
REPETITIVE PROJECT SCHEDULING USING

GENETIC ALGORITHMS

TAN HENG WEE

NATIONAL UNIVERSITY OF SINGAPORE

2004

REPETITIVE PROJECT SCHEDULING USING

GENETIC ALGORITHMS

TAN HENG WEE
(B.Eng. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

 i

ACKNOWLEDGEMENTS

To complete an academic thesis is always an onerous and sometimes consuming task.

It is the following people whom I constantly draw strength from to accomplish this

seemingly insurmountable task at times.

I have learnt more than just scheduling and optimization from the three fulfilling

years working under Associate Professor Chan Weng Tat. I am most appreciative of

his laissez-faire philosophy, which allowed me to pursue various non-related interests,

resulting in perhaps the most fruitful learning experience I have had thus far. There

are so much more that I can learn from him (I know I am still struggling to emulate,

amongst others, his clarity in expressions); alas the world is, lamentably, no utopia,

and pragmatism invariably reigns.

Two wonderful years were spent with a bunch of great colleagues, with whom ideas

were discussed and debated; dreams shared and cherished. How can one forget those

delightful drinking sessions, where politics were deliberated at great length? It is

indeed no exaggeration to say that I have learnt much from the perceptive insights of

these colleagues. Those were two very good years indeed.

Finally, one girl has never failed to amaze me with her magnanimity towards my

numerous faults and foibles. To Ms Jasmin Tay, thank you for all the support that you

have shown and for putting up with my constantly busy schedule. It has been eleven

unbelievable years with you, and counting!

 ii

TABLE OF CONTENTS

Acknowledgements i

Table of Contents ii

Summary v

List of Tables vii

List of Figures viii

List of Symbols x

CHAPTER 1 INTRODUCTION 1

1.1 Characteristics of Repetitive Projects 3

1.2 Drawbacks of Existing Scheduling Methods 6

1.3 Objectives and Scope of the Thesis 8

1.4 Organization of the Thesis 9

CHAPTER 2 LITERATURE REVIEW 11

2.1 Review of Terms Used in Existing Scheduling Methods 11

2.2 Existing Scheduling Methods for Repetitive Projects 13

2.2.1 Critical path method 13

2.2.2 Graphical linear scheduling methods 15

2.3 Genetic Algorithms and Its Applications in Scheduling 16

2.3.1 Overview of genetic algorithms 16

2.3.2 Applications of genetic algorithms in construction scheduling 17

 iii

2.4 Concluding Remarks 18

CHAPTER 3 RECURRENCE-BASED SCHEDULING OF REPETITIVE

PROJECTS 20

3.1 Development of the Recurrence Equations 20

3.1.1 Effective duration 21

3.1.2 Imposing work continuity 24

3.2 Incorporating Specific Scheduling Requirements 27

3.3 Illustrative Example 29

3.3.1 Scheduling with work continuity requirements 29

3.3.2 Scheduling with additional user-specified constraints 34

CHAPTER 4 MODEL FOR SCHEDULE OPTIMIZATION 36

4.1 Basic Mechanisms of the Genetic Algorithms 36

4.2 Development of the GA-based Optimization Model 40

4.2.1 Organizational setup for repetitive construction projects 40

4.2.2 GA model for scheduling repetitive projects 43

4.2.3 Scheduling constraints 46

4.2.4 Objective function 47

4.3 GA Parameters 48

CHAPTER 5 RESULTS FROM SCHEDULE OPTIMIZATION 51

5.1 Experimental Setup 51

5.2 Analysis of Results 57

 iv

5.2.1 General comments 57

5.2.2 Effect of increasing the number of repetitive units 61

5.2.3 Effect of imposing different due date constraints 64

5.2.4 Comparing two different means of imposing work continuity 65

5.2.5 Time of convergence 68

5.2.6 Minimization of idle periods for CPM schedules 71

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 75

6.1 Conclusions 75

6.1.1 Increasing the number of repetitive units 76

6.1.2 Imposing different due date constraints 77

6.1.3 Different means of imposing work continuity 78

6.1.4 Time of convergence 78

6.2 Limitations of the Study 79

6.3 Recommendations for Future Research 80

REFERENCES 83

APENDIX A Discussion on the search space of GARA-II 87

APENDIX B Discussion on the reachability matrix 90

APENDIX C Illustration of the iterative approach for minimizing
 idle periods in CPM schedules 92

 v

SUMMARY

Repetitive projects consist of multiple units that are identical or similar in nature, with

various activities or trades repeatedly executed from one physical unit to another

during the construction process. This repetitive construction process renders it

desirable to schedule the execution of these trades as uninterrupted and continuous

work sequences by imposing a work continuity constraint whenever necessary. The

traditional Critical Path Method (CPM) is cumbersome when used on such projects

due to their repetitive nature and the large number of units present. In addition, the

CPM equations do not take work continuity into consideration when calculating

activity start/finish times. Existing linear scheduling models geared towards work

continuity are nevertheless graphical in nature and therefore not easily amenable to

computerization. This study seeks to address the drawbacks of these methods.

A new scheduling approach for repetitive projects is proposed. The CPM equations

are adapted as a new set of recurrence equations which can ensure work continuity

through imposing a scheduling constraint that adjusts the calculations of activity

start/finish times. This new representation has two main advantages. Firstly, the

mathematical representation lends itself to computerization and preserves CPM’s

analytical capabilities which are absent in the graphical scheduling approach.

Secondly, the equations enable user-specific scheduling considerations encountered in

practice, like mandatory delays imposed between units, to be easily incorporated. A

case study is used to illustrate the utility of the proposed scheduling approach when

work continuity and other scheduling considerations are imposed.

 vi

This set of equations also forms the basis for optimizing the schedules of repetitive

projects with an evolutionary optimization technique. The Genetic Algorithm is used

to search for the best schedule by varying the crew size and work continuity

requirements of the project activities using a suitable chromosome representation. The

schedules which have lower work continuity and do not meet deadlines are penalized.

A case study benchmarks the performance of the Genetic Algorithms Recurrent-

equations Approach (GARA) against the CPM and linear scheduling methods in

optimizing the schedules. Results indicate that GARA consistently produces superior

schedules.

 vii

LIST OF TABLES

Table 3.1 Parameters for mathematical representation 20

Table 3.2 Scheduling parameters for illustrative example 29

Table 3.3 Float table for schedule with user-specified scheduling requirements 34

Table 4.1 Average time to convergence with different GA parameters 49

Table 5.1 Scheduling parameters of crew size options and the corresponding
 task durations 51

Table 5.2 Representations of the decision variables in CPMA and GSA

chromosomes 52

Table 5.3 Results for various optimization methods over various repetitive
 units and due date constraints 55

Table 5.4 Optimization results for a 5-unit project under various
 optimization methods 59

Table 5.5 Optimization results for a 5-unit project using GARA-I
 and GARA-II 66

 viii

LIST OF FIGURES

Figure 1.1 Network representation of repetitive project 4

Figure 1.2 Line representation of network schedule over five repetitive units 7

Figure 3.1 Linear schedule calculated using CPM equations 22

Figure 3.2 Illustration of effective duration 23

Figure 3.3 Calculation of the number of idle days between activities in a task 25

Figure 3.4 Illustrations of two user-specified scheduling considerations 27

Figure 3.5 Spreadsheet interface for data input 30

Figure 3.6 Linear schedule calculated using recurrence equations 31

Figure 3.7 Matrix schedule for illustrative example 32

Figure 3.8 Impact of a 10-days delay on activity A1 33

Figure 3.9 Linear schedule calculated using modified recurrence equations
 and duration function 34

Figure 4.1 Building blocks of genetic algorithms 37

Figure 4.2 Illustrations of (a) one-point crossover and (b) mutation 38

Figure 4.3 Typical organizational setup in a construction project 40

Figure 4.4 GARA-I and GARA-II chromosome representations 42

Figure 4.5 Comparison of the different state of work continuity represented
 in GARA-I and GARA-II 45

Figure 5.1 Applicability of GARA with respect to contractual duration 53

Figure 5.2 Results for various optimization methods under (a) tight,
 (b) medium, (c) relaxed deadline constraints 56

Figure 5.3 Linear schedule for a 5-unit project using CPMA 58

Figure 5.4 Linear schedules for results obtained under various
 optimization methods 60

Figure 5.5 Performance of various optimization methods under different
 due date constraints 63

 ix

Figure 5.6 Linear schedules for results obtained using GARA-I
 and GARA-II 67

Figure 5.7 Illustrations of three 7-task networks with different
 restrictiveness estimators 70

Figure 5.8 Average time of convergence for 7-task networks with different

restrictiveness estimators 70

Figure 5.9 Illustrations of three 8-task networks with different
 restrictiveness estimators 72

Figure 5.10 Average time of convergence for networks with different
 restrictiveness estimators 72

 x

LIST OF SYMBOLS

Ai Task i

AiUj Activity ij

Ci Daily basic wages for worker of task i

CT Daily tardiness penalty

Di Effective duration for task i

EFij Earliest finish date for activity ij

Ki Crew size for task i

LFij Latest finish date for activity ij

M Total number of tasks in a project

Q Total number of repetitive units

S Contractual duration for project completion

Ti Duration for task i

Uj Unit j

ωi,j Number of days delayed on activity ij’s earliest finish date

Πi.j Number of days delayed on activity ij’s earliest and latest finish dates

 1

CHAPTER 1

INTRODUCTION

Repetitive projects are characterized by the existence of several identical or similar

units, where construction activities are sequentially executed from one unit to another

in a vertical or horizontal manner, resulting in a linear workflow. As such, repetitive

projects are also known as linear projects in some of the literature. Examples of

horizontal repetitive projects include highway or pipeline construction, where the

units can be stations on the highways or meters of pipelines respectively. Multi-story

buildings, where different stories constitute the set of repetitive units, are

representative of vertical repetitive projects.

From the perspective of the individual trades on the project, a construction schedule

that ensures the uninterrupted flow of resources from one unit to the next is preferred.

When the work crew is the critical resource, this uninterrupted flow of resources leads

to the concept of work continuity. In order to maintain work continuity, repetitive

units must be scheduled to enable the timely movement of crews from one unit to the

next. The benefits of this arrangement include the maximization of the learning curve

effect for each crew, and the minimization of idle time for each crew. Furthermore, it

ensures that the specialist contractors can work straight through a project and leave - a

working condition reported to be ideal for them.

Traditionally, network techniques such as the Critical Path Method (CPM) have been

used extensively in the construction industry for scheduling and controlling

construction projects. However, traditional CPM proves to be cumbersome to apply

 2

for the scheduling of repetitive projects, and critical information is obscured among

the details resulting from the way activities are represented. CPM also fails to address

the issue of how to ensure work continuity in a particular trade. Several graphical

scheduling techniques have been developed to address the weaknesses of the CPM

method with respect to repetitive projects. However, as these techniques are graphical

in nature, they are not easily amendable to computerisation and thus lack analytical

capabilities.

This study proposes a new approach to address the issues identified in scheduling

repetitive projects by adapting the CPM equations, to form a new set of recurrence

equations, which consider work continuity. An additional work continuity term is

added to the CPM equations such that suitable adjustments to the calculations of

activity start/finish times can be effected. It is also possible to incorporate specific

user-defined scheduling constraints like mandatory time lags between units using the

same technique. This proposed approach retains the advantages of using a

mathematical representation of the problem, namely ease of computerization and

analytical capability. Furthermore, this set of recurrence-equations forms the basis for

performing schedule optimization using an evolutionary search algorithm.

This chapter first reviews the characteristics of repetitive projects, and provides an

overview of the limitations of current scheduling methods with respect to repetitive

projects. This leads to the identification of the objectives and scope of this study,

followed by the organization of the thesis itself.

 3

1.1 Characteristics of Repetitive Projects

The essential elements in construction projects are the tasks, their durations, and the

logical interrelationships among them. A task is an operation or closely related group

of operations whose performance contributes to the completion of the overall project.

Precedence constraints link tasks together to reflect the intended or natural sequence

of the operations. The start of a particular task is permitted by the completion of all

preceding tasks or by the start of the project.

Fig. 1.1 depicts part of a typical CPM network for a multi-story building construction

project. Each story of the building is identified as a ‘unit’ in the figure. The square

nodes depict the project activities, whereas the directed arrows represent the

precedence constraints between the activities. The figure also makes use of two kinds

of arrows – solid ones to represent precedence between activities performed on the

same story / unit, and dashed ones to represent precedence between activities of the

same trade performed on different units.

At this point, it is useful to make a distinction between the ‘task’ and ‘activity’ which

are often used synonymously. For repetitive projects, we propose to use ‘task’ to refer

to the activity carried out by particular trades / specialists irrespective of the unit on

which the task is performed. The word ‘activity’ retains its traditional usage as

referring to the individual elements that make up a project network; in repetitive

projects, an activity would mean the performance of a task on a particular unit. For

example, task D is defined as the task of erecting the precast walls. Irrespective of

which unit the activity is performed on, the precedence constraint ensures that this

task will only commence upon the completion of the preceding task – setting of the

 4

necessary structural steels in place. The solid arrows linking the different tasks

represent all the activity-to-activity precedence constraints between tasks performed

on the same unit. For instance, tasks C, D and E cannot commence until the

completion of task A.

Given the information on these elements, the activity start / finish times and total float

can be computed. These computations also yield the total expected duration for the

project, and identify the most critical activities and hence the critical path for the

Figure 2.1 Network representation of a repetitive project

Precedence relationships connecting various tasks

Activity-to-activity resource availability constraints within a task

Unit 2

Unit 1

Task A

Concrete work

Task B

Structure steel

Task E

Electrical work

Task G

Unit finish

Task F

Ceiling work

Task D

Precast wall

Task C

Plumbing work
Activity A1 Activity B1

Activity C1

Activity D1

Activity E1

Activity F1

Activity G1

Activity A2 Activity B2

Activity C2

Activity D2

Activity E2

Activity F2

Activity G2

 5

project. This is a powerful concept that great aids management in setting its priorities

for allocating resources to operations.

