
APPLICATIONS OF ANALYSIS AND SYNTHESIS
TECHNIQUES FOR COMPLEX SOUNDS

XINGLEI ZHU

(B.E. (Hons.), USTC, CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

 i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I am indebted to my supervisors, Dr. Lonce Wyse and Dr. Ye Wang, for their

extraordinary support and guidance throughout the past one and a half years.

I would like to thank my friends, Zhicheng Zhou, Rong Zhang and Rui Li for their

encouragement that inspired me so much.

I am grateful to Dr. Qibin Sun who constantly helped me in the last two years in

Singapore, in my study and daily life.

I am also grateful to the National University of Singapore and Institute for

Infocomm Research for awarding me a Research Scholarship.

Finally, I would like to thank my parents who initially leaded me to the way of

science.

 ii

Table of Contents

_Toc90794765

Acknowledgements ..ii

Table of Contents ... iii

List of Figures ..v

Summary ...vi

Chapter 1 Introduction ..1

1.1 Motivation ..1

1.2 Contribution ...3

1.3 Thesis Organization..3

Chapter 2 Background ..4

2.1 Sound Synthesis Technology..4

2.1.1 Additive Sound Synthesis ..4

2.1.2 Subtractive Sound Synthesis ..5

2.2 Linear Predictive Coding (LPC)...6

2.2.1 Pole-Zero Filter ..7

2.2.2 Transfer Function ...8

2.2.3 Calculation of LPC...9

2.2.4 LPC Analysis and Synthesis Process..9

2.2.5 Reflection Domain Coefficients ...10

2.3 Hidden Markov Models (HMM)..10

Chapter 3 Application Scenario 1. Sound Texture Modeling ...12

3.1 Problem Statement ...12

3.2 Review of Existing Techniques ..13

3.3 Certain Sound Texture Modeling ...16

 iii

3.3.1 System Framework...16

3.3.2 Frame Based TFLPC Analysis ...17

3.3.3 Event Detection ..18

3.3.4 Background Separation ..19

3.3.5 TFLPC Coefficients Clustering..19

3.3.6 Resynthesis...21

3.4 Evaluation and Discussion ...24

3.4.1 Properties of Reflection Domain Clustering ..25

3.4.2 Comparison with an HMM Method ...26

3.4.3 Comparison with Event-Based Method..27

Chapter 4 Application Scenario 2. Packet Loss Recovery..29

4.1 Problem Statement ...29

4.2 Related Works ..31

4.2.1 Packet Loss Recovery ..31

4.2.2 C-UEP Scheme...34

4.3 Analysis/Synthesis Solution ...36

4.3.1 System Framework...36

4.3.2 Percussive Sounds Detection..38

4.3.3 Codebook Vector Quantization...38

4.3.4 Codebook Modeling ...39

4.3.5 Transmission of Parameter Codebook..42

4.3.6 Synthesize the Percussive Sounds ..42

4.3.7 Reconstruct the Lost Packets..43

4.4 Evaluation and Discussion ...44

Chapter 5 Conclusions and Future Work ..46

Bibliography...49

Appendix. Publications ..55

 iv

List of Figures

Figure 3.1 Texture Modeling System Framework ... 16

Figure 3.2 TFLPC Analysis .. 17

Figure 3.3 Event Extraction ..18

Figure 3.4 Resynthesis .. 21

Figure 3.5 TFLPC Synthesis .. 22

Figure 3.6 Time domain Residual ... 23

Figure 3.7 Sample sound and Synthesized sound .. 24

Figure 3.8 Scale effect of reflection LPC coefficients .. 27

Figure 4.1 System Framework on sender side ... 36

Figure 4.2 Codebook modeling and synthesis .. 40

Figure 4.3 Event Contour ... 41

Figure 4.4 Residual of LPC .. 42

Figure 4.5 Reconstruction of lost percussive packet ... 44

 v

Summary

In this thesis we present two applications of sound modeling/synthesis in sound

texture modeling and packet loss recovery. In both applications we build a

model for specific sounds and resynthesize them. The modeling/synthesis process

provides extreme low bit representation of the sound and generates perceptually

similar sounds.

In sound texture modeling, we build a model for specific kind of sounds that

contains a sequence of transients, such as fire burning sound. We use a Poisson

distribution to simulate the occurrence of transients and time-frequency linear

predictive coding to capture the time and frequency spectrum contour of each

event.

Another application of sound modeling/synthesis is packet loss recovery. We

improve the content based unequal error protection (C-UEP) scheme, which uses a

percussive codebook to recover the lost packet containing percussive sounds. Our

solution is an unequal error protection scheme that gives more protection to drum

beats in music streaming due to the perceptual importance of the musical beat. We

make a significant improvement on the codebook construction process by

codebook modeling and reduce the redundant information to only 1% of the

previous C-UEP system.

We make evaluations for both applications and discuss the limitations of the

 vi

current system. We also demonstrate the other possible applications and future

work.

 vii

Chapter 1 Introduction

1.1 Motivation

Sound is everywhere in our daily life. In the real world, sounds are made by

physical process and have different characters by themselves. Digital recorded

real sounds are usually in the form of Pulse Code Modulation (PCM), which is

formed by sampling analog signals at regular intervals in time and then quantizing

the amplitudes to discrete values. Such a representation is storage consuming and

the sound characters, such as pitch and timbre, are usually inconvenient to change.

Sound modeling/synthesis provides a means to present sounds in a low bit rate.

A “sound model” is a parameterized algorithm for generating a class of sounds

and a “synthesizer” is an algorithm to regenerate a specific class of sounds using

sound model parameters. Sound models can provide extremely low bit rate

representations, because only model parameters need to be communicated over

transmission lines. That is, if we have class-specific decoder/encoder pairs, we can

achieve far greater coding efficiencies than if we only have one pair that is

universal [Scheirer]. An example of using a class-specific representation for

efficiency is speech coded as phonemes. The problem is that we do not yet have

a set of models with sufficient coverage of the entire audio space, and there exist

no general methods for coding an arbitrary sound in terms of a set of models. The

process is generally lossy and the “distortion” is difficult to quantify. However,

there are specific application domains where this kind of model-based codec

 1

strategy can be very effective. For example, Chapter 4 describes a packet loss

recovery method for transients in music using a “beat” model that vastly reduces

the amount of necessary redundant data for error recovery. Another example might

be sports broadcasting where a crowd sound model could be used for low bit-rate

encoding of significant portions of the audio channel.

If generative sound models are used in a production environment, the same

representation and communication benefits exist. Ideally, all audio media could be

parametrically represented just as music is currently with MIDI (musical

instrument digital interface) control and musical instrument synthesizers. In

addition to coding efficiency, interactive media such as games or sonic arts could

take advantage of the interactivity that generative models afford. For example,

sound textures are an important class of sounds for interactive applications, but in

a raw or even compressed audio form they have significant memory and

bandwidth demands that restrict their usage. Building specific models for sound

texture is very useful in such applications due to the storage requirements of

sound models.

Sound models also provide variety in synthesized sounds, which is hard to

implement or memory-consuming for recorded sounds. Because in sound

models what we preserve for a specific class of sound is only parameters, we can

change the synthesized sounds by changing the parameters. This kind of

flexibility is hard to apply directly to recorded sounds without sound models.

Consider a virtual reality (VR) environment where we need different water

flowing sounds in different parts and these sounds need to change when some

specific event happens. To implement it we need a large collection of recorded

 2

water sounds if we use recorded sounds. The situation is quite different when we

have a model of water sounds, what we need to do is only to transfer a new set of

parameters and change some of them when needed. Another example is digitally

synthesized music. By building physical models of musical instruments, we can

synthesize music sounds virtually or even create some new sounds that could not

be played by traditional music instruments.

1.2 Contribution

In this thesis we present two applications of sound modeling/synthesis. The first

application is to build a model for specific class of sounds which consists of

transient sequences. The second one is building codebook model in packet loss

recovery to reduce redundant information. In both applications, the sound

model/synthesis strategy greatly reduces the requirement of memory and provides

variety of sounds.

