.

1.5 Analysis of Electric Machines Using Finite

Element Method

Numerical methods are more suitable for the electromagnetic field analysis of per-

manent magnet machines. There are a number of numerical methods available

for the analysis of electromagnetic field problems. A few of them are, finite differ-

ence method (FDM) [12], boundary element method (BEM) [13] and finite element

method (FEM) [8]. These methods have their advantages and disadvantages. How-

ever, finite element method incorporates most of the advantages of the other two

methods without incurring significant disadvantages; especially for the analysis of

electric machines where many factors need to be considered, such as complex ge-

ometries, magnetic and electric materials, induced currents, coupling of thermal

and mechanical effects, etc.. In such cases, the finite element method is more suit-

able. For example, the finite difference method is not easily applicable to the field

involving rapid changes of the gradient or complex geometries. Nodal distribution

can be very inefficient. This is not so with finite elements. Equally, boundary ele-

ment method is not efficient at handling non-linear materials [14]. Finite element

method is well suited for the analysis involved with nonlinearities. It can be used
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for solving both linear and non-linear field problems including simple and complex

geometries. Thus it is well recognized that finite element method offers consider-

able advantages in electrical machine analysis [14] - [16].

The finite element method was first introduced for the computation of mag-

netic field in nonlinear electromagnetic devices by Chari and Silvester in 1970’s

[17, 18]. It was mainly for solving nonlinear magnetostatic problems. Hannala and

MacDonald pioneered the numerical calculation of transient phenomenon during

the operation of electric machines [19]. They used time stepping techniques and

nodal method to predict the transient behavior of electric machines. The use of

time-stepping finite element method for analyzing nonlinear transient electromag-

netic field problems in electrical machines was presented by Tandon et al in the

1980’s [20].

In modern power systems, electric machines are often operated together with

the external circuits. The coupling of a comprehensive field analysis and circuit

analysis is necessary. Moreover, there are movable mechanical components in the

machine, like the rotor. Electromagnetic force determines the movement of these

components and the positions of these components in turn affect the electromag-

netic field within the machine. Therefore the coupling of mechanical movement

with the field and circuit analysis is also important.

Circuit equations are first applied to the steady state performance evaluation

of a turbine-generator by Brandl et al in 1975 [21]. A method of accounting for the

circuits in electric machines in the frequency domain was presented by Williamson

and Ralph in 1983 [22]. The direct coupling of fields and circuit equations in time

domain was applied by Nakata and Takahosi [23] in 1982. Later similar methods
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were also used by many other researchers in the 1980’s [24]-[26].

An integrated approach to couple fields, circuits and mechanical motion was

first presented by Arkkio [27] and Istfan [28] in 1987. Then a detailed description

was given by Salon et al [29]. Given the machine geometry, winding connections,

material characteristics, applied voltage and the loading conditions, machine cur-

rents, fields and the motion can be computed accordingly. Such type of finite

element method is often referred to as field-circuit coupled time stepping method.

It has been widely used in the analysis of various electric machines [30]-[34].

Currently many commercial softwares, such as Flux2D [35], Maxwell [36] and

many others [37]-[40], are available to researchers for analysis of various complex

field problems of static and time varying nature.

The field-circuit coupled time stepping finite element method has been applied

to the computation of line-start permanent magnet synchronous machine before

[31, 41, 42]. Most of the application is for single phase line-start permanent magnet

synchronous machine as in [31]. The implementation of this method to the three

phase machines are presented in [41, 42]. However, the coupling of electromagnetic

field with the external circuit, such as inverter, is not included in these works.

1.6 Parameter Determination of Permanent

Magnet Synchronous Machines

Performance simulation is vital to machine analysis as it is a fast and low-cost

way of predicting machine performances. Traditional analytical methods, such as

lumped parameter models are computationally fast and simple in determining the
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machine performances. The designers can also have a good view of model sensitiv-

ities to parameters. The analytical analysis requires machine parameters and the

accuracy of the analysis is wholly dependent on the accuracy of these parameters.

Therefore parameter determination is very important for performance evaluations

of electric machines.

Parameter determination is also important for the operations of machines.

Many synchronous machine drives are operated under various control schemes.

For example the flux weakening control is used in the synchronously rotating ref-

erence frame to actively vary the d-axis armature current as a function of loading

and speed. Such operation is realized with the knowledge of machine parameters.

It is for this reason that the accurate determination of machine parameters is in-

dispensable.

Many methods have been used for the determination of parameters of perma-

nent magnet synchronous machines [43] - [60], mainly focusing on the steady-state

synchronous reactances. Generally we can classify these methods as computational

methods and experimental methods. Computational methods, such as finite el-

ements [44, 45], allow assessment of parameters which are difficult to determine

experimentally and the estimation of various parameters even before the machine

prototype is made. But the limitation of computation modelling must be ap-

preciated [46]. The parameters of permanent magnet synchronous machines vary

nonlinearly due to the structural speciality of the rotor, the load condition and

current phase angle. Therefore the model should account for the parameter vari-

ations at different loading conditions and the iron saturation. Different authors

have proposed alternative methods to evaluate the variations of parameters with

iron saturation [47], [48]-[50]. However some assumptions have been made, such as
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the constant permanent magnet flux linkage with load conditions [48, 49] and no

mutual coupling between the two axes [48]-[50].

Experimental methods, such as static test (locked rotor test) [51]-[54], no-

load tests [53, 55], load tests [43], [56]-[58] and other methods [59, 60] have been

applied by many researchers. Most of the methods are based on the steady state

two-axis model of permanent magnet synchronous machines and some necessary

simplifications. For example, it is assumed in the static test that parameters are

constant with one frequency. In no-load tests the variation of permanent magnet

flux linkage under different loading conditions is neglected. Some load tests take

into account the iron saturation but the issue of variable permanent magnet exci-

tation still cannot be solved.

1.7 Scope of the Thesis

This thesis presents the dynamic analysis of permanent magnet synchronous ma-

chines using field-circuit coupled time stepping finite element method. It also deals

with the parameter estimation of permanent magnet synchronous machines using

both experimental and computational methods.

A line-start interior permanent magnet synchronous machine is used in this

work. In modern power system, the line start interior permanent magnet syn-

chronous machine is often operated with external circuits. The coupling of a com-

prehensive field analysis and circuit analysis is necessary. Moreover, electric ma-

chines are electromagnetic devices for electro-mechanical energy conversion. The

electromagnetic field inside the motor affects the movement of the rotor and the po-

sition of the rotor in turn affects the electromagnetic field. Therefore the coupling
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of mechanical movement with the field and circuit analysis is important. To ana-

lyze the dynamic performance of line-start permanent magnet synchronous machine

comprehensively, the field-circuit coupled time stepping finite element method is

implemented. The modelling of line-start permanent magnet synchronous machine

system is presented in Chapter 2. The finite element analysis is presented in Chap-

ter 3. As one of the dynamic performances, the starting process is computed and

presented in Chapter 5. This starting process includes both the self-starting and

the starting processes under different control schemes. The computational results

are validated by the experimental results.

Another important aspect in the analysis of permanent magnet synchronous

machines is the determination of its parameters, among which the most important

ones are the direct axis reactance Xd, the quadrature axis reactance Xq and the

permanent magnet excitation voltage E0. In Chapter 4 both the experimental

method and the computational method are discussed in combination to determine

these parameters. Two novel methods are proposed through the application of

linear regression and Hopfield neural network. Finite element analysis has been

used to compute the machine parameters as well.



Chapter 2

Mathematical Modelling of
Line-Start Permanent Magnet
Synchronous Machines

2.1 Introduction

Line-start permanent magnet synchronous machines have complex geometrical con-

figurations consisting of magnets, conductors, barriers, etc. Precise analysis and

simulation of these machines are challenging tasks for those who design and use

these machines. The accomplishment of these tasks depends on the accurate com-

putation of electromagnetic fields in the machine using analytical or numerical

methods. Essentially the method selected has to be able to analyze the electric

machines in considerable detail, so that a near exactness may be obtained. Elec-

tric machines are complicated devices, with difficulties such as complex geometries,

nonlinearities of materials and eddy currents, which cannot be included in an an-

alytical method. However, the use of numerical analysis can easily overcome these

difficulties.

The fundamental basis of applying numerical methods is the modelling of

electric machines. Electric machines receive power from external sources through

electric circuits. This in turn requires the modelling of electromagnetic fields inside

19



20

the machine to be coupled with electric circuit analysis. Moreover electric machines

are electro-mechanical conversion devices. It is important to take into account also

the interaction of electromagnetic fields, mechanical forces and motions. Therefore

a comprehensive modelling of electromagnetic fields, circuits and mechanical mo-

tion of an electrical machine system should be considered together.

Line-start permanent magnet synchronous machines have the capabilities of

self-starting. However, several factors and problems have to be considered, includ-

ing the starting current, the demagnetization of permanent magnets, the synchro-

nization, etc. The machine can also be started with supply fed from an inverter,

where many starting quantities can be controlled. Fig. 2.1 shows the configuration

of a line-start permanent magnet synchronous machine connected with an inverter.

The modelling of the whole system will be described in the remaining parts of this

chapter.

Figure 2.1: A Line-Start PMSM Connected with Inverter



21

2.2 Representation of Permanent Magnets

The properties and performances of a permanent magnet machine are greatly af-

fected by the characteristics of permanent magnets. Therefore proper represen-

tation of permanent magnet is very important in the design and analysis of a

permanent magnet machine. Generally there are two models to represent perma-

nent magnets: a magnetization vector model [8] and an equivalent current sheet

model [61]. These two methods have different starting points but they result in the

same set of equations [8]. In this work the magnetization vector model has been

used.

Magnetic behavior of magnet materials is described in terms of three interre-

lated vectors: B− magnetic induction or flux density, H− magnetic field intensity

and M− magnetization. For a magnet material NdFeB operated in the second

quadrant of its normal hysteresis loop, it can be represented as a straight line as

shown in Fig. 2.2. The relationship of the three vectors B, H and M can be

expressed as [62]:

B = µ0H + µ0M (2.1)

where µ0 is the permeability of the free space.

While calculating distributed fields, it is usual to describe the vector M in

terms of its remanent value Mr ( when H = 0 ) and M ′ which is the function of

magnetic susceptibility χm and H :

M = M ′ +Mr

= χmH +Mr (2.2)
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So equation (2.1) can be written as

B = µ0[(1 + χm)H + µ0Mr]

= µ0(µrH +Mr)

= µH + µ0Mr (2.3)

where µr = (1 + χm) is the relative permeability.

Equation (2.3) represents the relationship of B, H and Mr. It is the repre-

sentation of permanent magnet in terms of magnetization vector used in this work.

Figure 2.2: Straight Line Approximation of Magnet Characteristics
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2.3 Modelling of Electromagnetic Fields

The electromagnetic field in an electric machine is governed by Maxwell’s equations:

∇×H = J (2.4)

∇× E = −∂B
∂t

(2.5)

∇ ·B = 0 (2.6)

with the constitutive relationship:

J = σE (2.7)

and

B = µH (2.8)

where

J = current density

E = electric field intensity

σ = conductivity

Since

∇ ·B = 0,

we are able to find a vector A whose curl is equal to B and the ∇ ·B is assured to

be zero through ∇ · (∇× A) = 0. Thus

B = ∇× A (2.9)

and A is the magnetic vector potential.
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Substituting equation (2.9) into equation (2.5) yields

∇× E = −∂(∇× A)

∂t
= −∇× ∂A

∂t
(2.10)

or

∇× (E +
∂A

∂t
) = 0. (2.11)

Since the curl of a gradient is identically zero, we can write

E +
∂A

∂t
= −∇ψ (2.12)

or

E = −∂A
∂t

−∇ψ (2.13)

where ∇ψ is the gradient of a scalar quantity ψ called the scalar potential. Sub-

stituting equation (2.13) into equation (2.7), the current density vector becomes

J = σE = −σ(
∂A

∂t
+∇ψ). (2.14)

The current density in equation (2.14) includes two parts: one is induced quantity

∂A
∂t

produced by electromagnetic induction and the other one is ∇ψ caused by the

effect of charge build up at the conductor end.

If we consider a current-carrying conductor of length l, its positive terminal is

point a and negative terminal is point b. If the difference in electric scalar potential

between point a and b is Vtz volts, we can write

Vtz = Va − Vb =

∫ b

a

Escaledl = −
∫ b

a

∇ψdl. (2.15)

In two-dimensional field problems ∇ψ is considered to be constant in z−direction,

then equation (2.15) becomes

Vtz = −∇ψ · l (2.16)

or

∇ψ = −Vtz

l
(2.17)
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Therefore the current density vector for a stationary two-dimensional field is

J = −σ∂A
∂t

+ σ
Vtz

l
(2.18)

When the field is moving with a relative velocity v, two reference frames

(coordinate systems) have to be defined. One frame O(x, y, z) is stationary and

the other frame O′(x′, y′, z′) is moving. Assuming the time t and t′ measured in

the two frame are same, then following relation exists for vector E [63]:

E ′ = E + v ×B (2.19)

Therefore the current density observed from the stationary frame O(x, y, z) is

J = σ(E + v ×B)

= −σ∂A
∂t

+ σ
Vtz

l
+ σv ×B (2.20)

Combining with equation (2.4) yields

∇×H = −σ∂A
∂t

+ σ
Vtz

l
+ σv ×B. (2.21)

Recalling equations (2.8) and (2.9),

B = µH

∇× A = B

then equation (2.21) becomes

∇× (ν∇× A) = −σ∂A
∂t

+ σ
Vtz

l
+ σv ×B (2.22)

where ν = 1
µ

is the reluctivity.
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For permanent magnets which are represented by

B = µH + µ0Mr, (2.23)

∇×H = ∇× (νB)−∇× (νµ0Mr)

= ∇× (ν∇× A)−∇× (νµ0Mr).

Since

∇×H = J,

combining with equation (2.20) yields the governing equation for permanent mag-

net,

∇× (ν∇× A) = −σ∂A
∂t

+ σ
Vtz

l
+ σv ×B +∇× (νµ0Mr). (2.24)

For soft magnetic materials, equation (2.24) is reduced to equation (2.22) since

no remanent magnetization (Mr = 0). Therefore equation (2.24) is taken as the

general governing equation for moving time-varying field problems.

Employing the moving frame as reference frame, the relative velocity v be-

comes zero and equation (2.24) can be simplified as:

∇× (ν∇× A) = −σ∂A
∂t

+ σ
Vtz

l
+∇× (νµ0Mr) (2.25)

Equation (2.25) is the fundamental governing equation for the modelling of

various field problems. It can be solved for a wide class of field problems, involving

relative motion, non-linear material properties and time-variations. In the analysis

of electric machines, it is common to evaluate the field solution in two dimensions

considering the current density J and magnetic vector potential A having only z-

directed invariant components. This analysis is valid for most cases because the air

gap between the rotor and stator in an electrical machine is so small that for most

of the length of the machine, except the end regions, the machine is practically
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two-dimensional in operation. Comparing with three dimensional technique, two-

dimensional technique distinctively saves the computational cost and time despite

the possible loss in accuracy. Three dimensional effects such as skewing and end

winding effect can somehow be compensated by employing correction factors to the

field solution or applying some other techniques, like multi-slice [64]. Thus for a

given a problem domain or region, equation (2.25) with B and H in x − y plane

becomes,

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = σ

∂A

∂t
− σ

Vtz

l
−∇× (νµ0Mr) (2.26)

2.4 Circuit Equations

The analysis of electric machines depends on the accurate field analysis. The ap-

proach to analysis commonly involves two dimensional numerical methods with

specified current sources for the conductors. The knowledge of input currents is

essential for the successful field analysis of electrical devices. However in practice

electric devices are mostly connected to voltage sources instead of the ideal current

sources. The problem is further complicated by the connections of the conductors.

Therefore analysis of field problems with a voltage source and arbitrary waveforms

is preferred. Circuit equations that represent the relations of current and voltages

are needed. The coupling of circuit equations to the field analysis is necessary.

Modern electric machines are often operated under some external circuits

connected to a known voltage source. The behaviours of such circuits affect the

integrity and performance of all the connected devices. Unless the interactions of

these external circuits with the electric machines are considered, the analysis of the

electric machines cannot assumed to be complete. Thus it is necessary to include

the modelling and circuit description of such devices.
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2.4.1 Representation of a Conductor

The sources of magnetic fields in machines are currents in the stator windings and

the rotor cage bars. These windings and bars can be modelled using individual

conductors as circuit components in our modelling. Let us consider a conductor as

shown in Fig. 2.3 (a). It has length of li and a cross-section area of si. The current

flowing in the conductor is Ii and the terminal voltage is Vtz. From equation (2.20)

we can see that the current density in a conductor of length li is given by (in moving

reference frame):

J = −σ∂A
∂t

+ σ
Vtz

li
. (2.27)

Integrating equation (2.27) over its corresponding cross-sectional area si yields the

total current Ii flowing in this conductor, which is:

Ii =

∫ ∫
si

Jdxdy

= −σ
∫ ∫

si

∂A

∂t
dxdy + σ

Vtz

li

∫ ∫
si

dxdy

= −σ
∫ ∫

si

∂A

∂t
dxdy + σ

si

li
Vtz (2.28)

Rearranging equation (2.28) by moving term −σ
∫ ∫

si

∂A
∂t
dxdy to the other side

yields

σ
si

li
Vtz = Ii + σ

∫ ∫
si

∂A

∂t
dxdy. (2.29)

Divided by σ si

li
on both sides of equation (2.29), the terminal voltage Vtz across a

z-directed conductor with length li and cross-section area si is:

Vtz =
li
σsi

Ii +
li
si

∫ ∫
si

∂A

∂t
dxdy

= RdciIi +
li
si

∫ ∫
si

∂A

∂t
dxdy (2.30)

where Rdci = li/(σsi) is the dc resistance of the conductor. Thus one conductor

can be represented as one resistor together with an induced voltage li
si

∫ ∫
si

∂A
∂t
dxdy

as shown in Fig. 2.3 (b).
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Figure 2.3: Representation of a Conductor

Both stator windings and rotor cage bars are made up of conductors con-

nected in series or in parallel. It is possible to model them using two-dimensional

models based on the modelling of one conductor. However some properties and fea-

tures due to the inherent three dimensional nature of electric machines have to be

taken into account. Among these features the most important ones are the stator

end-windings and rotor end rings. These end effects lie outside the jurisdiction of

two dimensional numerical models, which can only account for the currents flowing

in Z−direction. Therefore some means must be found to deal with these end effects.

Stator end-winding effects are dealt with simply by adding an appropriate

external impedance in the stator circuit equations [23]. For rotor end-ring effects,

Strangas [25] neatly combines the end-ring impedance with the field analysis by

means of rotor loop equations. These methods are quite effective when including

the three-dimensional effects into the two-dimensional field analysis. They have

been used frequently in the analysis of electric machines [27, 64].
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2.4.2 Equivalent Circuits of Stator Windings

Stator windings are made up by conductors connected in many turns. If we con-

sider a ’go’ and ’return’ loop of current-carrying conductors (Fig. 2.4) connected

to an external input voltage source Vext through an external resistance Rext and

inductance Lext, we can get:

Vext = V +
tz − V −tz +RextiI + Lexti

dI

dt
(2.31)

Figure 2.4: One Turn of ’Go’ and ’Return’ Loop of Conductors

Substituting equation (2.30) into equation (2.31) yields

Vext = R+
dciI

+
i −R−dciI

−
i +

l+i
s+

i

∫ ∫
s+
i

∂A

∂t
dxdy− l−i

s−i

∫ ∫
s−i

∂A

∂t
dxdy+RextiI+Lexti

dI

dt

(2.32)

For N conductors connected in series (Fig. 2.5),

Vext =
N∑

i=1

R+
dciI

+
i −

N∑
i=1

R−dciI
−
i +

N∑
i=1

l+i
s+

i

∫ ∫
s+
i

∂A

∂t
dxdy −

N∑
i=1

l−i
s−i

∫ ∫
s−i

∂A

∂t
dxdy

+
N∑

i=1

RextiI +
N∑

i=1

Lext
dI

dt
(2.33)
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When N is large, the representation of each conductor as shown above is

unrealistic to carry out in calculation. Under this condition a uniform current,

length and cross section area for each conductor are assumed:

I+
1 = I+

2 = . . . = I+
N = I

I−1 = I−2 = . . . = I−N = −I

l+1 = l+2 = . . . = l+N = l

l−1 = l−2 = . . . = l−N = l

s+
1 = s+

2 = . . . = s+
N = s = Stt/N

s−1 = s−2 = . . . = s−N = s = Stt/N (2.34)

Here

Stt = the total cross section area of the N−turn conductors

s = the average cross section area of one turn of conductor

and the insulation space between the turns are neglected

+ is for the ’go’ conductor

− is for the ’return’ conductor

Figure 2.5: N Turns of Conductors Connected in Series
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Substituting equation (2.34) to equation (2.33) yields

Vext = (Rdc +Rext)I + Lext
dI

dt
+
l

s
(

∫ ∫
S+

tt

∂A

∂t
dxdy −

∫ ∫
S−tt

∂A

∂t
dxdy) (2.35)

where

Rdc =
∑N

i=1R
+
dci +R−dci = 2lN

σs
is the total cross section area

of N -turn conductors

Rext =
∑N

i=1Rexti is the total external resistance

Lext =
∑n

i=1 Lexti is the total external inductance

Equation (2.35) can be extended to get the circuits of stator phase windings

in electric machines (Fig. 2.6). The resistance of the windings lying in the body of

the stator core is Rdc, the resistance of the end windings is represented by Rext and

the inductance of the end windings is represented by Lext or Le. Windings con-

stituted in one phase of the electric machines are not always connected in series.

Instead some branches may be connected in parallel as shown in Fig 2.7.

If the phase windings have m branches in parallel, we can get:

is = is1 + is2 + . . .+ ism

Ω± = Ω±1 + Ω±2 + . . .+ Ω±m

1

Rdc

=
1

Rdc1

+
1

Rdc2

+ . . .+
1

Rdcm

1

Rext

=
1

Rext1

+
1

Rext2

+ . . .+
1

Rextm

1

Le

=
1

Le1

+
1

Le2

+ . . .+
1

Lem

(2.36)
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Figure 2.6: Representation of Stator Phase Windings

Figure 2.7: Representation of Stator Phase Windings with Branches in Parallel
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Therefore the general governing equation for stator phase circuits in electrical

machines is:

Vs = (Rdc +Rext)is + Le
dis
dt

+
l

ms
(

∫ ∫
Ω+

∂A

∂t
dxdy −

∫ ∫
Ω−

∂A

∂t
dxdy)

= Rsis + Le
dis
dt

+
l

ms
(

∫ ∫
Ω+

∂A

∂t
dxdy −

∫ ∫
Ω−

∂A

∂t
dxdy)

= Rsis + Le
dis
dt

+ Vi (2.37)

where

Vs = applied stator phase voltage

is = stator phase current

Rs = total equivalent resistance per phase

Le = total equivalent inductance of end winding

l = the length of stator windings in Z−direction,

usually it uses the same value as the axial length of stator iron core

m = number of stator winding branches in parallel connection

s = equivalent cross section area of one turn of stator windings

Ω+,Ω− = total cross section area of ’go’ and ’return’ windings per phase respectively

Vi = induced voltage per phase

Equation (2.37) describes the relationship of external voltage source Vs, cor-

responding current is and vector potential A. Therefore we can calculate the field

value A directly from the external voltage source Vs. It is quite effective in the com-

putation of two dimensional electromagnetic fields with coupled external voltage

sources.
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In three-phase electric machines, usually the stator phases are connected in

two different types of connections: a delta (4) connection or a star (Y ) connection

(Fig. 2.8). Representation of sources and circuits in the modelling process can be

achieved using common circuit laws such as Kirchoff’s voltage rule.

Figure 2.8: Connections of Stator Phase Windings (a) 4 - Connection (b)Y -

Connection

In Fig. 2.8, Vtk|k=1,2,3 are terminal voltages of the stator phases, ilk are line

currents and isk are phase currents. ilk and Vtk are measurable quantities from

outside. isk are the quantities used in the model of stator phases.

Taking loops around every two terminals of 4 connection yields,

Vt1 − Vt2 = Rs1is1 + Le1
dis1
dt

+ Vi1

Vt2 − Vt3 = Rs2is2 + Le2
dis2
dt

+ Vi2

Vt3 − Vt1 = Rs3is3 + Le3
dis3
dt

+ Vi3 (2.38)

and  il1

il2

il3

 =

 1 0 −1

−1 1 0

0 −1 1


 is1

is2

is3

 (2.39)
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Taking loops around every two terminals of Y connection yields,

Vt1 − Vt2 = Rs1is1 + Le1
dis1
dt

+ Vi1 − (Rs2is2 + Le2
dis2
dt

+ Vi2)

Vt2 − Vt3 = Rs2is2 + Le2
dis2
dt

+ Vi2 − (Rs3is3 + Le3
dis3
dt

+ Vi3)

Vt3 − Vt1 = Rs3is3 + Le3
dis3
dt

+ Vi3 − (Rs1is1 + Le1
dis1
dt

+ Vi1) (2.40)

and  il1

il2

il3

 =

 1 0 0

0 1 0

0 0 1


 is1

is2

is3

 (2.41)

2.4.3 Modelling of Rotor Cage Bars

As illustrated in Fig. 2.9, the cage bars in the rotor of a line-start permanent

magnet synchronous machine are usually joined together at their ends by means

of conducting end rings. Each cage bar can be modelled using the model of one

conductor separately. To include the three-dimensional effects of end rings into

the two-dimensional field calculations, a circuit model is used. In this model, the

end rings are simplified as impedances. Kirchoff’s laws are used to describe the

interactions between the cage bars and the end rings.

Figure 2.9: Structure of Rotor Cage Bars
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Fig. 2.10 shows the equivalent circuit of the rotor cage bars. For each bar,

the voltage across its terminals is Vbk, where k = 1, 2, . . . , n, and n is the total

number of bars. Vk is the induced voltage, ibk is the current flowing in the bar and

Rbk is the equivalent resistance of the bar. The bars are connected at their ends

through end rings, each segments of the end rings possesses both resistance Rek

and inductance Lek. The current flowing in the segment of the end rings is iek.

Figure 2.10: Equivalent Circuit of Rotor Cage Bars

Implementing the model of one conductor for each cage bar yields

Vbk = Rbkibk +
lbk
sbk

∫ ∫
sbk

∂A

∂t
dxdy (2.42)

where lbk is the length of kth bar in Z−direction and sbk is the cross section area

of the bar.

Applying Kirchoff’s current law to each joint (1, 2, . . . , k, . . . , n) of cage bars

and end rings, we can get:

ien + ib1 − ie1 = 0

ie1 + ib2 − ie2 = 0

...

ie(k−1) + ibk − iek = 0

...

ie(n−1) + ibn − ien = 0 (2.43)
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It can also be rewritten as:

[ib]− [C1][ie] = 0 (2.44)

where

[ib] =
(
ib1 ib2 . . . ibk . . . ibn

)tr

, (2.45)

[C1] =



1 . . . . . . . . . . . . −1

−1 1 . . . . . . . . . . . .
...

...
...

...
...

...

. . . . . . −1 1 . . . . . .
...

...
...

...
...

...

. . . . . . . . . . . . −1 1


n×n

, (2.46)

[ie]
(
ie1 ie2 . . . iek . . . ien

)tr

, (2.47)

and ’()tr’ denotes the transpose operation of a matrix.

Applying Kirchoff’s voltage law to each loop surrounded by two segments of

end rings and two cage bars, we can get:

Vb1 + 2(Re1ie1 + Le1
die1
dt

)− Vb2 = 0

Vb2 + 2(Re2ie2 + Le2
die2
dt

)− Vb3 = 0

...

Vbk + 2(Rekiek + Lek
diek
dt

)− Vb(k+1) = 0

...

Vbn + 2(Renien + Len
dien
dt

)− Vb1 = 0 (2.48)

Putting them in a matrix form yields:

[C2][Vb] + 2{[Re] +
d

dt
[Le]}[ie] = 0 (2.49)
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where

[C2] =



1 −1 . . . . . . . . . . . .

. . . 1 −1 . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . 1 −1 . . .
...

...
...

...
...

...

−1 . . . . . . . . . . . . 1


n×n

, (2.50)

[Vb] =
(
Vb1 Vb2 . . . Vbk . . . Vbn

)tr

, (2.51)

[Re] =
(
Re1 Re2 . . . Rek . . . Ren

)tr

, (2.52)

[Le] =
(
Le1 Le2 . . . Lek . . . Len

)tr

. (2.53)

Equations (2.42), (2.44) and (2.49) are three governing equations for the mod-

elling of cage bars. They cover the whole solution domain of the rotor cage bars.

Electric machines are geometrically symmetrical devices. With the intention

of saving computational efforts, usually only part of the problem domain is used in

the numerical computation. Under this condition, equations (2.44) and (2.49) will

have different formats. The main difference lies in the format of matrices [C1] and

[C2]. If there are only np(np ≤ n) bars involved in the computation, the current

and voltage of bar np and bar n have the following relationships,

ienp = δ · ien

ibnp = δ · ibn

Vbnp = δ · Vbn (2.54)

where δ = 1 or δ = −1. The value of δ depends on how many poles are included

in the computation domain. Two cases are illustrated below:
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(1) Pairs of poles are included in the computation domain

The cage bars over pairs of poles pitch have identical currents and voltages. There-

fore if the domain to be investigated spans over pairs of poles in electric machine,

δ = 1. Under this condition, equation (2.43) becomes

ienp + ib1 − ie1 = 0

ie1 + ib2 − ie2 = 0

...

ie(k−1) + ibk − iek = 0

...

ie(np−1) + ibnp − ienp = 0 (2.55)

or

[ibp]− [C1p][iep ] = 0 (2.56)

where

[ibp] =
(
ib1 ib2 . . . ibk . . . ibnp

)tr

, (2.57)

[C1p] =



1 . . . . . . . . . . . . −1

−1 1 . . . . . . . . . . . .
...

