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SUMMARY 

 
 

Multirate systems are very common in the chemical industries where the 

measurements of variables such as compositions, melt flow index, molecular weight 

distribution are available infrequently while that of variables such as temperature, 

flow rate, pressure are measured frequently. Utilizing infrequent measurements of the 

controlled variables alone in the control strategy will naturally lead to poor quality 

products or suboptimal process operation. It would naturally be advantageous to 

develop “fast rate” process models by bringing together the “fast” (frequent) and 

“slow” (infrequent) measurements and use it for applications such as process control 

and soft sensing. The availability of fast-rate model is advantageous for any model 

based control strategy including Model Predictive Control (MPC). Many 

identification methods are developed and applicable for the identification of single-

rate system in which the sampling interval of input variables and output variables are 

identical. The topic of multirate system identification was developed very little in the 

past. The missing data during the infrequent sampling interval were estimated 

conventionally using linear interpolation, cubic interpolation, zero order hold etc. 

With such naïve approximations, the estimated models tend to be of poor quality and 

result in deteriorated controller performance.  

 
To alleviate this problem, a technique known as “lifting” has been applied in the 

recent past to enable the identification of fast rate process models from multirate data. 

In this technique, the fast sampled input data are “lifted” (using a lifted operator) to 

generate a slow-rate multi-input sequence (each fast sampled input variable is lifted 

into several slow rate input sequences). For the non-integer ratio of sampling interval, 

both input and output channels are lifted with proper lifting operator into a slow-rate 
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system with common period. Then, any multivariable system identification method 

such as the popular subspace based state space identification methods (4SID methods) 

are employed for the identification of the lifted slow-rate model. The fast-rate model 

is subsequently extracted from the identified slow-rate system using one of the several 

available approaches. The lifting technique considered here can handle the regularly 

sampled data system only (i.e. multirate but regularly sampled data).  

 
In a regression based method named data selection and regression (DSAR) method, 

the fast sampled inputs and the slow sampled process outputs are stacked into 

appropriate matrices. The model is then determined using ordinary least squares.  For 

highly correlated data, methods such as principal component regression (PCR) or 

partial least squares (PLS) may be applied. The obtained model is similar to the finite 

impulse response (FIR) model and is non-parsimonious. This model may then be 

compacted if there is a need. The DSAR method is applicable to irregularly sampled 

data and also in situations where data is sampled very infrequently. The evaluation of 

this method on industrial data is also reported in this thesis. 

 
The effect of different kinds of input signals on these methods (lifting and DSAR) is 

also studied. The ratio of sampling intervals (denoted by γ) could vary from 1 to a 

large number and this could affect the quality of the identified model. Thus, the effect 

of γ to the identified model was also studied. Besides these, nonlinear multirate 

system identification methods are developed. Some of the chemical processes such as 

heat exchangers, distillation units and pH neutralization process which have nonlinear 

behavior can be represented by the Hammerstein or Wiener model. Thus, the 

nonlinear identification methods for Hammerstein model and Wiener model from 

multirate sampled data are developed. The application of the developed method is 

evaluated with both simulated and experimental data. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of System Identification 

 
Often, systems or subsystems cannot be modeled based on physical insights; because 

the function of the system or its construction is unknown or it would be too 

complicated to sort out the physical relationship. In such situations, the mathematical 

model of the process can only be obtained empirically. This is the topic of system 

identification. System identification is the mathematical modeling of a dynamic 

system from test or experimentally measured input/output data set. The dynamic 

system is one in which the current output value depends not only on the current 

external stimuli but also on their earlier values. Zadeh (1962) defined system 

identification as: the determination on the basis of input and output, of a system 

(model) within a specified class systems (models), to which the system under test is 

equivalent (in terms of a criterion). System identification is widely used in many 

fields such as process industries, economics, biomedical and many other fields of 

science. 

 
Advanced control technology or model-based control system design relies heavily on 

reasonably accurate process models.  This has been the case since the birth of 

‘modern control theory’ in the early 1960s. Based on the models obtained from 

system identification, advanced model based control technologies such as Model 

Predictive Control (MPC) have been successfully applied in the chemical process 

industries. Moreover, identified models are widely used for fault detection, pattern 

recognition, adaptive filtering, linear prediction and other purposes. 



                                                                      2

In process industries, the process outputs are driven by the input variables 

(manipulated variables and disturbances). The measured input and output variables 

provide useful information about the system. Process/Control engineers try to model 

chemical processes by collecting the input/output data after subjecting the process to 

open loop or closed loop identification tests. In the open loop test, there is no 

feedback controller and the test signals are the process input signals; in the closed 

loop test, the test signal is added at the set point. Compared to the open loop, closed 

loop identification is more difficult because the input is correlated with the 

disturbance due to feedback. This thesis concentrates exclusively on open loop 

identification. The effect of input signal on the different identification methods is 

explored. 

 
 In the early days of the control technology, analog control based on continuous 

models was employed.  Later, and almost exclusively these days, discrete domain 

models are widely used. This is due to the deployment of computer process control 

systems which are based on measurements made at discrete time instants (i.e. sampled 

data control systems). System identification techniques for linear systems are well 

established and have been widely applied. Most often, an MPC controller uses a linear 

dynamic model of the process that is obtained by the way of black-box identification. 

However, most of the chemical processes are nonlinear (e.g. heat exchanger, pH 

neutralization process, distillation column, waste water treatment plant, bioreactor). 

Most processes encountered in practice are nonlinear to some extent. Although it may 

be possible to represent systems which are perturbed over a restricted operating range 

by a linear model, in general, nonlinear process can only be adequately characterized 

by a nonlinear model. Because of these reasons, this thesis focuses on discrete models 

only but covers both linear and nonlinear models. 



                                                                      3

System identification is done by adjusting the parameters of a chosen model until its 

output coincides as much as possible with the measured output. For parametric 

models, it is necessary to specify the structure. Well known model parameterizations 

include models such as AutoRegressive (AR) model, AutoRegressive eXogeneous 

(ARX) model, AutoRegressive Moving Average (ARMA) model, AutoRegressive 

Moving Average eXogeneous (ARMAX) model, Box-Jenkins (BJ) model and Output 

Error (OE) models. In addition, state space models are also well established and are 

extensively used due to their convenience in representing multivariable process. For 

linear systems, nonparametric models include the finite impulse response (FIR) 

models, step response models (these models can be obtained using correlation 

analysis) and the frequency domain representation (Bode/Nyquist plot).  

 
Model identification is essentially an iterative procedure that involves choosing a 

model structure, plant experimentation (that is commensurate with the chosen model 

structure and one that meets the operational constraints), parameter estimation and 

model validation. The iterative procedure may also involve choosing a different and 

complex model structure should the simpler models prove to be ineffective in 

explaining the observed experimental data.  If the linear model structures mentioned 

above is not sufficient in describing the system, the suitability of nonlinear model 

structures need to be investigated. There are several ways to describe the nonlinearity 

of systems. The Volterra series was originally developed to describe the nonlinearity 

of a very general class of nonlinear time-invariant process. Although the Volterra 

series representation of nonlinearity provides theoretical understanding of 

nonlinearity, the number of coefficients in this model is excessive and places 

enormous requirements on the identification procedure (quality and quantity of data). 

Alternate representations for nonlinear processes include the Wiener model (a model 
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in which a linear dynamic block is followed by a nonlinear static block) and the 

Hammerstein model in which nonlinear zero-memory gain is followed by a linear 

dynamic part (reverse of the Wiener model). These two models are among the well 

known block-oriented models - bases on these models, many other block-oriented 

models like Hammerstein-Wiener (N-L-N) model, L-N-L model and more complex 

parallel connection of these described models are developed. The identification of a 

block-oriented nonlinear model is more difficult than that of a linear model because 

nonlinear model identification needs a richer probing (input) signal and a robust 

identification procedure (as it may involve iterative solution or nonlinear 

optimization). 

 
Billings and Voon (1986) described a popular discrete-time model, Nonlinear 

ARMAX (NARMAX) model, in which they introduced a nonlinear function term to 

the ARMAX model. Other model structures are Nonlinear Moving Average models 

with eXogeneous inputs (NMAX), Nonlinear AutoRegressive models with 

eXogeneous inputs (NARX) and the Nonlinear Additive ARX (NAARX) model. Like 

in the linear case, the selection of appropriate model structure is important in 

nonlinear identification. Hammerstein and Wiener models are widely used because of 

their adequacy of representing the many chemical processes that are nonlinear in 

nature. Because of their usefulness in identification of nonlinear chemical system, this 

thesis tries to explore the identification of these two models.  

 

 

1.2 Multirate System and Multirate Identification 

 
Different from single rate systems in which the inputs and outputs are measured at the 

same sampling interval, multirate systems are sampled-data systems with non-uniform 
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sampling intervals. Multirate systems are very common in chemical process industries 

in which different variables are sampled at different rates. In process units such as 

distillation columns and reactors, variables such as temperature, pressure, flow rate, 

etc. can be measured frequently while variables such as composition, molecular 

weight distribution, melt flow index etc. are obtained infrequently. This is because 

measurements of the latter type variables often involve elaborate offline analysis. 

These measurements are obtained once in several minutes or even once in several 

hours. These features naturally lead to a multirate system. 

 
Theoretically, there are different ways of process modeling - first principles model 

(arising out of mass, energy and momentum balances), black box models (empirically 

developed using observed process data) or gray-box model (where the first principles 

model contains terms that are fitted using a black box approach). This thesis examines 

the black box modeling approach only. This is because of the fact that the input-

output measurements are readily available from plant historical databases or from 

carefully designed process experiments. Black box models lend themselves more 

easily for applications such as controller design or output predictions. Most of the 

successful system identification methods in both transfer function domain and state 

space domain can only be applied to single-rate input/output data. Very few 

algorithms have been developed for identification of process models from Multirate 

input/output data. Conventionally, engineers interpolate the inter-sample input/output 

from the slowly sampled measurements and then estimate fast-rate model based on 

the interpolated data set. The model obtained from such ad hoc interpolation 

techniques cannot capture the actual process dynamics very well (and particularly 

when the ratio of sampling intervals becomes large). This situation provides the 

motivation to investigate multirate system identification procedures.  
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Verhaegen and Yu (1995) presented a technique to estimate the lifted model (the 

concept of lifting will be explained in Chapter 3) of Multirate system in the state-

space domain. They represented Multirate system as a periodic system and estimated 

the lifted model with the multivariable output error state space method. Their method 

cannot handle the crucial constraint, causality constraint, in identification of lifted 

models. Li et al. (2001) made some modification on their work to overcome the 

causality constraint – with this modification, most of the existing identification 

algorithms can be applied for identification of lifted system (slow model). After that, 

Li tried to extract fast rate model using two approaches. Wang et al. (2004) improved 

upon Li’s work in the extraction of the fast rate model.  Identification of the slow rate 

model is accomplished using state space methods that are able to effectively handle 

multivariable processes.  It is important to note that all of these works deal with linear 

systems only.  

 
Gopaluni et al. (2003) explored a Multirate identification algorithm in which they 

used an iterative procedure. They first identified an FIR model from the Multirate 

data. Based on this model, the missing data points in the slow sampled measurement 

are estimated using the expectation maximization approach. Then they identified a 

new model iteratively using the estimated missing data points and original data set 

until the models converge. Their method is applicable to irregularly sampled data 

system as well. Lakshminarayanan (2000) developed Data Selection and Regression 

(DSAR) method for the identification of multirate system. The advantages of his work 

is not only it is able to handle the large ratio of sampling interval it is also useful to 

irregularly sampled data system. This method is applicable to chemical industry in 

which the ratio of sampling intervals is very large.  
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1.3 Scope and Organization of the Thesis 

 
This thesis deals with discrete data only and focuses on Multirate system 

identification using the lifting and DSAR methods. We consider both linear and 

nonlinear systems. The effect of different kinds of input signal and the effect of the 

ratio of sampling intervals are studied using simulated case studies. We explore 

nonlinear multirate system identification methods for Hammerstein and Wiener 

models. The evaluations of these techniques are provided with simulated case studies. 

