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SUMMARY  
             
 
The rise of portable devices with wireless network connections has lead to demands 

on microprocessors to deliver high performance and yet consume low power. This 

project works on a design for a single-issue 32-bit integer pipelined ALU that 

comprises two kinds of functional units: one with fast performance and high power 

consumption and another with slow performance and low power consumption. Both 

are used to execute instructions, but slow functional units are used whenever possible, 

for the reason of reducing power consumption.  

 

The ALU architecture comprises a Control Unit, Register File and the mentioned 

functional units. To make use of this architecture effectively, an offline software 

instruction scheduler is used to identify and create specific situations for the slow 

functional unit to be used. The specific situations occur when: 

1. there are no subsequent instructions depending on the current instruction; 

2. the current instruction has been scheduled for advanced execution;  

3. the dependent subsequent instructions are scheduled for a later execution. 

When the above situations are identified, slow functional units are used to execute 

instructions.  

 

However, using two functional units with different levels of performance can cause 

instruction execution to be in-orderly issued but out-of-orderly executed. As such, 

instruction execution and retirement have to be properly synchronized to ensure that 

registers write-backs are performed correctly. This can be achieved by using the 
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Control Unit to synchronize all instruction issues and executions, and updating the 

Register File at appropriate timings. 

 

The software instruction scheduler mentioned earlier analyzes and rearranges PIns in 

the programs, resulting in specific situations being identified or created so that slow 

functional units are used. After analyzing and rearranging the PIns, the scheduler 

generates two types of directives for the assembler to work with. The first type of 

directives indicates selected PIns that can be executed with slow functional units. The 

assembler uses these directives to compile selected PIns with MIns that are executed 

with the specified slow functional units. The second type of directives indicates stalls 

in the pipeline caused by unresolvable instruction dependencies. The assembler uses 

these directives to embed stall information into opcodes, so that the ALU can delay 

instruction issue appropriately. In this way, delay instructions such as “NOP” are 

avoided and the power consumed by fetching and executing such instructions is 

saved. 

 

Therefore, our proposed ALU consumes power for instruction executions only at run 

time, since there is no other real time activity happening during operation. Hence, it is 

therefore capable of attaining low power. 
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CHAPTER 1 
 
INTRODUCTION 
 

 

 

 

This chapter is divided into four sections: 1.1 Background, 1.2 Related Work, 1.3 

Project Proposal, 1.4 Project Overview and 1.5 Project Scope.  

 

1.1 Background 

Portable devices with wireless network connections such as Personal Digital 

Assistants (PDA), cellular phones and Global Positioning System (GPS) navigators 

have become increasing popular and widely-used over the past few years. One reason 

for the widespread adoption is their usability such as a transformation to a graphical 

interface. The ability for such a transformation has much to do with the high 

performance microprocessors embedded in them. Not only are the microprocessors 

expected to execute complicated functions, but they also should sustain reasonably 

long usage times giving rise to a need for low power consumption. This explains why 

a lot of research effort and technological developments centre on building 

microprocessors that can deliver high performance and yet consume minimal power.  

 

In this preceding chapter, we will explore briefly some techniques that have been 

developed to reduce power consumption in microprocessors. A general understanding 
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of the technological development on this front will foster a clearer understanding of 

the project’s objectives and where our ALU design stands in comparison with the 

techniques of reducing power consumption in microprocessors. 

 

1.2 Related Work 

Research on low power microprocessors has mainly been concerned with reducing 

power consumption while maintaining optimum performance levels. There are 

different techniques of reducing power consumption in microprocessors. Primarily, it 

is done either by lowering the supply voltage through hardware in conjunction with 

software support (e.g. Dynamic Voltage Scaling), or by reducing switching activities 

during runtime operations with an offline software support (e.g. offline intelligent 

compiler).  

 

The power consumption of a microprocessor is directly proportional to the level of its 

performance, so the higher its level of performance, the more power the 

microprocessor consumes and vice versa (full details of microprocessor power 

consumption are described in Section 3.1). The technology that has been developed to 

reduce power consumption in a microprocessor works mainly around this 

relationship. 

 

One problem arises when supply voltage is lowered to reduce power consumption in 

the microprocessor; the digital circuits in the microprocessor become more 

susceptible to noise. In order to ensure the proper function of circuits, the decrease of 

supply voltage has to be concurrent with lowering the clock frequency [1]. However, 

performance must not be compromised when clock frequency is reduced. 
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The Dynamic Voltage Scaling (DVS), is an example of a previously developed 

technique which meets this requirement. The DVS technique enables optimum 

performance in a microprocessor, even when supply voltage is lowered to reduce its 

power consumption [2, 3]. With this technique, a hardware voltage scheduler controls 

the supply voltage based on data from a feedback register, while clock frequency is 

regulated with a voltage-controlled oscillator that tunes the frequency as the supply 

voltage varies. It is this aspect of the technique that ensures the digital circuits 

function accurately and performance maintain optimally.  

 

Software support for DVS is in the form of a real time process running on the 

Operating System, which updates data stored in the feedback register. This real time 

process monitors the microprocessor performance and computational load based on 

slack analysis [4, 5, 6, 7]. Depending on the rise or fall of values recorded on the 

feedback register, the level of computational demand is adjusted accordingly.  

 

An alternative to a real time process is an offline intelligent compiler, which is 

another form of software support [8, 9, 10]. It is used to identify program regions 

where application of voltage scaling is required during compilation. The compiler 

embeds directives into instructions to update the feedback register during runtime 

operation. Data stored in the feedback register in turn communicates the level of 

performance required to meet computation demands to the microprocessor. As with 

the DVS technique, supply voltage and clock frequency is tuned as data is updated, so 

the microprocessor’s optimum performance is maintained while reducing power 

consumption. 

 



  CHAPTER 1  INTRODUCTION 

 4

Microprocessors designed for portable devices are capable of decreasing supply 

voltage to reduce power consumption. Some examples of these microprocessors are 

the ARM11 series and IBM 405LP for portable handheld devices and the Intel 

Centrino and TransMeta Crusoe series for laptops and notebook personal computers.  

 

In these microprocessors, power consumption reduction also lies in the design of their 

functional circuits. The functional circuits built into these microprocessors have been 

specially designed for performance while consuming minimal power. This is evident 

in the analysis of the circuits’ datapath, which reveals how switching activities in 

these functional circuits have been optimized for low power consumption [11]. 

Intentionally designed for frequently-used functions like addition [12, 13, 14, 15] and 

multiplication [16, 17, 18], the circuits are implemented with CMOS logic due to its 

low power consumption. These two design features of the functional circuits thereby 

result in switching activities with low power consumption. More on CMOS logic is 

described in Section 3.1.  

 

Software also has a key role in reducing the power consumption of microprocessors. 

An offline software that is able to analyze programs and rearrange instructions can cut 

down microprocessor activities like memory accesses and signal switching within 

circuits to maintain low power consumption [19]. In the case of VLIW based 

microprocessors, software is commonly used to perform loop unrolling, software 

cache prefetch and software pipelining on instructions, which reduces pipeline stalls 

and improves performance of the microprocessor. Drawing on the same approach, 

software can reduce power consumption by expressly reducing the amount of memory 

accesses for data fetch [20]. The use of software can also reduce switching activities 
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by rearranging instructions based on Hamming distance [8] and power consumed 

between instruction transitions [21, 22].  

 

1.3 Project Proposal 

While lowering supply voltage and decreasing the frequency of switching activities 

are prevalent techniques of reducing power consumption in microprocessors, they 

also have several disadvantages. 

 

First, while supply voltage reduction effectively lowers power consumption, its 

application is limited to the functional units in the microprocessor circuits. Moreover, 

the voltage-reduced circuits require additional interfacing circuits to connect them to 

other circuits that work with different supply voltages.  

 

Second, with voltage reduction during real time operation, the Operating System is 

required to update the voltage reduction mechanism frequently. Not only does this eat 

into overheads required by the microprocessor to compute the real time slacks during 

runtime, it also consumes extra energy to deliver the computations. On the other hand, 

offline optimization software activities are performed only during the compilation 

stage on development machines, and no overheads are incurred during runtime.  

 

The project proposes a design for low power consumption ALU that exploits the 

benefits of offline software, which can work alone in delivering minimum power 

consumption or work alongside supply voltage reduction technology to deliver even 

lower power consumption. Our ALU architecture consists of a set of fast and slow 

functional units. Fast functional units deliver high performance, but consume a 
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considerable amount of power as they use parallel circuits to carry out computations. 

Slow functional units on the other hand use simpler circuits to perform computations 

and consume less energy, but take a longer time to complete the computations. 

 

An instruction scheduler was developed to analyze and rearrange instructions to 

execute with slow functional units before opcode assembly. The instruction scheduler 

generates directives for the assembler to assemble opcodes executed with slow 

functional units during runtime, a feature not available in other microprocessors in the 

market. 

 

There are many advantages and plus points to the design of our ALU. Not only does it 

consume minimal power during runtime, it does not require real time process to 

monitor performance. Neither is a hardware circuit needed to tune the supply voltage. 

Compared with other models operating on the supply voltage reduction principle, the 

ALU we have designed is far simpler. This is another boon, because the simplicity in 

design means voltage reduction techniques can be additionally incorporated into the 

ALU to further reduce power consumption of the microprocessor. 

 

An overview of the ALU design is described in Section 1.4, with full details on the 

ALU design is described in Chapter 2. 

 

1.4 Project Overview 

This project works on a design for a single-issue 32-bit integer pipelined ALU that 

comprises two kinds of functional units: one with fast performance and high power 

consumption and another with slow performance and low power consumption. Both 



  CHAPTER 1  INTRODUCTION 

 7

are used to execute instructions, but slow functional units are used whenever possible, 

for the reason of reducing power consumption. An instruction scheduler is used to 

identify and create specific situations for the slow functional unit to be used. 

 

It has been observed that in a conventional pipeline, instructions are usually executed 

with fast functional units. Data is processed as quickly as possible and instructions are 

passed down without stalling the pipeline. However, there are situations where fast 

functional units are not required to execute instructions. These situations occur when: 

1. there are no subsequent instructions depending on the current instruction; 

2. the current instruction has been scheduled for advanced execution;  

3. the dependent subsequent instructions are scheduled for a later execution. 

When instructions do not require immediate execution, slow functional units can be 

used to reduce power consumption without incurring loss in performance. This 

applies to the ALU design, when the above situations are identified. 

 

However, using two functional units with different levels of performance can cause 

instruction execution to be in orderly issued but out of orderly executed [23, 24]. As 

such, instruction execution and retirement have to be properly synchronized to ensure 

that registers write-backs are performed correctly. Figure 1 shows an example of a 

situation when slow functional units are used to execute instructions with the 

following code sample. The pipeline stages used in Figure 1 are “F” for fetch, “D” for 

decode, “E” for execute and “W” for write-back. For instructions that require more 

than one execution stage, “En” is used to indicate execution and n is an integer that 

indicates the number of executing stage. 
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Instructions Cycles 0 1 2 3 4 5 6 7 8 9 
Mov  ax, bx 1 F D E W       
Add  ax, bx 1  F D E W      
Push bx 1   F D E W     
And  bx, dx 1    F D E W    
Mov  si, bx 1     F D E W   

Part 
A 

Pop  bx 1      F D E W  
 

Instructions Cycles 0 1 2 3 4 5 6 7 8 9 
Mov  ax, bx 1 F D E W       
Add  ax, bx 4  F D E1 E2 E3 E4 W   
Push bx 1   F D E W     
And  bx, dx 1    F D E W    
Mov  si, bx 1     F D E W   

Part 
B 

Pop  bx 1      F D E W  
             

Fig. 1 Instruction execution with slow functional unit 

From Figure 1, Part A shows a conventional pipeline with regular stages for all 

instruction executions. In Part B, since the “add” instruction is not depended 

subsequently, it can be executed with slow functional units without affecting the 

performance or correctness of the program execution. Hence, arithmetic instructions 

like “add” in the above example can now be implemented with two functional units 

of different performance. To the programmer, the instructions appear the same since 

there is no need to know about the underlying instruction execution process. To the 

ALU, however, all instructions must be unique so the required functional unit is 

correctly selected for execution. To distinguish instructions for programmer and ALU, 

the instructions programmers use will be defined as “Programmer’s Instructions” or 

“PIns”. Instructions that the ALU executes will be defined as “Machine Instructions” 

or “MIns”. 

  

The software instruction scheduler mentioned earlier analyzes and rearranges PIns in 

the programs, resulting in specific situations being identified or created so that slow 

functional units are used. After analyzing and rearranging the PIns, selected PIns that 
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can be executed with slow functional units are marked with directives. The directives 

inform the assembler to compile these PIns with MIns that are executed with the 

specified slow functional units. 

 

Our ALU design is therefore capable of attaining low power consumption during 

runtime with a software instruction scheduler, with the exclusion of real time 

activities supporting the operation. 

 

1.5 Scope of Project  

The scope of this project is to develop a low power ALU, both hardware and 

software. The ALU hardware development would focus on the fast and slow 

functional units, and the software development would focus on the development of 

algorithms to rearrange instructions to execute with slow functional units to achieve 

low power consumption. 

 

The performance and power consumption of our ALU depends on the functional unit 

operations. The main focus of this project would be on hardware research and 

development. The study of power consumption of arithmetic circuit and behavior is 

carried out through simulation works. Details of the power consumption of the 

circuits are described in Appendix I. Different arithmetic circuits are modeled and 

synthesized with different performance levels to study on the variation in performance 

and power consumption. With which, the appropriate circuit would be selected to 

implement the functional unit. Details on the hardware development of the functional 

circuits and a summary on the selected circuits are described in Chapter 3. 
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The other section of this project would focus on the development of the software 

algorithm to achieve lower power consumption on the ALU, which would include the 

rearrangement of the instructions. Research on software scheduling is also carried out 

prior to the development work.  Using the developed software, several programs are 

analyzed and reduction on power consumption is estimated. Details of the 

development work and a summary on the program analysis and power consumption 

estimation are described in Chapter 4. 

 

1.6 Thesis Organization 

The thesis would be organized in the following order. 