Fig. 1.1 also illustrates a characteristic peculiar to repetitive projects. A repetitive

project consists of multiple instances of identical CPM projects, each of which

represents tasks for a repetitive unit. The first characteristic is the large number of

activities required to represent the repetitive project as the number of units increase.

This creates a problem in using networks to represent repetitive projects as Fig. 1.1

illustrates where a crowded network results from a project that consists of only seven

tasks over two repetitive units. It is therefore necessary to be able to refer to activities

grouped by unit or task.

The second characteristic pertains to the repetitive execution of a task between

successive units. When there is only one work crew available for each task, the work

activity on one unit cannot commence until the work crew is available again, usually

through the completion of the preceding unit. The dashed arrows linking the same

task from one unit to the next represent the resource availability constraint. The

general contractor recognizes the desire of the different specialist contractors / trades

for a continuous and uninterrupted movement of work crews from one unit to another

without unnecessary crew idle time. Such continuity provides for an efficient resource

utilization strategy that leads to the maximized learning curve benefits, minimized

crew idle time and reduced the off-on movement of crews on a project once work has

begun (Ashley 1980). The traditional CPM scheduling algorithm cannot ensure such

work continuity.

 6

1.2 Drawbacks of Existing Scheduling Methods

Both the CPM and the Graphical Scheduling Models (GSM) can be used to schedule

repetitive projects. They have their own strengths and weaknesses, but neither is

adequate on its own to address the scheduling needs of repetitive projects.

Although CPM provides a well-established logic in analyzing and scheduling

networks, the two characteristics discussed renders the utilization of CPM in

repetitive projects unsuitable. The network diagram in CPM cannot effectively

communicate vital schedule information to the end-users as the complex network

needed to represent repetitive projects obscures this information. In comparison, the

line representation depicted in Fig. 1.2 provides a more effective representation of the

progression of work and work sequences in a repetitive project; the breaks in the lines

intuitively convey the presence of work discontinuities.

In addition, CPM calculation assumes that activities commence as soon as all the

precedence constraints are satisfied. On repetitive projects, this causes tasks

progressing at a faster rate to be “held back” by preceding tasks that are progressing at

a slower pace. This results in a time lapse in a task’s finish-to-start dates between two

consecutive activities, creating undesirable work discontinuities. For example, in Fig.

1.2 the time to complete one unit for tasks A and B are 10 and 5 days respectively.

Under CPM computation, the longer amounts of time taken to complete a unit by task

A delays the start time for all the activities in task B by 5 days.

The limitations of traditional CPM led to the development of several graphical

approaches such as the Line-of-Balance (LoB), and recent methods like Linear

 7

Scheduling Model (Harmelink and Rowing, 1998) and Repetitive Scheduling Model

(Harris and Ioannou, 1998). In these graphical methods, the tasks are plotted as lines

over the axes of units versus time. In this case, the slope represents the work rate for

the task. The advantage of this form of representation is its simplicity and the ease

with which to visualize the whole project schedule. Fig 1.2 illustrates the line

representation for the network schedule of Fig 1.1 but with five repetitive units.

These models also account directly for work continuity to ensure effective resource

utilization. While there are minor variations in the method of ensuring work

continuity, it generally involves introducing a delay in the first activity of particular

tasks. However, the graphical models are not easily amenable to computerization and

lack CPM’s analytical capabilities. In addition, work continuity is uniformly imposed

on all the activities; this reduces flexibility in determining good schedules where a

mix of work continuous and discontinuous activities may lead to lower project costs.

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

Time (days)

U
n
it
s

A

B

D

C

E

F

G

Figure 1.2 Line representation of a network schedule over five repetitive units

 8

In summary, neither of the two methods mentioned is adequate on its own for

scheduling repetitive projects. It is possible that a customized scheduling technique

for repetitive projects can be developed by combining the strengths of the individual

methods. An improved repetitive scheduling method will be of great benefit as

repetitive projects are very common in civil engineering works.

1.3 Objectives and Scope of the Thesis

This study has two objectives, namely to:

(1) Develop a new scheduling technique for repetitive projects by combining

the strengths of the CPM and GSM. The new scheduling technique retains the ability

to numerically compute schedule attributes like early / late starts and finishes of

individual activities, presents the schedule information in a manner that is easy to

comprehend, and takes discretionary work continuity for tasks into consideration.

Recurrence equations that link the schedule attributes form the basis of the proposed

scheduling method.

(2) Extend the functionality of these recurrence equations by using them as a

means of effecting schedule optimization using Genetic Algorithms (GA). This GA

Recurrence-equations Approach (GARA) searches for the best schedule in terms of

crew size and work continuity status using a suitable chromosome representation. The

objective function is formulated in such a way that schedules with work discontinuity

and which do not meet completion deadlines are penalized.

The scope of work for the research includes:

 9

(1) Developing a set of recurrence equations suitable for performing network

scheduling calculations for repetitive projects; the recurrence equations

incorporate the work continuity constraint when calculating activity start / finish

dates;

(2) Developing means of incorporating specific user scheduling requirements into the

scheduling calculations;

(3) Developing a schedule optimization model using the proposed recurrence

equations with GA;

(4) Evaluating the effectiveness of the proposed optimization model by performing a

series of comparisons with CPM and GSM

1.4 Organization of the Thesis

This thesis is organised into six chapters, beginning with this chapter. Chapter 2

reviews the existing methods and identifies the inadequacies of these methods with

respect to scheduling repetitive projects. This chapter also reviews the use of genetic

algorithms in scheduling problems.

Chapter 3 describes the development of a set of recurrence equations used in the

proposed repetitive scheduling method. This chapter also describes how user-

specified scheduling constraints can be incorporated into these equations. A case

study illustrates the application of the proposed repetitive scheduling method when

work continuity constraints and specific scheduling requirements are imposed.

Chapter 4 introduces the model setup for schedule optimization using the genetic

algorithms. The two types of chromosome representations used and the formulation of

 10

a suitable objective function that reflects actual conflict of interests in practice are

discussed.

Chapter 5 describes the experimental setup and presents the analysis of results with

respect to the effects of increasing repetitive units and different due date constraints.

The times of convergence for networks with various complexities are also compared.

Finally, chapter 6 summarizes the significant findings and observations in this thesis

before concluding with the limitations and suggestions for future study.

 11

CHAPTER 2

LITERATURE REVIEW

This chapter reviews the existing literature that is relevant to scheduling repetitive

projects. The chapter begins with a summary of important terms used by authors in

the literature. This is followed by a review of the strengths and weaknesses of various

scheduling methods when applied on repetitive projects. The chapter closes with a

review of the use of Genetic Algorithms (GA) in construction scheduling problems.

2.1 Review of Terms Used in Existing Scheduling Methods

Various researchers in the literature on repetitive project scheduling have defined

some commonly occurring terms differently. The purpose of this section is to review

the usage of some of these terms and propose a definition to be adopted in this thesis

in order to avoid ambiguity.

Generally, repetitive projects are made up of a series of construction tasks that are

repeatedly performed from one unit to another (Kang et al., 2001). Examples of

repetitive projects include high-rise buildings, housing project with identical model

houses, pipeline network constructions, or highway projects (Moselhi and El-Rayes,

1993). Although Harris and Ioannou (1998) use “activity” to refer to the same

concept, we prefer to keep “activity” for instances of the same construction task when

performed on individual units.

Repetitive projects are also known as “linear projects” to convey the idea of a linear

progression of construction activities from the first to the last unit (Selinger, 1980).

 12

However, Moselhi and Hassanein (2003) categorized different repetitive projects into

either linear or non-linear projects according to the nature of the units on which the

construction tasks are executed. Where tasks are repeatedly executed over non-

identical sections, such as highway, railroad and pipeline constructions, they are

known as linear projects. On the other hand, high-rise building constructions are

termed as non-linear projects because the tasks are repeated over identical units. This

study adopts the general term “repetitive projects” because the proposed scheduling

method is able to account for tasks that are executed over non-identical sections by

varying the durations for each section.

It is widely recognized that it is necessary to maintain continuous and uninterrupted

movements of work crews in repetitive projects due to the nature in which the tasks in

repetitive projects are carried out (Reda, 1990; Harris and Ioannou, 1998). However,

Reda (1990) called this desired workflow “work continuity” whilst Harris and

Ioannou (1998) used to term “resource continuity” to describe the same concept. In

this study, resource continuity is construed as a broader term that encompasses the

continuous utilization of all the resources, including the work crew, specialized

equipment and perhaps, even the working space required. When there is only a single

instance of a resource available to perform a particular task (and thus becomes the

limiting resource for each task), resource continuity becomes work continuity for the

resource involved. This study adopts work continuity as being operative for the

scheduling model that is the subject of this study.

Finally, Harris and Ioannou (1998) defined a critical activity in a CPM network as

“one that, if delayed, will delay the project”. In addition, they also defined the critical

 13

path as “a chain of critical activities extending from project start to project finish”. It

is implied that a critical activity is one with no total float. However, Barrie and

Paulson (1992) offer a more general definition of a critical path to mean “a continuous

chain of activities from the beginning to the end of the network with the minimum

total float value”. Whilst seemingly trivial, the distinction is important for resource

critical repetitive projects where activities may be delayed because of the non-

availability of a critical resource, and there is no time-continuous chain of activities

from the beginning to the end of the network. This thesis adopts the more general

definition of a critical path by Barrie and Paulson (1992).

2.2 Existing Scheduling Methods for Repetitive Projects

2.2.1 Critical path method

The critical path method (CPM) is a network-based scheduling technique that evolved

from a research effort initiated in late 1956 by the Engineering Services Department

of Du Pont Company. Their objective was to explore the use of computer-aided

systems in planning, scheduling, monitoring, and controlling Du Pont’s engineering

projects.

Mattila and Abraham (1998) stated that the process of planning, scheduling and

control in construction projects is typically accomplished using CPM. This is no

surprise as the advantages of CPM networks are well documented. Barrie and Paulson

(1992) discussed three advantages of CPM networks in comparison with bar charts.

Firstly, the logical interrelationships and dependencies among activities are inherent

in the networks, but cannot be readily shown on bar charts. This makes networks

much more useful for forecasting and control as the impact on the whole project of a

 14

delay in an activity is readily transmitted by network logic and computations through

the whole schedule. Secondly, networks also provide a more powerful means for

documenting and communicating project plans, schedules and performance with its

standardized notation and diagramming. Finally, networks, in contrast to other

techniques, identify the most critical elements in the project schedule by identifying

the activity floats and recognizing the critical path, thus providing management with

the necessary information to set priorities for action.

While CPM is generally held to be powerful analytical tool for scheduling

construction projects, its limitations when applied to repetitive projects are well-

documented (Reda, 1990; Suhail and Neale, 1994). The first drawback is that

networks tend to becomes “crowded” due to the numerous repetitive units present in

repetitive projects. A study by Yamin and Harmelink (2001) found that project

managers place a very high priority on the effective communication of scheduling

information. Since the network gets increasingly complex as the number of repetitive

units increase, the usefulness of CPM as a communication tool diminishes with

increasing repetitive units. This reduces the effectiveness of both the graphical and

textual means of disseminating vital scheduling information among the parties

involved.

The inability to guarantee work continuity for the construction tasks is the second

drawback of CPM techniques. In a survey conducted by O’Brien and Fischer (2000),

it is reported that most subcontractors maintain a core group of workers they take care

not to lay off unnecessarily. This means that the subcontractors incur additional costs

in terms of lost wages paid to the workers during the idle periods when they are

 15

deployed on projects where workflow is discontinuous. Therefore, all the

subcontractors in the survey reported that the ideal conditions are when their workers

can “get on a job, work straight through, and leave”. CPM makes no special provision

to ensure work continuity in tasks on repetitive projects since it does not distinguish

between tasks and activities.

2.2.2 Graphical linear scheduling methods

Various linear scheduling techniques, including the Line-of-Balance (Lumsden 1968),

Vertical Production Method (O’Brien, 1975) and Linear Scheduling Method

(Johnston, 1981) were proposed to address the limitations of CPM techniques when

applied to repetitive project scheduling. The advantages of these graphical approaches

lie in the ease of visually comprehending the whole project and the ability to maintain

work continuity for tasks.

However, Neale and Neale (1989) found that the Line-of-Balance (LoB) method can

only show schedules with limited complexity and information, and beyond which the

schedules degenerate into diagrams with incomprehensible “masses of flow lines”.

Furthermore, these graphical approaches are not easily amenable to computerization

(Chrzanowski and Johnston, 1986) and they lack the analytical capabilities that

underpin the popularity of the CPM techniques.

In response to the lack of analytical capabilities for the graphical approaches,

Harmelink and Rowings (1998) introduced the Linear Schedule Model (LSM). The

LSM produced a Controlling Activity Path (CAP) comprising of a sequence of

activities that must be completed as planned to finish the project within the overall

 16

planned duration. Similarly, Harris and Ioannou (1998) introduced the Repetitive

Scheduling Method (RSM) that derives a Controlling Sequence (CS) containing both

critical and non-critical activities but excludes resource critical activities.

While Mattila and Park (2003) reported that these two methods identified the same

path for a simple configuration of two activities, subsequent discussion (Kallantzis

and Lambropoulos, 2004) showed that the two methods do not always identify the

same controlling path in more complex activity configurations, nor are they

synonymous with the critical path identified in CPM techniques. Notwithstanding the

two recent methods of CAP and CS, the critical path as defined by Barrie and Paulson

(1992) is derived to demonstrate the analytical capability of the recurrence equations

in this study.

2.3 Genetic Algorithms and Its Applications in Scheduling

2.3.1 Overview of genetic algorithms

The Genetic Algorithms (GA) proposed by Holland (1975) are stochastic search

methods that have been successfully applied in many types of problems, including

process scheduling and resource allocation (Gen and Cheng 1997). GA differs from

conventional search techniques and starts with an initial set of random solutions called

a population. A single string called a chromosome, which consists of a linear string of

genes, represents each individual solution. When applied to scheduling, each

individual chromosome in the population corresponds to one possible schedule

through decoding the genes.

