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SUMMARY 
 

Repetitive projects consist of multiple units that are identical or similar in nature, with 

various activities or trades repeatedly executed from one physical unit to another 

during the construction process. This repetitive construction process renders it 

desirable to schedule the execution of these trades as uninterrupted and continuous 

work sequences by imposing a work continuity constraint whenever necessary. The 

traditional Critical Path Method (CPM) is cumbersome when used on such projects 

due to their repetitive nature and the large number of units present. In addition, the 

CPM equations do not take work continuity into consideration when calculating 

activity start/finish times. Existing linear scheduling models geared towards work 

continuity are nevertheless graphical in nature and therefore not easily amenable to 

computerization. This study seeks to address the drawbacks of these methods. 

 

A new scheduling approach for repetitive projects is proposed. The CPM equations 

are adapted as a new set of recurrence equations which can ensure work continuity 

through imposing a scheduling constraint that adjusts the calculations of activity 

start/finish times. This new representation has two main advantages. Firstly, the 

mathematical representation lends itself to computerization and preserves CPM’s 

analytical capabilities which are absent in the graphical scheduling approach. 

Secondly, the equations enable user-specific scheduling considerations encountered in 

practice, like mandatory delays imposed between units, to be easily incorporated. A 

case study is used to illustrate the utility of the proposed scheduling approach when 

work continuity and other scheduling considerations are imposed. 



 vi 

This set of equations also forms the basis for optimizing the schedules of repetitive 

projects with an evolutionary optimization technique. The Genetic Algorithm is used 

to search for the best schedule by varying the crew size and work continuity 

requirements of the project activities using a suitable chromosome representation. The 

schedules which have lower work continuity and do not meet deadlines are penalized.  

 

A case study benchmarks the performance of the Genetic Algorithms Recurrent-

equations Approach (GARA) against the CPM and linear scheduling methods in 

optimizing the schedules. Results indicate that GARA consistently produces superior 

schedules. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
Repetitive projects are characterized by the existence of several identical or similar 

units, where construction activities are sequentially executed from one unit to another 

in a vertical or horizontal manner, resulting in a linear workflow. As such, repetitive 

projects are also known as linear projects in some of the literature. Examples of 

horizontal repetitive projects include highway or pipeline construction, where the 

units can be stations on the highways or meters of pipelines respectively. Multi-story 

buildings, where different stories constitute the set of repetitive units, are 

representative of vertical repetitive projects.  

 

From the perspective of the individual trades on the project, a construction schedule 

that ensures the uninterrupted flow of resources from one unit to the next is preferred. 

When the work crew is the critical resource, this uninterrupted flow of resources leads 

to the concept of work continuity. In order to maintain work continuity, repetitive 

units must be scheduled to enable the timely movement of crews from one unit to the 

next. The benefits of this arrangement include the maximization of the learning curve 

effect for each crew, and the minimization of idle time for each crew. Furthermore, it 

ensures that the specialist contractors can work straight through a project and leave - a 

working condition reported to be ideal for them. 

 

Traditionally, network techniques such as the Critical Path Method (CPM) have been 

used extensively in the construction industry for scheduling and controlling 

construction projects. However, traditional CPM proves to be cumbersome to apply 



 

 2 

for the scheduling of repetitive projects, and critical information is obscured among 

the details resulting from the way activities are represented. CPM also fails to address 

the issue of how to ensure work continuity in a particular trade. Several graphical 

scheduling techniques have been developed to address the weaknesses of the CPM 

method with respect to repetitive projects. However, as these techniques are graphical 

in nature, they are not easily amendable to computerisation and thus lack analytical 

capabilities. 

 

This study proposes a new approach to address the issues identified in scheduling 

repetitive projects by adapting the CPM equations, to form a new set of recurrence 

equations, which consider work continuity. An additional work continuity term is 

added to the CPM equations such that suitable adjustments to the calculations of 

activity start/finish times can be effected. It is also possible to incorporate specific 

user-defined scheduling constraints like mandatory time lags between units using the 

same technique. This proposed approach retains the advantages of using a 

mathematical representation of the problem, namely ease of computerization and 

analytical capability. Furthermore, this set of recurrence-equations forms the basis for 

performing schedule optimization using an evolutionary search algorithm. 

  

This chapter first reviews the characteristics of repetitive projects, and provides an 

overview of the limitations of current scheduling methods with respect to repetitive 

projects. This leads to the identification of the objectives and scope of this study, 

followed by the organization of the thesis itself. 
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1.1 Characteristics of Repetitive Projects 

The essential elements in construction projects are the tasks, their durations, and the 

logical interrelationships among them.  A task is an operation or closely related group 

of operations whose performance contributes to the completion of the overall project. 

Precedence constraints link tasks together to reflect the intended or natural sequence 

of the operations. The start of a particular task is permitted by the completion of all 

preceding tasks or by the start of the project. 

 

Fig. 1.1 depicts part of a typical CPM network for a multi-story building construction 

project. Each story of the building is identified as a ‘unit’ in the figure. The square 

nodes depict the project activities, whereas the directed arrows represent the 

precedence constraints between the activities. The figure also makes use of two kinds 

of arrows – solid ones to represent precedence between activities performed on the 

same story / unit, and dashed ones to represent precedence between activities of the 

same trade performed on different units.  

 

At this point, it is useful to make a distinction between the ‘task’ and ‘activity’ which 

are often used synonymously. For repetitive projects, we propose to use ‘task’ to refer 

to the activity carried out by particular trades / specialists irrespective of the unit on 

which the task is performed. The word ‘activity’ retains its traditional usage as 

referring to the individual elements that make up a project network; in repetitive 

projects, an activity would mean the performance of a task on a particular unit. For 

example, task D is defined as the task of erecting the precast walls. Irrespective of 

which unit the activity is performed on, the precedence constraint ensures that this 

task will only commence upon the completion of the preceding task – setting of the 
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necessary structural steels in place. The solid arrows linking the different tasks 

represent all the activity-to-activity precedence constraints between tasks performed 

on the same unit. For instance, tasks C, D and E cannot commence until the 

completion of task A.  

 

Given the information on these elements, the activity start / finish times and total float 

can be computed. These computations also yield the total expected duration for the 

project, and identify the most critical activities and hence the critical path for the 

Figure 2.1 Network representation of a repetitive project 
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project. This is a powerful concept that great aids management in setting its priorities 

for allocating resources to operations. 

 

Fig. 1.1 also illustrates a characteristic peculiar to repetitive projects. A repetitive 

project consists of multiple instances of identical CPM projects, each of which 

represents tasks for a repetitive unit. The first characteristic is the large number of 

activities required to represent the repetitive project as the number of units increase. 

This creates a problem in using networks to represent repetitive projects as Fig. 1.1 

illustrates where a crowded network results from a project that consists of only seven 

tasks over two repetitive units. It is therefore necessary to be able to refer to activities 

grouped by unit or task. 

 

The second characteristic pertains to the repetitive execution of a task between 

successive units.  When there is only one work crew available for each task, the work 

activity on one unit cannot commence until the work crew is available again, usually 

through the completion of the preceding unit. The dashed arrows linking the same 

task from one unit to the next represent the resource availability constraint. The 

general contractor recognizes the desire of the different specialist contractors / trades 

for a continuous and uninterrupted movement of work crews from one unit to another 

without unnecessary crew idle time. Such continuity provides for an efficient resource 

utilization strategy that leads to the maximized learning curve benefits, minimized 

crew idle time and reduced the off-on movement of crews on a project once work has 

begun (Ashley 1980). The traditional CPM scheduling algorithm cannot ensure such 

work continuity. 
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1.2 Drawbacks of Existing Scheduling Methods 

Both the CPM and the Graphical Scheduling Models (GSM) can be used to schedule 

repetitive projects. They have their own strengths and weaknesses, but neither is 

adequate on its own to address the scheduling needs of repetitive projects. 

 

Although CPM provides a well-established logic in analyzing and scheduling 

networks, the two characteristics discussed renders the utilization of CPM in 

repetitive projects unsuitable. The network diagram in CPM cannot effectively 

communicate vital schedule information to the end-users as the complex network 

needed to represent repetitive projects obscures this information. In comparison, the 

line representation depicted in Fig. 1.2 provides a more effective representation of the 

progression of work and work sequences in a repetitive project; the breaks in the lines 

intuitively convey the presence of work discontinuities. 

 

In addition, CPM calculation assumes that activities commence as soon as all the 

precedence constraints are satisfied. On repetitive projects, this causes tasks 

progressing at a faster rate to be “held back” by preceding tasks that are progressing at 

a slower pace. This results in a time lapse in a task’s finish-to-start dates between two 

consecutive activities, creating undesirable work discontinuities. For example, in Fig. 

1.2 the time to complete one unit for tasks A and B are 10 and 5 days respectively. 

Under CPM computation, the longer amounts of time taken to complete a unit by task 

A delays the start time for all the activities in task B by 5 days. 

 

The limitations of traditional CPM led to the development of several graphical 

approaches such as the Line-of-Balance (LoB), and recent methods like Linear 
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Scheduling Model (Harmelink and Rowing, 1998) and Repetitive Scheduling Model 

(Harris and Ioannou, 1998). In these graphical methods, the tasks are plotted as lines 

over the axes of units versus time. In this case, the slope represents the work rate for 

the task. The advantage of this form of representation is its simplicity and the ease 

with which to visualize the whole project schedule. Fig 1.2 illustrates the line 

representation for the network schedule of Fig 1.1 but with five repetitive units. 

 

These models also account directly for work continuity to ensure effective resource 

utilization. While there are minor variations in the method of ensuring work 

continuity, it generally involves introducing a delay in the first activity of particular 

tasks. However, the graphical models are not easily amenable to computerization and 

lack CPM’s analytical capabilities. In addition, work continuity is uniformly imposed 

on all the activities; this reduces flexibility in determining good schedules where a 

mix of work continuous and discontinuous activities may lead to lower project costs.  
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Figure 1.2 Line representation of a network schedule over five repetitive units 
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In summary, neither of the two methods mentioned is adequate on its own for 

scheduling repetitive projects. It is possible that a customized scheduling technique 

for repetitive projects can be developed by combining the strengths of the individual 

methods. An improved repetitive scheduling method will be of great benefit as 

repetitive projects are very common in civil engineering works. 

 

1.3 Objectives and Scope of the Thesis 

This study has two objectives, namely to:  

(1) Develop a new scheduling technique for repetitive projects by combining 

the strengths of the CPM and GSM. The new scheduling technique retains the ability 

to numerically compute schedule attributes like early / late starts and finishes of 

individual activities, presents the schedule information in a manner that is easy to 

comprehend, and takes discretionary work continuity for tasks into consideration. 

Recurrence equations that link the schedule attributes form the basis of the proposed 

scheduling method. 

(2) Extend the functionality of these recurrence equations by using them as a 

means of effecting schedule optimization using Genetic Algorithms (GA). This GA 

Recurrence-equations Approach (GARA) searches for the best schedule in terms of 

crew size and work continuity status using a suitable chromosome representation. The 

objective function is formulated in such a way that schedules with work discontinuity 

and which do not meet completion deadlines are penalized. 

 

The scope of work for the research includes: 
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(1) Developing a set of recurrence equations suitable for performing network 

scheduling calculations for repetitive projects; the recurrence equations 

incorporate the work continuity constraint when calculating activity start / finish 

dates; 

(2) Developing means of incorporating specific user scheduling requirements into the 

scheduling calculations; 

(3) Developing a schedule optimization model using the proposed recurrence 

equations with GA; 

(4) Evaluating the effectiveness of the proposed optimization model by performing a 

series of comparisons with CPM and GSM 

 

1.4 Organization of the Thesis 

This thesis is organised into six chapters, beginning with this chapter. Chapter 2 

reviews the existing methods and identifies the inadequacies of these methods with 

respect to scheduling repetitive projects. This chapter also reviews the use of genetic 

algorithms in scheduling problems.  

 

Chapter 3 describes the development of a set of recurrence equations used in the 

proposed repetitive scheduling method. This chapter also describes how user-

specified scheduling constraints can be incorporated into these equations. A case 

study illustrates the application of the proposed repetitive scheduling method when 

work continuity constraints and specific scheduling requirements are imposed. 