The best excitation signal for the identification of these models is proposed. The 

industrial application of DSAR method and development of a soft sensor are 

evaluated with industrial data set. The organization of the thesis is as follows. Chapter 

2 introduces subspace models identification using 4SID methods. The subspace 

identification methods are used extensively in the rest of the thesis. The working 

examples of subspace based state space identification methods are demonstrated 

through case studies involving single rate data. Two multirate identification methods 

are described in Chapter 3 and 4 of the thesis respectively. Chapter 3 introduces the 

readers to a method called “Lifting”. Using the lifting technique, we demonstrate the 

identification of a slow rate model which is then converted to a fast rate model. In 

Chapter 4, we discuss a method called data selection and regression (DSAR) for the 

identification of process models from multirate data. Both of the identification 

approaches are illustrated using suitable examples. In Chapter 5, we provide extensive 

case studies for Multirate identification - besides simulation examples, we 

demonstrate Multirate identification using data from laboratory systems as well as 

from an industrial reactor. Chapter 6 summarizes the contributions of this thesis and 

makes recommendations for future work. 
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CHAPTER 2 

SUBSPACE-BASED IDENTIFICATION METHODS 

 

2.1 Introduction 

 
Subspace-based identification methods are most suited to identify models in state 

space form for representing multivariable systems. So, subspace-based identification 

methods are very useful in the identification of chemical processes. These methods 

firstly estimate the states directly from the input/output data using linear algebra (QR 

decomposition or singular value decomposition or generalization of these methods) 

and then figure out the state space model matrices ),,,( DCBA using the least squares 

method. It is possible to obtain more efficient model with a smaller number of 

regressors by using a state space structure. The states produced by these approaches 

are not real states; these states are not physically meaningful. They are optimal linear 

combination of past inputs and outputs of the plant. In subspace identification 

algorithms, the only one parameter needed to specify is the order of the system. The 

optimal model order can be determined by Akaike Information Criterion (AIC) or by 

inspection of certain singular values. Subspace identification algorithms not only 

guarantee the convergence but also the numerical stability because they are non-

iterative and involve the well known linear algebra. A number of subspace 

identification methods have been developed over the last fifteen to twenty years. A 

powerful method called Canonical Variate Analysis (CVA) was developed by 

Larimore in 1990. Starting from 1992, Verhaegen developed Multivariable Output-

Error State sPace (MOESP) methods in a series of papers (Verhaegen and Dewilde 

(1992a,b), Verhaegen (1993, 1994), Verhaegen and Xu (1995), Verhaegen and 
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Westwick (1996)). Van Overschee and De Moor (1994) developed yet another variant 

of 4SID methods namely the N4SID method which has been incorporated into the 

System Identification Toolbox of MATLAB. In this chapter, we present the above 

mentioned three subspace identification algorithms briefly and then illustrate the 

application of these methods in the identification of single rate systems using data 

from experiments and simulations. 

 

 

2.2 CVA 

 
Larimore’s Canonical Variate Analysis (CVA) is a powerful identification tool for 

linear systems. It can identify correct or close to correct model order even for small 

sample sizes, low signal to noise ratio or for any choice of probing signals. CVA is 

based on the Generalized Singular Value Decomposition (GSVD) theory. The optimal 

memory length and state order are determined using AIC. The estimation of states 

from input and output data is performed using one of the multivariate techniques, 

Canonical Correlation Analysis (CCA). CVA estimates are as asymptotically efficient 

as the maximum likelihood (ML) estimates. In this thesis, the CVA algorithm 

developed by Lakshminarayanan (1997) is used substantially in the identification of 

processes. This algorithm is described briefly in this section. Before presenting the 

CVA algorithm, an important component of it, namely the CCA technique, is 

introduced. 

 

 
2.2.1 Canonical Correlation Analysis  

Let us have two sets of variables; a set of several predictor variables X  and a set of 

one or more dependent variablesY .  
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where the size of matrix X  is )( nxbyns , 

 the size of matrix Y  is )( nybyns , 

and the rank of X : ),min( nxnsrx = . 

Then we define the canonical variates 1t and 1u . 

Canonical Variate in X  space is  

     11 jXt =                                                        (2.1) 

Canonical Variate in Y space is 

     11 lYu =                                                          (2.2) 

Correlation between 1t  and 1u  = ),( 11 utp = 
1111

11

YlYlXjXj

YlXj
TTTT

TT

                       (2.3)   

              = 
∑∑

∑
YY

T
XX

T

XY
T

ljjj

lj

1111

11                        (2.4) 

Here, p is referred to as the canonical correlation. 

The objective is to maximize
∑∑

∑
YY

T
XX

T

XY
T

ljjj

lj

1111

11 .                                            (2.5) 

subject to the constraints 

                               ∑XX
T jj 11 = 1                                                     (2.6) 

and                                           ∑YY
T ll 11 =1                                                        (2.7)       

The solution can be obtained as  

 1j  =  ∑− 2/1

XX
* (first left singular vector of  ∑− 2/1

XX ∑XY ∑− 2/1

YY
)       (2.8) 

 1l  = ∑− 2/1

YY
* (first left singular vector of  ∑− 2/1

YY ∑YX ∑− 2/1

XX
)           (2.9) 

Other components can be defined as 

 2j = ∑− 2/1

XX
* (second left singular vector of  ∑− 2/1

XX ∑XY ∑− 2/1

YY
)    (2.10) 
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 2l = ∑− 2/1

YY
* (second left singular vector of  ∑− 2/1

YY ∑YX ∑− 2/1

XX
).    (2.11)   

1t  is the best predictor in the X  space and 1u  is the most easily predicted linear 

combination in the Y  space. The next best linear combination pair ),( 22 YlXj , 

orthogonal to the 1t , 1u  pair, is obtained by using 2j and 2l . Similar arguments hold 

for other pairs as well. In this algorithm, each canonical variate is orthogonal to all the 

previously generated ones. A maximum of ),min( nyrx  canonical variate pairs can be 

generated.  

 

 
2.2.2 Canonical Variate Analysis  

Consider a system with p inputs and q outputs. We assume that N input/output 

samples are available. 

Consider the following state space model structure in discrete domain 

tttt WGUXX ++Φ=+1  

                                                tttt VBWAUHXY +++=                                    (2.12) 

where tW is state noise and tt VBW +  is measurement noise. The presence of tBW  in 

the output equation allows for correlation between state noise )( tW  and the 

measurement noise )( tt VBW + . This makes CVA to be compatible to the experimental 

data that are rich in noise. Our objective is to estimate the ,R),G,H,A,B,Q(Φ  matrices 

(state space matrices). A,H,G,Φ and B  are called as system matrices;Q and R  are the 

covariance matrices for tW and tV  respectively.  

Generally, we can define the basic steps in CVA as follows: 

- specification of data and maximum memory length 

- determine the optimal memory length 
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- computation of the states using CCA 

- choosing the optimal number of states using AIC 

- generating the system matrices and estimates for the noise covariance 

matrices. 

Firstly, we can specify the optimal memory length, L using a priori knowledge or 

have to specify the maximum memory length ( *L ). *L must be equal to or greater than 

the maximum possible delay plus 2.  

We can then determine the optimal memory length using some methods e.g. Auto 

Regressive (AR) modeling or by applying augmented upper diagonal identification 

(AUDI) in which the optimal model order is the optimal memory length. 

We can define the past space, P and future space, F as follows: 

At each time instant k , 

],,,,,,,[ 2121 LkkkLkkkk UUUYYYP −−−−−−= LL                                  (2.13) 

]Y,,Y,Y[F Lkkkk 11 −++= L                                                                (2.14) 

where       

            ],...,,[ 21 qYYYY = , 

      ],...,,[ 21 pUUUU = , 

and                T]LN,,L,L[k 121 +−++= L . 

Then, by stacking up the kP ’s and kF ’s, we can construct the past and future spaces 

( P and F matrices) respectively. 

Thirdly, we relate the past and future spaces using CCA. The canonical variates of the 

past space are the pseudostates. 

                                      ii PjX =                                                       (2.15) 

By this way, a total of ),min( qLpL  states can be generated. 
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Next, the optimal model order (optimal number of states) is chosen using AIC (with 

small sample correction factor). 

 kk
k

eek Mln))ln((q()LN(AIC δ++π++−= ∑ 22112                          (2.16) 

where 

 kAIC = AIC for model order k         ),,2,1( Lk K=  

 δ k = small sample correction factor  

      = 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+−

2
1q

q
M

N

N

k

                                                                       (2.17) 

 kM  = number of independent parameters in the thk  order state space model 

         = qpkpqqkq 22)1(4 ++++                                                               (2.18)   

 ∑k

ee
= error covariance matrix for model order k 

           = ( ) ( ))(ˆ)()(ˆ)(
12

1 1

1
tytytyty

LN
k

TLN

Lt

k −−
+− ∑

+−

+=

                                 (2.19) 

Finally, we generate system matrices and noise covariance matrices as follows: 

System matrices can be estimated as: 

⎥
⎦

⎤
⎢
⎣

⎡Φ
AH
G

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑∑
∑∑ ++

)()()()(

)()1()()1(

tutytpty k

tutp
T
ktptp k

T
k

J
JJJ

 
1

)()()()(

)()()()(

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑∑
∑∑

tutytptu k

tutp
T
ktptp k

T
k

J
JJJ

(2.20) 

 
Noise covariance matrices can be generated as: 

                    S   =  ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

SS
SS

 = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑∑
∑∑

+

++

)()()1()(

)()1()1()(

tytytpty k

tytp
T
ktptp k

T
k

J
JJJ

   -   Ψ         (2.21)   

with             

Ψ  =  ⎥
⎦

⎤
⎢
⎣

⎡Φ
AH
G

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∑∑
∑∑

+

+

)()()1()(

)()()1()(

tytutptu k

tytp
T
ktptp k

T
k

J
JJJ

                         (2.22)  
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where 

      =kJ   ]||||[ 321 kjjjj L      

Each ij  is the weight vector corresponding to the canonical variate i.e. ii PjX = . 

                   †
1121SSB =                                               ( 2.23)                         

                      11SQ =                                                                          (2.24) 

                  12
†
112122 SSSSR −= ,                                       (2.25)   

where † indicates the pseudoinverse operation. 

In the above expressions, 

                )]1()1()2()2()()([}( −−−−−−= tutytutyLtuLtytp K                (2.26)  

  )]()()([)( 21 tytytyty qK=                                                (2.27)                

  )]()()([)( 21 tutututu pK=                                                 (2.28)                         

)]()()1()1()1()1([)1( tutytutyLtuLtytp −−−+−+=+ K                 (2.29) 

and ∑ signifies the covariance matrices. The predictions of the thk order state space 

is given by 

ŷ k ( t ) = )()(
)()( )()(

1 tpJJJJ TT
ktpty k tptp k

T
k∑ ∑ ∑ −                        (2.30) 

The computation of the prediction error series and its covariance matrix is now 

straightforward. 

 

 

2.3 N4SID 

 
Van Overschee and De Moor (1991a, 1991b) developed a class of algorithms for the 

identification of state space models. Their method is called N4SID. Their algorithm is 

similar to that of Moonen et al. (1989) for the purely deterministic case. The state 
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sequence is constructed by projecting the input-output data (containing both 

deterministic and stochastic parts) in which future output is projected to past and 

future input and past output. Then the state space matrices are estimated from the 

constructed state sequence using least squares prediction. N4SID algorithms 

guarantee convergence because there are no iterative calculations and because no 

nonlinear optimization is involved. Besides, these N4SID algorithms are numerically 

stable since they use only QR and singular value decomposition methods. The model 

order is determined from non-zero singular values (details can be found in Van 

Overschee  and De Moor (1994)).  

 

 
2.4 MOESP 

 
MOESP stands for Multivariable Output Error State sPace identification method. 

MOESP was developed by Verhaegen and Dewilde (1992a). In their algorithm, the 

constructed input-output Hankel matrices are pretreated by QR factorization and then 

singular value decomposition (SVD) is performed. The matrices resulting from QR 

factorization, which has the same column space of extended observability matrix, is 

treated by SVD and then from the resulting matrices, Φ and H state matrices are 

estimated. In the second stage, the G and A state matrices are determined. This is 

different from the earlier methods where all the system matrices are estimated 

simultaneously (in a single step). The model order is determined by number of 

nonzero singular values. MOESP is also mathematically stable and guarantees 

convergence.  

 
In the next section, we will illustrate the identification of processes using single rate 

data. 
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 2.5 Application of CVA, N4SID, MOESP on single rate data 

2.5.1 Experimental Examples 

2.5.1.1 Case Study I 

The experimental data obtained from the stirred tank heater which is set up in 

University Of Alberta (Canada) is used for identification study. These data were 

downloaded from the University of Alberta (Computer Process Control (CPC) group, 

Department of Chemical and Materials Engineering) website. The process is 

computer controlled with cold water valve position being the manipulated variable 

and the water level in the tank as the output. An open-loop experiment was 

performed. These quantities are measured in units of current and they have linear 

relationship with their respective physical units. Cold water valve position is 

perturbed once every 40 seconds using low frequency random binary sequence (RBS) 

signal and the tank water level is also sampled once every 40 seconds. The three 

different models estimated by CVA, N4SID, and MOESP approach are cross 

validated by comparison with the measured output data. It can be observed that CVA, 

N4SID and MOESP identification methods can adequately identify the single rate 

linear system from the following cross validation figures (Figure 2.1 to 2.3). 
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Figure 2.1:  Comparison of model output and measured output data using CVA, C1  
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Figure 2.2: Comparison of model output and measured output data using N4SID, C1 
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Figure 2.3: Comparison of model output and measured output data using MOESP, C1 
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2.5.1.2 Case Study II 

 
In this case study, we used the experimental steam-water heat exchanger data 

obtained from Eskinat et al. (1991). In this example, process water flow rate and 

water exit temperature are collected as process input and output data respectively. The 

sampling interval is 12 seconds. Pseudo Random Binary Sequence (PRBS) tests were 

performed on the heat exchanger. The details of the process nature and operating 

conditions are available from the above mentioned paper. The process becomes 

nonlinear when the process is running at constant steam flow rate and at high cool 

water flow rate because flooding decreases the heat transfer area and heat transfer 

rate. However, we try to identify the model with linear identification methods namely 

CVA, N4SID, and MOESP in order to test the appropriateness of the linear 

identification approach. Figures 2.4, 2.4 and 2.6 show there is nonlinearity (observe 

the gain mismatch) but the employed three linear subspace methods can adequately 

identify the mid to high frequency characteristics of the process. The identification of 

this process data with nonlinear identification method is shown in a later chapter. 
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Figure 2.4:  Comparison of model output and measured output data using CVA, C2  
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Figure 2.5:  Comparison of model output and measured output data using N4SID, C2 
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Figure 2.6:  Comparison of model output and measured output data using MOESP, C2 
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2.5.1.3 Case Study III 

 
In this example, we identify an empirical process model for the experimental system 

available in our research group (Data Analysis and Control System (DACS) group). 