 17

The chromosomes evolve through successive iterations known as generations. The

crossover and mutation operators are applied to selected chromosomes to create the

next generation. During each generation, the chromosomes are evaluated using some

measure of fitness defined by the end-users. Fitter chromosomes generally have

higher probabilities of being selected to form the next generation. After several

generations, the algorithm should converge to the best chromosome, which hopefully

represents the optimum or near-optimal solution to the problem. The cycle of

evolution is repeated until a desired termination criterion specified by the end-user is

reached. This criterion can be the number of evolution cycles, the amount of variation

of individuals between different generations, or a pre-defined value of fitness.

2.3.2 Applications of genetic algorithms in construction scheduling

Scheduling involves the allocation of resources over a period to perform a collection

of tasks subject to known constraints, and is a difficult task for human planners

especially when optimal solutions are required (Chan and Hu, 2002).

Chan et al. (1996) proposed a GA approach to schedule construction resources. The

strength of this approach lies in the selection and recombination of the GA to learn the

domain of the specific network instead of relying on any set of heuristic rules. Hegazy

(1999) extends the research in this area by proposing the application of GA with

improved resource allocation and levelling heuristics to search for near-optimal

solutions.

Li and Love (1997) presented an “improved GA system” to reduce the computational

time and increase the reliability of results obtained for the time-cost optimization

 18

problems in construction projects. Similarly, Feng et al. (1997) proposed an algorithm

based on the principles of GA to solve time-cost trade-off problems for large-scale

CPM networks. Li et al. (1999) integrated a machine-learning method with GA to

solve nonlinear time-cost trade-off scheduling problems. In addition, Hegazy and

Wassef (2001) proposed a GA-based time-cost trade-off optimization model for

projects with non-serial repetitive activities.

Leu and Yang (1999) proposed a multi-criteria computational optimal scheduling

model that integrates the time-cost trade-off model, resource-limited model and

resource leveling model using GA. Recently, Zheng et al. (2004) considered a GA-

based multi-objective time-cost optimization model that is applicable to the

alternative project delivery system, where the benefits and opportunities of seeking an

earlier project completion are taken into account.

2.4 Concluding Remarks

Two issues were identified from the literature review.

Firstly, neither CPM nor the various graphical scheduling methods are adequate, on

their own, in addressing the scheduling needs of repetitive projects. In scheduling

repetitive projects, it is necessary to pay particular attention to the repetitive nature of

the tasks and the need for an uninterrupted movement of crew from one unit to the

next.

Secondly, repetitive scheduling presents the opportunity of optimization to determine

schedules that are attractive from the perspective of overall project duration as well as

 19

resource usage. The GA has proven to be a robust method of doing schedule

optimization. These two observations form the motivation for the development of the

repetitive scheduling model described in the next chapter.

 20

CHAPTER 3

RECURRENCE-BASED SCHEDULING OF REPETITIVE

PROJECTS

This chapter describes the development of a set of recurrence equations suitable for

performing network-scheduling calculations for repetitive projects. Two specific

scheduling requirements with relevance to industry are identified and the means of

incorporating them into the recurrence equations are described. Finally, a case study

illustrates the application of the proposed repetitive scheduling method when work

continuity constraints and specific scheduling requirements are imposed. For ease of

reference, the parameters appearing in the set of recurrence equations and discussed in

this chapter are summarised in Table 3.1

3.1 Development of the Recurrence Equations

Consider a repetitive project comprising a set of tasks Ai = (1, 2, ..., M) to be executed

over a number of repetitive units Uj = (1, 2, ..., Q) under a set of finish-to-start

Parameters Descriptions

Ai
Uj
AiUj
Ti
Di
ωi,j
Πi.j
Q

M

EFij
LFij
S

CT
Ci
Ki

Task i
Unit j
Activity ij
Duration for task i
Effective duration for task i, defined by Eqn. 3.5
Number of days delayed on activity ij’s earliest finish date
Number of days delayed on activity ij’s earliest and latest finish dates
Total number of repetitive units
Total number of tasks in a project
Earliest finish date for activity ij
Latest finish date for activity ij
Contractual duration for project completion
Daily tardiness penalty
Daily basic wages for worker of task i
Crew size for task i

Table 3.1 Parameters for mathematical representation

 21

precedence relationships. The duration of a task, Ti, denotes the amount of time

required to complete the task Ai over one of the units, or simply the time taken to

complete an activity (AiUj) of the task. The predecessors and successors of task Ai are

denoted by the sets Ap and As respectively. The earliest finish date (EFij) and latest

finish date (LFij) for each activity AiUj can be calculated with the following set of

equations which are also used in CPM:

Initial Conditions:

11,1 TEF = (3.1)

MQMQ LFEF ,, = (3.2)

Recurrence relations:

Forward Pass:

ijijp
i

ji TEFEFMAXEF +−
∀

],[= 1,,
p

,
p

 (3.3)

Backward Pass:

)](),[(,1,, sjsiji
is

ji TLFTLFMINLF −−= +
∀ f

 (3.4)

3.1.1 Effective duration

In considering work continuity in tasks, it is useful to use the concept of effective

duration. The effective duration is the minimum task duration for which work

continuity is maintained. Mathematically, the effective duration can be calculated

by:

)1/(]}[][{ 1,, −−=
∀∀

QEFMAXEFMAXD p
ip

Qp
ip

i
p

p

 (3.5)

The concept of effective duration is introduced for two reasons. Firstly, the effective

duration provides a reliable means of determining whether a task already has a

continuous workflow without the need to impose any work continuity constraint.

 22

Once these tasks are identified, any available resources can be more efficiently

utilized by channelling them to the discontinuous activities. Secondly, the difference

between the effective duration (Di) and duration (Ti) of a task denotes the number of

idle days between two activities due to a break in the workflow for the task. The

quantification of this idle period is useful in the incorporation of the work continuity

term into the recurrence equations.

Fig. 3.1 depicts the linear schedule from the CPM calculations on the network shown

in Fig 1.1. Fig 3.1 depicts the work progress for tasks B, C, D, E and G, each of which

is a set of 5 discontinuous lines indicating a fragmented workflow for these tasks. For

instance, there are four days of work discontinuity between each activity of task B. In

contrast, despite having predecessors and successors that are discontinuous in their

workflows, task F nevertheless enjoys full work continuity. The concept of effective

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Time (days)

U
n
it
s

A

B

D

C

E

F

G

Activity Duration (days)

A 10

B 6

C 7

D 3

E 5

F 12

G 5

Figure 3.1 Linear schedule calculated using CPM equations

 23

duration can be used to determine whether the workflow for a task is continuous

without imposing work continuity on it.

Generally, a task has a fragmented workflow if it is progressing at a faster pace than

its preceding tasks as precedence constraints prevent a task from starting until its

preceding tasks are completed. For instance, task B is work discontinuous and its

activity start dates are “held back” by 4 days because its duration of 6 days is less than

the duration of its preceding task A that has a duration of 10 days. In terms of

effective duration, the workflow of a task is fragmented when its effective duration

(Di) is larger than its duration (Ti). For example, task F is work continuous because its

effective duration (DF) of 10 days is less than its duration (TF) of 12 days.

The effective duration concept for determining the work continuity status of a task is

especially useful when it has numerous predecessors, and the lines of progress of

Figure 3.2 Illustration of effective duration

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

Days

U
n
it
s

X

Y

Z

a cb

Effective duration of task Z = ab
Duration of task Z = ac
Since ac > ab
Task Z is naturally continuous

 24

these predecessors intersect. Fig. 3.2 illustrates one such scenario, where tasks X and

Y are predecessors of task Z, and their durations are 15, 10 and 14 days respectively.

Task X commences immediately while task Y only starts on the 15th day. Task Z

might be thought to be work discontinuous because it is progressing faster than task

X. From Eqn. 3.5, the effective duration of task Z is calculated as:

days

MAXMAX

EFEFMAXEFEFMAXD YXYXZ

5.12

4/50

4/)2575(

4/]}25,15[]65,75[{

)15/(]},[],[{ 1,1,5,5,

=

=

−=

−=

−−=

This is less than its duration of 14 days, making task Z naturally work continuous.

3.1.2 Imposing work continuity

Generally, the graphical scheduling methods ensure work continuity for a task by

delaying the earliest finish date of its first activity. To account for the effect of

imposing work continuity on the start / finish dates of task activities, an additional

term is introduced into Eqn. 3.3. By imposing the requirement that the earliest start

date of the last activity remain unchanged, the necessary amount of delay for the first

activity (ωi,1) so that work continuity can be effected for the entire task can be

calculated as the sum of the periods of work discontinuity. As illustrated in Fig. 3.3,

the period of work discontinuity between two units is the difference between the

effective duration and the duration of a task. For Q repetitive units, there are Q-1

potential breaks in the work continuity of the task, each resulting in an idle period.

Therefore, when the work continuity constraint is imposed on the task that has a

 25

fragmented workflow, the necessary delay in the earliest completion of the first

activity (to eliminate the breaks) is:

)](,0[)1(1, iii TDMAXQ −−=ω
 (3.6)

If the work continuity constraint is imposed on task G in Fig. 3.3, the earliest finish

date (EF) of its first activity will be delayed by the product of 4 (Q – 1) and 7 days (Di

– Ti), which is 28 days. These 28 days represent the shortest required length of delay

for the EF of task G’s first activity of task G in order to ensure work continuity in all

subsequent activities. A lesser value will result in discontinuity between later units,

while an excessive value will delay the overall project completion unnecessarily.

Translating this method into mathematical terms, the proposed recurrence equations

are:

Figure 3.3 Calculation of the number of idle days between activities in a task

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

Time (days)

U
n
it
s

A

B

D

C

E

F

G

Activity Duration (days)

A 10

B 6

C 7

D 3

E 5

F 12

G 5

y

Total length of idle period for task

G

= 4 * yz

= 4 * (xz - xy)

=4 * (effective duration - duration)

= 4 * (12 - 5)

= 4 * 7

= 28 daysx z

 26

Initial Conditions:

11,1 TEF =

MQMQ LFEF ,, =

Recurrence Functions:

Forward Pass:

)1/(]}[][{ 1,, −−=
∀∀

QEFMAXEFMAXD p
ip

Qp
ip

i
p

p

jiijijp
i

ji TEFEFMAXEF ,1,,
p

, }],[{ = ω++−
∀ p

 (3.7)

Backward Pass:

)](),[(,1,, sjsiji
is

ji TLFTLFMINLF −−= +
∀ f

where

)])}(,0[)(1{(, iiji TDMAXQ −−=αβω (3.8)

),...,2,1(,, Mspi ∈ ;),...,2,1(Qj ∈







 =
=

otherwise

jfor

0

11

α
;









=
otherwise

imposedcontinuitywork

0

1

β

Through the introduction of the work continuity term, the new set of recurrence

equations is able to calculate activity start/finish times when the work continuity

constraint is imposed on any selected group of activities.

The schedule information calculated using the recurrence equations can be

represented in various ways graphically to effectively convey the information to the

end-user. Examples include the matrix schedules and the “horse blanket”.

 27

3.2 Incorporating Specific Scheduling Requirements

It is sometimes necessary to accommodate interruptions in the work programme that

are known ahead of time. For instance, the precast yard that is responsible for

delivering the precast wall elements may have informed the contractor that they are

not able to deliver the elements on particular days. The contractor then has to impose

a mandatory work break on those days for the task involving the wall element.

Another kind of scheduling consideration arises when the amount of work that needs

to be done from one unit differs from the others. For example, the amount of work for

a task in units 3 and 4 is twice that for the other units. With a constant crew size, the

duration for the task on units 3 and 4 would have to be doubled to account for the

increased quantity of work.

A simple example involving these two scheduling considerations will be used to

0

1

2

3

4

5

0 20 40 60 80 100 120

Days

U
n
it
s

B
A

Figure 3.4 Illustrations of two user-specified scheduling considerations

 28

illustrate how this type of breaks in the work sequence can be accommodated in the

recurrence equations. Two tasks, A and B each with 5 units are shown in Fig. 3.4. A

mandatory work break of 10 days is imposed between units 3 and 4 for activity A. In

addition, and the duration of task B is doubled from 15 days to 30 days for units 3 and

4.

The mandatory break requirements can be incorporated into the recurrence equations

simply by including a new variable, Π in Eqns. 3.4 and 3.7:

jijiijijp
i

ji TEFEFMAXEF ,,1,,
p

, }],[{ = Π+++−
∀

ω
p

 (3.9)

jisjsiji
is

ji TLFTLFMINLF ,,1,,)](),[(Π+−−= +
∀ f

 (3.10)

The imposition of a mandatory work break between units 3 and 4 is analogous to

imposing a delay on the start dates of the activity on unit 4. By subtracting the

duration of the task from Eqns. 3.9 and 3.10, similar equations involving the start

times of the activities are obtained. Therefore, a delay in the start dates is equivalent

to a delay in the finish dates and the modified recurrence equations can incorporate

work breaks of w days between any two activities AiUj-1 and AiUj in the following

manner:

∏i,j = w (3.11)

Hence, using Eqn. 3.11, the modified recurrence equations can incorporate the

mandatory work break between activities A3 and A4 by assigning the value of ∏A,4 as

10.

In order to account for a change in work rate for an activity, the duration variable Ti is

modified into a duration function Ti,j. Therefore, the duration function for activity B is

represented by a piece-wise function:

 29









=

=
=

)5,2,1(15

)4,3(30

,

jfor

jfor

T jB

One advantage of this form of representation is that a suitably defined Ti,j can be used

to simulate the learning curve effect which results in a progressively shorter task

duration as long as the work sequence is unbroken.

3.3 Illustrative Example

3.3.1 Scheduling with work continuity requirements

To illustrate the application of the recurrence-equations, consider the network given in

Fig. 1.1 and the scheduling data defined in Table 3.2 over five repetitive units.

