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SUMMARY 

 
The main objective of this project is to investigate the effectiveness of various 

features for tool condition monitoring (TCM) during milling processes. Sixteen 

different features extracted from force signals are considered, which have all been 

shown to be effective for TCM. These include residual errors derived from 

autoregressive models, statistical quantities, and frequency characteristics of force 

signals. Cutting experiments have been conducted under various conditions. A five-

step approach has been proposed to extract the 16 features from the force signals 

measured in the experiments. Two innovative methodologies for neural networks are 

introduced and adopted in TCM, which are Bayesian interpretations for support vector 

machines (BSVM) and automatic relevance determination (ARD). Based on these 

approaches, two relevant feature sets have been identified from the 16 features for two 

main tasks in TCM: tool wear estimation (TWE) and tool wear recognition (TWR). 

The generalization capabilities of the entire, selected, and rejected feature sets have 

been tested and compared. Good generalization results have been achieved for both 

TWE and TWR using the selected features, which are superior to those using either the 

entire or the rejected feature set. The results prove that the selected features are 

relatively more relevant to tool wear processes, and draw attention to using the BSVM 

methodologies in TCM. 
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Chapter 1 

 

CHAPTER 1 

INTROUDUCTION 

 
 
1.1  BACKGROUND 

In recent years, significant advances have been achieved in the manufacturing 

environment. Manufacturing systems are fast converting into fully automated 

environments such as computer integrated manufacturing systems (CIMS) and flexible 

manufacturing systems (FMS). However, in order to meet the need of industries for 

saving cost, improving quality, and reducing production time, robust and practical 

process monitoring systems have to be further developed and introduced [Byrne, 1995]. 

Tool condition monitoring (TCM) systems are among such kind of systems, which are 

considered to be the most crucial and determining factor to successful maximization of 

the metal cutting process [Dimla, 1996]. 

 

Tool condition monitoring is primarily for tool wear monitoring [Lange, 1992]. 

Tool failure resulted from wear represents about 20% of machine tool down-time and 

negatively impacts the work quality in the context of dimensions, finish, and surface 

integrity [Liang, 2002]. As a result, considerable research has been carried out in this 

area, including turning [Emel, 1988; Abu-Zahra, 1997; Niu, 1998], milling [Altintas, 

1989; Elbestawi, 1991; Tarng, 1994], and drilling [Tansel, 1992; Elwardany, 1996; 

Huseyin, 2001]. No matter for which kind of processes the tool condition monitoring 

system is developed, it can be viewed as an information flow and processing system. 
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Chapter 1 

The information flow in the tool condition monitoring systems starts at the data 

acquisition stage, when signals are measured from the process using sensors. The 

sensor systems can be categorized into direct and indirect measurement systems. 

Direct measurement techniques measure the tool geometry directly, such as optical 

scanning of tool tips [Yamazaki, 1974], laser displacement and intensity measurement 

of tool geometric failures [Ryabov, 1996], and optical measurement of the flank wear 

land [Kurada and Bradley, 1997]. These systems possess a high degree of accuracy. 

However, they are unsuitable for practical deployment due to installation problems and 

the harsh environment of the practical cutting processes [Byrne, 1995]. Indirect 

measurement systems measure some process-borne quantities, from which the actual 

tool wear can be deduced. These include measurement of cutting forces [Altintas, 1988; 

Elbestawi, 1990; Tansel, 1994], acoustic emissions (AE) [Sampath, 1987; Wilcox, 

1997; Jemielniak, 1998], vibrations [Lee, 1987; Coker, 1996; Li, 2000], and feed drive 

current [Rangwala, 1987; Altintas, 1992]. These systems are less complex and more 

suitable for practical application [Byrne, 1995]. The sensor systems can also be 

categorized into multiple-sensor and single-sensor systems, according to the types of 

the sensors deployed. Multiple-sensor systems [Silva, 1997; Choi, 1999] provide richer 

information about the process by various kinds of signals, and thus ensure a better 

performance. Single-sensor systems [Yao, 1993; Purushothaman, 1994] are easier to 

implement and more suitable for real-time applications due to the smaller amount of 

information to process.  

 

The information processing in the tool condition monitoring system is responsible 

for extracting meaningful features from raw signals and making decisions on tool 

conditions. For the direct measurement systems, tool wear can be directly obtained 

from the acquired data. For example, the flank wear land can be directly extracted 

2 
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from the captured tool images [Kurada and Bradley, 1997]. For the indirect 

measurement systems, the acquired data have to be mapped to tool wear in quite 

different approaches. Multiple features are usually extracted to replace the raw data. 

Then they are fed into an empirical model to deduce tool wear, such as a stochastic-

process model [Altintas, 1988] and a neural network [Tansel, 1994]. 

 

Some commercial tool condition monitoring systems are now in the market and are 

used in industry. However, the systems have narrow range of performance or require 

substantial training or setup time to function correctly [Byrne, 1995; Liang, 2002]. The 

current research activities in TCM aim to develop systems with higher reliability and 

flexibility. 

 

1.2  LITERATURE REVIEW 

This study focuses on milling process monitoring using force signals, due to its 

high sensitivity to tool wear [Altintas, 1989], robustness in harsh working environ-

ments and convenience in installation [Byrne et. al., 1995]. The review of the literature 

concentrates on some of the relevant studies. These can be generally categorized into 

three methodologies, including model-based method, statistical-stochastic analysis, 

and artificial intelligence approaches. 

 

1.2.1 MODEL-BASED METHODS 

The research on tool life can be traced back to Taylor’s work around 1906. He built 

a model, in which the tool life was related to the cutting speed by a power function 

relationship [Taylor, 1906]. This model is based on empirical results rather than on a 

physical model of the wear process, and therefore does not always work in tool life 

prediction. 

3 
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Rabinowica [1977] developed a quantitative description of the abrasive wear 

process over the entire range of abrasive hardnesses. It was a model of abrasive force 

and was dependent on the hardness of the tool and the inclusions in the workpiece. 

This model adequately explained the relationship between the wear and mechanical 

activation. 

 

Kramer [1986] suggested that there were other causes of tool wear, and separated 

the mechanisms controlling the wear rate of a tool materials into three regimes, 

depending on the cutting temperature and the properties of the tool and workpiece 

materials. The first is the low-temperature regime, where the wear of the tool material 

is determined primarily by its hardness. Rabinowica’s abrasive model works well in 

this regime. The other two regimes are under higher cutting temperatures, with the 

solid solubility and the chemical dissolution of the tool material determining the wear 

resistance. Based on this understanding, Kramer came up with a chemical dissolution 

wear model, and combined it with the abrasive model, which resulted in a composite 

wear rate model.  

 

Koren [1978] developed a flank wear model using a linear control theory. He 

assumed two principal mechanisms as wear causes: a thermally activated one and a 

mechanically activated one. The wear process is mathematically treated as a positive 

feedback process, whereby the wear raises the cutting forces and temperature and it 

thereby raises the wear growth rate. 

 

The model-based methods mentioned above contribute to the understanding of the 

physical mechanisms of tool wear process, the determination of optimal cutting 
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conditions, and the design of tool materials. However, they are the functions of cutting 

conditions and dependent on the properties of the tool and workpiece materials. To 

implement, a large database must be established through numerous experiments to 

furnish the constants in the models. 

 

1.2.2 STATISTICAL-STOCHASTIC ANALYSIS 

In 1980’s and the early 1990’s, the trend of the research on tool condition 

monitoring is based on statistical and stochastic analysis. These methodologies are 

employed to evaluate the relationships between tool wear processes and the 

characteristics of the signals in both the time domain and the frequency domain. 

Thresholds are commonly imposed on the results from the analysis to make a judgment 

on tool state.  

 

Time series analysis has been successfully adopted by many researchers to sense 

tool breakages. Lan [1986] monitored the feed forces in milling using a very high-

order autoregressive time series filter (AR15) to detect tool breakages. Altintas [1988] 

suggested that high-order time-series filters are not practical for real time applications 

due to the large computation time and the inefficiency in distinguishing the transient 

cutting from the tool breakage event. He thus proposed an AR1 model to predict the 

cutting force and calculate the difference between the actual measurement and 

predicted value, which was called as the residual error of the cutting force. He found 

that when the process suddenly and sharply deviates from its normal course, which 

means a breakage occurs, the model becomes unable to track the process for several 

intervals. He used this force variation phenomenon to detect tool breakages in milling. 

A similar approach can be found in Yan’s work [1995]. Also by using AR models 
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(20th~24th order), Tansel [1993a] further evaluated the estimation error by calculating 

the sum of the squared residual errors in each tooth period.  

 

Without the prediction steps in time-series analysis methodologies, some statistical 

quantities of cutting force signals can be calculated and used to monitor tool status. 

Altintas [1989] used the first and second order differencing of a time averaged 

resultant force to detect tool failures in milling. Tarn [1989] calculated four quantities 

from each tooth period to monitor tool and cutting conditions in milling, which 

included maximum force level, total amplitude of the cutting force, combined 

incremental force changes, and amplitude ratio. Zhang [1995] used the peak rate of 

cutting forces, and the relative eccentricity rate of the cutter to detect tool breakages. 

The force peak rate of the adjacent tooth periods was defined as the ratio between the 

difference and the sum of force peaks in adjacent tooth periods, which was claimed to 

be independent of the cutting conditions such as cutting depth, cutting thickness and 

feed, etc. 

 

Signal processing techniques have also been successfully used in monitoring tool 

failures. Tarng [1990] defined a tool breakage zone, which is located within the 

frequency range between the d.c. component and the tooth passing frequency.  And he 

found that the force components within this zone correlate to the tool breakage very 

well. He extracted the tool breakage zone components using a band-pass filter. Then 

the standard deviation of the force data was calculated. Elbestawi [1991] et al 

performed FFT on the cutting force signal to obtain the spectrum of the cutting force. 

Then the ratio between the harmonics which are most and least sensitive to wear was 
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calculated. However, a database has to be established and used for searching of the 

harmonics which are most and least sensitive to wear. 

 

The major difficulty of the statistical-stochastic analysis methodologies lies in the 

determination of the threshold, which could be quite sensitive to various cutting 

conditions and tool-workpiece properties.  

 

1.2.3 ARTIFICIAL INTELLIGENCE APPROACHES 

Recently, it has been widely acknowledged that a better solution for TCM systems 

lies in artificial intelligence approaches [Monostori, 1993]. These approaches include 

pattern recognition, expert system, neural network, and fuzzy logic. Like the statistical-

stochastic analysis methodologies, it is also necessary to extract meaningful features 

from raw signals in using these approaches. However, tool failure detection using 

artificial intelligence approaches is more sophisticated than just using thresholds, 

because of the complicated procedure in making a decision. 

 

Elbestawi [1989] designed a linear discriminant function (LDF) classifier to 

partition the feature space into signal classes. He found that the harmonic contents of 

cutting forces and spindle vibrations are sensitive to tool flank wear. So he summed up 

the powers at the fundamental tooth frequency and its harmonics and derived a total 

harmonic power. Then the total harmonic powers of cutting forces and spindle 

vibrations were mapped into one of the partitions through the classifier. And then a 

decision could be made on tool status. 
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Unlike LDF operators, neural networks have the advantages of realizing 

complicated nonlinear mappings. They have been widely used in TCM systems, both 

for tool failure detection and for tool wear estimation. Leem [1995] used a customized 

neural network in online monitoring of cutting tool wear. Power spectrum and four 

statistics (mean, standard deviation, skew, and kurtosis) were extracted from cutting 

force and AE signals. Tool wear levels were first topologically ordered by Kohonen’s 

self organizing map (SOM). Then the input features were transformed via input feature 

scaling to make the decision boundaries of the neural network approximate those of 

error-minimizing Bayes classifier. Tansel [1992] compared two types of neural 

networks, the restricted Coulomb energy (RCE) and the adaptive resonance theory 

(ART2), in tool breakage detection. 10 normalized averages within one full tool 

revolution were used as input features. RCE-type neural networks were found to be 

convenient and beneficial for detection of tool breakage in processes with constant 

cutting conditions. ART2 was found to be better in varying cutting conditions and 

heavy tool wear, due to the continuous learning capability. Tarng [1992] applied a 

multi-layer perceptron (MLP)-type neural network in sensing tool breakage. The 

average force and the variable force, derived by subtracting the median force from the 

average force, were used as input features. In the later work of Tansel [1995], wavelet 

transformations were used in compressing the force signals and eliminating the high-

frequency components. Then the estimated parameters of the wavelet transformations 

were classified by using ART2-type neural networks. Better performances were 

achieved than using the 10 averages in one revolution in his earlier work. 

 

Neural networks have also been widely used in tool wear estimation. Using neural 

networks to model complex data can be considered as performing a curve fitting 

8 



Chapter 1 

operation in multidimensional space. Elanayar [1995] used radial basis function neural 

networks (RBF) to map feed rate and spindle speed to flank and crater wear. Good 

results were reported for flank wear estimation. However, the performance for 

estimating crater wear was not reliable. Santanu [1996] mapped average force and 

cutting conditions to flank wear using MLP-type neural networks. Reasonably close 

assessment of target flank wear values was achieved. A similar approach can be found 

in Lin’s work [1996]. Besides the neural network approach, Lin also established and 

evaluated two regression models. The 6-24-12-1 network model was finally proven to 

be more accurate in tool wear prediction. 

 

According to these prior studies, the advantages of neural networks in TCM 

applications can be summarized as follows: 

• fault tolerance and adaptability; 

• data-driven nature; 

• noise suppression; and 

• parallel processing capabilities. 

