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SUMMARY 

 

The modelling and simulation of the microelectromechanical systems (MEMS) and 

devices are usually presented with nonlinear partial differential equations (PDEs) due 

to the multiple coupled energy domains and media involved in the MEMS devices, the 

existence of inherent nonlinearity of electrostatic actuation forces and the geometric 

nonlinearities caused by large deformation. Traditional fully meshed models, such as 

finite element method (FEM) or finite difference method (FDM), can be used for 

explicit dynamic simulation of nonlinear PDEs.  However, time-dependent FEM or 

FDM is usually computationally very intensive and time consuming for device and 

system designers to use when a large number of simulations are needed, especially 

when multiple devices are present in the system.  In order to perform rapid design 

verification and optimisation of MEMS devices, it is essential to generate low-order 

dynamic models that permit fast simulation while retaining most of the accuracy and 

flexibility of the fully meshed FEM or FDM model simulations.  These low-order 

models are called macromodels or reduced-order models. 

Macromodel generation using the global admissible trial functions and the principle of 

minimum potential energy has been developed for quasi-static simulation of the 

MEMS devices and systems.  The accuracy of the macromodels and their suitability 

for use in MEMS analysis is examined by applying them to a MEMS device idealized 

as doubly-clamped microbeam.  Numerical results for the static pull-in phenomenon 

and the hysteresis characteristics from the macromodels are shown to be in good 

agreement with those computed from finite element method/boundary element 

method-based commercial code CoSolver-EM, meshless method and shooting method. 
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For dynamic simulation of MEMS devices and systems, methods based on the 

principle of proper orthogonal decomposition (POD), including Karhunen-Loève 

decomposition (KLD), principal component analysis (PCA), and the Galerkin 

procedure for macromodel generation have been presented.  The dynamic pull-in 

responses of a doubly-clamped microbeam, actuated by the electrostatic forces with 

squeezed gas-film damping effect, from the macromodel simulations are found to be 

much faster, flexible and accurate compared with the full model solutions based on 

FEM and FDM. 

A novel approach of model order reduction by a combination of KLD and classical 

component mode synthesis (CMS) for the dynamic simulation of the structurally 

complex MEMS device has also been developed.  Numerical studies demonstrate that 

it is efficient to divide the structurally complex MEMS device into substructures or 

components to obtain the Karhunen-Loève modes (KLMs) as “component modes” for 

each individual component in the modal decomposition process.  Using the CMS 

technique, the original nonlinear PDEs can be represented by a macromodel with a 

small number of degrees-of-freedom.  Numerical results obtained from the simulation 

of pull-in dynamics of a non-uniform microbeam and a micro-mirror MEMS device 

subjected to electrostatic actuation force with squeezed gas-film damping effect show 

that the macromodel generated this way can dramatically reduce the computation time 

while capturing the device behaviour faithfully. 
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NOMENCLATURE 

 

a  Generalized coordinate vector 
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w
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CHAPTER 1 

 

INTRODUCTION 

 

Microelectromechanical systems (MEMS), also known as Microsystems in Europe or 

Micromachines in Japan is the integration of micromechanical parts which can 

perform functions of signal acquisition (sensor) and some action (actuator), through 

electronic parts which can perform signal process, control and display etc.  Usually the 

sensors and actuators are fabricated on a common silicon substrate through 

lithography-based microfabrication technology.  The sensors acquire the signals 

through detecting and measuring mechanical, electrical, fluidic, thermal, biological, 

chemical, optical, and electromagnetic phenomena. The electronics process the 

information derived from the sensors then direct the actuators to respond with some 

desired outcome or purpose. 

Computer-aided design (CAD) tools enable the simulation and computational 

prototyping of MEMS devices that may not have been constructed. The ultimate 

requirements of these tools are that they can provide accurate, easy-to-use behavioural 

models that capture all of the essential behaviour and permit predictable design 

modification and optimisation to be carried (Senturia, 1998). 

The modelling and simulation of the MEMS devices are usually resulted in nonlinear 

partial differential equations (PDEs) due to the multiple coupled energy domains and 

media involved in the MEMS devices and the existence of inherent nonlinearity of 

electrostatic actuation forces as well as the geometric nonlinearities caused by large 

deformation.  Traditional fully meshed models, such as finite element method (FEM) 

or finite difference method (FDM), can be used for explicit dynamic simulation of 
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nonlinear PDEs.  The first generation of CAD tools for the simulation of multiple 

coupled physical phenomena was the OYSTER program (Koppelman, 1989) which 

concentrated on creating a three-dimensional solid geometric model from an 

integrated-circuit process description and mask data, and CAEMEMS (Crary and 

Zhang, 1990) which focused on constructing a FEM tool with the capability of 

simulating the mechanical behaviours of specific MEMS devices.  In the MEMCAD 

software developed by Massachusetts Institute of Technology (Senturia et al., 1992), 

the mechanical analysis was performed using commercially available FEM-based 

ABAQUS whereas the electrostatic analysis was performed using FASTCAP (Nanors 

and White, 1991, 1992a, 1992b) which combined boundary element techniques, fast 

multipole methods and pre-corrected-FFT methods (Philips and White, 1994) for 

capacitance extraction and electrostatic force computation.  The coupled 

electromechanical domain analysis was solved self-consistently using CoSolve-EM 

(Gilbert et al., 1995) by iteration to determine the electrostatic force and the structure 

deformation.  These works had been refined and implemented in some commercial 

packages, such as CoventorWare™ (formally known as MEMCAD) from Coventor 

Inc and IntelliSuite™ (formally known as IntelliCAD) from Corning IntelliSense. 

Korvink et al. (1994) developed SESES program which provided external 

compatibility, including commercially available FEM code ANSYS and FASTCAP for 

flexible coupling of electrical, thermal and mechanical deformation phenomena in 

uniform and consistent environment.  Another three-dimensional FEM-based 

SOLIDIS (Funk et al., 1997) provided similar self-consistent analysis for actuation 

forces, especially for a large class of coupled electrothermomechanical interactions. 

However, it was soon realized in the MEMS computer-aided design community that 

explicit dynamical simulations of nonlinear PDEs using the time-dependent FEM or 
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FDM were usually computationally very intensive and time consuming when a large 

number of simulations were needed, especially when multiple devices were present in 

the system.  In order to perform rapid design verification and optimization of MEMS 

devices, it is essential to have low-order dynamic models that permit fast simulation 

while retaining most of the accuracy and flexibility of the fully meshed FEM or FDM 

model simulations of the original system.  These low-order models generated through 

model order reduction techniques are called macromodels or reduced-order models 

which can then be embedded in system-level MEMS simulators (Senturia, 1998). 

Generally and ideally, a macromodel for MEMS simulation has the following 

attributes (Senturia, 1998 and Romanowicz, 1998) 

i) It is preferably analytical, rather than numerical, permitting the designer to 

performance the parametric study to assess the effect of the parameter changes in 

design choices. 

ii) It exhibits correct dependencies on device geometry and material constitutive 

properties. 

iii) It reveals correct explicit energy conservation and dissipation behaviours. 

iv) It covers both quasi-static and dynamic behaviours of the device. 

v) It is expressible in a simple-to-use form, either an equation, a network analogy, or 

a small set of coupled ordinary differential equations (ODEs). 

vi) It is easy to be connected to system level simulators. 

vii) It agrees with three-dimensional multiple coupled physical phenomena 

simulations. 

Lumped-parameter modelling technique was an equivalent circuit approach and the 

most common form of macromodel for linear sensor and actuator MEMS devices 

(Tilmans, 1993; Tilmans and Legtenberg, 1994; Tilmans, 1996; Veijola, 1995).  In this 
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system engineering technique, the elements in the lumped-element electric circuit were 

physically representatives of a MEMS device’s properties such as its mass, stiffness, 

capacitance, inductance and damping.  Exchange of energy of a MEMS device and the 

external environment was achieved through port that was defined by a pair of 

conjugate pairs called effort and flow, with the product of the effort and flow being 

power.  The development of equivalent circuit representations was based on the 

analogy in the mathematical description that exists between electric and mechanical 

phenomena.   
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Figure 1.1 
 

A parallal-plate transverse electrostatic transducer and 
its equivalent circuit representation. 

 
For instance, Figure 1.1 shows a MEMS device that includes a movable parallel plate 

as the transverse electrostatic transducer, the force F  acted on the plate is 

mathematically analogous to and represented by the voltage v , the velocity u  by the 

current i , the plate inertial proof mass m  by the inductance L , the displacement of 

plate x  by the charge q , the compliance of a linear spring supporting the mass k1 , 

where k  is the spring constant, by capacitance C  and the viscous damping c  by 

resistance R .  The applications of lumped-parameter technique are extensive and 

theirs use is strongly supported by modern electric network theory which provides 

powerful mathematical techniques and commercially available circuit simulators, such 

as SPICE.  Equivalent circuits are particularly useful for the analysis of systems 
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consisting of complex structural members and coupled subsystem with several 

electrical and mechanical ports.  The major problems in constructing accurate lumped-

parameter macromodels are the partition of the continuum device into a network of 

lumped elements, especially when arbitrary geometries are involved, and 

determination of the parameter values for each element.  Macromodels based on 

lumped-parameter techniques and element library with parameterised behavioural 

models for some structurally complex MEMS devices, such as crab-leg resonator and 

O-shaped coupling spring which were designed as netlist of general purpose 

micromechanical beams, plates, electrostaticgaps, joints and anchors, were also 

developed in NODAS program (Febber, 1994; Vandemeer et al., 1997). 

Swart et al. (1998) and Zaman et al. (1999) developed a code, called AutoMM, for the 

automatic generation of lumped macromodels for a broad class of MEMS devices 

charaterized as plate-tethered structures.  AutoMM used the concept of lumped 

modelling for mechanical components and assumed that the tethers which provided 

mechanical compliance were electrostatically inert and massless, and the proof mass 

was electronically driven and moved as a rigid body. The lumped spring behaviours 

originated from mechanical reaction forces and the moments produced by tethers 

supporting the proof mass.  Damping forces were calculated mainly by gas viscosity.  

The electrostatic forces were obtained by calculating the spatial derivatives of the 

electrostatic co-energy.  The basic techniques used in AutoMM also included 

exploring the device operation space, modelling of data through multi-degree 

polynomial curve fitting, and using the polynomial coefficients and other simulation 

data in dynamic equations of motion. 

Anathasuresh et al. (1996), Gabby (1998) and Gabby et al. (2000) developed model 

order reduction technique based on linear modal analysis to generate the macromodels 
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for dynamic simulation of conservative MEMS system, such as electrostatic actuation 

of a suspended beam and an elastically supported plate with an eccentric electrode and 

unequal springs.  In this technique, the linear normal mode was used to represent the 

deformed shape of the structure in both the three-dimensional finite element meshed 

models and lumped models where mechanical structure was modelled appropriately 

using masses and springs.  The dynamic behaviours of a conservative system with m  

degrees-of-freedom can be represented as 

0=++ fKxxM &&  (1.1)
 
where M  is the global mass matrix, K  is the global stiffness matrix, x  is the vector 

of states, such as displacement, and f  is the vector of nonlinear force which is the 

function of state x , inputs and time t .  Using the linear normal mode summation 

method (Thomson and Dahleh, 1998), the original coordinates x  is transformed to the 

nodal coordinates q  

P qx =  (1.2)
 
where P  is a matrix whose columes are the normal mode of the system, the dynamic 

equation becomes 

0=++ fPKP qPqMP P TTT &&  (1.3)
 
where both MP PT and KPPT  are diagonal matrices.  There are m  normal modes for 

a system with m  degrees-of-freedom.  Generally, only a few lower modes are excited 

and become significant.  Higher modes which have negligible effects on the system 

can be truncated without significant loss of accuracy.  Truncated expression of 

Equation (1.2) can be used to reduce the order of system expressed by Equation (1.3) 

from m  degrees-of-freedom to a much lower n  degrees-of-freedom in the most cases.  

Anathasuresh et al. (1996) proved that only five or fewer modes were sufficient, 

therefore the dynamic simulation of the system can be computed much faster.  The 
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limits to this approach are the convertion from modal coordinates back to the original 

state x  at each time step in order to re-compute the nonlinear force f  for the item 

fPT  in Equation (1.3), and the difficulty in calculating accurately the stress stiffening 

of an elastic body undergoing large deformation.  To overcome the first shortcoming, 

Gabby (1998) and Gabby et al. (2000) developed a method to directly express the term 

fPT  in terms of modal coordinates through energy method.  It however requires many 

tedious simulations plus fitting to analytical functions and the designer must decide on 

the number of modes and the range of modal amplitude to be included in the 

simulation.  The method also faces difficulty with the problem invloving nonlinear 

dissipation which is common in fluid-structure interactions, for instance the squeezed 

gas-film damping.  In such case, the fluid does not have any normal modes of its own 

that can be used in normal mode summation method in combination with the structure 

normal mode of the system. 

Using Arnoldi process for computing orthonormal basis of Krylov subspaces (Saad 

and Schultz, 1986), Wang and White (1998) demonstrated that an accurate 

macromodel could be generated for linear systems in coupled domain simulation of 

MEMS devices with single input-single output (SISO) characteristics.  If the original 

linear system is given in the form of 

( ) ( ) ( )

( ) ( )txcty

tb utAxtx

T=

+=&

 (1.4)

 
where b  and c  are  −m dimentional constant vectors, x  is −m dimentioanl viarable 

vector, A  is an mm ×  constant matrix, u  is the input and y  is the output, with the 

transfer function 

( ) ( ) ( ) ∑
∞

=

+−−−−− −=−−=−=
0

11111

i

i)(iTTT bsAcbsAIAcbAsIcsG  (1.5)
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a much smaller −n th order reduced model for the original system of Equation (1.4) is 

given as 

( ) ( ) ( )

( ) ( )tzcty

t ubtztzA

T
nn

nn

=

+=&

 (1.6)

 
whose transfer function 
 

( ) ( ) nn
T
nn bAsIcsG 1−−=  (1.7)

 
approximates the original transfer function ( )sG  in Equation (1.5).  Making use of the 

Arnoldi algorithm, an nm×  column-orthonormal matrix V , an nn×  matrix H  and 

an 1×n  vector 1+nv  are generated, and the following relationship holds 

T
nn ehvVHAV 1++=  (1.8)

 
where h  is a scalar and T

ne  is the −n th standard unit vector.  The n  coulumns in 

matrix V  form a set of orthonormal vectors that spans the same Krylov subspace 

defined as 

( ) ( ){ }b,Ab,b,Ab,Aspan,bAK n
n

1211  −−−−− = L  (1.9)
 
This approach works satisfactorily for linear and some nonlinear systems which are  

actually closed to linear systems or operating within or near its linear regime.  For 

most of nonlinear systems, such as MEMS devices, a nonlinear extension needs to be 

explored.  Chen (1999) developed a quadratic reduction method for nonlinear systems 

and Rewienski and White (2001a) applied it to generate macromodels for MEMS 

simulation.  The quadratic reduction is based on the startegy that approximates the 

original nonlinear system by its quadratic approximation firstly  



CHAPTER 1  9 
 

( ) ( ) ( )

( ) ( )txcty

tb uDxxtAxtx

T

T

=

++=&

 (1.10)

 
where D  is the quadratic tensor of the system, and then reduces the quadratic 

approximation system which has the same size as the original nonlinear system to a 

much smaller quadratic system.  This reduced quadratic system can approximate the 

original nonliear system with good accuracy but the computation of vector-quadratic 

tensor in this approach is usaully intensive and complicated in the integration of the 

reduced quadratic system.  The method becomes computationally ineffective if higher 

order nonlinearities are required in the macromodel, such as cubic or quartic terms. 

Rewienski and White (2001b) porposed a model order reduction method based on 

representing the entire nonlinear system with piecewise-linear sub-systems and then 

reducing each of pieces with Krylov subspace projection method.  Although the 

algorithm works satisfactorily for dynamic simulation of MEMS devices, such as the 

device modelled as doubly-clamped microbeam, the issues remain open in the 

selection of linearization points, merging of the linearized models and the proper 

training of the system. 

Similar to the lumped-parameter modelling and linear modal analysis which result in a 

set of coulped ordinary defferential equations (ODEs), Hung and Senturia (1999) 

proposed a global basis function technique to construct a macromodel for MEMS 

dynamic simulation in the form of a set of much fewer nonlinear ODEs.  Selecting a 

set of basis functions ( )xkφ  not only for mechanical domain but also for fludic domain 

and projecting the state solution ( )txu ,  of the following original nonlinear PDEs  

( )[ ] 0, =− ftxuL  (1.11)
 
onto a set of truncated complete basis functions 
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( ) ( ) ( )∑
=

≈
n

k
kk xtatxu

1
,ˆ φ  (1.12)

 
and making use of Galerkin procedure lead to a set of nonlinear ODEs in terms of the 

amplitudes of the basis funtions 

( )[ ]( ) ),,2,1(    ,0ˆ , nkfx,tuLk L==−φ  (1.13)
 
Because the introduction of a set of basis functions ( )xkφ  introduces a coordinatization 

),,,( 21 naaa L  of the original PDEs, the selection of an optimal basis, i.e., one for 

which the number n  of basis functions (hence, the number of ODEs) needed in 

Equations (1.12) and (1.13) to represent the dynamic behaviours of the original PDEs 

as small as possible, becomes the main issue in this technique.  In Hung and Senturia 

(1999), the basis functions were obtained based on singular value decomposition of 

some numerical simulation results.  The simulation of the pull-in dynamics of a 

doubly-clamped microbeam subjected to time dependent input voltage demonstrated 

that this approach could achieve several orders of magnitude computation speed 

without loss of accuracy.  However, the selection of sufficient number of  basis 

functions remains open in this approach. 

The main goal and innovative contribution of this thesis is to develop some novel 

model order reduction techniques for simulation and anaysis of the 

microelectromechanical behaviors in MEMS devices and systems that involve multiple 

coupled energy domains.   

Macromodel generated by using the global admissible trial functions, variational 

principle and Rayleigh-Ritz method are developed in Chapter 2 for simulation of the 

quasi-static instability, contact electromechanics and hysteresis characteristics of a 

single MEMS device modelled as doubly-clamped microbeam.  Where possible, the 
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results are compared with those from FEM/BEM based commercial code CoSolver-

EM, meshless method and shooting method.   

Similar to the method developed in Hung and Senturia (1999), Chapter 3 presents a 

relatively new method by making use of the Karhunen-Loève modes (KLMs) extracted 

from ensemble of signals through Karhunen-Loève decomposition (KLD) process and 

the Galerkin procedure which employs these KLMs as the basis functions to convert 

the original high-dimensional system to low-dimensional macromodels with reduced 

number of degrees-of-freedom.  The macromodels can be used for subsequent dynamic 

simulations of the original nonlinear system.  Numerical studies on macromodel 

accuracy, efficiency and flexibility compared with the full model finite difference 

method (FDM) are carried out for the doubly-clamped microbeam subjected to 

electrostatic actuation forces with squeezed gas-film damping effect. 

In Chapter 4, a neural-network-based method of model order reduction that combines 

the generalized Hebbian algorithm (GHA) for principal component analysis (PCA) and 

Galerkin procedure to generate the reduced order macromodels is presented.  The 

principle eigenvectors extracted by PCA is equivalent to the KLMs of KLD and the 

procedure of macromodel generation is similar to that in Chapter 3.  The key 

advantage of the GHA is that it does not need to compute the input correlation matrix 

in advance so that it commands higher computation efficiency in creating the basis for 

macromodel generation.  A stable and robust GHA algorithm, which is able to process 

noise-injected data and has faster convergence of iterations in the network training, is 

also developed for macromodel generation.  The effect of the noise level on the 

accuracy of the macromodel simulations is investigated. 

Chapter 5 focuses on the derivation of the relationship among three of the proper 

orthogonal decomposition (POD) methods, i.e., KLD, PCA and singular value 
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decomposition (SVD), which are popular in the applications for model order reduction 

in science and engineering fields.  It is the first time to provide a clear description of 

the relationship and equivalence among these three formulations for discrete random 

vectors. 

The techniques to enhance the computation efficiency of the macromodels based on 

POD methods, developed in the Chapters 3 and 4, are proposed in Chapter 6 to 

overcome the unproductive re-computation of the time-dependant nonlinear items at 

every time step during the numerical integration.  Numerical experiments demonstrate 

that the techniques of the pre-computation prior to numerical time integration, and the 

cubic splines approximation of the basis functions in combination of Gaussian 

quadrature can improve the macromodel simulation efficiency significantly. 

In Chapter 7, a novel method for macromodel generation for the dynamic simulation 

and analysis of structurally complex MEMS device is developed by making use of 

KLD and classical component mode synthesis (CMS).  The complex MEMS device is 

modelled as an assemblage of interacting components.  KLD is used to extract KLMs 

and their corresponding KLVs for each component from an ensemble of data obtained 

by selective computations of the full model simulation.  These KLMs for each 

component are similar to “components modes” and used as basis functions in Galerkin 

projection to formulate the equations of motion for each component expressed in terms 

of a set of component generalized coordinates.  When the continuity conditions at the 

interfaces are imposed, a set of constraint equations is obtained which relates the 

component generalized coordinates to the system generalized coordinates through a 

transformation matrix.  Finally, a macromodel, represented by a set of equations of 

motion expressed in terms of a set of system generalized coordinates, is formulated to 

determine the system dynamic responses.  The accuracy, effectiveness and flexibility 
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of the proposed model order reduction methodology are demonstrated with the 

simulations of the pull-in dynamics of a complex micro-optical device modelled as 

non-uniform microbeam and a micro-mirror device modelled as rigid square mirror 

plate with four clamped-guided parallel microbeams along each side of the plate 

subjected to electrostatic actuation force with squeezed gas-film damping effect. 

Finally, the present work ends with its main conclusions and some future research 

direction in model order reduction in Chapter 8. 



CHAPTER 2 

 

MACROMODELS FOR QUASI-STATIC ANALYSIS OF MEMS 

 

The voltage-controlled parallel-plate electrostatic actuation is widely used in MEMS 

actuators in which a movable conductor touches down or makes contact with a fixed 

plane in the course of the device operation.  Electrostatic actuators are attractive not 

only because of their high energy density and larger actuation force in microscale, but 

also relatively simple in design, fabrication and system integration.  By applying a 

quasi-static bias voltage across the movable conductor and fixed plane, an electrostatic 

force is generated and tends to pull the movable conductor onto the fixed plane as 

shown in Figure 2.1.  
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Figure 2.1 A voltage-controlled  parallel-plate electrostatic actuator. 
 
In static equilibrium, this electrostatic force is balanced by the spring restoring force 

when the applied bias voltage is low.  As the voltage is increased, the electrostatic 

force increases.  When the voltage attains a value equal to the pull-in voltage PIV  

(Osterberg and Senturia, 1997), the electrostatic force is larger than the spring 

restoring force.  As the result, the movable conductor becomes unstable and 

spontaneously pulls in onto the fixed plane.  If the voltage is then reduced after pull-in, 
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at its release voltage RV  the movable conductor will be spontaneously released 

(Gilbert et al., 1996).  These devices exhibit electromechanical hysteresis manifested 

by a finite difference in the pull-in and release voltages (Anathasuresh et al., 1996, 

Gilbert et al., 1996).  In some voltage–controlled electrostatic actuation MEMS 

devices, the inclusion or avoidance of this hysteresis depends on the application of the 

devices.  Electrostatic actuators are applied in wide range of MEMS devices including 

micromechanical switch (McCarthy el al., 2002), microswitch for optical 

communications (Min and Kim, 1999; Hung and Senturia, 1999), radio frequency 

oscillator for wireless communication (Young and Boser, 1997; Nguyen et al., 1998), 

test device for material property measurement (Osterberg and Senturia, 1997), 

microresonator for resonant strain gauge (Tilmans and Legtenberg, 1994), 

accelerometer (Veijola et al., 1995; 1998), and pressure sensor (Gupta and Senturia, 

1997).  Accurate and efficient simulation and prediction of the applied quasi-static bias 

voltage at which the conductors of actuators deform, pull in, contact with the fixed 

plane and release are important in the design of these voltage-controlled 

electrostatically actuated MEMS devices.  The CoSolve-EM code, based on coupled 

three-dimensional finite element method (FEM) and boundary element method (BEM) 

modelling tools to iteratively approaching the pull-in voltage with decreasing voltage 

increments was developed in Gilbert et al. (1995) and implemented in commercially 

available codes CoventorWare™ and IntelliSuite™.  The release voltage, quasi-static 

contact electromechanics and the electromechanical hysteresis for doubly-clamped 

microbeam were also computed using this method in Gilbert et al. (1996).  Aluru 

(1999) presented a reproducing kernel particle method and meshless method for pull-in 

voltage calculation.  Ngiam (2000) developed a shooting method to obtain the pull-in 

and release voltages with consideration of the bending induced tension or axially 
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stretching effect which is found to have significant influence on the electromechanical 

resposnes of the MEMS devces, especially in the case of large deformation (Choi and 

Lovell, 1997).  In Osterberg and Senturia (1997), a qualitative closed-form model 

derived through empirical fit to the simulated data using a theoretically derived form 

for the pull-in voltage PIV  of  structures as functions of their geometry and material 

properties was presented.  Anathasuresh et al. (1996) used the normal mode 

summation method to generate a macromodel to compute the pull-in voltage.  

Tilemans and Legtenberg (1994), and Legtenberg et al. (1997) proposed to compute 

the pull-in voltage using a simplified semi-analytical model based on energy method.  

Bochobza-Degani et al. (2002) developed an algorithm to extract the pull-in voltage 

based on iterating the displacement of a pre-chosen degree of freedom node of the 

actuator instead of the iterating of applied bias voltage.  Recently Pamidighantam et al. 

(2002) reported a refined method based on the lumped model for pull-in voltage 

analysis of doubly-clamped microbeam and cantilever microbeam. 

In this chapter, a semi-analytical low-order model based on global admissible trial 

functions and the principle of minimum potential energy (Washizu, 1982) is presented 

to simulate the quasi-static pull-in instability and contact electromechanical behaviour 

of MEMS devices modelled as doubly-clamped microbeam.  The comparison of some 

numerical results from present method, finite element and boundary element based 

CoSolve-EM module of CoventorWare™ (Gilbert et al., 1996), meshless method 

(Aluru, 1999) and shooting method (Ngiam, 2000) are presented to validate and 

demonstrate the present method. 
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2.1 ACTUATOR MODELLING 

 

Doubly-clamped microbeam actuated by electrostatic force has become a classical 

design for wide range of MEMS devices.  Osterberg and Senturia (1997) applied this 

structure in their M-Test chip for MEMS material property measurement and process 

monitoring at the wafer level during process development and manufacturing.  This 

structure was designed as resonator by Tilmans and Legtenberg (1994) for application 

as resonant strain gauges to replace the conventional piezoresistors, and as pressure 

sensor by Gupta and Senturia (1997).  The schematic drawing of this device is shown 

in Figure 2.2.  Parallel-plate approximation is assumed for this MEMS device when 

the gap to length ratio is small hence the electrostatic field lines are assumed to be 

transversal to the deformed microbeam.  When a quasi-static bias voltage is applied 

across the top and bottom electrodes, the top deformable microbeam is pulled 

downwards due to electrostatic actuation force that is inversely proportional to the 

square of the gap spacing.   
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Figure 2.2 A doubly-clamped microbeam. 
 
In general, the microbeam can be modelled as a classical Euler-Bernoulli beam 

subjected to electrostatic force 

  
2 2

2
0

2

2

4

4

w
bV

x
wT

x
wEI

ε
−=

∂
∂

−
∂
∂  (2.1)



CHAPTER 2  18 
 

 
where E  is Young’s modulus, 123bhI =  is the second moment of area where b  is 

the width and h  is the thickness of the microbeam, V  is the applied quasi-static bias 

voltage, 0ε  is the permittivity of free space and equals to 1210854.8 −×  1m•Farad − , 

( )bhT  is the sum of residual stress rt   and the bending induced stress (axially 

stretching effect) bt  due to large deflection which can be expressed as 

∫ ⎟
⎠
⎞

⎜
⎝
⎛+≈

∆
+=+=

Lrrbr dx
dx
dw

L
Et

L
LEttt

bh
T

 

2

2
    (2.2)

 
where L  is the length of the microbeam. 

Equation (2.1) is a nonlinear differential equation and its analytical closed-form 

solution cannot be found.  Hence the approximate numerical solutions have to be 

sought.  It has been shown in elasticity that Rayleigh-Ritz method is an efficient and 

simpler technique for obtaining approximate solutions of the problem defined by 

differential equations and boundary conditions through the use of the variational 

method (Washizu, 1982).  For the problem described in Equation (2.1), an approximate 

solution is assumed as the linear combination of a set of global admissible trial 

functions 

( ) ( )∑
=

=
N

n
nn xvxw

1

ˆ α  (2.3)

 
where ( )xvn  are the global admissible trial functions and nα  are coefficients to be 

determined by the Rayleigh-Rize method. 

To solve this elastic beam problem in the presence of a rigid horizontal bottom surface 

which is assumed in the present study, Westbrook (1982) proposed a solution that was 

divided into four basic types or regions depending on whether or not the beam was in 

contact with the bottom surface.  Following Westbrook’s (1982) idea and using 

deflection profile function of the beam when subjected to the uniformly distributed 
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force q  as the truncated global admissible trial function together with the principle of 

minimum potential energy, semi-analytical macromodels are derived in the following 

sections to analyse the electromechanical behaviours of a MEMS device as shown in 

Figure 2.2 in the regions of no contact and contact with finite length with the bottom 

surface.  It is noted that the global admissible trial functions defined in this chapter are 

a kind of semi-comparison functions that satisfy some geometric and natural boundary 

conditions (Meirovitch, 1997) so that fewer number of truncated admissible trial 

functions are needed to achieve better approximate accuracy.  Also some global trial 

functions need not satisfy the geometric and force conditions at each boundary as long 

as their combined sum allows these conditions to be satisfied.  In other words, the 

approximate solutions in terms of the linear combination of truncated global 

admissible trial functions must satisfy the boundary conditions.  This approach is 

commonly used in mode summation or component mode synthesis procedure 

(Thomson and Dahleh, 1998). 

