

A LOW POWER DESIGN FOR
ARITHMETIC AND LOGIC UNIT

NG KAR SIN
(B.Tech. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF

ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48627531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who have directly or

indirectly provided advice and assistance during the course of my research in the

NUS.

Assoc. Prof. Tay Teng Tiow (NUS), who has led me to the proposal of this project.

He has provided invaluable guidance, suggestions and support throughout the course

of research. During times of difficulties, he has also shown much understanding and

patience, which makes this course a memorable part of my life.

Mr Zhu Xiao Ping and Mr Pan Yan, for their times in several constructive discussions

over technical and academic problems. These discussions often helped to clarify

questions that are related to the research interest.

Miss Rose Seah and Mr Teo King Hock, for their prompt logistic support in the lab,

which provided me a conducive environment to work in the lab.

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS ii

SUMMARY v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS x

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Related Work 2

1.3 Project Proposal 5

1.4 Project Overview 6

1.5 Scope of Project 9

1.6 Thesis Organization 10

CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

2.1 ALU Design 12

2.2 Hardware Components 15

2.2.1 Decode and Control Unit 15

2.2.2 Functional Units 16

2.2.3 Register File 17

2.3 Software Instruction Scheduler 20

 iii

2.3.1 Avoiding Hazards with Wait States 21

2.4 Chapter Summary 22

CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

3.1 CMOS Circuits 24

3.1.1 Circuit Design 24

3.1.1.1 CMOS Logics 24

3.1.1.2 Circuit Size 26

3.1.1.3 Simulation 26

3.1.2 Power Consumption 26

3.1.2.1 Dynamic Switching Power 28

3.1.2.2 Short Circuit Current Power 29

3.1.2.3 Leakage Current Power 31

3.2 Functional Units 33

 3.2.1 Circuit Models 33

 3.2.2 Circuit Synthesis 34

 3.2.3 Logic and Bit Operation Circuits 37

 3.2.4 Addition Circuits 38

 3.2.5 Subtraction Circuits 42

 3.2.6 Multiplication Circuits 44

 3.2.7 Division Circuits 47

3.3 Analysis 51

 3.3.1 Power Saving 51

 3.3.2 Optimal Clock Period 52

 3.3.3 Area Penalty 55

 iv

3.4 Chapter Summary 55

CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

4.1 Instruction Scheduling 57

4.1.1 Background 57

4.1.2 Scheduling Algorithms 58

4.1.3 Performance Optimality 59

4.2 Software Instruction Scheduler 61

4.2.1 Introduction 61

4.2.2 Scheduling Process 62

 4.2.2.1 Initialization Phase 63

 4.2.2.2 Scheduling Phase 66

4.3 Analysis 75

4.3.1 Good and Bad cases 75

4.3.2 Statistics and Power Savings 78

4.4 Chapter Summary 80

CHAPTER 5 CONCLUSIONS

5.1 Conclusions 81

5.2 Future Work 84

APPENDIX 87

BIBLIOGRAPHY 97

 v

SUMMARY

The rise of portable devices with wireless network connections has lead to demands

on microprocessors to deliver high performance and yet consume low power. This

project works on a design for a single-issue 32-bit integer pipelined ALU that

comprises two kinds of functional units: one with fast performance and high power

consumption and another with slow performance and low power consumption. Both

are used to execute instructions, but slow functional units are used whenever possible,

for the reason of reducing power consumption.

The ALU architecture comprises a Control Unit, Register File and the mentioned

functional units. To make use of this architecture effectively, an offline software

instruction scheduler is used to identify and create specific situations for the slow

functional unit to be used. The specific situations occur when:

1. there are no subsequent instructions depending on the current instruction;

2. the current instruction has been scheduled for advanced execution;

3. the dependent subsequent instructions are scheduled for a later execution.

When the above situations are identified, slow functional units are used to execute

instructions.

However, using two functional units with different levels of performance can cause

instruction execution to be in-orderly issued but out-of-orderly executed. As such,

instruction execution and retirement have to be properly synchronized to ensure that

registers write-backs are performed correctly. This can be achieved by using the

 vi

Control Unit to synchronize all instruction issues and executions, and updating the

Register File at appropriate timings.

The software instruction scheduler mentioned earlier analyzes and rearranges PIns in

the programs, resulting in specific situations being identified or created so that slow

functional units are used. After analyzing and rearranging the PIns, the scheduler

generates two types of directives for the assembler to work with. The first type of

directives indicates selected PIns that can be executed with slow functional units. The

assembler uses these directives to compile selected PIns with MIns that are executed

with the specified slow functional units. The second type of directives indicates stalls

in the pipeline caused by unresolvable instruction dependencies. The assembler uses

these directives to embed stall information into opcodes, so that the ALU can delay

instruction issue appropriately. In this way, delay instructions such as “NOP” are

avoided and the power consumed by fetching and executing such instructions is

saved.

Therefore, our proposed ALU consumes power for instruction executions only at run

time, since there is no other real time activity happening during operation. Hence, it is

therefore capable of attaining low power.

 vii

LIST OF TABLES

Table 3.1 Synthesis process for behavioural model adder 35

Table 3.2 Behavioural model adder circuit synthesis 42

Table 3.3 Behavioural model subtractor circuit synthesis 43

Table 3.4 Behavioural model multiplication circuit synthesis 44

Table 3.5 Multiplication circuits synthesis 46

Table 3.6 Behavioural model division circuit synthesis 48

Table 3.7 Division circuit synthesis performance 51

Table 3.8 Functional unit implementation 52

Table 3.9 Slack computations 54

Table 3.10 Average Normalized Slacks 54

Table 3.11 Area of ALU 55

Table 3.12 Ratio of circuit area 55

Table 4.1 GIn mnemonic descriptions 65

Table 4.2 GIn segment for Case 1 76

Table 4.3 Program segment for Case 1 76

Table 4.4 GIn segment for Case 2 77

Table 4.5 Program segment for Case 2 77

Table 4.6 GIn segment for Case 3 78

Table 4.7 Program segment for Case 3 78

Table 4.8 Statistics on tested programs 79

Table 4.9 Number of instructions assigned to use slow functional unit 79

Table 4.10 Estimated power consumption savings 79

 viii

LIST OF FIGURES

Fig. 1 Instruction execution with slow functional unit 8

Fig. 2.1 ALU Architecture 13

Fig. 2.2 MIns concurrent retirement 19

Fig. 3.1 Pass transistor (Left and Center) and CMOS circuit (Right) 25

Fig. 3.2 Static (leakage) power against channel (gate) length 27

Fig. 3.3 Dynamic switching power consumption; sources of capacitance 28

Fig. 3.4 Two transistor inverter circuit 30

Fig. 3.5 Inverter circuit electrical signals 31

Fig. 3.6 Reverse-bias diodes in CMOS inverter circuit 32

Fig. 3.7 Full Adder cell 39

Fig. 3.8 Carry Ripple adder design 39

Fig. 3.9 4-bit Carry Look Ahead adder 40

Fig. 3.10 Behavioral model Carry Ripple adder schematic 41

Fig. 3.11 Behavioral model CLA adder schematic 42

Fig. 3.12 Subtraction circuit implementation 43

Fig. 3.13 Behavioural model multiplier schematic 44

Fig. 3.14 Simple paper and pencil multiplication algorithm 45

Fig. 3.15 Modified multiplication algorithm 46

Fig. 3.16 Modified multiplication circuit schematic 46

Fig. 3.17 Behavioral model division circuit schematic 47

Fig. 3.18 Non-performing division algorithm 49

Fig. 3.19 5-bit non-performing division process 50

Fig. 3.20 Non-performing division circuit schematic 50

 ix

Fig. 4.1 Performance optimality with normalized number of 60
independent instruction of 0.65

Fig. 4.2 Performance optimality with normalized number of 61

independent instruction of 0.8

Fig. 4.3 Scheduling Phase Interim Algorithm Flow Chart 69

Fig. 4.4 Scheduling Phase Final Algorithm Flow Chart 74

 x

LIST OF SYMBOLS

 CL Load Capacitance

 ∆V Voltage Change

 VDD Supply Voltage

 clkf Clock Frequency

α Activity Factor

F0-1 Low-to-High Transitions

VTn Threshold Voltage of NMOS

VTp Threshold Voltage of PMOS

TWorst Rise Worst Rise Time

TWorst Fall Worst Fall Time

 CHAPTER 1 INTRODUCTION

 1

CHAPTER 1

INTRODUCTION

This chapter is divided into four sections: 1.1 Background, 1.2 Related Work, 1.3

Project Proposal, 1.4 Project Overview and 1.5 Project Scope.

1.1 Background

Portable devices with wireless network connections such as Personal Digital

Assistants (PDA), cellular phones and Global Positioning System (GPS) navigators

have become increasing popular and widely-used over the past few years. One reason

for the widespread adoption is their usability such as a transformation to a graphical

interface. The ability for such a transformation has much to do with the high

performance microprocessors embedded in them. Not only are the microprocessors

expected to execute complicated functions, but they also should sustain reasonably

long usage times giving rise to a need for low power consumption. This explains why

a lot of research effort and technological developments centre on building

microprocessors that can deliver high performance and yet consume minimal power.

In this preceding chapter, we will explore briefly some techniques that have been

developed to reduce power consumption in microprocessors. A general understanding

 CHAPTER 1 INTRODUCTION

 2

of the technological development on this front will foster a clearer understanding of

the project’s objectives and where our ALU design stands in comparison with the

techniques of reducing power consumption in microprocessors.

1.2 Related Work

Research on low power microprocessors has mainly been concerned with reducing

power consumption while maintaining optimum performance levels. There are

different techniques of reducing power consumption in microprocessors. Primarily, it

is done either by lowering the supply voltage through hardware in conjunction with

software support (e.g. Dynamic Voltage Scaling), or by reducing switching activities

during runtime operations with an offline software support (e.g. offline intelligent

compiler).

The power consumption of a microprocessor is directly proportional to the level of its

performance, so the higher its level of performance, the more power the

microprocessor consumes and vice versa (full details of microprocessor power

consumption are described in Section 3.1). The technology that has been developed to

reduce power consumption in a microprocessor works mainly around this

relationship.

One problem arises when supply voltage is lowered to reduce power consumption in

the microprocessor; the digital circuits in the microprocessor become more

susceptible to noise. In order to ensure the proper function of circuits, the decrease of

supply voltage has to be concurrent with lowering the clock frequency [1]. However,

performance must not be compromised when clock frequency is reduced.

 CHAPTER 1 INTRODUCTION

 3

The Dynamic Voltage Scaling (DVS), is an example of a previously developed

technique which meets this requirement. The DVS technique enables optimum

performance in a microprocessor, even when supply voltage is lowered to reduce its

power consumption [2, 3]. With this technique, a hardware voltage scheduler controls

the supply voltage based on data from a feedback register, while clock frequency is

regulated with a voltage-controlled oscillator that tunes the frequency as the supply

voltage varies. It is this aspect of the technique that ensures the digital circuits

function accurately and performance maintain optimally.

Software support for DVS is in the form of a real time process running on the

Operating System, which updates data stored in the feedback register. This real time

process monitors the microprocessor performance and computational load based on

slack analysis [4, 5, 6, 7]. Depending on the rise or fall of values recorded on the

feedback register, the level of computational demand is adjusted accordingly.

An alternative to a real time process is an offline intelligent compiler, which is

another form of software support [8, 9, 10]. It is used to identify program regions

where application of voltage scaling is required during compilation. The compiler

embeds directives into instructions to update the feedback register during runtime

operation. Data stored in the feedback register in turn communicates the level of

performance required to meet computation demands to the microprocessor. As with

the DVS technique, supply voltage and clock frequency is tuned as data is updated, so

the microprocessor’s optimum performance is maintained while reducing power

consumption.

 CHAPTER 1 INTRODUCTION

 4

Microprocessors designed for portable devices are capable of decreasing supply

voltage to reduce power consumption. Some examples of these microprocessors are

the ARM11 series and IBM 405LP for portable handheld devices and the Intel

Centrino and TransMeta Crusoe series for laptops and notebook personal computers.

In these microprocessors, power consumption reduction also lies in the design of their

functional circuits. The functional circuits built into these microprocessors have been

specially designed for performance while consuming minimal power. This is evident

in the analysis of the circuits’ datapath, which reveals how switching activities in

these functional circuits have been optimized for low power consumption [11].

Intentionally designed for frequently-used functions like addition [12, 13, 14, 15] and

multiplication [16, 17, 18], the circuits are implemented with CMOS logic due to its

low power consumption. These two design features of the functional circuits thereby

result in switching activities with low power consumption. More on CMOS logic is

described in Section 3.1.

Software also has a key role in reducing the power consumption of microprocessors.

An offline software that is able to analyze programs and rearrange instructions can cut

down microprocessor activities like memory accesses and signal switching within

circuits to maintain low power consumption [19]. In the case of VLIW based

microprocessors, software is commonly used to perform loop unrolling, software

cache prefetch and software pipelining on instructions, which reduces pipeline stalls

and improves performance of the microprocessor. Drawing on the same approach,

software can reduce power consumption by expressly reducing the amount of memory

accesses for data fetch [20]. The use of software can also reduce switching activities

 CHAPTER 1 INTRODUCTION

 5

by rearranging instructions based on Hamming distance [8] and power consumed

between instruction transitions [21, 22].

1.3 Project Proposal

While lowering supply voltage and decreasing the frequency of switching activities

are prevalent techniques of reducing power consumption in microprocessors, they

also have several disadvantages.

First, while supply voltage reduction effectively lowers power consumption, its

application is limited to the functional units in the microprocessor circuits. Moreover,

the voltage-reduced circuits require additional interfacing circuits to connect them to

other circuits that work with different supply voltages.

Second, with voltage reduction during real time operation, the Operating System is

required to update the voltage reduction mechanism frequently. Not only does this eat

into overheads required by the microprocessor to compute the real time slacks during

runtime, it also consumes extra energy to deliver the computations. On the other hand,

offline optimization software activities are performed only during the compilation

stage on development machines, and no overheads are incurred during runtime.

The project proposes a design for low power consumption ALU that exploits the

benefits of offline software, which can work alone in delivering minimum power

consumption or work alongside supply voltage reduction technology to deliver even

lower power consumption. Our ALU architecture consists of a set of fast and slow

functional units. Fast functional units deliver high performance, but consume a

 CHAPTER 1 INTRODUCTION

 6

considerable amount of power as they use parallel circuits to carry out computations.

Slow functional units on the other hand use simpler circuits to perform computations

and consume less energy, but take a longer time to complete the computations.

An instruction scheduler was developed to analyze and rearrange instructions to

execute with slow functional units before opcode assembly. The instruction scheduler

generates directives for the assembler to assemble opcodes executed with slow

functional units during runtime, a feature not available in other microprocessors in the

market.

There are many advantages and plus points to the design of our ALU. Not only does it

consume minimal power during runtime, it does not require real time process to

monitor performance. Neither is a hardware circuit needed to tune the supply voltage.

Compared with other models operating on the supply voltage reduction principle, the

ALU we have designed is far simpler. This is another boon, because the simplicity in

design means voltage reduction techniques can be additionally incorporated into the

ALU to further reduce power consumption of the microprocessor.

An overview of the ALU design is described in Section 1.4, with full details on the

ALU design is described in Chapter 2.

1.4 Project Overview

This project works on a design for a single-issue 32-bit integer pipelined ALU that

comprises two kinds of functional units: one with fast performance and high power

consumption and another with slow performance and low power consumption. Both

 CHAPTER 1 INTRODUCTION

 7

are used to execute instructions, but slow functional units are used whenever possible,

for the reason of reducing power consumption. An instruction scheduler is used to

identify and create specific situations for the slow functional unit to be used.

It has been observed that in a conventional pipeline, instructions are usually executed

with fast functional units. Data is processed as quickly as possible and instructions are

passed down without stalling the pipeline. However, there are situations where fast

functional units are not required to execute instructions. These situations occur when:

1. there are no subsequent instructions depending on the current instruction;

2. the current instruction has been scheduled for advanced execution;

3. the dependent subsequent instructions are scheduled for a later execution.