The schematic of the experimental equipment is shown in Figure (2.7). This 

experimental set up has three tanks (two tanks of uniform cross section and one tank 

with a conical base) plus a reservoir. All tanks have heating equipment and the stirrers 

keep the tank water temperature constant throughout the tank. All tanks are connected 

with winding pipes for the purpose introducing time delays. In this case study, we 

concentrated on input and output data of tank 1 - heating power is the input and water 

temperature is the output. The input was designed as multilevel and multifrequency 

signal. Input and output are sampled at every one second and the system was 

identified with the three subspace methods considered here. Validation of these data 

was performed similar to that of Case Study I. The results of validation (Figure 2.8 

through Figure 2.10) show that the system is linear to considerable extent and the 

three identification methods do perform well over the range of operation. The 

nonlinearity of this system and nonlinear identification of this data will be discussed 

in a later chapter.  
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Figure 2.7: Schematic of DACS lab experimental setup 
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Figure 2.8:  Comparison of model output and measured output data using CVA, C3 
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Figure 2.9:  Comparison of model output and measured output data using N4SID, C3 
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Figure 2.10:  Comparison of model output and measured output data  
using MOESP, C3 
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2.5.2 Simulation Example 

 
The pH neutralization process is very common in the many chemical and biochemical 

processes. First principles modeling approach gives highly nonlinear equations that 

involve the often unavailable equilibrium constants. A black-box modeling approach 

is ideal in such a scenario. In this example, we consider acid-base neutralization 

process performed in a single tank. The detailed system description, process model 

and operation conditions can be found in Henson and Seborg (1994). The level and 

pH of the liquid in the well stirred neutralization tank are the two outputs that are 

manipulated by the acid and base flow rates. In this case study, however, the system is 

perturbed by specially designed random buffer flow rate (shown in Figure 2.11) in 

which acid and base flow rates are kept constant. The pH of the neutralization tank is 

the output of the system. The input and output sampling interval are one second in this 

case. The signal to noise ratio was kept at 10 for identification purposes. The model 

was validated by comparing the actual and predicted output of the data obtained from 

a different input-output sequence. As seen in Figures 2.12, 2.13 and 2.14, the three 

subspace methods can identify the system quite well mainly as long as the process is 

around the steady state. 
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Figure 2.11: The perturbation signal (buffer flow rate) to the system 
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Figure 2.12:  Comparison of model output and measured output data using CVA 
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Figure 2.13:  Comparison of model output and measured output data using N4SID 
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Figure 2.14:  Comparison of model output and measured output data using MOESP 
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2.6 Conclusions 

 
It can be concluded that the presented linear subspace identification methods: CVA, 

N4SID, and MOESP, are powerful tools for identification purpose even when the 

system shows mild nonlinearity. For retaining simplicity, we mainly illustrated the 

workability of these methods on single input single output (SISO) processes. In the 

following chapters, we will identify multiple input single output (MISO) systems with 

the 4SID methods.   
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CHAPTER 3 

LIFTING  

 

Multirate systems are periodically time varying systems and so many developed 

identification methods cannot be directly applied. Lifting technique is a powerful tool 

which converts linear periodically time varying system to linear time invariant system 

in which most of the system identification techniques can be applied successfully. 

Thus, lifting technique becomes the powerful tool in multirate system identification 

scenario. The availability of discrete time fast rate model is crucial in inferential 

control (e.g. in distillation columns, bioreactors and polymer reactors). Following the 

identification of the slow rate model using multirate data and the lifting technique, the 

fast rate model (that is useful for controller design and for output prediction) can be 

extracted using the method of Li et al. (2001) and Wang et al. (2004). In this chapter, 

we introduce the lifting technique and discuss configurations of lifted system.  

Application of lifting technique to multirate system identification including the 

extraction of the fast rate model is demonstrated. Both linear and nonlinear multirate 

systems are considered. 

 

3.1 Lifting Technique and Lifted System  

Kranc (1957) first introduced the lifting technique as a switch decomposition 

technique. Then, Friedland (1960) developed the lifting technique which converts a 

periodically time varying system into time invariant system in discrete domain. 

Further developments were made by Khargonekar et al. (1985) and his framework has 

since been widely adopted. Based on Li (2001) and Wang et al. (2004), the concept of 

lifting technique and lifted system is demonstrated in this section. 
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                             Figure 3.1: SISO multirate sampled-data system 

 

In Figure 3.1, G  is the continuous time linear time invariant (LTI) system, H and S  

represent the discrete time hold and sampler respectively, u and y are input and 

output of the process which are sampled according to H and S respectively. These 

assumptions hold throughout this thesis. The whole system (from u to y ) is linear 

periodic time variant (LPTV) system. The dotted-line represents the fast rate sampling 

(sampling interval mp ) and dash-line represents the slow rate sampling (sampling 

interval np ), where the assumption is nm <  throughout this thesis (multirate systems 

with fast control rates and slow output sampling rates are the most common in the 

chemical industry), and p is the base time period. N represents the noise dynamics, 

e represents the noise signal, and v is the noise to the system with the fictitious 

sampling interval np . 

 
For simplicity, we assume 1=m  in this section. The discrete time signals ku  and 

ky are defined on +Z , set of non-negative integers. The n-fold lifting operator nL  

defines the mapping u to u (lifted signal): 
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and so we can define u = uLn . It is clear that dimension of u is n times that of u and 

underlying period of u is n times that of u again. Thus, now u and y have the same 

time interval, nT  and the lifted system becomes single rate system. The lifted slow 

rate system is linear time invariant and details can be found in Khargonekar et al. 

(1985). A SISO multirate system has effectively been converted into a MISO/MIMO 

single rate system. Standard system identification tools can now be applied to identify 

a model that represents the system dynamics for the slow sampling period. A fast rate 

model must then be extracted from this slow rate model. 

 
The lifting operator nL and inverse lifting operator 1−

nL  obey the following properties:  

                              ILL nn =−1 , 

and 

                                                                ILL nn =−1 . 

1−
nL  maps u back to u as follows:   
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The lifting operator also preserves norms: 

     
22

uLu = . 

Even if the ratio of m to n is not an integer, we can apply the lifting operator and get 

the lifted signals.  

 
After lifting, we get the fictitious system of Figure 3.2. Due to the above properties of 

lifting operators, the following Figure 3.2 representing the lifted Multirate system is 

identical to that in Figure 3.1.          
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                         Figure 3.2: SISO lifted Multirate sampled-data system 

 

Consider a state space model represented by the system matrices ],,,[ DCBA . 

Li (2001) expanded the state space model of the system as follows: 

Let γ=n  for this case, then 

      )()()1( kBukAxkx γγγ +=+  
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For the lifted system, equation (3.1) can be expressed as: 
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The lifting operation causes the lifted system with increased input-output dimensions. 

After lifting the multirate SISO system, the system becomes MISO or multi input 
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multi output (MIMO) system depending on the ratio of sampling intervals. The 

system becomes MIMO in the case of non-integer ratio of sampling interval (e.g. 

2=m  and 3=n ); identification of this kind of multirate system are explained with 

experimental case studies in section 3.4.   

 
Now we consider the SISO multirate system for the case where both m and n are 

coprime with the common base period of p . The discrete-time input signal ku  and 

output signal ky are sampled at non-negative integer time set },2,1,0{: K=+Z with the 

underlying period mp  and np  respectively (the updating period of zero-order hold 

and sampler are mp and np  respectively). The noise has the fictitious sampling 

interval same as the output. Here, we need to lift both input and output to be a single 

rate system with the common period mnp . The input u  is lifted to u by nL  , and 

output y  and noise v  are lifted to y and v by mL accordingly. Now the fictitious 

lifted system becomes as shown in Figure 3.3. 

 

          

Figure 3.3: SISO lifted multirate sampled-data system when m and n are coprime 

 

 

After lifting, the dimension of u becomes n times that of u and that of y becomes 

m times that of y , and the lifted system G becomes as follows: 

                      1−= nmpnpm LGHSLG .                                          (3.2) 
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In order to find the discrete-time state space model ofG , we discretizeG via the zero 

order hold method to get ppp GHSG =: , where pS and pH are the sampler and zero-

order hold with period p . 

Let the state space model of the pG is  

               ⎥
⎦

⎤
⎢
⎣

⎡
=−+ −

DC
BA

BAzICD :)( 1 ,                               

and that of the mpmpmp GHSG =: is 

           ⎥
⎦

⎤
⎢
⎣

⎡
=

DC
BA

zG mpmp
mp )( , 

where,             BIAABAA mm
mp

m
mp )(, 21 +++== −− L , 

and mpG is the discrete-time system with period mp . 

By the identities ppnpnp SHSS = and mpppmp HSHH = , equation (3.2) becomes 

         G   =  1)( −
nmpppppnpm LHSGHSHSL  

                    G   =  111 −−−
nmppmnmnpmnmnpnpm LHSLLGLLHSL                    (3.3) 

By these definitions: 

 111 ,, −−− === nmppmnmnpmnpmnpnpm LHSLHLGLGLHSLS , 

equation (3.3) becomes 

                G   =  HGS p .                                          (3.4) 

A state space model of the lifted system can be expressed as follows (Khargonekar et 

al., 1985): 
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The constant matrices H  and S  are given by: 

                                          H  =  

blocksnmnI
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and 

                    S  =  
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where, Identity matrices I reduce to 1 if G is a SISO process. 

After pre- and post- multiplying the pG with S and H , the state space model forG in 

equation (3.4) is: 
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Lifting the noise model is similar to the case in which the ratio of sampling interval is 

integer. Now, we get the overall lifted model for the system in which the noise is 

introduced as a measured disturbance: 

                eNuGy += . 
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After lifting operation, both NandG become LTI. Most of the statistical properties of 

ke are preserved - if ke is white noise or Gaussian, so is ke . 

 

 

3.2 Identification of the Lifted Slow-rate Model  

 
To achieve the identifiablity of a state space model, the lifted slow-rate model must be 

controllable and observable. The lifted slow-rate system is controllable and 

observable only if the continuous-time system G  is observable and controllable. This 

assumption is valid with the non-pathological sampling interval p ; the continuous 

time delay τ  must be in the range of ].,0[ p  Wang et al. (2004) proved that the lifted 

system can be controllable: ),( ll BA is controllable if ),( BA is controllable and A  has 

no eigenvalue on the unit circle (the proof can be seen in Wang et al. (2004)). If the 

continuous time delay τ  is larger than the base sampling period p , the system loses 

observability. It is impossible to extract fast rate model from the lifted model if the 

lifted model loses observability. The remedy proposed by Li et al. (2001) is as 

follows: 

  
Step (1): Finding the time delay matrix Ψ by applying the standard correlation   

 analysis to lifted signals u and y .                                                                              

Let  

                           Ψ = 
⎥
⎥
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, 

where ijl  = estimated time delay (non negative integer) from ju to
i

y , 
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  ju = j th lifted input signal )1,,1,0( −= nj K , 

  
i

y = i th lifted output signal )1,,1,0( −= mi K . 

Taking the lifting effect into account, the actual time delay ijτ from ju to
i

y be: 

                     ijτ = inpjmp −+τ , 

where, τ  = continuous time delay. 

Meanwhile, ijτ is in the following interval: 

                    mnplmnpl ijijij ≤<− τ)1( . 

So, the relation between ijl andτ is: 

                 mnplinpjmpmnpl ijij ≤−+<− τ)1( . 

Step (2): Estimating the time delay τ̂  that has one to one correspondence between  

            Ψ and positive integer k . 

  

             pkpkp +≤< τ̂ . 

Step (3): Finding the shifting operator 1κ and 2κ . 

Since m and n are coprime,  

             nmk 21 κκ += . 

