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SUMMARY

The main objective of this project is to investigate the effectiveness of various
features for tool condition monitoring (TCM) during milling processes. Sixteen
different features extracted from force signals are considered, which have all been
shown to be effective for TCM. These include residual errors derived from
autoregressive models, statistical quantities, and frequency characteristics of force
signals. Cutting experiments have been conducted under various conditions. A five-
step approach has been proposed to extract the 16 features from the force signals
measured in the experiments. Two innovative methodologies for neural networks are
introduced and adopted in TCM, which are Bayesian interpretations for support vector
machines (BSVM) and automatic relevance determination (ARD). Based on these
approaches, two relevant feature sets have been identified from the 16 features for two
main tasks in TCM: tool wear estimation (TWE) and tool wear recognition (TWR).
The generalization capabilities of the entire, selected, and rejected feature sets have
been tested and compared. Good generalization results have been achieved for both
TWE and TWR using the selected features, which are superior to those using either the
entire or the rejected feature set. The results prove that the selected features are
relatively more relevant to tool wear processes, and draw attention to using the BSVM

methodologies in TCM.
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Chapter 1

CHAPTER 1

INTROUDUCTION

1.1 BACKGROUND

In recent years, significant advances have been achieved in the manufacturing
environment. Manufacturing systems are fast converting into fully automated
environments such as computer integrated manufacturing systems (CIMS) and flexible
manufacturing systems (FMS). However, in order to meet the need of industries for
saving cost, improving quality, and reducing production time, robust and practical
process monitoring systems have to be further developed and introduced [Byrne, 1995].
Tool condition monitoring (TCM) systems are among such kind of systems, which are
considered to be the most crucial and determining factor to successful maximization of

the metal cutting process [Dimla, 1996].

Tool condition monitoring is primarily for tool wear monitoring [Lange, 1992].
Tool failure resulted from wear represents about 20% of machine tool down-time and
negatively impacts the work quality in the context of dimensions, finish, and surface
integrity [Liang, 2002]. As a result, considerable research has been carried out in this
area, including turning [Emel, 1988; Abu-Zahra, 1997; Niu, 1998], milling [Altintas,
1989; Elbestawi, 1991; Tarng, 1994], and drilling [Tansel, 1992; Elwardany, 1996;
Huseyin, 2001]. No matter for which kind of processes the tool condition monitoring

system is developed, it can be viewed as an information flow and processing system.
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The information flow in the tool condition monitoring systems starts at the data
acquisition stage, when signals are measured from the process using sensors. The
sensor systems can be categorized into direct and indirect measurement systems.
Direct measurement techniques measure the tool geometry directly, such as optical
scanning of tool tips [Yamazaki, 1974], laser displacement and intensity measurement
of tool geometric failures [Ryabov, 1996], and optical measurement of the flank wear
land [Kurada and Bradley, 1997]. These systems possess a high degree of accuracy.
However, they are unsuitable for practical deployment due to installation problems and
the harsh environment of the practical cutting processes [Byrne, 1995]. Indirect
measurement systems measure some process-borne quantities, from which the actual
tool wear can be deduced. These include measurement of cutting forces [Altintas, 1988;
Elbestawi, 1990; Tansel, 1994], acoustic emissions (AE) [Sampath, 1987; Wilcox,
1997; Jemielniak, 1998], vibrations [Lee, 1987; Coker, 1996; Li, 2000], and feed drive
current [Rangwala, 1987; Altintas, 1992]. These systems are less complex and more
suitable for practical application [Byrne, 1995]. The sensor systems can also be
categorized into multiple-sensor and single-sensor systems, according to the types of
the sensors deployed. Multiple-sensor systems [Silva, 1997; Choi, 1999] provide richer
information about the process by various kinds of signals, and thus ensure a better
performance. Single-sensor systems [Yao, 1993; Purushothaman, 1994] are easier to
implement and more suitable for real-time applications due to the smaller amount of

information to process.

The information processing in the tool condition monitoring system is responsible
for extracting meaningful features from raw signals and making decisions on tool
conditions. For the direct measurement systems, tool wear can be directly obtained

from the acquired data. For example, the flank wear land can be directly extracted
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from the captured tool images [Kurada and Bradley, 1997]. For the indirect
measurement systems, the acquired data have to be mapped to tool wear in quite
different approaches. Multiple features are usually extracted to replace the raw data.
Then they are fed into an empirical model to deduce tool wear, such as a stochastic-

process model [Altintas, 1988] and a neural network [Tansel, 1994].

Some commercial tool condition monitoring systems are now in the market and are
used in industry. However, the systems have narrow range of performance or require
substantial training or setup time to function correctly [Byrne, 1995; Liang, 2002]. The
current research activities in TCM aim to develop systems with higher reliability and

flexibility.

1.2 LITERATURE REVIEW

This study focuses on milling process monitoring using force signals, due to its
high sensitivity to tool wear [Altintas, 1989], robustness in harsh working environ-
ments and convenience in installation [Byrne et. al., 1995]. The review of the literature
concentrates on some of the relevant studies. These can be generally categorized into
three methodologies, including model-based method, statistical-stochastic analysis,

and artificial intelligence approaches.

1.2.1 MODEL-BASED METHODS

The research on tool life can be traced back to Taylor’s work around 1906. He built
a model, in which the tool life was related to the cutting speed by a power function
relationship [Taylor, 1906]. This model is based on empirical results rather than on a
physical model of the wear process, and therefore does not always work in tool life

prediction.
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Rabinowica [1977] developed a quantitative description of the abrasive wear
process over the entire range of abrasive hardnesses. It was a model of abrasive force
and was dependent on the hardness of the tool and the inclusions in the workpiece.
This model adequately explained the relationship between the wear and mechanical

activation.

Kramer [1986] suggested that there were other causes of tool wear, and separated
the mechanisms controlling the wear rate of a tool materials into three regimes,
depending on the cutting temperature and the properties of the tool and workpiece
materials. The first is the low-temperature regime, where the wear of the tool material
is determined primarily by its hardness. Rabinowica’s abrasive model works well in
this regime. The other two regimes are under higher cutting temperatures, with the
solid solubility and the chemical dissolution of the tool material determining the wear
resistance. Based on this understanding, Kramer came up with a chemical dissolution
wear model, and combined it with the abrasive model, which resulted in a composite

wear rate model.

Koren [1978] developed a flank wear model using a linear control theory. He
assumed two principal mechanisms as wear causes: a thermally activated one and a
mechanically activated one. The wear process is mathematically treated as a positive
feedback process, whereby the wear raises the cutting forces and temperature and it

thereby raises the wear growth rate.

The model-based methods mentioned above contribute to the understanding of the

physical mechanisms of tool wear process, the determination of optimal cutting
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conditions, and the design of tool materials. However, they are the functions of cutting
conditions and dependent on the properties of the tool and workpiece materials. To
implement, a large database must be established through numerous experiments to

furnish the constants in the models.

1.2.2 STATISTICAL-STOCHASTIC ANALYSIS

In 1980°s and the early 1990’s, the trend of the research on tool condition
monitoring is based on statistical and stochastic analysis. These methodologies are
employed to evaluate the relationships between tool wear processes and the
characteristics of the signals in both the time domain and the frequency domain.
Thresholds are commonly imposed on the results from the analysis to make a judgment

on tool state.

Time series analysis has been successfully adopted by many researchers to sense
tool breakages. Lan [1986] monitored the feed forces in milling using a very high-
order autoregressive time series filter (AR™) to detect tool breakages. Altintas [1988]
suggested that high-order time-series filters are not practical for real time applications
due to the large computation time and the inefficiency in distinguishing the transient
cutting from the tool breakage event. He thus proposed an AR' model to predict the
cutting force and calculate the difference between the actual measurement and
predicted value, which was called as the residual error of the cutting force. He found
that when the process suddenly and sharply deviates from its normal course, which
means a breakage occurs, the model becomes unable to track the process for several
intervals. He used this force variation phenomenon to detect tool breakages in milling.

A similar approach can be found in Yan’s work [1995]. Also by using AR models
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(20“‘~24th order), Tansel [1993a] further evaluated the estimation error by calculating

the sum of the squared residual errors in each tooth period.

Without the prediction steps in time-series analysis methodologies, some statistical
quantities of cutting force signals can be calculated and used to monitor tool status.
Altintas [1989] used the first and second order differencing of a time averaged
resultant force to detect tool failures in milling. Tarn [1989] calculated four guantities
from each tooth period to monitor tool and cutting conditions in milling, which
included maximum force level, total amplitude of the cutting force, combined
incremental force changes, and amplitude ratio. Zhang [1995] used the peak rate of
cutting forces, and the relative eccentricity rate of the cutter to detect tool breakages.
The force peak rate of the adjacent tooth periods was defined as the ratio between the
difference and the sum of force peaks in adjacent tooth periods, which was claimed to
be independent of the cutting conditions such as cutting depth, cutting thickness and

feed, etc.

Signal processing techniques have also been successfully used in monitoring tool
failures. Tarng [1990] defined a tool breakage zone, which is located within the
frequency range between the d.c. component and the tooth passing frequency. And he
found that the force components within this zone correlate to the tool breakage very
well. He extracted the tool breakage zone components using a band-pass filter. Then
the standard deviation of the force data was calculated. Elbestawi [1991] et al
performed FFT on the cutting force signal to obtain the spectrum of the cutting force.

Then the ratio between the harmonics which are most and least sensitive to wear was
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calculated. However, a database has to be established and used for searching of the

harmonics which are most and least sensitive to wear.

The major difficulty of the statistical-stochastic analysis methodologies lies in the
determination of the threshold, which could be quite sensitive to various cutting

conditions and tool-workpiece properties.

1.2.3 ARTIFICIAL INTELLIGENCE APPROACHES

Recently, it has been widely acknowledged that a better solution for TCM systems
lies in artificial intelligence approaches [Monostori, 1993]. These approaches include
pattern recognition, expert system, neural network, and fuzzy logic. Like the statistical-
stochastic analysis methodologies, it is also necessary to extract meaningful features
from raw signals in using these approaches. However, tool failure detection using
artificial intelligence approaches is more sophisticated than just using thresholds,

because of the complicated procedure in making a decision.

Elbestawi [1989] designed a linear discriminant function (LDF) classifier to
partition the feature space into signal classes. He found that the harmonic contents of
cutting forces and spindle vibrations are sensitive to tool flank wear. So he summed up
the powers at the fundamental tooth frequency and its harmonics and derived a total
harmonic power. Then the total harmonic powers of cutting forces and spindle
vibrations were mapped into one of the partitions through the classifier. And then a

decision could be made on tool status.
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Unlike LDF operators, neural networks have the advantages of realizing
complicated nonlinear mappings. They have been widely used in TCM systems, both
for tool failure detection and for tool wear estimation. Leem [1995] used a customized
neural network in online monitoring of cutting tool wear. Power spectrum and four
statistics (mean, standard deviation, skew, and kurtosis) were extracted from cutting
force and AE signals. Tool wear levels were first topologically ordered by Kohonen’s
self organizing map (SOM). Then the input features were transformed via input feature
scaling to make the decision boundaries of the neural network approximate those of
error-minimizing Bayes classifier. Tansel [1992] compared two types of neural
networks, the restricted Coulomb energy (RCE) and the adaptive resonance theory
(ART2), in tool breakage detection. 10 normalized averages within one full tool
revolution were used as input features. RCE-type neural networks were found to be
convenient and beneficial for detection of tool breakage in processes with constant
cutting conditions. ART2 was found to be better in varying cutting conditions and
heavy tool wear, due to the continuous learning capability. Tarng [1992] applied a
multi-layer perceptron (MLP)-type neural network in sensing tool breakage. The
average force and the variable force, derived by subtracting the median force from the
average force, were used as input features. In the later work of Tansel [1995], wavelet
transformations were used in compressing the force signals and eliminating the high-
frequency components. Then the estimated parameters of the wavelet transformations
were classified by using ART2-type neural networks. Better performances were

achieved than using the 10 averages in one revolution in his earlier work.

Neural networks have also been widely used in tool wear estimation. Using neural

networks to model complex data can be considered as performing a curve fitting



Chapter 1

operation in multidimensional space. Elanayar [1995] used radial basis function neural
networks (RBF) to map feed rate and spindle speed to flank and crater wear. Good
results were reported for flank wear estimation. However, the performance for
estimating crater wear was not reliable. Santanu [1996] mapped average force and
cutting conditions to flank wear using MLP-type neural networks. Reasonably close
assessment of target flank wear values was achieved. A similar approach can be found
in Lin’s work [1996]. Besides the neural network approach, Lin also established and
evaluated two regression models. The 6-24-12-1 network model was finally proven to

be more accurate in tool wear prediction.

According to these prior studies, the advantages of neural networks in TCM
applications can be summarized as follows:
« fault tolerance and adaptability;
« data-driven nature;
e Noise suppression; and

« parallel processing capabilities.

1.3 OBJECTIVES AND SCOPE OF THIS STUDY

The TCM methodologies based on the statistical-stochastic analysis and artificial
intelligence approaches are listed in Table 1.1 in chronological order. It can be clearly
seen that there are many different kinds of features. Although all of these features have
been shown to be effective for TCM, it is only until recently that few studies have been
done to compare them [Goebol, 2000; Sun, 2002]. The necessity to do the comparison
is two-fold. First of all, in the implementation of online systems, a compact feature set

means less computation time and therefore better real-time performance. Besides, the
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Table 1.1 TCM Methodologies

No | Objective Features Decision Making Reference
1 TBD! Residual Error Thresholding Lan, 1986
2 TBD Residual Error Thresholding Altintas, 1988
3 | TwD? 1% & 2" order differencing Thresholding Altintas, 1989

Maximum Force Level,
Total Amplitude of Cutting
4 TWD Force, Combined Thresholding Tarn, 1989
Incremental Force Changes,
Amplitude Ratio
Power Spectral Density of i - Elbestawi,
S TWD Force and Spindle Vibration LDF-Classifier 1989
6 TBD Force Components in Tool Thresholding Tarng, 1990
Breakage Zone
Ratio between Force . Elbestawi,
7 TWD Harmonics Thresholding 1991
g | Tep  10Normalized Averagesin  pop npy) Tansel, 1992
One Tool Revolution
9 | TBD Average Force and The MLP Tarng, 1992
Variable Force
10| TBD Sum of the Squares of Thresholding  Tansel, 1993
Residual Errors
Power Spectral Density and
Mean, Standard Deviation,
1 TWD Skew, Kurtosis of Force and SOM Leem, 1995
AE
Peak Rate of Cutting Forces,
12 TBD Relative Eccentricity Rate of Thresholding Zhang, 1995
Cutter
13| Twp  \WaveletTransformations ART? Tansel, 1995
Coefficient

14 | TwWe? Feed Rate, Spindle Speed RBF Elanayar, 1995

15| Twg  AverageForce, Cutting MLP Santanu, 1996
Conditions
16 TWE Average Force, Cutting MLP, Regression Lin. 1996

Conditions

Models

1. TBD: Tool Breakage Detection; 2. TWD: Tool Wear Detection; 3. TWE: Tool Wear Estimation.

10
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proper selection of features is a vital issue in using neural networks. Including
irrelevant features can ultimately lead to poor performance, because it is inevitable that
the irrelevant features can be more closely associated with the targets by chance than
are the truly relevant ones (Neal, 1996). Based on these two considerations, a small but
efficient feature set is a key factor for the implementation of practical TCM systems.
As a result, the main focus of this study is to select more relevant features from the

known features.