 

Chapter 4 introduces the model setup for schedule optimization using the genetic 

algorithms. The two types of chromosome representations used and the formulation of 
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a suitable objective function that reflects actual conflict of interests in practice are 

discussed. 

 

Chapter 5 describes the experimental setup and presents the analysis of results with 

respect to the effects of increasing repetitive units and different due date constraints. 

The times of convergence for networks with various complexities are also compared. 

 

Finally, chapter 6 summarizes the significant findings and observations in this thesis 

before concluding with the limitations and suggestions for future study. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 
 
 
This chapter reviews the existing literature that is relevant to scheduling repetitive 

projects. The chapter begins with a summary of important terms used by authors in 

the literature. This is followed by a review of the strengths and weaknesses of various 

scheduling methods when applied on repetitive projects. The chapter closes with a 

review of the use of Genetic Algorithms (GA) in construction scheduling problems. 

 

2.1 Review of Terms Used in Existing Scheduling Methods 

Various researchers in the literature on repetitive project scheduling have defined 

some commonly occurring terms differently. The purpose of this section is to review 

the usage of some of these terms and propose a definition to be adopted in this thesis 

in order to avoid ambiguity.  

 

Generally, repetitive projects are made up of a series of construction tasks that are 

repeatedly performed from one unit to another (Kang et al., 2001). Examples of 

repetitive projects include high-rise buildings, housing project with identical model 

houses, pipeline network constructions, or highway projects (Moselhi and El-Rayes, 

1993).  Although Harris and Ioannou (1998) use “activity” to refer to the same 

concept, we prefer to keep “activity” for instances of the same construction task when 

performed on individual units.  

 

Repetitive projects are also known as “linear projects” to convey the idea of a linear 

progression of construction activities from the first to the last unit (Selinger, 1980). 
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However, Moselhi and Hassanein (2003) categorized different repetitive projects into 

either linear or non-linear projects according to the nature of the units on which the 

construction tasks are executed. Where tasks are repeatedly executed over non-

identical sections, such as highway, railroad and pipeline constructions, they are 

known as linear projects. On the other hand, high-rise building constructions are 

termed as non-linear projects because the tasks are repeated over identical units.  This 

study adopts the general term “repetitive projects” because the proposed scheduling 

method is able to account for tasks that are executed over non-identical sections by 

varying the durations for each section. 

 

It is widely recognized that it is necessary to maintain continuous and uninterrupted 

movements of work crews in repetitive projects due to the nature in which the tasks in 

repetitive projects are carried out (Reda, 1990; Harris and Ioannou, 1998). However, 

Reda (1990) called this desired workflow “work continuity” whilst Harris and 

Ioannou (1998) used to term “resource continuity” to describe the same concept. In 

this study, resource continuity is construed as a broader term that encompasses the 

continuous utilization of all the resources, including the work crew, specialized 

equipment and perhaps, even the working space required. When there is only a single 

instance of a resource available to perform a particular task (and thus becomes the 

limiting resource for each task), resource continuity becomes work continuity for the 

resource involved. This study adopts work continuity as being operative for the 

scheduling model that is the subject of this study. 

 

Finally, Harris and Ioannou (1998) defined a critical activity in a CPM network as 

“one that, if delayed, will delay the project”. In addition, they also defined the critical 
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path as “a chain of critical activities extending from project start to project finish”. It 

is implied that a critical activity is one with no total float. However, Barrie and 

Paulson (1992) offer a more general definition of a critical path to mean “a continuous 

chain of activities from the beginning to the end of the network with the minimum 

total float value”. Whilst seemingly trivial, the distinction is important for resource 

critical repetitive projects where activities may be delayed because of the non-

availability of a critical resource, and there is no time-continuous chain of activities 

from the beginning to the end of the network. This thesis adopts the more general 

definition of a critical path by Barrie and Paulson (1992). 

 

2.2 Existing Scheduling Methods for Repetitive Projects 

2.2.1 Critical path method 

The critical path method (CPM) is a network-based scheduling technique that evolved 

from a research effort initiated in late 1956 by the Engineering Services Department 

of Du Pont Company. Their objective was to explore the use of computer-aided 

systems in planning, scheduling, monitoring, and controlling Du Pont’s engineering 

projects.  

 

Mattila and Abraham (1998) stated that the process of planning, scheduling and 

control in construction projects is typically accomplished using CPM. This is no 

surprise as the advantages of CPM networks are well documented. Barrie and Paulson 

(1992) discussed three advantages of CPM networks in comparison with bar charts. 

Firstly, the logical interrelationships and dependencies among activities are inherent 

in the networks, but cannot be readily shown on bar charts. This makes networks 

much more useful for forecasting and control as the impact on the whole project of a 
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delay in an activity is readily transmitted by network logic and computations through 

the whole schedule. Secondly, networks also provide a more powerful means for 

documenting and communicating project plans, schedules and performance with its 

standardized notation and diagramming.  Finally, networks, in contrast to other 

techniques, identify the most critical elements in the project schedule by identifying 

the activity floats and recognizing the critical path, thus providing management with 

the necessary information to set priorities for action. 

 

While CPM is generally held to be powerful analytical tool for scheduling 

construction projects, its limitations when applied to repetitive projects are well-

documented (Reda, 1990; Suhail and Neale, 1994). The first drawback is that 

networks tend to becomes “crowded” due to the numerous repetitive units present in 

repetitive projects. A study by Yamin and Harmelink (2001) found that project 

managers place a very high priority on the effective communication of scheduling 

information. Since the network gets increasingly complex as the number of repetitive 

units increase, the usefulness of CPM as a communication tool diminishes with 

increasing repetitive units. This reduces the effectiveness of both the graphical and 

textual means of disseminating vital scheduling information among the parties 

involved.  

 

The inability to guarantee work continuity for the construction tasks is the second 

drawback of CPM techniques. In a survey conducted by O’Brien and Fischer (2000), 

it is reported that most subcontractors maintain a core group of workers they take care 

not to lay off unnecessarily. This means that the subcontractors incur additional costs 

in terms of lost wages paid to the workers during the idle periods when they are 
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deployed on projects where workflow is discontinuous. Therefore, all the 

subcontractors in the survey reported that the ideal conditions are when their workers 

can “get on a job, work straight through, and leave”. CPM makes no special provision 

to ensure work continuity in tasks on repetitive projects since it does not distinguish 

between tasks and activities. 

 

2.2.2 Graphical linear scheduling methods 

Various linear scheduling techniques, including the Line-of-Balance (Lumsden 1968), 

Vertical Production Method (O’Brien, 1975) and Linear Scheduling Method 

(Johnston, 1981) were proposed to address the limitations of CPM techniques when 

applied to repetitive project scheduling. The advantages of these graphical approaches 

lie in the ease of visually comprehending the whole project and the ability to maintain 

work continuity for tasks.  

 

However, Neale and Neale (1989) found that the Line-of-Balance (LoB) method can 

only show schedules with limited complexity and information, and beyond which the 

schedules degenerate into diagrams with incomprehensible “masses of flow lines”. 

Furthermore, these graphical approaches are not easily amenable to computerization 

(Chrzanowski and Johnston, 1986) and they lack the analytical capabilities that 

underpin the popularity of the CPM techniques.   

 

In response to the lack of analytical capabilities for the graphical approaches, 

Harmelink and Rowings (1998) introduced the Linear Schedule Model (LSM). The 

LSM produced a Controlling Activity Path (CAP) comprising of a sequence of 

activities that must be completed as planned to finish the project within the overall 
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planned duration. Similarly, Harris and Ioannou (1998) introduced the Repetitive 

Scheduling Method (RSM) that derives a Controlling Sequence (CS) containing both 

critical and non-critical activities but excludes resource critical activities. 

  

While Mattila and Park (2003) reported that these two methods identified the same 

path for a simple configuration of two activities, subsequent discussion (Kallantzis 

and Lambropoulos, 2004) showed that the two methods do not always identify the 

same controlling path in more complex activity configurations, nor are they 

synonymous with the critical path identified in CPM techniques. Notwithstanding the 

two recent methods of CAP and CS, the critical path as defined by Barrie and Paulson 

(1992) is derived to demonstrate the analytical capability of the recurrence equations 

in this study. 

 

2.3 Genetic Algorithms and Its Applications in Scheduling 

2.3.1 Overview of genetic algorithms 

The Genetic Algorithms (GA) proposed by Holland (1975) are stochastic search 

methods that have been successfully applied in many types of problems, including 

process scheduling and resource allocation (Gen and Cheng 1997). GA differs from 

conventional search techniques and starts with an initial set of random solutions called 

a population. A single string called a chromosome, which consists of a linear string of 

genes, represents each individual solution. When applied to scheduling, each 

individual chromosome in the population corresponds to one possible schedule 

through decoding the genes. 
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The chromosomes evolve through successive iterations known as generations. The 

crossover and mutation operators are applied to selected chromosomes to create the 

next generation. During each generation, the chromosomes are evaluated using some 

measure of fitness defined by the end-users. Fitter chromosomes generally have 

higher probabilities of being selected to form the next generation. After several 

generations, the algorithm should converge to the best chromosome, which hopefully 

represents the optimum or near-optimal solution to the problem. The cycle of 

evolution is repeated until a desired termination criterion specified by the end-user is 

reached. This criterion can be the number of evolution cycles, the amount of variation 

of individuals between different generations, or a pre-defined value of fitness.  

 

2.3.2 Applications of genetic algorithms in construction scheduling  

Scheduling involves the allocation of resources over a period to perform a collection 

of tasks subject to known constraints, and is a difficult task for human planners 

especially when optimal solutions are required (Chan and Hu, 2002). 

 

Chan et al. (1996) proposed a GA approach to schedule construction resources. The 

strength of this approach lies in the selection and recombination of the GA to learn the 

domain of the specific network instead of relying on any set of heuristic rules. Hegazy 

(1999) extends the research in this area by proposing the application of GA with 

improved resource allocation and levelling heuristics to search for near-optimal 

solutions. 

 

Li and Love (1997) presented an “improved GA system” to reduce the computational 

time and increase the reliability of results obtained for the time-cost optimization 
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problems in construction projects. Similarly, Feng et al. (1997) proposed an algorithm 

based on the principles of GA to solve time-cost trade-off problems for large-scale 

CPM networks. Li et al. (1999) integrated a machine-learning method with GA to 

solve nonlinear time-cost trade-off scheduling problems. In addition, Hegazy and 

Wassef (2001) proposed a GA-based time-cost trade-off optimization model for 

projects with non-serial repetitive activities.  

 

Leu and Yang (1999) proposed a multi-criteria computational optimal scheduling 

model that integrates the time-cost trade-off model, resource-limited model and 

resource leveling model using GA.  Recently, Zheng et al. (2004) considered a GA-

based multi-objective time-cost optimization model that is applicable to the 

alternative project delivery system, where the benefits and opportunities of seeking an 

earlier project completion are taken into account. 

 

2.4 Concluding Remarks 

Two issues were identified from the literature review. 

 

Firstly, neither CPM nor the various graphical scheduling methods are adequate, on 

their own, in addressing the scheduling needs of repetitive projects. In scheduling 

repetitive projects, it is necessary to pay particular attention to the repetitive nature of 

the tasks and the need for an uninterrupted movement of crew from one unit to the 

next. 

