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Summary 
 
 

The demand for high availability and high performance in Storage Area 

Network (SAN) drives more and more effort on network architecture design. To build 

such a Storage Area Network, the use of parallel channels is attractive. At present, 

most parallel solutions heavily depend on hardware components and do not provide 

end-to-end parallel connection. This thesis provides a theoretical model and an 

implementation demonstrating the multiple address parallel transmission architecture. 

This architecture provides end-to-end parallel connections between network storage 

devices without any addition of components. 

At first, the theories of the network topology and parallel data transmission 

model are studied. This parallel data transmission architecture is based on packet 

switching network. SAN topology using this structure will have good scalability and 

fault tolerance but without much additional complexity. The model of this transmission 

architecture is composed of two stage load balancing algorithms, data flow priority 

algorithms, data flow restoring, reordering and fault tolerance algorithms. 

Three load balancing algorithms, Reverse Weight Round Robin (RWRR), 

Reverse Deficit Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ), 

are proposed and implemented with small computation overhead. The mechanism of 

out-of-order in parallel architecture is analyzed in detail. An efficient out-of-order 

estimation algorithm is used to setup retransmission threshold and allocate reordering 

buffer. Furthermore, since this transmission architecture uses redundant channels, the 

scheduler can provide fault tolerance by using either hardware-based, software local 

loop back andor remote acknowledge detection methods.  



v 

To demonstrate the multiple address parallel transmission protocol (MAP-TP) 

in SAN, we implement the protocol as network layer in the Linux kernel module of the 

HyperSCSI and measure the performance by testing the disk read speed of the virtual 

SCSI device with three popular benchmark tools of HDPARM, DD and IOZONE.  

The result shows that HyperSCSI bandwidth can be increased above 380% 

when 4 links are used, which is acceptable for high speed transmission. Interestingly, 

we also found that out-of-order rate does not affect the disk read performance very 

much, which can be explained by the theory of schedule delay and out-of-order 

distance. 

In addition, by supporting Ethernet MAC and IP packets, the network storage 

devices can work in both LAN and WAN environments. This architecture can be a key 

factor in deploying SANs, which can provide a highly scalable bandwidth with full 

redundancy over switched and parallel data paths. 
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Chapter One 
 
 

1 Introduction  

1.1 Background and Motivations  

A Storage Area Network (SAN) is a specialized, high-speed network attaching 

servers and storage devices. It is sometimes called “the network behind the servers”. A 

SAN allows “any to any” connection across the network, using interconnect elements 

such as routers, gateways, hubs and switches.  

A Storage Area Network (SAN) is any high-performance network whose 

primary purpose is to enable storage devices to communicate with computer systems 

and with each other. 

 The demand for high availability and high performance in Storage Area 

Network (SAN) drives more and more effort on network architecture design. The 

SAN’s performance must be able to grow as the organization’s information storage 

and processing needs grow. A successful SAN should provide an extra performance 

for the high-volume data and message traffic of client and server. Thus, the scalability 

of SAN is quite important, because it is not practical to replace a SAN very often for 

enterprise applications. To build a scalable Storage Area Network, the use of parallel 

data path network architecture is attractive.  

Current parallel network architectures can be classified into two categories: non 

packet switching based and packet switching based architectures. The non packet 

switching parallel network architectures emerged at 1980s’. First, two popular non 

packet switching architectures are demonstrated below.  
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One traditional research on parallel network architecture concentrates on Multi-

channel Local Area Network (MLAN) architecture [1]. The MLAN is based on a bus 

sharing architecture (Figure 1.1). Although no middle gateways or switches are 

required, this bus sharing architecture has the disadvantage that only two devices can 

communicate at one time. 
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Figure 1.1 Traditional Multi-channel Local Area Network 

The other architecture is Direct Attached Storage (DAS) network, where 

storage area network uses directly connected parallel SCSI network [2]. The current 

maximum data transmission performance of DAS is 200MB/s. However, faster speed 

means shorter distance, normally no more than 30 meters. Limited by the distance, 

DAS is not a good solution for parallel SAN architecture. 

With the rapid evolution of the switching technology in 1990s’, research in 

parallel network gradually focus on packet switching network (as showed in Figure 

1.2). The algorithms which schedule data streams to parallel paths are also studied as 

inverse multiplexing [3]. The parallel packet switching network is more scalable and 

flexible than the MLAN and DAS. Additionally, two packet switched storage devices 

can communicate without affecting other devices’ performance.  

The parallel packet switching network architecture can be built on one 

particular link or end-to-end communication [4]. The aggregate bandwidth built on one 
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particular link is commonly used to increase local area network performance. These 

scheduling algorithms are relatively simple because of the symmetrical parallel 

architecture. However, it is highly dependent on switches to provide load balancing 

services. Most contemporary parallel implementations work on one particular link, for 

instance: 

Link Aggregation Control Protocol (LACP) [5] is a sub layer for CSMA/CD 

MAC. Designed for IEEE 802.3 MAC, it can not adapt to the load balancing based on 

IP layer address; and LACP can not operate across multiple data rates, which means all 

network interface are restricted to the same transfer speed. Furthermore, LACP transfer 

one conversation on one physical network interface to avoid packets disorder, 

bandwidths on other interfaces are wasted. 

 

Storage
devices

 

 

Figure 1.2 Asymmetrical Parallel Architecture in Packet Switching Network 

Linux Bonding, Cisco EtherChannel and Sun Trunking [ 6 ]: All these 

technologies refer to using multiple network interfaces to compose a virtual link, 

which use one pair of MAC address. This technology is similar to the LACP except 

that it heavily relies on switch’s ability to provide traffic load balancing (known as 
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virtual LAN technology). This will increases the cost and complexity of the SAN 

topology.  

The parallel packet switching architecture based on end-to-end parallel 

transmission routes different packets belonging to a single end-to-end application 

along multiple distinct network paths [7]. This end-to-end parallel technology can 

provide a highly scalable bandwidth over long distances, and with the ability to 

provide full redundancy and parallel data paths. However, there are several significant 

challenges to end-to-end protocol, which must be responsible for managing the 

multiple flows and resequencing packets with large skew. Due to these challenges, 

there is no available end-to-end parallel protocol at present.  

On the storage area network application side, many contemporary SAN 

solutions such as, HyperSCSI, FCIP, iSCSI, iFCP and iSNS [8], are working on packet 

switching network. For these solutions, parallel packet switching technology is in great 

need to meet the new requirements for high scalability and reliability over long 

distance. Recently, GridFTP claims that it provides end-to-end parallel TCP streams to 

improve performance [9,10]. However, it actually provides multiple data flows on the 

same path. This only increases the channel utilization not the physical channel 

bandwidth.  

As we discussed here, the end-to-end parallel transmission architecture will be 

a key factor in SAN solutions. Thus, we start a study on multiple address parallel 

transmission protocol (MAP-TP) for SAN to meet the new requirement of high 

scalability and reliability over long distances. This protocol is also referred as “Multi-

channel” technology throughout the thesis. The aim of the study is to design and 

implement an end-to-end parallel architecture that can increase the network I/O 

performance between network storage modules by employing more communication 
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channels in packet switching network. Moreover, a built-in fault tolerance strategy for 

surviving and restoring from network interface and network failures should be 

developed.  

1.2 An Introduction to HyperSCSI Protocol 

To demonstrate the multiple address parallel transmission protocol in SAN, 

MAP-TP protocol is developed and combined with the HyperSCSI network storage 

protocol. In this section, we will outline some of the key features and basic technical 

details of HyperSCSI. The architecture relationship between MAP-TP and HyperSCSI 

is also demonstrated. 

