

DESIGN AND IMPLEMENTATION OF
MULTIPLE ADDRESS PARALLEL TRANSMISSION
ARCHITECTURE FOR STORAGE AREA NETWORK

MENG BIN
(M.Eng. , Xi’an Jiaotong Univ.)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements

I am sincerely grateful to my supervisor Prof. Chong Tow Chong for giving me

the privilege and honor to work with him over the last two years. Without Prof.

Chong’s constant support, insightful advice, excellent judgment, and, more importantly,

his demand for top-quality research, this thesis would not be possible. I am

continuously amazed and humbled by his infinite knowledge and unmatched wisdom.

I would also like to thank Yong Khai Leong and Patrick B. T. Khoo for

introducing me to the subject of network storage, giving a necessary direction to my

research, providing continuous encouragement throughout my M.Eng.

This work would not be possible without a long-lasting support and infinite

patience of DSI MCSA group. I would like to thank Core Technology members, Don

Lee, Alvin Koy, Wei Minglong, Li Zhixiang and Implementation members, Wilson

Wang, Jimmy Jiang, Law Sie Yong, Ng Tiong King, Wang Haichen, Huang Xiaogang,

Yeo Heng Ngi. Since a large part of my work was experimental, I am further indebted

to MCSA Application team for their extreme generosity in providing the abundant

resources needed for completing this M.Eng. Many thanks to Vincent Leo, Wang

Donghong, Daniel Khoo, Premalathe Naidu and Han Binhua.

Furthermore, I would like to thank my friends and fellow students at the

National University of Singapore. I am especially grateful to Wu Daowei, Lin Song,

Shen Yatao and Chen Li for being absolutely awesome friends and treating me to

frequent philosophical discussions.

I am thankful to 20th IEEE Symposium on Mass Storage Systems reviewers for

providing their helpful comments on earlier versions of this work.

Last, but not least, I would like to thank my parents. Without their continuous

support this work would be simply impossible.

ii

Contents

Acknowledgements.. i
Summary .. iv

List of Figures .. vi
1 Introduction.. 1

1.1 Background and Motivations.. 1
1.2 An Introduction to HyperSCSI Protocol... 5
1.3 Contribution and Organization of Thesis.. 9

2 Theoretical Models... 12
2.1 Network Topology - Ethernet and IP Packet Switching Network........ 12
2.2 Multiple Address Parallel Transmission... 14

2.2.1 Case One: Single Data Flow on Asymmetrical Networks........ 15
2.2.2 Case Two: Multiple Data Flows on Asymmetrical Network.... 17

2.3 Load Balancing Algorithms for Two Stage Schedulers 19
2.3.1 Reverse Generalized Processor Sharing (RGPS)...................... 21
2.3.2 Reverse Weighted Round Robin (RWRR) 22
2.3.3 Reverse Weighted Fair Queuing (RWFQ)................................ 23
2.3.4 Reverse Deficit Round Robin (RDRR)..................................... 25

2.4 Data Flow Priority... 27
2.4.1 One Virtual Channel vs. Multiple Sub Channels...................... 27
2.4.2 Multiple Data Flows’ Priorities with Service Discipline.......... 30

2.5 Data Flow Restore --Hashing Address Table and Reordering.............. 31
2.5.1 Hash Chaining Structure for Address Restoring....................... 31
2.5.2 Out-of-order Analysis ... 32
2.5.3 Retransmission Threshold and Reorder Buffer......................... 36

2.6 Fault Detection and Cost Estimation .. 38
2.6.1 Three Fault Detection algorithms ... 38
2.6.2 Cost Estimation for Local and Remote Fault Detection 40

3 Implementation .. 44
3.1 Multiple Address Parallel Transmission Protocol 44

3.1.1 Multi-Channel Data Module ... 45
3.1.2 Multi-Channel Control Module .. 46
3.1.3 Global State Machine Module .. 47

3.2 Multi-Channel Protocol Processes Software Flow Charts.................... 49
3.2.1 Major Flow Charts, Key Data Structures and Events List........ 49
3.2.2 Multi-Channel Packets Flow and Packet Types 53
3.2.3 Multi-Channel Address Discover ... 54
3.2.4 Multi-Channel Address Table Change and Rebuild 55
3.2.5 Multi-Channel Fault Detection Flow Chart 56
3.2.6 Virtual Device Management Flow Chart 59

4 Results and Discussion... 62

iii

4.1 Disk Read Performance .. 63
4.1.1 Multi-Channel with Symmetrical Parallel Network 63
4.1.2 Multi-Channel with Asymmetrical Parallel Network 65
4.1.3 Influence of System Resources on Disk Read Performance..... 66

4.2 Out-of-order Rate Analysis... 69
4.3 Packet Size’s Affect on Out-of-order and Performance 72
4.4 Multiple Clients - Multiple Channels Load Balancing 75

5 Conclusions and Future Work.. 78
5.1 Extensions ... 80

References ... 83

Appendices .. 94
Appendix A Fault Tolerance Cost Estimation... 94

iv

Summary

The demand for high availability and high performance in Storage Area

Network (SAN) drives more and more effort on network architecture design. To build

such a Storage Area Network, the use of parallel channels is attractive. At present,

most parallel solutions heavily depend on hardware components and do not provide

end-to-end parallel connection. This thesis provides a theoretical model and an

implementation demonstrating the multiple address parallel transmission architecture.

This architecture provides end-to-end parallel connections between network storage

devices without any addition of components.

At first, the theories of the network topology and parallel data transmission

model are studied. This parallel data transmission architecture is based on packet

switching network. SAN topology using this structure will have good scalability and

fault tolerance but without much additional complexity. The model of this transmission

architecture is composed of two stage load balancing algorithms, data flow priority

algorithms, data flow restoring, reordering and fault tolerance algorithms.

Three load balancing algorithms, Reverse Weight Round Robin (RWRR),

Reverse Deficit Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ),

are proposed and implemented with small computation overhead. The mechanism of

out-of-order in parallel architecture is analyzed in detail. An efficient out-of-order

estimation algorithm is used to setup retransmission threshold and allocate reordering

buffer. Furthermore, since this transmission architecture uses redundant channels, the

scheduler can provide fault tolerance by using either hardware-based, software local

loop back andor remote acknowledge detection methods.

v

To demonstrate the multiple address parallel transmission protocol (MAP-TP)

in SAN, we implement the protocol as network layer in the Linux kernel module of the

HyperSCSI and measure the performance by testing the disk read speed of the virtual

SCSI device with three popular benchmark tools of HDPARM, DD and IOZONE.

The result shows that HyperSCSI bandwidth can be increased above 380%

when 4 links are used, which is acceptable for high speed transmission. Interestingly,

we also found that out-of-order rate does not affect the disk read performance very

much, which can be explained by the theory of schedule delay and out-of-order

distance.

In addition, by supporting Ethernet MAC and IP packets, the network storage

devices can work in both LAN and WAN environments. This architecture can be a key

factor in deploying SANs, which can provide a highly scalable bandwidth with full

redundancy over switched and parallel data paths.

vi

List of Figures

Figure 1.1 Traditional Multi-channel Local Area Network.. 2
Figure 1.2 Asymmetrical Parallel Architecture in Packet Switching Network 3
Figure 1.3 Multi-Channel Network Architecture for HyperSCSI Protocol 9
Figure 2.1 Model for Multiple Address Parallel Transmission Architecture 15
Figure 2.2 Single Data Flow Scheduling on Two Stage Address Table Scheduler...... 16
Figure 2.3 Load Balancing of Multiple Data Flows and Multiple Nodes 18
Figure 2.4 Reverse Deficit Round Robin Scheduler.. 26
Figure 2.5 Single Virtual Channel and Multiple Channels... 28
Figure 2.6 Hashing Algorithm for Data Flow Restoring .. 32
Figure 2.7 Out-of-order Caused by Different Packet Sizes .. 33
Figure 2.8 Schedule Delay in Each Schedule Round ... 34
Figure 2.9 Local Loop Back and Remote Acknowledge Detection Cost Estimation... 42
Figure 2.10 Probability Distribution of the Working NICs .. 42
Figure 3.1 Multi-Channel Protocol Layer Diagram.. 45
Figure 3.2 Multi-Channel Data Transmission State Transition Diagram..................... 48
Figure 3.3 Data and Control Processes’ Flow Chart... 50
Figure 3.4 Multi-Channel Virtual Device and Hashing Address Table........................ 51
Figure 3.5 Events List for Sender, Receiver and Controller... 52
Figure 3.6 Multi-Channel Packet Flow... 53
Figure 3.7 Multi-Channel Address Discover .. 54
Figure 3.8 Multi-Channel Address Change and Address Table Rebuild...................... 55
Figure 3.9 Flow Chart of Multi-Channel Fault Detect ... 56
Figure 3.10 Multi-Channel Local Loop Back Detect ... 57
Figure 3.11 Multi-Channel Remote Acknowledge Fault Detect 58
Figure 3.12 Multi-Channel Virtual Device Startup and Exit .. 59
Figure 3.13 Channel Management and Channel Service.. 60
Figure 4.1 Client RAID Symmetrical FE Pairs HDPARM Read 63
Figure 4.2 Client RAID Symmetrical FE Pairs DD Read .. 64
Figure 4.3 Client RAID Symmetrical FE Pairs IOZONE Read 64
Figure 4.4 Client RAID Asymmetrical GE-FE Pairs HDPARM Read 65
Figure 4.5 Client RAID Asymmetrical GE-FE Pairs DD Read.................................... 66
Figure 4.6 Server RAID Symmetrical FE Pairs HDPARM Read 67
Figure 4.7 Server RAID Asymmetrical GE-FE Pairs HDPARM Read........................ 67
Figure 4.8 Server RAID Asymmetrical FE-GE Pairs HDPARM Read........................ 68
Figure 4.9 Client RAID Symmetrical FE Pairs HDPARM Out-of-order Rate............. 69
Figure 4.10 Client RAID Symmetrical FE Pairs DD Out-of-order Rate...................... 70
Figure 4.11 Asymmetrical GE-FE Pairs DD Out-of-order Rate................................... 70
Figure 4.12 Asymmetrical GE-FE Mixed Pairs, HDPARM Out-of-order Rate........... 71
Figure 4.13 GE Pairs HDPARM Read, MTU = 1500, Out-of-order Rate = 43%........ 73
Figure 4.14 GE Pairs DD Read, MTU = 1500, Out-of-order Rate = 43% 73
Figure 4.15 GE Pairs HDPARM Read, MTU = 9000, Out-of-order Rate = 15%........ 74
Figure 4.16 GE Pairs DD Read, MTU = 9000, Out-of-order Rate = 15% 75
Figure 4.17 RWRR Load Balancing on Two Clients with GE-FE Pairs...................... 76
Figure 4.18 RDRR Load Balancing on Two Clients with GE-FE Pairs....................... 76
Figure 4.19 RWFQ Load Balancing on Two Clients with GE-FE Pairs 77

1

Chapter One

1 Introduction

1.1 Background and Motivations

A Storage Area Network (SAN) is a specialized, high-speed network attaching

servers and storage devices. It is sometimes called “the network behind the servers”. A

SAN allows “any to any” connection across the network, using interconnect elements

such as routers, gateways, hubs and switches.

A Storage Area Network (SAN) is any high-performance network whose

primary purpose is to enable storage devices to communicate with computer systems

and with each other.

 The demand for high availability and high performance in Storage Area

Network (SAN) drives more and more effort on network architecture design. The

SAN’s performance must be able to grow as the organization’s information storage

and processing needs grow. A successful SAN should provide an extra performance

for the high-volume data and message traffic of client and server. Thus, the scalability

of SAN is quite important, because it is not practical to replace a SAN very often for

enterprise applications. To build a scalable Storage Area Network, the use of parallel

data path network architecture is attractive.

Current parallel network architectures can be classified into two categories: non

packet switching based and packet switching based architectures. The non packet

switching parallel network architectures emerged at 1980s’. First, two popular non

packet switching architectures are demonstrated below.

2

One traditional research on parallel network architecture concentrates on Multi-

channel Local Area Network (MLAN) architecture [1]. The MLAN is based on a bus

sharing architecture (Figure 1.1). Although no middle gateways or switches are

required, this bus sharing architecture has the disadvantage that only two devices can

communicate at one time.

.........

1 M2 ….
…

.

1
2

N

Figure 1.1 Traditional Multi-channel Local Area Network

The other architecture is Direct Attached Storage (DAS) network, where

storage area network uses directly connected parallel SCSI network [2]. The current

maximum data transmission performance of DAS is 200MB/s. However, faster speed

means shorter distance, normally no more than 30 meters. Limited by the distance,

DAS is not a good solution for parallel SAN architecture.

With the rapid evolution of the switching technology in 1990s’, research in

parallel network gradually focus on packet switching network (as showed in Figure

1.2). The algorithms which schedule data streams to parallel paths are also studied as

inverse multiplexing [3]. The parallel packet switching network is more scalable and

flexible than the MLAN and DAS. Additionally, two packet switched storage devices

can communicate without affecting other devices’ performance.

The parallel packet switching network architecture can be built on one

particular link or end-to-end communication [4]. The aggregate bandwidth built on one

3

particular link is commonly used to increase local area network performance. These

scheduling algorithms are relatively simple because of the symmetrical parallel

architecture. However, it is highly dependent on switches to provide load balancing

services. Most contemporary parallel implementations work on one particular link, for

instance:

Link Aggregation Control Protocol (LACP) [5] is a sub layer for CSMA/CD

MAC. Designed for IEEE 802.3 MAC, it can not adapt to the load balancing based on

IP layer address; and LACP can not operate across multiple data rates, which means all

network interface are restricted to the same transfer speed. Furthermore, LACP transfer

one conversation on one physical network interface to avoid packets disorder,

bandwidths on other interfaces are wasted.

Storage
devices

Figure 1.2 Asymmetrical Parallel Architecture in Packet Switching Network

Linux Bonding, Cisco EtherChannel and Sun Trunking [6]: All these

technologies refer to using multiple network interfaces to compose a virtual link,

which use one pair of MAC address. This technology is similar to the LACP except

that it heavily relies on switch’s ability to provide traffic load balancing (known as

4

virtual LAN technology). This will increases the cost and complexity of the SAN

topology.

The parallel packet switching architecture based on end-to-end parallel

transmission routes different packets belonging to a single end-to-end application

along multiple distinct network paths [7]. This end-to-end parallel technology can

provide a highly scalable bandwidth over long distances, and with the ability to

provide full redundancy and parallel data paths. However, there are several significant

challenges to end-to-end protocol, which must be responsible for managing the

multiple flows and resequencing packets with large skew. Due to these challenges,

there is no available end-to-end parallel protocol at present.

On the storage area network application side, many contemporary SAN

solutions such as, HyperSCSI, FCIP, iSCSI, iFCP and iSNS [8], are working on packet

switching network. For these solutions, parallel packet switching technology is in great

need to meet the new requirements for high scalability and reliability over long

distance. Recently, GridFTP claims that it provides end-to-end parallel TCP streams to

improve performance [9,10]. However, it actually provides multiple data flows on the

same path. This only increases the channel utilization not the physical channel

bandwidth.

As we discussed here, the end-to-end parallel transmission architecture will be

a key factor in SAN solutions. Thus, we start a study on multiple address parallel

transmission protocol (MAP-TP) for SAN to meet the new requirement of high

scalability and reliability over long distances. This protocol is also referred as “Multi-

channel” technology throughout the thesis. The aim of the study is to design and

implement an end-to-end parallel architecture that can increase the network I/O

performance between network storage modules by employing more communication

5

channels in packet switching network. Moreover, a built-in fault tolerance strategy for

surviving and restoring from network interface and network failures should be

developed.

1.2 An Introduction to HyperSCSI Protocol

To demonstrate the multiple address parallel transmission protocol in SAN,

MAP-TP protocol is developed and combined with the HyperSCSI network storage

protocol. In this section, we will outline some of the key features and basic technical

details of HyperSCSI. The architecture relationship between MAP-TP and HyperSCSI

is also demonstrated.

Small Computer Systems Interface (SCSI) is the predominant mechanism for

various storage and even non-storage devices. To make SCSI “network-enabled”, the

HyperSCSI is invented for the transmission of SCSI family of protocols across a

network.

Since the requirements of local network storage (SAN) and wide-area network

storage (SWAN) are quite different, HyperSCSI protocol supports multiple modes of

operation. Two such modes are currently being developed, one for local access, Local

HyperSCSI over Ethernet (HS/eth), and the other for wide-area connectivity, Wide-

Area HyperSCSI over IP (HS/IP). The basic protocol structure is essentially the same,

thus allowing devices to speak local or wide-area storage seamlessly.

Many advanced functions and capabilities were built into the HyperSCSI

protocol to support other requirements like dynamic management, dynamic flow

control and in-band management capabilities. HyperSCSI can provide a minimum

level of connectivity for interoperability operations and while supporting advanced

vendor-specific or implementation-specific functions. Other possible device specific

options include read-only access, removable media locking and data compression.

