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Summary 

 
In this thesis we present two applications of sound modeling/synthesis in sound 

texture modeling and packet loss recovery.  In both applications we build a 

model for specific sounds and resynthesize them. The modeling/synthesis process 

provides extreme low bit representation of the sound and generates perceptually 

similar sounds. 

In sound texture modeling, we build a model for specific kind of sounds that 

contains a sequence of transients, such as fire burning sound.  We use a Poisson 

distribution to simulate the occurrence of transients and time-frequency linear 

predictive coding to capture the time and frequency spectrum contour of each 

event.  

Another application of sound modeling/synthesis is packet loss recovery. We 

improve the content based unequal error protection (C-UEP) scheme, which uses a 

percussive codebook to recover the lost packet containing percussive sounds. Our 

solution is an unequal error protection scheme that gives more protection to drum 

beats in music streaming due to the perceptual importance of the musical beat. We 

make a significant improvement on the codebook construction process by 

codebook modeling and reduce the redundant information to only 1% of the 

previous C-UEP system. 

We make evaluations for both applications and discuss the limitations of the 

 vi



current system. We also demonstrate the other possible applications and future 

work.  
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Chapter 1 Introduction 

1.1 Motivation 

Sound is everywhere in our daily life.  In the real world, sounds are made by 

physical process and have different characters by themselves.  Digital recorded 

real sounds are usually in the form of Pulse Code Modulation (PCM), which is 

formed by sampling analog signals at regular intervals in time and then quantizing 

the amplitudes to discrete values. Such a representation is storage consuming and 

the sound characters, such as pitch and timbre, are usually inconvenient to change. 

Sound modeling/synthesis provides a means to present sounds in a low bit rate.  

A “sound model” is a parameterized algorithm for generating a class of sounds 

and a “synthesizer” is an algorithm to regenerate a specific class of sounds using 

sound model parameters. Sound models can provide extremely low bit rate 

representations, because only model parameters need to be communicated over 

transmission lines. That is, if we have class-specific decoder/encoder pairs, we can 

achieve far greater coding efficiencies than if we only have one pair that is 

universal [Scheirer]. An example of using a class-specific representation for 

efficiency is speech coded as phonemes.  The problem is that we do not yet have 

a set of models with sufficient coverage of the entire audio space, and there exist 

no general methods for coding an arbitrary sound in terms of a set of models. The 

process is generally lossy and the “distortion” is difficult to quantify. However, 

there are specific application domains where this kind of model-based codec 
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strategy can be very effective. For example, Chapter 4 describes a packet loss 

recovery method for transients in music using a “beat” model that vastly reduces 

the amount of necessary redundant data for error recovery. Another example might 

be sports broadcasting where a crowd sound model could be used for low bit-rate 

encoding of significant portions of the audio channel.  

If generative sound models are used in a production environment, the same 

representation and communication benefits exist. Ideally, all audio media could be 

parametrically represented just as music is currently with MIDI (musical 

instrument digital interface) control and musical instrument synthesizers.  In 

addition to coding efficiency, interactive media such as games or sonic arts could 

take advantage of the interactivity that generative models afford. For example, 

sound textures are an important class of sounds for interactive applications, but in 

a raw or even compressed audio form they have significant memory and 

bandwidth demands that restrict their usage. Building specific models for sound 

texture is very useful in such applications due to the storage requirements of 

sound models. 

Sound models also provide variety in synthesized sounds, which is hard to 

implement or memory-consuming for recorded sounds.  Because in sound 

models what we preserve for a specific class of sound is only parameters, we can 

change the synthesized sounds by changing the parameters.  This kind of 

flexibility is hard to apply directly to recorded sounds without sound models. 

Consider a virtual reality (VR) environment where we need different water 

flowing sounds in different parts and these sounds need to change when some 

specific event happens. To implement it we need a large collection of recorded 
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water sounds if we use recorded sounds.  The situation is quite different when we 

have a model of water sounds, what we need to do is only to transfer a new set of 

parameters and change some of them when needed.  Another example is digitally 

synthesized music. By building physical models of musical instruments, we can 

synthesize music sounds virtually or even create some new sounds that could not 

be played by traditional music instruments. 

 

1.2 Contribution  

In this thesis we present two applications of sound modeling/synthesis. The first 

application is to build a model for specific class of sounds which consists of 

transient sequences. The second one is building codebook model in packet loss 

recovery to reduce redundant information. In both applications, the sound 

model/synthesis strategy greatly reduces the requirement of memory and provides 

variety of sounds. 

 

1.3 Thesis Organization 

The remaining parts of this thesis are organized as follows. In Chapter 2, we 

introduce some background knowledge, including sound synthesis technology, 

linear predictive coding (LPC) and hidden Markov model (HMM). Chapter 3 

presents an application of sound modeling/synthesis in specific sound texture. 

Chapter 4 gives details of the application of sound modeling/synthesis in packet 

loss recovery. Finally, in Chapter 5 we draw some conclusion and discuss future 

work.
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Chapter 2 Background 

In this chapter we present some background information that will be used in the 

later chapters of this thesis.  In section 2.1, we briefly present two kinds of sound 

synthesis technologies, additive sound synthesis and subtractive synthesis. Section 

2.2 gives more details about linear predictive coding (LPC), a kind of subtractive 

synthesis methods. In section 2.3 we show the concept of the hidden Markov 

models (HMM).   

2.1 Sound Synthesis Technology 

Sound Synthesis, together with sound source modeling technologies, provide a 

wide applicable means to model and recreate audio signal.  In this section we 

present an overview of two kinds of general used sound synthesis methods: additive 

sound synthesis and subtractive sound synthesis.  

 

2.1.1 Additive Sound Synthesis 

Additive synthesis, also called Fourier synthesis, is a straight forward method of 

sound synthesis. It is a type of synthesis which produces a new sound by adding 

together two or more audio signals.  The sources added together are simple waves 

such as sine waves and are in the simple frequency ratios of harmonic series.  The 
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resultant absolute amplitude is the sum of the amplitudes of the individual signals.  

The resulting sound is the sum of the individual frequencies taking into account. 