1.3 Thesis Organization

The remaining parts of this thesis are organized as follows. In Chapter 2, we

introduce some background knowledge, including sound synthesis technology,

linear predictive coding (LPC) and hidden Markov model (HMM). Chapter 3

presents an application of sound modeling/synthesis in specific sound texture.

Chapter 4 gives details of the application of sound modeling/synthesis in packet

loss recovery. Finally, in Chapter 5 we draw some conclusion and discuss future

work.

 3

Chapter 2 Background

In this chapter we present some background information that will be used in the

later chapters of this thesis. In section 2.1, we briefly present two kinds of sound

synthesis technologies, additive sound synthesis and subtractive synthesis. Section

2.2 gives more details about linear predictive coding (LPC), a kind of subtractive

synthesis methods. In section 2.3 we show the concept of the hidden Markov

models (HMM).

2.1 Sound Synthesis Technology

Sound Synthesis, together with sound source modeling technologies, provide a

wide applicable means to model and recreate audio signal. In this section we

present an overview of two kinds of general used sound synthesis methods: additive

sound synthesis and subtractive sound synthesis.

2.1.1 Additive Sound Synthesis

Additive synthesis, also called Fourier synthesis, is a straight forward method of

sound synthesis. It is a type of synthesis which produces a new sound by adding

together two or more audio signals. The sources added together are simple waves

such as sine waves and are in the simple frequency ratios of harmonic series. The

 4

resultant absolute amplitude is the sum of the amplitudes of the individual signals.

The resulting sound is the sum of the individual frequencies taking into account.

According to the Fourier theory, any periodic sound can be created by combining

multiple sine waves at different frequency bins, phase angles and amplitudes. For

non-periodic sounds, windows are applied to the sounds to cut frames out from the

sounds. Each frame is considered as one period of an infinite periodic sound and

the same Fourier theory works. In practice, most instrumental sounds include

rapidly varying and stochastic components so that there are thousands of partials

with different frequency and phase. Thus additive synthesis is not applicable to

synthesize actual sound in physical instruments due to the great number of partials

to be implemented. To make a practical implementation, some simplifications were

proposed. One of them is to group the partials into bundles of mutually harmonic

partials so that Fast Fourier Transform can be used to generate each group

separately and efficiently.

Additive synthesis is computationally expensive and it generally requires a great

amount of control data, even in reduced form. Thus the psychoacoustical

significance of a single parameter is quite limited. Furthermore, additive synthesis

performs badly in the presence of stochastic components and highly transient

signals.

2.1.2 Subtractive Sound Synthesis

Subtractive synthesis reflects the opposite process of the additive synthesis. While

additive synthesis works from bottom up, subtractive synthesis takes a top-down

 5

scheme.

Subtractive synthesis starts with a basis waveform, which is rich in frequency

partials. Then we subtract frequencies from this basis waveform. This step is

usually done by using filters and the filters we use need to be time-variable.

Subtractive synthesis is a very workable method. Because low-order filtering is

very intuitive, subtractive synthesis is easy and rewarding to use. Most of its

parameters also have psychoacoustical semantics—timbre is created by taking a

proper starting waveform and shaping its spectrum with filters. Modulation is then

applied to the sound to make the sound more lively and organic. Subtractive

synthesis also has some disadvantages, accurate instrument simulations are

surprisingly difficult to create because of the simplicity of the synthesis engine.

The synthesized sounds often do not sound very good without extensive

modification and addition of features.

2.2 Linear Predictive Coding (LPC)

As a kind of pole-zero filters, linear predictive coding (LPC) is one of the most

powerful audio signal processing techniques, especially in speech processing

domain. First introduced in the 1960’s, LPC is an efficient means to achieve

synthetic speech and speech signal communication [Schroeder]. LPC captures the

frequency spectrum contour of the original signal and provides an extreme

economical model of the original signal.

 6

For speech signal, the LPC implements a type of vocoder [Arfib], which is an

analysis/synthesis scheme where the spectrum of a source signal is weighted by the

spectral components of the signal analyzed. In the standard formulation of LPC, an

all-pole filter is applied to the original signal and a set of LPC coefficients and a

residual is obtained. In the synthesis process, a source-excitation process is pursued.

In speech synthesis, the source signals are either a white noise or a pulse train, thus

resembling voiced or unvoiced excitations of the vocal tract, respectively.

The later sections of this section are arranged as follow: section 2.2.1 introduces the

general pole-zero filter; section 2.2.2 introduces the concept of transfer function;

section 2.2.3 shows how to calculate LPC coefficients; section 2.2.4 shows how

audio signal is modeled and synthesized by LPC filter; section 2.2.5 shows the

reflection coefficients, another presentation mean of LPC coefficients.

2.2.1 Pole-Zero Filter

Generalized pole-zero filter can be represented as:

1 1

() () (),1 , 1
p q

k l
k l

s n a s n k G b u n l k p l q
= =

= − + − ≤ ≤ ≤∑ ∑% ≤

where s(n) are inputs and u(n) are outputs of the system.

When ,1,0 pkak ≤≤=
1

() (), 1
q

l
l

s n G b u n l l q
=

= − ≤ ≤∑% is called all-zero model or

moving average model (MA-model); when ,

 is called all-pole model or autoregressive model

(AR-model). LPC filter is a kind of all-pole model.

qlbl ≤≤= 1,0

1

() (),1
p

k
k

s n a s n k k p
=

= − ≤∑% ≤

 7

http://www.faqs.org/docs/sp/sp-191.html

2.2.2 Transfer Function

For linear time invariant (LTI) system, the output y from a linear time-invariant

filter with input and impulse response is given by the h convolution of and

, i.e., , where “*” means convolution. Take the

z-transform of both sides of

h

x () ()* ()y n h n x n=

() ()* ()y n h n x n= and we get () () ()Y z H z X z= .

The transfer function (or system function) ()H z of a linear time-invariant

discrete-time filter is defined as , where denotes the z-transform

of the filter output signal , and

() / ()Y z X z ()Y z

()y n ()X z denotes the z-transform of the filter

input signal ()x n . The transfer function provides an algebraic representation of a

linear, time-invariant (LTI) filter in the frequency domain.

The transfer function of the pole-zero filter is:

1

1

1
()() , where () , .
() 1

q
l

l
nl

np
k n

k
k

b z
S zH z G S z s z G is gain
U z a z

−
∞

−=

− =−∞

=

+
= = =

+

∑
∑

∑

For all-zero model, the transfer function is:

1

()() (1), where () , .
()

q
l n

l n
l n

S zH z G b z S z s z G is gain
U z

∞
− −

= =−∞

= = + =∑ ∑

For all-pole model, the transfer function is

1

1() , .
1

p
k

k
k

H z G G is gain
a z−

=

=
+∑

 8

http://ccrma.stanford.edu/~jos/filters/Linearity_Time_Invariance.html
http://ccrma.stanford.edu/~jos/filters/Linearity_Time_Invariance.html
http://ccrma.stanford.edu/~jos/filters/Impulse_Response_Representation.html
http://ccrma.stanford.edu/~jos/mdft/Convolution.html
http://ccrma.stanford.edu/~jos/filters/Linearity_Time_Invariance.html
http://ccrma.stanford.edu/~jos/filters/Linearity_Time_Invariance.html
http://ccrma.stanford.edu/~jos/mdft/

2.2.3 Calculation of LPC

To estimate LPC coefficients (), use short-term analysis technique and for each

segment, minimize the total prediction error by calculating the minimum squared

error

ka

[] [] []() [] []
2

22
p

m m m m m k m
n n n k

E e n x n x n x n a x n k⎛ ⎞
= = − = − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑%

Take the derivative to the above equation and set it to zero, we can get the

Yule-Walker equations: , where [] [
1

, ,
p

k m m
k

a i k iφ φ
=

=∑]0

[] [] [, [m m m
n

i j x n i x n jφ = − −∑]] .

This equation can be solved by autocorrelation method or by covariance method.

