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SUMMARY 
 

In an area-wide road network involving a central administration and multiple 

highway agencies, the allocation of annual operation budget among the regional agencies 

is a major management task that has a far-reaching effect on the state of health of the 

entire road network. Ideally, funds should be allocated to areas where maintenance is 

needed most in order to achieve the best results. In reality, this cannot be easily handled as 

the highway development and maintenance needs for one region would differ from 

another. This thesis tries to overcome this difficulty in an attempt that spans into three 

phases of research work. 

The first phase of the research employs a two-step genetic algorithm optimization 

approach to account for the different goals of the central administration and the regional 

agencies in the budget allocation process. The first step analysis considers the needs and 

funds requirements of the regional agencies, while the second step analysis imposes the 

constraints and requirements of the central administration to arrive at the final allocation 

strategy. The two-step GA approach is shown to produce better allocation results under 

various road network characteristics and conditions compared to traditional formula-based 

and needs-based allocation procedures. The two-step GA approach is further used to 

perform a sensitivity study on the effect of different regional objective functions on the 

final central allocation strategy. 

In the second phase, the concept of multi-agent systems is employed to provide 

greater integration of information between the upper and lower management levels, thus 

producing an allocation strategy that is more likely to give a better overall benefit. Each 

decision-maker is modeled as an autonomous agent that strives for its own objectives and 
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constrained by its own resources. Regional agents are linked by a central budget and 

interact vertically and recursively with the central administration to ‘negotiate’ the fund 

allocation strategy that best meets their needs. Genetic algorithms are used by regional 

agents for the optimization of allocated funds for the programming of regional- level 

pavement maintenance activities. The approach, named multi-agent vertically integrated 

optimization approach, is shown to consistently produce budget allocation strategies that 

results in significant savings in overall maintenance cost compared to the two-step 

optimization and traditional allocation methods. 

Phase three is concerned with the horizontal integration in the multi-agent 

optimization approach developed in phase two. Horizontal integration refers to the 

integration of information among regional highway agencies where they interact to 

coordinate the sharing of idle resources in any of the regions. A tournament-like resource-

sharing protocol was developed in this research to coordinate the sharing of resources 

among regional agents. It was found that the vertically and horizontally integrated 

approach consistently produce budget allocation strategies that results in savings in overall 

maintenance cost compared to other approaches. The results also confirm earlier 

observations that commonly used highway fund allocation approaches, the formula- and 

needs-based approaches, are unsatisfactory fund allocation tools for certain network- level 

pavement management. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION 

 In the past 30 years pavement management has evolved from a mere concept 

into an active process at federal, state or provincial, regional, and local levels (Haas 

and Hudson 1987, Haas 1998). Today, pavement management systems (PMS) are 

widely used at all levels of government at varying degrees of details and 

sophistication. Pavement management was originally defined by RTAC (1977) as thus: 

“A pavement management system encompasses a wide spectrum of activities 

including the planning or programming of investments, design, construction, 

maintenance and the periodic evaluation of performance. The function of management 

at all levels involves comparing alternatives, coordinating activities, making decisions 

and seeing that they are implemented in an efficient and economical manner”. 

The two main concerns for PMS were clearly stated in the definition, which are 

to improve efficiency and ensure economic return. Almost twenty years later, Haas et 

al. (1994) described PMS as “a set of analytical tools or methods that assist decision 

makers in finding optimum strategies for maintaining pavements in a serviceable 

condition over a given period of time.” Evidently, the interest for an efficient and 

economical PMS has not changed after twenty years of progress and development. 

Given that, the issue of an efficient and optimal budget allocation strategy has 

become an integral part of PMS. For the past twenty years, much research effort has 

focused on ensuring an efficient manner by which available funds could be allocated to 

the activities that can give the highest return to the agency as well as road users. As a 

result, numerous optimization and decision-making methods and approaches have been 
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tested and implemented by highway agenc ies, with many more being proposed and 

refined. The advent of powerful computing technologies with exceptional computation 

capabilities, too, has added much spice to the field of pavement management. In the 

course of this rising excitement, expertise in pavement engineering has been coupled 

with knowledge from other domains such as management science, operations research, 

and artificial intelligence for increased effectiveness. In a similar vein, this research is 

part of the attempt to bring the science of optimal decision-making in pavement 

management to a higher level by tapping relevant concepts from the field of artificial 

intelligence and multi-agent systems. 

 

1.2 ISSUES OF OPTIMAL BUDGET ALLOCATION IN PMS 

Although there exists a very large body of work  on optimization in pavement 

management, a number of simplifying assumptions are always used in previous 

approaches in order to handle the high complexity and large search spaces involved. 

One of these assumptions pertains to the relationship between allocations of budget 

and scheduling of pavement maintenance activities, where it was always implicitly 

assumed that a certain amount of budget is readily allocated for a road network before 

maintenance activities within that network are programmed. In such an optimization 

model, a maintenance programme that gives the highest benefits subject to a given 

funding level is derived. This approach, while able to give an optimal program of 

maintenance activities within a single network subject to the allocated budget, could 

not guarantee optimality where the global budget is concerned. In fact, the 

optimization problem should simultaneously optimize the overall budget allocation and 

network-level programming of maintenance activities, a problem previously 
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considered too hard to tackle. It is the objective of this research to propose several 

solution approaches with respect to this issue. 

The issue of budgeting and activities programming as described above is 

relevant in the allocation of highway funds between several regional agencies. In 

practice, road funds are allocated by a central administration to regional agencies based 

on predetermined criteria or formulas with some consultation with regional agencies. 

Such practice, though convenient and easy to apply as far as the central administration 

is concerned, would not lead to an optimal usage of funds and resources because 

applying a common fund allocation formula to all cannot meet the differing needs and 

goals of different regions. The fund-allocation problem is complicated by the 

following two issues: 

(a) The overall network-wide development needs and emphases may not be in the 

interest of some or all of the sub- networks at the regional level.  For example, the 

central administration’s intention to promote development along selected road 

corridors may not be in line with the development or management emphases of all 

the regional agencies. 

(b) The regional agencies are more likely than not to differ in their budget needs and 

network management considerations or objectives.  This is so due to the following 

reasons:  

i) the states of development of the regional road networks are unlikely to be the 

same, and hence their respective emphases for subsequent development would 

be different; 

ii) the operational characteristics and compo sition of road classes are likely to be 

different in different regions; 
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iii) the available resources and capability of different regional agencies are likely 

to be different; and 

iv) the road network development and management strategies of the regional 

agencies might not be the same.  

 

The problem thus involves multiple -goal and multiple-level considerations, 

which must be solved simultaneously in order to preserve the underlying parallel 

nature of the problem. In this research, genetic algorithms, a robust search technique 

which has been successfully applied to pavement management (Chan et al. 1994, Fwa 

et al. 1994a, 1994b, 1996, 2000, Hoque 1999), is used for network-level pavement 

maintenance programming, while multi-agent systems is used to allow interactions and 

coordination to take place among the decision makers.  

 

1.3 SIGNIFICANCE OF RESEARCH 

This research has much economic values. Studies by World Bank showed that 

spending on roads can absorb as much as 5 to 10 percent of a government’s recurrent 

expenses and 10 to 20 percent of its development budget (Heggie and Vickers, 1998). 

This amounts to billions of dollars every year. With such huge spending demand, there 

is a need to ensure that every dollar spent on roads returns the highest possible benefit 

to the decision makers. Indeed, the process of budget allocation is one of the areas in 

pavement management where an optimal solution can bring about significant financial 

savings. 

In solving for an efficient and optimal allocation of funds between regions, 

several issues will need to be addressed. These include the system goal of the central 

administration, network management objectives of all the regional agencies, current 
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state of conditions of the road network, development and maintenance needs of the 

regional networks, budget and administrative constraints of the central administration, 

and resource and operational constraints of the regional agencies. The interplay of 

these issues will naturally affect the way funds are allocated to each region. The 

research will give significant insight into these issues in relation to the allocation 

strategies adopted. 

 Apart from the economic and engineering values, the proposed research also 

contributes to the body of knowledge spanning the fields of pavement management, 

genetic algorithms, and multi-agent systems. While the research is not focused on 

creating new breakthroughs in the areas of genetic algorithms and multi-agent systems 

research, the application and implementation of these new technologies in budget 

allocation for pavement management is a new attempt in itself. It is the hope of this 

research to add the latest technological advances in computing and optimization to 

benefit the field of pavement management. 

 

1.4 ORGANIZATION OF THESIS 

 This thesis consists of six chapters. Chapter 1 is the introductory chapter where 

the background of the problem that led to this research is laid out. The objectives, 

scope and significance of this research are also discussed in this chapter.  

Chapter 2, the literature review, presents past research works related to the 

major components of this research – budget allocation, pavement maintenance 

programming, genetic algorithms and multi-agent systems. Relevant past research is 

also summarized here. 

Chapter 3 describes a two-step optimization approach developed to solve the 

budget allocation problem in multi-regional highway agencies using sequential genetic 
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algorithms. The practicality and applicability of the solution procedure is analysed on a 

hypothetical example problem. The method of solution, together with the results from 

the analysis, is presented in this chapter. An application of the method to study the 

sensitivity of regional objective functions to the final budget allocation is also 

demonstrated. 

Chapter 4 presents a distributed vertically integrated fund allocation approach 

based on multi-agent systems. The motivation for a multi-agent approach is first 

discussed, followed by detailed description of the multi-agent system developed to 

handle the fund allocation among regional highway agencies. The distributed approach 

is applied to the hypothetical example used earlier in Chapter 3 and comparisons of the 

results are made.  

Chapter 5 describes an enhancement to the distributed vertically and 

horizontally integrated fund allo cation approach to enable the sharing of idle resources 

among regions. The agent architecture is described, followed by a demonstration of the 

benefits of the approach based on results obtained using the hypothetical example 

problem from the earlier chapters. 

Chapter 6 concludes and summarizes the major findings of this research. The 

significance of the research and its findings are outlined. Some future works for further 

research into this area is also proposed in this Chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 In this chapter, the background of the multi-regional budget allocation problem 

in pavement management is laid out. The various levels of budget-related decision-

making in pavement management are described, with a review of current practices in 

budget allocation in pavement management. A basic formulation of the budget 

allocation problem in multi-regional pavement management as a bi-level programming 

problem is also discussed. Following that, network-level pavement maintenance 

programming, which is the main component of any pavement management system, is 

given an extensive review. This constitutes the main component of the lower- level 

problem in the bi- level formulation of the problem. A review of the various approaches 

available in the literature for pavement maintenance programming leads to an 

extensive treatment on the mechanisms of genetic algorithms, which will be used 

extensively as an optimization tool in this research. Next, multi-agent systems, which 

will feature mainly in Chapters 4 and 5 as a tool for inter-network and intra-network 

coordination, are reviewed. Here, the background, definitions and terminologies, and 

the different types of agents and agent architectures available in the literature are 

reviewed. 

 This chapter also gives a review of relevant past research and solutions to 

problems similar to the budget allocation problem in multi-regional highway agencies. 

The reviews are categorized into several sub -sections based on the tool and technique 

used. Finally, the chapter closes with a summary of the research needed in this area 

and also the scope of the research which will be presented in this thesis. 
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2.2 BUDGET ALLOCATION IN PAVEMENT MANAGEMENT 

2.2.1 Successive Levels of Budgeting Decisions 

The budgeting process occurs at various levels of decision- making in pavement 

management. Typically, pavement management has been identified to comprise two 

operational levels, the project level and network level. A third level, the planning level 

is referred to in order to distinguish the highest level in the pavement management 

hierarchy. OECD (1994) gives a different name for the three levels of decision-

making, but the main roles and functions are the same. In this thesis, the three levels 

are referred to  as project, network, and planning levels respectively. Each of these 

levels is explained in the following sub-sections. 

 

a) Project Level 

Project- level pavement management is considered the bottom- most level in the 

management structure. It is concerned with the technical and engineering aspects of a 

single pavement section or project. At this level, the pavements are considered 

individually and on a project-by-project basis. The major activities at the project level 

are primarily associated with the planning, design, and construction of individual 

pavement sections. Examples of these activities, among others, include planning and 

coordination of pre-construction activities, detailed engineering design, economic 

analysis, and the actual physical implementation of road works (Collura et al 1994, 

Haas 1998). Budgeting decisions at project level is usually associated with cost-benefit 

analysis of different construction or maintenance alternatives, budget leveling for the 

entire project duration, and scheduling of activities in accordance to budget 

availability. An optimization model for project-level pavement management has been 

reported by Mamlouk et al (2000). 
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b) Network Level 

Pavement management at network level is concerned with the entire system of 

pavement network. At this level, questions pertaining to which pavement sections 

should be maintained, and how and when they should be maintained, are tackled, 

taking into consideration the state of the whole pavement network, available resources 

and operational constraints. The main concerns at this level of management include the 

current and future network pavement condition as well as level of service, priority 

setting of maintenance and rehabilitation, and programming of maintenance and 

improvement activities. Very often the maintenance of a group of pavements within a 

network (or sub -network) is put under the charge of an agency. For very large 

networks such as that in countrywide, regional or municipal road networks, pavements 

are usually further divided into several sub- networks, with each taken care of by one 

highway agency.  

Budget allocation at network level pavement management normally refers to 

the distribution of available budget to different projects under consideration in a 

particular network. To ensure the optimal use of available funds at network level, 

maintenance and rehabilitation activities (conveniently called projects) for the whole 

network are selected and scheduled in such a way that will give the highest return for a 

given funding level. This is usually referred to as pavement maintenance programming 

at network level. A large part of the previous research has focused mainly on this 

aspect of pavement management, with a wide variety of methods and approaches 

available in the literature. 
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c) Planning level 

Apart from the project and network level, a third level, variably known as 

planning level, policy level or central office level is sometimes identified to highlight 

the budgeting process, general allocation of funds, and decision- making at the  highest 

level of the management structure. This level is primarily concerned with policy-

making and planning of long-term objectives taking into consideration political, social, 

environmental and economic factors. The allocation of budget for highway agencies 

responsible for different sub-networks is performed at this level of the management 

hierarchy.  

 

All three levels of pavement management, in their own ways, are complex 

management tasks that are influenced by a variety of factors –  technical, economic,  

social, political, and environmental – at varying degrees. Each level can be viewed as a 

precedent setting for lower levels of planning. The central office level will therefore 

produce a set of policies considering all networks in its jurisdiction, which provide a 

framework within which each network level pavement management takes place. 

Network level management, in turn, will constrain the options to be considered at the 

project level. Thus, another way of viewing the process is one of successive 

optimization whereby higher levels of management (and associated decision making) 

provide the constraints for sub -system optimization. These constraints provide the 

links that inter-relate each level of management. Therefore, two important levels of 

decision-making in pavement management will be of utmost importance in this 

research: network level and planning level.  

The network- and planning-level optimizations can be combined into a global 

optimization that simultaneously considers the different objective functions and 
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constraints at the two levels. A usual approach to solve this type of problem is to 

formulate it as a bi-level programming problem. This will be discussed in the next 

section. 

 

2.2.2 Pavement Management as a Bi-level Programming Problem 

Pavement management can be viewed as a bi-level programming problem with 

the upper level decision-making being the budgeting decisions of the planning level 

while the lower level involves the network-level pavement maintenance programming. 

A bi- level programming prob lem is a sequence of two optimization problems where 

the constraint region of the upper level problem is determined implicitly by the 

solution set of the lower level problem.  

Mathematically, the bi-level programming problem is to find * *( , )x y X Y∈ ×  

such that * *( , )x y solves  

 
min ( , )
x X

F x y
∈

  (2.1) 

 subject to    ( , ) 0G x y ≤        (2.2) 

 
And y  is a solution of the following optimization problem for any fixed x X∈ : 

 
min ( , )

y Y
f x y

∈
      (2.3) 

subject to   ( , ) 0g x y ≤       (2.4) 

 
The objective function min ( , )

x X
F x y

∈
 is referred to as the upper- level problem, 

and min ( , )
y Y

f x y
∈

 for any fixed x as the lower-level problem. In this study, the variables 

x in the upper level refer to the network-level pavement management decisions, while 

the lower level variables y are the amount of budget allocated to each region.  
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Bi-level programming problem leads to problem complexities not generally 

encountered in familiar single- level mathematical programming problems 

(Anandalingam and Friesz 1992). Bialas and Karwan (1984) showed that even a 

simple two- level resource control problem is non-convex, while Ben-Ayed and Blair 

(1990) showed that the bi- level linear programming problem is NP-hard, making it 

unlikely that there would be exact algorithms for it. A problem is said to be NP-hard if 

it can be polynomially reduced to a selection problem. Several types of optimality 

conditions and generalizations have been proposed based on different equivalent 

formulations. Various algorithms for the bi-level programming problem have been 

developed, such as the extreme point algorithm for bi-level linear programming, 

branch and bound  methods for bi- level convex programming problem, complementary 

pivot algorithms, descent methods and penalty function methods. Chen (1992) and 

Vicente and Calamai (1994) gave a comprehensive review of these algorithms. 

The non-convex and NP-hard properties of the bi-level programming problem 

make it one of the hardest optimization problems to solve. Even though various 

mathematical algorithms have been proposed to solve bi- level programming problems, 

the formulation and solution procedures are tedious and time-consuming. These 

mathematical programming approaches are also rigid, making it difficult to modify the 

constraints and objective function in the formulation of these algorithms. 

Due to the above weaknesses, a non-traditional genetic algorithms approach 

will be proposed in this study to solve the bi-level optimization problem involving the 

network-level and planning-level optimizations. The solution technique and procedures 

will be given in Chapter 3. In the next section, current approaches used in allocating a 

global budget to several regional, provincial, or district road networks, which is the 
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upper-level problem, are reviewed. The lower-level problem, which is the network-

level pavement maintenance programming, is reviewed in Section 2.3. 

 

2.2.3 Current Practices in Budget Allocation at Planning Level 

The allocation of budget at the planning level is associated with the distribution 

of certain global resources to sub -network jurisdictions and road systems. In most 

countries, the allocation of budget is usually carried out by elected officials and their 

trusted civil servants, and the resources for allocations usually come from the State 

budget. The procedure and method for the allocation of budget in different countries 

highly depends on the administration/organization structures set up by the respective 

countries (OECD 1994). 

In a typical pavement management situation, a network of pavements is usually 

sub-divided into several other sub-networks according to one or more factors, such as 

region, functio nal classes, administration boundaries, traffic demand, or types of 

pavement (Heggie and Vickers 1998, Saarinen et al. 1998). OECD (1994) defines two 

types of classification most commonly used by OECD countries – functional and 

administrative road classifications. The functional road classification divides the roads 

into motorways, main roads, collector roads, local roads, urban roads and private 

roads. The administrative road classification classifies roads into federal/national 

roads, state/provincial roads, county roads, city roads, rural community roads, and 

other roads. Usually, one or more classes of road networks are administered by an 

appointed highway agency. A majority of the funds for road works are allocated by the 

central administration, which could be the Ministry of Transport or relevant federal or 

state highway authorities. In some countries, local roads have the means to combine 

local and central funding. 
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The procedures for the allocation of funds to different road classes vary in 

different countries, with different authoritative structures, funding sources, and 

spending objectives. However, these approaches can be generalized into two basic 

approaches. The road fund can either allocate the funds using formulas or base the 

allocations on a direct assessment of need (Heggie and Vickers 1998). Apart from 

these two approaches, an analytical approach to budget distribution between regions 

and road classes based on shadow prices have been proposed by OECD (1994). The 

following sub-sections describe these approaches. 

 

2.2.3.1 Formula-based Allocation System 

A formula-based system usually starts by allocating the funds among the main, 

urban, and rural road agencies and then goes on to subdivide each allocation among the 

individual road agencies within each group. The road fund will therefore allocate a 

certain percentage of its revenues to urban roads and a certain percentage to rural 

roads, with the remainder going to the main road network. For example, Zambia 

allocates 25 percent of its road funds revenues for rural roads and 15 percent for urban 

roads (Heggie and Vickers 1998). After allocating the funds according to road type, 

each allocation is then distributed among the road agencies in each group. 

There are two main ways of further distributing the funds to each agency in 

each group. Either each group agency must compete for the available resources or the 

resources are allocated on the basis of network and traffic characteristics. Under the 

first system the road agencies bid for the funds, which are evaluated by a panel. The 

panel will then decide the appropriate amount of funds each road agency should get. In 

this system, the bids cover both maintenance and investment programs. Hungary and 

Zambia use this system (Heggie and Vickers 1998). 
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Under the  second system, revenues are allocated separately for investment and 

for maintenance. Investment funds are usually allocated using benefit-cost analysis. 

The road fund usually issues guidelines on how the investment programs are to be 

prepared, offers advice on how to compute the benefit-cost ratios, may specify the 

minimum acceptable benefit-cost ratio, and audits the calculations to ensure they have 

been carried out correctly. Revenues for maintenance, on the other hand, are allocated 

based on certain formulas that take into account network and traffic characteristics. 

Parameters such as length of the road network, volume of traffic, and ability to pay are 

often used. The formulas generally include road length (or lane-km), which may be for 

different types of roads as in Latvia (Heggie and Vickers 1998). They may also include 

vehicle -km or the vehicle population and will often include resident population. Some 

countries include a term to reflect ability to pay, such as in Korea. The U.S. Federal 

Highway Trust Fund includes a predetermined minimum maintenance allocation 

(Heggie and Vickers 1998). 

 Formula-based allocation systems, though simple and easy to use, does not 

address the maintenance needs of the pavement network. Parameters such as length of 

the road network, volume of traffic, and ability to pay are not indicative of the actual 

maintenance needs, since one region may have a large network of roads but only 

requires minimal maintenance due to low traffic volume. Similarly, the region with a 

large road network may be better off financially and does not require much assistance 

from the available central funds. Therefore, by allocating funds based on network 

characteristics alone is unlikely to achieve an optimal use of available funds. 
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2.2.3.2 Needs-based Allocation System 

A needs-based approach commonly practiced relies on funds needed to repair 

all existing pavement distresses or deficiencies. In the needs-based allocation system, 

funds for maintenance and investments are allocated separately. For investments, 

evaluations are again based on benefit-cost analysis. Maintenance funds, though still 

allocated based on certain formulas, are administered according to a more careful 

assessment of network needs. The level of complexity of the methods depends on the 

technical capacity of the road agencies involved. The simplest way to estimate needs is 

by using standard unit rates for each routine and periodic maintenance activity 

according to type of road surface. Each rate is multiplied by each road agency’s total 

length of road that requires maintenance in each road class to arrive at the total 

required maintenance budget. Adjustments may then be made for climatic variations 

and other factors. South Africa uses this method to estimate multiyear allocations for 

rural roads in her nine provinces (Heggie and Vickers 1998). 

 Another way to assess maintenance needs is by basing requirements on the 

output of a standardized road management system. Gáspár (1994) and Bakó et al. 

(1995) reported a compilation of the first Hungarian PMS that is capable of allocating 

funds to the regions. The allocation starts by first carrying out the countrywide 

distribution of available financial means according to intervention categories, 

pavement types, condition variants, and traffic  sizes. This countrywide distribution is 

accomplished using an optimization routine in the PMS. The appropriate funds for 

each region are then determined based on a simple proportioning according to the 

shares of the total area of each regional highway sec tions among the entire national 

area with given parameters. These parameters are the average annual daily traffic, 

pavement type and condition variant. 
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 The needs-based allocation system is a better reflection of the maintenance 

needs of the road network. However, this allocation procedure is unable to effectively 

recognize the differences in maintenance strategies that are likely to be adopted by 

different regions. Even though more sophisticated method and models enable these 

financial needs to be optimized taking into account system objectives such as long-

term pavement performance, safety or societal impact, the level of financial need 

varies according to the system objective addressed. Different regions may have 

different system objectives. Allocation of budget to different regions in proportion to 

the level of their financial needs without addressing their respective system objectives 

would not arrive at an optimal solution system-wide.  

 

2.2.3.3 Fund Allocation Approach by OECD 

 OECD (1994) proposed an analytical approach for the allocation and 

distribution of highway funds among regions or road classes. The method is based on 

the equalization of the shadow price, which aims to find the best use of agency cost for 

user benefits. The approach is illustrated in Fig. 2.1. First, a graph of user versus 

agency cost is plotted for each region/road class. Starting from the highest budget in 

each region/road class, the slope or shadow price of lowering the agency cost by one 

step is calculated. The region/road class with the least negative shadow price is chosen, 

and its agency cost is lowered one step further. The shadow prices are compared again, 

and this is repeated until the final budget level for all region/road classes has been 

reached. 

The technique above is based on economic analysis rather than optimization. 

As such, it is designed for the management objective of minimizing the increase in 

user cost for every unit reduction in agency cost. It is not possible to customize and 
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formulate the approach to reflect changes in the management objective, which is to be 

expected in an optimization problem. 

 

2.3 Pavement Maintenance Programming at Network Level 

 Network level planning is described by Cook and Lytton (1987) as “a problem 

of many projects”. As such, inter-project tradeoffs and budget limitations become of 

paramount importance in network level analysis. The greater complexity inherent in 

network level analysis (as compared to project level) is in fact attributable to these two 

features. Following Cook and Lytton’s (1987) arguments, network level decision-

making involves two types of planning, namely program planning and financial 

planning. Program planning is the what, when and how of maintenance alternatives, 

while financial planning is generally concerned with determining the level of funding 

needed in order to maintain the health of pavement network at some desired level. 

These two types of planning constitute the programming of pavement management 

activities. 

Traditionally, the two most basic techniques for network level decision- making 

are the priority ranking approach (also known as prioritization) and optimization (Cook 

and Lytton 1987, Haas et al. 1994). In addition, decision-making capitalizing on 

artificial intelligence techniques has recently been employed in the field of pavement 

engineering, with several key applications in network level pavement management 

programming (Sundin and Braban-Ledoux 2001). 
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2.3.1 Priority Ranking Approach 

Priority ranking approach is the most widely used programming method in 

pavement management systems. In a survey conducted in the United States, 77 percent 

of the state highway agencies adopted a prioritization model of some kind in their 

pavement management systems (Irrgang and Maze 1993).  

