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Summary 

 

In recent years, lattice Boltzmann method (LBM) has been developed into an 

alternative computational fluid dynamics (CFD) tool. Unlike the conventional CFD 

solvers, which are based on the discretization of the macroscopic continuum equations, 

this scheme is based on the mesoscopic kinetic equations. When a simplified kinetic 

equation is developed, solving the complicated kinetic equations such as the full 

Boltzmann equation and following each particle as in the molecular dynamics simulations 

are avoided. So this method has become very popular and many successful applications 

such as in turbulence flows, multiphase flows and chemical-reaction flows have been 

conducted. However, it still needs some improvements in order to be developed into a 

practical and competitive CFD solver. One of them is its use for the thermal applications, 

which is one of the most challenging issues left with LBM research. This includes the 

development of good thermal models and their applications on the arbitrary meshes. The 

aim of our project was to do some constructive work in these two areas: to improve and 

develop thermal models and to apply these thermal models on the arbitrary mesh so as to 

solve the practical thermal problems with complex geometries.  

In this project, most of our research work is based on the internal energy density 

distribution function (IEDDF) thermal model, since numerical simulations have shown it 

to be a good and stable thermal model. Firstly, a new implementation for the Neumann 

thermal boundary condition was proposed in order to extend the IEDDF thermal model to 

be used for the practical thermal applications. Then based on the physical background that 

the compression work done by pressure and viscous heat dissipation can be neglected for 

  ix  



 

incompressible thermal flows, a simplified IEDDF thermal model for the incompressible 

thermal flows was proposed. Thirdly, in order to solve the real three-dimensional thermal 

problems, a three-dimensional thermal model for LBM was proposed. In addition, a new 

axisymmetric lattice Boltzmann thermal model was proposed in order to solve an 

important kind of quasi-three-dimensional thermal flows. 

In order to apply these thermal models to solve the practical thermal problems on 

the arbitrary meshes, the finite volume LBM (FVLBM) technique and Taylor series 

expansion- and least squares- based LBM (TLLBM) technique were introduced in the 

thermal models. Firstly, FVLBM technique was tested. A new implementation of the wall 

boundary condition for FVLBM was proposed in order to make this FVLBM scheme 

suitable for the practical applications before we applied it in the IEDDF thermal model. 

Numerical results showed that at low Rayleigh numbers, the use of FVLBM technique in 

the IEDDF thermal model could get satisfactory results; while at high Rayleigh numbers, 

this thermal scheme displayed large numerical diffusions. Then the TLLBM technique 

was used for the IEDDF thermal model. Numerical results on a wide range of Rayleigh 

numbers showed its applicability and flexibility for the thermal applications with complex 

geometries.  

In summary, many practical thermal models were proposed and used on the 

arbitrary meshes by introducing the FVLBM technique or TLLBM technique into these 

thermal models, which may provide a step forward for the LBM applications in the 

thermo-hydrodynamic areas.  
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Chapter 1 Introduction 

Chapter 1 

Introduction 
 

1.1 Background 

Fluid mechanics has its wide applications in many areas. In the automobile and 

engine industry, in order to improve the performance of modern cars and trucks, the 

study of external flow over the body of a vehicle, or the internal flow through the 

engine is necessary. In the civil engineering area, problems involving the rheology of 

rivers and lakes are also related to the fluid mechanics. In the environmental 

engineering area, the discipline of heating, air conditioning and general air circulation 

through buildings has its basis in the fluid mechanics. In the study of naval architecture, 

the hydrodynamics problems associated with ships, submarines and so on cannot be 

solved without the help of fluid mechanics. 

 

1.1.1 Difficulty of Navier-Stokes solvers in complex flows 

In general, fluid motion is governed by the continuity, Navier-Stokes (NS) and 

energy equations: 

( ) 0=⋅∇+
∂
∂ uρρ

t
                                       (1.1)            

( uuuuu
⋅∇∇+∇+∇−=∇⋅+

∂
∂ ςν

ρ
21 p

t
)          (1.2) 

( ) uu ∇∏+∇⋅∇=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+

∂
∂ :Tke
t
eρ          (1.3) 
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where ρ , , u p , , and e T are the density, velocity, thermodynamic pressure, 

internal energy and absolute temperature of the fluid, respectively; ν  is the kinematic 

viscosity; ς  is the second viscosity coefficient and  is the thermal conductivity; k

( )∇+∇=∏ uuνρ  is the stress tensor. Equations (1.1)-(1.3) form a second-order 

partial differential equation system, which is difficult to get the closed-form analytic 

solution except for a small number of special cases. With the development of computer 

technology, computational fluid dynamics (CFD) is developed to solve the NS 

equations or equations resultant from them by using different kinds of numerical 

techniques, such as the finite difference method, finite volume method and finite 

element method.  

However, the NS equations are based on the continuum assumption and this 

assumption breaks down at some conditions. Take porous flows and multiphase flows 

as examples. For porous flows, the mean free path of molecule is comparable to the 

characteristic length scale of the flow; for multiphase flows, there exists the interface 

in inhomogeneous flows. So these kinds of fluid motion cannot be efficiently solved 

by NS solvers, which demand the use of particle-based methods. 

 

1.1.2 Particle-based methods 

There are a number of particle-based methods, such as molecular dynamics, 

lattice gas automaton and lattice Boltzmann method. 
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1.1.2.1 Molecular dynamics  

Direct simulation of molecular dynamics is one of the particle-based methods. 

It models the individual molecules that make up the fluid. If the inter-molecular 

interactions are modeled correctly, the system of molecules should be able to represent 

the behavior of fluid. But it needs large computer resources to store all the information 

of every particle, such as its previous and new positions and velocities. It is also very 

time consuming even for a small volume of fluid, because individual molecules 

interact with each other and their new trajectories are to be updated constantly. 

 

1.1.2.2 Lattice gas automaton  

The fact that different microscopic interactions can lead to the same form of 

macroscopic equations is the starting point for the development of lattice gas 

automaton (LGA). Instead of considering a large number of real individual molecules 

as in molecular dynamics, a much smaller number of fluid ‘particles’ are used. A 

‘particle’ represents a large group of molecules that possess the same properties on 

average. This reduces the amount of data that need to be stored significantly. Although 

its dimension is much larger than the molecule, its largest dimension is considerably 

smaller than the smallest length scale of simulation. The particles reside on the nodes 

in a regular lattice and are restricted to move on the links of a regular underlying grid 

in discrete time step. A set of Boolean variable ( )txn ,α , ( )M,,1L=α  is used to 

describe the particles’ occupation, where M is the number of particle velocity 

directions at each node. The evolution equation for LGA is as follows: 
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( ) ( ) ( )( )nnn tntntn ,,, 1 xxex αααα Ω+=+ +  (1.4) 

where  is the local particle velocity.  αe

Starting from an initial state, the configuration of particles at each time step 

evolves in two sequential sub-steps: streaming and collision. In the streaming process, 

each particle moves to the nearest node in the direction of its velocity; and during the 

collision process, particles arriving at the same node interact and change their velocity 

directions according to the scattering rule. For simplicity, the exclusion principle that 

at a given time, no more than one particle with a given velocity is allowed at a 

particular node is imposed for the memory efficiency, which leads to a Fermi-Dirac 

local equilibrium distribution. The conservation laws are incorporated into the update 

rules that are applied at each discrete time step.  

Since all the collisions occur at the same time and the properties of fluid are 

only requested at the lattice sites and discrete times, it is very easy to apply the parallel 

algorithm. That is also one of the reasons why this method can run much faster than 

molecular dynamics simulations on a computer. However, some problems arise due to 

its great simplification: the results are usually plagued by noise because Boolean 

variables are used; the simulation does not preserve Galilean invariance, since the 

Fermi-Dirac equilibrium distribution is used. Various modifications have been made to 

overcome these difficulties and lattice Boltzmann method is one of the outcomes. 
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1.1.2.3 Lattice Boltzmann method  

The main difference between LGA and lattice Boltzmann method (LBM) is 

that LBM replaces the particle occupation variables  (Boolean variables) used in 

LGA by the single-particle distributions (real variables) 

αn

αα nf =  and neglects the 

individual particle motion and particle-particle correlations in the kinetic equation, 

where  denotes an ensemble average. This procedure eliminates the statistical 

noise in LGA, since the primitive variables are the averaged particle distributions. 

Instead of using Fermi-Dirac equilibrium distribution function, Maxwell-Boltzmann 

equilibrium distribution function is used to preserve Galilean invariance. The 

governing equation is similar to LGA: 

( ) ( ) αααα Ω+=+ + nn tftf ,, 1 xex  (1.5) 

and it keeps the advantage of locality in LGA, which is essential to parallelism.  

McNamara & Aanetti uses the Boltzmann to simulate lattice-gas automata in 

1988. Higuera & Jimenez (1989) made an important simplification for equation (1.5). 

They linearized the collision operator. Later, it is replaced by Bhatnagar-Gross-Krook 

(BGK) collision operator by Koelman (1991), Qian et al. (1992) and others. It is 

assumed that the distribution is close to the local equilibrium state and it shifts to the 

equilibrium state by a relaxation process. The use of lattice BGK model makes the 

computations more efficient and allows the flexibility of transport coefficients.  

LBM has the following three distinct advantages: 

Firstly, the convection operator (or streaming process) of LBM in phase space 

(or particle velocity space) is linear. This feature contrasts with the nonlinear 
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convection terms in NS equations. Simple convection combined with a collision 

operator (or relaxation process) allows the recovery of nonlinear macroscopic 

advections through the multi-scale expansions.  

Secondly, the pressure in LBM is calculated using the equation of State. In 

contrast, in the direct numerical simulation of incompressible NS equations, the 

pressure satisfies Poisson equation with velocity strains acting as sources. Solving 

Poisson equation for the pressure often produces numerical difficulties, which requires 

special treatments, such as the iteration or relaxation.  

Thirdly, LBM utilizes a minimal set of particle velocities in the phase space. In 

the traditional kinetic theory with Maxwell-Boltzmann equilibrium distribution, the 

phase space is a complete functional space. The averaging process involves 

information from the whole particle velocity phase space. While in LBM, because only 

one or two speeds and a few moving directions are used, the transformation between 

the distributions and macroscopic quantities is greatly simplified and consists of only 

some simple arithmetic calculations.   

LBM has all the above advantages except the round-off freedom in LGA, with 

all the difficulties of LGA overcome. It is worthwhile to mention again that LBM is a 

particle-based method and it is an ideal method for parallelism. Thus LBM with BGK 

collision model is selected as the numerical method used in our study.  
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1.2 Literature review  

Although there are just more than ten years after the first paper about the use of 

LGA in fluid mechanics was published, LBM has been widely used in different areas 

of fluid flow applications (Chen & Doolen, 1998). We will give detailed descriptions 

in the following sections. 

 

1.2.1 Flows with simple boundaries  

In the simulation of single-component, isothermal fluid flows, LBM is found to 

be as stable, accurate and computationally efficient as classical computational methods 

(Martinez et al., 1994a). It can be easily used in the fluid flows with simple 

geometries. LBM simulation of the two-dimensional driven cavity flow was carried 

out thoroughly by Hou et al. (1995a). Their studies covered a wide range of Reynolds 

numbers from 10 to 10,000. They carefully compared the simulation results of the 

stream function and locations of vortex centers with the previous study (Ghia et al. 

1982). The differences of the numerical results were less than 1%, which lay in the 

range of the numerical uncertainty of solutions using other numerical methods. Hou 

(1995b) also simulated the three-dimensional cubic cavity flow and the results 

compared well with the experimental work by Prasad & Koseff (1989). Luo (1997) 

studied the two-dimensional symmetric sudden expansion channel flow and 

reproduced the symmetry-breaking bifurcation for this flow observed previously. LBM 

simulation of the flow around a two-dimensional circular cylinder or an octagonal 
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cylinder has also been studied by many groups (Higuera & Succi 1989; Wagner 1994; 

Nobel et al. 1996).  

 

1.2.2 Flows in complex geometries  

An attractive feature of LBM is that the no-slip bounce-back boundary 

condition costs little computational time. This makes LBM very suitable for simulating 

flows in the complicated geometries, such as flows past porous media. For flows 

through porous media, the wall boundaries are extremely complicated and an efficient 

scheme for handling wall-fluid interaction is essential. Previous conventional methods 

such as the finite difference schemes and networking models are limited either to the 

simple physics or small geometry sizes. Succi et al. (1989) used LBM to simulate the 

porous flow in a three-dimensional random medium and confirmed Darcy’s law. 

Cancelliere et al. (1990) made a detailed study and found that the permeability is a 

function of the solid fraction in a system of randomly positioned spheres of equal radii. 

Their results agreed well with the well-known Brinkman approximation and semi 

empirical Kozeny-Carman equation. Heijs & Lowe (1995) studied the validity of 

Kozeny-Carman equation for the soil samples where the flow occurs only through 

some specific continuously connected pores, neglecting the flows occurring at smaller 

scales. Flow through the sandstones has been simulated by Buckles et al. (1994), Soll 

et al. (1994) and Ferreol & Rothman (1995) independently. They obtained the 

permeability for sandstones and found that the permeability shows large variations in 

the space and flow directions, which in general agreed well with experimental 
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measurements. Spaid & Phelan (1997) investigated the injection process in resin 

transfer modeling. For this heterogeneous porous media simulation, good agreement 

between LBM simulation and the lubrication theory for cell permeability was reported. 

Latest studies further confirm the reliability of LBM in modeling fluid flows in porous 

media. For example, Zeiser et al. in 2002 employed LBM to examine the pressure 

drops in fix-bed reactors, taking account of all effects of flow characteristics caused by 

radial and circumferential inhomogeneities of packings. Tölke et al. (2002) present 

simulation results for the flow of an air-water mixture in a waste-water batch reactor 

and the saturation hysteresis effect in soil flow. Yoshino & Inamuro (2003) studied the 

transport phenomena in a three-dimensional porous structure in order to investigate the 

characteristics of heat and mass transfer at a pore scale in the structure using LBM. 

   

1.2.3 Simulation of turbulence flows  

Simulation of turbulence flows is a challenge for the numerical methods. Since 

LBM can be used for smaller viscosities, it is interesting to use LBM for DNS to 

simulate the fluid flows at high Reynolds numbers. Extensive studies on using LBM 

for DNS have been made by many authors. Martinez et al. (1994a) studied the 

decaying turbulence of a shear layer at a Reynolds number of 10,000. 

Two-dimensional forced turbulence was simulated by Qian et al. (1995) to study the 

energy inverse cascade range. LBM simulation of the three-dimensional isotropic 

turbulence has been studied by Chen et al. (1992) and Trevino & Higuera (1994), 

respectively. Three-dimensional non-homogeneous turbulent flows such as the shear 
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flow were studied by Benzi et al. (1996). For higher Reynolds numbers, it is more 

convenient to use LES in LBM. A subgrid-scale (SGS) model was introduce by Hou et 

al. (1996) in LBM and made a correction for the relaxation time by considering the 

effects of Smagorinsky filtered large-scale strain rate. Flows in a two-dimensional 

cavity at Reynolds numbers up to 106 were carried out. In the same year, Eggels 

carried out a large-eddy simulation of turbulent flow in a baffled stirred tank reactor. 

Recent simulations such as by Lu et al. (2002) and Feiz et al. (2003a, b) have 

demonstrated the potential of LBM-LES model as a useful computational tool for 

investigating turbulent flows using LBM in engineering applications. 

 

1.2.4 Multiphase and multi-component flows 

Simulations of multi-phase and multi-component flows are among the most 

successful applications of LBM. The dynamics of multiphase and multi-component 

flows has practical importance in engineering applications, including the oil-water 

flow in porous media, the boiling fluids, the liquid metal melting and solidification. 

The numerical simulation of these flows is a challenging subject because of the 

difficulties in modeling interface dynamics. Traditional numerical schemes have been 

successfully used for simple interfacial boundaries. LBM provides an alternative and 

competitive method for simulating the complicated multiphase and multi-component 

fluid flows, in particular for three-dimensional flows. Gunstensen et al. (1991) were 

the first to develop a multi-component model using LBM. In their models, two 

different fluids are represented by the red and blue particle distributions. However, it is 
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time-consuming and causes an anisotropic surface tension that induces unphysical 

vortices near interface. Shan & Chen (1993) and Shan & Doolen (1995) improved this 

model by using the model interactions to modify the surface–tension-related collision 

operator. Both models are based on the phenomenological models of interface 

dynamics and are probably most suitable for the isothermal multi-component flows. To 

account for the thermodynamics of non-ideal and multi-component fluids, Swift et al. 

(1995, 1996) used the free-energy-based LBM approach. Numerical simulations to the 

problems associated with the interfacial phenomena showed that good accuracy was 

achieved when the results were compared with theoretical predictions. He, Shan and 

Doolen (1998a) also developed a new model with the consistent temperature concept. 

It is linked to the kinetic theory of dense gases and the intermolecular interactions are 

formulated using the approximation of Enskog extension of the Boltzmann equation. 

The two-component version of this model was proposed by He et al. (1999) and has 

been successfully used to simulate Rayleigh-Taylor instability. Recent theoretical 

results (Luo & Girimaji, 2002, 2003) have proven that the LBM model for 

multi-component fluids can be rigorously derived from corresponding kinetic 

equations. This provides a unified framework to treat the LBM models for multiphase 

and multi-component fluids and set these models on a more rigorous foundation.    

 

1.2.5 Simulation of particles in fluids 

The difficulty of simulating the particle suspensions in fluid is that it should 

consider the effect of fluid-particle interaction. Ladd (1993, 1994a, 1994b, 1997) 
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conducted this pioneering work and did some interesting applications in this area. 

Significant improvements and applications were mostly associated with Behrend 

(1995) and Aidun & Lu (1995). The accuracy of Ladd’s scheme was carefully and 

extensively studied for creeping flows and other flows at finite Reynolds numbers. The 

results compared well with the finite-difference and finite-element results. In addition, 

Brownian motion has also been studied by Ladd (1993) and Dufty & Ernst (1996) 

using LBM. Their methods allow the treatment of Brownian short-time regime and 

pre-Brownian time regime for the first time. Since Brownian motion is driven by the 

fluctuations in fluids, some stochastic terms should be added to the distribution to 

include such fluctuation. By doing this, Segre et al. (1995) showed the close agreement 

between the experimental measurements and simulation results using LBM. Because 

LBM has been demonstrated as an effective simulation tool for particulate suspensions 

in fluids, it has been successfully applied to simulate suspensions with single particle 

by Qi et al. (1999, 2002a, 2003) or with multiple particles (Ladd, 2002 and Qi et al., 

2002b).  

 

1.2.6 Reaction & diffusion problems 

LBM was extended by Dawson et al. (1993) to describe a set of reaction– 

diffusion equations advected by the NS equations. Chemical reaction flows were 

investigated by Chen et al. (1995) to study the geochemical processes such as the 

dissolution on the rock surface. Flekkøy et al. (1996) carried out a study of the 

creeping flow in a Hele-Shaw cell to investigate the inertial effect at very small 
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Reynolds numbers. Filippova & Hänel (2000a) proposed a novel LBM model to 

simulate the low Mach number combustion. In their model, the equilibrium 

distribution function takes into account the variable density. The numerical simulation 

of flow in which the hot oxidizer goes through the periodical grids of porous burners 

produced satisfactory results. This shows that their model is efficient in real 

applications.  

 

1.2.7 Simulation of micro-flows 

In contrast to macro flows described by continuum mechanics, micro-flows are 

dominated by the following four effects: non-continuum, surface dominated, low 

Reynolds number and multi-scale, multi-physics. Kinetic theory is capable of dealing 

with these effects to certain extent. Due to its kinetic origin, LBM has the potential to 

simulate micro-flows for which the continuum description is invalid. It has been 

successfully applied to the pressure-driven micro-channel flow (Huang, 1998 and Lim 

et al., 2002), mixing of binary fluids in micro-channels with patterned substrates and 

fluid-substrate interaction (Kuksenok et al., 2001, 2002), and electro-kinetic flow 

around a corner or a wedge in micro-channels (Thamida & Chang, 2002) 

 

1.2.8 Other applications 

LBM is shown to be promising in several other directions. Aharonov & 

Rothman (1993), Giraud et al. (1997, 1998) and Lallemand et al. (2003) used LBM to 
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simulate the viscoelastic flows; Martinez et al. (1994b) applied it to the magneto 

hydrodynamics; Boghosian et al. (1996) extended it to the study of micro-emulsions. 

 

1.3 Research areas of LBM 

From the above literature review, we found that LBM has been developed as a 

promising alternative method for CFD and achieved huge success in many practical 

application areas. However, there still exist some areas left for improvement compared 

with the conventional CFD methods, since it is a quite new method. One is its use in 

the thermal applications, and the other is its use on the arbitrary mesh. 

 

1.3.1 Its use in the thermal applications 

Currently, the thermo-hydrodynamic LBM is one of the most challenging 

issues left in LBM research. Despite several brilliant attempts, to date, a consistent 

thermo-hydrodynamic LBM scheme working over a wide range of temperatures is still 

missing. The main difficulty is the numerical instability, which is, in part a result of 

linear collision operator and simplicity of the spatial-temporal dynamics of LBM 

(Lallemand & Luo, 2003a).  

The existing thermal LBM will fall into the following several groups: 

Boltzmann-Enskog method, multi-speed approach, passive-scalar approach, 

two-distribution model and the others. 
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1.3.1.1 Boltzmann-Enskog method  

Luo (1998) suggested that the difficulty of solving the thermal problems could 

be overcome by going back to the Boltzmann equation for the dense gases, the 

time-honored Enskog equation. He suggested solving the Boltzmann-Enskog equation 

in exactly the same way as that used in solving the Boltzmann equation for dilute gases. 

Luo’s theory seems promising in analyzing the macro limit of lattice Boltzmann 

equations (LBEs) for non-ideal fluids, but its practical value remains to be 

demonstrated because so far no simulation results are available. 

 

1.3.1.2 Multi-speed approach  

The multi-speed approach is a straightforward extension of LBM isothermal 

models, which uses only the density distribution in the streaming and collision 

processes. To obtain the temperature evolution equation at the macroscopic level, 

additional speeds are necessary and the equilibrium distribution function must include 

the higher-order velocity terms. Alexander, Chen and Sterling firstly proposed the 

thirteen speeds scheme in 1993 that expanded the equilibrium distribution function to 

the third order of velocity. But in their model, Prandtl number is fixed at the value of 

1/2. This is due to BGK model, which uses only one relaxation time for viscous and 

heat transfer. They used this model on the hexagonal lattice to simulate Couette flow 

with a temperature gradient between two parallel planes and their results agreed well 

with the theoretical predictions. Vahala et al. (1995) also used this model to study the 

effect of two-dimensional shear velocity turbulence on a steep temperature gradient 
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profile. Qian (1993) developed similar three-dimensional thermal LBM models based 

on 21 and 25 velocities. The limitation of fixed Prandtl number was partially removed 

by Chen et al. (1997) using a two-time relaxation operator. All the above multi-speed 

schemes provide the basic mechanisms of momentum and heat transfer, but they do 

not cover the issue of nonlinear momentum and heat transfer. To remove this 

shortcoming, Y. Chen (1994b) in his thesis proposed the higher-order parametric 

equilibrium distribution function to satisfy the full set of thermo-hydrodynamic 

constraints. Nevertheless, the multi-speed scheme suffers the severe numerical 

instability and the temperature variation is limited to a narrow range. Chen & Teixeira 

(2000) pointed out that the origin of reduced stability is related to the lack of a global 

H-theorem. In the same year, they proposed a scheme that stabilized the multi-speed 

scheme by identifying a temperature–dependent factor in the equilibrium distribution 

function. This leads directly to the removal of Galilean–invariance artifact and relaxes 

the requirement of instantaneous accuracy of this factor. This results in a stable scheme 

but introduces the artificial thermal diffusion strongly dependent on the bulk velocity. 

A lot of recent work may provide new direction for this approach. 

 

1.3.1.3 Passive-scalar approach  

The passive-scalar approach utilizes the fact that the macroscopic temperature 

satisfies the same evolution equation as a passive scalar if the viscous heat dissipation 

and compression work done by the pressure are negligible. In a passive-scalar based 

LBM thermal model, the temperature is simulated using a separate distribution that is 
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independent of the density distribution. So it enhances the numerical stability. 

Massaioli et al. (1993) used this passive-scalar scheme to simulate the 

two-dimensional Rayleigh-Benard (RB) convections. In the same year, Bartoloni et al. 

used this idea for the highly parallel three-dimensional simulations of Rayleigh-Benard 

turbulence. Extensive studies of the two-dimensional and three-dimensional 

Rayleigh-Benard convections were made by Shan (1997). He derived the scalar 

equation for the temperature based on the two-component model. The calculated 

critical Rayleigh numbers for RB convections agreed well with theoretical predictions. 

The Nusselt number as a function of the Rayleigh number for two-dimensional 

simulations was in good agreement with previous numerical simulations using other 

methods. Obviously, this approach will become more useful if the viscous heat 

dissipation and compression work done by the pressure can be correctly incorporated 

into the model. 

 

1.3.1.4 Two-distribution model  

The two-distribution model also called the internal energy density distribution 

function (IEDDF) thermal model was proposed by He et al. (1998b). This model has 

shown the great improvement in the stability over the previous LBM thermal models. 

It is based on the discovery that the lattice Boltzmann isothermal models can be 

actually derived by discretizing the continuous Boltzmann equation in the temporal, 

spatial and velocity spaces. Following the same procedure, a new LBM thermal model 

can be derived by discretizing the continuous evolution equation for the internal 
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energy density distribution. This new scheme is similar to the passive-scalar approach 

because it also uses an independent distribution to simulate the temperature evolution. 

Hence its numerical stability is similar to that of the passive-scalar thermal model. 

However, this model can incorporate the viscous heat dissipation and compression 

work done by the pressure, which cannot be done in the passive-scalar thermal model. 

 

1.3.1.5 Other thermal models  

In recent years, attempts are also taken from a different way by using higher 

isotropic lattices. Pavlo et al. (1998a, 1998b) proposed the non-space filling lattices, 

typically octagons, which offer a higher degree of isotropy to solve the thermal 

problems. They have proposed the two-dimensional and three-dimensional lattice 

models. Some preliminary simulations for the two-dimensional jet flow between 

planes held at constant temperatures were reported in 2002. Some interesting work has 

also been done by Onishi (2001) and Guo (2002), respectively. Instead of using more 

particle velocities than the isothermal models, they used fewer particle speeds (i.e. 

only four-speed particle model) in their thermal models. The applications of their 

models are limited to the two-dimensional flows and the possibility of their uses in the 

three-dimensional flows is still not clear. It appears recently that some thermal models 

use various shock capturing schemes to simulate fully compressible Euler (Hinton et 

al. 2001, Shi et al. 2001) or NS equations (Sun 2000, Mason 2002). The numerical 

accuracy of these shock capturing schemes remains mostly unknown. It is not clear for 

the benefit of these schemes to the thermal applications. In 2003b, Lallemand and Luo 
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proposed to use a hybrid scheme in which the LBM flow simulation was decoupled 

from the solution of temperature equation by finite-difference techniques.  

 

1.3.1.6 Our research work on the thermal models  

From the above literature review, we can see that most of the current thermal 

models are faced with the stability problem or in the preliminary stage of development. 

More research work is needed to assess on the quantitative grounds of how 

thermodynamics is correctly represented by the LBM thermal models in two and three 

dimensions. Among the above-mentioned thermal models, the currently published 

research work on the IEDDF thermal model has shown that this thermal model is very 

stable and convenient for implementation. So we started our research work in this 

challenging area by using the IEDDF thermal model.  

Since the IEDDF thermal model is a new model, it still lacks benchmarks. 

Particularly, all the preceding benchmarks have been done with the use of periodic 

boundary condition. Therefore, it is important to analyze the validity for the IEDDF 

model in the presence of solid boundaries for the purpose of engineering applications. 

In addition, this model is limited to solve the thermal problems with Dirichlet 

boundary condition. So in this thesis, we did more benchmark studies for this model, 

especially those applications with solid boundaries. We also extended this thermal 

model to be used for the thermal applications with Neumann boundary condition, 

which is necessary for the real practical thermal applications. Then its use on the 
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arbitrary mesh was developed by using the finite volume technique and the technique 

of Taylor series expansion- and least squares- based LBM, respectively. 

Based on the original IEDDF thermal model and the properties of 

incompressible thermal flows, we proposed a new simplified IEDDF thermal model 

for the incompressible flows. The computational efficiency has been greatly improved 

as compared with the original IEDDF thermal model when solving the incompressible 

thermal flows.  

In order to solve the three-dimensional thermal flows, we proposed a 

three-dimensional IEDDF thermal model and used it to solve the three-dimensional 

natural convection problems in a cubic enclosure. This is the first time that the LBM 

thermal model was used in the real three-dimensional thermal applications.   

 

1.3.2 Its use on the arbitrary mesh 

LBM so far lags behind the conventional CFD methods in the simulations of 

fluid flows in the realistically complicated geometries. This traces back to the 

constraints of working along the light-cones ex =dtd . This restricts LBM to the 

lattice-isotropy in the physical space, which makes the scheme macroscopically similar 

to a uniform Cartesian-grid solver. Various methods have been proposed to remedy 

this unsatisfactory state of affairs, such as the finite volume method, finite difference 

method, multiscale method, interpolation-supplemented LBM (ISLBM) and Taylor 

series expansion- and least squares- based LBM (TLLBM). 
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1.3.2.1 Finite volume LBM  

Finite volume LBM (FVLBM) is to define the coarse grids of virtually 

arbitrary shape whose cells typically contain several original lattice units, so that the 

coarse grids need not be tied down to the symmetries of underlying fine grids where 

the dynamics of differential lattice Boltzmann equation (LBE) takes place. The 

evolution equation for the mean value in the cell requires the evaluation of flux across 

the boundaries of cell. A piece-wise constant, piece-wise linear or piecewise-parabolic 

interpolation can be used to approximate the flux. Succi et al. (1995) were the first to 

propose a finite-volume formulation of LBM. However, the empirical formulae used 

are quite complicated even for the simple rectangular mesh, and a free parameter has to 

be introduced and adjusted in order to minimize the numerical diffusion. Chen (1998) 

developed another finite-volume scheme. With properly chosen forms of state-flux 

functions, both exact conservation laws and equilibrium balance conditions are 

achieved as in the original LBM. However, the irregular meshes used in all the 

above-mentioned approaches are not satisfactory in the sense that the topology of mesh 

is not arbitrary. Recently, a new finite volume method was proposed by Xi et al. (1998, 

1999a, 1999b), which has great geometrical flexibility without compromising the 

simplicity of conventional LBM. It is based on the modern finite-volume method and 

successfully used on both the structured and unstructured grids. 
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1.3.2.2 Finite difference method  

It is recognized by some groups that the differential form of LBE is nothing but 

a set of hyperbolic partial differential equations, so it becomes natural to observe that 

both time and space derivatives can be discretized in many ways, not just obeying 

ex =dtd . One example is that Cao et al. (1997) developed a number of finite 

difference LBE methods based on higher-order time marching schemes, as combined 

with various spatial discretization schemes. It has been successfully demonstrated for 

various flows in bounded geometries, such as the two-dimensional Taylor vortex flow, 

Couette flow with the temperature gradient between walls, and so on. 

  

1.3.2.3 Grid-refinement LBM  

Filippova and Hanel (1998) presented the grid-refinement LBM scheme with 

boundary-fitting formulation on the curvilinear boundaries. It uses the concept of 

hierarchical grid refinement. The calculation is based on a coarse grid covering the 

whole integration domain. In a critical region, a finer grid is superposed to the basic 

coarser grid. The calculation proceeds with large time-step accordingly to the coarse 

grid; while on the finer grid, several time steps according to the refinement ratio are 

performed to advance to the same time level. This feature is very important for the 

computations of time-dependent flows. But for the computations of steady-state 

incompressible flows, the use of several smaller time-steps on the fine grid would 

increase the computational time. In order to remove this drawback, the use of smaller 

amount of time-steps on the fine grid was proposed (2000b). For the time-dependent 
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computation, this is connected with the change of ‘molecular’ speeds on the fine grid 

so that the temporal accuracy will not be impaired in certain limits. For the steady-state 

computation, the saving of CPU time can be even larger, since the same amount of 

time steps can be chosen on coarse and fine grids as well. They tested and validated 

their scheme by calculating the moderate Reynolds number flows around the cylinder 

and wing. 

 

1.3.2.4 Interpolation–supplement LBM  

He, Luo and Dembo (1996) proposed the interpolation–supplement LBM 

(ISLBM). The discrete distributions are still to move along the straight paths 

ex =dtd , but an interpolation step is introduced after the stream and collision steps to 

determine the density distributions at the grid points for the next time step. To 

minimize the numerical viscosity, the second-order interpolation is used. He & Doolen 

(1997) revisited the problem of the two-dimensional flow around circular cylinder 

using this method. In their simulation, the underlying lattice was square but a spatial 

interpolation was used, which improved the numerical accuracy. Lift and drag 

coefficients, wake lengths and separation angles at different Reynolds numbers were in 

good agreement with those predicted by previous experimental and numerical studies. 

 

1.3.2.5 Taylor series expansion- and least squares- based LBM (TLLBM) 

In order to implement LBM more efficiently for the flows with arbitrary 

geometries, the Taylor series expansion- and least squares- based LBM (TLLBM), 

23 



Chapter 1 Introduction 

which is based on the standard LBM, Taylor series expansion and least squares 

approach, was proposed by Shu et al. in 2001. The final form is an algebraic 

formulation, in which the coefficients  depend only on the coordinates of mesh 

points and lattice velocity, and can be computed once in advance. It can be consistently 

used in any kind of lattice model. This new method possesses the following features: 

Firstly, it is suitable for the arbitrary geometry and does not introduce any coordinate 

transformation technique. Secondly, in order to avoid the increase of numerical 

discretization errors, it does not include any derivative operation. Thirdly, the matrix 

least square theorem is used to obtain the optimum solution of differential equations. 