When instructions do not require immediate execution, slow functional units can be

used to reduce power consumption without incurring loss in performance. This

applies to the ALU design, when the above situations are identified.

However, using two functional units with different levels of performance can cause

instruction execution to be in orderly issued but out of orderly executed [23, 24]. As

such, instruction execution and retirement have to be properly synchronized to ensure

that registers write-backs are performed correctly. Figure 1 shows an example of a

situation when slow functional units are used to execute instructions with the

following code sample. The pipeline stages used in Figure 1 are “F” for fetch, “D” for

decode, “E” for execute and “W” for write-back. For instructions that require more

than one execution stage, “En” is used to indicate execution and n is an integer that

indicates the number of executing stage.

 CHAPTER 1 INTRODUCTION

 8

Instructions Cycles 0 1 2 3 4 5 6 7 8 9
Mov ax, bx 1 F D E W
Add ax, bx 1 F D E W
Push bx 1 F D E W
And bx, dx 1 F D E W
Mov si, bx 1 F D E W

Part
A

Pop bx 1 F D E W

Instructions Cycles 0 1 2 3 4 5 6 7 8 9
Mov ax, bx 1 F D E W
Add ax, bx 4 F D E1 E2 E3 E4 W
Push bx 1 F D E W
And bx, dx 1 F D E W
Mov si, bx 1 F D E W

Part
B

Pop bx 1 F D E W

Fig. 1 Instruction execution with slow functional unit

From Figure 1, Part A shows a conventional pipeline with regular stages for all

instruction executions. In Part B, since the “add” instruction is not depended

subsequently, it can be executed with slow functional units without affecting the

performance or correctness of the program execution. Hence, arithmetic instructions

like “add” in the above example can now be implemented with two functional units

of different performance. To the programmer, the instructions appear the same since

there is no need to know about the underlying instruction execution process. To the

ALU, however, all instructions must be unique so the required functional unit is

correctly selected for execution. To distinguish instructions for programmer and ALU,

the instructions programmers use will be defined as “Programmer’s Instructions” or

“PIns”. Instructions that the ALU executes will be defined as “Machine Instructions”

or “MIns”.

The software instruction scheduler mentioned earlier analyzes and rearranges PIns in

the programs, resulting in specific situations being identified or created so that slow

functional units are used. After analyzing and rearranging the PIns, selected PIns that

 CHAPTER 1 INTRODUCTION

 9

can be executed with slow functional units are marked with directives. The directives

inform the assembler to compile these PIns with MIns that are executed with the

specified slow functional units.

Our ALU design is therefore capable of attaining low power consumption during

runtime with a software instruction scheduler, with the exclusion of real time

activities supporting the operation.

1.5 Scope of Project

The scope of this project is to develop a low power ALU, both hardware and

software. The ALU hardware development would focus on the fast and slow

functional units, and the software development would focus on the development of

algorithms to rearrange instructions to execute with slow functional units to achieve

low power consumption.

The performance and power consumption of our ALU depends on the functional unit

operations. The main focus of this project would be on hardware research and

development. The study of power consumption of arithmetic circuit and behavior is

carried out through simulation works. Details of the power consumption of the

circuits are described in Appendix I. Different arithmetic circuits are modeled and

synthesized with different performance levels to study on the variation in performance

and power consumption. With which, the appropriate circuit would be selected to

implement the functional unit. Details on the hardware development of the functional

circuits and a summary on the selected circuits are described in Chapter 3.

 CHAPTER 1 INTRODUCTION

 10

The other section of this project would focus on the development of the software

algorithm to achieve lower power consumption on the ALU, which would include the

rearrangement of the instructions. Research on software scheduling is also carried out

prior to the development work. Using the developed software, several programs are

analyzed and reduction on power consumption is estimated. Details of the

development work and a summary on the program analysis and power consumption

estimation are described in Chapter 4.

1.6 Thesis Organization

The thesis would be organized in the following order.

Chapter 2 describes the runtime operation, hardware design and software instruction

scheduler of our low power 32-bit integer ALU. The runtime operation would

describe the method used to achieve lower power with the ALU. Components of the

ALU would be presented in the hardware design section. The rearrangement of the

instructions for the execution in slow functional units would also be described. A

novel method to implement the wait state through rearrangement of software

instructions would also be included.

Chapter 3 describes the characteristics of CMOS circuits and the implementation of

the 32-bit integer ALU functional units. The power consumption and performance of

the circuits will be described in this chapter. Results from the simulation would also

be presented and discussed.

 CHAPTER 1 INTRODUCTION

 11

Chapter 4 presents the instruction scheduling algorithms used to enhance the

performance and reduce power consumption during the ALU runtime. The algorithms

at each functional stage would be discussed in detail. Results from the program

analysis and power consumption estimation would also be presented and discussed.

Chapter 5 summarizes the research and development work and concludes the project.

Possible future work and development would also be recommended.

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 12

CHAPTER 2

THE ARITHMETIC AND LOGIC UNIT DESIGN

In this chapter, we describe the runtime operation, hardware design and software

instruction scheduler of our low power 32-bit integer ALU, explaining how lower

power consumption is achieved during the runtime operation. In addition, we will

illustrate how instructions are rearranged for the execution in slow functional units

and how to implement wait state using embedded information in instructions.

Components of the ALU will be presented in the hardware design section.

2.1 ALU Design

Unlike a typical ALU which uses only one type of functional unit to execute a

particular PIn, this ALU is capable of using either a fast or a slow functional unit to

execute the PIn, depending on the situation. Figure 2.1 shows the ALU hardware

architecture.

Given the same clock frequency in performing similar functions, the fast functional

unit completes the operation in a shorter time than the slow functional circuit, because

it has more logic circuits. However, while it is faster, the fast functional unit also

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 13

consumes more power during the operation compared with the slow functional unit,

which takes a longer time for the same operation, but consumes less power.

Fig. 2.1 ALU Architecture

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 14

The amount of time a functional unit takes to perform an operation is specified in

term of number of clock cycles. Different functional units require a different number

of clock cycles to perform their operations. As such, the PIns are issued in order from

the Control Unit but may be completed in a different order.

With our ALU design structure, a software instruction scheduler analyses an input

program and selects a suitable functional unit to perform the PIns. This differentiating

feature in the structure of our ALU ensures power-efficient runtime without causing

loss in performance.

In processors that use the conventional ALU, PIns are compiled into MIns by an

assembler, with one MIn mapped to one PIn. When the proposed ALU is employed in

processors, PIns may be realized with different MIns, which in turn trigger different

functional units to perform the PIns.

The task of mapping of MIns to PIns for this proposed ALU is achieved with a

software instruction scheduler. The scheduler analyzes the independence of PIns in

the program and performs the mapping based on performance or power consumption

criteria. The ultimate objective is to sustain optimal performance in the

microprocessor while consuming minimal power. Optimal performance in achieved

when there are no stalls in the pipeline during runtime while low power consumption

is attained when slow functional units are used to execute PIns for most of the

operations.

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 15

Before the scheduler performs its task, the PIns are analyzed and divided into

segments, based on the control flow of the programs. Control PIns are used to mark

the start and end points of segments. Within the segments, the PIns are reordered to

ensure that the control flow of the PIns is correct after reordering. The objective of

reordering the PIns is to work around constraints due to dependencies in PIns to

enhance performance and reduce power consumption at runtime. After the scheduler

has worked on the PIns, a list of directives is generated for the assembler to map MIns

to PIns with the appropriate functional units.

The function of the hardware components and software scheduler are described in the

following sections.

2.2 Hardware Components

The hardware architecture is designed to be lean and simple. It consists of a Decode

and Control Unit, Register File and several functional units of different performance

levels. With this architecture, power is consumed during the operation of the Decode

and Control Unit for MIns issue, Register File write-backs and when functional units

are enabled by the Control Unit for MIns execution. The components and their

functions are described as follows.

2.2.1 Decode and Control Unit

The Decode Unit is responsible for fetching and interpreting MIns from the memory

system before passing them on to the Control Unit. The Control Unit is designed to be

a simple state machine that synchronizes the ALU activities like any other Control

Unit in conventional microprocessors. It is responsible for issuing the MIns for

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 16

execution and synchronizing register write-back for MIns that are orderly issued, but

are executed out of order, because functional units of different performance levels are

used.

At every clock cycle during runtime, the Decode Unit reads the MIns and relays

relevant information like register operands and the functional unit required to the

Control Unit. The Control Unit in turn triggers the appropriate functional unit, selects

the required registers in the Register File and places the register contents on the input

bus of the functional units. When MIns are executed with functional units requiring

more than one clock cycle, the following happens: the Control Unit synchronizes

MIns executions and register write-backs between the functional units and Register

File. It does this by deferring write-backs for the number of clock cycles that the

functional units require to run.

For the unused functional units, the clock signal is gated off. These functional units

are thus in static state. However, because CMOS circuits are used in the functional

units, static power consumption is negligible. An analysis of CMOS circuit power

consumption is described in Appendix I.

2.2.2 Functional Units

The functional units are circuit blocks that operated on integer data stored in the

Register File. The Control Unit selects the registers and the stored data for the

functional units to perform the operations for a particular MIn.

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 17

As shown in Figure 2.1, the functional units are organized such that units requiring

the same amount of time (in terms of number of clock cycles) to perform their

operations are grouped together. In a conventional ALU, each functional unit has a

register to store the processed data. However, with the proposed ALU, each group of

functional units shares a register to store processed data. Therefore, there are fewer

registers required in the ALU to support the functional units. Registers used to store

processed data for a group of functional units are called the Common Output

Registers.

Even though there is only one Common Output Register available to several

functional units within a group, conflicts would not arise when the functional units

attempt to write to this register, as the Control Unit issues only one instruction every

clock cycle. The workings of the functional unit circuits are described in Chapter 3.

2.2.3 Register File

The Register File control reads selected registers and places the contents on the

functional units’ input bus. The Control Unit in turn issues instructions and updates

selected registers with the content in the Common Output Registers.

The Register File comprises these components:

1. Registers that are available to the programmers,

2. An in-port for updating the registers,

3. An out-port for placing selected register contents on the functional units’ input

bus,

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 18

4. And control circuits that select registers for reading or writing via control

signals from the Control Unit.

The Register File is designed to perform multiple register writes within a clock cycle.

Because functional units of different performance levels are used, MIns may be

orderly issued but may be completed out of order. And when MIns are completed out

of order, this allows for several MIns to be concurrently executed within a clock

cycle. As such, the Register File must be able to perform multiple register write-backs

within a clock cycle, so that the executed MIns are properly retired.

Figure 2.2 illustrates an example of such situations in a pipeline:

Part A shows a regular 4-stage pipeline where only one instruction retires in every

clock cycle.

Part B and C show pipeline cases with functional units with operation time that is

longer than 1 clock cycle. In Part B, the pipeline has execution stages that vary

between 1 to 2 clock cycles. It is observed that for the worst case, there were 2

instructions retiring within a clock cycle. In Part C, the pipeline has execution stages

that vary between 1 to 3 clock cycles. In the worst case scenario observed, 3

instructions retired within a clock cycle.

In general, we observed that in functional units requiring different lengths of

operation time (measured in number of clock cycles), the maximum number of

instructions that retire simultaneously within a clock cycle, n, is equal to the operation

time (measured in number of clock cycles) of the slowest functional unit.

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 19

When a worst-case situation like this occurs, all the Common Output Registers in the

ALU will be updated with the processed data from the functional units. The Register

File must also update n registers respectively within that clock cycle.

Cycles 0 1 2 3 4 5 6 7 8 9 10
1 F D E W
1 F D E W
1 F D E W
1 F D E W

Part A

1 F D E W

1 F D E W
1 F D E W
2 F D E1 E2 W
2 F D E1 E2 W
1 F D E W
1 F D E W
1 F D E W

Part B

1 F D E W

1 F D E W
1 F D E W
2 F D E1 E2 W
3 F D E1 E2 E3 W
3 F D E1 E2 E3 W
2 F D E1 E2 W
1 F D E W

Part C

1 F D E W

Fig. 2.2 MIns concurrent retirement

Multiple writes within the Register File may be implemented using multiple ports for

the registers [26] or multiple banks of registers [27]. However, multiple writes within

the Register File can be simpler using one port and bus for the registers, by

implementing very fast writes in sequence.

For example, if one register-to-register write operation requires 3ns to perform, then a

maximum of three registers can be updated sequentially within a clock cycle of 10ns

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 20

with a bus in the Register File. If the registers are implemented with two ports, six

registers can be updated within the same write operation time and clock cycle.

2.3 Software Instruction Scheduler

In conventional ALU, hardware circuits like Reservation Stations and Scoreboard

Logics [28] are used during runtime to maintain peak performance, while the

Dynamic Voltage Scaling [29] system is used to reduce power consumption. The

proposed ALU system, however, does not employ these complicated hardware

circuits. In place of these, is an offline software instruction scheduler.

The scheduler’s objective is to ensure that PIns are rearranged offline to use the slow

functional units that consume low power, without suffering any penalty in

performance. A list of directives is generated by the scheduler to map PIns with

appropriate MIns, as seen in the scheduling results.

Before the scheduler works on the PIns, the PIns pass through a conditioning phase in

preparation for the scheduling. During this phase, empty lines and comments are

removed from the PIns and they are segmented based on the control flow of the

programs. Control PIns mark the start and end points of the segments. Within

segments, the PIns are reordered to ensure that the control flow of the PIns is correct

after reordering. After segmentation, the PIns are translated into a generic form that

the scheduler recognizes.

The scheduler works on the PIns in two phases. In the first phase, the scheduler

removes data hazards among the PIns that may stall the pipeline. It does this by

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 21

analyzing data dependencies among the PIns. When data dependencies are found, the

PIns are reordered with the assumption that all functional units require only one clock

cycle to execute. This ensures that the PIns are pre-scheduled for optimal

performance, before the scheduler proceeds to work, under power-efficient

conditions.

In the second phase, the scheduler reanalyzes the pre-scheduled PIns to correct the

assumption in first phase. The pre-scheduled PIns are reordered again using the

correct number of clock cycles that the functional units required. With this step –

analyzing dependencies and reordering the PIns – in place, the scheduler creates or

identifies the situations mentioned in Section 1.3, to ensure that slow functional units

are used.

When any of the mentioned situations are either found or created, directives will be

generated with the scheduling results to provide information for the assembler. The

implementation of the software instruction scheduler is described in Chapter 4.

2.3.1 Avoiding Hazards with Wait States

Wait states are still required on occasion to resolve pipeline hazards – even though the

scheduler is mainly responsible for this task, which it achieves by reordering the PIns.

These exceptions occur when the PIns happen to depend closely on each other, or

when there are insufficient independent instructions available for reordering to avoid

pipeline hazards. An example of a PIn commonly used in such situations, is the

“NOP”, which is found in Intel processors.

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 22

The “NOP” is technically an empty instruction as nothing is accomplished with its

execution. But like other instructions, it is processed as per normal – fetched from

memory, decoded and issued by the Control Unit and executed as “XCHG AX, AX”,

as in the case of Intel processors. As such, power [30] is still consumed in the process

of fetch, decode, issue and execution of the “NOP” PIn.

An alternative method of resolving pipeline hazards, without incurring power

consumption, is to implement the delay without explicitly using the “NOP”

instruction.

Under the assumption that there are available unused bits in the MIns, the scheduler

will generate delay directives for the assembler – when the scheduler detects un-

resolvable pipeline hazards in the PIns. Upon receiving the delay directives, the

assembler embeds delay information [31] into MIns for the stalled PIns.

After the Decode Unit deciphers this delay information, it relays signals to the Control

Unit to cease issuing MIns for the required number of clock cycles as indicated by the

delay information.

This achieves the effect of using the “NOP” instruction in the implementation of wait

states, without incurring power for fetching, decoding and executing it.

