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SUMMARY 
 

Beginning with a brief review of the literature about stress-induced leakage current 

(SILC), a study of the SILC in the dual-gate CMOSFET with 2.2 nm nitrided gate oxide 

has been presented, from the observation of the evolution of hole and electron current 

components. 

In the p+/pMOSFET, the hole component of the SILC dominates over the electron 

component, and such dominance is enhanced continuously during stress. A physical 

model, featuring two separate energy distributions of oxide traps and favoring hole 

tunneling in the p+/pMOSFET, is proposed to explain the observed evolution of hole 

current and electron current components. Oxide trap localization near the substrate 

valence band is probably responsible for the dominance of hole current. Such a localized 

trap distribution could be generated by hole injection into the gate oxide. The proposed 

physical model is consistent with the established TAT framework for SILC 

In the n+/nMOSFET, SILC is found to be dominated by the conduction-band 

electron tunneling, which is attributed to the trap-assisted tunneling (TAT) mechanism 

facilitated by a heavily one-sided stress-induced trap distribution, localized near the 

substrate conduction band edge. 

Degradation of the ultrathin gate oxide process can be well visualized by the 

generation and increase of SILC. Before oxide breakdown happens, both p+/pMOS and 

n+/nMOS demonstrated the partial recovery of degradation after the withdrawal of stress 

voltage but before the oxide breakdown. A solid correlation exists between degradation 

rate of the gate oxide and charge injection. The sharp decrease of SILC generation 
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probability at high charge injection indicates that neutral oxide trap generation tends to 

saturate at high stress level. 
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Chapter 1 
 
 
 
 
 

Introduction and Literature 
 
 
 
 
 
 
 
1.1 Gate Oxide Scaling and Reliability 
 

The quest for higher packaging density, faster circuit speed and lower power 

dissipation has been relentlessly driving complementary metal-oxide-semiconductor 

(CMOS) devices to ever smaller dimensions in the past three decades. For current ultra 

large scale integration (ULSI) applications, the state-of-art technology is 0.11 µm. It 

will soon advance to 90 nm or even 65 nm in the very near future. CMOS devices with 

even smaller channel lengths (50 nm and sub-50 nm) have been successfully fabricated 

in research laboratories [1] - [7]. According to the International Technology Roadmap 

for Semiconductor (ITRS), gate length scaling will continue in a two-year cycle until 

2007 [8], when the minimum feature size reaches 25 nm. 

The scaling of the gate length must be accompanied by a corresponding reduction in 

the gate oxide thickness [9] [10], in order for the gate voltage to maintain enough 

control over the channel, thus suppressing the 2-D short channel effects and 

maintaining a good subthreshold slope. During the past two decades, MOSFET scaling 

has been primarily, but not exactly, following the constant-field scaling scheme, 

proposed by Dennard et al. [11] [12]. For CMOS logic technology, gate oxide thickness 

decreases from 20 nm to 1.5 nm, when the gate length reduces from 1 µm to 100 nm, 

corresponding to a reduction in supply voltages from 5 V to 1.0 V. On the other hand, a 

reduced oxide thickness is also desirable for non-volatile memory devices, as the 

programming voltage could then be significantly reduced. 
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One of the key factors for the success of the MOS technology is the long list of ex-

traordinary thermal and electrical properties of SiO2 and its excellent scaling and 

process integration capabilities. However, SiO2 is not perfect and suffers from some 

reliability problems. In the conventional MOS devices, the thin oxide layer is subjected 

to a gate voltage of several volts, resulting in a high oxide field. Continuous scaling of 

the CMOS technology gradually increases this oxide field, since the operating voltage has 

been scaled down less aggressively. In state-of-art logic CMOS devices, the oxide field 

is about 6 MV/cm [13]. At such a high field, the oxide properties gradually degrade, 

constituting the much-studied time-dependent dielectric breakdown (TDDB) 

phenomenon. Even though it has been the subject of numerous studies in the past three 

decades [13] - [15], a complete understanding of oxide degradation is still lacking and 

its implications on the reliability of devices and circuits remain unclear. Among the 

many models presented to explain the degradation and breakdown of silicon dioxides 

under electrical stress, two were widely accepted. They are the Anode Hole Injection 

(AHI) model [16] and Anode Hydrogen Release (AHR) model [17]. Another widely 

cited model is the thermochemical model (or E-model) [18] [19]. Despite continuing 

controversy, at least the following agreements have been reached. First, there is a force, 

such as the voltage, electric field or and/or tunneling current that drives the degradation 

and breakdown of the silicon dioxide film. Second, defects, including interface traps, 

bulk oxide traps and trapped charges, are generated, resulting in additional increase in 

the leakage current. Third, there exists a vital criterion that characterizes the final oxide 

breakdown, e.g. the hole fluence in the AHI model and the critical defect density in the 

percolation model. 

When oxide thickness is scaled down to the nanometer regime, several new 

phenomena related to oxide reliability occur: Ballistic and direct tunneling [20], 

polarity-dependent oxide breakdown (including both time-to-breakdown (Tbd) and 

charge-to-breakdown (Qbd)) [21] - [23], decrease in the Weibull slope of the breakdown 

distribution [24] [25] and soft breakdown (SBD) [26] - [31]. These new phenomena add 

to the complexity of gate oxide reliability. 

For thick oxides (Tox > 5 nm), oxide breakdown is characterized by a sudden change 

in current or voltage during electrical stress, due to the formation of a highly conductive 

ohmic short between anode and cathode by the propagation of thermal damage (hard 
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breakdown, HBD). This conductive path has been verified to be localized. Usually, the 

HBD is followed by immediate device and circuit failure. However, for ultrathin oxides, 

another mode of oxide failure exists. This failure mode has been termed as soft, quasi, 

early, nondestructive, electric breakdown, or B-mode SILC, characterized by the 

creation of a more resistive breakdown path. The latter had been proposed as the 

dominant mode of failure for ultrathin gate oxides. However, the so-called soft 

breakdown (SBD) models have been challenged in recent years. Weir et al. [32] 

convincingly showed that devices remained functional even after soft breakdown of 

ultrathin gate dielectrics. Cheung reported that soft breakdown of the ultrathin gate 

oxide could probably be an experimental artifact induced by the inability of the device 

to eliminate the current surge at the moment of the formation of a percolation path 

[33]. Recently, a novel argument was proposed to account for a unique phenomenon: 

progressive degradation of ultrathin gate oxides. It was argued that ultrathin gate 

oxides actually would not breakdown (at least not in the manner of HBD or SBD), but 

will progressively degrade, as revealed by the progressive increase in the leakage 

current and/or current noise under constant voltage stress [34] - [36]. Wu et al. 

proposed a new Time-Dependent Dielectric Wearout (TDDW) technique to measure 

and characterize the degradation of ultrathin gate oxides [37]. 

Above all, downscaling of gate oxide thickness, has complicated, rather than 

simplified the gate oxide reliability issues. Established models are continuously 

challenged. A further understanding of the degradation process and mechanism of 

ultrathin gate oxides is greatly needed. 

 
 
 
1.2 Intrinsic Leakage Currents in Gate Oxides 
 

Current conduction in high-field-stressed oxides consists of two parts: Intrinsic 

part and stress-induced part. Depending on the oxide thickness and the magnitude of 

the electric field, one of these two mechanisms, Fowler-Nordheim Tunneling (FNT) 

and Direct Tunneling (DT), is responsible for the intrinsic leakage current. For oxides 

thicker than 30 Å, the intrinsic current can be well modeled as FNT. For thinner oxides, 

DT current dominates the intrinsic current. The difference of these two tunneling
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Figure 1.1: Illustration of two major tunneling mechanisms: (left) Fowler-Nordeim 
Tunneling and (right) Direct Tunneling. 

 
Figure 1.2: Intrinsic gate leakage current in dual-gate CMOSFETs with different oxide 
thickness. Measurement was done under inversion mode. The characteristics for both 
p+/pMOS (solid lines) and n+/nMOS (dashed lines) are shown. 
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mechanisms lies in the tunneling barriers involved, as shown in Figure 1.1. In FNT, 

the voltage across the oxide (Vox) is larger than the barrier height ( Bφ ), and electrons 

tunnel through a triangular energy barrier. The current density can be written as 
2

FN ox oxexp( / ).J A E B E≅ ⋅ ⋅ −  (1.1) 

where A and B are constants. The former is related to the doping density and oxide 

thickness, and the latter is related to the tunneling barrier height. Eox is the oxide elec-

tric field. 

For DT, however, BoxV φ<  and the energy barrier is trapezoidal. One 

representative model for DT taking into consideration of quantum mechanical effects 

is given as, 

3/ 2B ox

ox B B
DT FN

B ox ox

( )
2 1 ( ) exp( ).

2
( )

V
VJ J

V E

φβ
φ φ

φ

−

≅ ⋅ − ⋅ ⋅                         (1.2) 

The intrinsic gate leakage currents in dual-gate CMOSFETs with oxides of five 

different thicknesses are plotted in Figure 1.2. The transition from FNT current to DT 

current is clearly shown. For Tox = 3.1 nm and below, the gate leakage is primarily a DT 

current, while for Tox = 3.9 nm and Tox = 5.9 nm, the gate leakage is mainly FNT 

current. As the oxide thickness scales down, the leakage current increases 

dramatically; at the same time the gate current difference between n+/nMOSFET and 

p+/pMOSFET becomes smaller. The DT leakage thus imposes a critical limit on the 

further downscaling of silicon-dioxide-based ULSI devices. 

 

 

1.3 Stress-Induced Leakage Currents in Gate Oxides 
 
 

When a high electrical field is applied to the gate oxide, a number of phenomena 

related to the degradation of oxide properties occur: charge trapping, bulk trap 

generation, interface state generation and stress-induced leakage current (SILC) increase. 

These phenomena occur concurrently and may interact with one another. SILC is of 
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great importance among them. SILC was first reported by Maserjian and Zamani [38] 

[39]. Initially, it was defined as the excess low field leakage current induced by 

high-field stress. Physically speaking, SILC is the additional leakage current 

originating from stress-induced damage in the oxide and/or interfaces. Electrical stress 

induces charges and traps in the oxide and at the interface, and these defects modify the 

tunneling leakage current through the oxide. In practice, SILC is directly related to two 

important reliability issues: stand-by power dissipation of CMOS circuits and data 

retention time of non-volatile memory devices. Increased leakage current means more 

stand-by power dissipation for the former, while shorter data retention time for the 

latter [40]. Following the pioneering work of Maserjian and Zamani, an extensive 

research on SILC has been done. It has been widely accepted that carrier conduction in 

SILC is inelastic and defect-assisted. However, two major issues have been under 

debate for over two decades. First, what kinds of defects are involved (trap charges, 

bulk oxide traps, or interface states)? Second, how do they facilitate carrier conduction 

through the gate oxide? 

 

 

1.3.1. General Physical Characteristics of SILC 

 
A Classical Illustration of SILC 

 
A classical illustration of SILC is given in Figure 1.3 and Figure 1.4. The SILC 

characteristics are obtained from dual-gate CMOSFET devices with 5.9 nm oxide. In 

Figure 1.3, the two Jg-Vg curves are measured consecutively. In the first measurement, 

the voltage ramp was stopped at a high value. The SILC shows itself at low gate 

voltage in the second curve. This is due to oxide damage induced by the first 

measurement. A more common way to obtain SILC is to subject the device to a 

certain type of stress (such as constant current stress, constant voltage stress, ac stress, 

etc.) and to compare the pre- and post-stress Jg-Vg characteristics. Shown in Figure 1.4 

is a group of Jg-Vg curves similar to those in Figure 1.3, but in the former, the devices 

were subjected to a constant voltage stress (CVS). Note that in both figures, the 

post-stress gate current at high measurement voltage is actually lower than the
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Figure 1.3: SILCs in dual-gate CMOSFETs with 5.9 nm oxide. For each type of 
device, two Jg-Vg measurements are taken successively, and the excess leakage current 
appears in the second curve (dashed line). The gate voltage was gradually increased 
from 0 to as high as 9.0 V (−9.0 V) for n+/nMOSFET (p+/pMOSFET). 

 

Figure 1.4: SILCs in dual-gate CMOSFETs with 5.9 nm oxide. Jg-Vg measurements 
are taken before (solid lines) and after (dashed lines) constant voltage stress. The devices 
are the same as those of Figures 1. The n+/nMOSFET and p+/pMOSFET were 
stressed at +7 V and −8.5 V respectively, for 100 s.  
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pre-stress one. This is due to the fact that charge trapped in the oxide lowers the 

transmission coefficient of tunneling electrons at high voltage [41]. 

 

Transient SILCs vs. Steady-state SILCs 

SILC is strongly dependent on gate oxide thickness but is rather insensitive to 

process details. Basically, the components of SILC can be separated into two groups: 

Transient and steady-state. For oxides thicker than 7.5 nm, transient components tend 

to dominate the SILC, while steady-state components dominate in thinner oxides [42]. 