...
...

...
...

...

. . . . . . −1 1 . . . . . .
...

...
...

...
...

...

. . . . . . . . . . . . −1 1


np×np

, (2.58)

[iep] =
(
ie1 ie2 . . . iek . . . ienp

)tr

. (2.59)
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Similarly substituting equation (2.54) into equation (2.48) when δ = 1 yields,

Vb1 + 2(Re1ie1 + Le1
die1
dt

)− Vb2 = 0

Vb2 + 2(Re2ie2 + Le2
die2
dt

)− Vb3 = 0

...

Vbk + 2(Rekiek + Lek
diek
dt

)− Vb(k+1) = 0

...

Vbnp + 2(Renpienp + Lenp

dienp

dt
)− Vb1 = 0 (2.60)

or

[C2p][Vbp] + 2{[Rep] +
d

dt
[Lep]}[iep] = 0 (2.61)

where

[C2p] =



1 −1 . . . . . . . . . . . .

. . . 1 −1 . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . 1 −1 . . .
...

...
...

...
...

...

−1 . . . . . . . . . . . . 1


np×np

, (2.62)

[Vbp] =
(
Vb1 Vb2 . . . Vbk . . . Vbnp

)tr

, (2.63)

[Rep] =
(
Re1 Re2 . . . Rek . . . Renp

)tr

, (2.64)

[Lep] =
(
Le1 Le2 . . . Lek . . . Lenp

)tr

. (2.65)

(2) Odd number of poles are included in the computation domain

On the other hand, the cage bars over one-pole pitch have equivalent current and

voltage in magnitude but in opposite direction. So if the domain to be investigated

spans over one pole in electric machine, δ = −1 for equation (2.54). Equation
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(2.43) becomes

− ienp + ib1 − ie1 = 0

ie1 + ib2 − ie2 = 0

...

ie(k−1) + ibk − iek = 0

...

ie(np−1) + ibnp − ienp = 0 (2.66)

and matrix [C1p] becomes

[C1p] =



1 . . . . . . . . . . . . +1

−1 1 . . . . . . . . . . . .
...

...
...

...
...

...

. . . . . . −1 1 . . . . . .
...

...
...

...
...

...

. . . . . . . . . . . . −1 1


np×np

. (2.67)

Similarly equation (2.48) becomes

Vb1 + 2(Re1ie1 + Le1
die1
dt

)− Vb2 = 0

Vb2 + 2(Re2ie2 + Le2
die2
dt

)− Vb3 = 0

...

Vbk + 2(Rekiek + Lek
diek
dt

)− Vb(k+1) = 0

...

−Vbnp + 2(Renpienp + Lenp

dienp

dt
)− Vb1 = 0 (2.68)

and matrix [C2p] becomes

[C2p] =



1 −1 . . . . . . . . . . . .

. . . 1 −1 . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . 1 −1 . . .
...

...
...

...
...

...

+1 . . . . . . . . . . . . 1


np×np

. (2.69)
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In summary, matrices [C1] and [C2] are:

[C1] =



1 . . . . . . . . . . . . ∓1

−1 1 . . . . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . −1 1 . . .
...

...
...

...
...

...

. . . . . . . . . . . . −1 1


np×np

, (2.70)

[C2] =



1 −1 . . . . . . . . . . . .

. . . 1 −1 . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . 1 −1 . . .
...

...
...

...
...

...

∓1 . . . . . . . . . . . . 1


np×np

, (2.71)

where np(np ≤ n) is the number of cage bars in the computation domain. If the

domain to be investigated spans over one pair of poles in electric machine, the signs

’∓’ in equations (2.70) and (2.71) should be ’-’. If the studied domain covers odd

number of poles, then the signs should be ’+’.

2.4.4 Modelling of External Circuit Components

A suitable simulation of the behavior of the machines and drives should take into

account the numerical models of electrical, electronic circuit and electromagnetic

fields. In the modelling of electronic circuits, the main difficulties lie in the mod-

elling of transistors, diodes and other active nonlinear semiconductor devices. The

method proposed by F. Piriou and A. Razek [65, 66] could be used to get the

simultaneous solution of the field equations and equations of the circuits with non-

linear semiconductor elements. This method basically is an application of Newton-

Raphson algorithm to both the magnetic core nonlinearity and the nonlinearity

of the semiconductor components. A. Demenko [67] simplified the method and

approximated the volt-ampere characteristics (the nonlinearity) of semiconductor
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components by piecewise linear functions. By using this simplified method, the

calculation time can be reduced to some extent, but this method is still not easy to

apply in computation because the nonlinearities of the semiconductors are included

to some extent. For high voltage machines the semiconductor voltage drops are

not very significant compared to line voltages, and as such these components can

be simplified as linear elements in modelling.

Generally, the semiconductor components(transistors and diodes) can be sim-

ulated in the switching mode as they are operated in the power electronics con-

trollers. The model of a diode is shown in Fig. 2.11.

Figure 2.11: Representation of a Diode

The working behaviours of diodes are either forward biased or reverse biased.

For an ideal diode we can take the forward bias (diode is ’ON’) as a short circuit

operation and the reverse bias (diode is ’OFF’) as an open circuit operation. In

reality the diode has offset voltage and a resistance for forward bias [68]. Therefore

the operations of a diode can be modelled in terms of the offset voltage Voff and a

resistance. As shown in Fig. 2.11, a resistance Ron is considered as the resistance
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of the diode for forward bias and a resistance Roff with sufficient high value to

simulate the reverse bias operation. The diode switches into conduction when the

applied voltage (V1− V2) exceeds the offset voltage Voff otherwise it reverts to the

blocking states.

This is a suitable model to simulate the diodes because the instants of com-

mutation are determined by function of the behaviour of the electric circuit. We

do not have to impose the instants of commutation.

The model of a transistor is shown in Fig. 2.12. The output performance of

a transistor is the relation of ic with VCE under switching signal VGE. If VGE > 0,

the transistor is ’ON’; while VGE < 0, the transistor is ’OFF’. A low resistance

value Ron is used to simulate the conduction state and a sufficient high resistance

value Roff is used when it is blocked. The switching signals VGE is determined by

the control strategy.

Figure 2.12: Representation of a Transistor
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In power application, most of the external circuits connected to electric ma-

chines consist of mainly semiconductor components, resistors (R), inductors (L)

and capacitors (C). Now with the semiconductor components being modelled as

resistors, the external circuits can be simplified as R− L− C circuits only.

As shown in Fig. 2.13, the external circuits can be represented by several

branches of circuits made up by resistors, inductors or capacitors. Each branch

has terminal voltages Vin and Vout. A current isb flows through the branch. In the

part of electric machine, the terminal voltages of phases are represented by Vt1, Vt2

and Vt3. The line currents are il1, il2 and il3. The governing equations for different

types of branches are:

• for resistor,

Rsbisb = Vin − Vout; (2.72)

• for inductor,

Lsb
disb
dt

= Vin − Vout; (2.73)

• for capacitor,

isb = Csb(
dVin

dt
− dVout

dt
); (2.74)

Figure 2.13: Representation of a Machine Connected with External Circuits
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In forming the circuits all the branches are connected by joints in series or

in parallel, as shown in Fig. 2.14. Therefore the governing equation for external

circuits is:

{[Rsb] +
d

dt
[Lsb]}[isb] + [Csb]

d

dt
[Vsb;Vt] = 0 (2.75)

where isb is the current flowing in all the branches of the external circuits

[isb] =
(
isb1 isb2 . . . isbk . . . isbM

)tr

, (2.76)

Vsb is the terminal voltages of all the joints in the external circuits

[Vsb] =
(
V1 V2 . . . Vk . . . VM

)tr

, (2.77)

Vt is the terminal voltages of the electric machine

[Vt] =
(
Vt1 Vt2 Vt3

)tr

(2.78)

and M is the total number of joints in the external circuits.

Figure 2.14: Circuits Description of a Machine Connected with External Circuits
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For each joint in the circuit, Kirchoff’s current law is applied. For example,

for joint ’N ’ in Fig. 2.14, the current equation is:

isb(n−1) + isbn − isb(n+1) = 0. (2.79)

The current equations for the whole circuit are:

[C3][isb] + [C4][is] = 0 (2.80)

where [is] is the stator phase currents

[is] =
(
is1 is2 is3

)tr

, (2.81)

[C3] is the coefficient matrix decided by the structure of the external circuits and

[C4] is the coefficient matrix decided by the ’4’ or ’Y ’ connection of stator phase

winding.

2.5 Equation of Motion

Rotating electric machines are one kind of electromagnetic devices for electro-

mechanical energy conversion. Normally the electric machines have two fundamen-

tal parts: the stator that is fixed and the rotor that is rotating mechanically. The

movement of the rotor is determined by the electromagnetic forces originated from

the interaction between the electromagnetic field in the air gap and the currents.

The positions of rotor is changed continuously with the movement, which in turn

affects the electromagnetic field within the machine. Therefore a complete analysis

of electric machine should take into account the dynamic mechanical movement of

the rotor.
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The analysis of electric machines involves the continuous movement of the

rotor, which is governed by:

Jr
dωm

dt
= Tem − TL −Bfωm, (2.82)

dθm

dt
= ωm (2.83)

where

Jr = the moment of inertia of the rotor

θm = the rotor position

ωm = the mechanical motor speed

Tem = the electromagnetic torque

TL = the applied load torque

Bf = the coefficient of friction

For a particular machine, Jr and Bf are taken as constants. The value of TL

is decided by the loading conditions of the machine. Equations (2.82) and (2.83)

are time-dependent. The values of θm, ωm and Tem vary with the instants of time.

2.6 Conclusion

This chapter presented the modelling of electric machines with coupled circuits

and motion. The governing equations for the magnetic field, the circuits and the

motion are summarized below:

• The field equation,

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = σ

∂A

∂t
− σ

Vtz

l
−∇× (νµ0Mr)
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• Stator phase equation,

Vs = Rsis + Le
dis
dt

+
l

ms
(

∫ ∫
Ω+

∂A

∂t
dxdy −

∫ ∫
Ω−

∂A

∂t
dxdy)

• Equations for cage bars,

Vbk = Rbkibk +
lbk
sbk

∫ ∫
sbk

∂A

∂t
dxdy

[ib]− [C1][ie] = 0

[C2][Vb] + 2{[Re] +
d

dt
[Le]}[ie] = 0

• Equations for external circuits,

{[Rsb] +
d

dt
[Lsb]}[isb] + [Csb]

d

dt
[Vsb;Vt] = 0

[C3][isb] + [C4][is] = 0

• Equations for mechanical motion,

Jr
dωm

dt
= Tem − Tf −Bfωm,

dθm

dt
= ωm

Formulation of finite element computational procedures is based on the simul-

taneous solutions of these sets of equations. Detailed account of numerical analysis

are presented in the following chapters.



Chapter 3

Finite Element Analysis of
Line-Start Permanent Magnet
Synchronous Machines With
Coupled Circuits and Motion

3.1 Introduction

Finite element method is a numerical tool used in solving partial differential equa-

tions in a given domain including the boundary conditions. Variational principle

or the method of weighted residuals is used to derive the finite element equations

[8]. The fundamental concept of the method is to divide the problem domain into

a number of small subregions or elements. The unknown field values are approx-

imated in those elements by simple shape functions, mostly linear or quadratic.

After the finite element formulation of governing equation in each element and the

assembly of all the elements, a large linear system of equations is generated. The

solution to this system of equations gives the field values of the whole problem

domain. Compared with other numerical methods, the main advantages of finite

element methods are its flexibility for modelling complex geometries, the capabil-

ity of handling nonlinearities and eddy currents, easy implementation and stable

solutions.

51
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In general, the following steps are involved in the finite element method:

• Define the problem of interest by partial differential equations;

• Subdivide the problem field region into many small subregions;

• Choose the interpolation function in terms of the nodal vales of the elements;

• Derive the finite element equations within each element in terms of energy-

related functions or weighted residual expressions;

• Assembly of the element equations and the global system of equations is

generated;

• Impose boundary conditions;

• Solve the global system of equations with appropriate methods;

• Convert the field solutions to useful design quantities.

When the finite element field analysis is coupled with the circuit analysis and the

mechanical motion, the following steps should also be included:

• the discretization of equations in time domain;

• the combination of field equations with the circuit equations;

• the simulation of the rotor motion.

3.2 Summary of the Equations

Finite element analysis of electric machines is based on the proper definition or the

modelling of the problem. A complete model of an electric machine should include:

(1) the electromagnetic field,

(2) the circuits that transfer the external power to the field,
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(3) the motion of rotor that have interaction with the field.

The governing equations for the field, circuit and motion have been derived

in Chapter 2 and they are listed as follows:

• The field equation,

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = σ

∂A

∂t
− σ

Vtz

l
−∇× (νµ0Mr) (3.1)

• Stator phase equation,

Vs = Rsis + Le
dis
dt

+
l

ms
(

∫ ∫
Ω+

∂A

∂t
dxdy −

∫ ∫
Ω−

∂A

∂t
dxdy) (3.2)

• Equations for cage bars,

Vbk = Rbkibk +
lbk
sbk

∫ ∫
sbk

∂A

∂t
dxdy (3.3)

[ib]− [C1][ie] = 0 (3.4)

[C2][Vb] + 2{[Re] +
d

dt
[Le]}[ie] = 0 (3.5)

• Equations for external circuits,

{[Rsb] +
d

dt
[Lsb]}[isb] + [Csb]

d

dt
[Vsb;Vt] = 0 (3.6)

[C3][isb] + [C4][is] = 0 (3.7)

• Equations for mechanical motion,

Jr
dωm

dt
= Tem − Tf −Bfωm, (3.8)

dθm

dt
= ωm (3.9)

Equations (3.1)-(3.3) are directly field-dependent. Finite element formulations of

these equations are needed. Equations (3.4)-(3.9) are indirectly related to the field

values. Therefore they can be taken as constraints and finite element formulations

are unnecessary.
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3.3 Domain Discretization

To discretize the domain into subregions (finite elements) is the first step in finite

element method. The shapes, sizes and the configurations of the elements may

vary, but a few important points must be taken into consideration during the mesh

generation process:

(a) the nodes should be placed within the region and on the boundary of the field

domain;

(b) the density of the nodes should be high in those areas where the field varies

rapidly and the elements could be large while the field is uniform;

(c) the elements cannot overlap meanwhile no empty spaces can be left;

(d) for a region composed of different materials, the separating lines should be

represented by the boundaries of elements;

(e) in order to reduce the storage and bandwidth of the resultant global matrix,

the numbering of the nodes should be optimized [69].

There are many types and shapes of elements that can be used for the dis-

cretization of a domain. Fig. 3.1 shows some two and three dimensional finite

elements. In the two-dimensional electromagnetic field analysis of electric ma-

chines, triangular elements are usually used. The best in triangular elements are

the free topology irregular triangular meshes. Any complicated geometry can fi-

nally be represented without any undue mathematical complexity [9]. Because of

their shapes, triangular elements are one of the most suitable class of elements

which can represent accurately a very complicated machine geometry. This type

of element has been used extensively in the analysis of electric machine problems

[18, 19, 20, 64].
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(a) Two-dimensional elements

(b) Three-dimensional elements

Figure 3.1: Some of the Widely Used Elements in Domain Discretization

Mesh generation is one of the most time-consuming problems encountered

when using finite element method. To overcome this problem, automatic mesh

generation has been proposed for producing meshes for any geometry without user

intervention [70]. The principal object we use automatic mesh generation is to

achieve good-quality meshes which is essential for accurate solutions. In this work

the pre-processer of commercial software FLUX2D [35] is used to do the mesh

generation.

3.4 The Choice of Shape Functions

Once the problem domain has been discretized into finite elements, a trial function

is used to approximate the behaviour of the field quantities within the element.

Usually a polynomial function is chosen because it is easy to differentiate and

integrate polynomials. For two-dimensional field problems, a complete nth order



56

polynomial may be written as:

f = a0 + a1x+ a2y + a3xy + a4x
2 + a5y

2 + . . .+ amy
n (3.10)

where

n = the order of the polynomial

m = (n+1)(n+2)
2

= the total number of coefficients in the expansion

The terms in a complete two-dimensional polynomial may be conveniently deter-

mined by referring to the Pascal triangle [71] which is shown in Fig. 3.2.

Figure 3.2: Pascal Triangle of Polynomial Expansion

In Fig. 3.2, only the expansion for highest order of n = 5 is given. It can be

extended to any higher order also. For the same size of mesh, the higher order

polynomials are expected to yield better accuracy.

For a first-order triangular element shown in Fig. 3.3, the corresponding

linear interpolation function for the magnetic vector potential in the element can

be expressed as:

Â(x, y) = k0 + k1x+ k2y (3.11)

where k0, k1 and k2 are constant coefficients to be determined.
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Figure 3.3: A Typical Triangular Element in the X − Y Plane

Relating the coefficients of equation (3.11) to the potentials at the 3 element

nodes, we can get:

 k0

k1

k2

 =

 1 x1 y1

1 x2 y2

1 x3 y3


−1 Â1

Â2

Â3

 . (3.12)

Substituting equation (3.12) into equation (3.11), the interpolating function of Â

in terms of values of Âi(i = 1, 2, 3) at the nodes can be obtained as:

Â(x, y) = N1Â1 +N2Â2 +N3Â3 =
3∑

i=1

NiÂi (3.13)

where

N1 =
1

2∆
(a1 + b1x+ c1y)

N2 =
1

2∆
(a2 + b2x+ c2y)

N3 =
1

2∆
(a3 + b3x+ c3y) (3.14)

are the shape functions, ∆ is the area of the triangular element which is given by

∆ =
1

2

∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣ (3.15)
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and

a1 = x2y3 − y2x3; a2 = x3y1 − y3x1; a3 = x1y2 − y1x2;

b1 = y2 − y3; b2 = y3 − y1; b3 = y1 − y2;

c1 = x3 − x2; c2 = x1 − x3; c3 = x2 − x1;

In the two dimensional finite element analysis, the magnetic vector potential A has

only invariant z-directed components in the x, y, z-coordinates. Therefore we can

get

A = Az. (3.16)

Since the flux density is the derivative of the vector potential

B = ∇× A =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 0 Az

∣∣∣∣∣∣∣ =
∂Az

∂y
· x̂− ∂Az

∂x
· ŷ, (3.17)

Combination of equations (3.16) and (3.17) yields:

Bx =
∂A

∂y
(3.18)

By = −∂A
∂x

. (3.19)

Substituting equation (3.13) into equations (3.18) and (3.19) yields the x and y

components of flux density

Bx =
1

2∆
(b1Â1 + b2Â2 + b3Â3) (3.20)

By = − 1

2∆
(c1Â1 + c2Â2 + c3Â3) (3.21)

From equations (3.20) and (3.21), we can see that the flux density is constant

within each element.
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3.5 Deriving Finite Element Equations Based on

the Method of Weighted Residuals

When the unknown field quantities of equation (3.1)-(3.3) are substituted by the

approximate function Â =
∑3

i=1NiÂi in each element, the residual R or an error

of approximation is unavoidable. For example, for field equation (3.1), the residual

is

R =
∂

∂x
(ν
∂Â

∂x
) +

∂

∂y
(ν
∂Â

∂y
)− σ

∂Â

∂t
+ σ

Vtz

l
+∇× (νµ0Mr) (3.22)

If the residual R in the whole domain tends to zero, the Â can be regarded as an

acceptable approximate solution. There are several principle of error minimization,

such as principle of weighted residuals [72], orthogonal projection principle [73] and

variational principle [72, 74]. In numerical methods the most often used ones are the

principle of weighted residuals or the variational principle. The variational method

is based on the equivalent functional of the governing equation. The weighted

residual approach is based on the operator equation directly. Although these two

principles are based on different starting equations, they yield the same set of

equations. The principle of weighted residual can be used for all numerical meth-

ods. Based on the choice of weighting functions, shape functions and the approach

to discretization, different methods are formulated, including sub-domain method,

collocation method, Galerkin’s method and least-square method [75]. The most

often used method for deriving finite element equations is the Galerkin’s method.

The method of weighted residual involves finding the unknown parameters

contained in the approximate solution such that the residual is as close to zero as

possible. This usually means determining the parameters such that some weighted

integral of the residual over the whole problem domain is zero. For our problem,
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one would require that, ∫ ∫
Ω

WRdxdy = 0. (3.23)

where

W = the weighting function

Ω = the area of the whole domain

This surface integral may be broken into summations over small areas. The whole

domain is replaced with small sub-domains so called finite elements, and integration

can easily be performed over the individual elements. Therefore we can get∫ ∫
Ω

WRdxdy =
M∑

e=1

∫ ∫
Ωe

[W e]Redxdy = 0. (3.24)

where

M = the number of finite element in the domain

Ωe = the area of one individual element

[W e] = the weighting function of one individual element

Re = the residual of one one individual element

According to the principle of the Galerkin’s method, the weighting functions are

chosen to be the same as the shape functions

[W e] = [N e
i ] =

 N1

N2

N3

 . (3.25)
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3.5.1 Finite Element Formulation of Field Equations

The residual of field equation given in equation (3.22) and the combination of

equations (3.22)-(3.25) leads to the integral equation for individual element∫ ∫
Ωe

[W e]Redxdy =

∫ ∫
Ωe

[N e
i ][

∂

∂x
(ν
∂Â

∂x
) +

∂

∂y
(ν
∂Â

∂y
)− σ

∂Â

∂t
+ σ

Vtz

l

+∇× (νµ0Mr)]dxdy

=

∫ ∫
Ωe

[N e
i ][

∂

∂x
(ν
∂Â

∂x
) +

∂

∂y
(ν
∂Â

∂y
)]dxdy

−
∫ ∫

Ωe

[N e
i ](σ

∂Â

∂t
)dxdy

+

∫ ∫
Ωe

[N e
i ](σ

Vtz

l
)dxdy

+

∫ ∫
Ωe

[N e
i ][∇× (νµ0Mr)]dxdy

= 0. (3.26)

Equation (3.26) has four terms. The integration of these four terms gives the ele-

ment matrix equation for field equation (3.1).

(a) Integration of the first term of equation (3.26)
∫ ∫

Ωe
[N e

i ][ ∂
∂x

(ν ∂Â
∂x

) +

∂
∂y

(ν ∂Â
∂y

)]dxdy

Integrating the first term by parts,

∫ ∫
Ωe

[N e
i ][

∂

∂x
(ν
∂Â

∂x
)+

∂

∂y
(ν
∂Â

∂y
)]dxdy =

∮
Γ

ν[N e
i ]
∂Â

∂n
dΓ−

∫ ∫
Ωe

ν(
∂[N e

i ]

∂x

∂Â

∂x
+
∂[N e

i ]

∂y

∂Â

∂y
)dxdy.

(3.27)

The line integral in equation (3.27) is only employed over elements which have a

side common with the boundary Γ. By imposing the natural boundary condition,

i.e., ∂Â
∂n

= 0, this integral is vanished. Then equation (3.27) becomes∫ ∫
Ωe

[N e
i ][

∂

∂x
(ν
∂Â

∂x
) +

∂

∂y
(ν
∂Â

∂y
)]dxdy = −

∫ ∫
Ωe

ν(
∂[N e

i ]

∂x

∂Â

∂x
+
∂[N e

i ]

∂y

∂Â

∂y
)dxdy.

(3.28)
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Recalling equations (3.13), (3.14) and (3.25), the partial derivatives of [N e
i ]

and Â with respect to x, y are

∂[N e
i ]

∂x
=


∂N1

∂x
∂N2

∂x
∂N3

∂x

 =
1

2∆

 b1

b2

b3

 , (3.29)

∂[N e
i ]

∂y
=


∂N1

∂y
∂N2

∂y
∂N3

∂y

 =
1

2∆

 c1

c2

c3

 . (3.30)

and

∂Â

∂x
=

1

2∆
(b1Â1 + b2Â2 + b3Â3) =

1

2∆

[
b1 b2 b3

] Â1

Â2

Â3

 , (3.31)

∂Â

∂y
=

1

2∆
(c1Â1 + c2Â2 + c3Â3) =

1

2∆

[
c1 c2 c3

] Â1

Â2

Â3

 . (3.32)

Substituting equations (3.29)-(3.32) into equation (3.28) and considering that∫ ∫
Ωe

dxdy = ∆, (3.33)

then the first term of equation (3.26) becomes

∫ ∫
Ωe

[N e
i ][

∂

∂x
(ν
∂Â

∂x
) +

∂

∂y
(ν
∂Â

∂y
)]dxdy = − ν

4∆

 S11 S12 S13

S21 S22 S23

S31 S32 S33


 Â1

Â2

Â3


(3.34)

where

S11 = b21 + c21; S12 = b1b2 + c1c2; S13 = b1b3 + c1c3;

S21 = b2b1 + c2c1; S22 = b22 + c22; S23 = b2b3 + c2c3;

S31 = b3b1 + c3c1; S32 = b3b2 + c3c2; S33 = b23 + c23;
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(b) Integration of the second term of equation (3.26)−
∫ ∫

Ωe
[N e

i ](σ ∂Â
∂t

)dxdy

Recalling equation (3.13), the vector potential in a finite element can be

represented as

Â = N1Â1 +N2Â2 +N3Â3 = [N e
i ]tr[Âe

i ] (3.35)

where [Âe
i ] =

(
Â1 Â2 Â3

)tr

represents the vector potentials of the 3 nodes and

superscript ’()tr’ represents the transpose operation of a matrix.

Therefore the second term of equation (3.26) can be rewritten as

−
∫ ∫

Ωe

[N e
i ](σ

∂Â

∂t
)dxdy = −

∫ ∫
Ωe

[N e
i ](σ

∂([N e
i ]tr[Âe

i ])

∂t
)dxdy

= −σ
∫ ∫

Ωe

[N e
i ][N e

i ]tr
∂[Âe

i ]

∂t
dxdy (3.36)

Considering that ∫ ∫
∆

N2
i dxdy =

∆

6∫ ∫
∆

NiNjdxdy =
∆

12
, (i 6= j) (3.37)

equation (3.36) becomes

−
∫ ∫

Ωe

[N e
i ](σ

∂Â

∂t
)dxdy = −σ∆

12

 2 1 1

1 2 1

1 1 2


 ∂Â1/∂t

∂Â2/∂t

∂Â3/∂t

 (3.38)

(c) Integration of the third term of equation (3.26)
∫ ∫

Ωe
[N e

i ](σ Vtz

l
)dxdy

Since the terminal voltage Vtz and length l are invariant within one finite

element, we can get∫ ∫
Ωe

[N e
i ](σ

Vtz

l
)dxdy = (σ

Vtz

l
) ·
∫ ∫

Ωe

[N e
i ]dxdy (3.39)
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Considering that ∫ ∫
∆

Nidxdy =
∆

3

equation (3.39) becomes

∫ ∫
Ωe

[N e
i ](σ

Vtz

l
)dxdy =

∆

3
· (σVtz

l
)

 1

1

1

 (3.40)

(d) Integration of the fourth term of equation (3.26)
∫ ∫

Ωe
[N e

i ][∇×(νµ0Mr)]dxdy

Considering the triple scalar product

~A · ( ~B × ~C) = ( ~A× ~B) · ~C = −( ~B × ~A) · ~C,

the fourth term becomes∫ ∫
Ωe

[N e
i ][∇× (νµ0Mr)]dxdy = −

∫ ∫
Ωe

νµ0(∇× [N e
i ]) ·Mrdxdy. (3.41)

For the two-dimensional case, Mr has only x and y components,

Mr = Mrx · ~x+Mry · ~y, (3.42)

and

∇× [N e
i ] = −∂[N e

i ]

∂y
· ~x+

∂[N e
i ]

∂x
· ~y. (3.43)

Combination of equations (3.41)-(3.43) yields∫ ∫
Ωe

[N e
i ][∇× (νµ0Mr)]dxdy =

∫ ∫
Ωe

νµ0(Mrx
∂[N e

i ]

∂y
−Mry

∂[N e
i ]

∂x
)dxdy (3.44)

Substitute equations (3.29), (3.30) and (3.33) into equation (3.44), the fourth term

of equation (3.26) becomes

∫ ∫
Ωe

[N e
i ][∇× (νµ0Mr)]dxdy =

νµ0

2

Mrx

 c1

c2

c3

−Mry

 b1

b2

b3


 (3.45)
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Finally, substituting equations (3.34), (3.38), (3.40) and (3.45) into equation

(3.26) yields the element matrix equation for field equation (3.1):

ν

4∆
[SS][Âe

i ] +
σ∆

12
[TT ]

∂[Âe
i ]

∂t
=

∆

3
· (σVtz

l
)[Oi] +

νµ0

2
{Mrx[ci]−Mry[bi]} (3.46)

where

[SS] =

 S11 S12 S13

S21 S22 S23

S31 S32 S33

 ; [TT ] =

 2 1 1

1 2 1

1 1 2

 ;

[
Âe

i

]
=

 Â1

Â2

Â3

 ; [Oi] =

 1

1

1

 ; [ci] =

 c1

c2

c3

 ; [bi] =

 b1

b2

b3

 .