A computer spreadsheet provides a convenient way of implementing the proposed

algorithm. The spreadsheet’s intuitive cell-based structure and easy-to-use interface

make it suitable for developing a scheduling program model from the set of

recurrence equations for simple to moderately complex linear projects. Results are

instantly updated when the data input values are changed. Various charts and graphs

can also be constructed inside the spreadsheet to present the results. Furthermore,

many engineers and project managers are already familiar with the use of a computer

spreadsheet having used it as a convenient and productive tool for data processing

during the course of their work. It was for these reasons that a simple prototype was

Tasks A B C D E F G

Duration

(days)
10 6 7 3 5 12 5

Table 3.2 Scheduling parameters for illustrative example

 30

developed using Microsoft Excel for the purpose of performing linear repetitive

scheduling.

The spreadsheet has a simple interface as illustrated in Fig. 3.5. This provides the

means of entering pertinent regarding the project including the number of tasks, the

number of repetitive units for each task and their corresponding unit durations. A set

of check boxes makes it simple to choose whether or not to impose the resource

continuity constraint for each activity.

Fig. 3.6 illustrates the resulting line schedule plotted from the values calculated using

the recurrence equations when work continuity constraints are imposed on all the

tasks; the corresponding schedule calculated using the CPM equations is shown in

Fig. 3.1. Comparing Fig. 3.6 with Fig. 3.1 indicates that the overall project duration

has increased by 16 days (extending the project duration from 96 days to 112 days) or

approximately 17 percent. This is expected, as the commencement dates of the first

activities of six tasks (tasks B, C, D, E, F and G) are delayed, thus affecting the start

dates of subsequent activities. This illustrates the point that imposing work continuity

on discontinuous tasks will invariably lengthen the overall project duration.

Figure 3.5 Spreadsheet interface for data input

 31

Besides the line schedule, the built-in functionality of a computer spreadsheet can be

used to easily generate other alternative schedule representations. For example, Fig

3.7 illustrates a matrix schedule showing the actual start and finish dates depicted

previously in Fig. 3.6.

Another benefit of using the recurrence equations is the ability to determine important

scheduling information like the total float for each activity. This allows the project

managers to identify the critical units, as well as the maximum allowable delay for

each activity unit without jeopardising the project completion. From Fig. 3.7, we can

easily identify the set of critical activities as (D1; F1 - F5; G1 - G5). In addition,

according to Barrie and Paulson, the critical path is a continuous chain of activities

from the beginning to the end of a network with the minimum float value.

Figure 3.6 Linear schedule calculated using recurrence equations

87

9292

9797

102102

107107

112

0

1

2

3

4

5

0 20 40 60 80 100 120

Time

U
n
it

A

B

D

C

E

F G

 32

Accordingly, the critical path is defined by the set of activities (A1; B1; D1; F1 – F5;

G1 – G5) with the minimum float value of 36 days. However, this critical path

consists of non-critical activities A1 and B1.

The controlling sequence (CS) (Harris and Ioannou, 1998) and the controlling activity

path (CAP) (Harmelink and Rowings, 1998) provide useful comparisons to the critical

units identified using the proposed recurrence equations. Following the respective

procedures, the set of activities in the CS and CAP are (A1 - A5; B5; D2 - D4; F1 -

F5; G5) and (A1 - A3; B1 - B3; D1; F1 - F5: G5) respectively. It is obvious that the

activities in the critical path, CS and CAP are not all the same.

Both the CS and CAP include activity A1, which is a non-critical unit (with non-zero

total float) according to the total floats calculated using the recurrence equations.

Suppose there is a 10-day delay in the completion of activity unit A1. From Fig. 3.8,

only the start times for the last activities of tasks B, C and D are affected by this

Units

3-Aug 6-Sep 9-Aug 12-Sep 20-Aug 29-Sep 12-Aug 17-Sep 14-Aug 17-Sep 29-Sep 29-Sep 4-Oct 4-Oct

24-Jul 27-Aug 3-Aug 6-Sep 13-Aug 22-Sep 9-Aug 14-Sep 9-Aug 12-Sep 17-Sep 17-Sep 29-Sep 29-Sep
5

34 34 40 36 34 0 0

24-Jul 25-Aug 3-Aug 31-Aug 13-Aug 22-Sep 9-Aug 5-Sep 9-Aug 5-Sep 17-Sep 17-Sep 29-Sep 29-Sep

14-Jul 15-Aug 28-Jul 25-Aug 6-Aug 15-Sep 6-Aug 2-Sep 4-Aug 31-Aug 5-Sep 5-Sep 24-Sep 24-Sep
4

32 28 40 27 27 0 0

14-Jul 13-Aug 28-Jul 19-Aug 6-Aug 15-Sep EFD LFD 4-Aug 24-Aug 5-Sep 5-Sep 24-Sep 24-Sep

4-Jul 3-Aug 22-Jul 13-Aug 30-Jul 8-Sep ESD LSD 30-Jul 19-Aug 24-Aug 24-Aug 19-Sep 19-Sep
3

30 22 40 Floats 20 0 0

4-Jul 1-Aug 22-Jul 7-Aug 30-Jul 8-Sep 3-Aug 12-Aug 30-Jul 12-Aug 24-Aug 24-Aug 19-Sep 19-Sep

24-Jun 22-Jul 16-Jul 1-Aug 23-Jul 1-Sep 31-Jul 9-Aug 25-Jul 7-Aug 12-Aug 12-Aug 14-Sep 14-Sep
2

28 16 40 9 13 0 0

24-Jun 20-Jul 16-Jul 26-Jul 23-Jul 1-Sep 31-Jul 31-Jul 25-Jul 31-Jul 12-Aug 12-Aug 14-Sep 14-Sep

14-Jun 10-Jul 10-Jul 20-Jul 16-Jul 25-Aug 28-Jul 28-Jul 20-Jul 26-Jul 31-Jul 31-Jul 9-Sep 9-Sep
1

26 10 40 0 6 0 0

 A B C D E F G

 Activity

Figure 3.7 Matrix schedule for illustrative example

 33

delay. The overall project completion date remains unchanged at 112 days. Therefore,

activity A1 is not critical, and the matrix schedule in Fig. 3.8 shows that activity A1

can be delayed by up to 26 days without jeopardising the completion date of 112 days.

This is contrary to the impression given by the inclusion of A1 in CS and CAP.

The situation is reversed in the case of activities G1 to G4 – these activities are

identified as critical by the recurrence equations but are not included in either CS or

CAP. From Fig. 3.6 it can be observed that a delay in any one of these activities will

cause a corresponding delay in the completion of activity D5 and thus jeopardize the

timely completion of the project. Therefore, the proposed recurrence equations can

correctly identify critical activities by adhering to the classical definition of a critical

activity as an activity with zero total float.

87

9292

9797

102102

107107

112

0

1

2

3

4

5

0 20 40 60 80 100 120

Time

U
n
it

A

B

D

C

E

F G

Figure 3.8 Impact of a 10-days delay on activity A1

 34

3.3.2 Scheduling with additional user-specified constraints

The following example illustrates the application of the recurrence equations when

there are specific scheduling considerations like mandatory work breaks and a change

in the work rate for particular activities.

Consider that work continuity constraints are now imposed only on tasks C and D. In

addition, the project manager knows that there will be a 10-day break (from days 71 –

Figure 3.9 Linear schedule calculated using modified recurrence equations and duration function

59

64 71

76 93

98 105

110 117

122

0

1

2

3

4

5

6

0 20 40 60 80 100 120

Time

U
n
it A

C

E

D

B

F

G

 Unit

Task 1 2 3 4 5

A 36 37 39 41 44

B 36 37 39 41 44

C 54 54 54 54 54

D 10 13 19 25 37

E 36 38 40 42 44

F 10 10 0 0 0

G 38 31 14 7 0

Table 3.3 Float table for schedule with user-specified scheduling

requirements

 35

81) in the work sequence of task F. Also, the workload for task D is doubled from

units 2 to 4, so that it takes twice as long to complete an activity. Fig. 3.9 depicts the

new schedule obtained with an overall completion date of 122 days using the set of

modified recurrence equations (Eqns. 3.9 and 3.10). Finally, Table 3.3 shows the total

floats for all the activities and identifies the critical activities to be (F3 - F5; G5).

 36

CHAPTER 4

MODEL FOR SCHEDULE OPTIMIZATION

This chapter describes the model for schedule optimization using the proposed

recurrence equations with Genetic Algorithms (GA). The basic mechanisms of GA

are first introduced to facilitate subsequent discussion on the utilization of the

recurrence equations for performing schedule optimization with GA. Specifically, the

process of identifying the two relevant decision variables for scheduling repetitive

projects is described, and the mapping of these decision variables onto the terms in

the recurrence equations in alternative GA representations are discussed. The

scheduling constraints applicable to forming schedules for repetitive projects are also

considered. Two evaluation criteria, combined into a single objective function, are

used to assess the merit of the alternative schedules identified by the GA-based

schedule optimization procedure.

4.1 Basic Mechanisms of the Genetic Algorithms

Genetic algorithms (GA) are stochastic search methods introduced in the 1970s in the

United States by John Holland (1975). Search methods are relevant in a wide variety

of engineering and management problems which require the identification of solutions

to a specified problem. Each individual solution is represented by a single string-like

entity called a chromosome. Fig. 4.1 depicts a chromosome made up of genes

characterized by their positions (physical ranks) and values (alleles). The values for

key decision variables that comprise a solution to the problem are encoded as the

values of the gene alleles.

 37

Generally, an initial population of potential solutions is randomly generated at the

start of a GA optimization process. Each of the chromosome strings is assigned a

fitness value determined by the quality of the solution to the problem encoded in the

allele values of the chromosome string. The fitness value is determined using a

problem specific objective function, and the fitness value determines the reproductive

chances of the chromosome string. Fitter chromosome string individuals are given a

higher chance of being selected to participate in the next step of the GA process when

new individuals are created. These new “offspring” are created by applying the

crossover operator on the chromosomes that are chosen to “reproduce” by a selection

procedure. The mutation operator is then applied to randomly alter the composition of

some of these offspring. The genetic operations of selection, crossover and mutation

occur on the population of chromosomes over and over again, transforming the initial

population of chromosomes to new populations in each succeeding “generation”. In

common with natural evolutionary selection, the GA selection process improves the

average fitness of the population with each generation. This process continues until a

user-defined criterion is reached.

0 1 0 0

Gene

Population

1 1 1 1

Chromosome

0 0 1 1

Alleles

Figure 4.1 Building blocks of genetic algorithms

 1 2 3 4 1 2 3 4 1 2 3 4

Physical ranks

 38

The objective function, which quantifies the merit of a solution, is an important part of

the design of a GA model. Better solutions benefit the chromosome strings that

encode them by increasing the chance of being selected for the crossover operation.

When GA search is applied to optimization problems, higher fitness values

correspond to better solutions although it is not possible to guarantee global

optimality.

The selection procedure represents the concept of survival of the fittest in GA. It

usually involves a weighted function, where individuals with higher fitness are more

likely to reproduce. There are several well-defined selection methods and the Roulette

Wheel Selection is one of the most common techniques. The analogy to a roulette

wheel can be envisaged by imagining a roulette wheel in which each candidate

solution represents a pocket on the wheel; the size of the pockets are proportionate to

the fitness of the solution. Selecting N chromosomes from the population is

1 0 0 0 0 1 Mutation 1 0 0 1 0 1

1-Point Crossover

1

1

0

0

0

0

1

1

Parents

1

1

1

1

0

0

0

0

Offspring

(a)

(b)

Figure 4.2 Illustrations of (a) one-point crossover and (b) mutation

 39

equivalent to playing N games on the roulette wheel, as each candidate is drawn

independently.

The crossover operation is then performed on the chromosomes selected for

reproduction. The probability of crossover determines the likelihood that two selected

chromosomes will actually “breed” through the crossover operation. Hence, mating

between chromosomes is still governed by chance - the chromosomes are mated if a

generated random number falls below the crossover threshold; otherwise, they are

propagated into the next generation unchanged. The chromosomes of the parents are

mixed in some way during crossover, typically by simply swapping a portion of the

underlying data structure, and this results in two new offspring which are added to the

second generation pool. This process is repeated with different parent chromosomes

until there are an appropriate number of candidate solutions in the second generation

pool. Fig. 4.2(a) illustrates a one-point crossover. The crossover probability can be

adjusted to improve the performance of the GA.

The mutation operator re-introduces genetic diversity into the population. It operates

upon single chromosomes by randomly changing the value of their bits. This change

can be highly destructive to good chromosomes but is essential to prevent the risk of

convergence upon a sub-optimal solution. Therefore, the probability of mutation is

often very low in order to avoid the disruption of good solutions. Figure 4.2(b)

illustrates a simple case of mutation.

 40

4.2 Development of the GA-based Optimization Model

4.2.1 Organizational setup for repetitive construction projects

The organizational setup in a repetitive project is generally defined by the contractual

relationships between various parties involved in the projects, and is relevant to the

objectives identified for the repetitive scheduling problem. Typically, a general

contractor undertakes the entire construction project from the owner. The majority of

the work is then broken down into specific trades to be performed by individual

specialist subcontractors under subcontracts to the general contractor. Although the

subcontractor normally bids upon a portion of the owner’s plans and specifications,

their legal contractual relationships are directly with the general contractors; the latter

is in turn responsible to the owner for all the work, including that which is

subcontracted. Fig. 4.3 illustrates this form of arrangement.

The single fixed-price contract is the traditional contractual arrangement that is

Owner

General Contractor

Specialist

Contractor 1

Own Work Forces

Specialist

Contractor 3

Specialist

Contractor 4

Specialist

Contractor 2

Contractual relationship between two parties

Figure 4.3 Typical organizational setup in a construction project

 41

administered for construction projects that involve competitive bidding (Barrie and

Paulson, 1992). In this fixed-price form, the contractor agrees to perform the work for

a predetermined price that includes profit. The contractor also bears the economic risk

for any project tardiness, which generally involves paying a specific amount of

monetary compensation to the owner for each day of delay. Therefore, from the

perspective of the general contractor, the scheduling objective is to ensure timely

project completion.