 

2.2 NO CONTACT 

 

2.2.1 GLOBAL ADMISSIBLE TRIAL FUNCTIONS AND MACROMODEL 

 

In this region as shown in Figure 2.3, there is no contact between the deformable 

microbeam and the bottom surface.   



CHAPTER 2  20 
 

    
                                                                            
 

 wo  w 

 z 

 x 

 q

 di 

2L2L  
 

Figure 2.3 Schematic view of a doubly-clamped microbeam subjected to 
a uniformly distributed force in region of no contact. 

 
The deflection function w  of a doubly-clamped microbeam subjected to a uniformly 

distributed force q  is obtained as 
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where 1a , 2a , 3a  and 4a  are constants to be determined by boundary conditions.  
After imposing the boundary conditions 
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Equation (2.4) becomes 
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The deflection profile function of the microbeam is then used as the truncated 

admissible trial function.  Thus the deflection function w  of microbeam subjected to 

electrostatic force is approximated as 

( ) ( ) 00

22
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⎛
−= αα  (2.7)

 
where α  is a constant to be determined through the Rayleigh-Ritz method. 

For the problem described in Equation (2.1), the microbeam strain energy due to 

bending is defined as 
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the microbeam strain energies due to the axial deformation of the residual stress and 

bending induced stress are given by 
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respectively.  And the electrostatic potential energy is  
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where b  is the width, h  is the thickness of the microbeam, id  is the thickness of 

dielectric layer and rε  is the relative permittivity.  Hence, the total potential energy of 

the structure can be expressed as 

etrb UUUU +++=Π  (2.12)
 
Introducing Equations (2.7)-(2.11) into Equation (2.12), the following expression for 

the approximate total potential energy is obtained 
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The principle of minimum potential energy states that the potential energy has a 

stationary value at an equilibrium point.  In other words, the system is in equilibrium 

when the first variation of the total potential energy is zero ( 0 =Πδ ), which in the 

present case, in terms of Rayleigh-Ritz method, becomes  
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hence 
  

( ) ( )
( )[ ]

0 
2 

0 2 
0

2
0

3 =
++

+++ ∫
L

ri
rbt dx

dwxv
xvVCCC

εα
εαα  (2.15)

 
where tC , bC  and rC  are defined as follows 
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At this equilibrium point, the electrostatic force is balanced by the microbeam elastic 

restoring force as described by Equation (2.1).  Given a set of quasi-static voltages V , 

Equation (2.15) determines the corresponding constants α , and the Equation (2.7) 

gives the deflection profiles of the microbeam.  The increase of quasi-static voltage 

will increase the electrostatic force and decrease the gap spacing between the 

deformable microbeam and bottom surface.  As the electrostatic force is inversely 

proportional to the square of the gap spacing, the decrease of gap spacing results in an 

increase of electrostatic force.  When the applied quasi-static voltage increases and 

reaches a value equal to the pull-in voltage PIV , the electrostatic force becomes larger 

than the microbeam elastic restoring force for any deformation and the system exhibits 

sharp instability resulting in the collapse of microbeam and the gap spacing becomes 

to zero.  The stability of the system is determined by the second variation of the total 

potential energy.  If the total potential energy has a minimum at an equilibrium point 

and the second variation is said to be positive definite ( 0 2 ≥Πδ ), then the equilibrium 
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point is stable. Otherwise, if 0 2 ≤Πδ , the equilibrium point is unstable (Meirovitch, 

1997).  The pull-in voltage is a critical value at which the equilibrium point changes 

from stable to unstable and the second variation of the total potential energy is equal to 

zero ( 0 2 =Πδ ).  In the present case, this criterion can be written as 

02

2

=
∂
Π∂
α

 (2.19)

 
Finally, at the pull-in point, Equations (2.15) and (2.19) can be expressed explicitly in 

terms of pull-in voltage PIV  and constant PIα  (the value of α  at pull-in) as follows 
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Equations (2.20) and (2.21) constitute a macromodel to determine the pull-in voltage 

PIV  and the constant PIα  at pull-in.  It is noted from the equations that the pull-in 

voltage is independent of the width of the microbeam. 

 

2.2.2 NUMERICAL RESULTS AND DISCUSSION 

 

To validate the present method, example 1 considers a structure with material 

properties and geometric dimensions listed in Table 2.1.  The same device had been 

studied by Gilbert et al., (1996) using finite element method (FEM) and boundary 

element method (BEM) based CoSolve-EM module of CoventorWare™.  This device 

was also studied by Anathasuresh et al. (1996) using macromodel generated by normal 

mode summation method and Aluru (1999) using meshless method when dielectric 

layer, residual stress and bending induced tension effect were ignored.  Without 

considering these factors, Equations (2.15), (2.20) and (2.21) become 
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and 
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Table 2.1 Material properties and geometric dimensions of microbeam 
for example 1. 

 
Young’s 
modulus 

E  
(GPa) 

Initial 
gap 

0w  
(µm) 

Dielectric 
layer 

id  
(µm) 

Thickness 
 

h  
(µm) 

Length 
 

L  
(µm) 

Width 
 

b  
(µm) 

169 0.7 0 0.5 80 10 
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Figure 2.4 Deflection profiles of microbeam for a series of applied voltages. 
 
Substituting Equation (2.7) and the data listed in Table 2.1 into Equations (2.23) and 

(2.24), the constant PIα  at the pull-in and the pull-in voltage PIV  are obtained.  The 

comparison of the numerical results from the present method with the FEM/BEM 
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based method CoSolve-EM (Anathasuresh et al. 1996) and meshless method (Aluru, 

1999) is listed in Table 2.2.   

 
Table 2.2 Pull-in voltage PIV  and the constant PIα  for example 1. 

 
PIV  

(V) 
 
 

Constant 
PIα  

( 3m−µ ) 

Present CoSolve-EM 
(Gilbert et 
al.,1996) 

Meshless 
(Aluru, 1999) 

Normal mode 
summation 

(Anathasuresh 
et al., 1996) 

-0.1085 610−×  15.34 15 15.07 15.17 
 
 

Table 2.3 Constant α  with respect to the applied voltage V . 
 

Applied quasi-static voltage 
V  
(V) 

Constant 
α  

( 3m−µ ) 
    2  -0.8595 910−×  
    4  -0.3489 810−×  
    6  -0.8057 810−×  
    8  -0.1491 710−×  
  10  -0.2470 710−×  
  12  -0.3890 710−×  
  14  -0.6201 710−×  
  15.34 (Pull-in)  -0.1085 610−×  

 
It is noted that the reason for the present relative larger value of PIV  compared with the 

other simulation results is because that the energy method generally gives upper bound 

result and the fringe-filed correction that softens the microbeam is not considered here 

but in Anathasuresh’s and Aluru’s.  Nevertheless, the agreement between the present 

method and the CoSolve-EM is good with 2.3% difference when only one global 

admissible trial function is used in the present simulation.  When the applied voltage is 

less than PIV =15.34V, Table 2.3 gives a series of constants α  corresponding to a set of 

applied quasi-static voltages, the microbeam deflection profiles obtained by the present 

method and Aluru’s meshless method are plotted in Figure 2.4, respectively. 
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The second example considers a structure with material properties and geometric 

dimensions listed in Table 2.4.  Considering the bending induced tension effect due to 

larger deformation, Equations (2.20) and (2.21) become 
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Solving the above two equations simultaneously yields the pull-in voltage PIV  and the 

constant PIα  at pull-in.  Comparison of the simulation results from present resolution 

with and without considering the bending induced tension against the shooting method 

(Ngiam, 2000) and CoSolve-EM of CoventorWare™ is listed in Table 2.5.  The result 

of present solution agrees well with the CoSolve-EM with around 0.2% difference.  In 

this case, it is noted that pull-in voltage is less by 3% if bending induced tension effect 

is not considered.  

 
Table 2.4 Material properties and geometric dimensions of microbeam for example 2. 

 
Young’s 
modulus 

E  
(GPa) 

Initial 
gap 

0w  
(µm) 

Dielectric 
layer 

id  
(µm) 

Thickness 
 

h  
(µm) 

Length 
 

L  
(µm) 

Width 
 

b  
(µm) 

165 1 0 2 400 45 
 
 

Table 2.5 Pull-in Voltage PIV  and the constant PIα  at pull-in for example 2. 
 

PIV   
(V) 

 
Constant 

PIα  
( 3m−µ ) 

Present CoSolve-EM Shooting 
method 

(Ngiam, 2000) 
-0.2650 910−×  8.518 8.5 8.38 

  -0.2481 910−× ∗  8.28 ∗  - - 
 
∗   The bending induced tension effect is ignored. 
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2.3 CONTACT OVER A FINITE LENGTH 

 

2.3.1 GLOBAL ADMISSIBLE TRIAL FUNCTIONS AND MACROMODEL 

 

In this region, the finite length of microbeam in contact with the bottom dielectric 

layer surface is assumed to be over ρx =  as shown in Figure 2.5. 

         
                                                                            
 

w wo 

 z 

 x 

 q

 di 

ρ 

2L2L

ρ 

 
 

Figure 2.5 Schematic view a doubly-clamped microbeam subjected to a 
uniformly distributed force in region of contact. 

 
For ρx ≤≤0 , 0=w .  For 2Lxρ ≤≤ , considering the bending momonet and 

curvature vanish at the point of contact (Timoshenko, 1956), the microbeam satisfies 

the following bounday conditions  
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Hence the beam deflection for a constant load q  is obtained as  
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If the microbeam is subjected to the electrostatic force loading after pull-in, the beam 

deflection profile in this region is then assumed as the linear combination of the 

truncated global admissible trial functions as follows 
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where the coefficient α  and the value of ρ  are to be determined. 

If the residual stress and the bending induced tension are ignored in this region, the 

total potential energy can be expressed as 

eb UU +=Π  (2.30)
 
Using Equations (2.8) and (2.11), and substituting the approximate solutions of the 

deflection, Equation (2.29), into Equation (2.30), the approximate total potential 

energy of the system in this region can be expressed as 
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The Rayleigh-Ritz method asserts that the stationary property of the solution of the 

above equation can be satisfied approximately by requiring 0 =Πδ , which in the 

present case, becomes 
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and 
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The above Equations (2.32) and (2.33) constitue a macromodel which determine the 

values of α  and ρ , which, when substituted into Equation (2.29) provide the 

approximate solutions for the microbeam deflection profile when it comes in contact 

with the bottom dielectric layer surface. 

 

2.3.2 NUMERICAL RESULTS AND DISCUSSION 

 

A system with the material properties and geometric dimension listed in Table 2.6 is 

examined to validate the present method.  Figure 2.6 shows the contact length with 

respect to the applied quasi-static voltage.  The release voltage RV  is defined as a 

voltage corresponding to the zero contact length, or point contact of the microbeam 

with bottom surface (Jacobson et al., 1995), which is around 10.4V computated by the 

present method while it is calculated at around 11V by the three dimentional CoSolve-

EM (Gilbert et al.,1996).  Since RV =10.4 is less than pull-in voltage PIV =15.34, some 

length of microbeam will be remaining in contact with the bottom surface even when 

the applied voltage is quasistatically decreased from PIV  after pull-in.  The presence of 

this difference exhibits the system electromechanical hysteresis as shown in Figure 

2.6.  This hysteresis effect is important as it allows a voltage gap between the actuation 
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voltage and the de-actuation voltage for some MEMS device designs.  The microbeam 

deflection profiles and the contact lengths corresponds to a series applied volages are 

plotted in Figure 2.7.  

Table 2.6 Material properties and geometric dimensions of microbeam. 
 

Young’s 
modulus 

E  
(GPa) 

Initial 
gap 

0w  
(µm) 

Dielectric 
layer 

id  
(µm) 

Relative 
permittivity 

rε  

Thickness 
 

h  
(µm) 

Length 
 

L  
(µm) 

Width 
 

b  
(µm) 

169 0.6 0.1 1 0.5 80 10 
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Figure 2.6 Contact length of microbeam ρ  with respect to applied voltage. 
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Figure 2.7 Deflection profiles of microbeam for a series of applied voltages.
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2.4 CONCLUSION 

 

Approximate solution for the nonlinear differential equation with boundary conditions 

through the use of variational principle and Rayleigh-Ritz method can provide an 

accurate and efficient tool for electrostatic actuators simulation and analysis.  It has 

demonstrated in this chapter that, for MEMS devices modelled as doubly-clamped 

microbeam, the global admissible trial functions obtained from the deflection profile of 

a doubly-clamed beam with uniformly distributed load can be used in the macromodel 

generation to yield accurate results in pull-in voltage and the electromechanical 

hysteresis compared with those obtained from FEM/BEM based commercial CoSolve-

EM package and other numerical techniques, such as meshless and shooting methods. 
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MACROMODELS FOR DYNAMIC SIMULATION OF MEMS 

USING KARHUNEN-LOÈVE DECOMPOSITION 

 

A model order reduction technique based on Karhunen-Loève decomposition (KLD) 

and Galerkin procedure to generate macromodels for dynamic simulation and analysis 

of nonlinear microelectromechanical systems and devices is presented in this chapter.  

KLD, also known as proper orthogonal decomposition (POD) has emerged as an 

important model order reduction technique for fast and accurate simulation of 

continuous systems with infinite degrees-of-freedom.  KLD, in essence, is a method of 

representing a stochastic system with a minimum number of degrees-of-freedom 

(Loève, 1955).  It is a procedure for extracting a basis for modal decomposition from 

an ensemble of signals or data obtained in the course of experiments or numerical 

simulations.  This basis is a set of orthogonal empirical eigenfunctions of KLD, which 

are called as Karhunen-Loève modes (KLMs) in this thesis, are also known as proper 

orthogonal modes (POMs).  Their corresponding empirical eigenvalues, which are 

called as Karhunen-Loève values (KLVs) here, are also named as proper orthogonal 

values (POVs).  The KLVs provide a measure of the importance of each of the KLMs, 

that is the KLMs can be ranked in descending order of signal power by using the 

corresponding descending order of the KLVs.  The KLMs can be used to obtain low-

dimensional approximate description of a high-dimensional system.  The most striking 

feature of KLD is its optimality: it provides the most efficient way of capturing the 

dominant components of an infinite-dimensional system with only a finite number of 

“modes”, and often surprisingly fewer “modes” than the first few functions of any 
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other basis (Holmes et al., 1996; Kirby, 2001).  Another key feature of KLD lies in the 

fact that it is a robust method for the nonlinear system.  Although it is a linear 

procedure of superposition by a finite or an infinite sum of modal functions multiplied 

by appropriate coefficients, KLD makes no assumptions about the linearity of the 

system to which it is applied.  In other words, this linear representation in terms of 

basis functions chosen a priori or by KLD are blind to the origin of the functions they 

are called upon to represent, which may derive from nonlinear dynamical process.  It is 

also noted that the KLMs obtained from KLD procedure for a certain set of system 

parameters can, in most cases, be used to reconstruct the response of a system whose 

parameters are slightly different from the original system.  This is a distinctive 

advantage in a sense that KLMs need not to be regenerated with the changes of the 

system parameters so long as the changes do not affect the system behaviours.  KLD 

has been applied successfully in many science and engineering fields, including image 

processing (Kirby, 2001), data compression (Reed, 1994), pattern recognition 

(Fukunaga, 1990), damage detection (Banks et al., 2000; Feldmann et al., 2000), 

process identification and control in chemical engineering (Baker et al., 2000) and etc.  

In the bulk of these applications, KLD is used to analyse experimental data with the 

objective of extracting dominant features of the systems.  In its applications as a model 

order reduction technique, KLD has been used to obtain approximate, low dimensional 

descriptions of vibration analysis (Azeez and Vakakis, 2001), structure mechanics (Ma 

and Vakakis, 1999; Ma et al, 2001), fluid dynamics (Sirovich, 1987a, 1987b, 1987c; 

Park and Cho 1996), and more recently MEMS (Hung and Senturia, 1999; Lin et al., 

2001; Liang et al., 2001).  In this chapter, KLD method is applied to develop low 

dimensional macromodels to simulate pull-in dynamics of MEMS devices modelled as 

doubly-clamped microbeam with squeezed gas-film damping effect.  The numerical 
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results show that the macromodels can significantly reduce the computation time and 

achieve close agreement with those obtained by fully meshed finite difference method 

(FDM). 

 

3.1 THEORY OF KARHUNEN-LOÈVE DECOMPOSITION 

 

Suppose that there is an ensemble of scalar fields { }nu , each member of the ensemble 

is a continuous function ( )xuu nn =  defined on some spatial domain Ω  taken at 

various snapshots in time instant of Nn ,,2 ,1 L= .  The objective of KLD is to find a 

deterministic function ( )xφ  that is the most representative to the members of ( )xun  on 

average.  The mathematical statement of for this is that a function ( )xφ  to be chosen 

maximizes the averaged projection of nu  onto φ  , i.e. 

 ( )2,  Maximize nuφ  (3.1)
 
where •  is the averaging operator that may be a time, space or ensemble average and 

( ) ( ) ( )∫=  Ω nn dΩx uxu  , φφ  is the inner product defined in the function space Ω .  

Equation (3.1) is expressed as 
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Several solutions to φ  for the above equation can exist, in order to make the solution 

unique, the following normalization condition is imposed 
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Using the technique of the Lagrange multiplier, the corresponding functional for the 

constrained variational problem of Equation (3.2) subject to the constraint (3.3) is 

obtained 

[ ] ( ) ( )[ ]1,, 2
−−= φφφφ λuJ n  (3.4)

 
The necessary condition for extrema is that the first variation of functional vanishes 
  

[ ] [ ] 0
0
=+=

=ε
εηJ

dε
dδJ φφ  (3.5)

 
where ( )xη  is an arbitrary function and ε  is a small real number.  From Equation 

(3.4), the above condition becomes 
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(3.6)

 
Since ( )xη  is an arbitrary function, the above condition is finally reduced to  
 

( ) ( ) ( ) ( ) 0   
 

=−′′∫ xxdxx'uxu
Ω nn λφφ  (3.7)

 
Introducing an averaged two-points correlation function 
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( ) ( ) ( ) ( ) ( )∑
=

==
N

n
nnnn x' uxu

N
x' uxux,x'K

1

1  (3.8)

 
and denoting an operator 
 
( ) ( )( )∫ ′′≡

Ω
xdxxKR

 
•,•  (3.9)

 
as well as moving the second item on the left-hand side of Equation (3.7) to the right-

hand side,  it is revealed that the condition for maximizing Equation (3.1) subjected to 

the constraint of Equation (3.3) is finally reduced to the following integral eigenvalue 

problem 

λφφ = R  (3.10)
 
It is noted that ( )x,x'K  is non-negative definite that implies that the integral operator 

( )•R  is non-negative definite.  Hence the eigenvalue in Equation (3.10) is also assured 

to be non-negative, i.e. 0≥iλ .  Schmidt-Hilbert theory assures that there are N  

number of eigenvalues iλ  and eigenfunctions ( )xiφ  which are mutually orthogonal for 

eigenvalue problem of Equation (3.10) and two-points correlation function of Equation 

(3.8) can be decomposed as 

( ) ( ) ( ) ( ) ( )∑
=

==
N

n
nnnnn x' xx' uxux,x'K

1

φφλ  (3.11)

 
Equation (3.10) can be solved by direct method or method of snapshots (Sirovitch, 

1987a; 1987b; 1987c).  The method of snapshots is a numerical procedure in solving 

the eigenvalue problem of Equation (3.10), in which the eigenfunction ( )xφ  can be 

represented as the linear combination of snapshots { }nu  as follows 

( ) ( ) 
1
∑
=

=
N

k
kk xux αφ  (3.12)
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where the coefficients kα  remain to be determined.  It is customary to mean-subtract 

each member in the ensemble of snapshots { }nu .  Substituting Equation (3.12) into 

(3.10) yields the following −N dimensional eigenfunction problem 

( ) ( ) ( ) ( )∑∫ ∑ ∑
== =

=′′
N

k
kkΩ

N

n

N

k
kknn xuxdxux' uxu

N 1
 

1 1
 1 αλα  (3.13)

 
The left-hand side of the above equation can be rearranged to give 
 

( ) ( ) ( ) ( )∑∑ ∑ ∫
== =

=
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ′′

N

k
kkn

N

n
k

N

k
Ω kn xuxuxdx' uxu

N 11 1
 

   1 αλα  (3.14)

 
Hence a sufficient condition for the solution of Equation (3.14) will result in the 

following matrix eigenvalue problem for determination of the coefficient kα   

( ) ( ) Nnxdx' uxu
N nk

N

k
Ω kn ,,2 ,1    ,  1

1
 

K==⎥⎦
⎤

⎢⎣
⎡ ′′∑ ∫

=

λαα  (3.15)

 
or 
 

λαα =C  (3.16)
 
where the element in matrix C  is defined as 
 

( ) ( ) ( ) Nn,k dx'x' ux'u
N

uu
N

C
 Ω knknnk ,,2 ,1    , 1,1

K=== ∫  (3.17)

 
and the set of eigenvectors is given as 
 

( ) ,,, 21 Nαααα K=  (3.18)
 
It is noted that the above matrix C  has dimensions NN ×  and is symmetric and 

positive definite, α  is the set of eigenvectors containing the unknown coefficient kα .  

Solving for eigenvalues λ  and eigenvectors α  in Equation (3.16) and substituting α  

into Equation (3.12) yield the empirical eigenfunctions ( )xnφ  which satisfy the 

following orthogonality relation 
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( )
( )

⎪
⎩

⎪
⎨

⎧

≠

=
=

)(       0  

       1  
 ,

kj

kj

kj φφ  (3.19)

 
Finally, every member of the original ensemble could be reconstructed by a modal 

decomposition in terms of the linear combination of eigenfunctions ( )xφ  

( ) ( ) ∑=
N

k
kkn xaxu φ  (3.20)

 
Substituting the above Equation (3.20) into Equation (3.8), the following is obtained 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )xxaaxaxax' uxux,x'K kj

N

jk
kj

N

k
kk

N

j
jjnn ′=′== ∑∑∑ φφφφ    (3.21)

 
Comparing Equation (3.21) with Equation (3.11) and taking consideration of the 

orthogonality of the eigenfunctions ( )xkφ  leads to 

jjkkj aa λδ=  (3.22)
 
The first eigenfunction is found by requiring that it maximizes 
 
( )2

1, nuφ  (3.23)
 
or, equivalently, by requiring that it maximizes 
 

( ) ( ) ( ) ( ) ( )∫ ∑∫ ∑ ′⎥
⎦

⎤
⎢
⎣

⎡ ′′⎥
⎦

⎤
⎢
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==
Ω

N

n
nnΩ

N

n
nnn xdxaxdxxaxu

 
1

1 
1

1
2

1   , φφφφφ  (3.24)

 
subjected to the orthonormal condition of eigenfunctions. Using the Equation (3.22), 

the following result is found 

( ) 1
2
1

2
1 ,    Maximum λφ == aun  (3.25)

 
Following this procedure, the second eigenvalue is defined by requiring that 
 

( ) 2
2
2

2
2 ,    Maximum λφ == aun  (3.26)

 
and so on for the remaining eigenfunctions and eigenvalues.  Hence the order of 

eigenfunctions ( ) ( ) ( )xxx Nφφφ  ,...,  , 21  can be arranged corresponding to the order of the 
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magnitude of the eigenvalues Nλλλ >>> ...21 .  And the eigenfunction ( )x1φ  

corresponding to the largest eigenvalue 1λ  is the most representative to the members 

of the ensemble snapshots { }nu  followed by the eigenfunction ( )x2φ  and so forth, i.e. 

the most of the structural information, or energy, is captured by the subspace 

associated with the first few eigenfunctions (Sirovitch, 1987a; 1987b; 1987c). 

Equation (3.20) is called Karhunen-Loève decomposition.  The eigenvalues { }iλ  are 

also called empirical eigenvalues or Karhunen-Loève values (KLVs), and the 

corresponding eigenfunctions { }iφ  are also referred to as empirical eigenfunctions, 

empirical basis functions, or Karhunen-Loève modes (KLMs) which can represent the 

system in the most efficient and optimal way.  In other words, the first m  KLMs 

capture more energy on average than the first m  functions of any other basis. When 

the first few KLMs are employed as basis functions in the Galerkin procedure, the 

original high-dimensional system can be represented by a low-dimensional model with 

minimum number of degrees-of-freedom.  

 

3.2 GALERKIN PROCEDURE 

 

The Galerkin procedure, or Galerkin projection, is a well-known method that converts 

an infinite-dimensional evolution equation or partial differential equation (PDE) into a 

finite set of ordinary differential equations (ODEs).  In this procedure the functions 

defining the original equation are projected onto a finite-dimensional subspace of the 

full phase space. The finite-dimensional subspace is spanned by small sets of basis 

functions.  Considering the PDE described as follows 

( ) ( )[ ] 0,,
=− txuL

dt
txdu  (3.27)
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where ( )txu ,  is a function defined on a spatial domain Ω  and [ ]•L  is a nonlinear 

partial differential operator that may involve spatial derivatives and/or integrals.   

Given a basis ( ){ }xnφ  for the solutions to the PDE, ( )txu ,  can be expressed as sum of 

time-dependant model coefficients multiplied by elements of the basis 

( ) ( ) ( )∑
∞

=
i

ii xtatxu φ ,  (3.28)

 
This solution is then approximated by a N  term truncated basis functions as  
 

( ) ( ) ( )∑≈
N

i
ii xtatxu φ ,  (3.29)

 
Substituting Equation (3.29) into the left-hand side of Equation (3.27) and taking the 

inner product of this with each member of the N  term truncated basis functions 

( ){ } Nnxn ,,2 ,1  , K=φ  in turn and equating each expression to zero, the following 

expression is obtained 

( ) ( )[ ] ,N,,ktxuL
dt

txdu
k K2 1    ,0,, , ==⎟

⎠
⎞

⎜
⎝
⎛ −φ  (3.30)

 
Noting that  
 

( ) ( ) ( )( ) ( )
dt

tda
dt

tda
xta

dt
d

dt
txdu k

nk
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n

n
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n
nnkk ==⎟
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⎞
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ ∑∑ φφφφφ , ,),(,  (3.31)

 
a set of N  ordinary defferential equations (ODEs) to determine the coefficients ( )tak  

is then derived from Equation (3.30) 

( ) ( ) ( ) ( )[ ] ,N,,ktatataf
dt

tda
Nk

k KL 2 1    ,  ,, , 21 ==  (3.32)

 
A suitable choice of truncation order N  will depend upon the properties of the original 

equations and the basis functions. 
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3.3 THE RELATIONSHIP BETWEEN KARHUNEN-LOÈVE MODES AND 

THE VIBRATION MODES OF THE DISTRIBUTED PARAMETER 

SYSTEM  

 

In the area of the structural dynamic analysis and system identification, many 

researchers from different groups have demonstrated that KLD can be used to obtain 

accurate low-dimensional dynamic models (Ma et al., 2000; Georgiou and Schwartz, 

1999; Cusumano et al., 1994).  The modes derived by KLD are optimal in the sense 

that fewer modes could capture the same amount of energy among modes compared 

with modes resulting from the traditional Galerkin or Rayleigh-Ritz procedure 

(Sirovich et al., 1990).  However, there is lack of clear description given to show the 

relationship between the KLMs and the normal modes of the vibration.  With the 

increasing applications of KLD method in structural dynamics, it is worthwhile to find 

this relationship.  It had been pointed out in (Feeny and Kappagantu, 1998) that in 

discrete vibration systems, the eigenvectors extracted from numerical simulation data 

by KLD converged to the normal modes of vibration if the number of the data in the 

ensemble was large enough, and the eigenvalues were related to the principal moments 

of inertia.  This section extends this finding from the discrete vibration system to the 

conservative distributed parameter vibration system, and shows that, for the distributed 

parameter vibration system, the KLMs derived from an ensemble of numerical 

simulation data converge to the mode shape of the vibration of the system.  
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3.3.1 FREE VIBRATION OF THE CONSERVATIVE DISTRIBUTED 

PARAMETER SYSTEM 

 

Assume a distributed parameter vibration system executes synchronous harmonic 

motion in the following form 

( ) ( ) ( )∑
∞

−=
n

nnnn xWtCxu  cos ξω  (3.33)

 
where nW  is the th−n  mode, nω  and n ξ  are the corresponding natural frequency and 

phase of the th−n  mode.  In order to demonstrate whether the KLMs converge to the 

modes of the vibration, the following approximation needs to be verified whether it is 

valid 

( ) ( ) ( ) ( ) ( ) ( )xWλ   dx'x' Wx' uxu
N

 dx'x' Wx,x'K j Ω j

N

n
nnj Ω

   approaches 1
1

∫ ∑∫
=

≡  (3.34)

 
where N  is the total number of the snapshots.  Using Equation (3.33), the left-hand 

side of Equation (3.34) may be rewritten as 

( ) ( ) ( ) ( ) ( )    cos cos1
1

∫ ∑∑∑ −−
=

 Ω j
k

k knkk

N

n k
k knkk dx'x'Wx'WtωCxWtωC

N
ξξ  (3.35)

 
Considering the orthogonal property of the vibration modes  
 

( ) ( )  jkjj Ω k  δA dxx Wx W =∫  (3.36)
 
Equation (3.35) becomes 
 

( ) ( ) ( ) cos  cos1
 

1
 jnjjj

N

n k
kknkk tCAxWtC

N
ξωξω −

⎭
⎬
⎫

⎩
⎨
⎧

−∑ ∑
=

 (3.37)

 
If the frequencies and phases of the vibration modes are distinct, and the total number 

of the snapshots N  approaches infinite, then Equation (3.37) becomes 

( ) ( ) ( ) ( )xWCAtCAxWtC
N jjjjnjjj

N

n k
kknkkN

2
 

1
  cos  cos1lim =−

⎭
⎬
⎫

⎩
⎨
⎧

−∑ ∑
=

∞→
φωφω  (3.38)
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Hence, it is proved that ( )xW j  is an eigenfunction of the following eigenvalue problem 
 

( ) ( ) ( ) ( )xλ Wx WCA dx'x Wx,x'K jjjjj ΩN
==∫∞→

2lim  (3.39)
 
In other words, the KLMs converge to the modes of vibration of a distributed 

parameter system when the total size of the snapshots is large enough.  