6

The HyperSCSI connection setup is a three-step handshaking procedure

between a HyperSCSI client and server pair. Typically, in a storage network, the host

machine (HyperSCSI client) is responsible for locating and initiating connections to

storage devices (HyperSCSI servers). During this process, the HyperSCSI client issues

a HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices

on the network. For IP-based situations, a client must specify an IP address (or DNS

name) and a HCC_DEVICE_DISCOVERY packet is sent over IP directly to the

server. Once the HyperSCSI server receives this packet, it checks the client address for

authentication purposes and transmits the HCC_ADN_REQUEST packet back to the

HyperSCSI client. In order for the HyperSCSI client to establish a connection with the

HyperSCSI server, it must then send the correct response through a

HCC_ADN_REPLY command and add the ID numbers of the devices that it has

access to into its own registry. If the server successfully authenticates the

HCC_ADN_REPLY, the connection is accepted and the HyperSCSI client can now

send commands to the server.

An ACK mechanism has been adopted to support flow control of data between

a HyperSCSI client and server pair. The ACK window size refers to the number of

packets that the transmitter may continuously send before waiting for an

acknowledgement. This window size must be negotiated and agreed upon before data

flow can take place and is set by the requestor through an FC_ACK_SNR command.

This packet is issued as a separate message and typically, the server will be the one to

issue this command so that the server has the ability to balance loads or priorities

across multiple clients, although this does not mean that the client may not issue one

either. The ACK window size can be set based on traffic loads, or buffer capacities and

can be set at start-up or changed dynamically during run time.

7

When there is a SCSI request from the local OS SCSI upper layer of the host

machine, the HyperSCSI client software is responsible for converting the OS-specific

SCSI command block together with any relevant data (as in a write command) into a

platform independent HyperSCSI Command Block (HCB). The client then

encapsulates and fragments the HCB into one or more HCBE_REQUEST packets that

it sends to the HyperSCSI server. SCSI command blocks and user data will therefore

be transmitted together in the same packet. The HyperSCSI server receives the data

stream, re-assembles the HyperSCSI command block and relevant user data, converts

it back to an OS-specific SCSI command block and passes it to the relevant hardware

for execution. When the result of this SCSI request is ready, the HyperSCSI server will

send the result together with the requested data back to HyperSCSI client by issuing

the HCBE_REPLY packet stream in a similar manner as the request. The HyperSCSI

client reassembles the HyperSCSI command block and converts it back to a OS-

specific SCSI command block before passing it on to the local OS SCSI upper layer.

During a HyperSCSI connection, the HyperSCSI server will regularly (timer-

based) issue a HCC_ADN_REQUEST command for three purposes, re-authentication

of clients and key-exchange for security, re-negotiation of device options (if

permitted), and as a form of “keep-alive”. Through this method, servers not only poll

the client’s status, but also check its identity. Furthermore, if HyperSCSI encryption

options are turned on for data transmission, the HCC_ADN_REQUEST and

HCC_ADN_REPLY use an authenticated exchange mechanism to update and change

encryption keys. This scheme also allows a device’s options to be modified

dynamically.

The HyperSCSI client can close a connection by sending an

HCC_DISCONNECT command to the HyperSCSI server. The server will then remove

8

this client from its connection list and close the connection. Servers do not need to

acknowledge disconnect requests from clients because SCSI connections are host-

target based.

Feature-wise, the HyperSCSI reference implementation already supports

standard SCSI hard drives, IDE hard drives, software RAID / virtualized drives, optical

disks (like DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI

tape drives (like HP DAT40). We have even successfully used HyperSCSI to write

CDs remotely over DSI live corporate LAN. File systems like Microsoft’s

FAT16/FAT32, SGI’s XFS, IBM’s JFS and Linux Ext2/Ext3 have all been

successfully tested on HyperSCSI drives. HyperSCSI clients and servers have been

successfully implemented on Linux, while client versions on Windows 2000 and

Solaris 8 are currently in development. Encryption schemes that have already been

implemented include 64-bit Blowfish and 128-bit Rijndael. HyperSCSI has been

assigned its own IEEE Ethertype Number, and will soon receive a registered IP port

for HS/IP implementations.

HyperSCSI provides an opportunity to address various concerns and open up

new possibilities for network storage. The Local HS/eth protocol allows the

construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP

permits mobile devices like laptops to access the corporate SAN directly (bypassing

servers if needed). However, storage devices that only use single network path are not

efficient enough. In the HyperSCSI performance testing, it is found that the storage

devices have low utilization rate when working on Fast Ethernet network. In this

application, the network bandwidth becomes the bottleneck of the whole SAN system.

9

Figure 1.3 Multi-Channel Network Architecture for HyperSCSI Protocol

To improve the scalability and reliability of HyperSCSI, the MAP-TP protocol

is combined with HyperSCSI protocol (Figure 1.3). Multiple network interfaces and

network paths are used to enhance the performance and balance the traffic load.

Furthermore, the packetisation and virtualization options of HyperSCSI allow us to

implement Multi-channel communications with fault tolerance and reliability.

1.3 Contribution and Organization of Thesis

In this thesis, our research emphasis is on the end-to-end multiple address

parallel transmission architecture for SAN application. This architecture provides not

only scalability, but also the simplicity and reliability. The contributions of this thesis

can be summarized as:

1. A theoretical multiple address parallel transmission model is studied. This

model provides end-to-end parallel connections between network storage devices

without extra hardware.

10

2. Three load balancing algorithms, Reverse Weight Round Robin (RWRR),

Reverse Deficit Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ),

are proposed and implemented with small computation overhead.

3. The mechanism of the out-of-order in parallel architecture is analyzed in

detail. An efficient out-of-order estimation algorithm is deduced to setup

retransmission threshold and allocate reordering buffer.

4. Fault tolerance methods of hardware-based, software local loop back and/or

remote acknowledge are studied on parallel redundant channels.

5. The multiple address parallel transmission protocol (MAP-TP) is

implemented as network layer in the Linux kernel module of the HyperSCSI. The

performance is measured by testing the disk read speed of the virtual SCSI device with

three popular benchmark tools of HDPARM, DD and IOZONE.

Organization of this thesis is as follows:

In Chapter 2, we will discuss the theoretical model of the end-to-end multiple

address parallel transmission architecture. First the parallel network topology is studied,

and then an asymmetrical parallel data transmission model is demonstrated. This

transmission model is composed of two-stage load balancing algorithm, data flow

priority algorithm, data flow restoring, reordering and fault tolerance algorithm. Three

load balancing algorithms, Reverse Weight Round Robin (RWRR), Reverse Deficit

Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ) are proposed.

The mechanism of the out-of-order in parallel architecture is analyzed in detail. An

efficient out-of-order estimation algorithm is used to setup retransmission threshold

and allocate reordering buffer. Furthermore, since this transmission architecture uses

11

redundant channels, three fault detection methods of hardware-based, software local

loop back and/or remote acknowledge are studied.

In Chapter 3, the multiple address parallel transmission protocol (MAP-TP)

will be implemented as network layer in the Linux kernel module of the HyperSCSI.

Three major modules: data module, control module and global state machine module

are demonstrated. The data module is responsible for sending and receiving data flow

packets through multiple network channels. The control module is used to manage

multiple channels and selecting load balancing algorithm. The fault tolerance is also

considered in the control module. The global state machine inspects global parameters

and synchronizes the control and data transmission states transition. Additionally,

detail functions of the modules are presented in software design flow charts.

 In Chapter 4, we will measure the parallel transmission performance and out-

of-order delivery by testing the disk read speed of the virtual SCSI device with three

popular benchmark tools of HDPARM, DD and IOZONE. Different parallel

symmetrical and asymmetrical architectures are studied under all three scheduling

algorithms, RWRR, RDRR and RWFQ. All experiments are based on parameters of

channel numbers, channel bandwidth, packet size and system resource. By discussing

the experimental results, suggestions for MAP-TP design will be provided.

12

Chapter Two

2 Theoretical Models

Research on parallel resource modeling is emerging in recent years. Several

papers have proposed theoretical models [11, 12, 13, 14, 15, 16, 17] for multiple

resources scheduling in parallel architecture network. These theories are quite helpful

for designing and evaluating the throughput, delay, and load-balancing algorithm of

multiple address parallel transmission architecture. In this chapter we first discuss the

theories of the network topology, and then demonstrate an asymmetrical parallel data

transmission model in the following sections. This transmission model is composed of

two-stage load balancing algorithm, data flow priority algorithm, data flow restoring,

reordering and fault tolerance algorithm.

2.1 Network Topology - Ethernet and IP Packet Switching Network

In a SAN, the topology is arbitrary. The storage devices are expected to have

variable bandwidths and packets can have variable sizes. To meet these requirements,

we will design a model which can provide asymmetrical parallel channels between the

sender and the receiver.

This multiple address parallel transmission architecture, which is called Multi-

Channel, is designed to work on both symmetrical and asymmetrical packet switching

network. In the switching network, storage devices are connected with links and

switches, where links are assumed to have bound delay and switches are assumed to be

“non-blocking”. With these topologies, a connection in such a network can be modeled

as traversing a number of queuing servers, while each server modeling the output link

of a switch. Each communication component of the network has a bounded delay.

13

Between a node and a switch, multiple links can be used and these links can

have different bandwidth. A general structure is shown in Figure 1.2. Each storage

device (one node) can have any number of network interface cards (NIC). Every

network interface can access any other network interface. To build a connection

between two end-to-end nodes, the number of the network interfaces of two nodes

need not to be equal. For the implementation, two most popular protocols, Ethernet

and IP protocol are chosen as the network channels sub layer. The NIC interfaces can

be Fast Ethernet or Gigabit Ethernet.

Unlike other NIC aggregation solutions, this design does not demand for

special hardware in storage devices or switches. Each NIC uses their original address

naming system, i.e., each NIC card is bonded with unique MAC address or IP address.

The parallel communication channels between two nodes are built up by scheduling

network packets based on these addresses. Many other parallel transmission solutions

assign the same address to multiple NIC interfaces, which cannot build an end-to-end

parallel channel. This requires that both nodes and switches install special load

balancing and address translating service, which is complicated to setup. Normally, the

switch components must support VLAN function to support such parallel transmission.

In our architecture, only the sender and receiver nodes schedule the data flows, the

required network in between is a normal network.

So far we have a multiple paths architecture built by normal packet switching

network. Next, multiple communication channels are built on these paths. Some

designs use part of the communication channels as backup channels [18], which

preserve spare resource in case of failure. This is actually a resource waste. All the

available channels should be utilized on communication simultaneously. Additionally,

some design keep one data flow on one channel [19] to avoid packet out-of-order, this

14

also does not fully utilize the resource. Because information is required to maintain a

data flow on a particular channel, it may cost more effort than out-of-order handling.

In our design, one data flow or multiple data flows are distributed on all channels. By

employing multiple channels, not only load balancing and fault tolerance are provided,

the security feature is also enhanced in some distance because of the information

dispersal [20].

With the improvement of the computation power, traffic load scheduling can be

implemented based on software [21]. The whole multiple address parallel transmission

protocol can be implemented as a software layer, where the sender can do all the

scheduling. Multiple data flows are dispersed into packets at sender, and then the

traffic load is sent to channels evenly by schedulers.

2.2 Multiple Address Parallel Transmission

The communication model of Multi-Channel is different from a normal parallel

transmission model. In SAN, network storage devices are expected to have variable

capacity and bandwidth. At present, only the storage capacity has good scalability,

while the bandwidth cannot be scaled easily. One purpose of Multi-Channel model is

to efficiently increase the end-to-end bandwidth scalability of the network storage

devices. To apply the algorithms more precisely to a real SAN environment, channel

numbers are not necessarily symmetrical at sender and receiver nodes. For instance, if

the storage server needs more bandwidth to serve multiple client stations, the server

will be installed more NIC interfaces.

The theoretical model of a connection between a sender and a receiver is

composed of five sequential components as shown in Figure 2.1: (1) the first stage load

balancing scheduler, (2) data flow priority controller, (3) the second stage load

balancing scheduler, (4) hashing table for address restoration and (5) data flow reorder.

15

With this architecture, the bandwidth of each network storage device can be easily

increased or decreased independently. Such model can work in a normal packet

switching network without the use of special hardware.

In the sender node, two schedulers are used to balance the traffic load on sender

and receiver respectively. To distinguish the two schedulers, we call the first stage

scheduler “Marker”. Each data flow has a Marker, however all data flows share one

global second stage scheduler. Between first and second scheduler, a service algorithm

is used to grant different priorities for each data flow.

In the receiver node, data flows are restored and reordered when packets arrive

at different network interface. A hashing selection and an out-of-order estimation

algorithm are used to maintain the data flow.

Marker R1

Data Flow
MergingMarker R2

Marker R3

Flow S1-R1

Receiver
Packet

Switching
Network

Flow S2-R1

Destination Addresses
Load Balancing

Data Flow
Priority Control

Source Addresses
Load Balancing

Sender Node S1

Hashing Table
Address Restore

Data Flow
Reordering

Receiver Node R1

Flow S1-R1

Flow S1-R3

Flow S1-R2

S4S3S2S1

Figure 2.1 Model for Multiple Address Parallel Transmission Architecture

The following parts will demonstrate each component in detail. First, two cases

are studied to reveal the distribution of traffic flows in the network.

2.2.1 Case One: Single Data Flow on Asymmetrical Networks

To demonstrate how the architecture can balance the traffic load of

asymmetrical network, first a case of single data flow between sender node S and

16

receiver node A is considered. To simplify the illustration, both schedulers use

Weighted Round Robin load balancing algorithm, other load balancing algorithms will

be discussed later. Since there is only one data flow, no data flow priority selection

algorithm is needed between two stage schedulers. In Figure 2.2, the data flow on

sender node S is shown to explain how the packets are scheduled.

Marker A

Scheduler

A3

A2

A1

Address table
for node A

A1A2A3A1A2A3A1A2

S6

S5

S4

S3

S2

S1

Address table
for node S

Data for
node A

A1A2A3A1A2A3A1A2
S1S2S3S4S5S6S1S2

DA
SA

Destination Address
Source Address

Data for
node A

Figure 2.2 Single Data Flow Scheduling on Two Stage Address Table Scheduler

In this case, the sender node S has six network addresses (or network

interfaces) from S1 to S6, and the receiver node A has three network addresses A1, A2

and A3. In the connection setup process, two nodes exchange their address table, so

each node holds the address table of both sides. For data flow from node S to node A,

the destination address of out going packets are first marked. Here Weighted Round

Robin algorithm is used on destination address table of node A. This marking insures

that the arrival traffic load at A will be balanced. Each network interface at A will

receive 1/3 of the data flow. The middle switches will route packets evenly to three

network interfaces on node A, and the traffic load is automatically balanced by

ordinary switches. Then the second stage scheduler evenly distributes data flow to the

17

network interface on S. The source address of the packets is also marked with

Weighted Round Robin algorithm, and the data flow will be sent out from six NIC

interfaces on sender S evenly.

On the receiver node A, the in-coming data flow will be evenly received. No

matter what routing algorithms are used in the packet switching networks, each NIC

interface will receive same number of packets, because the destination address of the

packets is predetermined by the sender node S. The major jobs on the receiver are to

convert these packets into original data flow. Furthermore, since the packets go

through different network path, the out-of-order is unavoidable. The receiver must

reorder the packets to restore the data flow.

From the description above we show that the sender node S controls wholly the

traffic load. The receiver only needs to restore the data flow. At both sender and

receiver sides, the traffic load is evenly going out and going in no matter what middle

network is used. Additionally, the load is balanced when the NIC interfaces on sender

and receiver are asymmetrical.

There is one issue required to be mentioned that even we settle the load

balancing problem, the data transmission rate is still determined by certain conditions.

Because the bandwidth of the sender and receiver are different; the maximum

transmission performance between two nodes is determined by the lower bandwidth

side (suppose the packet switching networks provide enough bandwidth). This

transmission rate is also constrained by the capability of the packet switching network.

2.2.2 Case Two: Multiple Data Flows on Asymmetrical Network

In this section a case of multiple data flows and multiple nodes is considered.

Figure 2.3 shows a data flow structure on the sender node S. Three receiver nodes A,

B, C build connections with node S. Where node A has 3 addresses A1, A2 and A3,

18

node B has 2 addresses B1 and B2, node C has 1 address C1 and sender node S has 6

addresses S1 to S6. All the schedulers use Weighted Round Robin algorithm.

In Section 2.2.1, the destination address of a data flow must be marked by

scheduler to make sure the load is balanced at the receiver node. In the case of multiple

data flows, each data flow has its own first stage scheduler. This scheduler will mark

the destination addresses of each data flow. Here Weighted Round Robin algorithm is

employed on A, B, C’s address table. This insures that three data flows will evenly

arrive at NIC interfaces at receiver nodes A, B, C respectively. For the multiple data

flows to the same receiver node, each data flow is also assigned a first stage marker.