Priority ranking is essentially a program planning tool, which rank projects 

according to their relative importance. The importance of each project is determined by 

how well the particular project could meet the needs specified by the pavement 

manager. The ranking of each project will help determine which projects to consider 

first and which to defer when financial situation does not permit all projects to be 

carried out in that financial year, which unfortunately, is always the case. This 

approach to priority ranking has the effect of maximizing benefits for a specified 

budget level. 

An alternative approach to priority ranking is to determine the funding required 

to achieve a certain network pavement quality specified by the pavement manager. In 

this approach, projects are usually  ranked according to the costs required for carrying 

out the projects, with higher priority given to the lower cost projects. This way, the 

resulting network level maintenance strategy will have the effect of minimizing 

maintenance costs subject to a specified level of quality. Several pavement 

management systems have the capability of developing priority programs in either the 

cost minimization or effectiveness maximization mode (Haas et al. 1994). 

The simplest form of priority ranking is based on subjective judgment, which is 

a quick and simple method that is subject to bias and inconsistency, and thus, the 

results can be far from optimal. Better ways to priority rank projects is to base it on 

parameters associated with maintenance needs such as serviceability and deflection, or 
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parameters associated with economic analysis. Various works that prioritize road 

sections according to their maintenance needs has been reported by Schoenberger 

(1984), Mercier (1986), and Fwa et al. (1989). In addition, Sharaf and Mandeel (1998) 

gave an analysis of the impact of different priority setting techniques on network 

pavement condition. 

In the priority ranking approach, program planning and financial planning are 

considered separately and sequentially (Cook and Lytton 1987). As such, all decisions 

are actually project level decisions, with network decisions being the sum of several 

project decisions. Priority ranking approach could not effectively evaluate inter-project 

tradeoffs and select appropriate strategies that satis fy budget constraints. 

Consequently, truly optimal maintenance strategies could not be obtained using 

priority ranking. This shortcoming led to the use of the optimization approach, which 

simultaneously  schedules, budgets and evaluates intra- as well as inter-project trade-

offs. 

 

2.3.2 Optimization Approach 

A survey conducted in 1991 reported that only 28 percent of the state highway 

agencies in the United States used optimization models for their PMS (Irrgang and 

Maze 1993). The unpopularity of the optimization approach could be due to the large 

computation capacity required and a general lack of understanding on the role of 

optimization in PMS (Thompson 1994). However, a promising 19 percent of the state 

highway agencies surveyed indicated their intention to have an optimization model in 

their PMS in the future. 

Optimization primarily deals with problems of minimizing or maximizing a 

function of several variables usually subject to equality and/or inequality constraints. 
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In pavement management, however, the role of optimization is not restricted to the 

quantitative analysis of a given mathematical equation, but also involves the analysis 

of political, engineering, and economic judgments of several decision makers 

(Thompson 1994). A number of factors are usually considered for optimization in 

pavement management systems, such as policy, program and resource allocation for 

various maintenance strategies. In order to perform optimization, it is necessary to 

express the desired objective mathematically in the form of an objective function. At 

the network level pavement management system, probable objectives include, among 

others, preservation of pavement condition, maximizing user comfort, maximizing 

network pavement condition, minimizing agency and/or user costs,  and maximizing 

the utilization of equipment and/or manpower. Similar to the priority ranking 

approach, network optimization systems can also be used either to minimize cost given 

a set of one or more performance standards, or to maximize benefits for a given budget 

level, or a combination of the two. 

One of the first pavement management systems that successfully employ 

network level optimization was developed for use in Arizona (Golabi et al. 1982). The 

Arizona PMS was considered a real breakthrough in the optimization approach to 

pavement management as it successfully reduced the size of the problem, which was 

the main barrier in earlier attempts. This is achieved by dividing the road networks into 

classes, which are further sub-divided into discrete condition levels or states. This 

classification eliminates the need for exhaustive project-level analyses to be 

incorporated into the network level optimization. Since then, subsequent optimization 

methods have assumed a similar approach (Kher and Cook 1985, Ha jek and Phang 

1989). 
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Optimization models can be grouped into static models and dynamic models 

(Cook and Lytton 1987). The static models are those where system parameters such as 

pavement performance as well as planning for rehabilitation and maintenance are static 

i.e., remain unchanged with time. On the other hand, dynamic models consider 

variable pavement conditions at different state or time, which is more realistic. In the 

domain of static optimization models are integer programming (Fwa et al. 1988) and 

linear programming (Davis and Dine 1988). Dynamic models, on the other hand, 

include probabilistic dynamic programming (Thompson et al. 1987) and dynamic 

programming with the Markov process (Butt et al. 1994, Takeyama and Hoque 1995, 

Li et al. 1995). 

 Traditional optimization methods, which include integer programming, linear 

programming, and dynamic programming, have several limitations that restrict their 

attractiveness. One of these limitations is the difficulty in problem formulation, where 

changes in the objective function and addition/reduction in the number of constraints 

would require extensive reprogramming. This difficulty severely restricts the 

flexibility of traditional optimization methods in solving real-world problems, where 

changes to the problem characteristics are often inevitable. In addition, traditional 

optimization methods require large computation capacity, which in turn result in long 

computation time. The artificial intelligence approach to network level programming is 

able to overcome these limitations and will be discussed in the next subsection.  

 

2.3.3 Artificial Intelligence Approach 

 Recent advances in artificial intelligence have made their impact on pavement 

management systems, with applications in almost all levels of decisio n- making. 

Basically, artificial intelligence (AI) is the method of imitating the thought processes 
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of humans and natural processes to solve specific problems. AI is comprised of expert 

systems, artificial neural networks (ANNs), fuzzy logic, and genetic algorithms (GAs). 

The following is a brief review of these expert systems and their applications in 

network level pavement management. 

 

a) Expert Systems 

 Expert systems are designed to perform as an expert human in a particular 

field. An expert system is composed of two components, the knowledge base and the 

inference engine. The first component is the power of the expert system where all 

empirical and factual information are contained. The second component, the inference 

engine, searches through the knowledge base to find the optima for each sub -goal and 

thus, the entire problem. The major differences between the expert system and 

traditional computer programs are described by Ritchie (1987) as: i) the domain 

knowledge is separated from the inference mechanism; ii) the manipulation of 

knowledge is primarily symbolic rather than numerical; iii) and the more transparent 

representation of process and knowledge, which is manifested in a transparent 

knowledge and an explanation facility. The applications of expert systems to PMS 

have been reported, among others, by Antoine et al. (1989), Sinha et al. (1990), and 

Wang et al. (1994). 

 Expert systems are knowledge -oriented systems that are better suited for 

empirical and factual data. As such, it is not an appropriate tool for network level 

optimization tasks, where most computations are performed on numerical data.  
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b) Artificial Neural Network  

 Artificial neural networks were originally developed to imitate the decision-

making process of the human brains. Just as humans apply knowledge from past 

experiences to solve new problems, a neural network has the ability to learn from past 

experiences and apply them in a new problem situation (Zurada 1992). A neural 

network consists of an interconnected assembly of simple processing elements, units or 

nodes, whose functionality is loosely based on the animal neuron. Usually, a few 

layers of nodes are used. By providing an initial training data set, which consists of 

both input and the desired output, the nodes are made to learn the relationship between 

input and desired output through a series of error correction. Hence, the neural network 

will be able to deduce an expected output from any given input in a new problem 

situation. Fwa and Chan (1993) described an application of artificial neural networks 

to the priority rating of pavement maintenance needs. Zhang et al. (2001) also 

presented a study based on neural network coupled with genetic algorithms to analyze 

the implications of prioritization in pavement maintenance management. 

 Due to its learning capability, neural network is a powerful tool for pattern 

recognition and prediction applications, particularly when noisy data is involved. 

However, neural network is not meant as a tool for optimization purposes, as there is 

no functionality in neural network for searching and evaluating the search space in an 

optimization problem.  

 

c) Fuzzy Logic 

Fuzzy set theory was first introduced by Zadeh (1965) to mathematically 

represent uncertainty and vagueness, and provide formalized tools for dealing with the 

imprecision intrinsic to many problems. The decision-making process of fuzzy logic 
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resembles human reasoning in its use of approximate information and uncertainty to 

generate decisions. By contrast, traditional computing demands precision down to each 

bit. Since knowledge can be expressed in a more natural way by using fuzzy sets, 

many engineering and decision problems, which are highly subjective, can be greatly 

simplified. Fuzzy set theory implements classes or groupings of data with boundaries 

that are not sharply defined (i.e., fuzzy). Any methodology or theory implementing 

crisp  definitions such as classical set theory, arithmetic, and programming, may be 

fuzzified by generalizing the concept of a crisp set to a fuzzy set with blurred 

boundaries. The benefit of extending crisp theory and analysis methods to fuzzy 

techniques is the strength in solving real-world problems, which inevitably entail some 

degree of imprecision and noise in the variables and parameters measured and 

processed for the application. The application of fuzzy logic to pavement condition 

rating and maintenance needs assessment was described by Fwa and Shanmugam 

(1994). 

 

d) Genetic Algorithms  

 Genetic algorithm is a powerful AI optimization technique that has been 

applied to pavement management. The GA is a stochastic global search method that is 

formulated based on the principles of natural selection (Holland 1975). GAs operate by 

cycling a random pool of feasible solutions through a number of generations so that 

better and better solutions are hoped to be evolved through each generation. This way, 

a pool containing the best solutions is hoped to be obtained at the end of the cycle. The 

method of moving from one generation to another is based on ideas borrowed from 

Darwin’s principle of evolution.  
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Genetic algorithms are powerful tools widely used for optimization problems. 

They do not have the rigidity and computational complexities of traditional 

optimization methods. The robust search characteristic and multip le-solution handling 

capability of genetic algorithms are additional advantages of this optimization 

approach. The application of genetic algorithms to network level programming of 

maintenance activities has been extensively studied by Chan et al. (1994) and Fwa et 

al. (1994a, 1994b, 1996). Hoque (1999) and Fwa et al. (2000) extended the use of GA 

for the programming of pavement maintenance activities to include multiobjective 

optimization. A more extensive review of genetic algorithms will be given in the 

following section. 

 

2.4 GENETIC ALGORITHMS IN PAVEMENT MANAGEMENT 

2.4.1 Background of GAs  

The desire to create systems and computers that mimics natural processes has 

led to biologically inspired research that, over the years, have developed into several 

fields known collectively as artificial intelligence. Genetic algorithms are one of these 

powerful tools that have been widely used to solve many real-world problems.  

Holland (1975) was recognized as the first person to put computational 

evolution on a firm theoretical footing. In his 1975 book “Adaptation in Natural and 

Artificial Systems”, Holland presented the genetic algorithm as an abstraction of 

biological evolution and gave a theoretical framework for adaptation under the GA. 

The traditional theory of GAs as introduced by Holland (1975) is based on the notion 

that good chromosomes (i.e. good genetic strings) tend to be made up of good building 

blocks, termed as schemas (or schemata). By discovering, emphasizing and 

recombining good schemas through suc h genetic operators as mutation, crossover, and 
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inversion, better chromosomes are hoped to be produced as the population mature from 

one generation to another. The whole cycle of searching, modifying and recombining 

the better solutions through each generation is based on the basic principle of survival 

of the fittest in the theory of evolution. 

Unlike other evolutionary computation research such as evolution strategies 

and evolutionary programming, Holland’s (1975) original idea of genetic algorithms 

was not meant to solve specific problems, but rather to formally study the phenomenon 

of adaptation as it occurs in nature and to model such adaptation mechanisms using 

computer systems. The mathematical framework that Holland (1975) formulated was 

first experimentally proven by DeJong (1975). Since then, much work has been done 

on the theoretical foundation of GAs (see Goldberg, 1989; Rawlins, 1991; Whitley, 

1993; Whitley and Vose, 1995). 

As the science of genetic algorithms matures over the years, variations of 

genetic algorithms have been applied to a diverse range of scientific and engineering 

problems and models. Successful application of GAs in these and other areas has 

fuelled growing interest among researchers in many disciplines. 

 

2.4.2 GAs versus Traditional Methods  

 GAs differ substantially from more traditional search and optimization methods 

in several aspects. The following is a brief outline on the differences that sets GAs 

apart from traditional methods: 

• GAs search a population of points simultaneously, not a single point. 

• GAs use probabilistic transition rules, not deterministic ones. 

• GAs work on an encoding of the parameter set rather than the parameter set 

itself (except in cases where real-valued individuals are used). 
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• GAs do not require derivative information or other auxiliary knowledge; only 

the objective function and corresponding fitness levels influence the directions 

of search.  

 

2.4.3 Basic Terminologies and Mechanics of GAs  

 GAs borrowed the vocabulary from the natural genetics. In GAs the most 

important genetic structure is the chromosome, which is essentially a candidate 

solution to a problem. The chromosome can be conceptualized as a string made up of 

blocks of cells called the genes. Each gene encodes a particular character of the 

cand idate solution (e.g. the color of the eye) while the possible value of a gene is 

termed as the allele  (e.g. brown, black, green, etc.). Each gene is located at a particular 

locus (position) on the chromosome. A complete set of chromosomes is called the 

genotype. 

A group of chromosomes forms a population of candidate solutions. The 

quality of each candidate solution is evaluated based on how well it satisfies a 

predefined objective function. The evaluation value of each candidate solution is then 

mapped to a fitness value, which represents how “fit” the candidate is in relation to 

other solutions in the population. From this population, only the fitter of the candidate 

solutions will survive to the next generation. In every generation, new solutions 

(offspring ) are generated from the fitter solutions (parents) using such genetic 

operators as mutation, crossover, and inversion. More on these operators will be 

discussed in the next section. As the population moves from one generation to another, 

better and better solutions are hoped to be evolved until the cycle stops on reaching a 

certain stopping criterion.  
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 An important step in the GA process is in encoding the problem parameters to 

represent the problem as a string of chromosome. There is no universal encoding 

technique for all sorts of problems. Koza (1990) noted that: “Representation is the key 

issue in genetic algorithm work because the representation scheme can severely limit 

the window by which the system observes the world”. The chromosomal 

representation must ensure that all necessary parameters are completely represented by 

the genotype. 

 Generally, after chromosomal representation and evaluation function 

formulation, the GA machinery proceeds step-wise as follows (Davis 1991, Freeman 

1994): 

1. Initialize a pool of solutions, known as parent pool. 

2. Determine the fitness of each of the solutions in the parent pool by means of 

the evaluation function. 

3. Select parent solutions for the creation of the next generation with a probability 

relative to their fitness. 

4. Create new solutions (offspring) by means of genetic operators on the selected 

parent solutions. 

5. Use a selection scheme to form a new parent pool for the new generation. 

6. Check whether stopping criteria are met. If not, go back to step (2). Otherwise, 

stop the search and print the best solution.  

 

2.4.4 Genetic Operators  

In GAs, genetic operators are employed to establish a bridge through which 

good properties from the good parents can be transferred to their offspring and 

hopefully the new offspring will possess better properties than their parents. A large 
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number of genetic operators have been used in GAs. Three of the most commonly used 

operators: crossover, mutation and inversion will be described here. 

 

a) Crossover 

The most commonly used genetic operato r is known as the crossover operator. 

Crossover does not generate new alleles. It only exchanges some of the existing alleles 

between two chromosomes. The role of crossover in producing new offspring is two-

fold, one is called idea, and the other, mechanics of crossover (Jones 1995). The idea 

of crossover is the hope that building blocks from two individuals may be combined 

into an offspring whose fitness exceeds either parent. The mechanics of crossover is 

the process by which an attempt is made to impleme nt this idea. All forms of crossover 

share similar idea, but the mechanics may vary considerably. Such variations occur 

particularly when strings do not have fixed length. 

 

b) Mutation 

 The mutation operator is another most commonly used genetic operator. 

Mutation does not create any new structure. Its role is to find bits lost by crossover. 

Therefore, crossover is the driving force, while it is mutation’s responsibility is to keep 

the pool well stocked. Mutation is an important operator in genetic algorithms as it 

helps push the search effort into different search spaces by introducing new (and 

unexpected) allele values into the string structure, thus creating new possibilities that 

might not have been created in the initial pool of solutions. This is an important feature 

that provides the global search characteristic inherent in genetic algorithms. 
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c) Inversion 

 Another operator is known as the inversion operator. The inversion operator 

chooses two points on a genotype, and the operation is performed by cutting the 

genotype at those two points and swapping the end points at the cut section. Similar to 

crossover, inversion does not generate new, unexpected alleles, but only reshuffles 

some of the existing alleles. Unlike crossover, however, inversion only reshuffles 

alleles from within a single chromosome. Thus, its effect is not so much as to direct the 

search in a coarse manner as mutation and crossover, but rather, to further refine the 

search within a more confined space. Therefore, the inversion operato r could not be 

used entirely on its own without the other operators (crossover and mutation) to obtain 

good solutions. The roles of these operators are more complementary than 

autonomous. 

 

2.4.5 Selection Scheme 

 In each generation of GA, only certain strings will be selected for reproduction. 

The manner in which the strings are selected for reproduction in the next generation is 

called the selection scheme. In any GA, the selection scheme employed will determine 

the quality of the population in the subsequent generations. Thus, a proper selection 

scheme plays an important role in GA by improving the average quality of the 

population (Blickle and Thiele 1995). To prevent any premature convergence, an 

efficient selection scheme that provides accurate, consistent and efficient sampling 

needs to be applied (Baker 1985, 1987). 

In order to increase the quality of the population in the next generation, better 

individuals are given a higher chance to be selected and copied into the next 

generation. These better individuals are determined based on a comparison of their 
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fitness values. In simple selection schemes, the parent genotypes would be assigned a 

probability number (of being selected) based on the ratio of its fitness value and the 

aggregate fitness of the parent pool. One form of such simple selection schemes is the 

roulette selection, where all genotypes are fitted onto a biased roulette wheel, with the 

fitter genotypes occupying a bigger portion of the wheel. This way, the fitter genotype 

would always dominate the selection process, though less fit genotypes still stand a 

chance to be selected nonetheless. This ensures that highly fit genotypes always get 

more chances to transfer their properties to the next generation. 

 Various other selection schemes have been reported in the literature. DeJong 

(1975) explored some interesting selection schemes that include the elitist model. In 

the elitist model, the best genotype is always preserved into the next generation to 

ensure the best individual is always brought forward as the evolution proceeds. Brindle 

(1981) also explored other variations of selection schemes. These variations include: 

(i) deterministic sampling, (ii) remainder stochastic sampling without replacement, (iii) 

stochastic sampling without replacement, (iv) remainder stochastic sampling with 

replacement, (v) stochastic sampling with replacement, and (vi) stochastic tournament 

or Wetzel ranking. Booker (1982) suggested that variation (ii) was superior to variation 

(iii). Variation (ii) has also been used by Goldberg (1989) and Michalewicz (1992). 

The study by Baker (1985) showed that the ranking method performed relatively well 

as a means to prevent premature convergence. Baker (1987) proposed another 

selection scheme known as the Stochastic Universal Sampling (SUS) algorithm to 

reduce bias and increase efficiency as he found the “remainder stochastic sampling 

without replacement” model to be severely biased. 
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2.5 MULTI-AGENT SYSTEMS (MAS) 

2.5.1 Background of MAS 

 Multi-agent systems or MAS is a very new field of study with only around 20 

years of history. Multi-agent systems research is concerned with coordinating 

intelligent behavior among a collection of autonomous intelligent agents aiming at 

solving a given problem (Bond and Gasser 1988). While still being categorized as a 

part of distributed artificial intelligence (DAI) more than 10 years ago (Bond and 

Gasser 1988), MAS is increasingly being recognized as a discipline of its own in 

recent years. According to Ferber (1999), the multi-agent approach lies at the 

crossroads of several disciplines, of which the two most important ones are distributed 

artificial intelligence and artificial life (AL). 

Notions of Distributed Artificial Intelligence (DAI) can be said to begin with 

the inception of AI in the 1950s, when the conceptual basis for concurrent processes 

based on artificial intelligence was developed (Bond and Gasser 1988). At that time, 

there were two main approaches to AI – heuristic search using list processing methods, 

and neural net modelling. These two approaches were the earliest research that point in 

the direction of concurrent models of intelligent behavior. By the late 1970s, the first 

phase of research into DAI came into full swing with works by Lenat (1975) and 

Hewitt (1977). Since then, several important systems have made great impact on future 

multi-agent systems. These include the Distributed Vehicle Monitoring Test (DVMT) 

by Lesser and Corkill (1983), the Mace system by Gasser et al. (1987), and the 

Contract Net by Smith (1979). These systems became the foundations on which many 

future works are based on. A very good summary of DAI research and development 

can be found in Bond and Gasser (1988) and Moulin and Chaib-Draa (1996). 
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In contrast to the cognitive approach that is characteristic of DAI, artificial life 

puts the emphasis on behavior, autonomy and, above all, the issue of viability (Ferber 

1999). The field of artificial life extends over several topics, including that of cellular 

automata, evolutionary algorithms, and the study of collective phenomena based on the 

interaction of several reactive agents. Research works in artificial life attempts to 

obtain complex collective behavior through very basic communications that consist of 

simple propagations of signals with no intrinsic significance or representations. The 

agents in artificial life are reactive rather than cognitive, which means the agents are 

not individually intelligent but respond to stimulus based on simple conditions and 

rules. It is the collective reaction to events that lead to intelligent behavior overall. 

Examples of work on artificial life include the study of anthill by Corbara et al. (1993) 

where a colony of ants coordinate among themselves to solve complex problems 

without any one ant having authority or planning power over the rest. 

 Other research fields that have influenced the development of MAS include 

distributed systems and models of concurrency, and automation and robotics. Today, 

research in MAS has expanded in many different directions with many applications in 

a diverse range of disciplines such as computer science, speech acts, game theory, 

economics, social sciences, and the manufacturing domains, among others. Ferber 

(1999) provides a good summary of the current trends in MAS research and of certain  

school of thoughts which are developing in this area. 

 

2.5.2 Definitions and Terminologies 

A multi-agent system can be defined as “a loosely-coupled network of problem 

solvers that work together to solve problems that are beyond their individual 

capabilities” (Durfee et al. 1989). These problem solvers, often called agents, are 
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autonomous and may be heterogeneous in nature, where different agents may have 

varying degrees of problem solving capabilities. A central theme in MAS is the 

coordination among agents, particularly concerning how they can coordinate their 

knowledge, goals, skills and plans jointly to take action or to solve problems.  

Ferber (1999) defines MAS as a system that comprises an environment, a set of 

objects, an assembly of agents, an assembly of relations which link objects and agents 

to each other as well as among themselves, an assembly of operations for the agents to 

operate on the objects, and operators. The set of objects are situated and passive, i.e. 

they can be perceived, created, destroyed and modified by the agents, while the agents 

themselves are specific objects representing active entities of the system. Purely 

communicating MAS is a special case where all objects are agents and there is no 

environment. In purely communicating MAS, the agents do nothing except 

communicate, as can be found in software modules. Another special case exists when 

agents are situated (having a position in the environment) but do not communicate by 

sending messages but only by the propagation of signals. These are called purely 

situated MAS.  

The term agent has been used vaguely in the literature. To date, there is no 

formalized definition of agent that is globally accepted, but the characterization by 

Wooldridge (1997) has been widely referred to among researchers: “An agent is an 

encapsulated computer system that is situated in some environment and that is capable 

of flexible, autonomous action in that environment in order to meet its design 

objectives”. 

A more elaborate description was given by Wooldridge and Jennings (1995). 

According to this description, agents are: (i) clearly identifiable problem solving 

entities with well-defined boundaries and interfaces; (ii) situated (embedded) in a 
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particular environment – they receive inputs related to the state of their environment 

through sensors and they act on the environment through effectors; (iii) designed to 

fulfill a specific purpose – they have particular objectives (goals) to achieve; (iv) 

autonomous – they have control both over their internal state and over their own 

behavior; (v) capable of exhibiting flexible problem solving behavior in pursuit of their 

design objectives – they need to be both reactive (able to respond in a timely fashion to 

changes that occur in their environment) and proactive (able to act in anticipation of 

future goals). 

 An agent can be characterized by its architecture and by its behavior. The 

architecture of an agent refers to its physical structure which gives it certain capability 

to accomplish its designated actions. The agent’s architecture characterizes its internal 

structure, that is, the principle of organization which subtends the arrangement of its 

various components. The behavior of the agent is characterized by the actions that the 

agent manifests in its environme nt and in response to particular situations. It is akin to 

the function that an agent is capable of. The behavior of an agent is actually largely 

determined by its architecture. The behavior is seen as an external specification for the 

agent, with the architecture defining the internal relationships making it possible to 

arrive at this specification (Ferber 1999). 

 

2.5.3 Cognitive versus Reactive Agents 

An agent can be designed to be cognitive or reactive. Cognitivity and reactivity 

are important properties of an agent which directly defines its behaviors. Cognitive 

agents are agents that are ‘intelligent’ and have a knowledge base, allowing them to 

solve complicated problems in a relatively individual manner. These agents are 

capable of carrying out tasks and handling interactions with the other agents and their 
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environment. Cognitive agents have goals and explicit plans that allow them to achieve 

their goals (Ferber 1999). 

Reactive agents, on the other hand, have no representation of the universe in 

which it is operating and cannot carry out a priori reasoning by itself (Ferber 1999, 

Müeller 1998). These agents merely react to the situation, having no individual 

sophistication. Their strength comes from their capacities for adaptation and evolution 

which emerge from the interactions between their members. Reactive agents are part of 

the artificial life school of thoughts described in Section 2.3.1. 

 The cognitive/reactive distinction is not a categorical opposition but rather 

represents two extremities of a straight line segment. Fig. 2.2 shows the two extremes 

between purely cognitive agents and purely reactive agents and the distinctions in 

between. Both extremes do not give rise to the best performing systems, and current 

interest lies in trying to balance between the two. Balance can be achieved by 

constructing cognitive agents based in reactive organizations, or by creating agents 

which have both cognitive and reactive capacities at the same time. 

 

2.5.4 Types of Agent Architecture 

 Many different agent architectures have been reported in the literature. These 

can be categorized into several types, of which the most common ones will be 

described here. 

 The modular horizontal architecture is one of the most widespread 

architectures (Ferber 1999). Most architecture proposed for cognitive agents are based 

on the overall concept of horizontal modules linked by pre-established connection. 