 

1.3 OBJECTIVES AND SCOPE OF THIS STUDY 

The TCM methodologies based on the statistical-stochastic analysis and artificial 

intelligence approaches are listed in Table 1.1 in chronological order. It can be clearly 

seen that there are many different kinds of features. Although all of these features have 

been shown to be effective for TCM, it is only until recently that few studies have been 

done to compare them [Goebol, 2000; Sun, 2002]. The necessity to do the comparison 

is two-fold. First of all, in the implementation of online systems, a compact feature set 

means less computation time and therefore better real-time performance. Besides, the  
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Table 1.1 TCM Methodologies 

No Objective Features Decision Making Reference 

1 TBD1 Residual Error Thresholding Lan, 1986 

2 TBD Residual Error Thresholding Altintas, 1988 

3 TWD2 1st & 2nd order differencing Thresholding Altintas, 1989 

4 TWD 

Maximum Force Level, 
Total Amplitude of Cutting 

Force, Combined 
Incremental Force Changes, 

Amplitude Ratio 

Thresholding Tarn, 1989 

5 TWD Power Spectral Density of 
Force and Spindle Vibration LDF-Classifier Elbestawi, 

1989 

6 TBD Force Components in Tool 
Breakage Zone Thresholding Tarng, 1990 

7 TWD Ratio between Force 
Harmonics Thresholding Elbestawi, 

1991 

8 TBD 10 Normalized Averages in 
One Tool Revolution RCE, ART2 Tansel, 1992 

9 TBD Average Force and The 
Variable Force MLP Tarng, 1992 

10 TBD Sum of the Squares of 
Residual Errors Thresholding Tansel, 1993 

11 TWD 

Power Spectral Density and 
Mean, Standard Deviation, 

Skew, Kurtosis of Force and 
AE 

SOM Leem, 1995 

12 TBD 
Peak Rate of Cutting Forces, 
Relative Eccentricity Rate of 

Cutter 
Thresholding Zhang, 1995 

13 TWD Wavelet Transformations 
Coefficient ART2 Tansel, 1995 

14 TWE3 Feed Rate,  Spindle Speed RBF Elanayar, 1995 

15 TWE Average Force,  Cutting 
Conditions MLP Santanu, 1996 

16 TWE Average Force,  Cutting 
Conditions 

MLP, Regression 
Models Lin, 1996 

1. TBD: Tool Breakage Detection; 2. TWD: Tool Wear Detection; 3. TWE: Tool Wear Estimation. 
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proper selection of features is a vital issue in using neural networks. Including 

irrelevant features can ultimately lead to poor performance, because it is inevitable that 

the irrelevant features can be more closely associated with the targets by chance than 

are the truly relevant ones (Neal, 1996). Based on these two considerations, a small but 

efficient feature set is a key factor for the implementation of practical TCM systems. 

As a result, the main focus of this study is to select more relevant features from the 

known features.  

 

In this study, force signal is used as the sensor information for monitoring face 

milling processes, because of its high sensitivity to wear and low noise. 16 well known 

features based on the force signal are extracted. The automatic relevance determination 

(ARD) algorithm, originated by MacKay [1992] and Neal [1996], is used to select a 

subset of the features with higher relevance to tool wear processes. The feature 

selection procedures are conducted for both tool wear recognition (TWR) using 

Bayesian support vector classification (BSVC) algorithm and tool wear estimation 

(TWE) using Bayesian support vector regression (BSVR) algorithm. The 

generalization capabilities using the entire feature set, the selected feature set, and the 

rejected feature set are compared for both TWR and TWE to verify the relevance of 

the selected features to tool wear processes. 

 

1.4 ORGANIZATION OF THE THESIS 

Chapter 1 gives a brief introduction on tool condition monitoring and its 

methodologies. 16 different feature extraction algorithms are discussed in details in 

Chapter 2. Chapter 3 introduces the Bayesian support vector classification and 

regression algorithms, as well as the automatic relevance determination approach. The 
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experimental setup for data acquisition and a software structure for online tool 

condition monitoring are described in Chapter 4. The feature selection results and the 

comparisons of the generalization capabilities using the entire, selected, and rejected 

feature sets are given in Chapter 5. Conclusions are given in the last chapter together 

with a recommendation for future work. 
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CHAPTER 2 

FEATURE EXTRACTION 

METHODOLOGIES 

 
 

The challenge in developing a TCM system is in choosing suitable sensing 

techniques and robust decision making strategies. For monitoring milling processes, 

force signal is widely used due to its high sensitivity to tool wear, low noise to signal 

ratio, and satisfactorily accurate force models [Altintas, 1989]. As mentioned in 

Chapter 1, considerable research has been undertaken for the development of feature 

extraction methodologies based on force signals. In this chapter, a mechanistic force 

model of milling processes is first given as a theoretical background. Then 16 different 

feature extraction methodologies are introduced. 

 
2.1 MECHANISTIC FORCE MODEL OF MILLING PROCESSES 

Force mechanisms of milling processes have been well understood. And 

satisfactorily accurate models have been established (Fu, 1984; Zheng, 1999). 

 
Figure 2.1 shows the cut geometry used in this study. If there is no run-out, the 

expression for the chip area cut by insert i at time t is given by: 

( ) ( )( ) ( ) doctiWtftiA itc ⋅⋅= ,sin, θ                                      (2.1) 

where tf  is the feed per tooth, doc is the depth of cut, and ( )tiθ  is the angular position 

of insert i from the negative Y axis in the clockwise direction. ( )tiW ,  is the interruption 
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function that assumes values 1 or 0 depending on whether or not insert i is cutting at 

time t.  

 

The tangential and radial cutting forces, FT and FR, acting on an insert i, are 

expressed as the product of the chip area ( )tiAc ,  and the cutting force coefficients KT 

and KR, respectively: 

( ) ( )tiAKtiF cTT ,, ⋅=                                                  (2.2) 

( ) ( )tiAKtiF cRR ,, ⋅=                                                  (2.3) 

The radial and tangential forces acting on insert i can be transformed to the global X, Y 

coordinate frame and summed over all the N inserts to express the forces acting on the 

cutter as: 

( )
( )

( ) ( )
( ) ( )

( )
( )⎥⎦

⎤
⎢
⎣

⎡
⋅⎥

⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
∑
−

= tiF
tiF

tt
tt

tF
tF

R

T
N

i ii

ii

y

x

,
,

cossin
sincos1

0 θθ
θθ

                           (2.4) 

where ( )tiθ  is the angular position of insert i from the negative Y axis in the clockwise 

direction. 
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Figure 2.1 Face Milling Geometry 
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Figure 2.2 Cutter Geometry with Runout 

 

In the presence of radial runout, the chip load equation and the subsequent force 

models must be modified. Figure 2.2 shows the radial position of the teeth on a cutter 

with radial runout.  The radial runout of insert i can be expressed as: 

RRii −=ε                                                       (2.5) 

where R is the true cutting radius. Then the chip load equation can be modified to: 

( ) ( )( )( ) ( ) doctiWtftiA iitc ⋅⋅+= ,sin, δεθ                            (2.6) 

where iδε  is the incremental radial runout faced by insert i. For clockwise rotation of 

the cutter, the incremental radial runout for insert i is given by: 

( ) ( ){ }L,sin2,sin,min 321 tftf itiiitiiiii θεεθεεεεδε +−+−−= −−−       (2.7) 

Force models can be then modified by substituting ( )tiAc ,  for ( )tiAc ,  in Equ. (2.2) and 

Equ. (2.3). Both the models with and without runout are used in the subsequent 

analysis of cutting force. 
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2.2 FEATURE EXTRACTION METHODOLOGIES 

 (i) Residual Errors 

Altintas [1988] built a first order autoregressive (AR1) model to predict the cutting 

force and evaluated the difference between the actual measurement and predicted value, 

which was called the residual error of the cutting force. He found that when tool 

breakages occur, the model becomes unable to track the process, and therefore 

produces a large residual error.  

 

An autoregressive model with order p can be written as: 

( ) ( ) ( ) ( ) (taptFtFtFtF p + )−Φ++−Φ+−Φ= L21 21              (2.8) 

where F(t) and a(t) are respectively the measured signal and the disturbance at time t, 

and pΦΦΦ ,,, 21 L  are the filter parameters. The first order AR model is the one step 

ahead estimation of F(t) at time (t-1): 

( ) ( ) ( )tatFtF +−Φ= 11                                            (2.9) 

 

Based on Equation 2.9, Altintas’ AR1 model can be expressed as: 

( ) ( ) ( )tatftf dd +−Φ= 1                                           (2.10) 

& ( ) ( ) ( )1−−= tFtFtf aad                                            (2.11) 

where Fa(t) is the average force over the t-th tooth period. The residual error can 

therefore be calculated by: 

( ) ( ) ( ) ( )1ˆ1 −Φ⋅−−= ttftfta dd                                      (2.12) 

where  is the estimated value of ( 1ˆ −Φ t ) Φ , which can be evaluated by: 

( ) ( ) ( ) ( )tatKtt ⋅−+−Φ=Φ 11ˆˆ                                       (2.13) 

where K(t) is the estimation gain: 
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( ) ( ) ( )
( ) ( )tftP

tftP
tK

d

d
2⋅+

⋅
=
λ

                                             (2.14) 

The λ  in the above equation is the forgetting factor with a value between 0.9 and 1. 

And P(t) can be updated by: 

( ) ( ) ( ) ( )[ tftKtPtP d⋅−=+ 11
λ

]                                        (2.15) 

 

Figure 2.3 illustrates the procedures for using this model, with the following initial 

conditions: , and ( ) 00 =Φ ( ) α=0P  where α  is a large number. An example of the 

residual errors during the whole process of an experiment is shown in Figure 2.4. The 

force samples from the same experiment are used for extracting all the other features 

introduced in this chapter. 

Remove DC trend
by differencing:

(2.11)

Calculate the
residual error:

(2.12)

Update     :
(2.13~2.15)

Φ

Residual Error a(t)
 

Figure 2.3 Procedures for Calculating Residual Errors 

 
Figure 2.4 Residual Errors 

Spindle Speed: 1000rpm, Feed Rate: 100mm/min, 
Depth of Cut: 1 mm, Insert Number = 2, Insert Type: AC325. 
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(ii, iii) First & Second Order Differencing 

In another attempt by Altintas [1989], the first and second order differencing of a 

time averaged resultant force were found effective in recognition of tool breakages in 

milling. The first order differencing of the average cutting forces compares the cutting 

performances of the adjacent teeth: 

( ) ( ) ( )1−−=∆ iFiFiF aaa                                              (2.16) 

where  is the average force during the i-th tooth period. The second order 

differencing can be evaluated from

( )iFa

( )iFa∆ : 

( ) ( ) ( ) ( ) ( ) ( )21212 −+−−=−∆−∆=∆ iFiFiFiFiFiF aaaaaa                    (2.17) 

These two features are shown in Figures 2.5 and 2.6, respectively. 

 
Figure 2.5 First Order Differencing of Cutting Force 

 

 
Figure 2.6 Second Order Differencing of Cutting Force 

18 



Chapter 2 

(iv~vii) Maximum Force Level, Total Amplitude of the Cutting Force, Combined 
Incremental Force Changes, and Amplitude Ratio 
 

Tarn [10] calculated four quantities from each tooth period to monitor tool and 

cutting conditions in milling. The first two features, maximum force level (fm) and total 

amplitude of cutting force (fa), represent the steady-state and variational portion of the 

instantaneous cutting force. They can be derived from Equations (2.18) and (2.19), 

respectively: 

( ) ( )tjifjif
ijTtm ,,max,

∈
=                                                (2.18) 

( ) ( )[ ] ( )[ ]tjiftjifjif
ijij TtTta ,,min,,max,

∈∈
−=                                     (2.19) 

where i denotes the ith cutting edge,  j denotes the jth spindle rotation, and ( )tjif ,,  

denotes the cutting force where t varies over the tooth period, Tij. From Equation 2.19, 

it can be seen that  is actually the peak-to-peak value of the force waveform 

during the i

( jifa , )

th tooth period. 

 
The third feature, combined incremental force changes, indicates the changes in 

cutting conditions. It combines the incremental changes in the first two features 

between the jth and (j+1)th spindle rotation: 

( ) ( ) ( )( ) ( ) ( )( )jifjifjifjifjif aamm ,1,,1,, −++−+=∆                       (2.20) 

 
The fourth feature is called as the amplitude ratio. It can be evaluated from ( )jifa ,   

and :  ( )jif a ,1+

( ) ( ) ( )[ ]
( ) ( )[ ]jifjif

jifjif
jir

aa

aa
a ,1,,min

,1,,max
,

+
+

=                                        (2.21) 

When cutting geometry changes in the (i+1)th tooth period, ( )jifa ,1+  will be different 

from  (chip area changes). So the deviation of this quantity from unity indicates 

the changes in cutting edge geometries. Figures 2.7 to 2.10 illustrate the four features 

extracted from the force data of the same experiment as described in Figure 2.4. 

( jifa , )
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Figure 2.7 Maximum Force Level 

 
Figure 2.8 Total Amplitude of the Cutting Force 

 
Figure 2.9 Combined Incremental Force Changes 

 

Figure 2.10 Amplitude Ratio 

20 



Chapter 2 

(viii) Standard Deviation of the Force Components in Tool Breakage Zone 

Tarng [1990] defined a tool breakage zone, which is located within the frequency 

range between the DC component and the tooth frequency.  He found that the force 

components within this zone correlate to tool breakage very well. The tool breakage 

zone components were extracted using a band-pass filter. Then the standard deviation 

of the filtered force data was calculated. 

 

Figure 2.11 shows the cutting force signal and its spectrum at both the fresh and 

the highly worn stage. When the tool was still fresh, the two peaks in a single rotation 

were not equal due to the large runout of the cutter; and therefore the component at the 

spindle rotation frequency was very large. During the cutting process, the runout was 

gradually compensated by the uneven wear of the two teeth. As the tool became highly 

worn, the two peaks became similar; and therefore the tooth passing frequency 

dominated in the spectrum. 

 

If the runout is negligible compared to the feed per tooth, the opposite situation 

will become true. During the fresh stage, the force peaks appear to be identical; and the 

spectral power concentrates on the tooth passing frequency. When the tool gets highly 

worn or broken, there will be a severe fluctuation in the force waveform; and therefore 

the component at the spindle rotation frequency will in turn dominate. This is shown in 

Figure 2.12 by simulated force data (in most of the real cases, runout is comparable to 

the feed per tooth and cannot be ignored). 

 

No matter whether runout is negligible or not, the spectral components in the tool 

breakage zone change a lot from the fresh stage to the worn stage. So they can be used 

to distinguish failed tools from fresh ones. 
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Figure 2.11 Cutting Force and Its Spectrum in Two Rotations 

 

Figure 2.12 Simulated Cutting Force and Its Spectrum 
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The procedures for calculating the standard deviation of the force components in 

tool breakage zone are shown in Figure 2.13. And Figure 2.14 shows an example of 

this feature. 