After this first stage scheduling, we can confirm that no matter how many data flows

and receiver node exist, the NIC interfaces on the same receiver will receive balanced

traffic load.

Marker A

Scheduler

A1A2A3A1A2A3 DA
SA

Marker B
B1B2B1B2B1B2

Marker C
C1C1C1C1C1C1

A1A3A2
S1S1S1

B1B1B1
S2S2S2

C1C1C1
S3S3S3

C1C1C1
S6S6S6

B2B2B2
S5S5S5

A2A1A3
S4S4S4

Figure 2.3 Load Balancing of Multiple Data Flows and Multiple Nodes

From first stage to second stage, three data flows will be merged into one queue

and scheduled by the second stage scheduler. The mergence will provide a virtual data

channel for all data flows. This design not only balances the load with simple

algorithm, but also makes data flows independent of physical NIC interfaces. Thus, the

data flows can migrate among the NIC interfaces freely. Whenever there is an error on

19

NIC interfaces, the scheduler can reschedule the data flows without affecting address

marking and load balancing. Different merging algorithms can be used to provide

service priorities for data flows of multiple nodes. In this case, three data flows are

supposed to have the same priority and simply use a Round Robin algorithm.

After the data flows been merged into one queue, the second global scheduler

uses Weighted Round Robin algorithm to distribute packets to the NIC interfaces on

sender node S. Thus the packets from different data flows are evenly sent out to the

network. The fact that all data flows share one global second stage scheduler insures

that the out going traffic load is finely balanced.

On the receiver nodes A, B and C, the traffic load evenly arrives at specified

NIC interfaces. The receiver only needs to distinguish different data flows and reorder

them.

So far two cases are discussed to make clear that the traffic can be balanced at

both sender and receiver side. With multiple data flows and multiple nodes with

multiple NIC interfaces, the load is balanced on an end-to-end asymmetrical

architecture. Furthermore, the design is very flexible that NIC interfaces on both

sender and receiver can be added and removed without affecting other nodes. Multiple

nodes with different bandwidth (or network interface numbers) can work together and

the load balancing is maintained without any hardware support in either device or

packet switching networks. In next section, we will discuss scheduling algorithms used

on sender and receiver in detail.

2.3 Load Balancing Algorithms for Two Stage Schedulers

In previous section it has been shown that load balancing is controlled by two

kinds of schedulers on the sender node. Each data flow has one first stage scheduler,

and there is only one global second stage scheduler for all data flows. The first stage

20

scheduler (the marker) is used to balance the traffic load at multiple network interfaces

of receiver node. The second stage scheduler is used to balance the out going traffic at

the sender node. In the two demonstration cases, all schedulers use Weighted Round

Robin algorithm to balance the load. Here a serial load balancing algorithms will be

studied systematically.

Load balancing algorithm is used to balance traffic load to multiple channels in

packet switching networks. While fair queuing algorithms are designed to fairly serve

the packets form multiple queues. The load balancing algorithm could be acquired

from a reverse of the fair queuing algorithm. A theorem of transformation from fair

queuing to load balancing algorithm [22] has been proven. Consider a backlogged

execution of a fair queuing algorithm. First a function is applied to select a queue.

The packet

)(sf

p at the head of the selected queue is transmitted and then the state is

updated using a function . We can obtain a fair load sharing algorithm by using

the same function to pick a channel to transmit the next packet on, and update the

state using the same function

),(psg

f

g .

Here, we intend to distribute variable sized packets to multiple channels. Each

channel is backlogged and no channel is used as backup channel. Four reverse fair

queuing algorithms are discussed and compared, namely Reverse Generalized

Processor Sharing (RGPS), Reverse Weighted Round Robin (RWRR), Reverse

Weighted Fair Queuing (RWFQ) and Reverse Deficit Round Robin (RDRR). The

purpose is to determine the most suitable load balancing algorithms for the schedulers.

The last three RWRR, RDRR and RWFQ can be implemented on two stage schedulers

for source and destination load balancing. All these algorithms have small computation

overhead.

21

2.3.1 Reverse Generalized Processor Sharing (RGPS)

The Generalized Processor Sharing (GPS) algorithm is used to provide a fair

scheduling for best-effort connections. The GPS visits each non-empty queue in turn

and serves infinitesimally small amount from each. Connections can have service

weights and will receive service in proportion to these weights when they have data in

the queue. If there is no data at a queue, scheduler skips to the next non-empty queue.

The description of GPS is as such:

The GPS is work conserving and operates at a fixed rate . If the N connections

being served by GPS server have positive real weights

r

)1(φ ,)2(φ , …,)(Nφ , then the

server serves S),,(ti τ amount of data from the i th connection in the interval [], tτ , so

that for any connection i backlogged (A connection is backlogged whenever it has

data in its queue.) in [], tτ , and for any other connection j , we have
)
))
j
i

S
S

(
(

) φ,,(
,,(
tj
ti φ

τ
τ ≥ .

Summing all connection j , (, ,) (j
j

S i t t rτ) iφ τ φ≥ −∑ , and connection i is guaranteed a

rate of i

j
j

ig rφ
φ

=
∑

. GPS ensures that backlogged connections share the remaining

bandwidth in proportion to their weights. GPS has many advantages. A connection can

be guaranteed a throughput independent of the demands of other connections.

Furthermore, by varying the iφ , we have the flexibility of treating each connection in

different manners.

The Reverse Generalized Processor Sharing (RGPS) algorithm is a reversal

algorithm of GPS in a special condition. The RGPS is used to schedule one queue to

multiple connections with service weights. The RGPS send infinitesimally small

amount to each connection. In a finite time interval it will visit every connection once.

In RGPS, every connection is backlogged, because we intend to use all connection

22

resources. For the same GPS definition, we have
)(
)(

),,(
),,(

j
i

tjS
tiS

φ
φ

τ
τ = , which means all

connections strictly share the service in proportion to their weights. Each connection

receives rate i
i

j
j

g rφ
φ

=
∑

 data flow.

RGPS is a perfect load balancing algorithm in theory, but it is unimplementable

when the packets, not infinitesimal are scheduled. In the packet switching network,

schedulers must approximate RGPS by scheduling packets with variable sizes. So, the

concept of RGPS can help to evaluate other algorithms. Next, three simple algorithms

are discussed, which are implementable and approximate to RGPS.

2.3.2 Reverse Weighted Round Robin (RWRR)

The Weighted Round Robin (WRR) algorithm [23, 24, 25, 26, 27] is widely

used to serve a packet instead of infinitesimal from each backlogged queue in turn. The

packet sizes should be equivalent, otherwise the schedule algorithm is unfair. To

demonstrate this FQ algorithm, first, consider fixed packet size and different weights.

The computation is simple that the scheduler serves more than one packet per round

after normalizing weights to integers. Secondly, consider variable sized packets and

different weight. The scheduler should normalize weights by mean packet size to

acquire fair queuing. Since the mean packet size is usually unavailable, the WRR for

variable packet size is hard to implement. Many modifications [28 , 29 , 30] are

proposed to improve WRR algorithm.

The WRR works well for a network with fixed packet size, because the work

complexity of WRR is [31]. It is widely used in schedulers in ATM [32, 33, 34,

35] and IP switches and routers[36].

(1)ο

23

The Reverse Weighted Round Robin (RWRR) algorithm is the time reversal of

the WRR on the condition that each connection of the WRR is backlogged. The

RWRR sends packets to connections in turn. For fixed packet size and different

weights, the number of served packets in one round is computed by normalized integer

weights. When the RWRR is implemented on variable packet size, the fairness of

RWRR is defined by , where (/)FairIndex Max Min= Max is the maximum packet size

and Min is the minimum packet size.

The RWRR algorithm is a practical solution because of its less computation

overhead. The traffic load is balanced when the packet size is fixed. In SAN, when

mass data flows are transmitted, most of the data packet will use fixed maximum

protocol data unit (MPDU) for efficiency. The proportion of the similar sized packets

is high. Thus we can use RWRR algorithm to approximate a perfect load balancing

algorithm. In Chapter 4 we will show that RWRR works well for remote disk reading

in a normal packet switching environment.

2.3.3 Reverse Weighted Fair Queuing (RWFQ)

The Weighted Fair Queuing (WFQ) algorithm, also known as Packet-by-packet

Generalized Processor Sharing (PGPS) [37, 38, 39], is designed for variable sized

packets and weights. The WFQ algorithm serves packets in order of their finish

number (or finish time), where the finish number of each packet is computed by a GPS

algorithm. The finish number is given by

(, ,) max{ (, 1,), ()} (, ,)F i k t F i k t R t T i k t= − + , (2.1)

where, , (2.2) (, ,) (, ,) /T i k t L i k t r=

24

where is the round number computed by GPS algorithm, T is the service

time of th packet on connection i ,) is the length of k th packet that arrives on

connection at time , and

)(tR

k

),,(tki

,,(tkiL

i t r is the link service rate.

The fairness of WFQ algorithm is , which means the traffic load

is perfectly balanced. Based on WFQ, research on implementation and performance

[40, 41, 42, 43] has been conducted widely. Many network applications currently use

modified WFQ algorithms in switches and routers [44, 45, 46, 47], voice on IP [48, 49],

and wireless LAN [50].

1FairIndex =

However, since the work complexity of WFQ is , research efforts are

conducted to simplify WFQ [51, 52] and improve its adaptability [53]. The best

solution not only balances the load, but also keeps the work complexity at . We

will discuss a solution of work complexity in the next section.

(log)nο

(1)ο

(1)ο

The Reverse Weighted Fair Queuing (RWFQ) algorithm is a reverse of WFQ

algorithm without empty channel. The finish number is assigned to each channel and

computed by RGPS algorithm. The channel with the minimum finish number is

selected to send the next packet in queue. The finish number is given by

),,(),1,(),,(tkiTtkiFtkiF +−= , (2.3)

with , (2.4) (, ,) (, ,) /T i k t L i k t r=

where T is the service time of -th packet on channel i . is the length of

th packet that arrives on connection i at time t ,

),,(tki k),,(tkiL

k r is the link service rate. Unlike

WFQ, since no channel is empty in the procedure of data transmission, round number

are not needed when computing the . The weighted equation of RWFQ is), t,k(iF

)(),,(),1,(),,(itkiTtkiFtkiF φ÷+−= , (2.5)

where)(iφ is the weight of the connection i .

25

The RWFQ algorithm is better than RWRR when packet sizes are not fixed.

However, the computation overhead of RWFQ is greater than the RWRR algorithm.

For each packet, all the channels need to be checked in turn and the growing finish

number also needs iterated deletion. If the channel numbers are huge, the

computation overhead will degrade the performance. So, more efficient algorithms are

required to handle the work complexity problem.

),,(tkiF

2.3.4 Reverse Deficit Round Robin (RDRR)

The Deficit Round Robin (DRR) [54] algorithm is a modification of Weighted

Round Robin. To serve multiple queues, the scheduler assigns each queue a service

quantum. If a queue was not able to send a packet in the previous schedule round

because its packet size was too large, the remainder from the previous quantum is

added to the quantum for the next round. The weight of each connection can be

converted to quantum.

DDR is a low complexity version of Fair Queueing. It can be implemented at

work complexity of and has . Several modified DRR [55, 56, 57 , 58]

have been proposed to achieve both simplicity and fairness. They are widely used in

Internet software and hardware applications. For instance, DRR is used to provide

bandwidth guarantee to competing TCP flows [59]. When combined with Random

Early Detection [60], it can improve the fairness for different bandwidth capacity. In

[61], DRR is used to schedule the traffic by links not by data flows, which can

decrease the schedule cost. For the hardware applications, many switches and routers

also use DRR algorithms [62, 63, 64].

(1)ο 1FairIndex =

We have more interest on a modified DRR called Surplus Round Robin (SRR)

[65], which provide link striping for variable sized packets. The Deficit Counter (DC)

of SRR is initialized to 0, and incremented by the quantum for the served queue. As

26

long as the DC is positive, packets are sent form that queue, and the DC is

decremented by the size of the transmitted packet. If the DC is non-positive, the

current queue will be skipped.

The Reverse Deficit Round Robin (RDRR) algorithm is a reverse DRR or SRR

algorithm without empty queue. A detailed proof of transforming from FQ to load

balancing algorithm can be found in [65]. The RDRR also use a Deficit Counter (DC)

and quantum of service. Quantum is assigned by measuring the weight of the channels.

The DC is initialized as 0 and served in turn. Each time a channel is selected, the DC is

incremented by the quantum for that channel. Packets are sent to the channel and its

DC is decremented by the packet size, till the DC becomes non-positive, then the next

channel is selected.

300

Channel 1

Deficit Counter

P1100 P6200P5300P4400P3300P2200

RDRR
Scheduler

P1100P2200

Channel 2 P6200 P5300

P4400

P3300

Round 1Round 3 Round 2

Packet Flow

Figure 2.4 Reverse Deficit Round Robin Scheduler

In Figure 2.4, a RDRR scheduler with two channels is demonstrated. Packets of

different sizes are scheduled by checking the Deficit Counter of each channel. If the

packet size is less than DC, it will be sent to this channel and the DC is decreased by

the packet size. If the packet size is bigger than DC, the scheduler will check next

channel. If the packet size is bigger than all channel’s DC, the scheduler will wait next

round until the DCs are incremented. Suppose that the maximum quantum among all

the channels is Quantum and the maximum packet size is Max. After K round, the

difference between the bytes that should have been sent to channel , i

27

i.e., , and the bytes actually sent to channel i is bounded

by .

QuantumMax ×+ 2

iQuantum×K

The computation overhead of the RDRR is slightly greater than the RWRR

because of the quantum service. The actual value of the quantum should be cautiously

selected. If the quantum is much less than the packet size, the scheduler will wait many

rounds to accumulate the quantum to send out one packet. If the quantum is much

greater than packet size, many packets will be sent to one channel in one round, which

may increase out-of-order rate.

The RWRR algorithm is simple and efficient for scheduling large number of

channels with fixed packet size. The RWFQ algorithm conducts a perfect load

balancing and data flow ordering, it can be used when storage system has excellent

computation power. The RDRR algorithm is a better solution when many channels

with various packet sizes are used and computation resource is constrained. For

different network environment and data transmission models, proper algorithm can be

selected for specific requirements.

2.4 Data Flow Priority

In this section we will explain why one data flow (or one conversation) is

scheduled on all the addresses and how to assign priorities to multiple data flows on

one device. Between first and second scheduler, we build one virtual data channel

between nodes instead of multiple smaller data channels and use service disciplines

algorithm to provide different priorities and rate-control for each data flow.

2.4.1 One Virtual Channel vs. Multiple Sub Channels

We use a structure of two stage schedulers to build one virtual data channel

between nodes in stead of multiple smaller data channels, which means that each data

28

flow is scheduled on all workable sub channels for the efficiency and fault tolerance.

Other protocols, for instance Link Aggregation Control Protocol (LACP), use a

different method. It transfers one conversation on one physical network interface to

avoid packets disorder. That will increase the delay, and can not handle load balancing

problem for asymmetrical architecture.

A K

J

L

B

A B

λ

λ

m/λ

m/λ

m/λ

m/λ

m/λ

m/λ

/ nλ

/ nλ

/ nλ

λ

λ

Figure 2.5 Single Virtual Channel and Multiple Channels

To compare the performance when multiple physical channels are used as one

big data channel or multiple smaller data channels, consider a communication link

serving m independent Poisson traffic streams with overall rateλ [66]. Suppose that

the link is divided into m separate channels with one channel assigned to each traffic

stream. However, if a traffic stream has no packet awaiting transmission, its

corresponding channel is used to transmit a packet of another traffic stream. The

transmission times of packet on each of the channels are exponentially distributed with

mean µ/1 . The system can be modeled by the same Markov chain as the M/M/m

queue. In the case of multiple sub channels, the average delay per packet is given by

the M/M/m average delay expression

29

λµµ −
+=

m
P

T Q1 . (2.6)

While in the case of one virtual channel, the model is an M/M/1 system with

the same arrival rate λ and service rate µm . The average delay per packet is

λµµ −
+=

m
P

m
T Q

ˆ1ˆ , (2.7)

where and denote the queuing probability in each case (QP QP̂
)1(!

)(0
ρ

ρ
−

=
m

mpP
m

Q), λ

denotes the arrival rate (the inverse of average inter-arrival time), µ denotes the

service rate (the inverse of average service time). When 1<<ρ (lightly loaded system)

we have , and0≅QP 0ˆ ≅QP m
T
T ≅ˆ . When ρ is only slightly less than 1, we

have , ,11 P̂≅QP 1 /≅Q)/(1 λµµ −m<< and 1≅
T̂
T .

Therefore, for a light load, multiple sub channels produce a delay almost m

times greater than the delay of one virtual channel. For a heavy load, the ratio of the

two delays is close to 1. On average, keeping multiple conversations on one virtual

channel is more efficient for packet transmission. This gives evidence that when

implementing multiple address parallel transmission protocol, one conversation should

view multiple network interfaces as one virtual channel. This also implies that packets

of the conversation can migrate among the network interface without applications’

awareness.