This architecture is conceived as being an assembly of modules, each carrying out a 

specific horizontal function. The most widespread modules include, among others, 
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perceptive and motor functions, sending and interpretation of communications, beliefs 

base, management of obligations, expertise of skill domain, management of goals and 

decision making, and planning of actions. Fig. 2.3 shows a typical example of the 

horizontal module architecture. In the ascending phase, signals coming from the 

environment through sensors are filtered to obtain information of a more and more 

abstract nature, until it can be integrated into the modellings of the agent. The highest 

function is carried out by the decision-making module, which decides to act on the 

basis of the data it receives and in accordance with its own objectives. In the 

descending phase, the planning module determines the actions that need to be carried 

out to attain the selected objective. These are then transmitted to the execution module. 

 The blackboard architecture (Nii 1986a, 1986b, Corkill et al. 1986) is another 

one of the most common architectures used for cognitive multi-agent systems. A 

blackboard system is usually partitioned into several levels of abstraction, and agents 

working at a particular level of abstraction have access to the corresponding 

blackboard level along with the adjacent levels. In that way, data that have been 

synthesized at any level can be communicated to higher levels, while higher- level 

goals can be filtered down to drive the expectations of lower- level agents (Moulin and 

Chaib-Draa 1996).  

The blackboard model is based on a division into independent modules which 

do not communicate any data directly but which interact indirectly by sharing data, in a 

way similar to a blackboard. A blackboard-based system comprises three subsystems – 

the knowledge sources, the shared base (the ‘board’), and a control device for 

managing conflicts of access to the shared base among the knowledge sources. 

Blackboard architecture has numerous advantages, including great flexibility in 

describing modules and articulating their functioning (Ferber 1999). It was one of the 
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earliest systems conceived in the distributed artificial intelligence domain in the 

Hearsay II system (Erman et al. 1980) and later the DVMT system (Lesser and Corkill 

1983). In the DVMT system, a collection of identical blackboard-based systems were 

used to solve problems of monitoring and interpreting data from a set of sensors at 

spatially distributed locations which covers a region (Lesser and Corkill, 1983). 

 The subsumption architecture is first proposed by Brooks and Connell (1986). 

In contrast to modular horizontal architecture which divides an agent into horizontal 

modules, subsumption architecture breaks an agent down into vertical modules, each 

of them being responsible for a very limited type of behavior. This architecture is used 

to describe reactive agents (Müeller 1998). 

 Other architectures include the competitive tasks structure (Drogoul and Ferber 

1992), production systems, classifier-based systems, connectionist architectures, 

dynamic systems, and multi-agent systems based architectures. A comprehensive 

survey of existing agent architectures can be found in Müeller (1998). In this thesis, 

multi-agent system will be used as a research tool rather than a research subject. 

Therefore, an existing multi-agent system architecture, named Cougaar (BBN 

Technologies 2002a, 2002b, Brinn et al. 2001), will be used for the purpose of this 

research. Cougaar is a component-based agent architecture that describes cognitive 

agents. The architecture of this system is described in detail in Chapter 4. 

 

2.5.5 Distributed Problem Solving and Planning 

 Distributed problem solving and planning is a subfield of distributed artificial 

intelligence. It considers how the work of solving a particular problem can be divided 

among a number of modules, or “nodes” that cooperate at the level of dividing and 

sharing knowledge about the problem and about the developing solution (Lesser and 
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Corkill 1987, Smith and Davis 1981). Due to an inherent distribution of resources such 

as knowledge, capability, information, and expertise among the agents, an agent in a 

distributed problem-solving system is unable to accomplish its own tasks alone, or at 

least can accomplish its tasks better when working together (Durfee 1999). A task is 

said to be accomplished better if it is accomplished more quickly, completely, 

precisely, or certainly. In a pure distributed problem solving system, all interaction 

(cooperation and  coordination) strategies are incorporated as an integral part of the 

system.  

 In distributed problem solving, agents need to want to work together, that is, a 

fair degree of group coherence needs to be present either by specifically designing the 

agents to work collectively, or by instilling a motivation among agents to work 

together by giving them payoffs that can only be accrued through collective efforts. 

Another important element in distributed problem solving is group competence, that is, 

agents need to know how to work together well (Durfee 1999). 

Two classes of distributed problem-solving strategies are used widely in the 

literature: task sharing and result sharing strategies. In task sharing, a task is 

decomposed and shared among a group of agents to be collectively accomplished. The 

main idea of a task sharing system is to break down a complex problem into smaller, 

less complicated sub-problems which can be simultaneously solved by multiple agents 

with different abilities, skills or expertise. In result sharing, multiple agents perform 

the same tasks on the same problem to arrive at independent results which are shared 

and compared to achieve a high level of confidence, completeness, precision and 

timeliness. 

The multi-agent system approach which will be presented in this thesis is 

relevant to the distributed problem solving and planning domain where the agents are 
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specifically designed to function as a group rather than be fully autonomous. A task 

sharing strategy is used to decompose and distribute the main problem into several 

network-level pavement management optimization problems. The multi-agent system 

approaches are explained in Chapters 4 and 5 of the thesis. 

  

2.6 RELEVANT PAST RESEARCH 

2.6.1 Multi -Network Budget Optimization in PMS 

In existing literatures, optimization (decision-making) at different levels of 

management is often considered separately. Therefore, constraints imposed by higher 

management, such as budget availability and quality requirements, are often treated as 

fixed variables for lower management optimization problems. Such approaches, 

though valid for within-network optimization of maintenance activities, could not 

guarantee optimality (or near-optimality) when several networks linked by a global 

fund are concerned. Several attempts have been made to overcome this problem.  

One notable attempt was reported by Wang and Zaniewski (1994). They used 

Dantzig-Wolfe decomposition algorithm (Dantzig and Wolfe 1960) to hierarchically 

solve a global optimization problem for 15 road categories linked by an annual 

statewide budget. Each sub-problem as well as the master problem has its own 

constraints, but they all share a common objective of minimizing agency costs. The 

procedure involves an iteration of feasible solutions between the maste r program and 

sub-programs, which can be interpreted as a coordination of sub-problem actions by 

the master problem using prices set on available resources. This study can be 

considered as an attempt to integrate pavement optimization at the planning level 

(allocation of funds between different road categories) with that at the network level 

(optimization within each road category). However, the solution procedure can only 
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solve for a single objective function which is shared by all sub-problems. In a real-

world situation, the sub-problems are more likely to have different goals and needs 

which should be reflected in the optimization process. The use of linear programming 

also makes the solution procedure rigid and difficult to adapt to changing problems. 

Alviti et al. (1994) reported an enhancement to the original network 

optimization system (NOS) that has the capability to allocate funds for maximum 

benefit across the entire road network. The enhanced NOS, called the linked model, 

uses Dantzig-Wolfe decomposition algorithm to obtain the optimal allocation of 

statewide budget for different road categories. The solution involves a finite number of 

iteration between a master coordinator (top- level manager who allocates the budgets) 

and independent sub-problems (maintenance activities for different road categories) 

where a certain negotiation process takes place until a compromise (state of stability) is 

reached. The enhanced NOS, however, does not consider the different objective 

functions that may be adopted by the different sub-problems. As a result, the different 

needs and goals of the sub-problems are not considered effectively.  

Another work on the use of decomposition algorithm for hierarchical 

maintenance programming was reported by Worm (1994) in his doctoral dissertation 

and again by Worm and van Harten (1996). Their work, however, does not involve the 

allocation of funds between different pavement sub-networks. Here, decomposition 

algorithm is used to handle the complexities that arise from the attempt to integrate 

several elements into the objective function. Thus, even though the procedure solves 

the fund allocation problem hierarchically, the problem of multi-objective multi-

regional highway allocation of fund is not considered here. 

In a more recent work, Bonyuet et al. (2002) presented a methodology that 

simultaneously investigates both pavement and bridge management systems under 
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limited budget resource. The research focused on the design of highway management 

systems (HMS) that would integrate a pavement and a bridge management system into 

a single system. It determines how much should be invested in the rehabilitation of 

each road section, and which bridges should be replaced or rehabilitated, in order to 

minimize total user travel costs without violating budgetary constraints. The main 

focus of this work is on the integration between pavement and bridge management 

systems and does not tackle the problem of multi-regional pavement management. 

Nevertheless, it provides a good reference on the use of mixed non- linear 

programming approach to solve hierarchical optimization problems. 

The budget allocation problem, being an age-old issue, has also been 

extensively studied outside the realm of pavement management. One work in 

particular, which deals with regional allocation of budget, is worth noting here. In their 

work, Corbett et al. (1995) developed a hierarchical budget allocation procedure to 

allocate funds for site decontamination projects in different regions. Two major 

concerns were addressed: i) decentralization of responsibilities, where each region is 

responsible for selection and execution of projects within their own regions, while the 

central level allocates funds for each region; and ii) minimum information flow 

between regions and central government. A two-stage heuristic procedure using integer 

and dynamic programming was used to solve the hierarchical budget allocation. The 

first stage analysis is the optimization of regional strategies for a given number of 

budget levels, while in the second  stage, the central level divides the total available 

budget based on summary information produced by each region in stage one, such that 

the overall environmental effects are maximized. This approach, in contrast to the 

traditional price- or resource-directed procedure where a true tandem of repeated 

optimization between region and central levels would emerge, involves only one 
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iteration of information exchange between central and regional levels per planning 

period. The solution procedure, however, is formulated based on the premise that all 

regions assume the same objective function that is in line with the central objective. 

This may not be true in a situation where greater decision- making responsibility is 

given to the regional authorities. The procedur e is also limited by the rigidity of 

mathematical programming approaches used in formulating the problem. 

 

2.6.2 Genetic Algorithms in Pavement Management 

The application of genetic algorithms in pavement management was first 

reported by Chan et al. (1994), Tan (1995) and Fwa et al. (1994a, 1994b, 1996). These 

works at the National University of Singapore studied the application of natural 

evolutionary algorithms for pavement management activities optimization. It was 

found that GA can handle the network optimization problem of pavement management 

activities effectively. 

Hoque (1999) studied the constraint- handling aspect of genetic algorithms for 

network-level highway maintenance optimization. A new constraint-handling method 

called the Prioritized Resource Allocation Method (PRAM) was introduced to handle 

the complex and highly constrained problems commonly found in network 

programming in pavement management. PRAM differs from traditional GAs in that 

the chromosome string encodes more than the number of decision variables, and the 

GA in PRAM does not work on the value of the decision variable directly. The 

performance of PRAM was tested on an example problem, and compared with 

common constraint-handling methods. In his paper, Hoque (1998) explained the 

concept of the penalty method as a constraint- handling technique in the application of 

GA to network- level pavement maintenance programming. A practical example 
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problem consisting of planning maintenance activities for four highway types over a 

45-day planning period was solved to demonstrate the use of the penalty method in a 

genetic -algorithms application to network- level highway optimization problem. 

Fwa et al. (2000) later extended the application of genetic algorithms in 

pavement management to include multiobjective optimization. The concepts of Pareto 

optimal solution set and rank -based fitness evaluation were adopted and a numerical 

example problem was solved for two- and three-objective optimization respectively. 

The proposed algorithm was able to produce a set of optimal solutions that were well 

spread on the Pareto frontier. Other works on the application of GAs on network- level 

pavement management include Yuge et al. (1998) and Chou and Tack (2002). 

 

2.6.3 Related works in Multi-Agent Systems 

 Multi-age nt systems are increasingly becoming an essential tool for distributed 

decision-making. At the time of writing, no references have been found on the use of 

multi-agent systems in budget allocation for pavement management. There are, 

however, numerous applications of multi-agent systems in similar budget allocation 

problems encountered in other research domains. The references given here are not 

meant to be exhaustive but to show a precedent on the use of multi-agent systems on 

similar type of problems and also to give some insights into how this is achieved. 

Arbib and Rossi (2000) discussed a methodology for the optimal allocation of 

resources to a manufacturing system in a multi-agent environment. They showed that 

quantitative decision-making can be impleme nted by the agents using a new spur 

system based on dual pricing to stimulate agents to propose alternative service 

configurations in order to improve the current resource allocation established at the 

supervisor level. Their proposed approach is claimed to be different from existing 
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literature in that it uses mathematical properties of the model to guarantee or 

approximate an optimal behavior of the agents with respect to both local and global 

objectives. A basic negotiation protocol is defined, which invo lves both resource 

bidding and agents cooperation. They concluded that the multi-agent systems approach 

turns out to be more profitable than conventional centralized approach, with global 

improvement noted in both computational efficiency and solution. 

 In a more recent paper, Gorodetski et al. (2003) considered a multi-agent 

approach for resource allocation and scheduling of shipping logistics benchmark 

problem known as Vehicle Routing Problem with Time Windows (VRPTW). The 

solution algorithm proposed includes auction-based resource allocation and 

scheduling, distributed reallocation algorithm and distributed version of the "look 

ahead" algorithm. The VRPTW MAS was carried out with the use of a multi-agent 

platform called Multi-agent System Development Kit, MASDK, developed by the 

author(s). Two conclusions were drawn from this research. The first is that the 

reallocation procedure improves the results approximately from 10 to 15%. Secondly, 

great time-saving is achieved for one of the problem sets using the multi-agent systems 

compared to conventional branch-and-bound method, even though the optimal solution 

obtained from MAS is slightly inferior to that of the latter. 

 Cicirello and Smith (2002) applied two models inspired by the natural self-

organization of the wasp colony for the coordination of factory operations in a 

decentralized manner. The “routing wasp model” was used for the allocation of tasks 

or jobs in product flows, while the “scheduling wasp model” was used for dynamic 

scheduling of jobs for a specified objective function. In the models, the multi-agent 

coordination mechanisms are modelled as an adaptive process based on two aspects of 

wasp behavior: 1) self-coordinated task allocation and 2) self-organized social 



Chapter 2 Literature Review 

 47 

hierarchies. The performances of the models were found to be superior compared to 

state-of-the-art for the problems examined.  

 There have also been applications of genetic algorithms in multi-agent systems. 

Cardon et al. (2000) presented the application of genetic algorithms in multi-agent 

systems for a job-shop scheduling problem. Their problem considers the goal of 

minimizing the delays and advances for all jobs according to the “due dates” given by 

the manager according to their (jobs’) objectives. While the scheduling is achieved 

using genetic algorithms to optimize for multiple objective functions, the agent is 

modelled based on the contract-net protocol to improve a solution corresponding to a 

Gantt diagram. In their approach, each agent represents a genetic entity, or a solution 

string, in the genetic algorithm, which is used to drive the physical evolution of the 

agents through reproduction between agents. A three dimensional graph was plotted 

showing the value of the economic function (their objective functions) according to the 

number of agents and the number of genetic operations used by agents. Cardon et al. 

(2000) concluded that the modelling of an agent as a completely autonomous genetic 

entity is the beginning of what can be an interesting research area in the field of 

artificial life. 

 Drezewski (2003) presented a co-evolutionary multi-agent system (CoEMAS) 

where two or more species co-evolve in order to solve a given problem. In CoEMAS, 

there exists two different species: niches and solutions. All agents live in 2D space, 

which has the structure of discrete torus, with each node connected to its four 

neighbors. Agents that represent niches are located in nodes and cannot change their 

locations, while agents representing solutions are also located in nodes but they can 

change their locations by migrating from node to node. A concept called ‘life energy’ 

was introduced as a resource for which individuals compete to guide the migration of 
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agents from one node to another. Agent starts reproduction, searches its neighborhood 

for partner and then new agent is created via mutation and crossover, all of which 

requires life energy. The application of the CoEMAS has been demonstrated on multi-

modal function optimization using four test functions. Results showed that the system 

is able to properly detect and stably maintain the peaks of these test functions. 

 

2.7 RESEARCH NEEDED AND SCOPE OF PROPOSED RESEARCH 

2.7.1 Summary of Review 

 Budgeting decisions in pavement management involves several levels of inter-

related decision- making, which can be seen as a hierarchical optimization problem. In 

this study, the planning and network levels have been identified as the two important 

levels of decision- making in pavement management that will be considered. The 

problem can thus be formulated as a bi-level programming problem where the upper-

level problem is the budget allocation problem of the planning level and the lower-

level problem is the network- level pavement maintenance programming problem.  

A review of the current practices in budget allocation at the planning level of a 

pavement management system has been given in this chapter. These approaches can be 

generalized into two main approaches, the formula -based and the needs-based 

allocation system. The formula-based approach uses formula and percentages to 

determine the funds to be distributed while the needs-based approach proportions fund 

based on financial needs of the different pavement sub-networks. Both these 

approaches do not arrive at the optimal usage of central fund. A third analytical 

approach was proposed by OECD (1994). The method is based on microeconomic 

principles and recognizes the hierarchical nature of decision-making at the different 

management levels. However, the method is not based on optimization analysis and it 
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is not designed to handle other objective functions than minimization of user costs, 

which may not be the main concern for some highway agencies. 

The network-level pavement maintenance programming, which is the lower-

level problem in the bi-level formulation of the multi- network pavement management 

problem, is the programming of pavement management activities pertaining to the 

what, when, and how of maintenance alternatives. The two most basic approaches used 

for network level pavement maintenance programming are the priority ranking 

approach and optimization approaches. Recently, artificial intelligence techniques have 

also been used for pavement management programming at the network level. 

 Genetic algorithms are a stochastic optimization technique that are first used by 

Chan et al. (1994) and Fwa et al. (1994) in the pavement management programming at 

the network level. The ease-of-use and robustness of the technique makes it an 

attractive alternative to mathematical programming to solve NP-hard optimization 

problems. Better results are reported by researchers who studied the use of genetic 

algorithms for network- level pavement management programming. As a result, more 

and more applications of genetic algorithms in pavement management have been found 

in the literature recently. Multi-objective analysis of pavement management has also 

been successfully performed using genetic algorithms (Fwa et al. 2000). The 

simplicity, robustness and ability to solve NP-hard multi-objective problems make 

genetic algorithms a highly suitable tool for the multiple objectives, multi-agency 

problem considered in this research. 

 Multi-agent system is a new field of study that offers a coordinated approach to 

solving distributed problems. Multi-agent systems are a group of problem solvers that 

work collectively to solve problems that are beyond their individual capabilities. The 

application of multi-agent systems for optimal resource allocation has been given a lot 
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of attention due to recent technological advances. In many cases, automated 

negotiation has been a main issue with resource optimization using multi-agent 

systems. A negotiation protocol is usually applied to guide the bargaining and 

negotiation process towards equilibrium or mutually acceptable agreement. This 

provides an elegant solution to the multi-level decision-making scenario inherent in 

pavement management, where interactions among decision- makers are essential in 

simulating the ‘negotiation’ process between the different levels of management to 

arrive at a globally optimal budget allocation strategy.  

 

2.7.2 Further Research Needed 

Budget allocation in pavement management is a hierarchical optimization 

problem where the higher levels of management provide the constraints for sub -system 

optimization. These constraints become the links that inter-relate each level of 

management. In existing literatures, optimization (decision- making) in pavement 

management has often been considered separately for the different levels involved. 

Therefore, constraints imposed by higher management, such as budget availability and 

quality requirements, are often treated as fixed constraints for lower management 

optimization problems. Such approaches, though valid for within-network 

optimization, could not guarantee optimality (or near-optimality) when several 

networks linked by a global fund are concerned. 

Solving the above calls for a global optimization approach that simultaneously 

optimize the global fund based on the objective functions and constraints of both 

upper- and lower-level managements. While several good attempts have been made in 

the literature to accomplish this, they do not effectively consider the needs of the 

pavement sub-networks. Regional highway agencies, for example, are more likely than 
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not to have different needs and priorities due to differences in various aspects, which 

may include states of development, operational characteristics, availability of 

resources, and development and management strategies of each region. Ideally, the 

optimization process needs to recognize the lower-level objectives of each regional 

highway agency along with the higher-level objectives of the central administration.  

Hierarchical optimization problems as described above are often treated as a bi-

level optimization problem where decomposition algorithms based on mathematical 

programming approaches are used. However, the main drawback of such approaches is 

that they could not exemplify the inherent cooperation and negotiation process that 

takes place among decision-makers in arriving at the mutually agreeable (and 

supposedly optimal) solution. Solving the bi- level optimization problem through 

mathematical approaches is also a tedious process, and the approach is rigid – the 

problem formulation is not easily modifiable to solve for different problem sets. A 

better and more elegant approach to solving bi- level optimization problem in pavement 

management is sought. 

Recent advances in the science of distributed artificial intelligence have 

enabled the concept of agency to be applied in the study of resource optimization. In 

this arena, great efforts have been put into the study of coordination and negotiation 

among autonomous agents. This notion of agency fits well into the hierarchical and 

distributed nature of pavement management where highway agencies in both central 

and regional levels strive to achieve independent goals but are bound by the same 

global fund. Each agency has its own agenda, resources and constraints, and they need 

to coordinate among themselves in order to make the best use of the available  global 

fund. Multi-agent systems offer an attractive alternative for tackling the problem of 

multi-objectives, multi- level, and multi-agency pavement management without 
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compromising the interaction process that takes place. However, no attempt has been 

made in this direction.  

This thesis is an effort aimed at studying the global optimization of pavement 

maintenance fund using advanced artificial intelligence techniques. The scope and 

methodology used in this thesis is described in the next section. 

 

2.7.3 Scope of Proposed Research and Methodology 

 The primary objective of this research is to study the optimization of a global 

central budget to several regional highway agencies for pavement maintenance 

purposes. The main considerations in this study are: 

• The objectives and management goals of the various decision makers at the 

upper and lower management levels are different. The fund allocation strategy 

derived should best meet regional and central goals subject to various 

operational and resource constraint s. 

• The distributed nature of the problem. In a typical setting, regional highway 

agencies are geographically distributed. Therefore, data pertaining to the 

pavement and network- level specific information are likely to be stored in 

separate databases in the respective regional highway agencies. The fund 

allocation procedure should take this into consideration. 

• Integration of information among decision- makers. The effect of information 

integration will be studied in this thesis. This is achieved using multi-agent 

concepts to enhance the optimization process by allowing interactions among 

the lower- level decision- makers.  
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 In this study, the budget allocation problem for highway agencies is divided 

into three classes according to level of complexities: 

a) Class 1: Sequential two -step optimization approach. In the first phase of the 

research, a simple two-step allocation procedure will be formulated using 

sequential genetic algorithms. In this approach, there will only be a single 

passing of information from regional agencies to the central authority. This 

approach is well-suited for situations where limited interaction between 

decision makers is desired. The procedure formulated here will set the stage for 

subsequent allocation approaches. 

b) Class 2: Distributed multi-agent vertically integrated optimization approach. 

Here, the fund allocation procedure is modelled using multi-agent technology. 

An agent is used to represent each decision-maker at each management level. 

An iterative approach is adopted to simulate the actual interactive coordination 

process between the central authority and regional agencies to arrive at a 

satisfactory proportion of budget for each agency.  

c) Class 3: Distributed multi-agent vertically and horizontally integrated 

optimization approach . A more comprehensive approach incorporating vertical 

as well as horizontal interaction is formulated. The multi-agent approach from 

the previous phase of study is further improvised to handle a more complex 

fund allocation that includes horizontal sharing of resources. This approach will 

incorporate cooperation among regional agencies to share idle resources among 

them in order to attain greater benefits for all. 

 

This research will focus on the fund allocation methodology. A simple two-

level road management organization consisting of three regions is used as hypothetical 
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example problem. At this stage of the research, the scope will be limited to the 

allocation of maintenance fund only and a planning period of one -year.  

Genetic algorithms are chosen as the optimization tool for this research for its 

flexibility in handling variations in the objective function and constraints, which are 

useful to accommodate the variety of goals and constraints adopted by the different 

decision-makers. Moreover, at any iteratio n genetic algorithms contain a population of 

possible solutions, which might be more important than obtaining an isolated optimum 

in view of possible political, social or other restrictions that might render the best 

solution unpractical. Multi-agent syste m is used in the later part of this research to 

incorporate interaction and coordination capabilities into the fund allocation process 

among spatially-distributed decision-makers. It is able to provide the means for 

automated coordination among decision makers situated in different geographical 

locations. 
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Fig. 2.1 Budget distribution between regions and road classes according to OECD (1994)
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Fig. 2.2 The cognitive/reactive distinction as two extremities of a  

straight-line segment (Ferber 1999) 
 
 
 
 

 
Fig. 2.3 Characteristic representation of an agent with  

horizontal modular architecture (Ferber 1999) 
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CHAPTER 3 

TWO-STEP GENETIC ALGORITHMS OPTIMIZATION APPROACH 

 

3.1 INTRODUCTION 

In practice, the basis for pavement maintenance fund allocation among 

different road sub-networks has been mainly empirical and subjective. Conventional 

fund allocation approaches usually allocate funds based on the proportion of road 

length in each road sub- network or the proportion of funds needed by each road sub-

network. 

A two-step optimization approach for budget allocation in multi-regional 

highway agencies using two-step genetic algorithms is presented in this chapter. The 

proposed method allocates pavement maintenance fund from a central authority to 

regional highway agencies with the central and regional objectives considered in the 

evaluation function of the optimization routines. Based on hypothetical example 

problems, the solution procedure of the proposed approach is given and its 

performance compared with that of typical conventional allocation procedures. 

 

3.2 DESCRIPTION OF TWO-STEP GA OPTIMIZATION APPROACH 

The two-step analysis technique takes into account the different goals of the 

central administration and the regional agencies. The first step analysis considers the 

needs and funds requirements of the regional agencies. Given the state of network 

pavement conditions, the desired objective function, and operational and resource 

constraints of a particular region, a genetic algorithm optimization computer program 

is developed to derive the optimal pavement maintenance strategy for a specified 

maintenance budget. This analysis is repeated to obtain the corresponding optimal 
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maintenance strategies for different budget levels over the range of possible 

maintenance budgets. By this process, a database that relates the optimal maintenance 

strategy with the level of maintenance budget for all the regions concerned can be 

established. 

The second step analysis considers different fund allocation strategies by the 

central administration. The input to this step of the analysis includes the available total 

budget, objective func tion, constraints and requirements of the central administration, 

as well as the budget- maintenance strategy database established in the first step 

analysis for the regions.  Fig. 3.1 shows the main steps of the analysis. For a trial 

allocation strategy, the allocated funds for each region can be computed. Using the 

allocated funds as input, the maintenance strategy for each region is obtained from the 

budget-maintenance strategy database.  From the maintenance strategies of all the 

regions, the system objective function value of the central administration for the entire 

system-wide road network can be derived. This analysis process can be coded as 

another genetic algorithm optimization computer program to arrive at the final optimal 

fund allocation strategy. The formulation and working of the genetic algorithm 

optimization processes for the first and second step analysis respectively are explained 

in the next section using a numerical example. 