Finally, the present method keeps the merit of easy parallel computing of the standard 

LBE. Numerical experiments on the isothermal flows have shown that this method is 

an efficient and flexible approach for practical engineering applications. It should be 

mentioned that the hyper viscosity is increased (Niu. et al., 2004).  

ka ,1

 

1.3.2.6 Our research work on the arbitrary mesh  

From the above literature review, we can see that all the above-mentioned 

methods, especially the finite volume LBM and TLLBM have been used in the 

isothermal flows with complex geometries. We decided to use these two methods to 

extend the IEDDF thermal model to be used on the arbitrary mesh, since all the current 

thermal models including the IEDDF thermal model are restricted to the regular grids. 

While in fact, the flow and thermal fields in different kinds of enclosed spaces are of 

great importance due to their wide applications such as in solar collector-receivers, 
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insulation and flooding protection for buried pipes used for district heating and 

cooling, cooling systems in nuclear reactors, etc. These all need LBM thermal solvers 

on the arbitrary mesh. No studies have been reported on the thermal applications with 

arbitrary geometries due to the combined complexities of the use of LBM for the 

thermal problems and it use on the arbitrary mesh.  

Firstly, we used the finite volume LBM technique proposed by Xi (1998, 

1999a, 1999b) to extend the IEDDF thermal model for its use on the arbitrary mesh. 

However, through the literature review, we found that all the applications using this 

FVLBM were limited to the periodic boundary conditions at the inlet and outlet 

because of the failure to implement the wall boundary conditions. In order to develop 

this FVLBM, we proposed a new implementation of wall boundary conditions in this 

thesis, which is based on the half-covolume scheme and bounce-back rule for the 

non-equilibrium distribution. Using this implementation of wall boundary conditions, 

the flow problems with different inlet and outlet boundaries can be successfully solved. 

Then we developed a new scheme using this FVLBM technique and IEDDF thermal 

model to solve the thermal problems on the arbitrary mesh. Numerical simulations of 

the natural convection in a square cavity on the non-uniform grids were carried out and 

the accuracy of this scheme was compared with a NS solver. The numerical results at 

high Rayleigh numbers showed that using the FVLBM technique, large numerical 

diffusion exists, which reveals to its inaccuracy. So we moved to another way by using 

the TLLBM technique.  

25 



Chapter 1 Introduction 

We proposed a new thermal scheme by using the TLLBM technique in the 

IEDDF thermal model. Numerical simulations of the same natural convection in a 

square cavity at a wide range of Rayleigh numbers were carried out. Numerical results 

at high Rayleigh numbers agreed well with a NS solver, which means that this new 

scheme is an efficient and accurate method to solve the thermal problems on the 

arbitrary mesh. Then we successfully used this scheme to solve the complex thermal 

problems with curved boundaries such as the natural convection in the annulus 

between a square outer cylinder and a circular inner cylinder. 

 

1.3.3 Work on a special kind of flows 

Axisymmetric thermal flows are quasi-three-dimensional flows. Its complexity 

is between two-dimensional flows and real three-dimensional flows. It covers many 

important flows such as the forced and mixed convections in the vertical concentric 

cylindrical annuli and Czochralski crystal growth problems. Since these flow problems 

are defined on the cylindrical coordinate system, they are quite different from the 

problems defined on the Cartesian coordinate system when using LBM. Special 

treatment is needed; otherwise the real three-dimensional LBM has to be used for these 

axisymmetric flows. In this thesis, we developed an effective new numerical scheme to 

solve this kind of important thermal flows using LBM.  

 

1.4 Contribution of the dissertation 

In this thesis, the following contribution works are carried out. For its use in the 
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thermal applications, extend the IEDDF thermal model for flows with Neumann 

boundary condition; develop simplified IEDDF thermal models for two and three 

dimensions; propose a thermal model for axisymmetric thermal flows. For its use on 

arbitrary mesh, especially for thermal flows, test FVLBM and TLLBM. For FVLBM, 

propose a new scheme for wall boundary conditions. For TLLBM, it is found to be a 

good technique to solve the flow problems with complex geometry.  

The work done in this thesis may help the improvement of LBM in its thermal 

applications, which may contribute to its development as an alternative method to 

solve the real practical fluid problems comparable to the conventional CFD methods or 

even better in some areas where the conventional CFD methods cannot be used. 

 

1.5 Organization of the dissertation 

The thesis is organized as follows:  

In Chapter 2, the basic concepts related to LBM with BGK models are 

introduced. Some knowledge about the equilibrium distribution function, discrete 

velocity models, boundary conditions and the stability of LBM are presented.  

Chapter 3 shows the theory of the IEDDF thermal model and our proposed 

implementation scheme for the Neumann boundary condition. The numerical 

simulations of the natural convection in a square cavity have been carried out to 

validate the IEDDF thermal model and our new implementation for the Neumann 

boundary condition. The accuracy and grid-independence study using this improved 

thermal model are thoroughly investigated.   
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In Chapter 4, a FVLBM proposed by Xi (1998, 1999a, 1999b) is introduced 

and our new implementation of the wall boundary condition for this FVLBM is 

described in details. Numerical simulations on driven cavity flows and expansion 

flows show that our new implementation of the wall boundary condition improves the 

applicability of this FVLBM. Then we apply this FVLBM technique to the IEDDF 

thermal model in order to solve the thermal flows on the arbitrary mesh. The numerical 

results show that this scheme has large numerical diffusion at high Rayleigh number, 

which leads to its invalidity. So this FVLBM technique is not suitable for the thermal 

flows with high Rayleigh numbers. 

In Chapter 5, in order to simulate the thermal flows with arbitrary geometries at 

high Rayleigh numbers, another new thermal scheme based on the TLLBM technique 

and the IEDDF thermal model is presented. Numerical simulations of the natural 

convection in a square cavity on the non-uniform grids at a wide range of Rayleigh 

numbers have been carried out. Compared with FVLBM thermal scheme, the TLLBM 

thermal scheme is more stable at high Rayleigh numbers. So this scheme is also 

employed to study the complex thermal flows with curved boundaries such as the 

natural convection in a horizontal concentric annulus between a square outer cylinder 

and a circular inner cylinder. Numerical results for Rayleigh numbers ranging from 104 

to 106 and aspect ratios between 1.67 and 5.0 are presented, which agree well with the 

available data in the literature.  

In Chapter 6, axisymmetric thermal flows are studied using LBM. A new 

scheme is developed by using the idea that inserting the position and time dependent 
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source terms into the evolution equation of the standard LBM and making it recover 

the governing equations on the cylindrical coordinate system by Chapman-Enskog 

expansion. 

In Chapter 7, considering the fact that the compression work done by the 

pressure and the viscous heat dissipation can be neglected for the incompressible 

thermal flows, a new simplified IEDDF thermal model is proposed for these 

incompressible thermal flows. It does not have any gradient term and is much easier to 

be implemented. This model is validated by the numerical simulation of the natural 

convection in a square cavity at a wide range of Rayleigh numbers. Its accuracy and 

efficiency have been thoroughly studied, showing the high efficiency of this new 

scheme when solving incompressible thermal flows. Its compressibility effect has also 

been studied. 

In Chapter 8, we successfully develop a new three-dimensional IEDDF thermal 

model for the real three-dimensional thermal flows. Numerical simulation results of 

the three-dimensional natural convection in a cubic enclosure show the validity of our 

new three-dimensional thermal model. 

In Chapter 9, we draw some conclusions and some recommendations are also 

given. 
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Chapter 2 

Basic concepts of LBM 

 

2.1 Introduction 

In this chapter, we will give a brief introduction about the newly developed 

method called LBM. We will talk about how LBM is derived, the integrants of LBM and 

its connection with the conventional continuity and NS equations. Boundary condition is a 

very important issue for the implementation of LBM. Different ways of implementing the 

boundary conditions are presented. At the end, the stability of LBM will be briefly 

discussed. 

 

2.2 The origin of LBM 

There are two different ways to obtain LBM. One is from the lattice-gas cellular 

automata (LGCA); the other is from the continuous Boltzmann equation. 

 

2.2.1 From lattice-gas cellular automata to LBM 

The field of LGCA started in 1986 with the famous paper of Frisch, Hasslacher 

and Pomeau. These authors showed that a kind of billiard game with collisions that 

conserve the mass and momentum would lead to the NS equations in the macroscopic 

limit when the underlying lattice possesses a sufficient symmetry. The first LBM was 

introduced by McNamara & Zanetti in 1988 based on LGCA because they used the same 

lattices (FHP and FCHC) and applied the same collisions. Instead of using Boolean 
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variables, it used the continuous single-particle distribution which interacts locally and 

propagates after collision to the next neighbor node. Fermi-Dirac distributions were used 

as the equilibrium distribution functions. The next step in the development for LBM was 

the simplification of the collision operator. The linearized collision operator was firstly 

used by Higuera and Jimenez in 1989. The choice of Boltzmann distribution as the 

equilibrium distribution function gave much more flexibility to LBM, leading to the 

Galilean invariant macroscopic equations without the scaling of time and allowing tuning 

the viscosity. Then the next development for the collision operator, which was based on 

the collisions of a certain LGCA, was replaced by the single time relaxation BGK 

approximation by Koelman (1991), Qian et al. (1992) and the others. These lattice BGK 

(LBGK) models marked a new level of abstraction: collisions are not defined explicitly 

anymore. Thus the LBGK model has been widely used. 

 

2.2.2 Approximation to the continuum Boltzmann equation 

It has been shown recently by two groups independently (He & Luo 1997, Abe 

1997) that LBM can be directly derived from the continuous Boltzmann equation when 

the latter is discretized in both the time and phase space in some special manner. 

In the derivation, the starting point is the continuous Boltzmann equation with the 

BGK approximation: 

( )eqfff
t
f

−−=∇⋅+
∂
∂

'

1
τ

e  (2.1) 

where  is the single-particle density distribution; e  is the microscopic 

velocity;  is the relaxation time due to the collision and  is the equilibrium density 

( tff ,,ex≡ )

'τ eqf
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distribution function. Boltzmann-Maxwellian distribution is used as the equilibrium 

distribution function:  

( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≡

RTRT
f D

eq

2
exp

2

2

2

ue

π

ρ
 (2.2) 

where R is the ideal gas constant and D is the dimension of the space. The macroscopic 

density, velocity and internal energy can be obtained from the (microscopic velocity) 

moments of the density distribution :  f

∫∫ == ee dfdf eqρ     (2.3a)        

∫∫ == eeeeu dfdf eqρ   (2.3b)        

( ) ( )
∫∫

−
=

−
= eueeue dfdfe eq

22

22

ρ   (2.3c) 

The internal energy has the following relationship with the temperature T : 

TkN
D

RT
D

e BA22
00 ==  (2.4) 

where is the number of degrees of the freedom for a particle;  is Avogadro’s 

number and  is the Boltzmann constant.  

0D AN

Bk

Equation (2.1) can be formally rewritten in the form of an ordinary differential 

equation: 

eqff
dt
df

''

11
ττ

=+  (2.5) 

where ∇⋅+
∂
∂

≡ e
tdt

d
 is the time derivative along the characteristic line ex =dtd . The 

above equation (2.5) can be formally integrated over a time step of tδ : 
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( ) ( ) ( )tfdttttftttf tt eqt ,,,,1,,
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' exeeexeeeex

''t- τδδ ττδ

τ
δδ −− +++=++ ∫   (2.6) 

Assuming that tδ  is small enough and  is smooth enough locally, the following 

approximation can be made: 

eqf
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The leading terms neglected in the above approximation are of the order of ( )2to δ . With 

this approximation, equation (2.6) becomes 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]tftttf

t

tftftftttf

eqeqt

eq
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⎤
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⎡
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+−−=−++

− δδ
δ
τ

δδ

τδ

τδ

( )  (2.8) 

If we expand 
'τδ t−e  in its Taylor expansion and further neglect the terms of order ( )2to δ  

or smaller on the right-hand side of equation (2.8), we obtain 

( ) ( ) ( ) ( )[ ]tftftftttf eq ,,,,1,,,, exexexeex −−=−++
τ

δδ  (2.9) 

where tδττ '≡  is the dimensionless relaxation time. 

In order to numerically evaluate the hydrodynamic moments, the appropriate 

discretization in the momentum space e  must be accomplished. With appropriate 

discretization, the integration in the momentum space can be approximated by the 

quadrature up to a certain degree of accuracy, that is  

( ) ( ) ( ) ( )∑∫ =
α

αααψψ tfWdtf eqeq ,,,, exeeexe    (2.10) 

where ( ) ( )
2

,,1
2ueee −

=ψ  and  are the weight coefficients.  αW
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Assuming that the fluid velocity is a small parameter (compared with the sound 

speed), the equilibrium distribution function is obtained by a truncated small velocity 

expansion. 
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A proper equilibrium distribution function leads to the recovery of the NS equations. 

  

2.3 The integrants of LBM 

LBM has three main integrants: the kinetic equation, the lattice models and the 

equilibrium distribution functions.  

 

2.3.1 The kinetic equation 

In the kinetic equation, one of the major difficulties when dealing with LBM is the 

complicated nature of the collision integral. The simpler operator  which replaces the 

collision operator  should respect two constraints. One is that  conserves the 

collision invariants 

( )fJ

( ffQ , ) ( )fJ

kψ  of , that is  ( ffQ , )

( ) 033 =∫ uxddfJkψ ,   (2.12) ( )4,3,2,1,0=k

where ( ) u== 3210 ,,,1 ψψψψ  and . The other is that the collision term should 

express the tendency to the Maxwellian distribution (H-theorem). Both constraints are 

fulfilled by the model called BGK approximation. So the kinetic equation is simplified to 

the well-established lattice BGK equation.  

2
4 u=ψ

34 



Chapter 2 Basic concepts of LBM 

( ) ( ) ( ) ( )[ ]tftftftttf eq ,,,,1,,,, exexexeex −−=−++
τ

δδ  (2.13) 

 

2.3.2 The requirements of the lattice models 

The isothermal lattice models should satisfy the isotropy of the lattice tensors to 

the 2nd and 4th rank. For the thermal lattice models, isotropic lattice tensors up to the 6th 

rank are required. The lattice tensors with odd rank vanish because of the symmetry of the 

lattice models.  

A lattice tensor of the nth rank is defined as  

∑=
i

iii nn
eeeL αααααα ......

2121 ......  (2.14) 

where  is the Cartesian component of the lattice velocity .  
vie α i

eα

An isotropic tensor has the following definition: A tensor  of the n
n

T ααα ......21

th rank 

is called isotropic if it is invariant with respect to the arbitrary orthogonal transformations 

 (rotations and reflections)  Ο

nnnn
TT βαβαβαβββααα ΟΟΟ= ......

22112121 ............ . (2.15)  

According to Theorem of H. Jeffreys & B. S. Jeffreys proposed in 1956, an isotropic 

tensor of the 2nd rank is proportional to αβδ . There are three different (linear independent) 

isotropic tensors of the 4th rank and those are βγαδβδαγγδαβ δδδδδδ ,, , which can be 

combined to the most general form βγαδβδαγγδαβαβγδ δδδδδδ cbaT ++= , where a, b, and c 

are arbitrary constants. Isotropic tensors of the rank  consist of only the products of 

the second rank 

4≥n

δ  tensors.  
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The associated lattice tensors of rank four are usually non-isotropic because the 

symmetry group of the corresponding lattices is not large enough. But the isotropy of the 

4th rank tensors can be recovered by introducing weights for the different speeds. These 

generalized lattice tensors defined as ∑=
i

iiii nn
cccwG αααααα ......

2121 ......  occur naturally in 

the multi-scale analysis of the multi-speed models.  

 

2.3.3 The equilibrium distribution function 

The Maxwellian distribution is used as the equilibrium distribution function. At the 

low Mach number approximation, the general form of this equilibrium distribution 

function can be written as 

( ) ( ) 22 uueue ααααα DCBAf eq +⋅+⋅+= . (2.16)  

The coefficients A, B, C and D depend on ρ , but not on u . These coefficients are 

determined in order to recover the NS equations correctly. 

 

2.3.4 Examples of the two-dimensional lattice models 

The commonly used two-dimensional lattice models, which satisfy all the above-

mentioned requirements, are D2Q7 and D2Q9 (DnQm means m speed model in n 

dimensions). The configurations of these two lattice models are shown in Figure 2.1. 

For D2Q7, the lattice velocities are defined as 
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The equilibrium distribution functions are given as 
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where 1β  is an adjustable parameter,  is the density of the rest particle and d  is the 

density of the moving particles. If the density ratio of the rest and moving particles is 

defined as 

0d

dd0=λ , the pressure is determined by the isothermal equation of State: 

( )
ρ

λ
ρβ

6
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13 1

+
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== dp   (2.19)      

and the sound speed is 

6
3

2
1 12

+
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−
=
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β

sc   (2.20)      

The viscosity is related to the relaxation time through the following equation:  

4
21−

=
τυ   (2.21)      

For D2Q9, the lattice velocities are defined as 
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The equilibrium distribution functions are given as 
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where ,  for 9/40 =w 9/1=αw α =1,2,3,4 and 36/1=αw  for α =5,6,7,8. 

The pressure is determined by the isothermal equation of state: 
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ρ
3
1

=p   (2.24)      

and the sound speed is 

3
12 =sc   (2.25)      

The viscosity is related to the relaxation time by 

3
21−

=
τυ   (2.26)      

 

2.3.5 Examples of the three-dimensional lattice models 

The commonly used three-dimensional lattice models are D3Q15, D3Q19 and 

D3Q27. The configurations of D3Q15 and D3Q19 models are shown in Figure 2.2 and 

Figure 2.3. Their equilibrium distribution functions have the same form as 
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The pressure in all the three models is determined by the same isothermal equation of state 

ρ
3
1

=p  and the sound speed is 
3
12 =sc . In all the three lattice models, the viscosity is 

related to the relaxation time by 
3

21−
=
τυ .   

For D3Q15, the lattice velocities are defined as 

( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

−=±±±
−=±±±

=
=

147)1,1,1(
611,0,0,0,1,0,0,0,1

00

α
α
α

αe  (2.28) 

The coefficients for the equilibrium distribution functions are , 9/20 =w 9/1=αw  for 

α =1-6 and  for 72/1=αw α =7-14. 
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For D3Q19, the lattice velocities are defined as 
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The coefficients for the equilibrium distribution functions are ,  for 3/10 =w 18/1=αw

α =1-6 and  for 36/1=αw α =7-18.      

For D3Q27, the lattice velocities are defined as 

( ) ( ) ( )
( ) ( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=±±±
−=±±±±±±
−=±±±

=

=

26191,1,1
1871,1,0,1,0,1),0,1,1(
611,0,0,0,1,0,0,0,1

00

α
α
α
α

αe  (2.30) 

The coefficients for the equilibrium distribution functions are 27/80 =w ,  for 27/2=αw

α =1-6,  for 54/1=αw α =7-18 and 216/1=αw  for α =19-26.  

These three three-dimensional lattice models have been assessed by Mei et al. 

(2000) in terms of the efficiency, accuracy and robustness in the lid driven cavity flow. 

D3Q19 was found to be the best lattice model for the case investigated. D3Q15 exhibited 

the velocity oscillation and was prone to the computational instability. The more 

complicated model D3Q27 did not necessarily give more accurate results than D3Q19 

model with the same spatial resolution. 

 

2.4 Recovery of the NS equations 

To derive the macroscopic hydrodynamic equations, Chapman-Enskog expansion 

is used, which is essentially a formal multiscaling expansion: 
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where ε  is a small parameter. This formula assumes that the diffusion time scale  is 

much slower than the convection time scale . Likewise, the one-particle density 

distribution  can be expanded formally about the local equilibrium density distribution 

function , 
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Here  depends on the local macroscopic variables (eqfα ρ and uρ ) and should satisfy the 

following constraints: 
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( )2)2()1()( εε ααα offf neq ++=  is the non-equilibrium density distribution, which satisfies the 

following constraints: 
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for both k=1 and k=2. 

Performing the Taylor series expansion for equation (2.13) in the time and spatial 

space, we obtain the following continuum form of the kinetic equation accurate to the 

second order in ε : 
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where ( ) ( )[ ]tftf eq ,,,,1 exex −−=Ω
τα . 

Using equations (2.31) and (2.32) and collecting the first order in ε  results in: 
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Collecting the second order in ε  results in: 
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which can be simplified to the following equation: 
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The summation of equation (2.36) in the particle velocity space gives the first-order 

continuity equation: 

( ) 01
0

=⋅∇+
∂
∂ uρρ
t

 (2.39) 

The summation of equation (2.36) multiplied by  in the particle velocity space gives the 

first-order momentum equation: 

αe

( ) ( ) 00
1

0

=∏⋅∇+
∂

∂
t
uρ  (2.40) 

where . ( ) ∑=∏
α

ααα
eqfee0

The summation of equation (2.38) in the particle velocity space gives the second-order 

continuity equation: 

0
1

=
∂
∂
t
ρ  (2.41) 

The summation of equation (2.38) multiplied by  in the particle velocity space gives the 

second-order momentum equation: 

αe

41 



Chapter 2 Basic concepts of LBM 
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2
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The summation of equation (2.39) and equation (2.41) leads to the macroscopic continuity 

equation: 

( ) 0=⋅∇+
∂
∂ uρρ

t
 (2.43) 

The summation of equation (2.40) and equation (2.42) leads to the macroscopic 

momentum equation: 

( ) 0=∏⋅∇+
∂

∂
t
uρ  (2.44) 

The accuracy of equation (2.43) and equation (2.44) is the second order in ε . The 

momentum flux tensor in equation (2.44) has the form 
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⎛ −+=∏

α
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)1(

2
11 ff eqee  (2.45) 

where (  is the component of the particle velocity  in the )γαe αe γ - coordinate direction. 

To specify the detailed form of γβ∏ , the lattice structure and the corresponding 

equilibrium distribution function have to be specified. For simplicity and without the loss 

of the generality, we take D2Q9 as an example. 

Inserting the lattice velocities and their equilibrium distribution functions into 

equation (2.45), we have 

( ) ( )∑ +==∏
α

βγγβαβαγαγβ ρδ uuee pf eq)0(   (2.46) 
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where 3ρ=p  is the pressure, which gives a constant sound speed 31=sc  ; and 

( ) 612 −= τν  is the kinematic viscosity.          

The resulting momentum equation is  
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(2.48) 

Equation (2.43) and equation (2.48) are exactly the same as the incompressible NS 

equations if the density variation δρ  is small enough.           

This means that LBM can recover the incompressible NS equations. When NS 

equations are valid, LBM can get the same result as the NS solvers. But LBM has discrete 

and kinetically ‘molecular’ properties in nature, so it still can be used when the continuum 

assumption breaks down. This indicates that the applications of LBM are wider than the 

applications of the NS solvers. 

 

2.5 Boundary conditions in LBM 

The implementation of the boundary conditions is an essential issue in LBM, since 

the boundary conditions determine the actual dynamics of the fluid flows. There are a lot 

of papers published about the implementation of the boundary conditions. A lot of work 

done in this thesis is also related to the implementation of the boundary conditions, 

especially the wall boundary condition.  

The ways to deal with the wall boundary condition are originally taken from LGA. 

In order to obtain the no-slip velocity boundary condition, a bounce-back scheme for the 
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particle density distribution at a solid wall was used by Wolfram (1986). In this so-called 

bounce-back scheme, the particle density distribution streams to a wall node and simply 

scatters back to the node it comes from. The obvious advantage of this bounce-back 

scheme is its easy implementation in the real applications, which is very important for the 

problems with complex geometries such as the flows through porous media. However, it 

is found that the bounce-back condition only has the first-order numerical accuracy at the 

boundaries when BGK collision model is used. This degrades the accuracy of LBM 

because LBM has the second-order accuracy in the interior flow fields. 

To improve the numerical accuracy of LBM on the boundaries, several improved 

bounce-back schemes and other kinds of boundary treatments have been proposed. Ziegler 

(1993) proposed the second-order halfway bounce-back scheme by shifting the non-slip 

boundary into the fluid by half of one mesh unit. In the same year, Skordos suggested that 

the velocity gradients should be included in the equilibrium distribution function at the 

wall nodes. Inamuro et al. (1995) corrected the bounce-back scheme by introducing a 

counter slip velocity at the wall. Maier et al. (1996) modified the bounce-back condition to 

make the net momentum tangent to the wall become zero and preserve the momentum 

normal to the wall. However, all the above-mentioned improved bounce-back conditions 

cannot keep the second-order accuracy when the treatments are used in the curved 

boundaries. Zou & He (1997) extended the bounce-back condition to be used for the non-

equilibrium part of the density distribution.  

Besides the bounce-back boundary condition and its improved forms, other 

implementations of boundary conditions have been proposed by several researchers. In 

1995, Noble et al. proposed a hydrodynamic boundary condition. In their treatment, a 

pressure or a velocity constraint is used on the wall and the unknown density distributions 
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are calculated by using the conservation equations of mass, moment and energy. It is 

worth mentioning that this implementation of boundary condition can also be applied to 

other kinds of boundaries such as the inlet and outlet boundaries of channel flows. 

However, it is only applicable to simple boundaries and the unknown density distributions 

should not exceed the available number of conservation equations. Filippova et al. (1998) 

introduced a boundary-fitting condition for the complex boundaries based on the Cartesian 

grids. This implementation of the boundary condition is based on the combination of the 

concepts of bounce-back scheme and interpolation of the density distributions on the wall 

so as to achieve the second-order accuracy on the boundaries with arbitrary shape. So it 

requires more computational effort and is very inconvenient in the implementation 

because the boundary does not exactly lie on the grid points. Chen et al. (1996) proposed a 

second-order extrapolation scheme, starting from the viewpoint that LBM is a special 

finite difference scheme of kinetic equation. They adopt the staggered mesh discretization 

from the traditional finite difference method. The unknown particle density distributions 

on the wall can be obtained from the extrapolation of the density distributions within the 

flow. In 1999, Mei et al. developed a second-order accurate treatment for the curved 

boundary. It is an improvement of the scheme proposed by Filippova et al. (1998). For 

FVLBM, Peng et al. (1999a) proposed the half covolume scheme for the wall boundary. It 

treats the boundary nodes as the interior nodes except that for the boundary nodes, the flux 

across the boundaries should be included. However, there still exist some problems when 

it is used in the practical applications. A new implementation of the boundary condition 

for FVLBM was proposed in this thesis based on the half-covolume scheme and bounce-

back rule for the non-equilibrium density distribution. 
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Recently, Bouzidi et al. (2001) proposed a new scheme for wall boundary 

conditions. It uses the bounce-back and interpolations. Based on this, Ginzburg & 

d’Humieres (2003) presented a general framework called multi-reflection boundary 

conditions for several previously introduced boundary conditions for LBM, such as the 

bounce-back rule and linear and quadratic interpolations. It gives theoretical tools to study 

the existing link-type boundary conditions and their corresponding accuracy and designs 

boundary conditions for general flows which are third-order kinetic accurate. The good 

stability of these schemes is highlighted by some simulations of moving obstacles: a 

cylinder between flat walls and a sphere in a cylinder. 

 

2.6 Stability of LBM 

Stability is a key property of any numerical scheme since it helps to protect against 

numerical runaways due to the cumulative error build-up or other generic sources of 

inaccuracy. For the explicit schemes, the basic notion is that the lattice is a discrete world 

that can only support signals with a finite propagation speed.  

For linear stability, Succi in his book (2002) has done some analysis for the 

stability of LBM and we will list some important results here.  

The relaxation parameter obeys the following inequality: 

210 <<
τ

 (2.49) 

In view of the expression of the fluid viscosity ⎟
⎠
⎞

⎜
⎝
⎛ −

2
1~ τυ , equation (2.49) is precisely 

the condition for the fluid viscosity to be positive. The fact that 
2
1  exists in the expression 
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of the viscosity comes from the second-order terms in the Taylor series expansion of the 

streaming operator. This matches the intuitive notion of the negative viscosity as physical 

instability. The limit of 01 →τ
 
breaks the adiabatic assumption that begets the 

convergence of a hyperbolic equation to a diffusive equation. The other extreme 21 →τ  

cannot be reached, because it gives rise to the sub-grid scales which the scheme is not able 

to dissipate, thereby leading to a catastrophe. This will be the issue of the nonlinear 

stability. 

 The linear stability analysis is also carried out in detail by Lallemand & Luo in 

2000. A systematic and general procedure to analyze the LBE models is described in the 

paper. The proposed procedure can be readily applied to analyze more complicated LBE 

models.  

For non-linear stability, a rigorous theoretical analysis is impossible and a number 

of general guiding criteria are given by Sterling & Chen (1996) and Pavlo et al. (1998b). 

One of these guiding criteria is the concept of the conservativeness of a numerical scheme, 

namely the ability to ensure that the physically conserved quantities remain conserved 

exactly in the lattice as well. 
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Figure 2.1 The lattice velocities of D2Q7 and D2Q9 
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Figure 2.2 The lattice velocities of D3Q15 
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Figure 2.3 The lattice velocities of D3Q19 
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Chapter 3  

Development of the IEDDF thermal model 

 

3.1 Introduction 

As mentioned in Chapter 1, the lack of a satisfactory thermal model for LBM is 

one of the shortcomings that hamper its use in the general applications as a practical CFD 

tool. The IEDDF thermal model proposed by He et al. (1998b) has proven itself to be an 

acceptable one among the current thermal models. It greatly improves the stability 

compared with some other thermal models. At the same time, it can incorporate the 

viscous heat dissipation and compression work done by pressure. However, because the 

IEDDF thermal model is a relatively new model, it still needs a lot of benchmarks, 

especially the numerical simulations in the presence of the solid boundaries. In addition, 

this model is limited to the applications with Dirichlet boundary condition. So in this 

study, we developed a new implementation scheme for Neumann boundary condition and 

did the benchmark study with the solid boundaries.  

In this chapter, firstly, the IEDDF thermal model was described, including the 

introduction of the internal energy density distribution, the evaluation of the macroscopic 

variables and the discretization of the continuous Boltzmann equations. Secondly, the 

non-dimensional form of this thermal model was derived. Then, the detailed information 

about the implementation of the boundary conditions, especially Neumann boundary 

condition, was given. Finally, in order to test the properties of this thermal model and 

validate our implementation of Neumann boundary condition, the numerical simulations 
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of Couette flows and the natural convection in a square cavity were carried out. The 

accuracy of this model was investigated and the grid-independence study for the natural 

convection in a square cavity on a wide range of Rayleigh numbers was thoroughly 

carried out. 

 

3.2 The IEDDF thermal model 

The IEDDF thermal model was developed on the basis of the recent discovery that 

the LBM isothermal models can be directly derived by properly discretizing the 

continuous Boltzmann equation in the temporal, spatial and velocity spaces (He & Luo 

1997, Abe 1997). Following the same procedure, the IEDDF thermal model was derived 

by discretizing the continuous Boltzmann evolution equation for the internal energy 

density distribution. So firstly, the energy density distribution was introduced and its 

continuous Boltzmann evolution equation was derived; then this continuous Boltzmann 

equation was discretized in a special manner. We described this process thoroughly in the 

following sections. 

 

3.2.1 Internal energy density distribution and its continuous Boltzmann 

evolution equation 

Kinetic theory states that the evolution equation for the single-particle density 

distribution in a fluid system obeys the following continuous Boltzmann equation 

( ) ( ) ft Ffff +Ω=∇⋅+∂ e  (3.1) 
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where  is the single-particle density distribution; e  is the microscopic particle velocity; f

( )
v

eqfff
τ
−

−=Ω  is the collision term, in which  is Boltzmann-Maxwellian 

equilibrium distribution function and 

eqf

vτ  is the relaxation time for density distribution; 

 is the term due to the external force G  acting on the unit mass. 

Macroscopic variables can be calculated by 

fFf eG ∇⋅=

∫= efdρ  (3.2a)        

∫= eeu dfρ
 

(3.2b) 

( )
∫

−
= eue fdDRT

22

2ρ  (3.2c) 

where D is the dimension of space, R is the ideal gas constant and T is the temperature. 

According to equation (3.2c), a new variable called the internal energy density 

distribution is introduced: 

( ) fg
2

2ue −
=

 
(3.3) 

From equation (3.1), the evolution equation for  should satisfy:  g

( ) ( ) ( ) ( ) ( )[ ]ueuueuee ∇⋅+∂⋅−−Ω
−

=∇⋅+∂ tt ffgg
2

2

 
(3.4) 

It will become 

( ) ( ) ( )[ ueuuee ∇⋅+∂⋅−−
−

−=∇⋅+∂ t
c

eq

t fgggg
τ

] (3.5)  

after introducing a new collision model for the internal energy density distribution. This 

collision model satisfies the following relationship: 
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eqeq
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22 ueueue

π
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and cτ  is the relaxation time for internal energy density distribution. 

Then the macroscopic temperature can be calculated by:  

∫= egdDRT
2

ρ   (3.8)     

   

3.2.2 Discretization of the continuous Boltzmann equations 

In the previous section, the continuous Boltzmann evolution equation for the 

internal energy density distribution is derived. Equations (3.1) and (3.5) should be 

discretized in the temporal, spatial and particle velocity space properly so as to recover the 

correct macroscopic equations. In order to do this, an accurate and computationally 

efficient numerical scheme is constructed.  

In most of the previous isothermal LBM, equation (3.1) is integrated using the 

first-order scheme. The second-order truncation error is absorbed into the physical viscous 

term. The effect is that the viscosity changes from RTvτ
 
to ( )RTtv δτ 5.0− . For the 

thermal model, however, the viscosity is involved not only in the momentum equations 

but also in the energy equation. The second-order truncation error is no longer trivial. 

Shown in the work of He et al. (1998b), the viscous heat dissipation term comes from the 

non-equilibrium part of the density distribution. This term only depends on the first-order 

Chapman-Enskog approximation and is not affected by the second-order truncation error 
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that comes from the second-order Chapman-Enskog expansion. This means that the 

viscosity in the viscous heat dissipation should be RTvτ . To eliminate this inconsistency, 

integrate equations (3.1) and (3.5) by adopting a second-order scheme and introduce the 

new variables f  and g  to avoid the implicitness of the scheme. The evolution equations 

for f  and g  become: 

( ) ( ) ( ) ( )[ ]
t
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t
ttftttf

v
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v δτ
δτ

δτ
δδδ α

ααααα 21
,,
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+
+−
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−=−++ xxxex

 
(3.9)      
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−=−++
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xxxex
 

(3.10) 

where 

( ) ααααα
δ

τ
δ

f
eq

v

Ftfftff
22

−−+=   (3.11)      

( ) αααααα
δ

τ
δ qftggtgg eq

c 22
+−+=  (3.12) 

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∇⋅−+∏⋅∇+∇−⋅−= uueue ααα ρ

pq 1   (3.13) 

To derive a discrete scheme, the velocity space must be discretized appropriately. 