To simplify the computation, the reluctivity ν, the x and y components of

magnetization vector, Mrx and Mry are all taken as scalers.

3.5.2 Finite Element Formulation of Stator Phase Circuit

Equation

Recalling equation (3.2), we can get

Vs = Rsis + Le
dis
dt

+
l

ms
(

∫ ∫
Ω+

∂Â

∂t
dxdy −

∫ ∫
Ω−

∂Â

∂t
dxdy) (3.47)

Breaking the surface integral into summations over small sub-domains called finite

elements, equation (3.47) can be rewritten as

Vs = Rsis + Le
dis
dt

+
l

ms
(

M+∑
e=1

∫ ∫
Ωe

∂Â

∂t
dxdy −

M−∑
e=1

∫ ∫
Ωe

∂Â

∂t
dxdy). (3.48)

whereM+ denotes the number of finite elements in the domain of positively oriented

coils side, M− denotes the number of finite elements in the domain of negatively

oriented coils side and Ωe is the surface area of one element.
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Since

Â = [N e
i ]tr[Âe

i ],

equation (3.48) becomes

Vs = Rsis + Le
dis
dt

+
l

ms

(
M+∑
e=1

∫ ∫
Ωe

∂([N e
i ]tr[Âe

i ])

∂t
dxdy −

M−∑
e=1

∫ ∫
Ωe

∂([N e
i ]tr[Âe

i ])

∂t
dxdy

)
= Rsis + Le

dis
dt

+
l

ms

(
M+∑
e=1

∫ ∫
Ωe

[N e
i ]tr

∂[Âe
i ]

∂t
dxdy −

M−∑
e=1

∫ ∫
Ωe

[N e
i ]tr

∂[Âe
i ]

∂t
dxdy

)
. (3.49)

As ∫ ∫
∆

Nidxdy =
∆

3

equation (3.49) becomes

Vs = Rsis + Le
dis
dt

+
l

ms

(
M+∑
e=1

∆

3

∂[Âe
i ]

∂t
−

M−∑
e=1

∆

3

∂[Âe
i ]

∂t

)
, (3.50)

or

Rsis + Le
dis
dt

+
l

ms
[KK]sp

∂[Â]sp
∂t

− Vs = 0 (3.51)

where

[KK]sp =
(
. . . ±∆

3
±∆

3
±∆

3
. . .
)
,[

Â
]

sp
=

(
. . . Â1 Â2 Â3 . . .

)tr

.

The sign ’±’ is ’+’ when the triangle element is in the domain of positively oriented

coils side, and it is ’−’ when the element is in the domain of negatively oriented

coils side. Matrices [KK]sp and [Â]sp are only used for those elements that locate

in the region of stator phase windings.
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3.5.3 Finite Element Formulation of Cage Bar Equation

Recalling equation (3.3), we can get

Vbk = Rbkibk +
lbk
sbk

∫ ∫
sbk

∂Â

∂t
dxdy (3.52)

Breaking the surface integral into summations over the finite elements, equation

(3.52) can be rewritten as

Vbk = Rbkibk +
lbk
sbk

Mcb∑
e=1

∫ ∫
Ωe

∂Â

∂t
dxdy (3.53)

Since

Â = [N e
i ]tr[Âe

i ],

equation (3.53) becomes

Vbk = Rbkibk +
lbk
sbk

Mcb∑
e=1

∫ ∫
Ωe

∂([N e
i ][Âe

i ])

∂t
dxdy

= Rbkibk +
lbk
sbk

Mcb∑
e=1

∫ ∫
Ωe

[N e
i ]
∂[Âe

i ]

∂t
dxdy (3.54)

where Mcb is the number of finite elements in this cage bar.

As ∫ ∫
∆

Nidxdy =
∆

3

equation (3.54) becomes

Vbk = Rbkibk +
lbk
sbk

Mcb∑
e=1

∆

3

∂[Âe
i ]

∂t
, (3.55)

or

Rbkibk +
lbk
sbk

[KK]cb
∂[Â]cb
∂t

− Vbk = 0 (3.56)



68

where

[KK]cb =
(
. . . ∆

3
∆
3

∆
3

. . .
)
,[

Â
]

cb
=

(
. . . Â1 Â2 Â3 . . .

)tr

.

Matrices [KK]cb and [Â]cb are only used for those elements that locate in the region

of cage bars.

Other equations (3.4)∼(3.9), describe the cage bar circuits, external circuit

and mechanical motions. They are not field-dependent directly. Therefore the

finite element formulation of these equations are not necessary.

3.6 Discretization of Governing Equations in Time

Domain

As shown in equations (3.1)-(3.9), electric machines are often modelled in terms of

a complete set of partial differential equations or linear algebraic equations with

solution functions expressed in the space and time domains. The space solution

is determined by the finite element technique while the time solution is evalu-

ated by time-stepping methods that consist of implicit or explicit time-integration

procedures [76]-[78]. The time-stepping method is the method that solves a time-

dependent quantity by discretizing the time at short time intervals ∆t and evalu-

ating the quantitiy at times t1, t2, t3, . . ., (tk+1 = tk + ∆t). The accuracy of the

solution depends on the particular time-stepping algorithm applied, as well as the

size of the time step used. The most often used time-stepping algorithms are:
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• Explicit algorithm (Forward Euler’s method)

∂At

∂t
=
A(t+∆t) − At

∆t
(3.57)

If the value of A and its time derivative at t are known, its value at (t+ ∆t)

is obtainable using equations (3.57).

• Implicit algorithm

– Crank-Nicholson Algorithm

1

2
(
∂A(t+∆t)

∂t
+
∂At

∂t
) =

A(t+∆t) − At

∆t
(3.58)

The time derivatives at t and (t+ ∆t) are used to find the value of A at

(t+ ∆t), A(t+∆t).

– Backward difference scheme (Backward Euler’s method)

∂A(t+∆t)

∂t
=
A(t+∆t) − At

∆t
(3.59)

If the value of A and its time derivative at (t+ ∆t) are known, its value

at (t+ ∆t) is obtainable using equations (3.59).

It has been shown that implicit algorithms have distinct advantages over the explicit

ones, due to higher degree of numerical stability and larger time step possibility

[76]-[80]. Inside the group of implicit algorithm, Tsukerman [80, 81] examined the

stabilities of Crank-Nicholson algorithm and Backward Euler’s algorithm in coupled

field-circuit problems. It was shown that Backward Euler’s method is stable while

the Crank-Nicholson scheme generates undamped or in some cases even divergent

oscillations. Therefore, in this work the Backward Euler’s method is chosen in the

time discretization of the governing equations.
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3.6.1 Discretization of Field Equation

Recalling the element matrix equation for field (3.46),

ν

4∆
[SS][Âe

i ]
t+∆t+

σ∆

12
[TT ]

∂[Âe
i ]

t+∆t

∂t
=

∆

3
·(σV

(t+∆t)
tz

l
)[Oi]+

νµ0

2
{Mrx[ci]−Mry[bi]}

(3.60)

According to equation (3.59),

∂[Âe
i ]

(t+∆t)

∂t
=

[Âe
i ]

(t+∆t) − [Âe
i ]

t

∆t
, (3.61)

the element matrix equation for field becomes,

(
ν

4∆
[SS] +

σ∆

12
[TT ]

)
· [Âe

i ]
t+∆t − [Âe

i ]
t

∆t
− ∆

3
· (σV

(t+∆t)
tz

l
)[Oi]

=
νµ0

2
{Mrx[ci]−Mry[bi]} . (3.62)

Rearranging terms to isolate the (t+ ∆t) term yields,

{
ν

4∆
[SS] +

σ∆

12∆t
[TT ]

}
[Âe

i ]
t+∆t − ∆

3
· (σV

(t+∆t)
tz

l
)[Oi]

=
σ∆

12∆t
[TT ][Âe

i ]
t +

νµ0

2
{Mrx[ci]−Mry[bi]} . (3.63)

Equation (3.63) shows that as long as the values at t are known, the values at

(t + ∆t) can be calculated readily by solving this equation. In other words, a dy-

namic process can be evaluated in steps or the dynamic behaviours of a device can

be analyzed using time-stepping method.
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3.6.2 Discretization of Equation for Stator Phase Circuit

Recalling equation (3.51) and considering that,

di
(t+∆t)
s

dt
=

i
(t+∆t)
s − its

∆t

∂
[
Â
]t+∆t

sp

∂t
=

[
Â
]t+∆t

sp
−
[
Â
]t

sp

∆t

the equation for stator phase circuit becomes,

(Rs +
Le

∆t
)i(t+∆t)

s +
l

ms

[KK]sp
∆t

[Â]t+∆t
sp − V (t+∆t)

s =
Le

∆t
its +

l

ms

[KK]sp
∆t

[Â]tsp (3.64)

3.6.3 Discretization of Governing Equations for Cage Bars

Equation (3.56) can be discretized as:

Rbk[ibk]
t+∆t +

lbk
sbk

[KK]cb
∆t

[Â]t+∆t
cb − [Vbk]

t+∆t =
lbk
sbk

[KK]cb
∆t

[Â]tcb (3.65)

Recalling equation (3.4) and considering that it is not time-dependent, it is kept

unchanged in time domain:

[ib]
t+∆t − [C1][ie]

t+∆t = 0 (3.66)

Equation (3.5) can be discretized as:

[C2][Vb]
t+∆t + 2{[Re] +

[Le]

∆t
}[ie]t+∆t = 2

[Le]

∆t
[ie]

t (3.67)
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3.6.4 Discretization of Equations for External Circuits

Equation (3.6) can be discretized as:

{[Rsb] +
[Lsb]

∆t
}[isb]t+∆t +

[Csb]

∆t
[Vsb;Vt]

t+∆t =
[Lsb]

∆t
[isb]

t +
[Csb]

∆t
[Vsb;Vt]

t (3.68)

Recalling equation (3.7) and considering that it is not time-dependent, it is kept

unchanged in time domain:

[C3][isb]
t+∆t + [C4][is]

t+∆t = 0 (3.69)

3.6.5 Discretization of Equations for Mechanical Motion

Equation (3.8) can be discretized as:

(
Jr

∆t
+Bf )ω

t+∆t
m =

Jr

∆t
· ωt

m + Tem − Tf (3.70)

and equation (3.9) can be discretized as:

1

∆t
θt+∆t

m − ωt+∆t
m =

1

∆t
θt

m (3.71)
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3.7 Solving the Nonlinear Equations

In the analysis of electric machines the problems are almost always nonlinear due to

the presence of ferromagnetic materials in the rotor and stator iron cores. Generally

the iron material is characterized by a nonlinear curve relating the magnetic field

intensity H to the magnetic flux density B. Mathematically it is represented by

the permeability parameter µ at each point of the iron domain,

µ =
B

H
(3.72)

If the distribution of B is known, the value of H can be found according to the

nonlinear B − H curve; then µ can be calculated using equation (3.72). Thus

the value of magnetic permeability µ is field-dependent, which is characterized as

ν = 1
µ

= f(B). To treat the nonlinearities of the materials, two methods are

usually used [8, 14, 28]:

1. The simple iteration method

A set of permeability values µ is assumed firstly. In the light of the field

solution values obtained, adjust the µ with the following equation

µn+1 = µn−1 + k(µn − µn−1) (3.73)

where k (0 < k < 1) is a real number and n is the iteration step number.

The above solve-adjust cycle is continued until satisfactory convergence is

obtained.

This method is very simple in implementation. However the method con-

verges rather slowly and may need considerable computation time. In ad-

dition, no known estimate of k may guarantee stability without slowing the

iterative process [28].
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2. The Newton-Raphson method

The method utilizes the rate of change of error with potential to obtain new

estimates of potential. For a set of equations

[f ]k×1 = [K]k×k[X]k×1 = [Q]k×1,

an initial value [X](0) is assumed as the estimate of solution. The solution is

updated iteratively with equation

[X](n+1) = [X](n) + {[J ](n)}−1{[Q]− [f ](n)} (3.74)

where [J ] = ∂fi

∂Xj
, (i, j = 1, 2, . . . , k) is the Jacobian matrix and n is the iter-

ation step number. The iteration is continued until satisfactory convergence

is obtained. The detailed algorithm of the Newton-Raphson method and the

description of Jacobian matrix [J ] are presented in Appendix A.

Particularly when [Q] = 0, the Newton-Raphson algorithm is:

∂f
(n)
i

∂X
(n)
1

∆X
(n+1)
1 +

∂f
(n)
i

∂X
(n)
2

∆X
(n+1)
2 + . . .+

∂f
(n)
i

∂X
(n)
k

∆X
(n+1)
k = −f (n)

i (3.75)

The Newton-Raphson method gives more certain and quicker convergence.

It is particularly suitable for a nonlinear system of equations.

The application of the Newton-Raphson method to the solution of the non-

linear finite element equations requires extension to matrix equations and was first

demonstrated by Chari and Silvester [17]. Then it has been extensively used in the

solution of finite element problems by many others [18]-[20],[22]-[30].
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3.7.1 Linearization of Field Equation

Recalling equation (3.63) and let

[PP ] =

 P1

P2

P3

 =
σ∆

12∆t
[TT ][Âe

i ]
t +

νµ0

2
{Mrx[ci]−Mry[bi]} , (3.76)

then equation (3.63) becomes{
ν

4∆
[SS] +

σ∆

12∆t
[TT ]

}
[Âe

i ]
t+∆t − ∆

3
· (σV

(t+∆t)
tz

l
)[Oi] = [PP ]. (3.77)

or  ν

4∆

 S11 S12 S13

S21 S22 S23

S31 S32 S33

+
σ∆

12∆t

 2 1 1

1 2 1

1 1 2



 Â1

Â2

Â3


t+∆t

−∆

3

σ

l
V

(t+∆t)
tz

 1

1

1

 =

 P1

P2

P3

 (3.78)

Let 
f1 = ν

4∆
(S11Â

t+∆t
1 + S12Â

t+∆t
2 + S13Â

t+∆t
3 )

f2 = ν
4∆

(S21Â
t+∆t
1 + S22Â

t+∆t
2 + S23Â

t+∆t
3 )

f3 = ν
4∆

(S31Â
t+∆t
1 + S32Â

t+∆t
2 + S33Â

t+∆t
3 )

(3.79)

or

 f1

f2

f3

 =
ν

4∆

 S11 S12 S13

S21 S22 S23

S31 S32 S33


 Â1

Â2

Â3


t+∆t

, (3.80)

then equation (3.78) can be rewritten into 3 equations

F1 = f1 +
σ∆

12∆t

(
2 1 1

) Â1

Â2

Â3


t+∆t

− ∆

3

σ

l
V

(t+∆t)
tz − P1 = 0 (3.81)

F2 = f2 +
σ∆

12∆t

(
1 2 1

) Â1

Â2

Â3


t+∆t

− ∆

3

σ

l
V

(t+∆t)
tz − P2 = 0 (3.82)
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F3 = f3 +
σ∆

12∆t

(
1 1 2

) Â1

Â2

Â3


t+∆t

− ∆

3

σ

l
V

(t+∆t)
tz − P3 = 0 (3.83)

To find the derivatives necessary for the Newton-Raphson method, equations (3.81)-

(3.83) need to be differentiated with respect to the variables. The differentiation

of equation (3.81) gives

∂F1

∂Â
(t+∆t)
1

=
ν

4∆
S11 +

f1

ν
· ∂ν
∂B

· ∂B

∂Â
(t+∆t)
1

+
σ∆

12∆t
· 2 (3.84)

∂F1

∂Â
(t+∆t)
2

=
ν

4∆
S12 +

f1

ν
· ∂ν
∂B

· ∂B

∂Â
(t+∆t)
2

+
σ∆

12∆t
· 1 (3.85)

∂F1

∂Â
(t+∆t)
3

=
ν

4∆
S13 +

f1

ν
· ∂ν
∂B

· ∂B

∂Â
(t+∆t)
3

+
σ∆

12∆t
· 1 (3.86)

∂F1

∂V
(t+∆t)
tz

= −∆

3

σ

l
(3.87)

Since (see Appendix B)

∂B

∂Â
(t+∆t)
1

=
f1

Bν∆

∂B

∂Â
(t+∆t)
2

=
f2

Bν∆

∂B

∂Â
(t+∆t)
3

=
f3

Bν∆

equations (3.84)-(3.86) become

∂F1

∂Â
(t+∆t)
1

=
ν

4∆
S11 +

f1f1

ν2B∆
· ∂ν
∂B

+
σ∆

12∆t
· 2 (3.88)
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∂F1

∂Â
(t+∆t)
2

=
ν

4∆
S12 +

f1f2

ν2B∆
· ∂ν
∂B

+
σ∆

12∆t
· 1 (3.89)

∂F1

∂Â
(t+∆t)
3

=
ν

4∆
S13 +

f1f3

ν2B∆
· ∂ν
∂B

+
σ∆

12∆t
· 1 (3.90)

Applying equation (3.75), the Newton-Raphson equation is

∂F1

∂Â
(t+∆t)
1

· [∆Â1]
(t+∆t)
(n+1) +

∂F1

∂Â
(t+∆t)
2

· [∆Â2]
(t+∆t)
(n+1)

+
∂F1

∂Â
(t+∆t)
3

· [∆Â3]
(t+∆t)
(n+1) +

∂F1

∂V
(t+∆t)
tz

· [∆Vtz]
(t+∆t)
(n+1) = −F1. (3.91)

Substituting equations (3.87)-(3.90) into equation (3.91) yields the linearization of

equation F1

ν

4∆

(
S11 S12 S13

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
σ∆

12∆t

(
2 1 1

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
1

ν2B∆
· ∂ν
∂B

(
f1f1 f1f2 f1f3

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

− ∆

3

σ

l
[∆Vtz]

(t+∆t)
(n+1)

= − ν

4∆

(
S11 S12 S13

) Â1

Â2

Â3


t+∆t

(n)

− σ∆

12∆t

(
2 1 1

) Â1

Â2

Â3


t+∆t

(n)

+
∆

3

σ

l
[Vtz]

(t+∆t)
(n) + P1 (3.92)
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Repeating the similar processes for F2 and F3, we can get

ν

4∆

(
S21 S22 S23

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
σ∆

12∆t

(
1 2 1

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
1

ν2B∆
· ∂ν
∂B

(
f2f1 f2f2 f2f3

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

− ∆

3

σ

l
[∆Vtz]

(t+∆t)
(n+1)

= − ν

4∆

(
S21 S22 S23

) Â1

Â2

Â3


t+∆t

(n)

− σ∆

12∆t

(
1 2 1

) Â1

Â2

Â3


t+∆t

(n)

+
∆

3

σ

l
[Vtz]

(t+∆t)
(n) + P2 (3.93)

ν

4∆

(
S31 S32 S33

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
σ∆

12∆t

(
1 1 2

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

+
1

ν2B∆
· ∂ν
∂B

(
f3f1 f3f2 f3f3

) ∆Â1

∆Â2

∆Â3


t+∆t

(n+1)

− ∆

3

σ

l
[∆Vtz]

(t+∆t)
(n+1)

= − ν

4∆

(
S31 S32 S33

) Â1

Â2

Â3


t+∆t

(n)

− σ∆

12∆t

(
1 1 2

) Â1

Â2

Â3


t+∆t

(n)

+
∆

3

σ

l
[Vtz]

(t+∆t)
(n) + P3 (3.94)



79

Writing equations (3.92)-(3.94) in matrix format,

{
ν

4∆
[SS] +

1

ν2B∆
· ∂ν
∂B

[ff ] +
σ∆

12∆t
[TT ]

}
[∆Â]t+∆t

(n+1) −
∆

3

σ

l
[Oi][∆Vtz]

(t+∆t)
(n+1)

= −
{
ν

4∆
[SS] +

σ∆

12∆t
[TT ]

}
[Â]t+∆t

(n) +
∆

3

σ

l
[Oi][Vtz]

(t+∆t)
(n) + [PP ] (3.95)

where

[∆Â] =
(

∆Â1 ∆Â2 ∆Â3

)tr

,

[ff ] =

 f1f1 f1f2 f1f3

f2f1 f2f2 f2f3

f3f1 f3f2 f3f3

 .

Substituting [PP ] or equation (3.76) into equation (3.95) yields the linearized field

equation{
ν

4∆
[SS] +

1

ν2B∆
· ∂ν
∂B

[ff ] +
σ∆

12∆t
[TT ]

}
[∆Â]t+∆t

(n+1) −
∆

3

σ

l
[Oi][∆Vtz]

(t+∆t)
(n+1)

= −
{
ν

4∆
[SS] +

σ∆

12∆t
[TT ]

}
[Â]t+∆t

(n) +
∆

3

σ

l
[Oi][Vtz]

(t+∆t)
n +

σ∆

12∆t
[TT ][Â]t

+
νµ0

2
{Mrx[ci]−Mry[bi]} (3.96)

From equation (3.96), we can see that the term ∂ν
∂B

is necessary for the coefficient

matrix. ν = H/B and B −H curves are generally established by giving tabulated

sets of B − H values. For computer implementation, it is desirable to model the

B−H curve by an appropriate mathematical expression or by a suitable numerical

method. Chari and Silvester [17, 18] have used piecewise linear approximations to

represent nonlinear iron characteristics. However quadratic convergence may not be

guaranteed unless the curves were at least continuously differentiable. Such a B−H
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curve is not smooth at the joints of segments. Hence the accuracy of piecewise linear

representation is limited by the number of the straight-line segments. Silvester [82]

used cubic splines to model the reluctivity characteristic. This method uses splines

constructed of piecewise third-order polynomials which pass through a set of data

points. It results in a smooth curve with continuous first and second derivatives

over the range of the data sets. Thus the nonlinear iron can be characterized

by a single very smooth curve, from which both the reluctivity and its derivative

can be obtained simultaneously. The method of cubic splines is quite effective in

representing the nonlinear B − H curve and has been used widely in numerical

computation of electromagnetic fields [8, 28]. The implementation of this method

in the representation of B −H curve and the calculation of ∂ν
∂B

are introduced in

Appendix C in detail.

3.7.2 Linearization of Stator Phase Equation

Recalling equation (3.64) and moving all the terms to the left hand side, we can

get

(Rs +
Le

∆t
)i(t+∆t)

s +
l

ms

[KK]sp
∆t

[Â]t+∆t
sp − V (t+∆t)

s

−
{
Le

∆t
its +

l

ms

[KK]sp
∆t

[Â]tsp

}
= 0 (3.97)

Let

F = (Rs +
Le

∆t
)i(t+∆t)

s +
l

ms

[KK]sp
∆t

[Â]t+∆t
sp − V (t+∆t)

s

−
{
Le

∆t
its +

l

ms

[KK]sp
∆t

[Â]tsp

}
, (3.98)
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then the differentiation of F gives

∂F

∂i
(t+∆t)
s

= Rs +
Le

∆t
,

∂F

∂[Â]t+∆t
sp

=
l

ms

[KK]sp
∆t

,

∂F

∂V
(t+∆t)
s

= −1

According to equation (3.75), the Newton-Raphson equation is

∂F

∂i
(t+∆t)
s

·[∆is](t+∆t)
(n+1) +

∂F

∂[Â]t+∆t
sp

·{[∆Â]sp}t+∆t
(n+1)+

∂F

∂V
(t+∆t)
s

·[∆Vs]
(t+∆t)
(n+1) = −F. (3.99)

Thus the linearization of equation for stator phase circuit is

(Rs +
Le

∆t
)[∆is]

(t+∆t)
(n+1) +

l

ms

[KK]sp
∆t

{[∆Â]sp}t+∆t
(n+1) − [∆Vs]

(t+∆t)
(n+1)

= − (Rs +
Le

∆t
)[is]

(t+∆t)
(n) − l

ms

[KK]sp
∆t

{[Â]sp}t+∆t
(n) + [Vs]

(t+∆t)
(n)

+

{
Le

∆t
[is]

t +
l

ms

[KK]sp
∆t

[Â]tsp

}
. (3.100)
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3.7.3 Linearization of Equations for Cage Bars

Repeating the similar linearization process for equation (3.65) yields

Rbk[∆ibk]
t+∆t
(n+1) +

lbk
sbk

[KK]cb
∆t

{[∆Â]cb}t+∆t
(n+1) − [∆Vbk]

t+∆t
(n+1)

= − Rbk[ibk]
t+∆t
(n) − lbk

sbk

[KK]cb
∆t

{[Â]cb}t+∆t
(n) + [Vbk]

t+∆t
(n)

+
lbk
sbk

[KK]cb
∆t

{[Â]cb}t. (3.101)

The linearization of equation (3.66) is

[∆ib]
t+∆t
(n+1) − [C1][∆ie]

t+∆t
(n+1) = −[ib]

t+∆t
(n) + [C1][ie]

t+∆t
(n) (3.102)

The linearization of equation (3.67) is

[C2][∆Vb]
t+∆t
(n+1) + 2{[Re] +

[Le]

∆t
}[∆ie]t+∆t

(n+1)

= −[C2][Vb]
t+∆t
(n) − 2{[Re] +

[Le]

∆t
}[ie]t+∆t

(n) + 2
[Le]

∆t
[ie]

t (3.103)
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3.7.4 Linearization of Equations for External Circuits

The linearization of equation (3.68) is

{[Rsb] +
[Lsb]

∆t
}[∆isb]t+∆t

(n+1) +
[Csb]

∆t
[∆Vsb; ∆Vt]

t+∆t
(n+1)

= − {[Rsb] +
[Lsb]

∆t
}[isb]t+∆t

(n) − [Csb]

∆t
[Vsb;Vt]

t+∆t
(n)

+
[Lsb]

∆t
[isb]

t +
[Csb]

∆t
[Vsb;Vt]

t (3.104)

The linearization of equation (3.69) is

[C3][∆isb]
t+∆t
(n+1) + [C4][∆is]

t+∆t
(n+1) = −[C3][isb]

t+∆t
(n) − [C4][is]

t+∆t
(n) (3.105)



84

3.8 Assembly of All the Equations

3.8.1 Assembly of the Element Equations

Every triangle element in the solution domain has an element matrix. To build up

the contributions of all the triangle element, we need to combine all the element

matrices into one global matrix, this process is often referred to as the assembling

process. Details of this process are illustrated below.

Figure 3.4: Sample Field Domain in Assembling Process (5 Nodes, 3 Elements)

As shown in Fig. 3.4, it is assumed that the field domain is divided into 3

triangle elements with 5 nodes. The element matrices of the three elements are:

• element 1, nodes (1, 2, 4) S11 S12 S14

S21 S22 S24

S41 S42 S44


 Â1

Â2

Â4

 =

 p1

p2

p4

 (3.106)

• element 2, nodes (2, 5, 4) S22 S25 S24

S52 S55 S54

S42 S45 S44


 Â2

Â5

Â4

 =

 p2

p5

p4

 (3.107)

• element 3, nodes (2, 3, 5) S22 S23 S25

S32 S33 S35

S52 S53 S55


 Â2

Â3

Â5

 =

 p2

p3

p5

 . (3.108)
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Since there are 5 nodes totally, the size of the global coefficient matrix [S] is

5 × 5 and the size of force matrix [p] is 5 × 1. The initial value of [S] and [p] are

set to be 0,

[S] =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 (3.109)

[p] =
(

0 0 0 0 0
)tr

(3.110)

Since element 1 is made up by nodes (1, 2, 4), the coefficients of its element matrix

will be added up to column 1, 2, 4 and row 1, 2, 4 of the global matrix. Equa-

tions (3.111) and (3.112) show the updated matrices [S] and [p] after element 1 is

assembled,

[S] =


S

(1)
11 S

(1)
12 0 S

(1)
14 0

S
(1)
21 S

(1)
22 0 S

(1)
24 0

0 0 0 0 0

S
(1)
41 S

(1)
42 0 S

(1)
44 0

0 0 0 0 0

 (3.111)

[p] =
(
p

(1)
1 p

(1)
2 0 p

(1)
4 0

)tr

(3.112)

where the superscripts (1) denote the index number of the triangular elements, the

subscripts 11,12 , . . . denote the index number of the nodes and (. . .)tr denotes the

transpose operation of a matrix.