 

3.3 APPLICATION OF THE TWO-STEP GA OPTIMIZATION APPROACH 

3.3.1 The Hypothetical Example Problem 

To study the performance of the two-step optimization approach, a hypothetical 

pavement management problem described by Fwa et al. (1998) is considered. The 

original problem is modified to include a two- level road management organization 

structure consisting of a central highway administration and three regional road 
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agencies. The analysis deals with allocation of the available pavement maintenance 

budget at the central administration to the three regional agencies. It addresses the 

global network level pavement management goal of the central administration, as well 

as pavement maintenance budget needs, constraints of resources (including manpower 

and equipment) and pavement distress conditions at the regional level. The regio nal 

highway agencies are responsible for the selection and execution of pavement 

maintenance programmers, for which a budget is allocated to each by the central 

authority.  

For comparison with other allocation approaches, three cases of different 

regional road data are generated in this study. The three cases use separate data sets 

with different network characteristics and varying road conditions, as described in the 

following: 

Case 1: Regions having comparable total road length and network pavement 

condition. 

Case 2: Regions having similar total road length but vastly different network 

pavement condition.  

Case 3: Regions having vastly different total road length and network pavement 

condition. 

Case 1 is intended as the baseline case for “normal” circumstances where all regional 

road networks are of about the same size and condition. The other cases are used to 

portray the circumstances under which the conventional approaches could be 

“deceived” into suboptimal funds allocation policy. The maintenance costs required 

are calculated based on road conditions in each region. A summary of the three cases is 

given in Table 3.1. 
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The pavement maintenance management objectives of the three regional 

agencies are given as follows: 

Region 1 -- Maximizing the number of distressed road segments repaired 

Region 2 -- Maximizing the performance level of regional road network 

pavements 

Region 3 -- Maximizing the usage of the available manpower 

At the central level, the overall available budget and the overall pavement 

conditions of the entire road network are the main concerns. The objective function of 

the central administration in this example problem is to maximize the overall 

performance level of the entire road network covering the three regional networks. 

 

3.3.2 Planning Data for Regional Networks 

 The hypothetical problem considers a planning period of one year. Road 

segments in each region comprise two classes of road, namely expressway and arterial 

roads. For easy presentation, each segment is assumed to have only one distress type. 

Three distress types (namely cracks, ruts and potholes), and three levels of distress 

severity (namely low, medium and high) are considered. All road segments have the 

same length of 1 km and two lanes per traffic direction. Table 3.2 lists the  distribution 

of distress types and distress severity levels in the three regions for the three cases. 

There are four types of manpower (supervisors, laborers, equipment operators 

and drivers) and six types of equipment (dump trucks, pickup trucks, crew cabs, 

distributors, rollers and pavers).  Table 3.3(a) and 3.3(b) list the manpower and 

equipment required for each repair activity while the maintenance costs and production 

rates are given in Tables 3.3(c) and 3.3(d) respectively. The manpower and equipment 

available in each region were about 80% of the required resources. 
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3.4 GENETIC ALGORITHM FORMULATION  

3.4.1 GA String Structures 

The decision variables of a problem are represented in GAs by a string 

structure similar to the chromosomes in natural evolut ion. At the regional level for the 

example problem, the decision variables pertain to the choice of road segments 

selected for maintenance. An appropriate string structure is one that consists of one 

cell for each road segment as shown in Fig. 3.2(a). The total length of the string 

structure (i.e. the number of cells) is therefore equal to the number of road segments of 

the region concerned.  The value of each cell gives the maintenance decision taken for 

the road segment that the cell represents. A value of 1 for the kth cell means that the kth 

road segment is selected for maintenance, while a value of zero indicates that the road 

segment is not selected for maintenance.   

 At the central level, the decision variables are simply the percentage shares of 

budget allocation for the three regions.  As shown in Fig. 3.2(b), there are only 3 cells.  

The values of the genes represent the shares of budget that will be allocated for each 

region.  

 

3.4.2 Objective Functions and Constraints for Step 1 Analysis 

 As the objective functions and constraints of the three regions are different, the 

GA formulation and optimization analysis are performed independently. This section 

presents the mathematical expressions of objective function and constraints for each 

region. For Region 1, the objective function is to maximize the number of distressed 

road segments repaired, that is, 

 

    Maximize ∑
=

N

j
jx

1

     (3.1) 
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where x is either 0 or 1, depending on whether or not road segment j is selected for 

maintenance. The objective function is subject to the following constraints, 

• The manpower needed for the maintenance program must not exceed the 

available number in each manpower category. The following constraint is 

checked for every manpower type: 

 

∑
=

≤
N

j
pjpj Mxm

1

     (3.2) 

 
where mpj denotes the number of man-days required of manpower type p for 

road segment j, and Mp denotes the total available man-days for manpower type 

p. N is the total number of segments in the region considered while xj is the 

binary decision variable that indicates whether or not segment j is selected for 

maintenance. 

• The equipment required for the maintenance program must not exceed the 

available number in each equipment category.  

 

∑
=

≤
N

j
ejej Qxq

1

      (3.3)  

 
where qej denotes the work-days required of equipment type e for road segment 

j, and Q e the available work-days of equipment type e in the region considered.   

= The total maintenance expenditure must not exceed the total budget allocated, 

as given by,  

 

∑ ≤
N

j
rjjr BxC       (3.4) 
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where Cjr is the maintenance cost incurred in road segment j of region r, N the 

total number of road segments in the region, and Br the budget allocated to 

region r. 

 
For Region 2, the objective function is to maximize the performance level of 

regional road network pavements given by,   

 
Minimize (Regional network PDI after maintenance) 

 
where PDI is the Pavement Damage Index. To compute the regional network PDI or 

the total weighted PDI, the PDI for individual road segments must first be calcula ted. 

The pavement damage index PDIjd of road segment j for distress type d with distress 

value D d is given by the following expression: 

 

( ) %100
Value Terminal

×=
d

d
jd

D
PDI     (3.5) 

 
The value of PDI lies within the range of 0 and 100. The higher the PDI value, the 

worse is the distress condition. Table 3.4 gives the distress values for different distress 

conditions and their respective terminal values. The regional network PDI is calculated 

as follows: 
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PDINetwork     (3.6) 

 
where N is the total number of road segments in the region considered, and Fj the 

weighting factor equal to the sum of (fDj + fSj + fCj) as defined in Table 3.5. Thus, the 

objective function for Region 2 can be expressed as 



Chapter 3 Two-step GA Optimization Approach 

 64 
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The objective function of Region 3 is to maximize the usage of the available 

manpower. This is achieved by maximizing the total man-days assigned in the 

maintenance program as follows, assuming that different manpower categories carry 

equal weights: 

 

Maximize ∑∑
N

j

P

p
jpj xm      (3.8) 

 
where P is the total number of manpower types considered. 

The constraints for Regions 2 and 3 are also given by Eqs. (3.2) to (3.4), except 

that the value of the total number of road segments N, and the limits of the available 

resources Mp, Qe, and Br would change accordingly. 

 

3.4.3 Objective Functions and Constraints for Step 2 Analysis 

In the Step 2 analysis, the aim is to identify the best fund allocation proportions 

for the three regions such that the overall network pavement perfor mance level 

covering the three regions would be raised as much as possible with the available 

budget. Expressing the performance level in terms of network PDI as defined by Eq. 

(3.7), where N’ represents the total sum of road segments of the three regions, the 

objective function is  
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Minimize 100
'
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The only constraint in this step of analysis is that the sum of the funds allocated to the 

three regions cannot be more than the total budget available to the central authority.   

 

3.5 GA PARAMETERS AND METHOD OF ANALYSIS  

The general steps involved in the steps 1 and 2 GA optimization analyses are 

shown in the flow chart in Figs. 3.3(a)–(b). The optimization analyses for the three 

regions were conducted independently. The results from the optimization of regional 

networks (Step 1 analysis) are used to perform the central optimization (Step 2 

analysis). The GA optimization program was developed using a GA library PGAPack  

(Levine 1996). PGAPack allows different settings of the parameters to enhance the 

performance of the search algorithm. 

 

3.5.1 Sensitivity Study of GA Parameters 

In order to determine the set of GA parameters that will produce good solution 

sets for this example problem, a sensitivity study was carried out. Parameters that were 

studied include population size, offspring size, mutation rate and crossover rate. An 

experiment was also conducted to determine whether the mutation and crossover 

operators should be used simultaneously, or only either operator should be used at a 

time. For the purpose of this sensitivity study, the data set of road network 

characteristics and road conditions of Region 3 from Case 1 was selected for 

experimentation. Similar parameters are then adopted for all three regions for all three 

cases. The objective of maximizing the utilization of manpower is adopted, with the 
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budget level set at S$140,000. This amount was selected such that budget will not be 

the limiting constraint in the search for solution. The idea was to stretch the solution 

space with respect to the other constraints so that the number of feasible solutions is as 

large as possible, and hence greater search difficulty. 

A total of ten pool sizes were studied to determine the appropriate population 

size for the example problem. For this purpose, the offspring size was maintained at 

80% of the population size, while mutation and crossover rates were left at the default 

values set by PGAPack. The default value for mutation rate is the reciprocal of the 

string length (in this case 2%) while the default crossover rate is 85%. Crossover was 

only performed on strings that did not undergo mutation. The pool sizes ranged from 

100 to 1000 in increments of 100. The results are shown in Fig. 3.4, where it can be 

observed that slower convergence was obta ined for population sizes of 300 and less. 

For pool sizes of 400 and above, increase in performance can still be seen, albeit less 

significantly. The best performance occurred when the population size is maintained at 

900. Hence, a population size of 900 is adopted for the example problem. 

The effect of offspring size was studied next. This was done by keeping the 

population size at 900, mutation rate at 2%, and crossover rate at 85%. Mutation and 

crossover were again applied exclusively of each other. A total of seven offspring sizes 

were tested. Fig. 3.5 showed that the GA performance increases with an increase in 

offspring size up till it is 90% of the population size. At 100% where all parent strings 

are replaced by offspring, the GA performance decreased. This could be due to the fact 

that none of the good parents are retained in the next generation when a 100% 

replacement strategy was adopted. Therefore, a replacement strategy of 90% of 

population size is adopted. 
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The experiment on whether mutation and crossover should be applied 

simultaneously or exclusively of one another were done based a population size of 

1000 and replacement strategy of 90% from the population size. Mutation and 

crossover rates were maintained as before. The results are shown in Fig. 3.6. 

Apparently, the GA performed best when both mutation and crossover were applied 

simultaneously. This is because the application of both operators at the same time 

induces the search mechanism to cover a wider range of solutions. 

With the appropriate population size and offspring pool size determined, and 

both mutation and crossover operators identified for simultaneous use, the next 

parameter to be set is the mutation operator. The effect of mutation rate on the GA 

convergence is shown in Fig. 3.7. From the plot, it was obvious that a higher mutation 

rate actually helped the GA to converge faster. However, the experiment also showed 

that high mutation rates result in sub-optimal results, where a 100% convergence could 

not be reached when the GA terminated. This is because high mutation rates reduce the 

ability of the GA to refine its search even though a wider range of solution is explored 

more quickly. The only mutation rate that could give a 100% convergence is the 

default value, i.e. 2% in this case. Thus, it was decided that a mutation rate of 2% be 

used for the example problem. In this case, the lost in convergence rate is deemed 

insignificant compared to sub -optimal results. 

The final parameter to be determined is the crossover rate. Four crossover rates 

were tried, and the results shown in Fig. 3.8. It was found that crossover rates of 85% 

and 95% produced almost comparable rates of convergence, whereas 75% and 65% 

crossover rates gave slightly slower convergence. In choosing the appropriate 

crossover rate, a smaller value is deemed a better choice than a higher one, since a 

higher crossover rate, similar to high mutation rate, contains higher possibility of 
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producing sub-optimal results. Hence, the crossover rate of 85% is chosen for the 

example problem. 

Thus, the final GA optimization for step 1 analysis was run with the number of 

population maintained at 900, where 90% of these (810 strings) were replaced at each 

generation. The initial pool of solutions was randomly generated, including a do-

nothing solution with all decision variables set to zero. The GA crossover and mutation 

operators were employed simultaneously to generate offspring solutions. The mutation 

rate was the reciprocal of the string length (2%) while the crossover rate adopted was 

85%. Trial runs have shown that convergence could be achieved within about 100 

iterations. The stopping criterion was chosen to be 100 iterations for each budget level. 

Budget levels were increased in steps of $1000 until 10 consecutive increases had 

produced no improvement in the evaluation value. 

The Step 2 analysis involved shorter string structures, and it was found that 

satisfactory solutions could be obtained with a population size of 800, with 500 

solutions replaced by new offspring every iteration. The same crossover rate, mutation 

rate, and stopping criteria as those adopted for the first step of the analysis were found 

applicable.  For both Steps 1 and 2 of the optimization, infeasible solutions were 

penalized by setting their fitness values as zero. 

 

3.5.2 Initialization of GA Strings  

The initialization routine in GA optimization is useful in starting the search on 

the right direction. In this research involving repeated analysis for different budget 

levels, a proper initialization was adopted to achieve efficient optimization analysis. 

The initialization routine used in this research makes use of the best result from 

the immediate previous optimization run for the last budget level. In this case, the  most 
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probable values refer to the number of maintenance projects activated. Before the 

optimization iterates for the next budget level, the number of maintenance activation 

from the previous optimization (previous budget level) is recorded. This number is 

used as the probability function of the number of maintenance activation for the next 

budget level. Almost all (90% probability) of the GA strings will be initialized to 

contain this probability of maintenance activation. The rest of the GA strings 

(approximately 10%) are direct copies of the previous best solutions. This approach is 

most suitable for this problem since the starting point of all regional optimizations is at 

budget level S$1000, which is the lowest budget level with the probability of 

maintenance activation virtually zero. Thus, all strings are always initialized to zero at 

the beginning of all optimization runs. 

The idea behind this approach is that the best solution for a particular budget 

level will also always be one of the better solutions, if not still the best, for the next 

budget level. By starting the search here, the search efficiency is greatly amplified. 

Results showed that the GA almost always found the best solution within about 10 

generations when this initialization routine was used. Without this initialization 

routine, convergence was hard to achieve, usually resulting in premature convergence. 

 

3.6 COMPARISON WITH CONVENTIONAL ALLOCATION APPROACHES  

Two typical conventional allocation procedures, based on formula - and needs-

based approaches respectively, is used as a basis for comparison with the proposed 

two-step GA approach. The formula-based approach considered employs a simple and 

yet frequently used formula calculated according to the proportion of the regional road 

length to the total road length of all regions. According to this formula, the percentage 

of funds Pr to be allocated to region r, can be expressed as follows: 
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where Ljr denotes the length of road segment j in region r, N is the total number of road 

segments in the region considered, and R is the total number of regions involved. 

The needs-based approach allocates central funds according to the proportion 

of funds needed by each region to repair all distresses in the region. The formula is 

expressed as follows: 
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where Cr is the total maintenance cost needed to repair all distresses in region r. 

 The above two allocation formulas are applied for the three cases of example 

problems described. 

 

3.7 RESULTS OF ANALYSIS 

3.7.1 Results of Step 1 of the Optimization Analysis  

In the first step, the procedure outlined in Fig. 3.1 was applied to each of the 

three regions independently to establish the relationship between budget and optimal 

maintenance strategy. These relationships for the three regions for Case 1 are shown in 

Figs. 3.9(a)–(c) respectively. Fig. 3.9(a) shows that, for Region 1, the number of 

distressed road segments increased rather rapidly as the allocated budget increased 

from near zero to about S$7,000. Thereafter the rate of increase tended to level off.  

This is because the objective of maximizing the number of roads repaired had pushed 
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for the lowest cost maintenance to be performed first.  This means that when the 

budget was at a low level, a given quantum of increase in funds would repair more 

road segments than when the budget was at a higher level.  The steps in the curve of 

Fig. 3.9(a) were caused by the fact that increments of the objective function value were 

always in whole numbers. 

Fig. 3.9(b) gives the trend of optimal network damage index (PDI) of Region 2 

with increasing budget. A steady fall in the network PDI occurred initially, and leveled 

off when budget becomes abundant. The optimization process picked the most 

severely distressed road segments for maintenance first. At high budget levels, any 

additional budget would be spent on repairing the low-severity road distresses that 

contributed little improvement in the PDI, hence the leveling off of the network PDI 

for high-allocated budgets. For Region 3, Fig. 3.9(c) shows that there was a steady 

increase in manpower employment until a certain budget level where all available 

manpower were committed. 

The budget versus optimal maintenance strategy relationships for the other two 

cases are shown in Figs. 3.10 and 3.11 respectively. The trends of these relationships 

are the same with that of Case 1 with some differences only in the values. 

 

3.7.2 Results of Step 2 of the Optimization Analysis  

The relationship of maintenance strategy and allocated budget for each of the 

regions established in the preceding section offers a convenient database for the Step 2 

analysis.  Following the steps in Fig. 3.1 and the algorithm depicted in Fig. 3.3(a) and 

(b), the optimal shares of budget for the three regions are computed and they are 

presented in Fig. 3.12 (a)–(c). 



Chapter 3 Two-step GA Optimization Approach 

 72 

In all three cases, Region 2 always gets a bigger portion of maintenance funds 

at extremely low total budget level. At this budget level, where the total fund ranges 

from S$10,000 to about S$30,000, spending the available fund in Region 2 would 

achieve the most improvement in PDI, since the objective function of Region 2 is the 

same as that of the central administration. This resulted in a highly unbalanced (but 

presumed optimal) allocation of budget where Region 2 received more than 70% of the 

funds in all cases. As the available budget increased, the bulk of the fund began to shift 

to either Region 1 or Region 3, depending on which region is able to contribute more 

towards PDI improvement. The total percentage of budget used began to taper off at 

S$140,000 for Cases 1 and 2, and at S$300,000 for Case 3 because the central budget 

has been increased to a point where constraints other than budget become binding, and 

any further increase in central budget could no longer improve the regional objectives. 

When this occurs, the proportion of budget allocated to each region becomes 

synonymous with the proportion of the sub -network size of each region, because the 

available manpower and equipment resources of each region were set to 80% of that 

required. 

 

3.7.3 PDI Improvements from the Allocation Strategies 

With the maintenance program from Step 1 and the allocation strategy from 

Step 2, the overall PDI improvements resulting from the funds allocation exercise at 

the central level can be determined. The overall network PDI is calculated by using 

equation 3.6 on all three regions. For each of the three cases considered, the PDI 

improvement achieved from the two-step GA fund allocation approach is compared 

against that from conventional approaches. These are shown in Fig. 3.13 (a)–(c). While 

Fig. 3.13(a) shows that the two-step GA and conventional approaches do not give rise 
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to much differences in PDI improvements under “normal” circumstances (Case 1), Fig. 

3.13 (b)–(c) indicate otherwise for the other cases. 

In Case 2, the formula-based solution was “fooled” into allocating equal 

proportions of funds to all regions, even though the maintenance needs of each region 

is highly dissimilar as indicated by the network PDI values. Clearly, the formula-based 

solution is unsuitable for situations where the size of the road network is not 

proportionate to the road condition. The distribution of the different types and severity 

of distresses results in the maintenance costs required to repair all pavement distresses 

in each region being at a comparable level. Thus, the needs-based solution, which is 

based on the proportion of funds needed by each region, will also tend to allocate equal 

proportions to all regions. This results in a poor overall road condition as indicated by 

the overall network PDI values (after maintenance) shown in Fig. 3.13(b). 

Case 3 is a unique case where the total weighted PDI of each region is almost 

equivalent, although the network size of each varies greatly. This results in the smallest 

region (Region 1) having the highest network PDI (worst pavement condition), and 

vice versa. The maintenance needs is proportionate to the network size. In this case, 

both the needs- and formula-based solutions will distribute the smallest portion of 

funds to Region 1 and the largest portion to Region 3. Fig. 3.13(c) shows that this may 

not be the best allocation strategy, since all the conventional funds allocation 

approaches result in poorer road conditions than the two-step GA at most levels of 

available funds.  

In all three cases, the two-step GA approach consistently performed better than 

the two conventional allocation procedures. In Case 1, the maximum percentage of 

improvement on overall network PDI by the two-step GA approach is 5.15% and 

4.81% more than that by the needs- and formula-based solutions respectively. The 
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maximum difference in percent improvements achieved by the two-step GA in Case 2 

are significantly higher: up to 17.83% and 17.23% higher than needs- and formula-

based solutions respectively, while for Case 3, the two-step GA out-performed the 

needs- and formula-based solutions by a maximum of 19.73% and 19.13% 

respectively. The three cases also show that all the three allocation procedures perform 

comparatively well at high budget levels, because by then the funding level to each 

region will be sufficiently high to achieve high improvements in PDI, irrespective of 

the proportion each region received. 

 

3.8 SENSITIVITY STUDY OF OBJECTIVE FUNCTIONS 

 The preceding sections have laid out the procedures of the two-step 

optimization analysis for highway funds allocation among regions based on a 

hypothetical example. The usefulness of the two-step optimization approach, however, 

is not limited to the allocation of fund only. The two step approach can also be used to 

study the effect on the allocation due to different strategies adopted by regional 

highway agencies. This is further illustrated in this section, with a sensitivity study on 

the effect of different regional objective functions on the final central allocation 

strategy. The problem similar to that described earlier in this chapter is used for this 

analysis. 

 

3.8.1 Regional Pavement and Resource Data 

As in the previous example, a two-level road management organization 

structure consisting of a central highway administration and three regional road 

agencies is considered. For the purpose of this analysis, however, all three regions will 

be assumed to have exactly the same characteristics in terms of the total number of 
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road segments, distribution pattern of road distresses in the region, as well as 

manpower and equipment availability. This assumption is made to eliminate the effects 

of these characteristics on regional maintenance requirements and subsequent central 

budget allocation decision. The planning data of Case 1 Region 1 in the previous 

analysis will be used for all regions. The distributions of distress type and distress 

severity levels for all regions were given in Table 3.2 (for Case 1 Region 1). All other 

data including resource requirements, repair cost, production rate, distress severity and 

terminal values, and priority weights are the same as in the previous analysis (Tables 

3.3 – 3.5).  

 

3.8.2 Objective Function Considerations  

Three objective functions as us ed in the previous analysis will be considered. 

These objective functions and their corresponding constraints were described in 

Section 3.4.2. In this analysis, different combinations of objective functions for 

different regions are analyzed. It must be noted here that since all regions have the 

same pavement and resource characteristics, a given set of 3 regional agency 

objectives, regardless of the pairing of region and objective, will have no effect on the 

analysis. For example, if objective functions a , b , and c are adopted by regions 1, 2, 

and 3 in that order, it makes no difference to the analysis whether the sequence is abc, 

acb, cba , cab , bac, or bca. Hence, there are altogether 10 different possible 

combinations of objective functions, as given in Table 3.6. 

The objective function of the central administration is to maximize the overall 

performance level of the entire road network covering the three regional networks. 
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3.8.3 Genetic Algorithm Formulation 

 The analysis performed here used the same GA string structure as in the 

previous analysis as described in Section 3.4.1. All GA parameters such as population 

size, offspring size, mutation rate and crossover rate are also maintained at the values 

identified from the sensitivity study presented in Section 3.5.1. The problem is 

analyzed for a range of budget level and the initialization routine as described in 

Section 3.5.2 is used in this analysis. 

 

3.8.4 Results of Objective Function Sensitivity Study 

 The first step of the analysis establishes the relationship between budget and 

optimal maintenance strategy of the three regions. These relationships are shown in 

Figs. 3.14(a)-(c). Since all three regions have similar network and resource 

characteristics, differentiations are made with regard to objective functions rather than 

regions. These curves exhibit the same characteristics as that observed in the first 

analysis, and explanations for the trends of the curves were given in Section 3.6.1. The 

relationships as shown in Figs. 3.14(a)-(c) are used for all 10 cases studied in this 

analysis. 

The 10 cases of different combination of objective functions yield different 

allocation strategies as depicted in Figs. 3.15–3.24. From all the plots, it can be seen 

that the maximum consumption of budget for all three regions is around S$120,000 – 

S$130,000. From thereon, the total percentage of consumed budget tapered off even 

though the central budget increases. This occurs because the overall central budget has 

been increased to a point where constraints other tha n budget become binding, and any 

further increase in central budget could no longer improve the regional objectives. 

When this happens, all regions receive an equitable proportion of budget, irrespective 
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of what objective they represent. It should be noted that the diminishing percentages of 

allocation do not mean that the amount of allocated budget has been reduced. Rather, 

the amount has been maintained at the maximum while the central budget increased, 

thus resulting in the diminishing percentage seen in the figures. The following sections 

present the results from these case studies. 

 

3.8.4.1 All Regions Having Different Objectives 

 The case where all regions adopt different objectives from one another is 

illustrated by Case A (see Table 3.6 for description). Figs. 3.15(a) and 3.15(b) show 

the allocation strategy and network PDI of each region when all regions have different 

objective functions defined. This case is the same as that used in the earlier analysis, 

and the allocation strategies have similar characteristics. There are three distinct 

patterns of allocation over the range of central budgets considered. The first pattern 

occurs for total budget up to S$20,000, the second pattern occurs in zone 2 for total 

budget ranging from S$20,000 to S$50,000, and the third is in zone 3 for total budget 

beyond S$50,000. 

In zone 1, the total budget is very low. Thus, the best strategy is to spend most 

of the funds on Region 2 where improvement in PDI is most rapid. At this low budget 

level, contributions by Region 1 and Region 3 are not competitive compared to Region 

2 due to the objective functions adopted. As a result, a highly unbalanced allocation is 

effected, with Region 2 receiving more than 80% of the total funds. In zone 2, Region 

3 begins to pick up momentum, giving more competition to Region 2 in terms of 

contribution to PDI improvement. Thus, the proportion of funds for Region 3 increased 

considerably. Region 1 only begins to receive increased share of the funds when the 

total budget reached S$50,000 in zone 3. The slower boost in the shares of allocation 
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for Region 1 compared to Region 3 is in contrast with the previous analysis in Chapter 

3, where Region 1 became competitive earlier than Region 3. With the objective 

function for each region in both these analyses being the same, the implication is that 

the network as well as resource characteristics actually play an important part in 

tipping the final allocation strategy. 