Step (4): Shifting the measured input to right by 1κ and measured output to left by 2κ . 

By shifting the input and output, we can maintain the time delay between 

shifted signals is not larger than p , so that we can maintain the observability 

and controllability of the lifted system also. 

 
There exits a causality constraint in the lifted model. Li et al. (2001) proposed a 

modified subspace identification algorithm to deal with such a constraint. Wang et al. 
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(2004) proposed a structured state space model with free parameters as an easier 

alternative. 

 

 

3.3 Computing the Fast-rate Model 

 
There are three ways (Li et al. (2001)) to extract the fast rate model from lifted slow-

rate system. Wang et al. (2004) further developed these methods and demonstrated 

getting a fast-rate model with sampling period p for the system with p3 hold interval 

and p2 sampling interval. In this section, we present three methods to get a fast-rate 

model with the sampling period p for the mp hold interval and np sampling interval, 

in which nm <  and both are prime numbers. 

 

3.3.1 Matrix Roots Approach 

This method is derived from the following identity of the lifted model: 

                        lA  = mnA .                                                      (3.5) 

Let the pole of the continuous process G be  

                   lll iβαη += ,            

and the corresponding poles of discretized system with interval mnp is 

                lmnp
l e ησ = .          (3.6) 

Then the equation (3.6) becomes, 

            ll imnpmnp
l ee βασ = .          (3.7) 

Under the assumption πβ ≤lmnp , we can get the matrix A of the fast-rate model 

with underlying period p as mn
lAA /1= . 
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3.3.2 Eigenvalue Approach 

Eigenvalue approach is based on the condition that A is diagonalizable: 

                                     },,{ 2,1
1

ωλλλ KdiagWAW l =− , 

where,  

lλ , ( ω,,2,1 K=l ) is eigenvalues of lA , and W is corresponding eigenvector 

matrix. 

By equation (3.5), A and lA share the same eigenvectors. 

Now, each eigenvalues are again 

                  lll imnpmnpmnp
l eee βαηλ == . 

Via the assumption πβ ≤lmnp , 

            1
11

2

1

1 },,,{ −= WdiagWA mnmnmn
ωλλλ L . 

The finding of other three matrices i.e. matrices B , C and D is the same for these two 

methods.  

                                             1CC =   

                                       n

m

i

i BAB ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

−

=

1

0

 

nB and 1C can be obtained from the lifted model as: 

                                [ ]nl BBBB L21= , 

and  

                               [ ]TT
m

TT
l CCCC L21= , 

where, 

   iB ),,2,1( ni K= is 1×q  column vector, 

   jC ),,2,1( mj K= is q×1  row vector.  
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3.3.3 Alternate Approach 

 
Though theoretically sound, the above two methods sometimes present numerical 

difficulties. An alternate approach is proposed here as a practical solution to the 

problem. Firstly, we employ model reduction to the slow-rate model to obtain 

minimal state space form. The reduced-order model is produced with matching DC 

gain using equivalent steady state step response. The state or states to be deleted is 

determined using ‘balreal’ command in Matlab. The ‘balreal’ command (The Math 

Works, Inc. 1998) is used for producing a balanced realization in state space form 

reflecting the same controllable and observable properties of the individual states. The 

elements in the diagonal of the balanced realization form reflect the grammian-based 

combined controllable and observable properties of the different states. We can delete 

those elements of the diagonal (states) with small value so that the most important 

feature of the original system can be captured by retaining the larger values of the 

diagonal elements. We deleted the weak state or states which are computed from 

‘balreal’ command (by deleting the small values of the diagonal elements). After 

deleting the weak state or states using the Matlab command ‘modred’, the remaining 

model contains the most essential input-output character of the original slow-rate 

system.  

 
The ‘modred’ command (The Math Works, Inc. 1998) with matching DC gain method 

works as follows for the discrete-time state space model: 

 
Let the discrete-time state space model be 

                            )()()1( kBukAxkx +=+  

                                 )()()( kDukCxky += . 
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The state vector is divided into two parts, 1x  and 2x . 1x  are the states to be retained 

and 2x are the states that may be eliminated. 

             ⎥
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             )(ky = [ ] )()(21 kuDkxCC +  

Then 1x states are calculated by setting the derivative of 2x to zero, and the reduced-

order model is as follows:  

  )(][)(][)1( 2
1

22121121
1

2212111 kuBAABkxAAAAkx −− −+−=+  

        )(][)(][)( 2
1

22221
1

2221 kuBACDkxAACCky −− −+−=  

Then the fast rate model with p sampling interval is extracted from resulting low 

order slow-rate discrete-time model  using ‘d2d’ Matlab command (this command can 

transform discrete-time model with particular sampling interval into discrete-time 

model with required sampling interval). This method operates in state space domain 

and resulting fast-rate model is also in discrete-time state space form.  

 

 
3.4 Linear System Identification 

 
For the identification of linear systems, we use the above mentioned algorithms in a 

straightforward manner. The procedures and application of the algorithm for the linear 

system identification of multirate system is presented with the example in this section. 

The data used in this example are obtained from experimental setup in the computer 

process control laboratory at the University of Alberta. The equipment considered is a 

pilot scale stirred tank heater. The configuration of the process is the same as the Case 

Study I of Chapter 2 and a schematic of this process can be found in Li et al. (2001). 

In this example, the manipulated input (cold water valve position) and the measured 
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output (tank water level) were sampled at every 80 sec and 120 sec intervals 

respectively. Thus, this system became SISO multirate system with ,2=m  3=n , and 

base period p = 40 sec. At the same time, the input and output were sampled at every 

40 sec to obtain a fast-rate data for validation purpose. The details of the process 

conditions and input-output configuration can be found in Wang et al. (2004).  

 
The ratio between m and n  is rational number and this is the general multirate 

system. The identification procedure for this multirate system is as follows: 

 
Step (1): Lifting the input-output multirate signal to be a single-rate slow system. 

We lift input signal by 3L into u and output signal by 2L into y . Now u has 

three inputs and y have two outputs (MIMO) with common sampling interval 

240=mnp  sec, and the multirate system (linear periodically time varying 

(LPTV) system) gets transformed into a LTI system. 

Step (2): Estimate the time delay pdc of the continuous-time process. 

The continuous time delay pdc  is estimated based on lifted signal u and y , 

and the measured signals are shifted if there exits time-delay applying the Li et 

al. (2001) algorithm mentioned in section 3.2.  

Step (3): Identification of slow-rate system. 

The slow-rate system is identified using any of the subspace based state space 

identification methods (i.e. N4SID, CVA or MOESP) to the shifted data.  

Step (4): Extracting fast-rate model. 

The fast-rate model with sampling period 40 sec is extracted from identified 

slow-rate model using any of the methods mentioned in section 3.3 and the 

method described in section 3.5.1. 
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Step (5): Associating the time delay. 

Associate the estimated time delay from step (2) (in discrete-time domain) to 

the resulting fast-rate model. 

 
These steps were applied in sequence to the multirate data that was collected. The 

slow rate model was estimated using the CVA method (N4SID method gives an 

unstable model for this case). The fast rate model was extracted from this slow rate 

model using the modified alternate approach (modified model reduction approach) 

proposed in this thesis (see section 3.5.1). After lifting the system, the lifted slow-rate 

system becomes MIMO single rate system in this case. Here is the little modification 

for the modified alternate approach. This modification involves choosing the proper 

lifted I/O pair that can give the maximum possible system information. This lifted I/O 

pair is chosen based on the mean square error (mse) between available measured slow 

sampled data and estimated slow-rate model output.  

 
The fast rate model identified from multirate data is given by )(sGMR and in transfer 

function form it is equal to
5211.0476.1

1872.02138.0006683.0
2

2

+−
++

zz
zz . The model identified 

from single rate data (i.e. input and output both sampled at 40 sec) is )(sGSR  and it is 

equal to
0595.09609.0

8902.0005784.0004291.0
2

2

+−
++−

zz
zz . The step response models obtained 

from these different identified models are very close to each other and can be seen in 

Figure 3.5. The fast-rate model identified from multirate data is validated by 

predicting model outputs to a specific input sequence. The comparison of the 

estimated fast-rate model prediction to the actual measured output is shown in Figure 

3.4. The results indicate that the model identified from multirate data is pretty good. 
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Figure 3.4: Comparison of estimated fast-rate model output (dashed line) and 
measured output (solid line) using modified alternate approach 
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Figure 3.5: Comparison of step response models obtained from estimated fast-rate  
model and single-rate model 



                                                                      42

3.5 Nonlinear System Identification 

 
Most of the processes are nonlinear in nature. Among the various nonlinear models, 

Hammerstein and Wiener models are useful representations for chemical processes. 

For these reasons, it would be appropriate to develop multirate system identification 

methods for Hammerstein and Wiener models. To identify the Hammerstein and 

Wiener models, we use separable nonlinear least squares (SLS) method to estimate 

the parameters of the linear dynamic and nonlinear static polynomial. The parameters 

of the linear dynamic part of Wiener model is estimated as demonstrated in Bruls et 

al. (1999). The initial estimate of linear dynamic part is identified in subspace domain 

using methods such as CVA or MOESP.  

 
From our research, it is found that different γ values (ratio of sampling intervals) 

affect the gain of estimated fast-rate model. It is also found that the identification of 

slow-rate model sometimes will not give the exact estimation of gain of the true 

model. These factors point out a need to adjust the gain of the identified slow-rate 

model since the identified slow-rate model is the only source from which the fast-rate 

model can be obtained. A new procedure is developed by modifying the “alternate 

approach” proposed for linear systems. This “modified alternate approach” is 

presented below. 

 

 

3.5.1 Modified Alternate Approach 

 
The modified alternate approach is that in which the identified fast-rate models are 

estimated by adjusting the gain of the identified slow-rate model. The aim of adjusting 

the gain of the identified model is to obtain as much as the same magnitude of the 
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gain of the true model. The characteristics and procedure of adjusting the gain of 

identified slow-rate model is as follow: 

 
(1) The value to adjust the gain called ‘adj_gain’ is the value to multiply the B matrix 

of identified slow-rate state space model. 

(2) adj_gain is estimated based on the available output data of multirate data set. 

(3) This method is only applicable to the alternate approach (model reduction using 

the step response of identified slow-rate model). 

(4) Firstly, the proper lifted input signal is chosen which has the least mean square 

error (mse); this mse is calculated by squaring the difference between slow-rate model 

output and measured multirate output data. This mse is found for every lifted input 

signal and the lifted input signal which has least mse is chosen as “optimal” input 

signal. 

(5) Secondly, the adj_gain is estimated by minimizing the mse of the difference 

between the slow-rate model output and measured output data. Multidimensional 

unconstrained nonlinear minimization (Nelder-Mead) routine and simplex (direct 

search) method are employed to find the optimum adj_gain value. 

(6) After knowing adj_gain, the B matrix is multiplied with adj_gain, and the resultant 

matrix is called new B matrix. 

(7) Finally the fast-rate model is extracted from identified slow-rate state space model 

using the new B matrix in place of the originally estimated B matrix. 

 

3.5.2 Multirate Hammerstein Model Identification 

The Hammerstein model identification procedure for the single-rate system was first 

developed by Narendra and Gallman (1966). They used an iterative method and 

estimated the dynamic linear subsystem and static nonlinear subsystem alternately. 
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This was followed by the one-step non-iterative method in which the static 

nonlinearity (generally expressed as a polynomial) was expanded into a series and 

these expansion terms were used as inputs to the linear dynamic system. This 

approach transformed the SISO nonlinear system into a multi-input linear time-

invariant system. The standard linear identification methods can be applied for 

identification of this type (Stoica and Söderstörm(1982)). After that, a two-step non-

iterative method was developed by Pawlak (1991); firstly the linear dynamic part was 

identified. In the second step, this information was used in identifying the 

nonlinearity. Westwick and Kearney (2001) explored a technique to identify 

Hammerstein model using SLS in which polynomial with predefined order is used to 

estimate the static nonlinearity and impulse response function (using a correlation 

analysis) is used to estimate the linear dynamic part. They used iterative nonlinear 

optimization routine (Levenberg-Marquardt iterations) and their work was based on 

the Hunter and Korenberg (1986) iterative algorithm. In this work, a new algorithm 

for the identification of multirate Hammerstein type nonlinear system with the 

assumption that the nonlinear map (.)Φ  can be represented by a polynomial surface 

of fixed pre-specified order is proposed. The method uses 4SID techniques for 

estimating the linear dynamic part of the model. The univariate polynomials are 

defined to estimate the nonlinear static part in Hammerstein model identification in 

this algorithm. 

We consider the nonlinear system as follows: 

    f
naaaa χχχχ ++++=Φ K2

321)( , 

    ))(()( kuk Φ=µ  

    )()()1( kBkAxkx µ+=+  

    )()()()( kvkDkCxky ++= µ  
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where f is the order of the polynomial and ),,1( niai K= are the polynomial 

coefficients. 