Repeating the similar process for element 2 and 3, the final global matrix

after assembly process is

[S][Â] = [p] (3.113)
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where

[S] =


S

(1)
11 S

(1)
12 0 S

(1)
14 0

S
(1)
21 S

(1)+(2)+(3)
22 S

(3)
23 S

(1)+(2)
24 S

(2)+(3)
25

0 S
(3)
32 S

(3)
33 0 S

(3)
35

S
(1)
41 S

(1)+(2)
42 0 S

(1)+(2)
44 S

(2)
45

0 S
(2)+(3)
52 S

(3)
53 S

(2)
54 S

(2)+(3)
55

 ,

[Â] =
(
Â1 Â2 Â3 Â4 Â5

)tr

,

[p] =
(
p

(1)
1 p

(1)+(2)+(3)
2 p

(3)
3 p

(1)+(2)
4 p

(2)+(3)
5

)tr

,

3.8.2 Global System of Equations

Applying the above assembly process for all the elemental equations (equation

(3.96) and combining with the other circuit equations (equations (3.100)-(3.103) )

yields a linear set of algebraic equations. In combination with the equations for

mechanical motion (equations (3.70) and (3.71)), we can get a global system of

equations

[GML][∆X]t+∆t
(n+1) = [GMR1][X]]t+∆t

(n) + [GMR2][X]t + [SOURCE], (3.114)

and

(
Jr

∆t
+Bf )ω

t+∆t
m =

Jr

∆t
· ωt

m + Tem − Tf (3.115)

1

∆t
θt+∆t

m − ωt+∆t
m =

1

∆t
θt

m (3.116)
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where

[GML] = 

{ ν
4∆

[SS]+
1

ν2B∆
∂ν
∂B

[ff ]

+ σ∆
12∆t

[TT ]}
0 −∆

3
σ
l
[Oi] 0 0 0 0

l
ms

[KK]sp

∆t

{Rs

+Le

∆t
}

0 0 0 −1 0

lbk

sbk

[KK]cb

∆t
0 −1 Rbk 0 0 0

0 0 0 1 −[C1] 0 0

0 0 [C2] 0
2{[Re]

+ [Le]
∆t
}

0 0

0 0 0 0 0 [Csb]
∆t

{[Rsb]

+ [Lsb]
∆t
}

0 [C4] 0 0 0 0 [C3]


[GMR1] = 

−
{ ν

4∆
[SS]+

σ∆
12∆t

[TT ]}
0 ∆

3
σ
l
[Oi] 0 0 0 0

− l
ms

[KK]sp

∆t
−

{Rs

+Le

∆t
}

0 0 0 1 0

− lbk

sbk

[KK]cb

∆t
0 1 −Rbk 0 0 0

0 0 0 −1 [C1] 0 0

0 0 −[C2] 0
−2{[Re]

+ [Le]
∆t
}

0 0

0 0 0 0 0 − [Csb]
∆t

−{[Rsb]

+ [Lsb]
∆t
}

0 −[C4] 0 0 0 0 −[C3]



[GMR2] =



σ∆
12∆t

[TT ] 0 0 0 0 0 0
l

ms

[KK]sp

∆t
Le

∆t
0 0 0 0 0

lbk

sbk

[KK]cb

∆t
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 2 [Le]
∆t

0 0

0 0 0 0 0 [Csb]
∆t

[Lsb]
∆t

0 0 0 0 0 0 0


[SOURCE] =

[
νµ0

2
{Mrx[ci]−Mry[bi]} 0 0 0 0 0 0

]tr
[X] =

[
[A] [is] [Vbk] [ibk] [iek] [Vsb;Vt] [isb]

]tr
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[∆X] =
[

[∆A] [∆is] [∆Vbk] [∆ibk] [∆iek] [∆Vsb; ∆Vt] [∆isb]
]tr

The first line of equation (3.114) represents all the field equations. The second

line represent the equations for stator phase circuits. The third, fourth and fifth

lines represent all the equations for cage bars. The sixth and seventh lines represent

all the equations for external circuits. In the resultant matrix equation, [GML]

is the coefficient matrix. It is non-symmetrical due to the coupling of circuits

equations and mechanical motion equations. [∆X] is the solution vector where

n denotes the nth Newton-Raphson iteration

[∆A] denotes the incremental nodal vector potential solution

[∆is] denotes the incremental stator phase currents

[∆Vbk] denotes the incremental cage bar voltages

[∆ibk] denotes the incremental cage bar currents

[∆iek] denotes the incremental currents of the end rings

[∆Vsb; ∆Vt] denotes the incremental terminal voltages of the external circuits

and the electric machines

[∆isb] denotes the incremental currents of the external circuits

The solution vector [∆X] is updated at each Newton-Raphson iteration until

the incremental solution vector becomes within a prescribed tolerance. The known

input sources are the permanent magnet excitation νµ0

2
{Mrx[ci]−Mry[bi]} and

some terminal voltages applied to the external circuits.



89

3.9 Application of Boundary Conditions

Before the global system of equations can be solved for the unknown vector [∆X],

boundary conditions need to be imposed on the solution domain. The two most

important boundary conditions in finite element analysis are the Dirichlet and

periodical boundary conditions.

3.9.1 Dirichlet Boundary Condition

In most practical problems one or more of the unknown vector values will be

specified as fixed. Such cases most commonly arise where a flux-line boundary is

specified at a machine surface or where for some reason the vector value is known

to have certain values. In Fig. 3.5, the Dirichlet boundary conditions are imposed

on the surfaces of the stator and the shaft, which is

A|
ÂEC

= A|
B̂FD

= 0. (3.117)

Figure 3.5: Boundaries of a Quarter of Machine

This boundary condition is imposed by assigning the specified values to the

vectors on the boundary. In the assembly process, some rows and columns have to

be modified.
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Let the set of all the unknown vectors [X] be divided into two parts: the free

vectors [Xfr] and the vectors with fixed values [Xfi]. Recalling equation (3.74), we

can get the iterative process for the set of equations [f ]k×1 = [K]k×k[X]k×1 = [Q]k×1

is:

[X](n+1) = [X](n) + {[J ](n)}−1{[Q]− [f ](n)} (3.118)

where [J ] = ∂fi

∂Xj
, (i, j = 1, 2, . . . , k) is the Jacobian matrix and n is the iteration

step number.

To include the vectors with fixed values into the iteration process, equation

(3.118) can be modified as

(
Xfr

Xf i

)(n+1)

=

(
Xfr

Xf i

)n

+

(
[J (n)] 0

0 [I]

)−1(
[Q]− [f ](n)

0

)
(3.119)

where [I] is the identity matrix.

The inclusion of the segment of identity matrix with [J ] is necessary to guar-

antee that the modified Jacobian matrix is nonsingular and equation (3.119) is

solvable. From equation (3.119) we can see that the fixed vector values [Xfi] are

not altered by the iteration. In other words, the Dirichlet boundary condition is

satisfied using equation (3.119). In practice, if the row number of the global ma-

trix corresponds to a vector with a fixed value (or the vector meets the Dirichlet

boundary condition), the fixed value is assigned to this vector. In the iterative

process, row of the identity matrix is substituted in the Jacobian matrix and zero

entry is substituted in the right-hand vector.
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3.9.2 Periodical Boundary Condition

In electric machine problems, there arise boundary conditions which do not cor-

respond to explicit knowledge of unknown vectors or derivatives, but merely state

that the vector value at one point is linearly related to the value at another point.

The most common occurrence of this kind of conditions arise in connection with

the analysis of loaded machines. When an electric machine operates under load and

at a power factor different from zero, the pole axis is no longer an axis of symmetry

and is not a flux line boundary. However the stator conductors in one pole pitch

carrying currents in one direction have their equivalent and identical conductors in

the next pole-pitch but carrying current in the opposite direction. As a result, the

vector potentials one pole pitch apart have equal magnitude but opposite sign. In

Fig. 3.5, the relationship between the potential values at different positions are:

A|AB = −A|CD. (3.120)

Similarly there occur other cases, in which the potentials of any two points are

identical both in magnitude and sign. All these purely periodic cases can be rep-

resented by the constraint

Ap1 = ±Ap2 (3.121)

where Ap1 and Ap2 are the potential values on the anti-periodical boundaries.

When imposing periodical boundary conditions one always deals with only

two triangles at a time. Hence it is only necessary to derive the matrix operation

involved in imposing such periodical condition on a pair of triangles only. Fig. 3.6

shows two triangles (1, 2, 3) and (4, 5, 6) having two nodes of each triangle on the

pole axis. Therefore,

A1 = ±A5,

A3 = ±A6. (3.122)
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Figure 3.6: Application of the Periodical Boundary Condition

Recalling equation (3.118), the iterative process for these two triangles is

[A](n+1) = [A](n) + [J ]−1[PR] (3.123)

where

[A] =
(
A1 A2 A3 A4 A5 A6

)tr

, (3.124)

[J ] =



J11 J12 J13 0 0 0

J21 J22 J23 0 0 0

J31 J32 J33 0 0 0

0 0 0 J44 J45 J46

0 0 0 J54 J55 J56

0 0 0 J64 J65 J66


, (3.125)

and

[PR] = [Q]− [f ](n) =
(
PR1 PR2 PR3 PR4 PR5 PR6

)tr

. (3.126)

Rewriting equation (3.123) in terms of potential changes during the nth step, one

has

[J ][∆A](n+1) = [PR] (3.127)
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If it is assumed that [∆A′] represents the total incremental vector potential

for the connected triangles and the sum of the individual incremental potential

vectors for the unconnected triangle is represented by [∆A], then these can be

related by a connection matrix [C] in the following manner

[∆A] = [C] · [∆A′] (3.128)

where

[∆A′] =


∆A1

∆A2

∆A3

∆A4

 , [C] =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

±1 0 0 0

0 0 ±1 0


, [∆A] =



∆A1

∆A2

∆A3

∆A4

∆A5

∆A6


.

The similar operations can be applied on the right hand side matrix [PR] and [P ′R]

can be used to represent the total connected vectors, thus

[P ′R] = [Ct] · [PR] (3.129)

where

[P ′R] =


P ′R1

P ′R2

P ′R3

P ′R4

 =


PR1 ± PR5

PR2

PR3 ± PR6

PR4

 , [Ct] =


1 0 0 0 ±1 0

0 1 0 0 0 0

0 0 1 0 0 ±1

0 0 0 1 0 0

 .

Substituting equation (3.128) into equation (3.127) yields

[PR] = [J ][∆A] = [J ][C][∆A′] (3.130)

Combining equation (3.130) and (3.129) yields

[P ′R] = [Ct][PR] = [Ct][J ][C][∆A′]. (3.131)



94

Since

[P ′R] = [J ′] · [∆A′] (3.132)

where [J ′] is the Jacobian matrix after applying periodical boundary conditions,

then comparing equation (3.132) and (3.131) yields

[J ′] = [Ct][J ][C] =


J11 + J55 J12 J13 + J56 ±J54

J21 J22 J23 0

J31 + J65 J32 J33 + J66 ±J64

±J45 0 ±J46 J44

 (3.133)

or

[J ′] =


J11 J12 J13 0

J21 J22 J23 0

J31 J32 J33 0

0 0 0 0

+


J55 0 J56 ±J54

0 0 0 0

J65 0 J66 ±J64

±J45 0 ±J46 J44

 (3.134)

Therefore the iterative process after imposing periodical boundary condition is

[A′](n+1) = [A′](n) + [J ′]−1[P ′R] (3.135)

It can be seen that the inclusion of the periodical boundary conditions merely

requires that certain matrix segments be assembled with altered signs. The rows

and columns of these segments correspond to the nodes where periodical boundary

conditions are applied.
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3.10 The Storage and the Solution of the System

of Equations

3.10.1 The Storage of the Coefficient Matrix

The resultant coefficient matrix of the system equations is a large sparse matrix.

According to the methods used to solve the matrix equation, usually two strategies

are employed to store the coefficient matrix: skyline storage and non-zero elements

storage [83].

When the coefficient matrix is symmetric, banded and non-zero terms are

clustered around the main diagonal, only the terms within the bandwidth of upper

or lower triangle matrix need to be stored (Fig. 3.7). In this case, the skyline

method can be used to store the terms between the first non-zero element and the

diagonal element of each row. In this model, certain zero terms are still contained

which occupy space in the computer memory. This storage is needed when using

the Gaussian elimination method to solve the system of equations.

Figure 3.7: Skyline Storage of the System Matrix
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When the iterative method is used to solve the system of equations, all the

zero elements have no relation to the calculation of iteration, hence no zero elements

need to be stored. Non-zero storage schemes (sparse storage schemes) allocate con-

tiguous storage in memory for the nonzero elements of the matrix. These storage

schemes include coordinate storage, compressed row storage, compressed column

storage, etc [84]-[86]. To illustrate various storage formats, we use the nonsymmet-

ric sparse matrix A as an example

A =


9 −2 0 0 3

10 8 7 0 0

0 6 5 0 21

0 0 0 14 0

11 0 0 0 −1

 (3.136)

Coordinate storage is the most straightforward scheme to denote a sparse

matrix by simply recording each nonzero entry together with its row and column

index. For the nonsymmetric sparse matrix A, we create three vectors: one for

floating point numbers ′val′ and the other two for integers ′row− ind′, ′col− ind′.

The ′val′ vector stores the values of the nonzero elements of the matrix. The

′row − ind′ and ′col − ind′ vectors store the row indexes and column indexes of

the elements in the ′val′ vector respectively. Thus the matrix A in (3.136) can be

stored as Table 3.1.

Table 3.1: Coordinate Storage of the Coefficient Matrix

val 9 -2 3 10 8 7 6 5 21 14 11 -1

row-ind 1 1 1 2 2 2 3 3 3 4 5 5

col-ind 1 2 5 1 2 3 2 3 5 4 1 5

The compressed row storage scheme views non-zero elements in each row as a

sparse vector. The non-zero element values and their column indexes are stored in

vectors ′val′ and ′col− ind′ respectively. The locations of the non-zero elements in

vector ′val′ that start a row are stored in vector ′row−ptr′. An additional element
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is appended to the row − ptr array specifying the number of nonzero elements.

Thus the matrix A in (3.136) can be stored as Table 3.2.

Table 3.2: Compressed Row Storage of the Coefficient Matrix

row-ptr 1 4 7 10 11 12

val 9 -2 3 10 8 7 6 5 21 14 11 -1

col-ind 1 2 5 1 2 3 2 3 5 4 1 5

Analogous to compressed row storage, there is compressed column storage,

which is also called the Harwell-Boeing sparse matrix format [87]. The compressed

column storage format parallels compressed row storage, but with the roles of rows

and columns reversed. With the compressed column storage scheme, the matrix A

in (3.136) can be stored as Table 3.3.

Table 3.3: Compressed Column Storage of the Coefficient Matrix

col-ptr 1 4 7 10 11 12

val 9 10 11 -2 8 6 7 5 14 3 21 -1

row-ind 1 2 5 1 2 3 2 3 4 1 3 5

The non-zero storage formats are the most general: they make absolutely no

assumptions about the sparsity structure of the matrix, and they do not store any

unnecessary elements. Comparing with the skyline storage, the non-zero elements

storage is much more economical for saving the computer memory. But the disad-

vantage is that more complex programming is needed to keep track of the terms

stored.

Some of the popular sparse matrix formats have been used in numerical soft-

ware packages such as ITPACK [88], NSPCG [89], SPARSPAK [90] and MATLAB

[91]. In Matlab, the compressed column storage scheme is adopted. In this work

the program is written in Matlab and the Matlab function of ’sparse’ is used di-

rectly to convert a full matrix to sparse form by squeezing out any zero elements.

Therefore the compressed column storage is used automatically.
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3.10.2 Solving the Global System of Equations

The system of equations is non-symmetric linear. The solution algorithm of such

matrix equations can generally be classified as direct methods and iterative meth-

ods [83].

The most commonly used direct method for non-symmetric linear system of

equations is Gaussian elimination. Direct methods are characterized by always re-

quiring a constant amount of work. Another class of methods, iterative methods,

require a variable amount of work that depends on the problem being solved. The

appeal of iterative methods is that they may require less work than a direct method

for many problems. In particular, they are effective on large sparse linear systems.

Iterative methods are generally used to solve system of equations which is

too large to be handled by direct methods. Iterative methods do not guarantee a

solution for every system of equations. However, when they do yield a solution,

they are usually less expensive than direct methods. Iterative methods can be

expressed in the simple form

X(n+1) = T ·X(n) + C. (3.137)

Depending on the nature of T and C, iterative methods can be classified into two

main categories, stationary iterative methods and non-stationary iterative meth-

ods. In stationary method, the iterative matrix T and vector C stays the same

throughout the iteration, while a new iterative matrix T or vector C is generated

in every step of the non-stationary iterative methods. Conjugate gradient methods

for symmetric positive definite problems and conjugate gradient look-alike methods

for nonsymmetric problems are examples of nonstationary iterative methods [92].
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Several conjugate gradient-like iterative solvers, such as bi-conjugate gra-

dient iteration (BiCG), bi-conjugate iteration stabilized (BiCGSTAB), conjugate

gradient squared iteration (CGS) and quasi minimal residual iteration (QMR), are

available for solving general non-symmetric system of linear equations. They are

particularly attractive to solve sparse matrices which are normally direct results

of spatial discretization of differential equations [92, 93]. In this work, method of

BiCG is used. The details of the method is shown in Appendix D.

3.11 The Calculation of Electromagnetic Torque

3.11.1 Introduction

Electromagnetic torque, Tem, is the motive that drive the rotor of a electric ma-

chine. The knowledge of the electromagnetic torque in terms of the rotation angle is

very important for the designer to evaluate the performances and operating qual-

ities of the machine. Electromagnetic forces and torques can be computed in a

variety of methods. The three basic methods often employed with finite element

analysis are Lorentz method [94], Energy methods [95, 96] and Maxwell’s stress

tensor method [8, 97].

Lorentz method is used to calculate electromagnetic forces acting on current

carrying structures only. Although it is easy to cooperate with the finite element

field solutions, it cannot be applied to determine forces acting on ferromagnetic

structures, except where the reaction force of a single coil appears on the iron. Due

to the limitation of the Lorentz method, it is ignored in our computation.

Electromagnetic torque can also be calculated by energy methods based on

the principle of conservation of energy. The force acting on a movable part of a
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device may be derived from the variation of the stored magnetic energy, W , or

co-energy, W ′ of the entire device against small space displacement ∆θ [8, 95].

The flux linkage λ and current I are kept constant while derived from energy and

co-energy respectively. Although the method is quite straightforward and easy to

implement, it suffers from two major shortcomings. First, important numerical

errors may be introduced as a consequence of a small incremental choice of ∆θ.

Second, the field computation has to be performed twice for one torque value, caus-

ing the computation time doubled.

The Coulomb virtual work method overcomes these shortcomings by taking

direct, closed form differentiation of magnetic energy or co-energy of the free space

region between the moveable and the fixed parts of the system under consideration.

By this way, only one finite element solution is necessary.

Forces and torques can also be integrated using Maxwell stress tensor over any

closed surface surrounding the moving body [8, 97]. Both the Coulomb’s virtual

work method and the Maxwell stress tensor method can be used to calculate the

electromagnetic torque. These two methods have the following advantages [28, 96]:

(1) Both methods are applicable to any rigid body in the finite element problems.

(2) Both methods need only one field computation.

(3) Both methods require a single integration involving only air gap elements .

(4) Both methods can give similar results if a good surface is chosen for the Maxwell

stress tensor method [98, 96].

In this work the Maxwell stress tensor method is used to calculated the elec-

tromagnetic torque.
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3.11.2 Calculation of Torque with Maxwell Stress Tensor

Method

The Maxwell stress tensor method is commonly used in the calculation of forces

and torques in the finite element analysis of electrical devices. The Maxwell tensor

can be expressed as

σ =
1

µ0

(B · ~n)B − 1

2µ0

(B2~n). (3.138)

where σ is the Maxwell’s stress tensor, B is the flux density and ~n is the unit

normal vector

The torque applied to one part of the magnetic circuit can be obtained by

integrating the Maxwell stress tensor along a path Γ placed in the air and enclosing

this part. In the case of electric machines, this integration path is normally placed

in the air gap and the torque can be calculated by

T = L

∫
Γ

(r × σ)dΓ (3.139)

where L is the axial length and r is the lever arm.

Since

B = Bn~n+Bt
~t (3.140)

and

B2 = B2
n +B2

t , (3.141)

substituting equations (3.140) and (3.141) into equation (3.138) yields

σ =
1

2µ0

(B2
n −B2

t )~n+
1

µ0

(BnBt)~t (3.142)

where Bn and Bt are the normal and tangential components of flux density respec-

tively, ~t is the unit tangential vector.
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A closed integration path C with radius of r that surrounds the rotor in free

space along the air-gap is chosen (Fig. 3.8). The force in the tangential component

is

Ft =
l

µ0

∫
Γ

(BnBt)dΓ (3.143)

where l is the axial length of the electric machine.

In two-dimensional cases, since

Br = Bn, (3.144)

Bθ = Bt, (3.145)

dΓ = r · dθ

equation (3.143) can be rewritten as

Ft =
l

µ0

∮
C

BrBθrdθ (3.146)

where Br and Bθ are the radial and tangential components of flux density.

In the two-dimensional electromagnetic field, the electromagnetic torque for

the rotation of rotor is generated by the tangential component of force. Substituting

equation (3.146) into equation (3.139) yields

T = r × Ft =
L

µ0

∮
C

r2BrBθdθ (3.147)

If the solution were exact, the value of the torque calculated from equation (3.147)

would be independent of the radius of r when r varies between the inner and outer

radius of the air gap. However, in an approximate solution the integration path

has an effect on the result [96, 27]. When first order triangular finite elements are

used for the field computation, the best results are obtained when the integration
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path crosses triangles at the middle of the edges [96, 99].

As shown in Fig. 3.8, the integration path is drawn in dash circular and

it connected the middle points of two sides of the triangular element k. If only

one pole of the electric machine is taken as the solution domain and the solution

domain starts from θ1 and ends at θ2, the total electromagnetic torque is

Tem =
2pl

µ0

∫ θ2

θ1

r2BrBθdθ. (3.148)

where p is the number of pole pairs.

Assume that in the air gap, there areNe triangular elements on the integration

path, then we can have

Tem =
2plr2

µ0

Ne∑
k=1

∫ θk+1

θk

BkrBkθdθ, (3.149)

where Bk is the flux density of triangle element k.

Since

Bkr = Bkx cos θ +Bky sin θ

Bkθ = Bky cos θ −Bkx sin θ

finally the electromagnetic torque in discrete format is

Tem =
2plr2

µ0

Ne∑
k=1

[
1

2
(B2

ky −B2
kx) sin(θk+1 + θk) sin(θk+1 − θk)

+BkxBky cos(θk+1 + θk) sin(θk+1 − θk)]. (3.150)

3.12 The Simulation of Rotor Motion

The rotor of an electric machine moves relative to the stator when the dynamic

case is considered. To guarantee the continuity of the nodal unknowns in the
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Figure 3.8: Integration Path of the Electromagnetic Torque

finite element analysis, the two different finite element meshes in the rotor and the

stator have to be matched at the boundary between two regions. Several methods

have been described in the literature to take into account the rotor movement.

The known approaches can be broadly divided into two categories: (1) method of

meshless air gap, (2) method of meshed airgap.

3.12.1 Meshless Air Gap

The air gap is not discretized, as shown in Fig. 3.9. In this case, Abdel-Razek

[100, 101] presented the principle of air gap macro-element which is based on the

Fourier analysis solution of the field in the air gap combined with a finite element

analysis of the field in the rotor and the stator. The torque computed using this

method is relatively more accurate, therefore it is adopted when high accuracy is

required [102]. Another method of meshless air gap is the hybrid finite element-

boundary element method in two dimensions [103, 104]. The boundary element

method is applied to the region of air gap while the finite element method is

applied to the regions of the stator and the rotor.

Both the macro-element and hybrid finite element-boundary element method
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Figure 3.9: The Meshless Air Gap in Simulation of Rotor Motion

may reduce the number of unknowns and avoid the handling of triangular elements

in the air gap region. However the sparsity of the stiffness matrix is lost because of

the full matrix part contributed by the boundary element method and the analytical

method. Due to the long time spent on assembly process, the efficiency of these

methods are not guaranteed. This may be a disadvantage for dynamic problems,

thus these two methods are not considered in our computation.

3.12.2 Meshed Air Gap

The air gap is discretised, as shown in Fig. 3.10. In this case, the air gap is

subdivided into meshes and the rotation can take place by means of a layer of

finite element placed in the air gap. This layer can occupy all the air gap region

or just a part of it. Since the rotor is moving and the stator is fixed, this layer of

meshes will distort as time going on (Fig. 3.11).

To avoid the need of remeshing the distorted elements, the Lagrange mul-

tipliers techniques [105] is used which allows a finite element mesh to move with

respect to an adjacent mesh freely. At different positions, only the terms which
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Figure 3.10: Triangular Element Subdivision of the Air Gap

Figure 3.11: Triangular Element Subdivision of the Air Gap



107

couple the meshes together at the interface are altered. However the resultant

matrix is weakly conditioned and new formulations are necessary for each prob-

lem [106]. The nodal interpolation method [107]-[109] avoids the remeshing also.

However the continuity of the vector potential in [107] may not be guaranteed and

the stiffness matrix in [108] may be singular [110]. Their efficiencies have not been

tested on the electromagnetic force calculation yet. Therefore these two methods

are not considered in our computation also.

Another technique of handling the distorted air gap elements is the method

of moving band [111]. This method is based on the rotational moving band and

successfully used to model the motion of rotating electric machine [98, 106, 112,

113]. In this method, the air gap is meshed and the translation displacement is

taken into account by means of a layer of finite elements placed in the air gap

(Fig. 3.12). The displacement is a function of the time step and the speed. At

each step, the moving part is displaced (Fig. 3.13), so the elements of the moving

band are distorted. When the distortion is large enough, the air gap is remeshed.

Periodical or anti-periodical boundary condition(boundaries ÂB and Â′B′) are used

to perform a dynamic allocation of domain nodes (Fig. 3.14). Thus the size of the

corresponding matrices is not increased [98].

3.12.3 Simulation of Rotor Motion with Method of Moving

Band

In this work, the method of moving band is used. The air gap is divided into three

layers (Fig. 3.15). The inner layer is assigned to the rotor and it rotates together

with the rotor, while the other two layers are assigned to the stator and are kept

fixed. The second layer is the moving band.
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Figure 3.12: Moving Band in the Air Gap

Figure 3.13: Moving Band With Rotor Displacement
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Figure 3.14: Boundary Conditions in Method of Moving Band

In order to avoid the generation of new nodes during the rotor movement

[106, 112], The nodes on the interface boundary between the rotor and the stator

are numbered twice (Fig. 3.15). One set of numbers (1, 2, 3, . . . , Nbc) are assigned

to the stationary region and the other set (1′, 2′, 3′, . . . , N ′
bc) are assigned to the

moving region, where Nbc is the number of nodes on the interface.

Figure 3.15: Three Layers in the Air Gap and the Numbering of Interface
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At every time step of the movement, the coordinates of the nodes on the rotor

side are changed while those on the stator side are fixed. If the displacement of

this step is equal to the distance between two consecutive nodes, then there is no

distortion in the moving band and a lot of effort can be saved (Fig. 3.16). This

condition is easy to achieve by imposing some restrictions on the time step length

or the meshes [114, 115]. For example, the interface between rotor and surface has

to be subdivided into a number of equal intervals whose length must always be

less than the movement associated with the smallest time-step. With the motor

operating at any speed, the time-step length can be controlled to ensure that as the

rotor moves, nodes on the interface always coincide peripherally. However, when

coupled field and circuit or a dynamic case considered, the time step is variable.

With electronic circuits, the length of the time-step is decided by the controller

and the characteristics of the semiconductor components. Thus the rotor movement

cannot always be coincident with the distance of consecutive nodes on the interface,

thus the distortion in the air gap occurs or the continuity of the vector potential

is broken (Fig. 3.17).

Figure 3.16: Movement of Rotor Without Distortion in the Air Gap
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Figure 3.17: Movement of Rotor With Distortion in the Air Gap

When the rotor movement is not coincident with the distance of consecutive

nodes on the interface, the finite elements in the moving band have to be remeshed.

As shown in Fig. 3.18, the nodes of the moving band on the interface are relocated

according to the rotor position. With the new node coordinates, the finite elements

in the moving band are remeshed. The nodes on the interface of the rotor and stator

are connected by the periodical or anti-periodical boundary conditions. As shown

in Fig. 3.19, the boundary condition at this moment are

A|Γ1 = −A|Γ2

A|Γ3 = A|Γ4

Since only the nodes on the interface and the meshes in the moving band are

handled every time, much computation time can be saved. and the effects of time

step size on the meshes can also be eliminated.
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Figure 3.18: Relocation of the Moving Band Nodes on the Interface

Figure 3.19: Connection of Interface Nodes Using Boundary Conditions
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3.13 Conclusion

This chapter presented the complete process of field-circuit coupled time stepping

finite element computation of line-start permanent magnet synchronous machine.

Most of the governing equations are space dependent or time dependent. The

space dependent quantities can be formulated by the method of weighted residual.

The time dependent quantities are evaluated by the time-stepping method and

the backward Euler’s method is recognized as one of the most stable ones. Since

nonlinear materials are used for the iron cores of the stator and the rotor, the re-

sultant global system of equations is nonlinear. Newton-Raphson iterative method

can be chosen to solve these nonlinear equations and the cubic splines are used to

represent the characteristics of the nonlinear materials. Because of the coupling

of circuit equations, the resultant global coefficient matrix is non-symmetric also.

To get the solution of this set of non-symmetrical linear equations, bi-conjugate

gradient method can be used in each Newton-Raphson iteration. With the electro-

magnetic field solution, the motor torque can be calculated using Maxwell stress

tensor method. Once the motor torque is available, the rotor speed and rotor po-

sition are obtainable with the mechanical motion equations. If we continue the

computation with the new time and new position, the dynamic performance of

the machine can be calculated step by step. The flow chart for this computation

process is shown in Appendix E.

In general, this field-circuit coupled time stepping finite element computation

process can be used to calculate the dynamics of any electric machine. It will be

used to calculate the dynamics of a line-start permanent magnet synchronous ma-

chine in Chapter 5.



Chapter 4

Parameter Estimation of the
Line-Start Permanent Magnet
Synchronous Machines

4.1 Introduction

Permanent magnet synchronous machines are receiving much attention due to their

high speed, power density and efficiency characteristics. New rotor configurations

and the commercial availability of high field strength permanent magnets have re-

duced the cost of these machines. Permanent magnet synchronous machines now

can provide a significant and affordable performance improvement in many applica-

tions. However, manufactures of such commercially available machines provide very

little information about the parameters which are very important for implement-

ing various types of controllers. Thus parameter estimation is extremely important

for the operators of modern drives to implement high performance control. It is

also invaluable for the machine designer and manufacturers wishing to do various

simulation and analysis before the prototypes are made.