According to the Fourier theory, any periodic sound can be created by combining 

multiple sine waves at different frequency bins, phase angles and amplitudes. For 

non-periodic sounds, windows are applied to the sounds to cut frames out from the 

sounds.  Each frame is considered as one period of an infinite periodic sound and 

the same Fourier theory works. In practice, most instrumental sounds include 

rapidly varying and stochastic components so that there are thousands of partials 

with different frequency and phase.  Thus additive synthesis is not applicable to 

synthesize actual sound in physical instruments due to the great number of partials 

to be implemented. To make a practical implementation, some simplifications were 

proposed. One of them is to group the partials into bundles of mutually harmonic 

partials so that Fast Fourier Transform can be used to generate each group 

separately and efficiently.  

Additive synthesis is computationally expensive and it generally requires a great 

amount of control data, even in reduced form. Thus the psychoacoustical 

significance of a single parameter is quite limited. Furthermore, additive synthesis 

performs badly in the presence of stochastic components and highly transient 

signals. 

 

2.1.2 Subtractive Sound Synthesis 

Subtractive synthesis reflects the opposite process of the additive synthesis. While 

additive synthesis works from bottom up, subtractive synthesis takes a top-down 
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scheme.  

Subtractive synthesis starts with a basis waveform, which is rich in frequency 

partials. Then we subtract frequencies from this basis waveform. This step is 

usually done by using filters and the filters we use need to be time-variable. 

Subtractive synthesis is a very workable method. Because low-order filtering is 

very intuitive, subtractive synthesis is easy and rewarding to use. Most of its 

parameters also have psychoacoustical semantics—timbre is created by taking a 

proper starting waveform and shaping its spectrum with filters. Modulation is then 

applied to the sound to make the sound more lively and organic. Subtractive 

synthesis also has some disadvantages, accurate instrument simulations are 

surprisingly difficult to create because of the simplicity of the synthesis engine. 

The synthesized sounds often do not sound very good without extensive 

modification and addition of features. 

 

2.2 Linear Predictive Coding (LPC) 

As a kind of pole-zero filters, linear predictive coding (LPC) is one of the most 

powerful audio signal processing techniques, especially in speech processing 

domain. First introduced in the 1960’s, LPC is an efficient means to achieve 

synthetic speech and speech signal communication [Schroeder].  LPC captures the 

frequency spectrum contour of the original signal and provides an extreme 

economical model of the original signal. 
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For speech signal, the LPC implements a type of vocoder [Arfib], which is an 

analysis/synthesis scheme where the spectrum of a source signal is weighted by the 

spectral components of the signal analyzed. In the standard formulation of LPC, an 

all-pole filter is applied to the original signal and a set of LPC coefficients and a 

residual is obtained. In the synthesis process, a source-excitation process is pursued. 

In speech synthesis, the source signals are either a white noise or a pulse train, thus 

resembling voiced or unvoiced excitations of the vocal tract, respectively. 

The later sections of this section are arranged as follow: section 2.2.1 introduces the 

general pole-zero filter; section 2.2.2 introduces the concept of transfer function; 

section 2.2.3 shows how to calculate LPC coefficients; section 2.2.4 shows how 

audio signal is modeled and synthesized by LPC filter; section 2.2.5 shows the 

reflection coefficients, another presentation mean of LPC coefficients. 

 

2.2.1 Pole-Zero Filter 

Generalized pole-zero filter can be represented as: 

1 1

( ) ( ) ( ),1 , 1
p q

k l
k l

s n a s n k G b u n l k p l q
= =

= − + − ≤ ≤ ≤∑ ∑% ≤
     

where s(n) are inputs and u(n) are outputs of the system.  

When  ,1,0 pkak ≤≤=
1

( ) ( ), 1
q

l
l

s n G b u n l l q
=

= − ≤ ≤∑%  is called all-zero model or 

moving average model (MA-model); when , 

 is called all-pole model or autoregressive model 

(AR-model).  LPC filter is a kind of all-pole model. 

qlbl ≤≤= 1,0

1

( ) ( ),1
p

k
k

s n a s n k k p
=

= − ≤∑% ≤
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2.2.2 Transfer Function 

For linear time invariant (LTI) system, the output y  from a linear time-invariant 

filter with input and impulse response   is given by the h convolution of  and 

, i.e.,            ,  where “*” means convolution. Take the 

z-transform of both sides of 

h

x ( ) ( )* ( )y n h n x n=

( ) ( )* ( )y n h n x n=  and we get ( ) ( ) ( )Y z H z X z= . 

The transfer function (or system function)  ( )H z  of a linear time-invariant 

discrete-time filter is defined as , where  denotes the z-transform 

of the filter output signal , and  

( ) / ( )Y z X z ( )Y z

( )y n ( )X z  denotes the z-transform of the filter 

input signal ( )x n . The transfer function provides an algebraic representation of a 

linear, time-invariant (LTI) filter in the frequency domain. 

The transfer function of the pole-zero filter is: 

1

1

1
( )( ) , where ( ) , .
( ) 1

q
l

l
nl

np
k n

k
k

b z
S zH z G S z s z G is gain
U z a z
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For all-zero model, the transfer function is: 

1
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q
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For all-pole model, the transfer function is     
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2.2.3 Calculation of LPC 

To estimate LPC coefficients ( ), use short-term analysis technique and for each 

segment, minimize the total prediction error by calculating the minimum squared 

error 

ka

[ ] [ ] [ ]( ) [ ] [ ]
2

22
p

m m m m m k m
n n n k

E e n x n x n x n a x n k⎛ ⎞
= = − = − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑%  

 
Take the derivative to the above equation and set it to zero, we can get the 

Yule-Walker equations: , where [ ] [
1

, ,
p

k m m
k

a i k iφ φ
=

=∑ ]0

[ ] [ ] [, [m m m
n

i j x n i x n jφ = − −∑ ]] . 

This equation can be solved by autocorrelation method or by covariance method. 

 

2.2.4 LPC Analysis and Synthesis Process 

In analysis process, an all-pole LPC filter coefficients are calculated as described in 

previous section.  By applying the LPC filter on the original signal , we get 

the residual  

( )S n

1
( ) ( ) ( )

p

k
k

e n s n a s n k
=

= − −∑  

 
In synthesis process, a source signal , usually white noise, is used instead of 

the residual to excite the LPC filter.  So we get the resynthesized signal 

'( )e n

 9



' ' '

1
( ) ( ) ( )

p

k
k

s n e n a s n k
=

= + −∑
 

The regenerated signal has the similar frequency spectrum as the original audio 

signal. 