In this study, force signal is used as the sensor information for monitoring face
milling processes, because of its high sensitivity to wear and low noise. 16 well known
features based on the force signal are extracted. The automatic relevance determination
(ARD) algorithm, originated by MacKay [1992] and Neal [1996], is used to select a
subset of the features with higher relevance to tool wear processes. The feature
selection procedures are conducted for both tool wear recognition (TWR) using
Bayesian support vector classification (BSVC) algorithm and tool wear estimation
(TWE) using Bayesian support vector regression (BSVR) algorithm. The
generalization capabilities using the entire feature set, the selected feature set, and the
rejected feature set are compared for both TWR and TWE to verify the relevance of

the selected features to tool wear processes.

1.4 ORGANIZATION OF THE THESIS

Chapter 1 gives a brief introduction on tool condition monitoring and its
methodologies. 16 different feature extraction algorithms are discussed in details in
Chapter 2. Chapter 3 introduces the Bayesian support vector classification and

regression algorithms, as well as the automatic relevance determination approach. The

11
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experimental setup for data acquisition and a software structure for online tool
condition monitoring are described in Chapter 4. The feature selection results and the
comparisons of the generalization capabilities using the entire, selected, and rejected
feature sets are given in Chapter 5. Conclusions are given in the last chapter together

with a recommendation for future work.

12
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CHAPTER 2
FEATURE EXTRACTION

METHODOLOGIES

The challenge in developing a TCM system is in choosing suitable sensing
techniques and robust decision making strategies. For monitoring milling processes,
force signal is widely used due to its high sensitivity to tool wear, low noise to signal
ratio, and satisfactorily accurate force models [Altintas, 1989]. As mentioned in
Chapter 1, considerable research has been undertaken for the development of feature
extraction methodologies based on force signals. In this chapter, a mechanistic force
model of milling processes is first given as a theoretical background. Then 16 different

feature extraction methodologies are introduced.

2.1 MECHANISTIC FORCE MODEL OF MILLING PROCESSES

Force mechanisms of milling processes have been well understood. And

satisfactorily accurate models have been established (Fu, 1984; Zheng, 1999).

Figure 2.1 shows the cut geometry used in this study. If there is no run-out, the

expression for the chip area cut by insert i at time t is given by:
A, (i,t)= ,sin(@; (t))-W(i,t)- doc (2.1)
where f, is the feed per tooth, doc is the depth of cut, and @,(t) is the angular position

of insert i from the negative Y axis in the clockwise direction. W (i, t) is the interruption

13
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function that assumes values 1 or 0 depending on whether or not insert i is cutting at

time t.

The tangential and radial cutting forces, Fr and Fg, acting on an insert i, are
expressed as the product of the chip areaKc(i,t) and the cutting force coefficients Kt
and Kg, respectively:

F(i,t)=K; -A(i,t) (2.2)
Fo(i,t)= Ky - A (i) (2.3)
The radial and tangential forces acting on insert i can be transformed to the global X, Y

coordinate frame and summed over all the N inserts to express the forces acting on the

cutter as:

(2.4)

{Fx(t)} ~ N-l{ cosd.(t) sing (t)HFT (i,t)}

F.(t)| |-sing(t) cos,(t)| | F.(it)

where 6, (t) is the angular position of insert i from the negative Y axis in the clockwise

i=0

direction.

feed Milling Cutter

Workpiece

Figure 2.1 Face Milling Geometry
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Figure 2.2 Cutter Geometry with Runout

In the presence of radial runout, the chip load equation and the subsequent force
models must be modified. Figure 2.2 shows the radial position of the teeth on a cutter

with radial runout. The radial runout of insert i can be expressed as:
& =R -R (25)
where R is the true cutting radius. Then the chip load equation can be modified to:

A (i,t) = (f,sin(8, (t))+ 5z, )-W i, t)- doc (2.6)
where Jg; is the incremental radial runout faced by insert i. For clockwise rotation of
the cutter, the incremental radial runout for insert i is given by:

Og; = min{gi — 64,6 —& , + T,5in0 () e —¢ _,+2f sin 6_?,(t)} (2.7)
Force models can be then modified by substituting A (i,t) for A_(i,t) in Equ. (2.2) and

Equ. (2.3). Both the models with and without runout are used in the subsequent

analysis of cutting force.
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2.2 FEATURE EXTRACTION METHODOLOGIES

(i) Residual Errors

Altintas [1988] built a first order autoregressive (AR') model to predict the cutting
force and evaluated the difference between the actual measurement and predicted value,
which was called the residual error of the cutting force. He found that when tool
breakages occur, the model becomes unable to track the process, and therefore

produces a large residual error.

An autoregressive model with order p can be written as:
Ft)=®,F(t-1)+®,F(t-2)+-+® F(t-p)+alt) (2.8)
where F(t) and a(t) are respectively the measured signal and the disturbance at time t,

and ®,,®,,---, @ are the filter parameters. The first order AR model is the one step

ahead estimation of F(t) at time (t-1):

F(t)=®,F(t-1)+alt) (2.9)

Based on Equation 2.9, Altintas’ AR" model can be expressed as:
f,(t)=f,(t-1)+a(t) (2.10)
& f,(t)=F. (t)-F (t-1) (2.11)
where F4(t) is the average force over the t-th tooth period. The residual error can

therefore be calculated by:

at)=f,(t)- f,(t-1)- d(t-1) (2.12)
where @(t—1) is the estimated value of @, which can be evaluated by:

D(t)= d(t-1)+ K(t—1)-aft) (2.13)

where K(t) is the estimation gain:
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K@)=% (2.14)

The A in the above equation is the forgetting factor with a value between 0.9 and 1.
And P(t) can be updated by:

P(t+1)=?[1— K(0)- £, (0] (2.15)

Figure 2.3 illustrates the procedures for using this model, with the following initial
conditions: ®(0)=0, and P(0)=«a where « is a large number. An example of the
residual errors during the whole process of an experiment is shown in Figure 2.4. The

force samples from the same experiment are used for extracting all the other features

introduced in this chapter.

Remove DC trend —® Calculate the

by differencing: ———®1 residual error: | »  Update ¢
(2.11) — (2.12) —» (2.13~2.15)

v
Residual Error a(t)

Figure 2.3 Procedures for Calculating Residual Errors

Fesidual Erraor

| | |
1350 2700 4050 5400 Sec

Figure 2.4 Residual Errors
Spindle Speed: 1000rpm, Feed Rate: 100mm/min,
Depth of Cut: 1 mm, Insert Number = 2, Insert Type: AC325.
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In another attempt by Altintas [1989], the first and second order differencing of a
time averaged resultant force were found effective in recognition of tool breakages in
milling. The first order differencing of the average cutting forces compares the cutting
performances of the adjacent teeth:

AF,(i)=F, (i)~ F,(i-1) (2.16)
where F,(i) is the average force during the i-th tooth period. The second order
differencing can be evaluated from AF, (i):

NF,(i)=AF, (i)-AF, (i-1)=F,(i)-2F,(i-1)+ F,(i- 2) (2.17)

These two features are shown in Figures 2.5 and 2.6, respectively.

10

M

First Order Differencing
=

-0
-0 1 1 1
1360 2700 4020 5400 Sec
Figure 2.5 First Order Differencing of Cutting Force
15
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—
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second Order Differencing
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L
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| | |
1350 2700 4050 5400 Sec

Figure 2.6 Second Order Differencing of Cutting Force
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(iv~vii) Maximum Force Level, Total Amplitude of the Cutting Force, Combined
Incremental Force Changes, and Amplitude Ratio

Tarn [10] calculated four quantities from each tooth period to monitor tool and
cutting conditions in milling. The first two features, maximum force level (f;) and total
amplitude of cutting force (f,), represent the steady-state and variational portion of the
instantaneous cutting force. They can be derived from Equations (2.18) and (2.19),

respectively:

f(i,j)= r[lgx|f i, j,t) (2.18)
f,(i, i) = max[f (i, j,t)]-min[£ (i, jt)] (2.19)

E'l

where i denotes the i" cutting edge, j denotes the j" spindle rotation, and f (i, j,t)
denotes the cutting force where t varies over the tooth period, Tj. From Equation 2.19,

it can be seen that f_(i, j) is actually the peak-to-peak value of the force waveform

during the i"" tooth period.

The third feature, combined incremental force changes, indicates the changes in
cutting conditions. It combines the incremental changes in the first two features

between the j™ and (j+1)" spindle rotation:

A, )= (f, (0 J+2)= £ §)+ (G, 5 +2)= £, §)) (2.20)

The fourth feature is called as the amplitude ratio. It can be evaluated from f(i, j)

and f_(i+1, j):

()= max[f, (i, j), f,(i+1, j)] (2.21)

~min[f, (i, j), f,(i+1 )]

When cutting geometry changes in the (i+1)" tooth period, f,(i+1 j) will be different
from fa(i,j) (chip area changes). So the deviation of this quantity from unity indicates

the changes in cutting edge geometries. Figures 2.7 to 2.10 illustrate the four features

extracted from the force data of the same experiment as described in Figure 2.4.
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(viii) Standard Deviation of the Force Components in Tool Breakage Zone

Tarng [1990] defined a tool breakage zone, which is located within the frequency
range between the DC component and the tooth frequency. He found that the force
components within this zone correlate to tool breakage very well. The tool breakage
zone components were extracted using a band-pass filter. Then the standard deviation

of the filtered force data was calculated.

Figure 2.11 shows the cutting force signal and its spectrum at both the fresh and
the highly worn stage. When the tool was still fresh, the two peaks in a single rotation
were not equal due to the large runout of the cutter; and therefore the component at the
spindle rotation frequency was very large. During the cutting process, the runout was
gradually compensated by the uneven wear of the two teeth. As the tool became highly
worn, the two peaks became similar; and therefore the tooth passing frequency

dominated in the spectrum.

If the runout is negligible compared to the feed per tooth, the opposite situation
will become true. During the fresh stage, the force peaks appear to be identical; and the
spectral power concentrates on the tooth passing frequency. When the tool gets highly
worn or broken, there will be a severe fluctuation in the force waveform; and therefore
the component at the spindle rotation frequency will in turn dominate. This is shown in
Figure 2.12 by simulated force data (in most of the real cases, runout is comparable to

the feed per tooth and cannot be ignored).

No matter whether runout is negligible or not, the spectral components in the tool
breakage zone change a lot from the fresh stage to the worn stage. So they can be used

to distinguish failed tools from fresh ones.
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Figure 2.12 Simulated Cutting Force and Its Spectrum
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The procedures for calculating the standard deviation of the force components in
tool breakage zone are shown in Figure 2.13. And Figure 2.14 shows an example of

this feature.

Calculating -
) Band Pass ) ) standard deviation of the force
Force Samples Filter th;:\/t;r;?oar:d components in tool breakage zone

Figure 2.13 Procedures for Calculating the Feature

STD ofthe Farce
Components in Tool Breakage Zone

30

| | |
1350 2700 4030 5400 Sec

Figure 2.14 Standard Deviation of the Force Components in Tool Breakage Zone

(ix) Sum of the Squares of Residual Errors

By using high-order AR models (20" order), Tansel [1993] also derived the
residual errors of the cutting force. But he further evaluated the estimation error by
summing up the squares of the residual errors in each tooth period. The force

estimation at the time instance i is calculated by the n-th (n=20) order AR model:
F(i)=> fli—k)xd,(j-1) (2.22)
k=1

where f(i—k) is the (i-k)" measured force during the " tooth period, ®,(j—1) are

the parameters of the model estimated at the end of the previous tooth period. The

residual error of the model at the time instance i can be calculated by:

E(i)= f(i)-F'(i) (2.23)
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The amount of the error for each tooth period j can then be calculated by the sum of

squares of the residual errors E(i):

S(j)=ZI_:E2(j><I+k) (2.24)

where | is the number of force samples per tooth period. Figure 2.15 shows an example

of this feature.

100 . . .

o [mn]
) =
T T

e
=
T

sum of the Squares
of Residual Errors

[}
[
T

" J. FAITy e "
1350 2700 4050 A400 Zec

]

Figure 2.15 Sum of the Squares of Residual Errors

(x) Peak Rate of Cutting Forces
Zhang [1995] used the peak rate of cutting forces to detect tool breakages. It was
defined as the ratio between the difference and the sum of force peaks in adjacent tooth

periods:

K G, )= o) =R oL (2.25)

where Fp(i,j) is the peak value of the cutting force in the i-th tooth period during the j-

th tool rotation. Introduce Equation (2.18) into (2.25):

iy fali )=, (-1 )
K1, J)= .G, 0+ G-1 ) (2.20)

The force peak rate is dimensionless and independent of the cutting conditions such as

cutting depth, cutting thickness and feed. Large values of K, indicate tool breakage,
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because of the large difference between the adjacent periods. An example of this

feature is given in Figure 2.16.