Small Computer Systems Interface (SCSI) is the predominant mechanism for 

various storage and even non-storage devices. To make SCSI “network-enabled”, the 

HyperSCSI is invented for the transmission of SCSI family of protocols across a 

network. 

Since the requirements of local network storage (SAN) and wide-area network 

storage (SWAN) are quite different, HyperSCSI protocol supports multiple modes of 

operation. Two such modes are currently being developed, one for local access, Local 

HyperSCSI over Ethernet (HS/eth), and the other for wide-area connectivity, Wide-

Area HyperSCSI over IP (HS/IP). The basic protocol structure is essentially the same, 

thus allowing devices to speak local or wide-area storage seamlessly.  

Many advanced functions and capabilities were built into the HyperSCSI 

protocol to support other requirements like dynamic management, dynamic flow 

control and in-band management capabilities. HyperSCSI can provide a minimum 

level of connectivity for interoperability operations and while supporting advanced 

vendor-specific or implementation-specific functions. Other possible device specific 

options include read-only access, removable media locking and data compression. 
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The HyperSCSI connection setup is a three-step handshaking procedure 

between a HyperSCSI client and server pair. Typically, in a storage network, the host 

machine (HyperSCSI client) is responsible for locating and initiating connections to 

storage devices (HyperSCSI servers). During this process, the HyperSCSI client issues 

a HCC_DEVICE_DISCOVERY via Ethernet broadcast or IP packet, to locate devices 

on the network. For IP-based situations, a client must specify an IP address (or DNS 

name) and a HCC_DEVICE_DISCOVERY packet is sent over IP directly to the 

server. Once the HyperSCSI server receives this packet, it checks the client address for 

authentication purposes and transmits the HCC_ADN_REQUEST packet back to the 

HyperSCSI client. In order for the HyperSCSI client to establish a connection with the 

HyperSCSI server, it must then send the correct response through a 

HCC_ADN_REPLY command and add the ID numbers of the devices that it has 

access to into its own registry. If the server successfully authenticates the 

HCC_ADN_REPLY, the connection is accepted and the HyperSCSI client can now 

send commands to the server.  

An ACK mechanism has been adopted to support flow control of data between 

a HyperSCSI client and server pair. The ACK window size refers to the number of 

packets that the transmitter may continuously send before waiting for an 

acknowledgement. This window size must be negotiated and agreed upon before data 

flow can take place and is set by the requestor through an FC_ACK_SNR command. 

This packet is issued as a separate message and typically, the server will be the one to 

issue this command so that the server has the ability to balance loads or priorities 

across multiple clients, although this does not mean that the client may not issue one 

either. The ACK window size can be set based on traffic loads, or buffer capacities and 

can be set at start-up or changed dynamically during run time.  
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When there is a SCSI request from the local OS SCSI upper layer of the host 

machine, the HyperSCSI client software is responsible for converting the OS-specific 

SCSI command block together with any relevant data (as in a write command) into a 

platform independent HyperSCSI Command Block (HCB). The client then 

encapsulates and fragments the HCB into one or more HCBE_REQUEST packets that 

it sends to the HyperSCSI server. SCSI command blocks and user data will therefore 

be transmitted together in the same packet. The HyperSCSI server receives the data 

stream, re-assembles the HyperSCSI command block and relevant user data, converts 

it back to an OS-specific SCSI command block and passes it to the relevant hardware 

for execution. When the result of this SCSI request is ready, the HyperSCSI server will 

send the result together with the requested data back to HyperSCSI client by issuing 

the HCBE_REPLY packet stream in a similar manner as the request. The HyperSCSI 

client reassembles the HyperSCSI command block and converts it back to a OS-

specific SCSI command block before passing it on to the local OS SCSI upper layer.  

During a HyperSCSI connection, the HyperSCSI server will regularly (timer-

based) issue a HCC_ADN_REQUEST command for three purposes, re-authentication 

of clients and key-exchange for security, re-negotiation of device options (if 

permitted), and as a form of “keep-alive”. Through this method, servers not only poll 

the client’s status, but also check its identity. Furthermore, if HyperSCSI encryption 

options are turned on for data transmission, the HCC_ADN_REQUEST and 

HCC_ADN_REPLY use an authenticated exchange mechanism to update and change 

encryption keys. This scheme also allows a device’s options to be modified 

dynamically. 

The HyperSCSI client can close a connection by sending an 

HCC_DISCONNECT command to the HyperSCSI server. The server will then remove 



8 

this client from its connection list and close the connection. Servers do not need to 

acknowledge disconnect requests from clients because SCSI connections are host-

target based.  

Feature-wise, the HyperSCSI reference implementation already supports 

standard SCSI hard drives, IDE hard drives, software RAID / virtualized drives, optical 

disks (like DVDROM and CDRW), USB devices (like Iomega Zip Disk) and SCSI 

tape drives (like HP DAT40).  We have even successfully used HyperSCSI to write 

CDs remotely over DSI live corporate LAN. File systems like Microsoft’s 

FAT16/FAT32, SGI’s XFS, IBM’s JFS and Linux Ext2/Ext3 have all been 

successfully tested on HyperSCSI drives. HyperSCSI clients and servers have been 

successfully implemented on Linux, while client versions on Windows 2000 and 

Solaris 8 are currently in development. Encryption schemes that have already been 

implemented include 64-bit Blowfish and 128-bit Rijndael. HyperSCSI has been 

assigned its own IEEE Ethertype Number, and will soon receive a registered IP port 

for HS/IP implementations. 

HyperSCSI provides an opportunity to address various concerns and open up 

new possibilities for network storage. The Local HS/eth protocol allows the 

construction of high-speed Ethernet based SANs while the use of Wide-Area HS/IP 

permits mobile devices like laptops to access the corporate SAN directly (bypassing 

servers if needed ). However, storage devices that only use single network path are not 

efficient enough. In the HyperSCSI performance testing, it is found that the storage 

devices have low utilization rate when working on Fast Ethernet network. In this 

application, the network bandwidth becomes the bottleneck of the whole SAN system.  
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Figure 1.3 Multi-Channel Network Architecture for HyperSCSI Protocol 

To improve the scalability and reliability of HyperSCSI, the MAP-TP protocol 

is combined with HyperSCSI protocol (Figure 1.3). Multiple network interfaces and 

network paths are used to enhance the performance and balance the traffic load. 

Furthermore, the packetisation and virtualization options of HyperSCSI allow us to 

implement Multi-channel communications with fault tolerance and reliability. 

1.3 Contribution and Organization of Thesis  

In this thesis, our research emphasis is on the end-to-end multiple address 

parallel transmission architecture for SAN application. This architecture provides not 

only scalability, but also the simplicity and reliability. The contributions of this thesis 

can be summarized as: 

1. A theoretical multiple address parallel transmission model is studied. This 

model provides end-to-end parallel connections between network storage devices 

without extra hardware. 



10 

2. Three load balancing algorithms, Reverse Weight Round Robin (RWRR), 

Reverse Deficit Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ), 

are proposed and implemented with small computation overhead.  

3. The mechanism of the out-of-order in parallel architecture is analyzed in 

detail. An efficient out-of-order estimation algorithm is deduced to setup 

retransmission threshold and allocate reordering buffer. 

4. Fault tolerance methods of hardware-based, software local loop back and/or 

remote acknowledge are studied on parallel redundant channels.  