The transient SILC components have been shown to be composed of different 

sub-components with complex stress/measurement voltage dependence and polarity 

dependence [43] - [45]. Furthermore, one component can be revealed or concealed by 

different stress and measurement sequences, and is sensitive to voltage ramp rate [42] 

[46]. After stress, the current was observed to decay exponentially with time ( nJ t−∝ , 

with n ≈ 1) [43], [47] - [49]. This transient behavior originates from charge trapping 

and detrapping in the oxide [50]. Several models have been proposed to characterize 

the transient SILCs [51] - [53]. In ultrathin gate oxides, since charge trapping is 

significantly reduced, transient SILC is practically absent. 

 

Stress Time, Stress Fluence, Temperature and Oxide Thickness Dependence 

It has been frequently reported that stress-induced leakage current increases 

exponentially with stress time, i.e. -
SILC s

nJ t∝ . The tendency of saturation has been 

observed at long stress time or large injection fluence at low stress voltages, as well as 

in small-area devices [54] [55]. In the case of thin oxides, the stress fluence 

dependence of SILC is similar to the stress time dependence, since the injection 

charge can be well approximated by an initial injection current multiplied by stress 

time, i.e. inj 0 sQ J t⋅∼ .  

The temperature dependence of SILC has been shown to be similar to that for trap 

creation [56] [57]. SILC, as well as the SILC generation efficiency, increases as the 

temperature increases. 
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The oxide thickness dependence of SILC shows a “turn-around” effect. For a fixed 

stress fluence, SILC increases as oxide thickness decreases and peaks at Tox  ~50 Å. 

Thereafter, SILC decreases as oxide thickness decreases below 50 Å [58] [59]. This 

“turnaround” effect can be explained by the trap-assisted tunneling (TAT) framework 

[59] [60]. The turn-around effect may be attributed to the increasing significance of 

direct tunneling current over TAT current in thinner oxides. 

Impact of Nitridation on SILC 

By virtue of its ability to suppress boron penetration from the p+ gate, and to 

improve the hot-carrier reliability, the nitrided gate oxide is widely used in 

state-of-the-art CMOS technologies. The most popular nitridation method for 

high-quality gate oxide growth is Rapid Thermal Oxidation in an N2O ambient [61]. 

Apart from the well-known advantages that make nitrided oxide a more superior gate 

dielectric, it has also been reported that nitrided oxide exhibits a greater immunity to 

SILC generation, as compared to traditional silicon dioxide [62] - [64]. It is believed that 

the incorporated nitrogen decreases the trap generation rate and density of weak spots 

[63]. 

 

 

1.3.2. Major Physical Models of SILC 

 

As indicated in the previous sections, SILC is far more than a simple physical 

phenomenon. In the past two decades, a lot of experimental and theoretical research 

works have been carried out. Generally, four groups of SILC models can be found in 

the literature: Charge-Assisted Tunneling (CAT) model [39] [65] [66], 

Thermally-Assisted Tunneling (THAT) model [56], Trap-Assisted Tunneling (TAT) 

model  [42] [47] [57] [67], and Trap-Assisted Tunneling and Recombination model 

(TATR) [68] - [70]. The schematic diagrams in Figure 1.5 qualitatively illustrate these 

four mechanisms. In the CAT model, trapped holes modify the tunneling barrier profile, 

making it more favorable for electron tunneling. In the THAT model, excess leakage 

current originates from localized weak spots generated by high-field stress.
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Figure 1.5: Schematic diagrams illustrating four typical tunneling mechanisms that 
have proposed to explain the SILC. 
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In the TAT model, oxide traps act as the stepping-stones for excess carrier tunneling. 

While in the RAT model, the traps act as recombination centers. In this model, it is 

proposed that a surface channel p+/pMOS structure, holes in the inversion layer 

actually do not tunnel through the gate oxide; instead, they are captured by the traps in 

the gate oxide and subsequently recombine with electrons that tunnel from the gate. 

 

Charge-Assisted Tunneling 

The increase of leakage current at low voltage was initially attributed to the gen-

eration of positive charges in the oxide. This forms the basis of the charge-assisted 

tunneling (CAT) model, proposed by Maserjian and Zamani [38]. It is proposed that 

during FN stress, positive oxide charges are generated near the anode, due to the 

breaking of strained Si-O-Si bonds by hot electrons in the oxide. The trapped holes 

modify the tunneling barrier profile, thus increasing the electron tunneling efficiency. 

This model has not gained much support in the literature, even though it is compatible 

with the AHI model [65] [66]. Recently, the role of positive trapped charge in the 

stress-induced leakage current is reinvestigated by some groups [53] [71] [72]. It is 

claimed that the dominant SILC mechanism is Positive Charge-Assisted Tunneling 

(PCAT), and the transient effect of SILC can be successfully explained by reduction of 

PCAT current via positive charge detrapping. Furthermore, it has been found that when 

oxide thickness reduces from 100 Å to 53 Å, the dominant mechanism changes from 

PCAT to TAT, which will be discussed in detail later in this section. 

 

Thermal-Assisted Tunneling 

Olivo et al. [56] investigated the dependence of SILC on stress polarity, oxide 

thickness and measurement temperatures. The excess leakage is modeled as thermal 

activated electron tunneling through localized defect-related weak spots. This constitutes 

the so-called Thermally-Assisted Tunneling (THAT) model. Furthermore, it is shown 

that the observed excess leakage can be well described by an FNT-like tunneling 

current through a heavily reduced barrier height (~0.9 eV) over a wide range of temper-

atures. Their work has great impact on those of other groups, even though the so-called 

THAT model for SILC has been abandoned by most groups nowadays. Further 

research found that the heavily reduced tunneling barrier height is characteristic of 
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SILC [58]. One example is shown in Figure 1.6, where both virgin gate current and 

SILC are replotted based on the FNT model, i.e. 2
oxlog( / )J E  vs. ox1/ E . Both virgin 

gate leakage and SILC characteristics can fit the FNT model well. However, it was 

shown in [63] that for ultrathin gate oxides the low field SILC does not support the FNT 

model. 

 

 
Figure 1.6: FN plots of virgin FNT current and SILC, for an n+/nMOSFET with Tox = 
5.9 nm. Device dimensions: W = 20 µm, L = 20 µm, Tox =5.9 nm. 
 

Trap-Assisted Tunneling 

The trap-assisted-tunneling (TAT) model became widely accepted in the early 

1990s. Actually, the significance of oxide traps in SILC conduction was suggested in 

late 1980’s. Naruke e t  a l .  [73] investigated the low field excess leakage induced by w/e 

cycles in FLOTOX EEPROM tunnel oxides with thickness ranging from 40 Å to 100 Å. 

Consistent with the argument of [56], it was shown that the conduction mechanism of 

SILC was different from positive charge accumulation in the oxide, since SILC and 

hole trapping have very different (actually opposite) oxide thickness dependence. 

However, it seems that the Frenkel-Poole type defect hopping mechanism [74], with a 

current-field dependence of the form ox oxlog( / )J E E∝ ,  fits the observed SILC 

characteristics quite well. A similar behavior was observed by Ann et  al .  [63]. It 
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should be noted that Frenkel-Poole emission actually can be treated as field-enhanced 

electron emission from trapping sites [75]. Thus, FP hopping conduction and the TAT 

mechanism may be largely similar: Low-field conduction in the gate oxides is 

facilitated by traps, via the formation of intermediate states in the oxide. 

Dumin et al. [47] quantitatively investigated the relationship between excess 

leakage current and trap density (Nt). A one-to-one relationship exists between them, 

strongly suggesting that the conduction of SILC is trap-assisted. Furthermore, the trap 

density is found to be proportional to the cube root of the injection charge fluence 

( 1/3
tN Q∝ ) and is independent of the stress polarity. It was observed in [47] that 

Schottky emission ( log J V∝ ), other than Frenkel-Poole emission, also fits the 

experimental SILC. Patel et al. [58] found that there existed a threshold electron energy 

(~1.7 eV) for the stress voltage, below which no SILC could be observed. It was noted 

that this threshold value was very close to the trap creation energy in SiO2 [76]. 

DiMaria [57] carried out a comprehensive investigation of the dependence of SILC 

on injected charge fluence, stressing voltage, sensing voltage, oxide thickness, 

Si-substrate doping, and temperature. SILC was found to exhibit a “universal” 

dependence on the hot-electron energy. Furthermore, oxide defect generation (trapped 

holes, trapped electrons, interface states, positive charge trapped near the anode) was 

investigated as a function of hot-electron energy. By comparing the latter results to the 

electron energy dependence of SILC, it was concluded that the major cause of SILC 

was neutral electron traps generated during hot-electron stress. 

Other important reports related to the TAT model include [59] [77] - [79]. In [78], 

and with more detail in [80], experimental evidence is provided showing that 

trap-assisted tunneling is involved in SILC conduction. During SILC conduction, a 

“constant energy loss” (~1.5 eV) is verified for electrons injected through the gate oxide 

into the Si substrate. This is also supported by the simulation results reported by Ghetti 

et al. [81] [82]. Furthermore, it is concluded that process-induced oxide traps and 

stress-induced oxide traps are essentially different, since tunneling through 

process-induced oxide traps appears to be elastic [82]. 

Assuming that the density of process-induced oxide traps is negligible, which is 

reasonable for state-of-the-art CMOS process, the principles behind the TAT model for 
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SILC can be summarized below: 

1. In post-stress oxide, the leakage current is made up of two parts: Native tunneling 

leakage current and excess leakage induced by stress. The native leakage can be 

FNT or DT, while the excess leakage is dominated by TAT. 

2. The oxide traps act as stepping-stones for carrier tunneling. Tunneling is 

facilitated by oxide traps, because their presence substantially lowers the tunnel-

ing barrier. 

3. TAT is at least a two-step process: A tunneling-in followed by a tunneling-out 

process. 

4. Carriers lose energy when they tunnel through the gate oxide via TAT, i.e. the 

tunneling is inelastic. 

5. Traps involved in TAT are believed to change their states after the TAT process, 

to compensate the energy loss stated above. The exact mechanism of this change 

is still not clear. 

Based the TAT framework, many successful SILC models have been proposed 

[51], [83] - [88]. However, there are still uncertainties. The most controversial ones are 

those concerning the spatial and energy profile of stress-induced oxide traps. For example, 

it is still not clear whether interface traps or bulk traps, or both, are involved in the TAT 

process. As early as 1991, Rofan and Hu [67] proposed that SILC was a result of 

trap-assisted tunneling via interface traps, and this argument was supported by the fact 

that there was a close correlation between SILC and interface traps sensed by charge 

pumping current measurement for three cases: Pre-stress, post-stress, and post-stress 

anneal. This argument was also supported and developed by other groups [64] [89]. 

It has been reported that high-field generated interface states and oxide traps are 

actually correlated. From this point of view, the observation that SILC is well 

correlated to interface trap density is therefore not enough to prove that SILC 

conduction is dominated by interface-trap assisted tunneling. A similar conclusion 

applies to bulk oxide traps. Practically, it is sometimes difficult to clearly distinguish 

interface traps from oxide traps, especially for ultra-thin gate oxides. As gate oxide 

thickness approaches the critical dimension of a single electron trap, the debate on 

interface- or bulk-trap assisted tunneling may not be meaningful. 
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Recombination and Trap-Assisted Tunneling 

Although the TAT model has gained great success and wide support in the past 

years, it has been challenged recently. The lack of direct evidence or detailed 

knowledge on the TAT process that happens at the oxide traps is the major 

short-coming for TAT-based models. 

Ielmini et al. presented a novel model for SILC, which incorporated recombination 

into the TAT process, namely the recombination and trap-assisted tunneling (RTAT) 

model [68] - [70]. In this model, the simultaneous observation of hole current and 

electron current in SILC is attributed to electron-hole recombination at defect states in 

the oxide (Figure 1.5-d). It was shown that these two components in SILC are highly 

(almost one-to-one) correlated, in that they share the same stress dose dependence and 

relaxation time dependence [69]. Specifically, plotting hole SILC vs. electron SILC at 

different stress levels or relaxation time (after the stress) on log-log scale results in a 

straight line with slope very close to 1; wherever electron SILC is suppressed, e.g. in 

p+/pMOS devices, hole SILC is also suppressed. 

 

 

1.3.3. Stress-Induced Traps in Oxides 

 

The strong correlation between SILC and trap generation has been demonstrated 

by many SILC models. The properties of the stress-induced oxide traps, the density of 

the traps, and the energy distribution of the traps are the factors that would most 

significantly influence SILC. But, how exactly an oxide trap facilitates carrier 

tunneling is still not clear till these days. The traditional methods for extracting trap 

density have their limitations. A good understanding on the energy distribution of the 

traps is lacking either. Specifically, a detailed knowledge of the energy distribution of 

stress-induced oxide traps is not available. 