2.4 Chapter Summary

The components used in the design of the proposed ALU differentiate it from

conventional ALU. Conventional ALU use hardware circuits like Reservation

 CHAPTER 2 THE ARITHMETIC AND LOGIC UNIT DESIGN

 23

Stations and Scoreboard Logics [28] to sustain peak performance during runtime and

Dynamic Voltage Scaling to reduce power consumption.

With the proposed ALU design, both fast and slow functional units are used to

execute MIns, along with a Control Unit and a Register File to support simultaneous

retirement of instructions during runtime operation.

To achieve low power consumption, PIns are arranged to use slow functional units for

execution of PIns, without affecting performance. In place of hardware circuits, a

software instruction scheduler is developed to analyze and rearrange PIns to be

executed with slow functional units.

The analysis by the software instruction scheduler will reveal how closely dependent

the PIns are on each other, and whether wait states are necessary to resolve

dependencies. Should delays be required, the necessary information will be embedded

in the MIns, and subsequently be decoded by the Control Unit. As such, delay PIns

like “NOP” that consume unnecessary power are avoided.

These components in the proposed ALU design differentiate it from conventional

ALU, enabling it to sustain optimal performance at low power consumption.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 24

CHAPTER 3

THE ARITHMETIC AND LOGIC UNIT HARDWARE

In this chapter, we will describe the characteristics of CMOS circuits and the

implementation of the 32-bit integer ALU functional units. We will also discuss the

results of the simulations conducted. Specifically, we will talk about the power

consumption and performance of the circuits

3.1 CMOS Circuits

The functional units used in the ALU are implemented with CMOS circuits, which are

widely used in low power consumption designs [32]. In the following sections, we

will briefly describe the characteristics of CMOS circuits as well as their power

consumption behaviour.

3.1.1 Circuit Design

3.1.1.1 CMOS Logic

CMOS circuits use both N-type and P-type MOSFETs (Metal Oxide Semiconductor

Field Effect Transistors) to realize logic functions. Figure 3.1 shows some basic

circuits for CMOS and Pass transistor logic.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 25

Fig. 3.1 Pass transistor (left and center) and CMOS circuit (right)

Pass transistor logic uses either a NMOS or PMOS (see Figure 3.1, left and center

circuit) as a switch to gate electrical signals. Input signal is connected to the transistor

gate to create a conductive channel to pass the signal that is connected to the source.

This caused a threshold voltage drop across the conducted signal and the output logic

signal is degraded [33]. Degraded logic signals may cause the subsequent connected

circuits to consume static power due to subthreshold conduction (more details is

covered in Appendix Section A1.2).

Contrary to pass transistor logic circuits, CMOS circuits (see Figure 3.1, right circuit)

generate rail-to-rail output signals. CMOS circuits use NMOS as pull-down and

PMOS as pull-up devices in the logic network. With appropriate input signals

connected to the transistor gate, the PMOS transistor charge up output load to the

supply voltage level and the NMOS transistor discharge the output load to the ground.

As such, CMOS circuits do not incur static power consumption as much as the pass

transistor logic circuits. This makes CMOS circuits more suitable for low power

circuit designs.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 26

3.1.1.2 Circuit Size

Due to both PMOS and NMOS transistors are used to realize digital logic functions,

there are usually a large number of transistors in CMOS circuits. In particular, when

many transistors are connected serially in the circuit the parasitic capacitance in the

signal path increases. In turn, this increases delay the of the output signal. To counter

this problem, buffers or inverters are added along the signal path to increase output

drive and reduce the delay. However, this further increases the transistor count in the

circuits and the circuit size becomes larger.

3.1.1.3 Simulation

Signal delays in CMOS circuits can be accurately simulated with various delay

models and equations. The output signal delay of CMOS circuits may be expressed as

a function of the intrinsic delay, parasitic capacitance and load capacitance. The

intrinsic delay is determined by parameters in the transistor fabrication process as well

as operating conditions. The load capacitance is dependant on the circuit design, while

the parasitic capacitance is the sum of the gate capacitance of other connected

transistors. In addition to signal delays, power consumption can also be accurately

simulated with models and equations.

3.1.2 Power Consumption

There are three types of power consumption in CMOS circuits: dynamic switching

power, short circuit power and leakage current power.

Dynamic switching power occurs when load and parasitic capacitances in the circuit

are changed or delayed as a result of changes in states. It is the dominant component

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 27

in CMOS circuit power consumption. Short-circuit current power is energy consumed

as a result of the finite turnover time between the rise and fall of input signals. In the

third aspect of CMOS circuit power consumption, power is consumed when current

leaks through reverse-biased diodes or via sub-threshold conductions.

CMOS circuits have lower power consumption compared with NMOS or bipolar

transistor circuits. While NMOS and bipolar junction transistor circuits consume

power even when signals are not switching, static (leakage) power consumption for

CMOS circuits can be negligible, depending on the channel length of the MOSFETs.

For channel length larger than 0.15um, static power consumption is negligible. For

channel length smaller than 0.15um, static power consumption increase exponentially

with decreasing channel length. Figure 3.2 shows a simulated plot for static power

through an inverter circuit against decreasing channel (gate) length [34].

Fig. 3.2 Static (leakage) power against channel (gate) length

When channel length is below 0.15um, the leakage current consists of subthreshold

leakage, reverse-bias diode leakage, gate leakage and other smaller leakage

components. With such a short channel length, the subthreshold (source/drain)

Extracted from [34], Figure 1 of “Drowsy caches: simple techniques for reducing leakage power” by Krisztian Flautner et al

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 28

leakage and reverse-bias diode (drain/substrate) leakage current are amplified by the

short channel effects and lower threshold voltage respectively [35].

In general cases, the leakage current is dominated by the subthreshold leakage

because the depletion layers at the source and drain could be very close to each other

due to short gate channel length. However, for advanced technology devices, where

gate oxide thickness is very thin (1.8nm or below), gate leakage can dominate the

leakage current.

We describe in greater details the three aspects of CMOS circuit power consumption

in the following sub sections:

3.1.2.1 Dynamic Switching Power

For every low-to-high output signal transition in the circuits, a voltage change of ∆V

occurs across the output load capacitance CL. To effect this change, energy equivalent

to CL∆VVDD joules needs to be drawn from the supply voltage VDD. On the other hand,

a high-to-low output signal transition results in the energy stored on CL to be

dissipated into the NMOS transistors and pulls the output low. Figure 3.3 shows the

various sources of capacitance seen in an inverter circuit.

Fig. 3.3 Dynamic switching power consumption; sources of capacitance

 Extracted from [1], Figure 2.3 of “Energy-Efficient Processor System Design” by Thomas D. Burd

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 29

The basic capacitor elements of CL shown in Figure 3.3, consists of the gate

capacitance of subsequent inputs attached to the inverter output (Cgp, Cgn),

interconnect capacitance (CW), and the diffusion capacitance on the drains of the

inverter transistors (Cdbp, Cdbn, Cdgp, Cdgn) [1].

The dynamic switching power consumption is the product of the energy consumed per

transition at the rate of low-to-high transitions, F0-1. The value of F0-1 is usually

difficult to quantify as it is dependent on the state of the system and the input test

vectors. In the absence of a transistor-level circuit simulation, F0-1 can be calculated

via statistical analysis of the circuit, or by using a high-level behavioural model with

benchmark software to determine a mean value.

Since most digital CMOS circuits are synchronous with a clock frequency clkf ; an

activity factor, 0 < α < 1, is used to denote the average fraction of clock cycles in

which a low-to-high transition occurs, such that clkfF α=−10 . For a circuit with N

switching nodes, the dynamic switching power can generally be expressed as,

Dynamic Switching Power = ∑ =
∆

N

i iLiiclkDD VCfV
1
α …………………(Eq. 1)

From the equation, dynamic switching power may be lowered by reducing VDD. As

mentioned in Chapter 1, if VDD is reduced, the operating clkf must be proportionally

reduced, as signals in the circuits become more susceptible to noise interference.

3.1.2.2 Short-Circuit Current Power

Short-circuit current power consumption occurs when the output signal of the CMOS

circuit is transitioning, while the input signal is still in the middle of transition.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 30

Figure 3.4 Two transistor inverter circuit

In an ideal inverter circuit shown in Figure 3.4, when a step input is given, the PMOS

and NMOS transistors should switch states immediately with one turned on and the

other turned off. This inhibits the conduction of power from VDD to the ground

through the transistors and eliminates short circuit power consumption.

However, in real circuits, parasitic capacitance exists along the signal path. This

causes the input signals to have a finite rise and fall time. As long as the conditions

VTn < Vin < VDD - |VTp| and 0 < Vout < VDD remain in place for the input and output

signals, a conductive path will connect VDD to the ground as both PMOS and NMOS

transistors are turned on. The slower the rise and fall times of the input signal, the

longer the short-circuit current will continue to flow.

Figure 3.5 shows a plot for following signals from a switching inverter circuit shown

in Figure 3.4. From the plot, the horizontal axis indicates time and the vertical axis

indicate the magnitude of voltage or power for the respective signals.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 31

Fig. 3.5 Inverter circuit electrical signals

From Figure 3.5, we can observe short circuit power occurring around every signal

transitions.

Short-circuit power consumption scales along with VDD. Theoretically, it can be

eliminated if VDD is lowered to the point below the sum of the thresholds of the

transistors, VDD < VTn + |VTp| because both PMOS and NMOS cannot be turned on at

the same time.

3.1.2.3 Leakage Current Power

The current leakages in CMOS circuits are due to the reverse-bias diode leakage and

sub-threshold leakage through the channel of a MOSFET that is turned off. The

magnitude of these currents is set predominantly by the processing technology and

total number of transistors.

Reverse-bias diode leakage

Diode leakage occurs when one transistor is turned off, and another active transistor

charges up, or down, the drain with respect to the former’s bulk potential. For a static

CMOS inverter cross-section shown in Figure 3.6, with a low input voltage, the

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 32

output voltage will be high because the PMOS transistor is on. The NMOS transistor

will be turned off, but its bulk-to-drain voltage will be equal to the supply voltage,

-VDD. The resulting diode leakage current will be approximately ILD = AD.JSD, where

AD is the area of the drain diffusion, and JSD is the leakage current density of the

diffusion, set by the fabrication process technology.

Fig. 3.6 Reverse-bias diodes in CMOS inverter circuit

Since the diode reaches maximum reverse-bias current for relatively small reverse-

bias potential (< 100mV), the leakage current is roughly independent of supply

voltage.

In an nwell process, such as that depicted in Figure 3.6, the nwell-substrate reverse-

biased diode also has leakage current. Since a diode leakage current is primarily

determined by the more lightly doped side of the junction, which is the p- substrate,

the leakage current density is similar to that of the NMOS drain-substrate diode [36].

Because the well area, AW, is an order of magnitude larger than the diffusion area, this

current will dominate reverse-biased diode leakage in an n-well process. The current

is ILW = AW.JSW, where JSW is the leakage current density of the well, also set by the

technology.

Extracted from [1], Figure 2.5 of “Energy-Efficient Processor System Design” by Thomas D. Burd

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 33

Subthreshold leakage

Subthreshold leakage occurs under similar conditions as the diode leakage. In Figure

3.6, the NMOS was turned off, but even for VGS = 0V, there is still current flowing in

the channel due to the VDS potential of VDD.

The magnitude of the subthreshold current is both a function of process, device sizing

(W/L), and supply voltage [37]. The process parameter that predominantly affects the

current value is VT. Reducing VT exponentially increases the subthreshold current,

which to first order, is proportional to VDS, or equivalently, VDD.

3.2 Functional Units

3.2.1 Circuit Models

The proposed ALU consists of functional units that perform logic, bit and arithmetic

operations. Depending on the design, these functional units are either implemented

with either high-performance complex logic that has high-power consumption circuits

or simpler low-performance that has low-power consumption circuits.

The circuit design for the functional units may be described with behavioural,

structural or hybrid models in Register Transfer Language (RTL) style using Verilog

[38]. Behavioural models describe the functions of circuits using synthesizable

Verilog function operators, while structural models describe the logical structure of

the circuits using logic functions. In another words, the behavioural model can be

seen as a high level description of the circuit model, while the structural model is a

low level description.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 34

Behavioural model is useful when designs can be described with synthesizable

Verilog operators, instead of expressing the designs using primitive logic operators

like AND, OR and XOR. In some cases, different parts of the design can be described

with behavioural and structural model. Such circuit modelling approach is termed as

the hybrid model.

Structural models are used to describe the logic operation circuits, since their design is

simple and consists only of logic gates and registers. Behavioural models are used to

describe bit operation circuits using the bit operators in Verilog as they are more

complicated. The design of arithmetic circuits range from simple circuits to highly

complicated logic networks. As such, the behavioural, structural and hybrid models

are all used to describe different types of arithmetic circuits.

The performance and power consumption of the synthesized circuits depends on both

the circuit design and the technology of the standard cell library. The circuit design

determines the complexity of the circuit and in turn the number of logic components

(from the standard cell library) required to realize the design. Each logic component

has its own performance and power consumption. As such, the performance and

power consumption of the synthesized circuit is computed based on the logic

components used in the circuit.

3.2.2 Circuit Synthesis

The circuits for the functional units are synthesized with the Synopsis Design

Analyzer using the C35 0.35um CMOS standard cell library – the technology

available at the time of development.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 35

The Synopsis Design Analyzer has different circuit-optimizing options to fulfil

different requirements of performance or power consumption. These options are used

along with a set of clock constraints to synthesize the circuit models to obtain circuits

of different performance and power consumption level. The set of clock constraints

ranged from 100ns up to the maximum performance limit of each model.

Clock constraint defines the amount of time in which the circuit is bound to deliver

computation results. The inverse of the clock constraint is the operating clock

frequency for the circuit. Thus, as clock constraint is shortened, the synthesized

circuits run on a faster operating clock frequency. Depending on the level at which it

is set, the circuits are synthesized to a performance point that is sufficient to meet the

clock constraint.

Table 3.1 shows a summary on the circuit information obtained from synthesizing the

behavioural addition circuit model with a range of clock constraints.

Clock Constraints 100ns 50ns 25ns 10ns 5ns

Area (um2) 24156 24156 24156 51541.4 63654.6
Dynamic Power (mW) 0.23 0.46 0.92 4.45 11.21
Normalized Power (mW) 0.23 0.23 0.23 0.44 0.56
Data Arrival (ns) 12 12 12 4.87 3.77

Table 3.1 Synthesis process for behavioural model adder

In Table 3.1, Area indicates the required circuit size on the silicon die. Performance is

reflected in the Data Arrival measurements – it indicates the time the circuit takes to

deliver computations. Dynamic Power indicates the circuit’s power consumption.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 36

From the observations on Table 3.1, circuits synthesized with clock constraints at

100ns, 50ns and 25ns have equal circuit areas and performance levels. This implies

that the same circuit is synthesized for all three clock constraints, since this circuit

performance meets the requirements. On the other hand, power consumption is

observed to increase proportionally as the clock constraints get shorter. For example,

the power consumption for 50ns is twice the power consumption for 100ns, while for

25ns it is four times the power consumption for 100ns.

From the datasheets of the logic components [39], power consumption is provided as

micro Watts per MHz. This implies that power consumption is proportional to

operating clock frequency. Thus, it explains the proportional difference in power

consumption between circuits synthesized with clock constraints at 25ns and 100ns.

For clock constraints at 10n and 5ns, different circuits are synthesized to meet the

requirement. In general, these circuits have larger size as there are more components

used to execute parallel functions to speed up performance, but consume more power

during operation.

The power consumption recorded in Table 3.1 is obtained from synthesizing circuits

at different clock constraints. In order to provide a fair comparison among different

circuits, it should be normalized based on a common clock constraint. Normalized

power can be computed as follow,

1) divide the 100ns (common clock constraint) by the applied clock constraint to

obtain a power factor,

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 37

2) then divide the Dynamic Power by the power factor to obtain the normalized

power.

In another words, the normalized power indicates the power consumption for

operating the circuit with the common clock constraint at 100ns. The reason for using

100ns as the common clock constraint is the ease of computation and also it is the

lowest clock constraint in the range used to synthesize the circuit models.