Force Samples Band Pass
Filter

Calculating
the Standard

Deviation

standard deviation of the force
components in tool breakage zone

 

Figure 2.13 Procedures for Calculating the Feature 

 

Figure 2.14 Standard Deviation of the Force Components in Tool Breakage Zone 

 

(ix) Sum of the Squares of Residual Errors 

By using high-order AR models (20th order), Tansel [1993] also derived the 

residual errors of the cutting force. But he further evaluated the estimation error by 

summing up the squares of the residual errors in each tooth period. The force 

estimation at the time instance i is calculated by the n-th (n=20) order AR model: 

( ) ( ) ( )∑
=

−Φ×−=′
n

k
k jkifiF

1
1                                       (2.22) 

where  is the (i-k)( kif − ) )th measured force during the jth tooth period,  are 

the parameters of the model estimated at the end of the previous tooth period. The 

residual error of the model at the time instance i can be calculated by: 

( 1−Φ jk

( ) ( ) ( )iFifiE ′−=                                                   (2.23) 
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The amount of the error for each tooth period j can then be calculated by the sum of 

squares of the residual errors E(i): 

( ) ( )∑
=

+×=
l

k
kljEjS

1

2                                          (2.24) 

where l is the number of force samples per tooth period. Figure 2.15 shows an example 

of this feature. 

 

Figure 2.15 Sum of the Squares of Residual Errors 

 

(x) Peak Rate of Cutting Forces 

Zhang [1995] used the peak rate of cutting forces to detect tool breakages. It was 

defined as the ratio between the difference and the sum of force peaks in adjacent tooth 

periods: 

( ) ( ) ( )
( ) ( )jiFjiF

jiFjiF
jiK

pp

pp
pr ,1,

,1,
,

−+

−−
=                                     (2.25) 

where Fp(i,j) is the peak value of the cutting force in the i-th  tooth period during the j-

th tool rotation. Introduce Equation (2.18) into (2.25):  

( ) ( ) ( )
( ) ( )jifjif

jifjif
jiK

mm

mm
pr ,1,

,1,
,

−+
−−

=                                       (2.26) 

The force peak rate is dimensionless and independent of the cutting conditions such as 

cutting depth, cutting thickness and feed. Large values of Kpr indicate tool breakage, 
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because of the large difference between the adjacent periods. An example of this 

feature is given in Figure 2.16. 

 
Figure 2.16 Peak Rate of Cutting Force 

 

 (xi) Total Harmonic Power of Cutting Force 

Elbestawi [1989] found that the harmonic contents of cutting forces are sensitive to 

tool flank wear. This is because when the tool gets worn, there is an obvious increasing 

trend in the magnitudes of the fundamental tooth frequency and its harmonics. This 

phenomenon can be seen in Figure 2.11 and 2.12. Thus, the total harmonic power of 

the force spectrum can be used as an indicator of tool failures: 

( ) ( )∑
=

=
N

m
TH mGiP

1

                                               (2.27) 

( )mG  is the power at the fundamental tooth frequency and its harmonics. N is the 

desired order which defines the frequency range of interest. The features are then 

mapped to tool status through a linear discriminant function classifier. An example of 

this feature is given in Figure 2.17. 

 

(xii) Average Force 

The average force is widely used in both tool failure detection [Elbestawi, 1989; 

Tarng, 1994; Leem, 1995; Kim, 1995] and wear estimation [Lin, 1996; Santanu, 1996],  
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Figure 2.17 Total Harmonic Power 

 

because its trend correlates very well to the growth of flank wear, which can be clearly 

seen from the figures in Appendix A. The average force (Fa) within a spindle rotation 

can be calculated by: 

( ) (∑
=

=
N

j
a jif

N
iF

1
,1 )                                          (2.28) 

where f(i,j) denotes the j-th force sample in the i-th tool rotation, N is total number of 

the force samples in a rotation. The average force is illustrated in Figure 2.18. 

 
Figure 2.18 Average Force 
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(xiii) Variable Force 

Tarng [1994] defined a variable force to evaluate the variation of cutting force due 

to tool failures. First, the average cutting force data are passed through a nonlinear 

median filter to obtain the deterministic component: 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +=−=+= 2

1;,,, mkkkjjiFmedianiF amed L                (2.29) 

where Fmed is called median cutting force, and m is the order of the median filter. Then 

the variable cutting force can be obtained by subtracting the median cutting force from 

the average force: 

( ) ( ) ( )iFiFiF medaa −=∆                                               (2.30) 

This process can be illustrated in Figure 2.19. And an example of the variable force is 

shown in Figure 2.20. 

 

Averaging the
Force Samples

Median
Filter

- Variable Force

 

Figure 2.19 Calculation of Variable Force 

 

Figure 2.20 Variable Force 
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(xiv~xvi) Standard Deviation, Skewness, and Kurtosis  

Leem [1995] extracted four statistics from the cutting force for monitoring tool 

wear. These include mean, standard deviation, skewness, and kurtosis. The mean can 

be derived by Equation (2.28). And the other three features can be calculated by the 

following three equations, respectively: 

( ) ( ) ( )[ ]∑
=

−⋅
−

=
N

j
a iFjif

N
i

1
,

1
1σ                                    (2.31) 

( )( )
( ) ( )

( )

3

1

,
21

)( ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

=
N

j

a

i
iFjif

NN
Nis

σ
                            (2.32) 

( )
( )( )( )

( ) ( )
( )

( )
( )( )32

13,
321

1)(
24

1 −−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−−

+
= ∑

= NN
N

i
iFjif

NNN
NNik

N

j

a

σ
       (2.33) 

where f(i,j) is the j-th force sample in the i-th rotation, and N is total number of the 

force samples in a rotation. The examples of these three features are shown in Figures 

2.21 to 2.23. 

 
Figure 2.21 Standard Deviation 

 
Figure 2.22 Skewness 
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Figure 2.23 Kurtosis 

 

2.3 SUMMARY OF THE FEATURE EXTRACTION METHODS  

16 different feature extraction methodologies are introduced and discussed in this 

chapter, which have all been shown to be indicative of tool condition monitoring. 

These methodologies are summarized in Table 2.1. The relationships among them are 

illustrated in Figure 2.24. These 16 features form the scope of the feature selection in 

this study. However, they cannot be effectively used due to the large noise, as shown 

in the feature graphs. Further processing must be made to make them suitable for 

subsequent applications, which is described in Chapter 4.  

Force Samples

std thp skew kts fstdFa

re vf fod

fm fa

kpr df ra

sre sod

{re,fod,sod,fm,fa,df,ra,fstd,sre,kpr,thp,Fa,vf,std,skew,kts}

 

Figure 2.24 Relationships among the Features 
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Table 2.1. Feature Extraction Methodologies 

No Feature Notation Objective* Decision Making 
Strategy Reference 

1 Residual Error re TBD Thresholding Altintas, 1988 

2 First Order Differencing fod TWD Thresholding Altintas, 1989 

3 Second Order Differencing sod TWD Thresholding Altintas, 1989 

4 Maximum Force Level fm TWD Thresholding Tarn, 1989 

5 Total Amplitude of Cutting Force fa TWD Thresholding Tarn, 1989 

6 Combined Incremental Force Changes df TWD Thresholding Tarn, 1989 

7 Amplitude Ratio ra TWD Thresholding Tarn, 1989 

8 Standard Deviation of the Force 
Components in Tool Breakage Zone fstd TBD Thresholding Tarng, 1990 

9 Sum of the Squares of Residual Errors sre TBD Thresholding Tansel, 1993 

10 Peak Rate of Cutting Forces kpr TBD Thresholding Zhang, 1995 

11 Total Harmonic Power thp TWD LDF-Classifier Elbestawi, 
1989 

12 Average Force Fa 
TBD, 
TWD, 
TWE 

MLP 

Tarng, 1994; 
Leem, 1995; 
Lin, 1996; 

Santanu, 1996 

13 Variable Force vf TBD MLP Tarng, 1994 

14 Standard Deviation std TWD SOM Leem, 1995 

15 Skew skew TWD SOM Leem, 1995 

16 Kurtosis kts TWD SOM Leem, 1995 

* TBD: Tool Breakage Detection; TWD: Tool Wear Detection; TWE: Tool Wear 
Estimation. 
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CHAPTER 3 

BAYESIAN SUPPORT VECTOR MACHINES 

AND AUTOMATIC RELEVANCE 

DETERMINATION 

 
 

16 different features based on force signals are introduced in Chapter 2. As 

mentioned in Chapter 1, the main objective of this study is to compare these features 

and select a subset of the features with higher relevance. For this purpose, the 

automatic relevance determination (ARD) algorithm, originated by MacKay [1992] 

and Neal [1996], is used. The feature selection procedures are implemented for both 

tool wear recognition (TWR) using Bayesian support vector classification (BSVC) 

algorithm and tool wear estimation (TWE) using Bayesian support vector regression 

(BSVR) algorithm. In this chapter, a literature review of the algorithms is given first, 

followed by a theoretical background of the ARD, BSVC, and BSVR. 

 

3.1 INTRODUCTION 

Support vector machines (SVM), as described by Vapnik [1995], exploit the idea 

of mapping input data into a high dimensional (often infinite) reproducing kernel 

Hilbert space. The SVM methods have many advantages, including a global minimum 

solution as the minimization of a convex programming problem, relatively fast training 

speed, and sparseness in solution representation (i.e. only a proportion of training 
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points are relevant). However, as pointed out by Tipping [1999], the traditional SVM 

methodology also exhibits significant disadvantages. For example, it cannot produce 

probabilistic predictions. The application of Bayesian approaches to neural networks, 

originated by Buntine and Weigend [1991], MacKay [1992] and Neal [1996], can 

solve this problem effectively. Bayesian probability theory provides a unifying 

framework for data modeling which offers several benefits, such as optimizing the 

model parameters and handling uncertainty in a natural manner [Mackay, 1992]. 

 

Bayesian interpretations of support vector machines are based on MacKay’s 

evidence framework [MacKay, 1992]. These include support vector classification 

(SVC) [Seeger, 1999; Kwok, 2000; Chu, 2003] and support vector regression (SVR) 

[Law, 2001; Chu, 2001]. In this study, the Bayesian SVC algorithm and the Bayesian 

SVR algorithm proposed by Chu [2001, 2003] are used, because of the good 

generalization capabilities. 

 

Based on the Bayesian approaches, MacKay and Neal proposed a new method, 

called automatic relevance determination (ARD). The aim of ARD is to automatically 

determine which of many inputs to a neural network are relevant to prediction of the 

targets. This is done by making the weights on the connections out of each input unit 

have a distribution that is controlled by a hyperparameter associated with that input, 

allowing the relevance of each input to be determined automatically as the values of 

these hyperparameters adapt to the data [Neal, 1996]. The ARD method can be directly 

implemented in Bayesian support vector machines. 

 
3.2 BAYESIAN SUPPORT VECTOR REGRESSION 

3.2.1 BAYESIAN LEARNING  
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Bayesian learning theory provides a unifying framework for data modeling. The 

result of it is a probability distribution over model parameters that expresses the beliefs 

regarding how likely the different parameter values are. It can be realized through 

evaluating the posterior probabilities of the model parameters when training data are 

given [Neal, 1996]:  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ){
priorlikelihood

nn PxxxLxxxP θθθ
444 3444 21

LL ,,,,,, 2121 ∝                       (3.1) 

where θ  is a parameter vector, and ( ) ( ) ( )nxxx ,,, 21 L  are the training data. The posterior 

distribution combines the likelihood function, which contains the information about θ  

derived from observation, with the prior, which contains the information about θ  

derived from our background knowledge. The application of Bayesian learning in 

neural networks aims to infer the network parameters, which effectively solves the 

overfitting problem by controlling model complexity [Mackay, 1995]. 

 

3.2.2 BAYESIAN SUPPORT VECTOR REGRESSION 

In regression problems, a set of training data  ( ){ }RRxxD ∈∈== i
d

iii yniy ,,,,1, K  

is collected by randomly sampling a function f, defined on Rd. As the measurements 

are usually corrupted by noise, training samples can be represented as 

( ) nify iii ,,2,1 K=+= δx                                         (3.2) 

iδ  are independent, identically distributed random variables, whose probability 

distribution can be assumed to be: 

( ) ( )( i
s

i lC
Z

p δδ ⋅−= exp1 )                                               (3.3) 

where Zs= ( )( ) ii dlC δδ∫ ⋅−exp , C is a parameter greater than zero, and ( )il δ  is the loss 

function, which is in Huber’s form:  

33 



Chapter 3 

( )

( )

[
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

+∞=∆∈−

−=∆∈

−∞−=∆∈−−

=

,2,

2,2,
4

2,,
2

*

εδεδ

εεδ
ε

δ
εδεδ

δ

C

M

C

if

if

if

l ]                               (3.4) 

where ε >0. Huber’s loss function is non-quadratic with low sensitivity to the outliers 

and differentiable allowing appropriate approximations to be used in the Bayesian 

approach. This function is illustrated in Figure 3.1. Therefore, Zs can be written as:  

( )( ) ( ) ( επεεδδ Cerf
C

C
C

dlCZ iis ⋅+−=⋅−= ∫ 2exp2exp )                    (3.5) 

where ( ) ( )dttxerf
x

∫ −=
0

2exp2
π

. 

 
Figure 3.1 Huber’s loss function (ε =0.5) 

 

The regression aims to infer the function f in (3.2), or an estimate of it, from the 

finite data set D. In the Bayesian approach, we regard the function f as the realization 

of a random field with a known prior probability. The posterior probability of f given 

the training data D can then be derived by Bayes’ theorem: 

( ) ( ) ( )
( )D

ffD
Df

P
PP

P =                                                  (3.6) 
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where ( ) ( ) ( )[ T
nfff xxxf ,,, 21 K= ] . Since the training data are usually sampled 

arbitrarily,  is not meaningful [MacKay, 1995]. So the posterior is only 

determined by the prior and the likelihood

( )DP

( )fP ( )fDP . 

 

The prior probability  can be modeled as a multivariate Gaussian with zero 

mean and a covariance matrix , given by (3.7): 

( )fP

nn× Σ
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1exp1 T
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where ( ) Σ22
n

fZ π= . The ij-th component of is:  Σ
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where k0>0 denotes the average power of f(x); kl >0, dl ,,2,1 L= is the ARD parameter 

that determines the relevance of the l-th input dimension to the prediction of the output 

variables; kb>0 denotes the variance of the offset to the function f(x); and xl denotes the 

l-th element of the input vector x. 