The testing and analysis of permanent magnet synchronous machines are

based on the recognized equivalent circuit modelling. This equivalent circuit is

based on the classical two-axis model and the parameters of this two-axis model

114
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are the ones of interest in this work. These machine parameters usually consist

of the synchronous reactance of direct axis Xd, the synchronous reactance of the

quadrant axis Xq and the magnet induced voltage E0.

The parameter determination of the permanent magnet synchronous ma-

chines are in principle similar to the procedures applied to conventional synchronous

motors with wound rotors and slip rings. However, because of the permanent mag-

net excitation, classical methods applied to conventional synchronous machines are

no longer appropriate. For example, without the ability to remove field excitation

of the permanent magnet from the permanent magnet synchronous machine, the

conventional methods of electrical parameter identification using the open circuit

saturation curve, the short circuit current curve, the zero power factor curve or the

slip test cannot be utilized [56].

To tackle the problems of parameter determination of permanent magnet

synchronous machines, various techniques and methods have been used by many

researchers [43] - [60]. In this work, the methods that were mostly used before

by other researchers are reviewed first. Then two new methods are proposed by

the implementation of linear regression and Hopfield neural network. Parameters

calculated by finite element method are also presented.
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4.2 Lumped Parameter Model of Permanent

Magnet Synchronous Machines

The lumped parameter model of a permanent magnet synchronous machine is de-

rived from generalized electrical machine theory. The standard two-axis theory

with fixed rotor reference frame is used. A transformation that transforms the

three-phase model to such and equivalent two-phase description is needed. It is

desirable to utilize a particular transformation such that the representation of elec-

trical power in the machine is preserved. As a result, the developed torques are

invariant over the transformation. The Park’s transformation is used to transform

the variables from the stator reference frame abc to the rotor reference frame dq0

[116]. To keep the power invariant, the transformation is given by [117]:

 fds

fqs

f0s

 =

√
2

3

 sin θe sin(θe − 2π/3) sin(θe + 2π/3)

cos θe cos(θe − 2π/3) cos(θe + 2π/3)√
1/2

√
1/2

√
1/2


 fas

fbs

fcs

 , (4.1)

where fds, fqs and f0s are the direct, quadrature and zero-sequence quantities, re-

spectively.

Fig. 4.1 shows the trigonometric interpretation of the change of stator vari-

ables using Park’s transformation. In Fig. 4.1, θm is the rotor angle, θe is the rotor

electrical angle, which equals to the number of pole pairs times θm. ωm denotes the

mechanical speed of the rotor and its positive direction is assumed to be counter-

clockwise. The rotor position is decided by

θm = θ0 +

∫ t

0

ωmdt (4.2)

where θ0 is the initial rotor position.
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Equation (4.1) can be written in a more compact form of:

f dq0s = Kfabcs, (4.3)

where f represents any of the stator voltage, current or flux-linkage vector and K

is Park’s transformation matrix. The directions of fas, fbs and fcs shown in Fig. 4.1

are the positive direction of the magnetic axes of the stator windings of phases a, b

and c, respectively. The direction of fds is designated to be the positive direction of

the rotor permanent magnet flux, while fqs leads fds by 90 electrical degrees. The

zero-sequence variable, f0s, is zero for balanced condition and will be neglected in

the following analysis.

Figure 4.1: Trigonometric Interpretation of the Change of Stator Variables

Applying such a transformation to the variables of a three-phase interior

permanent magnet synchronous machine, the three-phase symmetrical windings

A, B and C can be replaced by equivalent two-phase windings d and q as shown in
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Fig. 4.2, in which the magnets are identified by if and the rotor cage is represented

by equivalent shorted D and Q windings [50].

Figure 4.2: Physical Model of Interior Permanent Magnet Synchronous Machine

If the three-phase terminal voltages and currents are

 va

vb

vc

 =


√

2V cosωt√
2V cos(ωt− 2π

3
)√

2V cos(ωt− 4π
3

)

 (4.4)

and  ia

ib

ic

 =


√

2I cos(ωt− ψ)√
2I cos(ωt− 2π

3
− ψ)√

2I cos(ωt− 4π
3
− ψ)

 (4.5)

then through the commutator transformation described in equation (4.1), the cor-
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responding voltages and currents in dq0 system are

 vd

vq

v0

 =
√

3V

 − sin(ωt− θe)

cos(ωt− θe)

0

 =
√

3V

 − sin δ

cos δ

0

 (4.6)

and  id

iq

i0

 =
√

3I

 − sin(ωt− θe − ψ)

cos(ωt− θe − ψ)

0

 =
√

3I

 − sin(δ − ψ)

cos(δ − ψ)

0


=

√
3I

 cos(π
2

+ δ − ψ)

sin(π
2

+ δ − ψ)

0

 (4.7)

where ω is the stator angular velocity, δ = ωt − θe is the torque angle and ψ is

power factor angle.

Let

β =
π

2
+ δ − ψ (4.8)

then equation (4.7) is rewritten as id

iq

i0

 =
√

3I

 cos β

sin β

0

 (4.9)

Assuming balanced operating conditions, with the model shown in Fig. 4.2,

the voltage equations are written as:


vd = dλd

dt
− ωeλq + Rsid

vq = dλq

dt
+ ωeλd + Rsiq

0 = dλD

dt
+ RDiD

0 =
dλQ

dt
+ RQiQ

(4.10)

where λ is the flux linkage, ωe is the rotor angular velocity, suffixes d and q denote

the d−axis and q−axis quantities of the stator, suffixes D and Q denote the d−axis
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and q−axis quantities of the rotor.

With the permanent magnet being represented by equivalent current if , the

flux linkages can be written as:


λd = Ldid + LmdiD + Lmdif

λq = Lqiq + LmqiQ

λD = LDiD + Lmdid + Lmdif

λQ = LQiQ + Lmqiq

(4.11)

where L denotes the inductances and suffix m denotes the mutual quantities.

Substituting equation (4.11) into equation (4.10) yields

[v] = [R][i] + [L]
d[i]

dt
+ ωe[G][i] + ωe[C]λf (4.12)

where

λf = Lmdif

[v] =
[
vd vq 0 0

]tr

[i] =
[
id iq iD iQ

]tr

[R] = diag(Rs, Rs, RD, RQ)

[L] =


Ld 0 Lmd 0

0 Lq 0 Lmq

Lmd 0 LD 0

0 Lmq 0 LQ



[G] =


0 −Lq 0 −Lmq

Ld 0 Lmd 0

0 0 0 0

0 0 0 0
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[C] =
[

0 1 0 0
]tr

and ’diag’ means the diagonals of the matrix.

When the permanent magnet synchronous machine is running in steady state

or under synchronous operation, the rotor is synchronized with the stator, ωe = ω.

Therefore no current is induced in the rotor or iD = iQ = 0. Thus equation (4.12)

can be simplified as{
vd = −

√
3V sin δ = −ωLqiq + Rsid

vq =
√

3V cos δ = ωLdid + ωλf + Rsiq
(4.13)

If E0 represents the induced phase voltage in abc system by the permanent

magnet under synchronous speed, then

√
3E0 = ωλf (4.14)

Since the reactance of d and q axis under synchronous operation are{
Xd = ωLd

Xq = ωLq

(4.15)

substituting equations (4.9), (4.14) and (4.15) into equation (4.13) yields

{
−
√

3V sin δ = −Xq

√
3I sin β + Rs

√
3I cos β√

3V cos δ = Xd

√
3I cos β + Rs

√
3I sin β +

√
3E0

(4.16)

or {
V sin δ = XqI sin β − RsI cos β

V cos δ = XdI cos β + RsI sin β + E0

(4.17)
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With reference to the standard phasor diagram of permanent magnet syn-

chronous machine during synchronous motor operation shown in Fig. 4.3, the

two-axis model of permanent magnet synchronous machine can be elaborated by

equations (4.18)-(4.20).{
V cos δ = E0 + XdId + RsIq

V sin δ = XqIq − RsId
(4.18)

Id = I cos β; Iq = I sin β (4.19)

β =
π

2
+ δ − ψ. (4.20)

where X is the reactance, δ is the load angle, ψ is the power factor angle and β is

the angle between the stator flux linkage and the permanent magnet flux linkage.

Figure 4.3: The Phasor Diagram of a Permanent Magnet Synchronous Machine
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4.3 Parameter Estimation of Line-Start

Permanent Magnet Synchronous Machine

The presence of permanent magnets in the permanent magnet synchronous ma-

chine prevents the use of the most conventional parameter measurement methods,

which are applicable to the wound field synchronous machines. To tackle this prob-

lem, various techniques and methods have been used by many researchers for the

determination of machine parameters. The experimental methods that were used

often are static test (locked rotor), sensorless no-load test and load test, while one

of the most popular computational methods is the finite element method.

The static tests are carried out with some assumptions, such as the constant

parameters with different frequencies or constant parameters with different load

conditions. These assumptions result in simple measurement procedure, but not

enough parameter information for machine dynamic operations. The conventional

sensorless no-load test and load test methods are based on the two-axis model

of permanent magnet synchronous machines. They have an important limit that

a constant value, E0, is assumed for the induced EMF due to permanent mag-

nets. Although the load test methods are modified later by taking into account of

the variation of E0, the results are still irregular. In this work, the experimental

methods that were used before by other researchers were reviewed. Based on the

modified load test method, two novel techniques through the implementation of

linear regression and Hopfield neural network are presented.

In the finite element analysis, the machine parameters can be calculated from

the stored magnetic energy or flux linkage. Different authors have proposed al-

ternative methods to evaluate the machine parameters and their variations with
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iron saturation. However assumption of constant permanent magnet flux linkage is

made also. To overcome this drawback, a method based on the variation of current

angle is used in this work, which allows the two-axis parameters to be evaluated

with the variation of load condition.

4.3.1 Working Model in This Work

The parameters of a 3-phase, 4-pole, 2.2 kW line-start permanent magnet syn-

chronous machine is determined using various methods. The cross section of the

machine is shown in Fig. 4.4. The specifications and dimensions of the machine

are shown in Appendix F.

Figure 4.4: Cross Section of Line-Start Permanent Magnet Synchronous Machine
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4.3.2 BH Characteristic of Lamination Material

The material property of motor core is necessary for the finite element analysis. A

section of stator is taken out and wound with two windings similar to transformer

windings as shown in Fig. 4.5.

Figure 4.5: Wound Motor Core for Testing of BH Characteristics

Two coils, coil A and coil B are wound on the motor core similar to a toroidal

transformer. Coil A is taken as the primary winding and coil B is taken as the

secondary winding. Coil A is connected to a 50Hz line supply through a variac;

while coil B remains as open circuit. The variac is used to control the voltage

across coil A, V1. For every V1, the current flowing in coil A, I1, and the voltage

across coil B, V2, are measured. The magnetic flux density, B, and magnetic field

intensity, H, can be calculated as

H =
N1I1
lmag

(4.21)

and

B =
V2√

2πfN2Seff

(4.22)

where N1 and N2 represent the number of turns of primary winding and secondary

winding respectively. lmag is the length of magnetic path and Seff is the effective
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cross section area of magnetic flux.

The dimensional specifications of the motor core used for the testing of BH

are shown in Appendix G. The experimental data of I1 and V2 are shown in Ap-

pendix G, Table G.1, the computational BH data are shown in Table G.2. The

resultant BH curve is plotted in Fig. 4.6.

Figure 4.6: BH Characteristics of the Motor Core

4.3.3 Review of Previous Experimental Methods for

Parameter Estimation

4.3.3.1 DC Current Decay Measurement Method

The synchronous reactances of permanent magnet synchronous machine can be

measured from a static test provided that the rotor is locked to prevent any in-

duced voltage from movement of the magnetic field. There are two approaches

taken, direct flux integration [59, 53] and current integration with computation

[54]. The first method requires direct computation of flux within the circuit as

well as balancing the inductance bridge to eliminate the effect of rotor cage bars
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(damper windings) on the AC measurements. The requirements include balancing

the inductance bridge and integrating the flux. The uses of flux integrator and the

L-R circuits for flux integration make the method complicated somehow.

The second method requires a simple setup and a small-capacity dc power

supply. The direct- and quadrature-axes operational impedences are obtained from

the voltage and current measured when the two armature winding terminals are

short circuited while a dc current flows between these terminals. It was proposed by

Yamamoto and others [54] to predict the starting parameters of permanent magnet

machines and was named as DC current decay method.

The first method can include the variation of parameters with different cur-

rents, and the assumption of constant parameters with all frequencies is made.

The second method can get parameters for different frequencies, but the variation

of parameters with currents is not considered. Since the experimental setup and

measurement procedure are relatively simple, the second method is selected in this

work.

Fig. 4.7 shows the circuit configuration of the power supply and measurement

setup used for the DC decay testing method. First the d−axis rotor position is

determined. A dc voltage VDC is applied so that a current IDC which is lower than

the rated current flows between the two armature winding terminals, as shown in

Fig. 4.8(a). The stator and rotor interact by magnetic force, as a result, the rotor

is held in a certain position, which is the d−axis position. The rotor is locked along

the direct-axis and the two terminals are short circuited by opening the switch S1.

The current waveforms i(t) are captured by oscilloscope upon opening the switch.

Since the two terminals are short circuited, the current flowing in the windings
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decays with time, as shown in Fig. 4.9(a).

A similar process is applied for the measurement of q−axis parameters. With-

out changing the rotor position, a different stator terminal voltage configuration

is applied to the machine, as shown in Fig. 4.8(b). Upon opening the switch, the

decay current waveform is captured as shown in Fig. 4.9(b).

Figure 4.7: DC Current Decay Experimental Setup

(a) (b)

Figure 4.8: Terminal Configuration for (a) d−axis and (b) q−axis
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(a) (b)

Figure 4.9: Measured DC Decay Current (a) d−axis and (b) q−axis

The voltage and current waveforms before and after short-circuiting are il-

lustrated in Fig. 4.10. The current waveform is represented by solid line and the

voltage waveform is represented by broken line.

Figure 4.10: Voltage and Current Waveforms before and after Short-Circuited

The voltage waveform is processed first by Fourier transform and then by the

inverse transform to obtain [118]

v(t) =

∫ +∞

−∞
j
VDC

2πωe

ejωetdωe +
VDC

2
(4.23)

where t is time, j =
√
−1 and ωe is the angular frequency.
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Similarly the current waveform is also processed by Fourier transform and

inverse transform to obtain

i(t) =

∫ +∞

−∞

1

2π

[∫ +∞

0

i(t)e−jωetdt+ j
IDC

ωe

]
ejωetdω +

IDC

2
(4.24)

Comparing the frequency components of the integrand in the first term on the right

hand sides of equations (4.23) and (4.24), the corresponded AC voltage and AC

current are

vac = j
VDC

2πωe

ejωet (4.25)

and

iac =
1

2π

[∫ +∞

0

i(t)e−jωetdt+ j
IDC

ωe

]
ejωet (4.26)

Therefore the impedence Z(ωe) at each frequency is given by

1

Z(ωe)
=
iac

vac

= (
ωe

jVDC

)

∫ +∞

0

i(t)e−jωetdt+
IDC

VDC

(4.27)

The d and q−axis (per phase) can be calculated as:

{
Xd(ωe) = [Zd(ωe)− 2Rs]/[2(ωe/ω0)j]

Xq(ωe) = 2[Zq(ωe)− 3Rs/2]/(3(ωe/ω0)j)
(4.28)

where ω0 is the base frequency of the power supply. Applying equation (4.28) to

the captured d− and q−axis current waveforms, the reactances values of different

frequencies can be calculated, and the synchronous reactances Xd and Xq are those

when ωe/ω0 is equal to zero [54]. The reactances values obtained using this method

are listed in Table 4.1.
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Table 4.1: Results of DC Current Decay Method

VDC/Volt IDC/Ampere X/Ohm

d−axis 4.95 3.00 3.913

q−axis 3.59 3.00 11.026

Compared with the conventional standstill tests, this method has the merit

that the reactances, including those for the low frequency range are obtainable

using simple and low cost equipment. However, this method gives single values for

Xd and Xq for one frequency. The measurement of parameter E0 is not realized

and the variation of parameters with load conditions is not included. Hence the

parameters measured using this method cannot provide enough information for

some dynamic operations when these variations are needed.
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4.3.3.2 Sensorless No-Load Test

Mellor et al [53] and Nee et al [55] used a no-load test method with variable stator

voltage to determine the motor parameters. It is based on the machine phasor

diagram during motoring operation as shown in Fig. 4.11 and the two-axis model

represented by equations (4.29)-(4.32).

Figure 4.11: The Phasor Diagram of a Permanent Magnet Synchronous Machine

V cos δ = E0 +XdId +RsIq (4.29)

V sin δ = XqIq −RsId (4.30)

Id = I cos β; Iq = I sin β (4.31)

β =
π

2
+ δ − ψ. (4.32)

In this method, it is assumed that at no load the angle δ is zero and Iq = 0 (no

torque current). As stator voltage V varies, stator current varies also. Taking the

value of V at the point of minimum I as E0, from equation (4.29), the reactance
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of d−axis can be calculated as:

Xd =
|V − E0|

I
. (4.33)

In the experiment, the machine is run at rated speed of 1500rpm without

load. The terminal voltage was varied from 200 volt to 100 volt and at the same

time various voltages and currents are measured. The pairs of measured V and

I values are listed in Appendix H, Table H.1, and the result of Xd (reactance of

d−axis) is shown in Fig. 4.12.

Figure 4.12: Results of Xd Using No-Load Test Method

The value of E0 obtained here is 77.1 (line-line 133.54) volt. As stated in

[55], from Fig. 4.12, we can see that this method is not valid in the vicinity of

the point V = E0. The reason is that at this point the current is at a minimum

value, and any error in the measurement of a small current will be amplified to

get erratic Xd values. At a certain distance away from this point, this method is

a good approximation. However, using this method, we can only obtain a set of

values of Xd and the variation of E0 with current is not considered.
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4.3.3.3 Load Test Method

The load test method for PMSM was first proposed by Miller [59]. It is also based

on the two-axis model represented by equations (4.34)-(4.37).

V cos δ = E0 +XdId +RsIq (4.34)

V sin δ = XqIq −RsId (4.35)

Id = I cos β; Iq = I sin β (4.36)

β =
π

2
+ δ − ψ. (4.37)

The method is used to determine the Xd from the stator d−axis voltage component

and Xq from the q−axis component respectively. Once the data of applied voltage

V , current I, input power P and torque angle δ are known from the load test,

power factor angle can be easily obtained as

ψ = arccos(
P

3IV
) (4.38)

Thereafter other quantities, β, Id and Iq, can be calculated using equations (4.36)-

(4.37). From equation (4.35), the value of Xq can be easily obtained. However,

from equation (4.34), it is inadequate to evaluate the two unknown quantities E0

and Xd. To this end, E0 is assumed to be constant by Miller [59] and it is equal to

the open-circuit value. This assumption leads to the irregularity of Xd over a load

range where the armature reaction in direct axis is changing from magnetizing to

demagnetizing regions [59].

This load test was modified by Rahman and Zhou [57] by not making the

simplifying assumption that the permanent magnet excitation voltage E0 is con-

stant. Instead, an attempt was made to solve for Xd and E0 simultaneously by

getting two sets of readings while making a change of ∆β in angle β. With the
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new β′ = β + ∆β, another set of test data are obtained and one more equation is

written

V ′ cos δ′ = E0 +XdI
′
d +RsI

′
q (4.39)

Now with the three algebraic equations (4.34), (4.35) and (4.39), the values of Xd,

Xq and E0 are obtainable simultaneously.

In practice, the test procedure is to produce two sets of data for one load

condition. The typical setup for a load test is used in this experiment, as shown in

Fig. 4.13. The test machine is coupled to a DC machine and an incremental en-

coder is mounted on the shaft of the test machine so as to detect the rotor position

θm. Two watt meters are used to measure the input power of the system.

Figure 4.13: Experiment Setup for Load Test Method

In this experiment, the test machine is run as a generator first, and the back

EMF vab0, vbc0, vca0 are recorded as reference waveforms, as the waveform V0 in

Fig. 4.14. Then the test machine is run as a motor at different loads. As shown
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in Fig. 4.15, by varying the external resistance Re, the armature current Ia of DC

machine will be changed accordingly. Since the generating torque of DC machine

is proportional to Ia [119], the DC machine torque varies with Re. Therefore, the

load of the test machine is varied with Re also.

Figure 4.14: Measurement of Torque Angle δ

Figure 4.15: Configuration of the PMSM Loading System
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When the test machine is run under different loads, the voltage (vab,vbc,vca,

waveform VL in Fig. 4.14 ), current (ia, ib, ic) waveforms and input power (P1, P2)

are recorded for every load (see Appendix H, Tables H.2 and H.3). The phase angle

difference between the Vab,bc,ca and the Vab0,bc0,ca0 was taken as the torque angle δ,

as shown in Fig. 4.14, δ = ∆t · ωe. With the measured input power P = P1 + P2,

phase voltage V and phase current I, the power factor angle ψ can be calculated

as

ψ = arccos(
P

3IV
)

With the values of angles δ and ψ, β can be calculated using β = π
2

+ δ − ψ,

hence the values of Id and Iq can be determined by Id = I cos β and Iq = I sin β

respectively. Therefore, a set of values of V , δ,Id and Iq can be determined.

To create the other set of data, a small change of ∆β in β is needed. The

new β′ = β + ∆β should not be too far from β as they are taken as the operation

points for the same load condition. Therefore, ∆β should be small enough and in

this work a suggested value of 0.10 is selected [58]. In order to achieve such a small

change in angle β, we make a small change to the DC armature current through

the slight downward adjustment of the DC field excitation voltage, i.e. from 180

to 175 volt. By doing so, the load angle changes slightly (no more than 0.100), and

with that we get a new set of voltage, current and real power values. Therefore

with these two set of experiment data, the Xd, Xq and E0 can be calculated by

solving the following set of equations:
V cos δ = E0 + XdId + RsIq

V sin δ = XqIq − RsId

V ′ cos δ′ = E0 + XdI
′
d + RsI

′
q
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The experiment data of the load test are listed in Appendix H Tables H.2 and

H.3. The results of parameters are listed in Appendix G Table H.4 and plotted in

Fig. 4.16.

Figure 4.16: Results of Load Test Method

We can see that the values of Xd and E0 are fluctuating, while that of Xq

shows a more consistent trend. The main reason for this inconsistency could be

due to the very small change in the angle β, which can make the equations ill-

conditioned and hence cannot be solved accurately. In the experiment, the achieve-

ment of the small change in β is possible but very difficult and uncertain. This

uncertainty may bring inaccuracies to the recorded data, thereafter affect the ac-

curacies of the result parameters. Especially when the accuracies of Xd and E0 are

completely determined by the measurement of a few angles, including δ, β, δ′ and

β′, a small uncertainty in one of these angles may cause big error in the result.
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4.3.4 New Methods for Parameter Determination

The DC current decay method is easy to carry out, but only single values of Xd and

Xq are obtained. The sensorless no-load test is also easy in implementation, but

only a group of Xd values are obtained. The load test suffers from the shortcoming

of the fact that we need a very small change of angle β. The change of such a

small margin in experiment is very difficult to achieve, and it could also lead to the

inconsistency of experimental results.

In order to overcome these drawbacks and difficulties, the load test is applied

in combination with a linear regression model and a Hopfield neural network model

respectively. By using the combined methods, one would avoid the measurement

of the load angle δ, and the power factor angle ψ, but the rotor position would be

required. Thus the load test processes become much simpler with the combination

techniques.

4.3.4.1 Combination of Load Test and Linear Regression

The main concept of linear regression model is to adapt parameters from input and

output data by searching for the minimum of the mean square error (MSE) [120].

For example, suppose d is the desired output of n inputs x1, x2, . . . , xn, the error

between the estimated output and the desired output is:

ε = d−
n∑

k=0

hkxk

where hk(k = 0, 1, . . . , n) are the weights, h0 is the bias and x0 is 1. Hence the

MSE of m sample is:

J =
1

2m

m∑
i=1

(di −
n∑

k=0

hkxik)
2
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The differential of J with respect to the unknowns (hk) is:

∇ = [
∂J

∂h0

,
∂J

∂h1

, . . . ,
∂J

∂hn

] = CH −D

where

∂J

∂hk

|(k=0,1,...,n) =
1

m
[

n∑
j=0

(hj

m∑
i=1

xijxik)−
m∑

i=1

dixik]

H = [h0, h1, . . . , hn]tr

The optimal H? is obtained by setting ∇ = 0. Therefore,

H? = C−1D. (4.40)

To apply this method for the processing of load test data, the oscillations

of stator currents in the steady state are taken into account. As the governing

equations of permanent magnet synchronous machine in the steady state are:

vd = Rsid − ωeLqiq + Ld
did
dt

(4.41)

vq = Rsiq + ωeLdid + Lq
diq
dt

+
√

3E0 (4.42)

By applying the sum (4.42)+(4.41) and the difference (4.42)−(4.41) of these two

equations, we can get {
Y1 = LdX11 + LqX12 + b0

Y2 = LdX21 + LqX22 + b0

where
Y1 = (vd −Rsid) + (vq −Rsiq); X11 = ωeid + did

dt
; X12 = diq

dt
− ωeiq;

Y2 = (vq −Rsiq)− (vd −Rsid); X21 = ωeid − did
dt

; X22 = diq
dt

+ ωeiq;

b0 =
√

3E0;

Taking X11, X12, X21 and X22 as the inputs, Y1 and Y2 as the desired outputs

and Ld, Lq and b0 as the weights, we try to find the best linear regression on all

the inputs using equation (4.40) so that we can determine the values of Ld, Lq and

E0.
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In the experiment, the conventional load test is taken. For each load condi-

tion, a large amount (more than 2000) of samples is recorded. With these samples

values of ia(t), ib(t), ic(t), va(t), vb(t) and vc(t), the values of id(t), iq(t), vd(t) and

vq(t) can be calculated using Park’s transformation. Hence did(t)/dt and diq(t)/dt

can be determined by

did
dt
|(t=t0) =

id|t=t0 − id|t=(t0−∆t)

∆t
;

diq
dt
|(t=t0) =

iq|t=t0 − iq|t=(t0−∆t)

∆t

where t is time, t0 is one point of time and ∆t is the incremental time step from

the previous point of time.

The terminal voltage values we measure from the load test are line-line volt-

ages. Since phase voltages are needed in the Park’s transformation, following equa-

tion is used to change the line-line voltages to phase voltages:

 va

vb

vc

 =
1

3

 −1 0 −1

−1 1 0

0 −1 1


 vab

vbc

vca

 =
1

3

 vab − vca

vbc − vab

vca − vbc

 . (4.43)

Another necessary condition for Park’s transformation is to locate the d, q−axes

with reference to the encoder position system; in other words, we have to decide

the initial position of d−axis. The phase difference between the rising zero crossing

of the back EMF waveform (phase) and the zero index signal of the incremental

encoder was the position of d−axis. As shown in Fig. 4.17, the initial position of

d−axis is θ0 = ∆t · ωe.
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Figure 4.17: Determination of Initial Position of d−axis

After the data sets of id, iq, vd, vq, did/dt and diq/dt are ready, we use a regres-

sion model. The results obtained by using this technique are listed in Appendix H

Table H.5 and plotted in Fig. 4.18.

Figure 4.18: Results of Regression Model
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Comparing with the Miller’s load test method, this combined technique has

the merit that the variation of E0 with load condition is taken into account. Com-

paring with the Zhou’s modified load test method, this technique overcomes the

difficulty of achieving a very small change in angle β during the experiment. The

uncertainties in angle measurements are lessened and the experiment procedure is

simplified.

Comparing Fig. 4.18 with Fig. 4.16, we can see that the zigzags in the re-

sults of load test method are removed by the new combination technique. All the

parameters obtained by the combination technique vary smoothly with the current

and the trends shown in the variations of waveforms are more obvious. The reason

is that Miller’s method and Zhou’s method are based on the solution of two or

three equations, the accuracies of the solved parameters are totally dependent on

a few data. A small mistake in one of these few data may lead to big unexpected

error in the resultant parameters. Especially in Zhou’s method, when the Xd and

E0 are determined by two sets of data (v, i, δ, β) and (v′, i′, δ′, β′) which are very

close to each other, the small uncertainties may cause the equations ill-conditioned

and produce inaccuracies in the results. The combination technique used in this

work overcomes this drawback by getting a optimal solution based on the linear

regression of thousands of samples. Therefore accuracies of the solved parameters

are improved greatly. This improvement can be very significant in the analysis for

dynamics and transients where accurate parameters are needed.
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4.3.4.2 Combination of Load Test and Hopfield Neural Network

Hopfield neural network model was proposed by Hopfield [121] and was further

explored to solve some classes of optimization problems by Hopfield and Tank

[122] - [124]. In 1990, S. R. Chu et al [125] modified this network and applied it

successfully for identification of linear time invariant or time varying systems by

measuring the inputs, states and derivations of the states. In the following years,

this method was used by many researchers for system identification, state estima-

tion and control in various areas [126] - [130]. As for the application of Hopfield

neural network in the parameter estimation of electric machines, some work has

been done in induction machines and DC machines [127, 130, 131]. In order to get

more accurate machine parameters and also to overcome the difficulties of using

only load test, we have applied the Hopfield neural network in combination with

the load test.