I:|2 T T T

0.1

0.1

Peak Hate of Cutting Forces
=

0.2

1350 2700 4050 5400 Sec
Figure 2.16 Peak Rate of Cutting Force

(xi) Total Harmonic Power of Cutting Force

Elbestawi [1989] found that the harmonic contents of cutting forces are sensitive to
tool flank wear. This is because when the tool gets worn, there is an obvious increasing
trend in the magnitudes of the fundamental tooth frequency and its harmonics. This
phenomenon can be seen in Figure 2.11 and 2.12. Thus, the total harmonic power of

the force spectrum can be used as an indicator of tool failures:

Py (i)=>G(m) (2.27)
G(m) is the power at the fundamental tooth frequency and its harmonics. N is the

desired order which defines the frequency range of interest. The features are then
mapped to tool status through a linear discriminant function classifier. An example of

this feature is given in Figure 2.17.
(xii) Average Force

The average force is widely used in both tool failure detection [Elbestawi, 1989;

Tarng, 1994; Leem, 1995; Kim, 1995] and wear estimation [Lin, 1996; Santanu, 1996],
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Total Harmonic Power
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Figure 2.17 Total Harmonic Power

because its trend correlates very well to the growth of flank wear, which can be clearly
seen from the figures in Appendix A. The average force (F5) within a spindle rotation

can be calculated by:

%z i, j) (2.28)

7 ()-

where f(i,j) denotes the j-th force sample in the i-th tool rotation, N is total number of

the force samples in a rotation. The average force is illustrated in Figure 2.18.
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150

Awearage Force

100

a0

| | |
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Figure 2.18 Average Force
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(xiii) Variable Force

Tarng [1994] defined a variable force to evaluate the variation of cutting force due
to tool failures. First, the average cutting force data are passed through a nonlinear

median filter to obtain the deterministic component:
F ()= median(Fa(i F i) 0=k ok = (M +%) (2.29)

where Fneq is called median cutting force, and m is the order of the median filter. Then
the variable cutting force can be obtained by subtracting the median cutting force from
the average force:

AF, (i)=F, (i)~ F.. (i) (2.30)
This process can be illustrated in Figure 2.19. And an example of the variable force is

shown in Figure 2.20.

Averaging the —— Median _;@_, Variable Force
Force Samples —‘ Filter T

Figure 2.19 Calculation of Variable Force

“ariable Farce

| | |
1350 2700 4050 5400 Sec

Figure 2.20 Variable Force
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(xiv~xvi) Standard Deviation, Skewness, and Kurtosis

Leem [1995] extracted four statistics from the cutting force for monitoring tool
wear. These include mean, standard deviation, skewness, and kurtosis. The mean can
be derived by Equation (2.28). And the other three features can be calculated by the

following three equations, respectively:

a<i>=Ji-i[f<i,j>—a<i>] 231)

N-1 3
. N v (£, §)-F, (1))
O e @)

- N(N +1) i(f(i,j)—Fa(i)I_ 3(N -1y (2.33)

N -1)(N -2)(N -3) = ali) (N -2)N -3)
where (i,j) is the j-th force sample in the i-th rotation, and N is total number of the

force samples in a rotation. The examples of these three features are shown in Figures

2.21t0 2.23.

250
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Standard Deviation
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Figure 2.21 Standard Deviation

1 1 1
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Figure 2.22 Skewness
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urtosis

| | |
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Figure 2.23 Kurtosis

2.3 SUMMARY OF THE FEATURE EXTRACTION METHODS

16 different feature extraction methodologies are introduced and discussed in this
chapter, which have all been shown to be indicative of tool condition monitoring.
These methodologies are summarized in Table 2.1. The relationships among them are
illustrated in Figure 2.24. These 16 features form the scope of the feature selection in
this study. However, they cannot be effectively used due to the large noise, as shown
in the feature graphs. Further processing must be made to make them suitable for

subsequent applications, which is described in Chapter 4.

| Force Samples |

v
36 (5] O EE G

[re] [vf] [fod] o

|sre| l |sod |
\ 4 A 4 + + A 4 A 4 A 4 A 4 v
v

| {re,fod,sod,fm,fa,df,ra,fstd,sre,kpr,thp,Fa,vf,std,skew,kts} |

Figure 2.24 Relationships among the Features
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Table 2.1. Feature Extraction Methodologies

Decision Making

No Feature Notation | Objective” Strategy Reference
1 | Residual Error re TBD Thresholding Altintas, 1988
2 | First Order Differencing fod TWD Thresholding Altintas, 1989
3 | Second Order Differencing sod TWD Thresholding Altintas, 1989
4 | Maximum Force Level fm TWD Thresholding Tarn, 1989
5 | Total Amplitude of Cutting Force fa TWD Thresholding Tarn, 1989
6 | Combined Incremental Force Changes df TWD Thresholding Tarn, 1989
7 | Amplitude Ratio ra TWD Thresholding Tarn, 1989
8 ?:?r?w(:){gr?elr?tesvilr?t'll%r;IC)]l;trZZIfa%rgeZone fstd TBD Thresholding Tarng, 1990
9 | Sum of the Squares of Residual Errors sre TBD Thresholding Tansel, 1993
10 | Peak Rate of Cutting Forces kpr TBD Thresholding Zhang, 1995
11 Total Harmonic Power thp TWD L DE-Classifier Elbestawi,
1989
TED, Leem, 1905
12 | Average Force Fa 'I_}_VV\\/II:é MLP Lin, ’1996; '
Santanu, 1996
13 | Variable Force vf TBD MLP Tarng, 1994
14 | Standard Deviation std TWD SOM Leem, 1995
15 | Skew skew TWD SOM Leem, 1995
16 | Kurtosis kts TWD SOM Leem, 1995

* TBD: Tool Breakage Detection; TWD: Tool Wear Detection; TWE: Tool Wear

Estimation.
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CHAPTER 3

BAYESIAN SUPPORT VECTOR MACHINES

AND AUTOMATIC RELEVANCE

DETERMINATION

16 different features based on force signals are introduced in Chapter 2. As
mentioned in Chapter 1, the main objective of this study is to compare these features
and select a subset of the features with higher relevance. For this purpose, the
automatic relevance determination (ARD) algorithm, originated by MacKay [1992]
and Neal [1996], is used. The feature selection procedures are implemented for both
tool wear recognition (TWR) using Bayesian support vector classification (BSVC)
algorithm and tool wear estimation (TWE) using Bayesian support vector regression
(BSVR) algorithm. In this chapter, a literature review of the algorithms is given first,

followed by a theoretical background of the ARD, BSVC, and BSVR.

3.1 INTRODUCTION

Support vector machines (SVM), as described by Vapnik [1995], exploit the idea
of mapping input data into a high dimensional (often infinite) reproducing kernel
Hilbert space. The SVM methods have many advantages, including a global minimum
solution as the minimization of a convex programming problem, relatively fast training

speed, and sparseness in solution representation (i.e. only a proportion of training
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points are relevant). However, as pointed out by Tipping [1999], the traditional SVM
methodology also exhibits significant disadvantages. For example, it cannot produce
probabilistic predictions. The application of Bayesian approaches to neural networks,
originated by Buntine and Weigend [1991], MacKay [1992] and Neal [1996], can
solve this problem effectively. Bayesian probability theory provides a unifying
framework for data modeling which offers several benefits, such as optimizing the

model parameters and handling uncertainty in a natural manner [Mackay, 1992].

Bayesian interpretations of support vector machines are based on MacKay’s
evidence framework [MacKay, 1992]. These include support vector classification
(SVC) [Seeger, 1999; Kwok, 2000; Chu, 2003] and support vector regression (SVR)
[Law, 2001; Chu, 2001]. In this study, the Bayesian SVC algorithm and the Bayesian
SVR algorithm proposed by Chu [2001, 2003] are used, because of the good

generalization capabilities.

Based on the Bayesian approaches, MacKay and Neal proposed a new method,
called automatic relevance determination (ARD). The aim of ARD is to automatically
determine which of many inputs to a neural network are relevant to prediction of the
targets. This is done by making the weights on the connections out of each input unit
have a distribution that is controlled by a hyperparameter associated with that input,
allowing the relevance of each input to be determined automatically as the values of
these hyperparameters adapt to the data [Neal, 1996]. The ARD method can be directly

implemented in Bayesian support vector machines.

3.2 BAYESIAN SUPPORT VECTOR REGRESSION

3.2.1 BAYESIAN LEARNING
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Bayesian learning theory provides a unifying framework for data modeling. The
result of it is a probability distribution over model parameters that expresses the beliefs
regarding how likely the different parameter values are. It can be realized through
evaluating the posterior probabilities of the model parameters when training data are

given [Neal, 1996]:

P@h@xmu~m“ﬁmL@h@xmuwxwkﬂﬁ 3.1)
prior

likelihood
where 6 is a parameter vector, and x¥, x?) .., x!") are the training data. The posterior

distribution combines the likelihood function, which contains the information about &
derived from observation, with the prior, which contains the information about &
derived from our background knowledge. The application of Bayesian learning in
neural networks aims to infer the network parameters, which effectively solves the

overfitting problem by controlling model complexity [Mackay, 1995].

3.2.2 BAYESIAN SUPPORT VECTOR REGRESSION

In regression problems, a set of training data D:{(Xi,yi)‘i:l,...,n, x, eR’,y, eR}

is collected by randomly sampling a function /; defined on R. As the measurements
are usually corrupted by noise, training samples can be represented as

y, = f(x,)+5, i=12,....n (3.2)
o, are independent, identically distributed random variables, whose probability

distribution can be assumed to be:

p(6,)=-exp(=C1(5,) (3.3)

where Z= j exp(-C-1(5,)Ms,, C is a parameter greater than zero, and (5, ) is the loss

function, which is in Huber’s form:
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~5-¢, if SeA, =(-»-2¢)
2
1(5)= j—, if SeA, =[-2¢2¢] (3.4)
&
S—&  if SeA.=(2e+x)
where £>0. Huber’s loss function is non-quadratic with low sensitivity to the outliers

and differentiable allowing appropriate approximations to be used in the Bayesian

approach. This function is illustrated in Figure 3.1. Therefore, Zs can be written as:

Z, = .[exp(— C-1(5,)ds, = %exp(— Ce)+ 2\/% : erf(\/a) (3.5)

where erf (x)= %L exp (2 it .
T

Figure 3.1 Huber’s loss function (£=0.5)

The regression aims to infer the function fin (3.2), or an estimate of it, from the
finite data set D. In the Bayesian approach, we regard the function fas the realization
of a random field with a known prior probability. The posterior probability of / given

the training data D can then be derived by Bayes’ theorem:

P(iiD)- P(D|f )P()

P0) (3.6)
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where f =[£(x,), f(x,)...., f(x,)] . Since the training data are usually sampled
arbitrarily, P(D) is not meaningful [MacKay, 1995]. So the posterior is only

determined by the prior P(f)and the likelihood P(DIf).

The prior probability P(f ) can be modeled as a multivariate Gaussian with zero

mean and a » x »n covariance matrix X, given by (3.7):

P(f)= Ziexp(— %fTZ‘.lfj (3.7)
S

where Z , = (271)%\/@ . The jj-th component of X is:

CO{ f(xl_ ) f(xj H - COV(xl_ , xj] —k, exp(— %Zk (x' -x' )Zj K (38)

where k>0 denotes the average power of f(x); k£,>0, [ =1,2,---,d is the ARD parameter

that determines the relevance of the /-¢4 input dimension to the prediction of the output
variables; k>0 denotes the variance of the offset to the function f{x); and x’ denotes the

[-th element of the input vector x.

The likelihood P(D|f) is a model of noise, which can be evaluated by

PO)=TT",P0, - fx)=TT.,P@) (3.9)

Introducing Equation (3.3) into (3.9), the likelihood function can be expressed as:

P(DIf) exp(C - Zz(y,. - f(xi))J (3.10)

Based on Bayes’ theorem (3.6), prior probability (3.7), and the likelihood (3.10),

the posterior probability of f can be written as:
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P(f|D)= %exp(— S(r)) (3.11)

where S(f) = Cil(% - f(x,)) +%fT21f and Z =J.exp(—S(f)}z’f. The maximum a

i=1
posteriori (MAP) estimation of the function values is therefore the minimization of the

following optimization problem:

mmS CZZ f(x,) +%fTElf (3.12)

Definew, = _CM
o (x,)

fs)er(x,,) Viand let @ be the column vector formed

by w;. Then f,,, can be written as:

f,,=2 0 (3.13)
It can also be decomposed to:
Jur = ko i a)iK(X’ X, )"’ b(x) = ia)ikOK(X' X; )+ k, ia)i (3.14)
i=1 i=1 i=1

n d
whereb =k, Y o, and K(x,xi):ex;{—%Zk, (x' —xﬁ)zj is just the Gaussian kernel in
i=1 =1

classical support vector regression [Haykin, 1999].

The dual problem of Equation 3.12 can be finally developed into:

rgj*nS(a,a*)z ZZ(& —a; Xa -a, )Cov(x X, ) (0‘,- _a;)y,- +%i(ai2 +a;2

1:1 i=1

subjectto 0<a, <C,and 0<a, <C.

The optimal value of the primal variables f can be written as:
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f,, :)2-((1—(1*) (3.16)
where o =[a,,c,, e, and " =[], a},.c.] . At the optimal solution, the
training samples (x,,y,) with associated «, —a; satisfying 0< ‘ai —a;‘ <C are
called off-bound support vectors; the samples with ‘0% —af‘ = C are on-bound support

vectors; and the samples with ‘ai - a:‘ =0 are non-support vectors.

3.2.3 MODEL ADAPTATION AND ARD
Let 6 be the hyperparameter vector containing the parameters in the prior

distribution and the likelihood function, i.e. 0 = {¢,C, k,,k,,k,,k,,...,k, }. The optimal

values of hyperparameters 0 can be inferred by maximizing the posterior

Hnjo)(o)

probabilityP(0|D):—. As we typically have little idea of suitable values of 0

P(D)
before training data are available, we assume a flat distribution for P(0), i.e., P(0) is

greatly insensitive to the values of 0. Therefore, the evidence P(D|0) can be used to

assign a preference to alternative values of the hyperparameters 6 [MacKay, 1992]:
P(D}0)= [ p(DIf,0)p(fl0)f = Z,'Z." [exp(- S(F)kf (3.17)

where Zs and Z,are given in (3.5) and (3.7), respectively.

An explicit expression of the evidence P(D|0) can be obtained from an integral

over the f-space with a Taylor expansion at f,,, (where a?;gf)

‘HMP =0 ) and retaining

terms up to the second order:

S0~ 500+ 21,7 T30 e,
:S(fMP)+%'(f_fMP)T'(E1+C'A)'(f_fMP) (3.18)
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1
P(D|0) ~ exp(= S(f,, )1+ C-Z-A|2-2," (3.19)
where 1 is an nxn identity matrix; A is a diagonal matrix with the ii-th entry being

ZL if the corresponding training sample is an off-bound support vector, otherwise the
&

entry is zero. Therefore, only a sub-matrix of X plays a role in the determine-

ant|[I +C- - A, due to the sparseness of A. Let X, be the mxm sub-matrix of X
obtained by deleting all the rows and columns associated with the on-bound support
vectors and non-support vectors, i.e. keeping the m off-bound support vectors only.
Then the negative log probability of data given hyperparameters is:

C
I+—X
26 M

—In P(D|9)= %(a —a*)TZ(u —a*)+ Ciznl:l(yl. — fur(x, ))+%In(

J+n|nZS

(3.20)

where I isan mxm identity matrix.