To recover the continuity and momentum equations at the NS level, the microscopic 

velocity space must be discretized to guarantee that the zeroth through third moments of 

the equilibrium density distribution function are exact. D2Q9 model can satisfy this 

requirement. For the recovery of the macroscopic energy equation, it involves the zeroth 

through second order moments of the equilibrium internal energy density distribution. So 

higher order quadrature is needed for the thermal model. Fortunately, through some 

straight forward algebra, shown in the paper of He et al. (1998b), it can be proved that the 
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zeroth through the second order moments of higher requirement part vanish. So D2Q9 

model is still valid for this thermal model.         

When D2Q9 is used, the equilibrium distribution functions for the internal energy 

density distribution are: 

2
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The macroscopic density, velocity and temperature are calculated by 

∑=
α

αρ f
 

(3.15a) 

2
tf δρρ

α
αα

Geu += ∑
 

(3.15b) 

∑∑ −=
α

αα
α

α
δερ qftg
2

   (3.15c)     

where  

2
DRT

=ε  (3.16) 

Using Chapman-Enskog expansion, equation (3.9) will recover the continuity and 

momentum equations at the NS level with the viscosity satisfying 

RTvτν =  (3.17) 

Equation (3.10) will recover the energy equation 

( ) ( ) ( ) uuu ⋅∇−∇∏+∇⋅∇=⋅∇+∂ pt :εχρερερ  (3.18) 
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with the thermal diffusivity satisfying 

RTcτχ 2=  (3.19) 

 

3.3 Non-dimensional form for the IEDDF thermal model 

In order to obtain useful and comparable results for the fluid flows, the non-

dimensional form for the IEDDF thermal model was derived and used in the following 

numerical simulations. 

 

3.3.1 Non-dimensional form for the density distribution 

When the external force is the buoyancy force, the Boussinesq approximation is 

applied, that is  

( ) jG mTTg −= β   (3.20) 

where β
 
is the thermal expansion coefficient; g is the acceleration due to the gravity and 

 
is the unit vector denoting the vertical direction opposite to that of the gravity; j

2
10 TTTm

+
=

 
is the average temperature, where  and 

 
represent the low and high 

temperatures, respectively. With this buoyancy force, the evolution equation (3.1) for the 

density distribution becomes: 

0T 1T

( ) ( ) ( ) eqm

v

eq

t f
RT

TTgffff uej
e

−⋅−
+

−
−=∇⋅+∂

β
τ

 (3.21) 

Using mRTc 3=  as the characteristic velocity, H as the characteristic length, mRTH 3  

as the characteristic time, 0ρ  as the characteristic density and ( ) ( )01
' TTTTT m −−=  as 

the non-dimensional temperature for equation (3.21), the non-dimensional form becomes: 
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where 
 
and the superscript '

 
denotes dimensionless parameters. 01 TTT −=∆

Using the relationship m
m
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β 3THgRa ∆
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The non-dimensional forms for the equilibrium density distribution functions are 
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2
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2
931 uueue αααα ρwf eq

 
(3.24)

      

3.3.2 Non-dimensional form for the internal energy density distribution 

Using mTTT =''  as the non-dimensional temperature for the internal energy 

density distribution evolution equation, the non-dimensional form for equation (3.5) 

becomes 

( ) ( ) ( )[ '''''''
'

''
''''

'' ueuuee ∇⋅+∂⋅−−
−

−=∇⋅+∂ t
c

eq

t fgggg
τ

] (3.25)  

The non-dimensional forms for the equilibrium internal energy density distribution 

functions become 

2'
''

0
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3
2 uερ

−=
eqg    (3.26a) 

( ) ( )[ ]  (3.26b)    2'2''''
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ερeqg
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( ) ( )[ ]  (3.26c)      2'2''''
''

8,7,6,5
' 5.15.463

36
uueue −⋅+⋅+= αα

ερeqg

where 3''' T=ε     

Because of the limitation of the IEDDF thermal model itself, two different non-

dimensional temperatures have to be used. In order to build the connection between these 

two different non-dimensional temperatures, the temperature ratio mTTr ∆=  is 

introduced and it should be smaller than 0.4 because of the incompressibility requirement. 

Then the two non-dimensional temperatures have the following relationship 

r
TT 1''

' −
=    (3.27) 

 

3.3.3 Determination of the two non-dimensional relaxation times 

Seen from equations (3.23) and (3.25), the two non-dimensional relaxation 

parameters 
 
and  play an important role in the evolution equations. Their values are 

determined from the viscosity and thermal diffusivity, respectively. Since the dynamic 

similarity for most thermal flows depends on two dimensionless parameters: Prandtl 

number Pr defined as 

'
vτ

'
cτ

χ
ν

=Pr  and Rayleigh number Ra, the two non-dimensional 

relaxation parameters can be determined from these two dimensionless parameters.  

Starting from the definition of Prandtl number and Rayleigh number, the following 

equations can be obtained using equations (3.17) and (3.19): 

'

'

22
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c

v

mc

mv

RT
RTv

τ
τ

τ
τ

χ
===  (3.28) 
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where THgVc ∆= β
 
is the characteristic thermal speed and should be chosen carefully 

so that the low Mach number approximation holds. 

Once these two dimensionless parameters Pr and Ra are given, the two non-

dimensional relaxation parameters 
 
and  can be determined using equations (3.28) 

and (3.29). Usually  is chosen to be less than 0.3.  

'
vτ

'
cτ

'
cV

Since only the non-dimensional form is used in the following sections and the 

dimensional form does not appear any more, the prime for the non-dimensional form is 

omitted for simplicity. 

 

3.4 Wall boundary conditions 

We define the incoming distributions as the distributions going from the outside 

environment to the inside flow and the outgoing distributions as the distributions going 

from the inside flow to the outside environment. Generally speaking, the problem of 

formulating boundary conditions within LBM consists of finding an appropriate 

relationship expressing the incoming distributions (unknown) as a function of the 

outgoing ones (known). The bounce-back rule of the non-equilibrium distributions is used 

here to determine the incoming distributions from the outgoing ones. 

According to Grad’s (1949) “thirteen-moment” system, the non-equilibrium 

density distribution is written as  

( )( ) ( ) ( )
( ) ⎟

⎟
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where  and  are the stress tensor and heat flux vector, respectively. The terms 

involving Ο ( ) and higher order can be neglected since the non-equilibrium distribution 

itself is very small, which leads to 
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For isothermal flows, the heat transfer term can be neglected and the above equation 

becomes:  

2)(2
:
RT

ff eqneq αα ee∏
=          (3.32) 

So the following relationship should be satisfied: 

isoneqisoneq ff ,,
βα =    (3.33) 

where α  and β  have the opposite directions. For the solid static wall, this is just the 

commonly used bounce-back condition. 

For the thermal problems, neglecting again all the terms involving Ο ( ), the 

non-equilibrium distribution for the internal energy density distribution is written as: 
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This suggests the useful thermodynamic boundary condition for Dirichlet boundary 

condition: 

( )isoneqneqisoneqneq fgfg ,2,2
βββααα ee −−=−   (3.35) 

Since in this model, the density distribution does not take into account the temperature 

variations, its non-equilibrium part satisfies the boundary condition (3.33), and plays the 

role of  in the energy boundary condition (3.35). The velocity on the wall is used isoneqf ,

60 



Chapter 3 Development of the IEDDF thermal model 

when the equilibrium density distribution function in equation (3.33) is calculated in order 

to enforce the no-slip boundary condition. And the temperature on the wall is used when 

the equilibrium internal energy density distribution function in equation (3.35) is 

calculated in order to satisfy Dirichlet boundary condition. 

However, Neumann boundary condition happens in many real thermal 

applications. For Neumann boundary condition, the temperature on the boundary is 

unknown and only the heat flux (the derivative of the temperature) is given. So the 

temperature in the equilibrium internal energy density distribution function is unknown 

and the boundary condition (3.35) cannot be used directly. There are two ways to solve 

this problem. One way is to find the relationship between the macroscopic Neumann 

boundary condition and the messcopic internal energy density distribution. This is very 

complicated and involves the physical explanation of the heat flux itself. The other way is 

to try to transfer it to Dirichlet boundary condition, avoiding the complicated derivations 

of the first method. The second method is chosen by us. Using the conventional second-

order finite difference scheme to approximate the derivative of the temperature so as to 

obtain the approximate temperature on the boundary, equation (3.35) can now be used. In 

order to obtain the accurate value of the temperature on the boundary, iteration for the 

temperature is needed.  

The temperature on the wall can be determined from the heat flux by the 

conventional second-order finite difference approximation 

( )( ) 324 32 xxTTTTw ∆×∂∂−−=   (3.36) 

where  is the temperature in the fluid on the first gridline next to the wall and  is the 

temperature in the fluid on the second gridline next to the wall. After obtaining the 

2T 3T
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temperature on the wall, the equilibrium internal energy density distribution functions can 

be calculated using this temperature and Dirichlet boundary condition (3.35) can be used. 

 

3.5 Numerical Simulations 

The thermal model and its properties were tested by the following numerical 

simulations of Couette flows with a temperature gradient. The new implementation for the 

Neumann boundary condition was validated by the numerical simulations of the natural 

convection in a square cavity.  

The convergence criterion for these two cases is set to  
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where n and n+1 are the old and new time levels, respectively. 

 

3.5.1 Couette flows with a temperature gradient  

This case provides a good test for the ability of the thermal model to describe the 

viscous heat dissipation. The configuration of this flow is sketched in Figure 3.1. The 

bottom wall is fixed and the top boundary moves at the speed of U. T0 and T1 are the 

temperatures at the bottom and top boundaries, respectively. y is the distance from the 

bottom boundary. H is the height of the channel. No external force is involved in this 

problem. The analytic temperature profile is: 
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where ( )01
2 TTcUEc −= υ  is the Eckert number and 

 
is the specific heat at constant 

volume.  

υc
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3.5.1.1 Boundary conditions. Besides the wall boundaries, this flow contains the inlet 

and outlet boundaries. The boundary conditions for these inlet and outlet boundaries are 

periodical. The particle velocity directions at the inlet and outlet boundaries are illustrated 

in Figure 3.2. 

At the inlet, the distributions of 
 
and  

are determined from equations (3.9) and (3.10) respectively; at the outlet, the distributions 

of 
 
and  are calculated from these two 

equations respectively. The rest of the distributions for the density and internal energy 

density distributions at the inlet and outlet will be determined from the periodical 

boundary conditions. They are 

42736 ,,,, ininininin fffff 42736 ,,,, ininininin ggggg

42815 ,,,, outoutoutoutout fffff 42815 ,,,, outoutoutoutout ggggg

55 outin ff = , 11 outin ff = , , 88 outin ff = 55 outin gg = , 

,  and 11 outin gg = 88 outin gg = 66 inout ff = , 33 inout ff = , 77 inout ff = , , 66 inout gg = 33 inout gg = , 

. 77 inout gg =

At the corner points, there is a little difference. Take the bottom corner point at the 

inlet as an example. The distributions of 
 
and  are determined 

from equations (3.9) and (3.10) respectively.  The distributions of 
 
and  

are determined from the bounce-back rule of the non-equilibrium distributions expressed 

by equations (3.33) and (3.35) respectively. The rest of the distributions are determined 

from the periodical boundary conditions as 

473 ,, ininin fff 473 ,, ininin ggg

52 , inin ff 52 , inin gg

11 outin ff = , 66 outin ff = ,  and 

, , 

88 outin ff =

11 outin gg = 66 outin gg = 88 outin gg = .  
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3.5.1.2 Results and discussions. In order to evaluate the accuracy of this thermal model 

and study its ability to describe the viscous heat dissipation, numerical simulations for a 

wide range of Prandtl number and Eckert number were carried out. In these simulations, 

the parameters used were 5.0,20,1.0 === υτHcU  and 10 =T . 

The temperature profiles along the vertical direction for Ec=4, 20 and 40 

respectively are presented in Figure 3.3. The Prandtl number for these three cases is 

Pr=0.5. Figure 3.4 shows the temperature profiles for Pr=0.25,1.25 and 2.5 respectively. 

The Eckert number for these three cases is Ec=8. In these two figures, the lines represent 

the analytic solutions obtained by equation (3.38), and the marks represent the numerical 

results using the present IEDDF thermal model. As shown in these two figures, the 

numerical results agree very well with the analytic solutions. The product of 
 

represents the ratio between viscous dissipation and heat conduction. When 
 
is 

small, the effect of heat conduction overweighs the effect of viscous dissipation, so the 

temperature profile is almost linear. When  increases, the effect of viscous 

dissipation becomes more important. So the temperature profile deviates from linearity. 

The larger 
 
is, the further away the temperature profile deviates from linearity. The 

present numerical simulations predict this tendency very well.  

EcPr

EcPr

EcPr

EcPr

Since the present numerical simulations span over a wide range of values of , 

it is clear that this thermal model can successfully simulate viscous heat dissipation 

problems.  

EcPr
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3.5.2 Natural convection in a square cavity 

Buoyancy force driven flow in a square cavity with vertical sides, which are 

differentially heated, is a suitable vehicle for testing and validating numerical approaches 

used for a wide variety of practical problems. This problem has been extensively studied 

by many researchers such as David (1983) and Shu & Xue (1998). Since this problem has 

both Dirichlet and Neumann boundary conditions for the temperature, it was used here to 

validate our new implementation of Neumann boundary condition in the IEDDF thermal 

model.  

In such a cavity, the temperature on the left boundary is higher than that on the 

right boundary. The top and bottom boundaries are adiabatic. The temperature difference 

between walls introduces a temperature gradient in a fluid. The consequent density 

difference induces a convective fluid motion. The configuration of this flow is sketched in 

Figure 3.5.  

Nusselt number Nu is one of the most important dimensionless parameters in 

describing the convective heat transport property. Its average in the whole flow domain 

and along the particular vertical line x0 can be defined by: 

( )∫ ∫∆
=

H H

x dxdyyxq
HT

HNu
0 02 ,1

χ
  (3.39) 

( )∫∆
=

H

xx dyyxq
HT

HNu
0 0 ,1

0 χ
  (3.40) 

where  ( ) ( ) ( ) ( )yxTxyxuTyxqx ,,, ∂
∂−= χ  is the local heat flux in horizontal direction x. 

 

3.5.2.1 Validation of the numerical results. The numerical simulations of this flow were 

carried out on a wide range of Rayleigh numbers from 103 to 106. Table 3.1 shows the 
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numerical results of the maximum horizontal velocity 
 
on the vertical mid-plane of 

the cavity and its location , the maximum vertical velocity  on the horizontal mid-

plane of the cavity and its location x  and the average Nusselt number throughout the 

cavity 

maxu

y maxv

Nu  using the present IEDDF thermal model. For comparison, the obtained results 

of velocities using LBM are rescaled using Hχ  as the characteristic velocity. The 

numerical results obtained by Shu and Xue (1998) using differential quadrature (DQ) 

method are also included for comparison.  

From Table 3.1, the numerical simulation results using the present IEDDF thermal 

model agree very well with the benchmark results using DQ method at a wide range of 

Rayleigh numbers. At a high Rayleigh number, the difference between the numerical 

results using these two different methods is larger than that at the low Rayleigh number. 

The reason may be that at a high Rayleigh number, the compressibility has more effect on 

the results, since the compressible equation is used for this incompressible problem with 

assumption of low-Mach-number approximation. Another reason may be that at a high 

Rayleigh number, when the flow becomes weakly turbulent, the solution given by the 

Boussinesq approximation deviates gradually from those by the exact equations. This 

means that the Boussinesq approximation may not properly describe the flow behavior 

under realistic temperature conditions beyond a certain Rayleigh number (Mlaouah et al., 

1997).  

With the increase of Rayleigh number, the values of  and maxmax ,vu Nu
 
are 

increased greatly; and the position of maximum vertical velocity on horizontal mid-plane 

becomes nearer to the wall. This can be explained by the following reason. The higher is 

the Rayleigh number, the larger is the temperature difference. The increasing temperature 
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difference results in larger buoyancy force that drives the fluid motion to become stronger. 

This can be seen from the larger value of 
 
and . As a result, most of the fluid near 

the wall is driven into the motion and the heat transfer ability increases, leading to the 

smaller value of x where the maximum vertical velocity occurs and larger value of 

maxu maxv

Nu . 

Another trend about Nusselt number is that it was slightly smaller than that of the 

corresponding benchmark result. The same trend was observed in the simulation of 

Rayleigh-Benard convection (Shan, 1997; He, 1998b). This may be due to the fact that the 

macroscopic equation of LBM is equivalent to the NS equations only up to the second-

order of the macroscopic flow velocity. The higher order terms in the expanded 

Boltzmann-Maxwellian equilibrium distribution function are truncated by the so-called 

low-Mach number approximation. The higher order terms that have not been written 

explicitly in the macroscopic equations of LBM may no longer be negligible at high 

Rayleigh numbers. 

 

3.5.2.2 Grid-dependence study. In order to further study the property of this thermal 

model with the new implementation of Neumann boundary condition, the grid-

independence study on this natural convection problem for a wide range of Rayleigh 

numbers from 103 to 106 was carried out. Tables 3.2 to 3.5 show the grid-independence 

study results. 

Seen from Tables 3.2-3.5, at the same Rayleigh number, with the increase of the 

grid number, difference between the results using two different methods became smaller. 

At low Rayleigh numbers, good results can be obtained by using small number of grids. 

When Rayleigh number is increased, larger number of grids is needed to obtain the 
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accurate results. This can be explained by the thinning of thermal boundary layer with 

increasing Rayleigh numbers. In order to resolve the thermal properties within thinner 

layer, more grids are needed.  

It can be seen from Table 3.2 that when the mesh size was above 101╳101, the 

computed numerical results remained the same. Thus, the mesh size of 101╳101 was fine 

enough to obtain the accurate numerical results at a Rayleigh number of 103. This 

conclusion also suggests that at a Rayleigh number of 104, the grid independence study 

can start from mesh size of 101╳101.  Following the same procedure, it could be seen 

from Table 3.3, Table 3.4 and Table 3.5 that the mesh size of 151╳151, 201╳201 and 

251╳251 were fine enough for Rayleigh numbers of 104, 105 and 106 respectively. These 

conclusions agree well with the above-mentioned phenomena that the minimum fine grid 

number needed to obtain accurate results increases with increasing of Rayleigh numbers. 

 

3.5.2.3 Analysis of the flow and thermal fields. Figure 3.6 and Figure 3.7 show the 

streamlines and isotherms at Ra=103, 104, 105 and 106. These plots agreed well with those 

obtained by Shu and Xue (1998). It was observed that the hot fluid near left wall moves 

upward and then turns towards the right wall, while the cold fluid near right wall moves 

downward and then turns towards the left wall. As shown in Figure 3.6 and Figure 3.7, 

when the Rayleigh number increases, the mixture of hot and cold fluids is enhanced by 

stronger natural convection current and the temperature gradients near left and right walls 

increase, resulting in larger heat transfers within the square cavity. This leads to the 

increase of stream function value ψ
 
and Nusselt numbers Nu, which could be seen in 

Table 3.2-3.5. 
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In Figure 3.6, the special points in the streamline patterns are the stagnant points. 

The stagnant point is the point where 0== vu . As indicated in Figure 3.6, a stagnant 

point could either be a focus or a saddle, depending on the Rayleigh number. For Ra=103 

and 104, there was only one focus at 5.0== HyHx  with uni-cellular, clockwise 

rotating flow. For Ra=105, the focus split up in a saddle at 5.0== HyHx  and two new 

foci, forming two clockwise rotating rolls. For Ra=106, the saddle at 5.0== HyHx  

further split up in a focus and two new saddles, giving a total of three clockwise rotating 

rolls. This is in good agreement with Henkes and his co-workers’ results (1988). 

From the above two figures, it can be seen that this IEDDF thermal model with our 

new implementation of Neumann boundary condition can capture the correct flow and 

thermal patterns for the practical flow problems.  

 

3.6 Conclusions 

A new implementation of Neumann boundary condition for the IEDDF thermal 

model was proposed in order to solve the practical thermal problems with both Dirichlet 

and Neumann boundary conditions. The numerical simulation results of Couette flows and 

the natural convection in a square cavity over a wide range of Rayleigh numbers agree 

very well with the analytic or benchmark results, showing that this scheme is at least as 

accurate as conventional NS solvers. The results of natural convection in a square cavity 

also show that our implementation of Neumann boundary condition is valid in solving 

Neumann thermal flows. However, from the viewpoint of the practical applications of this 

IEDDF thermal model for the more complicated thermo-hydrodynamic problems, further 

studies on the use of IEDDF thermal model on the arbitrary mesh and its corresponding 
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implementation of boundary conditions are necessary. These works will be carried out in 

the following chapters. 
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Table 3.1 Comparison of the numerical results for the natural convection in a square 
cavity using two different methods 

 

Ra 103 104 105 106

Method LBM DQ LBM DQ LBM DQ LBM DQ 

maxu  3.650 3.649 16.155 16.190 34.278 34.736 63.638 64.775

y  0.810 0.815 0.825 0.825 0.852 0.855 0.843 0.850 

maxv  3.700 3.698 19.666 19.638 68.243 68.640 218.68 220.64

x  0.175 0.180 0.120 0.120 0.068 0.065 0.037 0.035 

Nu  1.117 1.118 2.239 2.245 4.507 4.523 8.788 8.800 

 
 
 
 
 
 
Table 3.2 Grid-dependence study for the natural convection in a square cavity at Ra=103 

 

Mesh 51×51 101×101 127×127 DQ Davis 
midψ  1.170 1.175 1.175 1.175 1.174 

maxu  3.636 3.649 3.650 3.649 3.649 
y  0.820 0.810 0.810 0.815 0.813 
maxv  3.702 3.700 3.700 3.698 3.697 
x  0.180 0.180 0.175 0.180 0.178 

Nu  1.116 1.117 1.117 1.118 1.118 

21Nu  1.114 1.116 1.116 1.118 1.118 

0Nu  1.103 1.110 1.097 1.118 1.117 

maxNu  1.465 1.481 1.479 1.506 1.505 
y  0.140 0.090 0.090 0.090 0.092 

minNu  0.722 0.672 0.670 0.691 0.692 
y  1.000 1.000 1.000 1.000 1.000 
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Table 3.3 Grid-dependence study for the natural convection in a square cavity at Ra=104  
 

Mesh 101×101 151×151 201×201 DQ Davis 
midψ  5.063 5.069 5.071 5.075 5.071 

maxu  16.158 16.156 16.155 16.190 16.178 
y  0.820 0.820 0.825 0.825 0.823 
maxv  19.704 19.679 19.666 19.638 19.617 
x  0.120 0.1200 0.120 0.120 0.119 

Nu  2.232 2.237 2.239 2.245 2.243 

21Nu  2.224 2.231 2.235 2.245 2.243 

0Nu  2.192 2.183 2.177 2.248 2.238 

maxNu  3.576 3.479 3.432 3.543 3.528 
y  0.150 0.147 0.145 0.145 0.143 

minNu  0.617 0.593 0.565 0.586 0.586 
y  1.000 1.000 1.000 1.000 1.000 

 

Table 3.4 Grid-dependence study for the natural convection in a square cavity at Ra=105

 

Mesh 151×151 201×201 251×251 DQ Davis 
midψ  9.102 9.103 9.109 9.117 9.111 

maxψ  9.648 9.644 9.649 9.618 9.612 

x  0.287 0.285 0.284 0.285 0.285 
y  0.607 0.605 0.604 0.600 0.600 
maxu  34.194 34.245 34.278 34.736 34.730 
y  0.853 0.855 0.852 0.855 0.855 
maxv  68.282 68.276 68.243 68.640 68.590 
x  0.067 0.065 0.068 0.065 0.066 

Nu  4.494 4.501 4.507 4.523 4.519 

21Nu  4.487 4.496 4.503 5.524 4.519 

0Nu  4.446 4.430 4.417 4.527 4.509 

maxNu  7.984 7.833 7.743 7.788 7.717 
y  0.080 0.080 0.090 0.080 0.081 

minNu  0.767 0.758 0.743 0.725 0.729 
y  1.000 1.000 1.000 1.000 1.000 
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Table 3.5 Grid-dependence study for the natural convection in a square cavity at Ra=106 

 

Mesh 201×201 251×251 301×301 DQ Davis 
midψ  16.359 16.369 16.368 16.270 16.320 

maxψ  16.832 16.827 16.829 16.714 16.750 

x  0.150 0.148 0.150 0.150 0.151 
y  0.555 0.552 0.550 0.550 0.547 
maxu  63.251 63.527 63.638 64.775 64.630 
y  0.840 0.844 0.843 0.850 0.850 
maxv  218.33 218.47 218.68 220.64 219.36 
x  0.040 0.040 0.037 0.035 0.038 

Nu  8.766 8.781 8.788 8.762 8.800 

21Nu  8.759 8.775 8.782 8.727 8.799 

0Nu  8.562 8.500 8.457 8.721 8.817 

maxNu  18.514 18.148 17.885 16.070 17.925 
y  0.040 0.036 0.037 0.040 0.038 

minNu  0.986 1.012 1.010 1.665 0.989 
y  1.000 1.000 1.000 1.000 1.000 
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Figure 3.1 The configuration of Couette flow with a temperature gradient 
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Figure 3.2 Particle velocity directions at the inlet and outlet boundaries 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

y/H

(T
-T

0)
/(T

1-
T0

)

Ec=4
Ec=20
Ec=40

 

Figure 3.3 Temperature profiles along the vertical direction for Couette flow at Pr=0.5 
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Figure 3.4 Temperature profiles along the vertical direction for Couette flow at Ec=8 
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Figure 3.5 Configuration of the natural convection in a square cavity 

 

        

        

Figure 3.6 Streamlines of the natural convection in a square cavity  
at Ra=103,104, 105 and 106  
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Figure 3.7 Isotherms of the natural convection in a square cavity  
at Ra=103,104, 105 and 106
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Chapter 4  

Finite volume LBM and its use in IEDDF thermal model 

 

4.1 Introduction 

As stated in Chapter 3, from the viewpoint of practical applications of IEDDF 

thermal model to solve more complicated thermo-hydrodynamic problems, further studies 

on the use of IEDDF thermal model on the arbitrary mesh and its corresponding 

implementation of boundary conditions are inevitable.  

As mentioned in Chapter 1, although LBM has notable advantages over 

conventional methods, there are still some shortcomings in the implementation of LBM 

models. One of these is the lack of a satisfactory thermal model pointed out in the 

previous chapter. Another is that LBM defined on Cartesian-like grids is restricted to a 

special class of uniform and regular spatial lattices. Some researchers have attempted to 

extend its applicability to the irregular lattices. Among them, a new method was proposed 

by Xi et al. (1998, 1999a, 1999b), which can be used on the irregular meshes with 

arbitrary connectivity. It is based on the modern finite volume method and keeps the 

simplicity of conventional LBM. So this finite volume LBM (FVLBM) is selected by us to 

extend the current IEDDF thermal model to be used on the arbitrary mesh.  

Before we do that, there still exist some problems for this new FVLBM. One of 

them is that the implementation of wall boundary conditions hinders its wide applications. 

The half-covolume technique was introduced by Peng et al. (1999a, 1999b) for the solid 

boundary condition. This method is quite general and simple in the sense that it does not 

Materials in this chapter have been published in    77 
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assume the fluid properties and orientations of boundary walls. It is very robust when the 

inlet and outlet boundaries are periodical. However, it will cause some problems when it is 

used in other flow problems such as the velocity profile being given at the inlet. In order 

to solve this problem and make FVLBM more useful in a practical sense, a new 

implementation of wall boundary condition for FVLBM is proposed by Chew et al. (2002). 

It is based on the half-covolume technique and bounce-back rule for the non-equilibrium 

distribution. In addition, the problem that arises from the implementation of wall boundary 

condition is more severe at the corner points even when we use our new proposed wall 

boundary condition. For example, for the two-dimensional driven cavity problem, the 

small vortex at left bottom corner cannot be obtained when our new implementation of 

wall boundary condition without any special treatment at corner points is used. So some 

special treatments are needed at corner nodes. Considering the fact that both the complete 

bounce back scheme and the half-covolume technique do not distinguish the particle 

directions among distributions, our proposed scheme for the wall boundary condition, 

which is a combination of the half-covolume and bounce-back scheme, is very easy to 

implement in a computer code. It is validated by its applications to the two-dimensional 

expansion channel flows and driven cavity flows. 

Then we try to use this FVLBM in IEDDF thermal model so as to extend this 

thermal model to be used on the arbitrary mesh. For thermal flow problems, besides the 

above-mentioned lattice-uniformity restriction as in isothermal flows, the complexity of 

thermal problem itself greatly hampers its applications for flows with complex geometries. 

In order to solve this problem, we will apply the FVLBM technique in the IEDDF thermal 

model in this chapter.  
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This chapter is organized as follows: firstly, we will give an introduction about 

FVLBM proposed by Xi et al. (1998, 1999a, 1999b) and its corresponding implementation 

of wall boundary conditions. Then the limitation of this implementation of wall boundary 

conditions is pointed out and a new implementation scheme is proposed. We will give a 

detailed explanation about this new scheme.  Its validity is confirmed by applications to 

two-dimensional expansion channel flows and driven cavity flows. Thirdly, we will use 

this improved FVLBM in IEDDF thermal model. This extension is validated by numerical 

simulations of the natural convection in a square cavity on non-uniform grids. Finally, 

some conclusions are drawn. 

 

4.2 Finite volume LBM and its implementation of wall 

boundary conditions 

4.2.1 Finite volume LBM 

The finite volume LBM (FVLBM) proposed by Xi et al. starts with the lattice 

Boltzmann equation (LBE) in the differential form, which reads: 

Fee ⋅+
−

−=∇⋅+
∂
∂

α
αα

αα
α β

τ

eqfff
t

f
                                                  (4.1)  

where 

∑∑
==

α αα α

β 22

11

yx ee  (4.2) 

A finite cell surrounding an interior node P is shown in Figure 4.1. In this figure, P1 to P8 

are eight neighboring grid points around the interior point P. The integration of equation 

(4.1) is performed on the control volume ABCDEFGH, where AB, BC to HA are the edges 
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of the control volume. A, C, E and G are the midpoints of lines PP1, PP3, PP5 and PP7 

respectively; B, D, F and H are the geometric centers of the elements of PP1P2P3, PP3P4P5, 

PP5P6P7 and PP7P8P1 respectively. 

The cell-vertex type is used here. In this type of the formulation, all the density 

distributions at the grid nodes are known while the distributions at other locations are 

unknown and should be interpolated from the known values at the grid points using the 

standard interpolation technique.  

The integration of equation (4.1) is firstly done over the polygon PABC.  

The integration of the first term in equation (4.1) is approximated as  

( )
PABCPABC

s
t
Pf

d
t

f
∂

∂
=

∂
∂

∫ αα σ    (4.3) 

where  is the area of the polygon PABC and PABCs ( )Pfα  is the value of  at the grid 

point P. In what follows, the grid-node index is given in the parentheses following . In 

the above equation,  is assumed constant over the area of element PABC to prevent 

solving a set of equations. 

αf

αf

αf

The integration of the second term in equation (4.1) gives the fluxes through the 

four edges of PA, AB, BC and CP. Since the summation over all the polygons like PABC, 

PCDE, PEFG and PGHA will be done, the net fluxes through the internal edges (PA, PC, 

PE, PG) will cancel out. Therefore, the explicit expression for these internal edges will be 

omitted and represented by . So the integration of the second term is: sI

∫ ∫∫ +⋅+⋅=∇⋅
AB sBCPABC

Idfdfdf lelee αααααα σ    (4.4) 

With the standard assumption of the bi-linearity of  in the quadrilateral elements, the 

flux through the edge of AB is given by 

αf
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[ ] 2/)()( BfAfldf ABABAB ααααα +⋅=⋅ ∫ nele    (4.5) 

where   is the unit vector normal to the edge AB and  is the length of the edge AB. 

The flux through other edges can be calculated in the same way as for the edge AB. 

ABn ABl

With the same assumption of the bi-linearity of  over the quadrilateral 

elements, the integration over the collision term in equation (4.1) results in the following 

formula: 

eq
if

( ) [ ] 4/)()()()(1 CfBfAfPf
s

dff PABC
PABC

eq
αααααα τ

σ
τ

∆+∆+∆+∆−=−− ∫    (4.6) 

where 

)()()( PfPfPf eq
ααα −=∆ ,   )()()( AfAfAf eq

ααα −=∆

)()()( BfBfBf eq
ααα −=∆ ,    (4.7) )()()( CfCfCf eq

ααα −=∆

Here , , )  and their corresponding equilibrium distribution functions 

, ,  are the values at the non-grid nodes A, B, and C, respectively. 

They should be obtained by interpolation from the values on four grid nodes of the 

element PP

)(Afα )(Bfα (Cfα

)(Af eq
α )(Bf eq

α )(Cf eq
α

1P2P3, 

[ ] [ ] 2/)()()(,2/)()()( 11 PfPfAfPfPfAf eqeqeq
αααααα +=+= ,  

[ ] 4/)()()()()( 321 PfPfPfPfBf ααααα +++=  

[ ] 4/)()()()()( 321 PfPfPfPfBf eqeqeqeqeq
ααααα +++=  

[ ] [ ] 2/)()()(,2/)()()( 33 PfPfCfPfPfCf eqeqeq
αααααα +=+= ,  (4.8) 

With equations (4.3), (4.4) and (4.6), the integration of equation (4.1) over the 

polygon PABC is complete. The integration over other polygons follows the same 

procedure. The integration over the whole control volume ABCDEFGH is just the sum of 
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the contributions from all the integrations over different polygons PABC, PCDE, PEFG 

and PGHA. Therefore,  at the grid node P is updated as follows: αf

( ) Fe ⋅∆+⎟
⎠

⎞
⎜
⎝

⎛
−

∆
+=∆+ ∑ ∑ ααα βtfluxescollision

s
ttPfttPf

aroundP aroundPP

)()(),(,          (4.9) 

where  is the total area of the control volume ABCDEFGH around the grid node P; 

‘collision’ and ‘fluxes’ refer, respectively, to the finite-volume-integrated contributions 

from the collision term and flux terms. 