Although the circuits are being compared based on the common clock constraint, the

performance figure for the circuits are still valid. This can be proven from the

performance of circuits synthesized with clock constraint at 100ns, 50ns and 25ns -

which the performance of the circuits does not change regardless of the clock

constraint applied. Hence, we can compare the synthesized circuits based on

normalized power and performance, for selecting appropriate circuits to implement

the functional units.

3.2.3 Logic and Bit Operation Circuits

The logic circuits are described with simple structural models. The AND, OR, NOT

and XOR circuits are synthesized with a clock constraint of 100ns. For the AND, OR

and NOT circuits, the propagation delay is 2ns and power consumption is 100uW.

The propagation delay for the XOR circuit is 2.5ns and the power consumption is

150uW. As more transistors are used to implement the functions in the XOR circuit, it

has a slightly longer delay and higher power consumption level compared with the

other circuits.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 38

Due to their structural complexity, bit operation circuits are described with

behavioural models. The register shift, rotate and compare function circuits are

synthesized with clock constraint of 100ns. For the register shift and rotate function,

the propagation delay is 11ns and power consumption, 165uW. The propagation delay

for the register compare function circuit is approximately 8ns, with a power

consumption of 66uW. The register compare function has smaller power consumption

as it only writes the result to a one-bit register, which is usually part of the flag

register.

3.2.4 Addition Circuits

The slow and fast adder circuits are obtained by synthesizing the behavioural model

adder. With different optimizing options and clock constraints, the behavioural model

adder can synthesize anything from a simple Carry Ripple adder circuit to an

extremely complicated logic network like the Carry Look Ahead (CLA) adder, which

executes very fast additions.

The Carry Ripple adder circuit uses Full Adder cells (shown in Figure 3.7) as circuit

building blocks, to form adder circuits (shown in Figure 3.8). For an n-bit adder

circuit, n Full Adder cells are required. Full Adder cells can be expressed with the

following equations:

 1−⊕⊕= iiii CarryBASum …………………………………………(Eq. 2)

iiiiii CarryBABACarry)(1 ++=− …………………………………...(Eq. 3)

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 39

Fig. 3.7 Full Adder cell

Fig. 3.8 Carry Ripple adder design

The CLA adder uses parallel circuits to generate carry bits for all inputs, instead of

propagating the carry signals through the stages of the adder. The carry bits for all

inputs are generated based on the following equations:

Sum, 1−⊕⊕= iiii CarryBAS …………….………………..…………(Eq. 4)

Carry Propagate, iii BAP ⊕= ……………………………………....(Eq. 5)

Carry Generate, iii BAG = ………………….………………..………(Eq. 6)

General Carry Equation, iiii CPGC +=+1 ………….………………..(Eq. 7)

Expanded Carry Equations,

inCPGC 000 += ………………….…………………………………...(Eq. 8)

inCPPGPGC 010111 ++= ….……………….………………………….(Eq. 9)

inCPPPGPPGPGC 0120121222 +++= ………..……………….……….(Eq. 10)

inCPPPPGPPPGPPGPGC 012301231232333 ++++= ……………….…...(Eq. 11)

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 40

iniiiiiiiii CPPPPGPPGPGC 0212111 −−−−− ++++= ……….………(Eq. 12)

The same equation is used for the sum of CLA adder as well as the sum of the Carry

Ripple adder. The expanded carry equations are generally Sum-of-Product

expressions, usually implemented in parallel circuits to compute carry bits for all

input bits to speed up additions. Figure 3.9 shows an implementation of a 4-bit CLA

adder.

Fig. 3.9 4-bit Carry Look Ahead adder

The 4-bit CLA adder circuit shown in Figure 3.9 comprises four layers of logic

components; the performance of the CLA adder depends on the propagation delay of

the signals through these four layers of logic components in the CLA circuit structure.

However, as the width of the adder increases, the number of Sum-of-Product terms

also increases in the carry equations. This in turn raises the fan-in and fan-out

requirement on the logic components during implementation. As such, more layers of

logic components are used to meet the higher fan-in and fan-out requirement when

implementing the carry equations.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 41

Although the performance of the CLA adder should theoretically remain constant,

performance may differs for CLA adders of different widths, because of different

number of layers of logic components may be implemented for each circuit.

A Carry Ripple adder is obtained by synthesizing the behavioural model adder with a

clock constraint of 100ns. The schematic shown in Figure 3.10 consists of 32 Full

Adder cells to implement the Carry Ripple adder.

Fig. 3.10 Behavioural model Carry Ripple adder schematic

The behavioural model adder circuit reached its performance limit, when synthesized

at a clock constraint of 5ns. At the performance limit, the synthesized circuit (shown

in Figure 3.11) is shown to have a CLA adder structure which uses parallel circuits to

perform fast additions.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 42

Fig. 3.11 Behavioural model CLA adder schematic

Model Characteristics 100ns 5ns
Area (um2) 24156 63654.61
Dynamic Power (mW) 0.23 11.21
Normalized Power (mW) 0.23 0.56

Behavioural

Data Arrival (ns) 12 3.77

Table 3.2 Behavioural model adder circuit synthesis

Table 3.2 shows that from synthesizing the behavioural model adder circuit, a Carry

Ripple adder is obtained with clock constraint at 100ns and the CLA adder circuit is

obtained with clock constraint at 5ns. The Carry Ripple adder circuit has the slowest

performance and lowest power consumption, while the CLA adder circuit has the

fastest performance and highest power consumption. These two adder circuits are

implemented in the ALU as the slow and fast adder.

3.2.5 Subtraction Circuits

Subtraction circuits are essentially addition circuits, with one of the operands

complemented using inverters that force a logic high signal into the carry bit to

implement the 2’s complement for the complemented operand [40].

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 43

Figure 3.12 shows a block diagram for the subtraction circuit, where addition circuits

with slight modifications were used. This therefore shows that the performance of

subtraction circuits is close to that of addition circuits.

Adder

Complementor ADD/SUB

Carry In

A0An-1
augent/minuend

B0Bn-1
addend/subtrahend

S0/D0Sn-1/Dn-1
sum/difference

Fig. 3.12 Subtraction circuit implementation

The same process for synthesizing the addition circuits was repeated for subtraction

circuits. Table 3.3 shows the circuit information for synthesizing a behavioural

subtraction circuit model.

Model Characteristics 100ns 5ns
Area (um2) 25940.71 65312.05
Dynamic Power (mW) 0.24 11.32
Normalized Power (mW) 0.24 0.57

Behavioural

Data Arrival (ns) 12.51 4.13

Table 3.3 Behavioural model subtractor circuit synthesis

Comparing Table 3.3 (subtraction circuits) with Table 3.2 (addition circuit), due to the

additional inverters, the performance, area and power consumption of the subtraction

circuit is only slightly slower or more (respectively) than the addition circuits.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 44

3.2.6 Multiplication Circuits

The behavioural model multiplier synthesizes circuits with fast performance and high

power consumption, even with a slow clock constraint at 100ns. As such, another

multiplication circuit model (based on a simple multiplication algorithm) has been

developed to synthesize slow-performance circuits that consume low power.

The schematic for the behavioural model multiplier shown in Figure 3.13 consists

primarily of a block diagram with representations of the multiplication circuits and

registers used to store the processed data.

Fig. 3.13 Behavioural model multiplier schematic

Model Characteristics 100ns 10ns 5ns
Area (um2) 424413.25 648100.94 651773.88

Dynamic Power (mW) 5.11 70.29 135.27

Normalized (mW) 5.11 7.03 6.76
Behavioural

Data Arrival (ns) 10.76 8.17 8.00 (Fail)

Table 3.4 Behavioural model multiplication circuit synthesis

Table 3.4 shows the performance and power consumption of the synthesized

behavioural model multiplier circuits. With clock constraint at 10ns, the synthesized

circuit nearly reached the performance limit. With clock constraint at 5ns, the

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 45

synthesized circuit could not deliver the required performance. Hence, the circuit

synthesized with clock constraint at 10ns is selected to implement as functional unit in

the proposed ALU as the fast multiplier circuit.

A hybrid model multiplier that uses parallel shifted additions to compute

multiplications is used to synthesize slow multiplier circuits. This hybrid model

multiplier implements a shifted parallel addition algorithm, modified from the simple

paper and pencil multiplication algorithm [40].

The paper and pencil multiplication algorithm performs multiplications by summing

up additions of the multiplicand, aligned sequentially with respect to the multiplier.

Figure 3.14 shows the 8-bit multiplication process of a 16-bit product. This

multiplication process requires 8 steps of additions. In general, n steps of additions are

required for n-bit multiplication.

 11101010 = 234
 X 11000100 = 196

 00000000 ----- (1)
 00000000 ----- (2)

 11101010 ----- (3)
 00000000 ----- (4)
 00000000 ----- (5)
 00000000 ----- (6)
 11101010 ----- (7)

 + 11101010 ----- (8)
 1011001100101000 = 45864

Fig. 3.14 Simple paper and pencil multiplication algorithm

The algorithm above has been modified to perform the additions in parallel alignment.

With parallel additions, the number of steps it takes to compute a 16-bit multiplication

via addition is reduced to 3. In general, log2 (n) of addition steps are required for n-bit

multiplication. Figure 3.15 shows the modified 8-bit multiplication process.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 46

 11101010 = 234
 X 11000100 = 196

 11101010-(7) 00000000-(5) 11101010-(3) 00000000-(1)
+11101010 -(8)+00000000 -(6)+00000000 -(4)+00000000 -(2)
1010111110-(9)0000000000-(A)0011101010-(B)0000000000-(C)

 0000000000 -(A) 0000000000 -(C)
 +1010111110 -(9) +0011101010 -(B)

 101011111000 -(D) 001110101000 -(E)

 001110101000 –(E)

 +101011111000 –(D)
 1011001100101000 = 45864

Fig. 3.15 Modified multiplication algorithm

The schematic for the shifted parallel additions hybrid model is shown in Figure 3.16

comprises layers of logic components and addition circuit blocks.

Fig. 3.16 Modified multiplication circuit schematic

Model Characteristics 100ns 25ns 10ns
Area (um2) 343943.19 770634.06 1623810.75
Dynamic Power (mW) 3.94 33.36 179.30
Normalized (mW) 3.94 8.34 17.93

Parallel
Shifted

Additions
Hybrid Data Arrival (ns) 27.11 15.10 9.75

Table 3.5 Multiplication circuits synthesis

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 47

Table 3.5 shows the performance and power consumption of the behavioural model

multiplication circuits, where they have reached their performance limit with clock

constraint at 10ns. As this hybrid model multiplier is designed for implementing slow

functional units, the circuit synthesized with clock constraint at 100ns is selected

since it consumes the least power.

3.2.7 Division Circuits

The division operator used in the behavioural model division circuit produces only the

quotient without the remainder; the remainder has to be computed separately using the

modulus operator. As such, another division circuit model (based on the non-

performing division algorithm [40]) has been developed for the proposed ALU to

compute both division and remainder within one operation. Hence, we have two types

of division circuits to cater for different division requirement – with or without

remainder computation.

The schematic for the behavioural model division circuit shown in Figure 3.17

consists of a block diagram for representation of the division circuits and the registers

used to store the processed data.

Fig. 3.17 Behavioural model division circuit schematic

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 48

Model Characteristics 100ns 25ns
Area (um2) 907729.81 1435558.38
Dynamic Power (mW) 7.94 48.70
Normalized (mW) 7.94 12.18

Behavioural

Data Arrival (ns) 51.87 30.26

Table 3.6 Behavioural model division circuit synthesis

Table 3.6 shows the performance and power consumption of the behavioural model

division circuits. The circuits reached their performance limit with clock constraint at

35ns.

The non-performing hybrid model is developed to compute both quotient and

remainder within a single operation based on the non-performing division algorithm

[40]. The reason for selecting this algorithm is its implementation is not complicated.

Unlike other algorithms that proposed using different number system [41] or use fast

look-up-tables to cache pre-processed data [42], this algorithm only needs circuits for

subtraction, comparison, OR logic and left shifting operation when implemented.

The flowchart for the non-performing algorithm is shown in Figure 3.18.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 49

Start

Registers Initialisation

iteration = Clear all and set MSB
accumulator = dividend

bpower = divisor << (n-1)
qoutient = 0

i = i + 1
update = accumulator - bpower

Is update
positive ?

quotient = quotient OR iteration
accumulator = update

iteration = iteration >> 1
bpower = bpower >> 1

Is iteration
= 0 ?

Yes

Yes

quotient = quotient
remainder = accumulator

End

No

No

Fig. 3.18 Non-performing division algorithm

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 50

Figure 3.19 shows the non-performing division process for 5-bit data. In general, n

steps of computations are required for n-bit division.

27 ÷ 11 = 2 remainder 5
or

11011 ÷ 01011 = 00010 remainder 00101

Iteration Accum. Bpower Update Quotient Accum.(Updated)
10000 11011 0010110000 1101101011 00000 11011
01000 11011 0001011000 1111000011 00000 11011
00100 11011 0000101100 1111101111 00000 11011
00010 11011 0000010110 0000000101 00010 00101
00001 00101 0000001011 1111111010 00010 00101

Fig. 3.19 5-bit non-performing division process.

Figure 3.20 shows the schematic for the non-performing division hybrid model

comprises of layers of logic components and subtraction circuits.

Fig. 3.20 Non-performing division circuit schematic

Table 3.7 shows the performance and power consumption of the hybrid model

division circuits.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 51

Model Characteristics 100ns 50ns
Area (um2) 1338392.13 1531896.38
Dynamic Power (mW) 10.49 23.94
Normalized (mW) 10.49 11.97

Non-Performing
Division
Hybrid

Data Arrival (ns) 54.68 49.70

Table 3.7 Division circuit synthesis performance

The hybrid circuits reached performance limit with clock constraint at 50ns. In a

comparison of performance, the behavioural model synthesized circuits faster than the

hybrid model, but cannot compute both quotient and remainder in one operation.

Thus, fast functional unit for division is implemented with the fastest circuit (higher

power consumption) obtained from synthesizing the behavioural model. Slow

functional unit is implemented with slowest circuits (lower power consumption)

obtained from synthesizing the hybrid models.

With such implementation, it is necessary to differentiate PIns for division with and

without remainder computation, so that the programmer can take advantage of the

different circuits.

3.3 Analysis

3.3.1 Power Saving

As mentioned, the synthesized circuits are selected for implementation in the

functional units, based on their performance and power consumption levels – shown

in Table 3.8. The last column tabulates the difference in power consumption between

the slow circuits and the fast circuits. These figures are also indicative of the amount

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 52

of power that can be saved when the respective functional units are implemented in

the proposed ALU.

Functions Slow Circuit Fast Circuit Difference
Power (mW) 0.23 0.56 0.33 Addition Data Arrival (ns) 12.00 3.77 8.23

Power (mW) 0.24 0.57 0.33 Subtraction Data Arrival (ns) 12.51 4.13 8.38

Power (mW) 3.94 7.03 3.09 Multiplication Data Arrival (ns) 27.11 8.17 18.94

Power (mW) 10.49 12.18 1.69 Division Data Arrival (ns) 54.68 30.26 24.42

Table 3.8 Functional unit implementation

3.3.2 Optimal clock period

Assuming there are no time constraints from the execution of other pipeline stages

like instruction fetch, decode, memory fetch and register write back, the number of

stages assigned for execution will be based on performance of the functional units and

the clock cycle time of each stage.

Given a particular performance and period for one clock cycle, the number of clock

cycles a functional unit requires is calculated as the number of the clock cycles with

the total time period that is sufficient to cover the functional unit’s performance. For

example, in a given period of 5ns for one clock cycle, 2 clock cycles is needed for a

functional unit with a 6ns performance and 3 clock cycles for a functional unit with a

14ns performance.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 53

The time period to assign for each clock cycle is computed based on a slack analysis.

Slack is defined as the time difference between the time period and the functional

unit’s performance, which the functional units will be sitting idle after finished

execution. Thus, using the same example of a given time period of 5ns, the slack for a

functional unit of 6ns is 4ns and 1ns for a functional unit of 14ns.