5. The multiple address parallel transmission protocol (MAP-TP) is 

implemented as network layer in the Linux kernel module of the HyperSCSI. The 

performance is measured by testing the disk read speed of the virtual SCSI device with 

three popular benchmark tools of HDPARM, DD and IOZONE. 

 

Organization of this thesis is as follows: 

In Chapter 2, we will discuss the theoretical model of the end-to-end multiple 

address parallel transmission architecture. First the parallel network topology is studied, 

and then an asymmetrical parallel data transmission model is demonstrated. This 

transmission model is composed of two-stage load balancing algorithm, data flow 

priority algorithm, data flow restoring, reordering and fault tolerance algorithm. Three 

load balancing algorithms, Reverse Weight Round Robin (RWRR), Reverse Deficit 

Round Robin (RDRR) and Reverse Weighted Fair Queuing (RWFQ) are proposed. 

The mechanism of the out-of-order in parallel architecture is analyzed in detail. An 

efficient out-of-order estimation algorithm is used to setup retransmission threshold 

and allocate reordering buffer. Furthermore, since this transmission architecture uses 
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redundant channels, three fault detection methods of hardware-based, software local 

loop back and/or remote acknowledge are studied. 

In Chapter 3, the multiple address parallel transmission protocol (MAP-TP) 

will be implemented as network layer in the Linux kernel module of the HyperSCSI. 

Three major modules: data module, control module and global state machine module 

are demonstrated. The data module is responsible for sending and receiving data flow 

packets through multiple network channels. The control module is used to manage 

multiple channels and selecting load balancing algorithm. The fault tolerance is also 

considered in the control module. The global state machine inspects global parameters 

and synchronizes the control and data transmission states transition. Additionally, 

detail functions of the modules are presented in software design flow charts. 

  In Chapter 4, we will measure the parallel transmission performance and out-

of-order delivery by testing the disk read speed of the virtual SCSI device with three 

popular benchmark tools of HDPARM, DD and IOZONE. Different parallel 

symmetrical and asymmetrical architectures are studied under all three scheduling 

algorithms, RWRR, RDRR and RWFQ. All experiments are based on parameters of 

channel numbers, channel bandwidth, packet size and system resource. By discussing 

the experimental results, suggestions for MAP-TP design will be provided.  
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Chapter Two 
 
 

2 Theoretical Models  

Research on parallel resource modeling is emerging in recent years. Several 

papers have proposed theoretical models [11, 12, 13, 14, 15, 16, 17] for multiple 

resources scheduling in parallel architecture network. These theories are quite helpful 

for designing and evaluating the throughput, delay, and load-balancing algorithm of 

multiple address parallel transmission architecture. In this chapter we first discuss the 

theories of the network topology, and then demonstrate an asymmetrical parallel data 

transmission model in the following sections. This transmission model is composed of 

two-stage load balancing algorithm, data flow priority algorithm, data flow restoring, 

reordering and fault tolerance algorithm. 

2.1 Network Topology - Ethernet and IP Packet Switching Network  

In a SAN, the topology is arbitrary. The storage devices are expected to have 

variable bandwidths and packets can have variable sizes. To meet these requirements, 

we will design a model which can provide asymmetrical parallel channels between the 

sender and the receiver.  

This multiple address parallel transmission architecture, which is called Multi-

Channel, is designed to work on both symmetrical and asymmetrical packet switching 

network. In the switching network, storage devices are connected with links and 

switches, where links are assumed to have bound delay and switches are assumed to be 

“non-blocking”. With these topologies, a connection in such a network can be modeled 

as traversing a number of queuing servers, while each server modeling the output link 

of a switch. Each communication component of the network has a bounded delay. 
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Between a node and a switch, multiple links can be used and these links can 

have different bandwidth. A general structure is shown in Figure 1.2. Each storage 

device (one node) can have any number of network interface cards (NIC). Every 

network interface can access any other network interface. To build a connection 

between two end-to-end nodes, the number of the network interfaces of two nodes 

need not to be equal. For the implementation, two most popular protocols, Ethernet 

and IP protocol are chosen as the network channels sub layer. The NIC interfaces can 

be Fast Ethernet or Gigabit Ethernet.  

Unlike other NIC aggregation solutions, this design does not demand for 

special hardware in storage devices or switches. Each NIC uses their original address 

naming system, i.e., each NIC card is bonded with unique MAC address or IP address. 

The parallel communication channels between two nodes are built up by scheduling 

network packets based on these addresses. Many other parallel transmission solutions 

assign the same address to multiple NIC interfaces, which cannot build an end-to-end 

parallel channel. This requires that both nodes and switches install special load 

balancing and address translating service, which is complicated to setup. Normally, the 

switch components must support VLAN function to support such parallel transmission. 

In our architecture, only the sender and receiver nodes schedule the data flows, the 

required network in between is a normal network. 

So far we have a multiple paths architecture built by normal packet switching 

network. Next, multiple communication channels are built on these paths. Some 

designs use part of the communication channels as backup channels [18], which 

preserve spare resource in case of failure. This is actually a resource waste. All the 

available channels should be utilized on communication simultaneously. Additionally, 

some design keep one data flow on one channel [19] to avoid packet out-of-order, this 
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also does not fully utilize the resource. Because information is required to maintain a 

data flow on a particular channel, it may cost more effort than out-of-order handling. 

In our design, one data flow or multiple data flows are distributed on all channels. By 

employing multiple channels, not only load balancing and fault tolerance are provided, 

the security feature is also enhanced in some distance because of the information 

dispersal [20]. 

With the improvement of the computation power, traffic load scheduling can be 

implemented based on software [21]. The whole multiple address parallel transmission 

protocol can be implemented as a software layer, where the sender can do all the 

scheduling. Multiple data flows are dispersed into packets at sender, and then the 

traffic load is sent to channels evenly by schedulers. 

2.2 Multiple Address Parallel Transmission 

The communication model of Multi-Channel is different from a normal parallel 

transmission model. In SAN, network storage devices are expected to have variable 

capacity and bandwidth. At present, only the storage capacity has good scalability, 

while the bandwidth cannot be scaled easily. One purpose of Multi-Channel model is 

to efficiently increase the end-to-end bandwidth scalability of the network storage 

devices. To apply the algorithms more precisely to a real SAN environment, channel 

numbers are not necessarily symmetrical at sender and receiver nodes. For instance, if 

the storage server needs more bandwidth to serve multiple client stations, the server 

will be installed more NIC interfaces.  

The theoretical model of a connection between a sender and a receiver is 

composed of five sequential components as shown in Figure 2.1: (1) the first stage load 

balancing scheduler, (2) data flow priority controller, (3) the second stage load 

balancing scheduler, (4) hashing table for address restoration and (5) data flow reorder. 



15 

With this architecture, the bandwidth of each network storage device can be easily 

increased or decreased independently. Such model can work in a normal packet 

switching network without the use of special hardware.   

In the sender node, two schedulers are used to balance the traffic load on sender 

and receiver respectively. To distinguish the two schedulers, we call the first stage 

scheduler “Marker”. Each data flow has a Marker, however all data flows share one 

global second stage scheduler. Between first and second scheduler, a service algorithm 

is used to grant different priorities for each data flow. 

In the receiver node, data flows are restored and reordered when packets arrive 

at different network interface. A hashing selection and an out-of-order estimation 

algorithm are used to maintain the data flow.   
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Figure 2.1 Model for Multiple Address Parallel Transmission Architecture 

The following parts will demonstrate each component in detail. First, two cases 

are studied to reveal the distribution of traffic flows in the network.  