Ps

 

4.2.2 Half-covolume scheme for wall boundary conditions 

The half-covolume technique was proposed by Peng et al. (1999a, 1999b) for the 

above FVLBM. An example of finite cell surrounding a boundary node P is shown in 

Figure 4.2. Let P, P5 and P1 be boundary nodes separating the fluid (upper half) from the 

environment (lower half). As for the interior fluid nodes, the value of  at P is updated 

through equation (4.9) except that the control volume is not complete in the 2π directions, 

as the polygons PEFG and PGHA do not exist. This leads to the difference when 

integrating the second term of equation (4.1) over the polygons PABC and PCDE. The 

flux terms over the edges PA and EP, which are omitted in the case of the interior nodes, 

must be included in the calculation. They are actually easy to be evaluated by using 

equation (4.5). The velocity of the wall boundary is used when  for the boundary 

nodes are calculated in order to enforce the no-slip boundary condition.  

αf

eqfα

This is an effective implementation of the wall boundary condition for the fluid 

flows when the inlet and outlet boundaries are periodical. This can be verified by the 

following cases. 
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4.2.2.1 Two-dimensional Poiseuille flow between two parallel plates. Poiseuille flow is 

driven by a constant pressure gradient imposed on the flow. In the present simulation, the 

external force  is exerted in the x  direction. The total mesh points of 

64×32 are used. The analytical solution for this case is 

510604.2 −×=F

( ) ( ) ( )[ ]22 1/218/ −−= LyFLyu υρ , 

where L is the channel width. Figure 4.3 shows the numerical result using FVLBM 

together with the analytical solution. It can be seen that the agreement is excellent. 

 

4.2.2.2 Two-dimensional rotating Couette flow between two concentric cylinders. For 

this rotating Couette flow, the outer cylinder rotates with tangential velocity U, while the 

inner cylinder is stationary. In the simulation, the radii for the inner cylinder and outer 

cylinder are R1=30 and R2=60, respectively; the tangential velocity for the outer cylinder is 

U=0.01. The mesh points of 180×30 are used. The analytical solution for this problem is 

( ) ( )
2

1
2

2

2
2

12

RR
rRURrURru

−
−

= . Figure 4.4 shows the numerical result of the steady velocity 

profile using FVLBM and the corresponding analytical solution. We can see from this 

figure that the agreement is also excellent. 

 

4.2.2.3 Plane Couette flow with a half-cylinder of radius R resting on the bottom 

plane. For this flow problem, the top plane moves with the velocity U in the  direction, 

and the bottom plane with a half cylinder of radius R resting on it is at rest. The mesh is 

generated using the elliptic grid generation method and illustrated in Figure 4.5. In this 

simulation, R=20 is the radius of the cylinder; U=0.1 is the speed of the top plane, and the 

area of the flow field is 9.5R × 6R. The mesh size used is 100×60. Figure 4.6 shows the 

x
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velocity profile across y in the center of the channel. Good agreements between the 

present result and that given by Xi et al. (1999b) are found.  

 

4.3 New implementation of wall boundary conditions for 

FVLBM 

It was found from the above section that the half-covolume technique for the wall 

boundary condition is very effective in solving the flow problems where the inlet and 

outlet boundaries are periodical. However, it would cause some problems when it was 

used in other cases such as the flow problem with the velocity profile being given at the 

inlet boundary. The reason for this may lie in the inconsistency with Grad’s thirteen-

moment expansion, which is needed to be satisfied for a robust and efficient boundary 

condition. In order to solve this problem, a new implementation scheme for the wall 

boundary is proposed. 

 

4.3.1 Half-covolume plus bounce-back scheme  

According to Grad’s “thirteen-moment” system, the non-equilibrium density 

distribution function should satisfy 

isoneqisoneq ff ,,
βα =   (4.10) 

where α  and β  have the opposite directions. On the solid stationary wall, the above 

equation is actually the bounce back condition. This implies that the physical background 

of the bounce back rule is the compliance of Grad’s thirteen-moment expansion. When the 

compliance with Grad’s thirteen-moment expansion or the bounce back rule is broken, the 
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no-slip boundary condition on the solid wall may not be guaranteed. This is the reason 

why the half-covolume method is invalid in some cases. Based on this principal, we 

proposed a new implementation of wall boundary condition called half-covolume plus 

bounce back scheme, which combines the half-covolume technique and the bounce back 

rule for the non-equilibrium distribution. 

As an example, we consider the case of the bottom wall. The nine-speed model on 

the bottom wall is shown in Figure 4.7. On the bottom wall, the distributions at the 

directions 1, 3, 4, 7 and 8 are determined by the half-covolume technique, while the 

distributions at the directions 2, 5 and 6 are determined by the bounce back rule for the 

non-equilibrium distribution through equation (4.10). 

 

4.3.2 Validation of the half-covolume plus bounce-back scheme 

In order to test the validity of this new implementation scheme for the wall 

boundary condition and see whether the difficulty faced by the half-covolume scheme can 

be solved, the numerical simulations for the expansion channel flow are carried out. The 

configuration of this expansion channel flow is shown in Figure 4.8. This problem has 

been chosen by a workshop of International Association for Hydraulic Research (IAHR) 

working group (Napolitano & Orlandi, 1985) as a suitable test case for assessing the 

capabilities of different numerical methods on the subject of computing laminar flows in 

the complex geometry. The total length of the channel is chosen to be Re/3. The lower 

boundary (solid wall) of the channel is given by the following expression: 

( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ ⋅

−= 2tanh
Re

302tanh
2
1 xxyl  (4.11) 

85 



Chapter 4 Finite volume LBM and its use in IEDDF thermal model 

4.3.2.1 Implementation of the wall boundary condition. On the lower wall boundary, 

firstly, the half-covolume scheme was tried. No convergent results could be obtained. 

Then our proposed half-covolume plus bounce-back scheme was used. Good results were 

obtained, which would be shown in Section 4.3.2.3. 

 

4.3.2.2 Inlet and outlet boundary conditions. For this flow problem, besides the wall 

boundary condition, there are inlet and outlet boundaries. Figure 4.9 shows the schematic 

plot of particle velocity directions at the inlet and outlet boundaries.  

At the inlet boundary, the velocity profile is given as 

( )
⎩
⎨
⎧

=
−×=

0
25.1 2

v
yyu

   (4.12) 

for . 10 ≤≤ y

This given velocity profile boundary condition is realized by using the velocity boundary 

condition for the density distribution proposed by Zou and He (1997). As shown in Figure 

4.9, at the inlet, the distributions ,  ,  ,   and  are determined by the half-

covolume technique. We need to calculate the values of  ,  and  using the 

boundary condition. Since u  and  are specified at the inlet, the following equations 

should be satisfied according to the relationship between the macroscopic flow properties 

and the particle density distributions. 

6f 3f 7f 2f 4f

1f 5f 8f

v

( )947362851 fffffffff +++++−=++ ρ  (4.13a)  

736851 fffufff +++=++ ρ  (4.13b) 

267485 ffffvff −−++=− ρ   (4.13c) 

86 



Chapter 4 Finite volume LBM and its use in IEDDF thermal model 

There are four unknowns , ,  and 1f 5f 8f ρ  in the above three equations (4.13a)-(4.13c). 

An additional condition should be introduced and the bounce back rule is considered 

correct for the non-equilibrium part of the particle distribution normal to the inlet, that is 

eqeq ffff 3311 −=−  (4.13d)  

Solving the above four equations (4.13a)-(4.13d), we can get 

( )[ ]947362 2
1

1 ffffff
u

+++++
−

=ρ  (4.14a) 

  (4.14b) eqeq ffff 1331 +−=

2
2

2
42137
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ρρ
 (4.14c) 

2
2

2
42136

8
fffffvuf −+−+

+
−

=
ρρ

 (4.14d) 

If the node is the corner node, some special treatment is needed.  Take the bottom node at 

the inlet as an example. The distributions ,  and  are determined by the half-

covolume technique and we need to calculate the values for , , ,  and  

using the boundary condition. There are only four equations (4.13a)-(4.13d) for these five 

unknown distributions and the unknown density at this point, so two extra conditions 

should be introduced. One extra condition can be obtained by considering that this node is 

also a node on the solid wall with zero velocity. So the value for the distribution  can 

be determined from the wall boundary condition. That is the bounce back rule for the non-

equilibrium density distribution function:  

3f 4f 7f

1f 2f 5f 6f 8f

2f

42 ff =  (4.15) 
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The other extra condition can be obtained by the assumption that the density at this node is 

the same as the density at its neighboring flow node, so the density ρ  is the known 

variable. The remaining unknown variables ,  and  can be determined from 

equations (4.13a)-(4.13c). They are: 

5f 6f 8f

75 ff =  (4.16) 

( )[ 754321086 2
1 fffffffff ++++++−== ρ ]  (4.17) 

At the outlet boundary, all the density distributions at any node are extrapolated 

from its neighboring interior nodes. 

 

4.3.2.3 Results and discussion. The numerical simulations for this expansion channel 

flow are carried out at a wide range of Reynolds numbers. The mesh size used for all the 

cases is 71×31. The convergence criterion is set to  
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Figure 4.10 - Figure 4.12 show the streamlines and wall vorticity distributions for 

Re = 10, Re = 100 and Re = 150, respectively.  In these three figures, the separation region 

is clearly shown in the streamlines for each case. In the wall vorticity distribution for each 

case, the numerical result using the present FVLBM with our proposed implementation of 

the wall boundary condition is represented by the solid line. The benchmark solution of 

IAHR workshop given by Cliffe et al. using a finite element method with results being 

grid-independent, which is represented by the symbols, is also included for comparison.  

Good agreement can be found. 
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In order to further study the property of this flow, we put the wall vorticity 

distributions at different Reynolds numbers in one picture. Figure 4.13 displays the wall 

vorticity distributions at different Reynolds numbers of 10, 100 and 150. It is confirmed 

from this figure that as Reynolds number increases to the value of much larger than 1, the 

solution takes on a quasi-self-similar form, i.e. the wall vorticity becomes independent of 

Re when plotted vs. x/xout.  

From this numerical simulation, it can be seen that our new implementation of the 

wall boundary condition is valid and can be used to solve flow problems with the complex 

geometry. 

 

4.3.3 Special treatment on the wall corner points 

For some flow problems, which contain the wall corner points such as the four 

corner points in the driven cavity flow, the implementation of the boundary condition at 

these wall corner points is very important.  

 

4.3.3.1 Extrapolation scheme. Take the left bottom corner point as an example. At this 

corner point, the particle velocity directions for the nine-speed model are show in Figure 

4.14. Seen from this figure, the density distributions at the directions 1,2,3,4,5 and 7 are 

determined from the half-covolume plus bounce-back scheme. We need to determine the 

values at the directions 6 and 8. For the conventional standard LBM, the values at these 

two directions have little influence on the numerical simulation results, because they do 

not contribute any information into the interior parts. But for FVLBM, these values will be 

used when calculating the distributions at these two directions on the interior points 
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neighboring to this corner point. So it is very crucial for the choice of the values at these 

two directions for FVLBM. 

Take Reynolds number of 100 as an example. The values of the equilibrium 

distribution functions were given for the density distributions at these two directions at the 

beginning. The primary and the right bottom vortices can be captured correctly, while the 

left bottom small vortex cannot be obtained. This means that the equilibrium distribution 

boundary condition does not have enough accuracy for the complex flow pattern. The left 

bottom small vortex is plagued by the numerical errors. In order to increase the accuracy, 

the first order extrapolation scheme at these two directions was tried. At these two 

directions, the values of the distributions are obtained by the extrapolation from the 

distributions on the two neighboring interior points. The numerical results using this 

special treatment on the corner point are reasonably accurate. The left bottom small vortex 

is well captured. These results will be shown in the following section. 

 

4.3.3.2 Results and discussion. In order to further validate our new implementation of the 

wall boundary condition, especially the special treatment on the wall corner points, the 

numerical simulations of the driven cavity flow at a wide range of Reynolds numbers were 

carried out. 

 

(1) Re=100 

The results of the streamlines, vorticity and pressure contours at Re=100 are shown 

in Figure 4.15 - Figure 4.17. The mesh size used is 101×101. 
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According to the present study, as shown in Figure 4.15, the center of the primary 

vortex is at x=0.617, y=0.737; the center of the left corner vortex is at x=0.030, y=0.037; 

and the center of the right corner vortex is at x=0.945, y=0.060. These results are in good 

agreement with those by Ghia et al. (1982) (x=0.6172, y=0.7344 for the primary vortex, 

x=0.0313, y=0.0391 for the left corner vortex, and x=0.9453, y=0.0625 for the right corner 

vortex.). The small left corner vortex is correctly captured, which shows that our special 

treatment on the corner points is needed and effective. 

Figure 4.18 and Figure 4.19 show the u-velocity profile along the vertical 

centerline and v-velocity profile along the horizontal centerline. The numerical results of 

Ghia et al. (1982) are also included for comparison. From these two figures, good 

agreement can be found.  

 

(2) Re=400 

In order to study the property of FVLBM at medium Reynolds number, numerical 

computation was performed at Re=400. The results of the streamlines, vorticity and 

pressure contours are shown in Figure 4.20 -Figure 4.22. The mesh sizes used is 151×151. 

According to the present study, the center of the primary vortex is at x=0.560, 

y=0.600; the center of the left corner vortex is at x=0.066, y=0.040; and the center of the 

right corner vortex is at x=0.892, y=0.121. These results are in good agreement with those 

by Ghia et al. (x=0.5547, y=0.6055 for the primary vortex, x=0.0508, y=0.0469 for the left 

corner vortex, and x=0.8906, y=0.1250 for the right corner vortex.).  

Figure 4.23 and Figure 4.24 show the comparison of u-velocity profile along 

vertical centerline and v-velocity profile along horizontal centerline using FVLBM with 

results of Ghia et al. From these two pictures, acceptable agreement can be found. 
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Compared with the results at Re=100, the difference between our results and Ghia’s 

results is bigger at Re=400. This difference may be decreased by increasing the grid 

number. However, on the other hand, this suggests that FVLBM has the diffusion problem 

with the increase of Reynolds number. Much larger number of mesh points is needed for 

high Reynolds number in order to obtain the accurate numerical results. 

 

(3) Re=1000 

To further study the diffusion property of FVLBM, the numerical computation at 

Re=1000 was performed. The mesh size used is 251×251. The convergence rate is very 

slow. The u-velocity profile along the vertical centerline and v-velocity profile along the 

horizontal centerline are shown in Figure 4.25 and Figure 4.26, respectively. The results of 

Ghia et al. (1982) are also included for comparison. 

Seen clearly from Figure 4.25 and Figure 4.26, although a large number of mesh 

points is used, there still exist remarkable derivations from the benchmark results. This 

confirms that the diffusion problem is the striking shortcoming of FVLBM for the 

simulation of fluid flows at high Reynolds numbers.  

 

4.4 Use of FVLBM in the IEDDF thermal model 

In Chapter 3, we have shown that the IEDDF thermal model is considered to be a 

good thermal model. But till now, this thermal model is mainly used in flow fields with 

uniform grids. In order to solve the practical thermal problems with complex geometries, 

this model should be extended for its applications on the arbitrary mesh.  We try to fulfill 

this objective by using the FVLBM technique. After developing the above implementation 
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of wall boundary condition, the FVLBM scheme is used in the IEDDF thermal model so 

as to extend the current thermal model for uses in real engineering applications. 

 

4.4.1 Application of FVLBM in IEDDF thermal model 

As shown in Chapter 3, for the IEDDF thermal model, the lattice Boltzmann 

equations in the differential forms are: 

( ) f
v

eq

t Fffff +
−

−=∇⋅+∂
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e  (4.19a)                        

( ) qfgggg
c

eq
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−=∇⋅+∂
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(4.19b) 

The integration of equation (4.19a) has been stated in Section 4.2.1. Equation 

(4.19b) can be integrated following the same procedure as for equation (4.19a). We 

choose the same finite cell as shown in Figure 4.1 for the integration of the internal energy 

density distribution and use the cell-vertex type as for the density distribution. 

The integration of the first term in equation (4.19b) over the element of PABC is 

approximated as  

( )
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s
t
Pgd
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∂
∂

=
∂
∂

∫ αα σ    (4.20) 

The integration of the second term in equation (4.19b) over the element PABC will 

give the energy fluxes through the four edges PA, AB, BC and CP. They can be written as: 

[ ]
[ ] '2/)()(
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sBCBC

ABABPABC
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++⋅
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   (4.21) 

With the same assumption as in Section 4.2.1 that the bi-linearity of  and  

over the quadrilateral elements is satisfied, their values on the non-grid points can be 

αg eqgα
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interpolated from the known values at the grid points using the same interpolation 

technique as shown in Section 4.2.1. They are: 

[ ] [ ] 2/)()()(,2/)()()( 11 PgPgAgPgPgAg eqeqeq
αααααα +=+= ,  

[ ] 4/)()()()()( 321 PgPgPgPgBg ααααα +++=  

[ ] 4/)()()()()( 321 PgPgPgPgBg eqeqeqeqeq
ααααα +++=  

[ ] [ ] 2/)()()(,2/)()()( 33 PgPgCgPgPgCg eqeqeq
αααααα +=+= ,  (4.22) 

Then the integration of the collision term on the right-hand side of equation (4.19b) over 

the element PABC results in the following formula: 

( ) [ ] 4/)()()()(1 CgBgAgPgsdgg
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eq

c
αααααα τ

σ
τ

∆+∆+∆+∆−=−− ∫     (4.23) 

where 

eqggg ααα −=∆  (4.24) 

For the extra term on the right-hand side of equation (4.19b), we can integrate it 

as:  

fq

[ ] 4/)()()()()()()()( CqCfBqBfAqAfPqPfsdfq PABCPABC αααααααασ +++−=− ∫   (4.25) 

where 

[ 2/)()()( 1PqPqAq ααα ]+=  (4.26a) 

[ 4/)()()()()( 321 PqPqPqPqBq ααααα ]+++=  (4.26b) 

[ 2/)()()( 3PqPqCq ααα ]+=  (4.26c) 

The integration of equation (4.19b) over the polygon PABC is complete. The 

integration over the whole control volume ABCDEFGH is just the sum of the 
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contributions from the different polygons PABC, PCDE, PEFG and PGHA. Therefore,  

at the grid node P is updated as follows: 

αg
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s

ttPgttPg )()()(),(, αα       (4.27) 

 

4.4.2 Implementation of the thermal boundary conditions 

For the density distribution , the implementation of the boundary conditions has 

been clearly shown in Section 4.3. 

αf

For the internal energy density distribution , our proposed implementation of 

boundary condition called the half-covolume plus bounce-back rule for the non-

equilibrium distribution can still be used. We will again take the bottom wall as an 

example. The schematic plot of particle velocity directions of the nine-speed model on this 

wall has been shown in Figure 4.7. The internal energy density distributions at the 

directions 7, 4, 8, 3 and 1 are determined by the half-covolume technique. That is, they are 

treated as the interior fluid nodes. The value of  at P is updated through equation (4.27) 

except that the control volume is not complete in the 2π directions, as the polygons PEFG 

and PGHA do not exist. This leads to the difference when integrating the second term of 

equation (4.19b) over the polygons PABC and PCDE. The energy flux terms over the 

edges PA and EP, which are omitted in the case of the interior nodes, must be included in 

the calculation. They are actually easy to be calculated as 

αg

αg

[ ] [ ] 2/)()(2/)()( PgEglPgAgl EPEPPAPA αααααα +⋅++⋅ nene .  
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For Dirichlet boundary condition, the remaining distributions at directions 5, 2 and 

6 are determined from the bounce back rule for the non-equilibrium internal energy 

density distribution through the following equation: 

( )isoneqneqisoneqneq fegfeg ,2,2
βββααα −−=−  (4.28) 

where α  and β  have the opposite directions. The temperature of the boundary wall is 

used when  for the boundary nodes are calculated in order to satisfy the given 

temperature condition on the wall. 

eqgα

For Neumann boundary condition, firstly, the temperature on the wall is 

approximated by the conventional second order extrapolation from the given heat flux so 

as to transfer it to Dirichlet boundary condition as shown in Section 3.4, Chapter 3. Then 

equation (4.28) can be used. Iteration is needed in order to get the accurate temperatures 

on the boundary. By this means, the heat flux condition is enforced on the boundaries. 

 

4.5 Numerical simulations using the finite volume lattice 

thermal model 

In order to verify whether the use of FVLBM technique in the IEDDF thermal 

model can extend the current thermal model to solve the thermal flows on the arbitrary 

mesh, we carried out the computation for a sample problem. The problem considered is a 

natural convection in a two-dimensional square cavity. A typical non-uniform grid is used 

in the present study, which is shown in Figure 4.27. It can be seen clearly from this figure 

that the mesh points are stretched towards the walls so as to capture the thin boundary 
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layer. In the middle part of the flow field, the mesh is relatively coarse since the velocity 

and temperature gradients are not very large in this region. 

The convergence criterion for all the following cases is set to  

8
,

1
,,

82
,

2
,

12
,

2
,,

10max,10)()(max −+−+ ≤−≤+−+ n
ji

n
jiji

n
jiji

n
jijiji

TTvuvu  (4.29) 

where n and n +1 represent the old and new time levels, respectively.  

 

4.5.1 Validation of the finite volume lattice thermal model 

The numerical simulations of the natural convection in a square cavity for Rayleigh 

numbers of 103~105 were carried out. Table 4.1 shows the numerical results of the 

maximum horizontal velocity on the vertical mid-plane of the cavity and its location maxu

y , the maximum vertical velocity on the horizontal mid-plane of the cavity and its 

location , the average Nusselt number throughout the cavity 

maxv

x Nu  and the value of the 

stream function at the center point of the cavity. Note that all the results are obtained from 

the computations on the non-uniform grids as shown in Figure 4.27. The numerical results 

of a NS solver given by Shu and Xue (1998) using DQ method are also included for 

comparison.  

From Table 4.1, we can see that the numerical results obtained by using the finite 

volume lattice thermal model generally agree well with the benchmark results of Shu and 

Xue at low Rayleigh numbers of 103 and 104. The deviation of the results from the 

benchmark results at high Rayleigh number of 105 is very clear. At Ra=105, the 

convergence is very slow because the time step used has to be very small. For Ra=106, no 

converged solution can be obtained. From these observations, conclusion can be drawn 

that the numerical diffusion of FVLBM technique affects the efficiency, accuracy and 
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convergence of the IEDDF thermal model at high Rayleigh numbers. So the FVLBM 

technique in the IEDDF thermal model can only be used for the thermal applications on 

the arbitrary mesh at low Rayleigh numbers. 

 

4.5.2 Comparison of the numerical results on uniform and non-uniform 

grids 

In order to investigate the efficiency of using FVLBM technique in the IEDDF 

thermal model for thermal applications, the numerical simulations on both uniform and 

non-uniform grids at the same Rayleigh numbers were carried out. On the uniform grids, 

the conventional LBM was used; on the non-uniform grids, the finite volume lattice 

thermal model was used. Table 4.2 and Table 4.3 show the comparison of numerical 

results using two different methods at Rayleigh number of 103 and 104, respectively. 

It can be observed from these two tables that, at low Rayleigh numbers, for the 

same grid number, the calculated Nusselt number and other results on the non-uniform 

grids are more accurate than those on the uniform grids. For example, as can be seen from 

Table 4.2, at Rayleigh number of 103, using the same grid number of 51×51, the calculated 

Nu
 
and 21Nu

 
on the non-uniform grids are 1.118 and 1.117, while the calculated Nu

 
and 

21Nu
 
on the uniform grid are only 1.116 and 1.114. When the grid size of the uniform 

grid is increased to 101×101, the calculated Nu
 
and 21Nu  become 1.117 and 1.116. As 

compared with the benchmark data of Nu
 
and 21Nu , which are 1.118 and 1.118, it is 

clear that the use of the mesh size of 51×51 on the non-uniform grids using the finite 

volume lattice thermal model gives much better results than the use of the same mesh size 
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on the uniform grids using the standard LBM. Even when more mesh points are used on 

the uniform grids, the use of non-uniform grids with smaller mesh size still gives better 

results. This is because when non-uniform grids are used, it is easy for us to use very small 

mesh spacing near the wall boundary so as to capture the thin boundary layer while using 

large mesh spacing in the low gradient flow region. In contrast, when the same mesh 

spacing is used by the uniform grids, the number of mesh points used in the whole flow 

field could be very large in order to capture the thin boundary layer. This example clearly 

shows the advantage of using non-uniform grids in the simulation of fluid flows even 

when the flow is confined in a simple and regular geometry. This also shows the necessity 

of extending the current thermal model to be used on the arbitrary mesh. At low Rayleigh 

numbers, the use of FVLBM technique in the IEDDF thermal model is an effective way. 

 

4.6 Conclusions 

A new implementation of wall boundary conditions for FVLBM has been 

developed in this chapter. It is based on the half-covolume technique and the bounce-back 

rule for the non-equilibrium distribution. Using this new implementation of wall boundary 

conditions, the flow problems such as the expansion channel flows and driven cavity 

flows can be correctly solved using FVLBM. 

This FVLBM technique is then applied in the IEDDF thermal model to extend the 

current thermal model to be used on the arbitrary mesh, which is a requirement for 

practical engineering applications. The numerical simulations of the natural convection in 

a square cavity at Rayleigh numbers ranging from 103 to 105 on non-uniform grids were 

carried out. At low Rayleigh numbers, the numerical results compare well with benchmark 
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data obtained by a NS solver, which shows the validity of the use of FVLBM technique in 

the IEDDF thermal model. Compared with the numerical results on uniform grids using 

the standard LBM, less grid numbers are needed to obtain the same accurate results.  

However, from the present work, it was also found that at a high Reynolds number 

or Rayleigh number, the numerical diffusion of this FVLBM technique affects the 

efficiency, accuracy and convergence of the numerical simulations. So the use of the 

present FVLBM scheme in the IEDDF thermal model is not a perfect way to extend the 

current thermal model for practical thermal applications with complex geometries, when 

high Reynolds numbers or Rayleigh numbers are often encountered. We need to find 

another method to fulfill this objective. This leads to the further studies in the following 

chapters. 
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Table 4.1 Comparison of the numerical results between the finite volume lattice thermal 
model and a NS solver for the natural convection in a square cavity 

 

Ra 103 104 105

Method FVLBM DQ FVLBM DQ FVLBM DQ 
Grid size 51×51 - 101×101 - 151×151 - 

maxu  3.649 3.649 16.154 16.190 35.251 34.736 
y  0.814 0.815 0.824 0.825 0.864 0.855 
maxv  3.699 3.698 19.653 19.638 66.746 68.640 
x  0.166 0.180 0.121 0.120 0.065 0.065 

Nu  1.118 1.118 2.246 2.245 4.185 4.523 

midψ  1.176 1.175 5.081 5.075 8.977 9.117 

 

 

 

Table 4.2 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=103

 

Mesh 51×51 
(uniform) 

101×101 
(uniform) 

DQ 51×51 
(non-uniform) 

midψ  1.170 1.175 1.175 1.176 

maxu  3.636 3.649 3.649 3.649 
y 0.820 0.810 0.815 0.814 
maxv  3.702 3.700 3.698 3.699 
x 0.180 0.180 0.180 0.166 

Nu  1.116 1.117 1.118 1.118 

21Nu  1.114 1.116 1.118 1.117 

0Nu  1.103 1.110 1.118 1.090 

maxNu  1.465 1.481 1.506 1.489 
y 0.140 0.090 0.090 0.090 

minNu  0.722 0.672 0.691 0.636 
y 1.000 1.000 1.000 1.000 
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Table 4.3 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=104

 

Mesh 101×101 
(uniform) 

151×151 
(uniform) 

DQ 101×101 
(non-uniform) 

midψ  5.063 5.069 5.075 5.081 

maxu  16.158 16.156 16.190 16.154 
y 0.820 0.820 0.825 0.824 
maxv  19.704 19.679 19.638 19.653 
x 0.120 0.120 0.120 0.121 

Nu  2.232 2.237 2.245 2.246 

21Nu  2.224 2.231 2.245 2.254 

0Nu  2.192 2.183 2.248 2.144 

maxNu  3.576 3.479 3.543 3.360 
y 0.150 0.147 0.145 0.147 

minNu  0.617 0.593 0.586 0.487 
y 1.000 1.000 1.000 1.000 
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Figure 4.1 Diagram of a finite cell               Figure 4.2 Diagram of a finite cell 
surrounding an interior node P for FVLBM    surrounding a boundary node P for FVLBM 
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Figure 4.3 Velocity profile using FVLBM          Figure 4.4 Velocity profile using FVLBM 
for Poiseuille flow as compared                  for the rotating Couette flow as compared  

with the analytic solution.                                     with the analytic solution. 
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  Figure 4.5 Mesh used for the plane          Figure 4.6 Velocity profile u along y in  
Couette flow with a half cylinder resting           the center of the channel for the plane 

on the bottom plane                            Couette flow with a half cylinder resting 
on the bottom plane. 
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Figure 4.7 Schematic plot of particle velocity directions on the bottom wall. 

 

 
 
 

Figure 4.8 Geometry of an expansion channel 
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Figure 4.9 Schematic plot of particle velocity directions at the inlet and outlet boundaries 
for the expansion channel flow. 
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Figure 4.10 Streamlines and wall vorticity distribution for expansion channel flow at  

Re = 10 
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Figure 4.11 Streamlines and wall vorticity distribution for expansion channel flow at  

Re = 100 
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Figure 4.12 Streamlines and wall vorticity distribution for expansion channel flow at  

Re = 150 
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Figure 4.13 Wall vorticity distributions at different Reynolds numbers for expansion 
channel flows  
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Figure 4.14 Schematic plot of particle velocity directions at the left-bottom corner point 
for driven cavity flow 
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                  Figure 4.15 Streamlines for                  Figure 4.16 Vorticity contours for 
           driven cavity flow at Re=100              driven cavity flow at Re=100 
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Figure 4.17 Pressure contours for driven cavity flow at Re=100 
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 Figure 4.18 U-velocity profile along                    Figure 4.19 V-velocity profile along 

 vertical centerline for driven cavity                   horizontal centerline for driven cavity 

      flow at Re=100                                flow at Re=100 
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                  Figure 4.20 Streamlines for                   Figure 4.21 Vorticity contours for 
           driven cavity flow at Re=400              driven cavity flow at Re=400 

 

 

 

 
 

Figure 4.22 Pressure contours for driven cavity flow at Re=400 
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    Figure 4.23 U-velocity profile along                    Figure 4.24 V-velocity profile along 

    vertical centerline for driven cavity                   horizontal centerline for driven cavity 

        flow at Re=400                                   flow at Re=400 
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       Figure 4.25 U-velocity profile along                 Figure 4.26 V-velocity profile along 

      vertical centerline for driven cavity                 horizontal centerline for driven cavity 

          flow at Re=1000                    flow at Re=1000 
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Figure 4.27 A typical non-uniform mesh used in a square cavity 
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Chapter 5  

Use of TLLBM in IEDDF thermal model 

 

5.1 Introduction  

In Chapter 4, FVLBM was developed and used in IEDDF thermal model in order 

to extend the current thermal model for more practical applications with arbitrary 

geometries. Good results could be obtained at low Reynolds or Reyleigh numbers, but the 

results at high Reynolds or Rayleigh numbers were not good enough for the engineering 

applications. The reason may be that in the region where the flow gradient is very large, 

the numerical diffusion of FVLBM may be too large and affect the accuracy and 

convergence of the numerical results. So this method is not a perfect way to extend the 

current thermal model for real practical applications. We should find another method that 

has no or little diffusion at high Reynolds or Rayleigh numbers. Taylor series expansion- 

and Least squares- based LBM (TLLBM) proposed by Shu et al. (2001) is just such a 

good method.  It is based on the standard LBM, Taylor series expansion and least squares 

approach. It has the following good features. It keeps the local property of the 

conventional LBM; the final form is an algebraic formulation, in which the coefficients 

only depend on the coordinates of mesh points and lattice velocity, and can be computed 

once in advance. In addition, this new method can be consistently used in any kind of 

lattice model. Numerical experiments on isothermal flows have shown that this method is 

an efficient and flexible approach for practical isothermal applications with arbitrary 

Materials in this chapter have been published in  111 
[1] Shu, C., Y. Peng and Y. T. Chew. International Journal of Modern Physics C, 13(10), pp. 1399-1414. 

2002. 
[2] Peng,Y.

2003. 
[3] Peng, Y., Y. T. Chew and C. Shu. Physical Review E 67, pp.026701. 2003. 

, C. Shu and Y. T. Chew. International Journal of Modern Physics B, 17 (1/2), pp. 165-168. 
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geometries. Especially, its ability to solve flow problems at very high Reynolds numbers 

accurately means that this method does not have the diffusion problem. So in this chapter, 

we attempt to apply this method to the IEDDF thermal model in order to examine whether 

accurate results could be obtained at high Rayleigh numbers for thermal applications with 

complex geometries. 

This chapter was organized as the following: firstly, we gave a brief introduction 

about TLLBM. Secondly, a new thermal model was developed by applying the TLLBM 

technique in the IEDDF thermal model. The implementation of wall boundary conditions 

for this thermal model was also described. Thirdly, the numerical simulations of the 

natural convection in a square cavity on both uniform and non-uniform grids were carried 

out to validate our new thermal model, especially its ability to solve thermal flows at high 

Rayleigh numbers. Then its applications on the natural convective heat transfer in a 

horizontal concentric annulus between a square outer cylinder and a heated circular inner 

cylinder were thoroughly studied. This case was used to show that our new thermal model 

has the ability to solve the practical and complex thermal problems with curved 

boundaries. In the end, we drew some conclusions.  