The fastest performing functional unit amongst the selection is taken as the

benchmark to determine the clock cycle for each stage. As seen in Table 3.8, the

fastest performance recorded is 3.77ns. A preliminary time period of 4ns is therefore

assigned as the clock cycle.

To compute an optimal time period for the clock cycle, a slack analysis is performed

over a small range of time periods, starting from the preliminary value. The optimal

time period is selected based on the time period with the smallest average slack. Table

3.9 shows the slack computations for time periods of 4ns, 5ns and 6ns and Table 3.10

shows the average slacks across the functional units.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 54

 Time Period (ns) 4 5 6
Clock Cycles (units) 3 1 3 1 2 1
Total Time Period (ns) 12 4 15 5 12 6
Data Arrival (ns) 12 3.77 12 3.77 12 3.77
Slack (ns) 0 0.23 3 1.23 0 2.23

Addition

Slack (normalized) 0 0.06 0.6 0.25 0 0.37

Clock Cycles (units) 4 2 3 1 3 1
Total Time Period (ns) 16 8 15 5 18 6
Data Arrival (ns) 12.51 4.13 12.51 4.13 12.51 4.13
Slack (ns) 3.49 3.87 2.49 0.87 5.49 1.87

Subtraction

Slack (normalized) 0.87 0.97 0.50 0.17 0.92 0.31

Clock Cycles (units) 7 3 6 2 5 2
Total Time Period (ns) 28 12 30 10 30 12
Data Arrival (ns) 27.11 8.17 27.11 8.17 27.11 8.17
Slack (ns) 0.89 3.83 2.89 1.83 2.89 3.89

Multiplication

Slack (normalized) 0.22 0.96 0.58 0.37 0.48 0.65

Clock Cycles (units) 14 8 11 7 10 6
Total Time Period (ns) 56 32 55 35 60 36
Data Arrival (ns) 54.68 30.26 54.68 30.26 54.68 30.26
Slack (ns) 1.32 1.74 0.32 4.74 5.32 5.74

Division

Slack (normalized) 0.33 0.44 0.06 0.948 0.89 0.96

Table 3.9 Slack computations

Time Period (ns) 4 5 6
Average for Addition and Subtraction 0.40 0.32 0.35
Average for Addition, Subtraction and Multiplication 0.47 0.37 0.42
Average for Addition, Subtraction, Multiplication and Division 0.45 0.41 0.55

Table 3.10 Average normalized slacks

In Table 3.10, we see that the clock period of 5ns consistently shows the smallest

average slacks, and is thus selected as the time period to be implemented in the

functional unit of the proposed ALU.

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 55

3.3.3 Area Penalty

Comparing with other ALU designs that use only one set of functional unit, our ALU

requires more area to accommodate circuits for two sets of functional units. In another

words, our ALU design trade space for power. Table 3.11 shows the area used by the

slow and fast circuits. Table 3.12 shows a comparison base on the area used by slow

and fast circuits.

Area (um2) Function
Slow Circuits Fast Circuits

Total

Addition 24156 63654.61 87810.6
Subtraction 25940.71 65312.05 91252.8
Multiplication 343943.19 648100.94 992044
Division 1338392.1 1435558.4 2773951
Total 1732432 2212626 3945058

Table 3.11 Area of ALU

Ratio ALU Functional
circuits Slow Circuits Fast Circuits

Slow only 1 0.78
Fast only 1.28 1
Slow & Fast 2.28 1.78

Table 3.12 Ratio of circuit area

Base on Table 3.12, if we compare our ALU against a design which uses only our

slow circuits, our ALU suffers an area penalty of additional 128% of area required by

the slow circuits. The same penalty applies to comparing against a design which uses

only our fast circuits, our ALU suffers an area penalty of additional 78% of area

required by the fast circuits.

3.4 Chapter Summary

In this chapter, we discussed the function of CMOS logics in the circuits and how it

conforms to the low-power consumption design of the proposed ALU. We also

 CHAPTER 3 THE ARITHMETIC AND LOGIC UNIT HARDWARE

 56

examined the hardware design and how it fits into the make of the proposed ALU.

Last but not least, we analyzed in detail the implementation of the proposed ALU,

demonstrating the selection process of the various circuits for the functional units.

The circuits designed for the proposed ALU are specifically made to fit either the fast

or slow functional unit. They are described with behavioural, structural or hybrid

models, then synthesized and implemented with CMOS logic. Circuits that are

selected to be implemented in the functional units are chosen based on their

performance and power consumption levels. By utilizing the slow function units

appropriately, we are able to curtail excessive power consumption without affecting

performance.

Base on the circuit performance, the time period for the clock cycle is computed for

the ALU. A slack analysis was carried out on a small range of proposed time periods.

The optimal time period is selected based on the smallest average slack.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 57

CHAPTER 4

THE SOFTWARE INSTRUCTION SCHEDULER

In this chapter, we will describe the workings of the instruction scheduling algorithms

– explaining in detail how it uses the functional units to enhance performance while

reducing power consumption of the ALU during runtime. Broken down into several

functional stages, every stage of the algorithm will be explicitly described. The

developed software scheduler will then be tested, after which we will analyse the

results.

4.1 Instruction Scheduling

4.1.1 Background

In many programs, it is common to execute several PIns consecutively to achieve

certain tasks or computations. Due to instruction set constraints [43], these PIns may

repeatedly use a few registers, such as accumulators, to store and execute interim data

during execution. Such constraints cause some PIns to become dependent on the

preceding PIns, as they rely on the executed results stored by the preceding PIns for

their own computations.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 58

As such, the dependent PIns are stalled during operations, and can only execute after

the preceding PIns have completed execution. If executed in improper order, the

dependent PIns will cause data hazards such as Read-after-Write, Write-after-Read

and Write-after-Write [28], that will give rise to errors in the tasks or computations.

However, when the dependent PIns are stalled, the performance of the ALU pipeline

suffers as it sits idle while the dependent PIns are waiting to proceed.

Therefore, to prevent performance of the ALU from being stymied, the PIn order is

rearranged so that PIns are executed continuously. This eliminates the idle time

between preceding and stalled dependent PIns, thus effectively preventing stalls in the

pipeline so that the performance does not suffer.

4.1.2 Scheduling Algorithms

Instruction scheduling is commonly used to rearrange PIns order, to resolve hazards

caused by dependencies and enhance performance of the ALU pipeline. It can be

performed with different algorithms, each using different methods to analyze

dependencies among the PIns and rearrange them accordingly.

Many algorithms developed for instruction scheduling rearrange PIn order via

dependency analysis [43, 44, 45, 46, 47]. Essentially, these algorithms first identify

dependencies among PIns. It then arrange for independent PIns to fill in and increase

the distance between preceding and succeeding dependent PIns, to resolve the

dependencies between PIns. Different scheduling algorithms identify independent

PIns in different forms. In general, independent PIns are PIns that can be safely

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 59

relocated within a region of the program without causing hazards or computational

errors.

During the scheduling operation, these independent PIns are identified and relocated

between preceding and succeeding dependent PIns. This allows the ALU to execute

them while the dependent PIns are waiting on the preceding PIns to complete

execution. As a result, the ALU can execute PIns continuously, instead of idling while

the dependent PIns are waiting to proceed.

Algorithms used to schedule processes in real time systems [48, 49], can also be used

to schedule PIns. These algorithms analyze PIns and assign metrics like earliest and

latest execution time to PIns for constructing time graphs. After which, the PIns are

rearranged according to the time graphs. The same approach applies for algorithms

used in static resource distribution models [50, 51] as well. These algorithms assign

PIns with priority and treat registers as resources. Subsequently, the PIns are

rearranged according to priority and availability of registers.

4.1.3 Performance Optimality

As mentioned, the objective of instruction scheduling is to enhance ALU

performance, by identifying independent PIns and rearranging them to eliminate

dependencies that give rise to stalls. However, the degree of optimality of the

enhanced performance depends on the number of independent PIns the algorithms can

identify within the scheduling window.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 60

Scheduling window refers to the number of PIns that the scheduler can work with

during operation. It is determined by static program analysis before the scheduling

operation starts. As the algorithms perform the analysis, the size of the scheduling

window may vary across different regions of the program, depending on the program

flow structure.

Logically, a larger window size should result in scheduled PIns with better

performance [52], since more PIns are available for rearrangement. However, this is

not always true if there are insufficient independent PIns available in the scheduling

window for rearrangement to resolve data hazards. Figures 4.1 and 4.2 illustrate the

correlations between performance optimality and different scheduling window sizes,

with respect to a fixed number of independent PIns.

Fig. 4.1 Performance optimality with normalized number of independent instruction
of 0.65

 Extracted from [52], Figure 3 of “Instruction Window Size Trade-Offs and Characterization of Program Parallelism” by Pradeep K. Dubey et al

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 61

Fig. 4.2 Performance optimality with normalized number of independent instruction
of 0.8

From the above figures, we can conclude that both the window size and the number of

independent PIns available within the scheduling window affect performance

optimality of scheduled PIns. It is also observed that from comparing the two figures,

performance optimality can be limited by the number of independent instructions,

even with an increase in the scheduling window size.

4.2 Software Instruction Scheduler

4.2.1 Introduction

Instruction scheduling may be implemented in both hardware and software. In

hardware implementation, instruction scheduling takes place in complicated circuits

during runtime operation. In this case, circuit size and its power consumption greatly

constraint the complexity of the scheduling algorithm, as well as the size of the

observation window.

Extracted from [52], Figure 4 of “Instruction Window Size Trade-Offs and Characterization of Program Parallelism” by Pradeep K. Dubey et al

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 62

As for software implementation, because instruction scheduling is conducted during

offline compilation time, algorithm complexity and size of the observation window

cease to be issues. Typically, the algorithms worked on the PIns before they are

assembled into MIns, thus power is not incurred during runtime.

For the proposed ALU, software implementation of instruction scheduling is chosen

for the mentioned advantages in the previous paragraph. Essentially, we selected this

method of instruction scheduling as because it does not incur any power consumption

during runtime – a primary consideration in our proposed low-power consumption

ALU.

The software scheduler is designed to rearrange PIns via dependency analysis,

following which, it generates directives for the assembler to map PIns to MIns that

executes with the appropriate functional units. The software scheduler undergoes this

process to achieve its objective of enhancing performance while reducing power

consumption.

4.2.2 Scheduling Process

The proposed software scheduling process is performed in two phases; each phase is

further divided into several stages.

The first phase is an Initialization Phase that processes the PIns into a format

recognized by the scheduling algorithms used in the second phase, also known as the

Scheduling Phase. In this phase, the PIns are analyzed and rearranged to enhance

performance and reduce power consumption.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 63

4.2.2.1 Initialization Phase

The Initialization Phase consists of three stages to prepare the PIn sources for the

Scheduling Phase.

Initialization Phase Stage 1

The PIn sources usually contain many comments and references that are used to mark

the PIns for easy inspection. Such comments and references not needed in the

subsequent stages. At this stage, the software scheduler reads every line in the PIn

sources and deletes those that are not PIns.

While reading every line in the PIn sources, for every unique PIn encountered, a new

counter is created with an initial value of one. If the counter already exists for a

particular PIn, the value on the counter will be accordingly incremented. At the end of

this stage, a cleaned up version of the PIn sources is created, with the statistics of the

PIn frequency stored in an external file.

Initialization Phase Stage 2

The algorithms in the Scheduling Phase analyze and rearrange the PIns to enhance

performance and reduce power consumption during runtime. While this is done, the

control flow of the program must be properly maintained, to ensure that the program

works correctly after scheduling.

For example, it is common to execute arithmetic instructions and use the computed

results in the evaluation of a conditional branch instruction. However, during

rearrangement of instructions, it is important to ensure that the scheduling algorithms

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 64

do not position the arithmetic instructions after the branch evaluation instruction, as

this will result in errors in the program.

In Stage 2, control based PIns are identified and used to divide the program into

segments. To ensure the control flow of the program remains intact, the algorithms

work strictly on PIns within segments, never rearranging any PIns outside segments.

Therefore, as a conservative approach, this prevents the control flow of the program

from being affected by PIn rearrangement during execution. The program segments

are subsequently assembled after the scheduling algorithms have worked on every

one.

Initialization Phase Stage 3

During the Scheduling Phase, the algorithms identify instruction dependencies by

matching the operands of different PIns. Should the operands of different PIns match,

instruction dependencies may occur, depending on the execution order and the

distance between the matched PIns.

To simplify the matching work, Generic Instructions (GIns) are used to provide an

abstraction for the PIns. The GIns contain sufficient extracted information from the

PIns the scheduling algorithms need to work on in the Scheduling Phase. The

translation of PIns to GIns is performed in Stage 3.

At this stage, PIns are translated into GIns using the three generic mnemonics, shown

in Table 4.1.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 65

The GIn format consists of one of the three generic mnemonics in Table 4.1, together

with one integer representing the destination operand and two integers to represent

source operands.

GIn Mnemonic PIn Type
F1F Floating point Pins
IkF PIns that required k clock cycle for execution (k ≥ 1)

InXm PIns that can be performed with slow or fast functional unit, n
indicates the clock cycle required for execution with fast functional
units and m indicates the clock cycle required for execution with
slow functional units (n ≥ 1, m > 1)

Table 4.1 GIn mnemonic descriptions

As seen in Table 4.1, “F1F” represents floating point instructions in PIns. “IkF”

represents PIns that are supported with only one type of functional unit that requires k

clock cycles for execution, where the value of k is one or greater. “InXm” represents

PIns that can be performed with a fast or slow functional unit. The value n indicates

the number of clock cycles required for execution with the fast functional unit, while

m is indicative of the number of clock cycles for execution with the slow functional

unit. Based on the hardware design of the proposed ALU in Chapter 3, n can be one

or greater and m is greater than one. Unique integer numbers are used to represent

different operands such as registers and data in PIns, for the source and destination

operands in GIns.

As an abstraction of PIns, the GIns provide sufficient information for the scheduling

algorithms to work with in place of the PIns. The benefit of the GIn format is that it

makes for easy manipulation in the following phase, which is the Scheduling Phase.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 66

4.2.2.2 Scheduling Phase

The Scheduling Phase is also divided into three stages. One stage is for analysis and

the remaining two stages are for scheduling the GIn segments. In this phase, the

algorithms work on the GIn segments obtained from Stage 3 of the Initialization

Phase. At the end of the Scheduling Phase, the scheduled GIn segments are

assembled and translated back into PIns. Directives are generated for the assembler to

map PIns into MIns that are executed with the appropriate functional units.

Scheduling Phase Stage 1

Three sets of preliminary information are required to schedule the PIns correctly in

the next two stages. In the first set of information, the dependent GIns have to be

identified. The second set of information requires the identities of GIns that are

already in proper order, prior scheduling. Last but not least is the moveable space of

the GIns.

In Stage 1, the GIns are analyzed to obtain the required information. To identify

dependent GIns, an instruction dependency check [43] is performed on every GIn in

the working segment. Dependencies are then recorded in a Stall List.

During checking, the destination operand in the checking GIn will be matched against

operands in the following GIn in the segment. If the destination operand of the

checking GIn matches any of the operands in the following GIn, the following GIn

will be marked as a dependent GIn on the checking GIn. A stall entry for the next

following GIn will also be marked in the Stall List.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 67

To ensure the scheduling process is stable, it is necessary to identify GIns that are

already in proper order prior to scheduling and record them in a Fix List. This is to

prevent the scheduling algorithms from rearranging GIns that already in proper order,

which may cause extra cases of instruction dependencies under normal situations.

Such GIns have the following description:

If the GIn at location i+2 happens to be dependent on the GIn at location i, but the

GIn at location i+1 is independent, these three GIns will be considered to be in proper

order, marked as fixed locations and recorded in the Fix List. The scheduling

algorithms are then informed to avoid rearranging these GIns.

To obtain the movable space of the GIns, the GIns are analyzed to find every possible

location where they can be relocated safely within the working segment. To compute

the GIn movable space, the GIn is consistently relocated back and forth. This

relocation stops when dependency occurs – the space between the two extreme

locations is marked and recorded in the Space Chart as the movable space for the

GIns.