2.2.4 LPC Analysis and Synthesis Process

In analysis process, an all-pole LPC filter coefficients are calculated as described in

previous section. By applying the LPC filter on the original signal , we get

the residual

()S n

1
() () ()

p

k
k

e n s n a s n k
=

= − −∑

In synthesis process, a source signal , usually white noise, is used instead of

the residual to excite the LPC filter. So we get the resynthesized signal

'()e n

 9

' ' '

1
() () ()

p

k
k

s n e n a s n k
=

= + −∑

The regenerated signal has the similar frequency spectrum as the original audio

signal.

2.2.5 Reflection Domain Coefficients

LPC coefficients are not robust to change. The stability is hard to judge and is easily

affected by a small change of the filter coefficients value. This problem no longer

exists by translating LPC coefficients into reflection domain by on Levinson's

recursion [Kay]. The stability of reflection coefficients is very easy to check: it is

stable iff the absolute value of all the reflection coefficients are smaller than 1.

Another advantage of reflection coefficients is that it can be interpolated, as long as

the results are still stable filter coefficients. But when near 1 and -1, it is sensitive to

errors.

2.3 Hidden Markov Models (HMM)

In this section, we briefly introduce the concept of Hidden Markov Models (HMM).

HMM is widely used in serial process modeling, such as speech synthesis.

Hidden Markov Models (HMM) are first introduced in [Baum] and later

implemented for speech processing by Baker [Baker]. HMM is a discrete-time,

discrete-space dynamical system that utilizes a Markov chain that emits a

sequence of observable outputs: one output (observation) for each state in a

trajectory of such states. The result is the output of a model for the underlying

 10

process. Alternatively, given a sequence of outputs, HMM infers the most likely

sequence of states. HMM can be used to predict a continue sequence of

observations and also can be used to infer underlying states according to the

outputs so that they are widely used in speech recognition.

 Mathematically, HMM is a five-tuple (_ , _ , , ,x O A B πΩ Ω), where

1_ { ,... N }x q qΩ = is the finite set of possible states with as total number of

states;

N

1_ { ,... MO v vΩ = } is the finite set of possible observations with M as total

possible observations;

{ }ijA a= is the set of transition probabilities;

Pr(_ 1 _)ij j ia X t q X t= + = = q is the transition probability from state to ; i j

_X t is the state at time ; t

{ }iB b= is the set of observation probabilities;

Pr(_ _)i kb O t v X t q= = = i is the observation probability of when state is

at time ;

kv i

t

_O t is the observation at time ; t

{ }iπ π= is the initial state distribution;

Pr(_ 0)i iX qπ = = is the probability of that the initial state is iq

 11

Chapter 3 Application Scenario 1. Sound

Texture Modeling

In this chapter we present an application of sound modeling/synthesis in specific

sound texture modeling. We use a Poisson distribution to simulate the occurrence

of events and use time-frequency linear predictive coding (TFLPC) to capture

both the time and frequency spectrum contour inside each event. This method is

applicable to non-regular distributed transient-events texture, such as the crackling

of fire sounds.

3.1 Problem Statement

Sound textures are sounds for which there exists a window length such that the

statistics of the features measured within the window are stable with different

window positions. That is, they are static at “long enough” time scales.

Examples include crowd sounds, traffic, wind, rain, machines such as air

conditioners, typing, footsteps, sawing, breathing, ocean waves, motors, and

chirping birds. Using this definition, at some window length any signal is a

texture, so the concept is of value only if the texture window is short enough to

provide practical efficiencies for representation. Since all the temporal structure

exists within a determined window size, if we have a code to represent that

structure for that length of time, the code is valid for any length of time greater

 12

than the texture window size.

If a statistical description of features is valid, (e.g. the density and distribution of

“crackling” events in a fire), the variance in the instantiations for a given

parameter value would be semantically equivalent, if not perceptually so. That is,

one might be able to perceive the difference between two reconstructed texture

windows since the samples have a different event pattern, but if density is the

appropriate description of the event pattern, then the difference is unimportant. We

must thus identify structure within the texture window that can be represented

statistically as well as structure that must be deterministically maintained.

Texture modeling does not generally result in models that cover a particularly

large class of sounds. It is more appropriate for generating infinite extensions with

semantically irrelevant statistical variation than it is at providing model

parameters for interactive control or for exploring a wider space of sound around a

given example.

In this Chapter, we focus on synthesizing continuous, perceptually meaningful

audio stream based on single audio example. The synthesized audio stream is

perceptually similar to the input example and not just a simple repetition of the

audio patterns contained in the input. The synthesized audio stream can be of

arbitrary length according to the needs.

3.2 Review of Existing Techniques

Sound texture modeling is a comparatively new research area and no much works

 13

has been done in this area, although the corresponding topic in graphic research

area, graphic texture analysis, has been studied for many years. According to our

survey, almost all the methods utilize some statistical feature to model sound

texture.

Generally, different time frames are used for texture analysis. The texture window

length is signal-dependent, but typically on the order of 1 second. If the window

needs to be longer in order to produce stable statistics when time shifted, then the

sound would be unlikely to be perceived as a static texture. An LPC analysis

frame is typically on the order of 10 or 20 ms. The frequency domain LPC

(FDLPC) technique, which is an important part of our system, is called “temporal

wave shaping” in its original context [Herre], and it specifies the temporal shape

of the noise excitation used for synthesis on a sub-frame scale.

Tzanetakis and Cook [Tzanetakis] use both analysis and a texture window. In

recognition that a texture can be composed of spectral frames with very different

characteristics, they compute the means and variances of the low-level features

over a texture window of one second duration. The low level features include

MFCCs, spectral centroid, spectral rolloff (the frequency below which lays 85%

of the spectral “weight”), spectral flux (squared difference between normalized

magnitudes of successive spectral distributions) and time-domain zero crossing.

Dubonov [Dubnov] used a wavelet technique to capture information at many

different time scales. St. Arnaud [Arnaud] developed a two-level representation

corresponding roughly to sounds and events, analogous to Warren and

Verbrugge’s “structural” level [Warren1988] describing the object source and the

“transformational” level corresponding to the pattern of events caused by breaking

 14

and bouncing.

One of the objectives in model design is to reduce the amount of data necessary to

represent a signal in order to better reveal the structure of the data. The TFLPC

approach achieves a dramatic data reduction with minimal perceptual loss for a

certain class of textures. Athineos and Ellis [Athineos] used this representation to

achieve excellent parameter reduction with very little perceptual loss using 40

Time Domain LPC (TDLPC) coefficients and 10 Frequency Domain LPC

(FDLPC) coefficients per 512-sample or 23ms frame of data resulting in a 10x

data reduction. In this process, the compression is lossy although perceptual

integrity is preserved and the range of signals for which this method works is

restricted. This is a coding method rather than a synthesis model, although it

achieves excellent data reduction. We can not, for example, generate perceptual

similar sounds of arbitrary length using this method, which greatly restricts the

applications.

To construct a generative model, we want to connect the Time domain (TD) signal

representation to a perceptually meaningful low-dimensional control. We have

hope of doing this because the signal representation is already very low

dimensional. We still need to "take the signal out of time" by finding the rules that

govern the progression of the frame data vectors.

 15

3.3 Certain Sound Texture Modeling

3.3.1 System Framework

The framework of the system is shown in Figure 3.1. There are five basic steps in

the framework: frame-based TFLPC analysis, event detection, background sound

separation, TFLPCC clustering in reflection domain and resynthesis. The first

four steps are the process of modelling the sound texture, and the last step is to

synthesize sound of arbitrary length.

Frame-based TFLPC
analysis

Event Detection

Background Sound
Separation

TFLPCC clustering in
reflection domain

Resynthesis

Sound Sample

Background
Sound

TD LPC

Reflection domain
centers and variance

Figure 3.1 Texture Modeling System Framework

 16

3.3.2 Frame Based TFLPC Analysis

A frame-based time and frequency domain LPC analysis is first applied to the

sound for further event extraction and reflection domain clustering, as shown in

Figure 3.2. Such an analysis is essentially the same as the method in [Athineos].