 

3.3.2 NUMERICAL RESULTS AND DISCUSSION 

 

A problem for consideration in vibration is that of a string fixed at both ends.  

Considering a flexible string of mass ρ  per unit length which is stretched under 

tension T  and assuming that the lateral deflection ( )txu ,  of the string is small, the 

equation for the lateral deflection in the general case of free vibration initiated in any 

manner can be obtained as follows (Thomson and Dahleh, 1998) 

( ) ( ) ( )∑
∞

=

+=
1

 cossin,
n

nnnnn xWtDtCtxu ωω  (3.40)

 
where the normal mode ( )xWn  is sinusoidal with the distribution ( )Lxnπsin  where L  

is the length of the string, ( )2  LTnn ρπω =  is the natural frequency of the th−n  

mode, nC  and nD  are constants determined by the initial and the boundary conditions. 

Assume the string is displaced into a shape  

( ) ( ) LxexL
L
xxu / 0, −−−=  (3.41)

 
and released, thus the nC  and nD  in Equation (3.40) become 
 

( )
( )[ ] )2, 1,(     , 44cos8

1
2 

0

331
322

K=−+−
+

−=

=

− nnnnne
n

LD

C

n

n

ππππ
π

 
(3.42)
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In the following numerical computation tests to demonstrate the relationship between 

the KLMs and vibration modes, snapshots are obtained from the numerical solution of 

Equation (3.40) with the number of vibration modes taken as 20=n .  The KLMs and 

KLVs for various ensembles of snapshots are obtained by making use of the Equations 

(3.12) and (3.16).  In the first computation test, KLMs and KLVs are obtained by 

applying KLD to a number of ensembles of snapshots which are evenly taken at fixed 

time interval within one fundamental period of time TLt 2
11  2/2 ρωπ == .  Figure 

3.1 to Figure 3.4 show the first, second, th10 −  and th20 −  orthonormal KLMs 

corresponding to the order of magnitude of the respective KLVs 1021  , , λλλ  and 20λ  

when the number of the snapshots is 30 and 50, respectively.   
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Figure 3.1 The first KLM and the first mode of the vibration. 
 
The mean square error between the KLM and the corresponding vibration mode is 

defined as  

( ) dxW
L

MSE
L ii

2

 

1
∫ −= φ  (3.43)

 



CHAPTER 3  45 
 

-0.24

-0.16

-0.08

0.00

0.08

0.16

0.24

Nodal point along the length of string

vibration mode 30 snapshots 50 snapshots

 
 

Figure 3.2 The second KLM and the second mode of the vibration. 
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Figure 3.3 The th10 −  KLM and th10 −  mode of the vibration. 
 
Figure 3.5 shows the MSE for the first, second, th10 −  and th20 −  orthonormal 

KLMs compared with the corresponding order of the vibration modes.  The error 

decreases with increasing number of snapshots for higher th10 −  and th20 −  modes.  

It is also noted in Figure 3.4 and Figure 3.5 that the th20 −  KLM does not converge to 

the corresponding th20 −  vibration mode when the number of the snapshots is taken 

as 30.  However, all the KLMs can converge to the corresponding modes of vibration 

almost exactly when the number of the snapshots is 50.  Table 3.1 shows that the first, 
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second and third KLVs converge quite well as the number of the snapshot increases 

from 5 to 50. 

Table 3.1 The first three KLVs versus the number of snapshots. 
 
Number of snapshots 1λ  2λ  3λ  

5 0.0063402695 0.0002400612 0.0000022490 
10 0.0063265951 0.0002197678 0.0000217581 
20 0.0063347454 0.0002208136 0.0000205208 
30 0.0063347450 0.0002208131 0.0000205201 
50 0.0063347450 0.0002208131 0.0000205201 
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Figure 3.4 The th20 −  KLM and th20 −  mode of the vibration. 
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Figure 3.5 The mean square error between KLMs and the 
corresponding modes of the vibration. 
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In the second computation test, KLMs are obtained from four sets of ensemble of 

snapshots, each set has the same number of snapshots 50=N  but the sampling rate 

and the length of time period for sampling are different.  The snapshots in the first set 

of ensemble are taken at fixed time interval within the time period of one fundamental 

period 1tt =  (sampling rate 501t=δ ), the snapshots in the second set are taken at 

fixed time interval within 1.6 times of the fundamental period 16.1 tt =  (sampling rate 

506.1 1t=δ ), the snapshots in the third set are taken at fixed time interval within 2 

times of the fundamental period 12tt =  (sampling rate 502 1t=δ ) and the snapshots 

in the fourth set are taken at various time interval within the fundamental period 1tt = , 

i.e. in the first half of 1t , 30 snapshots are taken at one fixed time interval while in the 

second half of 1t , 20 snapshots are taken at another fixed time interval (sampling rate 

( ) 302/1t=δ  and ( ) 202/1t=δ , respectively).   

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

Nodal point along the length of string

vibration mode t= t1 (first set)
t= 1.6t1 (second set) t= 2t1 (third set)
t= t1 (fourth set)

 
 

Figure 3.6 The th10 −  KLM and th10 −  mode of the vibration with 
various sampling rate and the length of time period. 

 
Figure 3.6 shows the th10 −  KLM obtained by KLD from these four sets of ensemble 

and the corresponding th10 −  mode of the vibration. The respective MSE is shown in 

Figure 3.7.  Again, the second computation results shown in Figure 3.6 and Figure 3.7 
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indicate that the KLM agree well with the system vibration mode, the error increases 

with increasing sampling rate or increasing length of time period if the number of the 

sampling (snapshots) is the same.  It is also noted from these results that there is no 

significant difference between the KLMs obtained from the first set and fourth set of 

ensemble, i.e. the results do not show a significant difference by the evenly or 

unevenly sampling provided it is sampled within the same length of time period and 

with same number of the sampling.  This is probably due to the fact that the ensemble 

of the numerical data is obtained from the steady-state response rather than the 

transient response of the system. 
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Figure 3.7 The mean square error between the th10 −  KLM and th10 −  mode of 
the vibration with various sampling rate and the length of time period. 

 
 

3.3.3 CONCLUSION 

 

The relationship between the KLMs extracted by KLD from an ensemble of numerical 

simulation data and the corresponding modes of the vibration of the distributed 

parameter system has been established.  The KLMs agree well with modes of vibration 

if the number of sampling or snapshots is large enough.  This property can be used to 
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obtain the modes of the vibration when the numerical simulation or experiment data 

are obtained from a distributed parameter system.  Future research would be to use 

KLD for the signals with noise-injected data, the nonlinear distributed parameter 

vibration system, and the system with generalized damping. 

 

3.4 A MEMS DEVICE AND GOVERNING EQUATIONS 

 

To demonstrate the model reduction technique for the generation of the macromodel 

for dynamic simulation of MEMS systems and devices based on Karhunen-Loève 

decomposition procedure, a doubly-clamped microbeam pulled in by the electrostatic 

actuation force with squeezed gas-film damping effect is examined in this section.  

Figure 3.8 shows a schematic cross section of this device (Gupta and Senturia, 1997).  

When a voltage V  is applied between the top and bottom electrodes, the top 

deformable microbeam is pulled downwards due to the electrostatic force.  At the same 

time, the narrow air gap between the moving microbeam and the substrate will 

generate back pressure force on the microbeam due to squeezed gas-film damping 

effect.  The top microbeam will be pulled onto the bottom substrate when the applied 

voltage reaches the dynamic pull-in voltage.  The pull-in dynamics is sensitive to the 

ambient pressure of the air thus this structure can be used as pressure sensor (Gupta 

and Senturia, 1997).  Accurate and efficient simulation of squeezed gas-film damping 

problems are important for the applications of the MEMS devices in order to control 

moving microstructures and to determine the time needed for microstructures when 

moving in air. 
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Figure 3.8 Doubly-clamped microbeam. 

 
This MEMS device is a coupled domain system.  In general, the microbeam can be 

modelled by one-dimensional Euler beam with electrostatic actuation force, and the 

back pressure force can be obtained from the two-dimensional nonlinear Reynold’s 

squeezed gas-film damping equation (Hamrock, 1994) which yield the following 

nonlinear partial differential equations (PDEs) (Hung and Senturia, 1999) 

∫ ∂
∂
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∂
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∂
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where E  is Young’s modulus, 123bhI =  is the second moment of area where b  is 

the width and h  is the thickness of the microbeam, ρ  is the microbeam density; µ  is 

the air viscosity and equals to 51082.1 −×  ( )-1s•m kg , ( )txw ,  is the height of the 

microbeam above the substrate, ( ) wtxK n λ=,  is the Knudsen number where λ  is the 

mean-free path of the air and equals to m 064.0 µ , )2/( 22
0 wbVε−  is the electrostatic 

actuation force where V  is the applied voltage, 0ε  is the permittivity of free space and 

equals to 1210854.8 −×  1m•Farad − , ( )tyxp ,,  is the back pressure force acting on the 

microbeam due to the squeezed gas-film damping in which isothermal process is 

assumed, ap  is the ambient pressure and equals to 510013.1 ×  Pa, and )(bhT  is the 
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sum of residual stress rt  and the bending induced stress bt  due to large deflection 

which can be expressed as 

 
2  

2

∫ ⎟
⎠
⎞

⎜
⎝
⎛+≈

∆
+=+=

Lrrbr dx
dx
dw

L
Et

L
LEttt

bh
T  (3.46)

 
where L  is the length of the deformable microbeam.   

Traditional finite element methods (FEMs) or finite difference methods (FDMs) can be 

used for explicit dynamical simulations of coupled nonlinear system, but the resulting 

number of degrees-of-freedom is usually too large so that it is usually computationally 

very intensive and time-consuming for practical problem, especially when a large 

number of simulations are needed or the system is structurally complex.  It will be 

demonstrated in the following sections that the Galerkin procedure employing the 

KLMs obtained from KLD procedure as basis functions can convert the original 

coupled nonlinear system with infinite number of degrees-of-freedom to low-order 

macromodels with small number of degrees-of-freedom while capturing all the 

essential behaviours of the original system faithfully and efficiently. 

 

3.5 SNAPSHOT GENERATION 

 

In order to obtain the ensemble of signals for KLD, the time-dependant deflection 

( )txw ,  and pressure ( )tyxp ,,  distribution of Equations (3.44) and (3.45) will be 

simulated by using finite difference method (FDM) for an ensemble of applied voltage.  

These time-dependant parameters are used as the snapshots { }nu  for KLD to generate 

the sets of KLMs { }kφ  and KLVs { }kλ .  The ensemble of snapshots must be 

representative of the dynamical characteristics of the system under consideration.  For 

the system shown in Figure 3.8, the pull-in dynamics of the microbeam at a series of 



CHAPTER 3  52 
 

different time are simulated using FDM for an ensemble of applied step voltages to 

obtain beam deflection { }w
nu  and the back air pressure { }P

nu  ensembles.  Each vector 

in { }w
nu  and { }P

nu  corresponds to the microbeam flexural deflection ( )sin txw ,  and 

back pressure ( )sjin tyxp ,,  distribution at time st , and the entries in each vector 

( )i
w
n xu  and ( )ji

p
n yxu ,  correspond to the deflection and back pressure at different node 

of the finite difference mesh as shown in Figure 3.9.  These deflection and back 

pressure ensembles { }w
nu  and { }P

nu  are then used as snapshots i.e. the ensemble of 

signals in Equations (3.12) and (3.16) to extract the KLMs and KLVs.  The ensemble 

of applied step voltages is taken to be that of the operating range of the systems.   

To simulate the systems shown in Figure 3.8 using FDM, the Euler beam equation 

(3.44) and the nonlinear Reynold equation (3.45) are discretized in space to generate 

an ( ) ( )11 +×+ NM  mesh with NM ×  inner grids and 422 ++ NM  boundary grids as 

shown in Figure 3.9.   

        M +1i 0 1
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 y
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 b

x

 j

  0

 
 

Figure 3.9 Finite difference mesh of the microbeam. 
 
Central difference scheme is used to approximate the spatial partial derivative 

operators in Equations (3.44) and (3.45) and the trapezoidal rule is adopted to 

discretize the integral operator.  The state of the three unknowns ( )txw , , ( ) ttxw ∂∂ ,  

and ( )tyxp ,,  are projected onto each grid point.  This discretizatioin will transform the 
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Equations (3.44) and (3.45) into a set of MNM 2+×  nonlinear ODEs.  The following 

state space can be used to represent the unknowns on the grids as 
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and integrated numerically by using the fifth-order Runge-Kutta method (Press et al., 

1992) with the following boundary conditions 
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and initial conditions 
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= tpp
t
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The snapshots can be taken at varied or fixed time interval during pull-in dynamics.  

Since there is no distinct difference between transient and steady-state for the system 

shown in Figure 3.8, snapshots at fixed time interval are taken in the study. 

 

3.6 MACROMODEL GENERATION 

 

Using the above-mentioned ensembles of snapshots and following the method of 

snapshots in KLD procedure described in the Section 3.1, a set of KLMs and the 

corresponding KLVs are obtained.  The Galerkin procedure employing these KLMs as 

basis functions is then applied to the original nonlinear governing PDEs (3.44) and 

(3.45) to convert them to a macromodel with a small number of ordinary differential 

equations (ODEs).  Because independent deflection and pressure basis functions make 

the Galerkin procedure simpler and also make clear of the physics of the problem, the 

independent KLMs for deflection and back pressure are extracted respectively.  
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Denoting the KLMs with respect to the deflection as ( )xw
iφ  and those with respect to 

the back pressure as ( )yxp
j ,φ , the deflection ( )txw ,  and pressure ( )tyxp ,,  can be 

represented as a linear combination in terms of these KLMs as follows 

( ) ( ) ( )∑
=

+=
I

i

w
i

w
i xtawtxw

1
0   , φ  (3.50)

 

( ) ( ) ( )∑
=

+=
J

j

p
j

p
ja yxtaptyxp

1
,  ,, φ  (3.51)

 
where 0w  is the initial gap between the deformable microbeam and the substrate, ap  is 

the gap air ambient pressure, the coefficients w
ia  and p

ja  are the amplitudes of the 

basis functions or the modal coordinates in modal decomposition, and I  and J  are the 

numbers of KLMs for deflection and back pressure respectively.  Using Equation 

(3.12) in the method of snapshots for solving the eigenvalue problem of Equation 

(3.10), ( )xw
iφ  and ( )yxp

j ,φ  can be represented as the linear combination of snapshots 

( ){ }xwn  and ( ){ }yxpn ,  as follows 
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where N  is the total number of snapshots, w

nα  and p
nα  are the entries of eigenvectors 

obtained in matrix eigenvalue problem of (3.16).  Substituting Equations (3.50) and 

(3.51) into Equations (3.44) and (3.45), and applying the KLMs as basis functions in 

the Galerkin procedure, the following reduced coupled nonlinear ODEs in terms of the 

basis functions are derived 
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where the elements in matrix jM  can be obtained once the basis functions are known, 

the elements in matrixes jiK , jiH  and jiS , and vectors jc  and if  are expressed as 

follows 
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where ∫L 

indicates the integration along the length of the microbeam and 

∫A 
indicates the integration along the microbeam area. 

The small set of coupled nonlinear ODEs (3.54) and (3.55) constitutes the dynamic 

macromodel which represents the original nonlinear PDEs (3.44) and (3.45) with low-

order model in terms of global basis functions.  Since this dynamic macromodel is 

generated by the Galerkin procedure employing the KLMs extracted from KLD as the 

basis functions, the resulting number of degrees-of-freedom is usually small compared 

with full model simulation by FEM or FDM which contains a large number of degrees-

of-freedom. 
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It is noted that the elements jiK , jiH , jiS , jc  and if  in Equations (3.57)-(3.61) are 

corresponding to the nonlinear terms related to the microbeam flexural deflection, 

electrostatic force, squeezed gas-film damping and bending induced stress in the 

original PDEs (3.44) and (3.45), and cannot be expressed directly in the generalized 

coordinates or modal coordinates.  Since w , p  and T  in these equations are time-

dependent, much of the computation time is thus spent on re-computation these 

elements at every time step during the numerical integration of Equations (3.54) and 

(3.55).  Some techniques to handle this shortcoming and improve the computational 

efficiency will be discussed in Chapter 6. 

The macromodel expressed by the coupled nonlinear ODEs (3.54) and (3.55) is 

integrated numerically in time by a fifth-order Runge-Kutta method to simulate the 

dynamics of the system.  The initial values for the system are obtained as follows 
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3.7 NUMERICAL RESULTS AND DISCUSSION 

 

3.7.1 MACROMODEL ACCURACY 

 

In order to validate the present macromodel for MEMS device dynamic simulation, the 

pull-in dynamics simulation of the MEMS device shown in Figure 3.8 is carried out.  

For the purpose of simplicity but not to harm the methodology in this section, the 
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bending induced stress bt  is ignored in the numerical experiments.  The material 

properties and geometric dimensions of the microbeam are given in Table 3.2. 

Table 3.2 Material properties and geometric dimension of the microbeam. 
 

Young’s 
modulus 

E  
(GPa) 

Density 
 

)(bhρ  
(kg/m3) 

Residual 
stress 

rt  
(MPa) 

Knudsen’s 
number 

wKn λ=  

Initial 
gap 

0w  
(µm) 

Thickness 
 

h  
(µm) 

Length 
 

L   
(µm) 

Width 
 

b   
(µm) 

149 2330 -3.7 ≈0.028 2.3 2.2 610 40 
 

Table 3.3 Accumulative normalized KLVs corresponding to the number of 
deflection KLMs. 

 
Number of KLMs 

 
I  

Normalized  
KLVs 

∑
=

=
N

i
iII

1
   λλλ  

Accumulative 
normalized KLVs 

∑
=

=
I

i
inS

1
 λ  

1 1 λ = 0.9998892100 1S = 0.9998892100 
2 2 λ = 0.0001097713 2S = 0.9999989813 

3 3 λ = 0.0000009954 3S = 0.9999999768 

4 4 λ = 0.0000000195 4S = 0.9999999963 
 
The snapshots are obtained from the solution of Equations (3.44) and (3.45) by using 

central FDM mentioned above for an ensemble of two different input step voltages of 

1V =10 V and 2V =16 V which are assumed to be the device operating range under 

consideration.  Each 25 snapshots are taken at the fixed time interval from the moment 

when each step voltage is applied till the pull-in occurs.  These snapshots are then used 

as signal for KLD to generate KLMs and KLVs.  The Galerkin procedure uses these 

KLMs as the basis functions to generate the macromodel to represent and simulate the 

pull-in dynamics.  Based on numerical experiments, the mesh size 2040×  for the 

finite difference simulation of the original nonlinear PDEs (3.44) and (3.45) is able to 

give sufficient accuracy.  The minimum pull-in step voltage for this device is 

calculated at 8.87 V by FDM code, which matches the experimental data measured at 

8.76 V (Osterberg and Senturia, 1997). 
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Table 3.4 Accumulative normalized KLVs corresponding to the 
number of back pressure KLMs. 

 
Number of KLMs 

 
J  

Normalized  
KLVs 

∑
=

=
N

j
jJJ

1
   λλλ  

Accumulative 
normalized KLVs 

∑
=

=
J

j
jnS

1
 λ  

1 1 λ = 0.9813929100 1S = 0.9813929100 
2 2 λ = 0.0178970820 2S = 0.9992899920 

3 3 λ = 0.0005202848 3S = 0.9998102768 

4 4 λ = 0.0001617258 4S = 0.9999720025 
5 5 λ = 0.0000258564 5S = 0.9999978589 

 
Table 3.3 and Table 3.4 show the normalized KLVs and accumulative normalized 

KLVs with respect to the number of deflection and back pressure KLMs employed as 

basis functions in macromodel simulations where the total sum of the KLVs is 

normalized to one.  Recalling Equations (3.25) and (3.26), this accumulative 

normalized KLVs represents the total percentage of the system informaiton, or energy 

captured by the corresponding number of the KLMs.  It is found in Table 3.3 that the 

first deflection KLM, which is corresponding to the first KLV, can capture 99.99% 

energy of the system while it takes at least four back pressure KLMs to capture the 

same level of system energy as listed in Table 3.4.  This indicates that the value of the 

accumulative normalized KLVs can be used as a guideline for the optimal selection of 

the number of basis functions employed in the Galerkin procedure for macromodel 

generation and system simulation.  Following this guideline, it is found that 

macromodel can achieve sufficient accuracy for dynamical simulation of the MEMS 

device of Figure 3.8 if the accumulative normalized KLVs corresponding to the first 

few n -dominant KLMs satisfies the following criteria 
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Figure 3.10 Comparison of the microbeam pull-in dynamics for an input step 
voltage of 10.25 V. 
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Figure 3.11 The error of macromodel simulation with respect to FDM solution 
for an input step voltage of 10.25 V. 

 
Figure 3.10 shows a comparison of the deflection of the midpoint of the microbeam 

between FDM approximation of the original nonlinear PDEs (3.44) and (3.45) and 

macromodel representation when the system is applied with an input step voltage of 

10.25 V, where FDM denotes the FDM simulation results and MM stands for the 

macromodel simulation results, I  denotes the number of deflection KLMs and J  
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denotes the number of back pressure KLMs.  Figure 3.11 shows the error between the 

macromodel and FDM simulations, where the error is defined as  

( ) ( )
 %100

,,
error

0

FDMMM ×
−

=
w

txwtxw cc  (3.65)

 
here MMw  denotes the midpoint deflection of the microbeam from the macromodel 

simulation and FDMw  is the FDM solutions of the original nonlinear PDEs (3.44) and 

(3.45).  Figure 3.11 shows the error is very small (≤1.2%) when 1≥I  and 4≥J .  It 

appears in Figure 3.11 that the error is oscillatory but tends to increase with time due 

to the stronger nonlinearity in electrostatic force and squeezed gas-film damping near 

pull-in.  This means that there is less macromodel simulation accuracy compared to the 

area away from pull-in where macromodel simulation should have better 

approximation.  It is also noted in Figure 3.10 and Figure 3.11 that macromodel 

employing two deflection KLMs )2( =I  and three back pressure KLMs )3 ( =J  as 

basis functions in Galerkin procedure has less accuracy compared with macromodel 

employing one deflection KLM )1( =I  and four back pressure KLMs )4( =J .  This is 

because three back pressure KLMs can only capture 99.98% energy even though two 

deflection KLMs can capture up to 99.9999% energy as indicated in Table 3.3 and 

Table 3.4, despite the total number of basis functions is the same )5( =+ JI  for both 

macromodels.  If it is not otherwise stated, one deflection KLM and four back pressure 

KLMs )4 ,1( == JI  are assumed to be the number of basis functions employed in the 

macromodel in the following simulations. 
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3.7.2 CHANGE OF THE INPUT VOLTAGE SPECTRUM 

 

It is noted that the macromodel generated by the above ensemble of two different input 

step voltages could also be used to simulate the system when the applied input voltage 

spectrum is changed.  Figure 3.12 shows the simulation from the same macromodel 

using KLMs generated from input step voltages for the dynamic response of system to 

an input sinusoidal voltage with magnitude of 14 V at a frequency of 10 kHz.  The 

error of the macromodel simulation compared with the finite difference solution is 

plotted in Figure 3.13.  It shows that the macromodel simulation can capture the 

system dynamics accurately with less than 1.6% error when the number of basis 

functions 1=I  for deflection and 4=J  for back pressure are chosen in the 

macromodel without re-generating the macromodel. 
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Figure 3.12 Comparison of the microbeam pull-in dynamics for an input 
sinusoidal voltage of 14 V at a frequency of 10 kHz. 

 
In order to understand this macromdel flexibility characteristics qualitatively, the 

deflection and back pressure KLMs for the system with this input sinusoidal voltage 

are extracted independently following KLD procedure, and compared with the KLMs 

extracted for the original system with the ensemble of input step voltages as described 



CHAPTER 3  62 
 

above.  The comparisons of the first and the second deflection KLMs plotted in Figure 

3.14 shows that the first KLM shape difference between these two different input 

voltages is neglegible but there is some slightly difference between the second KLM 

which however does not harm the simulation accuracy simply because that only the 

first deflection KLM, which captures more than 99.99% of the system energy, is 

employed in the macromodel.   
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Figure 3.13 The error of macromodel simulation with respect to FDM solution 
for an input sinusoidal voltage of 14 V at a frequency of 10 kHz. 

 
Figure 3.15 shows the comparison for the first two back pressure KLMs along the 

centre of microbeam between these two input voltages.  It is obeserved in Figure 3.15 

that the first back pressure KLM is almost identical while there is some noticeable 

difference betweem the second KLM, but this difference does not cause significant 

accuracy drop in the macromodel simulation as indicated in Figure 3.12 and Figure 

3.13 due to the system energy lever captured by the second KLM (1.79% as indicated 

in Table 3.4) is much lower than that captured by the first KLM (98.14%) which is 

obviously the dominant mode.  However, the above observations are based on the 

qualitatively numerical experimental results, the accuracy limits on quantitatively 
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measure or scaling of parameter changes over the parameter space in which the KLMs 

can still be used as basis functions without re-generation needs to be studied further. 
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Figure 3.14 Comparison of the first two deflection KLMs with different input 
voltage spectrum. 
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Figure 3.15 Comparison of the first two pressure KLMs with different input 
voltage spectrum. 

 
Figure 3.16 shows the macromodel simulation for microbeam deflection when the 

frequency of the input sinusoidal voltage varies from 10 kHz to 2000 kHz.  It is found 

that the system has the similar pull-in dynamics characteristics compared with the 
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system response from the input step voltage when the frequency is larger than 100 

kHz.  Due to this similarity, the pull-in dynamics simulated by macromodel and finite 

difference for the frequency larger than 100 kHz are not plotted in Figure 3.16. 

To further demonstrate the flexibility of the macromodel generated by the above 

ensemble of the input step voltages to simulate the system applied with different input 

voltage spectrum, the macromodel simulation is carried out for an input ramp voltage 

of RtV =  with ramp rate at -1s V 4.0 µ=R  and the microbeam midpoint deflection is 

plotted in Figure 3.17.  It is noted that the macromodel simulation has a very good 

result with error less than 2.1% compared with FDM solutions with 4 ,1 == JI  as 

shown in Figure 3.18.  The results demonstrate again that the macromodel can well 

simulate the system with different input voltage spectra without re-generation of the 

macromodel. 
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Figure 3.16 Comparison of the microbeam pull-in dynamics for a set of input 
sinusoidal voltages of 14 V at different frequency at 10 kHz and 
100 kHz. 
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Figure 3.17 Comparison of the microbeam pull-in dynamics for an input ramp 
voltage -1s V 4.0  , µ== RRtV . 
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Figure 3.18 The error of macromodel simulation with respect to FDM solution 
for an input ramp input voltage -1s V 4.0  , µ== RRtV . 

 
 

3.7.3 TIME INTERVALS AND NUMBER OF THE SNAPSHOTS 

 

Study on the influence of the time interval and the number of snapshots on the 

convergence of the KLMs and the accuracy of the macromodel simulation is carried 

out.  Three ensembles of snapshots obtained from the same ensemble of input two step 
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voltages of 10 V and 16 V are used for study.  The first ensemble consists of 20 

snapshots at the fixed time interval from the moment when each input step voltage is 

applied till the pull-in occurs, the second ensemble is composed of 25 snapshots and 

the third ensemble has 50 snapshots.  It is noted that time interval decreases when 

more snapshots are taken.  KLD is applied to each set of snapshots to generate three 

sets of KLMs and three corresponding macromodels are created through the Galerkin 

procedure by employing each set of the KLMs as basis functions.   
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Figure 3.19 The first two deflection KLMs for different number of snapshots. 
 
Figure 3.19 shows the first and second deflection KLMs obtained from the ensemble 

of 25 snapshots are almost identical to those obtained from the ensemble of 50 

snapshots.  Same observation for the first and second back pressure KLMs along the 

centre of the microbeam is plotted in Figure 3.20.  Figure 3.21 shows the errors of the 

deflection of the midpoint of the microbeam simulated by these three macromodels 

compared with the FDM solutions when the system is applied with an input step 

voltage 10.25 V.  Generally, the error of the dynamic macromodel simulation will 

decrease as the number of snapshots increases from 20 to 25 but the accuracy could 

not be improved significantly when the number of snapshots increases from 25 to 50. 
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Figure 3.20 The first two KLMs along the centre of the microbeam for different 
number of snapshots. 
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Figure 3.21 The error of simulations from macromodel based on three different 
numbers of snapshots with respect to FDM solution for input step 
voltage of 10.25 V. 

 
 

3.7.4 THE EFFECT OF THE LARGE DEFORMATION 

 

The influence of bending induced tension due to large deformation as described by 

Equation (3.46) on dynamic response of the system is investigated.  Two macromodels 

based on the KLMs extracted from two sets of ensembles of snapshots obtained when 
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the system is applied with an ensemble of step voltage of 12 V and 16 V, respectively, 

are created.  The bending induced tension effect is considered in the first ensemble of 

snapshots but neglected in the second ensemble of snapshots.   
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Figure 3.22 Comparison of the first two deflection KLMs with and without 
consideration of bending induced tension (BIT) effect.  