2.2.1 Case One: Single Data Flow on Asymmetrical Networks 

To demonstrate how the architecture can balance the traffic load of 

asymmetrical network, first a case of single data flow between sender node S and 
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receiver node A is considered. To simplify the illustration, both schedulers use 

Weighted Round Robin load balancing algorithm, other load balancing algorithms will 

be discussed later. Since there is only one data flow, no data flow priority selection 

algorithm is needed between two stage schedulers. In Figure 2.2, the data flow on 

sender node S is shown to explain how the packets are scheduled.  
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Figure 2.2 Single Data Flow Scheduling on Two Stage Address Table Scheduler 

In this case, the sender node S has six network addresses (or network 

interfaces) from S1 to S6, and the receiver node A has three network addresses A1, A2 

and A3. In the connection setup process, two nodes exchange their address table, so 

each node holds the address table of both sides. For data flow from node S to node A, 

the destination address of out going packets are first marked. Here Weighted Round 

Robin algorithm is used on destination address table of node A. This marking insures 

that the arrival traffic load at A will be balanced. Each network interface at A will 

receive 1/3 of the data flow. The middle switches will route packets evenly to three 

network interfaces on node A, and the traffic load is automatically balanced by 

ordinary switches. Then the second stage scheduler evenly distributes data flow to the 
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network interface on S. The source address of the packets is also marked with 

Weighted Round Robin algorithm, and the data flow will be sent out from six NIC 

interfaces on sender S evenly.  

On the receiver node A, the in-coming data flow will be evenly received. No 

matter what routing algorithms are used in the packet switching networks, each NIC 

interface will receive same number of packets, because the destination address of the 

packets is predetermined by the sender node S. The major jobs on the receiver are to 

convert these packets into original data flow. Furthermore, since the packets go 

through different network path, the out-of-order is unavoidable. The receiver must 

reorder the packets to restore the data flow. 

From the description above we show that the sender node S controls wholly the 

traffic load. The receiver only needs to restore the data flow. At both sender and 

receiver sides, the traffic load is evenly going out and going in no matter what middle 

network is used. Additionally, the load is balanced when the NIC interfaces on sender 

and receiver are asymmetrical.  

There is one issue required to be mentioned that even we settle the load 

balancing problem, the data transmission rate is still determined by certain conditions. 

Because the bandwidth of the sender and receiver are different; the maximum 

transmission performance between two nodes is determined by the lower bandwidth 

side (suppose the packet switching networks provide enough bandwidth). This 

transmission rate is also constrained by the capability of the packet switching network. 

2.2.2 Case Two: Multiple Data Flows on Asymmetrical Network  

In this section a case of multiple data flows and multiple nodes is considered. 

Figure 2.3 shows a data flow structure on the sender node S. Three receiver nodes A, 

B, C build connections with node S. Where node A has 3 addresses A1, A2 and A3, 
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node B has 2 addresses B1 and B2, node C has 1 address C1 and sender node S has 6 

addresses S1 to S6. All the schedulers use Weighted Round Robin algorithm. 

In Section 2.2.1, the destination address of a data flow must be marked by 

scheduler to make sure the load is balanced at the receiver node. In the case of multiple 

data flows, each data flow has its own first stage scheduler. This scheduler will mark 

the destination addresses of each data flow. Here Weighted Round Robin algorithm is 

employed on A, B, C’s address table. This insures that three data flows will evenly 

arrive at NIC interfaces at receiver nodes A, B, C respectively. For the multiple data 

flows to the same receiver node, each data flow is also assigned a first stage marker. 

After this first stage scheduling, we can confirm that no matter how many data flows 

and receiver node exist, the NIC interfaces on the same receiver will receive balanced 

traffic load. 
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Figure 2.3 Load Balancing of Multiple Data Flows and Multiple Nodes 

From first stage to second stage, three data flows will be merged into one queue 

and scheduled by the second stage scheduler. The mergence will provide a virtual data 

channel for all data flows. This design not only balances the load with simple 

algorithm, but also makes data flows independent of physical NIC interfaces. Thus, the 

data flows can migrate among the NIC interfaces freely. Whenever there is an error on 
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NIC interfaces, the scheduler can reschedule the data flows without affecting address 

marking and load balancing. Different merging algorithms can be used to provide 

service priorities for data flows of multiple nodes. In this case, three data flows are 

supposed to have the same priority and simply use a Round Robin algorithm.  

After the data flows been merged into one queue, the second global scheduler 

uses Weighted Round Robin algorithm to distribute packets to the NIC interfaces on 

sender node S. Thus the packets from different data flows are evenly sent out to the 

network. The fact that all data flows share one global second stage scheduler insures 

that the out going traffic load is finely balanced.  

On the receiver nodes A, B and C, the traffic load evenly arrives at specified 

NIC interfaces. The receiver only needs to distinguish different data flows and reorder 

them. 

So far two cases are discussed to make clear that the traffic can be balanced at 

both sender and receiver side. With multiple data flows and multiple nodes with 

multiple NIC interfaces, the load is balanced on an end-to-end asymmetrical 

architecture. Furthermore, the design is very flexible that NIC interfaces on both 

sender and receiver can be added and removed without affecting other nodes. Multiple 

nodes with different bandwidth (or network interface numbers) can work together and 

the load balancing is maintained without any hardware support in either device or 

packet switching networks. In next section, we will discuss scheduling algorithms used 

on sender and receiver in detail. 

2.3 Load Balancing Algorithms for Two Stage Schedulers 

In previous section it has been shown that load balancing is controlled by two 

kinds of schedulers on the sender node. Each data flow has one first stage scheduler, 

and there is only one global second stage scheduler for all data flows. The first stage 
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scheduler (the marker) is used to balance the traffic load at multiple network interfaces 

of receiver node. The second stage scheduler is used to balance the out going traffic at 

the sender node. In the two demonstration cases, all schedulers use Weighted Round 

Robin algorithm to balance the load. Here a serial load balancing algorithms will be 

studied systematically. 

Load balancing algorithm is used to balance traffic load to multiple channels in 

packet switching networks. While fair queuing algorithms are designed to fairly serve 

the packets form multiple queues. The load balancing algorithm could be acquired 

from a reverse of the fair queuing algorithm. A theorem of transformation from fair 

queuing to load balancing algorithm [22] has been proven. Consider a backlogged 

execution of a fair queuing algorithm. First a function  is applied to select a queue. 

The packet 

)(sf

p at the head of the selected queue is transmitted and then the state is 

updated using a function . We can obtain a fair load sharing algorithm by using 

the same function to pick a channel to transmit the next packet on, and update the 

state using the same function

),( psg

f

g . 

Here, we intend to distribute variable sized packets to multiple channels. Each 

channel is backlogged and no channel is used as backup channel. Four reverse fair 

queuing algorithms are discussed and compared, namely Reverse Generalized 

Processor Sharing (RGPS), Reverse Weighted Round Robin (RWRR), Reverse 

Weighted Fair Queuing (RWFQ) and Reverse Deficit Round Robin (RDRR). The 

purpose is to determine the most suitable load balancing algorithms for the schedulers. 

The last three RWRR, RDRR and RWFQ can be implemented on two stage schedulers 

for source and destination load balancing. All these algorithms have small computation 

overhead. 
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2.3.1 Reverse Generalized Processor Sharing (RGPS) 

The Generalized Processor Sharing (GPS) algorithm is used to provide a fair 

scheduling for best-effort connections. The GPS visits each non-empty queue in turn 

and serves infinitesimally small amount from each. Connections can have service 

weights and will receive service in proportion to these weights when they have data in 

the queue. If there is no data at a queue, scheduler skips to the next non-empty queue. 