Gradient based optimization can then be used for minimizing (3.20). We usually

use {Ing,InC,Inky,Ink,,Ink,Ink,,....Ink,} as the set of variables to tune, to

eliminate the constraints (>0). And the gradients are given by:

o-Inp(Dle) < 1 2 b
% =CY I, fip )+ Etmc{(gl ’ EM) ZM]

i=1

_%[ J% .er]f(\/a)+%exp(— CE)J (3:21)

a—InP(D|9)__c[ Z 5_i2+ Zg ]—%trace{(z—gl+zﬂ4)124

dlng seny, 4€ 8,€AcOA -

2 i) 322
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a1
S (ren | B e Fee)
dlnk, 2 C Ok,

(3.23)

where k; e k. k, ky ky ok}, 8, =y, — fip(x,), and @ and a are the optimal

solution of (3.15).

Note that £;>0, / =1,2,---,d controls the contribution of the /-t4 input dimension to

the prediction of the output variables. The larger the value of &;, the more relevant the
[-th input dimension to the prediction. The procedures for inferring these parameters

are called automatic relevance determination.

Based on the Bayesian support vector regression and the automatic relevance
determination algorithms, feature selection and training the regression network can be
conducted through the following steps:

1) Assume an initial hyperparameter set .

2) Use the maximum a posteriori methods to getf,,, .

3) Use the gradient-based optimization methods to infer the optimal values of the
hyper-parameters.

4) If the sum square error given by (Y-f,,) -(Y—f,,)is smaller than the

predetermined threshold, then end the iteration; else return to the Step (2).

5) Select the set of k; greater than a threshold to be the relevant feature set.

The procedures for implementing the BSVR and ARD algorithms are illustrated in

Figure 3.2.
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Stop training & Choose
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Figure 3.2 Procedures for Implementing BSVR and ARD

3.3 BAYESIAN SUPPORT VECTOR CLASSIFICATION

3.3.1 BAYESIAN SUPPORT VECTOR CLASSIFICATION

Unlike the curve fitting problem of regression, classification is defined as the
process whereby a received pattern/signal is assigned to one of a prescribed number of
classes (categories). A pattern is represented by a set of m observables, which may be
viewed as a point x in an m-dimensional observation space. Feature extraction is
usually used to maximize the information contained in x, which is defined as a
transformation that maps the point x into an intermediated point y in a g-dimensional
feature space. The classification is itself described as a transformation that maps the
point y into one of the classes in an r-dimensional decision space, where r is the
number of classes to be distinguished [Haykin, 1999]. This concept can be illustrated

in Figure 3.3.

The Bayesian approach for classification can also be developed through the

framework described in 3.2. The difference lies in the form of the loss function and the
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Feature
Extraction

Classification

m-dimensional g-dimensional r-dimensional
observation space feature space decision space

Figure 3.3 Concept of Classification
likelihood function resulted from it. For binary classification, the trigonometric loss
function, proposed by Chu [2001], is a good solution because it satisfies the following
characteristics:
1. naturally normalized in likelihood evaluation;
2. possessing a flat zero region that results in sparseness property;

3. smooth and continuous up to the first order derivative.

The trigonometric loss function takes the following form:

o N N
L )= 2Insec(§(1—yx-fx)j N A (3.24)
0 if v foel+rL+w)

and its first order derivative is therefore:

o, (v, f) _ —yx%tan(%(l—yx'fx)j o fieb)
of. s if v f, e[tl+x)

where x eR? is the input vector, y, € {+1,—1}is the class label, and f, denotes the

latent function at x. The loss function is illustrated in Figure 3.4. The trigonometric

likelihood function can then be written as:

0 if v, foeo-1]
Rnlr)= cosz(z(l—yx-fx)J if v, e (1) (3.26)
1 if y.-f.el+tl+x)
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a
-1.48 -1 0.5 a 0.5 1 1.5

Figure 3.4 Trigonometric Loss Function

In the Bayesian approach, we can infer the latent function f, by maximizing the
posterior, which is defined by Bayes’ theorem in Equation (3.6). The prior probability

P(f) is the same as defined in Equation (3.7) and (3.8). And with the likelihood

function in (3.26), the likelihood P(D|f) can be written as:

7.) (3.27)

POIf)=117(r,

Introducing (3.7) and (3.27) into (3.6), the posterior probability of f'is:

P(f|D)=%exp(— s()) (3.28)

where S(f):%fTE‘lf+ilt(yxi .£(x,)) and Z=[exp(- S(f)}f . The maximum a
i-1

posteriori (MAP) estimation of the function values is therefore the minimization of the

following optimization problem:

minS(f) =31, (v, - /(xS0 3.29)

Define w, = - Vviand let @ be the column vector formed

f(xi )=f(x.wp)

by w,. Then f,,, can be written as:
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f,-%-0 (3.30)

It can also be decomposed into the form:

fup =ia)ik0K(x,xi)+ kbia)i (3.31)
i=1 i=1

d
where K(x,xi):exp{—%Zkl(xl —xf)zj is just the Gaussian kernel in classical support
/=1

vector classification [Haykin, 1999].

The dual problem of Equation 3.29 can be finally developed into:

min$(6)- 2850, 0 ), @ oo, x, - Za+2{ia arctan(zﬁj_|( [ﬁjﬂ

1 i=1| 7T

(3.32)

subject to «, > 0,Vi. At the optimal solution, the training samples (xi,yxi) associated
with non-zero Lagrange multiplier «; are called support vectors (SVs); the samples
with zero «, are not support vectors, which do not involve in the solution

representation.

3.3.2 MODEL ADAPTATION AND ARD

Let 6 be the hyperparameter vector containing the parameters in the prior

distribution and the likelihood function, i.e. 9={k0,k1,k2,--~,kd,k,,}. The optimal

values of hyperparameters 0 can be inferred through the same approach described in

3.2.3. The evidence in this case can be written as:
p(Dp) = exp[- S(£,,.)]- 1+ = A] 72 (3.33)

where I is an nxn» identity matrix; A is a diagonal matrix coming from the second

order derivative of the trigonometric loss function, whose entry is non-zero only if the
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corresponding training sample is a support vector. Let X,, and A,, be the mxm sub-

matrix of X' and A by keeping their non-zero entries. The negative logarithm of P(D|0)

is therefore:

—InP(D|0):%oL):MnM +2 Y Insec(%fmj+%ln(]l+2]w 'AM|) (3.34)

meSVs

where v,, is the sub-vector of 1)=[yxlal,yhaz,m,yxnan]T by keeping the entries

associated with support vectors; and &, =1-y, - f,,(x,, ). Vm e SVs.

Gradient based optimization can then be used for minimizing (3.34). The

derivatives of —In P(D|9) with respect to In@ are given by:

o-InP(DB) o . 10E,) 6 , 0%,
TV ER —Etrace[(AMJrZM) 20 j_EUM—GH v,

2 s fagex, ) ~2M)m,,,(A;J(A;i +>:M)‘1a§—gwjm (3.35)

2 meSVs

where the superscript m denotes the m-th entry of a vector. Feature selection and
training the classification network can then be conducted through the same procedures

mentioned in 3.2.3. The network structure is shown in Figure 3.5.

Input
Vector
X

Output
T Neuron

ARD T Weights
Parameters

Gaussian Kernels
with Parameters k, k,

Figure 3.5 Structure of Bayesian Support Vector Machines
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CHAPTER 4

EXPERIMENTAL SETUP AND DATA

PROCESSING

In this chapter, the experimental setup for the data acquisition is first described,
followed by the analysis of the signal and the implementation of the feature extraction
methodologies mentioned in Chapter 2. An online tool condition monitoring strategy is

given at the end of this chapter.

4.1 EXPERIMENTAL SETUP

Force signal is used in this study to monitor face milling processes, due to its high
sensitivity to tool wear, low noise, and satisfactorily accurate force models (Altintas,
1989). Figure 4.1 shows the scheme of the experimental setup, whose components are
listed in Table 4.1. The actual systems are shown in Figures F1 and F2 (Appendix F).

Table 4.1 Experimental Components

Components

Makino CNC milling machine with Funuc controller
EGD 4450R cutter with AC325 and A30N inserts
ASSAB718HH workpiece (206mm x 43mm x106mm)

Kistler 9265B Quartz 3-Component Dynamometer
Kistler 5019A Multi-channel Charge Amplifier
NI-DAQ PCI 1200 Board

Olympus microscope and Panasonic digital camera
Computer with Pentium IIl 600MHz and 128M SDRAM
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CNC Milling Machine

Tool
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Digital Wear
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Board
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BNC Cable Charge
Amplifier

Machining Table

Figure 4.1 Experimental Setup

4.2 INSTRUMENTATION & DATA ACQUISITION

The cutting force along the y-direction (traverse cutting force) is monitored, due to
its high sensitivity to tool wear and consistency in direction. The signal is captured by
the Kistler dynamometer in the form of charges, and converted to voltages by the
Kistler charge amplifier. The charge amplifier is grounded to provide a reference for
the signal, with the parameters specified in Table 4.2. TS determines the sensitivity of
the dynamometer to the cutting force. And SC determines the output magnitude of the
charge amplifier.

Table 4.2 Specification of Parameters of the Charge Amplifier

Channel 1
Transducer Sensitivity/TS [pC/Mechanical Unit] 7.85
Scale/SC [Mechanical Units/volt] 600
Low-Pass Filter/LP 1KHz
Time Constant/TC (High-Pass Filter) Long
Operation/OP Enb.
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The voltage signal from the charge amplifier is sampled by NI’s PCI 1200 DAQ
board at 2 kHz and directly streamed to the hard disk of the computer. In the board,
there is a gain amplifier, a 12-bit ADC (analog-to-digital converter), and a 16-bit FIFO
(first in first out) memory buffer. If necessary, the analog signal can first be amplified
to increase resolution and accuracy through the gain amplifier. Then it is converted to
digital format using the ADC. When an A/D conversion is completed, the ADC clocks

the result into the FIFO, which serves as a buffer (4096 words deep) to the ADC.

The analog input polarity is selected as “bipolar+5V ” to accommodate negative
signals. Therefore, the least significant bit (LSB) of the ADC is 10V/4095. Based on
the scale of the charge amplifier listed in Table 4.2, the force can be calculated by:

10
F=v,.——.600 4.1
¢ 4095 (41)

where vy is the digitalized voltage level.

Because the charge amplifier is grounded, the Non-Referenced Single Ended
(NRSE) mode is used to connect the signal. In this mode, all signals are referenced to
the same common mode voltage, which is allowed to float with respect to the analog
ground of the DAQ board. Any potential difference between the ground of the board
and the signal ground appears as a common-mode signal at both the positive and
negative inputs of the instrumentation amplifier and is therefore rejected by the
amplifier. Figure 4.2 shows how to connect the voltage signal from the charge
amplifier to the DAQ board in this mode. Channel 2 (ACH1) is used as the input
terminal. AIGND and AISENSE stand for analog input ground and analog input sense,

respectively.
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Figure 4.2 Connection of the Charge Amplifier to the DAQ Board

The DAQ board can be driven by the NI-DAQ driver software, which has a library
of calling functions enabling configuration, initialization, and implementation of DAQ
processes. With this library, a synchronous DAQ operation can be easily realized.
However, because of the intermittent nature of milling processes, the starting and

ending point of the DAQ operation must be carefully controlled.

When the tool is not engaged in cutting, the signal is useless and not necessary to
measure. On the other hand, when the tool is engaged in cutting, the process can be
partitioned into three sections. The first one is between position (1) and position (2) as
shown in Figure 4.3. During this period, the immersion angle of the tool changes from
0 to 120 degrees (the geometry of the cutting is shown in Figure 2.1). The second one
is between position (2) and position (3), during which the immersion angle remains
120 degrees and therefore the force waveform is almost consistent (except the
fluctuation caused by chipping, breakage and large wear). The last procedure is
between position (3) and position (4), during which there are only two isolated uncut
areas left. So the chip load pattern of each tooth turns from one single pulse into two

separate pulses, which is totally different from the pattern in the second procedure.
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Figure 4.3 Starting and Ending Point of DAQ
Based on these considerations, the useful signal can only be acquired after the tool is at

start of entry in cutting and before the tool starts disengaging.

The starting point of DAQ can be controlled either manually or automatically. The
method for automatically detecting the point is discussed in Section 4.5. The manual
method is used to acquire the data for offline analysis. This means that the DAQ
process is started when it is observed that nearly half of the tool holder is about to pass
the front edge of the workpiece. The ending point of the DAQ process can be
determined by counting the total number of samples. The maximum number of
samples (Nmax) can be calculated as follows:

N = lw—rt

max

x 60 x sr (4.2)

where lw denotes the length of the workpiece; rt is the effective radius of the tool

holder; fr and sr stand for feed rate and sampling rate, respectively.
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The flank wear of each individual tooth is measured at an interval of 5 tool passes
by the Olympus microscope, and at each time an average is calculated from all the

teeth mounted on the cutter. The tool wear patterns can be illustrated in Figure 4.4.

Flank wear

Crater wear,
depth

Flank face

\ Flank wear

(a) End View (b) Top View (c) Side View
Figure 4.4 lllustration of Tool Wear Measurement

According to 1SO 8688 (International Standard, 1989), the threshold in terms of flank
wear for determining the tool life is 0.5mm. In practice, this threshold is a bit larger,
because when the flank wear is above 0.4mm, it causes a severe vibration, which may
damage the machine. Therefore, 0.4mm is used as the threshold. It means when the
flank wear of any of the teeth inserted in the tool exceeds this value, the tool is
regarded as worn. Although flank wear is the main factor determining the tool life
under normal cutting conditions, some abrupt events may also occur, such as chipping
and breakage, which could cause more catastrophic damage to the workpiece and the
machine than the flank wear. So it is also necessary to check whether these events
happen. This can be observed by the digital camera. According to 1SO 8688, the
measurement of tool chipping volume is illustrated in Figure 4.5. And the criterion for

determining the type of chipping is listed in Table 4.3.