The crucial requirement for the identification of this type of nonlinear system is that 

the input signal or signals must be persistently exciting for the data set of finite length. 

The algorithm for the identification of multirate Hammerstein model using lifting 

technique is as follows: 

 
(1) The optimum model order is chosen using the linear identification method 

assuming the system is linear (this assumption provides us with the approximation of 

the order of the linear model) for MOESP framework, but the lifted input and output 

signals are employed (we assume that input is fast sampling and output is slow 

sampling) since we are dealing with multirate system and lifting technique.  

(2) The parameters of the zero-memory gain (nonlinearity) are estimated using given 

order polynomials (the fast sampling input signal is used here) by iterative search (the 

initial estimate for static nonlinearity is provided). The objective function here is to 

minimize the mean square error between the estimated model output and measured 

output. The details of this step are: 

The estimated intermediate model output that comes out from the nonlinear part is 

lifted using the lifting operator with respect to γ (the ratio of sampling interval of 

output to input). The state-space quadruple matrices of slow-rate system for linear 

dynamic parts are estimated (with pre-estimated model order) using the lifted signals 

and then the estimated state space matrices are used to update the nonlinear part. The 

whole model output is estimated using estimated polynomial and estimated state 

space matrices. Then mean square error between estimated model output and 

measured output is calculated for each iteration step (this is also objective function). 

SLS is implemented to minimize the number of parameters to be estimated (the 
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parameters of linear dynamic part implicitly affects the estimation of static nonlinear 

part (parameters of polynomial) and Gauss-Newton optimization routine is also used.  

 (4) Then, the parameters for linear dynamic part are determined using the estimated 

intermediate model output of the nonlinear part as the input (that is lifted according to 

γ value) using linear MOESP identification method (CVA can also be implemented 

instead of MOESP).  

(5) Finally, the fast-rate model is extracted from identified slow-rate model using 

matrix roots approach or alternate approach (including modified alternate approach). 

There is no need to find the fast-rate model for static nonlinearity since we identified 

the static nonlinearity with the fast sampling input signals. 

 

 

3.5.2.1 Application with experimental data set 

 
The usefulness of the above developed algorithm will be illustrated with the heat 

exchanger data set from Eskinat et al. (1991). This data set was used as Case Study II 

in the previous chapter (section 2.5.1.2) to demonstrate the linear subspace 

identification methods. It was pointed out that there is some nonlinearity associated 

with this system (and the data set). In this section, multirate data sets are constructed 

for different γ (γ = 1 to 5) and the new algorithm is tested by employing it for the 

identification of a Hammerstein model. The modified alternate approach is used in the 

extraction of fast-rate models from different identified slow-rate models. The matrix 

roots approach was also tried to arrive at the fast rate models but it was found that the 

modified alternate approach gave a much better model fit. Table 3.1 provides a 

comparison of mean square error (mse) of the modified alternate approach (MAA) 

and the matrix roots approach (MRA). The mse is obtained by squaring the difference 



                                                                      47

between the fast-rate model predicted output and the measured fast-rate output data. 

The superiority of the modified alternate approach developed in this thesis is evident. 

The improvement is mainly due to the estimation and correction for the process gain. 

 

Table 3.1. Mean Square Error Comparison 

γ MRA MAA 

1 27.818 27.773 

2 81.077 21.976 

3 108.38 32.68 

4 109.59 62.271 

5 2033.7 326.74 

 

 
 
These results are obtained using the heat exchanger data set with the proposed 

multirate Hammerstein model identification method. The linear dynamic model 

component is assumed to be third order and nonlinear static polynomial is taken to be 

a fourth order polynomial. The estimated fast-rate model outputs obtained from MAA 

are cross validated with measured fast rate data set for each γ in Figures 3.6 through 

3.10. As seen from these Figures and also from Table 3.1, the model quality 

deteriorates (as expected) as γ increases. This also points out that sophisticated 

identification approaches can do only so much; if the data is not sampled well or is 

not of good quality, the identification results will, in general, be poor. 
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Figure 3.6: Cross validation for γ = 1 
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Figure 3.7: Cross validation for γ = 2 
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Figure 3.8: Cross validation for γ = 3 
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Figure 3.9: Cross validation for γ = 4  
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Figure 3.10: Cross validation for γ = 5 

 

 
3.5.3 Multirate Wiener Model Identification 

 
Wiener model identification is of interest to many researchers as it can represent 

processes such as pH neutralization, distillation columns and polymer reactors. Boyd 

and Chua (1985) showed that this type of model can model time invariant systems 

with fading memory. Bruls et al. (1999) developed two algorithms for the 

identification of this type of nonlinear system; the linear part was identified as a state 

space model and the parameters of nonlinear static part were estimated by a linear 

combination of basis functions (Tchebyshev polynomials) in algorithm W1. The LTI 

part of the Wiener system is the only unknown and static nonlinear part is known (e.g. 

a sensor with saturation) in algorithm W2. All previous work regarding this type of 

nonlinear identification was done for single-rate system only. In our work, multirate 

nonlinear identification for Wiener model is developed based upon the work of Bruls 

et al. (1999). Again, SLS is used to obtain the parameters of the linear dynamic part 
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and the nonlinear memoryless part (with predefined maximum order of polynomials 

and state space model order). We use the lifting technique to identify the slow rate 

system of linear dynamic part using the MOESP algorithms developed by Verhagen 

coworkers (Verhagen and Dewilde (1992a, 1992b), Verhagen (1993), and Verhagen 

(1994)). 

 

Tchebyshev Polynomials 

   )()()( 00 χϕχϕχφ nnTT ++= K  

where, ),,0( niTi K=  is thi  order Tchebyshev polynomial. 

Tchebyshev polynomials are often chosen by researchers for the identification of 

processes and generally in cases where model approximations are needed. 

Tchebyshev polynomials are a ratio of polynomials, rational functions and more 

accurate estimates can be obtained by using this kind of polynomials in computational 

work. The other reason is that Wiener model identification is more challenging as 

compared to the identification of Hammerstein models; in this regard, Tchebyshev 

polynomials might be a better choice than the polynomial functions employed in 

Hammerstein model identification.  

 

Algorithm 

The nonlinear system of Wiener type as in this mathematical form is considered for 

identification of this algorithm: 

    )()()1( kBukAxkx +=+  

     )()()( kDukCxky +=  

          ))(()( kyk φϑ = , 

where )(kϑ  is the output of the system.  
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The algorithm for the identification of Wiener type nonlinear multirate system can be 

summarized as follows:  

 
(1) The model order of the linear dynamic part is estimated with the PO algorithm of 

MOESP family (Verhagen (1994)) using lifted input-output data (the assumption of 

fast input sampling and slow output sampling is made). 

(2) The initial estimate of state space quadruple matrices are determined using the 

subspace algorithm developed by Westwick and Verhaegen (1996) in which the PI 

scheme of MOESP family (Verhagen (1993)) is used. The simulated output from this 

initial estimate of the linear system is used to obtain the initial parameter estimates for 

the nonlinear static part of the model (using Tchebyshev polynomials). 

(3) The parameters of the linear dynamic subsystem are calculated using the algorithm 

W2 (Bruls et al. (1999)) in which the Gauss-Newton optimization routine and the 

separable least squares (SLS) technique are used. The parameters of (A, C) pair (that 

is nonlinear part in SLS problem) is estimated using the output normal form in which 

observability grammian is transformed into identity. 

(4) The slow-rate output from the state space linear dynamic model resulting from the 

above optimization routine and measured slow-sampled output data are employed for 

the calculation of the final estimate of parameters of nonlinear static subsystem. 

(5) The model fit for the whole system is measured with the variance-accounted-for 

(VAF) metric which is defined as  

 

                            VAF= %100
))(var(

))()(ˆvar(1 ×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

k
kk

ϑ
ϑϑ , 

 
where,      )(ˆ kϑ  is the estimated output of the model, and 

      var (.) stands for the variance of an arbitrary sequence. 
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(6) The fast-rate model of the linear dynamic model is extracted from the identified 

slow-rate model using the matrix roots approach or alternate approach.  

 
Case studies involving the identification of Wiener models from multirate data will be 

provided in Chapter 5. 

 

 

3.6 Conclusions 

 
In this chapter, a review of the lifting technique and previous developments regarding 

the extraction methods of fast-rate model have been provided. Two new methods (viz. 

alternate approach and modified alternate approach) are proposed supported by case 

studies. Furthermore, nonlinear multirate identification algorithms (which are 

developed from previously developed methods for nonlinear single-rate system) for 

well known Hammerstein and Wiener models are presented. The numerically stable 

SLS technique is used to reduce the number of parameters for both models. The 

developed multirate Hammerstein model identification algorithm and the 

effectiveness of modified alternate approach were simultaneously evaluated with an 

example. 
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CHAPTER 4 

DATA SELECTION AND REGRESSION METHOD 

 

Process models in the chemical industry usually involve several input variables. Also, 

in most applications, the sampling interval ratio between the output and the inputs is 

high (typically more than 15). Multirate identification based on lifting is considered to 

be ineffective under such circumstances owing to the explosive increase in the 

number of input variables. Alternate approaches are definitely needed. 

Lakshminarayanan (2000) developed a method called Data Selection and Regression 

(DSAR) for the identification of multirate systems. In the DSAR approach, a standard 

regression model is constructed for the Multirate system and the impulse response 

coefficients of the multirate system are estimated. The estimated impulse response 

coefficients may then be transformed into other forms (e.g. step response coefficients 

for use in MPC schemes) for controller design purposes. While the lifting technique 

needs regularly sampled input/output (I/O) data, DSAR can handle irregularly 

sampled I/O data as well. The other advantage of DSAR is that it can be applied for 

large (output to input) sampling interval ratios. Concepts such as optimal window size 

and optimal lag combination are used in order to minimize the mean square error to 

obtain a parsimonious regression model. Ordinary least squares (OLS), principal 

component regression (PCR) or partial least square (PLS) may be used to solve the 

regression problem. PCR and PLS are methods that can handle regression problems 

with highly correlated data sets. MacGregor et al. (1991) also investigated the use of 

PLS to regression problems involving correlated data sets but their work was 

concerned with single-rate system.  
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4.1 DSAR 

 
The concept of DSAR is based on the well-known Finite Impulse Response (FIR) 

model of single-rate system. DSAR method also shares the advantages of FIR model 

identification such as its ability to model any complex dynamical system. DSAR 

overcomes the disadvantage of needing a long model kernel of FIR model by using 

the concept of optimal window size. DSAR can also be easily extended to model 

nonlinear systems by including nonlinear variables (e.g. quadratic and interaction 

terms) in the regressor. The basic DSAR method is explained below. 

  

 
Multiple Linear Regression 

DSAR employs the multiple linear regression (MLR) method for the model building 

purposes. MLR is the regression model in which the response variable is a function of 

one or more predictor variables. The response variable is “fitted” by linear 

combination of predictor variables. Using DSAR, we pick up the sample for which 

the output measurements are available. The output variable corresponding to these 

sampling instants are stacked into column vectorY .  

For each of these sampling instants ( j ), a row vector x  is created as follow: 

[ ])()1()()1( 111 rrrj mjujumjujux −−−−= KKK  

where, r is number of process inputs, and 

rmm K1 stand for expected time to steady state for each of the inputs. 

Then the row vectors, jx ’s are stacked into a matrix of inputs X . Thus, it simply 

becomes the MLR model in which the output of the system (constructed column 

vectorY ) is the response variable and inputs of the system (constructed matrix X ) are 

the predictor variables.  
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The standard regression model for Nj + observation is obtained in matrix form as 
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where  Njj bb +L are impulse response coefficients of the system, and 

 Njj ee +L are the errors associated with each observation. 

We can extend the DSAR method to MIMO systems by placing other output variables 

(constructed in similar way of column vectorY ) besides the column of the first output 

variable (stacking them side by side). The noise or error matrix would be of the same 

size as the matrix on the left hand side of the regression equation. 

     

 
4.2 Methods for Solving DSAR 

 
4.2.1 DSAR Identification Using Ordinary Least Squares (OLS) 

DSAR model, the standard regression model obtained in equation (4.1) can be 

expressed in standard form as 

   EXBY += .              

The B matrix which contains impulse response coefficients is calculated based on the 

least squares error which is as 

     )(ˆ)()( tytyte −=  . 

The standard least squares problem, 

     ( ) ( )XBYXBY T

b
−−min  

can be solved as 

     [ ] YXXXB TT 1−
= .             (4.2) 
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The least-squares estimator for FIR model gives consistent estimate when the number 

of observations tends to infinity, and is statically unbiased - the expectation of the 

estimate equals the true value and if the disturbance (error term) is independent of the 

input. The proofs of these statements can be found in the literature (e.g. Söderström 

and Stoica (1989), Zhu (2001)). Thus, DSAR model estimation using least-squares 

estimator is also consistent and statically unbiased if the mentioned assumptions are 

satisfied.  