The description of GPS is as such: 

The GPS is work conserving and operates at a fixed rate . If the N connections 

being served by GPS server have positive real weights

r

)1(φ , )2(φ , …, )(Nφ , then the 

server serves S ),,( ti τ  amount of data from the i th connection in the interval [ ], tτ , so 

that for any connection i  backlogged (A connection is backlogged whenever it has 

data in its queue.) in [ ], tτ , and for any other connection j , we have 
)
))
j
i

S
S
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(

) φ,,(
,,(
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ti φ
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Summing all connection j , ( , , ) (j
j

S i t t rτ ) iφ τ φ≥ −∑ , and connection i is guaranteed a 

rate of i

j
j

ig rφ
φ

=
∑

. GPS ensures that backlogged connections share the remaining 

bandwidth in proportion to their weights. GPS has many advantages. A connection can 

be guaranteed a throughput independent of the demands of other connections. 

Furthermore, by varying the iφ , we have the flexibility of treating each connection in 

different manners. 

The Reverse Generalized Processor Sharing (RGPS) algorithm is a reversal 

algorithm of GPS in a special condition.  The RGPS is used to schedule one queue to 

multiple connections with service weights. The RGPS send infinitesimally small 

amount to each connection. In a finite time interval it will visit every connection once. 

In RGPS, every connection is backlogged, because we intend to use all connection 
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resources. For the same GPS definition, we have
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),,(
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τ = , which means all 

connections strictly share the service in proportion to their weights. Each connection 

receives rate i
i
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j
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φ

=
∑

 data flow. 

RGPS is a perfect load balancing algorithm in theory, but it is unimplementable 

when the packets, not infinitesimal are scheduled. In the packet switching network, 

schedulers must approximate RGPS by scheduling packets with variable sizes. So, the 

concept of RGPS can help to evaluate other algorithms. Next, three simple algorithms 

are discussed, which are implementable and approximate to RGPS. 

2.3.2 Reverse Weighted Round Robin (RWRR) 

The Weighted Round Robin (WRR) algorithm [23, 24, 25, 26, 27] is widely 

used to serve a packet instead of infinitesimal from each backlogged queue in turn. The 

packet sizes should be equivalent, otherwise the schedule algorithm is unfair. To 

demonstrate this FQ algorithm, first, consider fixed packet size and different weights. 

The computation is simple that the scheduler serves more than one packet per round 

after normalizing weights to integers. Secondly, consider variable sized packets and 

different weight. The scheduler should normalize weights by mean packet size to 

acquire fair queuing. Since the mean packet size is usually unavailable, the WRR for 

variable packet size is hard to implement. Many modifications [ 28 , 29 , 30 ] are 

proposed to improve WRR algorithm.  

The WRR works well for a network with fixed packet size, because the work 

complexity of WRR is [31]. It is widely used in schedulers in ATM [32, 33, 34, 

35] and IP switches and routers[36].  

(1)ο
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The Reverse Weighted Round Robin (RWRR) algorithm is the time reversal of 

the WRR on the condition that each connection of the WRR is backlogged. The 

RWRR sends packets to connections in turn. For fixed packet size and different 

weights, the number of served packets in one round is computed by normalized integer 

weights. When the RWRR is implemented on variable packet size, the fairness of 

RWRR is defined by , where ( / )FairIndex Max Min= Max is the maximum packet size 

and Min  is the minimum packet size. 

The RWRR algorithm is a practical solution because of its less computation 

overhead. The traffic load is balanced when the packet size is fixed. In SAN, when 

mass data flows are transmitted, most of the data packet will use fixed maximum 

protocol data unit (MPDU) for efficiency. The proportion of the similar sized packets 

is high. Thus we can use RWRR algorithm to approximate a perfect load balancing 

algorithm. In Chapter 4 we will show that RWRR works well for remote disk reading 

in a normal packet switching environment. 

2.3.3 Reverse Weighted Fair Queuing (RWFQ) 

The Weighted Fair Queuing (WFQ) algorithm, also known as Packet-by-packet 

Generalized Processor Sharing (PGPS) [37, 38, 39], is designed for variable sized 

packets and weights. The WFQ algorithm serves packets in order of their finish 

number (or finish time), where the finish number of each packet is computed by a GPS 

algorithm. The finish number is given by 

( , , ) max{ ( , 1, ), ( )} ( , , )F i k t F i k t R t T i k t= − + , (2.1) 

where,   ,    (2.2) ( , , ) ( , , ) /T i k t L i k t r=
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where is the round number computed by GPS algorithm, T is the service 

time of th packet on connection i , ) is the length of k th packet that arrives on 

connection at time , and 

)(tR

k

),,( tki

,,( tkiL

i t r is the link service rate. 

The fairness of WFQ algorithm is , which means the traffic load 

is perfectly balanced. Based on WFQ, research on implementation and performance 

[40, 41, 42, 43] has been conducted widely. Many network applications currently use 

modified WFQ algorithms in switches and routers [44, 45, 46, 47], voice on IP [48, 49], 

and wireless LAN [50].  

1FairIndex =

However, since the work complexity of WFQ is , research efforts are 

conducted to simplify WFQ [51, 52] and improve its adaptability [53]. The best 

solution not only balances the load, but also keeps the work complexity at . We 

will discuss a solution of work complexity in the next section. 

(log )nο

(1)ο

(1)ο

The Reverse Weighted Fair Queuing (RWFQ) algorithm is a reverse of WFQ 

algorithm without empty channel. The finish number is assigned to each channel and 

computed by RGPS algorithm. The channel with the minimum finish number is 

selected to send the next packet in queue. The finish number is given by 

),,(),1,(),,( tkiTtkiFtkiF +−= ,  (2.3) 

with    ,   (2.4) ( , , ) ( , , ) /T i k t L i k t r=

where T is the service time of -th packet on channel i . is the length of 

th packet that arrives on connection i at time t , 

),,( tki k ),,( tkiL

k r is the link service rate. Unlike 

WFQ, since no channel is empty in the procedure of data transmission, round number 

are not needed when computing the .  The weighted equation of RWFQ is  ), t,k(iF

)(),,(),1,(),,( itkiTtkiFtkiF φ÷+−= , (2.5) 

where )(iφ  is the weight of the connection i . 
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The RWFQ algorithm is better than RWRR when packet sizes are not fixed. 

However, the computation overhead of RWFQ is greater than the RWRR algorithm. 

For each packet, all the channels need to be checked in turn and the growing finish 

number also needs iterated deletion. If the channel numbers are huge, the 

computation overhead will degrade the performance. So, more efficient algorithms are 

required to handle the work complexity problem. 

),,( tkiF

2.3.4 Reverse Deficit Round Robin (RDRR) 

The Deficit Round Robin (DRR) [54] algorithm is a modification of Weighted 

Round Robin. To serve multiple queues, the scheduler assigns each queue a service 

quantum. If a queue was not able to send a packet in the previous schedule round 

because its packet size was too large, the remainder from the previous quantum is 

added to the quantum for the next round. The weight of each connection can be 

converted to quantum. 