 
The first two deflection KLMs are plotted in Figure 3.22, and the first two back 

pressure KLMs are plotted in Figure 3.23.  Again, it is observed that the mode shape 

difference of the first deflection KLM is negligible and the differences between first 

two back pressure KLMs are also insignificant.  The results of midpoint deflection of 

microbeam in pull-in dynamics simulation when the system is applied with input step 

voltage of 14 V by the two macromodels compared with FDM solutions are plotted in 

Figure 3.24.  The error of macromodel simulation results with respect to the FDM 

results is plotted in Figure 3.25.  It is observed from Figure 3.24 and Figure 3.25 that 

the macromodel using the KLMs obtained from the first set of ensemble of snapshots 

can well represent the system without consideration of bending induced tension, while 

the macromodel using the KLMs obtained from the second ensemble of snapshots can 

also reproduce enough accurate results for the system with consideration of bending 

induced tension.  This demonstrates the flexibility of macromodel for system dynamic 
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simulation when the axial stress in the microbeam is changed.  It is noted from Figure 

3.24 that the pull-in time is 23% longer when the bending induced tension effect is 

considered. 
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Figure 3.23 Comparison of the first two back pressure KLMs with and without 
consideration of bending induced tension (BIT) effect. 
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Figure 3.24 Comparison of macromodel simulations for an input step voltage of 14 V 
with and without consideration of bending induced tension (BIT) effect. 
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Figure 3.25 The error of macromodel simulation with respect to FDM solution 
for an input step voltage of 14 V. 

 
 

3.8 CONCLUSION 

 

The model reduction technique based on KLD to create macromodel for the dynamic 

simulation of the nonlinear dynamics of MEMS systems has been developed in this 

chapter.  The macromodel generated by employing the KLMs extracted from KLD 

procedure as the basis functions in the Galerkin projection has shown its accuracy, 

flexibility and efficiency in the representation of the original system.  Although it 

needs an initial process of 48.9 min by using the FDM to simulate the original 

nonlinear PDEs to obtain the snapshots and KLD procedure to extract the KLMs and 

KLVs, it has been demonstrated that macromodels are very flexible to simulate the 

system.  As for the computation time efficiency, when Silicon Graphics Origin 2000 is 

used, it takes 32.53 min to obtain the pull-in time by using FDM when the input step 

voltage is 10.25 V.  In comparison, it requires only 3.03 min to simulate the pull-in 

dynamics by macromodel with less than 1.2% error.  The effects of the number of 
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snapshots, input voltage spectrum and bending induced tension on the KLMs 

extraction and the accuracy of macromodel simulation have also been investigated.  In 

conclusion, KLD and the Galerkin procedure that employs the KLMs as the basis 

functions can reduce the original nonlinear PDEs to low-dimensional macromodel with 

small number of degrees-of-freedom, and the macromodel can well represent and 

simulate the original systems.  The model reduction technique developed in this 

chapter provides a tool for system designer to design and optimize the MEMS system 

efficiently and effectively. 



CHAPTER 4 

 

MACROMODELS FOR DYNAMIC SIMULATION OF MEMS 

USING NEURAL NETWORK-BASED GENERALIZED HEBBIAN 

ALGORITHM 

 

A neural network-based method of model order reduction that combines the 

generalized Hebbian algorithm (GHA) and Galerkin procedure to perform the dynamic 

simulation and analysis of MEMS systems and devices is presented in this chapter.  

The GHA is an unsupervised neural network model used to perform principal 

component analysis (PCA) of the correlation matrix of the input signals (Sanger, 

1989).  It has been investigated and applied in image coding and texture segmentation 

problems, finding the principal eigenvectors of a correlation matrix in different kinds 

of seismograms, and handling sensor array signal processing in the complex domain 

(Diamantaras and Kung, 1996; Zhang and Ma, 1997; Huang, 1999; Fiori, 2000).  In 

this chapter, the extensive computer results of PCA using the neural network-based 

GHA are used to extract empirical basis functions from an ensemble of numerical or 

experimental data.  The basis can then be employed in the Galerkin procedure to 

convert the original system into a low-dimensional macromodel that can be used to 

carry out dynamic simulations of the original system resulting in dramatic reduction of 

computation time while not losing flexibility and accuracy.  Compared with model 

reduction method based on KLD described in the preceding chapter, the key advantage 

of the present method is that it does not need to compute the input correlation matrix in 

advance (Equation (3.8) or (3.17)).  It needs only to find very few required basis 

functions that can be learned directly from the input data.  This feature spares much 
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computation time, especially when the measured data set is large.  The method is 

evaluated based on the simulation of the pull-in dynamics of a doubly-clamped 

microbeam subjected to different input voltages.  The accuracy, efficiency and the 

flexibility of the proposed method are examined by comparing the simulation results 

with the fully meshed FDM solutions. 

 

4.1 THEORY OF PRINCIPAL COMPONENT ANALYSIS 

 

Principal component analysis (PCA) is a statistical technique and the idea behind PCA 

is quite old.  The earliest descriptions of the technique are given by Pearson (1901) and 

Hotelling (1933).  The purpose of PCA is to identify the dependence structure behind a 

multivariate stochastic observation in order to obtain a compact description of it.  PCA 

can be seen equivalently as either a variance maximization technique or a least-mean-

squares technique.  Through PCA, many variables can be represented by a few 

principal components, so it can be considered as a feature extraction technique.  

Performing PCA on a set of multivariate random data means computing the 

eigenvectors of its correlation matrix corresponding to the largest eigenvalues, and the 

projection of the data over the eigenvectors to obtain a number of principal 

components. 

Let x  denote a −m dimensional random vector with zero mean and q  a 

−m dimensional unit vector onto which the vector x  is to be projected.  This 

projection is defined as the inner product of x  and q  as  

( ) xqqxqxS TT === ,  (4.1)
 
subject to the constraint  
 

( ) 12 == qqq T  (4.2)
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Since the random vector x  has zero mean value, the mean value of the projection S  is 

zero too.  Thus the variance of S  is the same as its mean square value 

[ ] [ ] [ ] qRqqxxEqqxxqESE TTTTT     22 ====σ  (4.3)
 
where [ ]•E  is the statistical expectation operator and R  is the mm×  symmetric 

correlation matrix of the random vector x .   

PCA is to find the unit vector q  so that the variance S  has extremal value subjected to 

the constraint (4.2) 

[ ]

( ) 1  subject to

   Maximize

2

22

==

==

qqq

qRqSE

T

Tσ
 (4.4)

 
Introducing the Lagrangian multiplier λ , the conditional extreme value problem 

becomes 

( ) ( )1 , −−= qqqRqqJ TT λλ  (4.5)
 
Differentiating the above with respect to q  yields 
 

( ) ( )qIR
q
qJ  2, λλ

−=
∂

∂  (4.6)

 
The necessary and sufficient conditions for extrema are for the right hand side of 

Equation (4.6) to be zero.  Hence it implies 

qRq  λ=  (4.7)
 
It reveals that the solution of λ  and the unit vectors q  for the extreme value problem 

are the eigenvalue and the corresponding eigenvector of the correlation matrix R , 

respectively.  The symmetric and positive definite properties of correlation matrix 

ensure the solutions are real, positive eigenvalues and mutual orthonormal 

eigenvectors.  The order of eigenvectors mqqq  ,, , 21 K , which are also known as 
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principal eigenvectors in PCA, can be arranged corresponding to the magnitude of the 

eigenvalues mλλλ >>> K21 .  

According to the spectral theorem, the correlation matrix R  can be expressed in terms 

of its eigenvalues and eigenvectors as  

∑
=

=
m

i

T
iii qqλR

1
 (4.8)

 
Considering Equation (4.3) and the orthonormality condition of eigenvectors, it is 

obvious that variances are equal to eigenvalues 

mjλ jj  ,,2 ,1    ,2 K==σ  (4.9)
 
Hence the first eigenvector 1q  corresponding the the largest eigenvalue 1λ  represents 

most of the system feature, followed by the second eigenvector 2q  and so forth.  The 

principal component ja  is defined as the projection of data vector x  onto the pricipal 

eigenvector iq  as  

mjxqa T
jj  ,,2 ,1    , K==  (4.10)

 
The original data vector x  can then be reconstruced as 
 

∑
=

=
m

j
jj qax

1

 (4.11)

 
The advantage of PCA is that it provides an effective technique for dimensionality 

reduction.  In particular, the number of features needed for effective data 

representation can be reduced by discarding those linear combinations in Equation 

(4.11) that have small variances and retaining those terms that have large variance.  Let 

lλλλ >>> K21  denote the first l  largest eigenvalues of the correlation matrix R , the 

data vector x  can be approximated by truncating the expansion of Equation (4.11) 

after l  terms as 
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mlqax
l

j
jj ≤≈ ∑

=

    , 
1

 (4.12)

 

4.2 GENERALIZED HEBBIAN ALGORITHM 

 

Since the pioneering work of Oja (1982) in which a single linear neuron with a 

Hebbian type adaptation rule for its synaptic weights can evolve into a filter for the 

first principal component of the input distribution, the neural networks-based PCA and 

its extensions have become an important research field both for the interesting 

implications on unsupervised learning theory and fruitful applications to neural 

information processing (Fiori, 2000).  In recent years, several neural network 

architectures and learning rules for performing PCA have been proposed in scientific 

literature.  Among them, the generalized Hebbian algorithm (GHA) presented by 

Sanger (1989) to extract the principal eigenvectors of the correlation matrix from an 

ensemble of signals is well received and will be used in this section. 

The GHA is closely related to classical Hebbian learning algorithms.  Hebbian 

learning rules modify the connection between two units by an amount proportional to 

the product of the activation of those units.  If x  is the activation of the input nodes 

and W  is the synaptic weight matrix, then Wxy =  is the activation at the outputs.  

Hebbian algorithms modify W  by using  

( ) ( ) ( ) ( ) ( )TtxtyttWtW β+=+1  (4.13)
 
where ( )tβ  is a sequence of small step-size parameter, or learning-rate parameter, 

which determines the rate of change of the weights. 

Oja (1982) showed that if the diagonal elements of TWW  was maintained as unity so 

that the norm of each row was one, then a Hebbian learning rule would cause the rows 
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of W  to converge to the principal eigenvectors of the correlation matrix ][ TxxER = , 

and a network learning algorithm was proposed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )twtytxtyttwtw iiiii
21 −+=+ β  (4.14)

 
where iw  was a column of W , and  xwy T

ii = .  Oja showed that Equation (4.14) 

could be approximated under conditions imposed on x and )(tβ  by a differential 

equation 

( ) ( ) ( )[ ] ( )twtRwtwtRwtw ii
T

ii −=)(&  (4.15)
 
Oja then proved that for an arbitrary choice of initial weights, iw  would converge to 

the principal eigenvector 1q  so long as ( ) 00 1 ≠qw T
i  at time zero. 

The Oja algorithm only finds the first eigenvector, whereas the GHA presented by 

Sanger (1989) would find the other eigenvectors, which was effected through 

combining Oja learning rule (4.14) and a Gram-Schmidt orthogonalization process.  

The GHA derived by Sanger is as follows. 

Let the inputs to a single-layer neural network be a −n dimensional column vector x , 

the weights be a nm×  matrix W , and the outputs be a −m dimensional column vector 

Wxy =  where nm < .  The values of x  are generated by a stationary white random 

vector stochastic process with a correlation matrix ][ TxxER = .  Assume x  and y  are 

both time-varying, therefore W  will be time-varying as a result of adaptation through 

the training algorithm. 

The GHA is expressed as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−+=+ ∑

≤ik
kkjijiijij tytwtytxtyttwtw  1 β  (4.16)

 
where ijw  is the element of the weight matrix W  which is the connection strength 

between the th−j  input neuron and the th−i  output neuron ( ijw  is initially assigned 
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random weights), jx  is the th−j  component of the input vector x , iy  is the th−i  

component of the output vector y , and )(tβ  is the learning parameter that decreases 

with time in such way that  

( ) ( )∑
∞

=
∞→

∞==
0

    and    0lim
tt

tt ββ  (4.17)

 
Equation (4.16) can be rewritten in matrix form as 
 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ){ }tWtytytxtyttW TT  LT −=∆ β  (4.18)
 
where the lower triangular operator [ ]•LT  sets all elements above the diagonal of its 

matrix argument to zero, thereby making it ‘lower triangular’.  The second term on the 

GHA of Equation (4.16) is the Hebbian term, and the third term ensures that the 

algorithm learns successive eigenvectors of the correlation matrix of the input vectors 

ordered by decreasing eigenvalues.  Under conditions (4.17), Sanger (1989) proved the 

following 

Theorem 1:  If W  is assigned random weights at time zero, then with probability 1, 

Equation (4.16) will converge, and W  will approach the matrix whose rows are the 

first l  eigenvectors of the input correlation matrix R , ordered by decreasing 

eigenvalues.  

The significance of this theorem is that it is a procedure that guarantees the GHA to 

find the first l  eigenvectors of the correlation matrix R , assuming that the associated 

eigenvalues are distinct.  The implementation network for the GHA possesses the 

following features 

i) No need to compute the correlation matrix R  explicitly in advance.  This is 

because the eigenvectors are derived (learned) directly from the input vector.  It is 

an important feature, particularly if the number of inputs is large such that 

computation and manipulation of R  are not feasible or economical.  For instance, 
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if a network has 4 000 inputs, then R  has 16 million elements, and it may be 

difficult to find the eigenvectors using traditional PCA methods.  However, the 

GHA requires only the computation of the outer products Tyx  and Tyy , so that if 

the number of outputs is small, the computational and storage requirements can be 

correspondingly decreased.  If there are 5 outputs, for example, Tyx  will have 

only 20 000 elements, and Tyy  will have only 25 elements.  The GHA takes 

advantage of this network structure.  Generally, for the problem with large 

number of inputs and required small number of outputs, GHA provides a practical 

and useful procedure for finding the required first few dominant principal 

eigenvectors.  

ii) Implementation with local operation. This feature is favourable for parallel 

computations and parallel hardware.  

iii) Good expandability.  Updating of the th−j  neuron is affected only by those 

neurons with number less than j . Hence, if the first k  principal eigenvectors 

have been obtained, then the learning of the ( ) th1 −+k  neuron will leave the 

preceding k  neuron weight vectors intact. 

In the present model reduction method for dynamic simulation of MEMS device as 

shown in Figure 3.8, GHA is used to obtain the eigenvectors by iteratively training the 

neural network, where the input vector x  is the snapshot of the flexural deflection of 

the deformable microbeam or the back pressure data at one temporal sampling as 

described in the preceding Section 3.5, and the rows of the weight matrix W  are the 

eigenvectors which need to be found by the algorithm.  It should be pointed out that, 

from numerous experience, the choice of the learning parameter )(tβ  in Equation 

(4.16) has a profound impact in the convergence speed of the GHA.  ( )tβ  is chosen 
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empirically at a value fixed between 0.1 and 0.01 which provides good convergence as 

shown in Sanger (1989).  However, the fixed value of ( )tβ  in the present study of the 

above-mentioned MEMS device does not ensure good convergence.  An adaptive 

choice of ( )tβ  described in Diamantaras and Kung (1996) is adopted in the present 

study, in which ( )tβ  is calculated iteratively by  

( ) ( )
( ) ( )1

1
2 −+

−
=

tty
tt
βγ

ββ  (4.19)

 
where 10 ≤< γ   is a factor chosen by the user.  Simulation results show that good 

convergence can be obtained if γ  is chosen to be closer to one.  One problem to be 

studied further in the learning algorithm is how to balance the convergence speed and 

the convergence effectiveness. 

 

4.3 MACROMODEL GENERATION 

 

Similar to the procedure described in Section 3.5, for the MEMS system as shown in 

Figure 3.8, the pull-in dynamics of the microbeam at different time steps are simulated 

using FDM for an ensemble of applied input step voltages to obtain the ensembles of 

microbeam deflection ( )sin txw ,  and the back air pressure ( )sjin tyxp ,, .  These 

ensembles of deflection and back pressure are then used as snapshots, i.e., the 

ensemble of input signals for the GHA network to generate the eigenvectors of the 

input correlation matrix.  After the eigenvectors are obtained, the Galerkin procedure 

which employs these eigenvectors as basis functions is applied to the original 

nonlinear governing PDEs (3.44) and (3.45) to convert them to a macromodel with 

smaller number of ODEs.  Considering Equation (4.12) and denoting the eigenvectors 

(The rows of weight matrix W ) with respect to the deflection as ( )xq w
i  and those with 
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respect to the back pressure as ( )yxq p
j , , the deflection ( )txw ,  and pressure ( )tyxp ,,  

can be approximated as a linear combination of the eigenvectors as follows 

 

( ) ( ) ( )∑
=

+=
I

i

w
i

w
i xqtawtxw

1
0   ,  (4.20)

 

( ) ( ) ( )∑
=

+=
J

j

p
j

p
ja yxqtaptyxp

1

,  ,,  (4.21)

 
Substituting Equations (4.20) and (4.21) into governing equations (3.44) and (3.45) 

and applying the Galerkin procedure, a macromodel in terms of a set of nonlinear 

ODEs in analogy to Equations (3.54) and (3.55) is derived  

( )IjfaK
dt

ad
M

I

i
j

w
iji

w
j

j ,,2 ,1      ,0
1

2

2

L==++∑
=

 (4.22)

 

( )JjcaS
dt

da
H

J

i

J

i
j

p
iji

p
i

ji ,,2 ,1     ,0 
1 1

L==++∑ ∑
= =

 (4.23)

 
where the coefficients w

ia  and p
ia  are to be determined and the elements in the 

matrices jM , jiK , jiH  and jiS , and vectors jc  and if  are analogoue to Equations 

(3.56)-(3.61) and expressed as follows 

( )   
 

2 

∫= L

w
jj dxqM ρ  (4.24)
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12 
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=
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ja

n
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K
c µ  (4.29)

 
The ODEs (4.22) and (4.23) can be integrated numerically in time for the coefficients 

w
ia  and p

ia .  Substituting them into Equations (4.20) and (4.21) yield the system 

dynamical response when subjected to an input voltage. 

 

4.3.1 NUMERICAL RESULTS 

 

In order to demonstrate the efficiency and accuracy of the present model reduction 

technique using the GHA network, simulated experiments on the MEMS device shown 

in Figure 3.8 are implemented.  The physical features and dimension of the microbeam 

are listed in Table 3.1. 

 
 

Figure 4.1 The first two deflection basis functions obtained by KLD and GHA. 
 
Following the procedure described in Section 3.5, the snapshots are obtained from the 

solutions of governing equations of (3.44) and (3.45) by using FDM with mesh size of 

2040×  for an ensemble of two different step voltages of 101 =V  V and  161 =V  V.  

Each of the 25 snapshots is taken at the fixed time interval from the moment when 
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each step voltage is applied till pull-in.  These snapshots are then used as the inputs of 

the GHA neural network to generate the principal eigenvectors.  In order to 

demonstrate the validity and suitability of the eigenvectors obtained using GHA as the 

proper shape functions, the eigenvectors given by GHA and the KLMs obtained by 

KLD are examined and compared.  The first two eigenvectors corresponding to the 

deflection are plotted in Figure 4.1.   

 
 

Figure 4.2 The first back pressure basis function obtained by KLD and GHA. 
 
Figure 4.2 and Figure 4.3 show the first and second eigenvectors for back pressure, 

respectively, where KLD-1 and KLD-2 stand for the first and second KLMs and GHA-

1 and GHA-2 denote the first and second principal eigenvectors obtained by GHA.  It 

is observed that the eigenvectors extracted from GHA are identical to KLMs.  The 

higher-order eigenvectors also possess such agreements.  The relationship between the 

discrete KLD and PCA will be addressed in Chapter 5 to understand this similarity.  

Macromodel is created by the Galerkin procedure using these principal eigenvectors as 

the basis functions to represent and simulate the pull-in dynamics of the original 

system.   
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Figure 4.3 The second back pressure basis function obtained by KLD and GHA. 
 
It has been shown in the Tables 3.2 and 3.3 that for the deflection simulation the first 

eigenvector ( )xq w
1  can capture 99.99% of the system feature while it takes at least four 

first eigenvectors for the back pressure ( )yxq p
i ,  to capture the same level of feature 

accuracy in the back pressure simulation.  For this reason, only one deflection basis 

vector but four back pressure basis vectors are chosen in the macromodel simulation to 

ensure the original system can be properly represented. 
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Figure 4.4 Comparison of the microbeam pull-in dynamics for an input 
step voltage of 10.25 V. 

 



CHAPTER 4  85 
 

Figure 4.4 shows a comparison of the deflection of the midpoint of the microbeam 

between the FDM solutions of the original nonlinear PDEs (3.44) and (3.45) and the 

macromodel (MM) approximation when the system is applied with an input step 

voltage of 10.25 V.  Figure 4.5 shows that the error defined by Equation (3.65) is very 

small ( )%2.1≤  when 1=I  and 4=J  are selected in macromodel.  
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Figure 4.5 The error of macromodel simulation with respect to FDM 
solution for an input step voltage of 10.25 V. 
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Figure 4.6 Comparison of the microbeam pull-in dynamics for input step 
voltages of 20 V and 30 V. 
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In order to examine the flexibility of the macromodel, simulations with voltages that 

are far from the voltages used to create the basis functions are performed. The input 

step voltages of 20 V and 30 V are used to simulate the pull-in dynamics by the same 

macromodel.  It shows that good accuracy can also be obtained when the input voltage 

are changed without re-generating the macromodel.  Figure 4.6 and Figure 4.7 show 

that the macromodel simulations are accurate and the errors are small, less than 2.5% 

and 3.7% with respect to full mode FDM solutions, respectively.  
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Figure 4.7 The errors of macromodel simulation with respect to FDM 
solution for input step voltages of 20V and 30 V. 

 
It is noted that the macromodel generated by the above ensemble of two different input 

step voltages can also be used to simulate the system when the input voltage wave 

spectrum is changed.  Similar to the numerical experiments carried out in Chapter 3, 

Figure 4.8 shows the macromodel simulation for an input sinusoidal voltage with 

magnitude of 14 volt at a frequency of 10kHz.  Figure 4.9 plots the error of the 

macromodel simulation compared with the FDM solution.  It shows that the 

macromodel simulation can capture the system dynamics accurately with error less 

than 1.7% without re-generating the macromodel. 
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Figure 4.8 Comparison of the microbeam pull-in dynamics for an input 
sinusoidal voltage of 14 at a frequency of 10 kHz. 
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Figure 4.9 The error of macromodel simulation with respect to FDM solution 
for an input sinusoidal voltage of 14 V at a frequency of 10 kHz. 

 
Figure 4.10 shows the simulation of an input ramp voltage of RtV =  with ramp rate of 

-1sV 4.0 µ=R .  It is noted from Figure 4.11 that the simulation has a very good result 

with error less than 2.1% with respect to FDM solution.  The results demonstrate again 

that the same macromodel can simulate the system with different input voltage spectra. 
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Figure 4.10 Comparison of the microbeam pull-in dynamics for an input 
ramp voltage RtV = , -1sV 4.0 µ=R . 
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Figure 4.11 The error of macromodel simulation with respect to FDM 
solution for an input ramp voltage RtV = , -1sV 4.0 µ=R . 

 

 

4.3.2 CONCLUSION 

 

A model reduction approach is presented for the simulation of the nonlinear dynamics 

of MEMS based on the neural network-based GHA.  The macromodel generated by 
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employing the eigenvectors extracted from the GHA network as basis functions in the 

Galerkin procedure has shown its flexibility and efficiency in the representation and 

simulation of the original nonlinear PDEs.  The potential applicability of the proposed 

neural network method on other MEMS structures is worth mentioning.  In general, 

this methodology can be used to simulate the dynamic behaviours of MEMS, however, 

for different MEMS devices or systems, the basis functions would be different.  The 

method is useful for designing and simulating MEMS devices and systems, especially 

if different types of coupled devices are involved in the system.  In conclusion, it has 

demonstrated that the proposed method reduces original nonlinear PDEs to a 

macromodel with smaller number of degrees-of-freedom, and the macromodel can 

represent and simulate the original systems faithfully.  Besides these, this method does 

not need to compute the input correlation matrix explicitly, it needs only to find very 

few required basis functions compared with other existing model reduction methods 

for dynamic simulation of MEMS.  This method has the computational advantages 

when the measured data as input signals are large.  For the input vector with dimension 

n , the existing traditional methods use memory space of order 2n  in computation 

because of the correlation matrix, but the neural network based on the GHA learning 

rule only uses a memory space of order n  to find the eigenvectors.  Successful 

simulation results show that the present model reduction technique provides another 

feasible way for system designers to design and optimize MEMS systems and devices 

efficiently and effectively. 
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4.4 ROBUST GENERALIZED HEBBIAN ALGORITHM 

 

Robustness theory is concerned about solving problems subject to model perturbation 

or added noise.  A robust algorithm could not only perform well under the assumed 

model, but also produce a satisfactory result when the assumed model is deviated.  

Compared with the standard neural network-based PCA model, the robust neural 

network-based PCA model has a number of numerical advantages such as stability, 

robustness to noise-injected data, and faster convergence of iterations in the network 

training stages.  The ability of processing noisy data ensures that the robust neural 

network-based PCA method as an ideal choice in the model reduction of MEMS in 

practical applications.  The robust neural network-based PCA algorithm proposed by 

Karhunen and Joutsensalo (1995) to extract the principal eigenvectors of the 

correlation matrix from an ensemble of signals is applied in this section.  The 

algorithm is derived from the representation error minimization, which is given by 
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where ( )iwk  is the weight vector of the th−i  neuron, ( )iek  is the instantaneous 

representation error vector, ( )iyk  is the output of the th−i  neuron, kβ  is the gain 

parameter, M  is the number of the neurons in the output layer of the network, kx  is 

the input data vector, and )(ξf  is a nonlinear function.  In general, )(ξf  needs to 

satisfy to the following requirements  

i) )(ξf  is a monotonically growing function of ξ .   
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ii) ( ) 0≤ξf  for 0<ξ  and ( ) 0≥ξf  for 0>ξ , i.e., it is required that the growing of 

( )ξf  should be less than the linear growing for stability reasons.  

The upper bound of the summation index )(iI  represents the two different cases of the 

network models.  ( ) MiI =  where Mi ,,2 ,1 K= , for the standard symmetric case; 

( ) iiI =  for the standard hierarchic case.  The optimal weight vector of the th−i  

neuron defines the robust counterpart of the th−i  principal eigenvector.  In the 

standard hierarchic case and linear special case ( ) ξξ =f , Equation (4.30) coincides 

exactly with standard GHA of Equation (4.16) so that it defines a generalization of the 

GHA algorithm.  Considering that the algorithm using Equation (4.30) possesses the 

robustness for noise-injected data, it is called the robust GHA (RGHA). 

In the present model reduction algorithm, Equation (4.30) is used to obtain the 

principal eigenvectors of the correlation matrix of the input signals by iteratively train 

the neural network.  The input vector kx  is the ensemble of snapshots described in the 

preceding sections and the weight vectors ( )iwk  is the eigenvector sought for.  It 

should be pointed out that the choice of the gain parameter kβ  has a profound impact 

in the convergence speed of the RGHA.  In general, kβ  should decrease with time as 

described in Equation (4.17).  For the purpose of comparing the simulation results 

from this section with those obtained using the GHA model, the adaptive choice for 

kβ  of Equation (4.19) is adopted in the present RGHA algorithm, which is expressed 

as 

1
2

1

−

−

+
=

kk

k
k y βγ
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4.4.1 MACROMODEL GENERATION 

 

Following the same procedure as described in Section 4.3, for the system shown in 

Figure 3.8, the pull-in dynamics of the microbeam at a series of different time steps are 

simulated using FDM for an ensemble of applied step voltage to obtain the microbeam 

deflection ),( sin txw  and the back air pressure ),,( sjin tyxp  ensembles. These 

deflection and back pressure ensembles are then used as snapshots, i.e., the ensemble 

of signals for the RGHA network to generate the principal eigenvectors from the 

correlation matrix of the input signals.  The Galerkin procedure which employs these 

eigenvectors as basis functions is applied to the governing equations (3 .44) and (3.45) 

to convert them to a macromodel in the same form of Equations (4.22) and (4.23). 

 

4.4.2 NUMERICAL RESULTS 

 

The device shown in Figure 3.8 with its properties and dimension listed in Table 3.1 is 

used to demonstrate the efficiency and accuracy of the present model reduction 

technique based on the RGHA neural network.  It has also been demonstrated that the 

macromodel is flexible and efficient to simulate the system without re-generation of 

the macromodel when the input voltage wave spectrum is changed and the input 

voltages are far from the voltages which are used to create the basis functions.  

However, all these results are obtained based on the assumption that the data used to 

generate the eigenvectors have not been corrupted by noise.  Currently, little attention 

has been paid to this problem in the MEMS model reduction literature, although it is 

essentially important for real applications.  In practice, real data often contain some 

noise, and usually it is not easy to separate it from the signal sought.  One way to 
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examine the influence of the noise on the data processing techniques based on the 

neural network-based PCA methods is to analyse the effect of the noise on the 

principal eigenvectors obtained using the GHA and RGHA models, respectively.  

Figure 4.12 shows the comparisons of the first two deflection eigenvectors, where 

GHA-1 and GHA-2 represent the first and second deflection eigenvectors obtained by 

using the GHA model based on the noise-free input data, and GHA-N1 and GHA-N2 

represent the first and second deflection eigenvectors obtained using the GHA model 

based on the noise-injected input data with noise level of 0.5%.  The eigenvector mode 

shape deterioration caused by the noise signals can be observed from the figure.  For 

example, the deviation from the true values and the destruction of the symmetry of the 

mode shape in the second eigenvector obtained based on the noise-injected data are 

obvious.  Since the PCA algorithms have to process information from real world, they 

should have the ability to cope with the noisy data or have the robustness when noise 

exists.  How to decrease the influence of the noise on feature extraction by choosing a 

suitable data processing technique is an important problem. 
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Figure 4.12 The first two eigenvectors obtained by GHA for noise-free 
and noise-injected snapshots. 
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The robustness of the RGHA approach to noise corrupted data is examined in the 

following.  Comparative studies are made between the GHA and RGHA techniques.  

The noise is added to the snapshots obtained using the FDM where the noise array 

with uniform distribution is scaled in the range of [ ]1 ,1− .  The noise scale is controlled 

within 0 to the magnitude of 310−  in numerical experiments so that the noise-injected 

displacement data do not cause serious distortion to the original data.  