 

5.2 Taylor series expansion- and Least squares- based LBM  

Taylor series expansion- and Least squares- based LBM (TLLBM) is based on the 

well-known fact that the distribution is a continuous function in the physical space and can 

be well defined in any mesh system. Taking the two dimensional problem as an example 

and starting with the standard lattice Boltzmann equation (LBE), the two dimensional, 

standard LBE with BGK approximation can be written as 
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τ
δδδ αα

αααα
),,(),,(

),,(),,(
tyxftyxf

tyxfttteytexf
eq

yx
−

−=+++ , N,...,1,0=α          (5.1) 

where tδ  is the time step and  is the particle velocity in ),( yx ee αααe α  direction; N is the 

number of the discrete particle velocities. Obviously, the standard LBE consists of two 

steps: collision and streaming.  

Suppose that a particle is initially at the grid point . Along α direction, after 

the local collision, this particle will stream to the position 

),,( tyx

),,( ttteytex yx δ+δ+δ+ αα . For 

a uniform lattice, tex xδδ α= , tey yδδ α= . So, ),( teytex yx δδ αα ++  is on the grid point. In 

other words, equation (5.1) can be used to update the distributions exactly at the grid 

points. However, for a non-uniform grid, ),( teytex yx δδ αα ++  is usually not at the grid 

point , since ),( yyxx δ+δ+ tex xδδ α≠ , tey yδδ α≠ . In the numerical simulation, only the 

distributions at the mesh points for all the time levels are needed, so that the macroscopic 

properties such as the density, flow velocity and temperature can be evaluated at every 

mesh point. To get the distribution at the grid point ),( yyxx δ+δ+  and the time level 

tt δ+  from the known distribution at the position ),( teytex yx δδ αα ++  and at the same 

time level tt δ+ , the Taylor series expansion is applied. Note that the time level for the 

position ),( teytex yx δδ αα ++  and the grid point ),( yyxx δ+δ+  is the same, that is, tt δ+ . 

So, the expansion in the time direction is not necessary and only the expansion in the 

spatial direction is needed. Figure 5.1 shows the configuration of the particle movement 

along  direction. We will use this figure to illustrate how Taylor series expansion in the 

spatial direction is done. 

α
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As shown in Figure 5.1, for simplicity, point A represents the grid point , 

point 

),( AA yx

'A  represents the position ),( teytex yAxA δδ αα ++ , and point P represents another 

grid point  with ),( PP yx yyyxxx APAP δδ +=+= , . The distribution at point 'A  at time 

level tt δ+  is known after the collision and streaming processes according to equation 

(5.1)  

τ
δ αα

αα
),(),(

),(),'(
tAftAftAfttAf

eq−
−=+                                               (5.2) 

For the general case, 'A  may not coincide with the mesh point P.  We are only interested 

in the value of the density distribution at this mesh point P, not point 'A . In order to get 

the value at point P from the known value at point 'A , we truncate Taylor series 

expansion for the density distribution at 'A  to the second order derivative terms around P. 

So  can be approximated by the corresponding distribution and its 

derivatives at the mesh point P as 
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where , PxAA xtexx −δ+=∆ α PyAA yteyy −δ+=∆ α . When a uniform grid is used, that is, 

, equation (5.3) is reduced to the standard LBE. This expansion involves six 

unknowns, that is, one distribution at this grid point P at the time level 

0=∆=∆ AA yx

tt δ+ , two first 

order derivatives, and three second-order derivatives at that point. In order to avoid the 

finite difference approximation of these derivatives, we borrow the idea from the Runge-
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Kutta method. There are six unknowns, so we do Taylor series expansion on six points so as 

to form the linear equation system in which the six unknowns are the variables.  

To illustrate this process, as shown in Figure 5.1, the particles at six mesh points 

 at the time level t will stream to the positions  at the 

time level 

EDCBAP ,,,,, ',',',',',' EDCBAP

tt δ+  after the local collision process. Their distributions at these new positions 

can be computed through equation (5.1). Using the second order Taylor series expansion for 

the density distributions at these new positions in terms of the distribution and its 

derivatives at the mesh point P, the following equation system can be obtained 

∑
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if '  is the post-collision state of the distribution at the ith point and the time level tt δ+ , 

 is a vector with six elements formed by the coordinates of the mesh points and the 

particle velocities,  is the vector of the unknowns at the mesh point P and the time 

level 

T
is }{

}{W

tt δ+ , which also has six elements.  is the jjis ,
th element of the vector  and 

 is the j

T
is }{

jW th element of the vector {W}. Our target is to find the first element in the vector 
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{W}, that is, ),(1 ttPfW δ+= α . Equation system (5.4) can be put into the following 

matrix form 

}{}]{[ 'fWS =  (5.6) 
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It is worthwhile to mention that this is not the only way to choose six points around P. 

You can choose any six points around P as shown in Figure 5.1. 

Since [S] is a 6×6 dimensional matrix, it is very difficult to get an analytical 

expression for the solution of equation system (5.6). A numerical algorithm is needed to 

get the solution. Clearly, when the coordinates of the mesh points are given, the particle 

velocity and time step size are specified, the matrix [S] is determined and does not change 

with time. 

In the practical applications, a direct matrix solver was tried. However, it was 

found that the matrix [S] might be singular or ill conditioned. To overcome this difficulty 

and make the method be more general, the least squares approach was introduced to 

optimize equation (5.6). For simplicity, let the mesh point P be represented by the index 

, and its adjacent points be represented by the index 0=i Mi ,...,2,1= , where M is the 

number of the selected neighboring points around P and it should be larger than 5. 

According to the least squares method, the following equation system can be obtained 
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}{][}]{[][ 'fSWSS TT =  (5.8) 

where  (5.9a) 
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From equation (5.8), we can obtain 
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The first element in the vector {W} can be expressed by 
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k
k fattyxfW δα  (5.11) 

where  are the elements of the first row in the matrix [A], which is determined by the 

coordinates of the mesh points, the particle velocity and time step size, and will not be 

changed in the calculation procedure. We can calculate once and store them in advance, so 

little computational effort is introduced as compared with the standard LBE. On the other 

hand, equation (5.11) does not depend on the mesh structure. It only needs to know the 

coordinates of mesh points. Thus, we can say that it can be easily used to solve flow 

problems with complex geometries. 

ka ,1

Previous numerical simulations have shown that this method is an efficient and 

flexible approach for isothermal flow problems with complex geometries at very high 

Reynolds numbers. (Shu et al. 2002 & 2003, Chew et al. 2002, Niu et al. 2003.) In the 
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following section, this method is applied to the IEDDF thermal model so as to extend the 

current thermal model for practical thermal applications with complex geometries. 

 

5.3 Application of TLLBM in IEDDF thermal model  

5.3.1 The formulation 

As we know from Chapter 3, for the IEDDF thermal model, the density and 

internal energy density distributions satisfy the following evolution equations, 

respectively:   
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When these two equations are used to solve the thermal problems on the arbitrary grids, 

),( teytex yx δδ αα ++  is usually not at the grid point ),( yyxx δ+δ+ . So TLLBM 

technique has to be applied. Following the same procedure as shown in the previous 

section for the density distribution, after applying the TLLBM technique to the governing 

equations (5.12a) and (5.12b), the density distribution f  and internal energy density 

distribution g  at each grid point are updated by: 
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where  
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1M  is the number of the selected neighboring points around P for the density distribution; 

 is the number of the selected neighboring points around P for the internal energy 

density distribution. They should be larger than 5.  are the elements of the first row in 

the matrix [ ], which is derived in the same way as in [A]. These two matrixes are 

different if the different particle velocity models are chosen or different neighboring 

points around P are selected for the two density distributions. 

2M

ka ,1
'

'A

When the same particle velocity model and the same neighboring points around P 

are chosen for the density and internal energy density distributions, the geometric matrix A 

and  are the same, which can save both the computational time and storage space. In 

this chapter, we choose the grid point P and its surrounding eight points A, B, C, D, E, F, 

G, H as shown in Figure 5.1 to form the matrix A and matrix . The D2Q9 lattice model 

is used for both density distributions. So the matrix  is the same as A. Although Figure 

5.1 is illustrated along the particle direction of , the point distribution shown in this 

figure can be applied to other particle directions including the horizontal and vertical 

directions. 

'A

'A

'A

045
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5.3.2 Wall boundary conditions 

The implementation of wall boundary conditions is very important in the 

numerical simulations. The bounce-back rule of the non-equilibrium distribution proposed 

by Zou and He (1997) which has been described in Chapter 3 is used here. At the outgoing 

directions, the density distribution and internal energy density distribution are calculated 

from the governing equations (5.13a) and (5.13b).  For the rest of the distributions which 

are at the incoming directions, their values are determined by the so-called bounce back 

rule for the non-equilibrium distribution. For the Neumann boundary condition, we deal 

with it in the same way as shown in Chapter 3.  For the wall corner points, the 

extrapolation scheme is used at some special directions for the density and internal energy 

density distributions, which has been explained in detail in Chapter 4 and will not be 

repeated here. 

 

5.4 Simulations of thermal flows with simple boundaries 

In order to verify whether our proposed new thermal model can solve the thermal 

problems on the arbitrary mesh, firstly, we carried out the computation for the thermal 

flows with simple boundaries. The problem considered is the natural convection in a two-

dimensional square cavity. A typical non-uniform grid as shown in Figure 4.27 in Chapter 

4 is used here.  The grids are stretched towards all the walls. 

The convergence criterion for all the cases in this chapter is set to  
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where n and n +1 represent the old and new time levels, respectively.  

120 



Chapter 5 Use of TLLBM in IEDDF thermal model 

 

5.4.1 Validation of the numerical results 

Numerical simulations of this natural convection problem were carried out on the 

non-uniform grids at a wide range of Rayleigh numbers of 103~106. Table 5.1 shows the 

numerical results of the maximum horizontal velocity  on the vertical mid-plane of 

the cavity and its location , the maximum vertical velocity on the horizontal mid-

plane of the cavity and its location x , the average Nusselt number throughout the cavity 

maxu

y maxv

Nu
 
and the value of the stream function at the center point of the cavity. The numerical 

results of a NS solver given by Shu and Xue (1998) using DQ method are also included 

for comparison.  

From Table 5.1, we can see that the numerical results obtained by our proposed 

new thermal model generally agree well with the benchmark results of Shu and Xue in a 

wide range of Rayleigh numbers. The deviation of the two results at high Rayleigh 

number is larger than that at low Rayleigh number, but it is still within 3%. The reason for 

the larger deviation at high Rayleigh number may be due to the fact that at high Rayleigh 

number, the temperature variation is very large; while in the IEDDF thermal model, the 

mean temperature is used as the reference temperature. This may introduce some error at 

high Rayleigh numbers. Another reason may be that at high Rayleigh numbers, when the 

flow becomes weakly turbulent, the solution given by the Boussinesq approximation 

deviates gradually from the true solution. 

From this table, we can see that the use of the TLLBM technique in the IEDDF 

thermal model can solve the thermal problems on the non-uniform grids at high Rayleigh 
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numbers successfully. Compared with the thermal model with the use of FVLBM 

technique proposed in the last chapter, this new thermal model has wider applicability. 

 

5.4.2 Comparison of the numerical results on uniform and non-uniform 

grids 

In order to investigate the efficiency of this new thermal model, the numerical 

simulations on both the uniform grids using the standard LBM and non-uniform grids 

using our new thermal model at the same Rayleigh number were carried out. Tables 5.2-

5.5 show the comparison of the numerical results using two different methods at Rayleigh 

numbers of 103, 104, 105 and 106. 

It can be observed from Tables 5.2-5.5 that, using the same number of the grid 

points at the same Rayleigh number, the calculated Nusselt number and other results on 

the non-uniform grids are more accurate than those on the uniform grids when compared 

with the benchmark results using DQ method. This clearly shows the advantage of using 

non-uniform grids in the simulation of flow problems, even when the physical domain is 

regular. Because the grids are stretched towards the walls for non-uniform grids, the grid 

spacing is much smaller than that for uniform grids near the walls when the same grid 

number is used. It is easier for non-uniform grids to capture the properties in the thin 

boundary layer, especially at high Rayleigh numbers. 

As far as the computational efficiency is concerned, for the same grid number, the 

calculation time on non-uniform grids using the TLLBM thermal model is more than that 

on uniform grids using the standard IEDDF thermal model. But it will take much less grid 

numbers for non-uniform grids than uniform grids to obtain the same accurate results. The 
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combining result of these two effects is that it will take less computation time for the 

TLLBM thermal model with non-uniform grids to get the results at the same accuracy. 

Take Ra=103 as an example. All the following computations are done on Pentium III 

1600. It will take 87.30s to get the convergent result on uniform grids with the mesh size 

of 51×51 using the standard IEDDF thermal model, while it has to take 242.85s for non-

uniform grids with the same grid size using the TLLBM thermal model. But as shown in 

Table 5.2, when compared with the benchmark data, the grid size using uniform grids 

should be increased to 101×101 in order to obtain results as accurate as those of the mesh 

size of 51×51 on non-uniform grids. When the grid size is increased to 101×101 for 

uniform grids, the calculation time is 574.25s, much longer than that for non-uniform 

grids. This example shows that the TLLBM thermal model is faster than the standard 

IEDDF thermal model to get the same accurate results. 

 

5.5 Simulations of thermal flows with complex geometries 

In practice, thermal flows in engineering applications are often involved with 

complex geometries. For example, the flow and thermal fields in different kinds of 

enclosed space are of great importance due to their wide applications such as in solar 

collector-receivers, insulation and flooding protection for buried pipes used for district 

heating and cooling, cooling systems in nuclear reactors, etc. A large number of literatures 

were published in the past few decades for this kind of problems. For concentric and 

eccentric cases in a horizontal annulus between two circular cylinders, the flow and 

thermal fields have been well studied. Comparatively, little work has been conducted in 

more complex domains, such as the annulus between a square outer cylinder and a circular 
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inner cylinder.  In this section, we will show that the TLLBM technique together with the 

IEDDF thermal model can also provide very accurate results for these kinds of complex 

thermal problems. 

A schematic view of a horizontal concentric annulus between a square outer 

cylinder and a heated circular inner cylinder is shown in Figure 5.2. L is the length of 

square cylinder and  is the radius of circular cylinder. ir ξ  and η  are transformed 

coordinates. Heat is generated uniformly within the circular inner cylinder, which is 

placed concentrically within the cold square cylinder. A typical grid used is shown in 

Figure 5.3.  It can be seen clearly from this figure that mesh points are stretched towards 

the walls so as to capture the thin boundary layers. In the middle part of flow field, the 

mesh is relatively coarse since the velocity and temperature gradients are not very large in 

this region. 

 

5.5.1 Boundary conditions for the curved wall 

The bounce-back rule of the non-equilibrium distribution is used. However, its 

implementation on the curved boundary is more difficult than the flat wall. For the curved 

boundary, the directions for the outgoing and incoming distributions cannot be determined 

so easily as those for the flat wall. These directions are changing at each point on the 

curved boundary. We should find out which directions belong to the outgoing distributions 

and which directions belong to the incoming distributions before we use the bounce-back 

boundary condition.  

At the inner circular cylinder, the outgoing distributions at a boundary point can be 

determined by satisfying the condition of 0<⋅ne , where n  is the outward vector at that 
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boundary point normal to the boundary. Incoming distributions are defined by the 

condition of . At the outer square cylinder, the outgoing distributions are defined 

by the condition of , while the incoming distributions are defined by 

0>⋅ne

0≥⋅ne 0<⋅ne . 

For the outgoing distributions, their values are calculated from the evolution 

equations (5.13a) and (5.13b); for the incoming distributions, their values are determined 

from the bounce-back rule of the non-equilibrium distribution. At the inner circular 

cylinder, at some special points on this wall boundary, there exist distributions whose 

directions satisfy the condition 0=⋅ne . Their values are determined from the 

extrapolation scheme from their neighboring points in the flow fields at these directions. 

This process is the same as that for some special directions at the corner wall points as 

shown in Chapter 4. 

 

5.5.2 Definition of Nusselt numbers 

The local heat transfer rate on the inner cylinder can be computed by 

n
TkTThq oi ∂
∂

−=−=
*

** )(     (5.16) 

where *T  is the dimensional temperature, ,  are respectively the temperatures on the 

inner and outer cylinders, h represents the local heat transfer coefficient, k is the thermal 

diffusivity. From equation (5.16), we can get 
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Here T is the non-dimensional temperature, which is defined as **
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where, as shown in Figure 5.2, the wall surface is a grid line of constant=η , on which 

. 0/ =ξ∂∂T

The average heat transfer coefficient h  can be computed as 
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Since at the steady state, the Nusselt numbers along the inner and outer walls are the same, 

there is no need to pay separate attention to the average Nusselt numbers for the outer and 

inner boundaries. The average Nusselt number for the inner boundary is determined by 
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where S is defined as half of the circumferential length of the inner cylinder surface due to 

the symmetry, which is the same as that in the work of Moukalled and Acharya (1996) for 

comparison. 

 

5.5.3 Validation of the numerical results 

As discussed before, most research work focused on the study of the natural 

convection in the annuli between either concentric or eccentric circular cylinders. Only a 
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few publications involved the study of the natural convection in an annulus between an 

outer square cylinder and an inner circular cylinder. The work of Moukalled and Acharya 

(1996), Shu and Zhu (2002) were among such studies. Moukalled and Acharya studied 

numerically the natural heat transfer between a heated horizontal cylinder placed 

concentrically inside a square enclosure. Three different aspect ratios defined as 
ir

Lrr
2

=  

and four different Rayleigh numbers were considered. NS equations were solved in a 

body-fitted coordinate system using a control volume-based numerical procedure. Their 

numerical data were validated by comparing with some experimental data and found to be 

in good agreement. Recently, the global method of differential quadrature (DQ) was 

applied by Shu and Zhu to simulate this natural convection problem.  Their work consisted 

of the numerical results for Rayleigh numbers ranging from 104 to 106 and the aspect 

ratios between 1.67 and 5.0. So in this study, both the results of Moukalled and Acharya 

and the results of Shu and Zhu are used to validate our numerical data. 

Calculations were carried out at Rayleigh numbers of 104, 105, 106 and the aspect 

ratios of 5.0, 2.5, 1.67. The numerical results of the maximum stream function maxψ  and 

the average Nusselt number uN  calculated using our new TLLBM thermal model 

together with the benchmark results are listed in Table 5.6 It is noted that the reference 

length used in the definition of Rayleigh number is the side length of the square cylinder, 

L. The mesh size used in the present study is 101×161 for Ra=104, 129×201 for Ra=105, 

and 251×321 for Ra=106. From Table 5.6, it can be seen that at low Rayleigh numbers of 

104 and 105, the results using three different methods compare very well with each other. 

At high Rayleigh number of 106, there are some deviations between the present results and 

the reference data. But the maximum difference is still within 2.5%, which lies in the 
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range of the numerical uncertainty of the solutions. So we can say that the present results 

are very accurate, even at high Rayleigh number. The application of the TLLBM 

technique in the IEDDF thermal model can solve the complex thermal problems 

accurately and effectively.  

 

5.5.4 Analysis of the flow and thermal fields 

The flow and thermal fields for the nine cases with Ra = 104, 105, 106 and rr = 5.0, 

2.5, 1.67 are numerically analyzed. The respective streamlines and isotherms are shown in 

Figures 5.4-5.5. From these two figures, it is found that both the aspect ratio and Rayleigh 

number are critical to the flow and thermal fields. For the thermal fields as shown in 

Figure 5.4, it can be seen that the heat transfer is mainly dominated by the conduction at 

low Rayleigh number of 104, and by the convection at high Rayleigh numbers of 105 and 

106. For the flow fields as shown in Figure 5.5, it can be observed that the flow is 

generally symmetrical about the vertical centerline through the center of the inner circular 

cylinder. It moves up along the inner heated circular cylinder. When the flow reaches the 

top of the outer square cylinder, it then moves horizontally outwards and goes down along 

the vertical sidewalls of the outer square cylinder. These two figures have the same trend 

as those of Shu and Zhu. The details are discussed below.  

At the low Rayleigh number of 104, for all the three aspect ratios, the patterns of 

the streamlines and isotherms are the same. The maximum stream function is very small 

and the circulation of the flow is very weak. The heat transfer is mainly dominated by the 

conduction and a little stagnant area exists near the bottom of the square cylinder. The 

flow velocity is too small to affect the temperature distribution. As the aspect ratio 
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decreases from rr = 5.0 to rr = 1.67, the inner circular cylinder becomes bigger and the 

physical domain between the inner and outer cylinders is reduced. The thermal conduction 

and convection are confined in smaller area, which increases the heat transfer ability. This 

can be reflected in the increase of uN  as shown in Table 5.6.  

As Rayleigh number increases, for each aspect ratio, the circulation of the flow 

becomes stronger, and as a result, the maximum stream function increases a lot; the 

convection part plays a more important role in the heat transfer. The stagnant area 

increases at the bottom of the outer square cylinder, and the thermal boundary layer 

becomes thinner and thinner. So the overall Nusselt number increases with Rayleigh 

number. At high Rayleigh numbers, the heat transfer is mainly dominated by the 

convection. 

When the Rayleigh number is increased from 104 to 105, the aspect ratio is critical 

to the patterns of the flow and thermal fields. For the thermal fields, for all three aspect 

ratios, a plume begins to appear on the top of the inner circular cylinder. For the flow 

fields, for the case of rr = 5.0 and rr = 2.5, there are only two eddies, and these two eddies 

move closer and closer with the increase of Rayleigh number. But for the case of rr = 

1.67, these two eddies gradually evolve into four eddies with increasing Rayleigh number, 

but they are still symmetrical about the vertical centerline. In addition, two tiny eddies 

begin to appear above the circular cylinder near the vertical centerline when Rayleigh 

number reaches 105. 

When the Rayleigh number is further increased from 105 to 106, for the case of rr 

= 5.0 and rr = 2.5, the patterns of flow and thermal fields do not have too much change. 

There is only one plume on top of the inner circular cylinder in the thermal fields and two 

eddies in the flow fields. While for the case of rr = 1.67, in the thermal field, instead of 
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one plume, two plumes begin to appear on top of the inner circular cylinder. As Rayleigh 

number increases to 106, the two plumes become bigger, and a third plume appears above 

the top of the inner cylinder with reversed direction. Two tiny eddies on top of the inner 

cylinder probably cause the formation of the third plume in reversed direction.       

From the above discussion, it is clear that the aspect ratio and Rayleigh number 

greatly affect the flow and thermal fields. As Rayleigh number increases, the flow is 

enhanced, and the thermal plume is formed. For rr = 5.0 and rr = 2.5, only one plume is 

formed on the top of the inner cylinder and two eddies exist symmetrically about the 

vertical center line. However, for rr = 1.67, two plumes and one additional plume in the 

opposite direction are formed above the inner cylinder, and four eddies exist 

symmetrically about the vertical center line when Rayleigh number increases to 106. It 

seems that a critical aspect ratio rr may exist to distinguish whether one plume or three 

plumes exist in the isotherms, and whether two eddies or four eddies exist in the 

streamlines.  

From Figures 5.4 and 5.5, we can see that our numerical scheme is able to capture 

the above physical phenomena correctly.  

 

5.6 Conclusions 

The explicit TLLBM technique is applied to the IEDDF thermal model in order to 

solve the thermal problems with complex geometries. The numerical simulations of 

natural convection in a square cavity at Rayleigh numbers ranging from 103 to 106 on non-

uniform grids validate our new scheme. The numerical results compare very well with the 

benchmark data obtained by a NS solver. Less grid number is needed to obtain accurate 
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results using non-uniform grids. Furthermore, its applicability to solve the complicated 

thermal problems with curved boundaries, such as the natural convection in a horizontal 

concentric annulus between a square outer cylinder and a circular inner cylinder, is also 

demonstrated. Numerical results at Rayleigh numbers ranging from 104 to 106 and aspect 

ratios between 1.67 and 5.0 are presented, which agree well with available data in the 

literature. It is also found in this study that both the aspect ratio and Rayleigh number are 

critical to the patterns of the flow and thermal fields. It is suggested that a critical aspect 

ratio may exist at high Rayleigh number to distinguish the flow and thermal patterns.  

From these numerical simulations, we can see that the use of the TLLBM 

technique in the IEDDF thermal model is an effective and flexible way to extend the 

current thermal model to be used on the arbitrary grids, which is very important for the 

practical engineering applications. Till now, our objective has been fulfilled. It should be 

emphasized again that this new thermal scheme is an explicit method; it keeps the local 

feature of the standard LBM and no solution of the differential equations is involved. So it 

can be easily applied to any complex geometry. 

So far, we have demonstrated the present method in two-dimensional flow 

problems. It is necessary to extend it to three-dimensional flow problems that are related 

to a lot of engineering applications. In order to do this, the thermal model for three 

dimensional applications should be proposed firstly. The TLLBM technique can then be 

applied to the new three-dimensional thermal model so as to extend its use on the arbitrary 

mesh. This is the challenging work which we are going to pursue in the following chapters. 
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Table 5.1 Comparison of the numerical results between the TLLBM thermal model and a 

NS solver for the natural convection in a square cavity 
 

Ra 103 104 105 106

Method TLLBM DQ TLLBM DQ TLLBM DQ TLLBM DQ 
Grid size 51×51 - 101×101 - 151×151 - 201×201 - 

maxu  3.646 3.649 16.158 16.190 34.301 34.736 63.590 64.775
y  0.814 0.815 0.824 0.825 0.852 0.855 0.844 0.850 
maxv  3.694 3.698 19.676 19.638 68.188 68.640 218.32 220.64
x  0.180 0.180 0.121 0.120 0.065 0.065 0.037 0.035 

Nu  1.117 1.118 2.244 2.245 4.520 4.523 8.804 8.800 

midψ  1.175 1.175 5.071 5.075 9.104 9.117 16.313 16.270

 
 

 

 

Table 5.2 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=103

 

Mesh 51×51(uni) 101×101(uni) DQ 51×51(non) 
midψ  1.170 1.175 1.175 1.175 

maxu  3.636 3.649 3.649 3.646 
y  0.820 0.810 0.815 0.814 
maxv  3.702 3.700 3.698 3.694 
x  0.180 0.180 0.180 0.180 

Nu  1.116 1.117 1.118 1.117 

21Nu  1.114 1.116 1.118 1.118 

0Nu  1.103 1.110 1.118 1.110 

maxNu  1.465 1.481 1.506 1.491 
y  0.140 0.090 0.090 0.110 

minNu  0.722 0.672 0.691 0.684 
y  1.000 1.000 1.000 1.000 
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Table 5.3 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=104

 

Mesh 101×101(uni) 151×151(uni) DQ 101×101(non)
midψ  5.063 5.069 5.075 5.071 

maxu  16.158 16.156 16.190 16.158 
y  0.820 0.820 0.825 0.824 
maxv  19.704 19.679 19.638 19.676 
x  0.120 0.120 0.120 0.121 

Nu  2.232 2.237 2.245 2.244 

21Nu  2.224 2.231 2.245 2.244 

0Nu  2.192 2.183 2.248 2.189 

maxNu  3.576 3.479 3.543 3.498 
y  0.150 0.147 0.145 0.138 

minNu  0.617 0.593 0.586 0.580 
y  1.000 1.000 1.000 1.000 

 

 

Table 5.4 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=105

 

Mesh 151×151(uni) 201×201(uni) DQ 151×151(non)
midψ  9.102 9.103 9.117 9.104 

maxψ  9.648 9.644 9.618 9.631 

x  0.287 0.285 0.285 0.287 
y  0.607 0.605 0.600 0.606 
maxu  34.194 34.245 34.736 34.301 
y  0.853 0.855 0.855 0.852 
maxv  68.282 68.276 68.640 68.188 
x  0.067 0.065 0.065 0.065 

Nu  4.494 4.501 4.523 4.520 

21Nu  4.487 4.496 5.524 4.518 

0Nu  4.446 4.430 4.527 4.355 

maxNu  7.984 7.833 7.788 7.895 
y  0.080 0.080 0.080 0.075 

minNu  0.767 0.758 0.725 0.715 
y  1.000 1.000 1.000 1.000 
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Table 5.5 Comparison of the numerical results on uniform and non-uniform grids for the 
natural convection in a square cavity at Ra=106

 

Mesh 201×201(uni) 251×251(uni) DQ 201×201(non) 251×251(non)
midψ  16.359 16.369 16.270 16.313 16.316 

maxψ  16.832 16.827 16.714 16.815 16.800 

x  0.150 0.148 0.150 0.176 0.174 
y  0.555 0.552 0.550 0.763 0.765 
maxu  63.251 63.527 64.775 63.590 63.640 
y  0.840 0.844 0.850 0.844 0.848 
maxv  218.33 218.47 220.64 218.32 218.41 
x  0.040 0.040 0.035 0.037 0.038 

Nu  8.766 8.781 8.762 8.814 8.818 

21Nu  8.759 8.775 8.727 8.803 8.810 

0Nu  8.562 8.500 8.721 8.291 8.200 

maxNu  18.514 18.148 16.070 18.813 18.000 
y  0.040 0.036 0.040 0.034 0.035 

minNu  0.986 1.012 1.665 0.852 0.883 
y  1.000 1.000 1.000 1.000 1.000 
 

Table 5.6 Comparison of maxψ and uN  for the natural convection in an annulus between an 
outer square cylinder and a heated inner circular cylinder 

 

maxψ  uN   
case 

 
rr 

 
Ra 

Present Shu  Moukalled  Present Shu Moukalled 
1 5.0 1.73 1.71 1.73 2.08 2.08 2.071 
2 2.5 0.97 0.97 1.02 3.24 3.24 3.331 
3 1.67 

 
104

0.48 0.49 0.50 5.39 5.40 5.826 
4 5.0 10.09 9.93 10.15 3.79 3.79 3.825 
5 2.5 8.25 8.10 8.38 4.84 4.86 5.08 
6 1.67 

 
105

5.08 5.10 5.10 6.20 6.21 6.212 
7 5.0 22.00 20.98 25.35 5.96 6.11 6.107 
8 2.5 25.21 24.13 24.07 8.75 8.90 9.374 
9 1.67 

 
106

21.63 20.46 21.30 11.65 12.00 11.62 
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Figure 5.1 Configuration of the particle movement along α  direction 
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Figure 5.2 Sketch of the physical domain for          Figure 5.3 A typical non-uniform mesh 
a concentric annulus between a square outer            used for a concentric annulus between  
      cylinder and a circular inner cylinder                          a square outer cylinder and a  
                                                                                                circular inner cylinder 
 

 

 

135 



Chapter 5 Use of TLLBM in IEDDF thermal model 

   

 rr=5  rr=2.5  rr=1.67 

(a) Ra=104 

 

   

 rr=5  rr=2.5  rr=1.67 

(b) Ra=105 
 

   

 rr=5  rr=2.5  rr=1.67 

 (c) Ra=106

Figure 5.4 Isotherms for the natural convection in an annulus between an outer square 
cylinder and a heated inner circular cylinder using the TLLBM thermal model 
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 rr=5  rr=2.5  rr=1.67 

(a) Ra=104 
 

    

 rr=5  rr=2.5  rr=1.67 

(b) Ra=105 
 

   

 rr=5  rr=2.5  rr=1.67 

(c) Ra=106 

Figure 5.5 Streamlines for the natural convection in an annulus between an outer square 
cylinder and a heated inner circular cylinder using the TLLBM thermal model 
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Chapter 6  

Simulation of the axisymmetric thermal flows 

 
 

6.1 Introduction 

In previous chapters, IEDDF thermal model has been developed into an effective 

thermal model to solve real practical thermal problems. Then this model is extended to be 

used for thermal applications on arbitrary grids by using FVLBM and TLLBM. Numerical 

results have shown that the use of TLLBM in IEDDF thermal model is an efficient and 

convenient way to solve thermal problems with complex geometries. All the previous 

studies are concerned about applications in two dimensions. We aim to develop a three-

dimensional thermal model for three-dimensional thermal applications in following 

chapters. Before we do that, we will first study one kind of important thermal flows, which 

is called axisymmetric thermal flows. It contains many important flows such as the mixed 

convection flows in a vertical concentric cylindrical annuli and Czochralski crystal growth 

problems. For the conventional NS solvers in the cylindrical coordinate system, these 

axisymmetric flows are quasi- three-dimensional problems, rather than the real three-

dimensional flows, since there is no change for any variable in the azimuthal direction. 

However, these flows become much more complicated when using LBM.  

As we have known from Chapter 2, the standard LBM is based on the Cartesian 

coordinate system and it will recover the continuity and NS equations by the Chapman-

Enskog expansion. The use of FVLBM or TLLBM will not change this property. The 

detailed explanation of this will be given in the methodology section. As the axisymmetric 

Materials in this chapter have been published in   138 
[1] Peng, Y., C. Shu, Y. T. Chew and J. Qiu. Journal of Computational Physics, 186, pp. 295-307. 2002. 
[2] Peng, Y., C. Shu and Y. T. Chew. Materials Science Forum, 437-438, pp. 355-358. 2003. 
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flows are defined on the cylindrical coordinate system, if we use the standard LBM, we 

can only use the Cartesian coordinate system to solve such kind of cylindrical flow 

problems. This means that we have to use the three-dimensional lattice model to solve the 

three-dimensional problems, which complicate the problem as compared with the 

conventional NS solvers. In order to avoid such complication and find an effective way to 

solve this kind of important flows, we proposed a new scheme. By inserting the position, 

time and particle velocity dependent source terms into the evolution equation of the 

standard LBM, we aim to recover it on the macroscopic level to the continuity and NS 

equations defined in the cylindrical coordinate system by Chapman-Enskog expansion. 

This new scheme is based on the idea proposed by Halliday et al. in 2001, and it has the 

following good features. Like conventional CFD solvers, it solves the quasi- three-

dimensional problem instead of the real three-dimensional problem for an axisymmetric 

flow. At the same time, it is applied on a uniform rectangular grid in the cylindrical 

coordinate system, which adheres to the inherit property of LBM. The curved boundary 

can also be well defined using the uniform rectangular grid. This will be described in the 

methodology section. 