Artificial neural networks (ANN) can be considered as highly interconnected

dynamical systems consisting of simple processing elements called neurons. Feed-

forward and recurrent type artificial neural network architectures are the two major

type of ANNs being investigated. The distinction between feedforward and recur-

rent type networks is that the former learns the function mapping by updating

its connection weights while the latter seeks to retain its minimum computational

energy as its neurons evolve in time [132]. Hopfield neural network is just one kind

of recurrent network.

The Hopfield neural network was proposed by John Hopfield of the California

Institute of Technology in 1982 . He devised an array of neurons that were fully

interconnected, with each neuron feeding its output to all others. The concept

was that all the neurons would transimit signals back and forth to each other in a
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closed feedback loop until their states became stable. It is one type of single-layer

iterative (or recurrent) network. There are two types of Hopfield neural networks:

discrete type and continuous type. The main difference of these two versions lies

in the format of neuron active function. For discrete type Hopfield neural network,

usually a discrete time function, i.e. Sign() function, is selected. For continuous

type Hopfield neural network, usually a continuous time function, i.e. Sigmoid or

hyperbolic tangent function, is used. The continuous Hopfield model is a general-

ization of the discrete case. So in this work the continuous type Hopfield neural

network is used.

The structure of continuous Hopfield neural network is shown in Fig. 4.19.

The network is made up by n neurons. Each neuron is realized by analog circuits

(including resistor, capacitor and amplifier) and the structure of one neuron is

shown in Fig. 4.20.

Figure 4.19: Structure of Hopfield Neural Network
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Figure 4.20: Structure of One Neuron

From Fig. 4.20, we can see that the governing equations for ith neuron is:

Ci
dφi

dt
=

n∑
j=1

Qj − φi

Rij

− φi

Ri

+ Ii (4.44)

Qi = g(φi) (4.45)

where

n = the number of neurons in the network

Ci = the neuron capacitance

Ri = the neuron resistance

Ii = the bias input of neuron

Qi = the output of neuron

φi = the state of neuron

g(x) = nonlinear sigmoidal function

Let

1

R′i
=

1

Ri

+
n∑

j=1

1

Rij

(4.46)
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and

Tij =
1

Rij

(4.47)

then we can get

Ci
dφi

dt
= − 1

R′i
φi +

n∑
j=1

TijQj + Ii (4.48)

Considering the quantity

E = −1

2

n∑
i=1

n∑
j=1

TijQiQj −
n∑

i=1

QiIi +
n∑

i=1

1

R′i

∫ Q

0

g−1(Q)dQ (4.49)

where g−1(Q) is the inverse function of Q = g(φ).

Its differential with time is

∂E

∂t
=

n∑
i=1

∂E

∂Qi

∂Qi

∂t
(4.50)

where

∂E

∂Qi

= −1

2

n∑
j=1

TijQj −
1

2

n∑
j=1

TijQj − Ii +
1

R′i
φi (4.51)

If

Tij = Tji (4.52)

then equation (4.51) can be written as

∂E

∂Qi

= −
n∑

j=1

TijQj − Ii +
1

R′i
φi (4.53)

Comparing equation (4.53) with equation (4.44), we can get

∂E

∂Qi

= −Ci
dφi

dt
= −Ci

dφi

dQi

dQi

dt
= −Ci(

dQt

dt
)
d

dQi

g−1(Qi) (4.54)

Substituting equation (4.54) into equation (4.50) yields

∂E

∂t
= −

n∑
i=1

Ci(
dQi

dt
)2 d

dQi

g−1(Qi) (4.55)

If function g(Qi) is mono-increasing, its inverse function g−1(Qi) is mono-increasing

also. In other words,

d

dQi

g−1(Qi) > 0 (4.56)
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Therefore equation (4.50) becomes

∂E

∂t
≤ 0 (4.57)

Equation (4.57) shows that the time evolution of the system is a motion in state

space that seeks out minima in E and comes to a stop at such point. E is a

Lyapunov function for the system and is taken as the computational energy of the

network.

For simplicity, we can always choose R′i = R and Ci = C, independent of i.

Dividing by C and redefining Tij/C and Ii/C as Tij and Ii, equations (4.48), (4.45)

and (4.49) become

dφi

dt
=

n∑
j=1

TijQj + Ii −
φi

RC
(4.58)

Qi = g(φi) (4.59)

and

E = −1

2

n∑
i=1

n∑
j=1

TijQiQj −
n∑

i=1

QiIi +
n∑

i=1

1

R

∫ Q

0

g−1(Q)dQ (4.60)

Equations (4.58)-(4.60) are the Hopfield neural network model and energy function

that are used often in various applications.

While the input resistance of each neuron R → ∞, the network dynamic

model and energy function can be further simplified as:

dφj

dt
=

n∑
i=1

TijQj + Ij (4.61)

Qj = g(φj), j = 1, . . . , n (4.62)
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E = −1

2

n∑
i=1

n∑
j=1

TijQiQj −
n∑

i=1

QiIi (4.63)

It has been shown in equations (4.52) and (4.56) that we can get the minima of

the energy function if Tij = Tji and function Qj = g(φj) is mono-increasing as well.

Generally, function g(φj) is selected as:

Qj = g(φj) = ρ
1− e−kφj

1 + e−kφj
(4.64)

Here k is the slope of the sigmoid nonlinearity, the ρ is such that when φj tends to

±∞, the function Qj = g(φj) tends to ±ρ.

Consider a dynamical system in state space as:

[ẋ] = [At][x] + [Bt][u] (4.65)

The definition of [At], [Bt], [x] and [u] are list in equation 4.66, where [At] and [Bt]

are the system matrices, [x] is the state vector and [u] is the input.

[At]n×n =


a11 a12 . . . a1n

a21 a22 . . . a2n

...

an1 an2 . . . ann

 , [x]n×1 =


x1

x2

...

xn



[Bt]n×m =


b11 b12 . . . b1m

b21 b22 . . . b2m

...

bn1 bn2 . . . bnm

 , [u]n×1 =


u1

u2

...

um



(4.66)

The aim of system identification is to get [At] and [Bt] with known values of [x],[ẋ]

and [u]. Suppose [As] and [Bs] are estimated parameter values of [At] and [Bt],

then the error between the real system and the estimated system is:

[ė] = [ẋ]− [As]x− [Bs]u
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and the identification energy function is defined as

E =
1

2t

∫ t

0

[ė]tr[ė]dt

=
1

2t

∫ t

0

([ẋ]− [As]x− [Bs]u)
tr([ẋ]− [As]x− [Bs]u)dt

When we compare this energy function with the standard energy function of Hop-

field neural network in equation 4.63, we can get the weight matrix [Tij] and the

bias matrix [Ij], which are crucial for the training of the neural network.

Defining [Q] as

[Q] = [a11, . . . , a1n, . . . , an1, . . . , ann, b11, . . . , b1m, . . . , bn1, . . . , bnm]tr,

the weight matrix [Tij] and bias matrix [Ij] can be computed using equation 4.67,

and the definition of the matrix elements in [PT ] is shown in equation 4.68. In

equation 4.68, ′diag′ means diagonals of the matrix. The other elements of matrices

[PT11],[PT12],[PT21] and [PT22] are all zeros except the diagonals.


[Tij] = −1

t

∫ t

0
[PT ] dt = −1

t

∫ t

0

[
PT11 PT12

PT21 PT22

]
dt

[Ii] = 1
t

∫ t

0

[
ẋ1 [x] , . . . , ẋn [x] , ẋ1 [u] , . . . , ẋn [u]

]tr
dt

(4.67)

[PT11]n2×n2 = diag
(

[x] [x]tr [x] [x]tr . . . [x] [x]tr
)

[PT12]n2×nm = diag
(

[x] [u]tr [x] [u]tr . . . [x] [u]tr
)

[PT21]nm×n2 = diag
(

[u] [x]tr [u] [x]tr . . . [u] [x]tr
)

[PT22]nm×nm = diag
(

[u] [u]tr [u] [u]tr . . . [u] [u]tr
)

(4.68)

Therefore, for the sigmoid function shown in equation 4.64, the expression for the

evolution of [Q] can be obtained as

dQi

dt
|(i=1,...,n2+nm) =

dQi

dφi

dφi

dt
=
k(ρ2 −Q2

i )

2ρ

[
n2+nm∑

j=1

TijQj + Ii

]
. (4.69)
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Integration of the above equation gives the solution to the parameter estimation

problem.

To apply this method in combination with the load test for the determination

of machine parameter, the oscillations of stator currents in the steady state are

taken into account. The governing equations of permanent magnet synchronous

machine in the steady state are:

vd = Rsid − ωeLqiq + Ld
did
dt

(4.70)

vq = Rsiq + ωeLdid + Lq
diq
dt

+
√

3E0 (4.71)

Rewriting equations (4.70) and (4.71) into state space model, we can get

[Ẋ] = [Ad][X] + [Bd][U ]. (4.72)

where

[Ad] =

[
−Rs

Ld
ωe

Lq

Ld

−ωe
Ld

Lq
−Rs

Lq

]
, [X] =

[
id

iq

]
, [Bd] =

[
1

Ld
0 0

0 1
Lq

−
√

3E0

Lq

]
, [U ] =

 vd

vq

1


(4.73)

Comparing with the standard model in equations 4.65 and 4.66, we can get n = 2

and m = 3; and the number of unknown values is 10. The matrix [Q] is given by:

[Q] = [Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10]

= [−Rs

Ld

, ωe
Lq

Ld

,−ωe
Ld

Lq

, 0, 0, 0,
1

Lq

,−
√

3E0

Lq

].

Form the expression of [Q], we can see that the values of [Q] are not all free

unknowns, it also includes some constraints. Taking Rs (see Appendix H) and ωe

(rated value of 314.16 rad/s) as known values, the constraints are:


Q6 = Q7 = Q8 = 0;

Q1 = −RsQ5; Q4 = −RsQ9

Q2Q3 = −ω2
e ; Q9 = ωe(Q5/Q2)

(4.74)
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Using equation 4.69 together with the constraints in equation 4.74, matrix [Q]

can be computed; and hence the values of Ld, Lq and E0 can be determined. To

illustrate this process, the revolutions of Q1 and Q5 are shown in Figs. 4.21(a) and

4.21(b) respectively.

(a) (b)

Figure 4.21: Revolution of matrix [Q], (a) Q1 (b) Q5

It is clear in Fig. 4.21 that with time, Q1 and Q5 approach some con-

stant values gradually. Q1 is very close to −17.86 and Q5 approaches 22.325.

These final constant values are the ones we desire, from which we can calculate

Ld = 1/Q5 = 0.044974H and the constraint, Q1 = −RsQ5 is met as well.

Following the above procedure, other values of [Q] can be obtained as well.

The results obtained using the combined Hopfield neural network and the load test

methods are list in Appendix H Table H.6 and plotted in Fig. 4.22.

The results obtained using this method are very close to those obtained by

the regression model. Like the combination technique of regression model, the

small change in angle β is also avoided in this method. Therefore the experiment
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procedure is simplified as well. Compared with the results obtained by Zhou’s load

test method, we can see that the zigzags of the results in load test method are

removed. The variations of all the parameters are very smooth and the variation

trends are more obvious. These improvements lie in the fact that the result pa-

rameters are identified on the basis of large amount of samples by minimizing the

estimation error. In comparison with method of load test only, the combination

technique is more optimized. The good results from this method also indicated

that the Hopfield neural network is a useful tool in the parameter estimation of

machine. Since this method can also be used for the identification of time-varying

systems [125], it may be explored for the online parameter estimation of machine

and drive systems as well.

Figure 4.22: Results of Hopfield Neural Network
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4.3.5 Parameter Determination Using Finite Element Method

Finite element computation is expensive but provides an easy means of computing

machine parameters. Normally, this method can be used for benchmarking all other

experimental methods. However, the main limitation of finite element method is in

getting a correct and accurate model of the machine. Since finite element method

provides an extensive set of values for flux distributions all around, it is much more

transparent and can be used to compute machine parameters although many as-

pects, like eddy losses and hysteresis, are very difficult to represent in finite element

models.

4.3.5.1 Inductance Calculation Using Finite Element Method

The evaluation of reactances are realized through the calculation of inductances.

Usually, the finite element computation of the steady-state inductances are based

on the following two concepts:

• The number of flux linkages of the winding, divided by the current in the

winding.

• The energy stored in the inductor, divided by one-half the current squared.

Both concepts give identical results for linear inductances but not the same for

nonlinear inductances [45].

Demerdash et al and Zhu [133] - [136] have used current and energy pertur-

bation method to calculate the machine parameters. This method is based on the

calculation of the total energy stored in the magnetic field of a given device compris-

ing a few windings. On the other hand, many other researchers [49, 137, 138, 139]

have calculated the machine parameters on the basis of flux linkages. This method
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is realized by applying the Stokes’ theorem in the processing of the magnetic field

solutions in terms of magnetic vector potentials. The inductance calculation in this

work is based on the calculation of flux linkage, current source is used and variation

of parameters with load conditions is taken into account as well.

The flux linked by a single turn of coil is

λ =

∫
Ω

B · dΩ. (4.75)

where λ is flux linkage, B is flux density and Ω is the area.

Substituting ∇ × A = B into the above equation and applying the Stokes’

theorem, we can get

λ =

∮
A · dl, (4.76)

where the integration is around the closed contour formed by the coil and A repre-

sents the magnetic vector potential. For the phases windings in machine, neglecting

the length at the end of the coil, the flux linkage of one turn of coil is

λ = l(A+ − A−), (4.77)

where the superscripts signs ′+′ and ′−′ stand for the ′go′ and ′return′ sides of the

coils, and l is the axil length of the machine. Therefore, for one phase with Ns

equivalent turns of coils, the flux linkages with phases are

λi|(i=a,b,c) = Nsl(

∫ ∫
Ω+ A

+dΩ

Ω+
−
∫ ∫

Ω−
A−dΩ

Ω−
). (4.78)

where Ω+ and Ω− are the total cross areas of the positively and negatively oriented

coil sides of the phase conductors.
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4.3.5.2 Evaluation of Machine Parameters by Applying a Small Change

in Current Angle

The method of calculating the machine parameters by varying the current angle

is based on the modified load test method used by Zhou [50, 57]. Zhou et al and

Chang [138] have used the method to estimate the machine parameters using two

finite element solutions for each point of operation.

When the permanent magnet synchronous machine is run in steady state, the

flux linkages in the d and q−axis can be represented by

λd = LdId + λf (4.79)

λq = LqIq (4.80)

where

Id = I cos β

Iq = I sin β

β =
π

2
+ δ − ψ

δ is the torque angle and ψ is the power factor angle.

Since the variation of parameters with load condition is taken into account in

the calculation, Ld, Lq and λf are unknowns. As equations (4.79) and (4.80) are

inadequate for 3 unknowns, a small change in angle β is exerted and a new β′ is

obtained. Therefore we can have another set of equations as:

λ′d = LdI
′
d + λf (4.81)

λ′q = LqI
′
q (4.82)
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where

I ′d = I cos β′

I ′q = I sin β′

With the calculated d and q-axis flux linkage values and the injected current values,

Ld, Lq and E0 can be obtained by solving equations (4.79)-(4.82)

[
Ld

λf

]
=

[
Id 1

I ′q 1

]−1 [
λd

λ′d

]
, Lq =

λq + λ′q
Iq + I ′q

, E0 = ωeλf (4.83)

When a current is applied, the flux linkages of a, b, c−axis can be calculated using

equation (4.78), then Park’s transformation is used to change the flux linkages from

a, b, c−axis to d, q−axis. The results obtained using this method are shown in Fig.

4.23.

The results obtained by FEM are comparable with the experimental results,

but the values of Xd, Xq are higher and the value of E0 decreases faster than the

experimental values. This may be caused by the model that does not take into

account the various losses, such as hysteresis losses and eddy current losses. But

the results of FEM agree with the experimental results to some extent, which in-

dicated that FEM is applicable and useful in predicating the parameters of PMSM.
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Figure 4.23: Results of FEM Using Current Angle Method

4.4 Conclusion

The lumped parameter model of the line-start permanent magnet synchronous ma-

chine is introduced and various techniques for determining machine parameters are

discussed in this chapter.

Several experimental methods have been used by other researchers to de-

termine the machine parameters. The DC current decay method can obtain the

reactances of various frequencies with simple and low-cost equipment. However,

the method can only get single set of reactance values for one frequency and the

value of phase voltage due to permanent magnet excitation, E0, is not obtainable.

The parameters obtained from this method is incomplete.

Sensorless no-load test is based on the phasor diagram and two-axis model of

permanent magnet machine in steady state. It is assumed that the torque angle

is 0 under no-load operation. The stator current varies with the applied voltage.
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Phase voltage corresponding to the minimum stator current is E0. This method is

also easy in experimental implementation, and the variation of Xd with saturation

is considered. However only a set of Xd can be obtained and the variation of E0 is

neglected. The parameters obtained from this method is still incomplete.

The load test method makes improvement compared with DC current decay

method and no-load test method, because both the Xd and Xq can be obtained

simultaneously and their variations with loads are considered as well. However, the

conventional load test method cannot evaluate the variation of E0 with the the two

equations in two-axis model. The modified load test method overcomes this draw-

back by imposing a small displacement to the angle β. With one extra equation

from the new β, sets of parameters Xd, Xq and E0 under different load conditions

are obtainable. One of the shortcoming of the modified load test method is that

the achievement of a small change of β in experiment is very difficult. Another

critical shortcoming is that accuracies of the parameters in this method are totally

dependent on the measurement of a few experimental data. A small inaccuracy

in one data may bring along big mistake to the resultant parameters. Therefore

the parameters of Xd and E0 obtained from this method are fluctuating, which are

more likely to be caused by the inaccuracy of the small change in β.

To overcome the shortcomings of the modified load test method, two new

methods are proposed. One method is based on the combination of load test and

the technique of linear regression, the other is based on the combination of load

test and the Hopfield neural network.

The combination of load test and linear regression technique is quite effective

in parameter estimation. The difficulty of achieving the small change in β is avoided
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so that the experiment procedure is simplified. Moreover, since the parameters are

evaluated on the basis of thousands of experimental samples, the accuracies of the

results are improved greatly. The fluctuation in load test is removed and the vari-

ation trend of parameters with load conditions becomes more obvious.

The combination of load test and Hopfield neural network also shows great im-

provement compared with the load test only. The results obtained by this method

are very close to those obtained by the technique of linear regression. One of the

main advantages of this method is the change of β is avoided as well. Since the

parameters are identified based on large amount of samples by minimizing the

estimation error, good accuracies are achieved. In addition, the Hopfield neural

network is applicable for both time-varying and time-invariant system, therefore

the method may be applied for the online parameter estimation of machines.

Finite element method (FEM) is used to compute the machine parameters

also. Finite element calculation fed with current source is implemented and the

variations of parameters with different load conditions are taken into account. The

results of FEM are comparable with the experimental results, which suggested that

the FEM is a useful means of predicting machine parameters.



Chapter 5

Dynamic Analysis of a Line-Start
Permanent Magnet Synchronous
Machines with Coupled Circuits

5.1 Introduction

A line-start permanent magnet synchronous machine has squirrel cage bars (or

damper windings) in the rotor for asynchronous starting. It is a very high effi-

ciency synchronous machine designed for fixed and variable frequency operations.

The excitation is provided partly by the magnets, which are mounted on the rotor,

and partly by the line current. The motor is initially started by the the accelerat-

ing torque generated in the cages, and finally sustained by the synchronous torque

which is due to the magnets and the saliency of the rotor.

When connected to a fixed frequency AC voltage supply, the line-start per-

manent magnet synchronous machines run up to the synchronous speed. However,

several factors have to be considered in the starting process, such as starting cur-

rent, accelerating toque, heating, synchronization, stability, etc. Some line-start

permanent magnet synchronous machines have high starting current and pulsating

torque during the self starting process. Frequent self-starting may cause damage

to the permanent magnets as well as to the mechanical parts. Synchronization

161
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is another important issue that has to be tackled. The increase of the magnet

strength may lead to an increase in the synchronization process. However a strong

excitation magnetic field can result in a big braking torque and prevent the ma-

chine from starting. Particularly, for large capacity machines, the self-starting is

quite difficult or even impossible.

To avoid the problems and difficulties occuring during the self-starting pro-

cess, a line-start permanent magnet synchronous machine is usually used in appli-

cations where frequent self-starting are not common. To ensure the proper opera-

tion of the machine, usually external drive circuits become necessary; particulary

when adjustable frequency operations are required. Therefore a complete numeri-

cal analysis of the machine should include not only the machine itself, but also the

peripheral drive circuits.

The methodology of field-circuit coupled time-stepping finite element has

been presented in Chapter 3. The method is used here to analyze the dynamics

of a line-start permanent magnet synchronous machine. As one of the important

performances, the starting process is computed. Two kinds of starting processes

are implemented: a self starting process and starting under two different control

schemes.
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5.2 Experimental Setup of the PMSM Drive

An experimental setup for implementing the test of PMSM drive system has been

built. The complete configuration of the whole experimental setup is shown in Fig.

5.1.

Figure 5.1: Configuration of PMSM Drive Experimental Setup
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The test platform consists of a line-start PMSM, a torque transducer, a DC

machine and an incremental encoder mounted at the end of the PMSM shaft (Fig.

5.2). The control and measurements are realized by a system based on the dSPACE

DS-1102 controller board. This system includes a personal computer, a dSPACE

DS-1102 controller board, an inverter, a racking system and a sensor box (Fig. 5.3).

A brief account of the system is given below:

1. DS-1102 Controller Board

The board consists of a floating-point DSP TMS320C31, a micro-controller

TMS320P14 acting as the slave-DSP for the digital I/O subsystem, A/D

and D/A converters, and encoder interfaces [140]. The main DSP processes

numerically intensive algorithms at a frequency of 60 MHz. The slave-DSP

performs digital I/O and PWM generation. The A/D converters convert the

analog feedback signals of ±10 V into digital format so that the DSP can read

the measured quantity. Such conversions are used for the measured stator

currents feedback signal. The D/A converters convert the digital signals in

the DSP into analog signals of ±10 V so that they can be displayed on the

oscilloscope. The encoder interface provides the interfacing of the DSP with

the incremental encoder so that the output of the incremental encoder, which

is in discrete pulses, can be quantized into digital form.

2. PWM Inverter

The inverter consists of an IGBT module (MUBW 10-12A7) [141], DC-link

capacitors, a transformer board and a driver board. The IGBT module used

in the PWM inverter is IXYS model (MUBW 10-12A7). Details of the in-

verter are given in Appendix H.
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3. Racking System

In the implementation of the experimental PMSM drive setup, it is nec-

essary to provide a hardware interface between the motor drive and the

DSP-DS1102. A racking system has been constructed as an integrated inter-

face platform . The platform comprises five cards (or modules), namely the

Inverter Control Card, Encoder Interface Card, Digital I/O Card, Current

Feedback Card and Torque/Analog Feedback Card [142].

4. Sensor Box

Accurate measurements of the motor phase currents are essential to ensure

high-performance in the PMSM drive system. In the experimental setup de-

scribed above, two current sensors are utilized to measure the phase currents.

The measured currents are converted into voltage signals scaled to a range of

±10 V using resistors of appropriate values. These voltage signals are then

fed into the A/D converters of the DS1102. The LEM module LA 25-NP

current sensors are used. The current sensors, resistors and the power supply

for the current sensor are included on the current sensor board [142].

5. Software Implementation

The control schemes used in the starting process of the PMSM drive are im-

plemented using the TMS320C31 DSP [143]. The TMS320C31 has a high

speed CPU and adequate memory for software implementation. It has a

60 MHz instruction frequency enabling a high sampling rate in the drive sys-

tem.

The entire control program for the starting of the PMSM is written in C

language. Programming in C offers greater flexibility in the control program

and the user has the freedom to optimize the source code so that it results
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in the lowest execution time and hence achieving a fastest sampling time.

Figure 5.2: PMSM Coupled with DC Machine

Figure 5.3: Controller Board Based Experimental Platform of PMSM Drive System
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5.3 Methodology and Modelling for Analysis

A two-dimensional finite element method is used for modelling the motor perfor-

mance. Maxwell’s equations, applied to the domains, give rise to the diffusion

equations. The non-linear field equations are solved simultaneously with the rotor,

stator and external circuit equations, allowing current distribution in the rotor bars

to be properly accounted for.

5.3.1 Modelling of the Fields

Recalling equation (2.26), the fundamental equations for the magnetic field are

represented in the two-dimensional rectangular coordinates as

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = σ

∂A

∂t
− σ

Vtz

l
−∇× (νµ0Mr) (5.1)

For each domain in the machine, the field equation can be represented as:

• In the laminated iron where eddy current is neglected because of the lamina-

tion and in the air gap

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = 0 (5.2)

• In the armature windings

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = −is

s
(5.3)

• In the rotor cage bars where the bars are solid conductors and the eddy

current is taken into account in the modelling.

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = σ

∂A

∂t
− σ

Vbk

lb
(5.4)
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• In the permanent magnets

∂

∂x
(ν
∂A

∂x
) +

∂

∂y
(ν
∂A

∂y
) = −∇× (νµ0Mr) (5.5)

where

A = magnetic vector potential (having the component of

axial direction only)

is = armature phase current (ia, ib, ic)

s = the average cross sectional area of one turn of the winding

ν = reluctivity of the material

Vbk = the voltage difference across a cage bar between

the far and near ends

lb = the length of a cage bar in Z−direction

Mr = remanent magnetization of permanent magnet

5.3.2 Modelling of the Stator Phase Circuits

Fig. 5.4 shows the circuit of stator windings for the experimental machine. It has

three stator phase windings, which are star connected with a neutral.

Figure 5.4: Circuit of Stator Windings for the Experimental Machine
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The voltage and current equations of the permanent magnet synchronous

machine are given as

ea +Rsia + Le
dia
dt

= va − vn (5.6)

eb +Rsib + Le
dib
dt

= vb − vn (5.7)

ec +Rsic + Le
dic
dt

= vc − vn (5.8)

ia + ib + ic = 0 (5.9)

where , va, vb and vc are the phase voltages, subscripts a, b and c represent stator

quantities in lines a, b and c respectively. vn is the potential of the neutral. Rs

and Le are the total resistance and end-winding inductance of the stator winding

per phase respectively (methods of computation are given in Appendix J). ea, eb

and ec are the induced phase voltages. Recalling equation (2.37), the induced

phase voltages are given by the line integral of the vector potential along the stator

windings of phase a, b and c respectively

ea =
l

s
(

∫ ∫
Ω+

∂A

∂t
dxdy −

∫ ∫
Ω−

∂A

∂t
dxdy) (5.10)

where l is the length of stator windings in Z−direction, Ω+ and Ω− are the total

cross section area of ’go’ and ’return’ windings per phase respectively. eb and ec

can be obtained similarly as in equation (5.10).
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5.3.3 Modelling of the Rotor Bars

Fig. 5.5 shows the equivalent circuit of the rotor cage bars for the experimental

machine. Only one pole of the machine is involved in the calculation.

Figure 5.5: Equivalent Circuit of Rotor Cage Bars

Recalling equation (2.42), the governing equation for each bar is

Vbk = Rbkibk +
lbk
sbk

∫ ∫
sbk

∂A

∂t
dxdy (5.11)

where lbk is the length of kth bar in Z−direction and sbk is the cross section area

of the bar.

Recalling equations (2.44) and (2.49), the circuit equations for the cage bars

are

[ibk]− [C1][iek] = 0 (5.12)

and

[C2][Vbk] + 2{[Rek] +
d

dt
[Lek]}[iek] = 0 (5.13)

where

[C1] =



1 . . . . . . . . . . . . ∓1

−1 1 . . . . . . . . . . . .
...

...
...

...
...

...

. . . . . . −1 1 . . . . . .
...

...
...

...
...

...

. . . . . . . . . . . . −1 1


np×np

, (5.14)



171

[C2] =



1 −1 . . . . . . . . . . . .

. . . 1 −1 . . . . . . . . .
...

...
...

...
...

...

. . . . . . . . . 1 −1 . . .
...

...
...

...
...

...

∓1 . . . . . . . . . . . . 1


np×np

, (5.15)

and np is the number of cage bars in the computation domain.

From equation (5.12), we can get

[iek] = [C1]
−1[ibk] (5.16)

where ()−1 represents the inverse operation of a matrix.

Substituting equation (5.16) into equation (5.13) yields

[C2][Vbk] + 2{[Rek] +
d

dt
[Lek]}[C1]

−1[ibk] = 0 (5.17)

or

[C1][C2][Vbk] + 2{[Rek] +
d

dt
[Lek]}[ibk] = 0 (5.18)

Since

[C2] = [C1]
tr (5.19)

equation (5.18) becomes

2{[Rek] +
d

dt
[Lek]}[ibk] = −[C1][C1]

tr[Vbk] (5.20)

where ()tr represents the transpose operation of a matrix. Rek represents the end

ring resistance and Lek represents the end ring inductance. Vbk and ibk represent

the bar voltage and bar current respectively. It is assumed that all the segments of

end rings have the same values of Rek and Lek. Their values are given in Appendix

J. Only one pole of the machine is involved in this work, therefore matrix [C1] is
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given by

[C1] =


1 0 0 . . . 0 1

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1

 (5.21)

5.3.4 Modelling of the External Circuits

The connection of the machine with the external circuits is illustrated in Fig. 5.6.