 

The likelihood ( fDP ) is a model of noise, which can be evaluated by 

( ) ( )( ) ( )∏ ∏=
=−=

n

i

n

i iii PfyPP
1

δxfD
=1

                                 (3.9) 

Introducing Equation (3.3) into (3.9), the likelihood function can be expressed as: 

( ) ( )( ⎟
⎠

⎞
⎜
⎝

⎛
−⋅∝ ∑

=

n

i
ii fylCP

1
exp xfD )                                       (3.10) 

Based on Bayes’ theorem (3.6), prior probability (3.7), and the likelihood (3.10), 

the posterior probability of f  can be written as: 
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( ) ( )( fDf S )
Z

P −= exp1                                             (3.11) 

where ( ) ( )( ) fΣfxf 1

1 2
1 −

=

+−= ∑ T
n

i
ii fylCS  and ( )( ) ff dSZ ∫ −= exp . The maximum a 

posteriori (MAP) estimation of the function values is therefore the minimization of the 

following optimization problem: 
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It can also be decomposed to: 
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classical support vector regression [Haykin, 1999]. 

 

The dual problem of Equation 3.12 can be finally developed into:  
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subject to Ci ≤≤α0 , and .  Ci ≤≤ *0 α

 

The optimal value of the primal variables can be written as: f
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( )*ααΣf −⋅=MP                                                 (3.16) 

where  and [ ]Tnααα ,,, 21 L=α [ ]Tn
**

2
*
1

* ,,, ααα L=α . At the optimal solution, the 

training samples (  with associated  satisfying )ii y,x *
ii αα − Cii <−< *0 αα  are 

called off-bound support vectors; the samples with Cii =− *αα  are on-bound support 

vectors; and the samples with 0* =− ii αα  are non-support vectors.  

 
3.2.3 MODEL ADAPTATION AND ARD 

Let θ be the hyperparameter vector containing the parameters in the prior 

distribution and the likelihood function, i.e. { }db kkkkkC ,,,,,,, 210 Kε=θ . The optimal 

values of hyperparameters θ can be inferred by maximizing the posterior 

probability ( ) ( ) ( )
( )D

θθD
Dθ

P
PP

P = . As we typically have little idea of suitable values of θ 

before training data are available, we assume a flat distribution for P(θ), i.e., P(θ) is 

greatly insensitive to the values of θ. Therefore, the evidence P(D|θ) can be used to 

assign a preference to alternative values of the hyperparameters θ [MacKay, 1992]: 

( ) ( ) ( ) fθfθfDθD dppP ∫= , ( )( ) ff dSZZ n
sf ∫ −= −− exp1                      (3.17) 

where Zs and Zf are given in (3.5) and (3.7), respectively. 

 

An explicit expression of the evidence P(D|θ) can be obtained from an integral 

over the f-space with a Taylor expansion at  (whereMPf ( ) 0=
∂

∂
= MP

S
fff

f  ) and retaining 

terms up to the second order:  
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( ) ( )( ) n
sMP ZCSP −− ⋅⋅⋅+⋅−≈ 2

1

exp ΛΣIfθD                              (3.19) 

where I is an nn×  identity matrix;  is a diagonal matrix with the ii-th entry being Λ

ε2
1  if the corresponding training sample is an off-bound support vector, otherwise the 

entry is zero. Therefore, only a sub-matrix of Σ  plays a role in the determine-

ant ΛΣI ⋅⋅+C , due to the sparseness of . Let  be the  sub-matrix of Λ MΣ mm× Σ  

obtained by deleting all the rows and columns associated with the on-bound support 

vectors and non-support vectors, i.e. keeping the m off-bound support vectors only. 

Then the negative log probability of data given hyperparameters is:  
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where I is an mm×  identity matrix. 

 

Gradient based optimization can then be used for minimizing (3.20). We usually 

use { db kkkkkC ln,,ln,ln,ln,ln,ln,ln 210 K }ε  as the set of variables to tune, to 

eliminate the constraints (>0). And the gradients are given by:  
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where , { }dbj kkkkkk ,,,,, 210 L∈ ( )iMPii fy x−=δ , and α and α* are the optimal 

solution of (3.15). 

 

Note that kl >0, controls the contribution of the l-th input dimension to 

the prediction of the output variables. The larger the value of k

dl ,,2,1 L=

l, the more relevant the 

l-th input dimension to the prediction. The procedures for inferring these parameters 

are called automatic relevance determination. 

 

Based on the Bayesian support vector regression and the automatic relevance 

determination algorithms, feature selection and training the regression network can be 

conducted through the following steps: 

1) Assume an initial hyperparameter set θ. 

2) Use the maximum a posteriori methods to get  . MPf

3) Use the gradient-based optimization methods to infer the optimal values of the 

hyper-parameters. 

4) If the sum square error given by ( ) ( )MP
T

MP fYfY −⋅− is smaller than the 

predetermined threshold, then end the iteration; else return to the Step (2). 

5) Select the set of kl greater than a threshold to be the relevant feature set. 

 

The procedures for implementing the BSVR and ARD algorithms are illustrated in 

Figure 3.2. 
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Figure 3.2 Procedures for Implementing BSVR and ARD 

 
3.3 BAYESIAN SUPPORT VECTOR CLASSIFICATION 

3.3.1 BAYESIAN SUPPORT VECTOR CLASSIFICATION 

Unlike the curve fitting problem of regression, classification is defined as the 

process whereby a received pattern/signal is assigned to one of a prescribed number of 

classes (categories). A pattern is represented by a set of m observables, which may be 

viewed as a point x in an m-dimensional observation space. Feature extraction is 

usually used to maximize the information contained in x, which is defined as a 

transformation that maps the point x into an intermediated point y in a q-dimensional 

feature space. The classification is itself described as a transformation that maps the 

point y into one of the classes in an r-dimensional decision space, where r is the 

number of classes to be distinguished [Haykin, 1999]. This concept can be illustrated 

in Figure 3.3. 

 

The Bayesian approach for classification can also be developed through the 

framework described in 3.2. The difference lies in the form of the loss function and the  
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Figure 3.3 Concept of Classification 

likelihood function resulted from it. For binary classification, the trigonometric loss 

function, proposed by Chu [2001], is a good solution because it satisfies the following 

characteristics: 

1. naturally normalized in likelihood evaluation; 

2. possessing a flat zero region that results in sparseness property; 

3. smooth and continuous up to the first order derivative. 

 

The trigonometric loss function takes the following form: 
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and its first order derivative is therefore: 
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where R∈x d is the input vector, { }1,1−+∈xy is the class label, and  denotes the 

latent function at x. The loss function is illustrated in Figure 3.4. The trigonometric 

likelihood function can then be written as: 
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Figure 3.4 Trigonometric Loss Function 

 
In the Bayesian approach, we can infer the latent function  by maximizing the 

posterior, which is defined by Bayes’ theorem in Equation (3.6). The prior probability 

 is the same as defined in Equation (3.7) and (3.8). And with the likelihood 

function in (3.26), the likelihood 

xf

( )fP

( )fDP  can be written as: 
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=

=
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i
t ii

fyPP
1

xxfD                                         (3.27) 

Introducing (3.7) and (3.27) into (3.6), the posterior probability of f is: 
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posteriori (MAP) estimation of the function values is therefore the minimization of the 

following optimization problem: 
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ωΣf ⋅=MP                                                     (3.30) 

It can also be decomposed into the form: 
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vector classification [Haykin, 1999]. 

 

The dual problem of Equation 3.29 can be finally developed into:  
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subject to ii ∀≥ ,0α . At the optimal solution, the training samples ( )
i

yi xx ,  associated 

with non-zero Lagrange multiplier iα  are called support vectors (SVs); the samples 

with zero iα  are not support vectors, which do not involve in the solution 

representation. 

 

3.3.2 MODEL ADAPTATION AND ARD 

Let θ be the hyperparameter vector containing the parameters in the prior 

distribution and the likelihood function, i.e. { }bd kkkkk ,,,,, 210 L=θ . The optimal 

values of hyperparameters θ can be inferred through the same approach described in 

3.2.3. The evidence in this case can be written as: 

( ) ( )[ ] 2
1

exp
−

⋅+⋅−= ΛΣIfθD MPSp                            (3.33) 

where I is an  identity matrix;  is a diagonal matrix coming from the second 

order derivative of the trigonometric loss function, whose entry is non-zero only if the 

nn× Λ
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corresponding training sample is a support vector. Let  and  be the  sub-

matrix of 

MΣ MΛ mm×

Σ  and  by keeping their non-zero entries. The negative logarithm of P(D|θ) 

is therefore: 
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where  is the sub-vector of Mυ [ ]Tnn
yyy ααα xxxυ ,,, 21 21

L=  by keeping the entries 

associated with support vectors; and ( ) SVsmfy mMPm m
∈∀⋅−= ,1 xxξ . 

 
Gradient based optimization can then be used for minimizing (3.34). The 

derivatives of ( θDPln− ) with respect to θln  are given by:  
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where the superscript m denotes the m-th entry of a vector. Feature selection and 

training the classification network can then be conducted through the same procedures 

mentioned in 3.2.3. The network structure is shown in Figure 3.5. 
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Figure 3.5 Structure of Bayesian Support Vector Machines 
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CHAPTER 4 

EXPERIMENTAL SETUP AND DATA 

PROCESSING 

 
 

In this chapter, the experimental setup for the data acquisition is first described, 

followed by the analysis of the signal and the implementation of the feature extraction 

methodologies mentioned in Chapter 2. An online tool condition monitoring strategy is 

given at the end of this chapter. 

 

4.1 EXPERIMENTAL SETUP 

Force signal is used in this study to monitor face milling processes, due to its high 

sensitivity to tool wear, low noise, and satisfactorily accurate force models (Altintas, 

1989). Figure 4.1 shows the scheme of the experimental setup, whose components are 

listed in Table 4.1. The actual systems are shown in Figures F1 and F2 (Appendix F). 

Table 4.1 Experimental Components 

Components 

Makino CNC milling machine with Funuc controller 

EGD 4450R cutter with AC325 and A30N inserts  

ASSAB718HH workpiece ( )mmmmmm 10643206 ××  

Kistler 9265B Quartz 3-Component Dynamometer 

Kistler 5019A Multi-channel Charge Amplifier 

NI-DAQ PCI 1200 Board 

Olympus microscope and Panasonic digital camera 

Computer with Pentium III 600MHz and 128M SDRAM 
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Figure 4.1 Experimental Setup 

 

4.2 INSTRUMENTATION & DATA ACQUISITION 
The cutting force along the y-direction (traverse cutting force) is monitored, due to 

its high sensitivity to tool wear and consistency in direction. The signal is captured by 

the Kistler dynamometer in the form of charges, and converted to voltages by the 

Kistler charge amplifier. The charge amplifier is grounded to provide a reference for 

the signal, with the parameters specified in Table 4.2. TS determines the sensitivity of 

the dynamometer to the cutting force. And SC determines the output magnitude of the 

charge amplifier.  

Table 4.2 Specification of Parameters of the Charge Amplifier 

Channel 1 

Transducer Sensitivity/TS [pC/Mechanical Unit] 7.85 

Scale/SC [Mechanical Units/volt] 600 

Low-Pass Filter/LP  1KHz 

Time Constant/TC (High-Pass Filter) Long 

Operation/OP  Enb. 
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The voltage signal from the charge amplifier is sampled by NI’s PCI 1200 DAQ 

board at 2 kHz and directly streamed to the hard disk of the computer. In the board, 

there is a gain amplifier, a 12-bit ADC (analog-to-digital converter), and a 16-bit FIFO 

(first in first out) memory buffer. If necessary, the analog signal can first be amplified 

to increase resolution and accuracy through the gain amplifier. Then it is converted to 

digital format using the ADC. When an A/D conversion is completed, the ADC clocks 

the result into the FIFO, which serves as a buffer (4096 words deep) to the ADC.  

 

The analog input polarity is selected as “bipolar V5± ” to accommodate negative 

signals. Therefore, the least significant bit (LSB) of the ADC is 10V/4095. Based on 

the scale of the charge amplifier listed in Table 4.2, the force can be calculated by: 

600
4095
10

⋅⋅= dvF                                               (4.1) 

where vd is the digitalized voltage level. 

 

Because the charge amplifier is grounded, the Non-Referenced Single Ended 

(NRSE) mode is used to connect the signal. In this mode, all signals are referenced to 

the same common mode voltage, which is allowed to float with respect to the analog 

ground of the DAQ board. Any potential difference between the ground of the board 

and the signal ground appears as a common-mode signal at both the positive and 

negative inputs of the instrumentation amplifier and is therefore rejected by the 

amplifier. Figure 4.2 shows how to connect the voltage signal from the charge 

amplifier to the DAQ board in this mode. Channel 2 (ACH1) is used as the input 

terminal. AIGND and AISENSE stand for analog input ground and analog input sense, 

respectively. 
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Figure 4.2 Connection of the Charge Amplifier to the DAQ Board 

 

The DAQ board can be driven by the NI-DAQ driver software, which has a library 

of calling functions enabling configuration, initialization, and implementation of DAQ 

processes. With this library, a synchronous DAQ operation can be easily realized. 

However, because of the intermittent nature of milling processes, the starting and 

ending point of the DAQ operation must be carefully controlled.  

 

When the tool is not engaged in cutting, the signal is useless and not necessary to 

measure. On the other hand, when the tool is engaged in cutting, the process can be 

partitioned into three sections. The first one is between position (1) and position (2) as 

shown in Figure 4.3. During this period, the immersion angle of the tool changes from 

0 to 120 degrees (the geometry of the cutting is shown in Figure 2.1). The second one 

is between position (2) and position (3), during which the immersion angle remains 

120 degrees and therefore the force waveform is almost consistent (except the 

fluctuation caused by chipping, breakage and large wear). The last procedure is 

between position (3) and position (4), during which there are only two isolated uncut 

areas left. So the chip load pattern of each tooth turns from one single pulse into two 

separate pulses, which is totally different from the pattern in the second procedure.  
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Figure 4.3 Starting and Ending Point of DAQ  

Based on these considerations, the useful signal can only be acquired after the tool is at 

start of entry in cutting and before the tool starts disengaging. 