 

Secondly, repetitive scheduling presents the opportunity of optimization to determine 

schedules that are attractive from the perspective of overall project duration as well as 
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resource usage. The GA has proven to be a robust method of doing schedule 

optimization. These two observations form the motivation for the development of the 

repetitive scheduling model described in the next chapter.  
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CHAPTER 3 
 

RECURRENCE-BASED SCHEDULING OF REPETITIVE 

PROJECTS 
 
 
This chapter describes the development of a set of recurrence equations suitable for 

performing network-scheduling calculations for repetitive projects. Two specific 

scheduling requirements with relevance to industry are identified and the means of 

incorporating them into the recurrence equations are described. Finally, a case study 

illustrates the application of the proposed repetitive scheduling method when work 

continuity constraints and specific scheduling requirements are imposed. For ease of 

reference, the parameters appearing in the set of recurrence equations and discussed in 

this chapter are summarised in Table 3.1  

 

3.1 Development of the Recurrence Equations 

Consider a repetitive project comprising a set of tasks Ai = (1, 2, ..., M) to be executed 

over a number of repetitive units Uj = (1, 2, ..., Q) under a set of finish-to-start 

Parameters Descriptions 

Ai 
Uj 
AiUj 
Ti 
Di 
ωi,j 
Πi.j 
Q 

M 

EFij 
LFij 
S 

CT 
Ci 
Ki 

Task i 
Unit j 
Activity ij 
Duration for task i 
Effective duration for task i, defined  by Eqn. 3.5 
Number of days delayed on activity ij’s earliest finish date 
Number of days delayed on activity ij’s earliest and latest finish dates 
Total number of repetitive units 
Total number of tasks in a project 
Earliest finish date for activity ij 
Latest finish date for activity ij 
Contractual duration for project completion 
Daily tardiness penalty 
Daily basic wages for worker of task i 
Crew size for task i 

 

Table 3.1 Parameters for mathematical representation 
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precedence relationships. The duration of a task, Ti, denotes the amount of time 

required to complete the task Ai over one of the units, or simply the time taken to 

complete an activity (AiUj) of the task. The predecessors and successors of task Ai are 

denoted by the sets Ap and As respectively. The earliest finish date (EFij ) and latest 

finish date (LFij ) for each activity AiUj can be calculated with the following set of 

equations which are also used in CPM: 

Initial Conditions:  

11,1 TEF =  (3.1) 

MQMQ LFEF ,, =  (3.2) 

Recurrence relations: 

Forward Pass: 

ijijp
i

ji TEFEFMAXEF +−
∀

],[ = 1,,
p

,
p

 (3.3) 

Backward Pass: 

)](),[( ,1,, sjsiji
is

ji TLFTLFMINLF −−= +
∀ f

 (3.4) 

 

3.1.1 Effective duration 

In considering work continuity in tasks, it is useful to use the concept of effective 

duration. The effective duration is the minimum task duration for which work 

continuity is maintained.   Mathematically, the effective duration can be calculated 

by: 

)1/(]}[][{ 1,, −−=
∀∀

QEFMAXEFMAXD p
ip

Qp
ip

i
p

p

 (3.5) 

The concept of effective duration is introduced for two reasons. Firstly, the effective 

duration provides a reliable means of determining whether a task already has a 

continuous workflow without the need to impose any work continuity constraint. 
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Once these tasks are identified, any available resources can be more efficiently 

utilized by channelling them to the discontinuous activities. Secondly, the difference 

between the effective duration (Di) and duration (Ti) of a task denotes the number of 

idle days between two activities due to a break in the workflow for the task. The 

quantification of this idle period is useful in the incorporation of the work continuity 

term into the recurrence equations.  

 

Fig. 3.1 depicts the linear schedule from the CPM calculations on the network shown 

in Fig 1.1. Fig 3.1 depicts the work progress for tasks B, C, D, E and G, each of which 

is a set of 5 discontinuous lines indicating a fragmented workflow for these tasks. For 

instance, there are four days of work discontinuity between each activity of task B. In 

contrast, despite having predecessors and successors that are discontinuous in their 

workflows, task F nevertheless enjoys full work continuity. The concept of effective 
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Figure 3.1 Linear schedule calculated using CPM equations 
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duration can be used to determine whether the workflow for a task is continuous 

without imposing work continuity on it.  

 

Generally, a task has a fragmented workflow if it is progressing at a faster pace than 

its preceding tasks as precedence constraints prevent a task from starting until its 

preceding tasks are completed. For instance, task B is work discontinuous and its 

activity start dates are “held back” by 4 days because its duration of 6 days is less than 

the duration of its preceding task A that has a duration of 10 days. In terms of 

effective duration, the workflow of a task is fragmented when its effective duration 

(Di) is larger than its duration (Ti). For example, task F is work continuous because its 

effective duration (DF) of 10 days is less than its duration (TF) of 12 days.   

 

The effective duration concept for determining the work continuity status of a task is 

especially useful when it has numerous predecessors, and the lines of progress of 

Figure 3.2 Illustration of effective duration 
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these predecessors intersect. Fig. 3.2 illustrates one such scenario, where tasks X and 

Y are predecessors of task Z, and their durations are 15, 10 and 14 days respectively. 

Task X commences immediately while task Y only starts on the 15th day. Task Z 

might be thought to be work discontinuous because it is progressing faster than task 

X. From Eqn. 3.5, the effective duration of task Z is calculated as: 

days

MAXMAX

EFEFMAXEFEFMAXD YXYXZ

5.12

4/50

4/)2575(

4/]}25,15[]65,75[{

)15/(]},[],[{ 1,1,5,5,

=

=

−=

−=

−−=

 

This is less than its duration of 14 days, making task Z naturally work continuous. 

 

3.1.2 Imposing work continuity 

Generally, the graphical scheduling methods ensure work continuity for a task by 

delaying the earliest finish date of its first activity. To account for the effect of 

imposing work continuity on the start / finish dates of task activities, an additional 

term is introduced into Eqn. 3.3. By imposing the requirement that the earliest start 

date of the last activity remain unchanged, the necessary amount of delay for the first 

activity (ωi,1) so that work continuity can be effected for the entire task can be 

calculated as the sum of the periods of work discontinuity. As illustrated in Fig. 3.3, 

the period of work discontinuity between two units is the difference between the 

effective duration and the duration of a task. For Q repetitive units, there are Q-1 

potential breaks in the work continuity of the task, each resulting in an idle period. 

Therefore, when the work continuity constraint is imposed on the task that has a 
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fragmented workflow, the necessary delay in the earliest completion of the first 

activity (to eliminate the breaks) is:  

)](,0[)1(1, iii TDMAXQ −−=ω
 (3.6) 

 

If the work continuity constraint is imposed on task G in Fig. 3.3, the earliest finish 

date (EF) of its first activity will be delayed by the product of 4 (Q – 1) and 7 days (Di 

– Ti), which is 28 days. These 28 days represent the shortest required length of delay 

for the EF of task G’s first activity of task G in order to ensure work continuity in all 

subsequent activities. A lesser value will result in discontinuity between later units, 

while an excessive value will delay the overall project completion unnecessarily. 

Translating this method into mathematical terms, the proposed recurrence equations 

are: 

 

Figure 3.3 Calculation of the number of idle days between activities in a task 
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Initial Conditions:  

11,1 TEF =   

MQMQ LFEF ,, =   

Recurrence Functions: 

Forward Pass: 

)1/(]}[][{ 1,, −−=
∀∀

QEFMAXEFMAXD p
ip

Qp
ip

i
p

p

  

jiijijp
i

ji TEFEFMAXEF ,1,,
p

, }],[{ = ω++−
∀ p

 (3.7) 

Backward Pass: 

)](),[( ,1,, sjsiji
is

ji TLFTLFMINLF −−= +
∀ f

  

where 

)])}(,0[)(1{(, iiji TDMAXQ −−=αβω  (3.8) 

),...,2,1(,, Mspi ∈ ; ),...,2,1( Qj ∈  







 =
=

otherwise

jfor

0

11

α    
; 









=
otherwise

imposedcontinuitywork

0

1

β  

 

Through the introduction of the work continuity term, the new set of recurrence 

equations is able to calculate activity start/finish times when the work continuity 

constraint is imposed on any selected group of activities. 

 

The schedule information calculated using the recurrence equations can be 

represented in various ways graphically to effectively convey the information to the 

end-user. Examples include the matrix schedules and the “horse blanket”.  
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3.2 Incorporating Specific Scheduling Requirements 

It is sometimes necessary to accommodate interruptions in the work programme that 

are known ahead of time. For instance, the precast yard that is responsible for 

delivering the precast wall elements may have informed the contractor that they are 

not able to deliver the elements on particular days. The contractor then has to impose 

a mandatory work break on those days for the task involving the wall element.  

 

Another kind of scheduling consideration arises when the amount of work that needs 

to be done from one unit differs from the others. For example, the amount of work for 

a task in units 3 and 4 is twice that for the other units. With a constant crew size, the 

duration for the task on units 3 and 4 would have to be doubled to account for the 

increased quantity of work. 

 

A simple example involving these two scheduling considerations will be used to 
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Figure 3.4 Illustrations of two user-specified scheduling considerations 
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illustrate how this type of breaks in the work sequence can be accommodated in the 

recurrence equations. Two tasks, A and B each with 5 units are shown in Fig. 3.4. A 

mandatory work break of 10 days is imposed between units 3 and 4 for activity A. In 

addition, and the duration of task B is doubled from 15 days to 30 days for units 3 and 

4. 

 

The mandatory break requirements can be incorporated into the recurrence equations 

simply by including a new variable, Π  in Eqns. 3.4 and 3.7: 

jijiijijp
i

ji TEFEFMAXEF ,,1,,
p

, }],[{ = Π+++−
∀

ω
p

 (3.9) 

jisjsiji
is

ji TLFTLFMINLF ,,1,, )](),[( Π+−−= +
∀ f

 (3.10) 

The imposition of a mandatory work break between units 3 and 4 is analogous to 

imposing a delay on the start dates of the activity on unit 4. By subtracting the 

duration of the task from Eqns. 3.9 and 3.10, similar equations involving the start 

times of the activities are obtained. Therefore, a delay in the start dates is equivalent 

to a delay in the finish dates and the modified recurrence equations can incorporate 

work breaks of w days between any two activities AiUj-1 and AiUj in the following 

manner: 

∏i,j = w (3.11) 

Hence, using Eqn. 3.11, the modified recurrence equations can incorporate the 

mandatory work break between activities A3 and A4 by assigning the value of ∏A,4 as 

10. 

 

In order to account for a change in work rate for an activity, the duration variable Ti is 

modified into a duration function Ti,j. Therefore, the duration function for activity B is 

represented by a piece-wise function: 
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







=

=
=

)5,2,1(15

)4,3(30

,

jfor

jfor

T jB
 

One advantage of this form of representation is that a suitably defined Ti,j can be used 

to simulate the learning curve effect which results in a progressively shorter task 

duration as long as the work sequence is unbroken. 

 

3.3 Illustrative Example 

3.3.1 Scheduling with work continuity requirements 

To illustrate the application of the recurrence-equations, consider the network given in 

Fig. 1.1 and the scheduling data defined in Table 3.2 over five repetitive units.  

 

A computer spreadsheet provides a convenient way of implementing the proposed 

algorithm. The spreadsheet’s intuitive cell-based structure and easy-to-use interface 

make it suitable for developing a scheduling program model from the set of 

recurrence equations for simple to moderately complex linear projects. Results are 

instantly updated when the data input values are changed. Various charts and graphs 

can also be constructed inside the spreadsheet to present the results. Furthermore, 

many engineers and project managers are already familiar with the use of a computer 

spreadsheet having used it as a convenient and productive tool for data processing 

during the course of their work. It was for these reasons that a simple prototype was 

Tasks A B C D E F G 

Duration 

(days) 
10 6 7 3 5 12 5 

 

Table 3.2 Scheduling parameters for illustrative example 
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developed using Microsoft Excel for the purpose of performing linear repetitive 

scheduling. 

 

The spreadsheet has a simple interface as illustrated in Fig. 3.5. This provides the 

means of entering pertinent regarding the project including the number of tasks, the 

number of repetitive units for each task and their corresponding unit durations. A set 

of check boxes makes it simple to choose whether or not to impose the resource 

continuity constraint for each activity. 

 

Fig. 3.6 illustrates the resulting line schedule plotted from the values calculated using 

the recurrence equations when work continuity constraints are imposed on all the 

tasks; the corresponding schedule calculated using the CPM equations is shown in 

Fig. 3.1. Comparing Fig. 3.6 with Fig. 3.1 indicates that the overall project duration 

has increased by 16 days (extending the project duration from 96 days to 112 days) or 

approximately 17 percent. This is expected, as the commencement dates of the first 

activities of six tasks (tasks B, C, D, E, F and G) are delayed, thus affecting the start 

dates of subsequent activities. This illustrates the point that imposing work continuity 

on discontinuous tasks will invariably lengthen the overall project duration.  