 

2.2.5 Reflection Domain Coefficients 

LPC coefficients are not robust to change. The stability is hard to judge and is easily 

affected by a small change of the filter coefficients value. This problem no longer 

exists by translating LPC coefficients into reflection domain by on Levinson's 

recursion [Kay]. The stability of reflection coefficients is very easy to check: it is 

stable iff the absolute value of all the reflection coefficients are smaller than 1.  

Another advantage of reflection coefficients is that it can be interpolated, as long as 

the results are still stable filter coefficients. But when near 1 and -1, it is sensitive to 

errors. 

2.3 Hidden Markov Models (HMM) 

In this section, we briefly introduce the concept of Hidden Markov Models (HMM).  

HMM is widely used in serial process modeling, such as speech synthesis.   

Hidden Markov Models (HMM) are first introduced in [Baum] and later 

implemented for speech processing by Baker [Baker]. HMM is a discrete-time, 

discrete-space dynamical system that utilizes a Markov chain that emits a 

sequence of observable outputs: one output (observation) for each state in a 

trajectory of such states. The result is the output of a model for the underlying 
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process. Alternatively, given a sequence of outputs, HMM infers the most likely 

sequence of states. HMM can be used to predict a continue sequence of 

observations and also can be used to infer underlying states according to the 

outputs so that they are widely used in speech recognition. 

 Mathematically, HMM is a five-tuple ( _ , _ , , ,x O A B πΩ Ω ), where 

1_ { ,... N }x q qΩ = is the finite set of possible states with as total number of 

states; 

N

1_ { ,... MO v vΩ = } is the finite set of possible observations with M as total 

possible observations; 

{ }ijA a= is the set of transition probabilities; 

Pr( _ 1 _ )ij j ia X t q X t= + = = q  is the transition probability from state  to ; i j

_X t  is the state at time ; t

{ }iB b= is the set of observation probabilities; 

Pr( _ _ )i kb O t v X t q= = = i  is the observation probability of when state is  

at time ; 

kv i

t

_O t  is the observation at time ; t

{ }iπ π=  is the initial state distribution; 

Pr( _ 0 )i iX qπ = =  is the probability of that the initial state is  iq
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Chapter 3 Application Scenario 1. Sound 

Texture Modeling 

In this chapter we present an application of sound modeling/synthesis in specific 

sound texture modeling. We use a Poisson distribution to simulate the occurrence 

of events and use time-frequency linear predictive coding (TFLPC) to capture 

both the time and frequency spectrum contour inside each event. This method is 

applicable to non-regular distributed transient-events texture, such as the crackling 

of fire sounds. 

 

3.1 Problem Statement 

Sound textures are sounds for which there exists a window length such that the 

statistics of the features measured within the window are stable with different 

window positions. That is, they are static at “long enough” time scales.  

Examples include crowd sounds, traffic, wind, rain, machines such as air 

conditioners, typing, footsteps, sawing, breathing, ocean waves, motors, and 

chirping birds.   Using this definition, at some window length any signal is a 

texture, so the concept is of value only if the texture window is short enough to 

provide practical efficiencies for representation. Since all the temporal structure 

exists within a determined window size, if we have a code to represent that 

structure for that length of time, the code is valid for any length of time greater 
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than the texture window size.  

If a statistical description of features is valid, (e.g. the density and distribution of 

“crackling” events in a fire), the variance in the instantiations for a given 

parameter value would be semantically equivalent, if not perceptually so.  That is, 

one might be able to perceive the difference between two reconstructed texture 

windows since the samples have a different event pattern, but if density is the 

appropriate description of the event pattern, then the difference is unimportant. We 

must thus identify structure within the texture window that can be represented 

statistically as well as structure that must be deterministically maintained. 

Texture modeling does not generally result in models that cover a particularly 

large class of sounds. It is more appropriate for generating infinite extensions with 

semantically irrelevant statistical variation than it is at providing model 

parameters for interactive control or for exploring a wider space of sound around a 

given example. 

In this Chapter, we focus on synthesizing continuous, perceptually meaningful 

audio stream based on single audio example. The synthesized audio stream is 

perceptually similar to the input example and not just a simple repetition of the 

audio patterns contained in the input. The synthesized audio stream can be of 

arbitrary length according to the needs. 

 

3.2 Review of Existing Techniques 

Sound texture modeling is a comparatively new research area and no much works 
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has been done in this area, although the corresponding topic in graphic research 

area, graphic texture analysis, has been studied for many years. According to our 

survey, almost all the methods utilize some statistical feature to model sound 

texture. 

Generally, different time frames are used for texture analysis. The texture window 

length is signal-dependent, but typically on the order of 1 second. If the window 

needs to be longer in order to produce stable statistics when time shifted, then the 

sound would be unlikely to be perceived as a static texture. An LPC analysis 

frame is typically on the order of 10 or 20 ms. The frequency domain LPC 

(FDLPC) technique, which is an important part of our system, is called “temporal 

wave shaping” in its original context [Herre], and it specifies the temporal shape 

of the noise excitation used for synthesis on a sub-frame scale.  

Tzanetakis and Cook [Tzanetakis] use both analysis and a texture window. In 

recognition that a texture can be composed of spectral frames with very different 

characteristics, they compute the means and variances of the low-level features 

over a texture window of one second duration. The low level features include 

MFCCs, spectral centroid, spectral rolloff (the frequency below which lays 85% 

of the spectral “weight”), spectral flux (squared difference between normalized 

magnitudes of successive spectral distributions) and time-domain zero crossing. 

Dubonov [Dubnov] used a wavelet technique to capture information at many 

different time scales.  St. Arnaud [Arnaud] developed a two-level representation 

corresponding roughly to sounds and events, analogous to Warren and 

Verbrugge’s “structural” level [Warren1988] describing the object source and the 

“transformational” level corresponding to the pattern of events caused by breaking 
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and bouncing. 

One of the objectives in model design is to reduce the amount of data necessary to 

represent a signal in order to better reveal the structure of the data. The TFLPC 

approach achieves a dramatic data reduction with minimal perceptual loss for a 

certain class of textures. Athineos and Ellis [Athineos] used this representation to 

achieve excellent parameter reduction with very little perceptual loss using 40 

Time Domain LPC (TDLPC) coefficients and 10 Frequency Domain LPC 

(FDLPC) coefficients per 512-sample or 23ms frame of data resulting in a 10x 

data reduction.  In this process, the compression is lossy although perceptual 

integrity is preserved and the range of signals for which this method works is 

restricted. This is a coding method rather than a synthesis model, although it 

achieves excellent data reduction. We can not, for example, generate perceptual 

similar sounds of arbitrary length using this method, which greatly restricts the 

applications.   