 

 
4.2.2 DSAR Identification Using PCR and PLS 

It can be said that data are correlated when there is linear association among the data; 

the values of variables tend to increase or decrease together. Correlation is measured 

by a correlation coefficient (e.g. Pearson correlation coefficient). When the 

correlation exists between the variables of X , its inversion becomes problematic and 

the parameters cannot be determined. This is the ill-conditioned problem. These 

problems can be overcome by using PCR or PLS. PCR is based on the principal 

component analysis (PCA). The scores and loadings matrices of PCR are calculated 

by using PCA. PCR solves the collinearity problem by replacing the original X 

variables with the new basis space – a set of latent variables that are orthogonal and 

can span the multidimensional space of X . The redundancies in the X block are 

eliminated by PCR and in this process significant reduction in noise is also achieved. 

However, with PCR, there is always the chance that some information about the 

system may be lost in the discarded components. PLS is yet another alternative to 

MLR. Without getting into the details of the PLS algorithm (which can be obtained 

from Kresta et al., 1991), it suffices to say that the PLS technique generates latent 

variables that are more predictive of the Y variables. Both PCR and PLS are therefore 
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capable of circumventing the collinearity problem and produce reasonable (though 

biased) parameter estimates. 

 

 
4.2.3 Fast-rate Step Response Model 

 
The convolution models, impulse response model and step response model are 

obtained by using DSAR and they can represent free responses only. These 

convolution models are very intuitive to operators and plant personnel in spite of 

being less compact as compared to the transfer function or state space models. 

Moreover, these models can easily represent complex dynamics and are easy to 

develop from plant tests. The step response model can be obtained by processing the 

impulse response coefficients contained in the B matrix which is obtained by using 

OLS or PCR or PLS. The step response coefficients can be calculated from obtained 

impulse response coefficients as follows: 

 
Let us define the impulse response model and the step response model as  

         ∑
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k

i
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respectively. Here, )(ih ’s are the impulse response coefficients and )(is ’s are the step 

response coefficients. ‘ k ’ denotes the sampling instant; sk kTt =  ( sT = sampling 

interval). 
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where 

       
∆

=
)()( ihis  

               = 11
)(
−− z

ih .                                                        (4.4) 

From equation (4.4), 

    )1)(()( 1−−= zisih  

           = )1()( −− isis . 

Thus, the step response coefficients can be calculated from impulse response 

coefficients as  

    )1()()( −+= isihis , 

where  

i = 1, 2, …, N , represents the sampling instants. 

Since the regression matrix X was constructed with fast sampling input data, the 

resulting impulse and step response models are automatically the fast-rate model with 

the same sampling interval of fast sampled data. 

 

 

4.3 Determination of Optimal Window Size and Optimal Lag Combination 

 
Since the FIR models are nonparsimonious, concepts of optimal window size and 

optimal lag combination are introduced to make the model as compact as possible. 

The optimal window size and optimal lag combination are determined using the least 

mean square error (MSE). The MSE is one of the measures of model adequacy and is 

a widely accepted metric in determining the fit / validity of an identified model. In 

DSAR, firstly the maximum window size for each of the inputs (for MISO or MIMO 
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systems) is determined based on the physical system and a priori process knowledge; 

the maximum window size is the past memory of the process inputs that has effect on 

the current value of the output. Generally, having more variables in the X matrix can 

give a better model fit. However, there would be room for optimization based on the 

concept of ‘optimal window size’. In determining the optimal window size, we try to 

find out all possible lags from 1 to the predefined maximum window size, and then 

the number of lags which give the least MSE is chosen as the optimal window size. 

After that, the optimal lag combination is determined based on the optimal window 

size by fitting models using all possible lag combinations (from zero to previously 

determined optimal window size) for each of the inputs. The optimal combination of 

various lags which gives the least MSE is chosen. After performing this two stage 

“optimization”, the unnecessary input variables and unnecessary lags of each of inputs 

would have been discarded.  

 

 

4.4 Simulated SISO example 

 

The continuous-time SISO system 
175.1825.156 2

5

++

−

ss
e s

(second order with time-

delay system) is considered. The “process” was perturbed with a random input signal 

to generate the noise free output. To this noise free output, the output from the noise 

model N = 
15.0

1
+s

driven by a Gaussian input sequence (variance = 0.001) was 

added to generate “noisy” process data. The fast-rate data set for single-rate system 

with 15000 observations for each input and output variable was generated with 

sampling interval of one time unit. The multirate systems for different integer γ values 

of 5, 10, 15, 20, 25 and 30 were constructed from generated single-rate system (fast-
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rate data). Thus, the SISO multirate systems with one time unit sampling interval of 

input and slow-rate output data with different γ values were obtained. The fast-rate 

step response models for different γ values of multirate system were estimated using 

DSAR. The estimated fast-rate step response model for each γ value was compared 

with actual discrete-time model with one time unit sampling interval in the Figures 

4.1 through 4.6. From these figures, it can be concluded that DSAR method is 

versatile enough for different integer γ values.  Therefore, the use of DSAR for large γ 

values (which are very common in the chemical industries) appears to be very 

promising whereas the larger γ values might cause problems for the lifting method.  

 

 
 
 

 
Figure 4.1: Model comparison for γ = 5 
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Figure 4.2: Model comparison for γ = 10 

 

 
 

 

Figure 4.3: Model comparison for γ = 15 
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Figure 4.4: Model comparison for γ = 20 

 
 

 

Figure 4.5: Model comparison for γ = 25 
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Figure 4.6: Model comparison for γ = 30 
 

 

 

4.5 Comparison of DSAR and Lifting on University of Alberta’s Data Set 

 
The details of the data obtained from University of Alberta’s experimental stirred tank 

system have already been discussed in Chapter 2 (section 2.5) and Chapter 3 (section 

3.4). Here, the performance of DSAR and the lifting technique are evaluated on this 

data set. The methods of extracting the fast-rate model from identified slow-rate 

model were presented in section 3.3 and application of these methods to the multirate 

system with non-integer ratio of sampling interval was straight forward in lifting 

technique. Therefore, only the extraction of fast-rate model by DSAR method for the 

case of non-integer γ value is explored in this section.  
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4.5.1 Extracting of Fast-rate Model Using DSAR for Non-integer γ  

It is straight forward using DSAR for the case of multirate system in which the ratio 

of sampling interval of input to output (γ) is integer. For the non-integer ratio of 

sampling intervals, it is not hard to obtain a fast-rate model with the sampling interval 

mp for the case of multirate system with mp sampling interval (fast control rate) and 

np sampling interval (slow output sampling rate) in which nm < ; the X matrix was 

constructed with input data sampled at every mp time units. The first order or second 

order plus time-delay transfer function model is estimated using the step response 

coefficients which are available for mp sampling interval. Then the fast-rate model 

with p sampling interval can be obtained using the ‘d2d’ command (available in 

Matlab software package). The application of this “extended” DSAR method is 

demonstrated with the UofA data set here. Figure 4.7 shows four step response 

trajectories. The dash-dot and continuous plots represent the result of DSAR and 

CVA, respectively, using the fast data. These are almost overlapping and these serve 

as the standard against with the   results of the multirate identification methods would 

be compared. The estimated fast-rate step response model using slow rate model 

estimated by DSAR (dotted line) and the model obtained using the lifting technique 

(dashed line) are also shown in the same figure. From this figure, it is observed that 

the performances of both of DSAR and lifting methods are quite similar for the single 

rate system identification. The gain of fast-rate model using DSAR is underestimated 

and that of the lifting technique is overestimated for this data set. Both DSAR and 

lifting method can capture the time constant well. In this case study, the matrix roots 

approach is applied for extracting the fast-rate model from the identified slow-rate 

model. The cross validation of both methods is also shown in Figure 4.8 and 4.9 

respectively. 
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Figure 4.7: Comparison of fast-rate step response models obtained from DSAR and 
lifting technique 
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Figure 4.8: Cross validation of DSAR method 
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Figure 4.9: Cross validation of Lifting technique 
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Figures 4.8 and 4.9 confirm that both DSAR and lifting have a small mismatch in 

estimating the steady state gains but the process dynamics is very well captured. 

 

 

4.6 Conclusions 

 
In this chapter, a practically more useful method named DSAR for the identification 

of multirate system (in which the ratio of input to output sampling interval is large) is 

presented. This method is based on the nonparsimonious FIR model identification. 

The extraction of fast-rate model for integer γ is evaluated with a case study (different 

large γ values are provided). Moreover, the “extended” DSAR method for the non-

integer γ value is also explored and this method is evaluated with application to an 

experimental data set (with non-integer γ value). 
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CHAPTER 5 

CASE STUDIES OF MULTIRATE IDENTIFICATION 

 

In this chapter, the application of the methods developed in the earlier chapters to 

different simulated, experimental and industrial data sets are investigated. Effects of 

the input signal, the sampling interval ratio (γ) and the method of identification on the 

quality of the identified model are studied. The effect of the value of γ on the 

identified model is a key characteristic that must be understood so that the method 

may be applied on industrial data – this will answer the question “How tolerant are 

these methods to the non-availability of information?” For the purpose of good 

multirate identification, it is important to know the best input signal to perturb the 

system with. These studies are done to test the measure of usefulness and to 

understand the limitations of the different methods for both linear and nonlinear 

multirate system identification. 

 

 
 
5.1 Effect of Gamma on Linear System Identification Using Lifting Technique 

      

 

 
Figure 5.1: A SISO Multirate System 
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Figure 5.1 represents the SISO multirate sampled-data system that is used in 

simulation studies. Here cG  is a continuous-time LTI and causal system with or 

without a time delay; H is a zero-order hold with an updating period mp and S is a 

sampler with period np , where m and n  are different positive integers, and p  is a 

positive real number called the base period; discrete time signals u  and y are the 

system input and output respectively; cN is the continuous-time transfer function to 

which the Gaussian sequence e is introduced to produce the colored noise νc, which is 

added to the measured output to create noisy output data.  In particular, we consider a 

system where
15.215.112

4.2)(
2 ++

=
ss

sGc  and
15.0

1)(
+

=
s

sN c . The Gaussian signal 

with variance = 1 is designed as input signal (u) and e  is a white noise sequence with 

variance = 0.001. 9000 input/output data pairs are generated at every one time unit – 

these data can provide us the reference fast-rate model for comparison purposes. To 

study the effect of γ on the identification of fast-rate models which are extracted from 

different multirate data sets with different γ values, input data are collected at every 

one time unit and output data are collected at every γ time units sampling interval. 

Thus, === npm ,1,1 γ are used for simulation in this case. Multirate data with 

different γ values (γ = 4, 8, 12, 16) were created. The fast rate model (for one unit 

sampling interval) is extracted from the estimated slow rate models and the estimated 

step response of the fast rate models are compared with the actual step response. In 

Figure 5.2, the result of the lifting technique for different γ values is provided.  As 

expected, the quality of the identified model becomes poorer with increasing γ value. 

In particular, it is found that time constant can be estimated properly but the model 

gain cannot be estimated exactly – this trend is evident with higher γ values.   
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Figure 5.2: Comparison of single-rate and fast-rate model using lifting technique 

 

Other case studies were performed with different input signals like as PseudoRandom 

Binary Sequence (PRBS), stretched PRBS and random signal with uniform 

distribution. From these case studies, it is found that lifting technique is versatile 

enough for different kind of input signals for linear system identification.  The trends 

shown above persisted even with these input signals. 