 

Chapter 2 describes the runtime operation, hardware design and software instruction 

scheduler of our low power 32-bit integer ALU. The runtime operation would 

describe the method used to achieve lower power with the ALU. Components of the 

ALU would be presented in the hardware design section.  The rearrangement of the 

instructions for the execution in slow functional units would also be described. A 

novel method to implement the wait state through rearrangement of software 

instructions would also be included.  

 

Chapter 3 describes the characteristics of CMOS circuits and the implementation of 

the 32-bit integer ALU functional units. The power consumption and performance of 

the circuits will be described in this chapter. Results from the simulation would also 

be presented and discussed.  
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Chapter 4 presents the instruction scheduling algorithms used to enhance the 

performance and reduce power consumption during the ALU runtime. The algorithms 

at each functional stage would be discussed in detail. Results from the program 

analysis and power consumption estimation would also be presented and discussed. 

 

Chapter 5 summarizes the research and development work and concludes the project. 

Possible future work and development would also be recommended.  
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CHAPTER 2 
 
THE ARITHMETIC AND LOGIC UNIT DESIGN 

 

 

 

In this chapter, we describe the runtime operation, hardware design and software 

instruction scheduler of our low power 32-bit integer ALU, explaining how lower 

power consumption is achieved during the runtime operation. In addition, we will 

illustrate how instructions are rearranged for the execution in slow functional units 

and how to implement wait state using embedded information in instructions.  

 

Components of the ALU will be presented in the hardware design section.   

 

2.1 ALU Design 

Unlike a typical ALU which uses only one type of functional unit to execute a 

particular PIn, this ALU is capable of using either a fast or a slow functional unit to 

execute the PIn, depending on the situation. Figure 2.1 shows the ALU hardware 

architecture. 

 

Given the same clock frequency in performing similar functions, the fast functional 

unit completes the operation in a shorter time than the slow functional circuit, because 

it has more logic circuits. However, while it is faster, the fast functional unit also 
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consumes more power during the operation compared with the slow functional unit, 

which takes a longer time for the same operation, but consumes less power. 

 

Fig. 2.1 ALU Architecture 
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The amount of time a functional unit takes to perform an operation is specified in 

term of number of clock cycles. Different functional units require a different number 

of clock cycles to perform their operations. As such, the PIns are issued in order from 

the Control Unit but may be completed in a different order.  

 

With our ALU design structure, a software instruction scheduler analyses an input 

program and selects a suitable functional unit to perform the PIns. This differentiating 

feature in the structure of our ALU ensures power-efficient runtime without causing 

loss in performance. 

 

In processors that use the conventional ALU, PIns are compiled into MIns by an 

assembler, with one MIn mapped to one PIn. When the proposed ALU is employed in 

processors, PIns may be realized with different MIns, which in turn trigger different 

functional units to perform the PIns.  

 

The task of mapping of MIns to PIns for this proposed ALU is achieved with a 

software instruction scheduler. The scheduler analyzes the independence of PIns in 

the program and performs the mapping based on performance or power consumption 

criteria. The ultimate objective is to sustain optimal performance in the 

microprocessor while consuming minimal power. Optimal performance in achieved 

when there are no stalls in the pipeline during runtime while low power consumption 

is attained when slow functional units are used to execute PIns for most of the 

operations. 
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Before the scheduler performs its task, the PIns are analyzed and divided into 

segments, based on the control flow of the programs. Control PIns are used to mark 

the start and end points of segments. Within the segments, the PIns are reordered to 

ensure that the control flow of the PIns is correct after reordering. The objective of 

reordering the PIns is to work around constraints due to dependencies in PIns to 

enhance performance and reduce power consumption at runtime. After the scheduler 

has worked on the PIns, a list of directives is generated for the assembler to map MIns 

to PIns with the appropriate functional units.  

 

The function of the hardware components and software scheduler are described in the 

following sections. 

 

2.2 Hardware Components 

The hardware architecture is designed to be lean and simple. It consists of a Decode 

and Control Unit, Register File and several functional units of different performance 

levels. With this architecture, power is consumed during the operation of the Decode 

and Control Unit for MIns issue, Register File write-backs and when functional units 

are enabled by the Control Unit for MIns execution. The components and their 

functions are described as follows. 

 

2.2.1 Decode and Control Unit 

The Decode Unit is responsible for fetching and interpreting MIns from the memory 

system before passing them on to the Control Unit. The Control Unit is designed to be 

a simple state machine that synchronizes the ALU activities like any other Control 

Unit in conventional microprocessors. It is responsible for issuing the MIns for 
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execution and synchronizing register write-back for MIns that are orderly issued, but 

are executed out of order, because functional units of different performance levels are 

used.  

 

At every clock cycle during runtime, the Decode Unit reads the MIns and relays 

relevant information like register operands and the functional unit required to the 

Control Unit. The Control Unit in turn triggers the appropriate functional unit, selects 

the required registers in the Register File and places the register contents on the input 

bus of the functional units. When MIns are executed with functional units requiring 

more than one clock cycle, the following happens: the Control Unit synchronizes 

MIns executions and register write-backs between the functional units and Register 

File. It does this by deferring write-backs for the number of clock cycles that the 

functional units require to run. 

 

For the unused functional units, the clock signal is gated off. These functional units 

are thus in static state. However, because CMOS circuits are used in the functional 

units, static power consumption is negligible. An analysis of CMOS circuit power 

consumption is described in Appendix I. 

 

2.2.2 Functional Units 

The functional units are circuit blocks that operated on integer data stored in the 

Register File. The Control Unit selects the registers and the stored data for the 

functional units to perform the operations for a particular MIn.  
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As shown in Figure 2.1, the functional units are organized such that units requiring 

the same amount of time (in terms of number of clock cycles) to perform their 

operations are grouped together. In a conventional ALU, each functional unit has a 

register to store the processed data. However, with the proposed ALU, each group of 

functional units shares a register to store processed data. Therefore, there are fewer 

registers required in the ALU to support the functional units. Registers used to store 

processed data for a group of functional units are called the Common Output 

Registers.  

 

Even though there is only one Common Output Register available to several 

functional units within a group, conflicts would not arise when the functional units 

attempt to write to this register, as the Control Unit issues only one instruction every 

clock cycle. The workings of the functional unit circuits are described in Chapter 3. 

 

2.2.3 Register File 

The Register File control reads selected registers and places the contents on the 

functional units’ input bus. The Control Unit in turn issues instructions and updates 

selected registers with the content in the Common Output Registers.  

 

The Register File comprises these components:  

1. Registers that are available to the programmers,  

2. An in-port for updating the registers,  

3. An out-port for placing selected register contents on the functional units’ input 

bus,  
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4. And control circuits that select registers for reading or writing via control 

signals from the Control Unit.  

 

The Register File is designed to perform multiple register writes within a clock cycle. 

Because functional units of different performance levels are used, MIns may be 

orderly issued but may be completed out of order. And when MIns are completed out 

of order, this allows for several MIns to be concurrently executed within a clock 

cycle. As such, the Register File must be able to perform multiple register write-backs 

within a clock cycle, so that the executed MIns are properly retired.  

 

Figure 2.2 illustrates an example of such situations in a pipeline:  

Part A shows a regular 4-stage pipeline where only one instruction retires in every 

clock cycle.  

 

Part B and C show pipeline cases with functional units with operation time that is 

longer than 1 clock cycle. In Part B, the pipeline has execution stages that vary 

between 1 to 2 clock cycles. It is observed that for the worst case, there were 2 

instructions retiring within a clock cycle. In Part C, the pipeline has execution stages 

that vary between 1 to 3 clock cycles. In the worst case scenario observed, 3 

instructions retired within a clock cycle.  

 

In general, we observed that in functional units requiring different lengths of 

operation time (measured in number of clock cycles), the maximum number of 

instructions that retire simultaneously within a clock cycle, n, is equal to the operation 

time (measured in number of clock cycles) of the slowest functional unit.  
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When a worst-case situation like this occurs, all the Common Output Registers in the 

ALU will be updated with the processed data from the functional units. The Register 

File must also update n registers respectively within that clock cycle.  

 

Cycles 0 1 2 3 4 5 6 7 8 9 10 
1 F D E W               
1  F D E W             
1   F D E W           
1    F D E W         

Part A 

1      F D E W       
                      

1 F D E W               
1  F D E W             
2   F D E1 E2 W         
2    F D E1 E2 W       
1      F D E W       
1        F D E W     
1          F D E W   

Part B 

1            F D E W 
                      

1 F D E W               
1  F D E W             
2   F D E1 E2 W         
3    F D E1 E2 E3 W     
3      F D E1 E2 E3 W   
2        F D E1 E2 W   
1          F D E W   

Part C 

1            F D E W 
 

Fig. 2.2 MIns concurrent retirement 

Multiple writes within the Register File may be implemented using multiple ports for 

the registers [26] or multiple banks of registers [27]. However, multiple writes within 

the Register File can be simpler using one port and bus for the registers, by 

implementing very fast writes in sequence.  

 

For example, if one register-to-register write operation requires 3ns to perform, then a 

maximum of three registers can be updated sequentially within a clock cycle of 10ns 
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with a bus in the Register File. If the registers are implemented with two ports, six 

registers can be updated within the same write operation time and clock cycle. 

 

2.3 Software Instruction Scheduler 

In conventional ALU, hardware circuits like Reservation Stations and Scoreboard 

Logics [28] are used during runtime to maintain peak performance, while the 

Dynamic Voltage Scaling [29] system is used to reduce power consumption. The 

proposed ALU system, however, does not employ these complicated hardware 

circuits. In place of these, is an offline software instruction scheduler. 

 

The scheduler’s objective is to ensure that PIns are rearranged offline to use the slow 

functional units that consume low power, without suffering any penalty in 

performance. A list of directives is generated by the scheduler to map PIns with 

appropriate MIns, as seen in the scheduling results.  

 

Before the scheduler works on the PIns, the PIns pass through a conditioning phase in 

preparation for the scheduling. During this phase, empty lines and comments are 

removed from the PIns and they are segmented based on the control flow of the 

programs. Control PIns mark the start and end points of the segments. Within 

segments, the PIns are reordered to ensure that the control flow of the PIns is correct 

after reordering. After segmentation, the PIns are translated into a generic form that 

the scheduler recognizes.  

 

The scheduler works on the PIns in two phases. In the first phase, the scheduler 

removes data hazards among the PIns that may stall the pipeline. It does this by 
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analyzing data dependencies among the PIns. When data dependencies are found, the 

PIns are reordered with the assumption that all functional units require only one clock 

cycle to execute. This ensures that the PIns are pre-scheduled for optimal 

performance, before the scheduler proceeds to work, under power-efficient 

conditions. 

 

In the second phase, the scheduler reanalyzes the pre-scheduled PIns to correct the 

assumption in first phase. The pre-scheduled PIns are reordered again using the 

correct number of clock cycles that the functional units required. With this step – 

analyzing dependencies and reordering the PIns – in place, the scheduler creates or 

identifies the situations mentioned in Section 1.3, to ensure that slow functional units 

are used.  

 

When any of the mentioned situations are either found or created, directives will be 

generated with the scheduling results to provide information for the assembler. The 

implementation of the software instruction scheduler is described in Chapter 4. 

 

2.3.1 Avoiding Hazards with Wait States 

Wait states are still required on occasion to resolve pipeline hazards – even though the 

scheduler is mainly responsible for this task, which it achieves by reordering the PIns. 

These exceptions occur when the PIns happen to depend closely on each other, or 

when there are insufficient independent instructions available for reordering to avoid 

pipeline hazards. An example of a PIn commonly used in such situations, is the 

“NOP”, which is found in Intel processors.  
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The “NOP” is technically an empty instruction as nothing is accomplished with its 

execution.  But like other instructions, it is processed as per normal – fetched from 

memory, decoded and issued by the Control Unit and executed as “XCHG AX, AX”, 

as in the case of Intel processors. As such, power [30] is still consumed in the process 

of fetch, decode, issue and execution of the “NOP” PIn.  

 

An alternative method of resolving pipeline hazards, without incurring power 

consumption, is to implement the delay without explicitly using the “NOP” 

instruction.  

 

Under the assumption that there are available unused bits in the MIns, the scheduler 

will generate delay directives for the assembler – when the scheduler detects un-

resolvable pipeline hazards in the PIns. Upon receiving the delay directives, the 

assembler embeds delay information [31] into MIns for the stalled PIns.  

 

After the Decode Unit deciphers this delay information, it relays signals to the Control 

Unit to cease issuing MIns for the required number of clock cycles as indicated by the 

delay information.  

 

This achieves the effect of using the “NOP” instruction in the implementation of wait 

states, without incurring power for fetching, decoding and executing it. 

 

2.4 Chapter Summary 

The components used in the design of the proposed ALU differentiate it from 

conventional ALU. Conventional ALU use hardware circuits like Reservation 
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Stations and Scoreboard Logics [28] to sustain peak performance during runtime and 

Dynamic Voltage Scaling to reduce power consumption.  

 

With the proposed ALU design, both fast and slow functional units are used to 

execute MIns, along with a Control Unit and a Register File to support simultaneous 

retirement of instructions during runtime operation.  

 

To achieve low power consumption, PIns are arranged to use slow functional units for 

execution of PIns, without affecting performance. In place of hardware circuits, a 

software instruction scheduler is developed to analyze and rearrange PIns to be 

executed with slow functional units.  

 

The analysis by the software instruction scheduler will reveal how closely dependent 

the PIns are on each other, and whether wait states are necessary to resolve 

dependencies. Should delays be required, the necessary information will be embedded 

in the MIns, and subsequently be decoded by the Control Unit. As such, delay PIns 

like “NOP” that consume unnecessary power are avoided. 

 

These components in the proposed ALU design differentiate it from conventional 

ALU, enabling it to sustain optimal performance at low power consumption. 
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CHAPTER 3 

THE ARITHMETIC AND LOGIC UNIT HARDWARE 

 

 

 

In this chapter, we will describe the characteristics of CMOS circuits and the 

implementation of the 32-bit integer ALU functional units. We will also discuss the 

results of the simulations conducted. Specifically, we will talk about the power 

consumption and performance of the circuits 

 

3.1 CMOS Circuits 

The functional units used in the ALU are implemented with CMOS circuits, which are 

widely used in low power consumption designs [32]. In the following sections, we 

will briefly describe the characteristics of CMOS circuits as well as their power 

consumption behaviour. 