To construct a generative model, we want to connect the Time domain (TD) signal 

representation to a perceptually meaningful low-dimensional control. We have 

hope of doing this because the signal representation is already very low 

dimensional. We still need to "take the signal out of time" by finding the rules that 

govern the progression of the frame data vectors. 
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3.3 Certain Sound Texture Modeling 

3.3.1 System Framework 

 

The framework of the system is shown in Figure 3.1. There are five basic steps in 

the framework: frame-based TFLPC analysis, event detection, background sound 

separation, TFLPCC clustering in reflection domain and resynthesis.   The first 

four steps are the process of modelling the sound texture, and the last step is to 

synthesize sound of arbitrary length.   

Frame-based TFLPC 
analysis 

Event Detection 

Background Sound 
Separation 

TFLPCC clustering in 
reflection domain 

Resynthesis 

Sound Sample 

Background 
Sound 

 
TD LPC 

Reflection domain 
centers and variance 

Figure 3.1 Texture Modeling System Framework 
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3.3.2 Frame Based TFLPC Analysis 

A frame-based time and frequency domain LPC analysis is first applied to the 

sound for further event extraction and reflection domain clustering, as shown in 

Figure 3.2. Such an analysis is essentially the same as the method in [Athineos].  

 

 
Each frame in the signal is first multiplied by a hamming window. Following the 

time domain linear prediction (TDLP), 40 LPC coefficients and a whitened 

residual are obtained. Then the TD residual is multiplied by an inverse window to 

restore the original shape of the frame.  We use a discrete cosine transform (DCT) 

to get a spectral representation of the residual and then apply another linear 

prediction to this frequency domain signal. This step is called frequency domain 

linear prediction (FDLP), which is the dual of TDLP in frequency domain. We 

extract 10 FDLPC coefficients for each frame. 

 
 

Framed 
Signal 

FD 
Residual

Hamming 
Window 

TD 
LPC

Inverse 
Window

DCT FD 
LPC 

TD 
Residual

FD LPCC TD LPCC

 
Figure 3.2 TFLPC Analysis 
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3.3.3 Event Detection 

The detection of events is shown in Figure 3.3.  

Frame rate Gain in time 
domain 

 

The gain of time domain LPC analysis in the frame-based TFLPC indicates the 

energy of frames so that it can be used to detect events. The gain is first compared 

with a threshold (20% of the average of the gain over the whole sound sample) to 

suppress noise and small pulses in gain. A frame-by-frame relative difference is 

calculated and the peak position of the result is recorded as the onset of an event. 

To detect the offset of each event, we use the average of the gain between adjacent 

event onsets as an adaptive threshold. When the event gain is less than the 

adaptive threshold, the event is considered as over.  The length of most events in 

our collection of fire sounds vary from 5-7 overlapped frames, or 60-80ms. 

The event density over the duration of the entire sound is calculated as a statistical 

Noise Reduction 

Relative Difference 

Peak Detection 

Event Position 

Figure 3.3 Event Extraction
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feature of the sound texture and this density is used in synthesis to control the 

occurrence of events.  

 

3.3.4 Background Separation 

After we segment out the events, we are left with the background sound we call 

‘din’ containing no events. We concatenate the individual segments and 

pre-emphasize the high frequency part and then apply a 10-order time domain 

LPC filter to this background sound to model it. The pre-emphasis is to better 

capture the high frequency character. The TDLPC coefficients we obtain here are 

used to reconstruct the background sound in the resynthesis process. 

 

3.3.5 TFLPC Coefficients Clustering 

In this step, we cluster the TDLPC coefficients and FDLPC coefficients to further 

reduce the data amount. The process is as follows. 

1)  We first transform each of the TDLPC coefficient (TDLPCC) and FDLPC 

coefficient (FDLPCC) vectors into the reflection domain. The filters represented 

by the LPC coefficients are not generally stable under perturbation [Atal], so such 

a transform is necessary. 

2)  Then we determine the number of clusters of TDLPCC and FDLPCC 

separately. This is an issue of validity in unsupervised clustering. Here we use the 

K-means method in clustering and the criterion function of minimization of ratio 

of within-cluster scatter-matrix’s norm and total scatter matrix’s norm [Halkidi] to 
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determine the proper cluster number.   

The criteria function is defined as: 
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− −=∑ ∑  is the within-cluster scatter matrix, iX  is 

the cluster, c is the total number of clusters, thi (i im mean x x X= ∈ ) is the mean 

vector of the cluster;   is the total scatter matrix; 

m=mean(x) is the mean of all the vectors. We limit the number of cluster to be in 

the range from 2 to 20 and then calculate the criterion function F for different 

candidate cluster numbers in this range. Then we calculate the change rate of F 

with increase of cluster number c. When the change rate is very small (less than 

1/1000), which means the criteria function changes slowly, the current number is 

considered as the optimal one. 
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3) The center vector and variance of each cluster is calculated and recorded for 

resynthesis. Based on the assumption that each dimension of the LPCC vector is 

independent, we calculate the variance of each dimension separately so that we 

get a variance vector for each cluster. Instead of the original frame-based TFLPCC 

sequence of each event, the cluster index of each sequence and the cluster center 

and variance are recorded. We also record the time domain LPC gain sequence 

and the cluster number sequence of each event for resynthesis. We record these 

parameters to preserve the original order of frames, which is critical in our system. 
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3.3.6 Resynthesis 

In the resynthesis process, we generate the background sound and event sequence 

separately and mix them together in the final step. 

 

 

Given a desired sound length, we use a noise excited 10-order background 

TDLPC filter to generate the background sound and de-emphasize the high 

frequency part. For the foreground sound, the resynthesis process is shown in 
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TFLPCC 
Index 
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Event Resynthesis 
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TDLPCC Event 
Density 

Event 
Position Synthesized Background 

Synthesized Events 

Synthesized Sound 

Figure 3.4 Resynthesis 

 21



Figure 3.4 and described below. 

1)  Use the event density, which is the average number of events per second, as 

the parameter of a Poisson distribution to determine the onset position of each 

event in the resynthesized sound. 