The corresponding network PDI as shown in Fig. 3.15(b) follows closely the 

pattern of funds allocation. In this case, Region 2, which received the bulk of the funds 

in zone 1, has the lowest network PDI in the beginning. The network PDI for Region 3 

began to drop when higher shares of the budget are given to it. Region 1 shows similar 

behavior for total budget of S$50,000 and beyond. Here, it is observed that when the 

maximum allocation for each region is reached, Region 2 always give the lowest 

network PDI, followed by Region 3 and then Region 1. Similar results were obtained 

in the previous analysis described in Section 3.7. This implies that all things being 

equal, the choice of objective function is the main factor to achieve the lowest possible 

network PDI. 

 

3.8.4.2 All Regions Having Similar Objectives 

Figs. 3.16(a), 3.17(a) and 3.18(a) show the analyses of the central allocation 

strategy when all three regions declared similar objective functions in their 

optimization routines (Cases B, C and D in Table 3.6). From these plots, it is clear that 

having regions with the same objective functions will result in an equitable budget 

allocation strategy in times of fiscal scarcity.  

It should be noted here, however, that the plots are obtained as an average of 

several optimization runs. In actuality, the allocation tends to be biased to an arbitrary 

region, with an excessive amount of budget allocated to it, while other regions receive 
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only small portions of the funds. This occurs because the central objective is always 

better achieved by investing most, if not all, of its available budget into one single 

region to achieve the best result, rather than relying on average results from several 

regions. Over several runs, all regions have equal opportunities to be chosen for the 

limited funds, thus resulting in equitable allocation after averaging off from these runs. 

 The corresponding network PDIs obtained from these plots are shown in 

3.16(b), 3.17(b) and 3.18(b). As expected, the equitable allocation strategy resulted in 

all three regions achieving comparable network PDI. When the maximum allocation 

for each region has been reached (at around S$120,000), all regions show similar 

values for their network PDI. 

 

3.8.4.3 Two Regions Sharing the Same Objective 

This situation involves six cases, which can be further broken down into 3 each 

for each objective function being shared by any two regions. When two regions are 

sharing one objective function, i.e. having the same objective function, the study points 

towards the sensitivity of the objective function adopted by the other region. 

 

Two Regions With Objective 1 

Figs. 3.19 and 3.20 show the plots for the case where Region 1 and Region 2 

adopt the objective of maximizing the number of road segments repaired, while Region 

3 adopts the objective of minimizing network PDI (Case E, shown in Fig. 3.19) and 

maximizing the utilization of manpower, respectively (Case F, shown in Fig. 3.20). In 

both these plots, Region 3 is always given the highest portion of the funds when the 

central budget is very limited. The implication is that both the objective functions of 



Chapter 3 Two-step GA Optimization Approach 

 80 

minimizing network PDI and maximizing the utilization of manpower are more 

superior than maximizing the number of road segments repaired.  

The corresponding network PDI plots in Figs. 3.19(b) and 3.20(b) shows that 

Region 3 always has the lowest network PDI among the three regions, even after the 

maximum allocation amount has been reached. The network PDI of Regions 1 and 2 

understandably does not differ much. They also have the same lowest network PDI 

value after the maximum allocation amount has been reached. The big jump in the 

proportion of allocation to Region 3 at central budget S$30,000, as shown in Fig. 

3.20(a) shows that the capability of Region 3 in improving the overall network PDI is 

outstanding at that budget level. This is reflected by the PDI plot in Fig. 3.20(b), where 

Region 3 achieved an outstandingly low PDI value, with minimal decline in PDI to 

Regions 1 and 2. The budget to Region 3 is maintained thereafter in order to channel 

additional funds for the improvement of the other two regio ns.  

 

Two Regions With Objective 2 

Here, Regions 1 and 2 adopt the objective of minimizing network PDI, while 

Region 3 adopts the alternate objective of maximizing the number of road segments 

repaired (Case G) and maximizing the utilization of manpower (Case H). In both the 

plots given in Figs. 3.21(a) and 3.22(a), Region 3 is given the lowest portion of the 

funds for low total budget levels (S$10,000 to S$40,000). Additional shares are only 

given to Region 3 when a certain level of total budget has been reached. Hence, we can 

say that the objective function adopted by Region 3 is inferior to the one adopted by 

Regions 1 and 2. The PDI plots in Figs. 3.21(b) and 3.22(b) reconfirm this conclusion.  
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Two Regions With Objective 3 

 Regions 1 and 2 again adopt a similar objective, which is to maximize the 

utilization of manpower, while Region 3 adopts the other two objectives in two 

separate cases. These are represented by Cases I and J. The plots for the final 

allocation strategy are shown in Figs. 3.23(a) and 3.24(a).  

In Fig. 3.23(a) where Region 3 maximizes the number of road segments 

repaired, lower percentage of funds are allocated to Region 3 compared to the other 

two regions at total budget levels of S$20,000 to S$60,000. However, a high 

percentage of funds, which are actually more than the other two regions, are given to 

Region 3 at the lowest central budget level of S$10,000. This could be due to the more 

rapid improvements to network PDI at low budget levels for Objective 1 compared to 

Objective 3, as shown in Figs 3.14(a) and (c) respectively. Fig. 3.23(b) shows the 

corresponding attainable network PDI. 

 The plot in Fig. 3.24(a) is rather straightforward, with larger portion of funds 

initially given to Region 3, as the objective of minimizing total network PDI is able to 

contribute more to the central objective. As such, the network PDI of Region 3 for low 

central budget is lower than the other two regions. Comparison of both these strategies 

(Fig. 3.23(a)-(b) and Fig. 3.24(a)-(b)) reconfirms earlier observations that maximizing 

the number of roads repaired is an inferior objective to maximizing the utilization of 

manpower, and minimizing network PDI is superior to maximizing manpower 

utilization.  
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3.9 CHAPTER SUMMARY 

In this study, conventional allocation approaches that are based on road 

network characteristics and maintenance needs are shown to be ineffective and 

inadequate in certain funds allocation situations resulting in under-performance of the 

overall maintenance strategy with respect to the central government’s objective. These 

situations arise due to certain regional road network characteristics and conditions that 

“deceive” the formula - and needs-based allocation approaches into allocating funds to 

areas where it cannot be best utilized. 

A two-step optimization approach has been proposed for the regional allocation 

of central highway funds. The significance of the proposed method includes: 

• Objectives of regional agencies are considered in the budget allocation process. 

Thus, the funds allocation is in line with the goals and considerations of 

regional agencies. The allocation procedure optimizes the central budget 

according to the needs and interests of regional agencies. 

• The objective of the central highway authority is considered in the final 

allocation. Therefore, the final allocation is also optimized with respect to the 

overall system goal set by the central authority.  

• The method allows for analysis of scenarios for different budget levels at the 

central level with relative ease. This is an important advantage in the strategic 

planning for different scenarios. 

• The two-step approach requires only one iteration of information exchange per 

planning period between regional and central levels. This saves significant 

negotiation and consultation time between the two levels of decision makers. 
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The major findings from experiments carried out using the proposed two-step 

optimization method include: 

• The computational capacity required for the optimization routine is minimal. 

• Under tight budget constraints, a highly unbalanced allocation of funds is likely 

to occur. This will result in unequal pavement conditions in the respective 

regions. This can be avoided by placing a higher level of constraint on the 

allowable network PDI of each region. 

• The proposed method allows for flexibility in defining the objective functions 

and constraints in the optimization routine. This is a result of using GAs as the 

optimization tools for both central as well as regional optimizations. This 

flexibility is demonstrated by the ease with which the central level can adjust 

the maximum allowable network PDI of each region. 

 

An application of the proposed two-step optimization approach has also been 

demonstrated to study the sensitivity of objective functions adopted by regions towards 

the central allocation strategy. A total of 10 cases of different combination of regional 

objective functions are analyzed. For all cases, the central objective of minimizing the 

total network PDI of the whole road network is maintained. Network and resource 

characteristics of each region are standardized. The major findings and conclusions 

obtained from this analysis are summarized as follows: 

• It is found that the region that is better able to complement the central objective 

will always benefit in the funds allocation process. This region can be said to 

have a superior objective function compared to the other regions. In this case, 

the order of superiority of the objective functions is Objective 2, Objective 3 

and Objective 1, in that order.  



Chapter 3 Two-step GA Optimization Approach 

 84 

• In this analysis, the relative superiority of objective functions is rather distinct 

due to the simplistic nature of the objectives considered. In a real-world 

application, the superiority of objective functions will be less discernable due 

to the different performance measures adopted by each highway agency. For 

example, the central administration might consider a certain set of parameters 

such as pavement surface roughness, skid resistance, and distress conditions as 

performance measures of the road network, while region agencies might take 

into consideration other sets of parameters. In these circumstances, the two-step 

optimization approach will become more useful for funds allocation. 

• Apart from the objective function, network and resource characteristics of each 

region are identified as other factors that affect the decision made with regard 

to funds allocation. A sensitivity study on these characteristics can be 

conducted in order to investigate the effect of the different roads and 

management features in each region towards the shares of budget that they will 

receive. 

• By the two-step optimization approach, an inequitable allocation strategy is 

bound to occur due to the lack of compromise/consultation between central and 

regional agencies. This issue will be addressed in subsequent work, which will 

be further elaborated on in the next chapter. 
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Table 3.1 Summary of the three case studies and their attributes 

 
 

 
Case 1 

 Region 1 Region 2 Region 3 

Number of road segments 30 40 50 

Network PDI 32.53 24.74 32.78 

Maintenance Needs (S$) 44 937.60 59 767.36 69 074.56 

 
 

 
Case 2 

 Region 1 Region 2 Region 3 

Number of road segments 40 40 40 

Network PDI 10.82 21.07 41.19 

Maintenance Needs (S$) 63 453.76 60 616.96 63 825.28 

 
 

 
Case 3 

 Region 1 Region 2 Region 3 

Number of road segments 30 80 150 

Network PDI 50.45 22.05 12.83 

Maintenance Needs (S$) 59 392.96 126 652.80 217 744.00 
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Table 3.2 Pavement conditions of regional road networks 

  
Case 1 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
Expressway 2 4 1  1 0 3  1 0 0 

1 
Arteria l Road 1 0 1  3 2 4  3 1 3 

Expressway 1 2 7  1 5 6  1 2 2 
2 

Arterial Road 3 0 4  0 1 1  2 1 1 

Expressway 2 1 1  2 3 3  1 0 4 
3 

Arterial Road 2 2 3  6 4 9  3 2 2 

 
 

 
Case 2 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
Expressway 0 2 13  0 0 4  0 0 0 

1 
Arterial Road 1 1 12  0 0 1  0 1 5 

Expressway 1 0 6  0 0 3  0 0 1 
2 

Arterial Road 4 4 8  2 2 5  1 0 3 

Expressway 1 1 1  3 5 1  1 0 0 
3 

Arterial Road 3 1 1  9 5 4  0 2 2 

 
 

 
Case 3 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
Expressway 2 1 0  5 1 0  2 1 0 

1 
Arterial Road 1 1 0  9 2 1  3 0 1 

Expressway 5 3 11  2 4 4  1 3 4 
2 

Arterial Road 2 2 22  1 2 4  1 5 4 

Expressway 1 2 28  0 2 14  0 0 9 
3 

Arterial Road 2 3 53  3 0 20  2 3 8 

 
Note: H = High Severity, M = Medium Severity, L = Low Severity
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Table 3.3 Resources and system information for the example problem 

(a) Manpower requirements for each repair activity  
(man-days/production day) 

Repair Activity Supervisors Laborers Operators Drivers 

Crack Sealing 1 2 4 2 

Premix Levelling 

(Rutting) 
1 5 1 1 

Patching (Pothole) 0 4 0 2 

 

(b) Equipment requirements for each repair activity  
(equipment -days/production day) 

Repair  
Activity 

Dump 
Trucks 

Pickup 
Trucks 

Crew 
Cabs 

Distri-
butors Rollers  Paver s  

Crack Sealing 2 1 0 1 0 0 

Premix Levelling 

(Rutting) 
1 1 0 0 1 0 

Patching (Pothole) 1 0 1 0 0 0 

 

(c) Road segment repair costs (S$) 

Distress  

Type 

High 

Severity 

Medium  

Severity 

Low  

Severity 

Crack 2000.00 2000.00 2000.00 

Rut 2208.00 1324.80 441.60 

Pothole  2472.96 1313.76 386.40 

 

(d) Production rate data 

Maintenance Activities Production Rate 

Crack Sealing 1.0 (km/day) 

Premix Leveling 30.0 (tonnes of mix/day) 

Patching with premix 30.0 (tonnes/day)  
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Table 3.4 Distress values and terminal values for different distress types  

Distress Severity Crack Area 
(m2/km) 

Rut Depth 
(mm) 

Pothole 
Percentage 

(% road surface) 
Low 0.1 2.5 2.5 

Medium 0.3 7.5 8.5 

High 0.6 12.5 16.0 

Terminal Value 1.4 20.0 30.0 

 

 

Table 3.5 Priority weights used in Equations (3.6) and (3.7) 

Item Priority Weight 

Distress Type (fDj) 100 for crack 

80 for rut 

60 for pothole 

Distress Severity (fSj) 30 for low severity 

70 for medium severity 

100 for high severity 

Road Class (fCj) 100 for expressway 

10 for arterial road 

 
Note: subscript j pertains to road segment 
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Table 3.6 Ten cases of different combinations of regional objective functions 

Objective Functions  
Case 

Region 1 Region 2 Region 3 

A Obj. 1 Obj. 2 Obj. 3 

B Obj. 1 Obj. 1 Obj. 1 

C Obj. 2 Obj. 2 Obj. 2 

D Obj. 3 Obj. 3 Obj. 3 

E Obj. 1 Obj. 1 Obj. 2 

F Obj. 1 Obj. 1 Obj. 3 

G Obj. 2 Obj. 2 Obj. 1 

H Obj. 2 Obj. 2 Obj. 3 

I Obj. 3 Obj. 3 Obj. 1 

J Obj. 3 Obj. 3 Obj. 2 

 
Note:  Obj. 1: Maximise number of distress road segments repaired 

Obj. 2: Maximise the performance level of regional road network pavements 

Obj. 3: Maximise the utilisation of available manpower 
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(a) 

Trial allocation of budget 

(b) 

Optional district strategies 
(c) 

Region network pavement 
performance 
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0 for segments not selected for maintenance 

1 for segments selected for maintenance 

n      =    number of road segments in region r 

(a) String of genes for regional level GA 

 

 

                                                        

L1, L2, L3  =  levels of budget allocated to the regions 1, 2 and 3  

 
(b) String of genes for central level GA 

 

 
Fig. 3.2   String structures of the genetic algorithm formulation 
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(a) Regional level optimization process  

Fig. 3.3 Flow chart for genetic algorithm optimization process (to be continued)
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(b) Central level optimization process 

Fig. 3.3 Flow chart for genetic algorithm optimization process (continued) 
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Fig. 3.4 Effect of Parent Pool Sizes on GA Convergence in Analysis of Region 3 
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Fig. 3.5 Convergence of GA Solutions with Different New Offspring Sizes in 
Analysis of Region 3 
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Fig. 3.6 Effect of Choice of Genetic Operators  
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Fig. 3.7 Effect of Mutation Rate on GA Convergence 
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Fig. 3.8 Effect of Crossover Rate on GA Convergence  
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(a) Region 1 

(b) Region 2 

 (c) Region 3 

 
Fig. 3.9 Optimal solutions for regional networks Case 1 

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Allocated budget (S$1000)

O
bj

ec
tiv

e 
fu

nc
tio

n 
- 

nu
m

be
r 

of
 s

eg
m

en
ts

 
re

pa
ir

ed

0

5

10

15

20

25

30

0 50 100 150

Allocated budget (S$1000)

O
b

je
ct

iv
e 

fu
n

ct
io

n
 -

 
n

et
w

o
rk

 P
D

I

0

100
200

300

400

500
600

0 50 100 150

Allocated budget (S$1000)

O
bj

ec
tiv

e 
fu

nc
tio

n 
- 

to
ta

l m
an

po
w

er
 u

se
d 

(m
an

-d
ay

s)



Chapter 3 Two-Step GA Optimization Approach 
   

 100 

 

0

5

10

15
20

25

30

35

0 10 20 30 40 50 60

Allocated budget (S$1000)

O
b

je
ct

iv
e 

fu
n

ct
io

n
 -

 
n

u
m

b
er

 o
f s

eg
m

en
ts

 
re

p
ai

re
d

 
(a) Region 1 
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(b) Region 2 
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(d) Region 3 

 
Fig. 3.10 Optimal solutions for regional networks Case 2 
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Fig. 3.11 Optimal solutions for regional networks Case 3 
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Fig. 3.12 Budget allocation for different total budgets  
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Fig. 3.13 Comparison of overall network PDI with different budget allocation 
strategies 
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(a) Objective Function: Maximize the number of road segments repaired 
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(b) Objective Function: Maximize network PDI 
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(c) Objective Function: Maximize total utilisation of manpower 

 

Fig. 3.14 Optimal solutions for regional networks
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(a) Budget allocation shares of regions for different available total budgets 
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Fig. 3.15 Budget allocation strategy for Case A (see Table 3.6) 
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(b) Regional network PDI distributions for different available total budgets 
 
 

Fig. 3.16 Budget allocation strategy for Case B (see Table 3.6) 
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(a) Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 
 

 
Fig. 3.17 Budget allocation strategy for Case C (see Table 3.6) 
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(a) Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 

 
Fig. 3.18 Budget allocation strategy for Case D (see Table 3.6) 
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(a) Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 

 
Fig. 3.19 Budget allocation strategy for Case E (see Table 3.6) 
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(a) Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 

 
 

Fig. 3.20 Budget allocation strategy for Case F (see Table 3.6) 
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(a)  Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 

 
 

Fig. 3.21 Budget allocation strategy for Case G (see Table 3.6) 
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(b) Regional network PDI distributions for different available total budgets 

 
 

Fig. 3.22 Budget allocation strategy for Case H (see Table 3.6) 
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(a)  Budget allocation shares of regions for different available total budgets 
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(b) Regional network PDI distributions for different available total budgets 

 
 

Fig. 3.23 Budget allocation strategy for Case I (see Table 3.6) 
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(b) Regional network PDI distributions for different available total budgets 

 
 

Fig. 3.24 Budget allocation strategy for Case J (see Table 3.6) 
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CHAPTER 4 

MULTI-AGENT VERTICALLY INTEGRATED  

OPTIMIZATION APPROACH 

 

4.1 INTRODUCTION 

 In the previous chapter, a two-step optimization analysis for highway fund 

allocation among regions has been described. The procedure is based on a two-step  

genetic algorithm with a single passing of information between the upper- and lower-

level managements. In this chapter, a distributed fund allocation approach based on 

multi-agent systems is proposed. The earlier hypothetical example problem is solved 

using the proposed approach and the results are compared against that obtained using 

traditional as well as the two-step optimization approach.  

 

4.2 MOTIVATION FOR DISTRIBUTED OPTIMIZATION IN MULTI-

NETWORK PAVEMENT MANAGEMENT 

The following are the main drives and motivation for a distributed fund 

allocation approach in multi-level pavement management: 

• ‘Negotiation’ between central and regional agencies. In the real-world budget 

allocation process, higher- and lower- level managements interact with one 

another through a series of directives and feedbacks before arriving at the final 

allocation strategy. This negotiation process is essential for a compromise to be 

reached. Multi-agent systems provide a more realistic representation of the 

‘negotiation’ process that takes place between the central administration and 

regional highway agencies. 
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• Complexity of problem. The multiple -network pavement management problem, 

when considered globally, is a highly complex problem involving large number 

of parameters, objective functions and constraints which need to be taken into 

account. When the number of pavement networks becomes very large, or when 

considerations are expanded onto other related systems than pavement, the 

problem can be too extensive to be analyzed as a whole. While centra lized 

approaches could still be possible , solutions based on independent local 

approaches allow the problem to be better understood and solved more 

elegantly.  

• Spatially distributed problem. The fund allocation problem among pavement 

sub- networks, by its very nature, is a physically distributed problem. The 

various provincial, regional or district highway agencies reside in different 

locations, with each looking after the pavement networks in their respective 

geographical boundaries. The central administration would also be separately 

situated from the other highway agencies. This makes it highly suitable for the 

multi-agent systems approach. 

• Distributed data and processing. Being situated in different geographical 

locations means that the data are also distributed over the topology, with each 

regional agency overseeing the data and processing of information in its own 

jurisdiction.  Merging these large and distributed data into a single database for 

a centralized optimization would require significant amount of resources and 

efforts. Further, the database merging process can be made complicated if the 

data from the various highway agencies are not in a standard ized format. A 

distributed approach would allow the processing of the data to be carried out in 
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a distributed manner, and only the most essential information is transmitted to 

the relevant party. 

 

4.3 DESCRIPTION OF MULTI-AGENT VERTICALLY INTEGRATED 

OPTIMIZATION APPROACH 

4.3.1 The Model 

 The funds allocation process in multiple agency pavement management can be 

modelled using MAS approach. Studies on similar problems from the group 

perspective in MAS research have been widely reported in the literature. Malone 

(1990) proposes a comprehensive study of group organization. “A group of agents is 

an organization if they are connected in some ways (arranged systematically) and their 

combined activities result in something better (more harmonious) than if they were not 

connected. An organization consists of: a group of agents; a set of activities performed 

by agents; a set of connections among agents; and a set of goals or evaluation criteria 

by which the combined activities of the agents are evaluated.” Hence, group 

organization depends upon the capacity of agents to coordinate their activities. 

In this context, each decision- maker can be modelled by an agent - the central 

authority is represented by a central agent while the regional highway agencies are 

represented by one regional agent each. Each agent has decision-making capabilities 

and specific roles to perform. The central agent is the authority over-looking the entire 

budgeting process, while regional agents receive directives from the central agent, 

work on the directives, and return a feedback to the central agent. A two-way 

communication is thus established and based on this communication, the needs and 

emphasis of each decision- maker is negotiated. The activities performed by regional 

agents would essentially be the scheduling of maintenance activities and reporting to 
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the central agent. The scheduling task is carried out based on certain constraints (e.g. 

budget) set by the central agent as well as local manpower and equipment constraints. 

The central agent will evaluate the overall system benefit derived from the combined 

feedback from regional agents. Based on this evaluation, the central agent will then 

provide further directives (another budget allocation) to regional agents, informing 

them if any changes or improvements to the original plan are required. A series of 

interaction between central and region agents will continue until satisfactory solutions 

are achieved or the maximum number of iterations is reached. 

 

4.3.2 Overview of Cognitive Agent Architecture (Cougaar)  

 The Cognitive Agent Architecture or Cougaar (BBN Technologies 2002a, 

2002b, Brinn et al. 2001) is used as the underlying multi-agent system in this research. 

Cougaar is a Java-based architecture for the construction of large -scale distributed 

agent-based applications. It is the product of a multi- year research project by the 

Defense Advanced Research Projects Agency (DARPA) in the United States which 

looks into large scale agent systems for military transportation scheduling (Montana et 

al. 2000). The agent system has been made available to the general public through 

open source licensing and has enjoyed worldwide user community in a wide variety of 

application domains. 

Cougaar provides a code baseline that provides developers with a framework to 

implement large-scale distributed agent applications with minimal consideration for 

the underlying architecture and infrastructure. This is essential as focus can be 

maintained on the optimization problem at hand rather than inventing a new agent 

architecture for the purpose of this research. Cougaar allows its agents to cooperate 

with one another to solve a particular problem, storing the shared solution in a 
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distributed fashion across the agents. Cougaar agents are composed of related 

functional modules, which have the capability to dynamically and continuously rework 

the solution as the problem parameters, constraints, or execution environment change. 

Other advantages of Cougaar include its scalability for large systems, ability to 

schedule over the internet and dynamic replanning and execution monitoring 

capabilities. 

Cougaar is built on compone nt-based, distributed agent architecture based on 

the blackboard concept. The agents communicate with one another by a built- in 

asynchronous message-passing protocol. A Cougaar agent consists of two major 

components: a partitioned blackboard, and plugins (Fig. 4.1). Plugins are software 

components that provide behaviors and business logic to the agent’s operations. Each 

plugin provide unique capabilities, knowledge and behavior that allow the plugin to 

specify how to complete a given task. Therefore, an age nt that requires certain 

functionality will load the plugin or plugins designed to accomplish this functionality. 

The plugins of an agent interact with the agent and with each other by publishing and 

subscribing to objects on the blackboard. The Cougaar blackboard is a partitioned data 

structure that contains a collection of objects that is being communicated between an 

agent and its plugins. By design, plugins have no direct interaction with other plugins 

(other than through publishing and subscribing to objects in the blackboard) and for a 

given message do not know which plugin will process it or if that plugin is in the same 

agent or in another agent. This is where the agent is reactive, i.e. it reacts to subscribed 

objects added to its blackboard. 

A Cougaar agent is an agent that has been given behaviors to model a 

particular organization, business process or algorithm. It can be programmed to have 

both cognitive and reactive capabilities. A Cougaar society is a collection of agents 
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that interact to collectively solve a particular problem or class of problems, which are 

typically associated with planning. A Cougaar community is a notional concept, 

referring to a group of agents with some common functional purpose or organizational 

commonality. Thus, a Cougaar society can be made of one or more logical 

communities, with some agents associated with more than one community.  

By default, Cougaar agents do not know of the existence of other agents in their 

society, nor do they know how to communicate or take advantage of them. For proper 

interactions within a society to be established, relationships among agents must be 

established. Relationships between Cougaar agents represent a role or capability that a 

given agent can perform for another agent. Some standard roles and relationships 

include superior-subordinate and customer-provider relationships. Each relationship is 

mutual, for example if A is the superior of B, then B is the subordinate of A. Cougaar 

allows a given agent to be in many different roles and relationships simultaneously, 

and these roles and relationships can be dynamic, i.e. they can be modified, enhanced, 

deleted, and extended in the course of the processing of the society. 