In our design, data flows are not constrained to specific channel. Packets of the

data flows can be marked with any workable source and destination address pairs.

Scheduled by the two stage scheduler, one conversation between two nodes takes

multiple paths as one virtual channel.

30

2.4.2 Multiple Data Flows’ Priorities with Service Discipline

The two stage schedulers can handle the end-to-end load balancing with

multiple data flows. However the end-to-end performance guarantee is still need to

considered, which requires various QoS service discipline algorithms.

One of the targets is to categorize the data flows. Since multiple data flows can

be transmitted simultaneously in the architecture, service disciplines must be provided

to determine the priorities of the data flows. For instance, the real-time data flows

should have higher priority than non-real-time data flow.

The other target is to control the rate of each data flow to avoid the congestion.

Since the best-effort data flow might cause unnecessary congestion and retransmission

in the asymmetrical parallel architecture, a rate-controlled data flow can have better

performance. Traditional congestion control methods [67, 68, 69] did not consider

about the parallel architecture, thus an end-to-end congestion control method for

parallel path is urgently needed.

In current packet switching network, the service disciplines which can provide

per-connection end-to-end performance guarantee are still unavailable in most of the

routers and switches. So the data flow rate and congestion can not be fully controlled

before all the routers and switches along the path support QoS services. However, we

can simply utilize service discipline algorithms on the source node to achieve the

priority target. The target of rate control and congestion avoidance can be fulfilled

when the whole packet switching network can support QoS service.

In recent years, QoS service disciplines have been widely studied. Two

categories of service disciplines, the work-conserving disciplines and the non-work-

conserving disciplines, can be found in [70, 71]. With the work-conserving disciplines

such as, virtual clock, delay-EDD, WFQ, WF2Q, and SCFQ, a sorted priority queue

31

mechanism can be used to provide priority service for the data flows. With non-work-

conserving disciplines such as, jitter-EDD, Stop-and-Go, HRR and RCSP, a rate-

controlled service can be employed to reduce the possibility of the congestion.

The best place for in this service discipline is between two stage schedulers.

The choice of this priority algorithm highly depends on the applications. In our

implementation, all data flows are assigned the same priority; and the transmission rate

is controlled by the minimum bandwidth side of an asymmetrical parallel architecture.

Other algorithms can also be adopted to meet the QoS requirement of different

applications.

2.5 Data Flow Restore --Hashing Address Table and Reordering

In the receiver node, data flows are restored and reordered when packets arrive

at different network interfaces. Here, a chaining hashing algorithm is used to search

senders’ address table and an out-of-order estimation algorithm is used to setup

retransmission threshold and allocate reordering buffer. Since the mechanism of the

out-of-order differs from a normal network, several closely related parameters are

studied in detail.

2.5.1 Hash Chaining Structure for Address Restoring

In the parallel transmission architecture, the packets of a data flow arrive at

different network interfaces. The receiver must reorganize these packets into their

original data flows quickly. Indexed by their source addresses, packets are

differentiated by using a hash chaining searching on senders’ addresses table.

The search time of normal hashing table is)1(ο , but this may waste too much

memory resource when the address range is large. Here a hash chaining structure is

used to balance the memory space and searching time. The searching time of a

32

chaining with separate lists is , where n is the number of addresses and l is the

number of lists. The addresses with the same hash key are organized in one list to

avoid collision. By adjusting the list number l , the search time can be controlled in a

definite range.

(/)n lο

ceiver

Da
af

a

 fro
shin
eri

Flow S

Re

Flow T

T4

T3

T2

T1

S6

S5

S4

S3

S2

S1

Hashing table
for node A

Data from all nodes
ta flow m S
ter ha g

nd reord ng

Figure 2.6 Hashing Algorithm for Data Flow Restoring

After the hash chaining searching, data flows from the same sender node are

differentiated. Since every packet contains the unique ID of data flow on the same

sender, the receiver will further classify different data flow by data flow ID. This

procedure is quite simple and straightforward, thus, the major burden is the address

table searching. To restore the data flow by searching sender’s address table, the hash

chaining address table structure is an efficient algorithm.

2.5.2 Out-of-order Analysis

In this section, we will discuss the reason of the out-of-order in parallel

architecture. The out-of-order problem is quite prevalent in parallel transmission

structure, the most reliable method is to mark sequence number on each packet. In our

design, each packet in data flow is numbered and reordered with this sequence number.

33

The receiver reorders data flows by using a TCP-like algorithm. However, different

parameters are used for the retransmission algorithm when out-of-order occurs. These

parameters will be discussed in next section.

In normal network, out-of-order rate is not significant and hard to predict. The

out-of-order is mainly caused by route changing. It rarely has a big impact on

performance of a TCP similar protocol, because the scale of the out-of-order delivery

is just a few packets.

In parallel transmission architecture, out-of-order is hard to avoid but can be

predicted. In a theoretical parallel path transmission model, different channel

bandwidths and packet sizes might cause out-of-order delivery. In a practical

environment, the schedule delay and other system structure also influence the

probability of out-of-order delivery.

First suppose that two nodes communicate through three sub channels with the

same bandwidth (Figure 2.7). Three packets are sent to each channel at the time

sequences t1, t2, t3. Since the sizes of the three packets are different, the packet 2 and

3 will arrive before the packet 1 (the arrival time of the last bit of a packet determines

the arrival time of this whole packet). This will cause the receiver node to reorder the

packets. While in a single channel case, the second packet will not be sent until the last

bit of the first packet are sent out.

1

2
1

3

32Single channel

Multiple channel

t

Start time Finish time

t1 tst3t2

Figure 2.7 Out-of-order Caused by Different Packet Sizes

34

Different channel bandwidth can also cause out-of-order delivery with the

similar mechanism. Consider packets with same size are sent into channels with

different bandwidth. The arrival time sequence of each packet will not follow the

sending sequence. In a channel with larger bandwidth packets can arrive early. To

decrease the out-of-order delivery, the packet sizes should be constrained to fixed

value and channels should be allocated with the same bandwidth.

It is worth mentioning that other system parameters may also cause out-of-

order. Small schedule delay (Figure 2.8) can cause out-of-order delivery even when

packet size and channel bandwidth are fixed. The schedule delay is the schedule time

interval between two packets in the same schedule round. Since packets are transmitted

at different network paths, if the schedule delay between two packets is small, the

possibility that these two packets reach the receiver at same time is high, which

denotes a high out-of-order rate.

4

6

5

Multiple channel
pipeline

t

10

12

11

Schedule delay

Schedule round

1

3

2

7

9

8

d1 d2 d3 d4 d5

Figure 2.8 Schedule Delay in Each Schedule Round

The schedule delay can be affected by channel numbers, packet sizes. With

more channels added, more packets need to be scheduled in one round. Thus the

35

schedule delay extends (Figure 2.8) and decreases the possibility of the out-of-order

delivery. Similar result can also be observed when the packet size is increased,

schedule delay also increases. With larger packet size, the out-of-order rate drops.

Different system workload may also change the schedule delay. Thus, a stable system

environment is required to test the out-of-order delivery caused by schedule delay.

The out-of-order delivery can be a function of the schedule delay, the variance

of packet size and the variance of channel bandwidth. Define the out-of-order rate oγ as

the frequency that the system observes out-of-order delivery. We can have:

0 [(_), (),1/ (_)]f Var packet size Var bandwidth T schedule delayγ = , (2.8)

(_) [_ ., _T schedule delay f channel No packet size=] , (2.9)

The out-of-order rate oγ will increase when the variance of packet size or

channel bandwidth increases. The oγ decreases when schedule delay increases, where

the schedule delay can be increased by channel numbers and packet size.

Nevertheless, network storage device may use a multiple processor operating

system. In such a system, different packet processing times on multiple processors can

also cause out-of-order delivery. These problems should also be considered in the

design when such operating systems are used.

The out-of-order delivery in parallel transmission architecture may affect many

other network characteristics, such as, retransmission, window size, drop rate

estimation, and buffer size. It also has an impact on the queuing delay analysis, since

most of the queuing models are first-in-first-out (FIFO).

36

2.5.3 Retransmission Threshold and Reorder Buffer

In this section, we will deduce the retransmission threshold and reorder buffer

by estimating out-of-order rate in parallel transmission architecture. The transmission

performance and out-of-order distance are also discussed.

The relation between out-of-order and the retransmission is a key architectural

consideration in protocol design [72]. Previous out-of-order and retransmission

research focuses on Internet and TCP performance [73, 74, 75]. In such network

environment, the scale of out-of-order is a few packets and the packet drop rate is

relatively large (mainly caused by network congestion or data error). When there is

either out-of-order or packet drop in a packet flow, the receiver will observe sequence

broken and this may cause a retransmission. Thus, it is important for a fast retransmit

mechanism to disambiguate packet drop from out-of-order delivery. The TCP uses a

duplicate ACK threshold to infer that a packet requires retransmission. This threshold

is selected by estimating how long a receiver needs to wait to disambiguate out-of-

order from packet drop [76]. Normally the threshold is been given a small value to

improve the fast retransmit mechanism. This suggests that a short wait time is

preferred, since most of the sequence broken is caused by packet drop.

In SAN with parallel transmission structure, the selection of duplicate ACK

threshold depends more on out-of-order rate estimation to avoid unnecessary

retransmission. Since SAN is more stable than Internet, the packet drop is relatively

rare, while out-of-order delivery is more prevalent [77].

The out-of-order delivery can be estimated and used to select a proper

retransmitting waiting time and reorder buffer threshold. The waiting time has an

upper boundτ , where τ can be deduced from the maximum Round Trip Time (RTT)

of the data packet. Since the bandwidth and packet size can be variable, the maximum

37

RTT is the time that a maximum sized packet used to pass through the minimum

bandwidth channel. The buffer bound for reordering is the integration of maximum

RTT multiplying the individual channel bandwidth.

Consider that the receiver observes a missing packet at sequence number N by

receiving packet N-1 and N+ 1. Suppose that the missing packet is caused by out-of-

order and all sub channels are using a FIFO queue, the N-th packet must have been

sent out but still not arrive. The worst case is that the N-th packet has maximum size

and is passing through the minimum bandwidth channel. So we

have 2/)(RTTMax=τ , if the waiting time exceedsτ , the possibility of packet drop

increases. Thus the retransmission threshold must be larger thanτ . The minimum

buffer used to reorder one out-of-order packet can also be deduced by

2/*)(*
11

i

N

i

N

i
i RTTMaxW ϖϖτ ∑∑

==

== , (2.10)

where W is the buffer size, N is the numbers of the channel, iϖ is bandwidth of each

channel. This equation shows that in a worst case out-of-order, the data waiting in a

reordering buffer equals all the received traffic within this waiting period.

Let out-of-order distance be the number of packets that have arrived

between the period of time in which that the system observes a missing packet and this

missing packet arrives. Since each packet will arrive within time

oD

τ , the D or the

number of packets arrived before the out-of-order one can be estimated by:

o

1
()* / 2

_ _ _ _

M

i
i

o

Max RTT w
WD

Average Pakcet Size Average Pakcet Size
== =
∑

 (2.11)

This shows that the out-of-order distance can be controlled in finite range.

Theoretically, the small out-of-order distance will not affect the transmission

performance, it only increases the delay bound by waiting and reordering packets. The

38

estimation of the retransmission waiting time and reordering buffer produces a slightly

loose bound for the queuing delay model while the transmission performance is

unchanged.

The estimations are based on maximum Round Trip Time, which can be easily

acquired and computed. Estimation algorithms based on out-of-order rate requires

more knowledge about network topology and scheduling algorithm. For different

applications, the out-of-order rate might have different values. Our estimation also

provides a general delay bound and all the other parameters can be efficiently

computed.

2.6 Fault Detection and Cost Estimation

The multiple addresses parallel transmission uses redundant channels to

provide built-in fault tolerance feature. Whenever a fault channel is detected, data

flows will be scheduled to other available channels.

To achieve fault tolerance, the protocol must be able to detect the error. It must

recover from that error and eventually reaches a legal state and resumes its normal

execution [78,79]. Several detection algorithms can be found in [80]. Most fault

tolerance algorithms use spare resources to provide fault tolerance feature [81, 82, 83],

which may be resource waste [84]. In our architecture, all the available resources are

utilized to improve performance and achieve fault tolerance at the same time.

2.6.1 Three Fault Detection algorithms

Since NIC failure, cable failure and switch failure can all contribute to channel

failure, we propose three fault detection methods to diagnose different levels of

failures. The three fault detection algorithms can be hardware detection, software local

39

loop back and remote acknowledge detection. All these algorithms can be

implemented jointly or independently.

The hardware fault detection depends on the link failure register of the network

interface cards. Currently most of the network interface cards support a link failure

register. By checking the register periodically, the status of the first hop link can be

collected. The computation overhead of checking a register is very small and the

detection frequency could be a few seconds. The limitation of the hardware fault

detection is that node can only check the first hop link in the packet-switching network.

The second algorithm is local loop back fault detection. We can build loop

back channels by using the multiple addresses on the same node (the channel number

should be greater than or equal to 2). The merit of the local loop back detection is that

if the hardware detection is unavailable, a node can send detection packets to itself to

detect the status of the first hop link and the nearest switch. The draw back of this

algorithm is that the working addresses must be greater than or equal to 2. The

procedure of the loop back detection can be described by:

(A.) Select first network interface card (NIC) to be sender, send local detect

packet to other NICs on the same node

(B.) If at least one of these NICs received a local detect packet, it is suggests

that the sender NIC and the nearest switch is working well. Those who have not

received local detect packet can be regarded is faulty. The fault might be on the cable

or the card. The detection process can be finished.

(C.) If none of the other NICs received the local detect packet, we mark the

sender NIC with “unknown”, because we cannot assure if the sender NIC has fault. So

we choose next NIC as sender, send local detect packet to remaining NICs and

continue the B, C process.

40

(D.) If no channel can be built on the local node, there are only two possible

results. Either only one NIC is working or no NIC is working. To identify the only one

working port (if existed), we must use remote detection algorithm.

The third algorithm is remote fault detection. The mechanism is to build

channels with the neighboring nodes to detect fault. A node can ask another node to

reply back detection packets to all of its NICs. If any NIC interface cannot receive the

detection, a fault in the data path is found. The advantage of this algorithm is that the

full data path is checked. The drawback is that there must be another neighboring node

to send back detection packets.

Using hardware and local loop back detection could eliminate unnecessary load

in the LAN. It can also make the detection fast. The remote fault detection algorithm is

relatively reliable, however it will cause more traffic load and time.

2.6.2 Cost Estimation for Local and Remote Fault Detection

The cost estimation of hardware detection is quite straightforward. In one

detection round, each network interface card is checked once. The cost estimation of

the local loop back and remote acknowledge detections are more complicated. Suppose

a node has N network interface cards, and W of the interface cards are working. The

detection cost unit is the cost of sending and receiving a packet. The fault detection

cost function will be:

() (1) [(1) (1)] , () 1 2.... ; 2;

() (1) (2) ... 1 1.... ; 0,1;

l l l

r

W n WF n n n F n F W W n N W W N
n n

F n n n n n N W W N

− = − + − + − = − = ≥ ≤

 = − + − + + + = = <

(2.12)

)(nFl is the cost of local loop back detection. W suggests that working

NICs must be more than 2. By building a channel between two NICs, the fault can be

2≥

41

detected locally. The first part of F shows if we select one working NIC with

probability

)(nl

n
W

)n

, the detection can be finished with cost (n-1). The second part

of shows if we select a failed NIC, the detection must be repeated again until all

the remaining ports are working NICs, where F is the boundary of the

formula.

)(nFl

1)(−= WWl







 nFl (

<=

=−

NWW

Nn

;1,0;

;....21

=n

WFl

1

(,

NW ≤> ;1(p WN −*

(Fr is the cost of local loop back plus remote acknowledge detection when

there is at most one NIC still working. Since there is only one NIC or no NIC working,

local loop back detection will go through all the ports, each time it sends (n-1) packets

to remaining NICs. At the last step, the local loop back detection can not find this fault.

So, every NIC will send out a remote acknowledge packet which is denoted by cost

(n). The simplification of the cost estimation formula is:

+=

≤≥=−−+−=

NnnnF

NWWW
n
WnnFn

r

l

....
2

)1()(

;2))1()1()

 (2.13)

Denoted by N, W, Cost, we can have a cost estimation chart (Figure 2.9). This

chart shows that when the number of working NICs is close to N, the detection cost is

low.

Suppose in the fault detection period, the fault probability of each NIC is p .

Then the probability that there are W working NICs can be denoted by

NpP W−=)1 (2.14)

In Figure 2.10, the probability value of the working NICs is quite large when

W close to N. It suggests that the probability that most of the NICs is working is very

high. In this chart, we assume p=0.1 which is quite a large fault probability to

42

demonstrate the trend. Normally, the p value in LAN is very small, which will result in

the W more close to N.