2)  Randomly select an event index. According to the TFLPCC sequence, use the 

reflection domain TFLPCC cluster centers and the ½ of the corresponding 

variance as the parameters to a Gaussian distribution function in each dimension 

to generate the reflection domain TFLPCC feature vector sequence for the event. 

Here we multiply a factor of ½ to the variance to make sure the generated LPC 

coefficients do not differ too much from the originals. 

3)  Transform the reflection domain coefficients into the LPC domain. 

4)  Do the inverse TFLPC. This is just a reverse process of the TFLPC analysis, 

as shown in Figure 3.5.  

                             
 

excitation 
Event’ 

DCT FD LPC
filter 

IDCT window FD 
LPC 

FD 
LPCC

TD 
LPCC 

 
Figure 3.5 TFLPC Synthesis 
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We first get the DCT spectrum of the excitation signal and then filter it using the 

FDLPC coefficients to get the excitation signal in the time domain. Figure 3.6 

shows the residual and the regenerated excitation in time domain. FDLPC 

captures the sub-frame contour shape well. Then we filter the time domain 

excitation using the TDLPC filter to get the time domain frame signal. 

 

Figure 3.6:   Time domain residual (above) and recovered excitation signal 
(below). Here we plot 7 overlapping frames to show the structure of one 

event. 
 

5) Repeat step 4 for all the frames inside one event and then overlap and add to 

reconstruct the event. 

6) Repeat 2-5 until we generate events for all the event positions. 
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7) Mix the synthesized events and the background sound together to get the final 

result. The result is shown in Figure 3.7. 

 

 

Figure 3.7:   Sample sound (above) and synthesized 
sound (below). 

 

3.4 Evaluation and Discussion 

Informal listening tests show that the regenerated sounds capture some texture 

characters of the original audio clips. By using frame level contour extraction and 

TFLPC analysis, both the spectral and fine temporal characteristics of the sound 

are captured. To listen to and compare the original sound with the generated one, 

see http://www.zwhome.org/~lonce/Publications/dafx2004.html. 
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The error for each generated transient event comes from two sources: one is the 

error between the excitation signal and the original residual; another is the 

difference between the generated LPCC and the original one due to the clustering. 

It is not easy to quantitively measure the dissimilarity between the generated 

sound and the sample audio principally due to the statistical variation in the 

model. 

 

3.4.1 Properties of Reflection Domain Clustering 

In the clustering of the TFLPCC, we use the reflection domain coefficients instead 

of LPC domain coefficients.  The reflection domain coefficients have several 

advantages compared to the LPC domain coefficients [Atal]. Some of the 

advantages are: 

1) the all pole filter is stable under perturbation provided that the corresponding 

reflection coefficients all lie between -1 and +1, 

2) interpolating between two of reflection coefficients yields a smooth change in 

the frequency response. 

Figure 3.8 shows how the frequency response changes when we scale the 

reflection domain coefficients.  The first plot is the frequency response of a time 

domain reflection coefficients. The second plot is the frequency response of the 

normalization of the coefficients whose norm is 1. The last plot is the frequency 

response of scale factor 0.01 multiplies the original coefficients. The figure shows 

that when the maximum component of reflect coefficient vector is much smaller 
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than 1, rescaling the coefficient vector does not change the frequency response of 

the LPCC much. In other words, such a change in the frequency response is 

acceptable and our clustering algorithm can be independent of the vector 

magnitude. 

 

Figure 3.8: Scale effect of reflection LPC coefficients. 
 

3.4.2 Comparison with an HMM Method 

We introduce the basic knowledge of HMM in Chapter 2. In the framework in 

Section 3, we cluster the reflection domain TDLPCC and FDLPCC into clusters 

separately and record the TDLPCC and FDLPCC cluster index sequences for each 

event to preserve the original order of the frames. By such a clustering we get two 

“codebooks” of the TDLPCC and FDLPCC separately and greatly reduce the 

amount of information in reconstruction. However preserving the specific cluster 
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number sequence for each event also restricts the flexibility of modeling. To gain 

more flexibility, we train Gaussian Mixture Models to capture the order pattern.  

After we get the reflection domain TDLPCC and FDLPCC sequence for each 

event as we do in Section 3.3, we use these TDLPCC sequences and FDLPCC 

sequences of all events to train two Gaussian mixture HMMs for TDLPC and 

FDLPC separately. In resynthesis, we use these two HMMs to generate the 

reflection domain TDLPCC sequence and FDLPCC sequence for regenerated 

events. However, result shows that such a system does not work well. The output 

of the HMMs sounds much more noisy than the given samples. In the Gaussian 

Mixture HMM, there are several possible Gaussian distributions for each state. 

When we generate coefficient vectors using the HMM, these distributions are 

chosen according to some probability. The randomness in the cluster sequence has 

a significant detrimental affect on the perceptual quality of the regenerated sound 

 

3.4.3 Comparison with Event-Based Method 

 
As another approach to reduce the amount of data, we implement a system using 

TFLPC analysis to entire events instead of overlapped frames. First the energy of 

each frame is calculated and then we extract events from the energy sequence of 

the whole sound as we do to the gain sequence in section 3.3. Next we apply 

TFLPC analysis to individual events instead of frames so that we have only one 

TDLPCC vector and one FDLPCC vector for each event compare with 

frame-based method’s two vector sequences. The data amount is further reduced. 

However, there is a dramatic quality decrease when the event length is long. The 
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reasons are as follows: 

 1) When the event length increases, the modeling ability of LPC decreases. We 

can use a greater filter order, but the quality is still worse than the short window 

case, 

2)  The limited amount of data affects the parameter extraction for the Gaussian 

distribution of each cluster. We get only two LPC vectors for each event instead of 

two LPC coefficient vector sequences, so the data is not enough to estimate the 

proper Gaussian distribution parameters for each cluster.   

Based on these reasons, among the several methods we implemented in our 

experiment, the frame-based TFLPC analysis method which is introduced in the 

system framework section worked the best.  
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Chapter 4 Application Scenario 2. Packet 

Loss Recovery 

In this chapter, we present an application of sound modeling/synthesis in which 

we greatly reduce the redundant information required for recovery without 

obvious quality decrease. We achieve this goal by generating a model for the 

redundant information used in packet loss recovery and synthesizing the 

redundant information from model parameters and further regenerating the lost 

packets.    