 

The starting point of DAQ can be controlled either manually or automatically. The 

method for automatically detecting the point is discussed in Section 4.5. The manual 

method is used to acquire the data for offline analysis. This means that the DAQ 

process is started when it is observed that nearly half of the tool holder is about to pass 

the front edge of the workpiece. The ending point of the DAQ process can be 

determined by counting the total number of samples. The maximum number of 

samples (Nmax) can be calculated as follows: 

sr
fr

rtlwN ××
−

= 60max                                          (4.2) 

where lw denotes the length of the workpiece; rt is the effective radius of the tool 

holder; fr and sr stand for feed rate and sampling rate, respectively. 
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The flank wear of each individual tooth is measured at an interval of 5 tool passes 

by the Olympus microscope, and at each time an average is calculated from all the 

teeth mounted on the cutter. The tool wear patterns can be illustrated in Figure 4.4.  

(b) Top View (c) Side View(a) End View

Crater
wear

Tool
face

Flank wear

V
B

VBmax
Flank face

Crater wear
depth

Flank wear

 
Figure 4.4 Illustration of Tool Wear Measurement 

According to ISO 8688 (International Standard, 1989), the threshold in terms of flank 

wear for determining the tool life is 0.5mm. In practice, this threshold is a bit larger, 

because when the flank wear is above 0.4mm, it causes a severe vibration, which may 

damage the machine. Therefore, 0.4mm is used as the threshold. It means when the 

flank wear of any of the teeth inserted in the tool exceeds this value, the tool is 

regarded as worn. Although flank wear is the main factor determining the tool life 

under normal cutting conditions, some abrupt events may also occur, such as chipping 

and breakage, which could cause more catastrophic damage to the workpiece and the 

machine than the flank wear. So it is also necessary to check whether these events 

happen. This can be observed by the digital camera. According to ISO 8688, the 

measurement of tool chipping volume is illustrated in Figure 4.5. And the criterion for 

determining the type of chipping is listed in Table 4.3.  
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Figure 4.5 Measurement of Chipping Volume 
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Table 4.3 Types of Chipping 

Type Length (mm) 
Micro-chipping <0.3 
Macro-chipping 0.3 to 1.0 

Breakage >1.0 
 

Based on the methods for measuring the force signal and the tool wear mentioned 

before, 20 experiments are conducted on the Makino CNC milling machine. Two kinds 

of inserts, AC325 and A30N, are used in the experiments. The geometries of the 

inserts and the face mill are shown in Figures F3 and F4 (Appendix F).The cutting 

conditions are listed in Table 4.4. 

Table 4.4 Cutting Conditions 

Cutting Condition Value 
Spindle Speed (rpm) 600, 800, 1000, 1200 
Feed Rate (mm/min) 100, 150, 200, 300 
Depth of Cut (mm) 1, 2 
Insert No. 2, 4 
Immersion Rate Full 
Workpiece ASSAB718HH 
Milling Cutter EGD4450R 
Insert AC325, A30N 

 

4.3 EXPERIMENTAL DATA ANALYSIS 
In this study, the influence of cutter run-out on the force signal is examined. After 

the first experiment, it was observed that the force waveform was severely distorted 

from the ideal pattern. Four inserts were used in the cutting. Instead of four identical 

peaks within the waveform of one single rotation, only three were found with large 

differences in their magnitudes at the fresh stage of the inserts. This phenomenon is 

illustrated in Figure 4.6. Because the inserts were still fresh, the fluctuation could not 

be due to tool failure, but due to the radial run-out of the cutter itself (the axial run-out 

of the cutter is usually negligible compared to the depth of cut). To interpret this, the 
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radial positions of the teeth were measured using a gauge. The difference in the radial 

positions of the four inserts is shown in Figure 4.7.  

 
Figure 4.6 Experimental Force Waveform in Two Rotations 

Spindle Speed: 600rpm, Feed Rate: 100mm/min, 
Depth of Cut: 1 mm, Insert Number: 4, Insert Type: AC325. 
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Figure 4.7 Radial Positions of Four Inserts 

 

As can be seen from Figure 4.7, the radial run-out of the cutter is very big, because 

it has been used for almost ten years in the workshop. Based on these values and the 

force models described in Section 2.1, the chip load pattern and the transverse force 

(Fy) can be simulated, as shown in Figure 4.8 and 4.9. Since the tip of Insert I is more 

than 200 microns closer to the center of the tool holder than the other three inserts and  
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Figure 4.8 Simulated Chip Load Pattern with Run-out 

 
Figure 4.9 Simulated Transverse Force with Run-out 

the feed per tooth is only 42 microns, Insert I can never engage in cutting, and it leaves 

uncut metal for the subsequent teeth. This results in uneven wear among the four teeth, 

which can not only shorten the tool life but also degrade the machined surface quality 

[Liang, 1994]. There are some methods for automatically compensating run-out, such 

as chip load manipulation [Liang, 1994] and spindle speed variation [Sastry, 1999]. 

These methods involve complex machine control elements, which are beyond the 

scope of this study. To avoid the serious run-out problem, a new face mill, with 

moderate run-out as shown in Figure 4.10, was used in the subsequent experiments. 

Figure 4.11 illustrates the simulated chip load pattern, the simulated force, and the 

sampled force with 2 inserts. As can be seen from the figures, the trouble caused by 

cutter run-out is greatly reduced. 
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Figure 4.10 Run-out of the New Face Mill 

 
Figure 4.11 Simulated Chip Load Pattern/Force and Sampled Force 

Spindle Speed: 1000rpm, Feed Rate: 200mm/min, 
Depth of Cut: 1 mm, Insert Number:  2, Insert Type: AC325. 

 

4.4 FEATURE EXTRACTION 

The 16 different features discussed in Chapter 2 are extracted from the 

experimental force data. The feature extraction process follows a five-step procedure 

as shown in Figure 4.12. This procedure can reduce computational redundancy, becau- 
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Force Samples in One Rotation

std thp skew kts fstd

1st Step

2nd Step

3rd Step
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Fa

re vf fod

fm fa

kpr df ra

sre sod

Moving Average

{re,fod,sod,fm,fa,df,ra,fstd,sre,kpr,thp,Fa,vf,std,skew,kts}

Normalized wrt the average force at fresh stage

5th Step

 
Figure 4.12 Feature Extraction Procedure 

se of the dependency of the lower level features on the upper ones. Note that samples 

within one spindle rotation instead of one tooth period are used in feature extraction. 

The purpose is to avoid the influence of run-out. As can be seen from either Figure 4.6 

or 4.11, the run-out causes fluctuation to the force magnitudes of the teeth even at the 

fresh stage. However, the fluctuating behavior of cutting force is just the sign to 

distinguish failed tools from fresh ones. Since in most cases the run-out of the milling 

cutter is not negligible, it is safer to extract the features over each rotation to avoid 

expressing the fluctuation caused only by run-out.  

 
The force samples are first normalized with respect to the average force when the  

tool is still fresh: 
( )

M

jF
M

j
∑
== 1η                                                    (4.2) 

( ) ( ) MiiFiF >∀=′ ,η                                           (4.3) 

where M is total number of samples during the first n rotations of the first pass; 

means all the samples after the first M; and Mi >∀ ηwill never be zero because the 

force values along y direction are always positive. This procedure can effectively 

reduce the sensitivity of the features to cutting conditions [Altintas, 1989; Kim, 1996].  
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At the second step, eight features are derived from the normalized force samples 

 in one spindle rotation, including Fa, fm, fa, skew, kts, fstd, std, and thp. The 

feature extraction methodologies are described in details in Chapter 2. In the next step, 

six features based on Fa, fm, and fa are extracted, including re, vf, fod, kpr, df, and ra. 

In the fourth step, sre and sod are evaluated from re and fod, respectively. 

( )iF ′

 

Through the first four steps, all of the 16 primary features are obtained. However, 

these features are still quite noisy and not reliable for the subsequent processing. 

Therefore, a moving average step is performed for each of the features to make it 

smooth. Let w be the size of the moving window. Then the moving average can be 

calculated by: 

( ) ( )∑
−+

=
Ψ=Ψ′
11 wm

mi
i

w
m                                              (4.4) 

where  can be any of the 16 features. ( )iΨ

 

In addition, as the magnitudes of the features differ greatly, as shown in the feature 

examples of Chapter 2, scales should be used to make them comparable. In this study, 

all the magnitudes of the features are scaled to around 5 to make sure the outputs from 

the Gaussian kernels in the neural networks significant enough. Large magnitudes can 

make the covariance matrix singular (details in Chapter 3). The scales can easily be 

obtained by calculating the ratio between 5 and the magnitudes of the features. This 

step is necessary for the feature selection in Chapter 5 to make sense. The five steps 

result in a feature vector of{ }, 

which forms the candidate set of features for the feature selection. Figure 4.13 shows 

these features after completing all the five steps. 

ktsskew,std,vf,Fa,thp,kpr,sre,fstd,ra,df,fa,fm,sod,fod,re,
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Figure 4.13 Feature Extraction Results  

Spindle Speed: 1000rpm, Feed Rate: 100mm/min, 
 Depth of Cut: 1 mm, Insert Number = 2, Insert Type: AC325. 

 

4.5 ONLINE TCM STRATEGY 

The online tool condition monitoring system is an integrated system of testing 

hardware and monitoring software. The hardware setup and its configuration have 
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been described in Section 4.1 and 4.2. In this section, the software structure is outlined. 

The software fulfills two main tasks: control of the DAQ board and realization of tool 

wear recognition as well as tool wear estimation.  

 

For the first task, the software calls the functions in the library of NI-DAQ divers, 

and therefore it is compatible with various kinds of DAQ boards. More specifically, 

“DAQ_Op”, a synchronous DAQ operation, is called to sample force data to a buffer. 

Then features can be extracted from the data, which can be streamed to the hard disk of 

the computer from the buffer. Figure 4.14 shows the main structure of the software. 

Upon started, it initializes the parameters using the input values from the user interface. 

Then it calculates three quantities, Td (delay time of a timer routine), Nm (maximum 

rotation number within one pass), and TCR (the time for the cutter to move by the 

distance of its radius), for controlling the execution of data acquisition. The data 

acquisition and decision making procedures are implemented in a timer routine, which 

controls the starting and ending point of the effective data acquisition. The timer 

routine is illustrated in Figure 4.15.  

Start

Initialize
parameters

Calculte Td, Nm
and TCR

Set a timer with
delay time Td

Td elapsed?

Start a new
timer routine

yes

no

 
Figure 4.14 Main Routine of the Software 
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Figure 4.15 Timer Routine 
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Td, Nm, and TCR can be calculated as follows. 

Notation: 

Spindle Speed (rpm): Ss Length of Workpiece (mm): Lw

Feed Rate (mm/min): Fr Sampling Rate (Hz): Sr

Effective Radius of Tool Holder (mm): Rt Processing Time (ms): Tp

Number of Rotations within a Timer Period:  NT

 

100060
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

×
= p

s

T
d T

S
NT                                         (4.5) 

( )
T

dr

tw
m N

TF
RLN ×

×
××−

=
100060                                      (4.6) 

100060××=
r

t
CR F

R
T                                               (4.7) 

where Td and TCR are in milliseconds. NT is a constant number, which is set to 10. The 

processing time Tp includes the time used in feature extraction and decision making, 

which can be estimated according to the computational burden and the processing 

speed of the computer. 

 

The timer routine can be explained as follows. When started, the system sets a 

timer. When the first timer period elapses, it begins to collect data, no matter whether 

or not the cutter is engaged in cutting. The program then keeps tracking the average 

value of the data during the period of one rotation. If it is found that the average 

changes to a value greater than 35 Newton (empirical value), the system will know that 

the cutter begins engaging the workpiece. The program will wait until the center of the 

cutter reaches the front edge of the workpiece. Then tool wear recognition and tool 

wear estimation begins to function. When the rotation number in one pass reaches the 

limit Nm, the program will wait for the cutter to fully disengage and set “enable” to 
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FALSE to indicate the data become inefficient again. In the case that tool failure is 

detected by the system during a tool pass, the program will kill the timer to stop the 

monitoring process and sound warning beeps. 

 

The GUIs of the software are shown from Figure F5 to Figure F8 in Appendix F. 

Figure F5 is the view window, on which the force signal measured in each pass and the 

estimated wear values during the entire monitoring process are plotted. The force 

graph indicates what is going on during milling processes. There is an item named 

“TCM” in the menu of the view window. It contains three dialogs, Milling Properties, 

DAQ Specifications, and Monitoring, which are illustrated in Figures F6, F7, and F8, 

respectively. Parameters can be fed into the system through the first two dialogs. The 

third dialog can only be enabled after the “OK” button in both of the first two dialogs 

is pressed. This dialog is responsible for indicating the growth of tool wear and raising 

alarm. A tool condition monitoring report can be printed at any point after the software 

is started, via “Print” item in “File” menu. An example is given in Figure F9. Figure 

F10 shows what the view window looks like when the software is working. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 
 

In this chapter, the feature selection results for tool wear estimation are given first, 

followed by the comparisons of the generalization capabilities using the entire, 

selected, and rejected feature sets. Then the feature selection results and similar 

discussions for tool wear recognition are presented. The results are summarized at the 

end of this chapter. 

 

5.1 FEATURE SELECTION RESULTS FOR TWE 

Twenty experiments are conducted using the setup described in Chapter 4. The 

cutting conditions for these experiments are listed in Table 5.1. Note that the item 

“Average Wear at Tool Failure Point” is the average wear value among all the teeth 

inserted in the tool when any of the teeth is found worn. The sixteen different features 

 introduced in Chapter 2 

are extracted from all of the experimental data. Figure A1 to Figure A20 in Appendix 

A show the features of all the 20 experiments. The vector x forms the scope of the 

feature selection. 