5

10

15
Working NICs

5

10

15

NIC No

0

20

40
Cost

5

10

15
Working NICs

Figure 2.9 Local Loop Back and Remote Acknowledge Detection Cost Estimation

5

10

15

Working NICs 5

10

15

NIC No

0

0.2

0.4

Prob .

5

10

15

Working NICs

Figure 2.10 Probability Distribution of the Working NICs

By comparing Figure 2.9 and Figure 2.10 we can find that under normal

condition, where W is close to N, the detection cost is small. The cost will increase

only when many interfaces have fault (W is much less than N). However, the

probability of many faults is so small that the detection cost normally remains to (n-1).

This means that it is worthy maintaining a periodical fault detection mechanism.

43

In this chapter the theories of the network topology and parallel data

transmission model was studied. An end-to-end parallel data transmission architecture

was presented based on packet switching network that has variable bandwidth and

packet size. The model of this transmission architecture is composed of two stage load

balancing algorithm, data flow priority algorithm, data flow restoring, reordering and

fault tolerance algorithm.

On sender devices, four theoretical reverse FQ algorithms, RGPS, RWRR,

RDRR and RWFQ, were proposed for scheduling with small computation overhead.

Then we proved that one virtual channel is better than multiple sub channels and used

service disciplines algorithm to provide different priorities and rate-control for each

data flow. On receiver devices, a chaining hashing algorithm was presented to search

senders’ address table with bounded delay. An efficient out-of-order estimation

algorithm was proposed to setup retransmission threshold and allocate reordering

buffer. The mechanism of the out-of-order in parallel architecture was analyzed by

schedule delay and out-of-order distance. Fault detection algorithms of hardware

based, software local loop back and remote acknowledge detection methods were

proposed. SAN using this end-to-end parallel transmission architecture can have good

scalability and fault tolerance without much additional complexity.

44

Chapter Three

3 Implementation

In Chapter 2, the theory of end-to-end parallel transmission architecture was

proposed to provide scalability and fault tolerance for SAN. Based on this architecture,

a transmission protocol will be implemented in this chapter. Firstly, the individual

elements of the end-to-end parallel transmission architecture will be mapped to the

major modules and sub functions of the protocol. Secondly, the logical relationship

between these modules and functions will be demonstrated by software flow charts.

3.1 Multiple Address Parallel Transmission Protocol

The multiple address parallel transmission (Multi-Channel) protocol can be

programmed above the Link layer or Network layer. The load balancing scheduler can

use either Ethernet MAC address or IP address. To demonstrate the Multi-Channel

performance in SAN, HyperSCSI [8] network storage protocol is employed as the

Multi-Channel upper layer. The Multi-Channel protocol is implemented in the Linux

kernel [85, 86], where a virtual network device driver was created to control the data

flows and the data link layer. The general protocol structure is shown in Figure 3.1.

The Multi-Channel protocol includes three major function modules in Figure

3.1: data module, control module and a global state machine module. The data module

is responsible for sending and receiving data flow packets through multiple network

channels. The control module is used to manage multiple channels and select load

balancing algorithm. The fault tolerance is also involved in the control module. The

global state machine inspects global parameters and synchronizes the control and data

45

transmission states transition. In the following sections, we will specify the functions

of each module.

Multi-Channel
Protocol Layer

Multi-Channel
Control Module

Multi-Channel
Data Module

 Multi-Channel protocol prototype diagram

.......

.......

.......

Network Storage Device Upper Layer

Multi-Channel Virtual
Connection Interface Da

ta

D
at

a

Data
Parser

Data
Parser

Data
Parser

Packet SchedulerPacket Collector

Channel ChannelChannel

Control
Parser

Control
Parser

Control
Parser

Global States Collector

Network Channels
Lower Layer

G
lobal State M

achine C
ontrol M

odule

Figure 3.1 Multi-Channel Protocol Layer Diagram

3.1.1 Multi-Channel Data Module

Multi-channel data module is in charge of scheduling the data flow packets

through multiple network channels.

When sending packets, the data module first checks the address table of the

destination node and selects a load balancing algorithm and marks the destination

address of this data flow. Thus the destination node will receive a balanced traffic load

without the interference of the switches in between. In the second stage, the data

46

module checks the address table of sender node and selects a load balancing algorithm

and marks the source address of all data flows. Since the second stage scheduler is a

global scheduler, different data flows can share all the network channels. A balanced

traffic load will be sent into the network.

When receiving packets, Multi-Channel data module collects packets from all

the network channels. Data flows are distinguished by checking the address tables of

the nodes. Using a proper hash chaining structure, the computation overhead of

address searching is not significant. After the data flow is distinguished, the receiver

will handle retransmission, window size and buffer size if there is out-of-order delivery.

Then the packets will be reordered and sent to the upper layer applications.

3.1.2 Multi-Channel Control Module

The control module is responsible for managing multiple Ethernet or IP

channels and selecting load balancing algorithm. The major control processes are listed

below.

Multi-Channel startup process is used to initialize one virtual network driver by

using multiple sub-channels. Data flow structures are connected to the address tables

and address searching tables, which are used to send and receive data packets.

Address-discover process sends address-discover packets and retrieves address

table from the address-discover ACK packets. In Ethernet network, the address-

discover packets can be broadcasted to the LAN, while in IP network the address-

discover packets are sent by point-to-point fashion.

Channel management process is used to dynamically append or remove sub-

channels in virtual connection. For data link layer, operations will work on network

device drivers. For IP layer, socket will be used. Whenever there is new channel

47

configuration, the process will call address service processes to update local and

remote address tables.

Changing local address process is one of the address service processes. It is in

charge of updating the local address table and sending this new address table to other

active partners who have built connections with it.

Checking remote address process is also one of the address service processes. It

enquires remote partners’ address table and reschedules the data flow whenever there

is address changing.

Fault detect processes include hardware detect, local loop back fault detect and

remote acknowledge fault detect process. They check the channel status periodically. If

there are channel faults, the channel management process will be informed and hence

the channels will be rescheduled.

Channel services process sends and receives control packets which exchange

channel information. The load balancing algorithms on two stage schedulers can also

be selected by the control packets in this process.

3.1.3 Global State Machine Module

Global state machine manages all control and data transmission states

transition. It inspects global parameters, such as, address table lists, fault detection

algorithm, load balancing algorithm, control configuration, etc. So the data

transmission and control flow can be synchronized. All the operation commands will

refer to this module to avoid operating disorder.

Each connection can have a major state and a minor state at one time. The

major states describe the major operation groups. The state of the connection must

follow the state transition diagram in Figure 3.2. In each major state, there are several

48

detail steps exists. The minor states describe these steps that the operation should

follow. They may be dissimilar in different applications.

Error found

Channel setup state

Management command
received

Management query
received

Transmission succeed

Channel initialized

Data transmission
state

Channel exit state

Channel dynamic
configure state Fault detection state

Channel service state

Figure 3.2 Multi-Channel Data Transmission State Transition Diagram

Here we list the major and minor states:

• Channel setup state: address discover, address table exchange, load balancing

algorithm select, data flow setup.

• Data transmission state: data packets sending and receiving in multiple

channels, hashing address search, out-of-order delivery control.

• Channel dynamic configure: new address table exchange and load balancing

algorithm change.

• Fault detection state: hardware detect, local loop back detect, remote

acknowledge detect. If fault detected, update address table and inform both side.

• Channel services state: channel information query and control command

decode.

• Channel exit state: channel disconnect, channel resource release.

49

3.2 Multi-Channel Protocol Processes Software Flow Charts

In previous sections we discussed the MAP-TP protocol and functions that the

protocol supports. In following sections, we will present the flow charts of the software

protocol implementation.

3.2.1 Major Flow Charts, Key Data Structures and Events List

 The software flow chart of MAP-TP protocol is composed of two major

process flow groups, which conduct the functions of data module and control module

as shown in Figure 3.3.

One flow group is data processes, which include channel address scheduling

process and address restore process. The data processes start operating after the Multi-

channel startup process and address discover process and stop operating before the

channel exit process. These data processes can operate with other control processes

simultaneously. Dynamical channel changing and fault detection should not stop the

data transmission, unless there is not available channel at all.

The other flow group is Multi-channel management processes which employ:

Multi-channel startup process, address discover process, channel manage process, fault

detect process, change local address process, check remote address process, channel

services process and channel exit process. Excluding the channel startup and channel

exit processes, all other management processes can operate independently. The

channel manage process is a public interface which accepts all kinds of commands and

sends events to other processes. It is also in charge of the state synchronization.

50

Data processing

TITLE

Multi-Channel major process relationship

Multi-Channel check
remote address

process

Multi-Channel
change local address

process

Multi-Channel fault
detect process

Multi-Channel startup
process

Multi-Channel
channel manage

process

Multi-Channel
channel exit process

Multi-Channel
channel service

process

Multi-Channel
address discover

process

Multi-Channel remote
fault detect process

Multi-Channel local
fault detect process

HyperSCSI senderSlave_dev receive

send out to
slave_dev

send out to
HyperSCSI

receiver

Control processing

Virtual channel initialization

Load balancing
algorithm on
address table

Multi-Channel
address recover

Diagnose timer Software fault detect

Local device change

Remote address enquiry

Miscellaneous services

Figure 3.3 Data and Control Processes’ Flow Chart

51

Remote addr Hash table

Remote addr table pointer

Remote addr table pointer

Remote addr table pointer

........

Remote addr table structure

Address ID

Remote address numbers

Remote address list
Address 1+status

Address 2+status

Address 3+status

.......
Current RR index

Mutex semaphore

Local addr table structure

Address ID

Local address numbers

Local address list

Address 1+status

Address 2+status
Address 3+status

.......

Current RR index

Mutex semaphore

Remote addr table structure

Address ID

Remote address numbers
Remote address list

Address 1+status
Address 2+status

Address 3+status

.......

Current RR index
Mutex semaphore

Remote addr table structure

Address ID

Remote address numbers

Current RR index

Mutex semaphore
Remote address list

Address 1+status

Address 2+status

Address 3+status
.......

Prev pointer

Next pointer

TITLE

Multi-Channel Major address structure

Address status structure

Address

Bandwidth (through put)

Current quota (times can be used)

MultiChannel virtual device structure

Local addr table

current_working_slave device

prev slave device

next slave device

slave device numbers
net_device_status

rwlock_t

diagnose timer

local detect timer
remote detect timer

detect states (in local or remote)

*next_nchannel;

net_device *device;
Slave device structure

slave *next;
slave *prev;

net_device *dev;
NCH_STATE

link_failure_count;
local detect flag

remote detect flag

state change flag

Figure 3.4 Multi-Channel Virtual Device and Hashing Address Table

The key data structure of the MAP-TP protocol is the Multi-channel virtual

device and two address tables (Figure 3.4). The virtual device acts like a real network

interface device and is in charge of multiple real slave NIC devices. With each slave

52

device, one local address entry is generated. The remote address table structure is built

up in the procedure of address discovery where the bandwidth information is fed back.

Send Event

Send discover
broadcast

packet

Send Event

Send discover
unicast packet

Send Event

Send local
detect packet

Send Event

Send remote
detect packet

Send Event

Send discover
ACK packet

Receive Event

Receive
discover

broadcast
packet

Receive Event

Receive
discover

unicast packet

Receive Event

Receive
discover ACK

packet

Receive Event

Receive local
detect packet

Receive Event

Receive
remote

detect packet

Receive Event

Receive
HyperSCSI
data packet

Send Event

Send
HyperSCSI
data packet

TITLE

Multi-Channel Events List

Events related to
sender

Events related to
receiver

Control Event

Build/Rebuild
local address

list

Send Event
Send discover

ACK
broadcast

packet

Receive Event
Receive

discover ACK
broadcast

packet

Events issued by
controller

Control Event

Build/Rebuild
remote

address listTimers used by
events

Timer

Local detect

Timer

Remote detect

Timer

Diagnose timer

Send Event

Send remote
detect ACK

packet

Receive Event
Receive
remote

detect packet
ACK

Send Event

Send remote
detect packet

ACK

Control Event

NCH info
query

Control Event

NCH enslave
one device

Control Event

NCH release
one device

Control Event

NCH release
all device

Control Event

NCH set
virtual

address

Control Event

NCH register/
unregister

packet type

Control Event

NCH
initialization

Control Event

NCH exit

Control Event

NCH register/
unregister

different xmit
function

Interface

Timer

Events source/
interface summary

Interface

Sender function

Interface

Receiver function

Interface

IO_Control

Figure 3.5 Events List for Sender, Receiver and Controller

The MAP-TP protocol data and control flow are driven by events. These events

can be issued by system control module, in coming control packets or several timers.

Here we list three group events and event sources.

53

3.2.2 Multi-Channel Packets Flow and Packet Types

There are two categories of packets in the MAP-TP protocol, data packets and

control packets. As mentioned in previous sections, several types of control packets are

used to exchange information and issue commands between devices.

The control packet types include: discover broadcast packet, discover unicast

packet, discover ACK packet, discover ACK broadcast packet (don’t need to reply),

local detect packet, remote detect packet and remote detect ACK packet. Each type of

packet will be issued by a sender event and this packet will cause a receiver event at

the receiver device.

The data packets and control packets will be filtered and sent to different

processes. The packet flow is illustrated in Figure 3.6.

nch_dst_find ()

input: sk_buff_scr_addr

output: right_scr_addr

function: select major source address

from address table

HyperSCSI sender

nch_send ()

input: sk_buff, nch_virtual device

output : none

nch_dst_sel ()

input: sk_buff_dst_addr

output: right_dst_addr

function: select destination address

from address table

nch_scr_sel ()

input: sk_buff

output : none

function : select source device with

load balancing algorithms

Slave_dev receive

nch_receive ()

input: sk_buff, slave_dev

output : none

send out to
slave_dev

Data/Control
nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

send out to
HyperSCSI

receiver

Receive HS
data packets

Receive NCH
control
packets

enter different
Conrol flow

TITLE

Multi-Channel Packets Flow

Send HS data
packets

Send NCH
control
packets

Figure 3.6 Multi-Channel Packet Flow

54

3.2.3 Multi-Channel Address Discover

After the initialization of the Multi-channel virtual device, the local address

table is built up. Then, the local device broadcasts this address table to its neighboring

hosts. When other devices receive this broadcast packet, they refresh their remote

address table. After that, they send back an acknowledgment packet which includes

their own local address table. Thus, all the devices will know each other’s address

tables (Figure 3.7).

TITLE

Multi-Channel Address Discover

nch_addr_discover_bc_receive ()

input: discover broadcast packets /ACK

output: none

function: receive packet discover packets /ACK,

send back ACK, build remote address list

Multi-Channel
address discover

process

nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

nch_addr_discover ()

input: none

output: none

function : send out address discover

broadcast packet

Send Event

Send discover
broadcast

packet

Receive Event
Receive
discover

broadcast
packet

Send Event

Send discover
ACK packet

Receive Event

Receive
discover ACK

packet

Multi-Channel
address discover

process end

Control Event

Build/Rebuild
remote

address list

nch_remote_addr_build ()

input: remote address list

output: none

function : build remote address list

when receive discover packet

nch_addr_discover_uni_receive ()

input: discover unicast packets /ACK

output: none

function: receive packet discover packets /ACK,

send back ACK, build remote address list

Multi-Channel check
remote address

process

nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

nch_addr_check ()

input: none

output: none

function : send out address discover

unicast packet, check one remote nch

Receive Event

Receive
discover ACK

packet

Multi-Channel check
remote address

process end

Control Event

Build/Rebuild
remote

address list

nch_remote_addr_build ()

input: remote address list

output: none

function : build remote address list

when receive discover packet

Send Event

Send discover
unicast packet

Send Event

Send discover
ACK packet

Receive Event

Receive
discover

unicast packet

Figure 3.7 Multi-Channel Address Discover

55

The address discover packet can also be a unicast packet. This address-discover

packet is used to enquire address table of a particular device (Figure 3.7). This method

can be used where broadcast is inapplicable such as IP WAN.

3.2.4 Multi-Channel Address Table Change and Rebuild

From time to time, the address table can be changed under several conditions.

For instance, one channel is added or deleted, channel fault is detected or channel fault

is recovered. When the local address table is modified, the new local address table

should be sent to its partner devices, and then these devices will update their remote

address table (Figure 3.8).