 

4.1 Problem Statement 

Bandwidth efficiency and error robustness are two essential and conflicting 

requirements for streaming media content over error-prone channels, such as 

wireless channels. On such unreliable networks, packet loss can be common and 

arise in many different forms. For instance, packets can be dropped due to 

congestion at switches or arrive with too long a delay to be useful. On wireless 

networks, packet losses can be caused by channel characteristics, such as fading, 

or wireless network characteristics, such as handover in cellular network. 

However, it is important to guarantee user-perceived quality of service (QoS) for 

media streaming applications, especially music. For this purpose, we need a 

method to recover lost packets. The method should generate perceptually high 
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quality audio and use as little redundancy as possible to maintain bandwidth 

efficiency. 

The objective of packet loss recovery in audio streaming is to reconstruct the lost 

packet with a perceptually indistinguishable replacer, or at least very similar. This 

is the requirement of the quality of the recovered audio packet. 

Considering an established wireless standard, the maximum channel capacity is 

fixed and shared by many users. This fact adds the new requirement that the 

redundant information should be as few as possible, with the assumption that it 

would not affect the quality of recovered music. 

In some systems, such as online music play or online gaming, there is also time 

requirement of recovery. Lost packet resubmission is generally not a good method 

in a system with critical time requirement due to its high latency.  With 

consideration of such applications, there is the third requirement of the loss packet 

recovery method: it should be economical in computation so that the recovery 

process can be done with small latency.  On the other hand we can consider the 

computational ability on the server side is unlimited, because the server generally 

has strong computation ability and there is no critical time requirement for server. 

Based on the above consideration, we need to develop a packet lost recovery 

scheme with high recovered quality, small amount of redundant information and 

few amount of computation in receiver side. 
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4.2 Related Works 

4.2.1 Packet Loss Recovery 

There are many works related to packet loss recovery and these works can be 

categorized into two categories: sender-based and receiver-based. The 

sender-based methods can be further categorized into active retransmission and 

passive channel coding. The receiver-based methods usually are employed when 

the sender can not provide recovery information for the lost packets or the 

recovery schemes fail. In this section, we present a brief overview of these 

strategies. 

Retransmission methods are closed-loop mechanisms that based on the 

retransmission of the packets that were not received at the destination. In some 

network protocols, such as Transfer Control Protocol (TCP), the retransmission is 

ensured: the protocol makes sure that all the frames in the original data arrives the 

destination.  Many other protocols, such as User Datagram Protocols (UDP), do 

not ensure this point.  Retransmission methods are not acceptable in many real 

time constrained applications such as live audio streaming, because it dramatically 

increases the end-to-end latency. Interactive audio applications have critical time 

requirements and the end-to-end delay need to be less than 250ms [Brady].   

Most current sender-based methods belong to forward error correction (FEC), a 

kind of open-loop mechanisms based on the transmission of redundant information 

together with the original information so that the lost original data can be recovered 

from the redundant information.  FEC is an attractive alternative for providing 

reliability without greatly increasing latency.  This is particularly important for 
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applications with real time constraints over high speed networks [Shacham]. This 

kind of method usually achieves good performance with the cost of a large amount 

of redundant information [Wah].  The redundant information cost, that increases 

the bandwidth requirement of transmission, is the main drawback of FEC. FEC can 

be further categorized into media-independent FEC and media-dependent FEC, as 

discussed below. 

Media-independent FEC usually uses block or algebraic codes to generate 

additional packets to recover lost original data packets. Each code takes a codeword 

of  data packets and generates  additional check packets so that the amount of 

transmission packets is 

n k

n k+  for  original packets. An example using 

media-independent FEC is the exclusive-or (XOR) coding implemented in 

Rosenberg [Rosenberg96]. There are several advantages of media-independent 

methods. The first is that the operation of FEC does not depend on the contents of 

the packets, and the repair can be exactly done. Secondly the computation required 

to derive the error correction packets is small and simple to implement.  The 

disadvantages are that it imposed additional delay, increase the bandwidth 

requirement of transmission. 

n

Media-specific FEC extracts some characters from the content of the audio signal 

and uses these characters to recover lost packets. The transmitted original copy of 

the audio data is referred to as the primary encoding and the redundant 

transmissions are called secondary encodings. Usually the secondary encoding uses 

a lower-bandwidth and lower-quality encoding than the primary to save bandwidth. 

The choice of secondary encoding is usually depends on both the bandwidth and the 

computational complexity of the encodings and the application’s requirement of the 
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quality of recovered audio. Erdol et al. [Erdol] use short-term energy and 

zero-crossing measurements as their secondary encoding. When a packet is lost, the 

receiver interpolates the audio signal about the crossings using the short time 

energy measurements. It is computationally cheap but can only recover short 

periods of loss because the measure is only a coarse feature of the original audio 

signal.  Hardman et al. [Hardman] and Bolot et al. [Bolot] use the low-bit-rate 

analysis-by-synthesis codecs such as full rate GSM encoding.  Media-specific 

FEC usually add a redundant overhead on each packet so that the size of each 

packet increases.  A common used method is to add the redundant overhead of the 

packet on the next packet so that when the previous packet lost, it can be recovered 

from the next packet. The length of the overhead of media-specific FEC is variable, 

depending on the quality requirement of the repaired packets and without affecting 

the number of losses can be repaired.  

Receiver-based methods usually recover the lost packet without any redundant 

information and is generally called error concealment.  These kind of methods 

generally exploit correlations between the adjacent packets and is usually very 

simple and effective only when the packet loss rate is very low. Here we consider 

a primarily receiver-based method. With increasing computational resources and 

memory capacity, many receiver-based methods are becoming attractive. Based 

on the assumption that packet loss is infrequent, that packet size is small and that 

the signal is reasonably stationary for short enough segments, packet repetition 

can offer a good compromise between achieved quality and complexity [Perkins]. 

The assumption of stationarity, however, is not true for streaming music, 

particularly in the neighborhood of the musical “beat”. Furthermore, the simple 

packet repetition method produces a double-drumbeat effect [Wang2002] when 
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the missing packet immediately follows the beat, or fails to recover a beat when 

the missing packet is exactly on the beat. Listeners are much more sensitive to the 

errors due to packet repetition recovery when they occur around the beat than 

when they happen elsewhere. 