Figure 3.5 Spreadsheet interface for data input 
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Besides the line schedule, the built-in functionality of a computer spreadsheet can be 

used to easily generate other alternative schedule representations. For example, Fig 

3.7 illustrates a matrix schedule showing the actual start and finish dates depicted 

previously in Fig. 3.6. 

 

Another benefit of using the recurrence equations is the ability to determine important 

scheduling information like the total float for each activity. This allows the project 

managers to identify the critical units, as well as the maximum allowable delay for 

each activity unit without jeopardising the project completion. From Fig. 3.7, we can 

easily identify the set of critical activities as (D1; F1 - F5; G1 - G5). In addition, 

according to Barrie and Paulson, the critical path is a continuous chain of activities 

from the beginning to the end of a network with the minimum float value. 

Figure 3.6 Linear schedule calculated using recurrence equations 
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Accordingly, the critical path is defined by the set of activities (A1; B1; D1; F1 – F5; 

G1 – G5) with the minimum float value of 36 days. However, this critical path 

consists of non-critical activities A1 and B1. 

 

The controlling sequence (CS) (Harris and Ioannou, 1998) and the controlling activity 

path (CAP) (Harmelink and Rowings, 1998) provide useful comparisons to the critical 

units identified using the proposed recurrence equations. Following the respective 

procedures, the set of activities in the CS and CAP are (A1 - A5; B5; D2 - D4; F1 - 

F5; G5) and (A1 - A3; B1 - B3; D1; F1 - F5: G5) respectively. It is obvious that the 

activities in the critical path, CS and CAP are not all the same. 

 

Both the CS and CAP include activity A1, which is a non-critical unit (with non-zero 

total float) according to the total floats calculated using the recurrence equations. 

Suppose there is a 10-day delay in the completion of activity unit A1. From Fig. 3.8, 

only the start times for the last activities of tasks B, C and D are affected by this 

Units 

3-Aug 6-Sep 9-Aug 12-Sep 20-Aug 29-Sep 12-Aug 17-Sep 14-Aug 17-Sep 29-Sep 29-Sep 4-Oct 4-Oct 

24-Jul 27-Aug 3-Aug 6-Sep 13-Aug 22-Sep 9-Aug 14-Sep 9-Aug 12-Sep 17-Sep 17-Sep 29-Sep 29-Sep 
5 

34 34 40 36 34 0 0 

24-Jul 25-Aug 3-Aug 31-Aug 13-Aug 22-Sep 9-Aug 5-Sep 9-Aug 5-Sep 17-Sep 17-Sep 29-Sep 29-Sep 

14-Jul 15-Aug 28-Jul 25-Aug 6-Aug 15-Sep 6-Aug 2-Sep 4-Aug 31-Aug 5-Sep 5-Sep 24-Sep 24-Sep 
4 

32 28 40 27 27 0 0 

14-Jul 13-Aug 28-Jul 19-Aug 6-Aug 15-Sep EFD LFD 4-Aug 24-Aug 5-Sep 5-Sep 24-Sep 24-Sep 

4-Jul 3-Aug 22-Jul 13-Aug 30-Jul 8-Sep ESD LSD 30-Jul 19-Aug 24-Aug 24-Aug 19-Sep 19-Sep 
3 

30 22 40 Floats 20 0 0 

4-Jul 1-Aug 22-Jul 7-Aug 30-Jul 8-Sep 3-Aug 12-Aug 30-Jul 12-Aug 24-Aug 24-Aug 19-Sep 19-Sep 

24-Jun 22-Jul 16-Jul 1-Aug 23-Jul 1-Sep 31-Jul 9-Aug 25-Jul 7-Aug 12-Aug 12-Aug 14-Sep 14-Sep 
2 

28 16 40 9 13 0 0 

24-Jun 20-Jul 16-Jul 26-Jul 23-Jul 1-Sep 31-Jul 31-Jul 25-Jul 31-Jul 12-Aug 12-Aug 14-Sep 14-Sep 

14-Jun 10-Jul 10-Jul 20-Jul 16-Jul 25-Aug 28-Jul 28-Jul 20-Jul 26-Jul 31-Jul 31-Jul 9-Sep 9-Sep 
1 

26 10 40 0 6 0 0 

 A B C D E F G 

 Activity 

 
Figure 3.7 Matrix schedule for illustrative example 
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delay. The overall project completion date remains unchanged at 112 days. Therefore, 

activity A1 is not critical, and the matrix schedule in Fig. 3.8 shows that activity A1 

can be delayed by up to 26 days without jeopardising the completion date of 112 days. 

This is contrary to the impression given by the inclusion of A1 in CS and CAP. 

 

The situation is reversed in the case of activities G1 to G4 – these activities are 

identified as critical by the recurrence equations but are not included in either CS or 

CAP. From Fig. 3.6 it can be observed that a delay in any one of these activities will 

cause a corresponding delay in the completion of activity D5 and thus jeopardize the 

timely completion of the project. Therefore, the proposed recurrence equations can 

correctly identify critical activities by adhering to the classical definition of a critical 

activity as an activity with zero total float.  
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Figure 3.8 Impact of a 10-days delay on activity A1 
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3.3.2 Scheduling with additional user-specified constraints 

The following example illustrates the application of the recurrence equations when 

there are specific scheduling considerations like mandatory work breaks and a change 

in the work rate for particular activities.  

 

Consider that work continuity constraints are now imposed only on tasks C and D. In 

addition, the project manager knows that there will be a 10-day break (from days 71 – 

Figure 3.9 Linear schedule calculated using modified recurrence equations and duration function 
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Task 1 2 3 4 5 

A 36 37 39 41 44 

B 36 37 39 41 44 

C 54 54 54 54 54 

D 10 13 19 25 37 

E 36 38 40 42 44 

F 10 10 0 0 0 

G 38 31 14 7 0 
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81) in the work sequence of task F. Also, the workload for task D is doubled from 

units 2 to 4, so that it takes twice as long to complete an activity. Fig. 3.9 depicts the 

new schedule obtained with an overall completion date of 122 days using the set of 

modified recurrence equations (Eqns. 3.9 and 3.10). Finally, Table 3.3 shows the total 

floats for all the activities and identifies the critical activities to be (F3 - F5; G5).  
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CHAPTER 4 
 

MODEL FOR SCHEDULE OPTIMIZATION 
 

This chapter describes the model for schedule optimization using the proposed 

recurrence equations with Genetic Algorithms (GA). The basic mechanisms of GA 

are first introduced to facilitate subsequent discussion on the utilization of the 

recurrence equations for performing schedule optimization with GA.  Specifically, the 

process of identifying the two relevant decision variables for scheduling repetitive 

projects is described, and the mapping of these decision variables onto the terms in 

the recurrence equations in alternative GA representations are discussed. The 

scheduling constraints applicable to forming schedules for repetitive projects are also 

considered. Two evaluation criteria, combined into a single objective function, are 

used to assess the merit of the alternative schedules identified by the GA-based 

schedule optimization procedure. 

 

4.1 Basic Mechanisms of the Genetic Algorithms 

Genetic algorithms (GA) are stochastic search methods introduced in the 1970s in the 

United States by John Holland (1975). Search methods are relevant in a wide variety 

of engineering and management problems which require the identification of solutions 

to a specified problem. Each individual solution is represented by a single string-like 

entity called a chromosome. Fig. 4.1 depicts a chromosome made up of genes 

characterized by their positions (physical ranks) and values (alleles). The values for 

key decision variables that comprise a solution to the problem are encoded as the 

values of the gene alleles.  
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Generally, an initial population of potential solutions is randomly generated at the 

start of a GA optimization process. Each of the chromosome strings is assigned a 

fitness value determined by the quality of the solution to the problem encoded in the 

allele values of the chromosome string. The fitness value is determined using a 

problem specific objective function, and the fitness value determines the reproductive 

chances of the chromosome string. Fitter chromosome string individuals are given a 

higher chance of being selected to participate in the next step of the GA process when 

new individuals are created. These new “offspring” are created by applying the 

crossover operator on the chromosomes that are chosen to “reproduce” by a selection 

procedure. The mutation operator is then applied to randomly alter the composition of 

some of these offspring. The genetic operations of selection, crossover and mutation 

occur on the population of chromosomes over and over again, transforming the initial 

population of chromosomes to new populations in each succeeding “generation”. In 

common with natural evolutionary selection, the GA selection process improves the 

average fitness of the population with each generation. This process continues until a 

user-defined criterion is reached. 

 

0 1 0 0 

Gene 

Population 

1 1 1 1 

Chromosome 

0 0 1 1 

Alleles 

Figure 4.1 Building blocks of genetic algorithms  
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Physical ranks 
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The objective function, which quantifies the merit of a solution, is an important part of 

the design of a GA model. Better solutions benefit the chromosome strings that 

encode them by increasing the chance of being selected for the crossover operation. 

When GA search is applied to optimization problems, higher fitness values 

correspond to better solutions although it is not possible to guarantee global 

optimality.  

 

The selection procedure represents the concept of survival of the fittest in GA. It 

usually involves a weighted function, where individuals with higher fitness are more 

likely to reproduce. There are several well-defined selection methods and the Roulette 

Wheel Selection is one of the most common techniques. The analogy to a roulette 

wheel can be envisaged by imagining a roulette wheel in which each candidate 

solution represents a pocket on the wheel; the size of the pockets are proportionate to 

the fitness of the solution. Selecting N chromosomes from the population is 

1 0 0 0 0 1 Mutation 1 0 0 1 0 1 

1-Point Crossover 

1 

1 

0 

0 

0 

0 

1 

1 

Parents 

1 

1 

1 

1 

0 

0 

0 

0 

Offspring 

(a) 

(b) 

Figure 4.2 Illustrations of (a) one-point crossover and (b) mutation 
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equivalent to playing N games on the roulette wheel, as each candidate is drawn 

independently. 

 

The crossover operation is then performed on the chromosomes selected for 

reproduction. The probability of crossover determines the likelihood that two selected 

chromosomes will actually “breed” through the crossover operation. Hence, mating 

between chromosomes is still governed by chance - the chromosomes are mated if a 

generated random number falls below the crossover threshold; otherwise, they are 

propagated into the next generation unchanged. The chromosomes of the parents are 

mixed in some way during crossover, typically by simply swapping a portion of the 

underlying data structure, and this results in two new offspring which are added to the 

second generation pool. This process is repeated with different parent chromosomes 

until there are an appropriate number of candidate solutions in the second generation 

pool. Fig. 4.2(a) illustrates a one-point crossover. The crossover probability can be 

adjusted to improve the performance of the GA. 

 

The mutation operator re-introduces genetic diversity into the population. It operates 

upon single chromosomes by randomly changing the value of their bits. This change 

can be highly destructive to good chromosomes but is essential to prevent the risk of 

convergence upon a sub-optimal solution. Therefore, the probability of mutation is 

often very low in order to avoid the disruption of good solutions. Figure 4.2(b) 

illustrates a simple case of mutation. 
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4.2 Development of the GA-based Optimization Model  

4.2.1 Organizational setup for repetitive construction projects 

The organizational setup in a repetitive project is generally defined by the contractual 

relationships between various parties involved in the projects, and is relevant to the 

objectives identified for the repetitive scheduling problem. Typically, a general 

contractor undertakes the entire construction project from the owner. The majority of 

the work is then broken down into specific trades to be performed by individual 

specialist subcontractors under subcontracts to the general contractor. Although the 

subcontractor normally bids upon a portion of the owner’s plans and specifications, 

their legal contractual relationships are directly with the general contractors; the latter 

is in turn responsible to the owner for all the work, including that which is 

subcontracted. Fig. 4.3 illustrates this form of arrangement. 

 

The single fixed-price contract is the traditional contractual arrangement that is 

Owner

General Contractor

Specialist 

Contractor 1

Own Work Forces

Specialist 

Contractor 3

Specialist 

Contractor 4

Specialist 

Contractor 2

Contractual relationship between two parties
 

Figure 4.3 Typical organizational setup in a construction project 
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administered for construction projects that involve competitive bidding (Barrie and 

Paulson, 1992). In this fixed-price form, the contractor agrees to perform the work for 

a predetermined price that includes profit. The contractor also bears the economic risk 

for any project tardiness, which generally involves paying a specific amount of 

monetary compensation to the owner for each day of delay. Therefore, from the 

perspective of the general contractor, the scheduling objective is to ensure timely 

project completion. 