Each frame in the signal is first multiplied by a hamming window. Following the

time domain linear prediction (TDLP), 40 LPC coefficients and a whitened

residual are obtained. Then the TD residual is multiplied by an inverse window to

restore the original shape of the frame. We use a discrete cosine transform (DCT)

to get a spectral representation of the residual and then apply another linear

prediction to this frequency domain signal. This step is called frequency domain

linear prediction (FDLP), which is the dual of TDLP in frequency domain. We

extract 10 FDLPC coefficients for each frame.

Framed
Signal

FD
Residual

Hamming
Window

TD
LPC

Inverse
Window

DCT FD
LPC

TD
Residual

FD LPCC TD LPCC

Figure 3.2 TFLPC Analysis

 17

3.3.3 Event Detection

The detection of events is shown in Figure 3.3.

Frame rate Gain in time
domain

The gain of time domain LPC analysis in the frame-based TFLPC indicates the

energy of frames so that it can be used to detect events. The gain is first compared

with a threshold (20% of the average of the gain over the whole sound sample) to

suppress noise and small pulses in gain. A frame-by-frame relative difference is

calculated and the peak position of the result is recorded as the onset of an event.

To detect the offset of each event, we use the average of the gain between adjacent

event onsets as an adaptive threshold. When the event gain is less than the

adaptive threshold, the event is considered as over. The length of most events in

our collection of fire sounds vary from 5-7 overlapped frames, or 60-80ms.

The event density over the duration of the entire sound is calculated as a statistical

Noise Reduction

Relative Difference

Peak Detection

Event Position

Figure 3.3 Event Extraction

 18

feature of the sound texture and this density is used in synthesis to control the

occurrence of events.

3.3.4 Background Separation

After we segment out the events, we are left with the background sound we call

‘din’ containing no events. We concatenate the individual segments and

pre-emphasize the high frequency part and then apply a 10-order time domain

LPC filter to this background sound to model it. The pre-emphasis is to better

capture the high frequency character. The TDLPC coefficients we obtain here are

used to reconstruct the background sound in the resynthesis process.

3.3.5 TFLPC Coefficients Clustering

In this step, we cluster the TDLPC coefficients and FDLPC coefficients to further

reduce the data amount. The process is as follows.

1) We first transform each of the TDLPC coefficient (TDLPCC) and FDLPC

coefficient (FDLPCC) vectors into the reflection domain. The filters represented

by the LPC coefficients are not generally stable under perturbation [Atal], so such

a transform is necessary.

2) Then we determine the number of clusters of TDLPCC and FDLPCC

separately. This is an issue of validity in unsupervised clustering. Here we use the

K-means method in clustering and the criterion function of minimization of ratio

of within-cluster scatter-matrix’s norm and total scatter matrix’s norm [Halkidi] to

 19

determine the proper cluster number.

The criteria function is defined as:

det()
det()

w

T

SF
S

= (1)

where
1

)()(
i

i

c
T

w
i x X

ix m x mS
= ∈

− −=∑ ∑ is the within-cluster scatter matrix, iX is

the cluster, c is the total number of clusters, thi (i im mean x x X= ∈) is the mean

vector of the cluster; is the total scatter matrix;

m=mean(x) is the mean of all the vectors. We limit the number of cluster to be in

the range from 2 to 20 and then calculate the criterion function F for different

candidate cluster numbers in this range. Then we calculate the change rate of F

with increase of cluster number c. When the change rate is very small (less than

1/1000), which means the criteria function changes slowly, the current number is

considered as the optimal one.

thi ()()T
T

x
S x m x m= − −∑

3) The center vector and variance of each cluster is calculated and recorded for

resynthesis. Based on the assumption that each dimension of the LPCC vector is

independent, we calculate the variance of each dimension separately so that we

get a variance vector for each cluster. Instead of the original frame-based TFLPCC

sequence of each event, the cluster index of each sequence and the cluster center

and variance are recorded. We also record the time domain LPC gain sequence

and the cluster number sequence of each event for resynthesis. We record these

parameters to preserve the original order of frames, which is critical in our system.

 20

3.3.6 Resynthesis

In the resynthesis process, we generate the background sound and event sequence

separately and mix them together in the final step.

Given a desired sound length, we use a noise excited 10-order background

TDLPC filter to generate the background sound and de-emphasize the high

frequency part. For the foreground sound, the resynthesis process is shown in

Background Resynthesis Statistical Event
Generation

TFLPCC
Index

Sequence

Event Resynthesis

Given
Length Background

TDLPCC Event
Density

Event
Position Synthesized Background

Synthesized Events

Synthesized Sound

Figure 3.4 Resynthesis

 21

Figure 3.4 and described below.

1) Use the event density, which is the average number of events per second, as

the parameter of a Poisson distribution to determine the onset position of each

event in the resynthesized sound.

2) Randomly select an event index. According to the TFLPCC sequence, use the

reflection domain TFLPCC cluster centers and the ½ of the corresponding

variance as the parameters to a Gaussian distribution function in each dimension

to generate the reflection domain TFLPCC feature vector sequence for the event.

Here we multiply a factor of ½ to the variance to make sure the generated LPC

coefficients do not differ too much from the originals.

3) Transform the reflection domain coefficients into the LPC domain.

4) Do the inverse TFLPC. This is just a reverse process of the TFLPC analysis,

as shown in Figure 3.5.

excitation
Event’

DCT FD LPC
filter

IDCT window FD
LPC

FD
LPCC

TD
LPCC

Figure 3.5 TFLPC Synthesis

 22

We first get the DCT spectrum of the excitation signal and then filter it using the

FDLPC coefficients to get the excitation signal in the time domain. Figure 3.6

shows the residual and the regenerated excitation in time domain. FDLPC

captures the sub-frame contour shape well. Then we filter the time domain

excitation using the TDLPC filter to get the time domain frame signal.

Figure 3.6: Time domain residual (above) and recovered excitation signal
(below). Here we plot 7 overlapping frames to show the structure of one

event.

5) Repeat step 4 for all the frames inside one event and then overlap and add to

reconstruct the event.

6) Repeat 2-5 until we generate events for all the event positions.

 23

7) Mix the synthesized events and the background sound together to get the final

result. The result is shown in Figure 3.7.

Figure 3.7: Sample sound (above) and synthesized
sound (below).

3.4 Evaluation and Discussion

Informal listening tests show that the regenerated sounds capture some texture

characters of the original audio clips. By using frame level contour extraction and

TFLPC analysis, both the spectral and fine temporal characteristics of the sound

are captured. To listen to and compare the original sound with the generated one,

see http://www.zwhome.org/~lonce/Publications/dafx2004.html.

 24

The error for each generated transient event comes from two sources: one is the

error between the excitation signal and the original residual; another is the

difference between the generated LPCC and the original one due to the clustering.

It is not easy to quantitively measure the dissimilarity between the generated

sound and the sample audio principally due to the statistical variation in the

model.

3.4.1 Properties of Reflection Domain Clustering

In the clustering of the TFLPCC, we use the reflection domain coefficients instead

of LPC domain coefficients. The reflection domain coefficients have several

advantages compared to the LPC domain coefficients [Atal]. Some of the

advantages are:

1) the all pole filter is stable under perturbation provided that the corresponding

reflection coefficients all lie between -1 and +1,

2) interpolating between two of reflection coefficients yields a smooth change in

the frequency response.

Figure 3.8 shows how the frequency response changes when we scale the

reflection domain coefficients. The first plot is the frequency response of a time

domain reflection coefficients. The second plot is the frequency response of the

normalization of the coefficients whose norm is 1. The last plot is the frequency

response of scale factor 0.01 multiplies the original coefficients. The figure shows

that when the maximum component of reflect coefficient vector is much smaller

 25

than 1, rescaling the coefficient vector does not change the frequency response of

the LPCC much. In other words, such a change in the frequency response is

acceptable and our clustering algorithm can be independent of the vector

magnitude.

Figure 3.8: Scale effect of reflection LPC coefficients.