In the literature, several techniques have been used to measure the trap density. 

For example, the density of interface states was often measured by the charge 

pumping technique [64] [67]. The density of bulk oxide traps can be obtained from the 

discharge current characteristic after removal of high voltage pulse [47] or from the 



 
Introduction and Literature Survey 

16 

C-V and I-t characteristics [17]. More recently, a novel method, termed Direct-Current 

Current-Voltage (DCIV), was used to monitor both the bulk oxide traps and SiO2/Si 

interface states [89] [90]. However, it should be noted that all these methods can only 

sense a portion of the interface/bulk oxide traps. In other words, only the relative 

change in the trap density can be monitored, not the absolute change. 

In order to characterize SILC accurately, the oxide trap distribution must also be 

known precisely. This includes the spatial and energy profiles of the traps. However, 

due to lack of insight into the microstructure, a detailed knowledge of the energy profile 

of the stress-induced oxide traps has never been obtained. A common practice in the 

literature of SILC modeling is to first introduce the energy level of the traps as a 

parameter, and later extract an improved value by fitting the SILC model to experi-

mental data [91]. Spinelli et al. reported an experimental method to extract the energy 

distribution of oxide traps [92]. However, this method is not applicable to ultrathin gate 

oxides, since it makes use of the transient current as the monitor of trap density. In 

ultrathin gate oxides, the transient current is too small to be a sensitive monitor. 

It is still not clear whether the electrical stress-induced oxide damage is localized 

or is uniformly distributed throughout the gate oxide. In the literature, some group 

adopted the concept that stress-induced damage is localized [93] on the basis that 

oxide breakdown (SBD or HBD) is highly localized [13]. However, in using the TAT 

model, the assumption of a uniform oxide trap distribution is found to fit the 

experimental SILC data very well [50] [86], indicating that oxide traps responsible for 

SILC may not be necessarily localized. This challenges the argument that SILC and 

oxide breakdown are well correlated. Furthermore, some groups postulated that the 

traps responsible for SILC are different from those responsible for oxide breakdown 

[94]. In recent years, new experimental findings have shown that there are at least two 

types of oxide traps created during electrical stress [95] [96]. This casts more doubts on 

the proposed strong correlation between SILC and oxide breakdown. However, as 

suggested in [94], and also in [97], the correlation between SILC and oxide breakdown 

could be indirect. Further research work is needed to clarify their relationship. 
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1.3.4. Recent Advances in Research 

 

The number of publications on SILC is huge, and recent research work has become 

more detailed. Chetti et al. [82] investigated the physical characteristics of electrical 

stress-induced traps by quantum yield measurement and simulation [82], and they 

showed that electron tunneling via stress-induced traps is inelastic, consistent with [80]. 

Furthermore, it has been shown that electron tunneling via pre-existing traps is elastic. 

This indicates that pre-existing traps and stress-induced traps are different in nature, 

which is also shown recently in [98]. 

Ang et al. [99] found that SILC could be annealed out partially by applying a low 

voltage after high voltage stress, and proposed that the reduction in SILC was linked to 

annealing of trapped holes. The mechanism of SILC and dielectric breakdown was 

examined by Alers et al. [100] through 1/f noise in the tunneling current of 1.7 - 5 nm 

oxides. Before breakdown, a linear relationship between SILC and 1/f noise was 

observed. This behavior was successfully described using the TAT model. A new 

quantitative model was developed for the 1/f noise, on the basis of TAT current 

fluctuations. It was shown that the traditional charge-state fluctuation model is 

inconsistent with the voltage-scaling of the noise. These results also strongly suggest 

that the conduction mechanisms in the stressed and unstressed oxides are 

fundamentally different. 

Irrera proposed a kinetic model for trap creation in thermal oxides during electrical 

stress [101]. In this model, creation of additional traps is believed to be controlled by 

electron scattering by existing defects. The model predicts a square-root dependence of 

SILC on the stress time. Defect concentrations calculated by this model were used in a 

TAT model and excellent agreement with low-field conductivity was observed. 

Ielmini et al. presented a detailed investigation based on Quantum Yield (QY) 

experiments [102]. Experimental data show that no correlation exists between QY and 

SILC, and that QY is determined by high-energy oxide traps. Numerical simulation was 

used, based on a detailed calculation of the oxide defect distribution. It is shown that the 

leakage current and the excess impact ionization component are due to TAT of 

electrons through different sets of traps: Deep level traps are responsible for SILC, 



 
Introduction and Literature Survey 

18 

while high-energy states determine the impact ionization current. Simulation results 

were in good agreement with experiments, showing that QY results could not be used to 

extract the energy loss of the SILC electrons. 

Wu et al. investigated the validity of SILC as a measure for the critical defect 

density (NBD) that triggered breakdown [103]. Their finding shows that SILC may not 

serve as a reliable measure for NBD. This work suggests that a re-evaluation of the 

breakdown models constructed from SILC-based experiments is required, in 

particular, their validity in comparison to the statistically accurate breakdown data. 

The relation between SILC and hydrogen release (HR) was analyzed by Esseni et 

al. for both channel hot electron (CHE) [104] and FN [105] stress. From the fact that 

no deuterium isotope effect was observed for SILC, they concluded that there was no 

causal relation between SILC generation and HR, regardless of whether the SILC was 

generated by CHE stress or FN stress. In contrast, it was shown that the AHI 

mechanism is operative even at low gate voltage [106]. 

Chim et al. investigated the SILC generated by impulse stress [107]. An 

abnormally high density of positive trapped charges was observed in oxides as thin as 4.3 

nm. Furthermore, it was found that the transient SILC is larger than steady-state SILC, 

contrary to observations in DC-stressed thin oxides [42]. These two observations, i.e. 

abnormally high density of positive trapped charges and large transient SILC, were 

found to be correlated. Another article by the same team [108] presents a detailed 

investigation on the SILC conduction mechanism via Conduction Band Electron 

(CBE) and Valence-Band Electron (VBE) tunneling in thin oxides. An improved SILC 

model is proposed, which enables reproduction of the experimental SILC over a wide 

range of oxide field, and extraction of a realistic neutral trap concentration. This 

improved model also confirms the concept that SILC conduction via neutral traps is 

accompanied by energy loss. Furthermore, the energy loss is found to be dependent on 

the origin of tunneling species: ~1.5 eV for CBE, and ~0.8 eV for VBE. 

Research on the impact of SILC on Flash memories has been greatly advanced by 

Ielmini et al. In [109], they reported a new experimental technique to evaluate the 

position of oxide weak spots responsible for SILC in Flash memories. In their report, 

the position of the leakage spot is determined by the shift in the gate current-voltage 

(I-V) characteristics, when the oxide field along the channel is modified by varying the 
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drain bias. Results reveal a strong localization of SILC near the drain junction, as a 

result of program/erase operations. A statistical model of SILC in Flash arrays is 

presented in [110], featuring that tunneling assisted by two traps (2TAT) [111] [112], 

rather than the traditional single-defect TAT, dominates the steady-state SILC in Flash 

arrays with oxide thickness in the range of 6.5 nm to 9.7 nm. Some recent progress on 

SILC in nonvolatile memory devices can also be found in [113] [114]. 

A good understanding of SILC has led to several applications in the characterization 

of gate oxide reliability and lifetime. SILC increase has been successfully used to 

predict the lifetime of ultrathin gate oxides by Nigam et al. in [115], and the method is 

found to be fast and simple. However, it should be noted that the measured oxide 

lifetime is not necessarily associated with breakdown. In some cases, the increase in 

gate leakage could already limit circuit functionality.  

 
 
 
1.4 SILC and Oxide Degradation in Scaled Oxides 
 

As gate oxide thickness scales down, the gate leakage current increases expo-

nentially. The large direct tunneling leakage current has become a major reliability 

problem for ULSI, and it is believed to be the “show-stopper” of ULSI applications 

based on the silicon dioxide. Due to the predominance of direct tunneling current, SILC 

in ultrathin gate oxides is significantly different from that in thick oxides. For thick 

oxides, at very low voltage regime where initial leakage current is usually not 

detectable, SILC shows up as obvious increase in the leakage current after high-voltage 

stress. Instead, the increase in the leakage current is gradual and progressive in the case 

of ultrathin gate oxides, because the high DT current usually concealed SILC. An 

example is shown in Figure 1.7. In this figure, the data are obtained for an n+ 

poly-gated nMOSFET with 2.2 nm gate oxide. The currents have been normalized to 

the gate area. The pre-stress and post-stress Jg-Vg characteristics are shown for both 

gate voltage polarities. We can see that the direct tunneling current constitutes a major 

part of the overall post-stress leakage current.  

The dominant direct-tunneling current in ultrathin gate oxide at low voltage 

implies that different current conduction and degradation mechanism may exist. Takagi 
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et al. [116] experimentally examined the DT current in unstressed and stressed ultrathin 

oxides in n+-poly/pMOS devices, and found that a leakage path allowing the flow of 

holes dominates SILC and overall leakage current after oxide soft-breakdown. This is 

also confirmed later by H. Guan et al. [117]. In [116], it is suggested that leakage paths 

different from those responsible for TAT are formed inside the SiO2 layer after stress, 

and these paths lead to a dominant hole current and SB of the oxide. This implies the 

possibility that for direct-tunneling oxides, SILC is dominated by hole current, even 

though it has never been explicitly pointed out yet. 

 

  

Figure 1.7: Jg-Vg characteristics of an n+/nMOSFET. The solid and dashed lines 
denote the pre-stress and post-stress characteristics respectively. The gate voltage was 
swept from negative to positive during measurement. Device dimensions: Tox = 2.2 
nm, W = 40 µm, L = 20 µm. 

Recently, research on low-voltage SILC (LV-SILC) in ultrathin gate oxides 

reveals a scenario that is rather different from high-voltage SILC (HV-SILC). This 

includes the possible sense-voltage dependent SILC mechanism [122] and possible 

interfacial trap-rated tunneling [122] - [124]. Even though controversy remains [125] 

[126], these reports demonstrate the possibility that LV-SILC can be an alternative 

degradation monitor of ultrathin gate oxides, when traditional methods, such as C-V and 
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charge-pumping, are no longer applicable. 

 

 

1.5 Motivation of This Work 
 

As has been shown previously, SILC in thick oxides (>3 nm) has been com-

prehensively investigated, and it has generally been accepted that TAT dominates the 

SILC conduction. For ultrathin gate oxides, SILC usually is not quantitatively 

significant compared to the initial DT current. However, this does not mean that SILC 

in ultrathin gate oxides is not important. It is to be noted that even after more than 30 

years of research, the degradation of oxide films under electrical stress is still not 

completely understood. SILC in ultrathin gate oxides, even though usually concealed 

by large DT current, may still be a very good indicator of oxide degradation. As a 

piece of evidence, LV-SILC has been used as monitor of oxide degradation in [125] 

and [126]. 

For ultrathin gate oxide case, probably TAT is still the most possible mechanism 

responsible for SILC [122] - [126]. However, several pieces of information are still 

missing for better understanding of SILC in ultrathin gate oxides, especially for 

dual-gate CMOS devices. 

1. In p+/pMOSFETs, it is known that the low voltage DT leakage is dominated by 

hole current. However, it is not clear the significance of hole current in SILC, and 

how it evolutes during electrical stress. This can be of great importance because it 

is possible to figure out the distribution of oxide traps responsible for SILC from 

the evolution of hole SILC and electron SILC [68] - [70]. 

2. As indicated in the polarity dependence of oxide breakdown [21] - [23], the 

manner of current injection has different oxide degradation rate. However, it is 

not clear how the manner of current injection will impact the evolution of hole 

SILC and electron SILC. 

3. It is still not clear whether there is a common scheme, in terms of stress-induced 

trap generation and distribution, to explain the evolution of hole SILC and 

electron SILC in both p+/pMOSFET and n+/nMOSFET. 
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This work demonstrates an attempt to give an illustration of the evolution of hole 

SILC and electron SILC in dual-gate CMOSFETs with ultrathin gate oxides. Both 

type of devices (n+/nMOS and p+/pMOS), both stress polarities (inversion and 

accumulation), and both types of sense voltages (positive and negative) will be 

considered, to obtain better understanding of the SILC in different type of devices and 

generated/measured by different conditions.  