In order to compare the results obtained from the noise-free data and the noise-injected 

data, the following square error function is defined as a criterion for comparison 
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where l  is the number of the components of the eigenvector, iN  is the component of 

the eigenvector obtained using the neural network method based on noise-injected 

snapshots, iS  is the component of the eigenvector obtained using the GHA based on 

noise-free snapshots, and jN  and jS  are two selected typical values from the above 

iN  and iS  ( )li ,,2 ,1 K= , respectively.  In the above definition, it is considered that the 

eigenvectors obtained using the two different methods may have different signs. 

The comparative experiments are implemented in two different ways as shown in the 

following sections. 

i) Comparisons using different nonlinear functions 

In order to examine the effectiveness of applying nonlinear functions in Equation 

(4.30) to the noise-injected data, besides the sigmoid function which is used frequently 

in a number of neural network models, several other nonlinear functions listed in Luo 
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and Unbehauen (1997) are also used in the comparative experiments. The nonlinear 

functions employed in this section are as follows 

( ) αξ
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( ) ( )ξξ sgn5 =f  (4.37)

 
( ) ( )ξξ 51log6 +=f  (4.38)

 
where ( )ξ1f  is the sigmoid function, α  is a real coefficient, β  is a parameter with its 

value taken as 1 in the simulations and ( )ξsgn  is the signum function, that is 
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The square errors defined in Equation (4.32) for the first eigenvector obtained using 

the GHA and the RGHA based on different nonlinear functions, are calculated 

according to different noise levels of the noise-injected deflection snapshots.  

Considering the randomness of the noise-injected data, each nonlinear function and 

each noise level are calculated ten times.  The comparisons of the square errors in 

statistic mean value obtained using the GHA against those using RGHA employing 

different nonlinear functions versus noise level are shown in Table 4.1. 
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Table 4.1  Comparison of square errors using GHA with those using RGHA versus 

noise (%). 
 
Noise 
(%) 

GHA RGHA-1 RGHA-2 RGHA-3 RGHA-4 RGHA-5 RGHA-6

0.00 3.06E-14 6.63E-15 3.06E-14 3.06E-14 1.50E-14 1.50E-14 1.17E-14
0.05 8.41E-09 8.38E-09 8.00E-09 8.36E-09 9.70E-09 9.70E-09 8.51E-09
0.10 3.11E-08 3.73E-08 3.26E-08 3.83E-08 3.78E-08 3.78E-08 3.41E-08
0.15 7.34E-08 7.03E-08 6.47E-08 8.23E-08 8.60E-08 8.60E-08 9.02E-08
0.20 1.41E-07 1.39E-07 1.51E-07 1.34E-07 1.38E-07 1.38E-07 1.37E-07
0.25 2.42E-07 2.18E-07 2.24E-07 1.93E-07 2.32E-07 2.32E-07 2.32E-07
0.30 3.25E-07 3.11E-07 3.19E-07 3.67E-07 3.61E-07 3.61E-07 3.61E-07
0.35 4.63E-07 4.28E-07 4.31E-07 5.04E-07 5.06E-07 5.06E-07 4.81E-07
0.40 5.46E-07 5.35E-07 5.64E-07 5.51E-07 6.44E-07 6.44E-07 6.71E-07
0.45 7.01E-07 6.46E-07 7.40E-07 7.01E-07 8.28E-07 8.28E-07 6.48E-07
0.50 8.70E-07 8.56E-07 9.22E-07 1.04E-06 1.00E-06 1.00E-06 9.13E-07

 
In this Table RGHA- i  represents the nonlinear function ( ) ( )6,,2 ,1  ,• K=if  of 

Equations (4.33)-(4.38) used in the RGHA model.  In the simulations, 25 000 iteration 

steps are performed in the training of the GHA and RGHA neural network and the 

coefficient α  in the sigmoid function is taken as 1.5.  The comparative experiments 

show that the same results are obtained using the GHA and RGHA models based on 

the noise-free data, which are not listed in the table.  However, the results for noise 

corrupted data are different.  From the table it can be seen that the results based on 

RGHA employing sigmoid function are better than those using GHA; whereas the 

results using RGHA employing other nonlinear functions are not better and sometimes 

even worse than those using GHA.  From these simulation results, it is shows that 

RGHA approach does not possess the robustness to noise for all kinds of nonlinear 

functions in Equation (4.30), but the RGHA algorithm using the sigmoid function has 

the ability of decreasing the influence of the injected noise.        

ii) Comparisons using sigmoid function 

Because of the robustness of the RGHA using the sigmoid function to the injected 

noise, only the sigmoid function is then used in the RGHA model in the following 
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comparative experiments.  The effectiveness of using the sigmoid function to the noisy 

data is firstly examined.  Numerical experiments for the MEMS model reduction using 

the GHA neural network method have shown that the steps of training to the network 

have significant influence to the accuracy of the results.  Simulations on the RGHA 

network using sigmoid function show that the RGHA model is superior to the GHA 

model in dealing with the noisy data when the learning steps are changed.  Figure 4.13 

shows the comparison of the errors defined in Equation (4.32) multiplied by ∑ =

l

k kS 

1 
2  

where the errors are the statistical mean values from ten times calculations for each 

noise level.  The coefficient of the sigmoid function is taken as 1.5 and the number of 

learning steps is 25 000.  From a number of numerical simulations it reveals that the 

RGHA method has relative robust to noisy data when compared with the GHA model 

after the noise level is larger than 0.25%.  The training convergence examined for the 

GHA and RGHA models to different noise level shows that the RGHA approach is 

superior to the GHA in robustness.  
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Figure 4.13 Comparison of errors using GHA and RGHA for sigmoid function. 
 
Figure 4.14-Figure 4.20 show the errors defined by Equation (4.32) multiplied by 

∑ =

l

k kS 

1 
2  versus the learning steps of the GHA and RGHA used to extract the first 
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deflection eigenvector from the noise-injected snapshots with noise level of 0.3%.  The 

segmented plotting and the local enlargement of the figures enable one to observe 

clearly the change of the errors versus the learning steps.  From these figures, it is clear 

that the speed of convergence of the RGHA is obviously superior to that of the GHA.  

This feature is more prominent during the initial stages of the training.  For example, 

the square error reaches the order of 610−  when 300 iteration steps are completed using 

the RGHA, whereas it needs 1 600 iteration steps for the GHA to reach the same order 

in square error.  It shows that for the same accuracy of convergence, the RGHA needs 

fewer iteration steps than the GHA.  Therefore, the RGHA possesses the feature of fast 

convergence.  From the simulations, it can also be seen that in the middle and later 

learning stages, the error curve of the GHA fluctuates, whereas the error curve of the 

RGHA are relatively smooth.  It shows that the RGHA model is superior in the 

stability of convergence compared to the GHA model.   
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Figure 4.14 Comparison of errors using GHA and RGHA during learning 
steps between 0–100. 

 



CHAPTER 4  99 
 

                     

-1

1

3

5

7

9

100 280 460 640 820 1000
Learning step

Er
ro

r

GHA
RGHA

 
 

Figure 4.15 Comparison of errors using GHA and RGHA during learning 
steps between 100–1 000. 
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Figure 4.16 Comparison of errors using GHA and RGHA during learning 
steps between 1 000–2 000. 
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Figure 4.17 Comparison of errors using GHA and RGHA during learning 
steps between 2 000–3 000. 
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Figure 4.18 Comparison of errors using GHA and RGHA during learning 
steps between 3 000–5 000. 
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Figure 4.19 Comparison of errors using GHA and RGHA during learning 
steps between 5 000–10 000. 
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Figure 4.20 Comparison of errors using GHA and RGHA during learning 
steps between 10 000–25 000. 

 
In order to demonstrate the flexibility and efficiency of the macromodel based on 

RGHA in the representation and simulation of the original nonlinear PDEs, a number 

of simulations by macromodel generated by RGHA to the noise-injected data are 

performed.  One deflection eigenvector and four back pressure eigenvectors are 

selected in the macromodel.  Figure 4.21 shows a comparison of the deflection of the 

midpoint of the microbeam between the FDM solution of the original nonlinear PDEs 

and the macromodel approximation when a step voltage of 10.25 V is applied to the 
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system with noise level ranging from 0 to 0.3%.  Numerical data of deflection 

simulated by FDM is considered as noise-free signal snapshots, RGHA is used to 

extract the principal eigenvectors from the noise-injected snapshots.  Figure 4.22 

shows that the mean square error of the macromodel simulation is small compared 

with the FDM solution when noise level is assumed to be at 0.3%, here the mean 

square error between the results using the macromodel and that using the FDM is 

defined as 

( ) ( )[ ]∑
=

−=
m

i
icic txwtxw

m 1

2
FDMMM ,,1MSE  (4.40)

 
where cx  denotes the midpoint of the microbeam, it  is the sampled time instant, MMw  

is the simulation result from macromodel, FDMw  is the FDM solution of the original 

nonlinear PDEs (3.44) and (3.45), and m  is the number of the sampled time series.  
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Figure 4.21 Comparison of the microbeam pull-in dynamics for an input 
step voltage of 10.25 V. 

 
Figure 4.23 plots the simulation by the same macromodel for an input sinusoidal 

voltage with magnitude of 14 V at frequency of 10 kHz compared with FDM solution 

and Figure 4.24 shows the mean square error of macromodel simulation result with 

respect to the FDM solution.  It is shown in the figures that good simulation accuracy 
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can still be given by the same macromodel.  From both Figure 4.22 and Figure 4.24, it 

is noted that the MSE increases noticeably after the noise level exceeds 0.1%, 

however, good results can still be obtained when the noise level is up to 0.3%.  

    

0.0E+00

4.0E-04

8.0E-04

1.2E-03

1.6E-03

0.0000% 0.0001% 0.0010% 0.0100% 0.1000% 0.3000%
Noise level 

M
SE

 
 

Figure 4.22 The mean square error of macromodel simulation with respect 
to FDM solution for an input step voltage of 10.25 V. 
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Figure 4.23 Comparison of the microbeam pull-in dynamics for an input 
sinusoidal voltage of 14 V at a frequency of 10 kHz. 
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Figure 4.24 The mean square error of macromodel simulation with respect 
to FDM solution for an input sinusoidal voltage of 14 V at a 
frequency of 10 kHz. 

 

 

4.4.3 CONCLUSION 

 

The applications of a robust PCA neural network model, RGHA, as a technique for 

model order reduction is developed.  The macromodel generated by using the principal 

eigenvectors extracted from the RGHA neural network, when noise is presented in the 

input signals, as basis functions in the Galerkin procedure has shown its flexibility and 

efficiency in the representation and simulation of the original nonlinear PDEs.  

Comparative numerical experiments show that the proposed RGHA neural network 

model using the sigmoid function has a number of numerical advantages compared 

with the GHA model in the model stability and robustness when dealing with noise-

injected data and the fast convergence of iterations in the network training stages.  The 

simulation results show that the model reduction technique based on RGHA provides 

another feasible tool for system designers to design and optimize MEMS accurately 

and effectively. 



CHAPTER 5 

 

RELATIONSHIP BETWEEN KARHUNEN-LOÈVE 

DECOMPOSITION, PRINCIPAL COMPONENT ANALYSIS AND 

SIGULAR VALUE DECOPOSITION 

 

The applications of Karhunen-Loève decomposition (KLD), principal component 

analysis (PCA), and singular value decomposition (SVD) in science and engineering 

fields for the purpose of system features extraction and model order reduction are 

getting popular.  In general, these three mathematical techniques can be categorized as 

the method of the proper orthogonal decomposition (POD).  There is, however, no 

clear description of the relationship among these three techniques in the literature to 

date other than vaguely regarding the POD either as a method that is equivalent to 

KLD, or a method that includes KLD, PCA and SVD.  The former interpretation 

appears in many engineering literatures while the later is more general and accepted as 

the interpretation of the POD in this thesis.  This chapter is to give a summary of the 

POD method and to show the relationship among KLD, PCA and SVD techniques for 

discrete random vectors.  Firstly, the derivation and performance of KLD, PCA and 

SVD are summarized, the equivalence among them is discussed through the theoretical 

comparison among these three techniques.  Secondly, the equivalence in matrices for 

processing, the objective functions for finding the optimal basis vectors and the 

expression of mean square errors is described.  Finally the asymptotic connections of 

these three techniques are derived. 
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5.1 THREE PROPER ORTHOGONAL DECOMPOSITION METHODS  

 

The POD is developed by several researchers.  Holmes et al. (1996) traces the idea of 

the POD back to the independent investigations by Kosambi (1943), Loève (1955), 

Karhunen (1946), Pougachev (1953) and Obukhov (1954).  From the physical 

applications point of view, only the discrete version of the POD is investigated in this 

chapter. 

The main idea of the POD is to find a set of ordered orthonormal basis vectors in a 

subspace (without loss of generality, denoting the subspace as mR ) where a random 

vector takes its values, so that the samples in the sample space can be expressed 

optimally using the selected l  basis vectors.  Selection is normally based on the 

relative importance of the basis vectors.  The mean square error can be used as a 

measure for the optimal problem, i.e. 

[ ] [ ]22 )(~ )( lxxElxxE −≤−  (5.1) 

 
where [ ]•E  is the statistical expectation operator, ( )lx  is the approximate expression of 

a random vector x  using the l  basis vectors of the undetermined set of orthonormal 

basis vectors, and ( )lx~  is the approximate expression of  x  using  arbitrary l  basis 

vectors in mR . 

Assuming that mRx∈  is a random vector and { }m
ii 1=φ  is a set of arbitrary orthonormal 

basis vectors, x  can then be expressed in terms of iφ  as  

 yΦyx
m

i
ii  

1
== ∑

=

φ  (5.2) 

 
where 
 

( )mixy T
ii ,,2 ,1    , K== φ  (5.3) 
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( )Tmyyyy ,, , 21 K=  (5.4) 
 

( )mΦ φφφ ,, , 21 K=  (5.5) 
 
The objective of the POD is to find a set of basis vectors that satisfies the following 

extreme value problem 

( ) ( )[ ]

mji

lxxEl

ijj
T
i

i

,,2,1,    ,   subject to

 min 22

K==

−=

δφφ

ε
φ

 (5.6) 

 
where ( ) ( )mlylx l

i ii ≤= ∑ =
  ,

1
φ .  In order to obtain the same form of expressions for 

the mean square errors using the three different POD methods, the centralization on the 

sample data is preformed, i.e., the expectation of the random vector x  is zero.  

The three POD methods are introduced in the following three sections, respectively. 

 

5.2 PRINCIPAL COMPONENT ANALYSIS 

 

The brief description of PCA has been given in the Section 4.1.  There exist different 

versions on the description of PCA in the literatures (Jolliffe 1986; Dunteman, 1989; 

Diamantaras and Kung, 1996).  In order to have the same approaches to describe the 

three POD methods in this chapter, the theory of PCA is re-visited here and given as 

follows.  

Supposing that mRx∈  is a random vector, and Ryyy m ∈,, , 21 K  are the 1st, 2nd,…, 

th−m principal components accordingly, according to the principle of PCA, the first 

principal component 1y  is defined as a linear combination of each element of the 

original random vectors 

 xxy T
m

i
ii 1

1
11 αα == ∑

=

 (5.7) 



CHAPTER 5  108 
 

 
where ( )Tm121111 ,,, αααα K=  is a constant vector.  The variance of 1y  is given as  
 

( ) [ ]( )[ ] [ ]( ) [ ]( )[ ]
[ ]( ) [ ]( )[ ] 11

1111
2

111
2

          

      Var
1

αα

αααασ
TT

TTTTT
y

xExxExE

xExxExEyEyEy

−−=

−−=−==
 (5.8) 

 
A mm×  covariance, or correlation matrix xR  corresponding to the random vector x  is 

defined as 

[ ]( ) [ ]( )[ ]T
x xExxExER     −−=  (5.9) 

 
where [ ]xE  is the expectation of x .  From the knowledge of linear algebra, mm

x RR ×∈  

is a semi-definite matrix (Murdoch, 1970).  Let  

11
0
1 ααα =  (5.10) 

 
Thus 
 

0
1

0
1

2
1

2
1

ααασ x
T

y R=  (5.11) 
 
It is apparent that the maximum of 2

1yσ  will not be achieved for a finite 1α , so a 

normalization constraint needs to be imposed and the most convenient constraint is 

111 =αα T .  Hence, the problem of finding the first principal component is transformed 

to a conditional extreme value problem 

1      subject to

    max

11

11
2

1
1

=

=

αα

αασ
α

T

x
T

y R

 (5.12) 

 
Introducing the Lagrangian multiplier 1λ , the corresponding functional for this 

constrained extreme problem becomes 

 ( ) ( )1, 1111111 −+= ααλααλα T
x

T RL  (5.13) 
 
Differentiating the above functional with respect to 1α  yields 
 



CHAPTER 5  109 
 

( ) ( ) 11
1

11  2
,

αλ
α
λα

IR
L

x −=
∂

∂  (5.14) 

 
The necessary condition for extreme is to let the right hand side of the above equation 

equal to zero.  Thus the following is obtained 

111 αλα =xR  (5.15) 
 
It is noted that Equation (5.15) is a matrix eigenvalue problem.  Thus the solutions of 

1λ  and 1α  of the extreme value problem are the eigenvalue and the corresponding 

eigenvector of the covariance matrix xR , respectively.  Since 111
2
1

λαασ == x
T

y R , 1λ  

must be as large as possible to maximize 2
1yσ ,  it is selected as the largest eigenvalue 

of xR .  

Similarly, the second principal component is expressed by the following linear 

combination 

xxy T
m

i
ii 2

1
22 αα == ∑

=

 (5.16) 

 
where ( )Tm222122 ,,, αααα K= .  The variance of 2y  is given as 
 

( ) [ ]( )[ ] [ ]( ) [ ]( )

[ ]( ) [ ]( )[ ] 22

2222
2

222
2

          

      Var
2

αα

αααασ

TT

T
TTTT

y

xExxExE

xExxExEyEyEy

−−=

⎥⎦
⎤

⎢⎣
⎡ −−=−==

 (5.17) 

 
Again a normalization constraint 122 =αα T  is necessary for a unique 2α  which enables 

the maximum 2
2yσ  to be attained.   

The second principal component 2y  must be uncorrelated with the first principal 

component 1y , thus 

( ) [ ]( ) [ ]( )[ ] 0   ,Cov 21221121 ==−−= αααααα x
TTTTTT RxExxExEyy  (5.18) 
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Using the above equation and the symmetry of xR  gives 
 

012 =αα x
T R  (5.19) 

 
Since 1α  is an eigenvector of xR  
 

0121 =ααλ T  (5.20) 
 
If 01 =λ , because of the fact that 021 ≥≥≥≥ mλλλ K , therefore 

021 ==== mλλλ K , i.e., all the eigenvalues are the same.  As xR  is a real symmetry 

matrix, there exists an orthogonal matrix P mmR ×∈  (Murdoch, 1970) such that 

mm

m

x
T PRP ×=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

= 0

000
0
000
000
000

3

2

1

λ

λ
λ

λ

L

OMMM

L

L

L

 (5.21) 

 
Premultiplying the above equation by P  and postmultiplying the result by TP  gives  
 

mmxR ×= 0  (5.22) 
 
Thus 
 

( ) ( )mjixx ji ,,2 ,1,    ,0,Cov K==  (5.23) 
 
and 
  

( ) ( ) [ ]( )[ ] 0 Var,Cov 2 =−== iiiii xExExxx  (5.24) 
 
The above equation means that the value of each random variable ( )mixi ,,2 ,1  , K=  is 

centralized at its expectation, so it can be considered as a constant but not a random 

variable. The values of ( )mixi ,,2 ,1  , K=  can be replaced completely by their 

expectations.  
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If 01 >λ , then 012 =αα T , i.e., 2α  is orthogonal to 1α .  Thus, the problem of finding 

the second component can be transformed into the following constrained extreme 

value problem 

0    and    1     subject to

  max

2122

22
2

2
2

==

=

αααα

αασ
α

TT

x
T

y R

 (5.25) 

 
To solve the above problem, Lagrangian multipliers 2λ  and u  are introduced and the 

Lagrangian functional is written as  

 ( ) ( ) 122222222 1,, ααααλααλα TT
x

T uRuL +−+=  (5.26) 
 
Differentiating the functional with respect to 2α  gives  
 

( ) ( ) 12222
2

 2,, ααλλα
α

uIRuL x +−=
∂
∂  (5.27) 

 
The necessary condition for the extrema is to let the right side of the above equation be 

equal to zero 

( ) 02 122 =+− ααλ uIRx  (5.28) 
 
Premultiplying both sides of Equation (5.28) by T

1α  gives 
 

( ) 02 221 =+− uIRx
T αλα  (5.29) 

 
or 
 

02 21 =+ uRx
T αα  (5.30) 

 
The symmetry of xR  and the fact that 1α  is an eigenvector of xR  ensure 
 

02 211 =+ uTααλ  (5.31) 
 
hence 0=u  and Equation (5.29) reduces to the following eigenvalue problem 
 

222 αλα =xR  (5.32) 
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where 2α  is the eigenvector of xR .  Due to the same reason that the variance of 2y  is 

expressed as ( ) 2222
2 Var

2
λαασ === x

T
y Ry , in order to obtain the maximum variation 

of 2y , 2α  can only be taken as the eigenvector corresponding to the second largest 

eigenvalue of xR .   

The remaining principal components can be found in a similar manner.  In general, the 

th−i  principal component of x  is xy T
ii α=  and the variance of iy  is 

iiy y
i

λσ == )(Var2 , where iλ  is the th−i  largest eigenvalue of xR , and iα  is its 

corresponding eigenvector.  As stated above, it can be shown that for the third, 

fourth,…, and th−l  principal components, the vectors of coefficients lααα ,, , 43 K  

are the eigenvectors of xR  corresponding to lλλλ ,, , 43 K  which are the third, 

fourth,…, and th−l  largest eigenvalues, respectively.   

In summary, the objective function for finding the optimal basis vectors in PCA is 

equivalent to  

ijj
T
i

l

i
ix

T
i

l

i
y R

i
i

δαα

αασ
α

=

= ∑∑
==

     subject to

  max
11

2

 (5.33) 

 
If the original random vector is approximated in terms of the first l  principal 

components, the mean square error is  

( ) ( )[ ] [ ]∑∑
+=+=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=−=

m

li
i

m

li
ii yEyElxxEl

1

2
2

1

22  αε  (5.34) 

 
where 
 

( ) ∑∑
==

==
l

i
ii

m

i
ii ylxyx

11
    , αα  (5.35) 

 
Noting that  
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[ ] [ ] [ ] 0=== xExEyE T
i

T
ii αα  (5.36) 

 
thus 
 
[ ] [ ]( )[ ] 222  

iyiii yEyEyE σ=−=  (5.37) 
 
and the mean square error is 
 

( ) ∑∑
+=+=

==
m

li
i

m

li
yi

l
11

22 λσε  (5.38) 

 
In fact, the original random variables can be expressed exactly by all principal 

components.  Supposing that all the principal components ( )miyi ,,2,1 K=  are found 

and given as 

( )mixy T
ii ,,2 ,1    , K==α  (5.39) 

 
Premultiplying both sides of the above equation by iα  gives 
 

( )mixy T
iiii ,,2 ,1    , K== ααα  (5.40) 

 
Summation of the equation on both sides from 1 to m  yields  
 

i

m

i
i

m

i

T
ii yx ααα ∑∑

==

=⎟
⎠

⎞
⎜
⎝

⎛

11
 (5.41) 

 
where T

iiαα  is a mm ×  matrix.  Let 
 

( ) ( )mkB T
kk

k ,,2 ,1    , K== αα  (5.42) 
 
where the element of ( )kB  is given by 
 

( )
jkik

k
ijb αα=  (5.43) 

 

Let ∑
=

=
m

k

kBB
1

)( , then the element of B  is  

 

ij

m

k
jkikijb δαα == ∑

=1
 (5.44) 

 
hence  
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IB =  (5.45) 
 
In fact, from 
 

( )( ) ∑
=

==
m

k

T
kk

T
mmI

1
2121 ,,,,,, αααααααα KK  (5.46) 

 
it can be shown that 
 

ij

m

k
jkikijb δαα == ∑

=1
. (5.47) 

 
Thus  
 

∑
=

=
m

i
iiyx

1
α  (5.48) 

 
where ( )mii ,,2 ,1  , L=α  are the eigenvectors of xR  corresponding to the eigenvalues 

of xR  with descending order. 

The proper orthogonal decomposition of the sampled vector is completed using PCA 

technique at this stage.  The orthonormal basis vectors and the mean square error of the 

approximate expression for the original random data have been established. 

 

5.3 DISCRETE KARHUNEN-LOÈVE DECOMPOSITION 

 

The procedure of KLD as optimal series expansion for representation of continuous 

time stochastic process has been briefly introduced in Section 3.1.  It can be considered 

as the extension of PCA to the problem of the infinite-dimensional spaces, such as the 

space of continuous time functions.  KLD for discrete time process is described in this 

section for the purpose of establishing its equivalence to PCA.  In terms of optimality, 

KLD is found to have the same optimal properties of least square reconstruction and 

variance maximization as PCA.  In the following paragraphs, the discrete KLD is 

stated in detail according to Fukunaga (1990). 
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Assuming that mRx∈  is a random vector, and { }m
ii 1=φ  is a set of orthonormal basis 

vectors in mR , there exists  

xy T
ii φ=  (5.49) 

 
so that x  can be represented without error by linear combination of m  independent 

vectors  

Φyyx
m

i
ii == ∑

=1
φ  (5.50) 

 
Let  
 

( ) ( )mlbylx
m

li
ii

l

i
ii ≤+= ∑∑

+==

    ,
11
φφ  (5.51) 

 
where ( )mllibi ,,2 ,1  , K++=  are constants.  Without losing the generality, assuming 

that only the first l  terms are calculated, the truncation error is found to be  

( ) ( ) ( )∑
+=

−=−=∆
m

li
iii bylxxlx

1
φ  (5.52) 

 
where x  and ( )lx  are random vectors, thus ( )lx∆  is also a random vector.  The mean 

square error is chosen as a measure to indicate the quality of the expression of x  

( ) ( )[ ] ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=∆= ∑∑

+=+=

m

li
ii

m

li
iii byEbyElxEl

1

2
2

1

22  φε  (5.53) 

 
and the derivative of ( )l2ε  with respect to ( )mllibi ,,2,1 , K++=  is  
 

( ) [ ]ii
i

byEl
b

−−=
∂
∂ 22ε  (5.54) 

 
The necessary condition for optimum choice of ib  is obtained by setting the right-hand 

side of the above equation to zero.  Then  

[ ] [ ] ( )mllixEyEb T
iii ,,2 ,1  , K++=== φ  (5.55) 

 
It is noted that 0=ib  if the mean value is subtracted from x . 
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Substituting Equation (5.55) into Equation (5.53) yields 

( ) [ ][ ] [ ]( ) [ ]( )[ ]

( )lmxlm
T

ix

m

li

T
i

i
T

m

i

T
i

m

li
ii

ΦRΦtrR

xExxExEyEyEl

−−

+=

+=+=

==

−−=−=

∑

∑∑

φφ

φφε

1

111

2 2

         

     

 (5.56) 

 
where xR  is the covariance matrix of  x  and lmΦ −  is defined as 
 

( ) ( )lmm
mlllm RΦ −×

++− ∈= φφφ ,,, 21 K  (5.57) 
 
Hence, KLD problem is transformed into a constrained extreme value problem  
 

( )

( )m,l,lji,

Rl

ijj
T
i

x

m

li

T
i

i

,2 1                ,    subject to

  min
1

2

K++==

= ∑
+=

δφφ

φφε
φ

 (5.58) 

 
Introducing the Lagrangian multipliers ( )mlliuij ,,2 ,1 , K++=  gives  
 

( )∑ ∑∑
+= +=+=

−−=
m

li

m

lj
ijj

T
iijix

m

li

T
i uRL

1 11

δφφφφ  (5.59) 

 
Differentiating both sides of the above equation with respect to iφ  yields  
 

( )ilmix
i

uΦRL
−−=

∂
∂ φ
φ

2  (5.60) 

 
where ( ) ( )mlliuuuu T

miilili ,,2 ,1 ,,,, 21 KL ++== ++ .  Rewriting the above equation in 

a matrix form gives 

( )lmlmlmx
lm

UΦΦR
Φ

L
−−−

−

−=
∂
∂ 2  (5.61) 

 
where ( )mlllm uuuU ,,, 21 K++− = .  The necessary condition for an extremum of (5.59) is 

then obtained by setting the right hand side of the above equation to be zero 

lmlmlmx UΦΦR −−− =  (5.62) 
 
Multiplying both sides of the above equation by T

lmΦ −  gives 
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lmx

T
lmlm ΦRΦU −−− =  (5.63) 

 
Since xy T

ii φ= , lmU −  in Equation (5.63) is the covariance matrix of the vector formed 

by the last lm −  elements of the random vector y  after the transformation xΦy T= .  