 

3.1.1 Circuit Design 

3.1.1.1  CMOS Logic 

CMOS circuits use both N-type and P-type MOSFETs (Metal Oxide Semiconductor 

Field Effect Transistors) to realize logic functions. Figure 3.1 shows some basic 

circuits for CMOS and Pass transistor logic. 
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Fig. 3.1 Pass transistor (left and center) and CMOS circuit (right) 

Pass transistor logic uses either a NMOS or PMOS (see Figure 3.1, left and center 

circuit) as a switch to gate electrical signals. Input signal is connected to the transistor 

gate to create a conductive channel to pass the signal that is connected to the source. 

This caused a threshold voltage drop across the conducted signal and the output logic 

signal is degraded [33]. Degraded logic signals may cause the subsequent connected 

circuits to consume static power due to subthreshold conduction (more details is 

covered in Appendix Section A1.2).  

 

Contrary to pass transistor logic circuits, CMOS circuits (see Figure 3.1, right circuit) 

generate rail-to-rail output signals. CMOS circuits use NMOS as pull-down and 

PMOS as pull-up devices in the logic network. With appropriate input signals 

connected to the transistor gate, the PMOS transistor charge up output load to the 

supply voltage level and the NMOS transistor discharge the output load to the ground. 

As such, CMOS circuits do not incur static power consumption as much as the pass 

transistor logic circuits. This makes CMOS circuits more suitable for low power 

circuit designs. 
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3.1.1.2  Circuit Size 

Due to both PMOS and NMOS transistors are used to realize digital logic functions, 

there are usually a large number of transistors in CMOS circuits. In particular, when 

many transistors are connected serially in the circuit the parasitic capacitance in the 

signal path increases. In turn, this increases delay the of the output signal. To counter 

this problem, buffers or inverters are added along the signal path to increase output 

drive and reduce the delay. However, this further increases the transistor count in the 

circuits and the circuit size becomes larger. 

 

3.1.1.3  Simulation 

Signal delays in CMOS circuits can be accurately simulated with various delay 

models and equations. The output signal delay of CMOS circuits may be expressed as 

a function of the intrinsic delay, parasitic capacitance and load capacitance. The 

intrinsic delay is determined by parameters in the transistor fabrication process as well 

as operating conditions. The load capacitance is dependant on the circuit design, while 

the parasitic capacitance is the sum of the gate capacitance of other connected 

transistors. In addition to signal delays, power consumption can also be accurately 

simulated with models and equations. 

 

3.1.2 Power Consumption 

There are three types of power consumption in CMOS circuits: dynamic switching 

power, short circuit power and leakage current power.  

 

Dynamic switching power occurs when load and parasitic capacitances in the circuit 

are changed or delayed as a result of changes in states. It is the dominant component 
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in CMOS circuit power consumption. Short-circuit current power is energy consumed 

as a result of the finite turnover time between the rise and fall of input signals. In the 

third aspect of CMOS circuit power consumption, power is consumed when current 

leaks through reverse-biased diodes or via sub-threshold conductions.  

 

CMOS circuits have lower power consumption compared with NMOS or bipolar 

transistor circuits. While NMOS and bipolar junction transistor circuits consume 

power even when signals are not switching, static (leakage) power consumption for 

CMOS circuits can be negligible, depending on the channel length of the MOSFETs.  

 

For channel length larger than 0.15um, static power consumption is negligible. For 

channel length smaller than 0.15um, static power consumption increase exponentially 

with decreasing channel length. Figure 3.2 shows a simulated plot for static power 

through an inverter circuit against decreasing channel (gate) length [34]. 

 

Fig. 3.2 Static (leakage) power against channel (gate) length 

 

When channel length is below 0.15um, the leakage current consists of subthreshold 

leakage, reverse-bias diode leakage, gate leakage and other smaller leakage 

components. With such a short channel length, the subthreshold (source/drain) 

Extracted from [34], Figure 1 of “Drowsy caches: simple techniques for reducing leakage power” by Krisztian Flautner et al 
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leakage and reverse-bias diode (drain/substrate) leakage current are amplified by the 

short channel effects and lower threshold voltage respectively [35].  

 

In general cases, the leakage current is dominated by the subthreshold leakage 

because the depletion layers at the source and drain could be very close to each other 

due to short gate channel length. However, for advanced technology devices, where 

gate oxide thickness is very thin (1.8nm or below), gate leakage can dominate the 

leakage current. 

 

We describe in greater details the three aspects of CMOS circuit power consumption 

in the following sub sections: 

 

3.1.2.1  Dynamic Switching Power 

For every low-to-high output signal transition in the circuits, a voltage change of ∆V 

occurs across the output load capacitance CL. To effect this change, energy equivalent 

to CL∆VVDD joules needs to be drawn from the supply voltage VDD. On the other hand, 

a high-to-low output signal transition results in the energy stored on CL to be 

dissipated into the NMOS transistors and pulls the output low. Figure 3.3 shows the 

various sources of capacitance seen in an inverter circuit. 

 

Fig. 3.3 Dynamic switching power consumption; sources of capacitance 

 Extracted from [1], Figure 2.3 of “Energy-Efficient Processor System Design” by Thomas D. Burd 
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The basic capacitor elements of CL shown in Figure 3.3, consists of the gate 

capacitance of subsequent inputs attached to the inverter output (Cgp, Cgn), 

interconnect capacitance (CW), and the diffusion capacitance on the drains of the 

inverter transistors (Cdbp, Cdbn, Cdgp, Cdgn) [1].  

 

The dynamic switching power consumption is the product of the energy consumed per 

transition at the rate of low-to-high transitions, F0-1. The value of F0-1 is usually 

difficult to quantify as it is dependent on the state of the system and the input test 

vectors. In the absence of a transistor-level circuit simulation, F0-1 can be calculated 

via statistical analysis of the circuit, or by using a high-level behavioural model with 

benchmark software to determine a mean value.  

 

Since most digital CMOS circuits are synchronous with a clock frequency clkf ; an 

activity factor, 0 < α < 1, is used to denote the average fraction of clock cycles in 

which a low-to-high transition occurs, such that clkfF α=−10 . For a circuit with N 

switching nodes, the dynamic switching power can generally be expressed as, 

Dynamic Switching Power = ∑ =
∆

N

i iLiiclkDD VCfV
1
α …………………(Eq. 1) 

From the equation, dynamic switching power may be lowered by reducing VDD. As 

mentioned in Chapter 1, if VDD is reduced, the operating clkf  must be proportionally 

reduced, as signals in the circuits become more susceptible to noise interference.  

 

3.1.2.2  Short-Circuit Current Power 

Short-circuit current power consumption occurs when the output signal of the CMOS 

circuit is transitioning, while the input signal is still in the middle of transition. 



  CHAPTER 3  THE ARITHMETIC AND LOGIC UNIT HARDWARE 

 30

 

Figure 3.4 Two transistor inverter circuit 

In an ideal inverter circuit shown in Figure 3.4, when a step input is given, the PMOS 

and NMOS transistors should switch states immediately with one turned on and the 

other turned off. This inhibits the conduction of power from VDD to the ground 

through the transistors and eliminates short circuit power consumption. 

 

However, in real circuits, parasitic capacitance exists along the signal path. This 

causes the input signals to have a finite rise and fall time. As long as the conditions 

VTn < Vin < VDD - |VTp| and 0 < Vout < VDD remain in place for the input and output 

signals, a conductive path will connect VDD to the ground as both PMOS and NMOS 

transistors are turned on. The slower the rise and fall times of the input signal, the 

longer the short-circuit current will continue to flow. 

 

Figure 3.5 shows a plot for following signals from a switching inverter circuit shown 

in Figure 3.4. From the plot, the horizontal axis indicates time and the vertical axis 

indicate the magnitude of voltage or power for the respective signals. 
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Fig. 3.5 Inverter circuit electrical signals 

From Figure 3.5, we can observe short circuit power occurring around every signal 

transitions. 

 

Short-circuit power consumption scales along with VDD. Theoretically, it can be 

eliminated if VDD is lowered to the point below the sum of the thresholds of the 

transistors, VDD < VTn + |VTp| because both PMOS and NMOS cannot be turned on at 

the same time. 

 

3.1.2.3  Leakage Current Power 

The current leakages in CMOS circuits are due to the reverse-bias diode leakage and 

sub-threshold leakage through the channel of a MOSFET that is turned off. The 

magnitude of these currents is set predominantly by the processing technology and 

total number of transistors. 

 

Reverse-bias diode leakage 

Diode leakage occurs when one transistor is turned off, and another active transistor 

charges up, or down, the drain with respect to the former’s bulk potential. For a static 

CMOS inverter cross-section shown in Figure 3.6, with a low input voltage, the 
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output voltage will be high because the PMOS transistor is on. The NMOS transistor 

will be turned off, but its bulk-to-drain voltage will be equal to the supply voltage,  

-VDD. The resulting diode leakage current will be approximately ILD = AD.JSD, where 

AD is the area of the drain diffusion, and JSD is the leakage current density of the 

diffusion, set by the fabrication process technology.  

 

Fig. 3.6 Reverse-bias diodes in CMOS inverter circuit 

 

Since the diode reaches maximum reverse-bias current for relatively small reverse-

bias potential (< 100mV), the leakage current is roughly independent of supply 

voltage. 

 

In an nwell process, such as that depicted in Figure 3.6, the nwell-substrate reverse-

biased diode also has leakage current. Since a diode leakage current is primarily 

determined by the more lightly doped side of the junction, which is the p- substrate, 

the leakage current density is similar to that of the NMOS drain-substrate diode [36]. 

Because the well area, AW, is an order of magnitude larger than the diffusion area, this 

current will dominate reverse-biased diode leakage in an n-well process. The current 

is ILW = AW.JSW, where JSW is the leakage current density of the well, also set by the 

technology. 

Extracted from [1], Figure 2.5 of “Energy-Efficient Processor System Design” by Thomas D. Burd 
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Subthreshold leakage 

Subthreshold leakage occurs under similar conditions as the diode leakage. In Figure 

3.6, the NMOS was turned off, but even for VGS = 0V, there is still current flowing in 

the channel due to the VDS potential of VDD.  

 

The magnitude of the subthreshold current is both a function of process, device sizing 

(W/L), and supply voltage [37]. The process parameter that predominantly affects the 

current value is VT. Reducing VT exponentially increases the subthreshold current, 

which to first order, is proportional to VDS, or equivalently, VDD. 

 

3.2 Functional Units 

3.2.1 Circuit Models 

The proposed ALU consists of functional units that perform logic, bit and arithmetic 

operations. Depending on the design, these functional units are either implemented 

with either high-performance complex logic that has high-power consumption circuits 

or simpler low-performance that has low-power consumption circuits. 

 

The circuit design for the functional units may be described with behavioural, 

structural or hybrid models in Register Transfer Language (RTL) style using Verilog 

[38]. Behavioural models describe the functions of circuits using synthesizable 

Verilog function operators, while structural models describe the logical structure of 

the circuits using logic functions. In another words, the behavioural model can be 

seen as a high level description of the circuit model, while the structural model is a 

low level description.  
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Behavioural model is useful when designs can be described with synthesizable 

Verilog operators, instead of expressing the designs using primitive logic operators 

like AND, OR and XOR. In some cases, different parts of the design can be described 

with behavioural and structural model. Such circuit modelling approach is termed as 

the hybrid model.  

 

Structural models are used to describe the logic operation circuits, since their design is 

simple and consists only of logic gates and registers. Behavioural models are used to 

describe bit operation circuits using the bit operators in Verilog as they are more 

complicated. The design of arithmetic circuits range from simple circuits to highly 

complicated logic networks. As such, the behavioural, structural and hybrid models 

are all used to describe different types of arithmetic circuits. 

 

The performance and power consumption of the synthesized circuits depends on both 

the circuit design and the technology of the standard cell library. The circuit design 

determines the complexity of the circuit and in turn the number of logic components 

(from the standard cell library) required to realize the design. Each logic component 

has its own performance and power consumption. As such, the performance and 

power consumption of the synthesized circuit is computed based on the logic 

components used in the circuit. 

 

3.2.2 Circuit Synthesis 

The circuits for the functional units are synthesized with the Synopsis Design 

Analyzer using the C35 0.35um CMOS standard cell library – the technology 

available at the time of development.  
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The Synopsis Design Analyzer has different circuit-optimizing options to fulfil 

different requirements of performance or power consumption. These options are used 

along with a set of clock constraints to synthesize the circuit models to obtain circuits 

of different performance and power consumption level. The set of clock constraints 

ranged from 100ns up to the maximum performance limit of each model.  

 

Clock constraint defines the amount of time in which the circuit is bound to deliver 

computation results. The inverse of the clock constraint is the operating clock 

frequency for the circuit. Thus, as clock constraint is shortened, the synthesized 

circuits run on a faster operating clock frequency. Depending on the level at which it 

is set, the circuits are synthesized to a performance point that is sufficient to meet the 

clock constraint.  

 

Table 3.1 shows a summary on the circuit information obtained from synthesizing the 

behavioural addition circuit model with a range of clock constraints.  

 

Clock Constraints 100ns 50ns 25ns 10ns 5ns 

Area (um2) 24156 24156 24156 51541.4 63654.6
Dynamic Power (mW) 0.23 0.46 0.92 4.45 11.21 
Normalized Power (mW) 0.23 0.23 0.23 0.44 0.56 
Data Arrival (ns) 12 12 12 4.87 3.77 
      

Table 3.1 Synthesis process for behavioural model adder 

In Table 3.1, Area indicates the required circuit size on the silicon die. Performance is 

reflected in the Data Arrival measurements – it indicates the time the circuit takes to 

deliver computations. Dynamic Power indicates the circuit’s power consumption.  
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From the observations on Table 3.1, circuits synthesized with clock constraints at 

100ns, 50ns and 25ns have equal circuit areas and performance levels. This implies 

that the same circuit is synthesized for all three clock constraints, since this circuit 

performance meets the requirements. On the other hand, power consumption is 

observed to increase proportionally as the clock constraints get shorter. For example, 

the power consumption for 50ns is twice the power consumption for 100ns, while for 

25ns it is four times the power consumption for 100ns. 