DDR is a low complexity version of Fair Queueing. It can be implemented at 

work complexity of and has .  Several modified DRR [55, 56, 57 , 58] 

have been proposed to achieve both simplicity and fairness. They are widely used in 

Internet software and hardware applications. For instance, DRR is used to provide 

bandwidth guarantee to competing TCP flows [59]. When combined with Random 

Early Detection [60], it can improve the fairness for different bandwidth capacity. In 

[61], DRR is used to schedule the traffic by links not by data flows, which can 

decrease the schedule cost. For the hardware applications, many switches and routers 

also use DRR algorithms [62, 63, 64].  

(1)ο 1FairIndex =

We have more interest on a modified DRR called Surplus Round Robin (SRR) 

[65], which provide link striping for variable sized packets. The Deficit Counter (DC) 

of SRR is initialized to 0, and incremented by the quantum for the served queue. As 
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long as the DC is positive, packets are sent form that queue, and the DC is 

decremented by the size of the transmitted packet. If the DC is non-positive, the 

current queue will be skipped. 

The Reverse Deficit Round Robin (RDRR) algorithm is a reverse DRR or SRR 

algorithm without empty queue. A detailed proof of transforming from FQ to load 

balancing algorithm can be found in [65]. The RDRR also use a Deficit Counter (DC) 

and quantum of service. Quantum is assigned by measuring the weight of the channels. 

The DC is initialized as 0 and served in turn. Each time a channel is selected, the DC is 

incremented by the quantum for that channel. Packets are sent to the channel and its 

DC is decremented by the packet size, till the DC becomes non-positive, then the next 

channel is selected.  
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Figure 2.4  Reverse Deficit Round Robin Scheduler 
 

In Figure 2.4, a RDRR scheduler with two channels is demonstrated. Packets of 

different sizes are scheduled by checking the Deficit Counter of each channel. If the 

packet size is less than DC, it will be sent to this channel and the DC is decreased by 

the packet size. If the packet size is bigger than DC, the scheduler will check next 

channel. If the packet size is bigger than all channel’s DC, the scheduler will wait next 

round until the DCs are incremented. Suppose that the maximum quantum among all 

the channels is Quantum and the maximum packet size is Max. After K round, the 

difference between the bytes that should have been sent to channel , i
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i.e., , and the bytes actually sent to channel i  is bounded 

by . 

QuantumMax ×+ 2

iQuantum×K

The computation overhead of the RDRR is slightly greater than the RWRR 

because of the quantum service. The actual value of the quantum should be cautiously 

selected. If the quantum is much less than the packet size, the scheduler will wait many 

rounds to accumulate the quantum to send out one packet. If the quantum is much 

greater than packet size, many packets will be sent to one channel in one round, which 

may increase out-of-order rate. 

The RWRR algorithm is simple and efficient for scheduling large number of 

channels with fixed packet size. The RWFQ algorithm conducts a perfect load 

balancing and data flow ordering, it can be used when storage system has excellent 

computation power. The RDRR algorithm is a better solution when many channels 

with various packet sizes are used and computation resource is constrained. For 

different network environment and data transmission models, proper algorithm can be 

selected for specific requirements.  

2.4 Data Flow Priority 

In this section we will explain why one data flow (or one conversation) is 

scheduled on all the addresses and how to assign priorities to multiple data flows on 

one device. Between first and second scheduler, we build one virtual data channel 

between nodes instead of multiple smaller data channels and use service disciplines 

algorithm to provide different priorities and rate-control for each data flow. 

2.4.1 One Virtual Channel vs. Multiple Sub Channels  

We use a structure of two stage schedulers to build one virtual data channel 

between nodes in stead of multiple smaller data channels, which means that each data 
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flow is scheduled on all workable sub channels for the efficiency and fault tolerance. 

Other protocols, for instance Link Aggregation Control Protocol (LACP), use a 

different method. It transfers one conversation on one physical network interface to 

avoid packets disorder. That will increase the delay, and can not handle load balancing 

problem for asymmetrical architecture.  
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Figure 2.5 Single Virtual Channel and Multiple Channels 

To compare the performance when multiple physical channels are used as one 

big data channel or multiple smaller data channels, consider a communication link 

serving m independent Poisson traffic streams with overall rateλ  [66]. Suppose that 

the link is divided into m separate channels with one channel assigned to each traffic 

stream. However, if a traffic stream has no packet awaiting transmission, its 

corresponding channel is used to transmit a packet of another traffic stream. The 

transmission times of packet on each of the channels are exponentially distributed with 

mean µ/1 . The system can be modeled by the same Markov chain as the M/M/m 

queue. In the case of multiple sub channels, the average delay per packet is given by 

the M/M/m average delay expression 
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λµµ −
+=

m
P

T Q1 .   (2.6) 

While in the case of one virtual channel, the model is an M/M/1 system with 

the same arrival rate λ  and service rate µm . The average delay per packet is  

λµµ −
+=

m
P

m
T Q

ˆ1ˆ  ,   (2.7) 

where  and  denote the queuing probability in each case (QP QP̂
)1(!

)(0
ρ

ρ
−

=
m

mpP
m

Q ), λ  

denotes the arrival rate (the inverse of average inter-arrival time), µ  denotes the 

service rate (the inverse of average service time). When 1<<ρ (lightly loaded system) 

we have ,  and0≅QP 0ˆ ≅QP m
T
T ≅ˆ . When ρ is only slightly less than 1, we 

have , ,11 P̂≅QP 1 /≅Q )/(1 λµµ −m<<   and 1≅
T̂
T . 

Therefore, for a light load, multiple sub channels produce a delay almost m 

times greater than the delay of one virtual channel. For a heavy load, the ratio of the 

two delays is close to 1. On average, keeping multiple conversations on one virtual 

channel is more efficient for packet transmission. This gives evidence that when 

implementing multiple address parallel transmission protocol, one conversation should 

view multiple network interfaces as one virtual channel. This also implies that packets 

of the conversation can migrate among the network interface without applications’ 

awareness. 

In our design, data flows are not constrained to specific channel. Packets of the 

data flows can be marked with any workable source and destination address pairs. 

Scheduled by the two stage scheduler, one conversation between two nodes takes 

multiple paths as one virtual channel. 
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2.4.2 Multiple Data Flows’ Priorities with Service Discipline  

The two stage schedulers can handle the end-to-end load balancing with 

multiple data flows. However the end-to-end performance guarantee is still need to 

considered, which requires various QoS service discipline algorithms. 

One of the targets is to categorize the data flows. Since multiple data flows can 

be transmitted simultaneously in the architecture, service disciplines must be provided 

to determine the priorities of the data flows. For instance, the real-time data flows 

should have higher priority than non-real-time data flow.  

The other target is to control the rate of each data flow to avoid the congestion. 

Since the best-effort data flow might cause unnecessary congestion and retransmission 

in the asymmetrical parallel architecture, a rate-controlled data flow can have better 

performance. Traditional congestion control methods [67, 68, 69] did not consider 

about the parallel architecture, thus an end-to-end congestion control method for 

parallel path is urgently needed.   

In current packet switching network, the service disciplines which can provide 

per-connection end-to-end performance guarantee are still unavailable in most of the 

routers and switches. So the data flow rate and congestion can not be fully controlled 

before all the routers and switches along the path support QoS services. However, we 

can simply utilize service discipline algorithms on the source node to achieve the 

priority target. The target of rate control and congestion avoidance can be fulfilled 

when the whole packet switching network can support QoS service. 