The majority of specialist subcontractors are however, concerned with the

productivity of their essential workers. For business reasons, they will want to keep

this core group as lean as possible, as well as ensure that there are a sufficient number

of on-going and future projects that these workers can be productively employed. The

subcontractors in a survey conducted by O’Brien and Fischer (2000) noted that

various undesirable site conditions have major effects on their incurred costs, and

work discontinuity is one such condition. Specifically, additional costs are incurred in

the form of lost wages paid to unproductive workers during the idle periods when they

wait for preceding tasks to be completed. The subcontractors have also been reported

to consciously shift their workers away from sites where poor scheduling

arrangements make it difficult for their workers to be fully productive. Therefore,

from the perspective of the subcontractors, the scheduling objective is to ensure an

uninterrupted and continuous workflow so that they can complete their individual

tasks without incurring unnecessary lost wages.

However, the schedule conditions necessary for maintaining work continuity for all

the different trades / tasks and for ensuring early project completion are inherently

 42

conflicting. In assuming that all the tasks involved in a project are carried out with the

maximum number of workers and that each activity commences on the earliest

possible date, timeliness in project completion is achieved at the expense of a

fragmented workflow for some tasks. On the other hand, the ideal condition where

subcontractors can “get on a task, work straight through it and leave” will involve

imposing some delays on the first activities of these tasks. This will usually extend the

project duration, thus jeopardizing timely project completion.

Figure 4.4 GARA-I and GARA-II chromosome representations

Decision

Variables

GARA-I GARA-II

(1) Crew size
optionssizecrewofnumberTotalXwhereXxxCS i =∈=)},...2,1(:{

Term in recurrence
equations mapped
to crew size:

Ti in Eqns. 3.4, 3.7

and 3.8

Ti = duration of the crew size selected

(2) Work

continuity





=
0

1
iWC

}]);,0[]1[,0(:{ Ζ∈−−∈= yTDMAXQyyWC iii

Term in recurrence
equations mapped
to work continuity:

ωωωωi,1 in Eqn. 3.7









=

=−−
=

00

1)](,0[)1(

1,

i

iii

i
WCfor

WCforTDMAXQ

ω

ii WC=1,ω

(3) Graphical

representation

Task 1

Task 2

Task 3

Task M

CS1

CS3

CS2

CSM

WC1

WC3

WC2

WCM

 43

The selection of crew size and the imposition of a work continuity requirement

ultimately influence the schedule generated. This study uses these two decision

variables as the means of creating alternatives for compromise schedules that benefit

both the general contractor and his specialist subcontractors.

4.2.2 GA model for scheduling repetitive projects

In general, maintaining work continuity creates a conflict of interest between the

general contractor and the specialist subcontractors who are responsible for the

individual work tasks. Whilst work continuity benefits the subcontractors by

minimizing the idle time of their crews, it usually lengthens the overall project

duration. This is detrimental to the main contractor, whose aim is to minimize the

project makespan, especially in light of the tardiness penalty. This conflict of interest

necessitates the search for scheduling arrangements that reap the maximum benefit

from any work continuity requirement whilst mitigating tardiness costs for the main

contractor.

A GA Recurrence-equations Approach (GARA) is proposed to seek this ‘optimal’

arrangement. Firstly, the decision variables of crew size and work continuity are

represented by the terms Ti and ωi,1 respectively in the proposed recurrence equations.

In this way, different values for the variables will lead to different schedules with

various states of work continuity and project lengths. GA is then used to determine

the optimal values for these two variables for each of the different tasks so that

schedules with a tradeoff between continuous workflow and project duration can be

found. Two ways of expressing work continuity in the GA chromosome are explored.

GARA-I only considers full work continuity for each task but GARA-II makes it

 44

possible to impose partial work continuity. It is not clear if one representation is

inherently better than the other and experiments are conducted to compare their

performance. Fig. 4.4 illustrates the two chromosome representations.

The chromosomes in GARA-I and II consist of M gene-pairs, where each gene-pair

represents the two decision variables of work continuity and crew size for a particular

task. The crew size decision variable is identical in both GARA-I and GARA-II, and

the integer value of the crew size variable (in the range of one to X) represents a

particular choice of the crew size for the task. This crew size implies a corresponding

number of workers and duration for the task, Ti in the recurrence equations for the

scheduling calculations.

In GARA-I, work continuity is modelled as a binary variable that indicates whether

work continuity is imposed on a particular task. A value of one for this binary

decision variable indicates that work continuity is imposed on the task. If work

continuity for a task is imposed, the necessary delay in the first activity of the task to

achieve work continuity, ωi,1 is calculated using:









=

=−−
=

00

1)](,0[)1(

1,

i

iii

i
WCfor

WCforTDMAXQ

ω (4.1)

Consequently, the schedules found using GARA-I will consist of tasks with either

fragmented or fully continuous workflows.

In contrast, GARA-II allows GA to explore the possibility of finding better schedules

by imposing partial work continuity. In the case of partial work continuity, the delay

in the start of the first activity of the task can range from zero to the value computed

 45

using Eqn. 4.1. This gives the GA search procedure more options to explore when

looking for better schedules.

Fig. 4.5 shows different schedules obtained using GARA-I and GARA-II on a simple

two-task configuration where task Y precedes task Z. The durations of these tasks are

20 days and 10 days respectively. Without the work continuity requirement imposed

on Z, the schedule for Z would be the broken blue line labelled ‘Z’. As indicted by

that particular line, Z1 can only start after Y1 finishes (at t = 20); similarly, Z2 can

only start after Y2 finishes (at t = 40) resulting in the first break in work continuity for

task Z. A delay of 40 days has to be imposed for Z1 under GARA-I to effect work

continuity for task Z, resulting in the schedule for Z denoted by the line labelled ‘Z-I’.

Under GARA-II, the start of Z1 can be delayed anywhere from zero to 40 days. A

delay of 30 days has been used in the schedule for Z labelled ‘Z-II’. In this case, the

0

1

2

3

4

5

0 20 40 60 80 100 120

Time

U
n
it
s

Z Y

Z-I (Z under GARA-I) Z-II (Z under GARA-II)

Figure 4.5 Comparison of the different state of work continuity represented in GARA-I and GARA-II

 46

work continuity for task Z-II only extends from activity Z1 to activity Z4 and there is

a break of 10 days between activities Z4 and Z5.

4.2.3 Scheduling constraints

Repetitive project scheduling requires allocating resources over time to a set of tasks

while satisfying a variety of constraints and objectives. Hard constraints must always

be satisfied for a schedule to be valid. Soft constraints on the other hand, can be

relaxed when necessary. For this optimization model, the precedence and resource

availability constraints are treated as binding while the due date and work continuity

constraints can be relaxed.

Precedence constraints define the logical interrelationships among the project tasks in

a construction project. This constraint requires that a particular activity is started only

after all its preceding activities are completed. For instance, activity Y1 in Fig. 4.5

commences at the start of the project (since Y1 has no predecessors) whilst activity

Z1 can only begin after the completion of activity Y1. This logical sequence of

workflow from one activity to another must be strictly adhered, and any schedule that

violates the precedence constraints is invalid. In the GA schedule optimization model,

all predefined precedence constraints are coded into the recurrence equations and

enforced during the course of the scheduling calculations to ensure that these

constraints are always observed in the process of optimization.

The resource availability constraints arise when there is only one available group of

work crew for each task, and as a result, an activity cannot commence until the work

crew is available again, usually through the completion of the preceding activity of

 47

the same task. Therefore, activity Z2 in Fig. 4.5 cannot begin until activity Z1 is

completed. Like the precedence constraints, the resource availability constraints are

coded in the recurrence equation and enforced during the course of the scheduling

calculations.

On the other hand, the due date constraint and the work continuity requirement are

treated as soft constraints. Soft constraints are handled by including them in the

definition of the objective function used for the optimization procedure.

4.2.4 Objective function

1. Tardiness penalty

The due date constraint specifies the requirement for a timely completion of the

project. This constraint can be expressed as an inequality between the latest finish

dates for the last activity of the project and the contractual deadline for the completion

of the project, S:

LFM,Q ≤ S (4.1)

Violation of this constraint will not invalidate a schedule but does incur penalty costs

for late completion beyond the target schedule data.

This inequality is incorporated into the objective function as a penalty term, ZT:

Min),0(, SLFMaxCZ QMTT −×= (4.2)

2. Work discontinuity penalty

The total number of days lost to work discontinuity can be expressed as:

 48

∑
=

−−
M

i

ii TDMAXQ
1

)](,0[)1((4.3)

This can be translated into man-days of wages lost by multiplying by the daily wage-

rate of the workers, Ci and the number of workers on the task, Ki. The total lost wages

due to work discontinuity can be incorporated into the objective function as another

penalty term:

Min ()∑
=

××−−=
M

i

iiiiD CKTDMAXQZ
1

)](,0[)1((4.4)

In order to obtain compromise schedules that balance the objectives of both the

general contractor and his subcontractors, the objective function is defined as the

minimization of the sum of the two penalty terms:

Min DT ZZZ += (4.5)

4.3 GA Parameters

The optimal values for several GA parameters are difficult to determine. These

parameters include the population size, the number of iterations performed, the

crossover rate, the mutation rate and the termination criterion. The process of

determining the default values of some of these parameters are discussed.

Table 4.1 summarizes the average time to convergence for a set of GA experiments

conducted for a 40-unit repetitive project using different GA parameters.

Convergence is reached when the GA attains a benchmark value. This benchmark is

obtained by selecting the best solution obtained from twenty different GA runs. Each

GA run iterates over 500 generations and begins with a randomly generated initial

population. Ten separate runs are conducted for each set of GA parameters, the

 49

number of times out of the ten runs where the solutions converge to the benchmark

value and the time taken for each convergence are noted (a maximum computation

time of ten minutes is set). The average time to convergence is calculated by taking

the runs when convergence was achieved and averaging the times taken. For example,

under the population size, crossover probability and mutation probability of 20, 85%

and 5% respectively, seven out of the ten runs produce schedules with fitness values

that converge to the benchmark value. The sum of the time taken for these seven

convergences is 265 seconds and this returns an average time to convergence of 38

seconds (265 / 7). Runs that return solutions inferior to the benchmark after ten

minutes are not taken into account when calculating the average time to convergence.

From the results in Table 4.1, values for the population size (50), one-point crossover

probability {90%} and mutation rate (0.05) are selected as they return the highest

frequency of convergence and the lowest average time to convergence; the

termination criterion is set to 500 iterations. All the subsequent experiments are

conducted with these GA parameters.

Population

size
20 50 70

Crossover

prob. (%)
85 90 95 85 90 95 85 90 95

Mutation

prob. (%)
5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1

Freq. of

convergence

(times)

7 6 8 6 8 7 9 7 10 9 10 10 10 9 10 10 10 10

Ave. time to

convergence

(sec)

38 43 39 45 38 46 72 85 78 80 81 89 143 159 154 166 159 164

Table 4.1 Average time to convergence with different GA parameters

 50

The GA runs are made using a commercially available GA toolbox running on a

Pentium IV 1.2GHz desktop is used in this study. The next chapter discusses the

results obtained when the performance of GARA is investigated with respect to cases

of increasing number of repetitive units and different due date constraints.

 51

CHAPTER 5

RESULTS FROM SCHEDULE OPTIMIZATION

This chapter describes several experiments conducted to assess the performance of the

GA-based optimization model (GARA) and presents an analysis of the results

obtained. The performance issues covered include: (i) relative performance of GARA

vis-à-vis the Critical Path Method Approach (CPMA) and Graphical Scheduling

Approach (GSA) on projects with an increasing the number of repetitive units under

different due date constraints; (ii) a comparative merits of two alternative

chromosome representations; and (iii) the time to convergence of GARA on networks

of different complexity.

5.1 Experimental Setup

Table 5.1 summarizes the scheduling parameters of a project used in the experiments.

The network schedule, first depicted in Fig. 1.1, consists of seven individual tasks

with three possible crew sizes each. The crew size selection will affect the task

duration so that employing more workers will reduce the amount of time required to

Crew Size Option

1 2 3 Predecessors
Crew
size

Duration
Crew
size

Duration
Crew
size

Duration

Basic

daily

wages

A - 9 9 7 10 5 13 55
B A 6 5 5 6 4 7 60
C B 4 5 3 7 2 10 70
D B 13 2 8 3 6 5 58
E B 3 3 2 5 1 7 62
F D, E 8 10 5 12 3 15 64
G C, F 4 4 3 5 2 7 43

Parameters:
Tardiness penalty = $2500 / day

Table 5.1 Scheduling parameters of crew size options and the

corresponding task durations

 52

complete an activity. The daily wages for each worker employed in any of the seven

trades range from $43 to $70, and each day of delay in the project completion incurs a

“penalty” cost of $2,500.

As mentioned previously, GARA works out which task should have work continuity

and there are two possible options to be investigated - full work continuity (GARA-I)

or partial work continuity (GARA-II). One set of experiments is performed to

investigate whether full or partial work continuity is preferable. The performance of

GARA for schedule optimization is compared against that of CPMA and GSA.

To compute the schedule under CPMA and GSA, the same set of recurrence equations

can be used except that there is no requirement for work continuity on any task under

CPMA whereas all the tasks involved have continuous and uninterrupted workflows

under GSA. Setting the decision variables for work continuity in the optimization

model to the value of zero (for CPMA) and one (for GSA) takes care of this

requirement. The optimization procedure still needs to determine the best crew size

Table 5.2 Representations of the decision variables in CPMA and GSA chromosomes

DECISION

VARIABLES

CPMA GSA

(1) Crew size option)},...,2,1(:{ noptionoptionoptionxxCS i ∈=

Term in recurrence
equations mapped to
crew size option

Ti= duration corresponding to the crew size option

(2) Work continuity 0=iWC 1=iWC

Term in recurrence
equations mapped to
work continuity

0=iω

)](,0[)1(1, iii TDMAXQ −−=ω

 53

under CPMA and GSA. Table 5.2 summarizes the representations of the decision

variables in CPMA and GSA chromosomes.

In performing the optimization, the experiments are conducted using three different

due date constraints for five projects with a different number of repetitive units in the

project. The setting of the due dates for the experiments requires some explanation.