 

From the datasheets of the logic components [39], power consumption is provided as 

micro Watts per MHz. This implies that power consumption is proportional to 

operating clock frequency. Thus, it explains the proportional difference in power 

consumption between circuits synthesized with clock constraints at 25ns and 100ns.  

 

For clock constraints at 10n and 5ns, different circuits are synthesized to meet the 

requirement. In general, these circuits have larger size as there are more components 

used to execute parallel functions to speed up performance, but consume more power 

during operation. 

 

The power consumption recorded in Table 3.1 is obtained from synthesizing circuits 

at different clock constraints. In order to provide a fair comparison among different 

circuits, it should be normalized based on a common clock constraint. Normalized 

power can be computed as follow,  

1) divide the 100ns (common clock constraint) by the applied clock constraint to 

obtain a power factor,  
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2) then divide the Dynamic Power by the power factor to obtain the normalized 

power.  

In another words, the normalized power indicates the power consumption for 

operating the circuit with the common clock constraint at 100ns. The reason for using 

100ns as the common clock constraint is the ease of computation and also it is the 

lowest clock constraint in the range used to synthesize the circuit models.  

 

Although the circuits are being compared based on the common clock constraint, the 

performance figure for the circuits are still valid. This can be proven from the 

performance of circuits synthesized with clock constraint at 100ns, 50ns and 25ns - 

which the performance of the circuits does not change regardless of the clock 

constraint applied. Hence, we can compare the synthesized circuits based on 

normalized power and performance, for selecting appropriate circuits to implement 

the functional units. 

 

3.2.3 Logic and Bit Operation Circuits 

The logic circuits are described with simple structural models. The AND, OR, NOT 

and XOR circuits are synthesized with a clock constraint of 100ns. For the AND, OR 

and NOT circuits, the propagation delay is 2ns and power consumption is 100uW. 

The propagation delay for the XOR circuit is 2.5ns and the power consumption is 

150uW. As more transistors are used to implement the functions in the XOR circuit, it 

has a slightly longer delay and higher power consumption level compared with the 

other circuits. 

 



  CHAPTER 3  THE ARITHMETIC AND LOGIC UNIT HARDWARE 

 38

Due to their structural complexity, bit operation circuits are described with 

behavioural models. The register shift, rotate and compare function circuits are 

synthesized with clock constraint of 100ns. For the register shift and rotate function, 

the propagation delay is 11ns and power consumption, 165uW. The propagation delay 

for the register compare function circuit is approximately 8ns, with a power 

consumption of 66uW. The register compare function has smaller power consumption 

as it only writes the result to a one-bit register, which is usually part of the flag 

register. 

 

3.2.4 Addition Circuits 

The slow and fast adder circuits are obtained by synthesizing the behavioural model 

adder. With different optimizing options and clock constraints, the behavioural model 

adder can synthesize anything from a simple Carry Ripple adder circuit to an 

extremely complicated logic network like the Carry Look Ahead (CLA) adder, which 

executes very fast additions. 

 

The Carry Ripple adder circuit uses Full Adder cells (shown in Figure 3.7) as circuit 

building blocks, to form adder circuits (shown in Figure 3.8). For an n-bit adder 

circuit, n Full Adder cells are required. Full Adder cells can be expressed with the 

following equations: 

 1−⊕⊕= iiii CarryBASum  …………………………………………(Eq. 2) 

iiiiii CarryBABACarry )(1 ++=−  …………………………………...(Eq. 3) 
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Fig. 3.7 Full Adder cell 

 
 

Fig. 3.8 Carry Ripple adder design 

The CLA adder uses parallel circuits to generate carry bits for all inputs, instead of 

propagating the carry signals through the stages of the adder. The carry bits for all 

inputs are generated based on the following equations: 

Sum, 1−⊕⊕= iiii CarryBAS  …………….………………..…………(Eq. 4) 

Carry Propagate, iii BAP ⊕=  ……………………………………....(Eq. 5) 

Carry Generate, iii BAG =  ………………….………………..………(Eq. 6) 

General Carry Equation, iiii CPGC +=+1  ………….………………..(Eq. 7) 

  

Expanded Carry Equations, 

inCPGC 000 +=  ………………….…………………………………...(Eq. 8) 

inCPPGPGC 010111 ++=  ….……………….………………………….(Eq. 9) 

inCPPPGPPGPGC 0120121222 +++=  ………..……………….……….(Eq. 10) 

inCPPPPGPPPGPPGPGC 012301231232333 ++++=  ……………….…...(Eq. 11) 
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iniiiiiiiii CPPPPGPPGPGC 0212111 ........ −−−−− ++++=  ……….………(Eq. 12) 

The same equation is used for the sum of CLA adder as well as the sum of the Carry 

Ripple adder. The expanded carry equations are generally Sum-of-Product 

expressions, usually implemented in parallel circuits to compute carry bits for all 

input bits to speed up additions. Figure 3.9 shows an implementation of a 4-bit CLA 

adder.  

 

Fig. 3.9 4-bit Carry Look Ahead adder 

The 4-bit CLA adder circuit shown in Figure 3.9 comprises four layers of logic 

components; the performance of the CLA adder depends on the propagation delay of 

the signals through these four layers of logic components in the CLA circuit structure.  

 

However, as the width of the adder increases, the number of Sum-of-Product terms 

also increases in the carry equations. This in turn raises the fan-in and fan-out 

requirement on the logic components during implementation. As such, more layers of 

logic components are used to meet the higher fan-in and fan-out requirement when 

implementing the carry equations. 
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Although the performance of the CLA adder should theoretically remain constant, 

performance may differs for CLA adders of different widths, because of different 

number of layers of logic components may be implemented for each circuit. 

A Carry Ripple adder is obtained by synthesizing the behavioural model adder with a 

clock constraint of 100ns. The schematic shown in Figure 3.10 consists of 32 Full 

Adder cells to implement the Carry Ripple adder.  

 

 

Fig. 3.10 Behavioural model Carry Ripple adder schematic 

The behavioural model adder circuit reached its performance limit, when synthesized 

at a clock constraint of 5ns. At the performance limit, the synthesized circuit (shown 

in Figure 3.11) is shown to have a CLA adder structure which uses parallel circuits to 

perform fast additions. 
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Fig. 3.11 Behavioural model CLA adder schematic 

 

Model Characteristics 100ns 5ns 
Area (um2) 24156 63654.61 
Dynamic Power (mW) 0.23 11.21 
Normalized Power (mW) 0.23 0.56 

Behavioural 

Data Arrival (ns) 12 3.77 
    

Table 3.2 Behavioural model adder circuit synthesis 

Table 3.2 shows that from synthesizing the behavioural model adder circuit, a Carry 

Ripple adder is obtained with clock constraint at 100ns and the CLA adder circuit is 

obtained with clock constraint at 5ns. The Carry Ripple adder circuit has the slowest 

performance and lowest power consumption, while the CLA adder circuit has the 

fastest performance and highest power consumption. These two adder circuits are 

implemented in the ALU as the slow and fast adder. 

 

3.2.5 Subtraction Circuits 

Subtraction circuits are essentially addition circuits, with one of the operands 

complemented using inverters that force a logic high signal into the carry bit to 

implement the 2’s complement for the complemented operand [40]. 
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Figure 3.12 shows a block diagram for the subtraction circuit, where addition circuits 

with slight modifications were used. This therefore shows that the performance of 

subtraction circuits is close to that of addition circuits. 

 

Adder

Complementor ADD/SUB

Carry In

A0An-1
augent/minuend

B0Bn-1
addend/subtrahend

S0/D0Sn-1/Dn-1
sum/difference

 

Fig. 3.12 Subtraction circuit implementation 

 

The same process for synthesizing the addition circuits was repeated for subtraction 

circuits. Table 3.3 shows the circuit information for synthesizing a behavioural 

subtraction circuit model. 

Model Characteristics 100ns 5ns 
Area (um2) 25940.71 65312.05 
Dynamic Power (mW) 0.24 11.32 
Normalized Power (mW) 0.24 0.57 

Behavioural 

Data Arrival (ns) 12.51 4.13 
    

Table 3.3 Behavioural model subtractor circuit synthesis 

Comparing Table 3.3 (subtraction circuits) with Table 3.2 (addition circuit), due to the 

additional inverters, the performance, area and power consumption of the subtraction 

circuit is only slightly slower or more (respectively) than the addition circuits. 
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3.2.6 Multiplication Circuits 

The behavioural model multiplier synthesizes circuits with fast performance and high 

power consumption, even with a slow clock constraint at 100ns. As such, another 

multiplication circuit model (based on a simple multiplication algorithm) has been 

developed to synthesize slow-performance circuits that consume low power. 

The schematic for the behavioural model multiplier shown in Figure 3.13 consists 

primarily of a block diagram with representations of the multiplication circuits and 

registers used to store the processed data.  

 

 
 

Fig. 3.13 Behavioural model multiplier schematic 

 

Model Characteristics 100ns 10ns 5ns 
Area (um2) 424413.25 648100.94 651773.88 

Dynamic Power (mW) 5.11 70.29 135.27 

Normalized (mW) 5.11 7.03 6.76 
Behavioural 

Data Arrival (ns) 10.76 8.17 8.00 (Fail) 

     
Table 3.4 Behavioural model multiplication circuit synthesis 

Table 3.4 shows the performance and power consumption of the synthesized 

behavioural model multiplier circuits. With clock constraint at 10ns, the synthesized 

circuit nearly reached the performance limit. With clock constraint at 5ns, the 
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synthesized circuit could not deliver the required performance. Hence, the circuit 

synthesized with clock constraint at 10ns is selected to implement as functional unit in 

the proposed ALU as the fast multiplier circuit. 

 

A hybrid model multiplier that uses parallel shifted additions to compute 

multiplications is used to synthesize slow multiplier circuits. This hybrid model 

multiplier implements a shifted parallel addition algorithm, modified from the simple 

paper and pencil multiplication algorithm [40].  

 

The paper and pencil multiplication algorithm performs multiplications by summing 

up additions of the multiplicand, aligned sequentially with respect to the multiplier. 

Figure 3.14 shows the 8-bit multiplication process of a 16-bit product. This 

multiplication process requires 8 steps of additions. In general, n steps of additions are 

required for n-bit multiplication. 

      11101010    = 234 
     X 11000100  = 196 

      00000000  ----- (1) 
     00000000  ----- (2) 

     11101010   ----- (3) 
    00000000   ----- (4) 
       00000000   ----- (5) 
      00000000   ----- (6) 
     11101010   ----- (7) 

    + 11101010    ----- (8) 
           1011001100101000  = 45864 
 

Fig. 3.14 Simple paper and pencil multiplication algorithm 

The algorithm above has been modified to perform the additions in parallel alignment. 

With parallel additions, the number of steps it takes to compute a 16-bit multiplication 

via addition is reduced to 3. In general, log2 (n) of addition steps are required for n-bit 

multiplication. Figure 3.15 shows the modified 8-bit multiplication process.  
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       11101010    = 234 
     X 11000100  = 196 
 
  11101010-(7)  00000000-(5)  11101010-(3)  00000000-(1) 
+11101010 -(8)+00000000 -(6)+00000000 -(4)+00000000 -(2) 
1010111110-(9)0000000000-(A)0011101010-(B)0000000000-(C) 
       
   0000000000 -(A)     0000000000 -(C) 
    +1010111110   -(9)  +0011101010   -(B)  

   101011111000 -(D)   001110101000 -(E) 
 
         001110101000 –(E) 

       +101011111000     –(D)       
   1011001100101000  = 45864 

 
Fig. 3.15 Modified multiplication algorithm 

The schematic for the shifted parallel additions hybrid model is shown in Figure 3.16 

comprises layers of logic components and addition circuit blocks. 

 

 

Fig. 3.16 Modified multiplication circuit schematic 

Model Characteristics 100ns 25ns 10ns 
Area (um2) 343943.19 770634.06 1623810.75
Dynamic Power (mW) 3.94 33.36 179.30 
Normalized (mW) 3.94 8.34 17.93 

Parallel 
Shifted 

Additions 
Hybrid Data Arrival (ns) 27.11 15.10 9.75 

     
Table 3.5 Multiplication circuits synthesis  

 

 



  CHAPTER 3  THE ARITHMETIC AND LOGIC UNIT HARDWARE 

 47

Table 3.5 shows the performance and power consumption of the behavioural model 

multiplication circuits, where they have reached their performance limit with clock 

constraint at 10ns. As this hybrid model multiplier is designed for implementing slow 

functional units, the circuit synthesized with clock constraint at 100ns is selected 

since it consumes the least power. 

 

3.2.7 Division Circuits 

The division operator used in the behavioural model division circuit produces only the 

quotient without the remainder; the remainder has to be computed separately using the 

modulus operator. As such, another division circuit model (based on the non-

performing division algorithm [40]) has been developed for the proposed ALU to 

compute both division and remainder within one operation. Hence, we have two types 

of division circuits to cater for different division requirement – with or without 

remainder computation.   

 

The schematic for the behavioural model division circuit shown in Figure 3.17 

consists of a block diagram for representation of the division circuits and the registers 

used to store the processed data.  

 
 

Fig. 3.17 Behavioural model division circuit schematic 
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Model Characteristics 100ns 25ns 
Area (um2) 907729.81 1435558.38 
Dynamic Power (mW) 7.94 48.70 
Normalized (mW) 7.94 12.18 

Behavioural 

Data Arrival (ns) 51.87 30.26 
    

Table 3.6 Behavioural model division circuit synthesis 

Table 3.6 shows the performance and power consumption of the behavioural model 

division circuits. The circuits reached their performance limit with clock constraint at 

35ns.  

 

The non-performing hybrid model is developed to compute both quotient and 

remainder within a single operation based on the non-performing division algorithm 

[40]. The reason for selecting this algorithm is its implementation is not complicated. 

Unlike other algorithms that proposed using different number system [41] or use fast 

look-up-tables to cache pre-processed data [42], this algorithm only needs circuits for 

subtraction, comparison, OR logic and left shifting operation when implemented. 

 

The flowchart for the non-performing algorithm is shown in Figure 3.18. 
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Start

Registers Initialisation

iteration = Clear all and set MSB
accumulator = dividend

bpower = divisor << (n-1)
qoutient = 0

i = i + 1
update = accumulator - bpower

Is update
positive ?

quotient = quotient OR iteration
accumulator = update

iteration = iteration >> 1
bpower = bpower >> 1

Is iteration
= 0 ?