The mixed convection in a vertical concentric cylindrical annuli and the Wheeler’s 

benchmark problem in Czochralski crystal growth are taken here as the test examples to 

validate our new scheme. The mixed convection flow in vertical concentric cylindrical 

annuli occurs in diverse engineering design problems, e.g. rotating electric motor 

equipment, chemical vapor deposition process, turbine rotor cooling, and heat exchangers 

design. Czochralski crystal growth technique has been widely used for the melt-crystal 

growth in the modern technology, which is needed for the scientific appraisal of 

crystallography, topography and tensor properties of all crystalline materials. The 
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modeling and understanding of the heat and mass transfer for this flow have become an 

important issue in the optimization of the Czochralski technique in order to grow more 

uniform and better quality crystals.  

 

6.2 Mathematical model 

6.2.1 Standard lattice Boltzmann method 

The evolution equation for the standard LBM is as follows:  

( ) ( ) ( ) ( )
τ

δδ αα
ααα

tftftftttf
eq ,,

,,
xx

xex
−

−=−++  (6.1) 

Using the current commonly used lattice models defined on the Cartesian coordinate 

system  such as D2Q9 and D2Q7 and performing the Chapman-Enskog expansion, 

the following macroscopic equations in the Cartesian coordinate system can be recovered: 
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From equations (6.2a)-(6.2c), we can see that the continuity and NS equations recovered 

by Chapman-Enskog expansion are for the Cartesian coordinate system. However, for the 

steady axisymmetric flow problems, the governing equations are defined on the 

cylindrical coordinate system ( )zr,  and they are given as: 

( ) 01
=

∂
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+
∂
∂

z
w

r
ru

r
 (6.3a) 
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⎠
⎞

⎜
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∂
∂

∂
∂

=∇ ; ( )wvu ,,  are the radial, azimuthal and axial velocity 

components; g is the gravitational acceleration; k is the thermal conductivity and  is the 

specific heat at constant pressure. Since the variables do not change at the azimuthal 

direction, there is no 

pc

θ - derivative in the governing equations. So this kind of flow 

problems is actually solved in ( )zr,  coordinate system for the conventional NS solvers. 

They are two-dimensional problems although there are three velocity components. 

If we use the standard LBM to solve these axisymmetric flows on the Cartesian 

coordinate system, we have to solve the real three-dimensional problems using three-

dimensional lattice models. This makes the problem more complex as compared with the 

conventional methods. Furthermore, when the uniform grids are used, the curved 

boundary cannot be accurately represented. So this problem has to be solved on the non-

uniform grids by introducing FVLBM or TLLBM. In order to avoid these complications, 

we should find a way to transform the standard LBM to some specific form with which 

the Chapman-Enskog expansion would recover the continuity and NS equations in the 

cylindrical coordinate system. 

141 



Chapter 6 Simulation of the axisymmetric thermal flows 

 

6.2.2 Axisymmetric lattice Boltzmann model 

Since the azimuthal coordinate and its derivatives vanish, there are only two 

coordinate variables: z and r for an axisymmetric problem. In order to compare the 

governing equations in the cylindrical coordinate system with those in the two-

dimensional Cartesian coordinate system, we make the following simple transformation. 

By making the replacements of ( ) ( )xyrz ,, → , ( ) ( )uvuw ,, → , ( ) (wv → ) , we can obtain a 

pseudo-Cartesian representation for equations (6.3a), (6.3b) and (6.3d): 
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where 2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇ . Compared with the real two-dimensional governing equations 

(6.1a)-(6.1c) in the Cartesian coordinate system, these equations contain the additional 

terms that are underlined. We can consider them as the inertia forces from the coordinate 

transformation. As we know, with Chapman-Enskog expansion, the standard LBM can 

recover the continuity and NS equations in the Cartesian coordinate system. If we consider 

the underlined terms as forces, by inserting the position, time and particle velocity 

dependent forcing terms into the standard LBM and following the same Chapman-Enskog 

expansion, we may recover equations (6.4a)-(6.4c) by choosing the proper forms of the 

external forcing terms. 
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As emphasized by Halliday et al. (2001), in order to model the departures from the 

equilibrium in correspondence with the unadjusted LBGK scheme, there is no 

“equilibrium” for the external forcing terms and these external forcing terms should be at 

least of ( )tδΟ . Incorporating such time, spatial and particle velocity dependent force 

terms into the evolution equation of the standard LBM gives: 

( ) ( ) ( ) ( )
2

2
1

,,
,, FttFtGtftftftttf

eq

δδδ
τ

δδ αα
ααα +++

−
−=−++

xx
xex    (6.5) 

where  is used to recover the buoyancy force in the governing 

equation (6.4c). Since the form of this force term is known, we only need to consider the 

force terms of  and . The force term G can be omitted in the following derivation 

procedure for brevity. 
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1F 2F

The Taylor series expansion of equation (6.5) retaining terms up to ( )2tδΟ  results 

in: 

[ ] [ ] ( ) ( ) 2
2

1
32

2 1
2

FttFfftftft eq
tt δδ

τ
δδδ αααααα ++−−=Ο+∇⋅+∂+∇⋅+∂ ee  (6.6) 

The Chapman-Enskog expansion of the above Taylor series expanded evolution equation 

plus the force terms at ( )tδΟ  and ( )2tδΟ  are  
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The summation of equation (6.7a) and the summation of equation (6.7a) multiplied by  

give the continuity and Euler equations.  

αe
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Compared with the convection part of equations (6.4a)-(6.4c), we can get 
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where  ( )∑=Π
α

ααα
1)1( fee

Equation (6.10a) plus equation (6.8a) and equation (6.10b) plus equation (6.8b) should 

recover the continuity and NS equations (6.4a)-(6.4c). So the following relationship 

should be satisfied. 
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During the derivation, D2Q9 lattice model is used.  

Solving equations (6.9a) – (6.9b) and equations (6.11a) – (6.11c), the final forms 

of the external forces can be represented as: 

( )yx eFeFFwF ααα 1211101 33 ++=  (6.12a) 

where  for 9/4=αw 0=α , 9/1=αw  forα =1,2,3,4, 36/1=αw  for α =5,6,7,8.  

x
uF ρ

−=10 , 
x
wF

2

11
ρ

= , 012 =F         

( )yx eFeFFwF ααα 2221202 33 ++=  (6.12b) 

where ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−∂+∂+∂+∂=

x
wwpuvu

x
F xxyx

2
22

20
2

2
1 ρρρρ , 

( ) ( ) ( ) 221 66
1

x
uu

xx
uwvwuw

x
wF xyx

ρρρρρ +∂−⎥⎦
⎤

⎢⎣
⎡ +∂+∂−=  

( ) ( ) ( )[ uv ]
x

u
x

F yxy ρρυρ ∂−∂+∂−=
6
1

22         

By adding these force terms to the standard LBM, the governing equations (6.4a) – (6.4c), 

which are the same as equations (6.3a), (6.3b) and (6.3d) defined on the cylindrical 

coordinate system, can be correctly recovered by Chapman-Enskog expansion. 

Note that the form of the source terms is not unique. During the above derivation, 

F1 and F2 are determined independently. The form of F1 can be used explicitly to 

determine an appropriate form for F2.  It can be seen clearly that equations (6.5) and (6.12) 

have singularity at , which is the axisymmetric line for some problems. Fortunately, 

this difficulty can be easily overcome by implementing the axisymmetric boundary 

0=x
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condition at . In other words, equations (6.5) and (6.12) are only applied at position 

of . 

0=x

0≠x

Although the explicit inclusion of the gradients to the standard LBM undermines 

the simple formulation of the standard LBM, these terms are necessary to recover their 

target dynamics and the discretization scheme of these gradients has no effect on the 

stability of the scheme itself. We can just use the simple central difference scheme to do 

the numerical discretization. 

The azimuthal velocity and temperature are obtained through the following 

equations by using the first order forward difference scheme in time and second order 

central difference scheme in space. 
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From the above derivation, it can be seen that after such transformation, the 

axisymmetric flow problem in the cylindrical coordinate system can be solved on the 

uniform rectangular two-dimensional grids, which adheres to the inherent property, i.e. 

lattice-uniformity, of LBM. The curved boundary can be well defined using the uniform 

rectangular grid. So there is no need to introduce FVLBM or TLLBM technique. At the 

same time, it also avoids the solution of the real three-dimensional problem in the 

Cartesian coordinate system for such quasi- three-dimensional flow problems.  
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6.3 Numerical simulations 

In order to validate our new axisymmetric lattice Boltzmann model, we carried out 

the numerical simulations of two important axisymmetric flows. One is the mixed 

convection in the vertical concentric cylindrical annuli. In this case, all the boundaries are 

wall boundaries, so the implementation of boundary conditions is not too difficult. The 

other is the Wheeler’s benchmark problem in Czochralski crystal growth. This case is 

more complex than the first case, since it has three different kinds of boundary conditions: 

the wall boundary condition, free surface and axisymmetric boundary conditions. So much 

attention has to be paid to the implementation of boundary conditions for this case. 

The convergence criterion for all the cases studied in this chapter is set to  
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where n and n +1 represent the old and new time levels, respectively. 

 

6.3.1  Mixed convection in the vertical concentric cylindrical annuli 

The classical hydrodynamic stability of Taylor vortex flows in rotating cylindrical 

annulus has received considerable attention. However, such kind of thermal rotating flow 

has not been thoroughly investigated. Improving the equipment design for the engineering 

applications requires closer examination of these combined thermally induced and 

rotationally induced flows. 
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The schematic diagram of the physical system studied is shown in Figure 6.1. The 

annular with height H is bounded by two stationary adiabatic horizontal plates. The gap 

width  is the distance between the concentric cylinders. The inner cylinder of 

radius  is rotated and kept at a constant high temperature of . The outer cylinder of 

radius  is stationary and maintained at the temperature of , which is lower than that of 

the inner cylinder. When Prandtl number 

io rrD −=

ir HT

or LT

χυ=Pr  is fixed at 0.7, this system is governed 

by the parameter ( )2ReGr=σ  and two geometric parameters of the aspect 

ratio DHA =  and radial ratio ioio xxrr ==η . The Grashof and Reynolds numbers are 

defined as ( ) 23 υβ TDgGr ∆=  and ( ) ( ) υυ DxDr iiii Ω=Ω=Re  respectively. In the 

present study, A is chosen to be 10, η  is 2 and σ  is selected to be 0, 0.01 and 0.05, 

respectively, with respect to Re=100. 

In addition to the flow fields and temperature distributions, the physical quantities 

of primary interest are the local Nusselt numbers at the inner and outer cylinders. They are 

defined as 

00 ,, xxxrrr ii
x
Tx

r
TrNu

== ∂
∂

−=
∂
∂

−=  (6.15) 

The mean Nusselt number can be obtained by integrating the local Nusselt number along 

the vertical direction of the cylinders. It is defined as follows 

 ∫=
A

dyNu
A

Nu
0

1   (6.16) 

 

6.3.1.1 Boundary conditions. The boundary conditions for the present system are as 

follows: on the inner cylinder AyxrRx ii ≤≤=== 0, : ixwvuT Ω==== ,0,1 ; on the 
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outer cylinder , 00 xrR == Ay ≤≤0 : 0=T , 0== vu , 0=w ; on the top and bottom 

walls , : Ay ,0= 0xxxi ≤≤ 0,0 =∂∂=== yTwvu . The boundary conditions for u  

and  are realized by the corresponding boundary conditions for the density distributions. 

Since all the boundaries are wall boundaries, the bounce back condition for the non-

equilibrium distribution is used. The macroscopic boundary conditions for w  and 

v

T  are 

used directly when we solve equations (6.13a) and (6.13b). 

 

6.3.1.2 Results and discussions. In a mixed convection problem, the parameter σ  is used 

to measure the relative importance of the buoyancy force and the centrifugal force. In the 

present study, three different values of σ  were chosen. They were σ =0, 0.01 and 0.05 

with respect to Re=100. 

Table 6.1 shows the numerical results of the mean Nusselt number on the inner 

cylinder at the condition σ =0, 0.01 and 0.05 respectively, using the present new scheme. 

The grid size of 31×301 is used for all these cases. The benchmark data given by Ho and 

Tu (1993) and Ball and Farouk (1987) are also included for comparison. From Table 6.1, 

we can see that the calculated mean Nusselt number on the inner cylinder using our new 

scheme for each case agrees very well with those computed by the conventional CFD 

methods. It can also be seen that when σ  is sufficiently small, the average Nusselt 

number decreases with the increase of σ . This can be explained by the influence of the 

presence of the buoyancy force. For the sake of the clarity in this discussion, a vortex will 

be considered positive when its rotation is in the same direction as the natural convection 

flow, i.e. when the flow immediately adjacent to the heated inner cylinder is in the upward 

direction. The presence of the buoyancy force generates two effects on the rotationally 
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induced isothermal flow. Firstly, the centrifugal force becomes less pronounced than that 

for the isothermal flow at a constant Re since the fluid particles adjacent to the heated 

inner cylinder is lighter than the isothermal fluid. Secondly, the positive sense thermal 

circulation flow which is generated in a differentially heated cavity subsequently increases 

the intensity of the isothermal positive vortex cell and decreases the intensity of the 

isothermal negative vortex cell.  Combining these two effects, the local heat transfer rates 

along the hot wall are reduced on the upper parts but enhanced on the lower parts. But the 

overall effect is the decrease with the increase of σ  when σ  is much less than 0.1. 

Figure 6.2 shows the streamlines, vortices and isotherms at various σ . They have 

the same trend as those obtained by Ball & Farouk (1987). This figure describes how the 

buoyancy force influences the flow patterns and the isothermal contours. In this figure, 

vertical boundaries on the left and right hand sides represent the inner and outer cylinder 

walls of the annulus, respectively. For σ =0, there is no buoyancy force and it is a forced 

convection flow. Symmetric counter-rotating cells exist along the entire length of the 

annulus at Re=100. This Reynolds number is greater than the theoretical Recrit of 63 at 

η =2 (Koschmieder, 1993). So this flow is characterized by the counter-rotating toroidal 

vortice (Taylor vortices). It is noted that for this case, five pairs of the counter-rotating 

cells are present, corresponding to a non-dimensional wave number ( ) 283.6== λπ Aa . 

This compares quite well with the value found for an infinitely long annulus of 4.6=a . 

Each pair occupies the same volume. Heat transfer across the annular gap from the heated 

inner wall is accomplished by the centrifugally induced flow. When σ  is increased to 

σ =0.01, the flow is still dominated by the centrifugal force and the buoyancy force has 

very little effect on the flow pattern. So the flow pattern and the average Nusselt number 
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are very similar to those at σ =0. When σ  is increased to 0.05, the influence of the 

buoyancy force is apparent in the flow configuration. The flow pattern changes from a 

five-pair to a four-pair Taylor cell state. Each pair still occupies the same volume. But in 

each pair, the positive cell is much larger. This is also due to the influence of the buoyancy 

force. The tendency of the warmer fluid particles adjacent to the heated inner cylinder to 

rise is sufficiently strong to overcome the regular spacing characteristic of the Taylor 

instability.  

 

6.3.2 Wheeler’s benchmark problem 

For Wheeler’s (1990) benchmark problem in Czochralski crystal growth, the 

combination of the natural convection due to thermal gradients between the crystal and 

crucible and the forced convection due to the rotations of the crystal and crucible makes 

this problem very complex in terms of the thermodynamics and hydrodynamics. Several 

numerical methods have been developed to simulate such crystal growth flow problems 

(Shu et al., 1997; Xu et al., 1997). They all solve the conventional NS equations. The 

discretization of the convection terms in NS equations is very important for the numerical 

simulation of such flow and it is common to choose the second order central difference 

scheme. However, with the increase of the heat conduction or rotations of the crystal and 

crucible, which is required in Czochralski growth technique in order to grow larger 

crystals with less imperfection, the convection terms in the governing equations become 

dominant. This makes the second-order central difference scheme be unsuitable due to the 

enhanced numerical instability. This problem has been reported by Xu et al. They found 

that the use of the central difference scheme failed to provide converged solution at high 
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Grashof and Reynolds numbers. In order to improve the stability condition, low-order 

upwind scheme has to be used, but its high numerical diffusive properties may give rise to 

less accurate solution. In view of the discretization problem for the convection terms in 

conventional methods, we use our new scheme to simulate such kind of crystal growth 

problem. The kinetic nature of LBM introduces some important features that distinguish it 

from other conventional numerical methods. One of these is that the convection operator 

of LBM in phase space is linear, so there is no need to do any discretization for this 

convection term. As a result, the above-mentioned difficulty can be avoided. 

The implementation of boundary conditions is much more complicated than the 

above studied case. That is also the reason we choose this case so as to study how our new 

scheme can solve the complicated and practical axisymmetric thermal problems. We will 

give a detailed description on the implementation of boundary conditions in the following 

section. 

 

6.3.2.1 Wheeler’s benchmark problem. The configuration of the Wheeler’s benchmark 

problem for Czochralski crystal growth is shown in Figure 6.3. It consists of a vertical 

cylindrical crucible of radius  filled with a melt to a height H and rotating with an 

angular velocity . The melt is bounded above by a coaxial crystal of radius 

cR

cΩ cx RR <  

rotating with an angular velocity xΩ . The system is normalized in the following way: the 

characteristic length is ; the characteristic velocity is cR txc δδ= . The non-dimensional 

temperature is 
xc

x

TT
TT

T
−
−

=' . The non-dimensional parameters for Reynolds numbers, 

Prandtl and Grashof numbers are defined respectively as 
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υυ
cc

c
xc

x
RR Ω

=
Ω

=
22

Re,Re , 
( )

2

3

,Pr
υ

β
χ
υ cxc RTTgGr −

==  (6.17) 

In the present study, Prandtl number is fixed at 

05.0Pr =  (6.18) 

The non-dimensional parameter τ  in equation (6.5) is determined by its relationship with 

the non-dimensional kinetic viscosity ( ) 5.03 ' += tδυτ . When Reynolds number  is 

given non-zero, the non-dimensional kinetic viscosity is obtained by 

xRe

( )βυ xxv Re' = ; 

when Gr is given, the non-dimensional kinetic viscosity is obtained by Grvh='υ .  

and 

xv

( ) cxch RTTgv −= β  are the non-dimensional velocity for the crystal at xRx =  and 

the non-dimensional characteristic velocity for the natural convection problem, 

respectively. To ensure the code working properly in the near-incompressible regime, we 

carefully choose the values of  and . They are required to be less than 0.3. In the 

present study, they are chosen to be 0.1 at low Reynolds or Grashof numbers and be 0.15 

at high Reynolds or Grashof numbers. 

xv hv

 

6.3.2.2 Boundary conditions. The macroscopic boundary conditions defined in ( )zr,  

coordinate system for this flow problem are given by: 

0=
∂
∂

=
∂
∂

==
r
T

r
vwu                                                for ;0,0 α≤≤= zr  (6.19a) 

ccc TTRwvu =Ω=== ,,0                                 for ;0,1 α≤≤= zr  (6.19b) 

cc Rrw
z
Tvu Ω==
∂
∂

== ,0                                     for ;10,0 ≤≤= rz  (6.19c) 
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( )
( ) ( xcx TTrTTv

z
w

z
u

−
−

)−
+===

∂
∂

=
∂
∂

β
β

1
,0            for ;1, ≤≤= rz βα  (6.19d) 

xxx RrwTTvu Ω==== ,,0                                for ;0, βα ≤≤= rz  (6.19e) 

where 
c

x

c R
R

R
H

== βα . 

In the present study, the aspect ratios are fixed at 

4.0,1 == βα  (6.20) 

When the boundary conditions for  are represented by the relationship between 

the density distributions, they are more complicated than the first case. There are three 

different kinds of boundary conditions in this flow: the axisymmetric boundary condition, 

the wall boundary condition and the free surface condition. For different boundary 

conditions, the unknown distributions have different relationships with the known 

distributions. The configuration of particle velocity directions at these boundaries is 

shown in Figure 6.4. 

vu,

For α≤≤= yx 0,0 , (in our defined coordinate system as shown in Section 

6.2.2), this is the axisymmetric boundary condition and the specular reflection boundary 

condition is used. As shown in Figure 6.4, after the streaming process, the distributions at 

directions 2, 3, 4, 6, 7 are known which are determined by equation (6.5). The unknown 

distributions at directions 1, 5, 8 will be determined from the following specular reflection 

boundary conditions: 

786531 ffffff ===  (6.21a) 

For α≤≤= yx 0,1 , this is the wall boundary condition and the bounce back 

rule of the non-equilibrium distribution is used. As shown in Figure 6.4, after the 
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streaming process, the distributions at directions 1, 2, 4, 5, 8 are known and the unknown 

distributions at directions 3, 6, 7 can be determined from the following bounce back 

boundary conditions 

eqeqeqeqeqeq ffffffffffff 557788661133 −+=−+=−+=  (6.21b) 

For , this is also the wall boundary and the bounce back rule of 

the non-equilibrium distribution is used. As shown in Figure 6.4, after the streaming 

process, the distributions at directions 1, 3, 4, 7, 8 are known and the unknown 

distributions at directions 2, 5, 6 can be determined from the following bounce back 

boundary conditions 

10,0 ≤≤= xy

eqeqeqeqeqeq ffffffffffff 886677554422 −+=−+=−+=  (6.21c) 

For 1, ≤≤= xy βα , this is the free surface and the specular reflection boundary 

condition is used. As shown in Figure 6.4, after the streaming process, the distributions at 

directions 1, 2, 3, 5, 6 are known and the unknown distributions at directions 4, 7, 8 can be 

determined from the following specular reflection boundary conditions 

586724 ffffff ===  (6.21d) 

For βα ≤≤= xy 0, , we consider it as the wall boundary and the bounce back 

rule of the non-equilibrium distribution is used. As shown in Figure 6.4, after the 

streaming process, the distributions at directions 1, 2, 3, 5, 6 are known and the unknown 

distributions at directions 4, 7, 8 can be determined from the following bounce back 

boundary conditions 

eqeqeqeqeqeq ffffffffffff 668855772244 −+=−+=−+=  (6.21e) 

The macroscopic boundary conditions for  are used directly when we solve 

equations (6.13a) and (6.13b). 

Tw,
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6.3.2.3 Results and discussions. In this study, we firstly study how the forced convection 

and natural convection affect the flow fields differently. So we consider the following 

three cases A1, B1 and C1, which are defined as 

.0.,0Re.,100Re:1 === GrA cx  

.0,0.25Re.,100Re:1 =−== GrB cx   

.10.,0Re.,0Re:1 5=== GrC cx  

Case A1 and B1 are forced convection problems caused by different mechanisms. The 

flow in Case A1 is driven by the rotation of the crystal, while the flow in Case B1 is 

generated by the opposite rotations of the crystal and crucible. Case C1 is a natural 

convection problem. The mesh size used for these three cases is 101×101.  

Table 6.2 shows the computed minimum and maximum stream functions for these 

three cases using our new axisymmetric lattice Boltzmann model.  The benchmark results 

using DQ method are also included for comparison. The stream function is computed 

through 

xu
y

xv
x

=
∂
∂

−=
∂
∂ ψψ ,     (6.22) 

From Table 6.2, we can see that the maximum absolute value of the stream function for 

each case agrees very well with that computed by DQ method, and the maximum 

difference is within 3%. There are some deviations between the computed minimum 

absolute values of the stream functions and the benchmark results. These deviations can 

be considered to be negligible since the minimum absolute values are very small. 

The streamlines and isotherms for Cases A1, B1 and C1 are shown in Figure 6.5 to 

Figure 6.7. They have the same trend as those obtained by Shu et al. (1997) using DQ 
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method. Although the streamlines are quite different for Cases A1 and B1, the contours of 

the temperature are very similar. This indicates the similarity of the temperature fields for 

the forced convection problems. On the contrary, the temperature field for Case C1 is 

quite different from Cases A1 and B1, and this shows the effect of the buoyancy force on 

the temperature field. 

Since the natural convection has been well studied, while the forced convections 

are drawn less attention as compared with the natural convection, we put the emphasis on 

the forced convection in the following study. We studied the influence of the rotations of 

the crystal and crucible on the forced convection problems. Two more cases which have 

different rotation velocities are studied. They are defined as  

.0.,0Re.,1000Re:2 === GrA cx         

.0.,250Re.,1000Re:2 =−== GrB cx             

The mesh size used for these two cases is 201×201. 

Table 6.3 shows the computed minimum and maximum stream functions at 

different rotations. The benchmark results using Quick scheme (Xu et al., 1997) are also 

included for validation. From Table 6.3, we can see that the maximum absolute value of 

the stream function for each case agrees very well with the benchmark result. For Case A2, 

it can be seen from Table 6.3 that the absolute value of the stream function increases with 

the increase of the rotation velocity, which means that the intensity of the vortex increases. 

The maximum absolute stream function increases from 0.221 to 5.0575 when the rotation 

velocity increases from 102 to 103. The streamlines and temperature contours for Case A2 

are similar to Case A1, which will not be repeated. The only difference for the streamlines 

is that the center of the vortex induced by the rotation moves towards the sidewall of the 
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crucible and is deformed increasingly. The highest velocity region moves from the upper 

left corner to the upper right corner. This shows that with the increase of the rotation 

velocity, the crystals with better quality can be produced. For Case B2, it can be seen from 

Table 6.3 that the absolute value of the stream function also increases with the increase of 

the rotation velocities for both the crystal and crucible. The streamlines and temperature 

contours are also similar to Case B1. It can be seen from the streamlines shown in Figure 

6.6 that there are two vortices with opposite directions appearing in the upper left corner 

just under the crystal and the lower right corner. This means that the rotations of both the 

crystal and crucible cannot produce the crystals with good qualities. With the increase of 

the rotational speeds for both the crystal and crucible, the upper left vortex will move to 

the right corner, and the lower vortex will move to the left and dominate the flow field. 

 

6.4 Conclusions 

In this chapter, a new axisymmetric lattice Boltzmann model was proposed in 

order to solve an important kind of quasi- three-dimensional flow problems. Its 

applications to simulate the flows in the mixed convection in vertical concentric 

cylindrical annuli and Czochralski crystal growth demonstrated that our new scheme could 

solve the axisymmetric thermal problems accurately and effectively. The numerical results 

compared well with the benchmark data. It is worth to mention that our new scheme can 

solve the axisymmetric thermal flow problems on uniform rectangular two-dimensional 

grids in the cylindrical coordinate system, avoiding the solution of the real three-

dimensional problems on Cartesian coordinate system if the standard LBM is used. So the 

quasi- three-dimensional property of this kind of flows is kept. In the following chapters, 
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we will conduct real three-dimensional studies for practical three-dimensional thermal 

applications. 
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Table 6.1 Mean Nusselt number on the inner cylinder at various σ  with respect to Re=100 

for the mixed convection in vertical concentric cylindrical annuli 
  

σ  Nu (Present) Nu (Ho and Tu) Nu (Ball and Farouk) 

0 1.996 2.010 1.991 

0.01 1.995 1.997 1.976 

0.05 1.906 1.909 1.910 

 

 

 

Table 6.2 Comparison of the computed minimum and maximum stream functions with the 
benchmark results for the Wheeler’s benchmark problem 

 

Case Gr  xRe  cRe  minψ  

(Present) 

maxψ  

(Present) 

minψ  

(Shu et al.) 

maxψ  

(Shu et al.) 

A1 0. 102 0. -0.221 5.46×10-6 -0.222 5.46×10-6

B1 0. 102 -25. -5.14×10-2 0.114 -6.81×10-2 0.117 

C1 105 0. 0. -5.18×10-3 29.884 -7.50×10-3 28.316 

 

 

Table 6.3 Comparison of the computed minimum and maximum stream functions with the 
benchmark results for the Wheeler’s benchmark problem 

 

Case Gr  xRe  cRe  minψ  

(Present) 

maxψ  

(Present) 

minψ  

(Xu et al.) 

maxψ  

(Xu et al.) 

A1 0. 102 0. -0.221 5.46×10-6 -0.217 4.06×10-6

A2 0. 103 0. -5.075 1.06×10-4 -4.994 1.83×10-5

B1 0. 102 -25. -5.14×10-2 0.114 -4.43×10-2 0.117 

B2 0. 103 -250. -1.478 1.114 -1.478 1.148 
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Figure 6.1 Schematic diagram of the physical system for the mixed convection in vertical 
concentric cylindrical annuli 
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σ =0.05 

Figure 6.2 Streamlines, vortices and isotherms at various σ  with respect to Re=100 for 
e mixed convection in vertical concentric cylindrical annulth i 
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Figure 6.3 Configuration of Wheeler’s benchmark problem in Czochralski crystal growth 
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Figure 6.4 Schematic plot of particle velocity directions at boundaries for Wheeler’s 
benchmark problem in Czochralski crystal growth 

 

 

      
 

Figure 6.5 Streamlines (left) and temperature contours (right) for the Wheeler’s 
benchmark problem at 100Re =x  
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benchmark

 

Figure 6.6 Streamlines (left) and temperature contours (right) for the Wheeler’s 
 problem at Re,100Re 25−== c .0 x

 

 

        
 

Figure 6.7 Streamlines (left) and temperature contours (right) for the Wheeler’s 
benchmark problem at  510=Gr
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Chapter 7  

Simplified thermal LBM for two-dimensional 

incompressible thermal flows 

 

7.1 Introduction 

Before we develop a new internal energy density distribution function (IEDDF) 

thermal model for real three-dimensional thermal applications, we re-studied this two-

dimensional thermal model. Although the previous work has shown that the IEDDF 

thermal model is a stable and effective model and has been successfully used to solve 

some real two-dimensional thermal problems with complex geometries, there still exists 

some space for improvement for this thermal model when it is used for incompressible 

flows. On one hand, there is one complicated term which contains the gradient operator in 

the evolution equation for the internal energy density distribution, so the simplicity 

property of LBM has been lost. On the other hand, since the viscosity is involved not only 

in the momentum equation but also in the energy equation, the second-order integration of 

the governing equations for both the density distribution and internal energy density 

distribution is needed in order to keep the viscosity consistent in all the governing 

equations. To avoid the implicitness of such integration, the new variables for the density 

distribution and internal energy density distribution are introduced. Then the governing 

equations are transformed to the more complicated form whose variables are the new 

density distribution and internal energy density distribution. By doing this, another new 

complication arises. Since the simple bounce-back boundary condition for the non-

Materials in this chapter have been publishes in   165 
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equilibrium distribution is the relationship for the old density distributions, such 

relationship becomes very complicated after changing it to the new formula whose 

variables are the new density distributions. But we have to do it, since the evolution 

equations are for the new density distributions. This again leads to another loss of one 

good feature for LBM that boundary condition can be easily implemented. The detailed 

explanations on these drawbacks will be shown in the following section. 

When it is used for the incompressible thermal flows, the above shortcomings can 

be overcome by our proposed simplified IEDDF thermal model. This simplified thermal 

model is based on the assumption that in real incompressible thermal applications, the 

compression work done by pressure and the viscous heat dissipation can be neglected. Our 

study (to be shown later) found that the complicated gradient term in the original IEDDF 

thermal model is mainly used to recover the compression work done by pressure and 

viscous heat dissipation. So this term is intentionally omitted by us. After this 

simplification, there is no viscous term in the evolution equation for the internal energy 

density distribution. The requirement for the viscosity consistency vanishes, so there is no 

need to do the second-order integration for both governing equations for two density 

distributions so as to keep the viscosity the same. Besides, there is also no need to 

introduce the new density distributions. As a result, the above mentioned two 

shortcomings of the original IEDDF can be overcome. 

This simplified IEDDF thermal model is validated by the numerical simulation of 

the natural convection in a square cavity at a wide range of Rayleigh numbers. Its 

improvement in the efficiency to obtain the same accurate results is demonstrated by its 

comparison with the original IEDDF thermal model. Its compressibility is also studied by 
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its comparison with another new model which uses the incompressible LBGK model 

proposed by Guo et al. (2000) in this simplified IEDDF thermal model.  

This chapter is organized as follows: we will firstly give the detailed explanation 

on our simplified IEDDF thermal model, in which its accuracy in space has also been 

studied. Then we will use the benchmark results to validate this new thermal model. In 

order to study the compressibility property of this thermal model, we will introduce the 

incompressible isothermal LBGK model proposed by Guo et al. in our simplified IEDDF 

thermal model. Finally, we will draw some conclusions.  

 

7.2 Simplified IEDDF thermal model 

7.2.1 Original IEDDF thermal model 

The governing equations for the density distribution and internal energy density 

distribution in the original IEDDF thermal model are:   

( ) Fffff
v

eq

t +
−

−=∇⋅+∂
τ

e  (7.1) 

( ) ( ) ( )[ ]ueuuee ∇⋅+∂⋅−−
−

−=∇⋅+∂ t
c

eq

t fgggg
τ

  (7.2) 

where 
( ) eqf
RT

F ueG −⋅
=

 
and G  is the external force acting on the unit mass. It can be 

seen from equation (7.2) that there exists a complicated gradient term 

( ) ( )[ ]ueuue ∇⋅+∂⋅− tf . We have to deal with it properly. So the simplicity property of 

LBM has partially been lost. 

For the isothermal LBM, the evolution equation for the density distribution is the 

first-order integration of equation (7.1), which is  
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( ) ( ) ( ) ( )[ ] Fttftftftttf eq

v

δ
τ

δδ ααααα +−−=−++ ,,1,, xxxex    (7.3) 

This introduces a second-order truncation error and this truncation error is fortunately 

nondestructive because it can be totally absorbed into the physical viscous term. The only 

effect is the change of the viscosity from  to tcsv δτυ 2= ( ) tcsv δτυ 221−= . However, for 

the thermal LBM, the first-order integration of both equations (7.1) and (7.2) will cause 

some problem, because the density distribution exists in both equations. During the 

Chapman-Enskog multiscale expansions, the non-equilibrium part of the density 

distribution, which comes from the first-order Chapman-Enskog approximation and has 

nothing to do with the second-order Chapman-Enskog approximation, is used by the 

gradient term in equation (7.2) in order to recover the viscous heat dissipation term in the 

macroscopic energy equation. This means that the viscosity in the viscous heat dissipation 

term should be , which is inconsistent with the viscosity  if 

the first-order integration of equation (7.1) is used. To eliminate this inconsistency, the 

second-order integration for the above two equations (7.1) and (7.2) has to be adopted. At 

the same time, in order to keep the scheme to be explicit, two new variables 

tcsv δτυ 2= ( ) tcsv δτυ 25.0−=

gf ,  for the 

density distribution and internal energy density distribution are introduced, which have the 

following relationships with the old variables : gf ,

( ) ααααα
δ

τ
δ Ftfftff eq

v 22
−−+=    (7.4) 

( ) αααααα
δ

τ
δ qftggtgg eq

c 22
+−+=   (7.5) 

where ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∇⋅−+∏⋅∇+∇−⋅−= uueue ααα ρ

pq 1           
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The integrated equations for the new variables are:  

( ) ( ) ( ) ( )[ ]
t

tFtftf
t

ttftttf
v

veq

v δτ
δτ

δτ
δδδ α

ααααα 5.0
,,

5.0
,,

+
+−

+
−=−++ xxxex    (7.6) 

( ) ( ) ( ) ( )[ ] ( )
t

tqtftgtg
t

ttgtttg
c

ceq

c δτ
δτ

δτ
δδδ αα

ααααα 5.0
,

,,
5.0

,,
+

−−
+

−=−++
x

xxxex  (7.7) 

It is worth to mention that the old density distribution is again used for the expression of 

αg  and happens in the term ( )
t

tqtf

c

c

δτ
δτ αα

5.0
,

+
x  in equation (7.7). 