 

The majority of specialist subcontractors are however, concerned with the 

productivity of their essential workers. For business reasons, they will want to keep 

this core group as lean as possible, as well as ensure that there are a sufficient number 

of on-going and future projects that these workers can be productively employed. The 

subcontractors in a survey conducted by O’Brien and Fischer (2000) noted that 

various undesirable site conditions have major effects on their incurred costs, and 

work discontinuity is one such condition. Specifically, additional costs are incurred in 

the form of lost wages paid to unproductive workers during the idle periods when they 

wait for preceding tasks to be completed. The subcontractors have also been reported 

to consciously shift their workers away from sites where poor scheduling 

arrangements make it difficult for their workers to be fully productive. Therefore, 

from the perspective of the subcontractors, the scheduling objective is to ensure an 

uninterrupted and continuous workflow so that they can complete their individual 

tasks without incurring unnecessary lost wages.  

 

However, the schedule conditions necessary for maintaining work continuity for all 

the different trades / tasks and for ensuring early project completion are inherently 
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conflicting. In assuming that all the tasks involved in a project are carried out with the 

maximum number of workers and that each activity commences on the earliest 

possible date, timeliness in project completion is achieved at the expense of a 

fragmented workflow for some tasks. On the other hand, the ideal condition where 

subcontractors can “get on a task, work straight through it and leave” will involve 

imposing some delays on the first activities of these tasks. This will usually extend the 

project duration, thus jeopardizing timely project completion.  

Figure 4.4 GARA-I and GARA-II chromosome representations 
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The selection of crew size and the imposition of a work continuity requirement 

ultimately influence the schedule generated. This study uses these two decision 

variables as the means of creating alternatives for compromise schedules that benefit 

both the general contractor and his specialist subcontractors. 

 

4.2.2 GA model for scheduling repetitive projects 

In general, maintaining work continuity creates a conflict of interest between the 

general contractor and the specialist subcontractors who are responsible for the 

individual work tasks. Whilst work continuity benefits the subcontractors by 

minimizing the idle time of their crews, it usually lengthens the overall project 

duration. This is detrimental to the main contractor, whose aim is to minimize the 

project makespan, especially in light of the tardiness penalty. This conflict of interest 

necessitates the search for scheduling arrangements that reap the maximum benefit 

from any work continuity requirement whilst mitigating tardiness costs for the main 

contractor.  

 

A GA Recurrence-equations Approach (GARA) is proposed to seek this ‘optimal’ 

arrangement. Firstly, the decision variables of crew size and work continuity are 

represented by the terms Ti and ωi,1 respectively in the proposed recurrence equations. 

In this way, different values for the variables will lead to different schedules with 

various states of work continuity and project lengths. GA is then used to determine 

the optimal values for these two variables for each of the different tasks so that 

schedules with a tradeoff between continuous workflow and project duration can be 

found. Two ways of expressing work continuity in the GA chromosome are explored. 

GARA-I only considers full work continuity for each task but GARA-II makes it 
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possible to impose partial work continuity. It is not clear if one representation is 

inherently better than the other and experiments are conducted to compare their 

performance.  Fig. 4.4 illustrates the two chromosome representations. 

 

The chromosomes in GARA-I and II consist of M gene-pairs, where each gene-pair 

represents the two decision variables of work continuity and crew size for a particular 

task. The crew size decision variable is identical in both GARA-I and GARA-II, and 

the integer value of the crew size variable (in the range of one to X) represents a 

particular choice of the crew size for the task. This crew size implies a corresponding 

number of workers and duration for the task, Ti in the recurrence equations for the 

scheduling calculations. 

  

In GARA-I, work continuity is modelled as a binary variable that indicates whether 

work continuity is imposed on a particular task. A value of one for this binary 

decision variable indicates that work continuity is imposed on the task. If work 

continuity for a task is imposed, the necessary delay in the first activity of the task to 

achieve work continuity, ωi,1 is calculated using: 









=

=−−
=

00

1)](,0[)1(
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i

iii

i
WCfor

WCforTDMAXQ

ω  (4.1) 

Consequently, the schedules found using GARA-I will consist of tasks with either 

fragmented or fully continuous workflows. 

 

In contrast, GARA-II allows GA to explore the possibility of finding better schedules 

by imposing partial work continuity.  In the case of partial work continuity, the delay 

in the start of the first activity of the task can range from zero to the value computed 
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using Eqn. 4.1. This gives the GA search procedure more options to explore when 

looking for better schedules.  

 

Fig. 4.5 shows different schedules obtained using GARA-I and GARA-II on a simple 

two-task configuration where task Y precedes task Z. The durations of these tasks are 

20 days and 10 days respectively. Without the work continuity requirement imposed 

on Z, the schedule for Z would be the broken blue line labelled ‘Z’. As indicted by 

that particular line, Z1 can only start after Y1 finishes (at t = 20); similarly, Z2 can 

only start after Y2 finishes (at t = 40) resulting in the first break in work continuity for 

task Z.  A delay of 40 days has to be imposed for Z1 under GARA-I to effect work 

continuity for task Z, resulting in the schedule for Z denoted by the line labelled ‘Z-I’. 

 

Under GARA-II, the start of Z1 can be delayed anywhere from zero to 40 days. A 

delay of 30 days has been used in the schedule for Z labelled ‘Z-II’. In this case, the 
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Figure 4.5 Comparison of the different state of work continuity represented in GARA-I and GARA-II 
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work continuity for task Z-II only extends from activity Z1 to activity Z4 and there is 

a break of 10 days between activities Z4 and Z5.  

 

4.2.3 Scheduling constraints 

Repetitive project scheduling requires allocating resources over time to a set of tasks 

while satisfying a variety of constraints and objectives. Hard constraints must always 

be satisfied for a schedule to be valid. Soft constraints on the other hand, can be 

relaxed when necessary. For this optimization model, the precedence and resource 

availability constraints are treated as binding while the due date and work continuity 

constraints can be relaxed.  

 

Precedence constraints define the logical interrelationships among the project tasks in 

a construction project. This constraint requires that a particular activity is started only 

after all its preceding activities are completed. For instance, activity Y1 in Fig. 4.5 

commences at the start of the project (since Y1 has no predecessors) whilst activity 

Z1 can only begin after the completion of activity Y1. This logical sequence of 

workflow from one activity to another must be strictly adhered, and any schedule that 

violates the precedence constraints is invalid. In the GA schedule optimization model, 

all predefined precedence constraints are coded into the recurrence equations and 

enforced during the course of the scheduling calculations to ensure that these 

constraints are always observed in the process of optimization.  

 

The resource availability constraints arise when there is only one available group of 

work crew for each task, and as a result, an activity cannot commence until the work 

crew is available again, usually through the completion of the preceding activity of 
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the same task. Therefore, activity Z2 in Fig. 4.5 cannot begin until activity Z1 is 

completed. Like the precedence constraints, the resource availability constraints are 

coded in the recurrence equation and enforced during the course of the scheduling 

calculations. 

  

On the other hand, the due date constraint and the work continuity requirement are 

treated as soft constraints. Soft constraints are handled by including them in the 

definition of the objective function used for the optimization procedure.  

 

4.2.4 Objective function 

1. Tardiness penalty 

The due date constraint specifies the requirement for a timely completion of the 

project. This constraint can be expressed as an inequality between the latest finish 

dates for the last activity of the project and the contractual deadline for the completion 

of the project, S:  

LFM,Q ≤ S (4.1) 

Violation of this constraint will not invalidate a schedule but does incur penalty costs 

for late completion beyond the target schedule data. 

 

This inequality is incorporated into the objective function as a penalty term, ZT: 

Min ),0( , SLFMaxCZ QMTT −×=  (4.2) 

 

2. Work discontinuity penalty 

The total number of days lost to work discontinuity can be expressed as: 
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∑
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This can be translated into man-days of wages lost by multiplying by the daily wage-

rate of the workers, Ci and the number of workers on the task, Ki. The total lost wages 

due to work discontinuity can be incorporated into the objective function as another 

penalty term: 

Min ( )∑
=

××−−=
M

i

iiiiD CKTDMAXQZ
1

)](,0[)1(  (4.4) 

 

In order to obtain compromise schedules that balance the objectives of both the 

general contractor and his subcontractors, the objective function is defined as the 

minimization of the sum of the two penalty terms: 

Min DT ZZZ +=  (4.5) 

 

4.3 GA Parameters  

The optimal values for several GA parameters are difficult to determine. These 

parameters include the population size, the number of iterations performed, the 

crossover rate, the mutation rate and the termination criterion. The process of 

determining the default values of some of these parameters are discussed.  

 

Table 4.1 summarizes the average time to convergence for a set of GA experiments 

conducted for a 40-unit repetitive project using different GA parameters. 

Convergence is reached when the GA attains a benchmark value. This benchmark is 

obtained by selecting the best solution obtained from twenty different GA runs. Each 

GA run iterates over 500 generations and begins with a randomly generated initial 

population. Ten separate runs are conducted for each set of GA parameters, the 
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number of times out of the ten runs where the solutions converge to the benchmark 

value and the time taken for each convergence are noted (a maximum computation 

time of ten minutes is set). The average time to convergence is calculated by taking 

the runs when convergence was achieved and averaging the times taken. For example, 

under the population size, crossover probability and mutation probability of 20, 85% 

and 5% respectively, seven out of the ten runs produce schedules with fitness values 

that converge to the benchmark value. The sum of the time taken for these seven 

convergences is 265 seconds and this returns an average time to convergence of 38 

seconds (265 / 7). Runs that return solutions inferior to the benchmark after ten 

minutes are not taken into account when calculating the average time to convergence. 

 

From the results in Table 4.1, values for the population size (50), one-point crossover 

probability {90%} and mutation rate (0.05) are selected as they return the highest 

frequency of convergence and the lowest average time to convergence; the 

termination criterion is set to 500 iterations. All the subsequent experiments are 

conducted with these GA parameters.  

 

Population 

size 
20 50 70 

Crossover 

prob. (%) 
85 90 95 85 90 95 85 90 95 

Mutation 

prob. (%) 
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 

Freq. of 

convergence 

(times) 

7 6 8 6 8 7 9 7 10 9 10 10 10 9 10 10 10 10 

Ave. time to 

convergence 

(sec) 

38 43 39 45 38 46 72 85 78 80 81 89 143 159 154 166 159 164 

 

Table 4.1 Average time to convergence with different GA parameters 
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The GA runs are made using a commercially available GA toolbox running on a 

Pentium IV 1.2GHz desktop is used in this study. The next chapter discusses the 

results obtained when the performance of GARA is investigated with respect to cases 

of increasing number of repetitive units and different due date constraints. 
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CHAPTER 5 
 

RESULTS FROM SCHEDULE OPTIMIZATION 
 

 

This chapter describes several experiments conducted to assess the performance of the 

GA-based optimization model (GARA) and presents an analysis of the results 

obtained. The performance issues covered include: (i) relative performance of GARA 

vis-à-vis the Critical Path Method Approach (CPMA) and Graphical Scheduling 

Approach (GSA) on projects with an increasing the number of repetitive units under 

different due date constraints; (ii) a comparative merits of two alternative 

chromosome representations; and (iii) the time to convergence of GARA on networks 

of different complexity. 

  

5.1 Experimental Setup 

Table 5.1 summarizes the scheduling parameters of a project used in the experiments.  

The network schedule, first depicted in Fig. 1.1, consists of seven individual tasks 

with three possible crew sizes each. The crew size selection will affect the task 

duration so that employing more workers will reduce the amount of time required to 

Crew Size Option 

1 2 3  Predecessors 
Crew 
size 

Duration 
Crew 
size 

Duration 
Crew 
size 

Duration 

Basic 

daily 

wages 

A - 9 9 7 10 5 13 55 
B A 6 5 5 6 4 7 60 
C B 4 5 3 7 2 10 70 
D B 13 2 8 3 6 5 58 
E B 3 3 2 5 1 7 62 
F D, E 8 10 5 12 3 15 64 
G C, F 4 4 3 5 2 7 43 

Parameters: 
Tardiness penalty = $2500 / day       

 

Table 5.1 Scheduling parameters of crew size options and the 

corresponding task durations 
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complete an activity. The daily wages for each worker employed in any of the seven 

trades range from $43 to $70, and each day of delay in the project completion incurs a 

“penalty” cost of $2,500. 