Control Event

Build/Rebuild
local address

list Send Event

Send discover
ACK

broadcast
packet

Receive Event
Receive

discover ACK
broadcast

packet

Multi-Channel
change local address

process

nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

Multi-Channel
change local address

process end

nch_local_addr_renew_receive ()

input: discover unicast packets /ACK

output: none

function: receive packet discover packets /ACK,

send back ACK, build remote address list

nch_local_addr_build ()

input: nchannel device list

output: none

function : build local address list,

broadcast address renew packet

nch_remote_addr_build ()

input: remote address list

output: none

function : build remote address list

when receive discover packet

nch_local_addr_renew_send ()

input: broadcast renew packets

output: none

function: send local renew broadcast packets to

inform other hosts

TITLE

Multi-Channel Address change and rebuild

Control Event

Build/Rebuild
remote

address list

Figure 3.8 Multi-Channel Address Change and Address Table Rebuild

56

3.2.5 Multi-Channel Fault Detection Flow Chart

Fault tolerance is always a complicated part for network protocol design,

because there are various of fault sources. A fault could be triggered by NIC interface

fault, cable fault, switch fault or malfunctioned device driver. The Multi-channel fault

detection flow is shown as Figure 3.9.

Multi-Channel fault
detect process

TITLE

Multi-Channel Fault detect

Timer

Diagnose timer

Multi-Channel fault
detect process end

Multi-Channel remote
fault detect process

Multi-Channel local
fault detect process

Send Event

Send local
detect packet

Send Event

Send remote
detect packet

Receive Event

Receive local
detect packet

Receive Event

Receive
remote

detect packet

Multi-Channel
change local address

process

Check local
detect state

Local detect
not finish

Check local
detect success

Timer

Local detect

Timer

Remote detect

Local detect
finished

Local address
have change

If any remote
reply

Local detect
succeed Local detect

failed, 0 or 1
channel alive

Local address
no change

Local address
changed one channel

still alive All channel
down or no

other host in
LAN. Waiting

for next
diagnose.

Receive Event

Receive
remote

detect packet
ACK

Send Event

Send remote
detect packet

ACK

Figure 3.9 Flow Chart of Multi-Channel Fault Detect

57

nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

nch_local_detect_send ()

input: current local detector

output: none

function: send local detect packets to other local

ports, set local detect time to check

TITLE

Multi-Channel Local Fault detect

Send Event

Send local
detect packet

Receive Event

Receive local
detect packet

Timer

Local detect

Multi-Channel local
fault detect process

Multi-Channel local
fault detect process

end

nch_local_detect_receive ()

input: received local detect packets

output: none

function: check local detect packets received by

which ports, reset this port’s state flag

Multi-Channel
change local address

process

Multi-Channel remote
fault detect process

nch_local_detect_timer ()

input: none

output: none

function : check local ports state,

if receive LDP and no change then end

if receive LDP and change then change local

address

if not receive and not last port, change to next

local detect

if not receive and last port, call remote detect

Figure 3.10 Multi-Channel Local Loop Back Detect

After checking the NIC hardware register, a local loop back fault detection

solution is exploited as shown in Figure 3.10. The local loop back channels can be

built by using NIC pairs on the same device. This can check all the cables, switches or

other devices between two NICs. If any fault is found, the local address table will be

updated and sent to other connected devices. If the fault can not be located by local

loop back fault detection, a remote acknowledge fault detection might be issued.

Using local loop back detection can eliminate unnecessary detection load in the

LAN, and it can also speed up the detection. Furthermore, since all loop back NICs are

located on the same device, no acknowledge packets are required.

58

Multi-Channel remote
fault detect process

Send Event

Send remote
detect packet

Receive Event

Receive
remote

detect packet

Timer

Remote detect

Receive Event

Receive
remote

detect packet
ACK

Send Event

Send remote
detect packet

ACK

nch_ctrl_op ()

input: sk_buff, event type

output: none

function: activate relative event

nch_remote_detect_send ()

input: current port list

output: none

function: every port broadcast remote detect

packet to LAN, set remote detect timer

nch_remote_detect_receive_ACK ()

input: received remote detect packets

output: none

function: check remote detect packets received

by which ports, reset this port’s state flag

nch_remote_detect_timer ()

input: none

output: none

function : check local ports state,

if receive RDP and no change then end

if receive RDP and change then change local

address

if not receive then all ports down, wait recheck

Multi-Channel remote
fault detect process

end

Multi-Channel
change local address

process

nch_remote_detect_send_ACK ()

input: port list to reply

output: none

function: send remote detect ACK to every port

in the list

nch_remote_detect_receive ()

input: received remote detect packets

output: none

function: receive other hosts’ remote detect

packet

TITLE

Multi-Channel Remote Fault detect

Local host

Remote host

Figure 3.11 Multi-Channel Remote Acknowledge Fault Detect

The remote acknowledge detection is quite similar to the local loop back

detection. The difference is that the neighboring devices are used to send back

detection acknowledge packets as shown in Figure 3.11. This may consume more time

and increase traffic load. However, the full data path is checked and a fault can be

located even if there is only one NIC can communicate with other devices.

59

3.2.6 Virtual Device Management Flow Chart

The Multi-channel virtual device management flow chart involves four

processes: Multi-channel startup process, exit process, channel management process

and channel service process.

 The startup process will register HyperSCSI packet type and transmit function

handle, set up address, register NICs to Multi-channel, begin first address discovery.

The exit process will do the reverse procedure as shown in Figure 3.12.

TITLE

Multi-Channel virtual device management

Multi-Channel startup
process

Control Event

NCH set
virtual

address

Control Event

NCH register/
unregister

packet type

Control Event

NCH
initialization

Control Event
NCH register/

unregister
different xmit

function

Multi-Channel startup
process end

nchannel_init ()

input: none

output: none

function: device start up

nch_init ()

input: none

output: none

function: initialization for

packet type, address list,

loadbalancing algorithm...

Control Event

NCH exit

Multi-Channel
channel exit process

Control Event

NCH release
all device

Control Event

NCH register/
unregister

packet type

Control Event

NCH register/
unregister

different xmit
function

Multi-Channel
channel exit process

nchannel_exit ()

input: none

output: none

function: device exit

nch_close ()

input: none

output: none

function: unregister packet

type, address list, release

slave device….

Figure 3.12 Multi-Channel Virtual Device Startup and Exit

The channel management process can dynamically add or remove slave devices

to Multi-channel, update address table, and then synchronize neighboring devices’

remote address table (Figure 3.13). The channel service process provides detailed

60

information for each NIC, manages the diagnose timer and monitors the status of

Multi-channel system.

Control Event

NCH info
query

Multi-Channel
channel service

process

Timer

Diagnose timer

TITLE

Multi-Channel virtual device management
Nch_get_info ()

input: none

output: none

function: miscellaneous

information for the virtual

channel

Nch_diag_timer ()

input: none

output: none

function: initialize hardware

and software detection

Control Event

Build/Rebuild
local address

list

Control Event

Build/Rebuild
remote

address list

Control Event

NCH enslave
one device

Control Event

NCH release
one device

Control Event

NCH release
all device

Multi-Channel
channel manage

process

Multi-Channel
channel manage

process end

nch_ioctl ()

input: control command
output: none

function: call control functions

for each command

nch_enslave ()

input: master_dev, slave_dev

output: none

function: add one channel to

virtual device

nch_release_one ()

input: master_dev, slave_dev
output: none

function: release one channel

from virtual device

nch_release_all ()

input: master_dev

output: none

function: release all channel,

normally used for final exit

Multi-Channel
change local address

process

Figure 3.13 Channel Management and Channel Service

61

In this chapter, an implementation of multiple address parallel transmission

protocol was proposed. The design of data module, control module and global state

machine module was presented in detail. The protocol was programmed as a network

layer module in Linux kernel. Furthermore, the major framework of the software was

demonstrated by serial flow charts, which is a guideline for the implementations on

other operating systems. After the MAP-TP protocol has been programmed, network

storage applications can utilize it as a network layer interface, where the throughput

and fault tolerance feature of the I/O can be measured and evaluated.

62

Chapter Four

4 Results and Discussion

As seen in Chapter 1, the HyperSCSI protocol provides a virtual SCSI interface

service by packing SCSI protocol into network packets. We applied Multi-Channel on

the network layer of the HyperSCSI storage device servers and clients. The packet

switching network test platform was composed of switched Fast Ethernet (FE) and

Gigabit Ethernet (GE) links. The computers were equipped with Intel Pentium III

1GHz, 256MB 133MHz SDRAM, two SCSI channels with 8 Seagate ST318406 LC

Cheetah SCSI disks. The OS was RedHat Linux 7.21 (glibc RPM 2.2.4-24) with Linux

Extended File System 2 (Ext2).

The performance was measured by testing the disk read speed of the virtual

SCSI device. The throughput was bounded by the capability of the speed of the system

bus and RAID bandwidth. Three popular benchmark tools, HDPARM, DD and

IOZONE, were used to read 5GB data in the experiments.

HDPARM is a Linux shell utility for viewing and manipulating various IDE

drive and driver parameters. The –t option means to report stats on the disk in question,

reading data not in the cache. The command used is:

hdparm -tT <device>

DD copies a file with a user selectable block size, while optionally performing

conversions on it. In each round, 1GB data is transmitted, so the result will reflect real

disk read performance without the influence from cache size. The command used is:

time dd if=<device> of=/dev/null bs=4096 count=250000

63

IOZONE is a file system benchmark tool. The benchmark generates and

measures a variety of file operations. A large file size of 500MB is also used to

eliminate the influence of cache size. The command used is:

iozone -R -I 0 -I 1 -s 500M

In the following sections, the results of Multi-Channel disk read performance

and out-of-order delivery will be discussed. Since many parameters map affect the

result, experiments will be based on different channel numbers, channel bandwidths,

packet sizes and system resources.

4.1 Disk Read Performance

4.1.1 Multi-Channel with Symmetrical Parallel Network

First a symmetrical parallel architecture of multiple FE NIC pairs is studied. Up

to 7 pairs of FE cards are used to build a parallel transmission channel. To balance the

computation load, the server provides separate virtual SCSI disks while the client

utilizes these virtual disks to build software RAID.

Client RAID - Client FEs - Server FEs
Hdparm Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Client - Server NIC Pairs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 4.1 Client RAID Symmetrical FE Pairs HDPARM Read

64

Client Raid - Client FEs - Server FEs
DD Disk read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Client - Server NIC Pairs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 4.2 Client RAID Symmetrical FE Pairs DD Read

Client Raid - Client FEs - Server FEs
IOzone Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5

Client - Server NIC Pairs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 4.3 Client RAID Symmetrical FE Pairs IOZONE Read

From Figure 4.1, Figure 4.2 and Figure 4.3, with more sub channels added, the

symmetrical disk read performance of the HyperSCSI device increases nearly linearly

until the limit of the system performance is reached.

With all three scheduling algorithm RWRR, RDRR and RWFQ, HyperSCSI

bandwidth can be increased above 380% when 4 links are used. Thus the network

65

utilization rate of the multiple channels HyperSCSI is 95%. The overhead caused by

MAP-TP is roughly 5% per channel, which is acceptable when compared to the

bandwidth increment.

Since most packets in the experiment have similar size, all three algorithms can

achieve similar performance result. In real environment, if packets have various sizes,

the RWFQ and RDRR can have better channel utilization. All these algorithms can be

used for load balancing with little computation overhead.

4.1.2 Multi-Channel with Asymmetrical Parallel Network

To demonstrate the flexibility of the MAP-TP protocol, an asymmetrical

parallel network was built for the Multi-Channel experiment. The server used seven FE

cards while the client used only one GE network card. The RAID algorithm was also

running on the client.

Client RAID - Client GE - Server FEs
Hdparm Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Server NICs

D
is

k
Re

ad
 (M

B
/s

)

RWRR
RDRR
RWFQ

Figure 4.4 Client RAID Asymmetrical GE-FE Pairs HDPARM Read

66

Client RAID - Client GE - Server FEs
DD Disk Read Performance

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Server NICs

D
is

k
R

ea
d

(M
B

/s
)

RWRR
RDRR
RWFQ

Figure 4.5 Client RAID Asymmetrical GE-FE Pairs DD Read

From Figure 4.4 and Figure 4.5, the MAP-TP protocol can achieve the same

linear increment. Since this experiment uses high speed GE network interface cards,

the asymmetrical transmission result is slightly better. The schedule load is the same

with the symmetrical situation, while the GE network interface card does provide

larger bandwidth.

4.1.3 Influence of System Resources on Disk Read Performance

In the experiments, the disk read performance approaches a limit when the

network bandwidth keeps increasing. The reason of this limit is that the performance is

constrained by the system resources. Besides the data transmission, the CPU rounds

and cache memory are also consumed [87] by scheduling algorithms, SCSI command

block packaging, RAID algorithms, network interface interruption handling, fault-

handling, end-to-end flow control, and reliable transmission, etc. The distribution of

these algorithms will influence the maximum disk read performance, however the

increasing rate will keep constant.

67

Server RAID - Client FEs - Server FEs
Hdparm Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

1 2 3 4
Client - Server NIC Pairs

Di
sk

 R
ea

d
(M

B
/s

)
RWRR
RDRR
RWFQ

Figure 4.6 Server RAID Symmetrical FE Pairs HDPARM Read

Server RAID - Client GEs - Server FEs
Hdparm Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4
Server NICs

Di
sk

 R
ea

d
(M

B
/s

)

RWRR
RDRR
RWFQ

Figure 4.7 Server RAID Asymmetrical GE-FE Pairs HDPARM Read

When few FE NICs are used, the network bandwidth is the bottleneck of whole

storage system. System resources can meet the requirement of network traffic load.

The total computation cost is low and the performance can increase linearly when

more bandwidth is provided. However, with the increasing bandwidth, the system

68

resources are gradually used up. The disk read performance will keep constant under

heavy traffic load.

In previous sections, the RAID algorithm was applied on the client device. In

this experiment, we apply RAID algorithms on the server device with various parallel

architectures (Figure 4.6, Figure 4.7, Figure 4.8). For all these experiments, the

increasing rate of disk read performances are linear when traffic load is low. However,

the read performance ends up with different values when reaching the limit of system

resource. These results show that the MAP-TP has good scalability. The performance

is only bounded by total available system resource. By reallocating the system

resources, maximum disk read performance can be improved without compromising

the scalability.

Server RAID - Client FEs - Server GEs
Hdparm Disk Read

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

1 2 3 4

Client NICs

D
is

k
R

ea
d

(M
B/

s)

RWRR
RDRR
RWFQ

Figure 4.8 Server RAID Asymmetrical FE-GE Pairs HDPARM Read

69

4.2 Out-of-order Rate Analysis

In this section, we will discuss the architecture influence on the out-of-order

rate and the relationship between the out-of-order rate and disk read performance. First

a symmetrical FE pair parallel architecture was studied. In Figure 4.9 and Figure 4.10,

the out-of-order rate decreases when more FE pairs are used. Although the decreasing

curves differ for various benchmark tools, we can draw a conclusion that more

identical channels lower the probability of out-of-order delivery.

The reason of the decrease is that in each schedule round, the schedule delay

between sequential packets increases with more channels added. As proved in

theoretical section, larger schedule delay between packets results in the small

probability of out-of-order delivery.

Client RAID - Clinet FEs - Server FEs
Hdparm out-of-order rate

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Client - Server NIC Pairs

O
ut

-o
f-o

rd
er

 R
at

e
(%

)

RWRR
RDRR
RWFQ

Figure 4.9 Client RAID Symmetrical FE Pairs HDPARM Out-of-order Rate

70

Client RAID - Client FEs - Server FEs
DD Out-of-order rate

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6 7

Client - Server NIC Pairs

O
ut

-o
f-

or
de

r R
at

e
(%

)
RWRR
RDRR
RWFQ

Figure 4.10 Client RAID Symmetrical FE Pairs DD Out-of-order Rate

Client RAID - Client GE - Server FEs
DD Out-of-order Rate

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 2 3 4 5 6 7

Server NICs

O
ut

-o
f-o

rd
er

 R
at

e
(%

)

RWRR
RDRR
RWFQ

Figure 4.11 Asymmetrical GE-FE Pairs DD Out-of-order Rate

Second, an asymmetrical architecture was examined. The client device used

one GE NIC and the server device used 7 identical FE NICs (Figure 4.11). The out-of-

order rate curve provides similar result as symmetrical architecture. Since the client

71

device has wider bandwidth, the schedule delay is smaller than that of a symmetrical

architecture. This makes the out-of-order rate curve decreasing slower.

Client RAID - Clinet 5FE+2GE - Server 5FE+2GE
Hdparm out-of-order rate

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1 2 3 4 5 6 7

Client - Server NIC Pairs, 6 and 7 is GE

O
ut

-o
f-o

rd
er

 R
at

e
(%

)

RWRR
RDRR
RWFQ

Figure 4.12 Asymmetrical GE-FE Mixed Pairs, HDPARM Out-of-order Rate

Finally, an asymmetrical architecture was built with mixed bandwidths. On

each client and server device, 5 FE and 2 GE NICs were used (Figure 4.12). From the

result, it is observed that the out-of-order rate increases with different bandwidth

channels mixed together. This increment can also be explained by the changing of

schedule delay. Since the GE channel is ten times faster than FE channel, packets on

GE channels have shorter transmission time which means a shorter schedule delay

between the packets.

From the discussion above, a conclusion can be drawn that the architecture of

the parallel network has great impact on the out-of-order delivery. To decrease the out-

of-order rate, we should use identical channels and increase the number of identical

channels.