Fig. 5.1 illustrates the point that GARA is applicable to repetitive schedule

optimization only when the stipulated project duration is longer than the minimum

project duration. The minimum duration for a project is defined as the project duration

calculated using the CPM equations under the assumption that (i) every task uses the

largest crew size and therefore completes in the minimum duration and (ii) work

continuity is not imposed on any task. For example, the minimum duration calculated

using Eqn. 3.3 for a 5-unit project with the scheduling parameters in Table 5.1 is 71

days.

GARA is not applicable to projects where the specified project duration is shorter

than the minimum project duration as changing the crew size selection for tasks will

not enable GARA to find a schedule that is shorter than the minimum project

Figure 5.1 Applicability of GARA with respect to contractual duration

Contractual

duration

Minimum project

duration

Sector I: GARA is inapplicable Sector II: GARA is applicable

Tight deadline

(+20%)

Medium deadline

(+35%)

Relaxed deadline

(+50%)

 54

duration. Imposing work continuity on project tasks will usually lengthen the project

duration.

GARA can be used to optimize the schedule for a repetitive project when the

specified project duration exceeds the minimum project duration. In this case, the

slack time to project completion (given by the difference between the stipulated

duration and the minimum duration) provides the opportunity to effect work

continuity for project tasks. GARA can be used to determine the best crew size for

each task as well as the appropriate time to deploy them the crew for the first activity

of a task in order to minimize project tardiness and the periods of discontinuous

workflows. It could be said that GARA works out the best allocation of the slack time

to project completion.

Three types of due date constraints were conceived to investigate GARA’s

performance under deadlines. The three due date constraints were defined by

increasing the project duration by a certain percentage of the minimum project

duration. The three deadlines are called tight (+20%), medium (+35%) and relaxed

(+50%). In this way, the experiments could study the effect of the different kinds of

deadlines independently of the number of repetitive units in the project.

For each case, the best solution from ten separate GA runs with randomly generated

initial populations is noted. Table 5.3 summarizes the results obtained from the

experiments when the number of repetitive units and deadlines were varied. These

results are discussed in the next section.

 55

 56

Figure 5.2 Results for various optimization methods under (a) tight, (b) medium, (c)

relaxed deadline constraints

Computational results under tight due date constraint

$27,144

$20,184
$13,224

$6,264
$2,784

$31,130$27,338

$14,022

$2,390
$7,008

$187,500

$135,000

$85,000

$35,000

$9,500

$87,906

$65,366

$42,826

$9,016

$20,286

$0

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

$140,000

$160,000

$180,000

$200,000

5 10 20 30 40

Repetitive units

B
e
st
 f
it
n
e
ss
 v
a
lu
e
s

GARA-I GARA-II GSA CPMA

(a)

Computational results under medium due date constraint

$13,572

$10,092

$0$0

$18,632

$12,363

$0 $0

$27,500

$15,000

$2,500
$0$0

$87,906

$65,366

$42,826

$9,016

$20,286

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

$90,000

$100,000

5 10 20 30 40

Repetitive units

B
es
t
fi
tn
es
s
v
a
lu
es

GARA-I GARA-II GSA CPMA

Computational results under relaxed due date constraint

$0$0$0$0$0 $0$0$0$0 $0 $0$0$0$0$0

$87,906

$65,366

$42,826

$9,016

$20,286

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

$90,000

$100,000

5 10 20 30 40

Repetitive units

B
es
t
fi
tn
es
s
v
a
lu
es

GARA-I GARA-II GSA CPMA

(b)

(c)

 57

5.2 Analysis of Results

5.2.1 General comments

Fig. 5.2 shows the best solutions obtained by GARA, CPMA and GSA under the three

different deadline requirements. Good schedules are those that allow punctual project

completions while maintaining continuous workflow for each individual tasks and one

schedule is better than another if it incurs lower penalties due to project tardiness and

work discontinuity. The difference in performance between GARA-I and GARA-II is

relatively small, indicating that the schedules produced by both representations are

comparable in terms of the ability to complete projects on time and maintaining work

continuity. For convenience, GARA is henceforth used to refer to GARA-I. In

general, GARA consistently produces schedules with a higher figure of merit than

either CPMA or and GSA; this is especially so under tight deadlines. Under medium

deadlines, GARA performs only as well as GSA when the number of repetitive units

is low but outperforms both CPMA and GSA when the number of repetitive units

increases. Finally, both GARA and GSA are able to find schedules that both meet the

deadline and do not incur any work discontinuity penalty. On the other hand, CPMA

performs poorly under relaxed deadlines.

Table 5.3 shows values for the (i) total project duration and (ii) tardiness penalty

incurred for schedules computed using the different methods. GARA schedules have

the best performance index value because GARA is able to minimize the periods of

work discontinuity whilst still meeting the specified due date for project completions

(except for one case where a project was late by one day). GARA consistently incurs

lower work discontinuity penalties compared to CPMA. At the same time, GARA

 58

also maintains an excellent record of completing the projects on time except for one

instance where a tardiness penalty for one day is incurred.

It is not possible to conclude that GARA always outperforms CPMA and GSA as the

present results could be influenced by the relative magnitude of the unit penalty costs

assumed in the objective function. The work discontinuity penalty reflects the wage

losses due to unproductive workers during idle periods, and its magnitude is

dependent on the wage rate assumed. The tardiness penalty represents the amount of

money payable by the general contractor when the project is not completed on time,

and its value is depends on the daily tardiness penalty assumed. Due to the difference

in magnitudes of the basic wages - ranging from $43 to $70 per person-day – and the

daily tardiness penalty ($2,500) assumed, the objective function is weighted to favour

the minimization of the tardiness penalty. This is reflected in the results obtained by

GARA which gives schedules with no tardiness penalty.

Figure 5.3 Linear schedule for a 5-unit project using CPMA

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

Time

U
n
it

A

C

E

D

B

F

G

Activity Possible durations Optimal duration

A 9, 10, 13 9
B 5, 6, 7 7
C 5, 7, 10 10

D 2, 3, 5 5
E 3, 5, 7 7
F 10, 12, 15 10
G 4, 5, 7 7

 59

GSA and CPMA return poorer schedules because these two methods make particular

assumptions concerning work continuity. GSA imposes work continuity on all tasks

and this usually produces schedules with longer project durations. This proves to be

detrimental when the project has to be completed under tight due dates. As shown in

Table 5.3, the hefty penalties incurred by the GSA schedules are entirely due to not

being able to meet the tight due date constraints. This also explains why the

performance of GSA improves significantly when the due dates are relaxed.

CPMA assumes no work continuity; it gives schedules with the shortest project

makespan as the method schedules the commencement of activities as soon as the

precedence and the resource availability constraints are satisfied. However,

indiscriminate early starts can lead to discontinuous workflow for the tasks. For

Task A B C D E F G

Work continuity imposed

yes yes yes no yes yes yes

Crew size / duration (days)

9 / 9 4 / 7 4 / 5 6 / 5 1 / 7 8 /
10

4 / 4

Number of days with work
discontinuity

0 0 0 8 0 0 0

GARA-I:

completed in

85 days

Tardiness
penalty: $0

Work discontinuity penalty ($)

0 0 0 2784 0 0 0

Work continuity imposed

no no no no no no no

Crew size / duration (days)

9 / 9 4 / 7 2 / 10 6 / 5 1 / 7 8 / 10 2 / 7

Number of days with work
discontinuity

0 8 0 16 8 0 12

CPMA:

completed in

80 days

Tardiness
penalty: $0

Work discontinuity penalty ($)

0 1920 0 5568 496 0 1032

Work continuity imposed

yes yes yes yes yes yes yes

Crew size / duration (days)

9 / 9 6 / 5 3 / 7 6 / 5 2 / 5 8 / 10 4 / 4

Number of days with work
discontinuity

0 0 0 0 0 0 0

CPMA:

completed in

89 days

Tardiness
penalty: $10000

Work discontinuity penalty ($)

0 0 0 0 0 0 0

Table 5.4 Optimization results for a 5-unit project under various optimization methods

 60

65

6969

7373

7777

8181

85

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

T im e

U
n
it

A

C

E

DB
F

G

L in ea r sch edu le u sin g GARA -I

33

40 43

50 53

60 63

70 73

80

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

Time

U
n
it

A

C

E

D
B

F
G

Linear schedule using CPMA

69

7373

7777

8181

8585

89

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

T im e

U
n
it

A

C
E

D

B F

G

L inear schedu le u s ing G SA

Figure 5.4 Linear schedules of results obtained under various optimization methods

 61

example, the CPMA schedule for the 5-unit project illustrated in Fig. 5.3 shows five

out of the seven tasks (tasks B, C, D, E and G) have discontinuous workflows. The

large number of idle periods incurs a considerable amount of work discontinuity

penalty (see Table 5.3). This effect becomes more pronounced with an increase in the

number of repetitive units.

Table 5.4 presents more details of the schedules obtained for the 5-unit example under

a tight due date constraint by the different approaches. Fig. 5.4 depicts the resulting

linear schedules graphically. Both GARA and CPMA schedules meet the due date,

and the GARA schedule has a significantly lower work discontinuity penalty (only

one of the seven tasks is not work-continuous). By not imposing work continuity on

task D, all the other tasks can be work-continuous and the project completes in 85

days. Even though the duration of the CPMA schedule is shorter, it is of no

consequence in this example as the due date is met. On the other hand, four of the

seven tasks in the CPMA schedule are not work-continuous. For example, task G is

discontinuous because every activity in CPMA is scheduled to start as soon as all the

precedence relationships are satisfied. The GSA schedule incurs a due date penalty of

$10,000 as the price for imposing work continuity on all the tasks. This example also

shows that it is necessary to determine both the appropriate crew size and the work

continuity requirements in order to get the best schedules. GARA is able to seek the

most favourable trade-off between work continuity and early project completion.

5.2.2 Effect of increasing the number of repetitive units

Fig. 5.2 also illustrates the performance of the three scheduling methods for projects

with an increasing number of repetitive units under different due date constraints. In

 62

general, GARA produces schedules that incur lower penalties than those obtained

from GSA and CPMA. The performance of GARA is particularly good under tight

due date constraints especially with an increasing number of repetitive units.

The previous observation can be attributed to the ability to decide whether work

continuity should be imposed for any particular task under GARA. When this

flexibility is used in an optimization search, balanced schedules that consider the

trade-offs between the work discontinuity penalty and tardiness penalty are obtained.

By contrast, CPMA emphasizes early project completions at the expense of work

continuity, and since the total period of such discontinuity increases with the number

of repetitive units, the schedules returned by CPMA are increasingly penalized by the

work continuity penalty. On the other hand, GSA imposes work continuity on all the

tasks. To achieve this, artificial delays (calculated using Eqn. 3.6) are introduced to

the start of the first activity of tasks that are not work-continuous. These delays are

proportionate to the number of repetitive units, thus resulting in increasingly poorer

performance when the number of units increases and a higher tardiness penalty is

incurred.

Therefore, it is not surprising to note that the performance of GSA improves

significantly when the due date constraints are relaxed. The schedules produced using

GSA are as good as those generated by GARA for projects with a lower number of

repetitive units under medium and relaxed due date constraints. In the latter instance,

GSA performs just as well as GARA regardless of the number of repetitive units.

6
3

Figure 5.5 Performance of various optimization methods under different due date constraints

 64

5.2.3 Effect of imposing different due date constraints

Fig 5.5 illustrates the performance of the various optimization methods under

different due date constraints. GSA is the worst performer under tight due date

constraint while CPMA fares the worst under medium and relaxed due dates. This is

because CPMA produces the same schedule for a given number of repetitive units

regardless of the due date constraints imposed while the results of GARA and GSA

generally improve as the due dates are extended. For example, the solutions from

GARA and GSA improve from $20,184 and $135,000 to $10,092 and $15,000

respectively for a 40-unit project when the due date is extended from 385 days to 433

days. This is a significant improvement in terms of percentage change as a 12.5%

([433 – 385] / 385) in project duration reduces the penalties by 50% ([10092 – 20184]

/ 20184) and 88.9% ([15000 – 135000] / 135000) for GARA and GSA respectively.

Fig. 5.5 also indicates that the performance of GSA improves most significantly when

the due dates are extended from 120 percent (tight due date) to 135 percent (medium

due date) of the shortest project durations. In fact, from Table 5.2, it is observed that

the GSA performs as well as GARA under medium due dates for 5 to 20 repetitive

units, and the schedules that it generated for over 20 repetitive units are only slightly

worse off than the results of GARA. Under relaxed due dates (set at 150% of the

shortest project duration), both GARA and GSA produce “perfect” schedules that are

able to meet the due date without incurring any work discontinuity penalty for all the

number of repetitive units tested.

These observations draw two practical conclusions. Firstly, the better performance of

GARA and GSA over CPMA under medium and relaxed due dates indicates that

 65

work continuity is an important factor to be considered when scheduling projects with

deadlines that are not too tight. This is especially so when the number of repetitive

units involved is significant, as seen by the trend in Fig 5.5 where the difference in

performance between GARA or GSA and CPMA widens as the number of repetitive

units increases. However, Fig. 5.5 also shows that GSA should not be used for

scheduling repetitive projects that have to be completed within tight schedules, and

this is especially so when the number of units is large.

Secondly, GSA and GARA perform equally well under relaxed due dates; this

suggests that GSA can be used as an alternative scheduling method for projects with

generous due dates. The advantage of GSA is its simplicity since it is only necessary

to decide the best crew size for each task.

5.2.4 Comparing two different means of imposing work continuity

This section compares the effect of imposing different degrees of work continuity.

Work continuity for a task can be achieved by delaying the earliest finish date of its

first activity. Eqn 3.8 gives the minimum number of days of delay necessary to ensure

that the task is fully continuous. However, it is also possible to introduce a shorter

delay in which case the task will not be fully continuous. A set of experiments,

involving two different chromosome representations for the work continuity decision

variable, was done to investigate whether full or partial work continuity would be

more advantageous in performing the optimization search. In GARA-I, the

chromosome encodes for whether a full delay is to be introduced or not whilst in

GARA-II the chromosome encodes the option to introduce partial delays, which is

defined as any integer values in the range from zero, indicating no delay, to the value

 66

indicating full delay. The search space for GARA-II is larger but offers the possibility

of finding better solutions involving tasks with partial work continuity. By contrast,

GARA-I operates in a smaller search space since only schedules that contain tasks

that are either fully work continuous or not are considered.