In recent years, QoS service disciplines have been widely studied. Two 

categories of service disciplines, the work-conserving disciplines and the non-work-

conserving disciplines, can be found in [70, 71]. With the work-conserving disciplines 

such as, virtual clock, delay-EDD, WFQ, WF2Q, and SCFQ, a sorted priority queue 
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mechanism can be used to provide priority service for the data flows. With non-work-

conserving disciplines such as, jitter-EDD, Stop-and-Go, HRR and RCSP, a rate-

controlled service can be employed to reduce the possibility of the congestion.  

The best place for in this service discipline is between two stage schedulers. 

The choice of this priority algorithm highly depends on the applications. In our 

implementation, all data flows are assigned the same priority; and the transmission rate 

is controlled by the minimum bandwidth side of an asymmetrical parallel architecture. 

Other algorithms can also be adopted to meet the QoS requirement of different 

applications. 

2.5 Data Flow Restore --Hashing Address Table and Reordering 

In the receiver node, data flows are restored and reordered when packets arrive 

at different network interfaces. Here, a chaining hashing algorithm is used to search 

senders’ address table and an out-of-order estimation algorithm is used to setup 

retransmission threshold and allocate reordering buffer. Since the mechanism of the 

out-of-order differs from a normal network, several closely related parameters are 

studied in detail. 

2.5.1 Hash Chaining Structure for Address Restoring 

In the parallel transmission architecture, the packets of a data flow arrive at 

different network interfaces. The receiver must reorganize these packets into their 

original data flows quickly. Indexed by their source addresses, packets are 

differentiated by using a hash chaining searching on senders’ addresses table.  

The search time of normal hashing table is )1(ο , but this may waste too much 

memory resource when the address range is large. Here a hash chaining structure is 

used to balance the memory space and searching time. The searching time of a 
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chaining with separate lists is , where n is the number of addresses and l is the 

number of lists. The addresses with the same hash key are organized in one list to 

avoid collision. By adjusting the list number l , the search time can be controlled in a 

definite range. 
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Figure 2.6 Hashing Algorithm for Data Flow Restoring 

After the hash chaining searching, data flows from the same sender node are 

differentiated. Since every packet contains the unique ID of data flow on the same 

sender, the receiver will further classify different data flow by data flow ID. This 

procedure is quite simple and straightforward, thus, the major burden is the address 

table searching. To restore the data flow by searching sender’s address table, the hash 

chaining address table structure is an efficient algorithm.   

2.5.2 Out-of-order Analysis  

In this section, we will discuss the reason of the out-of-order in parallel 

architecture. The out-of-order problem is quite prevalent in parallel transmission 

structure, the most reliable method is to mark sequence number on each packet. In our 

design, each packet in data flow is numbered and reordered with this sequence number.  
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The receiver reorders data flows by using a TCP-like algorithm. However, different 

parameters are used for the retransmission algorithm when out-of-order occurs. These 

parameters will be discussed in next section. 

In normal network, out-of-order rate is not significant and hard to predict. The 

out-of-order is mainly caused by route changing. It rarely has a big impact on 

performance of a TCP similar protocol, because the scale of the out-of-order delivery 

is just a few packets.  

In parallel transmission architecture, out-of-order is hard to avoid but can be 

predicted. In a theoretical parallel path transmission model, different channel 

bandwidths and packet sizes might cause out-of-order delivery. In a practical 

environment, the schedule delay and other system structure also influence the 

probability of out-of-order delivery. 

First suppose that two nodes communicate through three sub channels with the 

same bandwidth (Figure 2.7). Three packets are sent to each channel at the time 

sequences t1, t2, t3. Since the sizes of the three packets are different, the packet 2 and 

3 will arrive before the packet 1 (the arrival time of the last bit of a packet determines 

the arrival time of this whole packet). This will cause the receiver node to reorder the 

packets. While in a single channel case, the second packet will not be sent until the last 

bit of the first packet are sent out. 
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Figure 2.7 Out-of-order Caused by Different Packet Sizes 
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Different channel bandwidth can also cause out-of-order delivery with the 

similar mechanism. Consider packets with same size are sent into channels with 

different bandwidth. The arrival time sequence of each packet will not follow the 

sending sequence. In a channel with larger bandwidth packets can arrive early. To 

decrease the out-of-order delivery, the packet sizes should be constrained to fixed 

value and channels should be allocated with the same bandwidth.   

It is worth mentioning that other system parameters may also cause out-of-

order. Small schedule delay (Figure 2.8) can cause out-of-order delivery even when 

packet size and channel bandwidth are fixed. The schedule delay is the schedule time 

interval between two packets in the same schedule round. Since packets are transmitted 

at different network paths, if the schedule delay between two packets is small, the 

possibility that these two packets reach the receiver at same time is high, which 

denotes a high out-of-order rate.  
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Figure 2.8 Schedule Delay in Each Schedule Round 

The schedule delay can be affected by channel numbers, packet sizes. With 

more channels added, more packets need to be scheduled in one round. Thus the 
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schedule delay extends (Figure 2.8) and decreases the possibility of the out-of-order 

delivery. Similar result can also be observed when the packet size is increased, 

schedule delay also increases. With larger packet size, the out-of-order rate drops. 

Different system workload may also change the schedule delay. Thus, a stable system 

environment is required to test the out-of-order delivery caused by schedule delay. 

The out-of-order delivery can be a function of the schedule delay, the variance 

of packet size and the variance of channel bandwidth. Define the out-of-order rate oγ  as 

the frequency that the system observes out-of-order delivery. We can have: 

0 [ ( _ ), ( ),1/ ( _ )]f Var packet size Var bandwidth T schedule delayγ = , (2.8) 

( _ ) [ _ ., _T schedule delay f channel No packet size= ] ,   (2.9) 

The out-of-order rate oγ  will increase when the variance of packet size or 

channel bandwidth increases. The oγ  decreases when schedule delay increases, where 

the schedule delay can be increased by channel numbers and packet size. 

Nevertheless, network storage device may use a multiple processor operating 

system. In such a system, different packet processing times on multiple processors can 

also cause out-of-order delivery. These problems should also be considered in the 

design when such operating systems are used. 

The out-of-order delivery in parallel transmission architecture may affect many 

other network characteristics, such as, retransmission, window size, drop rate 

estimation, and buffer size. It also has an impact on the queuing delay analysis, since 

most of the queuing models are first-in-first-out (FIFO).  
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2.5.3 Retransmission Threshold and Reorder Buffer 

In this section, we will deduce the retransmission threshold and reorder buffer 

by estimating out-of-order rate in parallel transmission architecture. The transmission 

performance and out-of-order distance are also discussed.  

The relation between out-of-order and the retransmission is a key architectural 

consideration in protocol design [ 72 ]. Previous out-of-order and retransmission 

research focuses on Internet and TCP performance [73, 74, 75]. In such network 

environment, the scale of out-of-order is a few packets and the packet drop rate is 

relatively large (mainly caused by network congestion or data error). When there is 

either out-of-order or packet drop in a packet flow, the receiver will observe sequence 

broken and this may cause a retransmission. Thus, it is important for a fast retransmit 

mechanism to disambiguate packet drop from out-of-order delivery. The TCP uses a 

duplicate ACK threshold to infer that a packet requires retransmission. This threshold 

is selected by estimating how long a receiver needs to wait to disambiguate out-of-

order from packet drop [76]. Normally the threshold is been given a small value to 

improve the fast retransmit mechanism. This suggests that a short wait time is 

preferred, since most of the sequence broken is caused by packet drop.  

In SAN with parallel transmission structure, the selection of duplicate ACK 

threshold depends more on out-of-order rate estimation to avoid unnecessary 

retransmission. Since SAN is more stable than Internet, the packet drop is relatively 

rare, while out-of-order delivery is more prevalent [77].  