72

The relationship between performance and out-of-order rate can be found by

comparing the figures of performance with that of the out-of-order.

Before the experiments, it is supposed that larger out-of-order rate might cause

larger performance decrease. However, the result shows that the out-of-order rate does

not evidently affect the disk read performance. Although the out-of-order rate is very

large with a few channels, the performance keep increasing linearly and the channels

are fully utilized.

This phenomenon can be explained by the out-of-order distance. Although the

out-of-order rate is large, the out-of-order distance is only a few packets. So the

receiver can reorder the data flow without affecting the disk read performance. In the

theoretical part the out-of-order waiting buffer was already provided. Actually, the out-

of-order rate only consumes certain system resource and causes a bounded delay.

Whenever the system resource is adequate, the transmission performance will not be

affected too much by the out-of-order delivery.

4.3 Packet Size’s Affect on Out-of-order and Performance

In this section, the affect of packet size on out-of-order rate and transmission

performance will be discussed. The experiment was designed working on maximum

performance to demonstrate the influence of the packet size. The parallel channels

employed two GE NICs. 1500 Maximum Transport Unit (MTU) and 9000 MTU

packet size were studied respectively.

The influence of packet size on out-of-order rate is first checked. Figure 4.13

and Figure 4.14 show the maximum throughput of HDPARM and DD on 1500 MTU.

The out-of-order rate results are similar with different scheduling algorithms and

benchmark tools. For this two GE architecture, the 1500 MTU causes 43% out-of-

order rate. While in Figure 4.15 and Figure 4.16, 9000 MTU causes only 15% out-of-

73

order rate. A conclusion can be drawn that larger packet size will decrease the out-of-

order delivery. Again, this decrement can be explained by larger schedule delay which

is caused by longer packet.

One and Two GE Pairs - 1500 MTU, overhead at upper bound
with 43% out-of-order rate, Hdparm disk read

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Reverse
Weighted

Round Robin

Reverse
Deficit

Round Robin

Reverse
Weighted

Fair
Queueing

HS

D
is

k
R

ea
d

(M
B

/s
)

1 GE
2 GE

Figure 4.13 GE Pairs HDPARM Read, MTU = 1500, Out-of-order Rate = 43%

One and Two GE Pairs 1500 MTU, overhead at upper bound
with 43% out-of-order rate, DD disk read

0.00
10.00
20.00

30.00
40.00
50.00
60.00

70.00
80.00
90.00

Reverse
Weighted

Round Robin

Reverse
Deficit

Round Robin

Reverse
Weighted

Fair
Queueing

HS

D
is

k
R

ea
d

(M
B

/s
)

1 GE
2GE

Figure 4.14 GE Pairs DD Read, MTU = 1500, Out-of-order Rate = 43%

74

Next the performance was examined. Compared with 1500 MTU, the 9000

MTU has better maximum performance. One reason is that the packet packaging

computation is more efficient for larger packet size. The other reason is that the

reordering overhead also decreases with a small out-of-order rate.

The computation overhead of the out-of-order delivery is illustrated in this

experiment. Since the single channel maximum performance was provided, the

difference between the single GE and double GE can only be caused by scheduling

algorithms and reordering algorithms. It is found that the difference is larger when

1500 MTU is used. This can be explained that larger out-of-order rate needs more

computation power.

As a conclusion, we suggest using larger packet size whenever the network

supports.

One and Two GE Pairs - 9000 MTU, overhead at upper bound
with 15% out-of-order rate, Hdparm disk read

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Reverse
Weighted

Round Robin

Reverse
Deficit Round

Robin

Reverse
Weighted Fair

Queueing

HS

D
is

k
R

ea
d

(M
B

/s
)

1 GE
2 GE

Figure 4.15 GE Pairs HDPARM Read, MTU = 9000, Out-of-order Rate = 15%

75

One and Two GE Pairs 9000 MTU, overhead at upper bound
with 15% out-of-order rate, DD disk read

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Reverse
Weighted

Round Robin

Reverse
Deficit Round

Robin

Reverse
Weighted Fair

Queueing

HS

D
is

k
R

ea
d

(M
B

/s
)

1 GE
2 GE

Figure 4.16 GE Pairs DD Read, MTU = 9000, Out-of-order Rate = 15%

4.4 Multiple Clients - Multiple Channels Load Balancing

In the previous sections, the experiments are based on multiple channels on one

pair of client and sever. In this section, the multiple clients and multiple channels load

balancing will be studied, where one server with GE and two clients with multiple FEs

were employed.

Figure 4.17, Figure 4.18 and Figure 4.19 show that with all three scheduling

algorithms, the traffic load is evenly balanced on both clients and channels. Since

RAID and multiple devices management work load were distributed on two clients, the

system resource could be fully utilized. The sum of the disk read performance could

approach the maximum throughput when 6 FEs were used.

In this experiment, not only does the network topology have influence on the

performance, the distribution of the system resource is also critical for achieving better

throughput.

76

Reverse Weighted Round Robin load balancing
1 server GE - 2 clients FEs Hdparm Disk Read

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

2 FE
Buffered-

disk reads
(MB/s)

3 FE
Buffered-

disk reads
(MB/s)

D
is

k
R

ea
d

(M
B

/s
)

Client 1
Client 2
Sum client1,client2
Max throughput

Figure 4.17 RWRR Load Balancing on Two Clients with GE-FE Pairs

Reverse Deficit Round Robin load balancing
1 server GE - 2 clients FEs Hdparm Disk Read

0.00
10.00
20.00

30.00
40.00
50.00
60.00

70.00
80.00

2 FE
Buffered-

disk reads
(MB/s)

3 FE
Buffered-

disk reads
(MB/s)

D
is

k
R

ea
d

(M
B

/s
)

Client 1
Client 2
Sum client1,client2
Max throughput

Figure 4.18 RDRR Load Balancing on Two Clients with GE-FE Pairs

77

Reverse Weighted Fair Queueing load balancing
1 server GE - 2 clients FEs Hdparm Disk Read

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

2 FE Buffered-
disk reads

(MB/s)

3 FE Buffered-
disk reads

(MB/s)

D
is

k
R

ea
d

(M
B

/s
)

Client 1

Client 2

Sum
client1,client2
Max throughput

Figure 4.19 RWFQ Load Balancing on Two Clients with GE-FE Pairs

In this chapter, the throughput of the MAP-TP was measured by testing the

disk read of the HyperSCSI network storage device. Parallel symmetrical and

asymmetrical architectures were studied under three scheduling algorithms, RWRR,

RDRR and RWFQ. The result showed that HyperSCSI bandwidth could be increased

above 380% when 4 channels were employed. By analyzing the system resource

distribution and out-of-order rate, it was found that MAP-TP has good scalability

continuously within the range of maximum performance. Furthermore, the packet size

was studied to improve the throughput and reduce the out-of-order rate. The last

experiment demonstrated that the traffic load can be balanced on multiple nodes and

channels.

78

Chapter Five

5 Conclusions and Future Work

In this thesis, we provide a theoretical model and an implementation

demonstrating the multiple address parallel transmission architecture. In this chapter,

we first summarize the major results and then discuss some of the future work of

parallel architecture.

In chapter 2, the theories of the network topology and parallel data transmission

model were discussed. The SAN topology requires working in both LAN and WAN by

supporting Ethernet MAC and IP packets. The storage devices in SAN may have

variable bandwidth and packet sizes.

Based on packet switching network, an end-to-end parallel data transmission

architecture was designed. SAN topology using this structure will have good

scalability and fault tolerance but without much additional complexity. The model of

this transmission architecture is composed of two stage load balancing algorithm, data

flow priority algorithm, data flow restoring, reordering and fault tolerance algorithm.

On sender device, four theoretical load balancing algorithms, RGPS, RWRR,

RDRR and RWFQ, were deduced from reverse Fair Queuing algorithm. For different

network environment and data transmission models, we have shown that RWRR,

RDRR and RWFQ can be utilized and implemented with small computation overhead.

Then we proved that one virtual channel is better than multiple sub channels and used

service discipline algorithm to provide different priorities and rate-control for each

data flow.

On receiver device, data flows are restored and reordered. A chaining hashing

algorithm was used to search senders’ address table with bounded delay. An efficient

79

out-of-order estimation algorithm was used to setup retransmission threshold and

allocate reordering buffer. The mechanism of the out-of-order in parallel architecture

differs from a normal network. Different bandwidths and packet sizes are the major

reason of this out-of-order delivery. The out-of-order rates were analyzed by schedule

delay and out-of-order distance.

Since the end-to-end parallel transmission architecture uses redundant

channels, the scheduler can provide fault tolerance by detecting channel fault and

rescheduling data flows to usable channels. The fault detection algorithm can use

either hardware based, software local loop back and/or remote acknowledge detection

methods. With different computation complexity, the failure of the first hop link, the

nearest switch and the full data path could be detected.

To demonstrate the multiple addresses parallel transmission protocol (MAP-

TP) in SAN, we implemented the protocol as network layer in the Linux kernel module

of the HyperSCSI in Chapter 3.

The MAP-TP protocol includes three major function modules: data module,

control module and a global state machine module. The data module is responsible for

sending and receiving data flow packets through multiple network channels. The

control module is used to manage multiple channels and selecting load balancing

algorithm. The fault tolerance is also provided in the control module. The global state

machine inspects global parameters and synchronizes the control and data transmission

states transition. Each major module is composed of group of processes and events,

and they were illustrated in detail by software flow charts.

In Chapter 4, the parallel transmission performance was measured by testing

the disk read speed of the virtual SCSI device with three popular benchmark tools,

HDPARM, DD and IOZONE. Different parallel symmetrical and asymmetrical

80

architectures were studied under all three scheduling algorithms, RWRR, RDRR and

RWFQ.

The result shows that HyperSCSI bandwidth can be increased above 380%

when 4 links are used. Thus the network utilization rate of the multiple channels

HyperSCSI is 95%, which is acceptable for high speed transmission. Interestingly, by

analyzing results of the out-of-order rate, it is found that out-of-order rate did not affect

the disk read performance very much, which could be explained by the theory of

schedule delay and out-of-order distance.

To improve transmission performance and decrease out-of-order rate, the

network architecture and system resource distribution must be designed wisely. We

suggest using identical channels on one device, increasing the number of identical

channels and utilizing larger packet size whenever possible.

As a conclusion, this multiple address parallel transmission architecture

supports flexible performance scaling in a packet switching network. As such, SAN

topology using this structure will have good scalability and fault tolerance but without

much additional complexity. In addition, by supporting Ethernet MAC and IP packets,

the network storage devices can work in both LAN and WAN environments. This

architecture could be a key factor in deploying SANs, which can provide a highly

scalable bandwidth with full redundancy over switched, parallel data paths.

5.1 Extensions

In this thesis, simple priority service discipline was employed on the scheduler.

However, service disciplines which can provide per-connection end-to-end

performance guarantee are still unavailable along the path. In future, parallel packet

81

switching network will have to support QoS services that allow clients to transport

information with performance guarantee.

Thus, future research work may focus on QoS applications in parallel

transmission packet switching SAN, where the delay model of parallel transmission is

quite different from normal end-to-end transmission. Characteristics such as, delay,

delay jitter, throughput and loss rate should be studied to control the rate of each data

flow and avoid the congestion. Traditional congestion control methods did not

consider about the parallel architecture where out-of-order delivery is quite prevalent.

 In this thesis, features of out-of-order delivery has been studied which is

expressed by characteristics such as, retransmission, window size, drop rate estimation,

and buffer size. More study should be conducted on delay and delay jitter caused by

out-of-order delivery. Both single and multiple channel end-to-end queuing models

should be analyzed by factors of out-of-order delivery.

Additionally, parallel architecture should be studied on emerging Data Grids,

which could be fundamental in future data-intensive applications such as

geographically dispersed extraction of complex scientific information from very large

collections of measured or computed data. The reliability and performance of the

GridFTP might be enhanced by applying Multi-channel technology on striping and

partial file access.

Last but not the least, high level data management interface should be studied

for the implementation of the parallel SAN architecture. A new standard, the Storage

Management Initiative Specification (SMI-S) by Storage Network Industry

Association (SNIA), is rapidly emerging as the architecture for fully interoperable

SANs. SMI-S is intended to be the unifying interface between storage objects that

82

must be managed and the management applications. It is necessary to trace this

standard in future research works.

83

References

[1] M.A. Marsan and D. Roffinella, “Multichannel local area network protocol,”

IEEE, J. Sel. Areas in Commun., vol. SAC-1, pp. 885-897, Nov. 1983.

[2] Bill Ham, Digital Equipment, “Parallel SCSI Grows, Shrinks and Stays the Same,”

www.scsita.org, 1997.

[3] Paul H. Fredette, “The Past, Present, and Future of Inverse Multiplexing,” IEEE

Comm. Magazine, vol. 32, no. 4, pp. 42, 6 April 1994.

[4] James P. G. Sterbenz, Josehp D. Touch, “High-Speed Networking, a Systematic

Approach to High-Bandwidth Low-Latency Communication,” published by John

Wiley & Sons, Inc, 2001.

[5] “Link Aggregation,” IEEE Std 802.3, 2000 Edition.

[6] SUN Trunking Software.http://www.sun.com .

[7] Quanlong Ding, Soung C. Liew, “a Performance Analysis of a Parallel

Communications Scheme for ATM Networks,” Proc. of IEEE Globecom'95, pp.

898--902, 1995.

[8] Patrick Beng T. KHOO and Wilson Yong H. WANG, “Introducing A Flexible

Data Transport Protocol for Network Storage Applications,” 10th NASA Mass

Storage Systems and Technologies Conference / 19th IEEE Symposium on Mass

Storage Systems, Apr. 2002.

[9] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S.

Meder, V. Nefedova, D. Quesnal, S. Tuecke, “Data Management and Transfer in

High Performance Computational Grid Environments,” Parallel Computing

Journal, vol. 28, no5, pp. 749-771, May 2002.

http://www.scsita.org/

84

[10] Brian L. Tierney, Dan Gunter, Jason Lee, Martin Stoufer, ”Enabling Network-

Aware Applications,” Tenth IEEE International Symposium on High Performance

Distributed Computing, pp. 281, Aug. 2001.

[11] Hari Adiseshu, Guru Parulkar and George Varghese, “A Reliable and Scalable

Striping Protocol,” Proc. ACM SIGCOMM, pp. 131-141, Aug. 1996.

[12] Hari Adiseshu, George Varghese and Guru Parullkar, “An Architecture for

Packet-Striping Protocols,” ACM Transactions on Computer Systems, vol. 17, no.

4, pp. 249-287, Nov. 1999.

[13] Josep M.Blanquer and Banu Ozden, “Fair Queuing for Aggregated Multiple

Links,” Proc. Sigcomm, pp. 189-197, 2001.

[14] Jorge A.Cobb, “An In-Depth Look at Flow Aggregation for Efficient Quality of

Service,” IEEE International Conference on Network Protocols, pp. 127, Nov.

1999.

[15] Jorge A.Cobb, “Preserving Quality of Service Guarantees in Spite of Flow

Aggregation,” IEEE/ACM Transactions on Networking, vol.10, no. 1, pp. 43-53,

2002.

[16] Jorge A. Cobb and Miaohua Lin, “End-to-End Delay Guarantees for Multiple-

Channel Schedulers,” IEEE International Workshop on Quality of Service

(IWQoS), May 2002.

[17] C. Brendan S. Traw and Jonathan M. Smith, “Striping within the Network

Subsystem,” IEEE Network, pp. 22--32, Jul./Aug. 1995.

[18] Seungjae Han, Kang G. Shin, “Efficient Spare-Resource Allocation for Fast

Restoration of Real-Time Channels form Network Component Failure,” IEEE

Real-Time Systems Symposium, 1997.

85

[19] Colin J. Parris and Domenico Ferrar., ”A Dynamic Connection Management

Scheme for Guaranteed Performance Services in Packet-Switching Integrated

Services Networks, ” Tenet Technical Report TR-93-005, Computer Science

Division, University of California at Berkeley, 1993.

[20] Michael O. Rabin, “Efficient Dispersal of Information for Security, Load

Balancing, and Fault Tolerance,” Journal of ACM, vol. 36, no.2, pp. 335-348, Apr.

1989.

[21] Xiaohu Qie, Andy Bavier, Larry Peterson, and Scott Karlin, “Scheduling

Computations on a Software-Based Router,” Proc. of the 2001 ACM

SIGMETRICS international conference on Measurement and modeling of

computer systems, pp. 13-24, 2001.

[22] Hari Adiseshu, Guru Parulkar and George Varghese, “Reliable FIFO Load

Balancing over Multiple FIFO Channels,” tech. rep., Washington University, St.

Louis, May 1995.

[23] Haining Wang, Chia Chen, and Kang G. Shin, “Adaptive-Weighted Packet

Scheduling for Premium Service,” Proceedings of IEEE International Conference

on Communications, 2001.