3.4.2 Comparison with an HMM Method

We introduce the basic knowledge of HMM in Chapter 2. In the framework in

Section 3, we cluster the reflection domain TDLPCC and FDLPCC into clusters

separately and record the TDLPCC and FDLPCC cluster index sequences for each

event to preserve the original order of the frames. By such a clustering we get two

“codebooks” of the TDLPCC and FDLPCC separately and greatly reduce the

amount of information in reconstruction. However preserving the specific cluster

 26

number sequence for each event also restricts the flexibility of modeling. To gain

more flexibility, we train Gaussian Mixture Models to capture the order pattern.

After we get the reflection domain TDLPCC and FDLPCC sequence for each

event as we do in Section 3.3, we use these TDLPCC sequences and FDLPCC

sequences of all events to train two Gaussian mixture HMMs for TDLPC and

FDLPC separately. In resynthesis, we use these two HMMs to generate the

reflection domain TDLPCC sequence and FDLPCC sequence for regenerated

events. However, result shows that such a system does not work well. The output

of the HMMs sounds much more noisy than the given samples. In the Gaussian

Mixture HMM, there are several possible Gaussian distributions for each state.

When we generate coefficient vectors using the HMM, these distributions are

chosen according to some probability. The randomness in the cluster sequence has

a significant detrimental affect on the perceptual quality of the regenerated sound

3.4.3 Comparison with Event-Based Method

As another approach to reduce the amount of data, we implement a system using

TFLPC analysis to entire events instead of overlapped frames. First the energy of

each frame is calculated and then we extract events from the energy sequence of

the whole sound as we do to the gain sequence in section 3.3. Next we apply

TFLPC analysis to individual events instead of frames so that we have only one

TDLPCC vector and one FDLPCC vector for each event compare with

frame-based method’s two vector sequences. The data amount is further reduced.

However, there is a dramatic quality decrease when the event length is long. The

 27

reasons are as follows:

 1) When the event length increases, the modeling ability of LPC decreases. We

can use a greater filter order, but the quality is still worse than the short window

case,

2) The limited amount of data affects the parameter extraction for the Gaussian

distribution of each cluster. We get only two LPC vectors for each event instead of

two LPC coefficient vector sequences, so the data is not enough to estimate the

proper Gaussian distribution parameters for each cluster.

Based on these reasons, among the several methods we implemented in our

experiment, the frame-based TFLPC analysis method which is introduced in the

system framework section worked the best.

 28

Chapter 4 Application Scenario 2. Packet

Loss Recovery

In this chapter, we present an application of sound modeling/synthesis in which

we greatly reduce the redundant information required for recovery without

obvious quality decrease. We achieve this goal by generating a model for the

redundant information used in packet loss recovery and synthesizing the

redundant information from model parameters and further regenerating the lost

packets.

4.1 Problem Statement

Bandwidth efficiency and error robustness are two essential and conflicting

requirements for streaming media content over error-prone channels, such as

wireless channels. On such unreliable networks, packet loss can be common and

arise in many different forms. For instance, packets can be dropped due to

congestion at switches or arrive with too long a delay to be useful. On wireless

networks, packet losses can be caused by channel characteristics, such as fading,

or wireless network characteristics, such as handover in cellular network.

However, it is important to guarantee user-perceived quality of service (QoS) for

media streaming applications, especially music. For this purpose, we need a

method to recover lost packets. The method should generate perceptually high

 29

quality audio and use as little redundancy as possible to maintain bandwidth

efficiency.

The objective of packet loss recovery in audio streaming is to reconstruct the lost

packet with a perceptually indistinguishable replacer, or at least very similar. This

is the requirement of the quality of the recovered audio packet.

Considering an established wireless standard, the maximum channel capacity is

fixed and shared by many users. This fact adds the new requirement that the

redundant information should be as few as possible, with the assumption that it

would not affect the quality of recovered music.

In some systems, such as online music play or online gaming, there is also time

requirement of recovery. Lost packet resubmission is generally not a good method

in a system with critical time requirement due to its high latency. With

consideration of such applications, there is the third requirement of the loss packet

recovery method: it should be economical in computation so that the recovery

process can be done with small latency. On the other hand we can consider the

computational ability on the server side is unlimited, because the server generally

has strong computation ability and there is no critical time requirement for server.

Based on the above consideration, we need to develop a packet lost recovery

scheme with high recovered quality, small amount of redundant information and

few amount of computation in receiver side.

 30

4.2 Related Works

4.2.1 Packet Loss Recovery

There are many works related to packet loss recovery and these works can be

categorized into two categories: sender-based and receiver-based. The

sender-based methods can be further categorized into active retransmission and

passive channel coding. The receiver-based methods usually are employed when

the sender can not provide recovery information for the lost packets or the

recovery schemes fail. In this section, we present a brief overview of these

strategies.

Retransmission methods are closed-loop mechanisms that based on the

retransmission of the packets that were not received at the destination. In some

network protocols, such as Transfer Control Protocol (TCP), the retransmission is

ensured: the protocol makes sure that all the frames in the original data arrives the

destination. Many other protocols, such as User Datagram Protocols (UDP), do

not ensure this point. Retransmission methods are not acceptable in many real

time constrained applications such as live audio streaming, because it dramatically

increases the end-to-end latency. Interactive audio applications have critical time

requirements and the end-to-end delay need to be less than 250ms [Brady].

Most current sender-based methods belong to forward error correction (FEC), a

kind of open-loop mechanisms based on the transmission of redundant information

together with the original information so that the lost original data can be recovered

from the redundant information. FEC is an attractive alternative for providing

reliability without greatly increasing latency. This is particularly important for

 31

applications with real time constraints over high speed networks [Shacham]. This

kind of method usually achieves good performance with the cost of a large amount

of redundant information [Wah]. The redundant information cost, that increases

the bandwidth requirement of transmission, is the main drawback of FEC. FEC can

be further categorized into media-independent FEC and media-dependent FEC, as

discussed below.

Media-independent FEC usually uses block or algebraic codes to generate

additional packets to recover lost original data packets. Each code takes a codeword

of data packets and generates additional check packets so that the amount of

transmission packets is

n k

n k+ for original packets. An example using

media-independent FEC is the exclusive-or (XOR) coding implemented in

Rosenberg [Rosenberg96]. There are several advantages of media-independent

methods. The first is that the operation of FEC does not depend on the contents of

the packets, and the repair can be exactly done. Secondly the computation required

to derive the error correction packets is small and simple to implement. The

disadvantages are that it imposed additional delay, increase the bandwidth

requirement of transmission.

n

Media-specific FEC extracts some characters from the content of the audio signal

and uses these characters to recover lost packets. The transmitted original copy of

the audio data is referred to as the primary encoding and the redundant

transmissions are called secondary encodings. Usually the secondary encoding uses

a lower-bandwidth and lower-quality encoding than the primary to save bandwidth.

The choice of secondary encoding is usually depends on both the bandwidth and the

computational complexity of the encodings and the application’s requirement of the

 32

quality of recovered audio. Erdol et al. [Erdol] use short-term energy and

zero-crossing measurements as their secondary encoding. When a packet is lost, the

receiver interpolates the audio signal about the crossings using the short time

energy measurements. It is computationally cheap but can only recover short

periods of loss because the measure is only a coarse feature of the original audio

signal. Hardman et al. [Hardman] and Bolot et al. [Bolot] use the low-bit-rate

analysis-by-synthesis codecs such as full rate GSM encoding. Media-specific

FEC usually add a redundant overhead on each packet so that the size of each

packet increases. A common used method is to add the redundant overhead of the

packet on the next packet so that when the previous packet lost, it can be recovered

from the next packet. The length of the overhead of media-specific FEC is variable,

depending on the quality requirement of the repaired packets and without affecting

the number of losses can be repaired.

Receiver-based methods usually recover the lost packet without any redundant

information and is generally called error concealment. These kind of methods

generally exploit correlations between the adjacent packets and is usually very

simple and effective only when the packet loss rate is very low. Here we consider

a primarily receiver-based method. With increasing computational resources and

memory capacity, many receiver-based methods are becoming attractive. Based

on the assumption that packet loss is infrequent, that packet size is small and that

the signal is reasonably stationary for short enough segments, packet repetition

can offer a good compromise between achieved quality and complexity [Perkins].