Recalling equations (2.75) and (2.80), the governing equations for external circuits

are

{[Rsb] +
d

dt
[Lsb]}[isb] + [Csb]

d

dt
[Vsb;Vs] = 0 (5.22)

[C3][isb] + [C4][is] = 0 (5.23)

where [Rsb],[Lsb] and [Csb] represent the resistance, inductance and capacitance

of the external circuits respectively. Vsb is terminal voltage of all the joints. Vs

represents the three phase voltages of experimental machine, va, vb and vc. C3 and

[C4] represent the connection matrix for current flowing in external circuit and the

phase current of the machine.

Figure 5.6: Illustration of Line-Start PMSM Connected with External Circuit
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5.3.5 Modelling of the Rotor Motion

The mechanical motion of the rotor is governed by

Jr
dωm

dt
= Tem − TL −Bfωm, (5.24)

dθm

dt
= ωm (5.25)

where ωm is the rotor speed and θm is the rotor position. The parameter values

of rotor inertia Jr and friction coefficient Bf is given in Appendix K. The electro-

magnetic torque is calculated by the method of Maxwell stress tensor.

After the finite element formulation and assembly of equations (5.2)-(5.25),

a global matrix equation is be generated. The solution of this matrix provides the

information of the drive system for one instant of time or one time step. Continuous

computation of the system step by step is required in order to realize the dynamic

evaluation of the drive system.

5.4 Evaluating the EMF due to the Permanent

Magnets

The line-start permanent magnet synchronous machine is driven by an external ma-

chine and run at a speed of 1500rpm. The terminal voltages of the stator phases

are generated by the permanent magnets. In the FEM computation, the machine

is run at a constant speed of 1500rpm and permanent magnets are taken as the

only sources. The induced EMF of stator phases are calculated using equation

(5.10). Fig. 5.7 shows the computational and experimental values of this voltage,

from which we can see their agreements are quite good.
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Figure 5.7: Computational and Experimental EMF due to PMs

5.5 The Self-Starting Process of the PMSM

5.5.1 Procedure of Computation

The machine used in this work has cage bars in the rotor, so it has the capability

of self-starting. To compute the starting process of the machine, a few steps are

involved in finite element analysis:

1. First, the terminal voltage Vl, its initial phase angle φ0 and time step ∆t are

set. The voltages for the three stator phase windings can be represented by

va(t) =

√
2

3
Vl cos(ωt+ φ0) (5.26)

vb(t) =

√
2

3
Vl cos(ωt+ φ0 −

2π

3
) (5.27)

vc(t) =

√
2

3
Vl cos(ωt+ φ0 −

4π

3
) (5.28)

2. The vector potential, A, at t = 0 is set, where the static field caused by only

permanent magnets is given as the initial value.
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3. At t = t+ ∆t, the value of θt
m is set.

4. At t = t+ ∆t, each voltage of va, vb and vc is set.

5. The initial values for At, ita, i
t
b and itc are set.

6. The matrix equation constructed by the field-circuit coupled time-stepping

finite element techniques is solved.

7. The convergence of solution is tested. Unless solution converges, the process

returns to step 6.

8. After the convergence of solution, Tem can be calculated. Then a new ωm

and θm can be determined by equations (5.24) and (5.25).

9. The calculation process from step 3 to step 8 continues until the steady state

is reached.

5.5.2 Results of Self-Starting at No-Load (TL = 0N ·m)

Applying the steps listed above, the self-starting process of the machine can be

calculated. The rated line-line voltage is applied to the machine. Figs. 5.8 and 5.9

show the computational and experimental results of starting current at no-load.

The computed current for the starting is nearly sinusoidal, while that of the ex-

perimental one is more like a square wave. The main reason for the disparity is

that the maximum values of the experimental starting current were limited by the

current limit of the probe [144], so the experimental waveforms were chopped at

the peak. It is noted that the computed values are higher than the experimental

values at the beginning. This may be caused by the analytical calculation of rotor

bar parameters and stator end windings. Because the end rings and the stator

end windings are represented by resistors and inductors; the 3D electromagnetic

fields in the end rings and end windings are simplified using circuit models, some
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inaccuracies may be brought in. These inaccuracies can affect the bar current, the

electromagnetic field and hence the stator current in the starting process. After

the motor is fully run, the rotor is synchronized with the stator; then the effects

brought in by the inaccuracy of rotor bar parameters are removed. However, due

to the effects of the inaccuracies in analytical stator windings parameters, there are

still slight differences between the computational and experimental phase currents

as shown in Fig. 5.10.

Figure 5.8: Computational Phase Current in Self-Staring Process
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Figure 5.9: Experimental Phase Current in Self-Staring Process

Figure 5.10: Computational and Experimental Phase Current in Steady State
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Figs. 5.11 and 5.12 show the computational and experimental speed in the

self-starting process. It takes about 0.15s for the machine to run up to steady state

in both the computational and experimental cases. The computational and the

experimental speed agree very well at the beginning when both of them are lower

than 200rpm. Then the computational speed becomes lower than the experimental

speed within the time of 0.1s, although their waveforms are similar in patterns.

When the speed is fairly high (above 1000rpm), the computational speed agrees

well with the experimental one. The differences in computational and experimental

speed come from the differences in torque. The differences in torque pulsations

during the run-up are difficult to explain. Possible causes are cogging torque due

to permanent magnet excitation, induction motor cogging torque due to slot effect

and of course inaccuracies involved in the modelling of resistances and leakage

inductances. 3D effects have not been taken into account in this 2D modelling.

The combined effects of these factors may cause the differences in computational

and experimental results. The time step used in this work is 250µs. Computation

of cogging torque pulsation is a function of time step, and hence the speed is also

related to the time step. The choice of time step may also cause computational

result to be damped, resulting into lower peaks in pulsation than the experimental

one.
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Figure 5.11: Computational Rotor Speed in Self-Starting Process

Figure 5.12: Experimental Rotor Speed in Self-Starting Process
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Fig. 5.13 shows the motor torque in the self-starting process. Because of

the limitation of experimental equipment [145], the experimental result of motor

torque is not available. Fig. 5.14 shows the characteristic of motor torque versus

rotor speed.

Figure 5.13: Computational Motor Torque in Self-Starting Process

Figure 5.14: Computational Motor Torque versus Rotor Speed in Self-Starting



181

The maximum current limit information is important for the rating demand

of inverters and avoid demagnetization of permanent magnets. The time of run-up

to stable synchronization needs to be specified for some applications involving high

coupled inertia. The torque level throughout the run-up can be a deciding factor

in the suitability of a motor for a particular application. All these engineering

information can be found from the results presented in Figs. 5.8 - 5.14.

5.5.3 Results of Self-Starting With Load (TL = 8N ·m)

In practice, electric machines are often started with loads.The evaluation of self-

starting process with loads are very important for machine designers to predict

the machine performances. A load torque of TL = 8N ·m is selected and the self-

starting process under this load is calculated.

Figs. 5.15-5.18 show the computational current, speed, motor torque and the

characteristic of motor torque versus rotor speed in the self-starting with load.

Figure 5.15: Computational Phase Current in Self-Starting With Load
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Figure 5.16: Computational Rotor Speed in Self-Starting With Load

Figure 5.17: Computational Motor Torque in Self-Starting With Load
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Figure 5.18: Computational Motor Torque versus Rotor Speed in Self-Starting

With Load

Comparing with the current and speed at no load, as shown in Figs. 5.19 and

5.20, we can see that it takes longer time for the machine to reach the rated speed

with load. The phase current at load is bigger than the one at no-load. Because of

the load, there is a phase difference between these two current waveforms.

Figure 5.19: Computational Phase Currents at No-Load and Load of 8 N.m
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Figure 5.20: Computational Rotor Speed at No-Load and Load of 8 N.m

5.5.4 Results of Self-Starting With Various Loads

The self-starting process of the machine with various loads are computed. The

comparisons of phase current and rotor speed are shown in Figs. 5.21 and 5.22

respectively.

Figure 5.21: Computational Phase Currents Under Various Loads
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Figure 5.22: Computational Rotor Speed Under Various Loads

5.6 The Starting Process Under V/f Control

5.6.1 The Control Scheme

The constant volts per hertz (V/f) control method has been used for many decades,

and its principle is well understood [146]. The most basic V/f control scheme is

implemented in this work as shown in Fig. 5.23.

Figure 5.23: Scheme of V/f Control Method



186

The speed reference was input in terms of frequency reference value fr. Since

(V/f) is a constant and the d−axis reference voltage vdr is set to be zero, the q−axis

reference voltage can be calculated as vqs = (V/f) × fr. With the known vdr, vqr

and the measured rotor position θm, the abc−axis voltages var, vbr and vcr can

be calculated using inverse Park’s transformation. According to this three phase

reference voltage, the duty cycles are calculated by the mid-symmetrical operation

(See Appendix L) and the ′ON/OFF′ signals for inverter switches are obtained.

Therefore, the machine receives its power supply va, vb and vc from the inverter.

5.6.2 Computational and Experimental Results

The process described above is implemented in the experiment, and several values

are set as shown in Table 5.1.

Table 5.1: Constants and Settings in V/f Control

Reference Frequency (fr:Hz) 9

V/f Constant (cs) 5.4

Sampling Period (s) 1× 10−3

PWM Switching Period (s) 2.5× 10−4

Input DC Voltage (VDC :volt) ±90

The same process as implemented in the experiment is computed by the finite

element method. The experimental machine is connected to an inverter circuit as

shown in Fig. 5.24. The main circuit components used are diodes and IGBTs. The

choice of their equivalent ′ON ′ resistance values are based on the experimental val-

ues and values provided in manual [141]. When the status of the circuit component

is ′OFF ′, we think that the circuit is open. Therefore a very large equivalent re-

sistance value is set, which is: ROFF = 109 ohm. In the figure, components 〈1〉-〈6〉

are IGBTs. The equivalent resistance value for status ′ON ′ is 0.23 ohm, and the

value for status ′OFF ′ is 109 ohm. For diodes 〈7〉-〈12〉, the equivalent resistance
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values for forward and reverse biasing are 0.056 ohm and 109 ohm respectively. VDP

and VDN are the input DC voltages from the converter, which are 90V and −90V

respectively; they are set as boundary conditions in the finite element computation.

For simplification, the values for capacitors [Csb] and inductors [Lsb] in equation

(5.22) are neglected. The three-phase voltage inputs of the PMSM come from the

voltage values of joint (a), (b) and (c) and they are calculated simultaneously by

using the coupled circuit analysis in the finite element computation.

Figure 5.24: Representative Circuit of PMSM Connected with Inverter

The six duty time for six IGBTs in the inverter circuit are calculated from

the mid-symmetric operation, so the time step size of the FEM computation is

varied from time to time. Since the PWM switch period is 250µs, the time step

size of the FEM computation is even smaller than this value. Therefore, for a high

reference frequency, it will take a long time to do the computation, though it is

only a few seconds in the real experiment. This also explains why in this work the

rated frequency 50Hz is not selected, instead fr = 9Hz is set for both experiment

and computation. The computational and experimental results are compared in

Figs. 5.25 - 5.27.
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Figure 5.25: Computational and Experimental Phase Current in V/f Control

Figure 5.26: Computational and Experimental Rotor Speed in V/f Control



189

Figure 5.27: Computational and Experimental Line Voltage in V/f Control

The computational and experimental results match well in terms of rotor

speed and line voltage as shown in Fig. 5.26 and 5.27. The computational current

is a little higher than the experimental one as shown in the first 0.05s. The rest of

the computational and experimental results agree very well. The probable reason

is that the starting process under V/f control is very similar to the self-starting

process; it can be taken as a kind of low frequency self-starting. The inaccuracies in

the computation as explained in relation to self-starting may lead to the difference

of computational current and the real current.
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5.7 The Starting Process Under Vector Control

5.7.1 The Control Scheme

Vector control method can be realized through the control of stator current. A

simple id = 0 control method is used in this work. The control scheme is shown in

Fig. 5.28.

The rotor speed ωm is derived from the rotor position θm which is detected

by the incremental encoder. The three stator phase currents ia, ib and ic are

transformed to the d− and q−axis current id and iq by Park’s transformation. The

real rotor speed ωm is compared with the reference speed ωmr and the error value

ωerr = (ωmr−ωm) is calculated. Once ωerr ≤ 0, in other words, once ωm reaches the

reference value ωmr, the q−axis reference current iqr will be determined by the PI

speed controller. Otherwise, iqr = 7A is set. The d−axis reference current is always

set as idr = 0. With the values of idr, iqr, id and iq, the PI current controllers are

used to determine the primary reference voltages v0
dr and v0

qr. Using the following

equations

vdr = v0
dr − ωeLqiq,

vqr = v0
qr + ωe(Ldid + λf ),

the d− and q−axis reference voltages Vdr and Vqr can be calculated; hence the

values of Var, Vbr and Vcr can be determined by the application of inverse Park’s

transformation. With these three phase reference voltages, the duty times of IG-

BTs in the inverter circuit can be decided by the mid-symmetrical operation (See

Appendix L).
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Figure 5.28: Scheme of Vector Control Method

5.7.2 Computational and Experimental Results

The scheme described above is implemented in the experiment and the parameters

are set as shown in Table 5.2. Among them, the values of Ld, Lq and λf are

considered as constants throughout the control process and for the same stator

current magnitude, the effect of angle β on the parameters are neglected too. Since

iqr = 7A, the rms value in abc−axis is 7/
√

3 = 4.04A. Referring to Appendix H,

Table H.6, the value of Is = 3.986A is taken, therefore, we can get

Ld =
Xd

ωrat

=
7.180

314.160
= 22.855mH

Lq =
Xq

ωrat

=
17.214

314.160
= 54.795mH

λf =

√
3E0

ωrat

=

√
3× 78.127

314.160
= 0.431wb

where ωrat = 2×1500×2×π/60 = 314.160 rad/s is the rated angular synchronous

speed of the machine.
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Table 5.2: Constants and Settings in Vector Control

Reference Speed (ωmr:rpm) 200

Sampling Period (s) 5× 10−4

PWM Switching Period (s) 5× 10−4

Input DC Voltage (VDC :volt) ±60

d−axis Inductance (Ld:mH) 22.855

q−axis Inductance (Lq:mH) 54.795

Flux Linkage of PM (λf :wb) 0.431

PI Speed P Gain 0.012

Controller I Gain 0.036

PI Current P Gain 12.5

Controller I Gain 800

The same process is computed by the field-circuit coupled time stepping FEM.

The experimental setup are the same as the one used in V/f control, which is shown

in Fig. 5.24. The computational and experimental results in terms of phase current,

q−axis current and rotor speed are compared in Figs. 5.29, 5.30 and 5.31.

Figure 5.29: Computational and Experimental Phase Current in Vector Control
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Figure 5.30: Computational and Experimental q−axis Current in Vector Control

Figure 5.31: Computational and Experimental Rotor Speed in Vector Control
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Both the experimental and computational results agree well in terms of speed.

However, in the phase current shown in Fig. 5.29, there exists a difference between

them around the point of 0.04s. At this point, the computational one does not

have salient variation, while the experimental one has a small surge. The disparity

may be due to the uncertain noise in the experiment. These uncertain noises are

very obvious in Fig. 5.30 where two spikes appear in the period of 0.02 ∼ 0.04s.

Excepting isolated periods, the overall performance of computational and exper-

imental currents match well with each other. The good agreement between the

computational and the experimental results indicates that the field-circuit coupled

time stepping FEM is a feasible and applicable method for the computation of

PMSM dynamic performances.

5.8 Conclusion

The field-circuit time stepping finite element method is used to compute the dy-

namics of a line-start permanent magnet synchronous machine in this chapter. As

one of the important dynamic performances, the starting process is evaluated. Both

the self-starting process and the starting under controls are computed.

In the computation of self-starting process, the rotor end rings and stator

end windings are represented by resistors and inductors. The 3D electromagnetic

fields are simplified as circuit models. These simplifications may bring inaccuracies

to the computation. Possibly due to these inaccuracies, the computational phase

current is higher than the experimental one. Even after the machine is run up and

the effects of cage bars are reduced, there are still slight differences between the

computational and experimental results.
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The pattern of computational speed is the result of computational torque.

In the computation of self-starting process, the computational speed is lower than

the experimental speed at the beginning, although they are similar in patterns.

The differences may be caused by the combined inaccuracies in the computation

of cogging torque due to permanent magnet excitation, computation of cogging

torque due to slot effect, simplification of 3D effects and the choice of time step.

The starting process of machine under V/f control is very similar to the self-

starting process, which can be taken as a kind of low frequency self-starting. The

inaccuracies in the computation as explained in relation to self-starting may lead to

the difference of computational current and the real current in the starting process

under V/f control.

When the machine is started under current vector control, both the compu-

tational current and speed agree well with the experimental ones. The reason is

the frequency of supplies is always in synchronism with the rotor frequency, the

effects of cage bars are reduced greatly. Therefore good agreement can be achieved.

From the computation of the various starting processes, we can see that the

field-circuit time-stepping finite element method is applicable in evaluating the

dynamics of line-start permanent magnet synchronous machine. Most of the im-

portant factors in the starting process can be computed, including the starting

current, motor torque, rotor speed and starting time. However, possibly due to the

limitation of 2D modelling, differences still exists between the computational and

experimental results in some areas.



Chapter 6

Conclusions and Discussions

This thesis deals with the dynamic analysis of a line start permanent magnet syn-

chronous machines (PMSM) using field-circuit coupled time stepping finite element

method (FEM). This method has been widely used based on the 2D modelling of

machines. The 3D effects of the machine like the stator end windings and rotor

end rings are represented by resistors and inductors. The 3D electromagnetic field

is simplified using circuit models. 2D modelling is advantageous in simplifying

the formulation and saving computation time; particularly for the computation

of dynamic process. However, because of the inaccuracies brought along by the

simplifications in 2D modelling, some differences exist between the computational

results and the experimental results. In Chapter 5, we have shown that the tran-

sient computational current was higher than the experimental current. Even after

the machine was fully run, there were still slight difference in the computational

and experimental current due to the inaccuracies involved in the 2D modelling of

stator end windings. Fortunately the differences between them are not big, and

most of the important information for dynamic analysis can be achieved as well.

Electric machines are often operated with external drive circuits, therefore

the modelling of these circuits are necessary. The semiconductor components, such

as IGBTs and diodes, are simplified as resistors in this work. These resistors have

different values depending on their operation status. In other words, these com-

196
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ponents are modelled as linear components and their transient characteristics are

neglected. This modelling is quite effective when coupling the effects of external

circuits into the electromagnetic fields computation. Accuracies are guaranteed as

shown in Chapter 5 where the starting processes under V/f control and vector

control were validated. Since the nonlinearities of the component characteristics

are neglected, much computation time are saved as well. It should also be noted

that for small capacity machine with quite low terminal voltages, the effects of the

semiconductor components in external circuits may be significant. Thus the simpli-

fication of neglecting their transient characteristics should be carefully considered.

In modelling the geometry by finite elements, triangular element is a widely-

recognized choice for electric machine problem. First order element is simple to

evaluate. However, if it is possible, higher order elements can be used since higher

order elements give a better representation of the field and more accurate results.

The number of nodes used in finite element computation is also very im-

portant. Not only the accuracies of the solution but also the time needed to get

the solution are dependent on the number of nodes. Larger number of nodes can

provide more detailed information about the field. Particularly in the region of

air gap, a large number of nodes are usually needed for good-quality meshes and

accurate motor torque calculation. However more nodes leads to bigger global

matrix, hence longer computation may be required. For dynamic analysis using

time-stepping method, time is a big issue. Therefore the good compromise between

computation accuracy and computation time should be achieved. In the absence

of available methods to determine the optimal number of nodes, we can start the

field computation with reasonable number of nodes. Then this number may be

increased until satisfactory field representation is achieved.
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The choice of time step also affects the computation process of time-stepping

finite element method. A bigger time step means shorter computation time, but

some details of the dynamic process may be overlooked. As shown in Chapter

5, time step may be one of the causes in the differences of computational and

experimental speed in self-starting process. A smaller time step may make the

computation more close to the real dynamics, however excessive computation time

may be needed. In the author’s view, a time step of hundreds of micro-seconds

may be reasonable [151].

The resultant global matrix equation after the assembly process is non-symmetric,

biconjugate gradient (BICG) method is used in this work to get the solution. In-

complete Choleski conjugate method (ICCG), which is widely used in solving the

symmetrical linear system of equations, can also be applied. However, some modi-

fications must be made so as to change the non-symmetric matrix to a symmetrical

one. The comparisons between the efficiencies of the BICG and ICCG methods

need to be further explored.

The first application of the time-stepping finite element method in this work

has been the computation of the self-starting process of the machine. Possibly due

to the inaccuracies brought along by the simplified 2D model, the computational

current is higher than the experimental one when the slip frequency is high. After

the machine is run up, the computational current is very close to the experimental

one. However, due to the simplifications in modelling the effects of the stator end

windings, slight differences still exist between the computational and experimental

currents. Therefore, from the aspect of accuracy, 3D modelling is preferred. How-

ever, due to the excessive demand on computing time and storage requirement that
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may be brought along by the 3D computation, the application of 3D modelling to

the time-stepping computation is not practical. The multi-slice model [64] may be

a compromise alternative, but so far the method is used mainly for the skew effects

and inter-bar current, instead of the 3D end effects. Therefore, 2D time-stepping

finite element method may still be the best choice for dynamic computation so far.

With the development of computing capacity of computer and the development

of advanced computing structure, i.e. parallel computing, the 3D model is more

promising for the dynamic computation.

The computational speed in self-starting process is lower than the experimen-

tal speed in some areas, although they are similar in pattern. The differences in

speed are the reflections of differences in torque. The causes of differences in com-

putational and experimental torque are difficult to explain. The proper reason is

the inaccuracies of cogging due to permanent magnets and slot effects. The simpli-

fied 2D model and the choice of time step may contribute to the differences as well.

The 2D time-stepping finite element model is also applied to compute the

starting process under V/f control. Due to the similar factors related to the inac-

curacies in self-starting process, the computational current in V/f control is also

higher than the experimental current. The effect of the 2D modelling of stator end

windings on stator current in steady state is not obvious.

The method is quite successful in evaluating the starting process under cur-

rent vector control. Because the rotor is always synchronized with the stator, both

the computational current and speed agree well with the experimental results.

This thesis also deals with the parameter determination of line-start perma-
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nent magnet synchronous machine. Both computational and experimental methods

are used. The experimental methods include DC current decay method, sensor-

less no-load test method and load test method, while the computational method

is referred to as finite element method. Based on the load test method, two new

methods are also proposed in this work.

The DC current decay method is realized with simple experimental procedure

and low-cost experiment equipment. The direct- and quadrature-axis parameters

are obtained from the voltage and current measured when the two armature wind-

ing terminals are short circuited while a dc current flows between these terminals.

The parameters of various frequencies can be computed by Fourier transform. How-

ever only a single set of reactance values can be obtained for one frequency. The

saturation effect is neglected and the parameter of E0 is not obtainable.

Sensorless no-load test is based on the two-axis model of machine. It is as-

sumed that the torque angle under no load condition is zero. The stator current

varies with the variation of stator terminal voltage, and the phase voltage corre-

sponding to the minimum stator current is taken as the excitation voltage due to

permanent magnet, E0. The test can be implemented easily and a good approxi-

mation of parameter Xd can be obtained when the operation point is away from

the point of minimum current. However, the limitation is that only a set of values

for Xd is achieved and the variation of E0 with loads is not considered.

The effects of saturation in permanent magnet machine are profound. Sat-

uration causes Xd and Xq to vary with load, it leads to the variation of E0 with

load as well. To model and control the machine accurately, the variation of all the

parameters, Xd, Xq and E0, should be considered in the parameter determination.
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The conventional load test method used by Miller can get a set of Xd and Xq si-

multaneously. However, it is still based on the assumption of constant E0 over all

the loads. Zhou modified this method by imposing a small change in angle β, the

variation of Xd, Xq and E0 with loads can be achieved simultaneously. Unfortu-

nately, this modified method suffered from the uncertainties brought by the small

change of angle β and the complexity of the experimental procedures. The values

of Xd and E0 are fluctuating.

To overcome the drawbacks of the old methods, two new methods were in-

troduced in this work based on the load test method. Linear regression model and

Hopfield neural network are used in combination with the load test to determine

the machine parameter. Since these two methods are implemented on the basis

of large number of experimental samples, the accuracy of results are improved

greatly. The fluctuations of the load test are removed and variation trends of the

parameters are more obvious. Moveover, since the small change in angle β and the

measurement of load angle are avoided, the experimental procedure is simplified.

These two new methods are quite effective in the parameter determination of ma-

chines; particulary the Hopfield neural network, which is applicable for both the

time-invariant and time varying systems.

Finite element method is also applied to calculate the machine parameters.

Current source is used and the variation of parameters with loads are considered

as well. The results obtained by finite element method are comparable with those

experimental results. However, the computational values for Xd and Xq are gen-

erally higher than the experimental results, and E0 decreases faster. The reason

for such differences are not known, but a number of factors may contribute to this,

such as the modelling inaccuracies, 3D effects, etc.
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Appendix A

The Newton-Raphson Method

A.1 Application to Single Nonlinear Equation

Given a nonlinear function

f(u) = k(u) · u = p, (A.1)

where u is the unknown variable, k is the function of u, and p is a constant. To find

the root of this equation, and initial value u(0) is assumed as the estimate of the

solution. Expanding equation (A.1) by a Taylor’s series about u(0) and ignoring

higher order terms, we can get

f(u) = p = f(u(0)) +
∂f(u(0))

∂u
(u(1) − u(0)) (A.2)

or,

∂f(u(0))

∂u
(u(1) − u(0)) = p− f(u(0)). (A.3)

Therefore,

u(1) = u(0) + [
∂f(u(0))

∂u
]−1[p− f(u(0))] (A.4)

Using the above equation, we can get the first approximate solution to equa-

tion (A.1). Repeat the calculation at point u(1), the second iteration can be done

as

∂f(u(1))

∂u
(u(2) − u(1)) = p− f(u(1)). (A.5)
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The similar computation can be done continually. After k times iterations, we get

the approximate solution u(k), then the following equation can be used to calculate

u(k+1)

∂f(u(k))

∂u
(u(k+1) − u(k)) = p− f(u(k)). (A.6)

or

J (k)(u(k+1) − u(k)) = p− f(u(k)). (A.7)

Such a process of iteration can be seen very clearly in Fig. A.1. After several

iterations, the right hand side of equation (A.7) will be very close to zero, which

means that the u(k+1) value will be very close to the accurate solution also. To

control the accuracy of the computation, a small tolerance ε is set beforehand as

the threshold. If the following condition is satisfied,

[p− f(u(k))]2 6 ε (A.8)

we consider that the satisfactory solution has obtained, and the iteration can be

stopped.

Figure A.1: Illustration of Newton-Raphson Method
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A.2 Application to a System of Equations

Based on the implementation of Newton-Raphson method to single nonlinear equa-

tion introduced above, we extend the application to a system of equations. Consider

a set of equations

[f ] = [K][X] = [Q], (A.9)

where [K] is the coefficient matrix, [X] is the matrix unknown variables and [Q] is

the matrix of known values. Then equation (A.9) can be rewritten as a group of

functions, which are
f1 = K11X1 +K12X2 + . . .+K1nX1n = Q1

f2 = K21X1 +K22X2 + . . .+K2nX1n = Q2

. . .

fn = Kn1X1 +Kn2X2 + . . .+KnnX1n = Qn

(A.10)

Setting the initial value of [X] as [X](0), then we have

f
(0)
i =

n∑
j=1

KijX
(0)
j , (i = 1, 2, . . . , n). (A.11)

Expanding every row of [f ] by a Taylor’s series and ignoring higher order terms,

following equations can be obtained
f1 = f

(0)
1 +

∂f
(0)
1

∂X1
(X

(1)
1 −X

(0)
1 ) +

∂f
(0)
1

∂X2
(X

(1)
2 −X

(0)
2 ) + . . .+

∂f
(0)
1

∂Xn
(X

(1)
n −X

(0)
n ) = Q1

f2 = f
(0)
2 +

∂f
(0)
2

∂X1
(X

(1)
1 −X

(0)
1 ) +

∂f
(0)
2

∂X2
(X

(1)
2 −X

(0)
2 ) + . . .+

∂f
(0)
2

∂Xn
(X

(1)
n −X

(0)
n ) = Q2

. . . . . . . . . . . . . . .

fn = f
(0)
n + ∂f

(0)
n

∂X1
(X

(1)
1 −X

(0)
1 ) + ∂f

(0)
n

∂X2
(X

(1)
2 −X

(0)
2 ) + . . .+ ∂f

(0)
n

∂Xn
(X

(1)
n −X

(0)
n ) = Qn

(A.12)

When rewritten into matrix form it will become
∂f

(0)
1

∂X1

∂f
(0)
1

∂X2
. . .

∂f
(0)
1

∂Xn

∂f
(0)
2

∂X1

∂f
(0)
2

∂X2
. . .

∂f
(0)
2

∂Xn
...

...
...

...
∂f

(0)
n

∂X1

∂f
(0)
n

∂X2
. . . ∂f

(0)
n

∂Xn



X

(1)
1 −X

(0)
1

X
(1)
2 −X

(0)
2

...

X
(1)
n −X

(0)
n

 =


Q1 − f

(0)
1

Q2 − f
(0)
2

...

Qn − f
(0)
n

 (A.13)

or

[J ](0)([X](1) − [X](0)) = [Q]− [f ](0), (A.14)
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where

[J ] =
∂[f ]

∂[X]
=


∂f1

∂X1

∂f1

∂X2
. . . ∂f1

∂Xn
∂f2

∂X1

∂f2

∂X2
. . . ∂f2

∂Xn
...