In practice the error concealment methods usually do not work along. A 

sender-based scheme is used to repair most lost packets and the other gaps are left to 

receiver-based error concealment, which provides cheap and effective ways to 

recover the remain lost packet.  

 
 

4.2.2 C-UEP Scheme 

The failure of standard recovery techniques for this kind of signal led Wang et. 

al.[Wang2003] to a content-based method of error concealment which is called 

C-UEP, which means content-based unequal error protection. Recognizing the 

perceptual importance of the musical beat, they introduced a parametric vector 

quantization (PVQ) scheme as a secondary encoding of just the percussive sounds. 

This method, compared with the conventional techniques, provides a much higher 

quality of service (QoS), though there are still certain limitations.   

The C-UEP scheme can be categorized as a forward error correction (FEC) method. 

It holds the high recovery quality advantage of the FEC and also partly overcomes 

the drawback of large amount of redundant information by using a codebook of 

drum beats instead of the original drum beats sounds.  But there are still some 

limitations of the C-UEP system:  First, the content-based codebook used for 
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recovery, which is sent to the receiver in a “header” segment prior to streaming the 

audio data, may be too large in application. Second, each codebook entry represents 

a whole class of transient events in a stream and the resulting approximations may 

simply not be good enough for some kinds of music. Furthermore, the drum beats 

used in clustering are directly extracted from the original music signals and may be 

contaminated with the singing voice and other noises.  
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4.3 Analysis/Synthesis Solution 

4.3.1 System Framework 
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Out system is an improvement of the previous C-UEP system in [Wang2002]. It is 

an unequal error protection scheme, with protection emphasis on the drum beats. 

Our work further reduces the amount of the redundant information by building a 

LPC model of the codebook items.  

Our system aims to achieve low additional bandwidth. The current structure is 

based on the below consideration of network transmission: 

1. The analysis of the music, including detecting and encoding percussive sound, 

will be done on the server side prior to transmission. Real-time analysis and 

resynthesis on mobile devices is currently impractical given computational 

resources. 

2. To recreate percussive sound, we need a synthesis model on the client side. One 

alternative would be to create a percussive model for each piece of music and 

transfer the model to client side before music streaming. Another possibility would 

be to assume a single general model on the client side that can generate percussive 

sounds for any piece.  The former way may generate better quality sound but 

would require more bandwidth. It is also more difficult to generate a model 

automatically than it is to parameterize one. 

3. What is the optimal degree of data reduction via vector quantization to perform to 

create the transients codebook? Wang et al.[Wang2003] found four vectors to be 

adequate for a substantial increase in perceived quality. If the codebook entries are 

small enough, there would be less pressure to sacrifice quality with such a drastic 

reduction in the number of entries. 
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4. The client side resynthesis of the audio codebook could be done either prior to 

streaming, or in real-time on an as-needed basis. If the computation ability on the 

client side cannot support real time calculation, a pre-stored replacement vector 

buffer is necessary for recovering lost packets. 

Based on the above consideration, we use the current scheme in codebook modeling 

progress. 

There are six basic components in the framework: percussive sounds detection; 

codebook selection; codebook modeling; transmitting the codebook; synthesizing 

percussion sounds; reconstructing the lost packet. Percussive sounds detection, 

codebook selection and codebook modeling are done on sever side, which is shown 

in Figure 4.1; synthesis and reconstruction are done on the receiver device.  In the 

following sections, we will give a detailed description of each component. 

 

4.3.2 Percussive Sounds Detection 

Our beat detection process first detects the onsets in the music streaming using 

sub-band processing [Wang2003]. Percussive events are detected by looking for 

sudden increases in intensity across several sub-bands. 

 

4.3.3 Codebook Vector Quantization 

After the transient segments are extracted, they are clustered according to a set of 

perceptual features, and a single vector from the center of each cluster is chosen as a 

representative for the codebook.  In [Wang2003], the codebook and indices make 
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up a “header” segment to the audio file that is sent prior to streaming audio. Since 

the audio vectors in the codebook dominate the size of the header segment, our 

focus in this paper is on reducing the size of the codebook. 

 

4.3.4 Codebook Modeling 

To reduce the size of the audio vector codebook, we use a generative model of the 

audio vector with a small number of parameters used to control the model in 

resynthesizing the vector on the client. 

Currently we use a single percussive sound synthesis model for all audio vectors. 

The task of the analysis/synthesis system is to minimize the perceptual difference 

between the original and the resynthesized audio (Figure 4.2).

 39



 

 Error (Minimized)  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

 

Analysis x[t] 
Audio 

y[t] 
Reconstructed  

Signal 

+ 
- 

  N Audio Vectors 
N Parameter Sets 

Location & indices 

Model 
Parameters 

Feature Extraction 

Resynthesis  

Feature  Exraction 

Figure 4.2.  Codebook modeling and synthesis.  
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and the synthesis progress on receiver side. 

We model the transient audio vectors as a signal containing a mix of noise and 

periodic information with a single broad spectral shape. The only time-varying 

component of the model is the amplitude attack and decay. The analysis is done in 

the following steps: 

1. Extract the contour of the percussive event (Figure 4.3). We find the maximum 

point of the signal and use this point as the vertex of the contour triangle. The 

duration of the codebook vectors is fixed and currently 2304 PCM samples. We 

also keep the total energy of the percussive sound as a parameter for 

resynthesis. 
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Figure 4.3  Event Contour 
 
 

2.  Next we model the overall spectral shape of the vector using standard Linear 

Predictive (LPC) analysis. Here we set the number of coefficients to 12 to capture 

only the coarse spectral structure. With the residual error signal from the LPC 

analysis, it would be possible to exactly regenerate the original signal. 

3.  Next we model the residual (Figure 4.4) as a pitched signal plus white noise.  

We derive a pitch estimate by taking an autocorrelation of the FFT-derived power 

spectrum. We take the pitch to be that of the maximal peak of the autocorrelation in 

the range of 100-500 Hz. We use the ratio of the peak to total power in the spectrum 

as a measure “pitch salience”, similar to Slaney [Slaney]. 
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Figure 4.4 Residual of the LPC process 
 

By this procedure, we have converted the audio vector codebook to a set of 

parameters, one set for each original audio vector.  The number of parameters used 

in this method is 16: 12 LPC coefficients, amplitude peak time and total energy of 

the percussive sound, pitch and pitch salience. 