The bounce-back rule of the non-equilibrium distribution proposed by Zou and He 

(1997) is used for the wall boundary condition. The density distribution at the wall 

boundary should satisfy the following condition: 

neqneq ff βα =    (7.8) 

where  and  have the opposite directions. The internal energy density distribution at 

the wall boundary satisfies: 

αe βe

( )neqneqneqneq fgfg βββααα
22 ee −−=−   (7.9) 

It should be emphasized that the old variables, density distribution  and internal energy 

density distribution g , are used in the boundary conditions (7.8) and (7.9), while the 

governing equations (7.6) and (7.7) are for the new variables, 

f

gf , . So two sets of the 

variables are used and transformation between the old and new variables is needed for 

every time step. As a result, the extra computational effort is introduced. 
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7.2.2 Simplified IEDDF thermal model  

We can see from the above section that the second-order integration and the 

introduction of the new variables are due to the requirement that the viscosity in two 

governing equations for the density distribution and internal energy density distribution 

should be consistent. It is well accepted that for incompressible flows, the viscous heat 

dissipation term in macroscopic energy equation can be neglected. The omission of the 

viscous heat dissipation term and compression work term done by pressure in the 

macroscopic energy equation will be reflected by dropping out the gradient term in the 

evolution equation for the internal energy density distribution, since such gradient term is 

mainly used to recover these terms in the macroscopic energy equation through Chapman-

Enskog expansion. So based on this, the simplified IEDDF thermal model is proposed.  

The governing equations for the density distribution and internal energy density 

distribution are:   

 ( ) ( ) ( ) ( )[ ] Fttftftftttf eq

v

δ
τ

δδ ααααα +−−=−++ ,,1,, xxxex    (7.10) 

( ) ( ) ( ) ( )[ ]tgtgtgtttg eq

c

,,1,, xxxex ααααα τ
δδ −−=−++    (7.11) 

D2Q9 lattice model is used here as an example. 

Chapman-Enskog expansion for the density distribution can recover the continuity and NS 

equations. The detailed derivation of this is given by Hou et al. (1995a) and will not be 

shown here. The viscosity is determined by: 

tcsv δτυ 2

2
1
⎟
⎠
⎞

⎜
⎝
⎛ −=   (7.12) 
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It can be shown in the following that the macroscopic energy equation for the 

incompressible flows can be derived from the evolution equation (7.11) for the internal 

energy density distribution by Chapman-Enskog expansion following the same procedure 

as Hou et al. (1995a). 

Taylor series expansion of equation (7.11) to ( )3tδΟ  results in   

( ) [ ] ( ) ( ))0(32
2 1

2 αααα τ
δδδ ggtgtgt

c
tt −−=Ο+∇⋅+∂+∇⋅+∂ ee   (7.13) 

where  is represented as . eqgα
)0(

αg

Expanding  about , we can get: αg )0(
αg

( )3)2(2)1()0( tgtgtgg δδδ αααα Ο+++=   (7.14) 

The first order expansion of equation (7.13) is 

( ) )1()0(
0

1
αα τ

gg
c

t −=∇⋅+∂ e   (7.15) 

The second order expansion of equation (7.13) is 

( ) )2()1(
0

)0(
1

1
2
11 ααα ττ

ggg
c

t
c

t −=∇⋅+∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∂ e   (7.16) 

Taking the summation of equations (7.15) and (7.16), we can get 

( ) ( ) 00 =⋅∇+∂ ερρε ut   (7.17) 

( ) 0
2
11 )1(

1 =Π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∂

c
t τ
ρε   (7.18) 

where  and it is ( )1(
0

)1(
α

α

gt∑ ∇⋅+∂=Π e ) (ρετ 2)1(

3
2
∇−=Π c )  after neglecting the 

( )Tu δ2Ο  terms. 

Combining equations (7.17) and (7.18), we can get  
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( ) ( ) ( )ρεχερρε 2∇=⋅∇+∂ ut   (7.19) 

The thermal diffusivity χ  is determined by 

tcc δτχ 2

2
1

3
2

⎟
⎠
⎞

⎜
⎝
⎛ −= .            (7.20) 

From the above derivations, we can see that the evolution equations (7.10) and (7.11) for 

the density distribution and internal energy density distribution can recover the 

macroscopic continuity, momentum equations and energy equation for the incompressible 

flows through Chapman-Enskog expansion. 

When solving the incompressible thermal flows, this simplified IEDDF thermal 

model has the following good features as compared with the original IEDDF thermal 

model. Firstly, it does not include any complex gradient term in the evolution equation for 

the internal energy density distribution and keeps the same simple form as for the 

isothermal LBM. Secondly, it does not need the second-order integration and the 

introduction of the new variables. This simplifies the calculation process. Thirdly, 

although the same bounce-back rule of the non-equilibrium distribution is used for the 

wall boundary condition for both the simplified IEDDF thermal model and the original 

IEDDF thermal model, it is easier for the simplified IEDDF thermal model to implement, 

since for the simplified IEDDF thermal model, the variables for both the evolution 

equations and the boundary conditions are consistent. It should be pointed out that 

although this model can be thought of as a passive scalar thermal model, its starting point 

and derivation procedure are quite different. 

 

 

 

172 



Chapter 7 Simplified thermal LBM for two-dimensional incompressible thermal flows 

7.2.3 Accuracy of the simplified IEDDF thermal model in space 

Before we use the benchmark results to validate our simplified IEDDF thermal 

model, we need to study its accuracy in space. We take the porous plate problem as a test 

case for this study since it has the analytical solution. This problem has been well studied 

by Guo et al. in 2002. It is a channel flow where the upper cool plate moves with a 

constant velocity. A constant normal flow of the same fluid is injected through the bottom 

warm plate and withdrawn at the same rate from the upper plate. The analytical solution of 

the velocity distribution along the cross section of the channel in the steady state is given 

by  

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
1

1
Re

Re

0 e
euu

Ly

 (7.21) 

where  is the velocity of the upper plate; Re  is Reynolds number based on the inject 

velocity  and the channel width L. The temperature profile in the steady state satisfies 

0u

0v

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

∆+= ⋅

⋅

1
1

RePr

RePr

0 e
eTTT

Ly

 (7.22) 

where  is the temperature difference between the hot bottom plate with 

temperature  and the cool upper wall with temperature . Another two dimensionless 

parameters are 

01 TTT −=∆

1T 0T

χυ=Pr  and ( ) ( )υχβ 3TLgRa ∆= . 

Simulations were carried out to evaluate the numerical accuracy of this model in 

space. In the simulations, Prandtl number is set to be 0.71; Reynolds number is 10Re =  

and Rayleigh number is . The lattice spacing 100=Ra x∆  varies from 1/30 to 1/100. The 

relative global error for the temperature field is measured, which is defined by  
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 (7.23) 

where the summation is over the entire field and  is the analytical solution.  aT

Suppose that the order of the accuracy in space for the model is n. Then we have 

the following relationship: 

nxCE )(∆=   (7.24) 

where C is a constant. Equation (7.24) can also be written as 

)log()log()log( xnCE ∆+=  (7.25) 

Clearly,  has a linear relationship with )log(E )log( x∆ . This is confirmed by Figure 7.1, 

which shows  versus )log(E )log( x∆ . The fitting curve is a straight line whose slope is n. 

From Figure 7.1, we obtain 2≈n . This implies that the present model is of second order 

in space. The velocity and temperature profiles for this case are shown in Figure 7.2. They 

agree very well with the analytical solutions.  

 

7.3 Results and discussions 

In order to validate our simplified IEDDF thermal model, we carried out the 

computation for a sample problem. The problem considered is a natural convection in a 

two-dimensional square cavity. It is the same test case that we used to validate the new 

thermal models that apply FVLBM or TLLBM techniques in the IEDDF thermal model in 

earlier chapters.  

As we know, the dynamical similarity of this problem depends on two 

dimensionless parameters: Prandtl number Pr and Rayleigh number Ra. The kinetic 
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viscosity and thermal diffusivity are determined by these two dimensionless numbers. 

Then by using equations (7.12) and (7.20), the two relaxation times υτ  and cτ
 
are 

determined, respectively.  

Nusselt number Nu is one of the most important dimensionless parameters in 

describing the convective heat transport. Its average in the whole flow domain is used as 

one of the validation criteria. 

 

7.3.1 Implementation of boundary conditions at four corners  

The bounce-back rule of the non-equilibrium distribution is used here. However, 

for some special particle directions at four corner points, the different treatment has to be 

used. The schematic plot of particle velocity directions for the nine-speed model at four 

corner points is shown in Figure 7.3.  

Seen from Figure 7.3, at the particle directions 6 and 8 for the left bottom and right 

upper corner points, the particle directions 5 and 7 for the left upper and right bottom 

corner points, their values for the density distribution and internal energy density 

distribution cannot be determined from their evolution equations or the bounce-back 

boundary conditions. Since these values do not transport any information into the interior 

points, the equilibrium functions are given for the two density distributions at these special 

directions.  

 

7.3.2 Validation of the simplified IEDDF thermal model 

The uniform grid is used for all the following numerical simulations and the 

calculations are done on PC PIV-1.6G. The convergence criterion for all the cases is set to  
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where n and n +1 represent the old and new time levels, respectively. This convergence 

criterion is the same as that we used for the calculations of the same sample problem using 

the original IEDDF thermal model in Chapter 3.  

Numerical simulations of this natural convection problem at a wide range of 

Rayleigh numbers were carried out. Table 7.1 shows the numerical results of the 

maximum horizontal velocity  on the vertical mid-plane of the cavity and its location 

, the maximum vertical velocity 
 
on the horizontal mid-plane of the cavity and its 

location , and the average Nusselt number throughout the cavity 

maxu

y maxv

x Nu . The numerical 

results of a NS solver given by Shu and Xue (1998) using DQ method are also included 

for comparison.  

The grid independence property of the original IEDDF thermal model for this 

natural convection at a wide range of Rayleigh numbers has been examined in Chapter 3. 

The grid sizes of 101×101 for Ra=103, 151×151 for Ra=104, 201×201 for Ra=105 and 

251×251 for Ra=106 are found to be large enough to obtain the sufficiently accurate 

results at each Rayleigh number for engineering purpose. So the calculations using our 

simplified IEDDF thermal model at each Rayleigh number are done on those grids. From 

Table 7.1, we can see that the numerical results using the simplified IEDDF thermal 

model generally agree well with the benchmark results of Shu and Xue (1998) at a wide 

range of Rayleigh numbers. The deviation of the two results at a high Rayleigh number is 

larger than that at low Rayleigh numbers, but these deviations are quite acceptable. So we 

can say that the results using the present method are very accurate. This means that the 
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simplified IEDDF thermal model can be used to solve the incompressible thermal 

problems accurately and effectively.  

From this table, it is also found that Nusselt number obtained using the present 

method is slightly smaller than that obtained by the NS solver, which agrees well with the 

phenomenon observed in Chapter 3. 

 

7.3.3 Comparison of the simplified IEDDF thermal model with the 

original IEDDF thermal model 

In order to compare the accuracy and efficiency of the simplified IEDDF thermal 

model with the original IEDDF thermal model, the numerical simulations at the same 

Rayleigh number using both the simplified IEDDF thermal model and the original IEDDF 

thermal model were carried out. Table 7.2 shows these comparisons at Rayleigh numbers 

of 103, 104, 105 and 106. 

It can be observed from Table 7.2 that, at the same Rayleigh number and when the 

same grid size is used, the calculated results using the simplified IEDDF thermal model 

are almost the same as those using the original IEDDF thermal model. This demonstrates 

that the compression work done by pressure and the viscous heat dissipation term can be 

neglected for such an incompressible flow, which leads to the applicability of the omission 

of the gradient term in the original evolution equation for the internal energy density 

distribution. So we can say that the simplified IEDDF thermal model can produce the 

same accurate results as the original IEDDF thermal model.  

As far as the computational efficiency is concerned, for the same grid size and 

Rayleigh number, the calculation time using the simplified IEDDF thermal model is much 
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less than that using the original IEDDF thermal model. All the calculations are done on 

Pentium IV-1.6GHz. From Table 7.2, we can see that for Ra=103, the calculation time 

using the simplified IEDDF thermal model is 1386.0s, while the original IEDDF thermal 

model takes 2297.0s to obtain the same converged solution. Similarly, for Ra=104 – 106, 

only half or even less than half of the calculation time is needed for the simplified IEDDF 

thermal model to obtain the converged solution as compared with the original IEDDF 

thermal model at each Rayleigh number using the same grid size. This shows that our 

simplified IEDDF thermal model is more efficient than the original IEDDF thermal model 

to get the same accurate results. 

 

7.4 Incompressible isothermal LBGK model and its use in the 

simplified IEDDF thermal model  

In order to study the compressibility property of this new scheme, we introduce an 

incompressible isothermal LBGK model proposed by Guo et al. (2000) to modify the 

evolution equation for the density distribution in our simplified IEDDF thermal model. 

 

7.4.1 Incompressible isothermal LBGK model  

The common LBGK model cannot recover the incompressible NS equations 

directly, while the incompressible isothermal LBGK model can exactly recover the 

incompressible NS equations within the small Mach number limit.  

Take the discrete particle velocity model D2Q9 as an example. A new type of the 

distribution  is introduced with the equilibrium distribution function ( txh ,α ) ( )txheq ,α

 
defined by: 
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where ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⋅
+

⋅
= 2

2

4

2

2 2
3

2
93

ccc
ws uueue

u αα
αα

 

The parameters γλσ ,,
 
should satisfy  

σγλ =+    (7.28) 

2
12 =+ γλ    (7.29) 

The distribution 
 
satisfies the following conservation laws: ( txh ,α )
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=
8
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8
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eqhh    (7.30) 
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0 α
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α
αα eheh eq    (7.31) 

The evolution equation for this new distribution is the same as the commonly used LBGK 

equation:  

( ) ( ) ( ) ( )[ ]thththttth eq

v

,,1,, xxxex ααααα τ
δδ −−=−++    (7.32) 

The macroscopic velocity and pressure for the flows are given by 

α
α

α f∑
=

=
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14
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(7.34) 

Through the multiscale expansion, the incompressible NS equations can be derived from 

this incompressible LBGK model as 
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0=⋅∇ u     (7.35) 

( ) uuuu 2∇+−∇=⋅∇+
∂
∂ υp

t  
(7.36) 

where the kinematic viscosity is determined by 

( ) tc δτυ 2

3
21−

=    (7.37) 

which has the same form as the commonly used LBGK model. 

This incompressible LBGK model completely eliminates the compressibility effect 

that lies in the existing LBGK models and can be used for both steady and unsteady flows. 

We will use it in our simplified IEDDF thermal model. 

 

7.4.2 Its application in the simplified IEDDF thermal model  

When the incompressible isothermal LBGK model is used in the simplified IEDDF 

thermal model, the two distributions are changed into: the new distribution denoted by  

and the internal energy density distribution. The new distribution is used to calculate the 

flow velocity and pressure; the internal energy density distribution is used to calculate the 

flow temperature. The coupling between these two distributions is established by the 

Boussinesq approximation. That is adding the following force term 

αh

( ) ( mTT
c

F −⋅+−= βδδ αααα ge422
1 )    (7.38) 

 to the right-hand side of the evolution equation for the new distribution (7.32). Then the 

governing equations for these two distributions become: 

( ) ( ) ( ) ( )[ ] αααααα δ
τ

δδ Ftthththttth eq

v

+−−=−++ ,,1,, xxxex    (7.39) 
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( ) ( ) ( ) ( )[ ]tgtgtgtttg eq

c

,,1,, xxxex ααααα τ
δδ −−=−++

 
(7.40) 

In the simulations, the parameters in the incompressible LBGK model are taken as: 

121,31,125 === γλσ
 

 

The bounce-back rule of the non-equilibrium distribution cannot be used since the 

density distribution does not exist any more. So the extrapolation rule for the velocity and 

temperature boundary conditions proposed by Guo et al. (2002) is used here. It has the 

second-order accuracy and good numerical stability. The basic idea of the extrapolation 

method is very similar to the bounce-back rule of the non-equilibrium distribution. It 

decomposes the distribution 
 
and 

 
at the boundary node 

 
into their equilibrium 

and non-equilibrium parts: 

αh αg bx

( ) ( ) ( )ththth b
neq

b
eq

b ,,, xxx ααα +=    (7.41) 

( ) ( ) ( tgtgtg b
neq

b
eq

b ,,, xxx ααα += )   (7.42) 

The non-equilibrium parts represent the deviations from the equilibrium distribution 

functions, which should be much smaller than the equilibrium distribution functions. So it 

is reasonable to assume that 
 
and . Thus, )1(

αα δ hthneq = )1(
αα δ gtg neq =

 ( ) ( ) ( ) ( ) ( ) ( )22 ,,,, tththtthth f
eq

ff
neq

b
neq δδ αααα Ο+−=Ο+= xxxx    (7.43) 

( ) ( ) ( ) ( ) ( ) ( )22 ,,,, ttgtgttgtg f
eq

ff
neq

b
neq δδ αααα Ο+−=Ο+= xxxx    (7.44) 

where 
 
is the nearest neighbor node of 

 
in the fluid. fx bx

For the velocity boundary condition, the velocity ( )tb ,xu
 
is known and pressure 

 
is unknown, so the equilibrium part ( tp b ,x ) ( )th b

eq ,xα

 
is approximated with a modified 

equilibrium distribution functions defined by 
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Note that in the incompressible flows the fluctuation of pressure pδ  is of the order 2M , 

so ( ) ( ) ( )2,, Mttptp fb δΟ+= xx . As a result, the distribution 
 
at the boundary 

node  is calculated as  

( txh b ,α )

bx

( ) ( ) ( ) ( )thththth f
eq

fb
eq

b ,,,, xxxx αααα −+=  (7.46) 

to the accuracy of  ( )22 tMt δδ +Ο .  

The thermal boundary condition can be implemented in a similar way. If the 

temperature at the boundary node 
 
is known, the internal energy density distribution is 

given by 

bx

( ) ( ) ( ) ( )tgtgtgtg f
eq

fb
eq

b ,,,, xxxx αααα −+=    (7.47) 

If the temperature gradient is known at the boundary node , we can use the 

conventional second-order finite difference to approximate the temperature on the wall 

from the temperature gradient, and then equation (7.47) can be used. 

bx

  

7.4.3 Compressibility study of the modified simplified IEDDF thermal 

model  

Since we use the incompressible isothermal LBGK in our simplified IEDDF 

thermal model, Chapman-Enskog expansion of the new evolution equation governing the 

flow velocity and pressure will recover the incompressible continuity and NS equations 

exactly. In order to examine the effect of compressibility in our simplified IEDDF thermal 
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model, we compare the numerical results of the natural convection in a square cavity at a 

wide range of Rayleigh numbers using the above modified, simplified IEDDF thermal 

model with those using the simplified IEDDF thermal model without introducing the 

incompressible LBGK model. Table 7.3 shows the numerical results of the maximum 

horizontal velocity  on the vertical mid-plane of the cavity and its location , the 

maximum vertical velocity 
 
on the horizontal mid-plane of the cavity and its location 

, and the average Nusselt number throughout the cavity 

maxu y

maxv

x Nu
 
using the simplified IEDDF 

thermal model with and without introducing the incompressible LBGK model. The 

numerical results of a NS solver given by Shu and Xue (1998) using DQ method are also 

included as the benchmark data.  

From Table 7.3, we can see that the difference between the results with and 

without incompressible LBGK model in the simplified IEDDF thermal model is very 

small. The results of the velocities using the incompressible LBGK model agree a little bit 

better with the benchmark results than those without using the incompressible LBGK 

model. The higher the Rayleigh number, the better the improvement. For example, for 

Ra=104, the result of the maximum horizontal velocity on the vertical mid-plane of the 

cavity is 16.134 without using the incompressible LBGK model and 16.146 using the 

incompressible LBGK model, while the benchmark result is 16.190. This shows that there 

is a little bit improvement for the maximum horizontal velocity on the vertical mid-plane 

if using the incompressible LBGK model. At high Rayleigh number of 106, the maximum 

horizontal velocity on the vertical mid-plane of the cavity changes from 63.024 without 

using the incompressible LBGK model to 63.671 using the incompressible LBGK model, 

while the benchmark result is 64.775. The improvement is more obvious than that at low 
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Rayleigh number of 104. The same trend is observed in the maximum vertical velocity on 

the horizontal mid-plane of the cavity. There is no much change in the average Nusselt 

number. This is agreeable with the physical meaning of the incompressible LBGK model. 

Since the use of the incompressible LBGK model is only for the new evolution equation, 

which is used to calculate the pressure and velocity, the improvement for the velocities is 

obvious. However, for the internal energy density distribution, we use the same governing 

equation. During the implementation, we still need to introduce the assumption that the 

characteristic velocity THg∆β
 
is within the incompressible limit. So there should be no 

much difference for the result of Nusselt number using or without using the 

incompressible LBGK model in the simplified IEDDF thermal model. To sum up, this 

study shows that compressibility effect of this simplified IEDDF thermal model is very 

small by itself. Thus the model can be used to solve incompressible thermal flows without 

introducing any incompressible LBGK model. 

  

7.5 Conclusions 

A simplified IEDDF thermal model for the incompressible thermal flows is 

proposed in this chapter. The simplification for the original IEDDF thermal model is 

based on the physical background that the compression work done by pressure and the 

viscous heat dissipation can be ignored for the incompressible flows. This new scheme has 

the following good features. It does not include any gradient term in the evolution 

equations and keeps the simplicity of LBM. It is easier to implement as compared with the 

original IEDDF thermal model. The numerical results of the natural convection in a square 

cavity at a wide range of Rayleigh numbers show that this simplified IEDDF thermal 
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model can produce the same accurate results more efficiently as compared with the 

original IEDDF thermal model. The compressibility effect is also studied in this scheme 

and the results show that it can be neglected. It is worthwhile to mention that although all 

the calculations using this simplified IEDDF thermal model are done on the uniform grids, 

its extension to the arbitrary grids is straightforward by using TLLBM. The use of 

TLLBM in the thermal model has been thoroughly studied in Chapter 5. 

It has to be pointed out that although the starting point and motivation of our new 

simplified IEDDF thermal model are quite different from the thermal model proposed by 

Guo (2002), they have some similarity. Our model is one special case within the category 

of his thermal model.  

In the following chapter, the study of real three-dimensional thermal applications 

using the IEDDF thermal model will be based on this simplified IEDDF thermal model. 
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Table 7.1 Comparison of the numerical results using the simplified IEDDF thermal model 
with those using a NS solver for the natural convection in a square cavity 

 
 

Ra 103 104 105 106

Method Present DQ  Present DQ  Present DQ  Present DQ  

Grid size 101×101 - 151×151 - 201×201 - 251×251 - 

maxu  3.644 3.649 16.134 16.190 34.261 34.736 63.024 64.775

y  0.810 0.815 0.820 0.825 0.855 0.855 0.848 0.850 

maxv  3.691 3.698 19.552 19.638 67.799 68.640 215.26 220.64

x  0.180 0.180 0.120 0.120 0.065 0.065 0.040 0.035 

Nu  1.117 1.118 2.241 2.245 4.511 4.523 8.731 8.762 

 
 
 
Table 7.2 Comparison of the numerical results between the simplified and original IEDDF 

thermal models for the natural convection in a square cavity 
 

Ra 103 104 105 106

Grid 101×101 151×151 201×201 251×251 

Simplified 3.644 16.134 34.261 63.024 maxu  

Original 3.649 16.156 34.245 63.527 

Simplified 0.810 0.820 0.855 0.848 y  

Original 0.810 0.820 0.855 0.844 

Simplified 3.691 19.552 67.799 215.26 maxv  

Original 3.700 19.679 68.276 218.47 

Simplified 0.180 0.120 0.065 0.040 x  

Original 0.180 0.120 0.065 0.040 

Simplified 1.117 2.241 4.511 8.731 Nu  
Original 1.117 2.244 4.520 8.781 

Simplified 1386.0 7010.7 35666.0 98617.3 CPU(s) 

Original 2297.0 17864.7 96296.6 171659.3 
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Table 7.3 Comparison of the numerical results using the simplified IEDDF thermal model 
with and without introducing the incompressible LBGK model for the natural convection 

in a square cavity  
 
 

Ra 103 104 105 106

Grid 101×101 151×151 201×201 251×251 

using 3.650 16.146 34.315 63.671 

without 3.644 16.134 34.261 63.024 

 

maxu  

DQ  3.649 16.190 34.736 64.775 

using 0.810 0.820 0.855 0.852 

without 0.810 0.820 0.855 0.848 

 
y  

DQ  0.815 0.825 0.855 0.850 

using 3.704 19.593 68.012 217.57 

without 3.691 19.552 67.799 215.26 

 

maxv  

DQ 3.698 19.638 68.640 220.64 

using 0.180 0.120 0.065 0.040 

without 0.180 0.120 0.065 0.040 

 

x  

DQ  0.180 0.120 0.065 0.035 

using 1.117 2.241 4.508 8.737 

without 1.117 2.241 4.511 8.731 

 

Nu  
DQ  1.118 2.245 4.523 8.762 
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Figure 7.1 Relative global error versus lattice spacing for the porous plate flow 
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Figure 7.2 Velocity and temperature profiles for the porous plate flow 
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Figure 7.3 Schematic plot of particle velocity directions at four corner points for the 
natural convection in a square cavity 
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Chapter 8  

A three-dimensional thermal LBM and its applications 

 

8.1 Introduction 

In order to develop LBM to become an alternative method to solve fluid dynamics 

problems and be comparable to the conventional NS solvers, it is necessary to extend its 

use in three dimensions, especially in three-dimensional thermal applications. From the 

literature review, we know that there are many thermal models proposed in recent years to 

solve the thermal flows using LBM. However, most of the applications of these thermal 

models are limited to two dimensions with some shortcomings that have been addressed in 

previous chapters. Though Rayleigh-Benard convection in two dimensions and three 

dimensions has been successfully simulated by Shan (1997) using the passive-scalar 

method to a certain degree, it may not be a real thermal problem. Because on one hand, 

only the periodic and Dirichlet boundary conditions are considered; and on the other hand, 

these applications are limited to using uniform grids. For real engineering thermal 

applications, they usually contain the solid boundaries and Neumann boundary conditions 

are often presented in flow configurations. For example, the natural convection flow 

analysis in the enclosures has many thermal engineering applications, such as cooling of 

the electronic devices, energy storage systems and compartment fires. In order to solve 

these real three-dimensional thermal problems for the engineering purpose, a three-

dimensional thermal model is proposed in this chapter. It is based on the idea of the two-

dimensional simplified IEDDF thermal model presented in the last chapter. It uses two 

Materials in this chapter have been published in   189 
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distributions to model the flow and thermal fields, respectively. The density distribution 

 
is used to simulate the macroscopic density and velocity fields, and the internal 

energy density distribution 

( tf ,xα )

( )tg ,xα

 
is used to simulate the macroscopic temperature field.  

The derivation procedure will be shown in the following section. 

The particle velocity models used in our three dimensional thermal LBM are 

D3Q15 and D3Q19, which are commonly used for the isothermal flows. Usually we have 

to use more particle velocities for thermal models when compared with isothermal models. 

However based on the research work of He et al. (1998b), we know that for the two 

distribution thermal model, the zeroth- through the second- order moment of the 

equilibrium internal energy density distribution function involves only the zeroth- through 

the fifth- order moment as ( ) ∑∫ =−
α

ααζζζζ mm wd2exp , which has the same 

requirements as for isothermal models. So the D3Q15 and D3Q19 lattices can still be used 

here. The detailed explanation for this will be given in the following section. It is 

worthwhile to mention that there are also some other particle velocity models for other 

thermal models. For example, Qian (1993) presented D3Q21 and D3Q25 in his new lattice 

BGK models, in which a proper internal energy is introduced. Chen (1994) proposed 

D3Q40 for the thermal model using the idea of no nonlinear deviation multi-speed 

models. Pavlo et al. (1998a) proposed D3Q41 and D3Q53 for the thermal applications 

using higher order symmetric and no space filling velocity lattice models. Most of these 

thermal models have not been applied to real thermal applications. Our D3Q15 and 

D3Q19 models are simpler than these models. There is no additional particle velocity 

introduced as compared with the isothermal particle velocity models.  
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In this chapter, firstly, we will introduce our new three-dimensional IEDDF 

thermal model. Then we will use the numerical simulation of the three-dimensional 

natural convection in an air-filled cubical enclosure, which is heated differentially at two 

vertical side walls, to validate this three-dimensional thermal model. Thirdly, we will 

compare the numerical results using two different particle velocity models, D3Q15 and 

D3Q19, in order to examine the properties of these two particle velocity models and their 

effects for the thermal applications. Fourthly, in order to include the effects of the viscous 

heat dissipation and compression work done by pressure, the extensional form of our 

three-dimensional thermal LBM will be given. The same case is used to validate this 

extension. Lastly, we will draw some conclusions. 

 

8.2 New three-dimensional thermal LBM 

Since this new model is based on the two-dimensional simplified IEDDF thermal 

model, it contains two similar density distributions: the density distribution and internal 

energy density distribution.  

 

8.2.1 Three-dimensional thermal LBM on uniform grids 

The governing equations for the two density distributions are:   

 ( ) ( ) ( ) ( )[ ] αααααα δ
τ

δδ Fttftftftttf eq

v

+−−=−++ ,,1,, xxxex    (8.1) 

( ) ( ) ( ) ( )[ ]tgtgtgtttg eq

c

,,1,, xxxex ααααα τ
δδ −−=−++    (8.2) 

where is an external force term. αF
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For the density distribution, D3Q15 and D3Q19 are usually used. The configurations for 

these two particle velocity models and their corresponding equilibrium distribution 

functions for the density distribution have been shown in Chapter 2. The viscosity in both 

models is related to the relaxation time through the same equation of ( ) 612 −= vτυ .  

Similarly, for the internal energy density distribution, the particle velocity space 

must be discretized appropriately. If we can use the same discrete particle velocities for 

both density distributions, it will be more computationally efficient. To check whether this 

is possible, the continuous equilibrium distribution function for the internal energy density 

distribution is expanded up to  2u

( )
( ) ( )

( )
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2
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ueueee

uueueeee

π
ρε

π
ρε

 (8.3) 

During the Chapman-Enskog expansion, we have to compute the zeroth- through second- 

order moment of equation (8.3). It involves zeroth- through sixth- order moment of 

. Therefore, higher-order quadrature is usually necessary for 

the thermal LBM, which means that more particle velocities are needed. However, based 

on the discovery that the zeroth- through second- order moment of the second term in 

equation (8.3) vanishes, this term can be consequently eliminated from equation (8.3) 

without affecting the recovery of the macroscopic energy equation from the evolution 

equation of the internal energy density distribution. The zeroth- through second- order 

moment of the remaining part of the equilibrium internal energy density distribution 

function involves only zeroth- through fifth- order moment of 

( ) ∑∫ =−
α

ααζζζζ mm wd2exp

( ) ζζζ dm∫ − 2exp
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∑=
α

ααζ
mw . Therefore the third-order Gauss-Hermite quadrature is still valid for this 

thermal model as in the isothermal models. So we can choose the same lattice models for 

the internal energy density distribution as those used for the isothermal flows, which are 

D3Q15 and D3Q19.   

After the second term of equation (8.3) is eliminated, the continuous equilibrium 

internal energy density distribution function has similar form as the continuous 

equilibrium density distribution function: 

( )
( ) ( )

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

⋅
+

⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

RTRTRTRTRT
f D

eq

333
1

2
exp

2

2

2

22

2

uueuee
π
ρ  (8.4) 

except that the coefficient for each term is not the same. So the discrete equilibrium 

internal energy density distribution functions can be obtained easily by comparing the 

coefficient for each term with the discrete equilibrium density distribution functions. For 

the particle velocity model of D3Q15, the equilibrium internal energy density distribution 

functions are derived as: 

2

2

0 3 c
g eq uρε

−=    (8.5a) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⋅
+

⋅
+=− 2

2

4

2

261 2
3

2
91

9 ccc
g eq uueue ααερ   (8.5b) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⋅
+

⋅
+=− 2

2

4

2

2147 2
3

2
973

72 ccc
g eq uueue ααερ   (8.5c)  

For the particle velocity model of D3Q19, the equilibrium internal energy density 

distribution functions are obtained as: 

2

2

0 2 c
g eq uρε

−=    (8.6a) 
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36 ccc
g eq uueue ααερ   (8.6c)  

The internal energy is related to the temperature by 23RT=ε , where R is the gas 

constant.  