 

 

1.6 Organization of the Thesis 
 
 

This thesis consists of 6 chapters. Chapter 1 is the introduction chapter, which 

gives a comprehensive literature survey research on SILC. Chapter 2 provides detailed 

information about the test vehicles and experimental setup used in this work, as well as 

the data analysis technique. In Chapter 3, the SILC characteristics of ultrathin gate 

p+/pMOSFETs, subjected to different stress conditions, are discussed. Chapter 4 

presents the SILC characteristics of the n+/nMOSFETs. In Chapter 5, we correlate our 

experimental SILC data to the defect generation mechanisms proposed for ultrathin 

gate oxides. Finally, Chapter 6 summarizes the major findings of this research project 

and makes suitable recommendations for future work. 
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Chapter 2 
 
 
 
 
 

Experimental Techniques 
 
 
 
 
 
 
2.1 Device Information 
 

Conventional dual-gate MOS devices were fabricated by state-of-art commercial 

CMOS technologies. These include nMOSFETs with n+-polysilicon gate (denoted as 

n+/nMOSFETs) and pMOSFETs with p+-polysilicon gate (denoted as p+/pMOSFETs). 

After n-channel implant, gate oxides were grown by partial wet oxidation in 850 °C, 

and etched into several desired thicknesses. These oxides were nitrided by rapid 

annealing in an N2O ambient. Devices with gate oxide thickness ranging from 1.7 nm to 

5.9 nm and various gate areas (20×1 µm2, 20×20 µm2, 40×20 µm2) were available. 

Polysilicon gates were deposited and doped after gate oxide nitridation. Our focus is on 

devices with thin oxides, and those with thick oxides are only for purpose of 

comparative study. 

 

 

2.2 Major Experimental Procedures 
 

In order to investigate the dependence of SILC on stress time, stress fluence, and 

stress voltage, devices were stressed under various stress voltages, with the stress 

cycle periodically interrupted to measure the gate leakage characteristics at lower 

voltages. Thus, a stress/measurement cycling procedure was needed, which is shown 

in Figure 2.1. This cycling procedure was specially designed for computer-controlled 

experiments for the characterization of SILC. It ensured that, after each stress, the 

device J-V characteristics were obtained and thus the effect of that duration of stress was 
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recorded for future analysis. The cycle was repeated until the cumulative stress time 

exceeded 105 s or the oxide broke down (can be soft breakdown or hard breakdown). 

The maximum gate voltage used in carrier separation measurement was at least 1 V 

smaller than the stress voltage, ensuring that negligible additional degradation was 

induced by the measurement steps. This procedure was controlled by a computer 

program [1] [2]. The time interval between the end of a stressing step and the beginning 

of the measurement step was about 10 seconds. This was the time needed for the 

computer program to extract data from the measurement instruments and to configure 

the next measurement step. Because charge trapping in such thin oxides was negligible 

for ultrathin gate oxides, transient currents could be safely neglected. Thus, the SILC 

obtained in this way is a steady-state current. 

A stress-time array was used to control the period of each stress cycle. The validity 

of this procedure was confirmed from observation of the steady and progressive oxide 

degradation.  

A schematic diagram of the experimental setup is shown in Figure 2.2. The source, 

drain and substrate terminals of the MOSFET were grounded. Stressing and 

measurement were carried out using the HP 4156A semiconductor parameter analyzer. 

Triaxial connections were used for optimum low-leakage current measurement. The 

device under test was situated in an enclosed chamber, evacuated down to a pressure of 

~5 mTorr. This experiment configuration enabled accurate measurement of current as 

low as 1 fA, with high stability and reproducibility. 

 

 

2.2.1 Carrier Separation Technique 

The application of the carrier separation technique in investigating carrier 

conduction in insulators dates back to the 1970s [3]. In the past years, this technique 

has been successfully used to characterize the quantum yield of energetic electrons 

tunneling from the gate of nMOSFET [4]. For MOS devices with ultrathin gate oxides, 

in which significant direct tunneling happens at very low voltages, the carrier 

separation technique can be used to distinguish the electron and hole tunneling current 

components in the overall gate leakage [5]. 
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Figure 2.1: A CVS/measurement procedure for characterizing the SILC in ultrathin 
gate oxides. Note that ts stands for cumulative stress time and Js stands for the gate 
current measured during the stress. 
 

 

 The experimental setup for the carrier separation technique is shown in Figure 2.2. 

When a negative bias is applied to the gate of the p+/pMOSFET, an inversion layer is 

formed at the Si-SiO2 interface. Hole tunneling from the inversion layer to the gate 

dominates the leakage current at low voltage (−1.5 V< Vg < 0), for electron tunneling 

from the gate valence band to substrate is inhibited due to unavailability of empty states 

in the band gap [6]. As the gate voltage increases, electron tunneling from the gate also 

contributes to the gate leakage current and gradually dominates over hole tunneling. 

The grounded p+ source/drain supply the holes (Jsd) needed tunneling to the gate. 

Electrons that tunnel from the gate are collected as the substrate current (Jsub). 
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Figure 2.2: A schematic diagram of the experimental configuration used for both 
constant voltage stress and carrier separation measurement, for a p+/pMOSFET. The 
cycling procedure is controlled by a computer. In this thesis, currents following into 
the transistor are always defined as positive, while those flowing out of the transistor 
are defined as negative. 
 
 

The experimental configuration shown in Figure 2.2 can also be applied to the 

n+/nMOSFET. When the channel is biased in inversion, electrons tunnel from the 

substrate conduction band to the gate. These electrons are provided by the grounded 

n+ source and drain (Jsd). Electrons also tunnel from the substrate valence band and holes 

left behind are collected as substrate current (Jsub). However, within the voltage window of 

our interest, Jsub is only a minor part compared to Jsd, and can be safely neglected in total 

gate leakage current [6]. 

In Figure 2.3 to Figure 2.6, the carrier separation measurement results of four 

situations are shown, together with the corresponding energy band diagrams: 

p+/pMOSFET in inversion, p+/pMOSFET in accumulation, n+/nMOSFET in 

inversion, and n+/nMOSFET in accumulation. 

It should be pointed out that carriers in the gate leakage current can be nicely 
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Figure 2.3: Energy band diagrams illustrating the p+/pMOSFET transiting from strong 
inversion to thermal equilibrium, to flat-band, and to strong accumulation. 
 
 

 
Figure 2.4: Carrier separation measurement results of a p+/pMOSFET. Solid and 
open symbols denote positive and negative current, respectively. Device dimensions:  
Tox = 2.2 nm, W = 40 µm, L = 20 µm. 
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Figure 2.5: Energy diagrams illustrating the n+/nMOSFET transiting from strong 
inversion to thermal equilibrium, to flat-band, and to strong accumulation. 
 
 

 
Figure 2.6: Carrier separation measurement results of an n+/nMOSFET. Solid and 
open symbols denote positive and negative current, respectively. Device dimensions:  
Tox = 2.2 nm, W = 40 µm, L = 20 µm.
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separated only when an inversion layer exists in the channel. When the channel is biased 

in accumulation, carriers injected from the gate become the minority carriers when 

they enter the substrate, and some of them are annihilated through recombination 

with the majority carriers in the substrate. This recombination effect is more severe 

in MOSFET with longer channel. Since this part of recombination current is not easy 

to be quantified, the “carrier separation” curves in the channel accumulation regime are 

shown for qualitative comparison only. 

After a certain amount of charges has been injected into the gate oxide (either by 

CVS or SHCI), oxide properties are degraded. The degradation can be visualized 

from the shifts of the gate leakage current and it components. By comparing the carrier 

separation measurement results before and after the stress, not only the gate current 

change (gate SILC) but also the changes in the respective current components 

(electron SILC and hole SILC) can be revealed. These changes may convey important 

information on SILC generation and SILC conduction, as well as trap generation [7] 

[8]. 

 

 

2.2.2 Constant Voltage Stress 

 

Constant voltage stress is used to generate SILC for most cases of this work. In 

CVS configuration, the source, drain and substrate are grounded, as shown in Figure 2.2. 

The stress voltage is applied to the gate. In order to investigate stress magnitude and 

polarity dependence of SILC, the magnitude of the stress voltage (Vs) is varied, but 

always ensuring that the magnitude of the stress voltage does not exceed 5 V. This is 

to avoid early oxide breakdown because it was found that the breakdown voltage 

(during a ramp-voltage test) of 2.2 nm gate oxides used in our work is only about 5.5 

volts. Within the voltage region of Vg<5 V, the carrier transport in the thin oxide can 

be treated as ballistic [7]. 
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2.2.3 Substrate Hot Carrier Injection 

 

The MOSFETs are also stressed using the substrate hot carrier injection (SHCI) 

technique [5]. Making use of the vertical NPN or PNP bipolar transistor, during SHCI 

stress, primarily only the minority carriers is injected into the gate oxide, while the 

injection of majority carriers is strongly suppressed. Thus, SHCI provides a useful 

means to investigate oxide degradation due to the injection of one carrier type. 

Depending on the type of device, substrate hot-electron injection (SHEI) and substrate 

hot-hole injection (SHHI) stress are performed on nMOSFETs and pMOSFETs, 

respectively. 

 

 
Figure 2.7: Schematic illustration of substrate hot-hole injection. The source and drain 
are grounded. Both n-well and p-substrate are biased at high positive voltage (Vw and Vb 
respectively), with the latter 0.7 V higher than the former.  
 

A schematic diagram of SHHI is shown in Figure 2.7. A low negative voltage is 

applied to the gate, ensuring the substrate surface is strongly inverted but the oxide field 

is not high enough to induce measurable degradation. A relatively high positive bias is 

applied to the n-well, and an even higher positive bias is applied to the substrate, 

maintaining a constant 0.7 V difference between the base and emitter. Holes are 

injected from the positive-biased PN junction formed by the p-substrate and the n-well, 
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and accelerated in the depletion region formed by the positive n-well bias. Finally, part 

of these holes are injected into the gate oxide and collected as gate current. The 

grounded source/drain serves as a hole “sink”. The degradation of gate oxides is purely 

induced by the injected holes. The n-well bias determines the energy and therefore the 

degradation efficiency of the injected holes. 

 

 

2.3 Summary 
 

Major process and dimension parameters of the devices used in this work are listed 

in this chapter. Detail is given for the main experimental techniques and procedures, 

including carrier separation measurement, constant voltage stress and substrate hot 

carrier injection. These techniques ensure a systematic study of SILC in ultrathin gate 

oxides with good stability and reproducibility. 
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Chapter 3 
 
 
 
 
 

SILC in p+/pMOSFETs with 
Ultrathin Nitrided Gate Oxides 
 
 
 
 
 
 
 
3.1 Introduction 
 

In modern polysilicon-based CMOSFET applications, a dual-gate configuration is 

commonly used. In this configuration, n+ poly-gate is used for nMOSFET, and p+-poly 

gate is used for pMOSFET. The threshold voltages for nMOSFET and pMOSFET are 

highly symmetrical because of the highly symmetrical MOS structures in the two types 

of transistors. The use of p+ gate for p-MOSFET results in a surface-channel device. 

Traditionally, buried channel pMOSFETs are preferred, because they have better hole 

mobility due to less severe scattering in the channel. However, in a surface channel 

pMOSFET, a better control of gate to silicon surface is achieved, and short-channel effects 

are better suppressed compared to a buried channel pMOSFET. As technology 

advances and the process is continuously improved, a superior oxide/substrate has been 

achieved, and the hole mobility in surface channel pMOSFET is no longer a serious 

concern. In this chapter, we will focus on surface channel p+/pMOSFET only. 

Previous research works also show that the surface-channel pMOSFET with 

p+-poly gate is about one order of magnitude less leaky than its nMOS counterpart [1]. 

This can be attributed to the smaller tunneling probability of holes compared to 

electrons. Furthermore, it has been identified that in the p+/pMOS structure, the gate 

tunneling leakage current is “bipolar”. Specifically, both electrons and holes are in-

volved in the tunneling, and dominate gate leakage at high and low gate voltages, 
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respectively [1] - [4]. Due to the unique features associated with the gate leakage of 

surface-channel p+/pMOSFET, it can be expected that the stress-induced leakage 

current (SILC) in p+/pMOSFET with ultrathin gate oxides could behave quite 

differently from its nMOS counterpart. Even though there are numerous articles on 

SILC in the literature, the dual-gate case has been considered only recently [5] [6], and 

a complete description of SILC in dual-gate CMOSFETs with ultrathin gate oxides is 

not yet available. 

In this chapter, the stress-induced leakage current (SILC) in p+/pMOSFET with 

ultrathin nitrided gate oxides (1.7 nm and 2.2 nm) are measured and characterized, 

using the experimental procedure shown in the previous chapter. Specifically, the 

change in the electron current component and hole current component of in the gate 

leakage are constantly monitored for various stress levels. For a better description of 

SILC and its components, the traditional SILC is termed as gate SILC, and its hole 

current component and electron current component are denoted as hole SILC and 

electron SILC, respectively, in accordance with the work of Ielmini et al. [9]. Gate 

SILC actually is the total stress-induced gate leakage current (∆Jg). For p+/pMOSFET 

in inversion, hole SILC and electron SILC are stress-induced source-drain current (∆Jsd) 

and substrate current (∆Jsub), respectively.  