Scheduling Phase Stage 2

The scheduling process begins after the final stage of information collection has been

completed. At this stage, the Scheduling Phase Interim Algorithm works on the GIn

segments on an interim schedule, enhancing performance under the assumption that

GIns require only one clock cycle to perform, regardless of the GIn type.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 68

Under this assumption, instruction dependency between two consecutive instructions

is detected when the succeeding instruction writes to the same operand as the

precedent instruction. This dependency is easily resolved by relocating an

independent instruction in between these two dependent instructions.

This goes to show that a highly optimized performance under an interim schedule can

be obtained under the one clock cycle assumption. This interim schedule will be

reworked in the Scheduling Phase Final Algorithm, using the correct number of clock

cycles for execution in Scheduling Phase Stage 3.

The Scheduling Phase Interim Algorithm works with the information recorded in the

Space Chart, Stall List and Fix List. When the algorithm encounters a stall entry in the

Stall List it is reading, it means that hazard has occurred as a result of dependency and

has to be resolved.

As mentioned, to resolve the dependency under the one clock cycle assumption at this

phase, an independent GIn has to be relocated and inserted between the two

depending GIns. For example, if a GIn at location i+1 is found to be dependent on a

GIn at location i, an independent GIn will have to be relocated and inserted between i

and i+1 to resolve the dependency. If an independent GIn exists, it will be reordered

so that the three GIns will be considered scheduled. They are then marked with fixed

locations and recorded in the Fix List.

To locate an independent GIn, the algorithm looks up the location of the stall entry on

the Space Chart and Fix List. The objective is to find an independent GIn with enough

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 69

movable space for relocation to resolve the stall. After such an independent GIn is

found and relocated, the Space Chart, Fix List and Stall List will be recomputed. If no

independent GIns can be found, wait states like NOP or other forms of delay

mentioned in Chapter 2.1.2.1 will be used to resolve dependencies.

Figure 4.3 depicts a detailed flowchart for Scheduling Phase Interim Algorithm.

Start

Initialization

Check dependency
and update Stall

List

Check instruction
order and update

Fix List

Compute Space
Chart

Check Stall List

Stall ?

Compute
Backward Free

Space

Select
shortest
Forward

Free Space

Search Independent
Instructions in Space

Chart

Independent
Instructions
Available ?

No

Yes, only 1

Yes, more
than 1 More than 1 ?

Select
shortest

Backward
Free Space

Compute
Forward Free

Space

More than 1 ?

Select
nearest to

current
instruction

Rearrange
and resolve

stall

Yes Yes

No, only 1No, only 1

Yes

Last
Instruction ?

Cannot
resolve

stall

No

Last
Instruction ?

End YesYes

No changes
in

information,
go to next
instruction

No

Changes in
information,
go to next
instruction

No

Fig. 4.3 Scheduling Phase Interim Algorithm Flow Chart

Scheduling Phase Stage 3

The Scheduling Phase Final Algorithm in Stage 3 has two objectives. The first

objective is to rework the interim schedule with the actual number of clock cycles

required by the functional units to perform. The second objective is to identify and

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 70

rearrange GIns that can be performed with slow functional units to reduce power

consumption during runtime without incurring loss in performance. The details of the

Scheduling Phase Final Algorithm are described as follows:

In this phase, the algorithm identifies GIns with mnemonic “IkF” and “InXm”

(mentioned in Section 4.2.3). GIns with mnemonic “IkF” can only be executed with

one type of functional unit. The integer k represents the number of clock cycles

required by the GIn to perform. If the identified GIn is “IkF” and k is greater than

one, it will be registered as XCycle when the GIn is recorded in the Stall List. The

algorithm will then use these GIns to resolve dependencies.

GIns with mnemonic “InXm” can be executed with fast or slow functional units. The

integer n represents the number of clock cycles required by the GIns for execution

using fast functional units, while the integer m represents the number of clock cycles

required to execute using slow functional units. If the identified GIn is “InXm”, the

integer n will be registered as SCycle and m will be registered as XCycle. The

algorithm will base on XCycle or SCycle to rearrange the GIns to resolve

dependencies.

Starting with XCycle, the algorithm finds or creates the situations mentioned in

Chapter 1.3 for these GIns to perform with slow functional units. Should

dependencies occur because of slow functional units used, the algorithm will repeat

the scheduling process and rearrange the GIns based on SCycle, using fast functional

units to execute the GIns.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 71

The algorithm uses four conditions (described below) which serve as mechanisms to

analyze and rearrange the GIns to resolve dependencies. The algorithm fixes the

dependencies based on XCycle or SCycle, using information recorded in the Space

Chart, Fix List and Stall List.

If the identified GIn is “IkF” with an entry on the Stall List, the algorithm will check

the identified GIn against the four conditions to resolve dependencies with XCycle

only. If the identified GIn is “InXm”, the algorithm will check it against the four

conditions and arrange for its execution with slow functional units using XCycle first.

Should dependencies occur with XCycle, the algorithm would recheck the identified

GIn against the four conditions, after which it will arrange for execution of the GIn

with fast functional units using SCycle.

In the following description of the four conditions, we will arbitrarily use the term

Cycle to refer to XCycle or SCycle.

Condition 1

The movable space of the identified GIn is read from the Space Chart. Base on the

space between the current location and the location where the identified GIn can be

rearranged to execute latest in time, the forward movable space is computed.

If ‘Cycle is lesser or equal to the forward movable space’, Condition 1 is met. If

‘Cycle is greater than the forward movable space’, Condition 1 is not met and

Condition 2 will be checked.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 72

Condition 2

If ‘the identified GIn is not marked as fixed location in the Fix List’, the following

procedure proceeds, else Condition 2 is skipped and Condition 3 is proceeded instead.

The maximum movable space is computed base on the space recorded in the Space

Chart. It is define as the space between the locations where the identified GIn can be

arranged to execute earliest and latest in time.

If ‘the maximum movable space is equal or greater than Cycle’, the identified GIn

will be rearranged to the location where it can be executed earliest in time and

Condition 3 is met. If ‘the maximum movable space is smaller than Cycle’, Condition

2 is not met and Condition 3 will be checked.

Condition 3

At this stage, an arbitrary number of independent GIns N, is required to be rearranged

after the identified GIn location to extend the forward movable space. N is defined as,

N = Cycle - forward movable space

Hence, ‘N number of independent GIns will be searched within the Space Chart’. If

this is found, these N independent GIns will be rearranged to locations after the

identified GIn and Condition 3 is met. If this cannot be found, Condition 3 is not met

and Condition 4 will be checked.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 73

Condition 4

At this stage, an arbitrary number of independent GIns M, is required to be rearranged

to the locations after the identified GIn to extend the maximum movable space. M is

define as,

 M = XCycle - Maximum free movable space span

Hence, ‘M number of independent GIns will be searched within the Space Chart’. If it

can be found, the identified GIn will be rearranged to the location where it can be

executed earliest in time, the M independent GIns will be rearranged to locations after

the identified GIn and Condition 4 is met. If it cannot be found, Condition 4 is not

met.

If Condition 4 is not met, it implies dependencies still exist even after the identified

GIn has been attempted to be rearranged. An entry will then be made in the Stall List

to mark the dependency of the identified GIn.

To resolve the dependency, wait states mentioned in Chapter 2.1.2.1 will have to be

implemented, since rearranging the GIns fail to resolve the problem. Fast functional

units will be used to execute identified GIns with the mnemonic “InXm”, in order to

reduce the amount of wait states required.

If any of the four conditions is met during the process, it implies that scheduling of

the identified GIn has been successful. Dependencies will be resolved for identified

GIns with the mnemonic “IkF”, and any entry in the Stall List will be cleared. For

identified GIns with the mnemonic “InXm”, the value of Cycle will be recorded in the

Cycle List. The assembler can then use the Cycle List as directives to map PIns with

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 74

appropriate MIns. Similarly, the Stall List can be used as directives for the assembler

to insert wait states accordingly. The detailed flowchart for Scheduling Phase Final

Algorithm Flow Chart is shown in Fig. 4.4.

Start

Initialization

Check
instruction type

End

Number of clock
cycles required ?

More than 1

Register required
clock cycles as
XCycle/SCycle

Check Space
Chart

Enough Forward
Space ?Marked in Fix List ? NoNo

Rearrange
current

instruction
to earliest
possible
location

Check dependency
within XCycle/SCycle

space

Any dependency
found ?

Find number of
independent instructions

required

Sufficient
independent
instructions ?

Rearrange instructions

Update Space Chart,
Stall List and Fix List

Generate directives

Last instruction ?

Cause dependency
? Yes

No

Yes

Yes

Yes

No

Yes

Only 1

Go to next instruction

Yes

No

Cannot
resolve

stall or use
slow

functional
unit

No

Fig. 4.4 Scheduling Phase Final Algorithm Flow Chart

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 75

4.3 Analysis

The software scheduler which we developed was tested on several file compression

programs. From the scheduled programs we can see that there are many cases in

which the scheduler can rearrange PIn order to resolve stalls and assign slow

functional units. On the other hand, there are also several cases where the scheduler

could not improve the situations, due to insufficient independent PIns available to

resolve dependencies.

From the scheduled programs, we also managed to obtain the statistics on the number

and type of PIns, and the frequency of slow functional unit assignment, as a result of

rearranging the PIns using the scheduler. Power savings can be estimated base on

these statistics.

The following sections describes some best and worst cases found with the scheduler,

and analysis on the statistics obtained.

4.3.1 Good and Bad Cases

From these tests we selected three processed segments as examples – two of good

cases and one bad case, which the software scheduler encountered in the course of the

tests.

Good cases occurred when there were lesser stalls (due to dependencies) with

sufficient independent instructions to resolve, while still able to assign slow functional

units. Some good cases did not even have any stall. Bad cases on the other hand, were

usually caused by insufficient or entire lack of independent instructions to resolve

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 76

stalls; bad cases could still occur even though there were few stalls – due to

insufficiency of independent PIns.

The GIn and PIn segments are shown with the individual cases. The GIn segment

records the GIns of before and after scheduling, along with information on stalls and

functional unit assignments. Unresolvable stalls are recorded in the Stall column with

a non-zero integer. The Cycle column recorded the number of clock cycle that

instructions should use during execution. With reference from the GIns, it can be

shown the type of functional unit that has been assigned to the corresponding PIns.

Table 4.2 and 4.3 show the one of the good case (Case 1) found. This case does not

contain any stalls in its original PIn order, and slow functional units can be assigned

for execution without instruction rearrangement.

Case 1

No Inst Dest Src1 Src2 Stall ReX Inst Dest Src1 Src2 Stall Cycle
0 I1F 323 7 7 0 0 I1F 323 7 7 0 1
1 I1F 7 8 8 0 1 I1F 7 8 8 0 1
2 I1S3 8 35 35 0 2 I1S3 8 35 35 0 3
3 I1F 324 5 5 0 3 I1F 324 5 5 0 1
4 I1F 325 6 6 0 4 I1F 325 6 6 0 1
5 I1F 5 302 302 0 5 I1F 5 302 302 0 1
6 I1F 327 326 42 0 6 I1F 327 326 42 0 1

Table 4.2 GIn segment for Case 1

Ref Original Destination Source Ref Rearranged Destination Source
536 Push Bp 536 Push Bp
537 Mov Bp Sp 537 Mov Bp Sp
538 Sub Sp 200 538 Sub Sp 200
539 Push Si 539 Push Si
540 Push Di 540 Push Di
541 Mov Si [bp+04] 541 Mov Si [bp+04]
542 Cmp word ptr [2208] 0 542 Cmp word ptr [2208] 0

Table 4.3 Program segment for Case 1

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 77

Table 4.4 and 4.5 show another good case (Case 2) found. This case shows that

instruction rearrangement is able to resolve stalls and assign slow functional units for

execution.

Case 2

No Inst Dest Src1 Src2 Stall ReX Inst Dest Src1 Src2 Stall Cycle
0 I1F 1600 7 7 0 0 I1F 1600 7 7 0 1
1 I1F 7 8 8 0 1 I1F 7 8 8 0 1
2 I1S3 8 215 215 0 3 I1F 2 1597 1597 0 1
3 I1F 2 1597 1597 0 4 I1F 1 1601 1601 0 1
4 I1F 1 1601 1601 0 5 I1F 4 609 609 0 1
5 I1F 4 609 609 0 2 I1S3 8 215 215 0 3
6 I1F 236 4 4 1 6 I1F 236 4 4 0 1
7 I1F 237 1 1 0 7 I1F 237 1 1 0 1
8 I1A3 1598 215 215 0 8 I1A3 1598 215 215 0 3
9 I1F 4 237 237 0 9 I1F 4 237 237 0 1

10 I1F 1 236 236 0 10 I1F 1 236 236 0 1
11 I1F 8 7 7 0 11 I1F 8 7 7 0 1
12 I1F 7 1602 1602 0 12 I1F 7 1602 1602 0 1

Table 4.4 GIn segment for Case 2

Ref Original Destination Source Ref Rearranged Destination Source
2809 Push Bp 2809 Push Bp
2810 Mov Bp Sp 2810 Mov Bp sp
2811 Sub Sp 0004 2812 Mov Bx [2628]
2812 Mov Bx [2628] 2813 Mov Ax [bx+02]
2813 Mov Ax [bx] 2814 Mov Dx [bx]
2814 Mov Dx [bx] 2811 Sub Sp 0004
2815 Mov [bp-04] Dx 2815 Mov [bp-04] Dx
2816 Mov [bp-02] Ax 2816 Mov [bp-02] Ax
2817 Add Word ptr [2628] 0004 2817 Add word ptr [2628] 0004
2818 Mov Dx [bp-02] 2818 Mov Dx [bp-02]
2819 Mov Ax [bp-04] 2819 Mov Ax [bp-04]
2820 Mov Sp Bp 2820 Mov Sp bp
2821 Pop Bp 2821 Pop Bp

Table 4.5 Program segment for Case 2

Table 4.6 and 4.7 show a bad case (Case 3) found with not enough independent

instructions available to resolve dependencies.

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 78

Case 3

No Inst Dest Src1 Src2 Stall ReX Inst Dest Src1 Src2 Stall Cycle
0 I1F 3 1618 1618 0 0 I1F 3 1618 1618 0 1
1 I1F 4 1610 1610 0 1 I1F 4 1610 1610 0 1
2 I1F 4 59 59 1 2 I1F 4 59 59 1 1
3 I1A3 4 1 1 2 3 I1A3 4 1 1 2 1
4 I1A3 4 4 4 3 4 I1A3 4 4 4 3 1
5 I1F 1 148 148 0 5 I1F 1 148 148 0 1
6 I1A3 1 4 4 4 6 I1A3 1 4 4 4 1
7 I1F 1612 1 1 5 7 I1F 1612 1 1 5 1

Table 4.6 GIn segment for Case 3

Ref Original Destination Source Ref Rearranged Destination Source
2859 Pop Cx 2859 Pop Cx
2860 Mov Dl [25D2] 2860 Mov Dl [25D2]
2861 Mov Dh 00 2861 Mov Dh 0
2862 Add Dx Ax 2862 Add Dx ax
2863 Inc Dx 2863 Inc Dx
2864 Mov Ax word ptr [235A] 2864 Mov Ax word ptr [235A]
2865 Add Ax Dx 2865 Add Ax dx
2866 Mov Word ptr 2622] Ax 2866 Mov word ptr [2622] ax

Table 4.7 Program segment for Case 2

4.3.2 Statistics and Power Savings

Statistics on the arithmetic instructions are obtained by identifying and counting

instructions in Initialization Phase Stage 1. Power savings with the proposed ALU is

estimated base on the number of instructions assigned to using slow functional units

and the differences in power consumption between using slow and fast functional

units (as mentioned in Section 3.3).

Table 4.8 shows the statistics on the arithmetic instruction found in the tested

programs, while Table 4.9 shows the number of instructions assigned using slow

functional units in the tested programs. The estimated savings on power consumption

with the proposed ALU is summarized in Table 4.10. It is derived from the data in

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 79

Table 4.9 and based on the savings on power consumption between fast and slow

functional units summarized in Table 3.8.