The advantage of considering partial work continuity lies in the possibility of

distributing work discontinuity among a group of tasks, so that all or most of the tasks

enjoy some form of continuous workflow in the earlier activities, with work

discontinuity setting in only at a later stage for some tasks. This is illustrated in the 5-

units example under a tight due date constraint, where GARA-II returns a better

solution compared to the schedule of GARA-I. Table 5.5 and Fig 5.6 illustrate the

optimization results and linear schedules for these two approaches. GARA-II returned

Task

A B C D E F G

Work continuity imposed

full full full full full full full

Crew size / duration
(days)

9 / 9 4 / 7 4 / 5 6 / 5 1 / 7 8 / 10 4 / 4

Number of days with
work discontinuity

0 0 0 8 0 0 0

GARA-I: completed

in 85 days

Tardiness penalty: $0

Ave. time to
convergence:
36 secs

Work discontinuity
penalty ($)

0 0 0 2784 0 0 0

Work continuity imposed

full partial full partial part
ial

full full

Delay on the first activity
(days)

0 7 6 3 0 0 24

Crew size / duration
(days)

9 / 9 4 / 7 3 / 7 6 / 5 1 / 7 8 / 10 2 / 7

Number of days with
work discontinuity

0 1 0 6 1 0 12

GARA-II: completed

in 85 days

Tardiness penalty: $0

Ave. time to
convergence:
194 secs

Work discontinuity
penalty ($)

0 240 0 2088 62 0 0

Table 5.5 Optimization results for the 5-unit project using GARA-I and GARA-II

 67

the better schedule by distributing 8 days of idle period between tasks B, D and E

such that the work discontinuity penalty is reduced from $2,784 to $2,390, or a

decrease of approximately 14%.

65

6969

7373

7777

8181

85

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Time

U
n
it

A

C

E

DB
F

G

Linear schedule using GARA-I

65

6969

7373

7777

8181

85

85

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

Time

U
n
it

A

C

E

D
B F

G

Linear schedule using GARA-II

Figure 5.6 Linear schedules for results obtained using GARA-I and GARA-II

 68

The drawback is that GARA-II takes longer to execute because of the larger search

space. This can be an issue when the size of the problem increases. For larger

problems involving ten repetitive units or more, GARA-II generally returns solutions

that are inferior to those of GARA-I even when the termination criterion is extended

to 1000 iterations or approximately 60 minutes of GA run-time. GARA-II is able to

match the performance of GARA-I only in those cases under relaxed due date

constraints. The poor performance of GARA-II is attributed to the rapidly increasing

search space as the repetitive units increase. An estimate of the search space in

GARA-II is presented in Appendix A1.

In GARA-I, assuming full work continuity for tasks significantly reduces the search

space. More importantly, the size of the search space no longer depends on the

number of repetitive units but only on the number of tasks in the schedule. GARA-I is

the preferred scheduling approach in this study because it is able to determine quickly

very good schedules under a wide variety of circumstances.

5.2.5 Time of convergence

Due to the concerns on computation time raised by the experience with GARA-II,

another set of experiments was conducted to investigate the time of convergence

characteristic of GARA-I. It was not known if the complexity of the interrelationships

between the project tasks would contribute to increasing the difficulty of the

optimization search. The task interrelationships form a precedence network and more

precedence constraints between tasks could conceivable lead to greater difficulty in

scheduling. The experiments recorded the time of convergence using GARA-I on

projects of different network complexity and different number of repetitive units.

 69

Among the different measures of network complexity are Coefficient of Network

Complexity (Kaimann, 1974) and Restrictiveness Estimator (Thesen, 1977). This

study has chosen the Restrictiveness Estimator (RT) because RT relates the

complexity of a network to the number of feasible sequences that exist in the network.

The restrictiveness estimator can be calculated by:

)3)(2(

)1(62

−−

−−
= ∑

MM

Mr
RT

ij
 (5.1)

where rij are the elements of the reachability matrix discussed in Appendix B2, and M

is the total number of tasks in the network. The value of RT lies between zero and

one, where zero represents parallel directed graphs (digraphs) and one denotes series

digraphs.

From Eqn. 5.1, it is observed that RT can be varied by either changing the number of

tasks in the network, or by changing the precedence relationships between the tasks.

Fig. 5.7 illustrates three 7-task networks with RE ranging from 0.4 to 0.8 obtained by

changing some of the relationships between the tasks. For every given number of

repetitive units in the network, the benchmark solution is assumed to be the best

solution obtained from ten separate experimental runs of GARA-I with randomly

generated sets of the initial population over 500 iterations. The benchmark solutions

are obtained for fifteen cases of three 7-task networks over five different numbers of

repetitive units each. Subsequently, for each case, ten separate runs are conducted and

the time taken for the solution to converge to the benchmark solution in each run is

noted. The total convergence time taken is the sum of the ten individual times of

convergence, and the average time of convergence for each case is given by

 70

Figure 5.7 Illustrations of three 7-task networks with different restrictiveness estimators

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

G

Unit finish

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

G

Unit finish

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

G

Unit finish

RE = 0.4

RE = 0.6

RE = 0.8

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45

Repetitive units

T
im

e
o
f
co
n
v
er
g
en

ce

RE = 0.4 RE = 0.6 RE = 0.8

Figure 5.8 Average time of convergence for 7-task networks with different restrictiveness estimators

 71

normalizing the total convergence time with the number of runs. Fig. 5.8 depicts the

average convergence time calculated.

From Fig. 5.8, it is observed that the time of convergence increases as the number of

repetitive units increase. A likely explanation for the longer time of convergence

observed is the longer computation time required to evaluate the recurrence equations

since the number of variables increases with increasing repetitive units. In addition, it

is observed that the network complexity does not seem to have any significant effect

on the time of convergence. One possible reason for this observation is that the

precedence constraints between the tasks are incorporated into the recurrence

equations and do not appear in the search space defined by the chromosome.

The experiment was repeated on different networks comprising of eight tasks as

illustrated in Fig. 5.9. The results of the experiment as shown in Fig. 5.10 provides

further confirmation of that network complexity does not influence time to

convergence because of the way the optimization search is conducted. However, the

convergence times for the 8-task problems are approximately double those of the 7-

tasks projects. The most likely explanation for this is that the addition of new tasks

increases the number of possible solutions to the problem and affects the time taken

for GA to converge to the benchmark solutions.

5.2.6 Minimization of idle periods for CPM schedules

Analysis of the results obtained from CPMA schedules reveals some interesting

observations with regard to the objective of minimizing the idle periods in the

schedule. Firstly, it is observed that the schedules obtained by CPMA under different

 72

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

H

Unit finish

G

Miscellaneous

work

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

H

Unit finish

G

Miscellaneous

work

A

Concrete work

B

Structural steel

C

Plumbing work

D

Precast wall

E

Electrical work

F

Ceiling work

H

Unit finish

G

Miscellaneous

work

RE = 0.6

RE = 0.73

RE = 0.8

Figure 5.9 Illustrations of three 8-task networks with different restrictiveness estimators

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45

Repetitive units

C
P
U
 t
im

e
 (
S
ec
o
n
d
s)

RE = 0.6 for network with 8 tasks

RE = 0.73 for network with 8 tasks

RE = 0.80 for network with 8 tasks

RE = 0.4 for network with 7 tasks

RE = 0.6 for network with 7 tasks

RE = 0.8 for network with 7 tasks

Figure 5.10 Average time of convergence for networks with different restrictiveness estimators

 73

due date constraints are identical for each given number of repetitive units.

Furthermore, the crew size compositions obtained from CPMA are identical across all

the cases of varying due date constraints and repetitive units for the given network. In

other words, the crew size composition is identical for a 5-unit or 40-unit project for

example. These two observations, taken together, suggest that for a given network

there exists an optimal composition of crew sizes that minimizes the total idle period

regardless of the due date constraints and repetitive units. The deterministic early start

heuristic used within CPMA does not seem to be responsive to different due date

constraints and the number of repetitive units.

The existence of this optimal crew size composition can be explained in relation to Fig.

3.3, which illustrates that the calculation of idle days is dependent on the effective

durations and durations of the tasks. In addition, since there are Q-1 finish-to-start

intervals for every task that is repeatedly executed over Q units, the total period of

work discontinuity for a task i is equals to (Q-1)*(Max[0, Di -Ti]). This mathematical

expression establishes that the period of work discontinuity in a schedule depends only

on the task durations and the precedence relationships between different tasks from the

calculations of effective durations using Eqn. 3.5. Therefore, the minimum length of

idle periods for a network with any number of repetitive units is given by the same set

of task durations.

Consequently, an optimization function for minimizing the idle periods in schedules

derived from CPM calculations can be developed:

∑
=

−=
M

i

iiCPM TDMAXZMIN
1

)](,0[(5.2)

 74

The development of this optimization function has two purposes. Firstly, it defines the

variables that affect the length of idle periods that exists in schedules derived using the

CPM calculation. In doing so, it illustrates how the work rates of preceding tasks affect

the state of work continuity of subsequent tasks, and where work discontinuity exists,

it quantifies the length of the idle periods. Therefore, project planners who are using

CPM equations to schedule repetitive projects can still minimize the total idle periods

in the schedules by making an informed selection of the appropriate set of task

durations.

Secondly, the optimization function requires only minimal information of the

precedence constraints between tasks and the set of possible durations for each task. If

the number of possibilities is not great, a simple iterative process can be set up using

an electronic spreadsheet to determine the optimal composition of task durations. An

example of the iterative approach for minimizing idle periods in CPM schedules is

illustrated in Appendix C.

However, the optimization function gives equal weightage to each idle day regardless

of the number of workers involved and it cannot distinguish between idle periods that

involve one worker or ten workers. Notwithstanding this shortcoming, the iterative

process is a simple and quick way to optimize the schedules of repetitive projects,

especially when the early-start CPM heuristic is adopted for scheduling.

 75

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

This chapter first summarizes the significant findings and observations in this thesis.

This is followed by a discussion of the limitations of the study, before

recommendations are made for future research.

6.1 Conclusions

The repetitive nature of multiple-units construction projects necessitates the creation of

schedules with continuous and uninterrupted workflows for the tasks involved.

However, maintaining work continuity for some tasks can lengthen the project

duration, leading to a possible conflict of interest between the sub-contractor and the

main contractor. This thesis proposed an efficient way to schedule repetitive projects

by introducing a set of recurrence equations that considers work continuity. The

proposed equations retain the analytical capability to calculate important scheduling

parameters like total floats and are flexible enough to incorporate specific user-

specified scheduling constraints. A case study illustrated the working of this set of

equations in scheduling repetitive projects, and the schedule information calculated

was represented in various graphical forms to convey the information to the end-user

effectively.

The recurrence equations form the basis of Genetic Algorithms Recurrence-equations

Approach (GARA) for optimizing schedules of repetitive projects. The schedules are

optimized with respect to tardiness (delay in meeting project deadline) as well as the

degree of work discontinuity. Work continuity and crew size both influence the

 76

scheduling of repetitive projects, and are incorporated into the recurrence equations.

The GA was used to search for the best settings for these two kinds of decision

variables. The results obtained using GARA were compared against those obtained

using two other scheduling methods. The following sections present summarized

analyses of the experimental results obtained.

 6.1.1 Increasing the number of repetitive units

Repetitive projects are characterized by the existence of numerous units, and the

performance of GARA is evaluated across increasing number of repetitive units. In

terms of computational results, the schedules produced by GARA were at least as good

as the schedules obtained from GSA and CPMA for all the cases considered. More

significantly, GARA was able to produce schedules that incur lower penalties than

those obtained from GSA and CPMA under tight and medium due date constraints and

the performance of GARA improved with an increasing number of repetitive units.

Finally, under relaxed due date constraints, GARA was able to return schedules that

ensure punctual project completions while at the same time maintain full work

continuity for every construction task involved.

The inferior results from CPMA can be attributed to the huge work discontinuity

penalty that it incurred. As the number of repetitive units multiples, the total length of

idle periods for schedules under CPM invariably increases and CPMA is penalized for

its inability to maintain work continuity. On the other hand, GSA did badly because it

sacrifices timely project completions for work continuity. This is especially

detrimental when the projects have tight schedules for completion. Therefore, GSA is

 77

heavily penalized in terms of the tardiness penalty, causing it to perform poorly in

comparison to GARA.

The increasing disparity between the results obtained by GARA and the control cases

illustrates that it is insufficient to focus on either work continuity or punctual

projection completion alone, especially when multiple repetitive units are involved. In

essence, it emphasizes the importance of work continuity as a scheduling consideration

in the management of construction projects involving increasing number of repetitive

units.

6.1.2 Imposing different due date constraints

GARA was able to return schedules with the lowest penalties under all three different

types of due date constraints. In fact, the performance of GARA was most outstanding

under tight schedules with increasing number of repetitive units when compared to the

solutions from the control cases. Furthermore, GARA was able to generate improved

solution as the due date constraints were relaxed.

GARA’s superior performance, especially under tight due date constraints, can be

attributed to its ability to make meaningful trade-offs between work continuity and

project durations. By appropriately delaying the start date of the first activities, GARA

was able to seek out the best composition of tasks with which work continuity can be

imposed for a given completion deadline to minimize the work discontinuity penalty

without jeopardizing project tardiness.

 78

 6.1.3 Different means of imposing work continuity

Although GARA-II is able to consider the possibility of partial work continuity, it

returned the best solution in only one instance when compared to GARA-I.

Nonetheless, analysis of this single case wherein GARA-II performed better illustrated

two potential advantages for its use. Firstly, by considering partial work continuity, the

idle periods were re-distributed among several tasks, resulting in a lower work

discontinuity penalty. Secondly, the re-distribution of idle periods among several tasks

so that all or most trade specialists can enjoy some degree of work continuity might be

more favorable than to have full work discontinuity on a few tasks.