 

As mentioned previously, GARA works out which task should have work continuity 

and there are two possible options to be investigated - full work continuity (GARA-I) 

or partial work continuity (GARA-II). One set of experiments is performed to 

investigate whether full or partial work continuity is preferable. The performance of 

GARA for schedule optimization is compared against that of CPMA and GSA.  

 

To compute the schedule under CPMA and GSA, the same set of recurrence equations 

can be used except that there is no requirement for work continuity on any task under 

CPMA whereas all the tasks involved have continuous and uninterrupted workflows 

under GSA. Setting the decision variables for work continuity in the optimization 

model to the value of zero (for CPMA) and one (for GSA) takes care of this 

requirement. The optimization procedure still needs to determine the best crew size 

Table 5.2 Representations of the decision variables in CPMA and GSA chromosomes 

DECISION 

VARIABLES 

CPMA GSA 

(1) Crew size option )},...,2,1(:{ noptionoptionoptionxxCS i ∈=  

Term in recurrence 
equations mapped to 
crew size option 

Ti= duration corresponding to the crew size option 

 

(2) Work continuity 0=iWC  1=iWC  

 
Term in recurrence 
equations mapped to 
work continuity 

0=iω  

 

)](,0[)1(1, iii TDMAXQ −−=ω  
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under CPMA and GSA. Table 5.2 summarizes the representations of the decision 

variables in CPMA and GSA chromosomes.  

 

In performing the optimization, the experiments are conducted using three different 

due date constraints for five projects with a different number of repetitive units in the 

project. The setting of the due dates for the experiments requires some explanation. 

 

Fig. 5.1 illustrates the point that GARA is applicable to repetitive schedule 

optimization only when the stipulated project duration is longer than the minimum 

project duration. The minimum duration for a project is defined as the project duration 

calculated using the CPM equations under the assumption that (i) every task uses the 

largest crew size and therefore completes in the minimum duration and (ii) work 

continuity is not imposed on any task. For example, the minimum duration calculated 

using Eqn. 3.3 for a 5-unit project with the scheduling parameters in Table 5.1 is 71 

days. 

 

GARA is not applicable to projects where the specified project duration is shorter 

than the minimum project duration as changing the crew size selection for tasks will 

not enable GARA to find a schedule that is shorter than the minimum project 

Figure 5.1 Applicability of GARA with respect to contractual duration 

Contractual 

duration

Minimum project 

duration

Sector I: GARA is inapplicable Sector II: GARA is applicable

Tight deadline

(+20%)

Medium deadline 

(+35%)

Relaxed deadline

(+50%)
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duration. Imposing work continuity on project tasks will usually lengthen the project 

duration. 

 

GARA can be used to optimize the schedule for a repetitive project when the 

specified project duration exceeds the minimum project duration. In this case, the 

slack time to project completion (given by the difference between the stipulated 

duration and the minimum duration) provides the opportunity to effect work 

continuity for project tasks. GARA can be used to determine the best crew size for 

each task as well as the appropriate time to deploy them the crew for the first activity 

of a task in order to minimize project tardiness and the periods of discontinuous 

workflows. It could be said that GARA works out the best allocation of the slack time 

to project completion. 

 

Three types of due date constraints were conceived to investigate GARA’s 

performance under deadlines. The three due date constraints were defined by 

increasing the project duration by a certain percentage of the minimum project 

duration. The three deadlines are called tight (+20%), medium (+35%) and relaxed 

(+50%). In this way, the experiments could study the effect of the different kinds of 

deadlines independently of the number of repetitive units in the project. 

 

For each case, the best solution from ten separate GA runs with randomly generated 

initial populations is noted. Table 5.3 summarizes the results obtained from the 

experiments when the number of repetitive units and deadlines were varied. These 

results are discussed in the next section. 
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Figure 5.2 Results for various optimization methods under (a) tight, (b) medium, (c) 

relaxed deadline constraints 
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5.2 Analysis of Results  

5.2.1 General comments 

Fig. 5.2 shows the best solutions obtained by GARA, CPMA and GSA under the three 

different deadline requirements. Good schedules are those that allow punctual project 

completions while maintaining continuous workflow for each individual tasks and one 

schedule is better than another if it incurs lower penalties due to project tardiness and 

work discontinuity. The difference in performance between GARA-I and GARA-II is 

relatively small, indicating that the schedules produced by both representations are 

comparable in terms of the ability to complete projects on time and maintaining work 

continuity.  For convenience, GARA is henceforth used to refer to GARA-I. In 

general, GARA consistently produces schedules with a higher figure of merit than 

either CPMA or and GSA; this is especially so under tight deadlines. Under medium 

deadlines, GARA performs only as well as GSA when the number of repetitive units 

is low but outperforms both CPMA and GSA when the number of repetitive units 

increases. Finally, both GARA and GSA are able to find schedules that both meet the 

deadline and do not incur any work discontinuity penalty. On the other hand, CPMA 

performs poorly under relaxed deadlines. 

 

Table 5.3 shows values for the (i) total project duration and (ii) tardiness penalty 

incurred for schedules computed using the different methods. GARA schedules have 

the best performance index value because GARA is able to minimize the periods of 

work discontinuity whilst still meeting the specified due date for project completions 

(except for one case where a project was late by one day). GARA consistently incurs 

lower work discontinuity penalties compared to CPMA. At the same time, GARA 
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also maintains an excellent record of completing the projects on time except for one 

instance where a tardiness penalty for one day is incurred.  

 

It is not possible to conclude that GARA always outperforms CPMA and GSA as the 

present results could be influenced by the relative magnitude of the unit penalty costs 

assumed in the objective function. The work discontinuity penalty reflects the wage 

losses due to unproductive workers during idle periods, and its magnitude is 

dependent on the wage rate assumed. The tardiness penalty represents the amount of 

money payable by the general contractor when the project is not completed on time, 

and its value is depends on the daily tardiness penalty assumed. Due to the difference 

in magnitudes of the basic wages - ranging from $43 to $70 per person-day – and the 

daily tardiness penalty ($2,500) assumed, the objective function is weighted to favour 

the minimization of the tardiness penalty. This is reflected in the results obtained by 

GARA which gives schedules with no tardiness penalty.  

 

Figure 5.3 Linear schedule for a 5-unit project using CPMA  
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GSA and CPMA return poorer schedules because these two methods make particular 

assumptions concerning work continuity. GSA imposes work continuity on all tasks 

and this usually produces schedules with longer project durations. This proves to be 

detrimental when the project has to be completed under tight due dates. As shown in 

Table 5.3, the hefty penalties incurred by the GSA schedules are entirely due to not 

being able to meet the tight due date constraints. This also explains why the 

performance of GSA improves significantly when the due dates are relaxed. 

  

CPMA assumes no work continuity; it gives schedules with the shortest project 

makespan as the method schedules the commencement of activities as soon as the 

precedence and the resource availability constraints are satisfied. However, 

indiscriminate early starts can lead to discontinuous workflow for the tasks. For 

Task A B C D E F G 

Work continuity imposed 
 

yes yes yes no yes yes yes 

Crew size / duration (days) 
 

9 / 9 4 / 7 4 / 5 6 / 5 1 / 7 8 / 
10 

4 / 4 

Number of days with work 
discontinuity 
 

0 0 0 8 0 0 0 

GARA-I: 

completed in 

85 days 

 
Tardiness 
penalty: $0 

Work discontinuity penalty ($) 
 

0 0 0 2784 0 0 0 

Work continuity imposed 
 

no no no no no no no 

Crew size / duration (days) 
 

9 / 9 4 / 7 2 / 10 6 / 5 1 / 7 8 / 10 2 / 7 

Number of days with work 
discontinuity 
 

0 8 0 16 8 0 12 

CPMA: 

completed in 

80 days 

 
Tardiness 
penalty: $0 

Work discontinuity penalty ($) 
 

0 1920 0 5568 496 0 1032 

Work continuity imposed 
 

yes yes yes yes yes yes yes 

Crew size / duration (days) 
 

9 / 9 6 / 5 3 / 7 6 / 5 2 / 5 8 / 10 4 / 4 

Number of days with work 
discontinuity 
 

0 0 0 0 0 0 0 

CPMA: 

completed in 

89 days 

 

Tardiness 
penalty: $10000 

Work discontinuity penalty ($) 
 

0 0 0 0 0 0 0 

 

Table 5.4 Optimization results for a 5-unit project under various optimization methods 
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example, the CPMA schedule for the 5-unit project illustrated in Fig. 5.3 shows five 

out of the seven tasks (tasks B, C, D, E and G) have discontinuous workflows. The 

large number of idle periods incurs a considerable amount of work discontinuity 

penalty (see Table 5.3). This effect becomes more pronounced with an increase in the 

number of repetitive units. 

 

Table 5.4 presents more details of the schedules obtained for the 5-unit example under 

a tight due date constraint by the different approaches. Fig. 5.4 depicts the resulting 

linear schedules graphically. Both GARA and CPMA schedules meet the due date, 

and the GARA schedule has a significantly lower work discontinuity penalty (only 

one of the seven tasks is not work-continuous). By not imposing work continuity on 

task D, all the other tasks can be work-continuous and the project completes in 85 

days. Even though the duration of the CPMA schedule is shorter, it is of no 

consequence in this example as the due date is met. On the other hand, four of the 

seven tasks in the CPMA schedule are not work-continuous. For example, task G is 

discontinuous because every activity in CPMA is scheduled to start as soon as all the 

precedence relationships are satisfied. The GSA schedule incurs a due date penalty of 

$10,000 as the price for imposing work continuity on all the tasks. This example also 

shows that it is necessary to determine both the appropriate crew size and the work 

continuity requirements in order to get the best schedules. GARA is able to seek the 

most favourable trade-off between work continuity and early project completion.  

 

5.2.2 Effect of increasing the number of repetitive units 

Fig. 5.2 also illustrates the performance of the three scheduling methods for projects 

with an increasing number of repetitive units under different due date constraints. In 
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general, GARA produces schedules that incur lower penalties than those obtained 

from GSA and CPMA. The performance of GARA is particularly good under tight 

due date constraints especially with an increasing number of repetitive units.  

 

The previous observation can be attributed to the ability to decide whether work 

continuity should be imposed for any particular task under GARA. When this 

flexibility is used in an optimization search, balanced schedules that consider the 

trade-offs between the work discontinuity penalty and tardiness penalty are obtained. 

By contrast, CPMA emphasizes early project completions at the expense of work 

continuity, and since the total period of such discontinuity increases with the number 

of repetitive units, the schedules returned by CPMA are increasingly penalized by the 

work continuity penalty. On the other hand, GSA imposes work continuity on all the 

tasks. To achieve this, artificial delays (calculated using Eqn. 3.6) are introduced to 

the start of the first activity of tasks that are not work-continuous. These delays are 

proportionate to the number of repetitive units, thus resulting in increasingly poorer 

performance when the number of units increases and a higher tardiness penalty is 

incurred. 

 

Therefore, it is not surprising to note that the performance of GSA improves 

significantly when the due date constraints are relaxed. The schedules produced using 

GSA are as good as those generated by GARA for projects with a lower number of 

repetitive units under medium and relaxed due date constraints. In the latter instance, 

GSA performs just as well as GARA regardless of the number of repetitive units. 

 



  
6
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Figure 5.5 Performance of various optimization methods under different due date constraints 



 

 64 

5.2.3 Effect of imposing different due date constraints 

Fig 5.5 illustrates the performance of the various optimization methods under 

different due date constraints. GSA is the worst performer under tight due date 

constraint while CPMA fares the worst under medium and relaxed due dates. This is 

because CPMA produces the same schedule for a given number of repetitive units 

regardless of the due date constraints imposed while the results of GARA and GSA 

generally improve as the due dates are extended. For example, the solutions from 

GARA and GSA improve from $20,184 and $135,000 to $10,092 and $15,000 

respectively for a 40-unit project when the due date is extended from 385 days to 433 

days. This is a significant improvement in terms of percentage change as a 12.5% 

([433 – 385] / 385) in project duration reduces the penalties by 50% ([10092 – 20184] 

/ 20184) and 88.9% ([15000 – 135000] / 135000) for GARA and GSA respectively.  