Yes

Yes

quotient = quotient
remainder = accumulator

End

No

No

 

Fig. 3.18 Non-performing division algorithm 



  CHAPTER 3  THE ARITHMETIC AND LOGIC UNIT HARDWARE 

 50

Figure 3.19 shows the non-performing division process for 5-bit data. In general, n 

steps of computations are required for n-bit division. 

27 ÷ 11 = 2 remainder 5 
or 

11011 ÷ 01011 = 00010 remainder 00101 
 

Iteration Accum. Bpower Update Quotient Accum.(Updated)
10000 11011 0010110000 1101101011 00000 11011 
01000 11011 0001011000 1111000011 00000 11011 
00100 11011 0000101100 1111101111 00000 11011 
00010 11011 0000010110 0000000101 00010 00101 
00001 00101 0000001011 1111111010 00010 00101 

      
Fig. 3.19 5-bit non-performing division process. 

 

Figure 3.20 shows the schematic for the non-performing division hybrid model 

comprises of layers of logic components and subtraction circuits.  

 

 

Fig. 3.20 Non-performing division circuit schematic 

 

Table 3.7 shows the performance and power consumption of the hybrid model 

division circuits. 
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Model Characteristics 100ns 50ns 
Area (um2) 1338392.13 1531896.38 
Dynamic Power (mW) 10.49 23.94 
Normalized (mW) 10.49 11.97 

Non-Performing 
Division 
Hybrid 

Data Arrival (ns) 54.68 49.70 
    

Table 3.7 Division circuit synthesis performance 

The hybrid circuits reached performance limit with clock constraint at 50ns. In a 

comparison of performance, the behavioural model synthesized circuits faster than the 

hybrid model, but cannot compute both quotient and remainder in one operation.  

 

Thus, fast functional unit for division is implemented with the fastest circuit (higher 

power consumption) obtained from synthesizing the behavioural model. Slow 

functional unit is implemented with slowest circuits (lower power consumption) 

obtained from synthesizing the hybrid models.  

 

With such implementation, it is necessary to differentiate PIns for division with and 

without remainder computation, so that the programmer can take advantage of the 

different circuits. 

 

3.3 Analysis 

3.3.1 Power Saving 

As mentioned, the synthesized circuits are selected for implementation in the 

functional units, based on their performance and power consumption levels – shown 

in Table 3.8. The last column tabulates the difference in power consumption between 

the slow circuits and the fast circuits. These figures are also indicative of the amount 
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of power that can be saved when the respective functional units are implemented in 

the proposed ALU.  

Functions Slow Circuit Fast Circuit Difference 
Power       (mW) 0.23 0.56 0.33 Addition Data Arrival (ns) 12.00 3.77 8.23 

       
Power       (mW) 0.24 0.57 0.33 Subtraction Data Arrival (ns) 12.51 4.13 8.38 

       
Power       (mW) 3.94 7.03 3.09 Multiplication Data Arrival (ns) 27.11 8.17 18.94 

       
Power       (mW) 10.49 12.18 1.69 Division Data Arrival (ns) 54.68 30.26 24.42 

     
Table 3.8 Functional unit implementation 

 

3.3.2 Optimal clock period 

Assuming there are no time constraints from the execution of other pipeline stages 

like instruction fetch, decode, memory fetch and register write back, the number of 

stages assigned for execution will be based on performance of the functional units and 

the clock cycle time of each stage. 

 

Given a particular performance and period for one clock cycle, the number of clock 

cycles a functional unit requires is calculated as the number of the clock cycles with 

the total time period that is sufficient to cover the functional unit’s performance. For 

example, in a given period of 5ns for one clock cycle, 2 clock cycles is needed for a 

functional unit with a 6ns performance and 3 clock cycles for a functional unit with a 

14ns performance.  
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The time period to assign for each clock cycle is computed based on a slack analysis. 

Slack is defined as the time difference between the time period and the functional 

unit’s performance, which the functional units will be sitting idle after finished 

execution. Thus, using the same example of a given time period of 5ns, the slack for a 

functional unit of 6ns is 4ns and 1ns for a functional unit of 14ns. 

The fastest performing functional unit amongst the selection is taken as the 

benchmark to determine the clock cycle for each stage. As seen in Table 3.8, the 

fastest performance recorded is 3.77ns. A preliminary time period of 4ns is therefore 

assigned as the clock cycle. 

 

To compute an optimal time period for the clock cycle, a slack analysis is performed 

over a small range of time periods, starting from the preliminary value. The optimal 

time period is selected based on the time period with the smallest average slack. Table 

3.9 shows the slack computations for time periods of 4ns, 5ns and 6ns and Table 3.10 

shows the average slacks across the functional units. 
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 Time Period         (ns) 4 5 6 
Clock Cycles     (units) 3 1 3 1 2 1 
Total Time Period (ns) 12 4 15 5 12 6 
Data Arrival         (ns) 12 3.77 12 3.77 12 3.77 
Slack                    (ns) 0 0.23 3 1.23 0 2.23 

Addition 

Slack      (normalized) 0 0.06 0.6 0.25 0 0.37 
        

Clock Cycles     (units) 4 2 3 1 3 1 
Total Time Period (ns) 16 8 15 5 18 6 
Data Arrival         (ns) 12.51 4.13 12.51 4.13 12.51 4.13 
Slack                    (ns) 3.49 3.87 2.49 0.87 5.49 1.87

Subtraction 

Slack      (normalized) 0.87 0.97 0.50 0.17 0.92 0.31
        

Clock Cycles     (units) 7 3 6 2 5 2 
Total Time Period (ns) 28 12 30 10 30 12 
Data Arrival         (ns) 27.11 8.17 27.11 8.17 27.11 8.17 
Slack                    (ns) 0.89 3.83 2.89 1.83 2.89 3.89 

Multiplication

Slack      (normalized) 0.22 0.96 0.58 0.37 0.48 0.65 
        

Clock Cycles     (units) 14 8 11 7 10 6 
Total Time Period (ns) 56 32 55 35 60 36 
Data Arrival         (ns) 54.68 30.26 54.68 30.26 54.68 30.26
Slack                    (ns) 1.32 1.74 0.32 4.74 5.32 5.74 

Division 

Slack      (normalized) 0.33 0.44 0.06 0.948 0.89 0.96 
        

Table 3.9 Slack computations 

Time Period  (ns) 4 5 6 
Average for Addition and Subtraction 0.40 0.32 0.35 
Average for Addition, Subtraction and Multiplication 0.47 0.37 0.42 
Average for Addition, Subtraction, Multiplication and Division 0.45 0.41 0.55 

    
Table 3.10 Average normalized slacks 

In Table 3.10, we see that the clock period of 5ns consistently shows the smallest 

average slacks, and is thus selected as the time period to be implemented in the 

functional unit of the proposed ALU. 
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3.3.3 Area Penalty 

Comparing with other ALU designs that use only one set of functional unit, our ALU 

requires more area to accommodate circuits for two sets of functional units. In another 

words, our ALU design trade space for power. Table 3.11 shows the area used by the 

slow and fast circuits. Table 3.12 shows a comparison base on the area used by slow 

and fast circuits. 

Area (um2) Function 
Slow Circuits Fast Circuits

Total 

Addition 24156 63654.61 87810.6 
Subtraction 25940.71 65312.05 91252.8 
Multiplication 343943.19 648100.94 992044 
Division 1338392.1 1435558.4 2773951 
Total 1732432 2212626 3945058 

    
Table 3.11 Area of ALU 

Ratio ALU Functional 
circuits Slow Circuits Fast Circuits 

Slow only 1 0.78 
Fast only 1.28 1 
Slow & Fast 2.28 1.78 

   
Table 3.12 Ratio of circuit area 

Base on Table 3.12, if we compare our ALU against a design which uses only our 

slow circuits, our ALU suffers an area penalty of additional 128% of area required by 

the slow circuits. The same penalty applies to comparing against a design which uses 

only our fast circuits, our ALU suffers an area penalty of additional 78% of area 

required by the fast circuits. 

 

3.4 Chapter Summary 

In this chapter, we discussed the function of CMOS logics in the circuits and how it 

conforms to the low-power consumption design of the proposed ALU. We also 
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examined the hardware design and how it fits into the make of the proposed ALU. 

Last but not least, we analyzed in detail the implementation of the proposed ALU, 

demonstrating the selection process of the various circuits for the functional units. 

 

The circuits designed for the proposed ALU are specifically made to fit either the fast 

or slow functional unit. They are described with behavioural, structural or hybrid 

models, then synthesized and implemented with CMOS logic. Circuits that are 

selected to be implemented in the functional units are chosen based on their 

performance and power consumption levels. By utilizing the slow function units 

appropriately, we are able to curtail excessive power consumption without affecting 

performance. 

 

Base on the circuit performance, the time period for the clock cycle is computed for 

the ALU. A slack analysis was carried out on a small range of proposed time periods. 

The optimal time period is selected based on the smallest average slack. 
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CHAPTER 4 
 
THE SOFTWARE INSTRUCTION SCHEDULER  

 

  

 

In this chapter, we will describe the workings of the instruction scheduling algorithms 

– explaining in detail how it uses the functional units to enhance performance while 

reducing power consumption of the ALU during runtime. Broken down into several 

functional stages, every stage of the algorithm will be explicitly described. The 

developed software scheduler will then be tested, after which we will analyse the 

results. 

 

4.1 Instruction Scheduling 

4.1.1 Background 

In many programs, it is common to execute several PIns consecutively to achieve 

certain tasks or computations. Due to instruction set constraints [43], these PIns may 

repeatedly use a few registers, such as accumulators, to store and execute interim data 

during execution. Such constraints cause some PIns to become dependent on the 

preceding PIns, as they rely on the executed results stored by the preceding PIns for 

their own computations. 
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As such, the dependent PIns are stalled during operations, and can only execute after 

the preceding PIns have completed execution. If executed in improper order, the 

dependent PIns will cause data hazards such as Read-after-Write, Write-after-Read 

and Write-after-Write [28], that will give rise to errors in the tasks or computations. 

However, when the dependent PIns are stalled, the performance of the ALU pipeline 

suffers as it sits idle while the dependent PIns are waiting to proceed.  

 

Therefore, to prevent performance of the ALU from being stymied, the PIn order is 

rearranged so that PIns are executed continuously. This eliminates the idle time 

between preceding and stalled dependent PIns, thus effectively preventing stalls in the 

pipeline so that the performance does not suffer. 

 

4.1.2 Scheduling Algorithms 

Instruction scheduling is commonly used to rearrange PIns order, to resolve hazards 

caused by dependencies and enhance performance of the ALU pipeline. It can be 

performed with different algorithms, each using different methods to analyze 

dependencies among the PIns and rearrange them accordingly.  

 

Many algorithms developed for instruction scheduling rearrange PIn order via 

dependency analysis [43, 44, 45, 46, 47]. Essentially, these algorithms first identify 

dependencies among PIns. It then arrange for independent PIns to fill in and increase 

the distance between preceding and succeeding dependent PIns, to resolve the 

dependencies between PIns. Different scheduling algorithms identify independent 

PIns in different forms. In general, independent PIns are PIns that can be safely 
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relocated within a region of the program without causing hazards or computational 

errors.  

 

During the scheduling operation, these independent PIns are identified and relocated 

between preceding and succeeding dependent PIns. This allows the ALU to execute 

them while the dependent PIns are waiting on the preceding PIns to complete 

execution. As a result, the ALU can execute PIns continuously, instead of idling while 

the dependent PIns are waiting to proceed. 

 

Algorithms used to schedule processes in real time systems [48, 49], can also be used 

to schedule PIns. These algorithms analyze PIns and assign metrics like earliest and 

latest execution time to PIns for constructing time graphs. After which, the PIns are 

rearranged according to the time graphs. The same approach applies for algorithms 

used in static resource distribution models [50, 51] as well. These algorithms assign 

PIns with priority and treat registers as resources. Subsequently, the PIns are 

rearranged according to priority and availability of registers.  

 

4.1.3 Performance Optimality 

As mentioned, the objective of instruction scheduling is to enhance ALU 

performance, by identifying independent PIns and rearranging them to eliminate 

dependencies that give rise to stalls. However, the degree of optimality of the 

enhanced performance depends on the number of independent PIns the algorithms can 

identify within the scheduling window. 
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Scheduling window refers to the number of PIns that the scheduler can work with 

during operation. It is determined by static program analysis before the scheduling 

operation starts. As the algorithms perform the analysis, the size of the scheduling 

window may vary across different regions of the program, depending on the program 

flow structure. 

 

Logically, a larger window size should result in scheduled PIns with better 

performance [52], since more PIns are available for rearrangement. However, this is 

not always true if there are insufficient independent PIns available in the scheduling 

window for rearrangement to resolve data hazards. Figures 4.1 and 4.2 illustrate the 

correlations between performance optimality and different scheduling window sizes, 

with respect to a fixed number of independent PIns.  

 

 

Fig. 4.1 Performance optimality with normalized number of independent instruction 
of 0.65 

 
 Extracted from [52], Figure 3 of “Instruction Window Size Trade-Offs and Characterization of Program Parallelism” by Pradeep K. Dubey et al 
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Fig. 4.2 Performance optimality with normalized number of independent instruction 
of 0.8 

 
 

 

From the above figures, we can conclude that both the window size and the number of 

independent PIns available within the scheduling window affect performance 

optimality of scheduled PIns. It is also observed that from comparing the two figures, 

performance optimality can be limited by the number of independent instructions, 

even with an increase in the scheduling window size.  

 

4.2 Software Instruction Scheduler 

4.2.1 Introduction 

Instruction scheduling may be implemented in both hardware and software. In 

hardware implementation, instruction scheduling takes place in complicated circuits 

during runtime operation. In this case, circuit size and its power consumption greatly 

constraint the complexity of the scheduling algorithm, as well as the size of the 

observation window.  

Extracted from [52], Figure 4 of “Instruction Window Size Trade-Offs and Characterization of Program Parallelism” by Pradeep K. Dubey et al 
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As for software implementation, because instruction scheduling is conducted during 

offline compilation time, algorithm complexity and size of the observation window 

cease to be issues. Typically, the algorithms worked on the PIns before they are 

assembled into MIns, thus power is not incurred during runtime. 