In order to understand the polarity dependence of SILC, both positive and negative 

stress voltages are used. The magnitude of stress voltages used ranges from 3.5 V to  

4.7 V. 

 

 

3.2 Electrons and Holes in the Gate Leakage Current 
 

Figure 3.1 schematically shows the evolution of the 1-D energy diagram of a fresh 

p+/pMOS, from strong inversion to strong accumulation. In strong accumulation, where 

both electrons in the bottom electrode and holes in the top electrode are present in huge 

number, electron tunneling dominates the gate leakage current because electrons in the 

accumulation layer face a lower potential barrier (~3.2 eV) than holes in the poly-gate 

(~4.3 eV). It is noted that in accumulation, there is always a small current hump 

between 0 to 1 V. In the literature, this current was attributed to the electron tunneling  
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Figure 3.1: Energy band diagrams illustrating the transition from strong inversion to 
strong accumulation of a p+/pMOS structure. 
 
 

 

Figure 3.2: Gate tunneling leakage current of a p+/pMOSFET with ultrathin gate oxide 
as the function of gate voltage, from strong accumulation to strong inversion. Device 
dimension:  W= 40 µm, L = 20 µm, Tox = 2.2 nm. 
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Figure 3.3: Schematic diagrams showing the transition of gate bias from low-negative 
voltage to impact-ionization region in a p+/pMOS. 
 
 

 

Figure 3.4: Carrier separation curves of a p+/pMOSFET with the gate voltage swept 
from zero bias to the strong impact ionization regime (in inversion region). Solid and 
open circles denote positive and negative currents, respectively. 



 
SILC in p+/pMOSFET’s with Ultrathin Nitrided Gate Oxides 

50 

via interface states [10]. While in strong inversion, the potential barrier for electron 

tunneling from gate to substrate and hole tunneling from channel to gate are comparable 

(~ 4.3 eV). In this case, dominant tunneling carrier type is determined by the potential 

difference between gate and substrate. 

As has been shown in Section 2.3, as gate voltage increases from zero to a large 

negative value, the dominant component of gate leakage changes from hole current to 

electron current. In a p+/pMOS structure, the electron tunneling is from gate to 

substrate conduction band, and hole tunneling is from substrate valence band to gate 

valence band. For p+-poly gate, electrons tunnel from its valence band, unless gate 

bias is high enough to invert the polysilicon. At low negative gate voltage, the valence 

band edge of the p+ gate is aligned to the band gap of the silicon substrate, thus electron 

tunneling to substrate conduction band is strongly inhibited, as shown in Figure 3.3. 

In this case, hole tunneling is the dominant component in the gate leakage current. As 

gate voltage becomes more negative, the valence band edge of the poly-gate is 

elevated, and finally goes above the conduction band edge of the substrate. When this 

happens, electron tunneling from the p+ gate valence band is initiated, and dominates 

over hole tunneling quickly. This transition process is well demonstrated in Figure 3.4, 

in which the relationships between gate leakage, electron current, and hole current are 

shown as a function of gate bias. The curves are obtained simultaneously by the 

carrier separation technique described in Chapter 2. Such dominance of hole current 

component in the gate leakage current at low gate voltage is unique in surface 

p+/pMOSFETs. 

We notice that in Figure 3.4, the hole current exhibits a sign change at around Vg 

= −3.8 V. This point indicates that impact ionization in the silicon surface begins to 

dominate the tunneling current, and the source and drain “sinks” the holes generated 

by impact ionization. As shown in Figure 3.5, when the gate voltage is high enough, 

electrons injected into substrate from the gate are energetic enough to generate 

electron-hole pairs. The generated electrons flow to the substrate and cause Jsub to 

increase, while the generated holes sink to the grounded source and drain terminals. 

When the flow of these generated holes is large enough, Jsd changes from positive to 

negative, and Jsub becomes larger than Jg as shown in Figure 3.4. The point of sign change 

is found to be dependent on gate oxide thickness. For a 1.8 nm gate oxide, Jsd becomes 
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negative at about Vg = −3.0 V. It should be noted that the stress voltages used in our 

experiments are all in impact-ionization region. 

 

 

Figure 3.5: Impact ionization in the substrate surface induced by highly energetic electrons, 
which originated from the valence band of the p+ gate. 
 

 

3.3 Gate SILC in p+/pMOSFETs 
 

The evolution of gate leakage characteristics during constant-voltage stress is 

shown in Figure 3.6. A constant voltage of −4.3 V was applied to the gate during 

stress. The stress was interrupted at pre-defined stress intervals to obtain the gate 

leakage characteristics by carrier separation measurement. The cumulative stress time 

(t) ranges from 102 to as high as 106 seconds. It can be seen that the Jg -Vg curve shifts 

up as stress time increases. The difference between the pre-stress curve and post-stress 

curve, as well as the differences between the post-stress curves of different stress times, 

is subtle, because the pre-stress tunneling leakage current is already very high. 

The gate SILC characteristics (∆Jg-Vg), which can be obtained by subtracting the 

pre-stress gate leakage (Jg0) from the post-stress Jg, are shown in Figure 3.7. The 

increase in SILC as stress time increases is clearly shown. The gate SILC strongly 

depends on the sense voltage (Vg), and increases rapidly and monotonically as |Vg| 

increases. However, by normalizing the gate SILC with pre-stress gate leakage, the  
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Figure 3.6: Shift in the gate leakage characteristics of a p+/pMOSFET after 4 
cumulative stress intervals: 102, 103, 104 and 105 seconds (along the direction of the 
arrows). 
 

 

Figure 3.7: Gate SILC of a p+/pMOSFET as a function of the sense voltage, with 
stress time as the parameter. The SILC is obtained from the Jg-Vg characteristics in 
Figure 3.6. Cumulative stress time increases along the arrow: 102, 103, 104 and 105 
seconds. 
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Figure 3.8: Normalized gate SILC of a p+/pMOSFET as a function of the sense voltage, 
with stress time as the parameter. The normalized SILC is obtained from the Jg-Vg 
characteristics in Figure 3.6. 
 

gate voltage dependence is greatly suppressed, as shown in Figure 3.8. Furthermore, 

the relationship between SILC and Vg is no longer a simple monotonic function. At low 

gate voltage, two peaks can be identified at Vg = 0.8 V and Vg = −0.2 V, respectively. In 

the literature, these two low-voltage peaks have been attributed to the electron 

tunneling through interface traps [10]. However, there is possibility that the second 

peak is because Jg0 becomes lower than measurement limitation, i.e. it’s an artifact. For 

short stress time, the normalized SILC decreases as sensing voltage increases (|Vg| > 1 

V). This indicates that the significance of SILC in the overall gate leakage decreases as 

gate voltage increases. However, at longer stress time, the normalized SILC tends to 

increase at high sense voltage (|Vg| > 3 V), indicating a possible change in the 

conduction mechanism. 

Classically, SILC depends exponentially on the stress time. Specifically, the gate 

SILC can be written as [7] [8] 

g g s( ) nJ f V t∆ = ⋅                                                      (3.1) 
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where n  is a constant reported to be ~  0.5. If n  is not dependent on the sense voltage, the 

∆Jg -Vg characteristics at different stress times should be parallel to each other. 

Assuming that f(Vg) does not change with stress time, then for two different cumulative 

stress time t1 and t2, Equation 3.1 leads to 

2
2 1

1

log log logg g
tJ J n
t

∆ − ∆ = ⋅                                      (3.2)  
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1 2
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t t

∆ − ∆
=                                    (3.3) 

where ∆Jg1 and ∆Jg2 are the gate SILC corresponding to t1 and t2 respectively. 

 

 
Figure 3.9: Power-law exponent n, where n is as defined in the relation  ∆Jg = f(Vg)·tn, 
as a function of the sense voltage. Note that n21 = n(t2,t1), n31 = n(t3,t1), n32 = n(t3,t2), 
with t1 = 103 s, t2 = 104 s, t3 = 105 s. 
 
 

Using Equation 3.3, the n-Vg relationship can be determined from the difference 

between the SILC associated with two different stress times. An example is shown in 

Figure 3.9. In this figure, n is obtained from three stress times: t1 = 103 s, t2 = 104 s, t3 = 

105 s. From Figure 3.9, we see that the exponent n is highly dependent on the sense 

voltage and polarity. For negative gate voltage, especially in the strong inversion 
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regime (Vg < −1 V), the exponent n is quite constant, independent of Vg, and is not 

sensitive to stress time as well. In this region, n can be well approximated by n = 0.33. 

When the gate voltage is positive, however, we see that n shows strong gate voltage 

dependence. Furthermore, at low positive voltage (0 < Vg < 1.5 V), n also depends on 

stress time. The polarity dependence of n indicates that the conduction mechanism of 

SILC may also be polarity dependent. In the next sections, we will focus on SILC in the 

inversion regime, the usual operating voltage condition for the p+/pMOSFET. 

 

 

3.4 Hole SILC in p+/pMOSFETs 
 

Corresponding to the gate SILC shown in the last section, the evolution of hole 

tunneling current characteristics and hole SILC are shown in Figure 3.10 and 3.11 

respectively. As expected, the hole leakage current increases steadily with stress time. 

Furthermore, the voltage at which the hole leakage current changes sign, is 

continuously pushed to more negative region.  

The normalized hole SILC (∆Jsd/Jsd0) is shown as a function of the sense voltage in 

Figure 3.11. The normalized hole SILC is rather insensitive to the sense voltage, 

ranging from about 0.5 V to 3.0 V. The sharp increase in the normalized SILC at high 

gate voltage is due to the decrease of Jsd0, when Vg is sufficiently large to trigger 

significant impact ionization in the substrate. 

In Figure 3.12, a comparison between the gate SILC and hole SILC is made. 

Several interesting observations are noted. 

1. Similar to initial gate leakage current, the gate SILC is also dominated by 

hole SILC in the low gate sense voltage regime. 

2. As stress time increases, hole SILC in the high gate sense voltage regime 

approaches the gate SILC. 

The first observation is similar to the observed dominance of the hole tunneling current 

in a fresh sample. It may be explained by the fact that the availability of substrate 

conduction band states is manipulated by the gate voltage. However, this theory alone 

could not account for the second observation, which suggests substantial increase of 

the hole tunneling leakage component following stress. 
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Figure 3.10: Increase in the hole tunneling current in a p+/pMOSFET subjected to 
constant voltage stress, in respect to the gate SILC shown in Figure 3.7. The stress time 
increases in the direction of the arrow. 
 
 

 
Figure 3.11: Normalized hole SILC in p+/pMOSFET as a function of the gate sense 
voltage, after different stress intervals. The normalized SILC curves are obtained based 
on the data in Figure 3.10. 
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Figure 3.12: Gate and hole SILC as a function of the gate sense voltage with stress time 
as the parameter. 
 
 

 
Figure 3.13: The fraction of hole current component in the overall gate SILC (∆Jsd/∆Jg) 
as a function of the gate sense voltage, with stress time as the parameter. 
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In order to better understand the relationship between hole SILC and gate SILC, 

the proportion of hole current in the gate SILC, i.e. ∆Jsd/∆Jg, is plotted as the function 

of the sense voltage in Figure 3.13, with stress time as the parameter. For |Vg| < 1.5 V, 

∆Jsd/∆Jg approaches 1. As Vg becomes more negative, ∆Jsd/∆Jg drops monotonically 

because of the occurrence of valence band electron tunneling. However, we can clearly 

see that the (∆Jsd/∆Jg)-Vg curve is continuously shifted upward by stress. For 

convenience, we denote the gate voltage at which ∆Jsd/∆Jg = 0.5 as Voe. For ts = 102 s, 

Voe = −2.2 V. When t is increased to 104 s, Voe is increased to as high as -3.0 V. For ts = 

105 s, the longest stress time shown in Figure 3.13, Voe has already increased beyond 

-3.5 V, which approximately corresponds to the onset of significant impact ionization 

by non-SILC electrons. Figure 3.13 strongly indicates the gradual dominance of hole 

SILC in the gate SILC of p+/pMOSFET with ultrathin gate oxide. 

Considering the fact that electrical stress also causes electron SILC to increase, 

which will be shown in the next section, Figure 3.13 implies that hole SILC increases 

faster than electron SILC. The relationship between these two components will also be 

discussed in next session. 

 

 

3.5 Hole SILC vs. Electron SILC 
 

The electron SILC, measured from ∆Jsub, is shown in Figure 3.14. The 

measurement covers both the accumulation and inversion regions. Similar to the hole 

SILC, the electron SILC increases with the cumulative stress time. In the accumulation 

region, the electron SILC coincides very well with the gate SILC, and the hole current 

is negligible, as shown in Figure 3.15. In the inversion region, as expected, the electron 

current is more and more a minor component in gate SILC when stress level increases. 