 

Fig. 5.5 also indicates that the performance of GSA improves most significantly when 

the due dates are extended from 120 percent (tight due date) to 135 percent (medium 

due date) of the shortest project durations. In fact, from Table 5.2, it is observed that 

the GSA performs as well as GARA under medium due dates for 5 to 20 repetitive 

units, and the schedules that it generated for over 20 repetitive units are only slightly 

worse off than the results of GARA. Under relaxed due dates (set at 150% of the 

shortest project duration), both GARA and GSA produce “perfect” schedules that are 

able to meet the due date without incurring any work discontinuity penalty for all the 

number of repetitive units tested.  

 

These observations draw two practical conclusions. Firstly, the better performance of 

GARA and GSA over CPMA under medium and relaxed due dates indicates that 
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work continuity is an important factor to be considered when scheduling projects with 

deadlines that are not too tight. This is especially so when the number of repetitive 

units involved is significant, as seen by the trend in Fig 5.5 where the difference in 

performance between GARA or GSA and CPMA widens as the number of repetitive 

units increases. However, Fig. 5.5 also shows that GSA should not be used for 

scheduling repetitive projects that have to be completed within tight schedules, and 

this is especially so when the number of units is large.  

 

Secondly, GSA and GARA perform equally well under relaxed due dates; this 

suggests that GSA can be used as an alternative scheduling method for projects with 

generous due dates. The advantage of GSA is its simplicity since it is only necessary 

to decide the best crew size for each task.  

 

5.2.4 Comparing two different means of imposing work continuity 

This section compares the effect of imposing different degrees of work continuity. 

Work continuity for a task can be achieved by delaying the earliest finish date of its 

first activity. Eqn 3.8 gives the minimum number of days of delay necessary to ensure 

that the task is fully continuous. However, it is also possible to introduce a shorter 

delay in which case the task will not be fully continuous. A set of experiments, 

involving two different chromosome representations for the work continuity decision 

variable, was done to investigate whether full or partial work continuity would be 

more advantageous in performing the optimization search. In GARA-I, the 

chromosome encodes for whether a full delay is to be introduced or not whilst in 

GARA-II the chromosome encodes the option to introduce partial delays, which is 

defined as any integer values in the range from zero, indicating no delay, to the value 
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indicating full delay. The search space for GARA-II is larger but offers the possibility 

of finding better solutions involving tasks with partial work continuity. By contrast, 

GARA-I operates in a smaller search space since only schedules that contain tasks 

that are either fully work continuous or not are considered.  

 

The advantage of considering partial work continuity lies in the possibility of 

distributing work discontinuity among a group of tasks, so that all or most of the tasks 

enjoy some form of continuous workflow in the earlier activities, with work 

discontinuity setting in only at a later stage for some tasks. This is illustrated in the 5-

units example under a tight due date constraint, where GARA-II returns a better 

solution compared to the schedule of GARA-I. Table 5.5 and Fig 5.6 illustrate the 

optimization results and linear schedules for these two approaches. GARA-II returned 

Task 

 

A B C D E F G 

Work continuity imposed 
 

full full full full full full full 

Crew size / duration 
(days) 
 

9 / 9 4 / 7 4 / 5 6 / 5 1 / 7 8 / 10 4 / 4 

Number of days with 
work discontinuity 
 

0 0 0 8 0 0 0 

GARA-I: completed 

in 85 days 

 

Tardiness penalty: $0 
 
Ave. time to 
convergence: 
36 secs 

Work discontinuity 
penalty ($) 
 

0 0 0 2784 0 0 0 

Work continuity imposed 
 

full partial full partial part
ial 

full full 

Delay on the first activity 
(days) 
 

0 7 6 3 0 0 24 

Crew size / duration 
(days) 
 

9 / 9 4 / 7 3 / 7 6 / 5 1 / 7 8 / 10 2 / 7 

Number of days with 
work discontinuity 
 

0 1 0 6 1 0 12 

GARA-II: completed 

in 85 days 

 
Tardiness penalty: $0 
 
Ave. time to 
convergence: 
194 secs 

Work discontinuity 
penalty ($) 
 

0 240 0 2088 62 0 0 

 

Table 5.5 Optimization results for the 5-unit project using GARA-I and GARA-II 
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the better schedule by distributing 8 days of idle period between tasks B, D and E 

such that the work discontinuity penalty is reduced from $2,784 to $2,390, or a 

decrease of approximately 14%.  

65

6969

7373

7777

8181

85

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Time

U
n
it

A

C

E

DB
F

G

Linear schedule using GARA-I

65

6969

7373

7777

8181

85

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Time

U
n
it

A

C

E

D
B F

G

Linear schedule using GARA-II

Figure 5.6 Linear schedules for results obtained using GARA-I and GARA-II 
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The drawback is that GARA-II takes longer to execute because of the larger search 

space. This can be an issue when the size of the problem increases. For larger 

problems involving ten repetitive units or more, GARA-II generally returns solutions 

that are inferior to those of GARA-I even when the termination criterion is extended 

to 1000 iterations or approximately 60 minutes of GA run-time. GARA-II is able to 

match the performance of GARA-I only in those cases under relaxed due date 

constraints. The poor performance of GARA-II is attributed to the rapidly increasing 

search space as the repetitive units increase. An estimate of the search space in 

GARA-II is presented in Appendix A1. 

 

In GARA-I, assuming full work continuity for tasks significantly reduces the search 

space. More importantly, the size of the search space no longer depends on the 

number of repetitive units but only on the number of tasks in the schedule. GARA-I is 

the preferred scheduling approach in this study because it is able to determine quickly 

very good schedules under a wide variety of circumstances. 

 

5.2.5 Time of convergence 

Due to the concerns on computation time raised by the experience with GARA-II, 

another set of experiments was conducted to investigate the time of convergence 

characteristic of GARA-I. It was not known if the complexity of the interrelationships 

between the project tasks would contribute to increasing the difficulty of the 

optimization search. The task interrelationships form a precedence network and more 

precedence constraints between tasks could conceivable lead to greater difficulty in 

scheduling. The experiments recorded the time of convergence using GARA-I on 

projects of different network complexity and different number of repetitive units. 
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Among the different measures of network complexity are Coefficient of Network 

Complexity (Kaimann, 1974) and Restrictiveness Estimator (Thesen, 1977). This 

study has chosen the Restrictiveness Estimator (RT) because RT relates the 

complexity of a network to the number of feasible sequences that exist in the network. 

The restrictiveness estimator can be calculated by: 

)3)(2(

)1(62

−−

−−
= ∑

MM

Mr
RT

ij
 (5.1) 

where rij are the elements of the reachability matrix discussed in Appendix B2, and M 

is the total number of tasks in the network. The value of RT lies between zero and 

one, where zero represents parallel directed graphs (digraphs) and one denotes series 

digraphs.  

 

From Eqn. 5.1, it is observed that RT can be varied by either changing the number of 

tasks in the network, or by changing the precedence relationships between the tasks. 

Fig. 5.7 illustrates three 7-task networks with RE ranging from 0.4 to 0.8 obtained by 

changing some of the relationships between the tasks. For every given number of 

repetitive units in the network, the benchmark solution is assumed to be the best 

solution obtained from ten separate experimental runs of GARA-I with randomly 

generated sets of the initial population over 500 iterations. The benchmark solutions 

are obtained for fifteen cases of three 7-task networks over five different numbers of 

repetitive units each. Subsequently, for each case, ten separate runs are conducted and 

the time taken for the solution to converge to the benchmark solution in each run is 

noted. The total convergence time taken is the sum of the ten individual times of 

convergence, and the average time of convergence for each case is given by 
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Figure 5.7 Illustrations of three 7-task networks with different restrictiveness estimators 
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normalizing the total convergence time with the number of runs. Fig. 5.8 depicts the 

average convergence time calculated.  

 

From Fig. 5.8, it is observed that the time of convergence increases as the number of 

repetitive units increase. A likely explanation for the longer time of convergence 

observed is the longer computation time required to evaluate the recurrence equations 

since the number of variables increases with increasing repetitive units. In addition, it 

is observed that the network complexity does not seem to have any significant effect 

on the time of convergence. One possible reason for this observation is that the 

precedence constraints between the tasks are incorporated into the recurrence 

equations and do not appear in the search space defined by the chromosome.  

 

The experiment was repeated on different networks comprising of eight tasks as 

illustrated in Fig. 5.9. The results of the experiment as shown in Fig. 5.10 provides 

further confirmation of that network complexity does not influence time to 

convergence because of the way the optimization search is conducted. However, the 

convergence times for the 8-task problems are approximately double those of the 7-

tasks projects. The most likely explanation for this is that the addition of new tasks 

increases the number of possible solutions to the problem and affects the time taken 

for GA to converge to the benchmark solutions. 

 

5.2.6 Minimization of idle periods for CPM schedules 

Analysis of the results obtained from CPMA schedules reveals some interesting 

observations with regard to the objective of minimizing the idle periods in the 

schedule. Firstly, it is observed that the schedules obtained by CPMA under different 
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due date constraints are identical for each given number of repetitive units. 

Furthermore, the crew size compositions obtained from CPMA are identical across all 

the cases of varying due date constraints and repetitive units for the  given network. In 

other words, the crew size composition is identical for a 5-unit or 40-unit project for 

example.  These two observations, taken together, suggest that for a given network 

there exists an optimal composition of crew sizes that minimizes the total idle period 

regardless of the due date constraints and repetitive units. The deterministic early start 

heuristic used within CPMA does not seem to be responsive to different due date 

constraints and the number of repetitive units.  

 

The existence of this optimal crew size composition can be explained in relation to Fig. 

3.3, which illustrates that the calculation of idle days is dependent on the effective 

durations and durations of the tasks. In addition, since there are Q-1 finish-to-start 

intervals for every task that is repeatedly executed over Q units, the total period of 

work discontinuity for a task i is equals to (Q-1)*(Max[0, Di -Ti]). This mathematical 

expression establishes that the period of work discontinuity in a schedule depends only 

on the task durations and the precedence relationships between different tasks from the 

calculations of effective durations using Eqn. 3.5. Therefore, the minimum length of 

idle periods for a network with any number of repetitive units is given by the same set 

of task durations.  

 

Consequently, an optimization function for minimizing the idle periods in schedules 

derived from CPM calculations can be developed:  

∑
=

−=
M

i

iiCPM TDMAXZMIN
1

)](,0[  (5.2) 
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The development of this optimization function has two purposes. Firstly, it defines the 

variables that affect the length of idle periods that exists in schedules derived using the 

CPM calculation. In doing so, it illustrates how the work rates of preceding tasks affect 

the state of work continuity of subsequent tasks, and where work discontinuity exists, 

it quantifies the length of the idle periods. Therefore, project planners who are using 

CPM equations to schedule repetitive projects can still minimize the total idle periods 

in the schedules by making an informed selection of the appropriate set of task 

durations.  

 

Secondly, the optimization function requires only minimal information of the 

precedence constraints between tasks and the set of possible durations for each task. If 

the number of possibilities is not great, a simple iterative process can be set up using 

an electronic spreadsheet to determine the optimal composition of task durations. An 

example of the iterative approach for minimizing idle periods in CPM schedules is 

illustrated in Appendix C. 

 

However, the optimization function gives equal weightage to each idle day regardless 

of the number of workers involved and it cannot distinguish between idle periods that 

involve one worker or ten workers. Notwithstanding this shortcoming, the iterative 

process is a simple and quick way to optimize the schedules of repetitive projects, 

especially when the early-start CPM heuristic is adopted for scheduling. 
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

This chapter first summarizes the significant findings and observations in this thesis. 

This is followed by a discussion of the limitations of the study, before 

recommendations are made for future research. 

 

6.1 Conclusions 

The repetitive nature of multiple-units construction projects necessitates the creation of 

schedules with continuous and uninterrupted workflows for the tasks involved. 