However, GARA-II was consistently outperformed by GARA-I despite its potential

advantages. This can be explained by the increase in number of possible solutions as

the number of repetitive units or tasks increase, and this rapidly expanding search

space restricted the efficiency for GA to seek the best solutions. In contrast, the search

space for GARA-I is dependent only on the number of tasks, and this translates to a

smaller search space in which convergence can be more rapid.

6.1.4 Time of convergence

The performance of GARA-I is further investigated in terms of its time of convergence

for networks with varying complexity quantified by the restrictiveness estimator (RT).

The results indicted that there was no significant different in the time of convergence

for networks with the same number of tasks but different RT values over various

number of repetitive units. Instead, the time to convergence increases only when an

additional task was added to the network. This increase can be attributed to an

increased in the number of possible solutions, which resulted in longer research times

 79

for the best solutions. In addition, it was observed that there was a minimal increase in

the convergence time as the number of units increased. This can be explained by the

longer computation time required to evaluate the recurrence equations used to calculate

the start / finish times for each activity.

6.2 Limitations of the Study

There are several limitations in the proposed model. Firstly, the recurrence equations

assumed that the set-up time for an activity is negligible. However, some tasks in real-

life involve extensive machinery setup and the time incurred due to this operation can

be significant thereby affecting the computation of the appropriate delay on the first

activities in order to ensure work continuity. It is likely that the computed project

duration will be underestimated when these set-up times are not taken into account.

Secondly, the penalty defined in the objective function is assumed to be the same for

each day of work discontinuity regardless of where the idle day occurs. For example,

the objective function assumes that a given period of idle days that occurs between the

first and second activities incurs the same penalty as where the period of idle days

occurs between the 30
th
 and 31

st
 activities. However, this assumption may not

accurately reflect the costs incurred by the sub-contractor due to work discontinuity in

real-life, particularly in construction projects for multi-story buildings. For instance,

the work discontinuity costs for tasks like slab casting in multi-story building

construction projects may increase for higher stories due to the additional costs

incurred for reestablishing the raw material supplies to the higher levels. Therefore, it

would be beneficial to investigate the nature of the major tasks in a repetitive project,

 80

and apply an appropriate distribution of work discontinuity costs for each activity of

every task.

Finally, the model has not been extensively tested on real-life projects with specific

scheduling constraints and planning idiosyncrasies. Therefore, the usefulness of

GARA for scheduling repetitive projects in real-life industry context cannot be readily

assessed.

6.3 Recommendations for Future Research

The following issues are identified as directions for possible future research to improve

the proposed recurrence equations and optimization approach for schedules of

repetitive projects:

1. Improvements on the recurrence equations

The set of recurrence equations can be improved by incorporating the relevant set-up

time for every activity. This can be done by introducing a new term in the equations to

account for this additional amount of time required to recommence an activity. In

addition, the recurrence equations can be enriched to deal with schedules that require

various unique requirements. In doing so, the effectiveness of this set of proposed

equations will be increased, and end-users need not modify the equations in order to

enjoy its functionalities.

2. Resource availability

GARA assumes that the limiting resource is always the crew. However, it is possible

that resources like tools, machineries, and even workspace are the limiting factor in

 81

real life. Therefore, a resource model can be developed to account for the availability

of various resources required for any particular task. This resource model should

ideally be able to “communicate” with GARA in the optimization process in order to

produce schedules that are more comprehensive.

3. Preferred workflow

GARA assumes work continuity is equally preferred whether at earlier or later

activities of a task. However, specific trades could associate different costs for work

discontinuity at various stages of their work. Therefore, in order to generate schedules

that are more realistic to life-real demands, the preferred workflow for every major

trade should be investigated. The objective function can then be modified accordingly

to reflect the suitable penalties for discontinuous workflow at various activities for

each task.

4. Genetic Algorithms Parameters Setting

The need to define the optimal GA parameters for the best solution sets cannot be

compromised. The crossover and selection operators used, the population size, the

terminating criterion and the crossover and mutation rates will require further

investigation to be optimized.

5. User Interface

Lastly, a friendly user interface will be beneficial for the application of the proposed

model in the industry. Naturally, the interface should incorporate the user-input

interface for specific schedule requirements. The output interface can present the

schedules in generic Gantt charts and linear schedules, or other predefined

 82

representations like matrix schedules. One might even indulge the managers by

presenting a number of different alternative schedules, each optimized for different

evaluation parameters.

 83

REFERENCES

Ashley, D. B. (1980). Simulation of repetitive-unit construction. Journal of

Construction Engineering and Management, ASCE, 112(3), pp. 411-424.

Barrie, D. S., and Paulson, B. C. J. (1992). Professional Construction Management, 3
rd

Ed., McGraw-Hill, New York.

Chan, W. T., Chua, D. K. H., and Kannan, G. (1996). Construction resource

scheduling with genetic algorithms. Journal of Construction Engineering and

Management, ASCE, 122(2), pp. 125-132.

Chan, W. T., and Hu, H. (2002) Production scheduling for precast plants using a flow

shop sequencing model. Journal of Computing in Civil Engineering, ASCE, 16(3), pp.

165-174.

Chrzanowski, E. N., and Johnston, D. W. (1986). Application of linear scheduling.

Journal of the Construction Division, ASCE, 112(4), pp. 476-491.

Feng, C. W., Liu, L., and Burns, S. A. (1997) Using genetic algorithms to solve

construction time-cost trade-off problems. Journal of Computing in Civil Engineering,

ASCE, 11(3), pp. 184-189.

Gen, M., and Cheng, R. W. (1997). Genetic Algorithms and Engineering Design,

Wiley, New York.

Harmelink, D. J., and Rowings, J. E. (1998). Linear scheduling model: Development

of controlling activity path. Journal of the Construction Division, ASCE, 124(4), pp.

263-268.

Harris, R. B., and Ioannou, P. G. (1998). Scheduling projects with repeating activities.

Journal of Construction Engineering and Management, ASCE, 124(4), pp. 269-278.

 84

Hegazy, T. (1999). Optimization of resource allocation and levelling using genetic

algorithms. Journal of Construction Engineering and Management, ASCE, 125(3), pp.

167-175.

Hegazy, T., and Wassef, N. (2001). Cost optimization in projects with repetitive

nonserial activities. Journal of Construction Engineering and Management, ASCE,

127(3), pp. 183-191.

Holland, J. (1975). Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Anbor, Michigan.

Johnston, D. W. (1981). Linear scheduling method for highway construction. Journal

of the Construction Division, ASCE, 107(2), pp. 247-261.

Kaimann, R. A. (1974). Coefficient of network complexity. Management Science, 21,

pp. 172-177.

Kallantzis, A., and Lambropoulos, S. (2004) Discussion of “Comparison of linear

scheduling model and repetitive scheduling method”. Journal of the Construction

Division, ASCE, 130(3), pp. 463-467.

Kang, L. S., Park, I. C., and Lee, B. H. (2001). Optimal schedule planning for multiple,

repetitive construction process. Journal of Construction Engineering and

Management, ASCE, 127(5), pp. 382-390.

Leu, S.-S., and Yang, C.-H. (1999) GA-based multicriteria optimal model for

construction scheduling. Journal of Construction Engineering and Management,

ASCE, 125(6), pp. 420-427.

Li, H., Cao, J.-N., Love, P. E. D. (1999) Using machine learning and GA to solve time-

cost trade-off problems. Journal of Construction Engineering and Management,

ASCE, 125(5), pp. 347-353.

 85

Li, H., and Love, P. (1997) Using improved genetic algorithms to facilitate time-cost

optimization. Journal of Construction Engineering and Management, ASCE, 123(3),

pp. 233-237.

Lumsden, P. (1968). The Line of Balance Method, Pergamon Press Ltd., Industrial

Training Division, London.

Mattila, K. G., and Abraham, D. M. (1998) Resource levelling of linear schedules

using integer linear programming. Journal of Construction Engineering and

Management, ASCE, 124(3), pp. 232-244.

Mattila, K. G., and Park, A. (2003). Comparison of linear scheduling model and

repetitive scheduling method. Journal of the Construction Division, ASCE, 129(1),

pp. 56-64.

Moselhi, O., and El-Rayes, K. (1993). Scheduling of repetitive projects with cost

optimization. Journal of Construction Engineering and Management, ASCE, 119(4),

pp. 681-697 .

Moselhi, O., and Hassanein, A. (2003). Optimized scheduling of linear projects.

Journal of Construction Engineering and Management, ASCE, 129(1), pp. 664-673.

Neale, R. H., and Neale, D. E. (1989). Construction Planning, 1st Ed., Thomas Telford

Ltd., London, England.

O’Brien, J. J. (1975). VPM scheduling for high-rise buildings. Journal of the

Construction Division, ASCE, 101(4), pp. 895-905.

O’Brien, W. J., and Fischer, M. A. (2000). Importance of capacity constraints to

construction cost and schedule. Journal of Construction Engineering and

Management, ASCE, 126(5), pp. 366-373.

Reda, R. M. (1990). RPM: Repetitive project modelling. Journal of Construction

Engineering and Management, ASCE, 116(2), pp. 316-330.

 86

Selinger, S. (1980). Construction planning for linear projects. Journal of the

Construction Division, ASCE, 106(2), pp. 195-205.

Suhail, S. A., and Neale, R. H. (1994). CPM/LOB: New methodology to integrate

CPM and line of balance. Journal of Construction Engineering and Management,

ASCE, 120(3), pp. 667-684.

Thesen, A. (1977). Measures of the restrictiveness of project networks. Networks, 7,

pp. 193-208.

Yamin, R. A., and Harmelink, D. J. (2001). Comparison of linear scheduling model

and critical path method. Journal of Construction Engineering and Management,

ASCE, 127(5), pp. 374-381.

Zheng, D. X. M., Ng, S. T., and Kumaraswamy, M. M. (2004) Applying a genetic

algorithm-based multiobjective approach for time-cost optimization. Journal of

Construction Engineering and Management, ASCE, 130(2), pp. 168-176.

 87

APPENDIX A

Discussion on the search space of GARA-II

 88

In GARA-II, the decision variable of work continuity is represented by an integer

value with which the earliest completion of the first activity of a task is delayed and

this integer value is bounded by the range of (0, 1, 2, …, (Q - 1)Max[0, (Di – Ti)]). In

order to illustrate the computation of the number of possible solutions, assume that a

project consists of three tasks A, B and C with durations of 10, 8 and 5 days

respectively to be executed over five units, where task A precedes task B, and task B in

turn precedes task C. The calculation for the total number of possible schedules under

GARA-II is shown in Table A1.

Analogous to the above illustration, the number of possible solutions using the

scheduling parameters in the experiment for GARA-II is:

}1)](,0[{)1(3

}1)](,0[{)1(3

7

2

67

7

2

7

+−×−×=

+−×−×=

∏

∏

=

=

i

ii

i

ii

TDMAXQ

TDMAXQ

solutionspossibleofnumberTotal

 (A.1)

The term of 37 accounts for the three choices of crew size for each task. Eqn. A.1

illustrates that the search space for GARA-II is related to the number of repetitive units

by the term (Q-1)
6
. Fig. A1 illustrates the rapid increase in the value of the (Q-1)

6
 term

with increasing number of repetitive units, which in turn suggests show that the search

Task A B C

(Q - 1)Max[0, (Di – Ti)] 0 4*2 = 8 4*3 =12

Number of terms in the range

(0, 1, 2, …, (Q - 1)Max[0, (Di – Ti)])

1 9 13

Number of possible solutions under GARA-II

1*9*13 = 117

Table A1 Sample calculation for the number of possible schedules considered under GARA-II

 89

space for GARA-II also increases rapidly. Therefore, the poor performance of GARA-

II and the significantly higher amount of time that it needs to search for the best

solutions can be explained by its comparatively large and rapidly increasing search

space.

5.95E+08

3.52E+09

4.10E+03 5.31E+05 4.70E+07

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0 5 10 15 20 25 30 35 40 45

Repetitive units, Q

(Q
-1
)
to
 t
h
e
 p
o
w
er
 o
f
6

Figure A1 Variations of the (Q-1) term with respect to the number of repetitive units

 90

APPENDIX B

Discussion on the reachability matrix

 91

The computation of RT requires the construction of a reachability matrix R = [rij], such

that rij is equals to one if there is a path from node i to node j; otherwise, rij is equals to

zero. For example, the reachability matrix for one unit of the network used in the

experiment (Fig. 1.1) is:

G

F

E

D

C

B

A

R





























=

1000000

1100000

1110000

1101000

1000100

1111110

1111111

To illustrate the workings of R, consider row 3, which represents the available paths

for task C. Since there cannot exist a path from task C to task A and B, r31 and r32 are

both equal to zero. Similarly, no path exists between task C and task D / task E, and

accordingly, r34 and r35 are zeros. Finally, r37 reflects the fact that a path exists from

task C to task G.

 92

APPENDIX C

Illustration of the iterative approach for minimizing idle

periods in CPM schedules

 93

Fig. C1 illustrates the workings of this iterative process under spreadsheet modeling.

Using the scheduling data in Table 5.1, the optimal set of task durations for which the

total idle period in the CPM schedule is minimized by first creating two new columns

of calculations: (1) the effective duration for each task calculated using Eqn. 3.3, and

(2) the value of the function MAX[0,(Di – Ti)]. Assuming that the task durations are

their maximum values initially, the starting value of the optimization function is 36

days. From the calculations of the effective duration, it is noted that the effective

duration of task B, DB, is equals to the duration of A, TA. Therefore, in the first

iteration, TA is reduced to 9 days so that the value of DB – TB is minimized.

Corresponding, the difference between the effective duration and the duration of tasks,

B, C, and D are also minimized. In the second iteration, the duration for task F is

reduced in order to reduce the effective duration of task G in the second iteration. The

two iterations reduce the optimization function to 11 days, which corresponds to the

Figure C1 Iterative method to determine the optimal values of Ti

 94

value found in CPMA. Subsequently, the idle period in the schedule for any given

number of repetitive units (Q) can be computed by (Q-1) x ZCPM.