Lengt

flank wear

Figure 4.5 Measurement of Chipping Volume
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Table 4.3 Types of Chipping

Type Length (mm)
Micro-chipping <0.3
Macro-chipping 0.3t01.0

Breakage >1.0

Based on the methods for measuring the force signal and the tool wear mentioned
before, 20 experiments are conducted on the Makino CNC milling machine. Two kinds
of inserts, AC325 and A30N, are used in the experiments. The geometries of the
inserts and the face mill are shown in Figures F3 and F4 (Appendix F).The cutting

conditions are listed in Table 4.4.

Table 4.4 Cutting Conditions
Cutting Condition Value
Spindle Speed (rpm) 600, 800, 1000, 1200
Feed Rate (mm/min) 100, 150, 200, 300
Depth of Cut (mm) 1,2
Insert No. 2,4
Immersion Rate Full
Workpiece ASSAB718HH
Milling Cutter EGD4450R
Insert AC325, A30ON

4.3 EXPERIMENTAL DATA ANALYSIS

In this study, the influence of cutter run-out on the force signal is examined. After
the first experiment, it was observed that the force waveform was severely distorted
from the ideal pattern. Four inserts were used in the cutting. Instead of four identical
peaks within the waveform of one single rotation, only three were found with large
differences in their magnitudes at the fresh stage of the inserts. This phenomenon is
illustrated in Figure 4.6. Because the inserts were still fresh, the fluctuation could not
be due to tool failure, but due to the radial run-out of the cutter itself (the axial run-out

of the cutter is usually negligible compared to the depth of cut). To interpret this, the
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radial positions of the teeth were measured using a gauge. The difference in the radial

positions of the four inserts is shown in Figure 4.7.

200
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Farce (M)
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one rotation
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3 unegual
peaks

U

01a

015
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Figure 4.6 Experimental Force Waveform in Two Rotations
Spindle Speed: 600rpm, Feed Rate: 100mm/min,
Depth of Cut: 1 mm, Insert Number: 4, Insert Type: AC325.

Insert 111

230um
real cutting
center

Insert Il

R / ' 240,m
Figure 4.7 Radial Positions of Four Inserts

As can be seen from Figure 4.7, the radial run-out of the cutter is very big, because
it has been used for almost ten years in the workshop. Based on these values and the
force models described in Section 2.1, the chip load pattern and the transverse force
(Fy) can be simulated, as shown in Figure 4.8 and 4.9. Since the tip of Insert | is more

than 200 microns closer to the center of the tool holder than the other three inserts and
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Figure 4.8 Simulated Chip Load Pattern with Run-out
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Figure 4.9 Simulated Transverse Force with Run-out
the feed per tooth is only 42 microns, Insert | can never engage in cutting, and it leaves
uncut metal for the subsequent teeth. This results in uneven wear among the four teeth,
which can not only shorten the tool life but also degrade the machined surface quality
[Liang, 1994]. There are some methods for automatically compensating run-out, such
as chip load manipulation [Liang, 1994] and spindle speed variation [Sastry, 1999].
These methods involve complex machine control elements, which are beyond the
scope of this study. To avoid the serious run-out problem, a new face mill, with
moderate run-out as shown in Figure 4.10, was used in the subsequent experiments.
Figure 4.11 illustrates the simulated chip load pattern, the simulated force, and the
sampled force with 2 inserts. As can be seen from the figures, the trouble caused by

cutter run-out is greatly reduced.
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Figure 4.10 Run-out of the New Face Mill
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Figure 4.11 Simulated Chip Load Pattern/Force and Sampled Force
Spindle Speed: 1000rpm, Feed Rate: 200mm/min,
Depth of Cut: 1 mm, Insert Number: 2, Insert Type: AC325.

4.4 FEATURE EXTRACTION

The 16 different features discussed in Chapter 2 are extracted from the
experimental force data. The feature extraction process follows a five-step procedure

as shown in Figure 4.12. This procedure can reduce computational redundancy, becau-
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Figure 4.12 Feature Extraction Procedure
se of the dependency of the lower level features on the upper ones. Note that samples
within one spindle rotation instead of one tooth period are used in feature extraction.
The purpose is to avoid the influence of run-out. As can be seen from either Figure 4.6
or 4.11, the run-out causes fluctuation to the force magnitudes of the teeth even at the
fresh stage. However, the fluctuating behavior of cutting force is just the sign to
distinguish failed tools from fresh ones. Since in most cases the run-out of the milling
cutter is not negligible, it is safer to extract the features over each rotation to avoid

expressing the fluctuation caused only by run-out.

The force samples are first normalized with respect to the average force when the

tool is still fresh:

> F(j)
n = JﬂM : (4.2)
F'(i)=F(i)/n,vi>M (4.3)

where M is total number of samples during the first n rotations of the first pass;

Vi> M means all the samples after the first M; and 7 will never be zero because the

force values along y direction are always positive. This procedure can effectively

reduce the sensitivity of the features to cutting conditions [Altintas, 1989; Kim, 1996].
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At the second step, eight features are derived from the normalized force samples
F’(i) in one spindle rotation, including Fa, fm, fa, skew, kts, fstd, std, and thp. The

feature extraction methodologies are described in details in Chapter 2. In the next step,
six features based on Fa, fm, and fa are extracted, including re, vf, fod, kpr, df, and ra.

In the fourth step, sre and sod are evaluated from re and fod, respectively.

Through the first four steps, all of the 16 primary features are obtained. However,
these features are still quite noisy and not reliable for the subsequent processing.
Therefore, a moving average step is performed for each of the features to make it
smooth. Let w be the size of the moving window. Then the moving average can be

calculated by:
zm (i) (4.4)

where *P(i) can be any of the 16 features.

In addition, as the magnitudes of the features differ greatly, as shown in the feature
examples of Chapter 2, scales should be used to make them comparable. In this study,
all the magnitudes of the features are scaled to around 5 to make sure the outputs from
the Gaussian kernels in the neural networks significant enough. Large magnitudes can
make the covariance matrix singular (details in Chapter 3). The scales can easily be
obtained by calculating the ratio between 5 and the magnitudes of the features. This
step is necessary for the feature selection in Chapter 5 to make sense. The five steps

result in a feature vector of{re,fod,sod,fm,fa,df,ra,fstd,sre,kpr,thp,Fa,vf,std,skew,kts},

which forms the candidate set of features for the feature selection. Figure 4.13 shows

these features after completing all the five steps.
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Figure 4.13 Feature Extraction Results
Spindle Speed: 1000rpm, Feed Rate: 100mm/min,
Depth of Cut: 1 mm, Insert Number = 2, Insert Type: AC325.

4.5 ONLINE TCM STRATEGY

The online tool condition monitoring system is an integrated system of testing

hardware and monitoring software. The hardware setup and its configuration have
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been described in Section 4.1 and 4.2. In this section, the software structure is outlined.
The software fulfills two main tasks: control of the DAQ board and realization of tool

wear recognition as well as tool wear estimation.

For the first task, the software calls the functions in the library of NI-DAQ divers,
and therefore it is compatible with various kinds of DAQ boards. More specifically,
“DAQ_Op”, a synchronous DAQ operation, is called to sample force data to a buffer.
Then features can be extracted from the data, which can be streamed to the hard disk of
the computer from the buffer. Figure 4.14 shows the main structure of the software.
Upon started, it initializes the parameters using the input values from the user interface.
Then it calculates three quantities, Ty (delay time of a timer routine), Ny, (maximum
rotation number within one pass), and Tcgr (the time for the cutter to move by the
distance of its radius), for controlling the execution of data acquisition. The data
acquisition and decision making procedures are implemented in a timer routine, which

controls the starting and ending point of the effective data acquisition. The timer

Initialize
parameters

v

Calculte T, N,
and T

v

Set a timer with
delay time T

T, elapsed?

yes
Start a new
timer routine
|
Figure 4.14 Main Routine of the Software

routine is illustrated in Figure 4.15.
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T4, Nm, and Tcr can be calculated as follows.

Notation:
Spindle Speed (rpm): Ss Length of Workpiece (mm): L,
Feed Rate (mm/min): Fr  Sampling Rate (Hz): Sy
Effective Radius of Tool Holder (mm):  R; Processing Time (ms): Tp

Number of Rotations within a Timer Period: Nt

60x N
T, =( S T +Tp]x1000 (4.5)
N, - (|_W—Rt)><60><1ooo>< N, (4.6)
F. xT,
Rt
Tep = =" 60x1000 (4.7)

r

where Ty and Tcg are in milliseconds. Nt is a constant number, which is set to 10. The
processing time T, includes the time used in feature extraction and decision making,
which can be estimated according to the computational burden and the processing

speed of the computer.

The timer routine can be explained as follows. When started, the system sets a
timer. When the first timer period elapses, it begins to collect data, no matter whether
or not the cutter is engaged in cutting. The program then keeps tracking the average
value of the data during the period of one rotation. If it is found that the average
changes to a value greater than 35 Newton (empirical value), the system will know that
the cutter begins engaging the workpiece. The program will wait until the center of the
cutter reaches the front edge of the workpiece. Then tool wear recognition and tool
wear estimation begins to function. When the rotation number in one pass reaches the

limit Nn, the program will wait for the cutter to fully disengage and set “enable” to
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FALSE to indicate the data become inefficient again. In the case that tool failure is
detected by the system during a tool pass, the program will kill the timer to stop the

monitoring process and sound warning beeps.

The GUISs of the software are shown from Figure F5 to Figure F8 in Appendix F.
Figure F5 is the view window, on which the force signal measured in each pass and the
estimated wear values during the entire monitoring process are plotted. The force
graph indicates what is going on during milling processes. There is an item named
“TCM” in the menu of the view window. It contains three dialogs, Milling Properties,
DAQ Specifications, and Monitoring, which are illustrated in Figures F6, F7, and F8,
respectively. Parameters can be fed into the system through the first two dialogs. The
third dialog can only be enabled after the “OK” button in both of the first two dialogs
is pressed. This dialog is responsible for indicating the growth of tool wear and raising
alarm. A tool condition monitoring report can be printed at any point after the software
is started, via “Print” item in “File” menu. An example is given in Figure F9. Figure

F10 shows what the view window looks like when the software is working.
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CHAPTER 5

RESULTS AND DISCUSSION

In this chapter, the feature selection results for tool wear estimation are given first,
followed by the comparisons of the generalization capabilities using the entire,
selected, and rejected feature sets. Then the feature selection results and similar
discussions for tool wear recognition are presented. The results are summarized at the

end of this chapter.

5.1 FEATURE SELECTION RESULTS FOR TWE

Twenty experiments are conducted using the setup described in Chapter 4. The
cutting conditions for these experiments are listed in Table 5.1. Note that the item
“Average Wear at Tool Failure Point” is the average wear value among all the teeth
inserted in the tool when any of the teeth is found worn. The sixteen different features
X= {re,fod,sod,fm,fa,df,ra,fstd,sre,kpr,thp,Fa,Vf,std,skew,kts} introduced in Chapter 2
are extracted from all of the experimental data. Figure Al to Figure A20 in Appendix
A show the features of all the 20 experiments. The vector X forms the scope of the

feature selection.

The feature selection algorithms for regression are described in Section 3.2 of
Chapter 3. The regression aims to find a mapping function between the feature vectors
and the tool wear values. The feature selection for the regression is to find the most

relevant features to tool wear from the candidate feature vector X. Sixteen hyperpara-
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Table 5.1. Cutting Experiments

. Average
Insert Spindle Feed Rate Depth of Insert Wear at Tool *
Test No Speed . Cut . . Phenomenon
Type (rpm) (mm/min) (mm) Number Failure Point
P (mm)
Test_al 800 150 1 4 0.3718 GW
Test a2 1000 100 1 2 0.4595 GW
Test a3 1000 100 1 4 0.4102 GW
Test_a4 1000 200 1 2 0.3960 BK
Test a5 1000 300 1 4 0.3043 BK
Test_a6 1200 150 1 2 0.3621 CpP
AC325 —
Test_a7 1200 200 1 2 0.4238 BK
Test a8 1200 300 1 4 0.3234 BK
Test a9 600 100 2 4 0.3520 GW
Test_al0 600 200 2 4 0.2736 GW
Test all 800 100 2 2 0.2915 GW
Test al2 1000 100 1 4 0.2633 CP
Test bl 800 200 1 4 0.4200 GW
Test b2 800 300 1 4 0.3626 GW
Test b3 1000 200 1 2 0.3803 GW
Test_b4 1000 300 1 4 0.3938 GW
A30N =

Test_bS 1000 300 2 4 0.3920 GW
Test b6 1200 100 1 2 0.3780 GW
Test_b7 1200 200 1 4 0.4094 GW
Test b8 800 300 1 4 0.3382 GW

* GW: Gradual Wear, CP: Chipping, BK: Breakage.
meters are assigned for them {kj, ks, ...,k;6}. The automatic relevance determination
algorithm is used to infer the optimal values of these sixteen hyperparameters. During
the computation, the less relevant feature dimensions are effectively suppressed as
their controlling hyperparameters are automatically reduced to negligible values. The
feature selection process of Test al is shown in Figure 5.1 as an example. Those of the
other 19 experiments are illustrated in Figure B1 to B19 in Appendix B. Note that in
order to plot the graphs clearly, the hyperparameters after each iteration are all

normalized with respect to the maximum value of the hyperparameters at that iteration:

i - i=12,---,16 (5.1)
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Mormalized Hyperparameters

3 A ,
re  fod sod fin fa df ra fstd sre kpr thp Fa owf o std skew K=

Figure 5.1. lllustration of the Feature Selection Processes of Test_al for TWE
Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut = 1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.

where ki(j) denotes the i-th hyperparameter after the j-th iteration. From the graphs, the

convergence of the feature selection processes can be clearly seen.

The values of k,,k,,---,k . at the last iteration of all the experiments are listed in

Table 5.2. All the numbers are compared with “1”. Those feature dimensions with the
corresponding ki’s greater than 1 are selected as relevant features; otherwise, the
features are rejected, because their contribution to the prediction is compromised by a
factor smaller than 1. The feature selection results are listed in Table 5.3, with the “V”

marks representing the selected feature set.