[24] Bhumip Khasnabish and Majid Ahmadi, “In Search of a Fair Scheduling Policy

for Serving Multi-Queue System,” IEEE, 0-7803-1443-3/93, 1993.

[25] Taeck-Geun Kwon, Sook-Hyang Lee and June-Kyung Rho, “Scheduling

Algorithm for Real-Time Burst Traffic Using Dynamic Weighted Round Robin,”

IEEE, 1998.

[26] Idris A. Rai and Murat Alanyali, “Uniform Weighted Round Robin Scheduling

Algorithms for Input Queued Switches,” Communications, 2001. ICC 2001. IEEE

International Conference, Vol. 7, pp. 2028-2032, 2001.

86

[27] Sungwon Ha, Kang-Won Lee and Vaduvur Bharghavan, “Performance Evaluation

of Scheduling Algorithms in an Integrated Packet Services Network

Environment,” Proc. of ISCC'98, Athens, Greece, Jul. 1998.

[28] Ian R. Philp and Jane W.S. Liu, “End-to-End Scheduling in Real-Time Packet-

Switched Networks,” Proc. of IEEE International conference on Network

Protocols (ICNP’96), pp. 23, Oct./Nov. 1996.

[29] Hemant M. Chaskar and U. Madhow, “Fair Scheduling with Tunable Latency: A

Round Robin Approach,” Proc. of IEEE/ACM Transactions on Networking , vol.

11, no. 4, pp. 592-601, Aug. 2003.

[30] Jong-Seon Kim and Daniel C. Lee, “Weighted Round Robin Packet Scheduler

Using Relative Service Share,” Proc. IEEE MILCOM'2001, McLean, VA, Oct.

2001.

[31] Dimitrios Stiliads and Anujan Varma, “Design and Analysis of Frame-based Fair

Queueing: A New Traffic Scheduling Algorithm for Packet-Switched Networks,”

Proceedings of the 1996 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pp. 104-115, 1996.

[32] Yao-Tzung Wang, Tzung-Pao Lin and Kuo-Chung Gan, “An Improved

Scheduling Algorithm for Weighted Round Robin Cell Multiplexing in an ATM

Switch,” Technical Report, Industrial Technology Research Institute, 1994.

[33] Hideyuki Shimonishi, Makiko Yoshida, Ruixue Fan and Hiroshi Suzuki, “An

Improvement of Weighted Round Robin Cell Scheduling in ATM Networks,”

Proc. GLOBECOM'97, pp1119-1123, 1997.

[34] Norio Matsufuru and Reiji Aibara, “Efficient Fair Queueing for ATM Networks

Using Uniform Round Robin,” Proc. IEEE INFOCOM'99, 1999.

87

[35] Amitava Raha, Nicholas Malcolm and Wei Zhao, “Hard Real-Time

Communications with Weighted Round Robin Service in ATM Local Area

Networks,” IEEE 0-8186-7123-8/95, 1995.

[36] Yoshihiro Ito, Shuji Tasaka and Yutaka Ishibashi, “Variably Weighted Round

Robin Queueing for Core IP Routers,” Proc. IEEE IPCCC'02, pp. 159-166, Apr.

2002.

[37] A. Demers, S. Keshav and S. Shenker, “Analysis and Simulation of a Fair

Queueing Algorithm,” Proc. of ACM SIGCOMM, pp. 1-12, Sep. 1989.

[38] Abhay K. Parekh and Robert G. Gallager, “A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Networks: The Single-Node

Case,” IEEE/ACM, Transactions on Networking, vol.1, no. 3, pp. 344-357, Jun.

1993.

[39] Abhay K. Parekh and Robert G. Gallager, “A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Networks: The Multiple Node

Case,” Proc. of the INFOCOM'93, pp. 521-530, Mar. 1993.

[40] Jon C.R. Bennett and Hui Zhang, “WF2Q: Worst-case Fair Weighted Fair

Queueing,” Proc. of IEEE INFOCOM 96, pp. 120-128, Mar. 1996.

[41] S. Jamaloddin Golestani, “A Self-Clocked Fair Queueing Scheme for Broadband

Applications,” Proc. of IEEE INFOCOM'94, pages 636--646, Jun. 1994.

[42] Dimitrios Stiliadis and Anujan Varma, “Rate-Proportional Servers: A Design

Methodology for Fair Queueing Algorithms,” IEEE/ACM Transactions on

Networking, Apr. 1998.

[43] Dimitrios Stiliadis and Anujan Varma, “Latency-Rate Servers: A General Model

for Analysis of Traffic Scheduling Algorithms,” IEEE/ACM Transactions on

Networking, Oct. 1998.

88

[44] Jaesun Cha, Jisoo Park, Changhwan Oh, and Kiseon Kim, “A Time-Based

Weighted Fair Queueing Algorithm for Improving CDV and CLP in ATM

Networks,” IEEE TENCON'99. Vol. II, pp. 840-843, Sep. 1999.

[45] Yuhua Chen and Jonathan S. Turner, “Design of a Weighted Fair Queueing Cell

Scheduler for ATM Networks,” Proc. of IEEE GLOBECOM 98, Sydney,

Australia, Nov. 1998.

[46] Yoshihiro Ohba, “QLWFQ: A Queue Length Based Weighted Fair Queueing

Algorithm in ATM Networks,” Proc. IEEE IN- FOCOM'97, Kobe, Japan, pp.

567-576, Apr. 1997.

[47] Chin-Chang Li, Shiao-Li Tsao, Meng Cheng Chen, Yeali Sun and Yueh-Min

Huang, “Proportional Delay Differentiation Service Based on Weighted Fair

Queuing,” Proc. IEEE Int. Conf. Computer Communications and Networks

(ICCCN), pp. 418-423, Oct. 2000.

[48] Andrea Francini and Fabio M. Chiussi, “A Weighted Fair Queueing Scheduler

with Decoupled Bandwidth and Delay Guarantees for the Support of Voice

Traffic,” Proc. of GlobeCom, vol. 3, 2001.

[49] Mong-Fong Horng, Wei-Tsong Lee, Kuan-Rong Lee and Yau-Hwang Kuo, “

An Adaptive Approach to Weighted Fair Queue with Qos Enhanced on IP

Network,” Proc. IEEE TENCON 2001, Aug 2001.

[50] Albert Banchs and Xavier Perez, “Distributed Weighted Fair Queuing in 802.11

Wireless LAN,” Proc. of IEEE ICC2002, Apr./May. 2002.

[51] Dimitrios Stiliadis and Anujan Varma, “Efficient Fair Queueing Algorithms for

Packet-Switched Network,” IEEE/ACM Transaction on Networking, vol. 6, no. 2,

pp.175-185, Apr. 1998.

89

[52] Nam-Seok Ko and Hong-Shik Park, “Emulated Weighted Fair Queuing Algorithm

for High-Speed Packet-Switched Network,” Proc. of the 15th International

Conference on Information Networking (ICOIN'01), pp. 52, Jan./Feb. 2001.

[53] Jose R. Gallardo and Dimitrios Makrakis, “Dynamic Predictive Weighted Fair

Queueing for Differentiated Services,” IEEE International Conference on

Communications (ICC 2001), Helsinki, Finland, Jun. 2001.

[54] M. Shreedhar and George Varghese, “Efficient Fair Queuing using Deficit Round

Robin,” Proc. of the conference on Applications, technologies, architectures, and

protocols for computer communication, vol. 25, no. 4, pp. 231-242, 1995.

[55] L. Lenzini, E. Mingozzi and G. Stea, “Aliquem: a Novel DRR Implementation to

Achieve Better Latency and Fairness at O(1) Complexity,” Proc. of the 10th

International Workshop on Quality of Service (IWQoS 2002), pp. 77-86, Miami

Beach, FL, May 15-17, 2002.

[56] M. H. MacGregor, W. Shi, “Deficit for Bursty Latency-critical Flows: DRR++,”

Proc. IEEE ICON 2000, Singapore, pp. 287-293, Sept. 2000.

[57] Salil S. Kanhere and Harish Sethu, “Fair, Efficient and Low-Latency Packet

Scheduling Using Nested Deficit Round Robin,” Proc. of the IEEE Workshop on

High-Performance Switching and Routing (HPSR), Dallas, Texas, USA, May

2001.

[58] Salil S. Kanhere and Harish Sethu, “On the Latency Bound of Deficit Round

Robin,” Proc. of the IEEE International Conference on Computer

Communications and Networks, Miami, Florida, USA, Oct. 2002.

[59] Onur Altintas, Yukio Atsumi and Teruaki Yoshida, “A Note on Fair Queueing

and Best-Effort Service in the Internet,” Proc. of 1999 Internet Workshop, pp. 145,

Osaka University Convention Center Suita, Osaka, Japan, Feb. 1999.

90

[60] Go Hasegawa, Takahiro Matsuo, Masayuki Murata and Hideo Miyahara,

“Comparisons of Packet Scheduling Algorithms for Fair Service among

Connections on the Internet,” Journal of High Speed Networks, vol.12, no. 1,2,

pp.1-28, 2002..

[61] Salil S. Kanhere and Harish Sethu, “Fair, Efficient and Scalable Scheduling

Without Per-Flow State,” Proc. of the IEEE International Performance,

Computing and Communications Conference, Phoenix, Arizona, USA, Apr. 2001.

[62] Kimihiro Yamakoshi, Eiji Oki and Naoaki Yamanaka, “Dynamic Deficit Round-

Robin Scheduler for 5-Tb/s Switch Using Wavelength Routing,” Proc. of High

Performance Switching and Routing, May 2002.

[63] Salil S. Kanhere, Harish Sethu and Alpa B. Parekh, “Fair and Efficient Packet

Scheduling Using Elastic Round Robin,” IEEE Transactions on Parallel and

Distributed Systems vol. 13, no. 3, pp. 324-336 March 2002.

[64] J. M. Arco, D. Meziat and B. Alarcos, “A Suitable Service Discipline for ATM-

Ethernet Interconnection,” ECUUM´2000, Colmar (France), pp. 87-92, Oct. 2000.

[65] Hari Adiseshu, Guru Parulkar and George Varghese, “Reliable FIFO Load

Balancing over Multiple FIFO Channels,” tech. rep., Washington University, St.

Louis, May 1995.

[66] Dimitri Bertsekas and Robert Gallager, “Data Network,” Prentice-Hall, 1992.

[67] V. Jacobson, “Congestion Avoidance and Control,” Proc. of the SIGCOMM '88,

pp. 314- 329, Aug. 1988.

[68] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms,” Internet RFC, Jan. 1997.

91

[69] Sally Floyd and Kevin Fall, “Promoting the Use of End-to-End Congestion in the

Internet,” IEEE/ACM transactions on networking, vol. 7, no. 4, pp. 458-472, Aug.

1999.

[70] Hui Zhang, “Service Disciplines for Guaranteed Performance Service in Packet-

Switching Networks,” Proc. of the IEEE, 83(10), pp. 1374-1396, Oct. 1995.

[71] Pawan Goyal and Harrick M. Vin, “Generalized Guaranteed Rate Scheduling

Algorithms: A Framwork,” IEEE/ACM Transactions on Networking, vol. 5, no. 4,

pp. 561-571, 1997.

[72] David D. Clark and David L. Tennenhouse, “Architectural Consideration for a

New Generation of Protocols,” In SIGCOMM Symposium on Communications

Architectures and Protocols, ACM, pp. 200-208, Philadelphia, PA, Sep. 1990.

[73] Vern Paxson, “End-to-End Internet Packet Dynamics,” IEEE/ACM Transactions

on Networking, vol. 7, no. 3, pp. 277-292, Jun. 1999.

[74] Feng Wang and Yongguang Zhang, “Improving TCP Performance over Mobile

Ad-Hoc Networks with Out-of-Order Detection and Response,” Proc. of the 3rd

ACM international symposium on Mobile ad hoc networking & computing, pp.

217-225, 2002.

[75] Dmitri Loguinov and Hayder Radha, “Large-Scale Experimental Study of Internet

Performance Using Video Traffic,” ACM SIGCOMM Computer Communication

Review (CCR), vol. 32, no. 1, pp. 7-19, Jan. 2002.

[76] Sally Floyd, “Re: TCP and Out-of-Order Delivery,” PILC Mailing list,

pilc.lerc.nasa.gov, 1999.

[77] Jon C. R. Bennett, Craig Partridge and Nicholas Shectman, “Packet Reordering is

Not Pathological Network Behavior,” IEEE/ACM Transactions on Networking,

vol. 7, no. 6, pp. 789-798, Dec. 1999.

92

[78] Anjali Agarwal and J. William Atwood, “A Unified Approach to Fault-Tolerance

in Communication Protocols Based on Recovery Procedures,” IEEE/ACM

Transactions on Networking, vol. 4, no. 5, pp.785-795, Oct. 1996.

[79] Flavin Cristian, “Understanding Fault-Tolerant Distributed Systems,”

Communications of ACM, vol. 34, no.2, pp. 56-78, Feb. 1991.

[80] Seungjae Han and Kang G. Shin, “Experimental Evaluation of Failure-Detection

Schemes in Real-time Communication Networks,” IEEE Symposium on Fault-

Tolerant Computing, pp. 122-131, 1997.

[81] Seungjae Han and Kang G. Shin, “Fast Restoration of Real-time Communication

Service from Component Failures in Multi-hop Networks,” ACM SIGCOMM, pp.

77-88, 1997.

[82] Qin Zheng and Kang G. Shin, “Fault-Tolerant Real-Time Communication in

Distributed Computing System,” IEEE, Transaction on parallel and distributed

systems, vol. 9, no. 5, pp. 470-480, May 1998.

[83] Constantinos Dovrolis and Parameswaran Ramanathan, “Resource Aggregation

for Fault Tolerance in Integrated Services Networks,” ACM SIGCOMM

Computer Communication Review, vol. 28, no. 2, pp. 39-53, Apr.1998.

[84] Anindo Banerjea, “Simulation Study of the Capacity Effects of Dispersity Routing

for Fault Tolerant Realtime Channels,” ACM SIGCOMM '96, vol. 26, no. 4, pp.

194-205, Oct. 1996.

[85] Daniel P. Bovet and Marco Cesati, “Understanding the Linux Kernel,” O’Reilly,

January 2001.

[86] Alessandro Rubini and Jonathan Corbet, “Linux Device Drivers Snd Edition”,

O’Reilly, June 2001.

93

[87] Vijay Karamcheti, Andrew A. Chien, “Software Overhead in Message Layers:

Where Does the Time Go?” Proc. of the Sixth Symposium on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VI), pp.

51-60, San Jose, California, Oct. 1994.

94

Appendices

Appendix A Fault Tolerance Cost Estimation

Below is the reliability and fault tolerance cost estimation functions and some

numerical result:

 From the estimation data, we found that with the increment of the channels, the

reliability ratio increases rapidly.

95

 From the estimation result we found that fault detection cost remains low when

most channels are working.

	Introduction
	Background and Motivations
	An Introduction to HyperSCSI Protocol
	Contribution and Organization of Thesis

	Theoretical Models
	Network Topology - Ethernet and IP Packet Switching Network
	Multiple Address Parallel Transmission
	Case One: Single Data Flow on Asymmetrical Networks
	Case Two: Multiple Data Flows on Asymmetrical Network

	Load Balancing Algorithms for Two Stage Schedulers
	Reverse Generalized Processor Sharing (RGPS)
	Reverse Weighted Round Robin (RWRR)
	Reverse Weighted Fair Queuing (RWFQ)
	Reverse Deficit Round Robin (RDRR)

	Data Flow Priority
	One Virtual Channel vs. Multiple Sub Channels
	Multiple Data Flows’ Priorities with Service Disc

	Data Flow Restore --Hashing Address Table and Reordering
	Hash Chaining Structure for Address Restoring
	Out-of-order Analysis
	Retransmission Threshold and Reorder Buffer

	Fault Detection and Cost Estimation
	Three Fault Detection algorithms
	Cost Estimation for Local and Remote Fault Detection

	Implementation
	Multiple Address Parallel Transmission Protocol
	Multi-Channel Data Module
	Multi-Channel Control Module
	Global State Machine Module

	Multi-Channel Protocol Processes Software Flow Charts
	Major Flow Charts, Key Data Structures and Events List
	Multi-Channel Packets Flow and Packet Types
	Multi-Channel Address Discover
	Multi-Channel Address Table Change and Rebuild
	Multi-Channel Fault Detection Flow Chart
	Virtual Device Management Flow Chart

	Results and Discussion
	Disk Read Performance
	Multi-Channel with Symmetrical Parallel Network
	Multi-Channel with Asymmetrical Parallel Network
	Influence of System Resources on Disk Read Performance

	Out-of-order Rate Analysis
	Packet Size’s Affect on Out-of-order and Performa
	Multiple Clients - Multiple Channels Load Balancing

	Conclusions and Future Work
	Extensions

	References
	Appendix A Fault Tolerance Cost Estimation