Thus lmU −  is a semi-definite matrix with dimension of ( ) ( )lmlm −×− .  Denoting the 

diagonal matrix formed by the eigenvalues of lmU −  as lm−Λ , and the square matrix 

formed by the corresponding eigenvectors be lmΨ −  and performing the transformation 

yΨz T
lm−= , the following is obtained 

lmlm
T

lmlm ΨUΨΛ −−−− =  (5.64) 
 
Substituting Equation (5.63) into Equation (5.64) yields  
 

( ) ( )lmlmx
T

lmlmlm ΨΦRΨΦΛ −−−−− =  (5.65) 
 
It can be seen that the diagonal elements of lmΛ −  are the lm −  eigenvalues of xR , and 

the eigenvectors corresponding to the eigenvalues form ( ) ( )lmmlmlm ΨΦ −×−− .  Denote the 

eigenvector matrix as ∗
−lmΦ  gives   

( ) ( )lmm
T

lmlmlm ΨΦΦ −×−
∗
−− =  (5.66) 

 
and the mean square error is obtained as 
 

( ) ( ) ( ) ( )

( ) ∑
−

=

∗
−

∗
−

−−
∗
−

∗
−−

∗
−

∗
−−−−

==

===

lm

s
klmx

T
lm

lm
T

lmlmx
T

lm
T

lmlmx
T

lmlmlmx
T

lm

s
λΦRΦtr

ΨΨΦRΦtrΨΦRΦΨtrΦRΦtrl

1

2

        

ε
 

(5.67) 

 
where ( )lms

sk −= ,,2 ,1 , Kλ  are the eigenvalues corresponding to the columns of 

∗
−lmΦ .  Once x  is mapped onto the ( )−− lm dimensional subspace spanned by  lm −  

eigenvectors of xR , further application of an orthonormal transformation will not 

change the mean square error.  Therefore, lmΦ −  and lmU −  in Equation (5.62) can be 
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chosen simply as the matrices formed by the eigenvectors and eigenvalues of xR , 

respectively.  In general, the eigenvectors mφφφ ,, , 21 K  associated with eigenvalues 

mλλλ ,, , 21 K  of xR  can be arranged in descending order.  It can be seen that in order 

to enable the minimum value problem of (5.58) to hold, the orthonormal basis vectors 

can be selected as the eigenvectors of xR , and the mean square error to measure the 

quality of the approximation of x  by using the first l  basis vectors is expressed as 

( ) ∑
+=

=
m

li
il

1

2 λε  (5.68) 

 
 

5.4   SINGULAR VALUE DECOMOPSITION  

 

Klema and Laub (1980) indicated that SVD was established for real square matrices in 

the 1870’s by Beltrami and Jordan, for complex square matrices in 1902 by Autonne, 

and for general rectangular matrices in 1939 by Eckart and Young.  SVD can be 

viewed as an extension of the eigenvalue decomposition for nonsquare matrices.  As 

far as the proper orthogonal decomposition is concerned, SVD can also be seen as an 

extension for nonsymmetric matrices.  Because SVD is much more general than the 

eigenvalue decomposition and intimately related to the matrix rank and reduced-rank 

least-squares approximation, it becomes a very important and fundamental tool in 

many areas such as matrix theory, linear systems, statistics and signal analysis 

(Lawson and Hanson, 1974; Forsythe et al., 1977; Marple, 1987; Biglieri and Yao, 

1989). 

The process for realizing the POD by using SVD is stated below.  The basic concept is 

the same as those that appear in some literatures (Lawson and Hanson, 1974; Forsythe 
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et al., 1977; Klema and Laub, 1980; Marple, 1987) but described in the way to keep 

the description for the three POD methods consistent in this chapter.   

Suppose that there are n  samples nxxx ,,, 21 K  where m
i Rx ∈ .  Consider the samples 

are more than enough such that mn >  and define 

( )nxxxX ,,, 21 K=  (5.69) 
 
then nmRX ×∈ , and mmT RXX ×∈  is a mm×  semi-definite matrix.  Let the eigenvalues 

of  TXX  be arranged in decreasing order  

0121 ===>≥≥≥ + mrr λλλλλ KK  (5.70) 
 
In SVD, ( )miii ,,2 ,1 , K== λσ  are called the singular values of matrix TX .  Let the 

eigenvectors of TXX  associated with eigenvalues mλλλ ,,, 21 K  be mvvv ,,, 21 K . 

Define [ ]21 ,VVV =  where ( )rvvvV ,, 211 K= , ( )mrr vvvV ,, 212 K++= , and denote the 

subscript r  as the index of the smallest positive eigenvalue of TXX , then the matrix 

V  is a mm×  orthonormal  matrix and the following is given 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

2

2
2

2
1

2

1

mm

T VVVXX

σ

σ
σ

λ

λ
λ

OO
 (5.71) 

 
Premultiplying the both sides of the above equation  by TV  yields 
 

[ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
0

,,
2

2121
rTT R

VVXXVV  (5.72) 

 
where 
              

( )22
2

2
1

2 ,,,diag rrR σσσ K=  (5.73) 
 
Let 
 

1
11

−= r
T RVXU  (5.74) 

 
where 
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( )11

2
1

1
1 ,,,diag −−−− = rrR σσσ K  (5.75) 

 
the following is obtained 
 

( ) rrrrr
TT

r
TT IRRRRVXRVXUU === −−−− 1211

1
1

111  (5.76) 
 
From the above equation, it can be seen that the columns of the matrix 1U  are mutually 

orthogonal.  Denote 

( )ruuuU ,,, 211 K=  (5.77) 
 
according to the basis extension theorem in vector space, there exist rn −  orthonormal  

vectors in nR  and they are orthogonal to the columns of 1U .  Let the rn −  

orthonormal vectors be nrr uuu ,, , 21 K++ . In the singular value decomposition, 

muuu ,, , 21 K  and mvvv ,, , 21 K  are called left and right singular vectors of TX  

corresponding to eigenvalues mσσσ ,,, 21 L , respectively.  Let [ ]21 ,UUU =  where 

( )nrr uuuU ,, , 212 K++= , then U  is a nn×  orthonormal matrix and the following 

equation is derived 

[ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2212

2111
2121 ,,

VXUVXU
VXUVXU

VVXUUVXU TTTT

TTTT
TTTT  (5.78) 

 
where 
   

0)(

0

12
1

1212

21
1

21

11
1

11

===

==

==

−

−

−

r
T

rr
TTTT

TT
r

TT

r
TT

r
TT

RUURRVXUVXU

VXXVRVXU

RVXXVRVXU

 (5.79) 

 
Note that  
 

02 =VXX T  (5.80) 
 
Premultiplying both sides of the above equation by TV2  gives 
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( ) 02222 == VXVXVXXV TTTTT  (5.81) 
 
From the above equation, it is obvious that 
 
( ) ( )( ) 022 =VXVXtr TTT . (5.82) 

 
Thus 
 

02 =VX T  (5.83) 
 
and the following is obtained 
 

022 =VXU TT . (5.84) 
 
Hence Equation (5.78) can then be rewritten as   
 

[ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

00
0

,,
2212

2111
2121

r
TTTT

TTTT
TTTT R

VXUVXU
VXUVXU

VVXUUVXU  (5.85) 

 
Premultiplying both sides of the above equation by U  and postmultiplying the result 

by TV  give 

TrT V
R

UX ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
0

 (5.86) 

 
Transposing the above equation yields 
 

[ ] Tr
n U

R
Vxxx ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

00
0

,,, 21 K  (5.87) 

 

Denote the columns of the matrix Tr U
R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
00
0

 as nddd ,, , 21 K .  From Equation (5.87) 

it follows that 

 
( )niVdx ii ,,2 ,1    , K==  (5.88) 

 
Now the description of the proper orthogonal decomposition for the sampled vectors is 

completed.  From Equations (5.87) and (5.88), it can be seen that the components 

imirir ddd ,,2,1 ,, , K++  of ( )nidi ,,2 ,1  , K=  are equal to zero when the singular values 
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mrr σσσ ,, , 21 K++  of TX  are equal to zero.  Then it needs only r  right singular vectors 

as basis to represent the samples ( )nixi ,,2 ,1 , K=  in space mR . 

Suppose a set of orthonormal basis vectors mφφφ ,,, 21 K  is chosen arbitrarily in mR  to 

represent n  samples, then 

mmiiii cccx φφφ +++= K2211  (5.89) 
 
where i

T
jji xc φ= .  When the first l  basis vectors are selected to approximate the 

samples, it gives  

( ) lliiii ccclx φφφ +++= L2211  (5.90) 
 
The criterion to measure the approximation is the error of the entire samples instead of 

the error of an individual sample.  Hence, the following error function is considered as 

( ) ( )
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φφφε

 (5.91) 

 
where ( )mlllmΦ φφφ ,,, 21 K++− = .  Hence the problem of finding the optimal basis 

vectors is transformed to the following extreme value problem  

( )

ijj
T
i

m

lj
j

TT
j XXl

j

δφφ

φφε
φ

=

= ∑
+=

      .subject to

    min
1

2

 (5.92) 

 
Introducing the Lagrangian multipliers ( )mlljiuij ,,2 ,1, , K++= , the corresponding 

functional for this constrained extreme value problem can be written as 

( ) ( )∑ ∑∑
+= +=+=

−−=
m

li

m

lj
ijj

T
iij

m

lj
j

TT
jiji uXXuL

1 11

, δφφφφφ  (5.93) 

 
Differentiating the above with respect to jφ  yields  



CHAPTER 5  123 
 

 

( )mlljuΦXXuXXL
jlmj

T
m

li
iijj

T

j

,,2 ,1    ,222
1

K++=−=⎟
⎠

⎞
⎜
⎝

⎛
−=

∂
∂

−
+=
∑ φφφ

φ
 (5.94) 

 
where  ( )Tmjjljlj uuuu ,, , 21 K++= .  The above equation can be rewritten in a matrix 

form as   

lmlmlm
T

lm

UΦΦXX
Φ

L
−−−

−

−=
∂
∂ 22  (5.95) 

 
where  ( )mlllm uuuU ,, , 21 K++− = . 

The necessary condition for extreme is that the functional first derivative vanishes.  

Thus equating lmΦL −∂∂  to zero gives 

lmlmlm
T UΦΦXX −−− =  (5.96) 

 
Premultiplying both sides of the equation by T

lmΦ −  yields  
 

lm
TT

lmlm ΦXXΦU −−− =  (5.97) 
 
Note that lmU −  is a semi-definite matrix.  Then there exist an orthogonal matrix P  

such that 

PΦXXΦPPUPΛ lm
TT

lm
T

lm
T

−−− ==  (5.98) 
 
where Λ  is a diagonal matrix.  Postmultiplying both sides of Equation (5.96) by P  

gives  

PUPPΦPΦXX lm
T

lmlm
T

−−− =  (5.99) 
 
hence 
 

PΛΦPΦXX lmlm
T

−− =  (5.100) 
 
From the above equation, it can be seen that the diagonal elements of the matrix Λ  are 

the eigenvalues iλ  of the matrix TXX , and the matrix PΦ lm−  consists of the 

eigenvectors corresponding to iλ .  That is, the diagonal elements of the matrix Λ  are 
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the squares of the singular values iσ  of the matrix TX , and PΦ lm−  consists of the 

right singular vectors corresponding to iσ . 

The following theorem (Golub and Loan, 1989) is given without proof as the 

preparation for the further description of the POD. 

Theorem: Let ,mnRA ×∈  mmRQ ×∈  be an orthogonal matrix, and 
F

•  be the Frobenius 

norm, then 
FF

AQA = . 

Considering the Equation (5.91) and the above theorem, it indicates that 

( ) ( )( ) ( )ΛtrPΦXPΦXtrPΦXΦXl lm
TT

lm
T

Flm
T

Flm
T ==== −−−−

222ε  (5.101) 

 
Note that Λ  is a diagonal matrix and its diagonal elements are the squares of the 

singular values iσ  of the matrix TX .  In order to attain the minimum error, the 

diagonal elements of  Λ  can only be the last lm −  singular values of the matrix  TX .  

Thus  

( ) ( )( ) ( ) ∑
+=

−− ===
m

lj
jlm

TT
lm

T ΛtrPΦXPΦXtrl
1

22 σε  (5.102) 

 
Hence it is proved not only that the optimality is attained when the right singular 

vectors of TX  are taken as basis vectors but also that the minimum error is simply the 

square summation of the last lm −  singular values of the matrix TX . 

 

5.5 THE EQUIVALENCE OF THREE PROPER ORTHOGONAL 

DECOMPOSITION METHODS   

 

From the above discussion it can be seen that there exist close relations among the 

three POD methods: PCA, KLD, and SVD, although their derivations are different. 

The existing equivalence relations among them are understood by researchers.  Some 
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of the equivalence relationships pointed out by the previous researchers are 

summarized as follows:  

i) Mees et al. (1987) pointed out that the relationship between KLD and PCA was 

first noticed by Watanabe in 1965.  Diamantaras and Kung (1996) and Ravindra 

(1999) indicated that the difference between KLD and PCA was that KLD was 

typically referred to stochastic processes, whereas PCA referred to random 

vectors. If the time parameter t  was a discrete variable and one had a finite 

collection of random variables, then KLD reduced to PCA.  

ii) Diamantaras and Kung (1996) pointed out that there was an asymptotic 

connection between PCA and SVD.  

iii) Kunisch and Volkwein (1999) described the relationship between KLD and SVD 

within the context of its relevance to the application to optimal control problems. 

iv) Chatterjee (2000) indicated the correspondence with the expression of SVD and 

the finite sum of KLD.   

It is important and useful for researchers to understand the equivalence relationships 

among these three methods in the studies and applications of the POD methods.  There 

exists neither complete description nor systematic and theoretical proof on the 

equivalence of the three methods in the literature.  In this section, the equivalence of 

the three methods is discussed from different point of view and the proofs on the 

equivalence of the three methods are derived.  The aim of the work is to demonstrate 

the close connections among the three methods.  It should be pointed out that in 

practice, the applications of the three methods may not be always the same.  If the 

methods are actually applied the same way, they may lead to exactly the same basis 

functions.  If the methods are applied slightly differently, yet in equivalent ways, then 

the equivalence is more hidden, or implicitly rather than explicitly (Cao and Levin, 
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1995). 

The main results on the equivalence relationships of the three methods obtained 

through the POD derivations mentioned in the above section are summarized as 

follows 

 

5.5.1 THE EQUIVALENCE OF PRINCIPAL COMPONENT ANALYSIS AND 

KARHUNEN-LOÈVE DECOMPOSITION 

 

i) The same matrices for processing 

Both PCA and discrete KLD handle the problems of random vectors.  For a random 

vector x  with dimension m , the matrices used for finding basis vectors derived from 

the two methods are the same.  The matrix is a mm×  covariance matrix corresponding 

to the random vector and expressed as in Equation (5.9). 

ii) The same objective functions for finding the optimal basis vectors 

In PCA the objective for finding the optimal basis vectors is to maximize the variance 

summation of the first ( )mll <≤1   principal components, i.e. 

i
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==

=
11

2  max  (5.103) 

 
Obviously, the above equation is equivalent to minimizing the variance summation of 

the last lm −  principal components, i.e. 

i
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=
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2  min  (5.104) 

 
In KLD the objective for finding the optimal basis vectors is that is minimizing the 

error after truncating the last lm −  basis vectors, i.e. 

( ) ix

m

li

T
i Rl

i

φφε
φ ∑

+=

=
1

2  min  (5.105) 
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Comparing Equation (5.104) with (5.105), it can be seen that the objective functions 

for finding the optimal basis vectors by using the two methods have the same form.  

iii) The same or equivalent optimal basis vectors 

The basis vectors found using the two methods are the eigenvectors of a covariance 

matrix corresponding to the same random vector.  In fact, the covariance matrix xR  is 

a mm ×  linear transformation in a real field.  Let the linear transformation be σ . 

Because xR  is semi-definite, it has m  non-negative real eigenvalues.  Denote the 

eigenvalues of xR  as mλλλ ,,, 21 K  and let them be arranged in decreasing order.  

If all ( )mii ,,2 ,1 , K=λ  are distinct, then each eigen-subspace of σ : ( )1λσ , 

( ) ( )mλσλσ ,,2 K  has only one basis vector, respectively, which is denoted as 

mvvv ,, , 21 K . The difference among the elements in each subspace ( )1λσ , 

( ) ( )mλσλσ ,,2 K  is only a constant factor, i.e., if ( )1
iv  and ( )2

iv  are the elements of the 

eigen-subspace ( )iλσ  of σ , then there exists a real number α  such that ( ) ( )21
ii vv α= .  

Because the basis vectors are required to be normal, the basis vectors belonging to the 

iλ  obtained by using PCA and KLD are the same after normalization.  

If some eigenvalues are multiple, without loss of generality, let 1λ  have multiplicity 

1n .  Then in the eigen-subspace ( )1λσ , there exit 1n  orthonormal vectors that can be 

selected as basis vectors.  The basis vector 1α  associated with the 1λ  selected by using 

PCA may not be the same as the basis vector 1φ  corresponding to the 1λ  selected by 

using KLD.  But both of them are basis vectors of the eigen-subspace ( )1λσ  of σ .  If 

1n  optimal basis vectors are selected by using PCA and KLD, respectively, to 

approximate the original random vector x , they may be two different basis vectors of 

the eigen-subspace ( )1λσ .  However, they are obviously equivalent.  In fact, they can 
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be expressed mutually, i.e., there exist constants ijβ  such that ∑ =
= 1

1

n

j jiji φβα , 

( )1,,2 ,1 ni K= .  Because the 1n  basis vectors selected by PCA and KLD, respectively, 

satisfy the orthonormal condition, it only needs an orthogonal transformation to enable 

the orthonormal basis vectors selected by using PCA and KLD to be completely the 

same. 

iv) The same approximate matrices processed in practical calculation  

Because the variables such as the probability and the expectation associated with the 

covariance matrix are not known a priori, the estimate of the covariance matrix is 

needed in order to obtain the approximate covariance matrix.  In PCA and KLD, 

( )( )( )TXXXXn −−1  is used as the approximation of xR .  In general the data are 

centralized before the proper orthogonal decomposition is performed, i.e. 0=X . 

Therefore in the two methods the approximate matrix processed in practical 

calculation is ( ) TXXn1 , where X  is a matrix whose columns are formed by the given 

samples.  

 

5.5.2 THE EQUIVALENCE OF PRINCIPAL COMPONENT ANALYSIS 

(KARHUNEN-LOÈVE DECOMPOSITION) AND SINGULAR VALUE 

DECOMPOSITION 

          

i) The equivalence of the eigenvalue problems of PCA (KLD) and SVD  

From the above discussion it can be seen that SVD is to perform the singular value 

decomposition to the transposed matrix TX  of the matrix X .  The singular values 

obtained are the arithmetic square roots of the eigenvalues of the matrix TXX  and the 

right singular vectors selected as the basis vectors are the eigenvectors of the TXX . 



CHAPTER 5  129 
 

Thus if the transformation ( )XnX 1~ =  is made, performing the singular value 

decomposition to the matrix TX~  is equivalent to searching the eigenvalues and 

eigenvectors of the matrix ( ) TXXn1 .  Since both the matrices TXX  and ( ) TXXn1  

have the same eigenvectors, the basis vectors obtained using SVD to TX  are the same 

as those obtained using PCA (KLD) to ( ) TXXn1 . 

ii) The asymptotic connection between PCA (KLD) and SVD  

The asymptotic relationship between PCA (KLD) and SVD can be obtained directly by 

using the eigenvalue problems of SVD and PCA (KLD), and the asymptotic 

relationship between the matrices ( ) TXXn1  and xR . The detail of this asymptotic 

relationship is derived as follows. 

Denote the elements of the covariance matrix xR  as ijσ .  From the definition of the 

covariance matrix of Equation (5.9), it is derived that  

( ) [ ]( ) [ ]( )[ ]  ,Cov jjiijiij xExxExExx −−==σ  (5.106) 
 
Denote the values of the th−i  component ix  of the random vector x  as 

( ),m,, ixx ii KK 21 ,,, 21 =  which represent some events of the component ix .  Let the 

expectation of the ix  be [ ] ( ),m,, iuxE ii K21   , ==  and the probability of the event 

( )( )j
q
ji

p
i uxux −−  be pq

ijP , then 

( )( )∑ −−=
qp

pq
ijj

q
ji

p
iij Puxux

,
σ  (5.107) 

 
Because in most cases the values of expectation iu  and probability pq

ijP  of a random 

variable are not known a priori, rather, they can only be obtained approximately from 

a large number of samples. 

Assume that n  samples of a random vector x  are selected, which are defined as 
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( ) ( ) ( ) ( )mnRxxx mn >∈   ,,,, 21 K .  Let  

 ( ) ( ) ( )( ) nmn RxxxX ×∈= ,,, 21 K  (5.108) 
 
Firstly, the number of the events of ix  is counted, i.e., counting the number of times 

that different values of the th−i  components of all n  samples appear.  Denote the 

number as ( )mini ,,2 ,1  , K=  and the expectation of ix  as  

( ) ( )mix
n

u
n

j

j
ii ,,2 ,1   ,1

1
K== ∑

=

 (5.109) 

 
Then the number of the events of ( )( )j

q
ji

p
i uxux −− , mji ,,2,1,( K= , inp ,,2 ,1 K= , 

),,2 ,1 jnq K=  is counted，where p
ix  and q

jx  represent the p and q kinds of values 

for the th−i  and th−j  components of the random vector x, respectively.  Let the 

number of the appearance of ( )( )j
q
ji

p
i uxux −−  in the n  samples be pq

ijn .  Define the 

probability  as 

n
n

P
pq
ijpq

ij =~  (5.110) 

 
where nn

qp
pq

ij =∑ ,
 as both  p

ix  and q
jx  are in the same sample merely appear in the 

th−i  and th−j  places, respectively. 

It is noted that the larger the number n  of the samples is, the closer the probability 

pq
ijP~  defined by Equation (5.110) will tend to the true probability pq

ijP  of the random 

event ( )( )j
q
ji

p
i uxux −− , i.e. 

pq
ij

pq
ijn

PP =
∞→

~lim  (5.111) 
 
Let 
 

( )( ) ( )( ) ( )( )∑
=

−−=−−=
n
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TiiT
x uxux

n
XXXX

n
R

1

11~  (5.112) 
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where ( ) ( )∑
=

==
n

i

iT
m xnuuuu

1
21 1,,, L  and ( )

43421 L
n

uuuX ,,,= .  Let the elements of xR~  

be ijσ~ , then 

( )( ) ( )( ) ( )( )∑∑ −−=−−=
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ji
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i
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n

l
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l
ji

l
iij uxux

n
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uxux
n ,1
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From Equations (5.106) and (5.113), it is derived that ijijn

σσ =
∞→

~lim .  Then the 

limitation xxn
RR =

∞→

~lim  holds.  In general, the centralization for the samples is 

performed after the n  samples are obtained, i.e., the expectation of ( ) ( )∑ =

n

i
ixn

1
1  is 

subtracted from each sample.  Hence ( ) T
x XXnR 1~ =  and we have  

T

nxnx XX
n

RR 1lim~lim
∞→∞→

==  (5.114) 

 
Equation (5.114) shows the asymptotic relationship between the covariance matrix (or 

the correlation matrix because the expectation of samples is set to zero) xR  in PCA 

(KLD) and its approximate matrix ( ) TXXn1 .  The asymptotic relationship of PCA 

(KLD) and SVD can be obtained theoretically from the combination of Equation 

(5.114) with the equivalence of the eigenvalue problems of SVD and PCA (KLD) 

mentioned above.   

Hence the equivalence relationships among the three POD methods have been given.  

The above derivation of the equivalence is performed for the discrete cases.  It should 

be noted that KLD can also be used to handle the problem of continuous random 

variables, whereas PCA and SVD can only be used to deal with discrete random 

variables. 
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5.6 CONCLUSION 

 

In this chapter, the derivation and the performance of the three POD methods, PCA, 

KLD and SVD are summarised when they are used to handle the discrete random 

vectors.  Proofs on their equivalence are presented through the theoretical comparison 

of the matrices for processing, the objective functions in optimization to extract the 

optimal basis vectors and the expression of mean square errors as well as the 

asymptotic connections among them.  In Chapter 4, it is noted that the principal 

eigenvectors extracted by using GHA of PCA is identical to KLMs extracted by KLD 

numerically, this identity is thus proved in this chapter theoretically. 



CHAPTER 6 

 

COMPUTATION IMPROVMENT IN THE MACROMODEL 

DYNAMIC SIMULATION  

 

A doubly-clamped microbeam actuated by electrostatic force with squeezed gas-film 

damping is a well-known standard micro-device in microelectromechanical system for 

many researchers to demonstrate how reduced-order dynamic macromodel as an 

effective way to faithfully capture the device behaviours.  It has been demonstrated in 

the preceding Chapters 3, 4 and Hung and Senturia (1999) how the macromodels are 

generated by extracting the global basis functions from a few fully meshed model 

computations to parameterize a model with far fewer degrees-of-freedom and how 

accurate and flexible the macromodel simulations are.  It is however found in real 

numerical experiments that much of computer time is spent on the re-computation of 

the time-dependant nonlinear terms at every time step during the numerical integration 

thus results in relatively low efficiency in these macromodels simulation.  Two 

methods to improve the computation are developed in this chapter to further enhance 

the efficiency of macromodel simulations.  In the first method, the computation 

improvement is achieved based on the pre-computation concept, i.e. the nonlinear 

terms are firstly expressed explicitly in the time-dependant generalized modal 

coordinates and their coefficients are then pre-computed prior to numerical time 

integration once the basis for macromodel is obtained.  The second method is to use 

cubic splines approximation to interpolate the basis functions and their first and second 

derivatives, and apply the Gaussian quadrature to scale down the spatial integration of 

the macromodel so as to improve the macromodel simulation efficiency. The 
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numerical experiments demonstrate that both methods can enhance the efficiency of 

the macromodel simulation compared with the previous computation results. 

 

6.1 MACROMODEL  

 

For the MEMS device idealized as doubly-clamped microbeam as shown in Figure 3.8, 

it has been described in the Chapters 3 and 4 that the ensembles of deflection and back 

pressure obtained by FDM solutions are used as the snapshots, i.e. the ensemble of 

signals for KLD or as the inputs to the GHA of neural network-based PCA to generate 

the eigenvectors (or modes).  The Galerkin procedure employing these eigenvectors as 

basis functions is then applied to the original nonlinear governing PDEs (3.44) and 

(3.45) to convert them to low-dimensional macromodels with a smaller number of 

ODEs.  It has been proved in Chapter 5 that the eigenvectors extracted by either KLD 

or GHA from the same system or the same ensembles of signals are  identical because 

both numerical techniques process the same random vector and the same correlation 

matrix, and both techniques have the same objective function for finding the optimal 

basis vector.  As such, the eigenvectors extracted by KLD or GHA with respect to 

deflection are denoted as ( )xw
iφ  and those with respect to the back pressure as 

( )yxp
j ,φ , respectively.  The microbeam deflection ( )txw ,  and back pressure ( )tyxp ,,  

due to squeezed gas-film damping can then be represented as a linear combination of 

the eigenvector as described by Equations (3.50) and (3.51) which are rewritten as 

( ) ( ) ( )  ~ ,
1

0 wxtawtxw
I

i

w
i

w
i ==− ∑

=

φ  (6.1) 

 

( ) ( ) ( ) pyxtaptyxp
J

j

p
j

p
ja

~ , ,,
1

==− ∑
=

φ  (6.2) 
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where 0w  is the initial gap between the deformable microbeam and the substrate, ap  

is the gap air ambient pressure, ( )ta w
i  and ( )ta p

j  are the time-dependant generalized 

modal coordinates to be determined, and I  and J  are the number of basis functions 

for deflection and back pressure representation in macromodel, respectively. 

Substituting Equations (6.1) and (6.2) into the governing PDEs (3.44) and (3.45), and 

applying the Galerkin procedure, a set of ODEs of Equations (3.54) and (3.55) is 

obtained which is re-listed in this chapter as follows  
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2
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dt
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12 φµ  (6.10) 

 
The smaller set of coupled ODEs (6.3) and (6.4) constitutes the macromodel with 

global basis functions ( )xw
iφ  and ( )yxp

j ,φ , which is the low-order representation of 
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the original nonlinear PDEs (3.44) and (3.45).  The macromodel can be integrated 

numerically in time by Runge-Kutta method to simulate the dynamics of the system 

when an input voltage is applied.  Examining the terms expressed in Equations (6.5)-

(6.10) for the unknown time-dependant generalized modal coordinates ( )ta w
i  and 

( )ta p
j  in (6.3) and (6.4) reveals that some terms can be pre-computed without 

difficulties once the basis functions ( )xw
iφ  and ( )yxp

j ,φ  are known; for example, jM  

in (6.5) and jiK  in (6.6) if the bending induced tension effect bt  is ignored.  However, 

the terms, jiH , jiS , jc  and if , which are related to the microbeam flexural deflection, 

electrostatic force, squeezed gas-film damping and bending induced tension cannot be 

expressed directly in the generalized coordinates or modal coordinates ( )ta w
i  and 

( )ta p
j .  Since w , p  and T  in these equations are time-dependent, much of the 

computation time is thus spent on re-computation of these elements at every time step 

during the numerical integration of Equations (6.3) and (6.4).  Gabbay and Senturia 

(2000) proposed a method of pre-computation technique in the Galerkin procedure by 

rational function approach to approximate the nonlinear electrostatic force directly in 

terms of modal coordinates to achieve very good computation efficiency if both 

nonlinear bending induced stress and squeezed gas-film damping are ignored.  

However, this approach requires many tedious simulations and rational function 

fitting.  Moreover, it cannot handle the system with dissipation, such as the squeezed 

gas-film damping. 

It is also noted that every step of re-computation of the terms expressed in Equations 

(6.7)-(6.10) is performed as the spatial integration in the original Cartesian coordinate 

system.  The most direct method to perform this spatial integration numerically is to 

use the classical formulas for equally spaced abscissas, for example, the trapezoidal 
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rule since the values of the basis functions on every discrete grid point, as shown in 

Figure 3.9, have been obtained.  It has been demonstrated in the preceding Chapter 3 

that by doing so the macromodel simulation of pull-in dynamics can be improved by 

around 11 times than the full model FDM simulation when the device shown in Figure 

3.8 is applied with an input step voltage of 10.25 V.  However, it is expected that this 

direct numerical integration cannot achieve the best computation efficiency because 

much of the computation time is spent on the re-computation of time-dependant terms 

at every time step.  The computation efficiency will be harmed further especially when 

the number of grid points for integration is very large.  In order to improve the 

macromodel simulation but retain the simulation accuracy, two methods to enhance the 

computation efficiency of the macromodel simulation have been developed.  These 

two methods are described in the following sections.  The improvement of the 

macromodel computation efficiency is demonstrated by some numerical experiments.  