However, maintaining work continuity for some tasks can lengthen the project 

duration, leading to a possible conflict of interest between the sub-contractor and the 

main contractor. This thesis proposed an efficient way to schedule repetitive projects 

by introducing a set of recurrence equations that considers work continuity. The 

proposed equations retain the analytical capability to calculate important scheduling 

parameters like total floats and are flexible enough to incorporate specific user-

specified scheduling constraints. A case study illustrated the working of this set of 

equations in scheduling repetitive projects, and the schedule information calculated 

was represented in various graphical forms to convey the information to the end-user 

effectively. 

 

The recurrence equations form the basis of Genetic Algorithms Recurrence-equations 

Approach (GARA) for optimizing schedules of repetitive projects. The schedules are 

optimized with respect to tardiness (delay in meeting project deadline) as well as the 

degree of work discontinuity. Work continuity and crew size both influence the 
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scheduling of repetitive projects, and are incorporated into the recurrence equations. 

The GA was used to search for the best settings for these two kinds of decision 

variables. The results obtained using GARA were compared against those obtained 

using two other scheduling methods. The following sections present summarized 

analyses of the experimental results obtained. 

 

 6.1.1 Increasing the number of repetitive units 

Repetitive projects are characterized by the existence of numerous units, and the 

performance of GARA is evaluated across increasing number of repetitive units. In 

terms of computational results, the schedules produced by GARA were at least as good 

as the schedules obtained from GSA and CPMA for all the cases considered. More 

significantly, GARA was able to produce schedules that incur lower penalties than 

those obtained from GSA and CPMA under tight and medium due date constraints and 

the performance of GARA improved with an increasing number of repetitive units. 

Finally, under relaxed due date constraints, GARA was able to return schedules that 

ensure punctual project completions while at the same time maintain full work 

continuity for every construction task involved. 

  

The inferior results from CPMA can be attributed to the huge work discontinuity 

penalty that it incurred. As the number of repetitive units multiples, the total length of 

idle periods for schedules under CPM invariably increases and CPMA is penalized for 

its inability to maintain work continuity. On the other hand, GSA did badly because it 

sacrifices timely project completions for work continuity. This is especially 

detrimental when the projects have tight schedules for completion. Therefore, GSA is 
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heavily penalized in terms of the tardiness penalty, causing it to perform poorly in 

comparison to GARA. 

 

The increasing disparity between the results obtained by GARA and the control cases 

illustrates that it is insufficient to focus on either work continuity or punctual 

projection completion alone, especially when multiple repetitive units are involved. In 

essence, it emphasizes the importance of work continuity as a scheduling consideration 

in the management of construction projects involving increasing number of repetitive 

units.  

 

6.1.2 Imposing different due date constraints 

GARA was able to return schedules with the lowest penalties under all three different 

types of due date constraints. In fact, the performance of GARA was most outstanding 

under tight schedules with increasing number of repetitive units when compared to the 

solutions from the control cases. Furthermore, GARA was able to generate improved 

solution as the due date constraints were relaxed.  

 

GARA’s superior performance, especially under tight due date constraints, can be 

attributed to its ability to make meaningful trade-offs between work continuity and 

project durations. By appropriately delaying the start date of the first activities, GARA 

was able to seek out the best composition of tasks with which work continuity can be 

imposed for a given completion deadline to minimize the work discontinuity penalty 

without jeopardizing project tardiness.    
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 6.1.3 Different means of imposing work continuity 

Although GARA-II is able to consider the possibility of partial work continuity, it 

returned the best solution in only one instance when compared to GARA-I. 

Nonetheless, analysis of this single case wherein GARA-II performed better illustrated 

two potential advantages for its use. Firstly, by considering partial work continuity, the 

idle periods were re-distributed among several tasks, resulting in a lower work 

discontinuity penalty. Secondly, the re-distribution of idle periods among several tasks 

so that all or most trade specialists can enjoy some degree of work continuity might be 

more favorable than to have full work discontinuity on a few tasks. 

 

However, GARA-II was consistently outperformed by GARA-I despite its potential 

advantages. This can be explained by the increase in number of possible solutions as 

the number of repetitive units or tasks increase, and this rapidly expanding search 

space restricted the efficiency for GA to seek the best solutions. In contrast, the search 

space for GARA-I is dependent only on the number of tasks, and this translates to a 

smaller search space in which convergence can be more rapid.  

 

6.1.4 Time of convergence 

The performance of GARA-I is further investigated in terms of its time of convergence 

for networks with varying complexity quantified by the restrictiveness estimator (RT). 

The results indicted that there was no significant different in the time of convergence 

for networks with the same number of tasks but different RT values over various 

number of repetitive units. Instead, the time to convergence increases only when an 

additional task was added to the network. This increase can be attributed to an 

increased in the number of possible solutions, which resulted in longer research times 
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for the best solutions.  In addition, it was observed that there was a minimal increase in 

the convergence time as the number of units increased. This can be explained by the 

longer computation time required to evaluate the recurrence equations used to calculate 

the start / finish times for each activity. 

 

6.2 Limitations of the Study 

There are several limitations in the proposed model. Firstly, the recurrence equations 

assumed that the set-up time for an activity is negligible. However, some tasks in real-

life involve extensive machinery setup and the time incurred due to this operation can 

be significant thereby affecting the computation of the appropriate delay on the first 

activities in order to ensure work continuity. It is likely that the computed project 

duration will be underestimated when these set-up times are not taken into account. 

 

Secondly, the penalty defined in the objective function is assumed to be the same for 

each day of work discontinuity regardless of where the idle day occurs. For example, 

the objective function assumes that a given period of idle days that occurs between the 

first and second activities incurs the same penalty as where the period of idle days 

occurs between the 30
th
 and 31

st
 activities. However, this assumption may not 

accurately reflect the costs incurred by the sub-contractor due to work discontinuity in 

real-life, particularly in construction projects for multi-story buildings. For instance, 

the work discontinuity costs for tasks like slab casting in multi-story building 

construction projects may increase for higher stories due to the additional costs 

incurred for reestablishing the raw material supplies to the higher levels. Therefore, it 

would be beneficial to investigate the nature of the major tasks in a repetitive project, 
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and apply an appropriate distribution of work discontinuity costs for each activity of 

every task. 

  

Finally, the model has not been extensively tested on real-life projects with specific 

scheduling constraints and planning idiosyncrasies. Therefore, the usefulness of 

GARA for scheduling repetitive projects in real-life industry context cannot be readily 

assessed. 

 

6.3 Recommendations for Future Research 

The following issues are identified as directions for possible future research to improve 

the proposed recurrence equations and optimization approach for schedules of 

repetitive projects: 

 

1. Improvements on the recurrence equations 

The set of recurrence equations can be improved by incorporating the relevant set-up 

time for every activity. This can be done by introducing a new term in the equations to 

account for this additional amount of time required to recommence an activity. In 

addition, the recurrence equations can be enriched to deal with schedules that require 

various unique requirements. In doing so, the effectiveness of this set of proposed 

equations will be increased, and end-users need not modify the equations in order to 

enjoy its functionalities.  

 

2. Resource availability 

GARA assumes that the limiting resource is always the crew. However, it is possible 

that resources like tools, machineries, and even workspace are the limiting factor in 
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real life. Therefore, a resource model can be developed to account for the availability 

of various resources required for any particular task. This resource model should 

ideally be able to “communicate” with GARA in the optimization process in order to 

produce schedules that are more comprehensive. 

  

3. Preferred workflow 

GARA assumes work continuity is equally preferred whether at earlier or later 

activities of a task. However, specific trades could associate different costs for work 

discontinuity at various stages of their work. Therefore, in order to generate schedules 

that are more realistic to life-real demands, the preferred workflow for every major 

trade should be investigated. The objective function can then be modified accordingly 

to reflect the suitable penalties for discontinuous workflow at various activities for 

each task.  

 

4. Genetic Algorithms Parameters Setting 

The need to define the optimal GA parameters for the best solution sets cannot be 

compromised. The crossover and selection operators used, the population size, the 

terminating criterion and the crossover and mutation rates will require further 

investigation to be optimized.  

 

5. User Interface 

Lastly, a friendly user interface will be beneficial for the application of the proposed 

model in the industry. Naturally, the interface should incorporate the user-input 

interface for specific schedule requirements. The output interface can present the 

schedules in generic Gantt charts and linear schedules, or other predefined 
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representations like matrix schedules. One might even indulge the managers by 

presenting a number of different alternative schedules, each optimized for different 

evaluation parameters. 
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APPENDIX A 

Discussion on the search space of GARA-II



 

 88 

In GARA-II, the decision variable of work continuity is represented by an integer 

value with which the earliest completion of the first activity of a task is delayed and 

this integer value is bounded by the range of (0, 1, 2, …, (Q - 1)Max[0, (Di – Ti)]). In 

order to illustrate the computation of the number of possible solutions, assume that a 

project consists of three tasks A, B and C with durations of 10, 8 and 5 days 

respectively to be executed over five units, where task A precedes task B, and task B in 

turn precedes task C. The calculation for the total number of possible schedules under 

GARA-II is shown in Table A1. 

 

Analogous to the above illustration, the number of possible solutions using the 

scheduling parameters in the experiment for GARA-II is: 
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The term of 37 accounts for the three choices of crew size for each task. Eqn. A.1 

illustrates that the search space for GARA-II is related to the number of repetitive units 

by the term (Q-1)
6
. Fig. A1 illustrates the rapid increase in the value of the (Q-1)

6
 term 

with increasing number of repetitive units, which in turn suggests show that the search 

Task A B C 

(Q - 1)Max[0, (Di – Ti)] 0 4*2 = 8 4*3 =12 

Number of terms in the range  

(0, 1, 2, …, (Q - 1)Max[0, (Di – Ti)]) 

 

1 9 13 

Number of possible solutions under GARA-II 

 

1*9*13 = 117 

 

Table A1 Sample calculation for the number of possible schedules considered under GARA-II 
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space for GARA-II also increases rapidly. Therefore, the poor performance of GARA-

II and the significantly higher amount of time that it needs to search for the best 

solutions can be explained by its comparatively large and rapidly increasing search 

space. 
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Figure A1 Variations of the (Q-1) term with respect to the number of repetitive units 
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APPENDIX B 

Discussion on the reachability matrix  
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The computation of RT requires the construction of a reachability matrix R = [rij], such 

that rij is equals to one if there is a path from node i to node j; otherwise, rij is equals to 

zero. For example, the reachability matrix for one unit of the network used in the 

experiment (Fig. 1.1) is: 
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To illustrate the workings of R, consider row 3, which represents the available paths 

for task C. Since there cannot exist a path from task C to task A and B, r31 and r32 are 

both equal to zero. Similarly, no path exists between task C and task D / task E, and 

accordingly, r34 and r35 are zeros. Finally, r37 reflects the fact that a path exists from 

task C to task G. 
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APPENDIX C 
 

Illustration of the iterative approach for minimizing idle 

periods in CPM schedules
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Fig. C1 illustrates the workings of this iterative process under spreadsheet modeling. 

Using the scheduling data in Table 5.1, the optimal set of task durations for which the 

total idle period in the CPM schedule is minimized by first creating two new columns 

of calculations: (1) the effective duration for each task calculated using Eqn. 3.3, and 

(2) the value of the function MAX[0,(Di – Ti)]. Assuming that the task durations are 

their maximum values initially, the starting value of the optimization function is 36 

days. From the calculations of the effective duration, it is noted that the effective 

duration of task B, DB, is equals to the duration of A, TA. Therefore, in the first 

iteration, TA is reduced to 9 days so that the value of DB – TB is minimized. 

Corresponding, the difference between the effective duration and the duration of tasks, 

B, C, and D are also minimized. In the second iteration, the duration for task F is 

reduced in order to reduce the effective duration of task G in the second iteration. The 

two iterations reduce the optimization function to 11 days, which corresponds to the 

 

Figure C1 Iterative method to determine the optimal values of Ti 
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value found in CPMA. Subsequently, the idle period in the schedule for any given 

number of repetitive units (Q) can be computed by (Q-1) x ZCPM. 

 

 

 

  

 

 

 