 

For the proposed ALU, software implementation of instruction scheduling is chosen 

for the mentioned advantages in the previous paragraph. Essentially, we selected this 

method of instruction scheduling as because it does not incur any power consumption 

during runtime – a primary consideration in our proposed low-power consumption 

ALU. 

 

The software scheduler is designed to rearrange PIns via dependency analysis, 

following which, it generates directives for the assembler to map PIns to MIns that 

executes with the appropriate functional units. The software scheduler undergoes this 

process to achieve its objective of enhancing performance while reducing power 

consumption.  

 

4.2.2 Scheduling Process 

The proposed software scheduling process is performed in two phases; each phase is 

further divided into several stages.  

 

The first phase is an Initialization Phase that processes the PIns into a format 

recognized by the scheduling algorithms used in the second phase, also known as the 

Scheduling Phase. In this phase, the PIns are analyzed and rearranged to enhance 

performance and reduce power consumption.  
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4.2.2.1 Initialization Phase 

The Initialization Phase consists of three stages to prepare the PIn sources for the 

Scheduling Phase.  

 

Initialization Phase Stage 1 

The PIn sources usually contain many comments and references that are used to mark 

the PIns for easy inspection. Such comments and references not needed in the 

subsequent stages. At this stage, the software scheduler reads every line in the PIn 

sources and deletes those that are not PIns.  

 

While reading every line in the PIn sources, for every unique PIn encountered, a new 

counter is created with an initial value of one. If the counter already exists for a 

particular PIn, the value on the counter will be accordingly incremented. At the end of 

this stage, a cleaned up version of the PIn sources is created, with the statistics of the 

PIn frequency stored in an external file. 

 

Initialization Phase Stage 2 

The algorithms in the Scheduling Phase analyze and rearrange the PIns to enhance 

performance and reduce power consumption during runtime. While this is done, the 

control flow of the program must be properly maintained, to ensure that the program 

works correctly after scheduling.  

 

For example, it is common to execute arithmetic instructions and use the computed 

results in the evaluation of a conditional branch instruction. However, during 

rearrangement of instructions, it is important to ensure that the scheduling algorithms 
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do not position the arithmetic instructions after the branch evaluation instruction, as 

this will result in errors in the program. 

 

In Stage 2, control based PIns are identified and used to divide the program into 

segments. To ensure the control flow of the program remains intact, the algorithms 

work strictly on PIns within segments, never rearranging any PIns outside segments. 

Therefore, as a conservative approach, this prevents the control flow of the program 

from being affected by PIn rearrangement during execution. The program segments 

are subsequently assembled after the scheduling algorithms have worked on every 

one. 

 

Initialization Phase Stage 3 

During the Scheduling Phase, the algorithms identify instruction dependencies by 

matching the operands of different PIns. Should the operands of different PIns match, 

instruction dependencies may occur, depending on the execution order and the 

distance between the matched PIns.  

 

To simplify the matching work, Generic Instructions (GIns) are used to provide an 

abstraction for the PIns. The GIns contain sufficient extracted information from the 

PIns the scheduling algorithms need to work on in the Scheduling Phase. The 

translation of PIns to GIns is performed in Stage 3.      

 

At this stage, PIns are translated into GIns using the three generic mnemonics, shown 

in Table 4.1.  
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The GIn format consists of one of the three generic mnemonics in Table 4.1, together 

with one integer representing the destination operand and two integers to represent 

source operands.  

GIn Mnemonic PIn Type 
F1F Floating point Pins 
IkF PIns that required k clock cycle for execution (k ≥ 1) 

InXm PIns that can be performed with slow or fast functional unit, n 
indicates the clock cycle required for execution with fast functional 
units and m indicates the clock cycle required for execution with 
slow functional units (n ≥ 1, m > 1)  

  
Table 4.1 GIn mnemonic descriptions 

As seen in Table 4.1, “F1F” represents floating point instructions in PIns. “IkF” 

represents PIns that are supported with only one type of functional unit that requires k 

clock cycles for execution, where the value of k is one or greater. “InXm” represents 

PIns that can be performed with a fast or slow functional unit. The value n indicates 

the number of clock cycles required for execution with the fast functional unit, while 

m is indicative of the number of clock cycles for execution with the slow functional 

unit. Based on the hardware design of the proposed ALU in Chapter 3, n can be one 

or greater and m is greater than one. Unique integer numbers are used to represent 

different operands such as registers and data in PIns, for the source and destination 

operands in GIns. 

 

As an abstraction of PIns, the GIns provide sufficient information for the scheduling 

algorithms to work with in place of the PIns. The benefit of the GIn format is that it 

makes for easy manipulation in the following phase, which is the Scheduling Phase. 
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4.2.2.2 Scheduling Phase 

The Scheduling Phase is also divided into three stages. One stage is for analysis and 

the remaining two stages are for scheduling the GIn segments. In this phase, the 

algorithms work on the GIn segments obtained from Stage 3 of the Initialization 

Phase. At the end of the Scheduling Phase, the scheduled GIn segments are 

assembled and translated back into PIns. Directives are generated for the assembler to 

map PIns into MIns that are executed with the appropriate functional units. 

 

Scheduling Phase Stage 1 

Three sets of preliminary information are required to schedule the PIns correctly in 

the next two stages. In the first set of information, the dependent GIns have to be 

identified. The second set of information requires the identities of GIns that are 

already in proper order, prior scheduling. Last but not least is the moveable space of 

the GIns.  

 

In Stage 1, the GIns are analyzed to obtain the required information. To identify 

dependent GIns, an instruction dependency check [43] is performed on every GIn in 

the working segment. Dependencies are then recorded in a Stall List.  

 

During checking, the destination operand in the checking GIn will be matched against 

operands in the following GIn in the segment. If the destination operand of the 

checking GIn matches any of the operands in the following GIn, the following GIn 

will be marked as a dependent GIn on the checking GIn. A stall entry for the next 

following GIn will also be marked in the Stall List.  
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To ensure the scheduling process is stable, it is necessary to identify GIns that are 

already in proper order prior to scheduling and record them in a Fix List. This is to 

prevent the scheduling algorithms from rearranging GIns that already in proper order, 

which may cause extra cases of instruction dependencies under normal situations. 

Such GIns have the following description:   

 

If the GIn at location i+2 happens to be dependent on the GIn at location i, but the 

GIn at location i+1 is independent, these three GIns will be considered to be in proper 

order, marked as fixed locations and recorded in the Fix List. The scheduling 

algorithms are then informed to avoid rearranging these GIns. 

 

To obtain the movable space of the GIns, the GIns are analyzed to find every possible 

location where they can be relocated safely within the working segment. To compute 

the GIn movable space, the GIn is consistently relocated back and forth. This 

relocation stops when dependency occurs – the space between the two extreme 

locations is marked and recorded in the Space Chart as the movable space for the 

GIns.  

 

Scheduling Phase Stage 2  

The scheduling process begins after the final stage of information collection has been 

completed. At this stage, the Scheduling Phase Interim Algorithm works on the GIn 

segments on an interim schedule, enhancing performance under the assumption that 

GIns require only one clock cycle to perform, regardless of the GIn type.  
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Under this assumption, instruction dependency between two consecutive instructions 

is detected when the succeeding instruction writes to the same operand as the 

precedent instruction. This dependency is easily resolved by relocating an 

independent instruction in between these two dependent instructions.  

 

This goes to show that a highly optimized performance under an interim schedule can 

be obtained under the one clock cycle assumption. This interim schedule will be 

reworked in the Scheduling Phase Final Algorithm, using the correct number of clock 

cycles for execution in Scheduling Phase Stage 3.  

 

The Scheduling Phase Interim Algorithm works with the information recorded in the 

Space Chart, Stall List and Fix List. When the algorithm encounters a stall entry in the 

Stall List it is reading, it means that hazard has occurred as a result of dependency and 

has to be resolved. 

 

As mentioned, to resolve the dependency under the one clock cycle assumption at this 

phase, an independent GIn has to be relocated and inserted between the two 

depending GIns. For example, if a GIn at location i+1 is found to be dependent on a 

GIn at location i, an independent GIn will have to be relocated and inserted between i 

and i+1 to resolve the dependency. If an independent GIn exists, it will be reordered 

so that the three GIns will be considered scheduled. They are then marked with fixed 

locations and recorded in the Fix List.  

 

To locate an independent GIn, the algorithm looks up the location of the stall entry on 

the Space Chart and Fix List. The objective is to find an independent GIn with enough 
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movable space for relocation to resolve the stall. After such an independent GIn is 

found and relocated, the Space Chart, Fix List and Stall List will be recomputed. If no 

independent GIns can be found, wait states like NOP or other forms of delay 

mentioned in Chapter 2.1.2.1 will be used to resolve dependencies.  

 

Figure 4.3 depicts a detailed flowchart for Scheduling Phase Interim Algorithm. 
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Fig. 4.3 Scheduling Phase Interim Algorithm Flow Chart 

Scheduling Phase Stage 3 

The Scheduling Phase Final Algorithm in Stage 3 has two objectives. The first 

objective is to rework the interim schedule with the actual number of clock cycles 

required by the functional units to perform. The second objective is to identify and 
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rearrange GIns that can be performed with slow functional units to reduce power 

consumption during runtime without incurring loss in performance. The details of the 

Scheduling Phase Final Algorithm are described as follows: 

 

In this phase, the algorithm identifies GIns with mnemonic “IkF” and “InXm” 

(mentioned in Section 4.2.3). GIns with mnemonic “IkF” can only be executed with 

one type of functional unit. The integer k represents the number of clock cycles 

required by the GIn to perform. If the identified GIn is “IkF” and k is greater than 

one, it will be registered as XCycle when the GIn is recorded in the Stall List. The 

algorithm will then use these GIns to resolve dependencies. 

 

GIns with mnemonic “InXm” can be executed with fast or slow functional units. The 

integer n represents the number of clock cycles required by the GIns for execution 

using fast functional units, while the integer m represents the number of clock cycles 

required to execute using slow functional units. If the identified GIn is “InXm”, the 

integer n will be registered as SCycle and m will be registered as XCycle. The 

algorithm will base on XCycle or SCycle to rearrange the GIns to resolve 

dependencies.  

 

Starting with XCycle, the algorithm finds or creates the situations mentioned in 

Chapter 1.3 for these GIns to perform with slow functional units. Should 

dependencies occur because of slow functional units used, the algorithm will repeat 

the scheduling process and rearrange the GIns based on SCycle, using fast functional 

units to execute the GIns.  
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The algorithm uses four conditions (described below) which serve as mechanisms to 

analyze and rearrange the GIns to resolve dependencies. The algorithm fixes the 

dependencies based on XCycle or SCycle, using information recorded in the Space 

Chart, Fix List and Stall List. 

 

If the identified GIn is “IkF” with an entry on the Stall List, the algorithm will check 

the identified GIn against the four conditions to resolve dependencies with XCycle 

only. If the identified GIn is “InXm”, the algorithm will check it against the four 

conditions and arrange for its execution with slow functional units using XCycle first. 

Should dependencies occur with XCycle, the algorithm would recheck the identified 

GIn against the four conditions, after which it will arrange for execution of the GIn 

with fast functional units using SCycle.  

 

In the following description of the four conditions, we will arbitrarily use the term 

Cycle to refer to XCycle or SCycle. 

 

Condition 1 

The movable space of the identified GIn is read from the Space Chart. Base on the 

space between the current location and the location where the identified GIn can be 

rearranged to execute latest in time, the forward movable space is computed. 

 

If ‘Cycle is lesser or equal to the forward movable space’, Condition 1 is met. If 

‘Cycle is greater than the forward movable space’, Condition 1 is not met and 

Condition 2 will be checked. 
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Condition 2 

If ‘the identified GIn is not marked as fixed location in the Fix List’, the following 

procedure proceeds, else Condition 2 is skipped and Condition 3 is proceeded instead. 

 

The maximum movable space is computed base on the space recorded in the Space 

Chart. It is define as the space between the locations where the identified GIn can be 

arranged to execute earliest and latest in time.  

 

If ‘the maximum movable space is equal or greater than Cycle’, the identified GIn 

will be rearranged to the location where it can be executed earliest in time and 

Condition 3 is met. If ‘the maximum movable space is smaller than Cycle’, Condition 

2 is not met and Condition 3 will be checked. 

 

Condition 3 

At this stage, an arbitrary number of independent GIns N, is required to be rearranged 

after the identified GIn location to extend the forward movable space. N is defined as, 

N = Cycle - forward movable space 

Hence, ‘N number of independent GIns will be searched within the Space Chart’. If 

this is found, these N independent GIns will be rearranged to locations after the 

identified GIn and Condition 3 is met. If this cannot be found, Condition 3 is not met 

and Condition 4 will be checked. 

 

 

 

 



  CHAPTER 4  THE SOFTWARE INSTRUCTION SCHEDULER  

 73

Condition 4 

At this stage, an arbitrary number of independent GIns M, is required to be rearranged 

to the locations after the identified GIn to extend the maximum movable space. M is 

define as,  

 M = XCycle - Maximum free movable space span 

Hence, ‘M number of independent GIns will be searched within the Space Chart’. If it 

can be found, the identified GIn will be rearranged to the location where it can be 

executed earliest in time, the M independent GIns will be rearranged to locations after 

the identified GIn and Condition 4 is met. If it cannot be found, Condition 4 is not 

met. 

 

If Condition 4 is not met, it implies dependencies still exist even after the identified 

GIn has been attempted to be rearranged. An entry will then be made in the Stall List 

to mark the dependency of the identified GIn.  

 

To resolve the dependency, wait states mentioned in Chapter 2.1.2.1 will have to be 

implemented, since rearranging the GIns fail to resolve the problem. Fast functional 

units will be used to execute identified GIns with the mnemonic “InXm”, in order to 

reduce the amount of wait states required. 