 

4.3.3 Cougaar in the Multi-Agent Vertically Integrated Optimization Approach 

4.3.3.1 The Agents  

 In Cougaar, the name s of the agents are listed in a node initialization (*.ini) 

file. This file contains the name of all agents that will be created by the system at 

startup. Each agent is defined by another separate agent initialization file. The name of 

the file must be the same as the name of the agent, for example, Central.ini defines the 

agent named “Central”.  Regional agents are named as Region1, Region2 and so on.  

The agent initialization file contains the list of java classes that make up the agent 
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object, the uic (agent name), the names of the plugin classes that will be implemented 

by the agent, and whether or not the agent is cloned. All agents are set as not cloned. 

 

4.3.3.2 The Community 

In the system implemented, the agent initialization file also defines a 

community domain so that all agents are related to each other as a community. The 

entities (each agent) in the community – their names, member types, and roles – are  

defined in an XML file. The central agent has the role of “administrator”, while the 

regional agents have the role of “region”. The role names are important to categorize 

the agents into different groups according to their roles. These are used during the 

message passing.  

 

4.3.3.3 Agent Relationships 

The central agent is the “superior” to other region agents, while the region 

agents are “subordinates” to the central agent. The relationship that each agent has 

with regard to another agent is defined in a <region-name>-prototype-ini.dat file. In 

this implementation, however, the agent relationships are not important because their 

roles are used as the main criteria for message passing. The roles have been defined in 

the community XML file (Section 4.3.3.2). 

 

4.3.3.4 Objects 

 The system consists of many objects, some of which are manipulated only by 

the regional agents, while some are used solely by the central agents. While not all 

objects will be exhaustively accounted for in this section, the important ones are 

described in the following: 
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Road – Road is an object that represents each road segment. Each Road contains all 

data pertaining to the road segment, including its ID, road type, length, number of 

lanes, distress type, distress severity, the pavement condition, and the cost and 

resources required for its repair activity. This object is only used by region agents. 

 

RoadCollection – RoadCollection is a container that holds together the Road objects in 

a regional pavement network. This object also functions as the interface between the 

database and Cougaar in that it retrieves the pavement network information from the 

database and creates the Road objects for use in the multi- agent system. 

 

SimplePMS – This object is the pavement management system of the region agents. It 

defines all constants and variables pertaining to the pavement management system, 

including unit maintenance costs, production rates, premix density, resource 

requirements, terminal severity values, weights, warning levels, network size, allocated 

budget, manpower availability, and system objectives of a region. SimplePMS also 

provides all the methods for the calculation of required maintenance costs, resources, 

network pavement condition index, and activities scheduling and optimization. 

 

Optimizer – This object works and interfaces with SimplePMS to perform the 

optimization routine. It stores all information that is calculated during an optimization 

run, and provides methods for analyzing the genetic strings of each individual solution 

during the optimization, assigning evaluation values, checking constraints, and 

assigning penalty values. 
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Budget – Budget is an object created by the central agent and broadcasted to the region 

agents. The Budget contains two vital information, the total number of regions, and the 

amount of fund to be allocated to each region. 

 

RegionalReport – This is the feedback report created and modified by region agents 

after each network-level optimization is performed. It is sent to the central agent for 

evaluation purposes. This report contains summary information on network 

characteristics, cost of maintenance for the particular maintenance program, the budget 

assigned to it, the pavement performance after maintenance, and the resources used. 

 

RankReport  – This is a copy of the RegionalReport kept by the central agent. It is 

created each time a RegionalReport is received by the central and ranked according to 

the criteria set by the central. Ranking can be based on the improvement in pavement 

performance, amount of budget allocated, or the region number. The purpose of the 

ranking is for the central to sort the reports for housekeeping and other computational 

purposes. For example, the reports may be received in a random order, and the central 

would need to sort them according to amount of budget allocated for further 

processing. 

 

CentralRecord – This is a list of RankReports kept by the central agent. This record is 

used to store a complete set of RankReports for any one budget allocation strategy.  

‘Complete’ means all regions have submitted a report for any particular budget 

allocation strategy, which can be determined by checking the number of RankReports 

in the CentralRecord. The CentralRecord also sums and stores the total network 
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Pavement Damage Index as well as cost and sum of weights information as each 

RankReport is added into it. 

 

CentralSystem – The main purpose of this object is to store all CentralRecords that are 

still being used by the central agent. It enables a neat and clean housekeeping of 

CentralRecords, as well as defining system constants such as the available central 

fund, and temporary variables such as the best objective value achieved and the 

iteration number at which it is achieved. 

 

4.3.3.5 Plugins  

 The plugins are the main components that define the behaviors of the agents. 

All the actions and reactions of an agent are defined by its plugins. Only two plugins 

are required for this implementation – region agents use RegionPlugin, while the 

central agent implements CentralPlugin. Both plugins subscribe to two objects on the 

agent’s blackboard, Budge t and RegionalReport. RegionPlugin subscribes to 

RegionalReport as a way to keep the latest copy of its RegionalReport available to 

itself, since the RegionalReport is being continuously updated. Similarly, 

CentralPlugin subscribes to Budget as a way to keep its copy of Budget object up-to-

date. 

 Subscriptions enable the agent to react according to certain rules when the 

object/objects it subscribes to is/are detected on the blackboard. An object that is 

subscribed is identified by using predicates that are defined in the subscription.  In 

Cougaar, it is possible for a plugin to identify if an object is newly added or changed in 

the blackboard. For example, the RegionPlugin creates a new RegionalReport when it 

detects a new Budget object on the blackboard. However, when the Budget object is 
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detected to have changed, the RegionPlugin will retrieve a copy of its own 

RegionalReport from the blackboard and publish changes to it instead of creating a 

new report. This helps to save computer memory by reducing the number of objects in 

the Java Virtual Machine (JVM) at any one time. 

 

4.3.3.6 Message Passing  

 Message passing, or the sending of objects among agents is accomplished using 

a RelayObject. The RelayObject is an object that is used to encapsulate another object 

that is desired to be added to an agent’s blackboard. RelayObject contains information 

regarding the message source, target, a UID (message identity), and the message 

object. The target can be consists of one agent or a list of other agents, which can be  

queried to from their roles in the community. Thus, if a Budget object is to be 

broadcasted to all regions, a query is first made for all agents who have the role of 

‘region’ in the community. The list of agents that fits the query is defined into the 

RelayObject. Next, the Budget object that is to be sent is attached to the RelayObject, 

and the sender’s identity is included in the message source. This way, the message can 

be received by all other region agents, and they will know that the message is sent by 

the central agent based on the source information.  

 The communications in Cougaar have been modelled in an asynchronous 

manner, that is, the messages are transmitted in any order and the length of time taken 

for an agent to respond to a message is of no concern to the agents. The system, 

therefore, needs to be programmed in such a way that all possibilities of delayed 

communication is taken into account before certain types of processing which requires 

specific messages to be received prior to processing is carried out. Coordination also 

needs to be taken care of explicitly to avoid circumstances of infinite loop where 
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agents wait for certain messages from each other in order to continue processing, but 

because none of the agents has received any messages, the system is caused to go into  

an infinite loop. This is an undesirable situation but is very common if coordination 

among the agents is not in the correct order. Most of the actions undertaken by an 

agent include checks on various parameters and indicators of received messages. 

 

4.3.4 The Solution Procedure 

Fig. 4.2 shows the flow chart for the interactions and decision-making process 

of the central and regional agents. At start-up, each agent identifies their pre-defined 

identity specified in the syste m. This is necessary so that each agent knows the role 

they are going to play in the system. The central agent, in addition, performs a query to 

the system to identify the number of regional agents registered. Subscriptions are then 

set up to enable the agents to subscribe to communications from other agents. 

The grey areas of Fig.  4.2 represent the genetic-algorithm steps involved in the 

proposed budget allocation methodology.  The central agent uses genetic algorithms to 

search for an optimal budget allocation strategy, while region agents use genetic 

algorithms for regional network- level pavement maintenance optimization. Fig. 4.3  

shows the distributed optimal budget allocation process using multi-agent systems and 

genetic algorithms. At each generation, budget communications from the central agent 

relay a genetic solution string which represents a random allocation strategy to be 

evaluated by the regional agents. Evaluation is performed by regional agents using 

another set of regional- level genetic algorithms. Thus, the whole process can be 

viewed as two successive genetic algorithms that work interactively to reach the 

central goal while also still optimizing the regional goals. After each evaluation, 

regional agents generate a report that is communicated back to the central giving the 



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach  
 

 127 

optimal solution from regional- level optimization for the funds specified. The 

RegionalReport informs the central agent of the regional road network information, 

total PDI repaired and cost required for such repair. Upon rece iving reports from all 

regions, the central agent will then perform an evaluation as to the effectiveness of the 

current budget allocation strategy in question with respect to its system goal. The 

evaluation value is fed into the central- level genetic-algorithms and the whole process 

repeats for the next solution string. Iterations will stop once the central agent reaches a 

specified number of generations. The best funds allocation strategy that has been found 

will then be relayed to the regional agents for implementation.  

 

4.4 APPLICATION OF MULTI-AGENT VERTICALLY INTEGRATED 

APPROACH 

A hypothetical example problem involving a two-level pavement management 

structure as described in Chapter 3 (Section 3.3) is solved using the distributed 

optimization approach to demonstrate its technique in an actual pavement management 

application as well as to gauge its performance. The three cases that are used as case 

studies for the distributed multi-agent approach are re-summarized in Table 4.1(a) 

while the pavement conditions of the regional road network for the cases are given 

again in Table 4.1(b). Similar pavement network characteristics, resource availability, 

and objective functions and constraints as that in the earlier example problem are 

assumed. The objective functions of each regional highway agency and central 

administration are re-summarized here: 

Region 1 -- Maximizing the number of distressed road segments repaired 

Region 2 -- Maximizing the performance level of regional road network 

pavements 
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Region 3 -- Maximizing the usage of the available manpower 

 The only things that will differ from the earlier problem solved in Chapter 3 

will be the genetic string structures and solution methodology.  

 

4.4.1 GA String Structures 

Different GA string structures are used in the optimization analysis by the 

central and region agents. At the regional level optimization, the GA string structure is 

similar to the one used in Chapter 3. The decision variables pertain to the choice of 

road segments selected for maintenance. Thus, an appropriate string structure for each 

region agent is one that consists of one cell for each road segment as shown in Fig. 

4.4(a). The total length of the string structure (i.e. the number of cells) is therefore 

equal to the number of road segments in the region concerned.  The value of each cell 

gives the maintenance decision taken for the road segment that the cell represents. A 

value of 1 for the k-th cell means that the k-th road segment is selected for 

maintenance, while a value of zero indicates that the road segment is not selected for 

maintenance. The GA package used for the optimization process in the region agents is 

PGAPACK (Levine 1996). 

At the central level optimization, the decision variables are the binary 

representations of the shares of budget allocation for the three regions. The total length 

of the string structure depends on the maximum number of bits that may be involved. 

Since one region can at most be allocated the maximum available central funds, the 

maximum number of bits is therefore the number of bits in the binary representation of 

the total available central funds multiplied by the number of regions. 









×
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regions of number Total

funds central available total
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The GA string structure for the central agent is shown in Fig. 4.4(b). A Java-based 

genetic -algorithm package ECJ (Luke 2002) is used at the central level.  

 

4.4.2 Constraint Handling  of Central GA 

 At the central level, a small GA population size is desirable because the 

evaluation of each central individual requires a genetic algorithm optimization run to 

be performed by each regional agent. A small increase in the central GA population 

size will significantly increase the total number of function evaluations to complete 

each cycle of central GA generation. Therefore, it is desirable to enable the GA to 

converge using a small population size, and to reduce the amount of function 

evaluations required at each generational run. This can be achieved using a decoder 

and repair algorithm method (DRAM) (Hoque 1999) to handle constraint violations at 

the central GA. 

 The DRAM algorithm is used before each central GA is evaluated. This 

ensures that the central budget availability constraint is not violated before it is sent to 

the regional agents for regional-level optimizations. To preserve the regional budget 

allocation as much as possible, the DRAM algorithm first search for the regional share 

of budget that exceeds the central budget constraint and randomly mutates the budget 

share of this region until it is within the central budget limit. Next, the sum of all 

regional budget shares is checked against the total budget availability. If a violation is 

detected, the individual is randomly reinitialized. 

 Fig. 4.5 shows a comparison of the central GA run with and without using the 

DRAM algorithm described above. A marked improvement in the convergence of the 

GA can be seen when the DRAM algorithm is used. It shows that the DRAM 
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algorithm is able to guide the GA to start the search with much fitter individuals. Good 

convergence is achieved with a small population size of 10 and within 100 generations. 

 

4.4.3 Sensitivity Analysis of Central GA Parameters  

The problem at the regional level remains the same as in Chapter 3. Therefore, 

the same GA parameters in the regional agents are used here. Sensitivity analysis is 

conducted for the central GA. 

The sensitivity analysis is conducted using Case 2 as the test case. The best of 

three runs is reported for a particular GA parameter value analyzed. Fig. 4.6 shows the 

effect of different population sizes on the GA convergence of the central agent. To 

study the effect of population size, the offspring size is fixed at 80% of the population 

size, while the crossover and mutation rates are 85% and 5% respectively.  Mutation 

and crossover are simultaneously applied as the genetic operators. Results show that 

the population size of 40 gives faster convergence compared to the other population 

sizes. However, smaller population sizes such as 10 and 20 gives comparable 

performance as population size 40 where the final convergence value is concerned. 

Smaller population size is preferable as explained in Section 4.4.2. Therefore, 

population size of 10 is used for the central agent. 

The offspring size is determined as shown in Fig. 4.7. The percentage of parent 

pool size refers to the newly generated individuals in the offspring population. For 

example, an offspring size of 90% of the parent pool size means that 10% of the 

individuals in the parent population will be retained into the offspring population and 

the remaining 90% are newly generated individuals. Results show that the final 

convergence value decreases as the offspring size increases up to 50% of the parent 

pool size. Therefore, offspring size of 60% of the parent pool size is found to be the 
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most suitable. The convergence value obtained from offspring size of 60% is also the 

same as that obtained in the analysis for the population size. This value is expected to 

be the true convergence value. 

Fig. 4.8 shows the effect of crossover rate on the convergence of the GA of the 

central agent. Crossover rate of 85% is found to give the best convergence value. The 

sensitivity of the problem towards mutation rate is studied and shown in Fig. 4.9. The 

performance of the GA improves as the mutation rate is decreased till 5%. The GA 

convergence value decreases thereafter. Therefore, the mutation rate of 5% is 

appropriate for the problem considered. 

 

4.4.4 Method of Analysis 

A random initial population of possible individuals (allocation strategies) is 

generated by the GA in the central agent, and each individual is broadcasted to the 

regional agents. Regional agents use the budget information as a constraint in their 

own search for the optimal pavement maintenance schedule in their respective road 

networks in terms of their respective objective functions. A regional report is generated 

upon reaching an optimal solution, and this is sent back to the central agent. Upon 

receiving reports from all regions, the central agent retrieves and processes the 

information to arrive at the overall network PDI encompassing all regions. This is used 

as the fitness value of the particular individual in consideration. If there are more 

unevaluated individuals, the central agent repeats the whole process with the next 

individual until each and every individual in the population has been evaluated. If all 

individuals have been evaluated, the algorithm generates a new offspring population 

using genetic operators such as mutation and crossovers, and the above cycle repeats 
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itself until the maximum number of generation is reached. The whole process is 

repeated for a range of central available budget. 

 

4.4.5 Comparison with Other Allocation Approaches 

 The results obtained from the multi-agent vertically integrated optimization 

approach are compared against those obtained using: 

- Two-step optimization approach 

- Formula -based allocation approach 

- Needs-based allocation approach 

These approaches were described in Section 3.6. 

 

4.5 RESULTS OF ANALYSIS 

4.5.1 Savings in Total Cost 

Each of the allocation method described in the preceding sections was used to 

obtain the best fund allocation strategy for the three problem cases studied. The 

percentages of budget allocated to each region according to conventional approaches 

(needs-based and formula-based approaches) are the same for different total available 

central funds because they depend on variables that are not sensitive towards the 

amount of available global funds (Figs. 4.10 and 4.11). In Fig. 4.10, the percentage of 

central fund that is allocated to each region is directly proportional to the total length 

of roads in each region. While in Fig. 4.11, the percentage of allocation is directly 

proportional to the amount of fund needed by each highway agency to repair all 

distresses in their respective regions. 

Figs. 4.12 and 4.13 show the shares of budget allocated to each region 

according to the two-step optimization and agent-based vertically integrated 
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approaches respectively. In all three problem cases, the general trend of the budget 

allocation strategies derived from these two approaches is similar. Both the two-step  

and agent-based approaches allocate the global funds based on its availability, thus 

providing a more flexible allocation strategy tailored to the needs and constraints of 

each regional agency as well as the central administration. Each of the cases is 

discussed in detail below. 

 

(a) Case 1 

In Case 1, both allocation procedures allocate the bulk of central funds to 

Region 2 when the available total budget is at S$30,000 and lower (Figs. 4.12a and 

4.13a). However, the multi-agent approach tends to allocate a higher percentage of 

funds to Region 3 in this budget range. This is in contrast to the allocation strategy of 

the two-step optimization approach which favors Region 1 to Region 3 for this range 

of budget. Table 4.2(a) shows that the strategy by the vertically integrated MAS 

approach results in  reduced total maintenance cost by up to 15.59% for this budget 

range (where PDI limit is 22) compared to the two-step approach. A possible 

explanation for this is that at low budget levels, allocating more funds to Region 3 

instead of Region 1 better serves the central objective because the objective function of 

Region 1, which pushes to maximize the number of roads repaired, would naturally 

repair the low severity distresses first to increase the number of roads repaired. Thus, it 

could not give as high a contribution in reducing the overall network PDI compared to 

Region 3. This is valid for low central budget availability. From this analysis, the 

vertically integrated MAS approach is able to find solutions that better serves the 

central objective function. 
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Region 2 receives the bulk of the funds when the available central resources are 

low because its objective function of minimizing network PDI is in line with the 

central objective. As the central funds increase, the funds being allocated to Region 1 

picks up as more funds are now available to include the high severity distresses in that 

region. The maximum savings achieved with the vertically integrated multi-agent 

approach compared to the needs-based and formula-based allocation approaches are 

28.73% and 36.54% respectively. 

 

(b) Case 2 

A similar pattern is observed in Case 2 (Figs. 4.12b and 4.13b). Region 2 is still 

given the highest priority when the central funds are at very low levels in both the 

agent-based and two-step allocation methods. After that, the bulk of the fund shifts to 

Region 3. This is because of the high initial network PDI value in Region 3, which 

allows for a greater number of high severity distresses to  be repaired (and thus 

significantly reduces the overall network PDI value at the global level) when there are 

enough central funds. As in Case 1, allocation to Region 1 picks up only when the 

available central funds are at a level where enough funds are available to include the 

high severity distresses in the region that could contribute to high reduction in the 

global network PDI. The maximum savings achieved using the agent-based allocation 

approach from the 2-step approach is 15.19%, while the maximum savings from the 

needs-based and formula-based approaches are 37.44% and 36.72% respectively 

(Table 4.2b). 
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(c) Case 3 

 The main difference in the pattern of allocation in Case 3 compared to the first 

two cases is that Region 1 is given higher priority than Region 3 when the available 

central fund increases to S$40,000 and above. In Case 3, Region 1 has a significantly 

higher network PDI than Region 3 where most of the distresses in Region 1 are of high 

severity. Even though it is more cost ly to repair these high severity distresses, the 

algorithm still favors Region 1 to Region 3 for budget levels S$40,000 and above 

because of the PDI contributions of these segments.  Allocating more funds to Region 1 

to repair these severely distressed road segments will help to push the overall network 

PDI down. However, this results in Region 3 receiving very little funding at budget 

levels S$40,000 to S$100,000. Region 2, as in the previous two cases, continues to 

receive the most fund when central resources are low (S$30,000 and below).  When the 

central budget reaches S$140,000 and above, the proportion of funding to each region 

becomes almost equal. This proportion should become synonymous with the 

proportion of the sub-network size of each region if the analysis is to be continued to 

more than S$150,000, as was reported in Chapter 3 (Fig. 3.12). 

 

4.5.2 Overall Network PDI 

 The dual of the problem is to derive the overall network PDI achieved for 

different available central budget. This is obtained in order to show the differences in 

the overall network PDI that is achieved using the various fund allocation approaches 

studied. Fig. 4.14 shows a comparison of the overall network PDI achieved. As 

expected, the vertically integrated MAS approach gives better overall network PDI for 

all budget ranges for all three problem cases considered. The differences between the 

approaches introduced in this thesis (two-step optimization and vertically integrated 
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MAS approaches) and conventional allocation approaches becomes larger for Case 2 

and Case 3. The differences between the two-step optimization and vertically 

integrated MAS, however, remain small. Nevertheless, the reductions in cost between 

the two approaches were fairly significant, as reported in the previous section. 

 

4.5.3 Regional Objective Function Values 

 Fig. 4.15 shows a comparison of the regional objective function values 

achieved using the two-step optimization and vertically integrated MAS approaches 

for Case 1. The comparison of regional objective function for Cases 2 and 3 are shown 

in Fig. 4.16 and 4.17 respectively. A region’s objective function value for specific 

central budget availability obtained using any of the two approaches may rise or drop 

according to the amount of fund the region gets allocated. It is interesting to note that 

both approaches do produce strikingly similar curves. Differences in objective function 

value achieved between the vertically integrated MAS optimization and two-step 

optimization approaches arise because different funding levels are allocated at specific 

central budget availability when using different fund allocation approaches. Neither of 

the two approaches could guarantee a “better” achievement of regional objectives for 

specific central budget availability. However, a general trend is that the regions will 

benefit more when the available central budget gets higher. 

 

4.6 CHAPTER SUMMARY 

 In this chapter, a vertically integrated multi-agent optimization approach to the 

allocation of multi-regional pavement maintenance fund has been proposed. The 

approach is well-suited for the problem considered due to the spatially distributed 

nature of the problem, the distributed data and processing, and the complexity of the 
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multi-network pavement management problem when considered globally. The multi-

agent system is implemented using Cougaar, a Java-based code baseline developed by 

the Defence Advanced Research Projects Agency (DARPA) of the United States for 

the construction of large -scale distributed agent-based applications. The agent system 

constructed for the proposed approach has been described. 

 The solution procedure of the distributed multi- agent optimization approach 

has been demonstrated using a hypothetical example problem. The example problem 

of Chapter 3 is solved using the proposed distributed multi-agent optimization 

approach, and the results compared against that of other allocation procedures, namely 

the two-step optimization approach introduced in Chapter 3, and the formula- and 

needs-based allocation approaches. The distributed multi-agent optimization approach 

has been found to consistently give higher cost savings for a target PDI level. The 

savings can be as high as 36% compared to formula-based approach for the problem 

cases considered. 