{ }ktsskew,std,vf,Fa,thp,kpr,sre,fstd,ra,df,fa,fm,sod,fod,re,=x

 
The feature selection algorithms for regression are described in Section 3.2 of 

Chapter 3. The regression aims to find a mapping function between the feature vectors 

and the tool wear values. The feature selection for the regression is to find the most 

relevant features to tool wear from the candidate feature vector x. Sixteen hyperpara- 
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Table 5.1. Cutting Experiments 

Insert 
Type Test No 

Spindle 
Speed 
(rpm) 

Feed Rate 
(mm/min) 

Depth of 
Cut 

(mm) 

Insert 
Number 

Average 
Wear at Tool 
Failure Point 

(mm) 

Phenomenon*

Test_a1 800 150 1 4 0.3718 GW 
Test_a2 1000 100 1 2 0.4595 GW 
Test_a3 1000 100 1 4 0.4102 GW 
Test_a4 1000 200 1 2 0.3960 BK 
Test_a5 1000 300 1 4 0.3043 BK 
Test_a6 1200 150 1 2 0.3621 CP 
Test_a7 1200 200 1 2 0.4238 BK 
Test_a8 1200 300 1 4 0.3234 BK 
Test_a9 600 100 2 4 0.3520 GW 

Test_a10 600 200 2 4 0.2736 GW 
Test_a11 800 100 2 2 0.2915 GW 

AC325 

Test_a12 1000 100 1 4 0.2633 CP 
Test_b1 800 200 1 4 0.4200 GW 
Test_b2 800 300 1 4 0.3626 GW 
Test_b3 1000 200 1 2 0.3803 GW 
Test_b4 1000 300 1 4 0.3938 GW 
Test_b5 1000 300 2 4 0.3920 GW 
Test_b6 1200 100 1 2 0.3780 GW 
Test_b7 1200 200 1 4 0.4094 GW 

A30N 

Test_b8 800 300 1 4 0.3382 GW 

* GW: Gradual Wear, CP: Chipping, BK: Breakage. 
 
meters are assigned for them {k1, k2, …,k16}. The automatic relevance determination 

algorithm is used to infer the optimal values of these sixteen hyperparameters. During 

the computation, the less relevant feature dimensions are effectively suppressed as 

their controlling hyperparameters are automatically reduced to negligible values. The 

feature selection process of Test_a1 is shown in Figure 5.1 as an example. Those of the 

other 19 experiments are illustrated in Figure B1 to B19 in Appendix B. Note that in 

order to plot the graphs clearly, the hyperparameters after each iteration are all 

normalized with respect to the maximum value of the hyperparameters at that iteration: 

( )
( )

( ) ( ) ( )( ) 16,,2,1,
,,,max 1621

L
L

== i
kkk

k
g jjj

j
ij

i                        (5.1) 
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Figure 5.1. Illustration of the Feature Selection Processes of Test_a1 for TWE 

Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 

where  denotes the i-th hyperparameter after the j-th iteration. From the graphs, the 

convergence of the feature selection processes can be clearly seen.  

( )j
ik

 

The values of  at the last iteration of all the experiments are listed in 

Table 5.2. All the numbers are compared with “1”. Those feature dimensions with the 

corresponding k

1621 ,,, kkk L

i’s greater than 1 are selected as relevant features; otherwise, the 

features are rejected, because their contribution to the prediction is compromised by a 

factor smaller than 1. The feature selection results are listed in Table 5.3, with the “√” 

marks representing the selected feature set. 

 

It can be seen from Table 5.3 that Fa, the average force, turns out to be the most 

relevant feature. This result coincides with the wide and successful use of the average 

force for tool wear estimation very well [Lin, 1996; Santanu, 1996]. The good 

correlation between the average force and the tool wear values can also be seen from 

Figure A1 (a) to A20 (a). And there are also 6 other features that appear to be relevant 

in some of the experiments: std, ra, fstd, kts, fm, and fa. As a result, a union of all these 

7 features is taken to be the relevant feature set: {fm, fa, ra, fstd, Fa, std, kts}. 
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Table 5.2 Hyperparameter Values at the Last Iteration for TWE 

Feature Test_A1 Test_A2 Test_A3 Test_A4 Test_A5 Test_A6 Test_A7 Test_A8 Test_A9 Test_A10 

re       0.0045 0.0060 0.2012 0.0056 0.0000 0.0013 0.0091 0.0000 0.0001 0.0001 

fod      0.2836   0.0886 0.0473 0.0995 0.0723 0.2610 0.2249 0.0985 0.2102 0.1451 

sod     0.0101    0.0375 0.0222 0.0178 0.0074 0.0255 0.0065 0.0191 0.0052 0.0159 

fm      0.0078 0.0000 0.0000 0.0598 0.1218 0.0000 0.0847 0.0000 0.0000 0.0181 

fa      0.0835 0.0326 0.0565 0.1915 0.0000 0.0535 1.4259 0.1269 0.0000 0.7220 

df      0.0022    0.0129 0.0608 0.0181 0.0339 0.0307 0.0115 0.0100 0.0194 0.0122 

ra      0.4926 1.8699 0.7049 7.0827 9.7756 5.5813 2.2112 8.6904 16.6580 122.1674 

fstd       0.2273 0.0420 0.1119 0.9217 0.5760 0.6318 0.6086 0.1936 0.0000 1.2434 

sre      0.0825    0.0568 0.0508 0.0138 0.0342 0.0952 0.0274 0.0035 0.0474 0.0480 

kpr     0.0001 0.0111 0.0272 0.0075 0.0043 0.0201 0.0061 0.0084 0.0102 0.0074 

thp     0.3771    0.1654 0.4950 0.0000 0.1985 0.0000 1.1116 0.9294 0.3233 0.9327 

Fa      2.5578 3.3660 2.6926 2.2844 5.5087 3.3153 0.4292 3.1612 3.5657 3.6165 

vf      0.0131    0.0347 0.0101 0.0148 0.0339 0.0225 0.0268 0.0320 0.0148 0.0270 

std      1.2387   0.7704 0.8110 1.3942 2.1895 1.8808 4.7131 1.7750 0.6492 2.9707 

skew    0.0017  0.0030 0.0109 0.0028 0.0000 0.2337 0.0032 0.0195 0.0000 0.0170 

kts 0.0005 0.1502 0.0767 0.0035 0.0510 0.0000 0.0000 0.3732 0.0209 0.3707 

 
Continued: 

Feature Test_A11 Test_A12 Test_B1 Test_B2 Test_B3 Test_B4 Test_B5 Test_B6 Test_B7 Test_B8 

re      0.0091 0.0100 0.0000 0.0000 0.0021 0.0000 0.0000 0.0000 0.0169 0.0000 

fod     0.0332 0.0721 0.0887 0.0462 0.1598 0.0586 0.1006 0.0347 0.1769 0.0943 

sod     0.0021 0.0011 0.0041 0.0005 0.0045 0.0000 0.0210 0.0121 0.0000 0.0127 

fm      0.0568 0.0012 0.0000 0.0000 0.0000 0.0000 0.0775 0.0000 0.0241 1.1234 

fa      0.0000 0.0052 0.3823 0.2171 0.0000 0.3337 0.0094 0.2231 0.2835 0.0886 

df      0.0061 0.0033 0.0000 0.1561 0.0000 0.1078 0.0221 0.0106 0.0009 0.0049 

ra      31.1166 0.6721 0.3592 0.5525 7.2252 3.8678 3.7798 0.4125 0.3239 0.3929 

fstd     0.0755 0.5198 0.0233 0.0113  0.2828 0.8648 0.8205 8.0873 0.0047 0.5429 

sre      0.0547 0.1483 0.0219 0.0687 0.2660 0.2327 0.0501 0.0162 0.0225 0.0309 

kpr     0.0029 0.0031 0.0000 0.0847 0.0218 0.0798 0.0038 0.0052 0.0007 0.0000 

thp     0.6139 0.2867 0.5731 0.2050 0.2456 0.1488 0.1510 0.1509 0.1440 0.4488 

Fa      9.6543 0.9099 4.8620 3.1382 6.6912 1.6410 3.3943 8.9221 4.0167 6.3221 

vf      0.0138 0.0029 0.0218 0.1084 0.0226 0.1467 0.0646 0.0152 0.0071 0.0270 

std      4.4762 1.0996 1.3115 0.9193 0.3197 0.4690 1.5296 6.4630 0.3368 2.3618 

skew    0.8515 0.5174 0.0000 0.0704 0.0569 0.0358 0.1194 0.1634 0.0004 0.0737 

kts 0.3929 1.1077 0.0002 0.0074 0.0320 0.2980 0.4034 2.9630 0.0015 0.1970 
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Table 5.3 Feature Selection Results for TWE 

 re fod sod fm fa df ra fstd sre kpr thp Fa vf std skew kts 

Test_a1            √  √   

Test_a2       √     √     

Test_a3            √     

Test_a4       √     √  √   

Test_a5       √     √  √   

Test_a6       √     √  √   

Test_a7     √  √       √   

Test_a8       √     √  √   

Test_a9       √     √  √   

Test_a10       √ √    √  √   

Test_a11       √     √  √   

Test_a12              √  √ 

Test_b1            √  √   

Test_b2            √     

Test_b3       √     √     

Test_b4       √     √     

Test_b5       √     √  √   

Test_b6        √    √  √  √ 

Test_b7            √     

Test_b8    √        √  √   

 
 
5.2 VERIFICATION OF THE RELEVANCE OF THE SELECTED 
FEATURE SET FOR TWE 

 

In order to verify the relevance of the selected features to tool wear, generalization 

tests are performed. The experimental data sets are divided into two groups, one for 

training and another one for testing. The training and testing data sets are listed in 

Table 5.4 and 5.5, respectively. The 7 selected features {fm, fa, ra, fstd, Fa, std, kts} 

are first used in training and testing. For comparison purpose, the entire 16 and the 

rejected 9 features are used to repeat the procedures. Figure 5.2 shows the results from 

the testing data set T1. Those obtained from the remaining 10 data sets are illustrated 

in Figures C1 to C10 in Appendix C. It can be clearly seen from these figures that the  
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Table 5.4 Training Data Sets for TWE 

No. Insert 
Type 

Spindle 
Speed 
(rpm) 

Feed Rate 
(mm/min)

Depth of 
Cut 

(mm) 

Insert 
Number 

1 AC325 1000 100 1 4 

2 AC325 1000 200 1 2 

3 AC325 1000 300 1 4 

4 AC325 1200 300 1 4 

5 AC325 600 200 2 4 

6 AC325 1000 100 1 4 

7 A30N 1000 300 2 4 

8 A30N 1200 100 1 2 

9 A30N 1200 200 1 4 
 

Table 5.5 Testing Data Sets for TWE 

No. Insert 
Type 

Spindle 
Speed 
(rpm) 

Feed Rate 
(mm/min)

Depth of 
Cut 

(mm) 

Insert 
Number 

T1 AC325 800 150 1 4 

T2 AC325 1000 100 1 2 

T3 AC325 1200 150 1 2 

T4 AC325 1200 200 1 2 

T5 AC325 600 100 2 4 

T6 AC325 800 100 2 2 

T7 A30N 800 200 1 4 

T8 A30N 800 300 1 4 

T9 A30N 1000 200 1 2 

T10 A30N 1000 300 1 4 

T11 A30N 800 300 1 4 
 

estimated wear values using the selected feature set closely follow the measured wear 

curve, whereas those derived from the rejected feature set scatter randomly on the 

graph. The estimated values using the entire feature set also appear to be not as good as 
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(a) 
 

(b) 

 
(c) 

Figure 5.2. TWE Results of T1 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: 

FULL, insert type: AC325. 

 
 

those using the selected feature set, because the input space is corrupted by the noisy 

rejected features.  

 

It can also be observed that in T1, T4, and T11, the best estimates using the 

selected features are slightly biased. These results can be explained by analyzing the 

tool wear growth rate in terms of the amount of wear growth per Newton increase in 

cutting force (µm/N).  

 

The average wear growth rate of the training data sets is 2.5 (µm/N). Due to the 

averaging effect of the neural estimator, the growth rate of the estimated wear is also 

around 2.5. If the true wear growth rate of a testing data set exceeds this number, the 

estimated wear values will be smaller than the measured ones, because the growth of 
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the former lags behind that of the latter; otherwise the estimated values will be larger. 

The true wear growth rate of T1, T4, and T11 is 2.2, 3.5, and 1.7, respectively. 

Therefore, the estimates of T1 and T11 are slightly larger than the measurements; 

while those of T4 are slightly smaller. 

 

The generalization capabilities of the entire, selected, and rejected feature sets are 

compared in terms of the averaged absolute estimation error (AAEE), which is defined 

as: 

( )
N

yf
AAEE

N
i iiMP∑ = −

= 1 z
                                          (5.2) 

where zi represents the input vector comprising the entire, selected, and rejected 

feature set, respectively; fMP(zi) is the MAP estimation output of the BSVR networks;  

yi is the measured wear value; and N is the total number of the points in one testing 

data set. Then the ratios between the AAEEs and 400 microns are calculated to 

indicate the relative estimation errors. 400 microns is used here, because it is the 

threshold to determine whether the tool is failed or not (Chapter 4). The comparisons 

are listed in Table 5.6 and visualized in Figure 5.3. 

 

Table 5.6 and Figure 5.3 indicate the same outcomes. It is clear that the 

generalization capabilities of the selected feature set are the best and much better than 

those of the rejected feature set. This proves that the selected features are relatively 

more relevant to tool wear processes.  

 

5.3 FEATURE SELECTION RESULTS FOR TWR 

The feature selection algorithms for classification are described in Section 3.3 of 

Chapter 3. Unlike the regression, the classification aims to map the feature vectors into 
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Table 5.6 Tool Wear Estimation Results 

Entire Features Rejected Features Selected Features 

Test No. AAEE
(micron) 400

AAEE (%) 
AAEE 

(micron) 400
AAEE  (%) 

AAEE 
(micron) 400

AAEE  (%) 

T1 36.1 9.0 43.7 10.9 34.9 8.7 
T2 67.7 16.9 91.7 22.9 32.5 8.1 
T3 54.9 13.7 69.6 17.4 25.2 6.3 
T4 61.0 15.3 90.6 22.7 39.0 9.8 
T5 30.9 7.7 60.5 15.1 19.1 4.8 
T6 38.3 9.6 50.6 12.7 25.9 6.5 
T7 34.2 8.6 108.3 27.1 33.3 8.3 
T8 53.0 13.3 88.4 22.1 21.8 5.5 
T9 28.4 7.1 51.7 12.9 18.1 4.5 

T10 54.8 13.7 72.3 18.1 36.6 9.2 
T11 75.8 19.0 86.1 21.5 35.5 8.9 

 
Figure 5.3 Comparisons of the Estimation Errors 

 
tool conditions. The feature selection for the classification is to find the most relevant 

features to tool conditions from the same candidate feature vector x as described in 

Section 5.2. The automatic relevance determination algorithm is also used to infer the 

optimal values of the 16 hyperparameters {k1, k2, …, k16} assigned for the 16 feature 

dimensions. The feature selection process of Test_a1 is shown in Figure 5.4 as an 

example. Those of the other 19 experiments are illustrated in Figures D1 to D19 in 

Appendix D. In these illustrations, the hyperparameters are also normalized with 

respect to the maximum values as defined in Equation 5.1. 