 

If any of the four conditions is met during the process, it implies that scheduling of 

the identified GIn has been successful. Dependencies will be resolved for identified 

GIns with the mnemonic “IkF”, and any entry in the Stall List will be cleared. For 

identified GIns with the mnemonic “InXm”, the value of Cycle will be recorded in the 

Cycle List. The assembler can then use the Cycle List as directives to map PIns with 
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appropriate MIns. Similarly, the Stall List can be used as directives for the assembler 

to insert wait states accordingly. The detailed flowchart for Scheduling Phase Final 

Algorithm Flow Chart is shown in Fig. 4.4. 
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Fig. 4.4 Scheduling Phase Final Algorithm Flow Chart 
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4.3 Analysis 

The software scheduler which we developed was tested on several file compression 

programs. From the scheduled programs we can see that there are many cases in 

which the scheduler can rearrange PIn order to resolve stalls and assign slow 

functional units. On the other hand, there are also several cases where the scheduler 

could not improve the situations, due to insufficient independent PIns available to 

resolve dependencies. 

 

From the scheduled programs, we also managed to obtain the statistics on the number 

and type of PIns, and the frequency of slow functional unit assignment, as a result of 

rearranging the PIns using the scheduler. Power savings can be estimated base on 

these statistics. 

 

The following sections describes some best and worst cases found with the scheduler, 

and analysis on the statistics obtained. 

 

4.3.1 Good and Bad Cases 

From these tests we selected three processed segments as examples – two of good 

cases and one bad case, which the software scheduler encountered in the course of the 

tests.  

 

Good cases occurred when there were lesser stalls (due to dependencies) with 

sufficient independent instructions to resolve, while still able to assign slow functional 

units. Some good cases did not even have any stall. Bad cases on the other hand, were 

usually caused by insufficient or entire lack of independent instructions to resolve 
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stalls; bad cases could still occur even though there were few stalls – due to 

insufficiency of independent PIns. 

 

The GIn and PIn segments are shown with the individual cases. The GIn segment 

records the GIns of before and after scheduling, along with information on stalls and 

functional unit assignments. Unresolvable stalls are recorded in the Stall column with 

a non-zero integer. The Cycle column recorded the number of clock cycle that 

instructions should use during execution. With reference from the GIns, it can be 

shown the type of functional unit that has been assigned to the corresponding PIns. 

 

Table 4.2 and 4.3 show the one of the good case (Case 1) found. This case does not 

contain any stalls in its original PIn order, and slow functional units can be assigned 

for execution without instruction rearrangement. 

 

Case 1 

No Inst Dest Src1 Src2 Stall  ReX Inst Dest Src1 Src2 Stall Cycle 
0 I1F 323 7 7 0  0 I1F 323 7 7 0 1 
1 I1F 7 8 8 0  1 I1F 7 8 8 0 1 
2 I1S3 8 35 35 0  2 I1S3 8 35 35 0 3 
3 I1F 324 5 5 0  3 I1F 324 5 5 0 1 
4 I1F 325 6 6 0  4 I1F 325 6 6 0 1 
5 I1F 5 302 302 0  5 I1F 5 302 302 0 1 
6 I1F 327 326 42 0  6 I1F 327 326 42 0 1 

              
Table 4.2 GIn segment for Case 1 

Ref Original Destination Source  Ref Rearranged Destination Source 
536 Push Bp   536 Push Bp  
537 Mov Bp Sp  537 Mov Bp Sp 
538 Sub Sp 200  538 Sub Sp 200 
539 Push Si   539 Push Si  
540 Push Di   540 Push Di  
541 Mov Si [bp+04]  541 Mov Si [bp+04] 
542 Cmp word ptr [2208] 0  542 Cmp word ptr [2208] 0 

         
Table 4.3 Program segment for Case 1 
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Table 4.4 and 4.5 show another good case (Case 2) found. This case shows that 

instruction rearrangement is able to resolve stalls and assign slow functional units for 

execution.  

 

Case 2 

No Inst Dest Src1 Src2 Stall  ReX Inst Dest Src1 Src2 Stall Cycle 
0 I1F 1600 7 7 0  0 I1F 1600 7 7 0 1 
1 I1F 7 8 8 0  1 I1F 7 8 8 0 1 
2 I1S3 8 215 215 0  3 I1F 2 1597 1597 0 1 
3 I1F 2 1597 1597 0  4 I1F 1 1601 1601 0 1 
4 I1F 1 1601 1601 0  5 I1F 4 609 609 0 1 
5 I1F 4 609 609 0  2 I1S3 8 215 215 0 3 
6 I1F 236 4 4 1  6 I1F 236 4 4 0 1 
7 I1F 237 1 1 0  7 I1F 237 1 1 0 1 
8 I1A3 1598 215 215 0  8 I1A3 1598 215 215 0 3 
9 I1F 4 237 237 0  9 I1F 4 237 237 0 1 

10 I1F 1 236 236 0  10 I1F 1 236 236 0 1 
11 I1F 8 7 7 0  11 I1F 8 7 7 0 1 
12 I1F 7 1602 1602 0  12 I1F 7 1602 1602 0 1 

              
Table 4.4 GIn segment for Case 2 

 

Ref Original Destination Source  Ref Rearranged Destination Source 
2809 Push Bp   2809 Push Bp  
2810 Mov Bp Sp  2810 Mov Bp sp 
2811 Sub Sp 0004  2812 Mov Bx [2628] 
2812 Mov Bx [2628]  2813 Mov Ax [bx+02] 
2813 Mov Ax [bx]  2814 Mov Dx [bx] 
2814 Mov Dx [bx]  2811 Sub Sp 0004 
2815 Mov [bp-04] Dx  2815 Mov [bp-04] Dx 
2816 Mov [bp-02] Ax  2816 Mov [bp-02] Ax 
2817 Add Word ptr [2628] 0004  2817 Add word ptr [2628] 0004 
2818 Mov Dx [bp-02]  2818 Mov Dx [bp-02] 
2819 Mov Ax [bp-04]  2819 Mov Ax [bp-04] 
2820 Mov Sp Bp  2820 Mov Sp bp 
2821 Pop Bp   2821 Pop Bp  

         
Table 4.5 Program segment for Case 2 

 

Table 4.6 and 4.7 show a bad case (Case 3) found with not enough independent 

instructions available to resolve dependencies. 
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Case 3 

No Inst Dest Src1 Src2 Stall  ReX Inst Dest Src1 Src2 Stall Cycle 
0 I1F 3 1618 1618 0  0 I1F 3 1618 1618 0 1 
1 I1F 4 1610 1610 0  1 I1F 4 1610 1610 0 1 
2 I1F 4 59 59 1  2 I1F 4 59 59 1 1 
3 I1A3 4 1 1 2  3 I1A3 4 1 1 2 1 
4 I1A3 4 4 4 3  4 I1A3 4 4 4 3 1 
5 I1F 1 148 148 0  5 I1F 1 148 148 0 1 
6 I1A3 1 4 4 4  6 I1A3 1 4 4 4 1 
7 I1F 1612 1 1 5  7 I1F 1612 1 1 5 1 

              
Table 4.6 GIn segment for Case 3 

 

Ref Original Destination Source  Ref Rearranged Destination Source 
2859 Pop Cx   2859 Pop Cx  
2860 Mov Dl [25D2]  2860 Mov Dl [25D2] 
2861 Mov Dh 00  2861 Mov Dh 0 
2862 Add Dx Ax  2862 Add Dx ax 
2863 Inc Dx   2863 Inc Dx  
2864 Mov Ax word ptr [235A]  2864 Mov Ax word ptr [235A] 
2865 Add Ax Dx  2865 Add Ax dx 
2866 Mov Word ptr 2622] Ax  2866 Mov word ptr [2622] ax 
         

Table 4.7 Program segment for Case 2 

 

4.3.2 Statistics and Power Savings 

Statistics on the arithmetic instructions are obtained by identifying and counting 

instructions in Initialization Phase Stage 1. Power savings with the proposed ALU is 

estimated base on the number of instructions assigned to using slow functional units 

and the differences in power consumption between using slow and fast functional 

units (as mentioned in Section 3.3). 

 

Table 4.8 shows the statistics on the arithmetic instruction found in the tested 

programs, while Table 4.9 shows the number of instructions assigned using slow 

functional units in the tested programs. The estimated savings on power consumption 

with the proposed ALU is summarized in Table 4.10. It is derived from the data in 
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Table 4.9 and based on the savings on power consumption between fast and slow 

functional units summarized in Table 3.8. 

 

Programs Total Arithmetic Addition Subtraction Multiplication Division 
ARJ 48431 6085 3935 1787 265 98 
PKZIP 19800 4848 2857 1800 152 39 
PKUNZIP 13944 2561 1990 1235 104 32 
DUNZIP32 21875 1757 1701 535 29 27 
UNRAR 14001 1363 1057 283 16 7 
ACE 35061 2321 2075 1250 171 75 

       
Table 4.8 Statistics on tested programs 

Table 4.8 shows that in general, addition instructions dominate the number of 

arithmetic instructions, followed by subtraction, multiplication and division 

instructions being the least in all the tested programs. 

 

Program Addition Subtraction Multiplication Division Total 
ARJ 1451 (36.9%) 828 (46.3%) 78 (29.4%) 14 (39.0%) 2371 (39.0%) 
PKZIP 1731 (60.6%) 1103 (61.3%) 65 (42.8%) 12 (60.0%) 2911 (60.0%) 
PKUNZIP 1196 (60.1%) 722 (58.5%) 53 (51.0%) 4 (58.8%) 1975 (58.8%) 
DUNZIP32 302 (17.8%) 210 (39.3%) 11 (37.9%) 3 (22.9%) 526 (22.9%) 
UNRAR 260 (24.6%) 43 (15.2%) 2 (12.5%) 2 (22.5%) 307 (22.5%) 
ACE 665 (32.0%) 450 (36.0%) 32 (18.7%) 11 (32.4%) 1158 (32.4%) 
      

Table 4.9 Number of instructions assigned to use slow functional unit 

Table 4.9 shows that different programs achieved different amount of slow functional 

unit assignments with the software scheduler. 

 

Program Addition Subtraction Multiplication Division Total 
ARJ 478.83 273.24 241.02 23.66 1016.75 
PKZIP 571.23 363.99 200.85 20.28 1156.35 
PKUNZIP 394.68 238.26 163.77 6.76 803.47 
DUNZIP32 99.66 69.3 33.99 5.07 208.02 
UNRAR 85.8 14.19 6.18 3.38 109.55 
ACE 219.45 148.5 98.88 18.59 485.42 
      

Table 4.10 Estimated power consumption savings (mW) 
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Table 4.10 shows the power savings achievable from using the proposed ALU to 

execute the test programs. It is computed based on the number of instructions 

assigned to use slow functional units (Table 4.9) and the amount of power saved from 

using slow functional units (Table 3.8). 

 

4.4 Chapter Summary 

In this chapter, we discussed how the design and function of the software scheduler 

enhance performance while reducing power consumption of the proposed ALU. 

Algorithms are central to the functioning of the software scheduler, as they are 

primarily responsible for the analysis and rearrangement of instructions.  

 

In essence, the algorithms resolve the dependency between instructions, enabling the 

ALU to pack a better and more power-efficient performance. After the instructions 

have been analyzed for dependencies, they are rearranged for continuous execution to 

avoid the problem of an idling ALU that drags performance down, and using slow 

functional units for execution whenever possible, to reduce power consumption. 

 

From the scheduled programs, the good and bad cases are identified and illustrated. 

Statistics on the instruction types in the test programs are obtained. These statistics 

give us an estimate of savings in power consumption, when the proposed ALU is used 

to execute the test programs. By illustrating the amount of power that can be saved 

using the proposed ALU, we are therefore able to prove the viability the design.   
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CHAPTER 5 
 
CONCLUSIONS 
 

 

 

This chapter summarizes the previous chapters and concludes the thesis, 

recommending future work which can be done in the future to improve the project. 

 

5.1 Conclusion 

Considering the widespread use of mobile electronic devices today, the IT and 

electronic industry would be able to reap many benefits from a high-performance, 

low-power consuming microprocessor. Not only can such a microprocessor increase 

the usage periods of electronic devices, chances are it would result in numerous other 

mobile electronic innovations.  

 

We therefore focussed on developing the ALU – the heart of the microprocessor – in 

this project, to work towards the goal of creating a low power microprocessor. An 

ALU with a simple design was thus developed, for the obvious advantage that it 

would consume less power by virtue of simplicity of its operations, without 

compromising performance. 
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There are three major phases of development in this project: architecture design, 

hardware and software development. 

 

The first thing we did was to design the ALU hardware architecture and define the run 

time operation. The ALU architecture consists of a set of slow and fast functional 

units for executing instructions, a Control Unit for synchronizing operations and a 

Register File which can update several registers within one clock cycle.  

 

The simplicity of the ALU design enables power to be consumed mainly by 

instruction execution during runtime, with no extraneous consumption. This lean 

power consumption is mostly made possible by the ALU’s methodical inner 

processes. During runtime, the Control Unit selects the functional units for instruction 

execution based on the MIns, while the software scheduler rearranges PIns prior to 

execution, so stalls are resolved and PIns are assigned to slow functional units 

whenever possible. As such, the ALU’s function is simplified so that all it has to do is 

to execute MIns. 

 

Next on the list was the functional unit hardware, which we developed so that it 

conformed to the requirement of the ALU design. We primarily did this by 

implementing slow functional units for execution instead of fast ones, as they 

consumed less power than fast functional units during execution. Prior to this 

decision, simulations were conducted on several circuit designs and models, allowing 

us to acquire an estimate on the power savings from using the slow functional units – 

a significant figure compared with the power consumption level of fast functional 

units.  
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Third and lastly, is the software scheduler. Developed to rearrange instruction order, 

we designed it to fully exploit the ALU architecture for resolving stalls and reducing 

power consumption. Likewise the other aspects of the ALU, the two algorithms 

developed for these tasks were designed to keep within the limits of minimal power 

consumption in the way they are processed.  

 

The first algorithm rearranges instructions to obtain an interim schedule that focused 

only on high performance, under the assumption that all instructions required only 

one clock cycle for execution. After which, the second algorithm works on the interim 

schedule to correct the assumption while looking for opportunities to assign 

instructions to be executed with slow functional units.  