 

4.3.5 Transmission of Parameter Codebook 

The parameter codebook, together with the indices of transient packets, is sent in a 

header segment before the streaming of audio packets begins. The header is sent 

using a reliable transmission method. 

 

4.3.6 Synthesize the Percussive Sounds 

When the client receives the parameter sets in the header segment of the song data, 

it regenerates the percussive audio vector codebook. 
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The synthesis process has following steps: First, synthesize the residual. We use 

white noise as the source and apply a comb filter with a delay corresponding to the 

pitch. The pitch salience parameter is used to determine the filter weights – the 

relative balance between the delay tap and white noise.  The pitch parameter is 

then used to amplitude modulate the noisy signal with a sharp attack and 

exponential decay at the pitch period, while the pitch salience parameter is used to 

control the decay rate - a longer decay rate makes the amplitude modulation less 

pronounced and the signal less pitched. Next, we recover the course spectral shape 

using the LPC-derived filter. Finally, we generate the temporal amplitude contour 

from the peak time and level and apply the contour to the regenerated signal. Then 

we normalize the regenerated signal so that it has the same energy as the original 

percussive sound. 

The exact methods of analysis and synthesis are not important as long as the key 

perceptual characteristics (pitch, noisiness, spectral shape, signal energy and 

amplitude envelope) are similar to the original. 

 

4.3.7 Reconstruct the Lost Packets 

With the reconstructed audio vector codebook, the packet loss recovery process can 

proceed exactly as in [Wang2002]. When a packet is detected as lost, if it comes 

from a segment labeled as transient, it is replaced using one of the codebook entries 

(Figure 4.5). 

If there is no transient in the lost packet, standard methods using neighboring 

frames are used to do the recovery work. 
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4.4 Evaluation and Discussion 

 
The analysis/synthesis method can greatly reduce the codebook data needed to 

recover the lost transients. For example, consider a 16 item codebook where the 

duration of each entry represents 2048 PCM samples. Using audio vectors as in 

[Wang2003], we need 64K bytes of redundancy data. Using a codebook of 16 

synthesis parameters for each entry as described herein, the total codebook size in 

the head packet is only 2*16*16 = 512 bytes, a reduction of two orders of 

magnitude.  

Heard in isolation, the resynthesized codebook vectors sound similar, but do not 

sound identical to the original codebook methods, and since the synthesis 

parameters are derived from the original codebook vectors, we can’t expect the 

 44



synthetic method to be a perceptual improvement. However, because the original 

method uses only a relatively small number of audio vectors to represent all 

transients in the music anyway, the difference between the synthetic and original 

vectors does not generally lead to a significant difference in the perceived quality in 

the context of the music. Both methods address the perceptual sensitivity to beats 

that has not been addressed by other recovery methods. 

Sound examples for comparison can be found at 

www.zwhome.org/~lonce/Publications/ACM2003.html.  The examples include 

the original song excerpt with missing packets, and their recreations using the 

simple repetition method, the PVQ method and the parametric method. To get 

better results, we can increase the vector number of the codebook, or even build one 

parameter vector for each transient in the music, without being a burden of 

transmission bandwidth.
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Chapter 5 Conclusions and Future Work 

 
In this thesis we present applications of sound modeling/synthesis in sound texture 

modeling and packet loss recovery. In both applications we highlight the benefits 

of building sound model for specific class of sounds to gain data reduction and 

variety.  

In sound texture modeling we had demonstrated a method for modeling certain 

classes of sound textures. The method involves analysis at different time scales to 

preserve perceptually relevant information for synthesis. Future work will focus 

on improvement of quality and generalization of this method to a wider class of 

sounds. Currently we use a frame-based TFLPC analysis. If we could capture the 

order pattern of the frames inside events, we could build pattern models to gain 

more flexibility. In the current system we assume all the events are of the same 

kind and use a single Poisson distribution to simulate the occurrence of the events.  

This assumption may be violated for some sounds, such as the sound from tennis 

game containing the players’ footstep sound and the ball-hitting sound. By 

classifying the events into different classes and using different statistical 

distributions for sequencing them, we can build a better model for the sounds 

containing more than one kind of event. 

Some sounds with both broadband noise and densely-packed micro-transients are 

very difficult to segment into individual transient events. It is difficult to get 

global statistical features such as event density to control the resynthesis. 
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Segmentation of such complex sounds should also be explored to generalize this 

method for flexible resynthesis. 

 
In the application of packet loss recovery system, we showed how the current 

state-of-the-art content based audio codebook method of packet loss recovery can 

be vastly improved in bandwidth requirements using synthetic modeling and 

synthesis without sacrificing perceived quality of service. The modeling and 

resynthesis approach scales up nicely. Given the existence of a synthesizer on the 

client, models (code that calls synthesizer library functions) are small. Two 

kilobytes is typical, smaller than the size of a single 46 ms audio packet. This 

means that several very different models for classes of sounds (different 

algorithms, different parameterizations) could be used for a wider variety of 

sounds than just percussive transients. 

Future work will mainly focus on quality enhancements. A common situation in 

music streaming is that the percussive sounds do not occur alone but are mixed 

with other sounds concurrently, especially singing voice. This “contamination” 

affects the codebook quantization process and degrades recovered sound quality. 

For example, it is possible to recover a percussive packet containing male singing 

voice with another packet containing a female singing voice. Another possible 

situation is that the lost packet has a clear pitch, and there are no codebook entries 

with matching pitch due to quantization step. To provide a good match across a 

range of pitches, we could increase the number of codebook entries and still use 

less header bandwidth compared to the audio vector codebook with only a couple 

of entries. The analysis/resynthesis system affords good flexibility for addressing 

both quality and bandwidth issues.   
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Another possible way to enhance the quality without increasing redundant 

information is that we separate the percussive sounds out from the mixture before 

quantization. Statistically the percussive sound and singing voice can be 

considered as independent and we can apply the independent component analysis 

(ICA) technologies to separate them. Although the independent components from 

ICA do not directly correspond to the sources one-by-one, we can group 

components to build such a corresponding relationship and generate the sources 

from components groups. We can generate better codebook by eliminating singing 

voice source. The separated percussive sources are helpful in the quantization 

process if we can classify them from individual packets into specific classes.  

The use of synthetic sound offers a combination of extremely low bandwidth 

requirements and real-time flexibility.  It provides many options for managing 

computational and bandwidth/memory constraints and we expect it to be useful in 

a growing number of device and application contexts. 
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