In the inversion region, the electron SILC accounts for most of the gate SILC in the 

early stress stage. However, the proportion of electron SILC to gate SILC gradually 

decreases as stress progresses. 

 It will be of interest to compare the hole SILC and the electron SILC in the 

inversion region, with cumulative stress time as a parameter. Data from Figure 3.11 and 

Figure 3.14 are plotted in Figure 3.16 showing both ∆Jsd-Vg and ∆Jsub-Vg.  It is clearly  
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Figure 3.14: Electron SILC as a function of gate sense voltage, for the accumulation 
and inversion regions. Stress time increases in the direction of the arrow.  
 

 
Figure 3.15: A comparison of ∆Jsub and ∆Jg in the accumulation and inversion 
regions. 
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Figure 3.16: A comparison of hole SILC (∆Jsd) and electron SILC (∆Jsub) in the 
inversion region, for different stress time. 

 

Figure 3.17: Normalized hole SILC (circles) and electron SILC (triangles) 
characteristics, with the stress time as the parameter. 
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Figure 3.18: The correlation between hole SILC and electron SILC for different gate 
sense voltages. The relation between these two components can be well described by 
a power-law expression. The gate sense voltages and the power-law exponents are 
given in the figure accordingly. Stress voltage Vs = −4.3 V. 

 

Figure 3.19: Similar to Figure 3.18, except that stress voltage is higher at −4.5 V. 
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shown that at short stress time, e.g. ts = 102 s, electron SILC exceeds electron SILC for 

|Vg| > 2.3 V. Following the longest stress interval, i.e. ts = 105 s, the dominant gate 

leakage component is hole SILC voltage ranging up to the onset of substrate impact 

ionization. To directly compare the significance of these two components in the gate 

SILC, we have plotted (∆Jsub/∆Jg)-Vg as well as (∆Jsub/∆Jg)-Vg in the inversion region 

in Figure 3.17. The downward shift of (∆Jsub/∆Jg)-Vg corresponds well to the upward 

shift of (∆Jsd/∆Jg)-Vg. It has been reported that a one-to-one relationship exists 

between the hole SILC and the electron SILC [9], [14], i.e. for a given gate sense 

voltage, 

sd sublog logJ Jβ∆ = ⋅ ∆                                             (3.4) 

where β is a constant (a 1-1 relationship implies β = 1). In Figure 3.18, we plot ∆Jsd vs. 

∆Jsub on log-log scale. A linear relationship exists between these two components. For a 

given stress voltage, the value of β is insensitive to the gate sense voltage for |Vg| > 2 V. 

However, instead of having a value of 1 as has been reported in [14] [15], β is found to 

be larger than 1.5 for stress voltage at −4.3 V. Furthermore, β is also dependent on 

stress voltage. Figure 3.19 is similar to Figure 3.18, except that the stress voltage was 

0.2 V higher. We see that β is decreased by about 0.2 compared to that in Figure 3.18. 

The non-unity β and its dependence on stress voltage indicate a non-recombination 

SILC conduction mechanism. Figure 3.18 and 3.19 provide clues to explain the 

dominance of hole current in SILC, and will be discussed in detail in the next section. 

 

 

3.6 Physical Model for Hole-Dominant SILC 
 

From the previous discussions, we established that in the gate SILC of 

p+/pMOSFET with ultrathin gate oxide, the hole SILC is the dominant component, and 

the dominance of this component is continuously increased by stress. This observation 

can be of great importance for understanding the degradation of ultrathin gate oxides. It 

is well-known that holes have a larger trap generation efficiency than electrons in the 

gate oxide. A hole-dominant leakage current means a higher oxide degradation rate 

than its electron-dominant counterpart. It has been predicted that ultrathin gate oxides 
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in pMOS devices have a shorter lifetime than those in nMOS devices [18]. Our 

experimental results indicate that the dominant hole SILC might be responsible for the 

faster oxide degradation in p+/pMOSFETs than in n+/nMOSFETs. The increased hole 

current induces more damage (usually by generating more traps) in the gate oxide, 

which further increases the hole current. Thus a positive feedback loop is formed. 

However, before we discuss its impact on oxide degradation we need to provide a 

physical explanation for the observed hole-dominant SILC. 

It has been widely accepted that SILC is determined by the neutral traps in the 

oxide. The density, spatial distribution, and energy distribution of traps play a very 

important role on on SILC conduction. For ultrathin gate oxides, the spatial trap 

distribution is no longer a concern, for the oxide thickness is already comparable to the 

dimension of an oxide trap. In Figure 3.20, two different energy distributions of oxide 

traps are shown, together with the respective electron and hole tunneling process: two 

separate trap distributions vs. a single distribution. 

The good correlation between hole SILC and electron SILC seems to suggest that a 

common trap distribution is responsible for both components (Figure 3.20 (a)). Under 

this assumption, oxide traps responsible for SILC is very deep inside the oxide band 

gap, in accordance with the finding of [16]. However, for a single trap distribution, 

we should expect a dominant recombination component in the SILC [14] [15]. As 

shown in Figure 3.20 (a), when both the electron and hole are tunneling into the same 

trap distribution, the probability of electron-hole recombination at the trap site should 

be much larger than the probability of tunneling out. If that is the case, we would expect 

1. β to have a value of one. 

2. β to be insensitive to the gate sense voltage. Even if there is some dependence 

on the gate sense voltage, β should be smaller for lower gate sense voltage. 

3. β to be independent of the stress voltage. 

However, this hypothesis is not borne out by our experimental results. In Figure 3.21, β 

is plotted as a function of the gate sense voltage, for three different stress voltages: −4.3 

V, −4.5 V, and −4.7 V. It seems to be true that β is not very sensitive to sense voltage. 

However, it is clearly shown that β decreases as stress voltage increases. This 

observation suggests that for a given oxide thickness, β~1 is only valid for a certain 

stress voltage, e.g. −4.5 V for 2.2 nm shown in Figure 3.21.  These observations tend to 
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Figure 3.20: Schematic illustration of two TAT conduction mechanisms: electron 
tunneling and hole tunneling via: (a). a common oxide trap distribution [15]; (b) two 
separate oxide trap distribution. 
 

 
Figure 3.21: β as a function of the gate sense voltage, with stress voltage as the 
parameter. 
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exclude the possibility that the electron and hole SILC takes place through the same 

trap distribution 

If electron tunneling and hole tunneling takes place at two separate oxide trap 

distributions (Figure 3.20 (b)), we have 

sd th telg     &    lg subJ N J N∆ ∝ ∆ ∆ ∝ ∆                           (3.9) 

th
sd sub

te

lg lgNJ J
N

∆ ∝ ∆                                    (3.10) 

where ∆Nte and ∆Nth are the average trap density facilitating electron tunneling and 

hole tunneling, respectively. Physically, ∆Nte and ∆Nth are probably of the same origin, 

because oxide traps responsible for SILC are neutral, and they can trap electrons as well 

as holes.  ∆Nte and ∆Nth are dependent on the stress voltage and stress time. Comparing 

Equation 3.9 and Equation 3.11, we have 

th

te

N
N

β ∆
∝
∆

.                                             (3.11) 

In the strong inversion region, the number of electrons in the valence band of the p+- 

gate and holes in the inversion layer available for tunneling is huge, thus the tunneling 

probability is determined by the gate sense voltage and trap density. For a fixed gate 

sense voltage, the ratio (lg∆Jsd)/(lg∆Jsub) is determined by ∆Nth and ∆Nte. As shown in 

Figure 3.18 and 3.19, for a given gate sense voltage, β is a constant, independent of 

the  stress time, indicating that the ∆Nth and ∆Nte ratio is not affected by the duration 

of the stress. Furthermore, as shown in Figure 3.21, β is also insensitive to the gate 

sense voltage. This is possible only if ∆Nth and ∆Nte are linearly correlated. Since 

there are two separate sources of current injection generating oxide traps, it is not 

clear why the two separate oxide trap distributions are so well correlated. One 

explanation is that trap creation is mainly determined by the energy of injected 

carriers. When ultrathin gate oxides are stressed in the direct tunneling regime, the 

energy of electrons and holes flowing across the oxide is uniquely determined by 

gate-to-substrate voltage. 

Based on Figure 3.20(b), the dominant hole SILC component may be attributed 

to a larger oxide trap density (∆Nth), near the Si valence band edge. This may be due 

to trap localization or a broader spread of the trap distribution near the Si valence 
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band edge. So far, the physical mechanisms behind such a oxide trap distribution 

favoring hole tunneling it’s not well understood, but not electron tunneling, remain 

elusive. One possible explanation lies in the larger trap generation efficiency of hole 

compared to electron. 

 

 
Figure 3.22: Carrier separation curves for p+/pMOSFET after three stress intervals: ts = 
0 (fresh device), ts = 2000 s and ts = 2900 s. The stress voltage is at −4.7 V. 
 
 

Following our argument that the importance of the hole SILC component is 

continuously increased by stress, it is expected that as the stress time increases, there 

will be a point at which the gate leakage is totally dominated by hole SILC, and 

electron SILC becomes negligible within the voltage range of interest. In Figure 

3.22, three sets of carrier separation curves are shown for the fresh device, after 

stress time ts = 2000 s and after oxide breakdown [17]. The second set of curves (ts = 

2000 s) were obtained at the measurement point nearest to breakdown, which 

happens after 2.9×103 s of stress. A stress voltage higher than those used in previous 

experiment was chosen to accelerate SILC generation and oxide breakdown. The 

gate leakage current increases dramatically after oxide breakdown. Furthermore, it 
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is observed that the gate leakage consists only hole current. The electron current 

does not change much after oxide breakdown and it is at least three orders smaller 

than the hole current. Figure 3.22 clearly indicates a nearly 100% hole-dominated 

gate leakage current after oxide breakdown. More importantly, it implies that oxide 

breakdown is triggered by those oxide traps responsible for hole SILC, i.e. they are 

localized near the Si valence band edge. 

To verify our hypothesis that two separate oxide trap distributions are responsible 

for the hole and electron SILC, substrate-hot hole (SHH) injection was used to generate 

SILC in a p+/pMOSFET having the same dimensions and gate oxide thickness as those 

used for the CVS experiments. As mentioned in Chapter 2, during SHH injection stress, 

the gate is biased at a low negative voltage, while the source and drain are tied together 

and grounded. A high positive voltage is applied to the n-well contact (denoted as Vw), 

and an even higher positive voltage (Vw + 0.7 V) is applied to the p-substrate contact 

(denoted as Vb). Under this configuration, a pure stream of hot holes will flow towards 

the gate oxide. The energy of the hot holes approaching the Si-SiO2 interface is 

determined by Vw. In other words, by adjusting Vw, we can achieve the desired oxide 

degradation rate. Carrier separation measurement is carried out before and after the 

stress to determine the SILC. Figure 3.23 shows the SILC generated by SHH injection 

stress at Vg = −1.5 V, Vw = 4.0 V and Vb = 4.7 V for 1000 seconds. Interestingly, the gate 

SILC is observed to consist almost only of the hole SILC, while the electron current 

component constitutes a very minor component of the gate SILC. This observation 

supports our hypothesis that the stress-induced oxide trap distribution is highly 

localized near the Si valence band edge. 

Combining the relation between hole SILC and gate SILC generated by CVS and 

SHH injection stress, we deduce that the type of carrier injected into the oxide and the 

energy of the injected carrier are the two key factors determining the resultant oxide 

trap distribution. In CVS, both electrons and holes are injected across the oxide, and the 

resultant oxide trap distribution is not as highly localized as that resulting from SHH 

injection stress. As can be seen from Figure 3.16 and 3.17, the electron SILC 

component is still significant even after the longest stress time. For SHH injection 

stress, however, mainly hot holes are injected into the gate oxide. The resultant oxide 

trap distribution is therefore highly skewed towards the Si valence band edge. 
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Figure 3.23: Carrier separation curves of a p+/pMOSFET after 1000 seconds of 
SHH injection. Stress parameters are indicated in this figure. 
 
 

 

Figure 3.24: TAT process involving multiple steps. An electron (hole) tunnel from a 
shallow trap to a deep trap before it tunnels out to the conduction (valence) band. 
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It should be pointed out that Figure 3.20 (b) depicts an extremely simplified 

physical process. In actual SILC conduction, TAT probably is multi-step. Except for 

the tunneling in step and the tunneling out step, trapped electrons/holes can interact 

with the oxide traps, and can tunnel from shallow trap levels to deeper trap levels, as 

shown in Figure 3.24. Energy is released during the transition from a shallow level to a 

deep level. This also explains the observation in [16] that SILC tunneling occurs via 

deep level oxide traps. Electrons/holes tunnel out from deep-level traps, but actually 

they first tunnel into shallow traps, followed by a transition to deeper traps. 

Considering these factors, the proposed physical model is compatible with established 

TAT framework of SILC. 