...
...

...
∂fn

∂X1

∂fn

∂X2
. . . ∂fn

∂Xn

 (A.15)

is the Jacobian matrix. Using equation (A.14), we can get the value of ([X](1) −

[X](0)), thereby the value of [X](1)

[X](1) = [X](0) + {[J ](0)}−1{[Q]− [f ](0)} (A.16)

Take the value of [X](1) as initial value and repeat the above process described

in equations (A.12)-(A.16), the value of [X](2) can be calculated as

[X](2) = [X](1) + {[J ](1)}−1{[Q]− [f ](1)} (A.17)

Repeat the similar calculation process and after k iterations, the value of [X](k+1)

can be obtained by the following equation

[X](k+1) = [X](k) + {[J ](k)}−1{[Q]− [f ](k)} (A.18)

After several iterations, the term of {[Q]− [f ](k)} on the right hand side of equation

(A.18) will approach zero, which means the value of [X](k+1) will be very close to

the real solution. To control the accuracy of the approximate solution, a small

tolerance ε is set. At the kth iteration, when the criteria in equation (A.19) is met,

we think the result of this iteration is satisfactory for the approximation of solution

and the iteration can be stopped.

n∑
i=1

(Qi − f
(k)
i )2 6 ε (A.19)



Appendix B

The Derivation of ∂B
∂A

Recalling equation (4.19) and (4.20), the x and y component of the flux density in

one element are

Bx =
1

2∆
(b1A1 + b2A2 + b3A3) (B.1)

By = − 1

2∆
(c1A1 + c2A2 + c3A3) (B.2)

and the flux density over the element is

B =
√
B2

x +B2
y . (B.3)

Then the partial derivation of B with respect to Ai, (i = 1, 2, 3) is

∂B

∂Ai

|i=1,2,3 =
1

2
(B2

x +B2
y)
− 1

2 (2Bx
∂Bx

∂Ai

+ 2By
∂By

∂Ai

)

=
1

B
(Bx

∂Bx

∂Ai

+By
∂By

∂Ai

)

=
1

B
(Bx

bi
2∆

−By
ci
2∆

)

=
1

B

[
1

2∆
(b1A1 + b2A2 + b3A3)

bi
2∆

+
1

2∆
(c1A1 + c2A2 + c3A3)

ci
2∆

]
=

1

4∆2
· 1

B
[(b1bi + c1ci)A1 + (b2bi + c2ci)A2 + (b3bi + c3ci)A3] (B.4)

Therefore,

• when i = 1,

∂B

∂A1

=
1

4∆2
· 1

B

[
(b21 + c21)A1 + (b2b1 + c2c1)A2 + (b3b1 + c3c1)A3

]
(B.5)
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• when i = 2,

∂B

∂A2

=
1

4∆2
· 1

B

[
(b1b2 + c1c2)A1 + (b22 + c22)A2 + (b3b2 + c3c2)A3

]
(B.6)

• when i = 3,

∂B

∂A3

=
1

4∆2
· 1

B

[
(b1b3 + c1c3)A1 + (b2b3 + c2c3)A2 + (b23 + c23)A3

]
(B.7)

Recall equation (4.32) where

S11 = b21 + c21; S12 = b1b2 + c1c2; S13 = b1b3 + c1c3;

S21 = b2b1 + c2c1; S22 = b22 + c22; S23 = b2b3 + c2c3;

S31 = b3b1 + c3c1; S32 = b3b2 + c3c2; S33 = b23 + c23;

then equations (B.5)-(B.7) become

∂B

∂A1

=
1

4∆2
· 1

B
· (S11A1 + S12A2 + S13A3)

∂B

∂A2

=
1

4∆2
· 1

B
· (S21A1 + S22A2 + S23A3)

∂B

∂A3

=
1

4∆2
· 1

B
· (S31A1 + S32A2 + S33A3) (B.8)

Let 
f1 = ν

4∆
(S11A1 + S12A2 + S13A3)

f2 = ν
4∆

(S21A1 + S22A2 + S23A3)

f3 = ν
4∆

(S31A1 + S32A2 + S33A3)

(B.9)

or  f1

f2

f3

 =
ν

4∆

 S11 S12 S13

S21 S22 S23

S31 S32 S33


 A1

A2

A3

 , (B.10)

then equation (B.8) can be rewritten as

∂B

∂A1

=
f1

Bν∆
∂B

∂A2

=
f2

Bν∆
∂B

∂A3

=
f3

Bν∆
(B.11)



Appendix C

The Representation of Nonlinear
B −H Curve

Figure C.1: The Cubic Splines

As shown in Fig. C.1, H is the function of B. Based on the n pairs of

input data, the x−coordinate is subdivided into n segments, and their length on

x−coordinate are L1, . . . , Li, Li+1, . . . , Ln separately. For a segment Li and ∀B ∈

[0, Li], we can write H as a polynomial of B, which is

H = c0 + c1B + c2B
2 + c3B

3, (C.1)

where c0, c1, c2 and c3 are constants to be determined. Taking the first derivation
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on the both sides of the above equation, we can get

dH

dB
= c1 + 2c2B + 3c3B

2. (C.2)

Substituting B = 0 and B = Li into equation C.1 and C.2 respectively and solving

the resulted 4 equations together, constants c0 ∼ c3 can be obtained as
c0

c1

c2

c3

 =


1 0 0 0

1 Li L2
i L3

i

0 1 0 0

0 1 2Li 3L2
i


−1

H0
i

HLi
i

dH0
i /dB

dHLi
i /dB

 . (C.3)

Therefore,

H = (1− 3B2

L2
i

+
2B3

L3
i

)H0
i + (

3B2

L2
i

− 2B3

)
L3

i )H
Li
i

+ (B − 2B2

Li

+
B3

L2
i

)
dH0

i

dB
+ (−B

2

Li

+
B3

L2
i

)
dHLi

i

dB
(C.4)

Taking the second derivation on the above equation yields

d2H

dB2
= (− 6

L2
i

+
12B

L3
i

)H0
i + (

6

L2
i

− 12B

L3
i

)HLi
i

+ (− 4

Li

+
6B

L2
i

)
dH0

i

dB
+ (− 2

Li

+
6B

L2
i

)
dHLi

i

dB
.

As

d2HLi
i

dB2
=
d2H0

i+1

dB2

and

H0
i = Hi−1, H

Li
i = Hi

H0
i+1 = Hi, H

Li+1

i+1 = Hi+1

the following equation can be obtained

2

Li

dHi−1

dB
+

4

Li

dHi

dB
+

4

Li+1

dHi

dB
+

2

Li+1

dHi+1

dB
=

6

L2
i

(Hi −Hi−1) +
6

L2
i+1

(Hi+1 −Hi)

(C.5)



231

Consider boundary conditions

d2H0
1

dB2
= 0,

d2HLn
n

dB2
= 0,

finally we can get equation C.6 from which the derivative coefficients dH/dB can

be calculated in terms of the values of H and B.

[LHS][dH/dB] = [RHS][H], (C.6)

where

[LHS] =



4
L1

2
L1

0 . . . . . . . . . . . .
2

L1
( 4

L1
+ 4

L2
) 2

L2
. . . . . . . . . . . .

...
...

...
...

...
...

...

. . . . . . 2
Li

( 4
Li

+ 4
Li+1

) 2
Li+1

. . . . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . 2
Ln−1

( 4
Ln−1

+ 4
Ln

) 2
Ln

. . . . . . . . . . . . 0 2
Ln

4
Ln



[RHS] =



− 6
L2

1

6
L2

1
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1
( 6

L2
1
− 6

L2
2
) 6
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2

. . . . . . . . . . . .
...

...
...

...
...

...
...

. . . . . . − 6
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i
( 6

L2
i
− 6

L2
i+1

) 6
L2

i+1
. . . . . .

...
...

...
...

...
...

...

. . . . . . . . . . . . − 6
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n−1
( 6

L2
n−1

− 6
L2

n
) 6

L2
n

. . . . . . . . . . . . 0 − 6
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n

6
L2

n



[dH/dB] =
[
dH0/dB dH1/dB . . . dHi−1/dB . . . dHn−1/dB dHn/dB

]tr

[dH/dB] =
[
H0 H1 . . . Hi−1 . . . Hn−1 Hn

]tr
After getting the values of [dH/dB], for a specific flux density value of B, the

corresponding value of dν/dB can be calculated by

dν

dB
=
dH

B

dB
=

1

B

dH

dB
− H

B2
. (C.7)



Appendix D

The Method of BICG

After the assembly process of the finite element method, a large system of equa-

tions is generated. The number of unknowns involved in this system equations is

often several thousand. The bandwidth of the matrices is so large that the classi-

cal Gauss elimination algorithm and its modern variants are not efficient methods.

This suggests that the iterative methods should be used. The method used in

this work is the biconjugate gradient method (BICG). The method of BICG was

firstly described by Fletcher [147] for real nonsymmetric matrices and by Jacobs for

complex matrices [148]. The method has evolved many variations, such as CGS,

BiCGSTAB and QMR, each of which was specially designed to overcome some of

its inherent difficulties. However, BICG may still be competitive in terms of con-

vergence and convergence rates when compared with other methods [149].

Our concern is to get the solution of a system of real or complex linear

algebraic equations

Ax = b, (D.1)

where A is a nonsingular N × N matrix. x = (x1, . . . , xN)tr is the vector of un-

knowns, b = (b1, . . . , bN)tr and ()tr represents the transpose operation of a matrix.

The BICG algorithm for solving the linear system described in equation (D.1)
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is implemented as

1. Input initial approximation x1;

2. Initialize

r1 = p1 = r̃1 = p̃1 = b− Ax1; (D.2)

and

ρ1 = r̃tr
1 r1 (D.3)

3. For n = 1, 2 . . .

σn = p̃tr
nApn (D.4)

αn =
ρn

σn

(D.5)

rn+1 = rn − αnApn (D.6)

xn+1 = xn + αnpn (D.7)

r̃n+1 = r̃n − αnA
trp̃n (D.8)

ρn+1 = r̃tr
n+1rn+1 (D.9)

βn+1 =
ρn+1

ρn

(D.10)

pn+1 = rn+1 + βn+1pn (D.11)

p̃n+1 = r̃n+1 + βn+1p̃n (D.12)

end For
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The sequence generated by the algorithm satisfies the following conditions:

r̃tr
n rm = 0, p̃tr

nApm = 0, for(m 6= n) (D.13)

rn+1 is called the computed residual and it is equal to b − Axn+1. The iteration

process of BICG method described in equations (D.4)-(D.12) continues until the

residual is small enough.



Appendix E

The flowchart of the Field-Circuit
Coupled Time Stepping Finite
Element Method

In Chapter 3, details of the time stepping finite element computation of the line-

start permanent magnet synchronous machine have been presented. The whole

process can be summarized by the flowchart shown in Fig. E.1.
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Figure E.1: Flow Chart of the Field-Circuit Coupled Finite Element Computation

Process



Appendix F

Motor Specifications and
Dimensions

1. PMSM Specifications

Table F.1: Ratings of the PMSM Used in This Research Work

Rated power (kW) 2.2

Rated speed (rpm) 1500

Rated voltage (line-to-line Vrms) 200

Rated current (Arms) 8.1

Number of phases 3

Number of poles 4

Number of stator slots 48

Number of rotor cage bars 40

Number of series turns per phase Ns 240

Winding connection Y

Winding layout Single layer
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2. Dimensions of the PMSM

Figure F.1: Dimensions of the PMSM Used in this Research Work (unit: mm)
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Figure F.2: Stator Slot Dimensions of the PMSM (unit: mm)

Figure F.3: Rotor Cage Bar Dimensions of the PMSM (unit: mm)



Appendix G

Determination of the B −H
Characteristic of the Stator Iron

The finite element solution program requires input material characteristics for all

magnetic materials in the part of pre-processing. All linear materials (air gap, spac-

ers, rotor bars and stator windings) are assigned the permeability of free space. The

solid rotor shaft is made by aluminium and has the permeability of free space. The

NdFeB permanent magnet is modelled with a straight line BH curve in the second

quadrant. The remanent flux density Br is 0.8 Tesla and the relative permeability

µr is 1.05.

Fig. G.1 shows the totoidal transformer used for testing BH characteristic

of motor core. The number of turns for primary winding is N1 = 576, the number

of turns for secondary winding is N2 = 116. The experimental data of I1 and V2

are shown in Table G.1. The computed BH data are shown in Table G.2.
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Figure G.1: Wound Motor Core for Testing of BH Characteristics (unit: mm)
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Table G.1: Experimental Data for Testing of BH Characteristics

Primary Current (I1: amps) Secondary Voltage (V2: volt)

0.110 1.477

0.130 1.849

0.150 2.443

0.200 3.655

0.240 4.320

0.260 4.770

0.320 5.930

0.400 6.900

0.630 8.630

0.750 9.070

0.950 10.100

1.630 10.910

2.010 11.300

2.440 11.810

2.830 12.080

3.250 12.410

3.650 12.730

4.100 12.980

5.440 13.910

5.010 13.660

6.200 14.330

6.740 14.590

7.610 14.990

8.130 15.250

8.560 15.440

8.920 15.640

9.370 15.790

10.570 16.260

11.020 16.400
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Table G.2: Stator Lamination BH Characteristics

Flux Density (B: Tesla) Field Intensity (H: amps/meter)

0 0

0.176 141.531

0.221 167.263

0.292 192.996

0.435 257.328

0.516 308.794

0.570 334.527

0.708 411.725

0.825 514.657

1.029 810.585

1.083 964.982

1.206 1428.571

1.302 2097.227

1.350 2586.151

1.410 3139.407

1.443 3641.197

1.482 4181.587

1.521 4696.244

1.551 5275.232

1.632 6446.077

1.662 6999.333

1.710 7977.181

1.743 8671.968

1.791 9791.346

1.821 10460.400

1.839 10846.393

1.866 11476.847

1.884 12055.836

1.941 13599.807

1.959 14178.796



Appendix H

Experimental Data Tables for
Parameter Determination

Table H.1: Experimental Data of Sensorless No-Load Test Method

Terminal Line-Line Voltage (V : volt) Phase Current (I: amps)

100.920 2.298

105.59 1.922

111.201 1.545

115.749 1.251

121.670 0.885

127.289 0.622

133.540 0.525

137.241 0.600

140.238 0.718

146.347 1.068

152.652 1.454

157.591 1.749

160.571 1.922

166.106 2.270

171.746 2.628

176.916 2.928

181.495 3.168

187.615 3.472

192.641 3.695

197.250 3.912
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Table H.2: Experimental Data of Load Test Method - Voltage and Current

Phase Voltage (volt) Phase Current (amps)

V V ′ I I ′

1 102.595 102.596 2.675 2.679

2 102.517 102.567 2.730 2.729

3 102.586 102.515 2.889 2.871

4 102.356 102.207 3.100 3.074

5 102.159 102.259 3.365 3.338

6 102.158 102.131 3.671 3.639

7 102.025 101.968 3.985 3.949

8 101.996 102.041 4.322 4.276

9 101.8201 101.8401 4.666 4.618

10 101.566 101.641 5.014 4.961

11 101.519 101.502 5.368 5.285

12 101.292 101.333 5.714 5.640

13 101.139 101.229 6.064 5.968

14 101.084 101.107 6.392 6.297

15 101.017 100.851 6.723 6.594
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Table H.3: Experimental Data of Load Test Method - Input Power

Torque Angle (deg) Input Power I (Kw) Input Power II (Kw)

δ P1 P2 P ′1 P ′2

1 26.11 0.023 0.348 0.0195 0.345

2 30.34 0.105 0.383 0.101 0.381

3 33.84 0.178 0.432 0.175 0.428

4 35.97 0.249 0.485 0.239 0.479

5 38.67 0.317 0.533 0.305 0.532

6 41.44 0.382 0.588 0.377 0.581

7 43.02 0.450 0.637 0.439 0.633

8 44.74 0.504 0.700 0.495 0.691

9 45.88 0.566 0.753 0.552 0.748

10 46.56 0.619 0.810 0.610 0.800

11 48.82 0.672 0.863 0.658 0.856

12 49.46 0.726 0.922 0.710 0.908

13 54.29 0.773 0.975 0.755 0.963

14 55.21 0.811 1.037 0.794 1.022

15 56.02 0.846 1.093 0.836 1.070
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Table H.4: Results of Load Test Method

Stator Current (ampere) Xd (ohm) Xq (ohm) E0 (volt)

1 2.677 2.060 21.771 87.090

2 2.729 6.960 21.153 78.701

3 2.880 12.256 20.467 75.083

4 3.087 -11.041 19.484 82.557

5 3.352 7.898 18.959 79.008

6 3.655 11.651 18.605 81.856

7 3.967 3.708 17.937 75.587

8 4.299 1.770 17.414 71.849

9 4.642 2.540 17.025 71.491

10 4.988 26.807 15.689 124.160

11 5.327 12.048 15.783 94.074

12 5.677 1.247 15.240 65.586

13 6.016 6.254 16.170 77.437

14 6.345 3.459 15.778 67.111

15 6.658 13.123 15.210 106.678
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Table H.5: Results of Regression Model

Stator Current (ampere) Ld (mH) Lq (mH) E0 (volt)

1 2.674 30.128 60.901 76.011

2 2.734 32.926 58.478 75.800

3 2.889 31.657 55.651 77.520

4 3.098 27.530 53.683 79.258

5 3.365 23.770 51.187 79.723

6 3.674 19.925 49.102 79.524

7 3.985 18.049 47.474 78.797

8 4.320 15.590 46.316 77.406

9 4.664 14.636 45.551 76.341

10 5.011 13.031 44.284 74.624

11 5.367 12.440 43.272 73.283

12 5.709 12.084 42.741 71.957

13 6.066 11.450 41.721 70.451

14 6.385 10.811 41.040 68.840

15 6.722 11.020 40.593 67.081



249

Table H.6: Results of Hopfield Neural Network

Stator Current (ampere) Xd (ohm) Xq (ohm) E0 (volt)

1 2.673 12.600 21.154 69.806

2 2.737 10.652 20.440 74.098

3 2.889 9.775 19.698 76.175

4 3.097 8.774 18.980 77.624

5 3.364 8.078 18.324 78.041

6 3.674 7.366 17.734 78.226

7 3.986 7.180 17.214 78.127

8 4.321 6.358 16.732 77.196

9 4.663 5.987 16.262 76.430

10 5.011 5.343 15.874 74.979

11 5.368 5.150 15.505 73.983

12 5.709 4.981 15.170 72.911

13 6.065 4.759 14.864 71.740

14 6.383 4.451 14.598 70.208

15 6.722 4.136 14.357 68.531



Appendix I

The Inverter Circuit

1. Specifications

• Input: 3-phase, 380-415 V, 50-60 Hz

• Output: 3-phase, 0-380/415 V

• Power: up to 2.2 kW (3 HP)

2. Description

Figure I.1: Schematic diagram of MUBW 10-12A7.

• IGBT module–MUBW 10-12A7 (IXYS)

The IGBT module comprises a 3-phase uncontrolled rectifier, six IGBT

switches, one IGBT for braking and a built-in NTC thermistor for tem-

perature sensing.
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• DC-link capacitors & transformer board

Fig. I.1 shows the schematic diagram of IXYS module. The DC-link

capacitor is connected across pins 22-23. An NTC thermistor is con-

nected in between pins 21-22 to limit the in-rush current. A low ohmic

shunt is connected in between pins 23-24 for over-current sensing. Two

resistor are connected in series across pins 22-24 as a voltage divider for

over-voltage sensing. The transformers are powered from single-phase

mains and provide floating power sources to the driver board.

• Driver board

The driver board comprises voltage regulators (78L15), opto-couplers

(HCPL4503, H11L1), gate drivers (TC4429), braking control and pro-

tection circuits. The connections in between the driver board and the

IGBT module or transformer board are made by wires of twisted pairs.

The driver board is connected with the Control-PWM Card via a shield

flat-ribbon cable.



Appendix J

Parameters of PMSM

1. Equivalent Stator Resistance Rs

In this thesis work, the input values for Rs are required. Rs is calculated by

the following equation [97] (Page 223):

Rs = ρ
2lavNs

π(dw

2
)2

(J.1)

where

lav = lef + le

le = 2(d+ l′e)

l′e = 0.6τy

τy =
π(Di1 + h01 + hs1 + h12 + r1)

2p
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The definition of h01, hs1, h12 and r1 were shown in Fig. J.1, and

ρ resistivity of stator windings

dw diameter of the coil

lef axil length of stator

Ns equivalent number of turns per phase

p number of pole pairs

d extension length of windings

Di1 inner diameter of the stator

The calculated Rs value for the PMSM is 1.1430Ω per phase. The measured

Rs value is 0.8Ω per phase.
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Figure J.1: A Stator Slot
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2. Inductance of Stator End-Windings Le

The reactance of stator end-windings Xe1 was calculated first and Le =

Xe1/ωe, where ωe is the angular synchronous speed of the PMSM. Xe was

calculated by the following equation [97] (Page 225):

Xe1 = 0.67(
le − 0.64τy
lefK2

dp

)Cx (J.2)

where

Cx =
4πfµ0lef (KdpNs)

2

p

Kdp = Kd ·Kp ·Ks

and

µ0 magnetic permeability in free space

f synchronous frequency

Kd winding distribution factor

Kp winding pitch factor

Ks skew factor

The calculated value of end-winding inductance is

Le = 8.496× 10−4H (J.3)
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3. End-Ring Resistance Rek

The end-ring resistance Rek is calculated by [150] (Page 395):

Rek =
ρRlR
AR

1

(2 sin πp
Q2

)2
(J.4)

where

lR = 0.7
πDR

Q2

and

Q2 number of rotor slots

ρR resistivity of the end ring

DR average diameter of the end ring

AR cross section area of the end ring

The calculated value of end-ring resistance is

Rek = 4.536× 10−6Ω (J.5)
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4. End-Ring Inductance Lek

The end-ring inductance is calculated by [150] (Page 389):

Lek = µ0
Q2

m1p
× 2

3
[(lB − l2) + ς

πDR

2p
] (J.6)

where

m1 number of phases

lB axil length of the rotor bar

l2 axil length of rotor iron core

ς = 0.18 for p > 1

The calculated value of end-ring inductance is

Lek = 8.994× 10−8H (J.7)



Appendix K

Determination of Moment of
Inertia and the Coefficient of
Friction

The movement of the rotor is governed by :

Jr
dωm(t)

dt
= Tem − Tf −Dωm(t), (K.1)

where Jr is the moment of inertia of the rotor, ωm is the mechanical motor speed,

Tem is the electromagnetic torque, Tf is the load torque, D is friction coefficient and

t is time. In order to compute the dynamic performances of the PMSM involving

the rotor movement, the parameters of Jr and D have to be determined. In this

work, both of these two parameters are determined by simple experiments.

1. Determination of D

Under no load condition, equation K.1 can be rewritten as

Jr
dωm(t)

dt
= Tem −Dωm(t). (K.2)

With the initial condition of ωm(0) = 0, the solution of equation K.2 is

ωm(t) =
Tem

D
(1− e−

D
Jr

t). (K.3)

Therefore, when t = ∞, ωm(t) = Tem/D. In other words, mathematically,

if we apply a torque of Tem to the rotor, with infinitely long time, the final

speed of the rotor is Tem/D. So if we can know Tem and ωm(t = ∞), D will

be attainable.
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In order to realize the above process in the experiment, the PMSM is run to

rated speed of 1500rpm. When the machine is running at the steady state,

the motor torque Tem is recorded. With the values of Tem and ωm, the friction

coefficient D can be calculated as

D =
Tem

ωm

. (K.4)

The motor torque Tem at the speed of 1500rpm in steady state is shown in

Fig. K.1.

Figure K.1: Motor Torque at the Speed of 1500rpm in Steady State

From Fig. K.1, we can get the average motor torque under this condition

was Tem = 0.3242N.m. Therefore, the friction coefficient is

D =
0.3242

157.0796
= 0.00206393N.m/rad (K.5)
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2. Determination of Jr

Referring to equation K.1, when Tem = 0 and Tf = 0, it can be rewritten as

Jr
dωm(t)

dt
= −Dωm(t). (K.6)

With the initial condition of ωm(t = 0) = ω0
m, the solution of equation K.6 is

ωm(t) = ω0
m · e−

D
Jr

t. (K.7)

Therefore, when t = Jr/D, ωm(t) = ω0
m · e−1 = 0.3679ω0

m. In other words, if

we know the initial speed ω0
m and time point of t when ωm(t) = 0.3679ω0

m,

the value of Jr/D is attainable, hence the value of Jr can be determined.

In the experiment, the PMSM is run to its rated speed of 1500rpm under

no load condition. So we have ω0
m = 1500rpm and the condition of Tf = 0

is satisfied. Then the power supply of the machine is cut off, the condition

of Tem = 0 is met and the rotor speed gradually decrease to zero. The time

point of ωm(t) = 0.3679ω0
m is found and Jr is determined. The rotor speed

after deceleration is plotted in Fig. K.2. Since

ωm(t) = 0.3679ω0
m = 0.3679× 1500 = 551.82rpm,

the time point corresponding to this speed is t = 4.4s. Therefore

Jr

D
= 4.4 (K.8)

Substituting equation K.5 into equation K.8, we can get that the moment

inertia of the rotor was

Jr = 4.4× 0.00206393 = 0.009081292kg ·m2 (K.9)
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Figure K.2: Rotor Speed after Deceleration



Appendix L

Equations used in the
Mid-symmetrical PWM
Generation

To improve the performance of PWM, it is always preferred to adopt mid-symmetrical

PWM generation to make the pulse symmetrical to the center of the PWM period,

as shown in Fig. L.1.

Figure L.1: Pulses Symmetrical to the Center of the PWM Period

Due to the technical limitation, dSPACE DSP card always generates the pulse

at the starting edge of the PWM period and hence is unable to do mid-symmetrical

PWM generation itself. However, a pulse symmetrical to the center of the period

can be generated by an 2-input EX-OR gate with the two pulses shown in Fig. L.2

as the input. These two pulses are generated at the starting edge of the period and

hence can be generated by the DSP card.

Suppose the duty ratio of pulses 1 and 2 is D1 and D2, respectively, and the

duty ratio of the mid-symmetrical pulse is D, as shown in Fig. L.2. It is evident
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Figure L.2: Generation of a Pulse Symmetrical to the Center of the Period by an

2-Input EX-OR Gate

that D1 and D2 can be computed as follows:

D1 = (1−D)/2 = 0.5− 0.5D (L.1)

D2 = D1 +D = 0.5 + 0.5D (L.2)

To generate a mid-symmetrical pulse with duty ratio D, two PWM channels

of the DSP card are employed to generate pulse 1 with duty ratio D1 and pulse

2 with duty ratio D2, respectively. An external EX-OR gate is used to EX-OR

pulses 1 and 2 to generate the mid-symmetrical pulse.

As far as the gating signal for the Top Switch of the inverter is concerned, if

its duty ratio D is of 0 ∼ 100%, then correspondingly the output phase voltage V is

of −Vmax ∼ Vmax, where Vmax is the maximum output phase voltage of the inverter.

Since V is the desired voltage and Vmax is known, then the question becomes how

to use V and Vmax for the mid-symmetrical PWM generation.

It should be noted that dSPACE provides two C functions for PWM gener-

ation. One function is for fixed-frequency PWM generation and the other is for

variable-frequency PWM generation. Input to both functions must be a down-
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scaled value, but the ranges of the scaling for the two functions are different.

For fixed-frequency PWM generation, the input to the C function should be

scaled down within −1 ∼ 1, which is corresponding to duty ratio of 0 ∼ 100%. For

variable-frequency PWM generation, the input to the C function should be scaled

down within 0 ∼ 1, which is corresponding to duty ratio of 0 ∼ 100%. The Simulink

block for PWM channels given by RTI of dSPACE is for variable-frequency PWM

generation, hence requires its input to be scaled down within 0 ∼ 1.

To use V and Vmax for PWM generation, define a variable u in terms of V

and Vmax. For fixed-frequency PWM generation, u = V/Vmax so that u is within

−1 ∼ 1. For variable-frequency PWM generation, u = 0.5(1 + V/Vmax) so that

u is within 0 ∼ 1. If conventional PWM generation would be used, then u could

directly be used by the C function/Simulink block as input. The duty ratio D is

hence as follows:

• For fixed-frequency PWM generation:D = 0.5(1 + u)

• For variable-frequency PWM generation: D = u

However, to carry out mid-symmetrical PWM generation, u is not used di-

rectly as the input but split into two components, which are then used by the C

function / Simulink block as the inputs. Let them be u1 and u2 corresponding to

duty ratio D1 and D2, respectively.

1. For fixed-frequency PWM generation, since the input of −1 ∼ 1 is corre-

sponding to duty ratio of 0 ∼ 100%, then it can be known that:

D1 = 0.5(1 + u1) (L.3)

D2 = 0.5(1 + u2) (L.4)
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Substituting equations (L.3) and (L.4) into equations (L.1) and (L.2), we can

get

u1 = −0.5− 0.5u (L.5)

u2 = 0.5 + 0.5u (L.6)

2. For variable-frequency PWM generation, since the input of 0 ∼ 1 is corre-

sponding to duty ratio of 0 ∼ 100%, then it can be known that:

D1 = u1 (L.7)

D2 = u2 (L.8)

Substituting equations (L.3) and (L.4) into equations (L.1) and (L.2), we can

get

u1 = 0.5− 0.5uu2 = 0.5 + 0.5u (L.9)
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