Programs Total Arithmetic Addition Subtraction Multiplication Division
ARJ 48431 6085 3935 1787 265 98
PKZIP 19800 4848 2857 1800 152 39
PKUNZIP 13944 2561 1990 1235 104 32
DUNZIP32 21875 1757 1701 535 29 27
UNRAR 14001 1363 1057 283 16 7
ACE 35061 2321 2075 1250 171 75

Table 4.8 Statistics on tested programs

Table 4.8 shows that in general, addition instructions dominate the number of

arithmetic instructions, followed by subtraction, multiplication and division

instructions being the least in all the tested programs.

Program Addition Subtraction Multiplication Division Total
ARJ 1451 (36.9%) 828 (46.3%) 78 (29.4%) 14 (39.0%) 2371 (39.0%)
PKZIP 1731 (60.6%) 1103 (61.3%) 65 (42.8%) 12 (60.0%) 2911 (60.0%)
PKUNZIP 1196 (60.1%) 722 (58.5%) 53 (51.0%) 4 (58.8%) 1975 (58.8%)
DUNZIP32 302 (17.8%) 210 (39.3%) 11 (37.9%) 3 (22.9%) 526 (22.9%)
UNRAR 260 (24.6%) 43 (15.2%) 2 (12.5%) 2 (22.5%) 307 (22.5%)
ACE 665 (32.0%) 450 (36.0%) 32 (18.7%) 11 (32.4%) 1158 (32.4%)

Table 4.9 Number of instructions assigned to use slow functional unit

Table 4.9 shows that different programs achieved different amount of slow functional

unit assignments with the software scheduler.

Program Addition Subtraction Multiplication Division Total
ARJ 478.83 273.24 241.02 23.66 1016.75
PKZIP 571.23 363.99 200.85 20.28 1156.35
PKUNZIP 394.68 238.26 163.77 6.76 803.47
DUNZIP32 99.66 69.3 33.99 5.07 208.02
UNRAR 85.8 14.19 6.18 3.38 109.55
ACE 219.45 148.5 98.88 18.59 485.42

Table 4.10 Estimated power consumption savings (mW)

 CHAPTER 4 THE SOFTWARE INSTRUCTION SCHEDULER

 80

Table 4.10 shows the power savings achievable from using the proposed ALU to

execute the test programs. It is computed based on the number of instructions

assigned to use slow functional units (Table 4.9) and the amount of power saved from

using slow functional units (Table 3.8).

4.4 Chapter Summary

In this chapter, we discussed how the design and function of the software scheduler

enhance performance while reducing power consumption of the proposed ALU.

Algorithms are central to the functioning of the software scheduler, as they are

primarily responsible for the analysis and rearrangement of instructions.

In essence, the algorithms resolve the dependency between instructions, enabling the

ALU to pack a better and more power-efficient performance. After the instructions

have been analyzed for dependencies, they are rearranged for continuous execution to

avoid the problem of an idling ALU that drags performance down, and using slow

functional units for execution whenever possible, to reduce power consumption.

From the scheduled programs, the good and bad cases are identified and illustrated.

Statistics on the instruction types in the test programs are obtained. These statistics

give us an estimate of savings in power consumption, when the proposed ALU is used

to execute the test programs. By illustrating the amount of power that can be saved

using the proposed ALU, we are therefore able to prove the viability the design.

 CHAPTER 5 CONCLUSION

 81

CHAPTER 5

CONCLUSIONS

This chapter summarizes the previous chapters and concludes the thesis,

recommending future work which can be done in the future to improve the project.

5.1 Conclusion

Considering the widespread use of mobile electronic devices today, the IT and

electronic industry would be able to reap many benefits from a high-performance,

low-power consuming microprocessor. Not only can such a microprocessor increase

the usage periods of electronic devices, chances are it would result in numerous other

mobile electronic innovations.

We therefore focussed on developing the ALU – the heart of the microprocessor – in

this project, to work towards the goal of creating a low power microprocessor. An

ALU with a simple design was thus developed, for the obvious advantage that it

would consume less power by virtue of simplicity of its operations, without

compromising performance.

 CHAPTER 5 CONCLUSION

 82

There are three major phases of development in this project: architecture design,

hardware and software development.

The first thing we did was to design the ALU hardware architecture and define the run

time operation. The ALU architecture consists of a set of slow and fast functional

units for executing instructions, a Control Unit for synchronizing operations and a

Register File which can update several registers within one clock cycle.

The simplicity of the ALU design enables power to be consumed mainly by

instruction execution during runtime, with no extraneous consumption. This lean

power consumption is mostly made possible by the ALU’s methodical inner

processes. During runtime, the Control Unit selects the functional units for instruction

execution based on the MIns, while the software scheduler rearranges PIns prior to

execution, so stalls are resolved and PIns are assigned to slow functional units

whenever possible. As such, the ALU’s function is simplified so that all it has to do is

to execute MIns.

Next on the list was the functional unit hardware, which we developed so that it

conformed to the requirement of the ALU design. We primarily did this by

implementing slow functional units for execution instead of fast ones, as they

consumed less power than fast functional units during execution. Prior to this

decision, simulations were conducted on several circuit designs and models, allowing

us to acquire an estimate on the power savings from using the slow functional units –

a significant figure compared with the power consumption level of fast functional

units.

 CHAPTER 5 CONCLUSION

 83

Third and lastly, is the software scheduler. Developed to rearrange instruction order,

we designed it to fully exploit the ALU architecture for resolving stalls and reducing

power consumption. Likewise the other aspects of the ALU, the two algorithms

developed for these tasks were designed to keep within the limits of minimal power

consumption in the way they are processed.

The first algorithm rearranges instructions to obtain an interim schedule that focused

only on high performance, under the assumption that all instructions required only

one clock cycle for execution. After which, the second algorithm works on the interim

schedule to correct the assumption while looking for opportunities to assign

instructions to be executed with slow functional units.

Two lists of directives are generated after the two algorithms have been processed –

one is a functional unit assignment list, while the other is a list of stalls. The stall

directives embed delay information in instruction opcodes, which in turn instruct the

Control Unit to delay instruction issue. This step of the scheduling process thereby

avoids power incurrence when executing instructions that insert wait states.

After the software scheduler was completed, we put it to the test on several file

compression programs. Analysis of the test results shows that stalls and power

consumption were reduced when the proposed ALU was used to execute instructions

rearranged by the software scheduler. This positively confirms the effectiveness of the

software scheduler and the potential benefits that can be garnered when implemented

in mobile electronic devices.

 CHAPTER 5 CONCLUSION

 84

5.2 Future Work

For Design and Architecture

To further reduce power consumption, it is possible to incorporate the simple ALU

architecture with other voltage-reduction techniques, such as those mentioned in

Chapter 1. However, there are potential problems to be dealt with before the two can

be combined. Challenges that have to be faced include issues in the implementation of

techniques such as real time slack analysis and interfacing circuits between different

voltage systems.

In order to enhance performance and increase opportunities so slow functional units

are used to assign instructions, the ALU design can adopt the multiple-instruction

issue architecture like the VLIW. With the multiple-instruction issue architecture, the

ALU can execute other instruction streams when a particular stream is stalled,

reverting to it when it is ready to proceed. This way, the ALU constantly executes

instructions from different streams [25].

While this deals with the problem of stalling, there are two major challenges that arise

with this method. Firstly, this will involve a complicated Control Unit design as it has

to synchronize all the instruction streams supported, while consuming reasonable

additional power. Offline software may come in useful here as it can offload some or

all of the synchronizing tasks for the Control Unit. Secondly, it must be ensured that

an optimal number of functional units are implemented to avoid structural hazards – a

common problem in multiple-instruction issue architecture.

 CHAPTER 5 CONCLUSION

 85

For Functional Units

Being a hot topic in the electronic industry at the moment, designs for functional units

are periodically reviewed and updated with the ongoing research on low-power

arithmetic circuit designs. Also, as technology improves, the circuit models can be re-

synthesized using latest standard cell library to obtain better performance and power

consumption levels.

With the present ALU design, either fast or slow functional units can be used.

However when functions like multiplication is involved, it may be advantageous to

introduce a small range of medium functional units to fill out the performance

difference between the slow and fast functional units. This is so that when slow

functional units cannot be assigned, a medium-performing one can be assigned

instead of a fast functional unit, enabling a measure of power to be saved. Potentially,

problems might surface because of the increase in workload for the software

scheduler – it would have to go through more options before selecting a suitable

functional unit to execute an instruction.

For Software Scheduler

Although the software scheduler has demonstrated the effectiveness of instruction

rearrangement to resolve stalls and reduce power consumption, there is still a

generally tentative outlook of it. The approach towards the design of algorithms based

on intra-segment analysis is still fairly conservative, but the algorithms are already

quite complex in its first stage of development. However, the effectiveness of the

software scheduler can be enhanced by incorporating more complicated tasks in the

 CHAPTER 5 CONCLUSION

 86

algorithms, such as transferring unused independent instructions or carrying out

scheduling based on inter and intra segment analysis.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 87

APPENDIX

CMOS CIRCUIT CHARACTERIZATION

In this appendix, we will describe the propagation delay, signal quality and power

consumption pattern of the CMOS circuits, which were implemented as basic logic

gates and adder blocks in the simulation setup.

A1 Characterization

In Chapter 3.1, we described the advantages of the CMOS circuits, the foremost being

its low power consumption. This characteristic of the CMOS circuit was the primary

consideration when we decided to implement it in the proposed ALU’s functional

units.

CMOS circuits are essentially made up of MOSFET transistors. Circuit designs for

basic logic gates and adder are used to characterize the simulated output propagation

delays and power consumption. Cadence IC design tools were used to implement the

circuits with the CSX 0.35um technology library. The circuits are simulated for output

propagation delays and power consumption, which we will analyze in the next few

sections.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 88

A1.1 Propagation Delay

NAND and NOR are the fundamental logic circuits that serve as basic building blocks

for digital circuits. Figures A1.1 shows the 2-input NAND with its logic truth table,

while Figure A1.2 shows the 2-input NOR circuit with its logic truth table.

Fig A1.1 2-Input NAND gate and truth table

Fig A1.2 2-Input NOR gate circuit and truth table

In general, it is possible to create a circuit with more input gates, by adding PMOS or

NMOS transistors, in the correct paths, as seen in Figure A1.3 which shows a 3-input

NAND circuit.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 89

Fig A1.3 3-Input NAND gate and truth table

However, while adding inputs to logic gate functions may help ease digital design

implementations, it also increases parasitic capacitance along the signal path. As a

result, this may affect the signal propagation delay and drive.

The simulations were performed on the logic gates we developed to investigate the

effects of increasing inputs on the propagation delay. Firstly, a range of input signals

– permanently high, permanently low, low-to-high, and high-to-low transitions – were

connected to the logic gates in every possible combination. Propagation delay from

the circuit simulation was then measured, whenever the input signals switched.

In the worst case of NAND circuit propagation delay, it was observed that worst rise

time occurred when a high-to-low transition input signal was applied to the last input

PIn, while the other signals were directed to the ground. Consequently, worst fall time

occurred when a low-to-high transition signal was applied to all input PIns.

For the NOR circuits, worst rise times occurred when a low-to-high transition signal

was applied to all input PIns. The worst fall time occurred when a low-to-high

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 90

transition signal was applied to the first PIn while the rest were applied to VDD. The

results are summarised in Table A1.1 and Table A1.2:

NAND Input Power (pW) Trise (ns) Tfall (ns) NAND Input Power (pW) Trise (ns) Tfall (ns)

2 1.14 0.4315 0.3493 9 3.46 0.6185 1.02255
3 1.38 0.4658 0.4184 10 3.93 0.6416 1.17833
4 1.64 0.4953 0.493 11 4.41 0.6641 1.351
5 1.91 0.5211 0.5675 12 4.89 0.6861 1.54042
6 2.19 0.5461 0.6565 13 5.38 0.7076 1.74533
7 2.58 0.5707 0.7618 14 5.88 0.7287 1.96617
8 3.01 0.595 0.8836 15 6.38 0.7494 2.20282
 16 6.88 0.7697 2.45537

Table A1.1 Worst propagation delay for NAND gate

NOR Input Power (pW) Trise (ns) Tfall (ns) NOR Input Power (pW) Trise (ns) Tfall (ns)
2 1.01 0.4923 0.2816 9 3.19 2.4076 0.352
3 1.18 0.609 0.2933 10 3.63 2.90137 0.3606
4 1.38 0.772 0.3037 11 4.08 3.44888 0.3689
5 1.61 0.9889 0.3139 12 4.54 4.04968 0.3769
6 1.95 1.2616 0.324 13 4.99 4.7036 0.3845
7 2.35 1.58856 0.3337 14 5.45 5.41054 0.392
8 2.76 1.92025 0.343 15 5.91 6.17119 0.399
 16 6.36 6.98584 0.4057

Table A1.2 Worst propagation delay for NOR gate

The data in Table A1.1 and A1.2 are used to plot Figures A1.4 and 1.5, from which

we can derive 3rd degree polynomial equations. These equations are useful for

expressing worst-case propagation delays for the NAND and NOR logic circuits

simulations or measurements.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 91

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Number of gate inputs

Ti
m

e
(n

s)

NAND Rise NAND Fall

 Fig. A1.4 NAND circuit worst timing plot

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of gate inputs

Ti
m

e
(n

s)

NOR Rise NOR Fall

 Fig. A1.5 NOR Gate Worst Timing Plot

Worst propagation delay equations for NAND,

TWorst Rise
3624)1024647.4()1099254.3(02976.037942.0 zzz −− ×+×−+= …(Eq. A1)

TWorst Fall
362)1055846.3(00782.000718.032441.0 zzz −×+++= …………...(Eq. A2)

Worst propagation delay equations for NOR,

TWorst Rise
342)1027038.1(03155.006747.053498.0 zzz −×−+−= ……..……(Eq. A3)

TWorst Fall
3624)1015217.1()109823.1(01208.025844.0 zzz −− ×+×−+= …….(Eq. A4)

Where z is the number of inputs.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 92

A1.2 Signal Quality and Static Power Consumption

In this section, we will compare the signal quality of CMOS circuits with Pass

Transistor Logic circuits using XOR circuits. The impact due to degraded signal

quality on static power consumption of the Pass Transistor Logic circuits is observed.

Based on a survey on XOR circuit designs, a design with CMOS logic using 12

transistors [54] and another with Pass Transistor logic using 4 transistors [55] were

selected for investigation. Both the CMOS and Pass Transistor designs were selected

on the basis of the fewest transistors used, amid available circuit designs.

Figure A1.6 XOR Designs: 12 Transistors CMOS circuit (above) and
4 Transistors Pass Transistor Logic circuits (bottom)

Figure A1.6 shows the circuit layout for the selected designs. The 12-transistor

CMOS design employs a 10-transistor XNOR circuit coupled with an inverter to

Extracted from [54], “Design and analysis of low-power 10-transistor full adders using novel XOR-XNOR gates”
and [55] “Design New 4-transistor XOR and XNOR designs” by Heng Tien Bui et al

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 93

provide the XOR function, while the first 4 transistors in the design are NAND gate

implementations.

Such a design enables a single circuit to provide both NAND and XNOR functions –

a useful feature when both NAND and XOR functions are required using the same

inputs. On the other hand, Pass Transistor Logic circuits can only provide either the

XOR or XNOR function. The performance for these circuits was simulated, with the

results of the power consumption listed in Table A1.3.

Circuit Transistor Count Power (pW)
XNOR 4 2.61
XOR 4 1.81
XNOR 10 4.94
XNOR + Inverter 12 6.60
XNOR + Inverter 6 8.28
XOR + Inverter 6 5.74

Table A1.3 XOR/XNOR Static Power Consumption

As a stand alone circuit, the 4-transistor design has the lowest static power

consumption because of its low transistor count. However, when connected to other

circuits – like a simple inverter for instance – it results in significant static power

consumption because of sub-threshold conduction that is caused by logic degradation

at the output signal.