70 



Chapter 5 

 
Figure 5.4. Illustration of the Feature Selection Processes of Test_a1 for TWR 

Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
The values of  at the last iteration of all the experiments are listed in 

Table 5.7. “1” is also used as the threshold. Those feature dimensions with the 

corresponding k

1621 ,,, kkk L

i’s greater than 1 are selected as relevant features; otherwise, the 

features are rejected. The feature selection results are listed in Table 5.8, with the “√” 

marks representing the selected features. 

 

It can be seen from Table 5.8 that besides the features chosen out for TWE, three 

more features turn out to be relevant to tool wear recognition, thp, sre, and skew. The 

selected feature set becomes {fm, fa, ra, fstd, sre, thp, Fa, std, skew, kts}, which spans 

a more complex feature space than that of TWE. The addition of the three relevant 

features makes the feature space more easily separable. Another point to note in the 

results is that there is not a single feature that stands out to be most relevant for tool 

condition recognition, unlike that in the case of TWE, where the average force is found 

to be most relevant. This is probably because no single feature among the candidate 

features is representative enough for reliable recognition of tool state. To make the 

feature space separable, multiple features have to work together. 
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Table 5.7 Hyperparameter Values at the Last Iteration for TWR 

Feature Test_A1 Test_A2 Test_A3 Test_A4 Test_A5 Test_A6 Test_A7 Test_A8 Test_A9 Test_A10 

re      0.0000 0.2479 0.0258 0.0353 0.0000 0.1446 0.0120 0.0000 0.0000 0.0000 

fod     0.1162 0.0249 0.0000 0.2366 0.1781 0.1342 0.0768 0.2221 0.1231 0.1410 

sod     0.0654 0.1578 0.0326 0.0818 0.0525 0.1311 0.0514 0.0899 0.0217 0.0465 

fm      0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7.8241 

fa      0.0000 0.0000 0.0134 0.0000 1.2276 0.0000 0.4027 0.0000 0.0000 4.6805 

df      0.2096 0.0950 0.1401 0.0931 0.1449 0.1925 0.0425 0.0802 0.0199 0.0581 

ra      2.0530 3.3845 0.1858 6.2861 3.4543 9.7906 0.3993 5.0866 0.5338 46.7660 

fstd      0.0000 0.0000 0.1060 3.3348 0.7533 0.0000 7.8723 0.0477 0.0000 0.0000 

sre      0.1562 0.0000 0.0000 0.0006 0.0973 0.0196 0.0002 0.0205 0.1847 0.1071 

kpr     0.2449 0.0732 0.0590 0.0595 0.1186 0.1015 0.0466 0.0707 0.0211 0.0699 

thp     0.8351 0.0341 0.4521 0.0000 0.4484 1.0695 0.0000 1.7741 0.0815 2.3264 

Fa      0.1723 0.4877 1.3042 0.7465 2.6544 1.3127 3.2243 0.6005 1.5639 3.7184 

vf      0.0598 0.0626 0.0490 0.0896 0.0657 0.0832 0.0356 0.1137 0.0565 0.0752 

std      0.0016 0.7829 0.0000 0.5916 3.4709 0.0000 0.1452 1.2748 0.0000 1.9404 

skew    0.1101 0.3934 0.0241 0.0000 0.0000 0.0000 0.0000 0.0000 1.5876 0.2550 

kts 1.3640 3.1751 0.0000 0.0000 0.0000 0.2779 0.0000 3.0119 0.0000 0.0000 

 
Continued: 
 

Feature Test_A11 Test_A12 Test_B1 Test_B2 Test_B3 Test_B4 Test_B5 Test_B6 Test_B7 Test_B8 

re      0.0176 0.2041 0.0000 0.2706 0.0000 0.0823 0.0000 0.1800 0.0000 0.0000 

fod     0.0507 0.0818 0.0872 0.4298 0.0668 0.1118 0.3919 0.1407 0.0942 0.2033 

sod     0.0263 0.1343 0.0382 0.4415 0.0274 0.1678 0.2210 0.2749 0.0698 0.0634 

fm      0.0000 0.0000 1.7449 0.0000 0.0000 0.0000 9.8589 0.0000 0.0000 0.6970 

fa      0.0000 0.6699 0.3162 0.0000 0.0000 0.6761 0.0006 0.0000 0.0000 2.4602 

df      0.0252 0.3096 0.0000 0.3964 0.0026 0.1605 0.1110 0.1594 0.0188 0.0609 

ra      101.2571 0.4799 1.6809 0.1980 1.2720 0.7564 4.3998 2.4523 0.0001 4.0414 

fstd     0.0000 0.2614 0.0000 0.0000  2.5916 0.1744 0.2875 0.0000 1.6024 7.4351 

sre      0.2333 0.9705 0.1981 27.7763 0.1435 2.9469 0.0205 1.7964 0.0478 0.0964 

kpr     0.0331 0.2171 0.1819 0.3213 0.1111 0.2159 0.0491 0.1212 0.0124 0.0774 

thp     0.0000 0.2289 0.2961 0.0819 0.0000 0.1119 0.5398 0.0000 3.2492 0.0000 

Fa      15.5439 0.1676 0.9517 0.4316 6.7068 0.3767 1.1849 1.0308 0.6165 4.2867 

vf      0.0877 0.1204 0.0368 0.4884 0.0262 0.1612 0.2088 0.3566 0.0392 0.0739 

std      1.3626 4.9664 0.1880 0.0598 0.0000 0.4557 0.2795 0.3674 0.0000 0.0000 

skew    0.0000 0.0286 0.0000 0.1622 1.1629 0.0519 0.0515 8.5447 0.0000 0.1369 

kts 0.0000 0.5445 0.3297 0.5404 177.1931 0.6323 0.0000 4.9205 0.3759 0.2641 
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Table 5.8 Feature Selection Results for TWR 

 re fod sod fm fa df ra fstd sre kpr thp Fa vf std skew kts 

Test_a1       √         √ 

Test_a2       √         √ 

Test_a3            √     

Test_a4       √ √         

Test_a5     √  √     √  √   

Test_a6       √    √ √     

Test_a7        √    √     

Test_a8       √    √   √  √ 

Test_a9            √   √  

Test_a10    √ √  √    √ √  √   

Test_a11       √     √  √   

Test_a12              √   

Test_b1    √   √          

Test_b2         √        

Test_b3       √ √    √   √ √ 

Test_b4         √        

Test_b5    √   √     √     

Test_b6       √  √   √   √ √ 

Test_b7        √   √      

Test_b8     √  √ √    √     

 

5.4 VERIFICATION OF THE RELEVANCE OF THE SELECTED 
FEATURE SET FOR TWR 

 

In order to verify the relevance of the selected feature set to tool conditions, 

generalization tests are also performed. The training and testing data sets are listed in 

Table 5.9 and 5.10, respectively. The point where the tool is found worn in each data 

set is marked by the item “Average Wear at Tool Failure Point”, which is used to 

distinguish the failure stage from the fresh one. Note that these values vary from one 

data set to another. This is because each of these values is taken as the average of the 

wear value of every insert in the cutter when any insert is found worn; and the wear 

growth is usually uneven among different inserts.  
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Table 5.9 Training Data Sets for TWR 

No. Insert 
Type 

Spindle 
Speed 
(rpm) 

Feed Rate 
(mm/min)

Depth of 
Cut 

(mm) 

Insert 
Number 

Average Wear 
at Tool Failure 

Point (mm) 
1 AC325 800 150 1 4 0.3718 

2 AC325 1000 100 1 4 0.4102 

3 AC325 1200 150 1 2 0.3621 

4 AC325 600 100 2 4 0.3520 

5 AC325 1000 100 1 4 0.2633 

6 A30N 800 200 1 4 0.4200 

7 A30N 800 300 1 4 0.3626 

8 A30N 1000 300 1 4 0.3938 

9 A30N 800 300 1 4 0.3382 
 

Table 5.10 Testing Data Sets for TWR 

No. Insert 
Type 

Spindle 
Speed 
(rpm) 

Feed Rate 
(mm/min)

Depth of 
Cut 

(mm) 

Insert 
Number 

Average Wear 
at Tool Failure 

Point (mm) 
T1 AC325 1000 100 1 2 0.4595 

T2 AC325 1000 200 1 2 0.3960 

T3 AC325 1000 300 1 4 0.3043 

T4 AC325 1200 200 1 2 0.4238 

T5 AC325 1200 300 1 4 0.3234 

T6 AC325 600 200 2 4 0.2736 

T7 AC325 800 100 2 2 0.2915 

T8 A30N 1000 200 1 2 0.3803 

T9 A30N 1000 300 2 4 0.3920 

T10 A30N 1200 100 1 2 0.3780 

T11 A30N 1200 200 1 4 0.4094 
 

The 10 selected features are first used in training and testing. Then the entire 16 

and the rejected 6 features are used to repeat the procedures. Figure 5.5 shows the 

results from the testing data set T1. Those obtained from the remaining 10 data sets are 

illustrated in Figures E1 to E10 in Appendix E. Note that the first alarms given by the 

classifiers are marked with a vertical line jumping from the bottom to the top. 
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(a) 

 
(b) 

 
(c) 

Figure 5.5. TWR Results of T1 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 100mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 
 

It can be clearly seen from these figures that the classification results using the 

rejected feature set are quite noisy for all of the tests, with alarms given out even at the 

early stage of the tools. The results using the selected and the entire feature set are 

much better. 

 

The generalization capabilities of the entire, selected, and rejected feature sets are 

compared in terms of the actual wear at the first alarm, and the successful classification 

rate. The actual wear at the first alarm is defined as the actual wear value when the 

classifier gives the first alarm. The successful classification rate is the ratio between 

the number of the successfully classified points and the total number of points. The 

comparisons are listed in Table 5.11. 
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Table 5.11 Tool wear recognition Results 

Successful Classification Rate Actual Wear at the First Alarm 
Test 
No. All Features Rejected 

Features 
Selected 
Features 

All Features 
(mm) 

Rejected 
Features 

(mm) 

Selected 
Features 

(mm) 

Average 
Wear at Tool 
Failure Point 

(mm) 

T1 96.00% 83.00% 97.00% 0.3745 0.0056 0.4340 0.4595 

T2 97.22% 88.89% 97.22% 0.3675 0.0205 0.3675 0.3960 

T3 94.94% 67.09% 94.94% 0.3297 0.0300 0.3297 0.3043 

T4 95.71% 70.00% 100.00% 0.3926 0.0125 0.4238 0.4238 

T5 95.38% 72.31% 98.46% 0.3682 0.0105 0.3383 0.3234 

T6 96.00% 67.00% 98.00% 0.1760 0.0941 0.2830 0.2736 

T7 97.00% 33.65% 97.00% 0.2022 0.0132 0.2579 0.2915 

T8 97.06% 72.06% 97.06% 0.3718 0.0213 0.3718 0.3803 

T9 98.75% 88.75% 97.50% 0.4011 0.2006 0.4103 0.3920 

T10 99.44% 87.78% 95.56% 0.3810 0.0029 0.3810 0.3780 

T11 90.86% 41.71% 96.57% 0.2361 0.0116 0.4301 0.4094 

 

By their definitions, the successful classification rate indicates the stability of the 

classifier (frequently varying classification results are regarded as unstable); while the 

actual wear at the first alarm represents the accuracy (the closeness of the detected 

failure point to the actual one). It is obvious that both the stability and the accuracy of 

the classifier using the selected feature set is much better than that using the rejected 

feature set. For most of the cases (except T9 and T10), the stability of the classifier 

using the selected feature set is not worse than that using the entire feature set. The 

reason why the successful rates using the entire feature set are comparable to those 

using the selected feature set is that the hyperparameters associated with the rejected 

feature dimensions are automatically reduced to negligible values in training. And 

therefore those features don’t have much influence on the classification result. 

 

From practical viewpoint, the identification error can be viewed as the absolute 

difference between the actual wear at the first alarm and the average wear at the tool 

failure point, which indicates the capability of the classifier in detecting tool failures in 
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time. The comparisons of the identification errors can be visualized in Figure 5.6. It 

can be clearly seen that the accuracy of the classifier using the selected feature set is 

the best, because the first alarms are given most punctually. 

 
Figure 5.6 Comparisons of the Classification Errors 

 

5.5 SUMMARY OF THE RESULTS 

7 features {fm, fa, ra, fstd, Fa, std, kts} are identified to be relevant to tool wear 

estimation. And three more features, thp, Fa, and skew, are added to the selected 

feature set for tool wear recognition. The comparisons of the generalization 

capabilities using the entire, selected, and rejected feature sets indicate the successful 

identification of the relevant features in both the regression and the classification. 

 

In addition, the performance of the estimator and the classifier designed using the 

Bayesian framework is good. With the selected feature set, an accuracy of more than 

90% is achieved for tool wear estimation. On the other hand, a stable and accurate 

classifier is implemented for tool wear recognition, with a stability of more than 95% 

and an accuracy of recognizing a failed tool in the close vicinity of the actual failure 

point (identification error less than 35 microns). 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 
 
6.1 CONCLUSIONS 

In response to the latest development in using artificial intelligence approaches in 

tool condition monitoring, this work is devoted to study the effectiveness of various 

features for two main tasks in TCM, tool wear estimation and tool wear recognition. 

This is because the proper selection of features is a vital issue in using neural networks, 

which has also been widely acknowledged in the field of TCM [Leem, 1995].  

 

Force signal is used, due to its high sensitivity to tool wear and low noise. Cutting 

experiments have been conducted under various conditions. The influence of the radial 

run-out on the cutting force and force features is examined through analysis of the 

force signals. It has been found that when the run-out is greater than the feed per tooth, 

the force pulses within one rotation are quite different from each other even at the fresh 

stage of the tool. Theoretically, this phenomenon should occur only when the tool is 

highly worn or some of the teeth are broken. In order to avoid the influence of the 

force fluctuating behavior caused by the run-out, all the features are extracted from the 

force signals within one rotation instead of one tooth period, so that the run-out can be 

eliminated as a “common mode noise” when comparing the force features between 

adjacent tool rotations. 
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16 different feature extraction methodologies are introduced and discussed, which 

have all been shown to be effective for tool condition monitoring. These include time-

series analysis, statistical analysis, and signal processing approaches. According to the 

intrinsic relationships among these features, the feature extraction is performed 

through a five-step procedure. The 16 features form the scope for the feature selection 

in this study. 