It is obvious both the two-step and agent-based allocation approaches 

consistently perform better than the conventional needs- and formula-based systems in 

terms of reduced overall maintenance cost. Both the approaches are able to reduce the 

spending required for a given target of pavement performance because they fully take 

into consideration the overall goal of the central administration without compromising 

local goals. The agent-based approach, however, is better able to save further in 

maintenance cost compared to the two-step allocation approach due to better 

interactions through improved information integration between the two management 

levels made possible using agent technology. The vertical interactions provide a means 

for information at the two levels to be better integrated, thus resulting in a better 

overall performance of the budgeting process. 
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Table 4.1 Planning data for regional road network  

(a) Summary of the three cases studied and their attributes 

  Region 1 Region 2 Region 3 

Number of road segments 30 40 50 

Network PDI 32.53 24.74 32.78 Case 1 

Maintenance Needs (S$) 44 937.60 59 767.36 69 074.56 

Number of road segments 40 40 40 

Network PDI 10.82 21.07 41.19 Case 2 

Maintenance Needs (S$) 63 453.76 60 616.96 63 825.28 

Number of road segments 30 80 150 

Network PDI 50.45 22.05 12.83 
Case 3 

Maintenance Needs (S$) 59 392.96 126 652.80 217 744.00 

 



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach  

 139 

(b) Pavement conditions of regional road networks 

 
  Case 1 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
Expressway 2 4 1  1 0 3  1 0 0 

1 
Arterial Road 1 0 1  3 2 4  3 1 3 

Expressway 1 2 7  1 5 6  1 2 2 
2 

Arterial Road 3 0 4  0 1 1  2 1 1 

Expressway 2 1 1  2 3 3  1 0 4 
3 

Arterial Road 2 2 3  6 4 9  3 2 2 

   
Case 2 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
Expressway 0 2 13  0 0 4  0 0 0 

1 
Arterial Road 1 1 12  0 0 1  0 1 5 

Expressway 1 0 6  0 0 3  0 0 1 
2 

Arterial Road 4 4 8  2 2 5  1 0 3 

Expressway 1 1 1  3 5 1  1 0 0 
3 

Arterial Road 3 1 1  9 5 4  0 2 2 

   
Case 3 

Number of Distressed Segments 
Crack  Rut  Pothole Region Road Type 

H M L  H M L  H M L 
1 Expressway 2 1 0  5 1 0  2 1 0 

 Arterial Road 1 1 0  9 2 1  3 0 1 

2 Expressway 5 3 11  2 4 4  1 3 4 

 Arterial Road 2 2 22  1 2 4  1 5 4 

3 Expressway 1 2 28  0 2 14  0 0 9 

 Arterial Road 2 3 53  3 0 20  2 3 8 

 

Note: H = High Severity, M = Medium Severity, L = Low Severity
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Table 4.2 Savings obtained from agent-based vertical interaction approach compared to other approaches (to be continued) 

(a) Case 1  

 
 
 

Vertically  
Integrated MAS  

Approach 

 
 
 

2-Step Optimization 
Approach  Needs-based Approach  Formula-based Approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

PDI 
 
 

Total Cost  
(S$1000) 

 
 

Total Cost 
(S$1000) 

Amount % 

 
 

Total 
Cost  

(S$1000) Amount % 

 
 

Total 
Cost  

(S$1000) Amount % 
22  29884.96  35406.12 5521.16 15.59  41933.30 12048.34 28.73  46195.42 16310.46 35.31 
21  36657.54  41148.01 4490.46 10.91  45950.08 9292.54 20.22  55414.87 18757.33 33.85 
20  42749.68  45669.83 2920.15 6.39  53080.67 10330.99 19.46  62947.58 20197.90 32.09 
19  48445.35  50228.03 1782.68 3.55  59655.52 11210.17 18.79  67847.25 19401.90 28.60 
18  53326.59  55141.25 1814.66 3.29  64273.33 10946.74 17.03  74190.76 20864.18 28.12 
17  58145.95  60081.96 1936.02 3.22  68781.09 10635.14 15.46  82179.21 24033.26 29.24 
16  63496.70  65361.09 1864.39 2.85  72526.22 9029.52 12.45  94310.87 30814.16 32.67 
15  68772.38  70838.98 2066.60 2.92  76271.36 7498.98 9.83  103539.01 34766.63 33.58 
14  72819.93  76880.56 4060.63 5.28  80371.48 7551.55 9.40  111343.30 38523.36 34.60 
13  76867.49  83148.90 6281.41 7.55  86432.43 9564.94 11.07  119853.65 42986.16 35.87 
12  84475.48  89486.83 5011.35 5.60  95786.43 11310.96 11.81  133119.02 48643.55 36.54 
11  90943.46  94934.10 3990.64 4.20  102969.69 12026.23 11.68  144621.42 53677.96 37.12 
10  95987.46  100479.63 4492.17 4.47  108899.13 12911.67 11.86  * * * 
9  101731.47  106395.39 4663.92 4.38  116073.98 14342.51 12.36  * * * 
8  108333.09  114026.46 5693.37 4.99  125232.85 16899.76 13.49  * * * 
7  112446.04  126066.98 13620.94 10.80  * * *  * * * 

 

Note: * The target PDI could not be achieved with the approach indicated in the column.  
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Table 4.2 Savings obtained from agent-based vertical interaction approach compared to other approaches (continued) 

(b) Case 2 

 
 

Vertically 
Integrated  

MAS Approach 

 
 

2-Step Optimization  
Approach  Needs -based Approach  Formula-based Approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

PDI 

 Total Cost  
(S$1000) 

 
 

Total Cost  
(S$1000) 

Amount % 

 
 

Total Cost  
(S$1000) 

Amount % 

 
 

Total Cost  
(S$1000) 

Amount % 
22  10,086.29  11,892.22 1,805.93 15.19  15,612.35 5,526.06 35.40  3,493.45 3,407.16 25.25 
21  14,152.89  16,646.96 2,494.07 14.98  21,655.12 7,502.22 34.64  18,886.03 4,733.14 25.06 
20  18,219.50  20,979.54 2,760.05 13.16  28,094.57 9,875.07 35.15  25,931.04 7,711.54 29.74 
19  22,630.49  24,617.21 1,986.72 8.07  34,765.11 12,134.62 34.90  33,646.30 11,015.82 32.74 
18  27,158.07  28,254.88 1,096.81 3.88  41,229.31 14,071.24 34.13  40,020.88 12,862.81 32.14 
17  31,196.27  32,090.65 894.39 2.79  46,991.23 15,794.96 33.61  44,304.23 13,107.97 29.59 
16  34,684.59  36,043.88 1,359.28 3.77  52,909.89 18,225.30 34.45  48,587.58 13,902.99 28.61 
15  38,189.02  40,073.21 1,884.19 4.70  58,881.14 20,692.12 35.14  60,350.74 22,161.73 36.72 
14  42,414.69  45,075.88 2,661.18 5.90  65,217.01 22,802.32 34.96  64,972.23 22,557.54 34.72 
13  46,640.37  50,062.60 3,422.23 6.84  72,989.70 26,349.33 36.10  70,079.71 23,439.34 33.45 
12  51,485.65  54,817.35 3,331.70 6.08  82,295.60 30,809.95 37.44  76,105.11 24,619.45 32.35 
11  58,071.72  59,572.10 1,500.38 2.52  89,777.47 31,705.76 35.32  84,952.38 26,880.66 31.64 
10  63,380.86  65,139.70 1,758.84 2.70  94,970.12 31,589.25 33.26  96,748.68 33,367.82 34.49 
9  68,615.02  70,843.29 2,228.27 3.15  100,967.82 32,352.80 32.04  104,540.64 35,925.62 34.37 
8  75,300.86  76,993.90 1,693.04 2.20  108,973.67 33,672.80 30.90  111,914.02 36,613.16 32.72 
7  83,980.64  88,233.77 4,253.13 4.82  118,116.61 34,135.98 28.90  120,103.44 36,122.81 30.08 
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Table 4.2 Savings obtained from agent-based vertical interaction approach compared to other approaches (continued) 

(c) Case 3 

 
 
 

Vertically  
Integrated MAS  

Approach 
 2-Step Optimization Approach  Needs-based Approach  Formula-based Approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

PDI 
 
 

Total Cost  
(S$1000) 

 
 

Total Cost  
(S$1000) 

Amount % 

 
 

Total Cost  
(S$1000) 

Amount % 

 
 

Total Cost  
(S$1000) 

Amount % 
19  13600.93  14080.00 479.07 3.40  27202.68 13601.75 50.00  29330.74 15729.80 53.63 
18  20689.97  21912.52 1222.55 5.58  37608.77 16918.80 44.99  44839.32 24149.35 53.86 
17  27728.92  29857.95 2129.02 7.13  53999.14 26270.21 48.65  57971.82 30242.90 52.17 
16  38699.72  38936.66 236.93 0.61  67571.03 28871.30 42.73  71642.58 32942.86 45.98 
15  46096.35  47001.08 904.73 1.92  86322.81 40226.46 46.60  85277.64 39181.29 45.95 
14  53981.33  54698.44 717.11 1.31  103574.93 49593.61 47.88  105206.53 51225.21 48.69 
13  62329.31  62875.69 546.38 0.87  118436.86 56107.55 47.37  127804.85 65475.54 51.23 
12  71803.13  72758.14 955.00 1.31  137054.18 65251.05 47.61  151814.19 80011.06 52.70 
11  84377.13  85898.57 1521.44 1.77  157559.19 73182.06 46.45  171709.08 87331.95 50.86 
10  107231.45  115820.44 8588.99 7.42  186944.37 79712.93 42.64  210529.28 103297.83 49.07 
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Fig. 4.1 A Cougaar Agent (ALPINE 2002a) 
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Fig. 4.2 Flow chart for agent interaction and decision-making process 

Central Agent Regional Agent 

Yes 

Implementation 

Agent defines self 

Start 

Query number of regions  

Initialize GA parameters 

Generate initial solution 
pool (budget allocation) 

Broadcast budget 
allocation 

Agent defines self 

Setup Subscriptions 

Create road info database 

Start 

Setup Subscriptions 

Receive 
budget 

allocation 

Initialize GA 
parameters 

Generate regional report 

Receive 
regional 
report 

Violation check, 
compute and rank 

overall network PDI 

Select best allocation 
strategy 

All individuals 
evaluated? 

Generation 
complete? 

Yes 

Select next 
allocation 

No 

Generate new 
offspring 

No 

Generate initial 
solution pool 

Constraint 
violation?  

Apply 
penalty 
value 

No 

Evaluate 
solutions and 

form parent pool 

Converged
? 

Generate 
new 

offspring 

Yes 

No 

Yes 



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach 

 145 

 

 
Fig. 4.3 Interactive optimal budget allocation process using Multi-Agent Systems and Genetic Algorithms



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach  

 146 

 

 
 
 
 
 

         Xrj   = 
0 for segments not selected for maintenance 

1 for segments selected for maintenance 

n      =    number of road segments in region r 

(a) Genetic string structure for region agents 

 
 

 
Br     =    a single bit of the binary number representing the 

budget allocated to region r 

R    =    number of regions involved 

(b) Genetic string structure for central agents 

 
 

Fig. 4.4 String structures of the genetic-algorithm formulation in agent -based 
optimization approach 

 
 

 

 

 

 

 

 

 

 

B1 B1 Br B1 Br Br BR BR BR 

Total funds to 
region 1 

Total funds to 
region r 

Total funds to 
region R 

Xr1 Xr2 Xr3 Xrj Xrn 



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach  

 147 

 

 

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

0 50 100 150 200

Generation

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e.

Without DRAM

With DRAM

Problem Details:
Problem: Case 1
Parent Pool Size = 10
Offspring Pool Size = 20% Parent Pool Size
Crossover Rate = 85%
Mutation Rate = 0.05%

 
Fig. 4.5 Comparison of the performance of GA of the Central Agent  

with and without constraint handling method 
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Fig. 4.6 Sensitivity study on the effect of parent pool sizes on GA  
convergence of the central agent 
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Fig. 4.7 Sensitivity study on the effect of offspring sizes on GA  

convergence of the central agent 
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Fig. 4.8 Effect of Crossover Rate on Central GA Convergence 

 

 



Chapter 4 Multi-Agent Vertically Integrated Optimization Approach  

 151 

 

 

 

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0 20 40 60 80 100

Generation

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e.

Mutation Rate 3%
Mutation Rate 5%
Mutation Rate 10%
Mutation Rate 15%
Mutation Rate 20%
Mutation Rate 25%
Mutation Rate 30%

Problem Details:
Parent Pool Size = 10
Offspring Pool Size = 60% Parent Pool Size
Crossover Rate = 85%

 
Fig. 4.9 Effect of mutation rate on central GA convergence  
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Fig. 4.10 Budget allocation shares of regions derived from needs-based allocation 
approach 
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Fig. 4.11 Budget allocation shares of regions derived from formula-based 

allocation approach 
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Fig. 4.12 Budget allocation shares of regions for different available central funds 
derived from 2 -step optimization process 
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(c) CASE 3
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Fig. 4.13  Budget allocation shares of regions for different available central funds 
derived from vertically integrated multi-agent optimization approach 
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(b) Case 2 
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(c) Case 3 

 
Fig. 4.14 Comparison of overall network PDI achieved with different  

budget allocation approaches 
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(a)  Region 1 
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(b) Region 2 
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(c)  Region 3 

 
Fig. 4.15 Best regional objective function values achieved at different central 

budget availability for Case 1 
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(b) Region 2 
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(c)  Region 3 

 
Fig. 4.16 Best regional objective function values achieved at different central 

budget availability for Case 2 
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(a)  Region 1 
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(b) Region 2 
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Fig. 4.17 Best regional objective function values achieved at different central 

budget availability for Case 3 
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CHAPTER 5 

MULTI-AGENT VERTICALLY AND HORIZONTALLY INTEGRATED 

OPTIMIZATION APPROACH 

 

5.1 INTRODUCTION 

 In the previous chapter, a distributed multi-agent vertically integrated 

optimization approach has been proposed to solve the problem of optimal fund 

allocation among regional highway agencies. In the approach, communications are 

established only between vertical management hierarchies, i.e. between the central 

highway authority and the regional agencies. No communication exists among regions. 

Regions are completely independent of one another, with the only things binding them 

and affecting their optimization runs being the central available fund and the central 

objective function, which indirectly affects the amount of fund allocated to each 

region.  

In this chapter, the approach is further improved to include horizontal 

integration among regional highway agencies in order to arrive at a better overall 

allocation strategy. ‘Better’ is in terms of the objective function defined by the central 

agent (which represents the central governing authority). Also, regional agencies 

benefit from access to additional resources through horizontal integration. Difficulties 

arise, however, in the programming and negotiation for the idle resources, particularly 

questions concerning how the idle resources is introduced into the optimization 

process, which agent should receive the idle resource, and how much should each 

agent receive, needs to be answered. 

This chapter begins with a discussion on the motivation for implementing  

horizontal integration in the budget allocation process, followed by a description of the 
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modified vertically and horizontally integrated approach. The procedure of the 

horizontally integrated fund allocation is demonstrated using the hypothetical example  

problem from the earlier chapters. The results of the allocation is analysed and 

compared with the earlier approaches analyzed in this study. 

 

5.2 MOTIVATION FOR HORIZONTAL INTEGRATION  

 The horizontal integration in the budgeting processing allows regiona l agents to 

communicate with each other during the negotiation with the central administration. 

Such communication can be essential to resolve conflicts between regions or to enable 

cooperation and coordination that can result in greater benefits for all. In the case of 

pavement management, horizontal integration can be potentially beneficial for several 

pavement contractors to cooperatively schedule their highway maintenance operations 

in such a way to avoid time conflicts, to reduce operation time, or to achieve savings in 

cost. In keeping with the multi-level, multiple-agencies setting as laid out in the thesis, 

horizontal integration can be used to enable the sharing of leftover resources among 

regions. This will allow for the full utilization of any resources that are idle in any of 

the regions. Subsequently, greater overall benefit can be achieved in the regional sub-

networks as well as the whole pavement network. 

With the capability for regional agents to communicate, automated negotiation 

can be implemented to resolve many conflicts that may occur, or to solve coordination 

problems among regions. In this thesis, regional communication is established to 

enable the sharing of resources among regional highway agencies. The agents share 

information on whic h of their resources will be idle for a given allocation strategy, and 

how much of the resources will be idle. The amount of idle resources will then be 

added by other agents to their own resources. This has the effect of relaxing the 
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resource constraints and increasing the solution space for the optimal maintenance 

programming in a particular region, thereby increasing the objective function value of 

that agent. A resource-sharing protocol is implemented to make this possible.  

The sharing of resources can be realistically achieved in countries with a very 

strong central authority. In such a setting, regions can be made to oblige the central 

authority to release their idle resources when required. The expense of moving the 

resources is also negligible if the country or regions are not large. However, a transfer 

cost may be involved in other cases where regions may not be willing to forego their 

idle resources without setting a price or if the mobilisation of the resources across a 

large country incurs high expenses. The approach presented in this chapter does not 

take into account the transfer cost which may be involved for the sharing of resources 

to occur. The next section describes the proposed horizontally and vertically integrated 

fund allocation approach. 

 

5.3 DESCRIPTION OF THE PROPOSED APPROACH 

The proposed horizontally and vertically integrated optimization approach is an 

added modification to the multi-agent vertically integrated approach described in 

Chapter 4. The solution diagram is shown in Fig. 5.1.  

In the horizontally and vertically integrated optimization approach, the 

architecture of the multi-agent system is the same as that of the vertically integrated 

approach. The primary difference between this approach and the previous one as 

presented in Chapter 4 is the added communication among regional agents, which 

require some additions and modifications to the existing agent infrastructure. The 

following subsections describe these modifications. 
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5.3.1 Modifications to the Multi-Agent System 

 The configurations of the agents and their relationships remain the same as the 

vertically integrated approach described in Chapter 4. All the objects introduced in the 

previous approach are also used here, with several additional objects. In this new 

approach, a new object named Resource is created to store information regarding the 

leftover resources in a particular region. This object is used in the message passing 

among regions to convey data on how many idle manpower or equipment that a region 

has for each manpower and equipment type. Resource is the basic object that is 

required in the resource-sharing protocol which will be described in the next sub-

section. Other objects are also introduced to be used as signals for the regions to 

inform one another upon completion of certain processes such as the resource-sharing 

process, or to request for objects such as Resource so that further processing can 

continue. 

 The two plugins that specifies the behaviours of the agents, CentralPlugin and 

RegionPlugin, are modified to give additional functionalities to both central and 

regional agents. RegionPlugin is modified to allow region agents to subscribe to object 

Resource and other signal objects. Upon receiving a Budget object from the central 

agent, region agents immediately start the resource-sharing process. Region agents are 

also made to react to every changed Resource object, and to respond to different 

situations that may arise during the resource-sharing process. 

 CentralPlugin, on the other hand, is modified slightly to enable it to process the 

additional RegionalReports that are created due to the resource-sharing process. The 

additional RegionalReports are for different resource-sharing strategies produced for 

each trial budget allocation and sent to the central agent for consideration. The 

resource-sharing protocol used is described in detail in the following subsection. 



 Chapter 5 Multi-Agent Vertically and Horizontally Integrated Optimization Approach  

 164 

 

5.3.2 Tournament-based Resource-sharing Protocol 

 The communication among region agents requires that a certain protocol be 

implemented in order to resolve the resource-sharing complexities of the problem. The 

protocol used in this research is based on a tournament type of selection where the 

region that gains the highest improvement of its objective function will receive the 

leftover resources under consideration. Improvements are determined by comparing 

the objective function value that is obtained from a certain strategy with that of a 

previous strategy. The protocol is shown graphically in Fig. 5.2. 

There are two stages in choosing the best resource-sharing strategy, the first 

stage occurs at the regional level while the second stage occurs at the central level. At 

the regional level, region agents will compete among themselves in a tournament-style 

selection. For each budget allocation strategy, a region is picked to be the first to 

announce its idle resources to all other regions. Each of the other regions will re-run its 

network-level optimization module, this time with the first region’s idle resources 

added to its own. Improvements on the objective function value of the other regions 

are expected since the additional resources have an effect of lowering the resource 

constraints, thus increasing the solution space. 

A series of tournaments are held among the remaining agents to decide who 

among them will receive the idle resources. In each round of the tournament, a region 

agent is picked as a challenger. The challenger collects reports from all other regions 

and compares their percentages of improvement from the usage of the leftover 

resources against its own. The calculated improvement is based on the objective 

function of each region. If the percentage of improvement of the challenger is higher 

than the other regions, it will receive the prize of the tournament, which is the leftover 
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resource from the first region. A new optimization run is performed by the winner, and 

any leftover resource from this new optimization becomes the prize for the next 

tournament which involves the remaining regions. A new challenger is picked from the 

remaining regions and the above process is repeated until no challenger is left. In the 

event that a challenger could not produce the highest improvement, the next challenger 

is selected and the above process is again repeated until no challenger is left. The last 

region will be responsible for sending the regional reports of all regions to the central 

agent at the end of the tournaments. 

In the tournament-style selection described above, the region that is picked to 

be the first to announce its leftover resources does actually make a difference to the 

end result of the resource-sharing strategy. If the first region has very little resources 

left, the prize of the first tournament would be less thereby affecting the performance 

of its participants and subsequent tour naments. On the other hand, if the first region 

has plenty of resources left, the first tournament would be very competitive, resulting 

in better performance of the regions. It is highly likely that the region that is picked to 

start the resource-sharing may not be the most ideal region for the task. Therefore, in 

order to test for each possibility, each region is given a chance to be the first to share 

out its idle resources as the initial prize of the tournament. For each of these trials, a 

complete set of regional reports is sent to the central for evaluation. Thus, the central 

agent will receive as many sets of reports as there are regions in the multi-agent 

community, as denoted by n in Fig. 5.2. 

At the end of the tournaments, the central agent chooses the best resource-

sharing strategy from the n number of strategies. Decision is made based on the 

objective function of the central agent.  

 



 Chapter 5 Multi-Agent Vertically and Horizontally Integrated Optimization Approach  

 166 

5.3.3 Selection Criteria Used in Tournament 

A series of selection criteria is used in the tournament to determine whether or 

not a challenger wins a tournament. These criteria are used one at a time, in a 

predefined order. The next criterion in the order is used in the event that the earlier 

criterion results in a tie. The criteria used in this research, in that order, are: 

1. Percentage of improvement of objective function value, and  

2. Network PDI, which is the central objective function. 

If two regions have the same percentage of improvement in their objective 

function value, the network PDI achieved is used to determine t he winner. In the event 

that both criteria results in a tie, the challenger is automatically chosen to receive the 

leftover resources. In the tournament, a challenger competes with all other regions in 

the community. Thus, as the number of regions increase, the likelihood of ties in both 

criteria will decrease. 

 

5.4 APPLICATION OF PROPOSED APPROACH 

The performance of the proposed horizontally and vertically integrated 

approach is gauged by comparing the improvement, if any, that is achieved using the 

approach compared to other budget allocation approaches presented previously in 

Chapter 3 and 4. An improvement on the overall pavement network is expected since 

the addition of horizontal integration should increase the number of possible solutions 

and thus enable a more flexible maintenance strategy to be derived. 

 

5.4.1 Hypothetical Example Problem 

The hypothetical example problem described in Chapter 3 is again used here so 

that the results can be compared. The problem involves two levels of management, the 
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central level and the regional level, where the regional level comprises three regional 

highway agencies. The two cases studied in Chapter 4 are analyzed here. Details of the 

two cases are given in Table 4.1. Similar pavement network characteristics and 

resource availability as that in the earlier example problem are assumed. These were 

described in detail in Sections 3.3.1 and 3.3.2 respectively. 

The objective functions of each regional highway agency and central 

administration are: 

Central Authority – Maximizing the performance level of the whole road 

network. 

Region 1 -- Maximizing the number of distressed road segments repaired 

Region 2 -- Maximizing the performance level of regional road network 

pavements 

Region 3 -- Maximizing the usage of the available manpower 

Constraints considered include budget, manpower and equipment constraints. The full 

explanation on the objective functions and constraints was given in Section 3.4. 

 

5.4.2 GA String Structures 

The GA string structures used in the optimization ana lysis are the same as that 

used in the distributed multi-agent vertically integrated approach. At the regional level 

optimization, the decision variables pertain to the choice of road segments selected for 

maintenance and the total length of the string str ucture is equal to the number of road 

segments in the region concerned. At the central level optimization, the decision 

variables are the binary representations of the shares of budget allocation for the three 

regions. The total length of the string structure depends on the maximum number of 

bits that may be involved, as was given by the Eq. 4.1. 
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The GA package used for the optimization process in the region agents is 

PGAPACK (Levine 1996) while a Java-based genetic -algorithm package, ECJ (Luke 

2002) is used at the central level. The string structures were shown in Fig. 4.4. A more 

detailed description of the string structures were given in Section 4.4.1. 

 

5.4.3 Method of Analysis 

The procedures in Fig. 5.2 are used to generate budget allocation strategies for 

a range of network PDI limits and central budget levels. Random budget allocation is 

generated by the central GA, and the multi-agent system is used to convey the 

information to the regional agents. The budget information is used by region agents as 

a constraint in their own search for the optimal pavement maintenance strategy with 

respect to their objective functions. The regional optimization is also constrained by 

the availability of manpower and equipment resources in the respective regions. The 

resource-sharing protocol as shown in Fig. 5.2 is then used to determine the resource-

sharing strategy among the regions. A series of tournaments are held and the winner of 

each round of tournament will receive the leftover resources considered in that round. 

The criteria for selection of winners are the percentage of improvement in objective 

function value followed by the regional network PDI value. If both criteria result in a 

tie, the current challenger is considered the winner. At the end of each round of 

tournament, a full report is sent to the central agent. Among the reports, the central 

agent will choose one that gives the best value with respect to the central objective 

function. The whole process is repeated for the next budget allocation from the central 

agent. 

The overall optimization process is driven towards the central optimal value by 

the GA of the central agent. A small population size of 10 is used and the maximum 
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number of generations is set to 10. This gives a total of 100 budget allocation trial at 

the central level, and it has been found that this is sufficient to produce good results. 

The crossover probability used is 0.8 and the mutation probability is 0.05. Out of the 

10 individuals, one elite individual is selected to proceed to the next generation. At the 

region agent, the GA population size used was 1000. Only one elite solution is selected 

to the next generation. The mutation rate was 0.4 while the crossover rate adopted was 

0.9. The maximum number of generations is set to 200. 

 

5.4.4 Comparison with Other Allocation Approaches 

 The results obtained from the horizontally and vertically integrated 

optimization approach are compared against those obtained using: 

- Distributed multi-agent vertically integrated optimization approach 

- Two-step optimization approach 

- Formula -based allocation approach 

- Needs-based allocation approach 

The distributed multi-agent vertically integrated optimization approach was presented 

in Chapter 4, while the two-step optimization approach was presented in Chapter 3. 

The formula-based and needs-based allocation approaches are conventional allocation 

approaches that are widely used in practice. These have been described in Section 

2.1.2 and the formulations were given in Section 3.6. 

 

5.4.5 Proportion of Fund Allocated to Regions 

Fig. 5.3 shows the proportion of budget allocated to each region for a range of 

central budget levels derived from the horizontally and vertically integrated 

optimization approach. The general trend of the result obtained here is similar to the 
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results obtained from the vertically integrated approach presented in Chapter 4. For 

both Case 1 and Case 2 of the example problems, Region 2 initially receives the most 

of the very low central available fund. As the budget increases, the rise in funding level 

are seen in Region 3 first, followed by Region 1. This observation is consistent with 

the findings of the sensitivity study of objective function presented in Section 3.8, 

where it was observed that for very low central budget availability the fund allocation 

tends to favour the region that can better complement the central objective function. At 

high budget levels, the network characteristics and maintenance needs of each region 

begin to have more weights on the funding strategy.  

Interestingly, for Case 1 and Case 2, the horizontally and vertically integrated 

multi-agent optimization approach produces the same allocation strategy as the 

horizontally integrated multi-agent optimization approach for budget levels of 

S$30,000 and lower. This is because the vertically integrated multi-agent approach 

could not find a better solution in the severely constrained solution space for these 

budget levels. For Case 2, the budget allocation is more lopsided towards Region 3 for 

most of the budget levels. This is because in Case 2, Region 3 contains many road 

segments with high severity distresses. This allows Region 3 to contribute high 

improvements to the overall network pavement performance for most of the available 

budget levels. As in Case 1, Region 1 receives less proportion of the central budget 

initially, and as the central budget increases, the allocation to Region 1 also increases.  

A different trend, however, is observed in Case 3. In this case, Region 1 

receives the most funds for most of the budget levels. Even for very low budget levels 

of S$30,000 and below, Region is given the top priority by the algorithm. This is in 

contrast with the two-step and horizontally integrated approach where Region 2 is 

favoured when central fund is at very low levels. This is because the sharing of 
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resources, which is made possible in the vertically and horizontally integrated 

approach, has enabled Region 1 to push for the repair of more high severity road 

segments. Apparently, Region 1 managed to win the idle resources from the other 

regions in the tournament-style selection implemented in this approach. This is logical 

because Region 1 contains the most number of rut distresses of high severity level in 

Case 3. Rut distresses of high severity contribute significantly to the Pavement 

Damage Index and are thus more likely to be chosen for repair compared to other types 

of distresses. Moreover, the cost to repair rut distresses of high severity is competitive 

compared to the other high severity distresses. 