 

5.2 Effect of Gamma on Nonlinear System Identification using Lifting Technique 

5.2.1 Hammerstein Model Multirate System Identification 

5.2.1.1 SISO Hammerstein Model MRID 

For SISO Hammerstein model multirate system identification, the simulated SISO 

system in which the linear dynamic part follows the static nonlinearity was built. For 
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the static nonlinear part, the polynomial uuu ++ 23 3.02.0 was assigned. The first 

order discrete-time model 
8.0

2.0
−z

was assigned as the linear dynamic part in the 

simulated system. The random signal with normal distribution was designed as input 

signal. The 2000 input/output single-rate data were collected with one time unit 

sampling interval as the reference fast-rate data set. White noise was added to the 

noise free output signal to simulate an output sequence with a signal to noise ratio of 

10. The different multirate data sets were collected with one time unit of input 

sampling interval and (one*γ) time unit of output sampling interval; γ values used for 

this study are 1, 2, 3, 4, and 5. The fast-rate model was extracted from each 

constructed multirate systems using the developed Hammerstein model multirate 

system identification algorithm (section 3.5.2) with the matrix roots approach. For the 

identification of slow-rate linear dynamic subsystem, MOESP scheme developed for 

single-rate Hammerstein model identification (Verhagen & Westwick (1996)) was 

used (SLS was used for the identification of whole system). The cross validation of 

the estimated fast-rate model output with measured fast-sampled output was 

performed. The cross validation of the models for the different γ values are shown in 

Figures 5.3 to 5.7. From these figures, it can be seen that the estimated fast-rate model 

is quite acceptable for different γ values for the multirate system with random input 

signal. Persistency of excitation provided by the random input signal and the 

relatively good signal to noise ratio are perhaps why good identification results are 

obtained. Therefore, the model outputs from the estimated fast-rate models of the 

different γ values are quite identical to the actual fast-sampled data. From this study, it 

seems that the γ value has little impact on the extraction of fast-rate model if the 

system is perturbed with a persistently exciting signal. It appears that the random 
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signal may be the best perturbation signal to achieve a good model even in the 

multirate system identification scenario. 
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Figure 5.3: Cross validation for γ = 1, H- type SISO MR System 

 

20 40 60 80 100 120 140 160
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 estimated output
actual output

 
Figure 5.4: Cross validation for γ = 2, H- type SISO MR System 
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Figure 5.5: Cross validation for γ = 3, H- type SISO MR System 
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Figure 5.6: Cross validation for γ = 4, H- type SISO MR System 
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Figure 5.7: Cross validation for γ = 5, H- type SISO MR System 

 

 

5.2.1.2 MISO Hammerstein Model MRID 

 
The MISO discrete-time Hammerstein model was built by using the two different 

inputs each have different model dynamic and different static gain and then these two 

inputs combined as one system output; the output was produced by the first input 

channel which perturb the static nonlinearity 1
2
1 6.03.0 uu + followed by dynamic 

subsystem 
9231.0

1538.0
−z

, and the second input channel which pass through the static 

nonlinear subsystem 2
2
2

3
2 3.03.0 uuu +− and linear dynamic part

8.0
2.0

−z
. The system 

inputs were random signals with normal distribution and which were produced at 

different states, so that they are different sequences. Noise was added to the system 

outputs so as to achieve a noise to signal ratio of 0.1. This is done in order to mimic 
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the characteristics of real world data sets. The fast sampled single-rate data set (in 

which 2000 input/output data pairs) was collected with one time unit sampling 

interval. This fast-rate data set was used for cross validation purpose (to measure the 

adequacy of extracted fast-rate model output to the actual fast sampled system 

output). The different multirate data sets were collected from this fast sampled single-

rate data set, so that the constructed multirate systems have fast sampled inputs which 

are sampled at every one time unit and the slow sampled output which has (one*γ) 

sampling interval. These kind of multirate systems were built for different γ values 

from 1 to 5. The γ value 1 was used as the special case of multirate system. Then the 

fast-rate models were extracted from the different multirate data set by employing the 

same algorithm (Hammerstein model multirate system identification method). The 

adequacy of estimated fast-rate model for each γ value was measured by comparing 

the estimated fast-rate model output with the actual fast sampled system output. As 

with SISO Hammerstein model multirate identification, the effect of γ on the 

identification results is not significant at least with random probing signals. From 

these observations, it would appear that random input signal could be the best for the 

identification of Hammerstein models from multirate data. 
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Figure 5.8: Cross validation for γ = 1, H- type MISO MR System 
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Figure 5.9: Cross validation for γ = 2, H- type MISO MR System 
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Figure 5.10: Cross validation for γ = 3, H- type MISO MR System 
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Figure 5.11: Cross validation for γ = 4, H- type MISO MR System 
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Figure 5.12: Cross validation for γ = 5, H-type MISO MR System 

 

 

5.2.2 Wiener Model Multirate System Identification 

 
5.2.2.1 SISO Wiener Model MRID 

Since the Wiener Model is the reverse of Hammerstein Model, the simulated SISO 

system in which the linear dynamic subsystem is followed by the static nonlinearity 

was built for generating identification data. The first order discrete-time LTI system 

8.0
2.0

−z
was assigned as the linear dynamic part in the simulated system. For the static 

nonlinear part, the polynomial 32 2.03.06.0 uuu −+  was assigned. The random signal 

with normal distribution was chosen as the input signal to this simulated nonlinear 

process. 2000 input/output single-rate data were collected with one time unit sampling 

interval as the reference fast-rate data set. Noise was added to the output data to create 

an output sequence that had a signal to noise ratio equal to 10. The different multirate 
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data sets were collected with one time unit of input sampling interval and (one*γ) 

time unit of output sampling interval; γ values used for this study are 1, 2, 3, 4, and 5. 

The fast-rate model was extracted for each case (different γ) using the developed 

Wiener model multirate system identification algorithm (section 3.5.3) with the 

matrix roots approach. For identification of the slow-rate linear dynamic subsystem, 

MOESP scheme developed for single-rate Wiener model identification (Verhaegen & 

Westwick,1996) was used (SLS was used for the identification of whole system); the 

initial estimates are calculated by using the MOESP scheme ((Verhaegen & 

Westwick,1996) and then they are subsequently improved by using iterative 

optimization (Bruls et al. (1999)). The identified nonlinear static subsystem is in 

Tchebyshev polynomial form. The cross validation of the estimated fast-rate model 

output with measured fast-sampled output was performed. Figure 5.13 to Figure 5.17 

depict the cross validation results for models obtained with different γ values. From 

these figures, it can be seen that the estimated fast-rate model is quite acceptable for 

different γ values for the Wiener type multirate system with random input signal. The 

model outputs from the estimated fast-rate models with the different γ values are quite 

identical to the actual fast-sampled data. This shows the utility of the identification 

strategy proposed in this work.  
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Figure 5.13: Cross validation for γ = 1, W-type SISO MR system 
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Figure 5.14: Cross validation for γ = 2, W-type SISO MR system 
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Figure 5.15: Cross validation for γ = 3, W-type SISO MR system 
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Figure 5.16: Cross validation for γ = 4, W-type SISO MR system 
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Figure 5.17: Cross validation for γ = 5, W-type SISO MR system 

 

 

 

5.2.2.2 MISO Wiener Model MRID 

 
The MISO discrete-time Wiener model was built by using the two different inputs 

each have different model dynamic and different static gain, and then these two inputs 

combined to form only one system output; the output was produced by the two input 

channels which have the same static nonlinearity 225.025.0 uu + (which is the 

Tchebyshev kind of polynomials) followed by different dynamic subsystems, 

9231.0
1538.0

−z
(for first input channel) and 

8.0
2.0

−z
(for second input channel). The system 

inputs were random signals with normal distribution and which were produced at 

different states, so that they are different sequences. Random noise was added to the 

noise-free output data to generate a measured output sequence with a noise to signal 
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ratio is 0.1. The fast sampled single-rate data set (2000 input/output data pairs) was 

collected with one time unit sampling interval and which was used as the data set for 

cross validation purposes (to measure the adequacy of extracted fast-rate model 

output to the actual fast sampled system output). The different multirate data sets were 

collected from this fast sampled single-rate data set, so that the constructed multirate 

systems have fast sampled inputs which were sampled at every one time unit and the 

slow sampled output which were sampled at (one*γ) sampling interval. These kind of 

multirate systems were built for different γ values from 1 to 5. The γ value 1 was used 

as the special case of multirate system. Then the fast-rate models were extracted from 

the different multirate data set by employing the same algorithm (Wiener model 

multirate system identification method). The adequacy of estimated fast-rate model 

for each γ value was measured by comparing the estimated fast-rate model output 

with the actual fast sampled system output as shown in Figures 5.18 to 5.22. As in the 

SISO Wiener model multirate system, the effect of γ is not significant for the system 

with random probing signals. From these figures, the cross validation model fits are 

quite acceptable but are probably not so good as in SISO case (see Table 5.1). From 

these observations, random signal could be the best for the Wiener model multirate 

system identification as with Hammerstein model identification. 
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Figure 5.18: Cross validation for γ = 1, W-type MISO MR system 
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Figure 5.19: Cross validation for γ = 2, W-type MISO MR system 
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Figure 5.20: Cross validation for γ = 3, W-type MISO MR system 
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Figure 5.21: Cross validation for γ = 4, W-type MISO MR system 

 



                                                                      87

20 40 60 80 100 120 140

-0.1

0

0.1

0.2

0.3

0.4
estimated output
actual output

 

Figure 5.22: Cross validation for γ = 5, W-type MISO MR system 

 

 
5.2.3 Effect of Gamma in MSE criteria 

 
Table 5.1. Mean square error values for both SISO & MISO multirate system of H-

type and W-type model 
 

γ H-type SISO H-type MISO W-type SISO W-type MISO 

1 1.1166 2.3672 0.2643 0.5756 

2 1.1960 1.1649 0.2654 0.5702 

3 1.1796 2.1114 0.2651 0.6084 

4 1.2239 0.9064 0.2657 0.5929 

5 0.9713 1.9551 0.2724 0.4158 

 
 
 
The mse values for different γ values are summarized in Table 5.1 for the case studies 

performed in sections 5.2.1.1, 5.2.1.2, 5.2.2.1, and 5.2.2.2. These mse values are 
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calculated based on the difference between estimated fast-rate model fitness and the 

actual fast sampled output. From this table, it can be seen that mse does not increase 

with increasing gamma value. It may be due to convergence of the optimization 

problem to local optima (since nonlinear optimization algorithm and solver used here 

are only capable of finding local optima (according to Edgar et al. (2001)). 

 

 
5.3 Effect of Input Signals on DSAR Identification 

It was demonstrated in section 4.4 that the DSAR method is robust for various γ 

values. However, the effect of different kind of input signals on the DSAR technique 

needs to be quantified. This is the objective pursued here.  

As shown in Figure 5.1, the SISO simulation model was built using Simulink toolbox 

in Matlab; the second order continuous-time linear time invariant (LTI) 

model
175.2125.156

4.2
2 ++

=
ss

Gc was used as the process and
15.0

1
+

=
s

Nc was used 

as the disturbance model. A maximum length PRBS signal was generated and 

stretched by a stretch factor of 17. The stretch factor was calculated from a priori 

knowledge of the process. The fast sampled single-rate input/output data set was 

generated with one time unit sampling interval and 2000 input/output data points are 

available. The multirate systems for different γ values starting from 1 to 12 were 

constructed from fast sampled single-rate data set by collecting the fast sampled input 

signal and slow sampled output data with sampling interval equal to γ. The fast-rate 

model was extracted from the constructed multirate data sets by using the DSAR 

method. The expected time to steady state was set at 100 for the different γ values. 

The discrete-time step response model for one time unit sampling interval was 

obtained by converting the impulse response coefficients to step response coefficients. 
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The estimated step response model obtained from DSAR method was compared with 

the actual step response of the simulated process. The resulting fast-rate step response 

models were smooth up to γ = 6.  Some estimated step response models for γ = 7, 9, 

10, and 11 are not smooth, and the fast-rate step response models that are directly 

estimated by DSAR method for these γ values are shown in Figures 5.23, 5.24, 5.25 

and 5.26 in which they are compared with actual step response of the process, 

respectively. For the case in which the input signal is PRBS type, the DSAR 

generated models must be regularized (unsmooth or noisy step responses should be 

smoothened using the regularization method to render them meaningful and useful). 

The continuous-time transfer function with time delay was estimated from unsmooth 

step response resulting from the DSAR method. The step response was then 

calculated using this continuous-time LTI system with sampling interval one time unit 

so that the resulting step response model would reflect the fast rate behavior of the 

system. These step response models for γ values 7, 9, 10 and 11 are shown in Figures 

5.23, 5.24, 5.25 and 5.26 also and are compared with the step response model before 

performing the regularization (raw models) and true model of the system. It is found 

that the step response models after regularization are quite acceptable but they are not 

exact enough as the actual (or true) step response of the process. 

 From this experience, it may be surmised that if stretched PRBS signals are 

employed for multirate identification, some regularization of the resulting model is 

needed. This method is useful with PRBS kind of input signal but it must be 

maximum length PRBS. This method needs a well-excited input signal. DSAR is 

compatible for various ratios of sampling periods (both integer and non integer ratio). 

Moreover, from our observations with other kinds of signal, it can be concluded that 

DSAR method is suitable for Gaussian and random input signals also. 
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Figure 5.23: Comparison of step response models for γ = 7 
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Figure 5.24: Comparison of step response models for γ = 9 
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Figure 5.25: Comparison of step response models for γ = 10 
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Figure 5.26: Comparison of step response models for γ = 11 
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5.4 DACS Experiment Data Analysis 

 
The experimental data set from the DACS lab experimental setup was considered 

next. The details of this experimental setup and schematic diagram were mentioned in 

section 2.5.1.3 (Case Study III of Chapter 2). In this experiment, our focus is on tank 

1. The experiment was conducted for the heating system, in which the heating power 

was considered as the input to the system and the exit water temperature was regarded 

as the output of the system. The flow rate was kept constant and the dynamics of the 

heating system was study. The input signal was designed as a multilevel signal. This 

fast sampled input is plotted in Figure 5.27. The single-rate input and output data were 

collected every one minute and this data set was applied as the reference fast sampled 

data set. The multirate data sets for different γ values (1 to 5) were constructed from 

fast sampled reference data set by collecting the fast sampled input data with one 

minute sampling interval and slow sampled output data with γ minutes sampling 

interval for each γ value. Thus, the multirate data sets for γ value 1 to 5 were obtained 

to perform multirate system identification. These data sets were identified with lifting 

technique for linear system identification in which the matrix roots approach was used 

to extract the fast-rate model from constructed multirate data sets. It was found that 

this approach failed to identify any acceptable model for the process. The modified 

alternate approach (section 3.5.1) was successful in identifying the fast rate model. 