The assumption of stationarity, however, is not true for streaming music,

particularly in the neighborhood of the musical “beat”. Furthermore, the simple

packet repetition method produces a double-drumbeat effect [Wang2002] when

 33

the missing packet immediately follows the beat, or fails to recover a beat when

the missing packet is exactly on the beat. Listeners are much more sensitive to the

errors due to packet repetition recovery when they occur around the beat than

when they happen elsewhere.

In practice the error concealment methods usually do not work along. A

sender-based scheme is used to repair most lost packets and the other gaps are left to

receiver-based error concealment, which provides cheap and effective ways to

recover the remain lost packet.

4.2.2 C-UEP Scheme

The failure of standard recovery techniques for this kind of signal led Wang et.

al.[Wang2003] to a content-based method of error concealment which is called

C-UEP, which means content-based unequal error protection. Recognizing the

perceptual importance of the musical beat, they introduced a parametric vector

quantization (PVQ) scheme as a secondary encoding of just the percussive sounds.

This method, compared with the conventional techniques, provides a much higher

quality of service (QoS), though there are still certain limitations.

The C-UEP scheme can be categorized as a forward error correction (FEC) method.

It holds the high recovery quality advantage of the FEC and also partly overcomes

the drawback of large amount of redundant information by using a codebook of

drum beats instead of the original drum beats sounds. But there are still some

limitations of the C-UEP system: First, the content-based codebook used for

 34

recovery, which is sent to the receiver in a “header” segment prior to streaming the

audio data, may be too large in application. Second, each codebook entry represents

a whole class of transient events in a stream and the resulting approximations may

simply not be good enough for some kinds of music. Furthermore, the drum beats

used in clustering are directly extracted from the original music signals and may be

contaminated with the singing voice and other noises.

 35

4.3 Analysis/Synthesis Solution

4.3.1 System Framework

Music

Detected
Percussive beats

Feature Extraction

Clustering

C1 Cn

 Save location

F
The s

The block diagram

server side is show

Choose Cluster
Representatives
Location & indices N Cluster Representation
of Audio Vectors

Codebook Modeling

Save best representative
index

igure 4.1 System Framework on server side.
haded parts are new contributions of this thesis.

 of the proposed packet loss recovery system framework on

n in Figure 4.1. The shaded parts are contributions of this thesis.

36

Out system is an improvement of the previous C-UEP system in [Wang2002]. It is

an unequal error protection scheme, with protection emphasis on the drum beats.

Our work further reduces the amount of the redundant information by building a

LPC model of the codebook items.

Our system aims to achieve low additional bandwidth. The current structure is

based on the below consideration of network transmission:

1. The analysis of the music, including detecting and encoding percussive sound,

will be done on the server side prior to transmission. Real-time analysis and

resynthesis on mobile devices is currently impractical given computational

resources.

2. To recreate percussive sound, we need a synthesis model on the client side. One

alternative would be to create a percussive model for each piece of music and

transfer the model to client side before music streaming. Another possibility would

be to assume a single general model on the client side that can generate percussive

sounds for any piece. The former way may generate better quality sound but

would require more bandwidth. It is also more difficult to generate a model

automatically than it is to parameterize one.

3. What is the optimal degree of data reduction via vector quantization to perform to

create the transients codebook? Wang et al.[Wang2003] found four vectors to be

adequate for a substantial increase in perceived quality. If the codebook entries are

small enough, there would be less pressure to sacrifice quality with such a drastic

reduction in the number of entries.

 37

4. The client side resynthesis of the audio codebook could be done either prior to

streaming, or in real-time on an as-needed basis. If the computation ability on the

client side cannot support real time calculation, a pre-stored replacement vector

buffer is necessary for recovering lost packets.

Based on the above consideration, we use the current scheme in codebook modeling

progress.

There are six basic components in the framework: percussive sounds detection;

codebook selection; codebook modeling; transmitting the codebook; synthesizing

percussion sounds; reconstructing the lost packet. Percussive sounds detection,

codebook selection and codebook modeling are done on sever side, which is shown

in Figure 4.1; synthesis and reconstruction are done on the receiver device. In the

following sections, we will give a detailed description of each component.

4.3.2 Percussive Sounds Detection

Our beat detection process first detects the onsets in the music streaming using

sub-band processing [Wang2003]. Percussive events are detected by looking for

sudden increases in intensity across several sub-bands.

4.3.3 Codebook Vector Quantization

After the transient segments are extracted, they are clustered according to a set of

perceptual features, and a single vector from the center of each cluster is chosen as a

representative for the codebook. In [Wang2003], the codebook and indices make

 38

up a “header” segment to the audio file that is sent prior to streaming audio. Since

the audio vectors in the codebook dominate the size of the header segment, our

focus in this paper is on reducing the size of the codebook.

4.3.4 Codebook Modeling

To reduce the size of the audio vector codebook, we use a generative model of the

audio vector with a small number of parameters used to control the model in

resynthesizing the vector on the client.

Currently we use a single percussive sound synthesis model for all audio vectors.

The task of the analysis/synthesis system is to minimize the perceptual difference

between the original and the resynthesized audio (Figure 4.2).

 39

 Error (Minimized)

Analysis x[t]
Audio

y[t]
Reconstructed

Signal

+
-

 N Audio Vectors
N Parameter Sets

Location & indices

Model
Parameters

Feature Extraction

Resynthesis

Feature Exraction

Figure 4.2. Codebook modeling and synthesis.
This unit represents the codebook modeling part of Figure 4.1

and the synthesis progress on receiver side.

We model the transient audio vectors as a signal containing a mix of noise and

periodic information with a single broad spectral shape. The only time-varying

component of the model is the amplitude attack and decay. The analysis is done in

the following steps:

1. Extract the contour of the percussive event (Figure 4.3). We find the maximum

point of the signal and use this point as the vertex of the contour triangle. The

duration of the codebook vectors is fixed and currently 2304 PCM samples. We

also keep the total energy of the percussive sound as a parameter for

resynthesis.

 40

Figure 4.3 Event Contour

2. Next we model the overall spectral shape of the vector using standard Linear

Predictive (LPC) analysis. Here we set the number of coefficients to 12 to capture

only the coarse spectral structure. With the residual error signal from the LPC

analysis, it would be possible to exactly regenerate the original signal.

3. Next we model the residual (Figure 4.4) as a pitched signal plus white noise.

We derive a pitch estimate by taking an autocorrelation of the FFT-derived power

spectrum. We take the pitch to be that of the maximal peak of the autocorrelation in

the range of 100-500 Hz. We use the ratio of the peak to total power in the spectrum

as a measure “pitch salience”, similar to Slaney [Slaney].

 41

Figure 4.4 Residual of the LPC process

By this procedure, we have converted the audio vector codebook to a set of

parameters, one set for each original audio vector. The number of parameters used

in this method is 16: 12 LPC coefficients, amplitude peak time and total energy of

the percussive sound, pitch and pitch salience.

4.3.5 Transmission of Parameter Codebook

The parameter codebook, together with the indices of transient packets, is sent in a

header segment before the streaming of audio packets begins. The header is sent

using a reliable transmission method.

4.3.6 Synthesize the Percussive Sounds

When the client receives the parameter sets in the header segment of the song data,

it regenerates the percussive audio vector codebook.

 42

The synthesis process has following steps: First, synthesize the residual. We use

white noise as the source and apply a comb filter with a delay corresponding to the

pitch. The pitch salience parameter is used to determine the filter weights – the

relative balance between the delay tap and white noise. The pitch parameter is

then used to amplitude modulate the noisy signal with a sharp attack and

exponential decay at the pitch period, while the pitch salience parameter is used to

control the decay rate - a longer decay rate makes the amplitude modulation less

pronounced and the signal less pitched. Next, we recover the course spectral shape

using the LPC-derived filter. Finally, we generate the temporal amplitude contour

from the peak time and level and apply the contour to the regenerated signal. Then

we normalize the regenerated signal so that it has the same energy as the original

percussive sound.

The exact methods of analysis and synthesis are not important as long as the key

perceptual characteristics (pitch, noisiness, spectral shape, signal energy and

amplitude envelope) are similar to the original.