 

 

3.7 Summary 
 

SILC in p+/pMOSFET with 2.2 nm nitrided gate oxide, generated by CVS and SHH 

injection stress has been comprehensively characterized. It is found that hole current 

component in the gate SILC generated by CVS tends to dominate over the electron 

counterpart, and the dominance is continuously increased during the stress. In the case 

of SHH injection stress, the hole current component shows an overwhelming 

dominance over the electron counterpart. A physical model featuring a localization of 

oxide traps near the Si valence band is presented to explain the observed evolution of 

the hole current and electron current components of the gate SILC. This localization of 

oxide traps near the Si valence band consistently explains the dominance of hole 

current over its electron counterpart. Such a localized oxide trap distribution is believed 

to be generated by hole injection into the gate oxide. The presented physical model is 

consistent with the established TAT framework for SILC.  
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Chapter 4 
 
 
 
 
 

SILC in n+/nMOSFETs with 
Ultrathin Nitrided Gate Oxides 
 
 
 
 
 
 
 
4.1 Introduction 
 

In the last chapter, SILC in p+/pMOSFETs with ultrathin gate oxide has been 

comprehensively investigated, from the viewpoint of its electron and hole 

components. It was found that the hole SILC component dominated the gate SILC in 

the p+/pMOSFET. A model based on trap-assisted tunneling has been established to 

explain the dominance of the hole SILC. In this chapter, we will discuss SILC in 

n+/nMOSFETs with ultrathin gate oxides. SILC in nMOS devices has been the 

subject of intensive research. However, not much work has been done on gate 

oxides in direct tunneling region (< 3 nm). In this region, the gate leakage current in 

a fresh device is already high (for Tox = 2.2 nm at Vg = 1.5 V, Jg ≈ 0.3 µA/cm2), and 

SILC probably will not contribute significant additional leakage. However, since it 

is widely agreed that SILC is a good indicator of gate oxide degradation, even a 

relatively low level of this leakage may still convey important information, and thus 

it merits further study. 

We will first discuss the gate leakage current of a fresh n+/nMOS device. Then 

we present an overview of the gate SILC, and follow up with a detailed 

investigation from the viewpoint of the evolution of conduction-band electron 

tunneling and valence-band electron tunneling. 
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4.2 Gate Leakage Current in Virgin n+/nMOSFETs 
 

When the gate voltage is swept from positive to negative, the n+/nMOS structure 

experiences inversion, flat band, thermal equilibrium, and accumulation. The 1-D 

energy band diagrams corresponding to the various surface conditions are schematically 

shown in Figure 4.1. In strong inversion, electron tunneling from the inversion layer 

dominates the gate leakage, and depending on the gate voltage, the major contribution 

will come from either conduction band electron (CBE) tunneling or valence band 

electron (VBE) tunneling. The gate bias Vg, at which transition from CBE to VBE 

occurs, is ~5.0 V [1]. When the substrate surface is in accumulation, the number of 

holes in the accumulation layer should be about the same as that of electrons in the 

poly-gate, but due to the difference of tunneling barrier, electron tunneling dominates 

the gate leakage and hole tunneling is negligible. Generally, for n+/nMOS devices, 

the dominant tunneling carrier is always the electron. This is a big difference between 

n+/nMOS devices and p+/pMOS devices employing ultrathin gate oxide. 

The typical gate leakage characteristics of an n+/nMOSFET with a 2.2 nm gate 

oxide, biased in the accumulation and inversion modes, are shown in Figure 4.2. 

The curves were obtained by carrier separation measurement. During measurement 

in the inversion mode, the source-drain current measures the conduction band 

electrons tunneling through the gate oxide. As for VBE tunneling, the corresponding 

holes flow to the substrate, and are measured as Jsub. In the inversion region, the 

CBE component is always almost two orders of magnitude larger than its VBE 

tunneling counterpart, within the range of gate bias shown in the figure. The gate 

leakage currents in inversion and in accumulation are plotted in the inset of Figure 

4.2. For a certain |Vg|, Jg in accumulation is about one order of magnitude smaller 

than Jg in inversion, due to the effect of the flat band voltage. 

 

 

4.3 SILC in n+/nMOSFETs 
 

The gate was stressed at a constant voltage of +4.3 V (inversion mode stress). The  
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Figure 4.1: Energy band diagrams illustrating the transition from strong inversion to 
strong accumulation mode of an n+/nMOS device. 
 
 

 

Figure 4.2: Gate leakage current of an n+/nMOSFET with ultrathin gate oxide as a 
function of gate voltage, from strong accumulation to strong inversion.. In the inset, 
Jg0,I and Jg0,A denote gate leakage current in the inversion and accumulation region, 
respectively. Device dimensions: W = 40 µm, L = 20 µm, Tox= 2.2 nm. 
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stress was periodically interrupted to measure the gate leakage current. The evolution 

of the gate leakage current of an n+/nMOSFET with 2.2 nm gate oxide is shown in 

Figure 4.3 and the corresponding gate SILC is shown in Figure 4.4, for both the 

accumulation mode and inversion mode. For a certain stress level, the increase of gate 

leakage current in the accumulation mode is more significant than that in the 

inversion mode. Furthermore, as the stress time increases, the shape of the Jg-Vg curve 

in accumulation also changes significantly. At t = 1000 s, the slope of the Jg-Vg curve 

in accumulation exhibits a distinct change at Vg ~ −1.0 V. Note that this is quite close 

to the value of the flat band voltage of the n+/nMOS device. In other words, this 

transition point in the gate SILC curve in the accumulation mode can be used as a 

rough measure of the flat band voltage. The change in the slope happens when the 

gate voltage sweeps passed the flat band point (Figure 4.1-c), when it increases from 

zero to negative side. After this point, conduction band electron tunneling from poly-

gate to substrate becomes available. 

In Figure 4.5, the various components of the gate SILC after ts = 1000 s stress are 

shown. In accumulation, the gate SILC mainly comprises the substrate current ∆Jsub, 

and this is the case even at gate voltage as low as −0.5 V. At such low voltage, 

electron tunneling from gate to substrate is unlikely to happen since the bottom of the 

conduction band of the gate poly is aligned with the band gap of the substrate (Figure 

4.1-b, c). The only way, by which electron tunneling can happen, is via interface 

states or oxide traps. Beyond the flat band point, conduction band electron tunneling 

from poly-gate to substrate dominates. The shift in the slope of log(∆Jg)-Vg indicates a 

change in the conduction mechanism of SILC. This change in the slope was, however, 

not observed for p+/pMOS devices in the previous chapter. 

The change in the slope of the log(∆Jg)-Vg curve at Vg ~ −1 V becomes more 

obvious when the normalized gate SILC is plotted against the gate voltage, as shown 

in Figure 4.6. The gate voltage at which the slope of log(∆Jg)-Vg curve changes 

corresponds well to the peak of the normalized gate SILC. The normalized SILC of 

p+/pMOS is also shown in the inset of Figure 4.6 for comparison. We see that for 

both devices, besides the one in the accumulation region (|Vg| ~ 1.0 V), there is an 

additional peak in the weak inversion region at |Vg| ~ 0.2 V. The similarity between 



 
SILC in n+/nMOSFETs with Ultrathin Nitrided Gate Oxides 

76 

 
Figure 4.3: Evolution of the gate leakage current in an n+/nMOSFET, after constant 
voltage stress at Vs = +4.3V. The stress time increases in the direction of the arrow: 0 s 
(pre-stress), 100 s, 1000 s, and 3000 s. 
 
 

 
Figure 4.4: Gate SILC of the n+/nMOSFET shown in Figure 4.3, for the accumulation 
and inversion modes. The stress voltage was +4.3 V. The stress time is 100 s, 1000 s, 
and 3000 s (same as Figure 4.3) along the direction of the arrow. 
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Figure 4.5: Electron and hole SILC characteristics for the accumulation and inversion 
modes after t = 1000 s stress. The curves are obtained by sweeping the gate voltage 
from negative to positive.  
 

 
Figure 4.6: Normalized gate SILC as a function of gate voltage, for an n+/nMOSFET 
following different stress times. Jg0 denotes the pre-stress gate leakage current, and 
∆Jg denotes the gate SILC. A similar plot for a p+/pMOSFET is also shown in the 
inset. The stress time increases along the direction of the arrow. 
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Figure 4.7: Electron and hole TAT process via stress-induced oxide trap (under strong 
inversion), for (a) p+/pMOS and (b) n+/nMOS, respectively. 
 

 
Figure 4.8: Normalized hole SILC and electron SILC in a p+/pMOSFET, for different 
stress times. The electron SILC in the low gate sense voltage (|Vg| < 1.2 V) regime is 
not shown, for the electron current in this voltage range is negligible. The Cumulative 
stress time increases along the direction of the arrow. 
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p+/pMOS and n+/nMOS shown in Figure 4.6 suggests a common mechanism for the 

ultra-low voltage SILC in these two devices. Further research work is needed to 

further understand the stress-induced current conduction in this region [2]. 

Unlike in the accumulation mode, the gate SILC (∆Jg-Vg) curve does not display 

a slope change in the inversion mode. This can be attributed to the fact that carriers 

involved in the SILC of n+/nMOS in inversion are mainly CBE, with very limited 

VBE involved. CBE tunneling via a TAT (trap-assisted tunneling) mechanism has 

been shown to successfully model the SILC in this region [3] - [5]. As shown in 

Figure 4.6, when the gate voltage is high enough, the (∆Jg/Jg0)-Vg curves for different 

stress time are parallel to each other. For a given stress level, the normalized gate 

SILC is rather insensitive to the gate sense voltage, for Vg > 1.5V. In this region, the 

amount of CBE available for tunneling is huge, and does not limit the tunneling 

leakage current. The density of stress-induced oxide traps, which is reflected by the 

normalized SILC, becomes the determining factor. The insensitivity of the normalized 

SILC to the gate sense voltage in Figure 4.6 indicates that the oxide trap density 

sensed by SILC at different gate sense voltage is almost identical. This is in contrast 

to the p+/pMOS case, where the oxide trap density sensed by SILC is highly 

dependent on the gate sense voltage (inset of Figure 4.6). The difference may have 

arisen from the different energy distributions of the stress-induced oxide traps of these 

two devices. In Chapter 3, we propose that for the p+/pMOS devices there are two 

separate oxide trap distributions responsible for the hole SILC and electron SILC. 

While for n+/nMOS device, electron SILC is predominant and there is actually 

negligible hole tunneling current in the gate leakage current. This implies that the 

energy distribution of stress-induced oxide traps in the n+/nMOS device is one sided, 

as shown in Figure 4.7-b. A further confirmation of this implication can be found in 

Figure 4.8, in which the normalized hole SILC and electron SILC of a p+/pMOSFET 

are plotted together as functions of the gate sense voltage. The normalized hole SILC 

of a p+/pMOSFET is quite insensitive to the gate sense voltage, similar to the 

normalized gate SILC of the n+/nMOSFET shown in Figure 4.6. However, the 

normalized electron SILC decreases significantly as the gate sense voltage increases, 

which is also responsible for the overall decreasing trend of the normalized gate SILC 
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Figure 4.9: Increase in the CBE tunneling current (∆Jsd, dashed lines) and VBE 
tunneling (∆Jsub, doted lines) in of an n+/nMOSFET with 2.2 nm gate oxide. 

 

 
Figure 4.10: The ratio of CBE tunneling current to the gate leakage current of a fresh 
device (solid circle), and to the in gate SILC of a stressed device (open circle). The 
corresponding ratios for the VBE tunneling current are also shown. Stress time t = 
1000 s. 
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of the p+/pMOSFET shown in the inset of Figure 4.6. 

As indicated in Figure 4.5, SILC in the n+/nMOS device is mainly dominated by 

the conduction band electron tunneling current, and the contribution of valence-band 

electrons or holes is negligible. In Figure 4.9 the stress-induced evolution of the CBE 

tunneling component as well as the VBE tunneling component is shown. We can see 

that after every stress interval, the CBE tunneling component is as least 2 orders 

larger than the VBE tunneling component. Moreover, the ratio is not sensitive to 

stress time.  The ratio of CBE (Jsd0) tunneling to pre-stress gate leakage (Jg0), and of 

stress-induced CBE (∆Jsd) tunneling to gate SILC (∆Jg), is shown in Figure 4.10. For 

both cases, the contribution due to CBE tunneling is very close to 100%. But for the 

VBE tunneling component (Jsub0/Jg0 and ∆Jsub/∆Jg), also shown in the same figure, the 

contribution to the gate leakage is typically less than 5%. Furthermore, the 

contribution is further reduced after stress, i.e. (∆Jsub/∆Jg) < (Jsub0/Jg0). VBE tunneling 

can, therefore, be neglected over the voltage range of interest. This further indicates 

that in the n+/nMOS device, the oxide trap distribution is localized near the Ec of the 

Si band gap. 