It can be seen from Table 5.3 that Fa, the average force, turns out to be the most
relevant feature. This result coincides with the wide and successful use of the average
force for tool wear estimation very well [Lin, 1996; Santanu, 1996]. The good
correlation between the average force and the tool wear values can also be seen from
Figure Al (a) to A20 (a). And there are also 6 other features that appear to be relevant
in some of the experiments: std, ra, fstd, kts, fm, and fa. As a result, a union of all these

7 features is taken to be the relevant feature set: {fm, fa, ra, fstd, Fa, std, kts}.
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Table 5.2 Hyperparameter Values at the Last Iteration for TWE

Feature | Test A1 | Test A2 | Test A3 | Test A4 | Test A5 | Test A6 | Test A7 | Test A8 | Test A9 | Test Al0
re 0.0045 | 0.0060 | 0.2012 0.0056 0.0000 | 0.0013 0.0091 0.0000 | 0.0001 0.0001
fod 0.2836 | 0.0886 | 0.0473 0.0995 0.0723 0.2610 0.2249 0.0985 0.2102 0.1451
sod 0.0101 0.0375 0.0222 0.0178 0.0074 | 0.0255 0.0065 0.0191 0.0052 0.0159
fm 0.0078 0.0000 | 0.0000 0.0598 0.1218 0.0000 | 0.0847 0.0000 0.0000 0.0181
fa 0.0835 0.0326 | 0.0565 0.1915 0.0000 | 0.0535 1.4259 0.1269 0.0000 0.7220
df 0.0022 0.0129 | 0.0608 0.0181 0.0339 0.0307 0.0115 0.0100 0.0194 0.0122
ra 0.4926 1.8699 | 0.7049 7.0827 9.7756 5.5813 22112 8.6904 | 16.6580 | 122.1674
fstd 0.2273 | 0.0420 | 0.1119 0.9217 0.5760 | 0.6318 0.6086 0.1936 0.0000 1.2434
sre 0.0825 0.0568 0.0508 0.0138 0.0342 0.0952 0.0274 0.0035 0.0474 0.0480
kpr 0.0001 0.0111 0.0272 0.0075 0.0043 0.0201 0.0061 0.0084 | 0.0102 0.0074
thp 0.3771 0.1654 | 0.4950 0.0000 0.1985 0.0000 1.1116 0.9294 0.3233 0.9327
Fa 2.5578 3.3660 | 2.6926 | 2.2844 5.5087 3.3153 0.4292 3.1612 3.5657 3.6165
vf 0.0131 0.0347 0.0101 0.0148 0.0339 0.0225 0.0268 0.0320 0.0148 0.0270
std 1.2387 0.7704 | 0.8110 1.3942 | 2.1895 1.8808 4.7131 1.7750 0.6492 2.9707
skew 0.0017 0.0030 | 0.0109 0.0028 0.0000 | 0.2337 0.0032 0.0195 0.0000 0.0170
kts 0.0005 0.1502 0.0767 0.0035 0.0510 | 0.0000 | 0.0000 0.3732 0.0209 0.3707
Continued:
Feature | Test_ A1l | Test A12 | Test Bl | Test B2 | Test B3 | Test B4 | Test B5 | Test B6 | Test B7 | Test B8
re 0.0091 0.0100 0.0000 0.0000 | 0.0021 0.0000 0.0000 0.0000 | 0.0169 | 0.0000
fod 0.0332 0.0721 0.0887 0.0462 0.1598 0.0586 0.1006 0.0347 0.1769 | 0.0943
sod 0.0021 0.0011 0.0041 0.0005 0.0045 0.0000 0.0210 0.0121 0.0000 | 0.0127
fm 0.0568 0.0012 0.0000 0.0000 | 0.0000 | 0.0000 0.0775 0.0000 | 0.0241 1.1234
fa 0.0000 0.0052 0.3823 0.2171 0.0000 | 0.3337 0.0094 0.2231 0.2835 0.0886
df 0.0061 0.0033 0.0000 0.1561 0.0000 | 0.1078 0.0221 0.0106 | 0.0009 | 0.0049
ra 31.1166 0.6721 0.3592 0.5525 7.2252 3.8678 3.7798 0.4125 0.3239 0.3929
fstd 0.0755 0.5198 0.0233 0.0113 | 0.2828 0.8648 0.8205 8.0873 0.0047 0.5429
sre 0.0547 0.1483 0.0219 0.0687 0.2660 | 0.2327 0.0501 0.0162 0.0225 0.0309
kpr 0.0029 0.0031 0.0000 0.0847 0.0218 0.0798 0.0038 0.0052 0.0007 | 0.0000
thp 0.6139 0.2867 0.5731 0.2050 | 0.2456 | 0.1488 0.1510 0.1509 0.1440 | 0.4488
Fa 9.6543 0.9099 4.8620 3.1382 6.6912 1.6410 3.3943 8.9221 4.0167 6.3221
vf 0.0138 0.0029 0.0218 0.1084 | 0.0226 | 0.1467 0.0646 0.0152 0.0071 0.0270
std 4.4762 1.0996 1.3115 0.9193 0.3197 | 0.4690 1.5296 6.4630 | 0.3368 2.3618
skew 0.8515 0.5174 0.0000 0.0704 | 0.0569 | 0.0358 0.1194 0.1634 | 0.0004 | 0.0737
kts 0.3929 1.1077 0.0002 0.0074 | 0.0320 | 0.2980 0.4034 2.9630 | 0.0015 0.1970
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Table 5.3 Feature Selection Results for TWE

re fod sod fm fa df ra fstd sre kpr thp Fa vf std skew kts

Test al \
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Test a3
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Test a5

2 2 2 2 2 2

Test a6
Test a7 \
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Test al0
Test all
Test al2
Test bl
Test b2
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Test b4 \

Test b5 \

Test b6 \
Test b7
Test b8 \

2 2 2 2 2 2 =2 2

2. 2 2 =2
2 22 2 2 2 2 2 2 =2

2 2 22 2 2 2 2

5.2 VERIFICATION OF THE RELEVANCE OF THE SELECTED
FEATURE SET FOR TWE

In order to verify the relevance of the selected features to tool wear, generalization
tests are performed. The experimental data sets are divided into two groups, one for
training and another one for testing. The training and testing data sets are listed in
Table 5.4 and 5.5, respectively. The 7 selected features {fm, fa, ra, fstd, Fa, std, kts}
are first used in training and testing. For comparison purpose, the entire 16 and the
rejected 9 features are used to repeat the procedures. Figure 5.2 shows the results from
the testing data set T1. Those obtained from the remaining 10 data sets are illustrated

in Figures C1 to C10 in Appendix C. It can be clearly seen from these figures that the
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Table 5.4 Training Data Sets for TWE

No. ?sert Ssplilelj(lie Fef;i/ Rgte De(p;lht of NInse;*t
ype (rpm) (mm/min) (mm) umber
1 AC325 1000 100 1 4
2 AC325 1000 200 1 2
3 AC325 1000 300 1 4
4 AC325 1200 300 1 4
5 AC325 600 200 2 4
6 AC325 1000 100 1 4
7 A30N 1000 300 2 4
8 A30N 1200 100 1 2
9 A30N 1200 200 1 4
Table 5.5 Testing Data Sets for TWE
No. ?sert Ssp;relgée Fet:ﬁ/ the Degtli of NInsegt
ype (rpm) (mm/min) (mm) umber
T1 AC325 800 150 1 4
T2 AC325 1000 100 1 2
T3 AC325 1200 150 1 2
T4 AC325 1200 200 1 2
TS AC325 600 100 2 4
T6 AC325 800 100 2 2
T7 A30N 800 200 1 4
T8 A30N 800 300 1 4
T9 A30N 1000 200 1 2
T10 A30N 1000 300 1 4
T11 A30N 800 300 1 4

estimated wear values using the selected feature set closely follow the measured wear

curve, whereas those derived from the rejected feature set scatter randomly on the

graph. The estimated values using the entire feature set also appear to be not as good as
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Figure 5.2. TWE Results of T1
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 150mm/min, depth of cut = 1
mm, insert number = 4, immersion rate:
FULL, insert type: AC325.

those using the selected feature set, because the input space is corrupted by the noisy

rejected features.

It can also be observed that in T1, T4, and T11, the best estimates using the

selected features are slightly biased. These results can be explained by analyzing the

tool wear growth rate in terms of the amount of wear growth per Newton increase in

cutting force (um/N).

The average wear growth rate of the training data sets is 2.5 (um/N). Due to the

averaging effect of the neural estimator, the growth rate of the estimated wear is also

around 2.5. If the true wear growth rate of a testing data set exceeds this number, the

estimated wear values will be smaller than the measured ones, because the growth of
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the former lags behind that of the latter; otherwise the estimated values will be larger.
The true wear growth rate of T1, T4, and TI11 is 2.2, 3.5, and 1.7, respectively.
Therefore, the estimates of T1 and T11 are slightly larger than the measurements;

while those of T4 are slightly smaller.

The generalization capabilities of the entire, selected, and rejected feature sets are
compared in terms of the averaged absolute estimation error (AAEE), which is defined

as:

AAEE =

> fMP(Zi )_ yi|
. (5.2)

where z; represents the input vector comprising the entire, selected, and rejected
feature set, respectively; fup(z;) is the MAP estimation output of the BSVR networks;
y; is the measured wear value; and N is the total number of the points in one testing
data set. Then the ratios between the AAEEs and 400 microns are calculated to
indicate the relative estimation errors. 400 microns is used here, because it is the
threshold to determine whether the tool is failed or not (Chapter 4). The comparisons

are listed in Table 5.6 and visualized in Figure 5.3.

Table 5.6 and Figure 5.3 indicate the same outcomes. It is clear that the
generalization capabilities of the selected feature set are the best and much better than
those of the rejected feature set. This proves that the selected features are relatively

more relevant to tool wear processes.

5.3 FEATURE SELECTION RESULTS FOR TWR

The feature selection algorithms for classification are described in Section 3.3 of

Chapter 3. Unlike the regression, the classification aims to map the feature vectors into
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Table 5.6 Tool Wear Estimation Results

Entire Features Rejected Features Selected Features
Test No. AAEE AAEE %) A{\EE AAEE %) AAEE AAEE %)
(micron) 400 (micron) 400 (micron) 400
T1 36.1 9.0 43.7 10.9 34.9 8.7
T2 67.7 16.9 91.7 22.9 32.5 8.1
T3 54.9 13.7 69.6 17.4 25.2 6.3
T4 61.0 15.3 90.6 22.7 39.0 9.8
T5 30.9 7.7 60.5 15.1 19.1 4.8
T6 383 9.6 50.6 12.7 25.9 6.5
T7 34.2 8.6 108.3 27.1 333 8.3
T8 53.0 133 88.4 22.1 21.8 5.5
T9 28.4 7.1 51.7 12.9 18.1 4.5
T10 54.8 13.7 72.3 18.1 36.6 9.2
T11 75.8 19.0 86.1 21.5 35.5 8.9
120 . . T . . . . . .
—£- Entire
100 —= Hejected
—4— Selected

microns

D | | 1 | | | | | |

1 2 3 4 ] a 7 g 3 1a 11 Mo

Figure 5.3 Comparisons of the Estimation Errors

tool conditions. The feature selection for the classification is to find the most relevant
features to tool conditions from the same candidate feature vector X as described in
Section 5.2. The automatic relevance determination algorithm is also used to infer the
optimal values of the 16 hyperparameters {ki, ko, ..., kis} assigned for the 16 feature
dimensions. The feature selection process of Test al is shown in Figure 5.4 as an
example. Those of the other 19 experiments are illustrated in Figures D1 to D19 in
Appendix D. In these illustrations, the hyperparameters are also normalized with

respect to the maximum values as defined in Equation 5.1.
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Figure 5.4. lllustration of the Feature Selection Processes of Test_al for TWR
Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.

The values of k,,k,,---,k,, at the last iteration of all the experiments are listed in

Table 5.7. “1” is also used as the threshold. Those feature dimensions with the
corresponding ki’s greater than 1 are selected as relevant features; otherwise, the
features are rejected. The feature selection results are listed in Table 5.8, with the “v”

marks representing the selected features.

It can be seen from Table 5.8 that besides the features chosen out for TWE, three
more features turn out to be relevant to tool wear recognition, thp, sre, and skew. The
selected feature set becomes {fm, fa, ra, fstd, sre, thp, Fa, std, skew, kis}, which spans
a more complex feature space than that of TWE. The addition of the three relevant
features makes the feature space more easily separable. Another point to note in the
results is that there is not a single feature that stands out to be most relevant for tool
condition recognition, unlike that in the case of TWE, where the average force is found
to be most relevant. This is probably because no single feature among the candidate
features is representative enough for reliable recognition of tool state. To make the

feature space separable, multiple features have to work together.