 

6.2 PRE-COMPUTATION 

 

It is impractical to fully pre-compute the nonlinear time-dependant terms expressed in 

Equations (6.7)-(6.10).  However, these equations could be expressed explicitly in the 

time-dependant generalized modal coordinates ( )ta w
i  and ( )ta p

j .  The coefficients of 

( )ta w
i  and ( )ta p

j  are the known spatial integration after the basis functions are 

obtained, hence can be pre-computed to avoid re-computations at every time step 

during numerical time integration of the macromodel so as to improve the macromodel 

simulation efficiency.  This procedure is called the ‘pre-computation’ method in this 

section and the details are described below. 
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It is noted that, once the number of the deflection basis functions I  and back pressure 

basis functions J  are chosen for macromodel simulation, jiH , jiS  and jc  of 

Equations (6.8)-(6.10) can be explicitly expressed in time-dependant modal 

coordinates ( )ta w
i  and ( )ta p

j  as follows by making use of the multinomial theorem 
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where )(

,
m

kjih , )(
,

m
jis •  and kjc ,  are constants that are the known spatial integration once the 

( )xw
iφ  and ( )yxp

j ,φ  are obtained.  Special attention needs to be paid on the term 

related to electrostatic force ( ) ( ) 2 22
0 wbVε  in jf  of Equation (6.7) because the time-

dependant flexural deflection ( ) , txw  is the denominator.  It tends to zero and induces 

singularity when pull-in occurs.  In order to express jf  explicitly in time-dependant 
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modal coordinates ( )ta w
i  and ( )ta p

j , a fourth order polynomial function is used to 

approximate 21 w  with the microbeam deflection ratio  ~
0ww  ranging from 0.7-  to 0 
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Where 9959.127  and  8236.117 ,4482.43 ,6136.2 ,1095.1 43210 ===== ppppp  

are obtained by MatLab® simulation.  Since the maximum stable deflection of the 

microbeam is about 67% of the original gap  0w  in the quasi-static case (Tilmans, 

1996), the above lower order polynomial function for approximation of nonlinear term 

21 w  is sufficient for the deflection range of 0.0 to 0.7 which counts for 70% of the 

original gap  0w .  The trade off is that it could not be used to simulate the system 

closed to the pull-in region when  ~
0ww  approaches −1.  Using the multinomial 

theorem, Equation (6.7) can be re-written in terms of ( )ta w
i  and ( )ta p

j  as 
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Similarly, the values of )(m

jf  are the constants in the form of spatial integration that 

can be computed once the basis functions are known. 

 

6.3 CUBIC SPLINES APPROXIMATION AND GAUSSIAN QUADRATURE 

 

It is expected that, in general, the Gaussian quadrature is simpler, accurate and more 

effective compared with the traditional quadrature formulas for equally spaced 

abscissas, e.g. trapezoidal rule, in numerical integration.  Recalling the procedure for 

the snapshots generation described in Chapter 3, the snapshots are obtained from the 
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numerical simulations of the continuous range of x  values on the domain Ω  by FDM, 

hence the basis functions are only available on a discrete set of point in the domain.  

Azeez and Vakakis (2001) had demonstrated that smooth interpolations can be 

performed to evaluate the integral accurately and efficiently by the Gaussian 

quadrature.  As such, it is expected that the macromodel performance and efficiency 

can be improved by computing the Equations (6.5)-(6.10) using the following 

Gaussian quadrature for spatial integration in the numerical time integration of the 

macromodel simulation 
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where m  and n  are the numbers of the Gaussian integration points, and kv  and lv  are 

the associated weighting factors, respectively.  In this method, once the discrete basis 
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functions are obtained, the natural cubic splines approximation, in which the second 

derivative on both boundaries of the basis function will be set to zero, is used to 

interpolate the values of basis functions. Their first and second order derivatives at the 

th−k  Gaussian integration point are computed by generalised differential quadrature.  

The Gaussian quadrature is used to perform the spatial integration of (6.16)-(6.21) in 

the macromodel simulation. 

 

6.4 NUMERICAL RESULTS 

 

In order to validate the above methods, simulation based on the MEMS device shown 

in Figure 3.8 with material properties and geometric parameters listed in Table 3.1 are 

carried out.  Similar to the procedure described in Chapter 3, snapshots are obtained 

from the solution of Equations (3.44) and (3.45) by using FDM for an ensemble of 

input step voltages of V 101 =V  and V 162 =V , which are assumed to be the device 

operating voltage under consideration.  Two sets of eigenvectors can then be obtained 

by applying KLD or the GHA neural network to these snapshots, respectively, and are 

employed as basis functions in the Galerkin procedure to the original nonlinear PDEs 

(3.44) and (3.45) to generate the macromodel.  The two sets of the eigenvectors 

obtained independently by KLD and GHA are shown to be the same as indicated in the 

Chapters 4 and 5.  The number of the basis for deflection and back pressure chosen in 

the macromodel for system simulation can be determined by the system energy level 

captured by these eigenvectors.  It has been shown in Chapter 3 that, for microbeam 

deflection simulation, the first eigenvector ( )xw
1φ   can capture 99.99% of the system 

energy while it takes at least four eigenvectors ( )yxp
j ,φ  for the back pressure to 

capture the same level of energy in the back pressure simulation.  As such, one 
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deflection basis and four back pressure basis are employed in the macromodel 

simulation to ensure sufficient accuracy.  

Time (ms)  

Figure 6.1 Comparison of the microbeam pull-in dynamics for an input 
step voltage of 8 V. 

 
Figure 6.1 shows the comparison of the deflection of the centre point of microbeam 

between the FDM solution of the original nonlinear PDEs (3.44) and (3.45) and the 

macromodel simulations when the system is applied with an input step voltage of 8 V.  

Macromodel simulations are carried out by numerical integration of ODEs (6.3) and 

(6.4) with  

i) the direct classical formulas for equally spaced abscissas, e.g. the trapezoidal rule 

(TR) for spatial integration,  

ii) pre-computation (speedup 1) of the known coefficients of the generalized modal 

coordinates and  

iii) cubic splines approximation and the simplified Gaussian quadrature with 7×7 

Gaussian integration grid size (speedup 2) for spatial integration.   

It is noted that the minimum step pull-in voltage for this device is calculated at 8.87 V 

by FDM.  Thus, pull-in does not happen when the input step voltage is less than the 

system pull-in voltage.  The macromodel performance with respect to FDM is listed in 
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Table 6.1 for the simulation period from 0 to 200 sµ  where the mean square error 

(MSE) between the results using the macromodel and those using the FDM is defined 

by Equation (4.40).  Table 6.1 indicates that the speed for the macromodel simulation 

with speedup 1 and speedup 2 techniques can be improved by up to 85 and 5 times, 

respectively, compared with the macromodel simulation with TR method which has 

already achieved 7 times faster than FDM simulation.  The errors of macromodel 

simulations are small compared with FDM simulation.  It is clear from this numerical 

example that when the applied input step voltage is less than the minimum pull-in 

voltage, macromodel simulation with speedup 1 or speedup 2 are very attractive as 

both methods are accurate and the computation effort required are much less compared 

with TR and FDM simulations. 

 Table 6.1 
 

Performance of macromodels with respect to FDM simulation for an 
input step voltage of 8 V. 

 
Method for 
simulation 

Number 
of 

ODEs 

Mean square 
error 

 

Computer 
system time 
(seconds) 

Speed up 
factor 

FDM 
  819  0  1048  1 

Macromodel (TR) 
      6  2.1 410−×   145         7  (1)* 

Macromodel 
(Speedup 1)      6  2.85 410−×   1.7     616 (85)* 

Macromodel 
(Speedup 2)      6  3.95 410−×             27.3       38   (5)* 

 
Figure 6.2 plots the comparison of the deflection of the centre point of microbeam 

simulations when the system is applied with an input step voltage of 10.25 V which is 

larger than the minimum pull-in voltage.  As expected, macromodel simulation with 

speedup 1 could not provide accurate results near pull-in area because  w  approaching 

zero is not counted for in the approximation of 21 w  expressed in Equation (6.14).  
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Time (ms)  
Figure 6.2 Comparison of the microbeam pull-in dynamics for an input step 

voltage of 10.25 V. 
 

 Table 6.2 
 

Performance of macromodels with respect to FDM simulation for 
an input step voltage of 10.25 V. 

 
Method for 
simulation 

Number 
of 

ODEs 

Mean square 
error 

 

Computer 
system time 
(seconds) 

Speed up 
factor 

FDM 
  819   0  1952         1 

Macromodel (TR) 
      6  2.27 410−×   182       11    (1) ∗  

Macromodel 
(Speedup 1)      6  7.06

410−×             1.4   1394 (130) ∗  

Macromodel 
(Speedup 2)      6  6.87 410−×           20.5       95    (9) ∗  

 
∗  The figure in the bracket stands for the macromodel speed up factor comparison 
   with respect to macromodel simulation by using trapezoidal rule (TR).  

 
 
Table 6.2 shows that the macromodel simulation with speedup 2 method has smaller 

error compared with FDM but the error of speedup 1 is relatively large, the 

computation efficiency of speedup 1 method is much better in the sense that it can 

achieve 1394 times faster than FDM and 130 times faster than macromodel simulation 

with TR method, while speedup 2 method achieves 95 times and 9 times accordingly.  

Hence when the input voltage is less than the minimum pull-in voltage, macromodel 
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with speedup 1 method is attractive to be used.  However, the macromodel with 

speedup 2 simulation is the choice for system designer when the applied voltage is 

larger than the minimum pull-in voltage. 

 

6.5 CONCLUSION 

 

Two methods to enhance the computation efficiency of the macromodels which are 

generated by the eigenvectors obtained either from KLD or the GHA neural network-

based method together with the Galerkin procedure are presented in this chapter.  It 

has been demonstrated in numerical experiments that both methods can enhance the 

computation efficiency of the macromodel simulation for MEMS device.  Although 

the pre-computation method does not deliver favourite results near pull-in, however, it 

can still give satisfied results for non pull-in dynamics analysis. 

 



CHAPTER 7 

 

MACROMODEL GENERATION AND SIMULATION FOR 

COMPLEX MEMS DEVICES  

 

Most of the macromodels which have been developed over the past few years in 

MEMS community focused only on single structure MEMS devices, for instance, 

single microbeam or plate structure.  Many MEMS devices, such as comb drives and 

some optical switches are however structurally complex, hence efficient model order 

reduction techniques for such connected structurally complex MEMS devices are 

needed for system design and optimisation.  There are no available methods to 

generate macromodels for complex MEMS device dynamic simulation in the literature 

to date other than to treat them as single structure.  A novel method for macromodel 

generation for dynamic simulation and analysis of structurally complex MEMS device 

is developed by making use of Karhunen-Loève decomposition (KLD), and the 

classical component mode synthesis (CMS).  The CMS is a classical model order 

reduction method whereby a complex structure is regarded as an assembly of 

substructures or components (Hurty, 1965; Craig and Bampton, 1968).  The idea of 

CMS is to model each component independently using a number of lower “component 

modes” and then to impose constraints at interconnections of various components to 

force these components to act as a single structure.  The key advantage of using the 

CMS is that there is no need to redo or regenerate the governing equations for the 

entire structure if there are design changes in a particular component so long as the 

changes do not affect the structural behaviours of that component.  In present work, the 

complex MEMS device is modelled as an assemblage of interacting components, KLD 
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is used to extract Karhunen-Loève modes (KLMs) and their corresponding Karhunen-

Loève values (KLVs) for each component from an ensemble of data obtained by 

selective runs of the full model simulation.  These KLMs for each component are 

similar to “components modes” and used as basis functions in Galerkin projection to 

formulate the equations of motion for each component expressed in terms of a set of 

generalized component coordinates.  When the continuity conditions at the interfaces 

are imposed, a set of constraint equations is obtained which relates the component 

generalized coordinates to the system generalized coordinates through a transformation 

matrix.  Finally, a macromodel, presented by a set of equations of motion expressed in 

terms of a set of system generalized coordinates, is formulated to determine the system 

dynamic responses.  The effectiveness and flexibility of the proposed model order 

reduction methodology are demonstrated with the simulations of the pull-in dynamics 

of a complex micro-optical device modelled as non-uniform microbeam and a micro-

mirror device modelled as rigid square mirror plate with four clamped-guided parallel 

microbeams along each side of the plate subjected to electrostatic actuation force with 

squeezed gas-film damping effect. 

 

7.1 MACROMODEL FOR A MICRO-OPTICAL DEVICE 

 

7.1.1 MODEL DESCRIPTION 

 

A micro-optical switch designed as a non-uniform microbeam with two ends clamped 

as shown in Figure 7.1 is used as a structurally complex MEMS device for the 

macromodel development and generation.  This MEMS device is idealised as three 

connected uniform microbeams.  Input voltage is applied on the top structure and the 
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substrate.  The squeezed gas-film damping effect is only considered between the wider 

microbeam 2 and the substrate, while it is neglected on the two relatively narrow 

microbeams 1 and 3.   

 

 z (w) 
 x 

 Microbeam 3  Microbeam 1 
Microbeam 2 

+
Vinput L2 L3L1

1l

3l
2l

 
 

Figure 7.1 An idealized micro-optical switch device. 
 
The microbeam configuration is modelled using Euler-Bernoulli beam theory, and the 

squeezed gas-film damping is modelled with nonlinear Reynold’s equation.  The 

governing equations, which are expressed by nonlinear partial differential equations 

(PDEs) for the three microbeams are as follows 
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where E  is Young’s modulus, 123

iii hbI =  is the second moment of area where ib  is 

the width and ih  is the thickness of the microbeam i , iρ  is the density, µ  is the air 

viscosity, ( )txwi ,  is the height of the microbeam above the substrate, ( ) in wtxK λ=,  

is the Knudsen number where λ  is the mean-free path of the air, V  is the applied 

voltage, 0ε  is the permittivity of free space, ( )tyxp ,,  is the back pressure acting on 
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microbeam 2 due to the squeezed gas-film in which an isothermal process is assumed, 

ap  is the ambient pressure and )( iii hbT  is the sum of residual stress irt ,  and the 

bending induced stress ibt ,  due to large deflection, which can be expressed as 
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where iL  is the length of microbeam i . 

 

7.1.2 KARHUNEN-LOÈVE MODES FOR COMPONENTS 

 

The procedure of KLD method in extracting KLMs and the corresponding KLVs from 

a set of time series data (signals) available on a domain has been described in Chapter 

3.  To obtain the ensemble of numerical data, the full model FDM is used to simulate 

the system response in Equations (7.1)-(7.3) subjected to the applied voltage beyond 

the dynamic pull-in voltage.  Based on numerical experiments, a mesh size of 40×1 for 

microbeams 1 and 3, and 40×40 for microbeam 2 in the FDM simulation of the 

original non-linear equations (7.1)-(7.3) is able to generate sufficient accuracy.  

Following KLD procedure, the KLMs and the corresponding KLVs for each 

component are obtained.  Figure 7.2 shows the first normalized deflection KLM for 

microbeams 1, 2 and 3 with the material properties and geometric dimensions listed in 

Table 7.1 when the microbeams are subjected to an input step voltage of V 25 .  The 

second normalized deflection KLM for each microbeam is plotted in Figure 7.3.  It is 

noted that these deflection KLMs include values at two imaginary nodes on each side 

of the interface, which are introduced in the central FDM after imposing the geometric 

and force continuity conditions which state that the deflection, slope, bending moment 

and shear force are continuous across the interface.  These two nodes to the right of the 



CHAPTER 7  150 
 

interface represent an imaginary extension of the left microbeam while the other two 

nodes to the left of the interface represent an imaginary extension of the right 

microbeam beyond the interface of two connected microbeams.  The values of KLMs 

at imaginary nodes are useful in constructing a set of constraint equations.  The first 

three normalized back pressure KLMs along the centre of the microbeam 2 are plotted 

in Figure 7.4.   

Table 7.1 Properties and geometric dimensions of microbeams. 
 

 
 
Microbeam 

i  

Young’s 
modulus 

E  
(GPa) 

Density 
 

)( iii hbρ  
(kg m-3) 

Residual 
Stress 

irt ,  
(MPa) 

Knudsen’s 
Number 

in wK λ=  

1     
2 149 2330 -3.7 ≈0.028 
3     

 
 
Microbeam 

i  

Initial gap 
0w  

(µm) 

Thickness 
ih  

(µm) 

Length 
iL   

(µm) 

Width 
ib   

(µm) 
1   180 10 
2 2.3 2.2 90 90 
3   160 10 

 

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

-2 2 6 10 14 18 22 26 30 34 38 42 46
Nodal points along the length of microbeams

D
ef

le
ct

io
n 

K
LM

s

Imaginary nodes of microbeams 2 
and 3 to the left of interface

Imaginary nodes of microbeams 1 
and 2 to the right of interface

microbeam 1
microbeam 2

microbeam 3

 
 

Figure 7.2 The first KLM for deflection of microbeams. 
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Table 7.2 and Table 7.3 list the normalized KLVs and accumulative normalized KLVs 

with respect to the number of deflection and back pressure KLMs for each component 

where the total sum of the KLVs is normalized to one.  The magnitude of accumulative 

normalized KLVs represents the percentage of system characteristics, or energy 

captured by the corresponding number of the KLMs. 

Table 7.2 Normalized accumulative KLVs corresponding to the number of 
deflection KLMs. 

 
Microbeam 1 Microbeam 2  

 
 
Number 

of 
KLMs 

 
Normalized 

KLVs 

∑
=

=
N

i
iii

1
  λλλ  
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2 2λ = 0.0001452977 2S = 0.9999990177 2λ = 0.0001985024 2S = 0.9999999324 

3 
3λ = 0.0000008469 3S = 0.9999998646 3λ = 0.0000000667 3S = 0.9999999991 

4 4λ = 0.0000001313 4S = 0.9999999959 – – 
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2 2λ = 0.0000471248 2S = 0.9999993284 

3 3λ = 0.0000006268 3S = 0.9999999552 

4 4λ = 0.0000000402 4S = 0.9999999954 
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Table 7.3 Normalized accumulative KLVs corresponding to the 
number of back pressure KLMs for microbeam 2. 
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Figure 7.3 The second KLM for deflection of microbeams. 
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Figure 7.4 First three KLMs for back pressure of microbeam 2. 
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7.1.3 COMPONENT MODE SYNTHESIS AND MACROMODEL 

GENERATION 

 

A low-order model for the system shown in Figure 7.1 is constructed using the KLMs 

for each component obtained from the above procedure.  The flexural deflection of the 

microbeams and the back pressure due to the squeezed gas-film damping effect can be 

represented as a linear combination of the KLMs of each individual component as 

follows 
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φ  (7.7)

 
Here 0w  is the initial gap between the microbeams and the substrate, 1w

iφ , 2w
iφ  and 3w

iφ  

are the deflection KLMs for microbeams 1, 2 and 3, respectively, p
jφ  is the back 

pressure KLMs for microbeam 2.  1I , 2I  and 3I  are the number of deflection KLMs, 

and 2J  is the number of back pressure KLMs.  The coefficients 1w
ia , 2w

ia  and 3w
ia  as 

well as p
ja  are the amplitudes of the KLMs and the component generalized coordinates 

(or modal coordinates) in modal decomposition.  Substituting Equations (7.5)-(7.7) 

into the governing equations (7.1)-(7.3) and applying the Galerkin procedure using the 

above KLMs as the basis functions, the following ordinary differential equations are 

obtained in terms of the component generalized coordinates of 1w
ia , 2w

ia , 3w
ia  and p

ja  
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33 =++ faKaM ww&&  (7.10)
 
Here iwa  and pa  are the vectors whose elements 1w

ia , 2w
ia , 3w

ia  and p
ja  are to be 

determined, if  is the genelarized forces.  The elements in matrix iM  can be obtained 

once the KLMs are known, the elements in matrixes iK , 2H  and 2S  and vectors 2c  , 

if  are expressed as 
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where ∫

iL 
indicates the integration along the length of microbeams 1, 2 and 3, and 

∫A 
is the integration over the area of microbeam 2.  It is noted that the elements iklK , , 

ilf , , klH , klS  and lc  are corresponding to the nonlinear terms related to deflection, 

electrostatic force, squeezed gas-film damping and bending induced stress in the 

original PDEs described by Equations (7.1)-(7.3) and cannot be expressed directly in 

the generalized coordinates or modal coordinates. 

Equation (7.8), the first of Equation (7.9) and Equation (7.10) for all the components 

of the system in terms of component generalized coordinates 1w
ia , 2w

ia and 3w
ia  can be 

rewritten as 

0  =++ faKaM &&  (7.18)
 
where the generalized coordinates and the forces for the components are grouped as 
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and the matrixes in Equation (7.18) have the form 
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Physically, Equation (7.18) can be interpreted as a set of equations of motion for the 

group of components not connected together.  Using the concept of the classical 

component mode synthesis (CMS) as described by Hurty (1965), the process of 

connecting these results in a set of constraint equations between the elements of the 

generalized coordinate vector a .  If there are m  elements in vector a  and k  constraint 

equations relating them, the number of independent generalized coordinates in a vector 

q  for the system is kmn −= .  Hence there exists a transformation which relates the 

vector a  to q  as follows 

  1 1
 

×××
=

nnmm
qCa  (7.21)

 
The construction of transformation matrix C  requires the knowledge of constraints 

imposed on all components by the system of connections.  For the system shown in 

Figure 7.1, there are four continuity conditions each at the interfaces of microbeams 1 

and 2 as well as microbeams 2 and 3.  These continuity conditions are the contraints 

which require that the deflection, slope, bending moment and shear force are 

continuous across the interfaces.  Thus, at the interface between microbeams 1 and 2, 
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At the interface between microbeams 2 and 3, it follows that 
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Using standard central finite difference to approximate the derivatives in Equations 

(7.22)-(7.29) requires the KLMs value at imaginary nodes as shown in Figure 7.2 and 

Figure 7.3. 

The matrix C  is of the order nm ×  where 8−=−=> mkmnm .  Substituting for a  of 

Equation (7.18) in terms of q  from Equation (7.21) and premultiplying by the 

transpose TC , Equation (7.18) can be rewritten as 

0=++ fCKCqCqMCC TTT &&  (7.30)
 
Comparing Equations (7.18) and (7.30), the size of the system is reduced from mm ×  

to nn ×  in addition to the model order reduction techniques performed in the previous 

KLD procedure. 

Grouping Equation (7.30) and the second of Equation (7.9), the low-order model or 

macromodel is obtained in terms of ODEs for the idealised complex MEMS device of 

Figure 7.1 
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Sovling for q  and pa , the complete structural system dynamic response is obtained.  

Making use of Equations (7.19) and (7.21), the component dynamic responses, 

expressed in Equations (7.5)-(7.7) are then determined. 
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7.1.4 NUMERICAL RESULTS AND DISCUSSION 

 

In order to validate the present macromodel generation method for structurally 

complex MEMS device dynamic simulation, a simulation of the MEMS device as 

shown in Figure 7.1 is carried out.  The material properties and geometric dimensions 

for the microbeams are listed in Table 7.1. 
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Figure 7.5 Comparison of the pull-in dynamics for an input step 
voltage of V 03 . 

 
Figure 7.5 shows a comparison of the deflection response of the microbeam at 

different time instants of 1, 10 and 18 sµ  between the macromodel approximation and 

the full FDM simulation of the original nonlinear PDEs (7.1)-(7.3) when the 

microbeam is subjected to an input step voltage of V 30 .  Figure 7.6 shows a 

comparison of the deflection response when the microbeam is subjected to an input 

step voltage of V 50 .  The KLMs for each component are generated for deflection and 

back pressure based on a finite difference code for an input step voltage of V 52 , 

which is beyond the minimum pull-in voltage of V 3.61 .  The number of 25 snapshots, 

which is able to capture sufficient accuracy in KLMs and KLVs generation based on 
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numerical experiments, are taken at a fixed time interval from the moment when input 

step voltage is applied until the pull-in occurs.   
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Figure 7.6 Comparison of the pull-in dynamics for an input step 
voltage of V 50 . 

 
Four deflection KLMs for microbeams 1 and 3 ( 431 == II  in Equations (7.5) and 

(7.7)) and three deflection  KLMs for microbeam 2 ( 32 =I  in Equation (7.6), thus 

11321 =++= IIIm  in Equation (7.21)) as well as three back pressure KLMs for 

microbeam 2 ( 32 =J  in Equation (7.6)) are used.  Numerical results show that 11=m  

could deliver sufficient accuracy for macromodel simulation and it is also the 

minimum number of the total deflection KLMs for simulation since there are eight 

constraint equations needed to be satisfied.  At least one independent component 

generalized coordinate corresponding to deflection KLM from each component is 

required in Equations (7.19), (7.21) and (7.22)-(7.29).  Table 7.2 indicates that each 

four ( 431 == II ) deflection KLMs for microbeams 1 and 3, and 3 ( 32 =I ) deflection 

KLMs for microbeam 2 can capture almost 100% of the system characteristics or 

energy.  Based on numerical experiments and previous expirences which have been 

described and explained in Chapters 3, if the accumulative normalized KLVs can 
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capture 99.99% of the system energy (Equation (3.64)), then the low order models 

which are generated using these KLMs will represent the original system almost 

exactly.  It is shown in Table 7.3 that it needs at lease three back pressure KLMs to 

capture this 99.99% energy level in the back pressure simulation.  Figure 7.7 shows the 

error between the macromodel and FDM simulations for the midponit of microbeam 2, 

where the error is defined as 

( ) ( )
 %100

,,
error

0

FDM,2MM,2 ×
−

=
w

txwtxw cc  (7.32)

 
here MM,2w  denotes the midpoint deflection of the microbeam 2 from the macromodel, 

and FDM,2w   denotes the finite difference solution of the original nonlinear PDEs (7.1)-

(7.3).  It is noted that the error is very small (≤0.3%) when 431 == II , 32 =I  and 

32 =J .  Figure 7.6 also indicates that flexibility of the macromodel to simulate an 

input step voltage of V 50  which is far away from the voltage of V 52  used to 

generate the KLMs and the accuray of macromodel simulation with respect to FDM is 

better than 0.8% as shown in Figure 7.7. 
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Figure 7.7 Error in midpoint deflection of microbeam 2 from 
macromodel simulations with respect to FDM results for 
input step voltages of V 30  and V 50 . 
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Figure 7.8 Comparison of pull-in dynamics for an input sinusoidal 
voltage of V 30  at a frequency of kHz 02 . 
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Figure 7.9 Error in midpoint deflection of microbeam 2 from 
macromodel simulation with respect to FDM results for an 
input sinusoidal voltage of V 03  at a frequency of kHz 02 . 

 
It is noted that KLD has additional distinctive advantage.  In most cases, the KLMs 

obtained from KLD for a set of system parameters and inputs can be used to represent 

of the system whose parameters and inputs are slightly different from the original 

system without regenerating the KLMs.  This is important because a primary 

motivation for the development of macromodel techniques for MEMS devices is that a 
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single macromodel maybe used to run many simulations without having to reconstruct 

KLMs should some parameters or inputs change in the system design and optimization 

stages.  A few numerical experiment studies have validated this advantage in the 

application of KLD for low-order models for the mechanical structural systems (Azeez 

and Vakakis, 2001).  To test this in the present study, the same macromodel described 

above, which is generated using the KLMs from an input step voltage of V 52  applied 

on the complex MEMS device with geometric dimensions and mechanical properties 

listed in Table 7.1, is used to simulate the system responses to an input sinusoidal 

voltage with a magnitude of V 03  at a frequency of 20 kHz.  The length of microbeam 

3 is also modified to =3L 170 mµ  from the original length of =3L 160 mµ .  The 

results plotted in Figure 7.8 shows that, at different time instants of 1, 20 and 40 sµ , 

the macromodel simulation employing 431 == II , 32 =I  and 32 =J  can capture the 

system dynamics accurately and the error shown in Figure 7.9 for midpoint deflection 

of the microbeam 2 is very small (≤0.73%) compared with FDM solutions.  The results 

demonstrate that the macromodel is flexible to simulate the system response well with 

different input voltage spectra and some parameter modifications without regenerating 

the KLMs.  In order to understand this macromdel flexibility characteristics 

qualitatively, the KLMs for the system with this input sinusoidal voltage and the 

modified length of microbeam 3 are extracted independently following KLD 

procedure, and compared with the KLMs extracted for the original system with input 

step voltage and original length of microbeam 3.   

The comparisons of the first and the second deflection KLMs for each microbeam 

plotted in Figure 7.10 and Figure 7.11 show that the mode shape difference between 

these two different input voltages and lengths of microbeam are neglegible.   



CHAPTER 7  163 
 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-2 2 6 10 14 18 22 26 30 34 38 42 46
Nodal points along the length of microbeams

D
ef

le
ct

io
n 

K
LM

s

input step voltage V =25, L 3=160µm

°

microbeam 1

microbeam 2

microbeam 3

input sinusoidal voltage V =30sin(2•20 000π t), L 3=170µm

 
 

Figure 7.10 Comparison of the first KLM for deflection of microbeams with 
different input voltage spectrum and length of microbeam 3. 
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Figure 7.11 Comparison of the second KLM for deflection of microbeams 
with different input voltage spectrum and length of microbeam 3. 
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Figure 7.12 Comparison of first three KLMs for back pressure of microbeam 2 
with different input voltage spectrum and length of microbeam 3. 