Then the macroscopic density, velocity and temperature are calculated by 

∑=
α

αρ f
  

(8.7a) 

∑=
α

ααρ feu
  

(8.7b) 

( ) ∑=
α

αρ gRT 23    (8.7c) 

The Chapman-Enskog expansion for the density distribution can recover the 

continuity and NS equations. The detailed derivation of this is given by Hou et al. (1995a) 

and will not be repeated here. Following the same procedure as Hou et al., it can be seen 

that the macroscopic energy equation for the incompressible flows can be derived from the 

evolution equation for the internal energy density distribution by Chapman-Enskog 

expansion. Taylor series expansion for equation (8.2) to ( )3tδΟ  results in   

( ) [ ] ( ) ( ))0(32
2 1

2 αααα τ
δδδ ggtgtgt

c
tt −−=Ο+∇⋅+∂+∇⋅+∂ ee   (8.8) 

where  is represented as . eqgα
)0(

αg

Expanding  about , we can get: αg )0(
αg

( )3)2(2)1()0( tgtgtgg δδδ αααα Ο+++=  (8.9) 

The first order expansion of equation (8.8) is 
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( ) )1()0(
0

1
αα τ

gg
c

t −=∇⋅+∂ e   (8.10) 

The second order expansion of equation (8.8) is 

( ) )2()1(
0

)0(
1

1
2
11 ααα ττ

ggg
c

t
c

t −=∇⋅+∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∂ e   (8.11) 

Taking the summation of equations (8.10) and (8.11), and using the equilibrium internal 

energy density distribution functions (equation (8.5) for D3Q15 and equation (8.6) for 

D3Q19), we can get 

( ) ( ) 00 =⋅∇+∂ ερρε ut   (8.12) 

( ) 0
2
11 )1(

1 =Π⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∂

c
t τ
ρε   (8.13) 

where  and it is ( )1(
0

)1(
α

α

gt∑ ∇⋅+∂=Π e ) (ρετ 2)1(

9
5
∇−=Π c )  after neglecting the 

( )Tu δ2Ο  terms. 

Combining equations (8.12) and (8.13), we can get  

( ) ( ) ( )ρεχερρε 2∇=⋅∇+∂ ut   (8.14) 

The diffusivity χ  for both particle velocity models is determined by 

⎟
⎠
⎞

⎜
⎝
⎛ −=

2
1

9
5

cτχ .            (8.15) 

From the above derivations, we can see that the evolution equations (8.1) and (8.2) can 

recover the macroscopic incompressible continuity, NS equations and energy equation 

through Chapman-Enskog expansion. 
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8.2.2 Its use on the arbitrary grids 

The governing equations (8.1) and (8.2) for the three-dimensional thermal 

applications are derived in the above section and they can be easily used on the uniform 

grids. When these two equations are used on the arbitrary grids, 

),,( tezteytex zyx δδδ ααα +++  is usually not at the grid point ),,( zzyyxx δδδ +++ . So 

the TLLBM technique has to be applied to these two equations. Following the same 

procedure as shown in Chapter 5, the density distribution  and internal energy density 

distribution  at each grid point are updated by: 

f

g

1
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1
,11000
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),,,( −
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∑==+ k
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k faWttzyxf δα  (8.16a) 
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1M  and  are the numbers of the selected neighboring points around the calculation 

point P for the density distribution and internal energy density distribution, respectively. 

2M
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ka ,1  and  are the elements of the first row in the matrix [ka ,1
' A ] and [ ] respectively. 

These two matrices are derived in the same way as shown in Chapter 5. In this chapter, we 

use the same particle velocity model and choose the same fourteen neighboring points 

around the calculation point P for the density and internal energy density distributions, so 

 equals  and the geometric matrices A and  are the same. Figure 8.1 shows the 

grid point P and its surrounding fourteen points A, B, C, D, E, F, G, H, I, J, K, L, M, N that 

we choose to form the matrix A ( ). 

'A

1M 2M 'A

'A

The order of the geometric matrix is [M+1] ×6. For the two-dimensional problems, 

the Taylor series expansion involves six unknowns, that is, one density distribution at the 

time level tt δ+ , two first order derivatives, and three second-order derivatives. To solve 

for these unknowns, M should be at least equal to 5. In order to avoid possible ill-

conditioning, least squares technique is used and M>5 is needed. For the three-

dimensional problems, this expansion involves ten unknowns, that is, one density 

distribution at the time level tt δ+ , three first order derivatives, and six second-order 

derivatives. So M should be at least equal to 9. M>9 is chosen to avoid possible ill-

conditioning using the least squares technique. The value of M does not affect much the 

accuracy of the numerical results (Ding et al., 2004). For example, the calculations for the 

natural convection in a cubic cavity at Ra=104 using M=14 and M=18 are done. When 

M=14, the maximum horizontal velocity  on the vertical mid-line in the symmetry 

plane (y=0.5) is 0.206; while the maximum vertical velocity 
 
on the horizontal mid-

line in this plane is 0.221. When M=18, the maximum horizontal velocity  is 0.208 

and the maximum vertical velocity 
 
is 0.222. It can be seen that the change in the 

maxu

maxv

maxu

maxv
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maximum velocities is within 1% when increasing M from 15 to 18. For the following 

cases in this chapter, M is chosen to be 14 for the convenience, which coincides with the 

particle model D3Q15.   

 

8.2.3 Wall boundary conditions 

The bounce-back rule of the non-equilibrium distribution proposed by Zou and He 

(1997) is used here for the wall boundary conditions. The outgoing known distributions 

are determined from the governing equations (8.1) and (8.2) for the uniform mesh or the 

governing equations (8.16a) and (8.16b) for the arbitrary mesh, and the unknown 

incoming distributions are determined from the bounce-back rule of the non-equilibrium 

distribution.  

On the boundary, there still exist some special particle directions, at which the 

particles do not go from the inside flow field to the outside environment or come from the 

outside environment into the inside flow field. Take D3Q15 as an example. As shown in 

Figure 8.1, suppose that HJNL is the left vertical wall for the flow configuration. At the 

boundary line HJ, the two density distributions at the directions 2, 3, 4, 6, 8 and 12 are 

determined from the governing equations (Equations (8.1) and (8.2) for the simulations on 

the uniform grids; equations (8.16a) and (8.16b) for the simulations on the arbitrary 

mesh). The two density distributions at the directions 1, 5, 7 and 11 can be determined 

from the boundary conditions, which is the bounce-back rule of the non-equilibrium 

distribution. The remaining of the directions 9, 10, 13 and 14 are the special directions. At 

these special particle directions, the values for the density distribution and internal energy 

density distribution cannot be determined from their evolution equations or the bounce-
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back boundary conditions. For the simulations on the uniform grids, since these values do 

not transport any information into the interior points, the equilibrium distribution 

functions are given for the two density distributions at these special directions. However, 

for the simulations on the arbitrary mesh, these values are very important and will affect 

the values for the interior points at these special directions. So the extrapolation scheme is 

used for the two density distributions at these special directions as shown in Chapter 5. 

For Neumann boundary condition, the temperature on the wall is unknown. In 

order to use the above-mentioned bounce-back condition, we transfer it to Dirichlet 

boundary condition by using the conventional second-order finite difference 

approximation to get the temperature on the boundary wall. Iteration is needed in order to 

obtain accurate temperature on the wall from the heat flux. The detailed information on 

this procedure has been given in Chapter 3. 

 

8.3 Numerical simulations 

In order to verify whether our three-dimensional thermal LBM can be used to 

solve the real three-dimensional thermal problems, we carried out the computation for a 

sample problem. The problem considered is a natural convection in a three-dimensional 

cubical cavity with two vertical side walls maintained at different temperatures. The 

temperature difference between walls induces a natural convection. The remaining walls 

are adiabatic. The definition for this problem and the boundary conditions are displayed in 

Figure 8.2. 

 

 

199 



Chapter 8 A three-dimensional thermal LBM and its applications 

8.3.1 Buoyancy force and the dimensionless parameters 

The Boussinesq approximation is applied to the buoyancy force term. The 

buoyancy force is assumed to depend linearly on the temperature:  

( )kG mTTg −= βρρ  (8.18) 

where 
( )

2
TH L

m
TT +

=
 
and 

 
is the vertical direction opposite to that of gravity. k

So the external force  in equation (8.1) is αF ( ) eqf
RT

F αα
ueG −⋅

=  

The dynamical similarity depends on two dimensionless parameters: Prandtl 

number Pr and Rayleigh number Ra, 

( ) ( )υχβχυ 3Pr TLgRa ∆==  (8.19) 

where LH TTT −=∆ . 

To ensure the code working properly in the near incompressible regime, we 

carefully choose the value of TLg∆β . Once TLg∆β
 
is determined, the kinematic 

viscosity and thermal diffusivity 
 
are determined from equation (8.19) through the two 

dimensionless numbers, Pr and Ra. Using the relationship tcsδτυ υ
2

2
1
⎟
⎠
⎞

⎜
⎝
⎛ −=

 
and 

tcsc δτχ 2

2
1

3
5

⎟
⎠
⎞

⎜
⎝
⎛ −= , two relaxation times υτ  and cτ can be determined from the 

kinematic viscosity and thermal diffusivity, respectively.  

Nusselt number Nu is one of the most important dimensionless parameters in 

describing the convective heat transport. The Nusselt numbers at the isothermal walls are 

defined as 
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( ) ( )
∫

==∂
∂

=
1

0
10

, dz
x

zyTyNu
xorx

mean   (8.20) 

( )∫=
1

0
dyyNuNu meanoverall   (8.21) 

 

8.3.2 Validation of the numerical results and analysis of flow and 

thermal fields 

Numerical simulations of the three-dimensional natural convection in a cubic 

cavity at Rayleigh numbers of 103 to 105 were carried out using the particle velocity model 

of D3Q19. The uniform grid is used for Ra=103. The non-uniform grids where the grids 

are stretched towards the walls are used for Ra=104  and Ra=105  in order to get the 

accurate results by using less grid points so as to save the computational time and 

memory. The convergence criterion for all the cases is set to  
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where n and n +1 represent the old and new time levels, respectively.  

Table 8.1 shows the representative quantities of the flow field and the heat transfer 

rates in the symmetry plane (y=0.5). In this symmetry plane, the representative quantities 

of the flow field include: the maximum horizontal velocity  on the vertical mid-line 

in this plane and its location , the maximum vertical velocity 
 
on the horizontal mid-

line and its location x . The representative quantities of the heat transfer rates in this 

symmetry plane contain the following Nusselt numbers defined at the vertical boundary 

x=0. They are the maximum value of the local Nusselt numbers along the z- direction 

maxu

z maxv
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maxNu
 
and its location , the minimum value of the local Nusselt numbers 

 
and its 

location , and the average Nusselt number 
 
along this direction. The numerical 

results of a NS solver by Fusegi et al. (1991) using a high resolution finite difference 

numerical method are also included for comparison.  

z minNu

z meanNu

From Table 8.1, we can see that our simulation results generally compare well with 

those from the NS solver. There are some small differences between the results using two 

different methods. However, these discrepancies are within 3% and acceptable for the 

engineering applications.  For Ra=103, these discrepancies may be caused by the fact that 

too few grid points are used by the NS solver, which is only 32×32×32. Our numerical 

results are grid-independent, which will be shown in the following section. For Ra=104 

and Ra=105, the reason for these differences may be that the grid sizes of 61×45×45 and 

91×65×65 used for Ra=104 and Ra=105, respectively, are still not enough, although the 

non-uniform grid which is stretched towards the walls is used. The numerical simulations 

of the natural convection in the two-dimensional thermal cavity at Ra=104 and Ra=105 

using the non-uniform grids were carried out by us in Chapter 5 and the grid sizes of 

101×101 and 151×151 were found to be fine enough to obtain accurate results. Based on 

that study, for the three-dimensional thermal cubic cavity, the same or even larger grid 

size should be needed for Ra=104 and Ra=105. From the current results, we can say that 

our three-dimensional thermal model has the capability for solving the real three-

dimensional thermal problems. 

As far as the computation time is concerned, all the calculations for Ra=103 and 

Ra=104 are done on Pentium IV-2.4GHz. The calculation for Ra=105 is done on the 

Compaq ES40 workstation. The calculation times (seconds) needed for Ra=103, Ra=104, 
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Ra=105 are 144437.78, 221268.50 and 433846.54 respectively. The memory needed for 

the calculation of Ra=105 is 735MB. 

The streamlines and isotherms in the symmetry plane of y=0.5 for Ra=103 to 

Ra=105 are shown in Figure 8.3 and Figure 8.4. The overall flow patterns and isotherms 

are qualitatively similar to those of the two-dimensional thermal cavity flows. However, 

the effect of three dimensions is notable and reflected in the overall Nusselt number on the 

isothermal walls, which is to be described in the following section. 

Figure 8.5 and Figure 8.6 show the isovelocity contours. In the u-velocity 

contours, there are two horizontal eddies, one below the other, for Ra=103. For higher 

values of Rayleigh number, these two eddies move closer to the two adiabatic walls. 

Similarly, two dominant circulations are prominently visible in the vertical isovelocity 

contours, one on the left and the other on the right zones of the cavity, for Ra=103. These 

two eddies subsequently move closer to the hot wall and cold wall, respectively with 

Rayleigh number increasing. This indded illustrates that the boundary layer gets thinner as 

a function of the Rayleigh number. These patterns are also similar to those of the two-

dimensional thermal cavity flows (Wan et al., 2001). 

Figure 8.7 and Figure 8.8 show the isotherms on the middle planes of x=0.5 and 

z=0.5. They compare well with the results of Sivaloganathan & Karageorghis.  

 

8.3.3 The overall Nusselt number on the isothermal wall 

The non-dimensional heat transfer rate on the isothermal walls is a very important 

parameter in the engineering application. Table 8.2 shows the overall Nusselt number on 

the isothermal wall of  at Rayleigh numbers of 100=x 3 to 105 using D3Q19. The results 

203 



Chapter 8 A three-dimensional thermal LBM and its applications 

of the NS solver are also included for comparison. The agreement of the results using 

these two different methods is very good.  

From Table 8.2, we can see that at Ra=103, the overall Nusselt number on the 

isothermal wall for the three-dimensional cubic cavity is 1.076, while for the two-

dimensional square cavity, the average Nusselt number on the isothermal wall is 1.117. 

The three-dimensional result of the overall Nusselt number is smaller than that in two 

dimensions, which shows the effect of the side walls on the heat transfer. This observation 

agrees well with the result shown in Figure 8.9. Figure 8.9 represents the profile of the 

mean Nusselt number along the y-direction on the isothermal wall of x=0 for Ra=103. The 

mean Nusselt number increases as the symmetry plane is approached, and its peak value 

occurs at the symmetry plane located at y=0.5. This peak value at the symmetry plane is 

still smaller than the average Nusselt number for the two-dimensional thermal cavity. So 

the overall Nusselt number for the cubic cavity should be smaller than that for the two-

dimensional cavity. The same trend is applied to Ra=104 and Ra=105. 

 

8.3.4 Grid-independence study for Ra=103 using D3Q19 

In order to examine the influence of the grid size on the numerical simulation 

results, the grid-independence study for Ra=103 using D3Q19 was carried out on three 

different grid sizes: 71×71×71, 81×81×81 and 91×91×91. Table 8.3 shows the calculated 

representative quantities of the flow field and the heat transfer rates in the symmetry plane 

and the overall Nusselt number on the isothermal wall using these different grids. 

From Table 8.3, we can see that with the increase of the grid number, the 

numerical results are improved as compared with those from the NS solver. When the 
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number of the grid points in each direction is increased from 81 to 91, there is no much 

improvement on the numerical results. So we can say that the grid size of 81×81×81 is 

fine enough to obtain the accurate results for this flow at Ra=103. 

 

8.3.5 Comparison of the results using D3Q15 and D3Q19 

In order to examine the influence of the particle velocity models on the numerical 

simulation results, the calculations for this sample problem were carried out using two 

different particle velocity models: one is D3Q15 and the other is D3Q19. Table 8.4 shows 

the comparison of the calculated representative quantities of the flow field and the heat 

transfer rates in the symmetry plane and the overall Nusselt number on the isothermal wall 

using two different particle velocity models: D3Q15 and D3Q19.   

From Table 8.4, we can see that at Ra=103, the numerical results are almost the 

same using D3Q15 and D3Q19. While at Ra=104, there are some differences in the 

numerical results. The use of D3Q19 can produce better results than D3Q15 when 

compared with the NS solver. In addition, during the converging process, small oscillation 

of solutions occurs for D3Q15, while the computation of D3Q19 model is very stable. 

This means that although D3Q19 will use more memory than D3Q15 for the same grid 

number, it is more stable and can produce better results. This is also the reason that the 

numerical simulation at Ra=105 is only carried out using D3Q19. This agrees well with the 

assessment made by Mei et al. (2000). Three three-dimensional lattice models of D3Q15, 

D3Q19 and D3Q27 have been assessed by Mei et al. in terms of the efficiency, accuracy 

and robustness for the lid driven cavity flow problem. They found that D3Q19 is the best 

particle velocity model for the case investigated; D3Q15 exhibits the velocity oscillation 
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and is prone to the computational instability; the more complicated D3Q27 model does not 

necessarily give more accurate results than D3Q19 model with the same spatial resolution. 

So, most of the calculations in this chapter are based on D3Q19 particle velocity model.  

 

8.4 Extension to include the viscous heat dissipation and 

compression work done by pressure 

Compared with the thermal model proposed by Shan (1997) using the passive-

scalar method, this new three-dimensional thermal LBM can easily incorporate the effects 

of viscous heat dissipation and compression work done by pressure. Because for some real 

three-dimensional thermal applications, these effects cannot be neglected. 

 

8.4.1 Thermal model including the viscous heat dissipation and 

compression work done by pressure 

To include the effects of the viscous heat dissipation and compression work done 

by pressure, the governing equations for the density and internal energy density 

distributions are changed from equations (8.1) and (8.2) to: 
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These two equations are the results of the second-order integration of the continuous 

Boltzmann equations and have the same forms as those for the original two-dimensional 

IEDDF thermal model shown in Chapter 3. The definitions of the variables ( )tf ,,ex , 
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( tg ,,ex ) )
 
and 

 
are the same as those given in Chapter 3. The reason why the 

second-order integration has to be used and new variables for two density distributions are 

introduced is given in Chapter 7.  

( tq ,,ex

The particle velocity models to be used and their corresponding equilibrium 

density distribution functions are the same as those given in Section 8.2.1. The Chapman-

Enskog expansion of equation (8.23) will recover the continuity and NS equations; while 

the Chapman-Enskog expansion of equation (8.24) will result in the macroscopic energy 

equation 

( ) ( ) ( ) uuu ⋅∇−∇∏+∇⋅∇=⋅∇+∂ pt :εχρερερ  (8.25) 

which contains the viscous heat dissipation and compression work done by pressure. The 

kinematic viscosity and thermal diffusivity are related to the relaxation times by: 

3
vτυ =

 
, 

9
5 cτχ =       (8.26) 

 

8.4.2 Numerical simulations  

In order to validate this extensional thermal model, the same sample problem of 

the natural convection in a cubic cavity was calculated. Only the numerical simulation at 

Rayleigh number of 103 was carried out just to illustrate its applicability. The particle 

velocity model used is D3Q15. Table 8.5 shows the representative quantities of the flow 

field and the heat transfer rates in the symmetry plane and the overall Nusselt number on 

the isothermal wall using this extensional thermal model. The numerical results using the 

original three-dimensional thermal model proposed in Section 8.2.1 and a NS solver are 

also included for comparison. 
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From this table, we can see that the numerical results using the extensional thermal 

model are almost the same as those using the original three-dimensional thermal model. 

They all compare very well with the benchmark data of a NS solver. The meanings are in 

two folds. On one hand, it confirms the validity of this extensional thermal model for real 

three-dimensional thermal applications; while on the other hand, it shows that the viscous 

heat dissipation and compression work done by pressure are very small and can be 

negligible for this test case, which agrees well with the physical background of the 

incompressible flows. 

 

8.5 Conclusions 

A new three-dimensional thermal model for LBM is proposed in this chapter. The 

numerical simulation results of the three-dimensional steady-state natural convection of 

air in a cubical enclosure using this new thermal model compare very well with those 

using a NS solver. This shows that our three-dimensional thermal model has the capability 

to solve the real three-dimensional thermal problems. Its use on the arbitrary mesh is 

straight forward by introducing the TLLBM technique, which has also been demonstrated 

by the numerical results of this sample problem on non-uniform grids at Rayleigh numbers 

of 104 and 105. Its extension to include the viscous heat dissipation and compression work 

done by pressure is very easy. The numerical simulation of the same sample problem at 

Rayleigh number of 103 has validated this extension. The results also confirm that these 

effects can be negligible for most of the incompressible flows.  

For this new three-dimensional thermal LBM, the influences of the grid size used 

and the particle velocity model chosen on the calculation results have also been studied. In 
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summary, this new thermal model has the following advantages. It is very simple and easy 

to implement. No additional particle velocity is used for the particle velocity models as 

compared with the particle velocity models used by isothermal flows.  
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Table 8.1 Comparison of the representative field values on the symmetry plane (y=0.5) for 

the natural convection in a cubic cavity using LBM and a NS solver 
 
 

Ra 103 104 105

Method LBM NS solver LBM NS solver LBM NS solver 

Grid size 81×81×81 32×32×32 61×45×45 62×62×62 91×65×65 62×62×62 

maxu  0.132 0.1314 0.206 0.2013 0.149 0.1468 

z 0.188 0.2000 0.163 0.1833 0.136 0.1453 

maxv  0.133 0.1320 0.221 0.2252 0.240 0.2471 

x 0.826 0.8333 0.887 0.8833 0.935 0.9353 

maxNu  1.432 1.420 3.720 3.652 7.88 7.795 

z 0.0625 0.08333 0.1625 0.1623 0.09 0.08256 

minNu  0.729 0.7639 0.595 0.6110 0.750 0.7867 

z 1.0 1.0 1.0 1.0 1.0 1.0 

meanNu  1.097 1.105 2.304 2.302 4.658 4.646 

 
 

 

 

Table 8.2 Comparison of the overall Nusselt number at the isothermal wall for the natural 
convection in a cubic cavity using LBM and a NS solver 

 
 

Ra 103 104 105

Method LBM NS solver LBM NS solver LBM NS solver 

overallNu  1.076 1.085 2.085 2.100 4.378 4.361 
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Table 8.3 Comparison of the numerical results for the natural convection in a cubic cavity 
at Ra=103 on three different grids  

 

Mesh 71×71×71 81×81×81 91×91×91 NS solver 

maxu  0.133 0.132 0.132 0.1314 
z 0.186 0.188 0.188 0.200 

maxv  0.133 0.133 0.133 0.1320 
x 0.829 0.826 0.833 0.8333 

maxNu  1.433 1.432 1.430 1.420 

z 0.0571 0.0625 0.0777 0.0833 

minNu  0.727 0.729 0.730 0.7639 

z 1.0 1.0 1.0 1.0 

meanNu  1.085 1.097 1.098 1.105 

overallNu  1.073 1.075 1.076 1.085 

 
 
 
Table 8.4 Comparison of the numerical results for the natural convection in a cubic cavity 

using D3Q15 and D3Q19 
 

Ra 103 104

Particle model D3Q15 D3Q19 D3Q15 D3Q19 
Grid size 81×81×81 81×81×81 61×45×45 61×45×45 

maxu  0.133 0.132 0.208 0.206 

z 0.188 0.188 0.163 0.163 

maxv  0.133 0.133 0.222 0.221 

x 0.826 0.826 0.887 0.887 

maxNu  1.440 1.432 3.648 3.720 

z 0.0525 0.0625 0.0625 0.1625 

minNu  0.696 0.72 0.490 0.595 

z 1.0 1.0 1.0 1.0 

meanNu  1.093 1.097 2.25 2.304 

overallNu
 

1.073 1.075 2.05 2.085 
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Table 8.5 Comparison of the numerical results for the natural convection in a cubic cavity 
at Ra=103 using LBM with different thermal models and a NS solver 

 
 

Model original model extensional model NS solver 

Mesh 81×81×81 81×81×81 32×32×32 

maxu  0.132 0.132 0.1314 

z 0.188 0.188 0.200 

maxv  0.133 0.133 0.1320 

x 0.826 0.826 0.8333 

maxNu  1.432 1.432 1.420 

z 0.0625 0.0625 0.0833 

minNu  0.729 0.730 0.7639 

z 1.0 1.0 1.0 

meanNu  1.097 1.098 1.105 

overallNu  1.075 1.076 1.085 
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Figure 8.1 Configuration of the calculation point P and selected surrounding fourteen 
points ABCDEFGHIJKLMN in the new three-dimensional thermal LBM 
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Figure 8.2 Configuration of the natural convection in a cubical cavity 

 

 

 

Figure 8.3 Streamlines on the symmetry plane (y=0.5) for the natural convection in a 

cubical cavity at Ra=103, 104,105.  
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Figure 8.4 Isotherms on the symmetry plane (y=0.5) for the natural convection in a cubical 

cavity at Ra=103,104,105. 

 

 

 

    

Figure 8.5 Iso-u contours on the symmetry plane (y=0.5) for the natural convection in a 

cubical cavity at Ra=103,104,105. 
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Figure 8.6 Iso-v contours on the symmetry plane (y=0.5) for the natural convection in a 

cubical cavity at Ra=103,104,105. 

 

 

 

 

   

 

Figure 8.7 Isotherms on the middle plane (x=0.5) for the natural convection in a cubical 

cavity at Ra=103,104,105. 
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Figure 8.8 Isotherms on the middle plane (z=0.5) for the natural convection in a cubical 

cavity at Ra=103,104,105. 
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Figure 8.9 Distribution of the mean Nusselt number on the isothermal wall of x=0 along 
the y-direction at Ra=103 for the natural convection in a cubic cavity 
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Chapter 9 

Conclusions and recommendations 

 

9.1 Conclusions 

Lattice Boltzmann method has been developed into an alternative method for 

computational fluid dynamics and it has been widely used in different kinds of fluid flow 

applications. Currently, the thermo-hydrodynamic LBM is one of the most challenging 

issues left in the LBM research field. Despite several brilliant attempts, to date, there are 

still some spaces for improvement. One is to develop good thermal models.  The other is 

the use of the thermal models to solve the practical thermal flows. We have contributed 

significantly to these two areas in the present project. 

 

9.1.1 Development of the thermal models 

There are a lot of thermal models proposed for LBM. Numerical simulations have 

proven the IEDDF thermal model to be a stable and simple one among these thermal 

models. So this thermal model is applied in this thesis to study the thermal flows. Since it 

is a newly developed model, it still needs a lot of improvements.  

Firstly, this thermal model was limited to thermal applications with Dirichlet 

boundary condition. A new implementation of Neumann boundary condition for the 

IEDDF thermal model was proposed in Chapter 3 in order to solve the practical thermal 

problems with both Dirichlet and Neumann boundary conditions. The numerical 

simulation results of the natural convection in a square cavity showed that our new 

217 



Chapter 9 Conclusions and recommendations 

implementation of boundary condition is valid in solving the thermal problems with 

Neumann boundary condition.  

Secondly, based on the physical background that the compression work done by 

pressure and the viscous heat dissipation can be ignored for the incompressible flows, a 

simplified IEDDF thermal model for the incompressible thermal flows was proposed in 

Chapter 7. This new scheme has the following good features. It does not include any 

gradient term in the evolution equations and thus keeps the simplicity of LBM. The 

boundary conditions are easier to be implemented as compared with the original IEDDF 

thermal model. The numerical results of the natural convection in a square cavity at a wide 

range of Rayleigh numbers showed that this simplified IEDDF thermal model could 

obtain the same accurate results more efficiently as compared with the original IEDDF 

thermal model. The compressibility effect was also studied and the results showed that it 

could be neglected.  

Thirdly, in order to solve an important kind of quasi-three-dimensional flow 

problems, a new axisymmetric lattice Boltzmann model was proposed in Chapter 6. It was 

applied to simulate the flows in the mixed convection in the vertical concentric cylindrical 

annuli and Czochralski crystal growth. The numerical results compared well with the 

benchmark data and this demonstrated that our new scheme could solve the axisymmetric 

thermal problems accurately and effectively. It was worthwhile to mention that our new 

scheme could solve the axisymmetric flow problems on the two-dimensional uniform 

rectangular grids in the cylindrical coordinate system, avoiding the solution of the real 

three-dimensional problems in the Cartesian coordinate system if the standard LBM was 

used. So the quasi-three-dimensional property of this kind of flows is kept.  
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Lastly, in order to solve the real three-dimensional thermal problems, a new three-

dimensional thermal model for LBM was proposed in Chapter 8. The numerical 

simulation results of the three-dimensional steady-state natural convection of air in a 

cubical enclosure using this new thermal model compared very well with those from a NS 

solver. This showed that our three-dimensional thermal model has the capability to solve 

the real three-dimensional thermal problems. Its extension to include the viscous heat 

dissipation and compression work done by pressure was straight forward and the 

corresponding formulae were also given in that chapter. The influences of the grid size 

used and the particle velocity model chosen on the calculations using this new thermal 

model have been thoroughly studied. This new three-dimensional thermal model has the 

following good features. It is very simple and easy to implement. No additional particle 

velocity is used for the particle velocity model as compared with the isothermal particle 

velocity models. 

 

9.1.2 Applications of the thermal models 

We have used the above-developed thermal models for many practical applications 

in two and three dimensions. The numerical simulation results are as accurate as those 

obtained by the conventional NS solvers.  

To apply these thermal models to the more complicated and practical thermo-

hydrodynamic problems, we extended them to be used on the arbitrary grids. They were 

realized by using the following two ways. One is the use of the finite volume technique in 

the thermal models; the other is the use of the TLLBM technique in these thermal models. 

219 



Chapter 9 Conclusions and recommendations 

During the constructions, the development of their corresponding implementation of 

boundary conditions was a major challenge.  

 

9.1.2.1 Use of the finite volume technique in the thermal models. Firstly, a new 

implementation of the wall boundary condition for FVLBM was developed in Chapter 4 

in order to make FVLBM be a useful method for practical applications. It was based on 

the half-covolume technique and the bounce-back rule for the non-equilibrium 

distribution. Using this new implementation of the wall boundary condition, the flow 

problems such as the expansion channel flows and driven cavity flows could be correctly 

solved using FVLBM. 

Then this FVLBM scheme was applied in the IEDDF thermal model so as to 

extend the current thermal model to be used on the arbitrary grids. The numerical 

simulations of the natural convection in a square cavity at Rayleigh number ranging from 

103 to 105 on the non-uniform grids were carried out. At low Rayleigh numbers, the 

numerical results compared well with the benchmark data obtained by a NS solver, which 

showed the validity of using FVLBM technique in the IEDDF thermal model. Compared 

with the numerical results on uniform grids using the standard LBM, less grid numbers 

were needed to obtain the same accurate results using the non-uniform grids. However, 

from the present work, it was found that at high Reynolds numbers or Rayleigh numbers, 

the numerical diffusion of the FVLBM scheme affected the efficiency, accuracy and 

convergence of the IEDDF thermal model. So the use of the present FVLBM technique in 

the IEDDF thermal model was not a perfect way to extend the current thermal models on 

the arbitrary mesh for practical flow problems when high Reynolds numbers or Rayleigh 

220 



Chapter 9 Conclusions and recommendations 

numbers were encountered. We need to find another method to solve this problem. This 

leads to the use of the TLLBM technique in the thermal models. 

 

9.1.2.2 Use of TLLBM technique in the thermal models. The explicit TLLBM was 

successfully applied to the IEDDF thermal model in Chapter 5 so that it could solve the 

thermal problems on the arbitrary mesh.  

For two dimensions, the numerical simulation of the natural convection in a square 

cavity at Rayleigh numbers ranging from 103 to 106 on non-uniform grids was used to 

validate our new scheme. The numerical results compared very well with the benchmark 

data obtained by a NS solver. Fewer grid numbers were needed to obtain accurate results 

using non-uniform grids. Its extension to the applications on the arbitrary mesh for the 

thermal problems with curved boundaries was straight forward since there was no special 

requirement on the mesh structure for the TLLBM technique. So this scheme was 

employed to study the natural convection in a horizontal concentric annulus between a 

square outer cylinder and a circular inner cylinder, which was a complex thermal flow 

problem with curved boundaries. Numerical results for Rayleigh numbers ranging from 

104 to 106 and aspect ratios between 1.67 and 5.0 were presented, which agreed well with 

available data in the literature.  

For three dimensions, the numerical simulation of the natural convection in a cubic 

cavity at high Rayleigh numbers on the non-uniform grids was also done by the 

introduction of the TLLBM technique in our new three-dimensional thermal model in 

Chapter 8. The results compared well with the benchmarked data. 

From these numerical simulations, we can see that using the TLLBM technique in 

thermal models is an effective way to extend the current thermal models to be used on the 
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arbitrary mesh, which is very important for the practical engineering applications. It 

should be indicated that with the use of TLLBM technique, the thermal models still keep 

the local feature and no solution of the differential equation is involved. It can be easily 

applied to solve the thermal problems with any complex geometry.  

. 

9.2 Recommendations 

The future work can be carried out in the following areas. 

 

9.2.1 Development of the thermal models 

Currently, most thermal models are suitable for incompressible flows. It is 

necessary to develop a good thermal model applicable for compressible flows, since the 

flow will become compressible when Rayleigh number or Grashof number is very high. 

This is not an easy task. There are some compressible LBM models for the compressible 

isothermal flows, but there is still no well-accepted model that can solve most 

compressible isothermal flows successfully, not to mention the compressible thermal 

flows.  

Fluid flows in the microstructures have become an important subject due to many 

applications of Micro Electro Mechanical Systems (MEMS) in the fields such as 

instrumentation, microelectronics, microreactors, bioengineering and advance energy 

systems. The MEMS, such as a micro-motor, micro-resonator, micro-beam and micro-

channel, usually involves gas or liquid flows in a device of which the characteristic 

dimension is in the order of one micron, which is only about 10 times of the mean free 

path of the gas molecules under normal conditions. For the gas flows in this size, the 
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usually applied continuum approximation for fluids is no longer valid. LBM can cover a 

wide range from the continuum limit to the free molecule flow limit, so it is an ideal 

method to solve the micro flow problems. A satisfactory LBM thermal model for the 

micro flow needs to be developed. Since the flow in the microstructure is usually 

compressible, so the thermal model should also be able to consider the compressibility 

property. 

 

9.2.2 Applications of the thermal models 

Since we have developed some good thermal models in two dimensions and three 

dimensions, and the use of TLLBM technique in these thermal models is found to be able 

to solve the thermal problems with any complex geometry, these schemes can be used to 

solve more complex thermal flows with practical engineering applications in the future. 

They can also be used to conduct in depth study of thermal flow problems in order to 

understand the physics of such complicated flows better. 
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