The process was successfully identified using the Hammerstein model multirate 

system identification method developed in this work. The fast rate model was 

identified using the modified alternate approach (section 3.5.1). The process is 

identified as a Hammerstein model in which a first order LTI model follows the static 

nonlinear part that is third order polynomial. The cross validation is performed for 

different estimated fast-rate models; the estimated fast-rate model output is compared 
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with measured fast sampled output data in Figures 5.28 to 5.32 to test the model 

adequacy for each γ value. The mean square error (MSE) of the estimated fast-rate 

model output from measured fast sampled output data was also calculated to measure 

the model quality. It is found that the Hammerstein model is better than the linear 

model - this implies a nonlinear relationship between the heating power and the exit 

water temperature. The comparison of MSE for linear lifting technique and 

Hammerstein model is shown in Table 5.2.  

 

 

Table 5.2. Mean square error comparison for DACS experimental data 

 
γ Linear lifting Hammerstein 

1 720.0 491.3 

2 719.5 515.0 

3 722.8 611.0 

4 722.8 686.0 

5 723.9 642.9 

 

 

 

 

 

 

 

 

 



                                                                      94

 
 

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

 

Figure 5.27: Plot of Input data for DACS data set 
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Figure 5.28: Cross validation for γ = 1, DACS data set 

 



                                                                      95

0 500 1000 1500
29

30

31

32

33

34

35

36

37

38

estimated output
actual output

 

Figure 5.29: Cross validation for γ = 2, DACS data set 
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Figure 5.30: Cross validation for γ = 3, DACS data set 
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Figure 5.31: Cross validation for γ = 4, DACS data set 
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Figure 5.32: Cross validation for γ = 5, DACS data set 
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5.5 Industrial Application of DSAR  

 
Since DSAR method is versatile enough for large γ values, it was chosen to identify a 

data based model for an industrial reactor. The data set was obtained from Mitsubishi 

Chemical Corporation, Mizushima, Japan. The process is the acetylene converter 

which is a train of two reactors whose primary function is to convert as much 

acetylene (from the de-ethanizer overhead) to ethylene so that the product meets 

stringent specification on acetylene levels. In addition, the acetylene is to be 

converted to ethylene and not to any non-profitable byproducts. The acetylene 

concentration is infrequently measured using an analyzer at the outlet of the converter 

(once every 40 minutes).  This infrequent measurement can often lead to poor 

operation of the process. In this study, we examine the development of a soft sensor 

whose goal is to predict the outlet acetylene concentration using available information 

from the frequently measured variables such as flow rates, temperatures etc. The 

applied procedures for the development of the soft sensor are mentioned below. 

 

5.5.1 Optimal Window Size 
 
 
The Acetylene plant data (from 4/01/2003 to 7/31/2003) are divided into five data sets 

as follows: 

 
SET1: from 4/01/2003 to 4/30/2003 

SET2: from 5/01/2003 to 5/22/2003 

SET3: from 6/01/2003 to 6/16/2003 

SET4: from 6/17/2003 to 6/30/2003 

SET5: from 7/01/2003 to 7/31/2003 
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Some outliers and spikes were omitted and each data set was differenced. Six 

variables were chosen from various inputs of the system. These were used as 

explanatory variables in the model.  The past 10 samples for the first five variables 

(see Table 5.4) and one past sample for the sixth variable (this was a infrequently 

measured input variable - inlet acetylene to reactor 1; see Table 5.4) were considered 

as the input variables (a total of 51 “input variables”). Then the model was identified 

with window sizes ranging from 10 to 5, by using one data set. After that, the model 

was tried on the other four data sets to check out its predictive capability. The sum of 

mean square error (msesumw) between the predicted data and measured data (after 

taking difference) was evaluated. This procedure was applied in turn to every data set. 

The mse values for the prediction of other four data sets by a particular data set and 

their corresponding optimum window sizes are shown in Table 5.3. The optimum 

window size was chosen based on the model that provided the least msesumw value.  

 

Table 5.3. Mean square error of various data sets 

                   Model            msesumw        Optimum window size 

        SET1              1259.3                            7 

        SET2              1307.9                            7 

                   SET3              1549.1                          10   

                   SET4              1256.3                            6   

                   SET5              1330.16                        10 

 

It is found that the model obtained from SET4 is the best in predicting the outputs of 

the other data sets and it has minimum window size. Thus, SET4 was selected to 

estimate the model and optimum window size was determined as 6. 
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5.5.2 Optimal Lag Combination 
 
 
The model was constructed using SET4 with the lags ranging from 6 to 0 and 

validation on other four data sets was performed. The best optimal lag combination is 

determined by the model associated with least sum of mean square error (msesum) 

and it is shown in Table 5.4. From this analysis, it was found that we can omit two 

variables, u3 and u5; we can reduce the number of “input variables” to 13 (from 51) 

and the sum of mean square error in prediction to 1208.8 (reduction from 1256.3). 

 

Table 5.4. Optimal lag combination 

 
Var.#                        Input Variables for Soft Sensor  Optimal Lag  

    1  Reactor 1 exit temperature (u1)  (k-1) to (k- 5) 

    2 FC403B.PV (u2)  (k-8) to (k- 9) 

    3 TR302-8.PV (Exit temperature of D-301) (u3)            - 

    4 FI403A.PV (Flow rate into reactor 1) (u4)  (k-6) to (k-10) 

    5 TI448.PV (Reactor 1 inlet temperature) (u5)            -              

    6 Inlet acetylene (u6)            k 

                                           

 

5.5.3 Regression Coefficients and its Performance  
 
 
The optimal regression coefficients obtained from the above procedure are compiled 

in Table 5.5. Some relative and absolute errors for validation data sets were calculated 

using the obtained regression coefficients and the performance of the resulting model 

is shown in Table 5.6.  
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Table 5.5. Optimal regression coefficients 

 

Var.#            Input Variables for Soft Sensor  Lag  Regression 

Coefficient 

    1 

    2 

    3 

    4 

    5 

    6 

    7 

    8 

    9 

  10 

  11 

  12 

  13 

  14 

Reactor 1 exit temperature 

Reactor 1 exit temperature 

Reactor 1 exit temperature 

Reactor 1 exit temperature 

Reactor 1 exit temperature 

FC403B.PV 

FC403B.PV 

FI403A.PV (Flow rate into reactor 1) 

FI403A.PV (Flow rate into reactor 1) 

FI403A.PV (Flow rate into reactor 1) 

FI403A.PV (Flow rate into reactor 1) 

FI403A.PV (Flow rate into reactor 1) 

Inlet acetylene 

Constant Term 

 (k-1) 

 (k-2) 

 (k-3) 

 (k-4) 

 (k-5) 

 (k-8) 

 (k-9) 

 (k-6) 

 (k-7) 

 (k-8) 

 (k-9) 

 (k-10)

    k 

  *** 

-5.2791 

-9.003 

-29.301 

-51.227 

-32.73 

-8.9369 

-11.745 

3.9173 

3.1845 

6.2039 

4.6136 

5.7618 

5457.7 

0.40661 
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Table 5.6. Performance summary 

 

Data Set 

# 

    MAE    MDAE   MINAE  MAXAE   count2   count5 

       1   14.1415   11.2109    0.0451  217.5522   0.9580    0.9991 

       2   12.7692   10.8101    0.0158    79.1467   0.9712    1 

       3   11.9596     9.9678    0.1334    55.2722   0.9693    1 

       5   14.5438   12.2813    0.0030    82.5523   0.9671    1 

 

MAE = mean absolute error 

MDAE = median absolute error 

MINAE = minimum absolute error 

MAXAE = maximum absolute error 

count2 = 2% relative error 

count5 = 5% relative error 

 

The identified model almost always gives predictions that are less than 5% in relative 

error and its predictions are within 2% relative error 95% of the time. The quality of 

the model is indeed very good. 

 

 

5.5.4 Validation on Other Data Sets  

 
The validation of the model obtained from DSAR method using SET4 was performed 

on other four data sets. These validation figures are shown in Figures 5.33 to 5.36. 

The top subplot is the validation for all data points of the certain data set, the left and 

center subplots (bottom) show zoomed versions of the top plot, and the right bottom 
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subplot shows the scatter plot between model prediction and actual measurement (the 

X-axis represents the measured data and Y-axis represents the model output). In the 

scatter plot, if most points lie on the diagonal line one can conclude that a good 

agreement exists between model output and measured plant data. These validation 

plots do indicate the adequacy and usefulness of the model. The intersample 

predictions made by the model (shown as continuous line) on the four validation data 

sets are shown in Figure 5.37 through Figure 5.40. The constant term in the model is 

updated at every time a new measurement (indicated by ‘*’) comes in. 
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Figure 5.33: Validation on SET 1 
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Figure 5.34: Validation on SET 2 



                                                                      104

 

0 100 200 300 400 500 600
-200

-100

0

100

200

30 40 50
-40

-20

0

20

40

420 430
-60

-40

-20

0

20

40

-200 0 200
-200

-100

0

100

200

 

Figure 5.35: Validation on SET 3 
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Figure 5.36: Validation on SET 5 
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Figure 5.37: Validation on SET 1 

 

 

 

Figure 5.38: Validation on SET 2 
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Figure 5.39: Validation on SET 3 

 

 

 

Figure 5.40: Validation on SET 5 
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5.6 Conclusions 

 
The effect of input signal and the effect of γ value on the identified methods are 

evaluated with simulated and experimental data set for both linear and nonlinear 

multirate systems. Also, exploration of a good input signal for the nonlinear system 

identification for Hammerstein and Wiener type multirate system is done. The 

usefulness of DSAR identification method for modeling industrial data sets is 

practically confirmed by following the strategies mentioned in chapter 4. From these 

studies, it is seen that the input signal has a significant impact on the identification of 

both linear and nonlinear multirate systems. 
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CHAPTER 6 

CONCLUSIONS 

 

6.1 Contributions of the Thesis 

 
The lifting technique is a commonly used approach for the identification of process 

from multirate data; lifting operator is used to convert the single input single output 

multirate identification problem into a single-rate multivariable identification 

problem. Subspace Identification algorithms such as SubSpace based State Space 

identification (N4SID), canonical variate analysis (CVA), and multivariable output 

error state space (MOESP) methods are used to identify the slow-rate linear dynamic 

model from which the fast-rate model is obtained. Among the available methods to 

construct the fast rate model from the slow rate model, three methods - the eigenvalue 

method, matrix roots approach and a model reduction approach have been employed. 

The model reduction based approach is a contribution of this work.  The effect of 

sampling frequency and the different kinds of input signal on this technique are 

explored using simulation examples. 

 
Both experimental and simulated data sets have been employed to identify linear and 

nonlinear models from multirate data by using lifting technique. Various ratios of 

sampling intervals (γ = 2 to 5) were considered. From our observation, the value of γ 

affects the identification result and the modified alternate approach (model reduction 

based approach) is explored as a remedy for this problem. In this work, γ = 1 is 

studied as the special case of multirate system to measure the usefulness of developed 

algorithms to the single-rate system identification. This thesis work has resulted in 

methods for identification of Hammerstein model and Wiener model from multirate 
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data. The developed methods are applicable to SISO and MISO multirate nonlinear 

systems. The random input signal is proposed as a best excitation signal for the 

identification of nonlinear multirate system especially for Hammerstein and Wiener 

type nonlinear systems (the evaluation is provided with simulated case studies). 

 
DSAR method is compatible for the large γ values and its application to industrial 

data set is explored. Initially, the measurement of process inputs are available at every 

one minute intervals and process output is available at every 40 minute intervals. This 

is really unhelpful for the operator and can lead to poor process operation. Using 

DSAR, a soft sensor which can predict the output acetylene concentration for every 

minute is developed. The effect of different kind of input signals on DSAR method 

identification and remedy for the situation in which PRBS is employed as a input 

signal are also provided. The “extended” DSAR method is explored for non-integer 

ratio of sampling interval (non-integer γ) in which the fast-rate model with based 

sampling interval p is extracted from input sampling interval p2 and output sampling 

interval p3  (the evaluation with experimental data set is also provided). 

 

 

6.2 Future Work 

 
DSAR method is useful for industrial data multirate system identification in which the 

ratio of sampling intervals is very large. In this work, it is applied to linear systems 

only. One could attempt to solve the nonlinear multirate system identification problem 

using the DSAR method. This would extend the practical utility of DSAR.  

 
The models developed here could be used for designing controllers and the effect on 

the control loop performance can be studied. 
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