 
Figure 7.12 shows the comparison for the first three back pressure KLMs for 

microbeam 2 between these two system configurations.  It is shown in Figure 7.12 that 

the first two back pressure KLMs are almost identical while there is some noticeable 

difference betweem the third KLM, but this difference does not cause significant 

accuracy drop in the macromodel simulation as indicated in Figure 7.8 and Figure 7.9 

due to the system energy lever captured by the third KLM (0.03% as indicated in Table 

7.3) is much lower that those captured by the first (96.77%) KLM and the second 

KLM (3.2%) which are obviously the dominant modes.  Again, the above observations 

are based on the qualitatively numerical experimental results, the accuracy limits on 

quantitatively measure or scaling of parameter changes, over the parameter space in 

which the KLMs can still be used, needs to be studied further.  For the present system 

as shown in Figure 7.1, one issue is also raised on what are the advantages to separate 

the microbeams into each individual component and obtain the KLMs and KLVs 

locally for each component compared with treating the original system as a single 

beam structure and obtain its KLMs and KLVs globally.  Except for the above-

mentioned advantages, that KLMs for each component can be treated as component 
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modes in the CMS procedure for complex structure order reduction (Equation (7.21)), 

numerically.  If the problems encountered are with large data sets consisting of 

irregularly distributed points with high dimensions, the local methods for such data 

sets are more appealing to achieve improved order reduction when compared with 

global methods.  Moreover, quite often the local modelling can be computed in parallel 

so as to enhance the computation efficiency.  Here, the proceeding process of 

extraction KLMs for each component is similar to address local approaches for 

representing large data set.  This approach is referred as Local Karhunen-Loève 

Decomposition in Kirby (2001).  The local approach to extract the KLMs and KLVs 

for each component is also appealing for the system with complex geometry such as a 

micro-mirror that is designed as a square plate with four clamped-guided parallel 

microbeams along each side of the plate (Min and Kim, 1999) since it is 

computationally inefficient to treat this system as a single structure to obtain the global 

KLMs and KLVs for model order reduction.  As an example of comparison, Figure 

7.13 plots the system pull-in dynamics results for an input step voltage of V 30  

simulated by the macromodel using two global deflection KLMs, and three global 

back pressure KLMs obtained by treating the system as single structure for an input 

step voltage of V 25  with material properties and geometric dimensions of microbeam 

listed in Table 7.1.  Both numbers of KLMs used in macromodel capture more than 

99.99% of the system energy.  The error between the macromodel and FDM 

simulations for the midpoint of microbeam 2 plotted in Figure 7.14 shows that its 

simulation accuracy (max error at 0.65%) is lower than the results (max error at 0.3% 

as shown in Figure 7.7) simulated by macromodel using the local KLMs by treating 

the system as separate components.   
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Figure 7.13 Comparison of the pull-in dynamics for an input step voltage 
of V 30  when treating the system as a single structure. 

 
The computation efficiency comparison run on Silicon Graphics Origin 2000 indicates 

that it takes 106.82 min to generate global KLMs and KLVs for an input step voltage 

of V 25  and 3.57 min for macromodel simulation of system pull-in dynamics for an 

input step voltage of V 30  by treating the system as a single structure.  However, it 

takes only 77.65 min to generate local KLMs and KLVs and 3.65 min for macromodel 

simulation for the same system by treating the system as an assemblage of separate 

components.  Although the computation efficiency for both macromodel simulations is 

almost the same, the results demonstrate that it is more efficient to generate the KLMs 

and KLVs locally for each component than globally for the whole system if the whole 

system is treated as a single structure. 
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Figure 7.14 Error in midpoint deflection of microbeam 2 from 
macromodel simulation with respect to FDM results for an 
input step voltage of V 30  when treating the system as a 
single structure. 

 
 

7.2 MACROMODEL FOR A MICRO-MIRROR DEVICE 

 

7.2.1 MODEL DESCRIPTION 

 

A structural complex structure designed as micro-mirror for the optical phase 

modulation (Min and Kim, 1999) or lightwave switching is shown in Figure 7.15.  It 

consists of a square micro-mirror plate and four suspension microbeams.  This 

structure has also been applied as micro-accelerometer (Gianchandani and Crary, 

1998) and voltage-controlled oscillator for frequency tuning (Young and Boser, 1997) 

due to its excellent high frequency quality and potential large bandwidth.  Using the 

techniques developed above, macromodel for dynamic simulation of this MEMS 

device is presented in this section.  The device is modelled as a rigid mirror plate with 

four clamped-guided parallel microbeams along each side of the plate.  The input 

voltages are applied between each component and the substrate, respectively, and the 
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squeezed gas-film damping effect is considered between the mirror and the substrate 

but neglected on four relatively narrow microbeams.  Similar to the preceding section, 

the microbeam is modelled by Euler beam, and the squeezed gas-film damping is 

governed by nonlinear Reynold’s equation.  Assuming that the rigid mirror plate 

undergoes only three motions, these are, the translational movement in the vertical Z  

direction and the rotations about the global axes X  and Y  which are fixed and 

coincide with the principal axes centred at the centre of mass of the rigid plate C  at the 

initial state. 
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Figure 7.15 A micro-mirror structure. 
 

Figure 7.16 illustrates the coordinate for mirror plate rotations around X  and Y  axes.  

In this case of space-fixed rotations, the new coordinate measured in 111 zyx  after the 

rotation around X  axis by Xθ  is given as (Ginsberg, 1995) 
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Figure 7.16 Mirror plate rotations. 
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where XR  is the transfer matrix.  Similarly, the new coordinate after the rotation 

around Y  axis by Yθ  is expressed as  
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If the mirror undergoes a sequence of rotations of Xθ  followed by Yθ , the 

transformation from XYZ  to the final xyz  components is obtained as 
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Similarly, a sequence of rotations of Yθ  followed by Xθ  would lead to  
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For simplicity without losing generality, consideration of the small magnitude of the 

angles of rotation in this structure leads to the following approximations 

yyyxxx θθθθθθ ≈≈≈≈ sin  ,1cos  and  sin  ,1cos  (7.37)
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Neglecting the higher order terms, Equation (7.35) is simplified as  
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Similarly, Equation (7.36) becomes 
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Figure 7.17 Mirror plate position after vertical translational movement 
and two rotations. 

 
Comparing Equation (7.38) with (7.39), it is noted that the transfer matrix R  for both 

sequences of rotations are the same.  In order words, the final position of the mirror 

plate after rotations does not depend on the sequence of rotations.  The distance 

between a point S  on the mirror plate and the substrate as shown in Figure 7.17 is 

approximated as 

XYC yxZZ θθ +−=  (7.40)
 
where CZ  is the tanslational movement of the center of mass of the mirror plate which 

is 0w  initially. 
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The governing equations for the four microbeams and plate are expressed as follows 

i) for microbeams 

( )4 ,3 ,2 ,1  ,0        ,
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where E  is Young’s modulus, 123
iii hbI =  is the second moment of area where ib  is 

the width and ih  is the thickness of the microbeam i , iρ  is the density, iξ  is the local 

variable along the length of microbeam as shown in Figure 7.15, ( )tw ii ,ξ  is the height 

of the microbeam above the substrate, iV  is the applied voltage between microbeam i  

and substrate, 0ε  is the permittivity of free space and )( iii hbT  is the sum of residual 

stress irt ,  and the bending induced stress ibt ,  due to large deflection which can be 

expressed as 
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where L  is the length of the microbeam. 

ii) for micro-mirror plate 

CZ ZmF &&=∑  (7.43)
 

XXXX IM θ&&=∑  (7.44)
 

YYYY IM θ&&=∑  (7.45)
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where ∑ ZF  denotes the sum of external forces acting on the rigid mirror plate in Z  

direction, CZ  is the tanslational movement of the center of mass of the plate, m  is the 

mass of the plate, ∑ XM  and ∑ YM  represent the sum of the moments of the external 
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forces, XXI  and YYI  are the second moment of area, and Xθ  and Yθ  are the angles of 

rotation about the axes X  and Y  whose original is the centre of mass of the plate, µ  

is the air viscosity, ( )tyxZ ,,  is the height of the mirror plate above the substrate 

expressed by Equation (7.40), ( )tyxp ,,  is the back pressure force acting on plate due 

to the squeezed gas-film damping in which an isothermal process is assumed, ap  is the 

ambient pressure. 

The electrostatic and back pressure forces and their moments exerted on the plate can 

be expressed in detail as follows 
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and 
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( )( )∫ −−=
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P
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pV  is the applied voltage between mirror plate and substrate.  Substituting Equations 

(7.47)-(7.52) into Equations (7.43)-(7.46), the equations of motion for the mirror plate 

can be rewritten as 

0
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( ) 0
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where  
 

0wZZ CC −=  (7.56)
 
and iQ  and iM  are the mechanical restoring shear forces and moments exerted by the 

microbeams on the mirror plate. 

 

7.2.2 KARHUNEN-LOÈVE MODES FOR COMPONENTS 

 

FDM is used to simulate the system dynamic responses described by Equations (7.41) 

and (7.43)-(7.46), when the system is subjected to an ensemble of applied voltages.  It 

generates the ensemble of 25 snapshots taken at fixed time step from the beginning till 

pull-in for KLD to extract the KLMs and KLVs for each component.  The microbeams 

are considered to have clamped-guided ends with the following boundary conditions. 
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The properties and geometric dimensions of the micro-mirror structure are listed in 

Table 7.4.  Similarly, a mesh size of 40×1 for microbeams 1 to 4, and 40×40 for plate 

in the FDM simulations of the original non-linear PDEs (7.41) and (7.43)-(7.46) are 

able to generate sufficient accuracy.  Following KLD procedure, the KLMs and the 

corresponding KLVs for each component are obtained. 
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Table 7.4 Properties and geometric dimensions of microbeams 
and mirror plate. 

 
 

 
 
Microbeam i  

Young’s 
modulus 

E  
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Density 
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Microbeam i  
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Thickness 
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(µm) 
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Width 
ib   

(µm) 
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7.2.3 COMPONENT MODE SYNTHESIS AND MACROMODEL 

GENERATION 

 

Once the KLMs for each component are obtained, the flexural deflection of the 

microbeams and the back pressure due to the squeezed gas-film damping effect can be 

represented as a linear combination of the KLMs as follows 
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Here 0w  is the initial gap between the microbeams and the substrate, iw

jφ  is the 

deflection KLMs for microbeams 1, 2, 3 and 4, respectively, p
jφ  is the back pressure 
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KLMs for mirror plate, iI  is the number of deflection KLMs, and J  is the number of 

back pressure KLMs employed in the macromodel, iw
ja  and p

ja  are the amplitudes of 

the KLMs and are also the component generalized coordinates in modal 

decomposition.  Substituting Equations (7.59) and (7.60) into the governing equations 

(7.41) and (7.46) and applying the Galerkin procedure by using the above KLMs as the 

basis functions, the following ordinary differential equations are obtained in terms of 

the component generalized coordinates of iw
ja  and p

ja ; 
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where iwa  and pa  are the vectors whose elements 1w

ja , 2w
ja , 3w

ja , 4w
ja  and p

ja  are to 

be determined.  The elements in matrix w
iM  can be obtained once the KLMs for each 

component are known, the elements in matrixes w
iK , pH  and pS  and vectors w

if , pc  

are expressed as follows 
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and  
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Substituting Equations (7.59) and (7.60) into Equations (7.53)-(7.55), the equations of 

motion for the mirror plate can be rewritten as 

0 =+ ppp www faM &&  (7.69)
 
where pwa  is the vector for the unknown tanslational movement and angles of 

rotation of the mirror plate 
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pwf  is the vector of generalized forces, and matrix pwM  is given as 
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Grouping Equations (7.61) and (7.69) gives the equations of motion for the group of 

components which are not connected together 

0  =++ faKaM &&  (7.72)
 
where the generalized coordinates and the generalized forces for the components are 

grouped as 
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The matrices are given as follows 
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For the system shown in Figure 7.15, the deflection continuity condition at the 

interface of each microbeam and the mirror plate forms four constraint equations as 

follows 

( ) ( )   plate and 1 microbeam of interfaceat    ,
22
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( ) ( )   plate and 2 microbeam of interfaceat    ,
22
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( ) ( )   plate and 3 microbeam of interfaceat    ,
22
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( ) ( )   plate and 4 microbeam of interfaceat    ,
22
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Following the procedure of the classical component mode synthesis, the 

transfromation matrix C  with dimensions of nm ×  is obtained.  Here m  is the number 

of elements in vector a  and 4−= mn  is the number of independent generalized 

coordinates in vector q .  Substituting for a  in terms of q  through transformation 

matrix and premultiplying by the transpose TC , Equation (7.72) is rewritten as 

0=++ fCKCqCqMCC TTT &&  (7.79)
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Grouping Equation (7.79) and Equation (7.62), the macromodel is formed in terms of 

ODEs 
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After solving for q  and pa , the complete structural system dynamic response is 

obtained.  The component dynamic responses expressed in Equations (7.59) and (7.60) 

can also be determined by making use of Equations (7.21) and (7.73). 

 

7.2.4 NUMERICAL RESULTS AND DISCUSSION 

 

The following two combinations of applied voltages resulting in two types of structural 

dynamical responses are considered. 

i) Applied equal voltage between each microbeam and substrate 

In this case, the input voltage applied on each microbeam and the substrate is equal, 

i.e.   

4321 VVVV ===  (7.81)
 
In this case the mirror undergoes vertical translational movement only.  The device is 

used as an optical phase modulator in Min and Kim (1999) under such combination of 

input voltages.  Figure 7.18 plots the first three normalized deflection KLMs for 

microbeams 1-4 when the microbeams and mirror are subjected to an input step 

voltage of V 06 .  Figure 7.19-Figure 7.21 show the first three normalized back 

pressure KLMs for mirror plate.  Table 7.5 and Table 7.6 list the normalized KLVs and 

accumulative normalized KLVs with respect to the number of deflection and back 

pressure KLMs for each component.   
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Figure 7.18 First three KLMs for deflection of microbeams 1, 2, 3 and 4. 
 

Table 7.5 Normalized accumulative KLVs corresponding 
to the number of deflection KLMs. 

 
Microbeams 1, 2, 3 and 4  

 
 
Number 

of 
KLMs 

 
Normalized 

KLVs 

∑
=

=
N

i
iii

1
  λλλ

 

Accumulative 
normalized 

KLVs 

∑
=

=
i

i

N

i
iNS

1
 λ  

1 1λ = 0.9999977296 1S = 0.9999977296 

2 2λ = 0.0000021273 2S = 0.9999998569 

3 
3λ = 0.0000001379 3S = 0.9999999948 

4 4λ = 0.0000000052 4S = 1.0000000000 

 
Table 7.6 Normalized accumulative KLVs corresponding 

to the number of back pressure KLMs. 
 
Mirror plate  

 
 

Number 
of 

KLMs 

 
Normalized 

KLVs 

∑
=

=
N

i
iii

1
  λλλ

 

Accumulative 
normalized 

KLVs 

∑
=

=
i

i

N

i
iNS

1
 λ  

1 
1λ = 0.9984900488 1S = 0.9984900488 

2 2λ = 0.0015042097 2S = 0.9999942585 

3 3λ = 0.0000056977 3S = 0.9999999562 

4 
4λ = 0.0000000257 4S = 0.9999999819 
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Figure 7.19 The first KLM for back pressure of mirror plate. 
 

 
 

Figure 7.20 The second KLM for back pressure of mirror plate. 
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Figure 7.21 The third KLM for back pressure of mirror plate. 
 
Figure 7.22 illustrates the comparison of the deflection response of the microbeam at 

1, 15 and 34 sµ  (pull-in) between the macromodel approximation and the full FDM 

simulations of the original nonlinear PDEs (7.41)-(7.46) when the microbeams and 

mirror plate are subjected to an input step voltage of V 50 .  Two deflection KLMs for 

each microbeam ( 24321 ==== IIII  in Equations (7.59) and two back pressure 

KLMs for mirror plate ( 2=J  in Equation (7.60)) are used in the macromodel 

simulation.  Similarly, numerical experiment results indicate that 11342 =+×=m , 

where 3  refers to the number of one translation mode and two angles of rotation 

modes of the mirror, can deliver sufficient accuracy for macromodel simulation and it 

is also the minimum number of the total deflection KLMs for simulation since there 

are four constraint equations to be satisfied and at least one independent component 

generalized coordinate corresponding to deflection KLM from each component is 

required in Equations (7.21), (7.73) and (7.75)-(7.78).   
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Figure 7.22 Comparison of pull-in dynamics of microbeams 1-4 for input 
step voltages of 1V = 2V = 3V = 4V = pV = V 50 . 

 
Table 7.5 indicates that two deflection KLMs for microbeams 1-4 can capture more 

than 99.99% of the system characteristics or energy.  It is shown in Table 7.6 that two 

back pressure KLMs can also capture up to 99.99% energy level in the back pressure 

simulation.  Figure 7.23 shows the error between the macromodel and FDM 

simulations for the end ponit of microbeam, where the error is defined as 

( ) ( ) ( )4 3, 2, 1,    , %100
,,

error
0

FDM,MM, =×
−

= i
w

tLwtLw ii . (7.82)

 
MM,iw  denotes the end point deflection of the microbeam from the macromodel, and 

FDM,iw   denotes the finite difference solution of the original nonlinear PDEs.  It is clear 

that the error is very small (≤0.67%) when 24321 ==== IIII  and 2=J .  

Computation effciciency study making use of Silicon Graphics Origin 2000 indicates 

that it needs 105.43 min to obtain the pull-in time for the system from FDM simulaton 

of the original PDEs, however, it takes only 1.19 min to simulate the same dynamics 

by macromodel.  Although an initial effort of 41.87 min is needed to extract the KLMs 
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and KLVs, the macromodel can achieve a 88.6 fold improvement in speed compared 

with full model FDM simulation while capturing the system accurately. 
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Figure 7.23 Error in end point deflection of microbeams 1-4 from 
macromodel simulation with respect to FDM results for input 
step voltages of 1V = 2V = 3V = 4V = pV = V 50 . 

 
ii) Applied equal voltage between a pair of microbeams and the substrate 

In this combination, the input voltage applied on one pair of adjacent microbeams and 

the substrate is equal but differs from the other pairs.  Assuming that the applied 

voltages applied on two pairs of microbeams are 

31

4321     ,

VV

VVVV

≠

==
 (7.83)

 
The mirror plate would undergo translational movement and rotational motion around 

X  under this combination of applied voltages.  Figure 7.24 and Figure 7.25 illustrate 

the first three normalized deflection KLMs for microbeams 1, 2 and 3, 4, respectively, 

with a combination of input step voltages of V 09  applied on the pair of microbeams 1 

and 2, and V 06  on pair of microbeams 3 and 4 as well as the mirror plate.  Figure 

7.26-Figure 7.28 plot the first three normalized back pressure KLMs for mirror plate.  
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The normalized KLVs and accumulative normalized KLVs with respect to the number 

of deflection and back pressure KLMs for each component are given in Table 7.7 and 

Table 7.8.   

Table 7.7 Normalized accumulative KLVs corresponding to the number of 
deflection KLMs. 

 
Microbeams 1, 2 Microbeams 3, 4  
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N

i
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1
 λ  

1 
1λ = 0.9999768526 1S = 0.9999977296 1λ = 0.9999863737 1S = 0.9999863737 

2 
2λ = 0.0000229729 2S = 0.9999998255 2λ = 0.0000135616 2S = 0.9999999353 

3 3λ = 0.0000000967 3S = 0.9999999222 3λ = 0.0000000560 3S = 0.9999999913 

4 
4λ = 0.0000000318 4S = 0.9999999540 4λ = 0.0000000044 4S = 0.9999999957 

 
Table 7.8 Normalized accumulative KLVs corresponding 

to the number of back pressure KLMs. 
 
Mirror plate  
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Normalized 

KLVs 
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=
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i
iii

1
  λλλ

 

Accumulative 
normalized 

KLVs 

∑
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=
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N

i
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1
 λ  

1 1λ = 0.9487936663 1S = 0.9487936663 

2 
2λ = 0.0503111010 2S = 0.9991047673 

3 3λ = 0.0008851364 3S = 0.9999899037 

4 4λ = 0.0000089365 4S = 0.9999988402 
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Figure 7.24 First three KLMs for deflection of microbeams 1 and 2. 
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Figure 7.25 First three KLMs for deflection of microbeams 3 and 4. 
 
With a combination of input step voltages of 1V = 2V = V 80 , 3V = 4V = pV = V 60 .  The 

dynamic response of the microbeam obtained by the macromodel approximation at 1, 

5 and 14 sµ  and the full FDM simulations of the original nonlinear PDEs is plotted in 

Figure 7.29.  Figure 7.30 shows the comparison of deflection response for microbeams 

3 and 4.  Two deflection KLMs each for microbeams 1-4 are used but three back 

pressure KLMs for mirror plate ( 3=J  in Equation (7.60)) are employed in the 

macromodel simulation.  This is because it needs at least three back pressure KLMs to 
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capture 99.99% of the energy as indicated in Table 7.8.  The dynamic response for the 

angle of rotation of mirror plate about the X  axis simulated by macromodel and FDM 

is shown in Figure 7.31, the error in angle from macromodel simulation compared with 

FDM results is plotted in Figure 7.32, where the error is defined as 

 %100error
FDM,

FDM,MM, ×
−

=
X

XX

θ
θθ

. (7.84)

 
MM,Xθ  is the angle of rotation from the macromodel simulation, FDM,Xθ  is from FDM 

solution.  Figure 7.32 shows that the error is oscillatory and tends to increase with time 

due to the relatively less accurate approximation near pull-in. 

 
 

Figure 7.26 The first KLM for back pressure of mirror plate. 
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Figure 7.27 The second KLM for back pressure of mirror plate. 
 

 
 

Figure 7.28 The third KLM for back pressure of mirror plate. 
 

The calculation of computational efficiency of macromodel simulation indicates that it 

needs 25.34 min to obtain the pull-in time for the system from FDM simulaton of the 

original PDEs, while it takes only 1.41 min to simulate the same dynamics using 

macromodel.  Initial overhead of 31.04 min is needed to extract the KLMs and KLVs 

in KLD procedure.  Hence the macromodel can achieve 17.97 times faster in 
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simulation compared with full model FDM solutions in this pattern of micromirror 

dymanics. 
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Figure 7.29 Comparison of pull-in dynamics of microbeams 1 and 2 
for the combination of input step voltages of 

1V = 2V = V 80 , 3V = 4V = pV = V 60 . 
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Figure 7.30 Comparison of pull-in dynamics of microbeams 3 and 4 
for the combination of input step voltages of 

1V = 2V = V 80 , 3V = 4V = pV = V 60 . 
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Figure 7.31 Comparison of angle of rotation of mirror plate for the 
combination of input step voltages of 1V = 2V = V 80 , 

3V = 4V = pV = V 60 . 
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Figure 7.32 Error in angle of rotation of mirror plate from 
macromodel simulation with respect to FDM results for 
the combination of input step voltages of 1V = 2V = V 80 , 

3V = 4V = pV = V 60 . 
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7.3 CONCLUSION 

 

A new approach of model order reduction by combination KLD and CMS for dynamic 

simulation of complex MEMS device has been presented in this chapter.  It has 

demonstrated that it is efficient to divide the structurally complex MEMS device into 

substructures or components to obtain the KLMs as “component modes” for each 

individual component in the modal decomposition process.  Using the CMS technique, 

the original nonlinear PDEs can be represented by a macromodel with a smaller 

number of degrees-of-freedom, and the macromodel can perform the simulation for the 

complete system accurately.  As an indication of computational efficiency, when 

Silicon Graphics Origin 2000 is used, it takes 82.40 mins to obtain the pull-in time for 

the system in Figure 7.1 from FDM simulation of original nonlinear PDEs whilst it 

needs only 3.65 mins to simulate the same pull-in dynamics by using the macromodel.  

Although it needs an initial process of 77.65 mins for extraction of KLMs and KLVs 

for each component in KLD procedure, numerical experimental results demonstrate 

that the macromodel is flexible to achieve good simulation accuracy without 

regenerating KLMs for different input voltage spectra and some dimension changes in 

a particular component provided the changes do not affect the structural behaviour of 

that component.  The present way of macromodel generation provides an efficient tool 

for structurally complex MEMS device dynamic analysis.  
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CONCLUDINS 

 

8.1 CONCLUSIONS  

 

For quasi-static simulation of MEMS devices, the approximate solutions for the 

nonlinear differential equations through the use of variational principle and Rayleigh-

Ritz method can provide an accurate and efficient tool for electrostatic actuators 

simulation and analysis.  It has demonstrated in Chapter 2 that, for a MEMS device 

idealized as doubly-clamped microbeam, the global admissible trial functions obtained 

from the deflection profile of the uniformly distributed load can be used to generate 

macromodels to simulate accurate static pull-in and electromechanical hysteresis 

comparable with those obtained from finite element method (FEM) and boundary 

element method (BEM)-based commercial CoSolve-EM and other numerical 

techniques, such as meshless and shooting methods. 

The model order reduction techniques used in the present work for dynamic simulation 

of the MEMS devices are based on the principle of proper orthogonal decomposition 

(POD) which consists of three equivalent methods, i.e., Karhunen-Loève 

decomposition (KLD), principal component analysis (PCA) and singular value 

decomposition (SVD).  Macromodels are generated by the Galerkin projection which 

employs the eigenfunctions (eigenvectors) extracted by POD as basis to convert the 

original PDEs to a set of ordinary differential equations (ODEs) with much smaller 

number of degrees-of-freedom.   
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Numerical experiment results obtained in Chapter 3 have demonstrated that the 

macromodels based on KLD are accurate, efficient and flexible in the representation of 

the original system compared with the results obtained from the full model based on 

finite difference method (FDM).  The macromodel simulation carried out in 

supercomputer, Silicon Graphics Original 2000, for dynamic pull-in response of a 

doubly-clamped microbeam shows that macromodel can achieve up to 11 times faster 

speed with less than 1.2% error in computation compared with FDM results.  

However, the nonlinear time-dependent terms presented in the macromodels cannot be 

expressed directly in the generalised coordinates or modal coordinates.  This leads to 

inefficient re-computation of these nonlinear terms at every time step during the 

numerical integration.  Moreover, in the macromodel flexibility aspect, the accuracy 

limits on quantitatively measure or scaling of parameter changes, over the parameter 

space in which the basis functions for macromodels can still be used without re-

generation, remains opens and needs to be studied further. 

Chapter 4 has demonstrated that neural network-based GHA algorithm for PCA has its 

computation advantages in extracting the basis functions, especially when the 

measured data as input signals are large.  It needs only to find very few basis functions 

obtained through a step by step network training rather than explicit computation of 

the correlation matrix of the input signals which has to be done in KLD and other 

existing PCA methods.  The shortcoming in GHA, however, is the lack of the 

indication on the least number of the basis needed in the macromodels in order to 

achieve sufficient accuracy comparable with KLD, in which the accumulative 

normalized Karhunen-Loève values (KLVs) provide the guideline for the required 

number of the Karhunen-Loève modes (KLMs) required in the macromodels.  Chapter 

4 also shows that the robust GHA algorithm provides a stable and robust tool in 
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extracting the basis functions for macromodel generation when noise is presented in 

the ensemble of data for PCA processing. 

The relationship and the equivalency between each of the three POD methods, KLD, 

PCA and SVD, are clearly described in Chapter 5.  When these three methods are used 

to handle discrete random vectors, the normalized optimal basis vectors obtained by 

each of them are identical.  It has also been shown that there also exist asymptotic 

relationships among the three methods.  This clears the ambiguity in the description of 

POD and the relationship between KLD, PCA and SVD in literature. 

In order to enhance the computation efficiency of macromodels based on POD, 

Chapter 6 demonstartes that if the applied input voltages are less than the minimum 

pull-in voltage, the pre-computation, in which the nonlinear terms in macromodels are 

expressed explicitly in the time-dependant generalized modal coordinates and their 

coefficients are pre-computed prior to numerical time integration once the basis for 

macromodel is obtained, can achieve much better computation efficiency.  However, 

the pre-computation method fails at the pull-in.  The technique of using cubic splines 

to interpolate the basis functions, and the Gaussian quadrature to scale down the spatial 

integration of the macromodels has the advantages of faster computation and being 

able to provide accurate results near or at the pull-in zone.  However, it is a tedious 

work which needs the numerical processes of the basis functions prior to macromodel 

simulations. 

A novel macromodel generation for dynamic simulations of structurally complex 

MEMS devices is presented in Chapter 7.  It demonstrates the computation efficiency 

of dividing the complex MEMS device into substructures or components to obtain the 

local KLMs as “component modes” for each individual component in the modal 

decomposition process.  Using the component mode synthesis (CMS) technique, the 



CHAPTER 8  194 
 

 

original nonlinear PDEs can be accurately represented by a macromodel with a smaller 

number of degrees-of-freedom.  The advantages of the local KLMs with CMS over the 

global KLMs, which are obtained when treating the complex system as a single 

structure, are discussed through the comparison of numerical results.  Obviously, if the 

structurally complex system is fully nonlinear, the macromodel generated by using the 

technique of local KLMs with CMS has lower number of computation and higher 

computation efficiency compared with macromodel generated by global KLMs.  

Numerical experiments carried out on a micro-switch and a micro-mirror have also 

validated that the macromodels are flexible to able to achieve good simulation 

accuracy without regenerating KLMs for the parameters change in the system.  

In conclusion, it can be said that the present model order reduction techniques, 

including the global admissible trial functions and the principle of minimum potential 

energy; proper orthogonal decomposition (POD), including Karhunen-Loève 

decomposition (KLD), principal component analysis (PCA), and the Galerkin 

procedure; KLD and classical component mode synthesis (CMS) in macromodel 

generations developed in this thesis have provided accurate, efficient and flexible 

solutions for simulating the quasi-static and dynamic behaviours of single and complex 

MEMS devices.  It is thus a viable and useful tool for use in design and optimization of 

the MEMS devices and systems. 

 

8.2 SCOPE FOR FUTURE RESEARCH  

 

This thesis provides the model order reduction techniques for fast simulations of 

MEMS devices and systems.  In MEMS community, much more work is necessary to 

create the viable macromodels that meet the needs of the system designers.  
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Macromodels considering the effects of electrostatic fringing fields and anchor 

compliance can improve the simulation accuracy for real world MEMS devices. 

As mentioned earlier in this chapter, macromodels generation based in POD have 

shown the flexibility qualitatively in numerical experiments, the parametric studies on 

the accuracy limits or scaling of the system parameter changes over the parameter 

space in which the same macromodels can still be used without re-generation of the 

basis functions needs to be explored further in future research.   

Eventually, it will be possible to automatically incorporate and insert the macromodels 

developed in this thesis into the existing system-level simulators for system designers 

to design and analyze the behaviours of MEMS devices and systems. 
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