The last two rows of Table A1.3 show static power consumption caused by sub-

threshold conduction, in an inverter circuit connected to the 4-transistor XOR circuit.

The 12-transistor CMOS design on the other hand, does not have problems with sub-

threshold conduction as CMOS logics generate rail-to-rail output signals (as

mentioned in Chapter 3).

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 94

Logic degradation is a common problem found in Pass Transistor Logic circuits. This

is illustrated in the circuit simulation results of the 4- transistor XOR circuit, shown in

Fig A1.6.

When inputs A and B are low, the upper most PMOS is turned on by input B with its

drain connected to input A. This low logic is conducted through the PMOS channel

but degraded because of reverse bias in the PMOS structure (shown in Figure 3.1).

This degraded low logic can turn on any connected PMOS transistors in the sub-

threshold region thereby causing static power consumption.

Fig. A1.7 4 Transistors XOR circuit output logic degradation

Figure A1.7 shows the electrical signals waveform obtained from the circuit

simulation. From the diagram, we can see that the degraded XOR output signal at low

logic is close to 1V. Even though 1V is considered low logic, it is high enough to

sustain the PMOS transistor in the sub-threshold region. As in Table A1.3, the PMOS

transistor in the inverter circuit conducts significant static power consumption.

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 95

As such, the 4-transistor XOR design with Pass Transistor logic is not suitable for use

in low-power applications, even though they use very few transistors in the circuits.

This holds true, unless the problem of logic degradation can be resolved or if the

circuit connected to the XOR circuit output can withstand degraded logic signals

without incurring sub-threshold power consumption.

A1.3 Static and Dynamic Power Consumption

By analyzing the simulated power consumption of the four operating blocks of Carry

Look Ahead (CLA) circuit blocks carried out under controlled situations, we are able

to study the static and dynamic power consumption in (0.35um) CMOS circuits.

Four blocks of the 4-bit CLA adder circuits were cascaded to form a 16-bit rippling

CLA adder. A set of test bits, “1010” and “0101” were used as inputs for each block

to ensure switching occurred within the circuits. Prior to investigations proper, we

conducted two tests on the static and dynamic power consumption of the circuits.

In the first test, the power supply to the circuit blocks was controlled manually. In the

second test, the power supply to the circuit blocks was controlled using an OR logic

circuit shown in Figure A1.8. This circuit was responsible for switching off the power

supply to a CLA block can be when all inputs were connected to low logic.

RCLA Block
Power SupplyRCLA

Block
Inputs

Fig A1.8 Power Control Circuit

 APPENDIX : CMOS CIRCUIT CHARACTERIZATION

 96

The same procedure was applied to both tests. Initially, the inputs to all blocks were

connected to the ground. Then block by block, the inputs were connected to the test

bits, incrementally. The power consumption levels are recorded in Table A1.4.

Power Power Supplied
(Block)

Input
(Block)

Manual Power
Switch (Watt)

Circuit Power
Switch (Watt)

All On 4 1 5.90057688E-18 2.77309088E-11
Off Unused 1 1 1.76085357E-18 2.77308986E-11

All On 4 2 6.28151072E-18 5.54693734E-11
Off Unused 2 2 3.52170070E-18 5.54693740E-11

All On 4 3 6.66245482E-18 8.32077997E-11
Off Unused 3 3 5.28255047E-18 8.32077985E-11

All On 4 4 7.04341062E-18 1.10946169E-10

Table A1.4 16-bit RCLA power analysis

From the power consumptions data in Table A1.9, we can conclude base on the CSX

0.35um technology library, the amount of static power consumed is negligible

compared to switching power. In addition, there is a significant difference in power

consumption between manual and circuit power switching.

Compared with manual switching, the power supplied to the CLA blocks in circuit

power switching is controlled by OR logic circuit response to the input bits for the

CLA blocks. This causes the OR logic circuit to consume dynamic switching power,

which can be at least 7 orders of magnitude larger than the static power consumption

of the adder circuit.

 BIBLIOGRAPHY

 97

BIBLIOGRAPHY

[1] Thomas D. Burd, “Energy-Efficient Processor System Design”, Ph.D Thesis,

University of California, Berkeley, 2001

[2] Thomas D. Burd and Robert W. Brodersen, “Design Issues for Dynamic Voltage

Scaling”, ISLPED 2000, Rapallo, Italy, Pgs 1 – 6

[3] Thomas D. Burd and Robert W. Brodersen, “Voltage Scheduling in the lpARM

Microprocessor System”, ISLPED 2000, Rapallo, Italy

[4] Woonseok Kim, Jihong Kim and Sang Lyul Min, “A Dynamic Voltage Scaling

Algorithm for Dynamic-Priority Hard Real-Time Systems Using Slack Time

Analysis”, Proceedings of the 2002 Design, Automation and Test in Europe

Conference and Exhibition

[5] Pouwelse, J., Langendoen, K., and Sips, H., “Energy priority scheduling for

variable voltage processors”, ISLPED 2001, Huntington Beach, CA, USA

[6] Chaeseok Im , Huiseok Kim and Soonhoi Ha, “Dynamic voltage scheduling

technique for low-power multimedia applications using buffers”, ISLPED 2001,

Huntington Beach, CA, USA

[7] DongKun Shin and JiHong Kim and SeongSoo Lee, “Low-Energy Intra-Task

Voltage Scheduling Using Static Timing Analysis”, Design Automation Conference

2001, Pgs 438 - 443

 BIBLIOGRAPHY

 98

[8] C. Lee, J. Lee, T. Hwang, and S. Tsai., “Compiler Optimization on Instruction

Scheduling for Low Power”, 13th International Symposium on System Synthesis,

ACM, Septermber 2000

[9] Chung-Hsing Hsu, Ulrich Kremer and Michael Hsiao, “Compiler-Directed

Dynamic Voltage/Frequency Scheduling for Energy Reduction in Microprocessor”,

ISLPED’01, California USA, Aug 6 - 7 2001, Pgs 275 - 278

[10] Mansour M.M, Hajj I and Shanbhag N, “Instruction Scheduling for Low Power

on Dynamically variable Voltage Processors”, 7th IEEE International Conference on

Electronics, Circuits and Systems, Vol. 1, 17 – 20 Dec 2000, Pgs 613 – 618

[11] E. Musoll and J. Cortadella, “Optimizing CMOS Circuits for Low Power using

Transistor Reordering”, 1996, Pgs 219 – 223

[12] A.M. Sham and M.A. Bayoumi, “A New Full Adder Cell for Low-Power

Applications”, Great Lakes Symposium on VLSI '98, Lafayette, Louisiana, Pgs 45 -

49

[13] D. Radhakrishnan, “Low-voltage low-power CMOS full adder”, IEE Proc.

Circuits Devices System. Vol 148, No. 1, February 2001, Pgs 19 – 24

 BIBLIOGRAPHY

 99

[14] Yuke Wang; Parhi, K.K., “New low power adders based on new representations

of carry signals”, Conference Record of the 34th Asilomar Conference on Signals,

Systems and Computers, Vol. 2 , 2000, Pgs 1707 - 1712

[15] Youngjoon Kim; Lee-Sup Kim, “A low power carry select adder with reduced

area”, The 2001 IEEE International Symposium on Circuits and Systems, ISCAS

2001, Vol. 4 , 6 - 9 May 2001, Pgs 218 - 221

[16] Issam S. Abu-Khater, Abdellatif Bellaouar and M.I. Elmasry, “Circuit

Techniques for CMOS Low-Power High Performance Multipliers”, IEEE Journal of

Solid State Circuits, Vol. 31, Oct 1996, Pgs 1535 – 1546

[17] Yuke Wang, YingTao Jiang and Edwin Sha, “On Area-Efficient Low Power

Array Multipliers”, Electronics, Circuits and Systems, 2001. ICECS 2001. The 8th

IEEE International Conference on, Vol. 3, 2 - 5 Sep 2001, Pgs 1429 – 1432

[18] Issam S. Abu-Khater, Abdellatif Bellaouar and M. I. Elmasry, “Circuit

Techniques for CMOS Low-Power High-performance Multipliers”, IEEE Journal of

Solid-State Circuits, Vol. 31, 10 Oct 1996, Pgs 1535 – 1546

[19] Wei-Chung Cheng, Jian-Lin Liang and Massoud Pedram, “Software-Only Bus

Encoding Techniques for an Embedded System”, Proceedings of the 15th International

Conference on VLSI Design, 2002

 BIBLIOGRAPHY

 100

[20] L. Kurian-John, V. Reddy, P. Hulina and L. Coraror, “A Comparative Evaluation

of Software Techniques to hide Memory Latency”, Proceedings of the 28th Hawaii

International Conference of System Science, Jan 1995, Pgs 229-238

[21] Parik A, Kandemir M, Vijaykrishnan N and Irwin M.J, “Instruction Scheduling

Base on Energy and Performance Constraints”, Proceedings IEEE Computer Society

Workshop VLSI, 27-28 April 2000, Pgs 37 – 42

[22] Xu W, Parik A, Kandemir M, and Irwin M.J, “Fine-grain Instruction Scheduling

for Low Power”, IEEE Workshop on Signal Processing Systems, 16-18 Oct 2002, Pgs

258 – 263

[23] Cheol-Ho Jeong, Woo-Chan Park, Sang-Woo Kim, Tack-Don Han, and Moon-

Key Lee, “In-Order Issue Out-of-Order Execution Floating-Point Coprocessor for

CalmRISC32”, IEEE 15th International Symposium on Computer Arithmetic, June

2001, Pgs 195 – 200

[24] S. Abraham and K. Padmanabhan, “Instruction reorganization for variable-length

pipelined microprocessor”, Proceedings of the International Conference on Computer

Design, New York, October 1988

[25] Hily. S and Seznec. A, “Out-of-Order execution may not be the cost-effective on

processors featuring simultaneous multithreading”, 5th International Symposium on

High-Performance Computer Architecture, 9 – 13 Jan 1999, Pgs 64 – 67

 BIBLIOGRAPHY

 101

[26] Jessica H. Tseng and Krste Asanovic, “Banked Multi Ported Register Files for

High-frequency Superscalar Microprocessors”, Proceedings of the 30th International

Symposium on Computer Architecture, San Diego, California, 2003, Pgs 62-71

[27] J. L. Cruz, A. Gonzalez, M. Valero and N. P. Topham, “Multiple Banked

Register File Architecture”, Proceedings of the 27th International Symposium on

Computer Architecture, San Diego, California, 2000

[28] Kai Hwang, “Advanced Computer Architecture: Parallelism, Scalability and

Programmability”, McGraw Hill, Inc

[29] Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos, and Robert W.

Brodersen, “A Dynamic Voltage Scaled Microprocessor System”, IEEE Journal of

Solid-State Circuits, Vol. 35, Nov 2000, Pgs 1571 – 1580

[30] Vivek Tiwari, “Instruction Level Power Analysis and Optimization of Software”,

Journal of VLSI Signal Processing Systems, Vol. 13, Aug 1996

[31] J.P. Grossman, “Cheap Out-of-Order Execution using Delayed Issue”, IEEE

International Conference on Computer Design: VLSI in Computers & Processors

Austin, Texas, September 17 - 20, 2000

[32] Thomas D. Burd, “Energy-Efficient Processor System Design”, Ph.D Thesis,

University of California, Berkeley, 2001

 BIBLIOGRAPHY

 102

[33] R. Zimmermann and W. Fichtner, “Low-Power Logic Styles: CMOS Versus

Pass-Transistor Logic”, IEEE Journal of Solid State Circuits Vol. 32, Pgs 1079 – 1089

[34] K. Flautner, Nam Sung Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy

caches: simple techniques for reducing leakage power”, Computer Architecture, 2002.

Proceedings. 29th Annual International Symposium on , 25-29 May 2002, Pg 148 –

157

[35] J. Rabaey, Digital Integrated Circuits, A Design Perspective, Prentice Hall,

Upper Saddle River, NJ, 1996.

[36] R. Muller, T. Kamins, Device Electronics for Integrated Circuits, Wiley, New

York, 1986.

[37] S. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.

[38] James M. Lee, Verilog QuickStart: A Practical Guide To Simulation and

Synthesis in Verilog

[39] Digital Standard Cell Datasheets for AMS C35 Standard Cell Library,

http://asic.austriamicrosystems.com/databooks/index_c35.html

[40] Amos R. Omondi, “Computer Arithmetic Systems – Algorithms, Architecture

and Implementation”, Prentice Hall

 BIBLIOGRAPHY

 103

[41] Stuart F. Oberman and Michael J. Flynn, “Division Algorithms and

Implementations”, IEEE Transactions on Computers, Vol. 46, August 1997, Pgs 833

– 854

[42] Hung. P, Fahmy. H, Mencer. O and Flynn. M.J, “Fast division algorithm with a

small lookup table”, Conference Record of the 33rd Asilomar Conference on Signals,

Systems and Computers, Vol 2, 24 – 27 Oct. 1999, Pgs 1465 - 1468

[43] Ing-Jer Huang and Alvin Despain , “An Extended Classification of Inter-

instruction Dependency and Its Application in Automatic Synthesis of Pipelined

Processors”, Proceeding of 26th International Symposium on Microarchitecture, Dec

1993

[44] Augustus K. Uht, “Concurrency Extraction via Hardware Methods Executing the

Static Instruction Stream”, IEEE Transactions on Computers Vol. 41, July 1992

[45] Sunghyun Jee, Kannappan Palaniappan, “Dynamically Scheduling VLIW

Instructions with Dependency Information”, Proceedings of the Sixth Annual

Workshop on Interaction between Compilers and Computer Architectures, 2002

[46] M.F. Chang, Y.K. Chan, “Parallel Execution of Multiple Sequential Instruction

Streams”, Proceedings of the Fifth IEEE Symposium on Parallel and Distributed

Processing, Dallas, Texas, USA. IEEE Computer Society Press, 1- 4 December, 1993

 BIBLIOGRAPHY

 104

[47] Gurindar S. Sohi, “Instruction Issue Logic for High-Performance Interruptible,

Multiple Functional Unit”, pipelined computers, IEEE Transactions on Computers

Vol. 39, Mar 1990

[48] Tai M. Chung, Hank G. Dietz, “Static Scheduling of Hard Real-time Code with

Instruction-Level Timing Accuracy”, Third International Workshop on Real-Time

Computing Systems Application , Seoul, Korea, 1996

[49] S. Abraham and K. Padmanabhan, “Instruction reorganization for variable-length

pipelined microprocessor”, Proceedings of the International Conference or, Computer

Design, New York, October 1988

[50] Q. Zhao, T. Basten, B. Mesman, “Static resource Models of Instruction Sets”,

ISSS 01, Oct 1-3 2001, Montreal Quebec, Canada.

[51] Q. Zhao, B. Mesman and T. Basten, “Practical Instruction Set Design and

Compiler Retargetability Using Static Resource Models”, Proceedings of the 2002

Design, Automation and Test in Europe Conference and Exhibition

[52] Pradeep K. Dubey, George B. Adams III and Micheal J. Flynn, “Instruction

Window Size Trade-Offs and Characterization of Program Parallelism”, IEEE

Transaction on Computers Vol. 43, April 1994, Pgs 431 – 442

 BIBLIOGRAPHY

 105

[53] Allen Leung, Krishna V. Palem and Cristian Ungureanu, “Run-time versus

Compile-time Instruction Scheduling in Superscalar (RISC) Processors: Performance

and Tradeoffs”, Journal of Parallel and Distributed Computing, Vol. 45, 1997, Pgs 13

– 28

[54] Heng Tien Bui, Yuke Wang and YingTao Jiang, “Design and analysis of low-

power 10-transistor full adders using novel XOR-XNOR gates”, IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 49, Jan 2002,

Pgs 25 – 30

[55] Heng Tien Bui, Al-Sheraidah A. K. and Yuke Wang, “New 4-transistor XOR and

XNOR designs”, Proceedings of the 2nd IEEE Asia Pacific Conference on ASIC, Aug

2000, Pgs 25 - 28