71



Chapter

5

Table 5.7 Hyperparameter Values at the Last Iteration for TWR

Feature | Test A1 | Test A2 | Test A3 | Test A4 | Test A5 | Test A6 | Test A7 | Test A8 | Test A9 | Test Al0
re 0.0000 | 0.2479 | 0.0258 0.0353 0.0000 | 0.1446 | 0.0120 0.0000 0.0000 0.0000
fod 0.1162 0.0249 | 0.0000 0.2366 0.1781 0.1342 0.0768 0.2221 0.1231 0.1410
sod 0.0654 | 0.1578 0.0326 0.0818 0.0525 0.1311 0.0514 0.0899 0.0217 0.0465
fm 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 7.8241
fa 0.0000 | 0.0000 | 0.0134 0.0000 1.2276 | 0.0000 | 0.4027 0.0000 0.0000 4.6805
df 0.2096 | 0.0950 | 0.1401 0.0931 0.1449 0.1925 0.0425 0.0802 0.0199 0.0581
ra 2.0530 | 3.3845 0.1858 6.2861 3.4543 9.7906 | 0.3993 5.0866 0.5338 | 46.7660
fstd 0.0000 0.0000 | 0.1060 3.3348 0.7533 0.0000 7.8723 0.0477 0.0000 0.0000
sre 0.1562 0.0000 | 0.0000 0.0006 0.0973 0.0196 | 0.0002 0.0205 0.1847 0.1071
kpr 0.2449 0.0732 0.0590 0.0595 0.1186 | 0.1015 0.0466 0.0707 0.0211 0.0699
thp 0.8351 0.0341 0.4521 0.0000 0.4484 1.0695 0.0000 1.7741 0.0815 2.3264
Fa 0.1723 0.4877 1.3042 0.7465 2.6544 1.3127 3.2243 0.6005 1.5639 3.7184
vf 0.0598 0.0626 | 0.0490 0.0896 0.0657 0.0832 0.0356 0.1137 0.0565 0.0752
std 0.0016 | 0.7829 | 0.0000 0.5916 3.4709 0.0000 | 0.1452 1.2748 0.0000 1.9404
skew 0.1101 0.3934 | 0.0241 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 1.5876 0.2550
kts 1.3640 | 3.1751 0.0000 0.0000 0.0000 | 0.2779 | 0.0000 3.0119 0.0000 0.0000
Continued:
Feature | Test A1l | Test A12 | Test B1 | Test B2 | Test B3 | Test B4 | Test B5 | Test B6 | Test B7 | Test B8
re 0.0176 0.2041 0.0000 0.2706 0.0000 0.0823 0.0000 | 0.1800 0.0000 0.0000
fod 0.0507 0.0818 0.0872 0.4298 0.0668 0.1118 0.3919 | 0.1407 0.0942 0.2033
sod 0.0263 0.1343 0.0382 0.4415 0.0274 0.1678 0.2210 | 0.2749 0.0698 0.0634
fm 0.0000 0.0000 1.7449 0.0000 0.0000 0.0000 | 9.8589 | 0.0000 0.0000 0.6970
fa 0.0000 0.6699 0.3162 0.0000 0.0000 0.6761 0.0006 | 0.0000 0.0000 2.4602
df 0.0252 0.3096 0.0000 0.3964 0.0026 0.1605 0.1110 | 0.15%4 0.0188 0.0609
ra 101.2571 0.4799 1.6809 0.1980 1.2720 0.7564 | 4.3998 2.4523 0.0001 4.0414
fstd 0.0000 0.2614 0.0000 0.0000 2.5916 0.1744 | 0.2875 0.0000 1.6024 | 7.4351
sre 0.2333 0.9705 0.1981 27.7763 0.1435 2.9469 0.0205 1.7964 0.0478 0.0964
kpr 0.0331 0.2171 0.1819 0.3213 0.1111 0.2159 0.0491 0.1212 0.0124 0.0774
thp 0.0000 0.2289 0.2961 0.0819 0.0000 0.1119 0.5398 0.0000 3.2492 0.0000
Fa 15.5439 0.1676 0.9517 0.4316 6.7068 0.3767 1.1849 1.0308 0.6165 4.2867
vf 0.0877 0.1204 0.0368 0.4884 0.0262 0.1612 0.2088 0.3566 0.0392 0.0739
std 1.3626 4.9664 0.1880 0.0598 0.0000 0.4557 0.2795 0.3674 0.0000 0.0000
skew 0.0000 0.0286 0.0000 0.1622 1.1629 0.0519 0.0515 8.5447 0.0000 0.1369
kts 0.0000 0.5445 0.3297 0.5404 | 177.1931 | 0.6323 0.0000 | 4.9205 0.3759 0.2641
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Table 5.8 Feature Selection Results for TWR
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5.4 VERIFICATION OF THE RELEVANCE OF THE SELECTED
FEATURE SET FOR TWR

In order to verify the relevance of the selected feature set to tool conditions,

generalization tests are also performed. The training and testing data sets are listed in

Table 5.9 and 5.10, respectively. The point where the tool is found worn in each data

set is marked by the item “Average Wear at Tool Failure Point”, which is used to

distinguish the failure stage from the fresh one. Note that these values vary from one

data set to another. This is because each of these values is taken as the average of the

wear value of every insert in the cutter when any insert is found worn; and the wear

growth is usually uneven among different inserts.
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Table 5.9 Training Data Sets for TWR

o | e | S0 e [ DR e [ e e
Type (rpm) (mm/min) (mm) Number Point (mm)

1 AC325 800 150 1 4 0.3718

2 AC325 1000 100 1 4 0.4102

3 AC325 1200 150 1 2 0.3621

4 AC325 600 100 2 4 0.3520

5 AC325 1000 100 1 4 0.2633

6 A30N 800 200 1 4 0.4200

7 A30N 800 300 1 4 0.3626

8 A30N 1000 300 1 4 0.3938

9 A30N 800 300 1 4 0.3382

Table 5.10 Testing Data Sets for TWR
No, | Imert | G | FeedRate | DU msen | S B
Type (rpm) (mm/min) (mm) Number Point (mm)

T1 AC325 1000 100 1 2 0.4595
T2 AC325 1000 200 1 2 0.3960
T3 AC325 1000 300 1 4 0.3043
T4 AC325 1200 200 1 2 0.4238
TS AC325 1200 300 1 4 0.3234
T6 AC325 600 200 2 4 0.2736
T7 AC325 800 100 2 2 0.2915
T8 A30N 1000 200 1 2 0.3803
T9 A30N 1000 300 2 4 0.3920
T10 A30N 1200 100 1 2 0.3780
T11 A30N 1200 200 1 4 0.4094

The 10 selected features are first used in training and testing. Then the entire 16
and the rejected 6 features are used to repeat the procedures. Figure 5.5 shows the
results from the testing data set T1. Those obtained from the remaining 10 data sets are
illustrated in Figures E1 to E10 in Appendix E. Note that the first alarms given by the

classifiers are marked with a vertical line jumping from the bottom to the top.
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It can be clearly seen from these figures that the classification results using the
rejected feature set are quite noisy for all of the tests, with alarms given out even at the
early stage of the tools. The results using the selected and the entire feature set are

much better.

The generalization capabilities of the entire, selected, and rejected feature sets are
compared in terms of the actual wear at the first alarm, and the successful classification
rate. The actual wear at the first alarm is defined as the actual wear value when the
classifier gives the first alarm. The successful classification rate is the ratio between
the number of the successfully classified points and the total number of points. The

comparisons are listed in Table 5.11.
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Table 5.11 Tool wear recognition Results

Successful Classification Rate Actual Wear at the First Alarm Average
1];165 t All Features Rejected Selected All Features I;:i iﬁzg :Z;ﬁiﬂ gielirr: ;E?ril
Features Features (mm) (mm) (mm) (mm)
Tl 96.00% 83.00% 97.00% 0.3745 0.0056 0.4340 0.4595
T2 97.22% 88.89% 97.22% 0.3675 0.0205 0.3675 0.3960
T3 94.94% 67.09% 94.94% 0.3297 0.0300 0.3297 0.3043
T4 95.71% 70.00% 100.00% 0.3926 0.0125 0.4238 0.4238
TS 95.38% 72.31% 98.46% 0.3682 0.0105 0.3383 0.3234
T6 96.00% 67.00% 98.00% 0.1760 0.0941 0.2830 0.2736
T7 97.00% 33.65% 97.00% 0.2022 0.0132 0.2579 0.2915
T8 97.06% 72.06% 97.06% 0.3718 0.0213 0.3718 0.3803
T9 98.75% 88.75% 97.50% 0.4011 0.2006 0.4103 0.3920
T10 99.44% 87.78% 95.56% 0.3810 0.0029 0.3810 0.3780
T11 90.86% 41.71% 96.57% 0.2361 0.0116 0.4301 0.4094

By their definitions, the successful classification rate indicates the stability of the
classifier (frequently varying classification results are regarded as unstable); while the
actual wear at the first alarm represents the accuracy (the closeness of the detected
failure point to the actual one). It is obvious that both the stability and the accuracy of
the classifier using the selected feature set is much better than that using the rejected
feature set. For most of the cases (except T9 and T10), the stability of the classifier
using the selected feature set is not worse than that using the entire feature set. The
reason why the successful rates using the entire feature set are comparable to those
using the selected feature set is that the hyperparameters associated with the rejected
feature dimensions are automatically reduced to negligible values in training. And

therefore those features don’t have much influence on the classification result.

From practical viewpoint, the identification error can be viewed as the absolute
difference between the actual wear at the first alarm and the average wear at the tool

failure point, which indicates the capability of the classifier in detecting tool failures in
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time. The comparisons of the identification errors can be visualized in Figure 5.6. It
can be clearly seen that the accuracy of the classifier using the selected feature set is

the best, because the first alarms are given most punctually.

5':":' T T T T T T T T T
il —£— Entire
—= Hejected
400 +
—— Selected ’
300 + .

microns

200

1 2 3 4 g b 7 g o 1a 11 tests

Figure 5.6 Comparisons of the Classification Errors

5.5 SUMMARY OF THE RESULTS

7 features {fm, fa, ra, fstd, Fa, std, kts} are identified to be relevant to tool wear
estimation. And three more features, thp, Fa, and skew, are added to the selected
feature set for tool wear recognition. The comparisons of the generalization
capabilities using the entire, selected, and rejected feature sets indicate the successful

identification of the relevant features in both the regression and the classification.

In addition, the performance of the estimator and the classifier designed using the
Bayesian framework is good. With the selected feature set, an accuracy of more than
90% is achieved for tool wear estimation. On the other hand, a stable and accurate
classifier is implemented for tool wear recognition, with a stability of more than 95%
and an accuracy of recognizing a failed tool in the close vicinity of the actual failure

point (identification error less than 35 microns).
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In response to the latest development in using artificial intelligence approaches in
tool condition monitoring, this work is devoted to study the effectiveness of various
features for two main tasks in TCM, tool wear estimation and tool wear recognition.
This is because the proper selection of features is a vital issue in using neural networks,

which has also been widely acknowledged in the field of TCM [Leem, 1995].

Force signal is used, due to its high sensitivity to tool wear and low noise. Cutting
experiments have been conducted under various conditions. The influence of the radial
run-out on the cutting force and force features is examined through analysis of the
force signals. It has been found that when the run-out is greater than the feed per tooth,
the force pulses within one rotation are quite different from each other even at the fresh
stage of the tool. Theoretically, this phenomenon should occur only when the tool is
highly worn or some of the teeth are broken. In order to avoid the influence of the
force fluctuating behavior caused by the run-out, all the features are extracted from the
force signals within one rotation instead of one tooth period, so that the run-out can be
eliminated as a “common mode noise” when comparing the force features between

adjacent tool rotations.
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16 different feature extraction methodologies are introduced and discussed, which
have all been shown to be effective for tool condition monitoring. These include time-
series analysis, statistical analysis, and signal processing approaches. According to the
intrinsic relationships among these features, the feature extraction is performed
through a five-step procedure. The 16 features form the scope for the feature selection

in this study.

The feature selection is realized through the automatic relevance determination
(ARD) approach, which by itself does not make sense and has to be implemented in
specific neural networks. In this study, the ARD approach is implemented in Bayesian
support vector machines, which is the combination of the Bayesian probability theory

and the classic support vector machines.

To select features for tool wear estimation, the Bayesian support vector regression
algorithm is used. The average force within one tool rotation has been proven to be the
most relevant feature for tool wear estimation, because of its good correlation to tool
wear processes. It forms the relevant feature set together with 6 other selected features,
including amplitude ratio, standard deviation, maximum force level, kurtosis, total
amplitude of cutting force, and standard deviation of the force components in tool
breakage zone. The generalization capabilities of the entire, selected, and rejected
feature sets are tested and compared. The results using the selected features turn out to

be the best, proving that they are relatively more relevant to tool wear processes.

To select features for tool wear recognition, the Bayesian support vector
classification algorithm is used. Besides the features chosen out for TWE, three more

features turn out to be relevant to TWR. They are skew, total harmonic power, and
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total amplitude of cutting force. The performance of the entire, selected, and rejected
features is compared in terms of the successful classification rates and the
identification errors. Once again, the performance of the selected features turns out to

be the best, proving that they are more relevant to tool wear.

Besides the successful identification of the relevant features, good generalization
capabilities have also been achieved for both TWE and TWR. An accurate tool wear
estimator has been implemented using the Bayesian support vector regression
algorithm, with an accuracy of more than 90%. And by using the Bayesian support
vector classification algorithm, a stable and accurate classifier has been achieved for
tool wear recognition, with a stability of more than 95% and an identification error less

than 35 microns.

6.2 FUTURE WORK

According to Liang [2002], the future development of tool condition monitoring

technology is likely to take on the following paths:

« Embedding sensors into the machine tool structure. For example, force sensing
elements may be directly mounted in the tool holder to monitor flank wear.

« Miniaturizing system components. For example, a MEMS thermometer may be
positioned right next to the cutter tip to measure the temperature at the tool-
workpiece interface directly.

« Telecommunication-based and wireless process monitoring. This technology may

enable the remote monitoring of machining processes.

These are the long-term goals for TCM. There are also some challenges to be faced

in the nearest future, for example, the realization of robust TCM systems for industrial
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application and the integration of multiple monitoring systems for comprehensive

machining process monitoring.

Although considerable research has been done in the area of tool condition
monitoring, industrial realization and commercial availability of TCM systems are still
quite limited at present. Take milling process monitoring as an example. Most of the
current systems are not robust enough to deal with various milling processes in
industrial environment. One limitation is that they can only deal with some regular
shapes of workpiece. Cubes are the most popular shape used in theoretical studies,
because of the uniform cutting geometry. However, when it comes to shapes as
complex as shown in Figure 6.1, most of the systems designed for cubic workpiece
may not function properly. The problem lies in the feature extraction methodologies.
For example, all the 16 features considered in this study are based on the waveform of
the force signal. However, force waveforms can vary greatly from rotation to rotation
just due to the change in cutting geometry, which will make the features too noisy to
indicate tool states. Based on this consideration, alternative feature extraction

methodologies insensitive to cutting geometry or alternative sensing techniques have

S . ___E.

\

Surface under milling

Figure 6.1 Hlustration of a Complex Shape
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to be developed in future work. A possible solution, for example, is to use computer
vision systems, which can directly measure the wear volume rather than infer it from
force signals. However, reliable vision systems, which can be fit into practical cutting

environments, have to be developed in future work.

Besides tool condition monitoring, there are some other types of monitoring
systems, e.g. chatter detection systems, which are also very important to machining
processes. According to Du [1989], chatter is one of the most destructive malfunctions
in machining processes. If uncontrolled, it can result in poor surface finish, premature
wear, chipping and breakage of the cutting tool. So it could be interesting and
necessary to combine the individual monitoring systems together. Approaches to
chatter detection are commonly to investigate the spectral density of a process signal,
such as cutting force [Du, 1989]. Therefore, it is possible to combine tool condition
monitoring and chatter detection systems together by just using one dynamometer.