4.3.7 Reconstruct the Lost Packets

With the reconstructed audio vector codebook, the packet loss recovery process can

proceed exactly as in [Wang2002]. When a packet is detected as lost, if it comes

from a segment labeled as transient, it is replaced using one of the codebook entries

(Figure 4.5).

If there is no transient in the lost packet, standard methods using neighboring

frames are used to do the recovery work.

 43

Param
Sets
Info

File Header Packets
Stream

Audio vectors

(Re)synthesize

 Figure 4.5 Reconstruction of a lost packet containing a

percussive transient, which is denoted as a grey triangle.

4.4 Evaluation and Discussion

The analysis/synthesis method can greatly reduce the codebook data needed to

recover the lost transients. For example, consider a 16 item codebook where the

duration of each entry represents 2048 PCM samples. Using audio vectors as in

[Wang2003], we need 64K bytes of redundancy data. Using a codebook of 16

synthesis parameters for each entry as described herein, the total codebook size in

the head packet is only 2*16*16 = 512 bytes, a reduction of two orders of

magnitude.

Heard in isolation, the resynthesized codebook vectors sound similar, but do not

sound identical to the original codebook methods, and since the synthesis

parameters are derived from the original codebook vectors, we can’t expect the

 44

synthetic method to be a perceptual improvement. However, because the original

method uses only a relatively small number of audio vectors to represent all

transients in the music anyway, the difference between the synthetic and original

vectors does not generally lead to a significant difference in the perceived quality in

the context of the music. Both methods address the perceptual sensitivity to beats

that has not been addressed by other recovery methods.

Sound examples for comparison can be found at

www.zwhome.org/~lonce/Publications/ACM2003.html. The examples include

the original song excerpt with missing packets, and their recreations using the

simple repetition method, the PVQ method and the parametric method. To get

better results, we can increase the vector number of the codebook, or even build one

parameter vector for each transient in the music, without being a burden of

transmission bandwidth.

 45

Chapter 5 Conclusions and Future Work

In this thesis we present applications of sound modeling/synthesis in sound texture

modeling and packet loss recovery. In both applications we highlight the benefits

of building sound model for specific class of sounds to gain data reduction and

variety.

In sound texture modeling we had demonstrated a method for modeling certain

classes of sound textures. The method involves analysis at different time scales to

preserve perceptually relevant information for synthesis. Future work will focus

on improvement of quality and generalization of this method to a wider class of

sounds. Currently we use a frame-based TFLPC analysis. If we could capture the

order pattern of the frames inside events, we could build pattern models to gain

more flexibility. In the current system we assume all the events are of the same

kind and use a single Poisson distribution to simulate the occurrence of the events.

This assumption may be violated for some sounds, such as the sound from tennis

game containing the players’ footstep sound and the ball-hitting sound. By

classifying the events into different classes and using different statistical

distributions for sequencing them, we can build a better model for the sounds

containing more than one kind of event.

Some sounds with both broadband noise and densely-packed micro-transients are

very difficult to segment into individual transient events. It is difficult to get

global statistical features such as event density to control the resynthesis.

 46

Segmentation of such complex sounds should also be explored to generalize this

method for flexible resynthesis.

In the application of packet loss recovery system, we showed how the current

state-of-the-art content based audio codebook method of packet loss recovery can

be vastly improved in bandwidth requirements using synthetic modeling and

synthesis without sacrificing perceived quality of service. The modeling and

resynthesis approach scales up nicely. Given the existence of a synthesizer on the

client, models (code that calls synthesizer library functions) are small. Two

kilobytes is typical, smaller than the size of a single 46 ms audio packet. This

means that several very different models for classes of sounds (different

algorithms, different parameterizations) could be used for a wider variety of

sounds than just percussive transients.

Future work will mainly focus on quality enhancements. A common situation in

music streaming is that the percussive sounds do not occur alone but are mixed

with other sounds concurrently, especially singing voice. This “contamination”

affects the codebook quantization process and degrades recovered sound quality.

For example, it is possible to recover a percussive packet containing male singing

voice with another packet containing a female singing voice. Another possible

situation is that the lost packet has a clear pitch, and there are no codebook entries

with matching pitch due to quantization step. To provide a good match across a

range of pitches, we could increase the number of codebook entries and still use

less header bandwidth compared to the audio vector codebook with only a couple

of entries. The analysis/resynthesis system affords good flexibility for addressing

both quality and bandwidth issues.

 47

Another possible way to enhance the quality without increasing redundant

information is that we separate the percussive sounds out from the mixture before

quantization. Statistically the percussive sound and singing voice can be

considered as independent and we can apply the independent component analysis

(ICA) technologies to separate them. Although the independent components from

ICA do not directly correspond to the sources one-by-one, we can group

components to build such a corresponding relationship and generate the sources

from components groups. We can generate better codebook by eliminating singing

voice source. The separated percussive sources are helpful in the quantization

process if we can classify them from individual packets into specific classes.

The use of synthetic sound offers a combination of extremely low bandwidth

requirements and real-time flexibility. It provides many options for managing

computational and bandwidth/memory constraints and we expect it to be useful in

a growing number of device and application contexts.

 48

Bibliography

[Arfib] D. Arfib, F. Keiler, and U. Z¨olzer. Source-filter processing. In U. Z¨olzer,

editor, Digital Audio Effects, pages 299--372. John Wiley and Sons, Ltd.,

Chichester Sussex, UK, 2002

[Arnaud] N.St. Arnaud, K. Popat, “Analysis and synthesis of sound textures,” in

AJCAI workshop on Computational Auditory Scene Analysis, 1995.

[Atal]B.S. Atal, P.V. Cox, P. Kroon, “Spectral quantization and interpolation for

CELP coders”, International Conference on Acoustics, Speech, and Signal

Processing, May 1989.

[Athineos]M. Athineos, D.P.W. Ellis, “Sound texture modeling with linear

prediction in both time and frequency domains,” in Proceedings of International

Conference on Acoustics, Speech, and Signal Processing, 2003.

[Baker] J.K.Baker, “The dragon system-An Overview”, IEEE Trans. Acoust.

Speech Signal Processing, vol. ASSP-23, no.1, pp.24-29, Feb.1975.

[Baum] L.E.Baum, T.Petrie, “ Statiscial inference for probabilistic functions of

finite state Markov chains”, Ann. Math. Stat., vol.37, pp.1554-1563, 1966.

[Brady] P.T.Brady, “Effects of transmission delay on conversational behavior on

echo-free telephone circuits”, Bell Sys. Tech. J., Vol. 50, pp.115-134, Jan., 1971.

 49

[Chen] Y.L.Chen and B.S.Chen, “Model based multirate representation of speech

signals and its application to recovery of missing speech packets”, IEEE Trans.

Speech and Audio Processing, Vol.15, No.3, pp.220-231, May 1997.

[Comon] P.Comon, “Independent component analysis - a new concept?”, Signal

Processing, Vol.36, pp. 287-314, 1994.

[Deering] S.Deering, “Multicast Routing in a Datagram Internetwork”, Ph.D thesis,

Standford University, Palo Alto, CA, Dec.,1991.

[Dubnov] S. Dubnov, Z.B. Joseph, R. E. Yaniv, D. Lischinski, M. Werman,

“Synthesizing sound textures through wavelet tree learning,” IEEE CGA, vol. 22,

no. 4, pp. 38– 48, Jul/Aug 2002.

[Erdol] N.Erdol, C. Castelluccia and A. Zilouchian, “Recovery of missing speech

packets using the short-time energy and zero-crossing measurements”, Trans.

Speech and Audio Processing, vol. 1, No.3, pp. 295-303, Jul., 1993.

[Goodman] D.J.Goodman, “Waveform substitution techniques for recovering

missing speech segments in packet voice communications”, IEEE Trans. Acoustics,

Speech, and Signal Processing, Vol.ASSP-34, No.6, pp. 1440-1448, Dec. 1986.

[Gruber] J.G.Gruber and L.Strawczynski, “Subjective effects of variable delay and

clipping in dynamically managed voice systems”, IEEE Trans. Commun., Vol.