  

5.4.6 Cost Savings Achieved 

 The total maintenance cost to achieve a target PDI level for each fund 

allocation approaches are shown in Table 5.1. The differences in total cost between the 

various fund allocation approaches are calculated. It is clear that all other budget 

allocation approaches result in over-spending compared to the horizontally and 

vertically integrated approach for any target network pavement performance. 

 For Case 1 (Table 5.1a), the horizontally and vertically integrated approach 

consistently saves over 30% in maintenance cost for all the range of target network 

PDI levels compared to formula-based allocation approach. For the example problem 

considered, this savings amounts to at least S$16,000 depending on the level of target 

PDI. For a target PDI of 11, the savings achieved compared to the formula-based 

approach is S$63,000. The savings achieved with the horizontally and vertically 

integrated approach over the needs-based allocation approach is consistently over 17%, 

corresponding to saving of over S$14,000. This savings can reach as high as S$23,000 

in maintenance cost. From this result, it seems that the needs-based allocation 
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approach outperforms the formula -based approach for the case considered. The 

minimum savings over the 2-step optimization approach, which was presented in 

Chapter 3, is at least 10%. The amount of money saved over the 2-step approach can 

be as high as $18,700. The savings over the vertically integrated approach range from 

0.56% (S$168) for a required PDI of 22 to S$9,400 for PDI of 11. 

For Case 2 (Table 5.1b), the savings over the formula-based and needs-based 

allocation approaches are more than 25% and 35% respectively for the range of PDI 

considered. In contrast to Case 1, the savings over the needs-based approach is higher 

than the savings over the formula-based approach. This shows that the needs-based 

approach may perform better than the formula-based approach in some cases, while in 

other cases, the formula -based approach gives a better fund allocation. In this study, 

the needs-based approach out-performs the formula-based approach in Case 1, while 

the formula-based approach does better than needs-based approach in Case 2. These 

two fund allocation approaches, though widely practised, do not produce good results 

for every pavement management situation. 

In Table 5.1(c), the vertically and horizontally integrated MAS approach saved 

about 50% in maintenance cost from needs-based and formula-based approaches. This 

is a significant percentage of savings which can mean a large sum of money. The 

savings from vertically integrated approach is much less, ranging from 0.58% to 

8.99%. For this case, the sharing of resources does not produce much savings in 

maintenance cost. 

For the range of target PDI considered, the savings observed over the 2-step 

approach range from 6% to 15%. The savings are smaller over the vertically integrated 

approach. This trend is consistent for all three problem cases. This observation shows 

that the horizontally and vertically integrated approach performs better than the 



 Chapter 5 Multi-Agent Vertically and Horizontally Integrated Optimization Approach  

 173 

vertically integrated approach and the 2-step approach in terms of overall results. The 

savings over the vertically integrated approach is zero for the highest three PDI levels 

because the maintenance costs needed for these PDI levels are too small to make any 

difference to the optimization process. At such high PDI levels, the binding constraints 

are the manpower and equipment availability rather than the budget availability. 

 

5.4.7 Network Pavement Performance 

Fig. 5.4 shows the overall network PDI that is achieved using the various fund 

allocation approaches. As expected, the vertically and horizontally integrated MAS 

approach gives better network pavement performance for a given central budget 

availability compared to the other approaches for all three problem cases analysed. The 

improvement in overall network PDI achieved from the vertically and horizontally 

integrated approach compared to vertically integrated approach is the highest in Case 

1, followed by Case 2 and Case 3. This is in agreement with the earlier results on the 

savings achieved from using the approach, where greater savings are obtained in Case 

1 followed by Case 2 and Case 3. 

 

5.4.8 Regional Objective Function Values 

 The objective function value of each region is plotted in Figs. 5.5-5.7 for the 

three problem cases studied. The plots show how the objective function value of each 

region fares when the central budget is allocated using the different approaches studied 

in this thesis. Generally, there is no one approach that will always give more benefit to 

any one region. Since the algorithms are subjective to the changes in budget level, the 

objective function value of a region may rise or drop when the budget level at the 
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central administration changes. The general trend of the vertically and horizontally 

integrated approach is still in line with the other two approaches compared in the plots. 

 

5.5 MINIMUM BUDGET CONSTRAINT 

 In the analyses conducted so far, the fund allocation strategy produced can be 

highly unequal. In the real world, such unequal allocation of fund is undesirable 

because it will cause dissatisfaction in the region that receives very little funding. This 

can be rectified by imposing a minimum budget constraint in the algorithm. 

 A minimum budget constraint is introduced into the vertically integrated and 

vertically and horizontally integrated approaches, and the fund allocation is re-

analysed for a selected budget level using each of the approaches. The budget 

constraint used is 10%, which means any of the regions must receive at least 10% of 

the total available budget. If this condition is not satisfied, a repair algorithm is used to 

move the solution nearer to the constraint-satisfaction boundary. The repair algorithm 

sets the budget level of the region with less than 10% of the total budget to 10% of the 

total budget, and recalculates the rest of the budget allocation repeatedly until the 

entire budget is allocated and the minimum budget condition is met. 

The budget level selected for each approach is one that produced highly 

unequal fund allocation strategy where one of the regions receives less than 3% of the 

total fund. For the vertically integrated MAS approach, the budget level chosen is 

S$100,000 while for the vertically and horizontally integrated MAS approach, 

S$40,000 is chosen. The results are shown in Table 5.2(a)-(b).  

 For both approaches, the budget is now more equally allocated to each region. 

Each region receives more than 10% of the total budget. The minimum budget 

constraint, however, results in a slightly inferior network pavement performance. This 
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is because the addition of the constraint reduces the original solution space of the 

problem such that the best solution is no longer within the solution space. In this case, 

the algorithm chose the second best solution. The small drop in network pavement 

performance should be acceptable in real world practise for the benefit of obtaining a 

more equal fund allocation.  

 

5.6 TIME PERFORMANCE  

 The processing time for the multi-agent optimization approaches are measured 

to determine the computing cost of performing the analyses. The CPU time taken to 

complete a single GA generation at the central level is computed. The CPU time 

analysis is performed only for the vertically integrated and vertically and horizontally 

integrated approaches as the separated regional and central processing of the two-step 

approach does not allow a useful comparison with the two-step optimization approach.  

 Table 5.3 shows the results of the CPU time analysis. The vertically and 

horizontally integrated multi-agent optimization approach takes significantly more 

time to run than the vertically integrated approach. The amount of time increases 

significantly due to the sharing of resources among region agents, of which the 

operation that consumes the most amount time is the genetic algorithm runs. The 

number of GA runs at the regional level increases significantly during the resource-

sharing operations. For the three-region problem, each resource-sharing operation 

requires at least twice as many GA runs than without a resource-sharing operation. 

 The wall clock time for the two approaches is also estimated. The vertically 

integrated approach takes approximately 2 seconds for each generation of GA at the 

central level, while the horizontally and vertically integrated approach takes more than 

50 seconds for the same. The total amount of time for a typical complete simulation for 
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a single central budget level using the horizontally and vertically integrated approach 

is approximately 4 hours (240 minutes), compared to the vertically integrated approach 

that only requires approximately 5 minutes for the same. 

 The additional cost in processing time, however, should not have much effect 

in the real-world situation because the budgeting process is not carried out in real-time. 

And since it is an automated process, the savings in the time required if the budgeting 

process is to be carried out manually should be able to offset this computer processing 

time. 

 

5.7 CHAPTER SUMMARY 

 The distributed multi-agent approach of Chapter 4 has been further 

improved to include horizontal integration. This allows region agents to interact with 

one another in order to produce better overall results. In this chapter, the horizontal 

integration is applied to enable the sharing of idle resources among regional highway 

agencies in order to arrive at a better overall budget allocation strategy.  

The modifications made to the multi-agent system approach to enable 

horizontal integration have been described. The resource-sharing protocol used is a 

tournament-type of selection, where region agents enter into tournaments to determine 

who among them will receive what amount of leftover resources. The workings of the 

resource-sharing protocol has been presented in detail.  

The performance of the horizontally and vertically integrated approach has 

been studied by comparing the results of the allocation methodology against that of the 

formula-based, needs-based, 2-step optimization, and distributed multi-agent vertically 

integrated approaches. Results showed that the horizontally and vertically integrated 

approach consistently gives better overall results than all the other approaches. 
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Particularly, high savings for a range of target PDI levels were achieved from the fund 

allocation strategies derived from this approach compared to the other approaches, for 

both of the cases studied. It was found that savings in maintenance cost were of 

significant magnitudes. 

The study also confirms the findings made in Chapter 4 on the unsuitability of 

commonly used highway budget allocation approaches, namely the formula-based and 

needs-based approaches, for certain pavement management situations. Results showed 

that these conventional allocation approaches do not always give good allocation 

strategies in some cases. The fund allocation methodologies introduced in this thesis, 

on the other hand, are more adaptable to different pavement management situations, 

and are thus able to produce consistently good allocation strategies for the different 

cases studied. 

 

 



 Chapter 5 Multi-Agent Vertically and Horizontally Integrated Optimization Approach 

 178 

Table 5.1 Savings in expenditure achieved by Multi-Agent Vertically and Horizontally Integrated Approach  
compared to other highway fund allocation approaches (to be continued) 

 
(a) Case 1 

 

Vertically  
and  

Horizontally  
Integrated  

MAS  
Approach 

 
 

Vertically Integrated  
MAS Approach 

 
 

2-Step Optimization  
Approach  Needs -based Approach  

 
Formula-based  

Approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

PDI 

 
 

Total Cost  
(S$1000) 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

22  29716.31  29884.96 168.65 0.56  35406.12 5689.81 16.07  41933.30 12216.99 29.13  46195.42 16479.11 35.67 
21  35127.84  36657.54 1529.70 4.17  41148.01 6020.16 14.63  45950.08 10822.24 23.55  55414.87 20287.03 36.61 
20  39738.99  42749.68 3010.69 7.04  45669.83 5930.84 12.99  53080.67 13341.67 25.13  62947.58 23208.59 36.87 
19  42637.03  48445.35 5808.32 11.99  50228.03 7591.00 15.11  59655.52 17018.49 28.53  67847.25 25210.22 37.16 
18  45569.89  53326.59 7756.70 14.55  55141.25 9571.37 17.36  64273.33 18703.45 29.10  74190.76 28620.88 38.58 
17  50456.12  58145.95 7689.82 13.23  60081.96 9625.84 16.02  68781.09 18324.97 26.64  82179.21 31723.08 38.60 
16  55342.36  63496.70 8154.35 12.84  65361.09 10018.73 15.33  72526.22 17183.87 23.69  94310.87 38968.51 41.32 
15  60524.53  68772.38 8247.85 11.99  70838.98 10314.45 14.56  76271.36 15746.83 20.65  103539.01 43014.48 41.54 
14  66141.63  72819.93 6678.30 9.17  76880.56 10738.93 13.97  80371.48 14229.85 17.71  111343.30 45201.67 40.60 
13  71469.38  76867.49 5398.11 7.02  83148.90 11679.52 14.05  86432.43 14963.05 17.31  119853.65 48384.27 40.37 
12  76672.48  84475.48 7802.99 9.24  89486.83 12814.34 14.32  95786.43 19113.95 19.95  133119.02 56446.54 42.40 
11  81478.23  90943.46 9465.22 10.41  94934.10 13455.86 14.17  102969.69 21491.46 20.87  144621.42 63143.18 43.66 
10  86930.83  95987.46 9056.63 9.44  100479.63 13548.80 13.48  108899.13 21968.30 20.17  * * * 
9  93833.59  101731.47 7897.88 7.76  106395.39 12561.80 11.81  116073.98 22240.40 19.16  * * * 
8  101281.20  108333.09 7051.89 6.51  114026.46 12745.26 11.18  125232.85 23951.65 19.13  * * * 
7  107355.75  112446.04 5090.29 4.53  126066.98 18711.23 14.84  * * *  * * * 

 
Note: * The target PDI could not be achieved with the approach indicated in the column.  
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Table 5.1 Savings in expenditure achieved by Multi-Agent Vertically and Horizontally Integrated Approach  
compared to other highway fund allocation approaches (continued) 

 
(b) Case 2 

 

Vertically  
and  

Horizontally  
Integrated  

MAS  
Approach 

 
 

Vertically Integrated  
MAS Approach 

 
 

2-Step Optimization  
Approach  Needs -based Approach  

 
Formula-based  

Approach 

Savings by 
proposed 
approach 

 
 
 

Savings by 
proposed 
approach 

 
 
 

Savings by 
proposed 
approach 

 
 
 

Savings by 
proposed 
approach 

PDI 

 
 

Total Cost  
(S$1000) 

 
 
 

Total  
Cost  

(S$1000) 
Amount %  

Total  
Cost  

(S$1000) 
Amount %  

Total  
Cost  

(S$1000) 
Amount %  

Total  
Cost  

(S$1000) 
Amount % 

22  10,086.29  10,086.29 0.00 0.00  11,892.22 1,805.93 15.19  15,612.35 5,526.06 35.40  13,493.45 3,407.16 25.25 
21  14,152.89  14,152.89 0.00 0.00  16,646.96 2,494.07 14.98  21,655.12 7,502.22 34.64  18,886.03 4,733.14 25.06 
20  18,219.50  18,219.50 0.00 0.00  20,979.54 2,760.05 13.16  28,094.57 9,875.07 35.15  25,931.04 7,711.54 29.74 
19  21,936.04  22,630.49 694.44 3.07  24,617.21 2,681.17 10.89  34,765.11 12,829.06 36.90  33,646.30 11,710.26 34.80 
18  25,534.09  27,158.07 1623.98 5.98  28,254.88 2,720.79 9.63  41,229.31 15,695.22 38.07  40,020.88 14,486.79 36.20 
17  29,092.97  31,196.27 2103.29 6.74  32,090.65 2,997.68 9.34  46,991.23 17,898.26 38.09  44,304.23 15,211.26 34.33 
16  32,551.49  34,684.59 2133.11 6.15  36,043.88 3,492.39 9.69  52,909.89 20,358.41 38.48  48,587.58 16,036.09 33.00 
15  35,268.17  38,189.02 2920.84 7.65  40,073.21 4,805.04 11.99  58,881.14 23,612.97 40.10  60,350.74 25,082.57 41.56 
14  39,627.92  42,414.69 2786.77 6.57  45,075.88 5,447.96 12.09  65,217.01 25,589.09 39.24  64,972.23 25,344.32 39.01 
13  43,987.67  46,640.37 2652.70 5.69  50,062.60 6,074.94 12.13  72,989.70 29,002.03 39.73  70,079.71 26,092.04 37.23 
12  48,490.47  51,485.65 2995.19 5.82  54,817.35 6,326.88 11.54  82,295.60 33,805.14 41.08  76,105.11 27,614.64 36.28 
11  55,584.97  58,071.72 2486.74 4.28  59,572.10 3,987.12 6.69  89,777.47 34,192.50 38.09  84,952.38 29,367.41 34.57 
10  61,142.48  63,380.86 2238.39 3.53  65,139.70 3,997.22 6.14  94,970.12 33,827.64 35.62  96,748.68 35,606.20 36.80 
9  66,004.24  68,615.02 2610.78 3.80  70,843.29 4,839.05 6.83  100,967.82 34,963.57 34.63  104,540.64 38,536.40 36.86 
8  72,142.67  75,300.86 3158.19 4.19  76,993.90 4,851.24 6.30  108,973.67 36,831.00 33.80  111,914.02 39,771.35 35.54 
7  79,053.25  83,980.64 4927.39 5.87  88,233.77 9,180.52 10.40  118,116.61 39,063.37 33.07  120,103.44 41,050.20 34.18 
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Table 5.1 Savings in expenditure achieved by Multi-Agent Vertically and Horizontally Integrated Approach  
compared to other highway fund allocation approaches (continued) 

 
(c) Case 3 

 

 

Vertically  
and  

Horizontally  
Integrated  

MAS  
Approach 

 
 

Vertically Integrated  
MAS Approach 

 
 

2-Step Optimization  
Approach  Needs-based Approach  

 
Formula-based  

Approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

Savings by 
proposed 
approach 

PDI 

 
 

Total Cost  
(S$1000) 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

 
 
 

Total  
Cost  

(S$1000) 
Amount % 

19  13024.74  13600.93 576.19 4.24  14080.00 1055.26 7.49  27202.68 14177.94 52.12  29330.74 16306.00 55.59 
18  18945.00  20689.97 1744.97 8.43  21912.52 2967.52 13.54  37608.77 18663.77 49.63  44839.32 25894.33 57.75 
17  27031.96  27728.92 696.97 2.51  29857.95 2825.99 9.46  53999.14 26967.18 49.94  57971.82 30939.86 53.37 
16  37398.41  38699.72 1301.32 3.36  38936.66 1538.25 3.95  67571.03 30172.62 44.65  71642.58 34244.18 47.80 
15  45108.52  46096.35 987.83 2.14  47001.08 1892.56 4.03  86322.81 41214.29 47.74  85277.64 40169.12 47.10 
14  52989.34  53981.33 991.99 1.84  54698.44 1709.10 3.12  103574.93 50585.59 48.84  105206.53 52217.19 49.63 
13  61966.58  62329.31 362.72 0.58  62875.69 909.10 1.45  118436.86 56470.27 47.68  127804.85 65838.26 51.51 
12  70974.81  71803.13 828.32 1.15  72758.14 1783.32 2.45  137054.18 66079.37 48.21  151814.19 80839.38 53.25 
11  81623.40  84377.13 2753.73 3.26  85898.57 4275.17 4.98  157559.19 75935.79 48.20  171709.08 90085.68 52.46 
10  97590.30  107231.45 9641.14 8.99  115820.44 18230.13 15.74  186944.37 89354.07 47.80  210529.28 112938.98 53.65 
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Table 5.2 Results of fund allocation strategy using different approaches with 
minimum budget constraint imposed 

 
(a) Vertically integrated MAS approach 

Budget allocated (S$) 
  

Region 1 Region 2 Region 3 
Overall network 

PDI 

Without constraint 41,889 55,876 794 10.45 

With constraint 42,286 37,426 20,288 10.48 

 
Note: Total available budget: S$100,000 

 

(b) Vertically and horizontally integrated MAS approach 

Budget allocated (S$) 
 

Region 1 Region 2 Region 3 
Overall network 

PDI 
Without constraint 26,133 13,033 834 15.66 

With constraint 26,320 6,480 7,200 15.81 
 
Total available budget: S$40,000 

 

 

Table 5.3 CPU time of the multi-agent optimization approaches to  
complete a single GA generation at the central level 

 
Fund allocation approach CPU time (seconds) 

Vertically integrated MAS 29962.6 

Vertically and horizontally integrated MAS 782611.5 
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Fig. 5.1 Interactive optimal budget allocation approach with resource -sharing among regions
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Fig. 5.2 Regional resource -sharing protocol based on a tournament-type selection 
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Fig. 5.3 Budget allocation shares of regions for different available central funds derived 
from multi-agent horizontally and vertically integrated optimization approach 
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(b) Case 2 
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(c)  Case 3 

 
Fig. 5.4 Comparison of overall network PDI achieved with different  

budget allocation approaches 
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(a) Region 1 
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(b) Region 2 
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(c) Region 3 

 
Fig. 5.5 Best regional objective function values achieved at different central budget 

availability for Case 1 
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(a) Region 1 

 

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160
Central Budget Availability (S$1000)

To
ta

l P
D

I r
ep

ai
re

d

Vertically + horizontally integrated MAS
Vertically integrated approach
2-step approach

 
(b) Region 2 
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(c) Region 3 

 
Fig. 5.6 Best regional objective function values achieved at different central budget 

availability for Case 2 
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(c) Region 3 

 
Fig. 5.7 Best regional objective function values achieved at different central budget 

availability for Case 3 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 SUMMARY AND CONCLUSIONS 

The highway fund allocation process can be viewed as a planning task in an 

organization where several regional highway agencies interact with the central authority in 

order to obtain a portion of the available funds. As separate entities situated in different 

geographical locations, inhabited by different communities, and progressing at different 

developmental rates, each regional agency is bound to have different short and long term 

interests and objectives. The constraints, technical, social, political, or economic, that are 

faced by each agency are also likely to be different. In large countries, the climatic condition 

in one region might also differ from that of another region, giving rise to different pavement 

performance models. Therefore, the management of each regional pavement network is a 

unique optimization problem in itself. The link between the different regional pavement 

networks is provided in the form of a central administration, whose interest lies in the higher-

level system goals. 

This thesis has presented new methodologies for automated budget allocation for 

pavement management using new computing technologies. The proposed fund allocation 

approaches take into account the different needs and objectives of regional highway agencies 

as well as the central authority. The study of these approaches is summarized below. 

 

6.1.1 Two-step Optimization Approach 

The two-step optimization approach to budget allocation has been presented in 

Chapter 3. This approach involves two optimization steps, one at the central level, and the 

other at the regional level. The two-step approach requires only one iteration of information 
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exchange between regional and central levels. Genetic algorithms (GA) are used to optimize 

the selection of pavement maintenance strategies of the regional highway agencies.  

The methodology of the solution procedure was demonstrated by solving a budget 

allocation problem involving a two- level road network management structure consisting of 

three region agencies and one central authority. The quality of results obtained from this 

allocation procedure was compared against that of commonly used highway fund allocation 

approaches, namely the formula-based and needs-based approaches. Sensitivity studies were 

carried out to determine the appropriate GA parameters for the hypothetical problem. An 

application of the two-step optimization approach has also been demonstrated to study the 

sensitivity of objective functions adopted by regions towards the central allocation strategy.  

From the analysis of the results, it was shown that the two-step optimization approach 

is able to provide an objective tool for making budget allocation decisions in multi-region 

highway agencies. The fund allocation strategy derived from this procedure is able to 

consistently produce better overall network PDI values for all budget levels considered and 

for all three cases studied. With this procedure, scenarios for different budget levels can 

easily be acquired. Unlike mathematical programming methods, the solution method provides 

a flexible means of control for the central administration, where objective functions and 

constraints at both central as well as regional optimizations can be modified with ease.  

 

6.1.2 Multi -Agent Vertically Integrated Optimization Approach 

 The distributed multi-agent vertically integrated optimization approach is described in 

Chapter 4. It is based on multi-agent systems to enable the interaction among the decision-

makers. The approach is well-suited for the problem considered due to the spatially 

distributed nature of the problem, the distributed data and processing, and complexity of the 

multi-network pavement management problem. In this research, the agent architecture us ed is 
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the Cognitive Agent Architecture or Cougaar, an open-source project developed by the 

Defence Advanced Research Projects Agency (DARPA) of the United States. 

 The allocation approach involves iterative vertical interaction between the two 

management levels considered. This allows for information integration between the two 

levels, thus resulting in better allocation strategy. The approach was tested out using the 

hypothetical example problem in Chapter 3 and the results compared with the allocation 

approaches presented earlier. It was found that the vertical integration results in significant 

savings in maintenance cost for a given target of network PDI level. 

 

6.1.3 Multi -Agent Vertically and Horizontally Integrated Optimization Approach 

 This approach is an improvement to the multi-agent vertically integrated optimization 

approach and was described in Chapter 5. Improvement was made to allow for horizontal 

integration among regional highway agencies. This enables region agents to interact with 

each other to resolve conflicts or cooperatively solve a given problem. In this study, 

horizontal integration is employed to enable the sharing of idle resources among regional 

highway agencies. With the resource-sharing protocol, improvements on the objective 

function value of the regions and of the central authority are expected since the full utilization 

of idle resources have the effect of increasing the solution space of the problem.  

 A tournament-like resource-sharing protocol was introduced in this chapter. 

Tournaments are held to determine which region will receive how much idle resource from 

other regions. A region is picked as the challenger at each round of the tournament, and based 

on predefined selection criteria, the winner of each round of tournament is selected. The 

workings of the resource-sharing protocol has been presented in detail. 

 The performance of the distributed multi-agent vertically and horizontally integrated 

approach is compared with the other approaches using the hypothetical example problem 
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presented in Chapters 3 and 4. It was found that the approach consistently produce budget 

allocation strategies that results in savings in overall maintenance cost. The results also 

confirm earlier observations that commonly used highway fund allocation approaches, the 

formula- and needs-based approaches, are unsatisfactory fund allocation tools for certain 

network- level pavement management. 

 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

 In this study, improved budget allocation methods have been proposed to provide an 

advanced decision- making tool for highway agencies and authorities. The methodologies 

proposed are able to overcome the weaknesses of existing fund allocation approaches while 

providing greater control, considerations, and flexibilities for the decision-makers. 

Nevertheless, there are several improvements which can be made to further enhance the fund 

allocation approaches: 

1) The fund allocation approaches presented in this study consider a one year planning 

period. A further study would be to improve the approaches to take into account a 

multi-year planning period. This would involve an inclusion of appropriate pavement 

deterioration models into the analysis. 

2) The methodology presented in this study can be modified for highway asset 

management, of which PMS is a sub-system. Both problems involve multi- level 

optimization with different objectives at different levels and bound by a global 

budget. 

3) The processing time required for the distributed vertically and horizontally integrated 

approach can be reduced. Even though this is not a critical weakness of the approach, 

it is an interest of research to improve on the efficiency of the multi-agent system. 
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This can be accomplished by studying the processing time consumed for each 

operation and reduce the number of operations that require a lot of time to complete. 

4) Several resource-sharing protocols in the distributed vertically and horizontally 

integrated optimization approach can be experimented to determine the protocol that 

produces the best result. In this research, this study has not been conducted because 

the resource-sharing protocol is only a small part of the multi-agent system 

implemented. 

5) The sharing of resources may incur a transfer cost in cases where regions may not be 

willing to forego their idle resources without setting a price or if the mobilisation of 

the resources across a large country incurs high expenses. This additional cost will 

have an impact on the solution and the savings for the whole system. This may be 

addressed in further research.  

6) The practicality and effectiveness of the proposed methodology and computer 

programs presented in this study can be verified by implementation for practical road 

networks. Practical application may involve, among others, more than three regions, 

larger road networks, more types of distresses per road section, and consideration for 

several repair methods per road section. The inclusion of these considerations will 

further complicate the search space and extensive computing time may be required to 

achieve convergence. This may be addressed in further research. 
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