Integration of the two systems could take the following form:

Spectral

Density — Thresholding Di'::g?gn
! Force Analysis Desicion
|
| Feature Neural Tool
Extraction Network Condition
Monitoring

Figure 6.2 Combination of TCM and Chatter Detection

Not limited to this, the future machining process monitoring systems should be the
integration of multiple subsystems for the monitoring of tool condition, chatter onset,
part dimensions, surface roughness, spindle bearing failure, etc. Such systems are
called supervisory systems, which are drawing more and more attention from the

researchers in the field [Teltz, 1993; Landers, 1998].
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Appendix A
Illustration of Cutting Force, Tool Wear, and Features

[ Jeans

(@)
350 H 0s
=
L300 - 0.375
o
w
E" 250 0.25
=
L
200 0125
! ! 0
2160 4320 G430 8640 Sec
(b) 4 4
2 2
&0 E u|
2 -2
-4
4 =
2
=0 £ 4
2| R
4 =
s 4
2
o a1 =0 e o L .._.J._. _.JI_ -
2 [
3 4
5
o 4.5 E Fl ]
46 . |
] : :
- -
ooz = g i
) i
5
4
= =t
2 3
a 5
= =1
= _g b 4
| 3
5
2 i
4.5
g0 1 B )
3 2 ] =
a . 35
2160 4320 54580 8640 Sec 2160 4320 G450 S640 Sec

Figure Al. lllustration of the Cutting Force, Tool Wear, and Features of Test_al
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 800rpm, feed rate = 150mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure A2. lllustration of the Cutting Force, Tool Wear, and Features of Test_a2

(a) average cutting force & tool wear, (b) features

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1

mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure A3. lllustration of the Cutting Force, Tool Wear, and Features of Test_a3

(a) average cutting force & tool wear, (b) features

Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure A4. lllustration of the Cutting Force, Tool Wear, and Features of Test a4
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure A5S. Illustration of the Cutting Force, Tool Wear, and Features of Test_a5

(a) average cutting force & tool wear, (b) features

Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut =1

mm, insert number = 4, immersion rate: FULL, insert type: AC325.

93



Appendix A

a
( ) 350
~ 300 .60
= =
E 250 045 3
Ll_ .
3
£ 200 0s0 3
=
150 0.1s
100 ]
720 1440 ME0 2880 Sec
© 4 2
2 0
» 0 5
2 &2
q 4
4 5
2 4
=
o
& 2 E 4
-4 2
5 4
4 2
5 5 g
2 -4
5
=4
24
4 :
5 2 E g
= o | -4
5
4 4
E L]
£ 2 w3
2
4 5
2 4
— 0 =
= 53
-4 2
5 . 5
4 ‘.rwww\fﬂ W’fﬂn
= 3
2 . . : 3 3 . .
720 1440 B0 2580 Sec 720 1440 B0 2850Sec

Figure A6. lllustration of the Cutting Force, Tool Wear, and Features of Test_a6
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure A7. lllustration of the Cutting Force, Tool Wear, and Features of Test_a7
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure A8. lllustration of the Cutting Force, Tool Wear, and Features of Test_a8

(a) average cutting force & tool wear, (b) features

Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut = 1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure A9. lllustration of the Cutting Force, Tool Wear, and Features of Test_a9
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure A10. lllustration of Cutting Force, Tool Wear, and Features of Test_al0

(a) average cutting force & tool wear, (b) features

Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure Al1l. Illustration of Cutting Force, Tool Wear, and Features of Test_all
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut = 2
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure Al12. Illustration of Cutting Force, Tool Wear, and Features of Test_al?2
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure A13. lllustration of Cutting Force, Tool Wear, and Features of Test_bl
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure Al4. lllustration of Cutting Force, Tool Wear, and Features of Test_b2
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure A15. Illustration of Cutting Force, Tool Wear, and Features of Test_b3
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: A30N.
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Figure Al6. lllustration of Cutting Force, Tool Wear, and Features of Test_b4
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure Al7. llustration of Cutting Force, Tool Wear, and Features of Test_b5
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure A18. lllustration of Cutting Force, Tool Wear, and Features of Test_b6
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut =1

mm, insert number = 2, immersion rate:

FULL, insert type: A30N.
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Figure A19. lllustration of Cutting Force, Tool Wear, and Features of Test b7
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure A20. lllustration of Cutting Force, Tool Wear, and Features of Test_b8
(a) average cutting force & tool wear, (b) features
Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Appendix B
Illustration of Feature Selection Processes for TWE
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Figure B1. lllustration of the Feature Selection Processes of Test_a2
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure B2. lllustration of the Feature Selection Processes of Test_a3
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure B3. Hlustration of the Feature Selection Processes of Test_a4
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure B4. lllustration of the Feature Selection Processes of Test_a5
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut=1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure B5. lllustration of the Feature Selection Processes of Test_a6
Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure B6. llustration of the Feature Selection Processes of Test_a7
Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure B7. lllustration of the Feature Selection Processes of Test_a8
Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut=1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure B8. lllustration of the Feature Selection Processes of Test_a9
Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.

111



Appendix B

Mormalized Hyperparameters

T T T T T T T
— First
Third
08 .- Fourth ]
-2 Fifth
0G| .
04 -
n2r -
T N S N P S - SN S |
re  fod sod fin fa df ra fstd sre kpr thp Fa owf o std skew K=

Figure B9. lllustration of the Feature Selection Processes of Test_al0
Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure B10. Illustration of the Feature Selection Processes of Test _all
Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut = 2
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure B11. lllustration of the Feature Selection Processes of Test _al2
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure B12. lllustration of the Feature Selection Processes of Test_b1l
Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure B13. lllustration of the Feature Selection Processes of Test_b2
Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure B14. lllustration of the Feature Selection Processes of Test_b3
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: A30N.
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Figure B15. Illustration of the Feature Selection Processes of Test_b4
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure B16. Illustration of the Feature Selection Processes of Test_b5
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: A30N.

— First
Fifth

---- Eighth

—&- Terth

0ar

06

o4l /\

0.z

Mormalized Hyperparameters

(0L Bomepiiyme i : L =
re  fod sod fin fa df ra fstd sre kpr thp Fa owf o std skew K=

Figure B17. lllustration of the Feature Selection Processes of Test_b6
Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: A30N.
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Figure B18. Illustration of the Feature Selection Processes of Test_b7

=

Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1

mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure B19. Illustration of the Feature Selection Processes of Test_b8

Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1

mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Appendix C
Tool Wear Estimation Results
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Figure C1. TWE Results of T2
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 100mm/min, depth of
cut =1 mm, insert number = 2, immersion
rate: FULL, insert type: AC325.
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Figure C2. TWE Results of T3
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 150mm/min, depth of
cut = 1 mm, insert number = 2, immersion
rate: FULL, insert type: AC325.
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Figure C3. TWE Results of T4
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 200mm/min, depth of
cut =1 mm, insert number = 2, immersion
rate: FULL, insert type: AC325.

—— hlessured Ty
04112 2 Estimated T
=03} ]
E |
Toz|l ° -
g 0.
=

]
—-

3942

(b)

1971 M3 Food4 5

Figure C4. TWE Results of T5
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 100mm/min, depth of cut = 2
mm, insert number = 2, immersion rate:
FULL, insert type: AC325.
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Figure C5. TWE Results of T6
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 100mm/min, depth of
cut = 1 mm, insert number = 4, immersion
rate: FULL, insert type: AC325.
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Figure C6. TWE Results of T7
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 200mm/min, depth of cut = 1
mm, insert number = 4, immersion rate:
FULL, insert type: A30N.
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Figure C7. TWE Results of T8
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate:
FULL, insert type: A30N.
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Figure C8. TWE Results of T9
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 200mm/min, depth of
cut =1 mm, insert number = 2, immersion
rate: FULL, insert type: A30N.
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Figure C9. TWE Results of T10
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 300mm/min, depth of
cut =1 mm, insert number = 4, immersion
rate: FULL, insert type: A30N.
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Figure C10. TWE Results of T11
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate:
FULL, insert type: A30N.
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Illustration of Feature Selection Processes for TWR
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Figure D1. lllustration of the Feature Selection Processes of Test_a2
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure D2. lllustration of the Feature Selection Processes of Test_a3
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure D3. Illustration of the Feature Selection Processes of Test_a4
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1

mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure D4. lllustration of the Feature Selection Processes of Test_ab
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut =1

mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure D5. Illustration of the Feature Selection Processes of Test_a6
Cutting conditions: spindle speed = 1200rpm, feed rate = 150mm/min, depth of cut =1

mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure D6. Illustration of the Feature Selection Processes of Test_a7
Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure D7. lllustration of the Feature Selection Processes of Test_a8
Cutting conditions: spindle speed = 1200rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure D8. Illustration of the Feature Selection Processes of Test_a9
Cutting conditions: spindle speed = 600rpm, feed rate = 100mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure D9. lllustration of the Feature Selection Processes of Test_al0
Cutting conditions: spindle speed = 600rpm, feed rate = 200mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Figure D10. Hlustration of the Feature Selection Processes of Test_all
Cutting conditions: spindle speed = 800rpm, feed rate = 100mm/min, depth of cut =2
mm, insert number = 2, immersion rate: FULL, insert type: AC325.
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Figure D11. llustration of the Feature Selection Processes of Test_al2
Cutting conditions: spindle speed = 1000rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: AC325.
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Marmalized Hyperparameters
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Figure D12. lllustration of the Feature Selection Processes of Test bl
Cutting conditions: spindle speed = 800rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure D13. llustration of the Feature Selection Processes of Test_b2
Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure D14. lllustration of the Feature Selection Processes of Test_b3
Cutting conditions: spindle speed = 1000rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: A30N.
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Figure D15. lllustration of the Feature Selection Processes of Test b4
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure D16. lllustration of the Feature Selection Processes of Test_b5
Cutting conditions: spindle speed = 1000rpm, feed rate = 300mm/min, depth of cut = 2
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure D17. Hlustration of the Feature Selection Processes of Test_b6
Cutting conditions: spindle speed = 1200rpm, feed rate = 100mm/min, depth of cut =1
mm, insert number = 2, immersion rate: FULL, insert type: A30N.
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Figure D18. lllustration of the Feature Selection Processes of Test_b7
Cutting conditions: spindle speed = 1200rpm, feed rate = 200mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure D19. lllustration of the Feature Selection Processes of Test_b8
Cutting conditions: spindle speed = 800rpm, feed rate = 300mm/min, depth of cut =1
mm, insert number = 4, immersion rate: FULL, insert type: A30N.
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Figure E2. TWR Results of T3
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 300mm/min, depth of
cut =1 mm, insert number = 4, immersion
B s rate: FULL, insert type: AC325.
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Figure E3. TWR Results of T4
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 200mm/min, depth of
cut = 1 mm, insert number = 2, immersion
rate: FULL, insert type: AC325.
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Figure E4. TWR Results of T5
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 300mm/min, depth of
cut =1 mm, insert number = 4, immersion
rate: FULL, insert type: AC325.
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Figure E5. TWR Results of T6
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 600rpm,
feed rate = 200mm/min, depth of cut = 2
mm, insert number = 4, immersion rate:
FULL, insert type: AC325.
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Figure E6. TWR Results of T7
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed = 800rpm,
feed rate = 100mm/min, depth of cut = 2
mm, insert number = 2, immersion rate:
FULL, insert type: AC325.
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Figure E7. TWR Results of T8
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 200mm/min, depth of
cut = 1mm, insert number = 2, immersion
rate: FULL, insert type: A30N.
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Figure E8. TWR Results of T9
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1000rpm, feed rate = 300mm/min, depth of
cut = 2mm, insert number = 4, immersion
rate: FULL, insert type: A30N.
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Figure E9. TWR Results of T10
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 100mm/min, depth of
cut = 1 mm, insert number = 2, immersion
rate: FULL, insert type: A30N.
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Figure E10. TWR Results of T11
(a) Entire, (b) Rejected, (c) Selected Set
Cutting conditions: spindle speed =
1200rpm, feed rate = 200mm/min, depth of
cut =1 mm, insert number = 4, immersion
rate: FULL, insert type: A30N.
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Appendix F Miscellaneous

Figure F2. Tool Wear Measurement System
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Type: Sumitomo SDKN42MT

Relief Angle = 15°

Cutting Edge Length | =
d=12.7mm

L]
90°

A Thickness s =
3.18mm

- Face Mill

Insert

Workpiece

Figure F4. Face Mill Geometry

Nose Width = 1.2mm

Figure F3. Insert Geometry

Type: TUNGALOY EGD4450R

Rake Angle:
AR.=+15° RR.=-3°

Cutting Diameter =
50mm

Number of Inserts = 4

Stock: Right Hand

2 TCM_Milling
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=101 %]

um
h40

Wear Estimation

480

420

360

300

240
180

120

60

0 ' '
100 200

300 400 500 600 700

900
rot

800

Force Measurement

The 1th Pass

AT¥
424

371

316
265

212

159

106

b3

100 200

300 400 500 600 700

800 900 rot

Figure F5. View Window of the Online TCM Software
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Milling Properties : x|
— Cutting Conditions—————————— — Cutter Specifications
Spindle Speed: Ig[uj rpm Cutter Tupe: IEGDMEDH
. Effective
Feed Rate: I‘I oo rrmymir B adius: |25 rmm
Depth of Cut; |1 i Inzert Type: I.-’-'-.E325
Inzert
: |2
—Workpiece Number:
Material  [45548718HH
|
Length in
Cuittirig: 205 mm Eereal |
Figure F6. Milling Properties Dialog
DAQ Specifications ﬂ
— Recommended Configuration———— 1~ Other Parameters
Thiz zaftware iz supported by standard . : I_
MI-DAl functions. So it iz compatible Sampling Rate: | 2000 Hz

with wariouz kinds of MI-0AGQ boards.

. Device Mo.: |'|
Fleaze configure vour own DAL system SiEE RO
accarding to the fallawing recommended
configurations: Channel Mo.: I'I

1. Bipalar Analog [nput [-5 ta 5]

2 MRSE [Mon-Reference Single Ended
Analog) Input Mode

W Save Data ta Digk

Fath for Storing the Data:

3. Measuring Only One Force Compaonent;
along Y axiz Id:‘\fnrce'\test_'l

ak I Cancel |

Figure F7. DAQ Specifications Dialog

=101 x|

E ztimated Tool “Wear Progress:

1] 1 2 3 4 ] B
w100 microng

Toal Failure Alarm: '.'

If toalz get worn, the GREEM light
will be changed to a blinking RED
light, and an alert will zound.

Start Stop | Cancel |

Figure F8. Monitoring Dialog
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Cutting Conditions:
Cutter Type: EGDA450R, Inzert Type: AC325 Inzert Mumber: 2
Depth of Cut: 1.0 Feed Rate: 200.0 spindle Speed: 1000.0

Tool Condition Monitoring Report

Worlgpiece Matenial: ARSABT18HH

Tool failure has heen detected at the 45230th rotation.

H5ar Fitimation

' ' ' ' ' ' ' ' ' '
HETL STH LHELE 1SS 360 191531 3104 ST 4IEE nt

Figure F9. Print TCM Report
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Figure F10. View Window under Working
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