COM-33, No.8, pp.801-808, Aug., 1985.

[Halkidi] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “On Clustering Validation

Techniques”, Journal of Intelligent Information Systems, 2001.

 50

[Haykin] S. Haykin, “Neural Networks: A Comprehensive Foundation”, Prentice

Hall, 1999.

[Herman] Hermann von Helmholtz, “On the Sensations of Tones”, translated by

Alexander J.Ellis, New York 1954, pages 124-127.

[Herre] J. Herre and J.D. Johnston, “Enhancing the Performance of Perceptual

Audio Coders by Using Temporal Noise Shaping (TNS),” in Proeedings of. 101st

AES Conference., Nov 1996.

[Hyvärinen97_1] A.Hyvärinen and E. Oja., “A fast fixed-point algorithm for

independent component analysis”, Neural Computation, Vol 9, No.7, pp1483-1492,

1997.

[Hyvärinen97_2]A. Hyvärinen, “A family of fixed-point algorithms for

independent component analysis”, ICASSP,1997.

[Hyvärinen99]A. Hyvärinen. “Fast and robust fixed-point algorithms for

independent component analysis”, IEEE Trans. on Neural Networks, 1999.

[Jayant] N.S.Jayant and S.W.Christenssen, “Effects of packet losses in waveform

coded speech and improvements due to an odd-even sample-interpolation

procedure”, IEEE Trans. Commun., Vol.COM-29, No.2, pp.101-109, Feb.,1981.

[Jolliffe] I.T.Jolliffe. “Principal Component Analysis”, Springer-Verlag, 1986.

[Karplus] K. Karplus, A. Strong, “Digital Synthesis of Plucked-String and Drum

Timbres ”, Computer Music Journal, vol.7, no.2, 1983.

 51

[Kay] S.M. Kay, “Modern Spectral Estimation, Englewood Cliffs”, NJ,

Prentice-Hall, 1988.

[Kavcic] A. Kavcic, B. Yang, “A new efficient subspace tracking algorithm based

on singular value decomposition”, ICASSP, vol.4, pp.485-488, 1994.

[Kendall] M.Kendall, “Multivariate Analysis”,Charles Griffin&Co., 1975.

[Makhoul] J. Makhoul. “Linear prediction: A tutorial review”, Proceedings of the

IEEE, vol. 63, no.4, pp. 561--580, 1975.

[Manning] Manning, Peter, “Electronic and Computer Music”, Clarendon Press,

1985.

[Papoulis] A. Papoulis, “Probability, Random Variables, and Stochastic Processes”,

McGraw-Hill, 3rd edition, 1991.

[Perkins] C. Perkins, O. Hodson, V. Hardman, “A Survey of Packet Loss

Recovery Techniques for Streaming Audio”, IEEE Network, vol.12, no.5, pp40-48,

1998.

[Ramsey] J.L.Ramsey, “Realization of optimum interleavers”, IEEE Trans. Info.

Theory, vol. IT-16, pp 338-345, May, 1970.

[Rosenberg96] J.Rosenberg, “Reliablity enhancements to NeVoT”, Dec, 1996.

 52

[Rosenberg98] J.Rosenberg and H.Schulzrinne, “An RTP payload format for

generic forward error correction”, IETF Audio/Video Transport WG, work in

progress(internet-draft), Jul., 1998.

[Sanneck] H.Sanneck, “A new technique for audio packet loss concealment”, IEEE

Global Internet 1996, IEEE, pp.48-52, Dec. 1996.

[Scheirer] E. Scheirer, B. Vercoe, “SAOL: The MPEG-4 Structured Audio

Orchestra Language”, Computer Music Journal 23:2, pp 31-51, 1999.

[Schroeder] M. R. Schroeder. “Computer Speech: Recognition, Compression, and

Syn- theis”, Springer Verlag, Berlin, Germany, 1999.

[Shacham] N. Shacham, P. McKenney, “Packet recovery in high-speed networks

using coding and buffer management”, Proc. IEEE Infocom '90, San Fransisco, CA,

pp. 124-131, May 1990.

[Slaney] M. Slaney, “Auditory Toolbox”, Technical Report #1998-010, Interval

Research Corporation, http://rvl4.ecn.purdue.edu/~malcolm/interval/1998-010/ .

[Tzanetakis]G. Tzanetakis, P. Cook, “Musical Genre Classification of Audio

Signals”. IEEE Transactions on Speech and Audio Processing, 10(5), July 2002.

[Viswanathan] V.R. Viswanathan, “Variable frame rate transmittion: A review of

methodology and application to narrow-band LPC speech coding”, IEEE Trans.

Commun., vol. COM-30, No.4, pp.674-687, Apr., 1982.

 53

[Wah] B.W. Wah, X. Su, D. Lin, “A Survey of Error Concealment Schemes for

Real-time Audio and Video Transmissions Over the Internet”, IEEE International

symposium on Multimedia Software Engineering, Taipei, pp.17-24, Dec. 2000.

[Wang2002] Y. Wang, S. Streich, “A Drumbeat-Pattern Based Error Concealment

Method for Music Streaming Applications”, IEEE ICASSP2002, Orlando, Florida,

USA, May 13-17, 2002.

[Wang2003] Y. Wang, J. Tang, A. Ahmaniemi, M. Vaalgamaa, “Parametric Vector

Quantization for Coding Percussive Sound in Music”. IEEE ICASSP 2003, Hong

Kong.

[Wang2003] Y. Wang, J. Tang, A. Ahmaniemi, M. Vaalgamaa. “Parametric vector

quantization for coding percussive sounds in music”, ICASSP, 2003.

[Warren] R.M.Warren, “Auditory Percption”, Pergamon Press, 1982.

[Warren1988]W.H. Warren, R.R. Verbrugge, "Auditory Perception of Breaking

and Bouncing Events: Psychophysics, ", Natural Computation, W. Richards, Ed.,

pp. 364--375. MIT Press, 1988.

[Wyse] L. Wyse, Y. Wang, X. Zhu, “Application of a Content-based Percussive

Sound Synthesizer to Packet Loss Recovery in Music Streaming”. Proceeding of

the 11th ACM International Conference on Multimedia (Berkeley, CA),

335-339,2003.

 54

Appendix. Publications

 L. Wyse, Y. Wang, X. Zhu, “Application of a Content-based Percussive

Sound Synthesizer to Packet Loss Recovery in Music Streaming”.

Proceeding of the 11th ACM International Conference on Multimedia

(Berkeley, CA), 335-339,2003.

 X. Zhu, L. Wyse, “Sound Texture Modeling Using TFLPC”. DAFx, 2004.

 55

	APPLICATIONS OF ANALYSIS AND SYNTHESIS TECHNIQUES FOR COMPLE
	Acknowledgements
	Table of Contents
	L
	Summary
	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background
	Sound Synthesis Technology
	Additive Sound Synthesis
	Subtractive Sound Synthesis

	Linear Predictive Coding (LPC)
	Pole-Zero Filter
	Transfer Function
	Calculation of LPC
	LPC Analysis and Synthesis Process
	Reflection Domain Coefficients

	Hidden Markov Models (HMM)

	Application Scenario 1. Sound Texture Modeling
	Problem Statement
	Review of Existing Techniques
	Certain Sound Texture Modeling
	System Framework
	Frame Based TFLPC Analysis
	Event Detection
	Background Separation
	TFLPC Coefficients Clustering
	Resynthesis

	Evaluation and Discussion
	Properties of Reflection Domain Clustering
	Comparison with an HMM Method
	Comparison with Event-Based Method

	Application Scenario 2. Packet Loss Recovery
	Problem Statement
	Related Works
	Packet Loss Recovery
	C-UEP Scheme

	Analysis/Synthesis Solution
	System Framework
	Percussive Sounds Detection
	Codebook Vector Quantization
	Codebook Modeling
	Transmission of Parameter Codebook
	Synthesize the Percussive Sounds
	Reconstruct the Lost Packets

	Evaluation and Discussion

	Conclusions and Future Work
	Bibliography
	Appendix. Publications