 

 

4.4 Summary 
 

SILC in n+/nMOSFETs with ultrathin nitrided gate oxide (2.2 nm) is characterized 

and compared to that in the p+/pMOSFETs. It is found that SILC in n+/nMOS 

devices is dominated by conduction-band electron tunneling. Furthermore, the TAT 

process in n+/nMOS is probably facilitated by a one-sided stress-induced oxide trap 

distribution localized near the Ec Si band gap. 
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Chapter 5 
 
 
 

Degradation of Ultrathin Nitrided 
Gate Oxides 
 
 
 
 
 
 
 
5.1 Introduction 
 

In the previous two chapters, we discussed the SILC in p+/pMOS and n+/nMOS 

devices with ultrathin gate oxide, from a viewpoint of evolution of its electron and 

hole components. p+/pMOS devices were found to display a gate SILC which was 

progressively dominated by the hole current, as the stress time was increased. On 

the other hand, for n+/nMOS devices, the gate SILC was always dominated by the 

conduction-band electron tunneling current. 

It is widely accepted that SILC can be correlated to oxide degradation. In the 

previous chapters, we have shown the shift in the Jg-Vg characteristic induced by 

stress, without quantifying the increase in the gate leakage current. In this chapter, 

we will focus on the degradation process of ultrathin gate oxides, by investigating 

the generation rate of SILC under constant voltage stress.  

 

 

5.2 Gate Stress Current and Gate Sense Current 
 

As discussed in Chapter 2, a constant voltage stress was used to generate SILC in 

our experiments, and the stress current was always recorded for quantitative 

evaluation of the relationship between SILC and charge injection. In Figure 5.1, the 

recorded gate stress current (Js,g) is shown as function of stress time (ts), for a 
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p+/pMOSFET. Js,g exhibits a strong oscillatory behavior after each cycle of stress, 

consistent with an earlier observation [1]. This behavior was explained by the 

relaxation of trapped positive charges after the stress voltage was withdrawn. The gate 

sense current Jg,-1.5 , measured at Vg = −1.5 V after each cycle of stress, is also shown, 

displaying a similar increasing trend with stress time. The gate sense current curve 

exhibits slight perturbations. Both the gate stress current and gate sense current 

increase dramatically in the initial stage of stress, and tend to saturate at long stress 

time. The gate sense current shows a peak at about ts = 5000 s, and drops continuously 

in the next few cycles before it increases again. This again indicates the instability of 

stress-induced trapped charges and traps in p+/pMOS devices. 

 

 
Figure 5.1: Recorded gate current during constant voltage stress and gate sense  
current after each cycle of stress, for a p+/pMOSFET. Gate area is 40 × 20 µm2, and 
the gate oxide thickness is 2.2 nm. 
 

For the case of n+/nMOS device, we observe similar oscillatory characteristics, in 

Figure 5, for both gate stress current and gate sense current, before oxide breakdown. 

This indicates that the partial relaxation of stress-induced effects is common to both 

p+/pMOS and the n+/nMOS devices. In our stress and measurement scheme, the 

process is repeated until the gate oxide breaks down. Note that for an n+/nMOS 

device with such thin gate oxide (2.2 nm) and stressed under such high voltage    
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(+4.3 V), the time-to-breakdown is about 3 x 103 s. The p+/pMOS counterpart, 

stressed under the same voltage (−4.3 V), did not break down even for stress times up 

to 105 seconds. This should be expected since the stress current for n+/nMOS is about 

two orders larger than that for p+/pMOS. 

 

 
Figure 5.2: Recorded gate current during constant voltage stress and gate current after 
each cycle of stress, for an n+/nMOSFET. Gate area is 40 × 20 µm2, and the gate 
oxide thickness is 2.2 nm. 
 

 

5.3 SILC Generation and Oxide Degradation 
 

By integrating the stress gate current shown in Figures 5.1 and 5.2, we obtain the 

amount of charges injected (Qinj) across the gate oxide for a given stress time. Shown 

in Figures 5.3 and 5.4 are the normalized gate SILC as a function of charge injection, 

for p+/pMOS and n+/nMOS, respectively. For both devices, the relationship between 

the normalized gate SILC and charge injection can be described by a linear function 

in the log-log scale [2]. According to this correlation, for a given gate sense voltage 

g0

g
injlog logJ k Q C

J
∆

= ⋅ + ,                                          (5.1)
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Figure 5.3: Normalized gate SILC as a function of charge injection, with the gate 
sense voltage as the parameter. The p+/pMOSFET was stressed −4.3 V. 

 
 
 

 
Figure 5.4: Normalized gate SILC as a function of charge injection, with the gate 
sense voltage as the parameter. The n+/nMOSFET was stressed +4.3 V. 
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Figure 5.5: SILC generation probability as a function of gate sense voltage, for 
different charge injection levels. The p+/pMOSFET was stressed at −4.3 V. 
 
 

 
Figure 5.6: SILC generation probability as a function of the gate sense voltage for 
different charge injection levels. The n+/nMOSFET was stressed at as +4.3 V. 
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Figure 5.7: SILC generation probability as a function of charge injection, for different 
gate sense voltages. The p+/pMOSFET was stressed at −4.3 V. 
 

 

 
Figure 5.8: SILC generation probability as a function of charge injection, for different 
gate sense voltages. The n+/nMOSFET was stressed at +4.3 V. 
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where k and C denote the slope and the y intercept, respectively. From Figures 5.3 and 

5.4, we note that k is not sensitive to sensing voltage. The value of k is about 0.30 for 

p+/pMOS and 0.44 for n+/nMOS. A larger k value for the n+/nMOS device indicates 

a faster degradation of gate oxide, consistent with the much shorter time-to-

breakdown compared to the p+/pMOS device. The value of C is determined by the 

gate sense voltage.  As indicated by the arrows in Figures 5.3 and 5.4, for the 

p+/pMOS device, C decreases as sensing voltage increases, while for the n+/nMOS 

device, the opposite applies. This is due to the fact that, for the p+/pMOS device, 

normalized gate SILC decreases as sensing voltage increases, while for the case of the 

n+/nMOS device, there exists a reversion region (refer to Chapters 3 and 4).  

The SILC generation probability (Pgen) is defined as the normalized SILC 

generated per unit of injected charge. It can be easily obtained by multiplying the 

normalized gate SILC with the reciprocal of charge injection [3] - [5] 

gen g g0 inj/( )P J J Q= ∆ ⋅ .                                               (5.2) 

It is a good indicator of bulk defect generation probability at certain charge injection 

level [5]. As shown in Figure 5.5 to Figure 5.8, Pgen is dependent on the gate sense 

voltage as well as the charge injection level for both devices. For the p+/pMOS device, 

it decreases monotonically as the gate sense voltage increases. For the n+/nMOS 

device, Pgen-Vg basically exhibits a decreasing trend but there is a slight reversal from 

about Vg = 2.0 V to Vg = 3.0 V. Furthermore, Pgen becomes less sensitive at higher 

charge injection level. The SILC generation probability of p+/pMOS (n+/nMOS) 

device as a function of charge injection at different sensing voltages is shown in 

Figure 5.7 (Figure 5.8). For both devices, Pgen is a linearly decreasing function of Qinj 

in the double-log scale. Thus, we can relate the SILC generation probability 

empirically to charge injection:  

gen inj
xP Q−∝ ,                                                    (5.3) 

where x indicates the slope of the plotting Pgen versus Qinj in double-log scale, with a 

value of about 0.70 and 0.55, for p+/pMOS and n+/nMOS, respectively. 
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5.4 Driving Force of Oxide Degradation 
 

Comparing Figure 5.1 and 5.2, we notice that for the same stress voltage in the 

inversion mode, n+/nMOS break down more easily compared to p+/pMOS, and 

exhibits several-orders higher SILC generation probability for a certain charge 

injection. There are two factors contributing to this difference: stress current density 

and carrier energy. The higher the stress current, the faster is the rate of oxide 

degradation. Similarly, more energetic carriers result in a shorter time-to-breakdown. 

As shown in Figures 5.1 and 5.2, the stress current density for n+/nMOS is at least 

two orders of magnitude larger than that for p+/pMOS. Furthermore, the energy 

barrier for valence band carrier tunneling (p+/pMOS case) is about 1 eV higher than 

conduction band electron tunneling (n+/nMOS case). There is still controversy on the 

main driving force of oxide degradation: Current or voltage. At this stage, it is 

difficult to decouple the impact of these two factors. 

 

 
Figure 5.9: Evolution of stress gate current under different stress voltages: −4.3 V 
(solid line), −4.5 V (dashed line) and −4.7 V (dotted line). Stress is periodically 
stopped for SILC measurement. 
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In Figure 5.9, the increase in the gate current under three stress voltages is 

compared for a p+/pMOS device. When stress voltage slightly increases from −4.3 V 

to −4.5 V or form −4.5 V to −4.7 V, the time-to-breakdown of gate oxide is greatly 

shortened. For Vs = −4.3 V, no sign of breakdown was observed even after as long as 

105 seconds, which is the maximum time allowed by our stress/measurement program. 

Since the energy of the tunneling carriers is a linear function of gate voltage, the 

energy change of 0.2 eV is unlikely to be responsible for the great reduction in the 

time-to-breakdown. On the other hand, a small change in the stress gate voltage 

translates into an exponential change in the stress current, implying that the current 

may play a more important role than voltage in the oxide degradation process. 

 

 

5.5 Summary 
 
 

In this chapter, the degradation process of ultrathin nitrided gate oxides under 

constant voltage stress is characterized through monitoring the evolution of SILC with 

stress time. Both the p+/pMOS and n+/nMOS devices demonstrated partial recovery 

of degradation after the withdrawal of stress voltage, prior to oxide breakdown. The 

degradation rate of gate oxide for a given charge injection level can be well predicted 

by Equation (5.1). The SILC generation probability shows very strong dependence on 

charge injection, in accordance with Equation (5.3). The sharp decrease in the SILC 

generation probability at high charge injection level indicates that neutral oxide trap 

generation tends to saturate at high stress level. Finally, from the stress voltage 

dependence of the time-to-breakdown of the p+/pMOS device, it is found that the 

degradation of ultrathin nitrided gate oxide is more current driven than voltage driven.  
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Chapter 6 
 
 
 
 
 

Conclusions and Future Work 
 
 
 
 
 
 
 
6.1 Conclusion 
 

SILC in p+/pMOSFET with 2.2 nm nitrided gate oxide generated by CVS and 

SHH injection has been characterized from a viewpoint of evolution of hole and 

electron component. It is found that hole current in SILC generated by CVS tends to 

dominate over electron current, and such a tendency of hole dominance is enhanced 

continuously during the stress. In SILC generated by SHH injection, hole current 

shows overwhelming dominance over electron current. A physical model featuring 

two separate energy distributions of oxide trap, which favors hole tunneling, is 

presented to explain the observed evolution of hole current and electron current in 

SILC. Oxide trap localization near substrate valence band is probably responsible for 

dominance of hole current. Such a localized trap distribution should be generated by 

hole injection into the gate oxide. The presented physical model is consistent with the 

established TAT framework for SILC.  

SILC of n+/nMOSFET is found to be dominated by conduction-band electron 

tunneling. Furthermore, the TAT process of SILC in n+/nMOS is probably facilitated 

by a one-sided stress-induced trap distribution near the substrate conduction band 

edge, consistent with the model presented for SILC of p+/pMOSFET. 

Degradation of the ultrathin gate oxide process can be well visualized by the 

generation and increase of SILC. Before oxide breakdown happens, both p+/pMOS 

and n+/nMOS demonstrated the partial recovery of degradation after the withdrawal 
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of stress voltage but before the oxide breakdown. The degradation rate of gate oxide 

for a certain charge injection level can be well predicted by Equation (5.1). SILC 

generation probability shows very strong charge injection dependence, which can well 

fit Equation (5.3). The sharp decrease of SILC generation probability at high charge 

injection indicates that neutral oxide trap generation tends to saturate at high stress 

level. Finally, from the stress voltage dependence of the time-to-breakdown of 

p+/pMOS, it is found that degradation of ultrathin nitrided gate oxide is more current 

driven than voltage driven. 

 

 

6.2 Future Work 
 

Further efforts are needed to achieve a complete understanding of SILC 

generation in ultrathin nitrided gate oxide, including polarity dependence, temperature 

dependence and dynamic stress induced leakage. It has also been demonstrated in this 

report that there is a possibility to unify the degradation of ultrathin gate oxides in 

p+/pMOS and n+/nMOS devices into one framework, which features oxide trap 

generation and build-up near valence band edge (p+/pMOS) or conduction band edge 

(n+/nMOS). 

It will be very meaningful if this work can be extended to high-k materials, which 

is expected to replace nitrided oxide as gate dielectric in later generation of MOS 

technologies.  

 