 

Two lists of directives are generated after the two algorithms have been processed – 

one is a functional unit assignment list, while the other is a list of stalls. The stall 

directives embed delay information in instruction opcodes, which in turn instruct the 

Control Unit to delay instruction issue. This step of the scheduling process thereby 

avoids power incurrence when executing instructions that insert wait states.  

 

After the software scheduler was completed, we put it to the test on several file 

compression programs. Analysis of the test results shows that stalls and power 

consumption were reduced when the proposed ALU was used to execute instructions 

rearranged by the software scheduler. This positively confirms the effectiveness of the 

software scheduler and the potential benefits that can be garnered when implemented 

in mobile electronic devices.  
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5.2 Future Work 

For Design and Architecture 

To further reduce power consumption, it is possible to incorporate the simple ALU 

architecture with other voltage-reduction techniques, such as those mentioned in 

Chapter 1. However, there are potential problems to be dealt with before the two can 

be combined. Challenges that have to be faced include issues in the implementation of 

techniques such as real time slack analysis and interfacing circuits between different 

voltage systems.  

 

In order to enhance performance and increase opportunities so slow functional units 

are used to assign instructions, the ALU design can adopt the multiple-instruction 

issue architecture like the VLIW. With the multiple-instruction issue architecture, the 

ALU can execute other instruction streams when a particular stream is stalled, 

reverting to it when it is ready to proceed. This way, the ALU constantly executes 

instructions from different streams [25].  

 

While this deals with the problem of stalling, there are two major challenges that arise 

with this method. Firstly, this will involve a complicated Control Unit design as it has 

to synchronize all the instruction streams supported, while consuming reasonable 

additional power. Offline software may come in useful here as it can offload some or 

all of the synchronizing tasks for the Control Unit. Secondly, it must be ensured that 

an optimal number of functional units are implemented to avoid structural hazards – a 

common problem in multiple-instruction issue architecture. 
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For Functional Units 

Being a hot topic in the electronic industry at the moment, designs for functional units 

are periodically reviewed and updated with the ongoing research on low-power 

arithmetic circuit designs. Also, as technology improves, the circuit models can be re-

synthesized using latest standard cell library to obtain better performance and power 

consumption levels. 

 

With the present ALU design, either fast or slow functional units can be used. 

However when functions like multiplication is involved, it may be advantageous to 

introduce a small range of medium functional units to fill out the performance 

difference between the slow and fast functional units. This is so that when slow 

functional units cannot be assigned, a medium-performing one can be assigned 

instead of a fast functional unit, enabling a measure of power to be saved. Potentially, 

problems might surface because of the increase in workload for the software 

scheduler – it would have to go through more options before selecting a suitable 

functional unit to execute an instruction. 

 

For Software Scheduler 

Although the software scheduler has demonstrated the effectiveness of instruction 

rearrangement to resolve stalls and reduce power consumption, there is still a 

generally tentative outlook of it. The approach towards the design of algorithms based 

on intra-segment analysis is still fairly conservative, but the algorithms are already 

quite complex in its first stage of development. However, the effectiveness of the 

software scheduler can be enhanced by incorporating more complicated tasks in the 
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algorithms, such as transferring unused independent instructions or carrying out 

scheduling based on inter and intra segment analysis. 
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APPENDIX 

CMOS CIRCUIT CHARACTERIZATION 

 

 

In this appendix, we will describe the propagation delay, signal quality and power 

consumption pattern of the CMOS circuits, which were implemented as basic logic 

gates and adder blocks in the simulation setup. 

  

A1 Characterization  

In Chapter 3.1, we described the advantages of the CMOS circuits, the foremost being 

its low power consumption. This characteristic of the CMOS circuit was the primary 

consideration when we decided to implement it in the proposed ALU’s functional 

units.  

 

CMOS circuits are essentially made up of MOSFET transistors. Circuit designs for 

basic logic gates and adder are used to characterize the simulated output propagation 

delays and power consumption. Cadence IC design tools were used to implement the 

circuits with the CSX 0.35um technology library. The circuits are simulated for output 

propagation delays and power consumption, which we will analyze in the next few 

sections. 
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A1.1 Propagation Delay 

NAND and NOR are the fundamental logic circuits that serve as basic building blocks 

for digital circuits. Figures A1.1 shows the 2-input NAND with its logic truth table, 

while Figure A1.2 shows the 2-input NOR circuit with its logic truth table.  

 

Fig A1.1 2-Input NAND gate and truth table 

 

 

Fig A1.2 2-Input NOR gate circuit and truth table 

In general, it is possible to create a circuit with more input gates, by adding PMOS or 

NMOS transistors, in the correct paths, as seen in Figure A1.3 which shows a 3-input 

NAND circuit. 
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Fig A1.3 3-Input NAND gate and truth table 

However, while adding inputs to logic gate functions may help ease digital design 

implementations, it also increases parasitic capacitance along the signal path. As a 

result, this may affect the signal propagation delay and drive. 

 

The simulations were performed on the logic gates we developed to investigate the 

effects of increasing inputs on the propagation delay. Firstly, a range of input signals 

– permanently high, permanently low, low-to-high, and high-to-low transitions – were 

connected to the logic gates in every possible combination. Propagation delay from 

the circuit simulation was then measured, whenever the input signals switched. 

 

In the worst case of NAND circuit propagation delay, it was observed that worst rise 

time occurred when a high-to-low transition input signal was applied to the last input 

PIn, while the other signals were directed to the ground. Consequently, worst fall time 

occurred when a low-to-high transition signal was applied to all input PIns.  

 

For the NOR circuits, worst rise times occurred when a low-to-high transition signal 

was applied to all input PIns. The worst fall time occurred when a low-to-high 
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transition signal was applied to the first PIn while the rest were applied to VDD. The 

results are summarised in Table A1.1 and Table A1.2:  

 

NAND Input Power (pW) Trise (ns) Tfall (ns) NAND Input Power (pW) Trise (ns) Tfall (ns) 

2 1.14 0.4315 0.3493 9 3.46 0.6185 1.02255 
3 1.38 0.4658 0.4184 10 3.93 0.6416 1.17833 
4 1.64 0.4953 0.493 11 4.41 0.6641 1.351 
5 1.91 0.5211 0.5675 12 4.89 0.6861 1.54042 
6 2.19 0.5461 0.6565 13 5.38 0.7076 1.74533 
7 2.58 0.5707 0.7618 14 5.88 0.7287 1.96617 
8 3.01 0.595 0.8836 15 6.38 0.7494 2.20282 
    16 6.88 0.7697 2.45537 
        

Table A1.1 Worst propagation delay for NAND gate 

 

NOR Input Power (pW) Trise (ns) Tfall (ns) NOR Input Power (pW) Trise (ns) Tfall (ns) 
2 1.01 0.4923 0.2816 9 3.19 2.4076 0.352 
3 1.18 0.609 0.2933 10 3.63 2.90137 0.3606 
4 1.38 0.772 0.3037 11 4.08 3.44888 0.3689 
5 1.61 0.9889 0.3139 12 4.54 4.04968 0.3769 
6 1.95 1.2616 0.324 13 4.99 4.7036 0.3845 
7 2.35 1.58856 0.3337 14 5.45 5.41054 0.392 
8 2.76 1.92025 0.343 15 5.91 6.17119 0.399 
    16 6.36 6.98584 0.4057 
        

Table A1.2 Worst propagation delay for NOR gate 

 

The data in Table A1.1 and A1.2 are used to plot Figures A1.4 and 1.5, from which 

we can derive 3rd degree polynomial equations. These equations are useful for 

expressing worst-case propagation delays for the NAND and NOR logic circuits 

simulations or measurements. 
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   Fig. A1.4 NAND circuit worst timing plot 
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   Fig. A1.5 NOR Gate Worst Timing Plot 

 

Worst propagation delay equations for NAND,  

TWorst Rise 
3624 )1024647.4()1099254.3(02976.037942.0 zzz −− ×+×−+=  …(Eq. A1) 

TWorst Fall 
362 )1055846.3(00782.000718.032441.0 zzz −×+++= …………...(Eq. A2) 

Worst propagation delay equations for NOR,  

TWorst Rise 
342 )1027038.1(03155.006747.053498.0 zzz −×−+−=  ……..……(Eq. A3) 

TWorst Fall 
3624 )1015217.1()109823.1(01208.025844.0 zzz −− ×+×−+= …….(Eq. A4) 

Where z is the number of inputs. 
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A1.2 Signal Quality and Static Power Consumption 

In this section, we will compare the signal quality of CMOS circuits with Pass 

Transistor Logic circuits using XOR circuits. The impact due to degraded signal 

quality on static power consumption of the Pass Transistor Logic circuits is observed. 

 

Based on a survey on XOR circuit designs, a design with CMOS logic using 12 

transistors [54] and another with Pass Transistor logic using 4 transistors [55] were 

selected for investigation. Both the CMOS and Pass Transistor designs were selected 

on the basis of the fewest transistors used, amid available circuit designs.  

 

Figure A1.6 XOR Designs: 12 Transistors CMOS circuit (above) and   
4 Transistors Pass Transistor Logic circuits (bottom) 

 
 

Figure A1.6 shows the circuit layout for the selected designs. The 12-transistor 

CMOS design employs a 10-transistor XNOR circuit coupled with an inverter to 

Extracted from [54], “Design and analysis of low-power 10-transistor full adders using novel XOR-XNOR gates”  
and [55] “Design New 4-transistor XOR and XNOR designs” by Heng Tien Bui et al 
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provide the XOR function, while the first 4 transistors in the design are NAND gate 

implementations.  

Such a design enables a single circuit to provide both NAND and XNOR functions – 

a useful feature when both NAND and XOR functions are required using the same 

inputs. On the other hand, Pass Transistor Logic circuits can only provide either the 

XOR or XNOR function. The performance for these circuits was simulated, with the 

results of the power consumption listed in Table A1.3. 

 

Circuit Transistor Count Power (pW) 
XNOR 4 2.61 
XOR 4 1.81 
XNOR 10 4.94 
XNOR + Inverter 12 6.60 
XNOR + Inverter 6 8.28 
XOR + Inverter 6 5.74 
   
Table A1.3 XOR/XNOR Static Power Consumption 

As a stand alone circuit, the 4-transistor design has the lowest static power 

consumption because of its low transistor count. However, when connected to other 

circuits – like a simple inverter for instance – it results in significant static power 

consumption because of sub-threshold conduction that is caused by logic degradation 

at the output signal.  

 

The last two rows of Table A1.3 show static power consumption caused by sub-

threshold conduction, in an inverter circuit connected to the 4-transistor XOR circuit. 

The 12-transistor CMOS design on the other hand, does not have problems with sub-

threshold conduction as CMOS logics generate rail-to-rail output signals (as 

mentioned in Chapter 3).   
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Logic degradation is a common problem found in Pass Transistor Logic circuits. This 

is illustrated in the circuit simulation results of the 4- transistor XOR circuit, shown in 

Fig A1.6.  

 

When inputs A and B are low, the upper most PMOS is turned on by input B with its 

drain connected to input A. This low logic is conducted through the PMOS channel 

but degraded because of reverse bias in the PMOS structure (shown in Figure 3.1). 

This degraded low logic can turn on any connected PMOS transistors in the sub-

threshold region thereby causing static power consumption.  

 

Fig. A1.7 4 Transistors XOR circuit output logic degradation 

Figure A1.7 shows the electrical signals waveform obtained from the circuit 

simulation. From the diagram, we can see that the degraded XOR output signal at low 

logic is close to 1V. Even though 1V is considered low logic, it is high enough to 

sustain the PMOS transistor in the sub-threshold region. As in Table A1.3, the PMOS 

transistor in the inverter circuit conducts significant static power consumption. 
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As such, the 4-transistor XOR design with Pass Transistor logic is not suitable for use 

in low-power applications, even though they use very few transistors in the circuits.  

This holds true, unless the problem of logic degradation can be resolved or if the 

circuit connected to the XOR circuit output can withstand degraded logic signals 

without incurring sub-threshold power consumption. 

 

A1.3 Static and Dynamic Power Consumption 

By analyzing the simulated power consumption of the four operating blocks of Carry 

Look Ahead (CLA) circuit blocks carried out under controlled situations, we are able 

to study the static and dynamic power consumption in (0.35um) CMOS circuits. 

 

Four blocks of the 4-bit CLA adder circuits were cascaded to form a 16-bit rippling 

CLA adder. A set of test bits, “1010” and “0101” were used as inputs for each block 

to ensure switching occurred within the circuits. Prior to investigations proper, we 

conducted two tests on the static and dynamic power consumption of the circuits.   

 

In the first test, the power supply to the circuit blocks was controlled manually. In the 

second test, the power supply to the circuit blocks was controlled using an OR logic 

circuit shown in Figure A1.8. This circuit was responsible for switching off the power 

supply to a CLA block can be when all inputs were connected to low logic.  

RCLA Block
Power SupplyRCLA

Block
Inputs

 

Fig A1.8 Power Control Circuit 
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The same procedure was applied to both tests.  Initially, the inputs to all blocks were 

connected to the ground. Then block by block, the inputs were connected to the test 

bits, incrementally. The power consumption levels are recorded in Table A1.4. 

 

Power Power Supplied 
(Block) 

Input 
(Block)

Manual Power  
Switch (Watt) 

Circuit Power 
Switch (Watt) 

All On 4 1 5.90057688E-18 2.77309088E-11 
Off Unused 1 1 1.76085357E-18 2.77308986E-11 
     
All On 4 2 6.28151072E-18 5.54693734E-11 
Off Unused 2 2 3.52170070E-18 5.54693740E-11 
     
All On 4 3 6.66245482E-18 8.32077997E-11 
Off Unused 3 3 5.28255047E-18 8.32077985E-11 
     
All On 4 4 7.04341062E-18 1.10946169E-10 
     

Table A1.4 16-bit RCLA power analysis 

From the power consumptions data in Table A1.9, we can conclude base on the CSX 

0.35um technology library, the amount of static power consumed is negligible 

compared to switching power. In addition, there is a significant difference in power 

consumption between manual and circuit power switching. 

 

Compared with manual switching, the power supplied to the CLA blocks in circuit 

power switching is controlled by OR logic circuit response to the input bits for the 

CLA blocks. This causes the OR logic circuit to consume dynamic switching power, 

which can be at least 7 orders of magnitude larger than the static power consumption 

of the adder circuit.  
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