 

The feature selection is realized through the automatic relevance determination 

(ARD) approach, which by itself does not make sense and has to be implemented in 

specific neural networks. In this study, the ARD approach is implemented in Bayesian 

support vector machines, which is the combination of the Bayesian probability theory 

and the classic support vector machines. 

 

To select features for tool wear estimation, the Bayesian support vector regression 

algorithm is used. The average force within one tool rotation has been proven to be the 

most relevant feature for tool wear estimation, because of its good correlation to tool 

wear processes. It forms the relevant feature set together with 6 other selected features, 

including amplitude ratio, standard deviation, maximum force level, kurtosis, total 

amplitude of cutting force, and standard deviation of the force components in tool 

breakage zone. The generalization capabilities of the entire, selected, and rejected 

feature sets are tested and compared. The results using the selected features turn out to 

be the best, proving that they are relatively more relevant to tool wear processes.  

 

To select features for tool wear recognition, the Bayesian support vector 

classification algorithm is used. Besides the features chosen out for TWE, three more 

features turn out to be relevant to TWR. They are skew, total harmonic power, and 
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total amplitude of cutting force. The performance of the entire, selected, and rejected 

features is compared in terms of the successful classification rates and the 

identification errors. Once again, the performance of the selected features turns out to 

be the best, proving that they are more relevant to tool wear.  

 

Besides the successful identification of the relevant features, good generalization 

capabilities have also been achieved for both TWE and TWR. An accurate tool wear 

estimator has been implemented using the Bayesian support vector regression 

algorithm, with an accuracy of more than 90%. And by using the Bayesian support 

vector classification algorithm, a stable and accurate classifier has been achieved for 

tool wear recognition, with a stability of more than 95% and an identification error less 

than 35 microns. 

 

6.2 FUTURE WORK 

According to Liang [2002], the future development of tool condition monitoring 

technology is likely to take on the following paths: 

• Embedding sensors into the machine tool structure. For example, force sensing 

elements may be directly mounted in the tool holder to monitor flank wear. 

• Miniaturizing system components. For example, a MEMS thermometer may be 

positioned right next to the cutter tip to measure the temperature at the tool- 

workpiece interface directly. 

• Telecommunication-based and wireless process monitoring. This technology may 

enable the remote monitoring of machining processes. 

 

These are the long-term goals for TCM. There are also some challenges to be faced 

in the nearest future, for example, the realization of robust TCM systems for industrial 
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application and the integration of multiple monitoring systems for comprehensive 

machining process monitoring. 

 

Although considerable research has been done in the area of tool condition 

monitoring, industrial realization and commercial availability of TCM systems are still 

quite limited at present. Take milling process monitoring as an example. Most of the 

current systems are not robust enough to deal with various milling processes in 

industrial environment. One limitation is that they can only deal with some regular 

shapes of workpiece. Cubes are the most popular shape used in theoretical studies, 

because of the uniform cutting geometry. However, when it comes to shapes as 

complex as shown in Figure 6.1, most of the systems designed for cubic workpiece 

may not function properly. The problem lies in the feature extraction methodologies. 

For example, all the 16 features considered in this study are based on the waveform of 

the force signal. However, force waveforms can vary greatly from rotation to rotation 

just due to the change in cutting geometry, which will make the features too noisy to 

indicate tool states. Based on this consideration, alternative feature extraction 

methodologies insensitive to cutting geometry or alternative sensing techniques have  

Surface under milling

 

Figure 6.1 Illustration of a Complex Shape 
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to be developed in future work. A possible solution, for example, is to use computer 

vision systems, which can directly measure the wear volume rather than infer it from 

force signals. However, reliable vision systems, which can be fit into practical cutting 

environments, have to be developed in future work. 

 

Besides tool condition monitoring, there are some other types of monitoring 

systems, e.g. chatter detection systems, which are also very important to machining 

processes. According to Du [1989], chatter is one of the most destructive malfunctions 

in machining processes. If uncontrolled, it can result in poor surface finish, premature 

wear, chipping and breakage of the cutting tool. So it could be interesting and 

necessary to combine the individual monitoring systems together. Approaches to 

chatter detection are commonly to investigate the spectral density of a process signal, 

such as cutting force [Du, 1989]. Therefore, it is possible to combine tool condition 

monitoring and chatter detection systems together by just using one dynamometer. 

Integration of the two systems could take the following form: 

Force

Spectral
Density
Analysis

Feature
Extraction

Thresholding Chatter
Detection

Neural
Network

Tool
Condition

Monitoring

OR
Desicion

 
Figure 6.2 Combination of TCM and Chatter Detection 

 

Not limited to this, the future machining process monitoring systems should be the 

integration of multiple subsystems for the monitoring of tool condition, chatter onset, 

part dimensions, surface roughness, spindle bearing failure, etc. Such systems are 

called supervisory systems, which are drawing more and more attention from the 

researchers in the field [Teltz, 1993; Landers, 1998]. 
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Appendix A 
Illustration of Cutting Force, Tool Wear, and Features 
 
(a) 

(b) 

Figure A1. Illustration of the Cutting Force, Tool Wear, and Features of Test_a1 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A2. Illustration of the Cutting Force, Tool Wear, and Features of Test_a2 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A3. Illustration of the Cutting Force, Tool Wear, and Features of Test_a3 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A4. Illustration of the Cutting Force, Tool Wear, and Features of Test_a4 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A5. Illustration of the Cutting Force, Tool Wear, and Features of Test_a5 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A6. Illustration of the Cutting Force, Tool Wear, and Features of Test_a6 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A7. Illustration of the Cutting Force, Tool Wear, and Features of Test_a7 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A8. Illustration of the Cutting Force, Tool Wear, and Features of Test_a8 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A9. Illustration of the Cutting Force, Tool Wear, and Features of Test_a9 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A10. Illustration of Cutting Force, Tool Wear, and Features of Test_a10 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A11. Illustration of Cutting Force, Tool Wear, and Features of Test_a11 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A12. Illustration of Cutting Force, Tool Wear, and Features of Test_a12 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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(a) 

(b) 

Figure A13. Illustration of Cutting Force, Tool Wear, and Features of Test_b1 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A14. Illustration of Cutting Force, Tool Wear, and Features of Test_b2 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A15. Illustration of Cutting Force, Tool Wear, and Features of Test_b3 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A16. Illustration of Cutting Force, Tool Wear, and Features of Test_b4 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A17. Illustration of Cutting Force, Tool Wear, and Features of Test_b5 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A18. Illustration of Cutting Force, Tool Wear, and Features of Test_b6 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A19. Illustration of Cutting Force, Tool Wear, and Features of Test_b7 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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(a) 

(b) 

Figure A20. Illustration of Cutting Force, Tool Wear, and Features of Test_b8 
(a) average cutting force & tool wear, (b) features 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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Appendix B 
Illustration of Feature Selection Processes for TWE 
 

 
Figure B1. Illustration of the Feature Selection Processes of Test_a2 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 

 

 
Figure B2. Illustration of the Feature Selection Processes of Test_a3 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure B3. Illustration of the Feature Selection Processes of Test_a4 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure B4. Illustration of the Feature Selection Processes of Test_a5 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure B5. Illustration of the Feature Selection Processes of Test_a6 

Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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Figure B6. Illustration of the Feature Selection Processes of Test_a7 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure B7. Illustration of the Feature Selection Processes of Test_a8 

Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure B8. Illustration of the Feature Selection Processes of Test_a9 

Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure B9. Illustration of the Feature Selection Processes of Test_a10 

Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure B10. Illustration of the Feature Selection Processes of Test_a11 

Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure B11. Illustration of the Feature Selection Processes of Test_a12 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure B12. Illustration of the Feature Selection Processes of Test_b1 

Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure B13. Illustration of the Feature Selection Processes of Test_b2 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure B14. Illustration of the Feature Selection Processes of Test_b3 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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Figure B15. Illustration of the Feature Selection Processes of Test_b4 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure B16. Illustration of the Feature Selection Processes of Test_b5 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure B17. Illustration of the Feature Selection Processes of Test_b6 

Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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Figure B18. Illustration of the Feature Selection Processes of Test_b7 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure B19. Illustration of the Feature Selection Processes of Test_b8 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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Appendix C 
Tool Wear Estimation Results 

 
 

(a) 
 

(b) 

 
(c) 

Figure C1. TWE Results of T2 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 100mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure C2. TWE Results of T3 
(a) Entire, (b) Rejected, (c) Selected Set 
Cutting conditions: spindle speed = 

1200rpm, feed rate = 150mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 

116 



Appendix C 

(a) 
 

(b) 

 
(c) 

Figure C3. TWE Results of T4 
(a) Entire, (b) Rejected, (c) Selected Set 
Cutting conditions: spindle speed = 

1200rpm, feed rate = 200mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure C4. TWE Results of T5 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 2, immersion rate: 

FULL, insert type: AC325. 
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(a) 
 

(b) 

 
(c) 

Figure C5. TWE Results of T6 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 100mm/min, depth of 
cut = 1 mm, insert number = 4, immersion 

rate: FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure C6. TWE Results of T7 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: 

FULL, insert type: A30N. 
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(a) 
 

(b) 

 
(c) 

Figure C7. TWE Results of T8 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: 

FULL, insert type: A30N. 

 
 

(a) 
 

(b) 

 
(c) 

Figure C8. TWE Results of T9 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 200mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: A30N. 
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(a) 

 
(b) 

 
(c) 

Figure C9. TWE Results of T10 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 300mm/min, depth of 
cut = 1 mm, insert number = 4, immersion 

rate: FULL, insert type: A30N. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure C10. TWE Results of T11 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: 

FULL, insert type: A30N. 
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Appendix D 
Illustration of Feature Selection Processes for TWR 
 
 

 
Figure D1. Illustration of the Feature Selection Processes of Test_a2 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 

 

 
Figure D2. Illustration of the Feature Selection Processes of Test_a3 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure D3. Illustration of the Feature Selection Processes of Test_a4 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure D4. Illustration of the Feature Selection Processes of Test_a5 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure D5. Illustration of the Feature Selection Processes of Test_a6 

Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 
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Figure D6. Illustration of the Feature Selection Processes of Test_a7 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure D7. Illustration of the Feature Selection Processes of Test_a8 

Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure D8. Illustration of the Feature Selection Processes of Test_a9 

Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure D9. Illustration of the Feature Selection Processes of Test_a10 

Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 

 
Figure D10. Illustration of the Feature Selection Processes of Test_a11 

Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 2, immersion rate: FULL, insert type: AC325. 

 
Figure D11. Illustration of the Feature Selection Processes of Test_a12 

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: AC325. 
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Figure D12. Illustration of the Feature Selection Processes of Test_b1 

Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure D13. Illustration of the Feature Selection Processes of Test_b2 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure D14. Illustration of the Feature Selection Processes of Test_b3 

Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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Figure D15. Illustration of the Feature Selection Processes of Test_b4 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure D16. Illustration of the Feature Selection Processes of Test_b5 

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure D17. Illustration of the Feature Selection Processes of Test_b6 

Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut = 1 
mm, insert number = 2, immersion rate: FULL, insert type: A30N. 
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Figure D18. Illustration of the Feature Selection Processes of Test_b7 

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 

 
Figure D19. Illustration of the Feature Selection Processes of Test_b8 

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut = 1 
mm, insert number = 4, immersion rate: FULL, insert type: A30N. 
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Appendix E 
Tool Wear Recognition Results 
 
 

(a) 
 

(b) 

 
(c) 

Figure E1. TWR Results of T2 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 200mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure E2. TWR Results of T3 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 300mm/min, depth of 
cut = 1 mm, insert number = 4, immersion 

rate: FULL, insert type: AC325. 
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(a) 
 

(b) 

 
(c) 

Figure E3. TWR Results of T4 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1200rpm, feed rate = 200mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure E4. TWR Results of T5 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1200rpm, feed rate = 300mm/min, depth of 
cut = 1 mm, insert number = 4, immersion 

rate: FULL, insert type: AC325. 
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(a) 
 

(b) 

 
(c) 

Figure E5. TWR Results of T6 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 600rpm, 
feed rate = 200mm/min, depth of cut = 2 
mm, insert number = 4, immersion rate: 

FULL, insert type: AC325. 

 
 

(a) 
 

(b) 

 
(c) 

Figure E6. TWR Results of T7 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 800rpm, 
feed rate = 100mm/min, depth of cut = 2 
mm, insert number = 2, immersion rate: 

FULL, insert type: AC325. 
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(a) 
 

(b) 

 
(c) 

Figure E7. TWR Results of T8 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 200mm/min, depth of 
cut = 1mm, insert number = 2, immersion 

rate: FULL, insert type: A30N. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure E8. TWR Results of T9 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1000rpm, feed rate = 300mm/min, depth of 
cut = 2mm, insert number = 4, immersion 

rate: FULL, insert type: A30N. 
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(a) 

 
(b) 

 
(c) 

Figure E9. TWR Results of T10 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1200rpm, feed rate = 100mm/min, depth of 
cut = 1 mm, insert number = 2, immersion 

rate: FULL, insert type: A30N. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure E10. TWR Results of T11 
(a) Entire, (b) Rejected, (c) Selected Set 

Cutting conditions: spindle speed = 
1200rpm, feed rate = 200mm/min, depth of 
cut = 1 mm, insert number = 4, immersion 

rate: FULL, insert type: A30N. 
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Appendix F Miscellaneous 
 

 
Figure F1. Force Measurement System 

 

 
Figure F2. Tool Wear Measurement System 
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Type: Sumitomo SDKN42MT 

Relief Angle = 15o Cutting Edge Length l = 
d = 12.7mm 

1.2mm

l

d

90o s

15o

 

Thickness s = 
3.18mm Nose Width = 1.2mm 

Figure F3. Insert Geometry 
 

Type: TUNGALOY EGD4450R 

Rake Angle: 
A.R. = +15o, R.R. = -3o  

Cutting Diameter = 
50mm 

45o

Face Mill

Insert

Workpiece
 

Number of Inserts = 4 Stock: Right Hand 

Figure F4. Face Mill Geometry 
 

 
Figure F5. View Window of the Online TCM Software 
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Figure F6. Milling Properties Dialog 

 

 
Figure F7. DAQ Specifications Dialog 

 

 
Figure F8. Monitoring Dialog 
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Figure F9. Print TCM Report 

 

 
Figure F10. View Window under Working 
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