The out-of-order delivery can be estimated and used to select a proper 

retransmitting waiting time and reorder buffer threshold. The waiting time has an 

upper boundτ , where τ  can be deduced from the maximum Round Trip Time (RTT) 

of the data packet. Since the bandwidth and packet size can be variable, the maximum 
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RTT is the time that a maximum sized packet used to pass through the minimum 

bandwidth channel. The buffer bound for reordering is the integration of maximum 

RTT multiplying the individual channel bandwidth. 

Consider that the receiver observes a missing packet at sequence number N by 

receiving packet N-1 and N+ 1. Suppose that the missing packet is caused by out-of-

order and all sub channels are using a FIFO queue, the N-th packet must have been 

sent out but still not arrive. The worst case is that the N-th packet has maximum size 

and is passing through the minimum bandwidth channel. So we 

have 2/)(RTTMax=τ , if the waiting time exceedsτ , the possibility of packet drop 

increases. Thus the retransmission threshold must be larger thanτ . The minimum 

buffer used to reorder one out-of-order packet can also be deduced by 

2/*)(*
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i
i RTTMaxW ϖϖτ ∑∑

==

== ,   (2.10) 

where W is the buffer size, N is the numbers of the channel, iϖ  is bandwidth of each 

channel. This equation shows that in a worst case out-of-order, the data waiting in a 

reordering buffer equals all the received traffic within this waiting period.  

Let out-of-order distance  be the number of packets that have arrived 

between the period of time in which that the system observes a missing packet and this 

missing packet arrives. Since each packet will arrive within time

oD

τ , the D  or the 

number of packets arrived before the out-of-order one can be estimated by: 
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This shows that the out-of-order distance can be controlled in finite range. 

Theoretically, the small out-of-order distance will not affect the transmission 

performance, it only increases the delay bound by waiting and reordering packets. The 
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estimation of the retransmission waiting time and reordering buffer produces a slightly 

loose bound for the queuing delay model while the transmission performance is 

unchanged.  

The estimations are based on maximum Round Trip Time, which can be easily 

acquired and computed. Estimation algorithms based on out-of-order rate requires 

more knowledge about network topology and scheduling algorithm. For different 

applications, the out-of-order rate might have different values. Our estimation also 

provides a general delay bound and all the other parameters can be efficiently 

computed. 

2.6 Fault Detection and Cost Estimation 

The multiple addresses parallel transmission uses redundant channels to 

provide built-in fault tolerance feature. Whenever a fault channel is detected, data 

flows will be scheduled to other available channels.  

To achieve fault tolerance, the protocol must be able to detect the error. It must 

recover from that error and eventually reaches a legal state and resumes its normal 

execution [78,79]. Several detection algorithms can be found in [80]. Most fault 

tolerance algorithms use spare resources to provide fault tolerance feature [81, 82, 83], 

which may be resource waste [84]. In our architecture, all the available resources are 

utilized to improve performance and achieve fault tolerance at the same time. 

2.6.1 Three Fault Detection algorithms 

Since NIC failure, cable failure and switch failure can all contribute to channel 

failure, we propose three fault detection methods to diagnose different levels of 

failures. The three fault detection algorithms can be hardware detection, software local 
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loop back and remote acknowledge detection. All these algorithms can be 

implemented jointly or independently. 

The hardware fault detection depends on the link failure register of the network 

interface cards. Currently most of the network interface cards support a link failure 

register.  By checking the register periodically, the status of the first hop link can be 

collected. The computation overhead of checking a register is very small and the 

detection frequency could be a few seconds. The limitation of the hardware fault 

detection is that node can only check the first hop link in the packet-switching network.  

The second algorithm is local loop back fault detection. We can build loop 

back channels by using the multiple addresses on the same node (the channel number 

should be greater than or equal to 2). The merit of the local loop back detection is that 

if the hardware detection is unavailable, a node can send detection packets to itself to 

detect the status of the first hop link and the nearest switch. The draw back of this 

algorithm is that the working addresses must be greater than or equal to 2. The 

procedure of the loop back detection can be described by: 

(A.) Select first network interface card (NIC) to be sender, send local detect 

packet to other NICs on the same node  

(B.) If at least one of these NICs received a local detect packet, it is suggests 

that the sender NIC and the nearest switch is working well. Those who have not 

received local detect packet can be regarded is faulty. The fault might be on the cable 

or the card. The detection process can be finished.  

(C.) If none of the other NICs received the local detect packet, we mark the 

sender NIC with “unknown”, because we cannot assure if the sender NIC has fault. So 

we choose next NIC as sender, send local detect packet to remaining NICs and 

continue the B, C process. 
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(D.) If no channel can be built on the local node, there are only two possible 

results. Either only one NIC is working or no NIC is working. To identify the only one 

working port (if existed), we must use remote detection algorithm. 

The third algorithm is remote fault detection. The mechanism is to build 

channels with the neighboring nodes to detect fault. A node can ask another node to 

reply back detection packets to all of its NICs. If any NIC interface cannot receive the 

detection, a fault in the data path is found. The advantage of this algorithm is that the 

full data path is checked. The drawback is that there must be another neighboring node 

to send back detection packets.  

Using hardware and local loop back detection could eliminate unnecessary load 

in the LAN. It can also make the detection fast. The remote fault detection algorithm is 

relatively reliable, however it will cause more traffic load and time. 

2.6.2 Cost Estimation for Local and Remote Fault Detection 

The cost estimation of hardware detection is quite straightforward. In one 

detection round, each network interface card is checked once. The cost estimation of 

the local loop back and remote acknowledge detections are more complicated. Suppose 

a node has N network interface cards, and W of the interface cards are working. The 

detection cost unit is the cost of sending and receiving a packet. The fault detection 

cost function will be: 
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)(nFl  is the cost of local loop back detection. W  suggests that working 

NICs must be more than 2. By building a channel between two NICs, the fault can be 

2≥
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detected locally. The first part of F shows if we select one working NIC with 

probability

)(nl

n
W

)n

, the detection can be finished with cost (n-1). The second part 

of shows if we select a failed NIC, the detection must be repeated again until all 

the remaining ports are working NICs, where F  is the boundary of the 

formula.  
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(Fr is the cost of local loop back plus remote acknowledge detection when 

there is at most one NIC still working. Since there is only one NIC or no NIC working, 

local loop back detection will go through all the ports, each time it sends (n-1) packets 

to remaining NICs. At the last step, the local loop back detection can not find this fault. 

So, every NIC will send out a remote acknowledge packet which is denoted by cost 

(n). The simplification of the cost estimation formula is:  

+=

≤≥=−−+−=

NnnnF

NWWW
n
WnnFn

r

l

....
2

)1()(

;2))1()1()
  

         (2.13) 

Denoted by N, W, Cost, we can have a cost estimation chart (Figure 2.9). This 

chart shows that when the number of working NICs is close to N, the detection cost is 

low. 

Suppose in the fault detection period, the fault probability of each NIC is p . 

Then the probability that there are W working NICs can be denoted by  

NpP W−= )1 (2.14) 

In Figure 2.10, the probability value of the working NICs is quite large when 

W close to N. It suggests that the probability that most of the NICs is working is very 

high. In this chart, we assume p=0.1 which is quite a large fault probability to 
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demonstrate the trend. Normally, the p value in LAN is very small, which will result in 

the W more close to N. 
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Figure 2.9 Local Loop Back and Remote Acknowledge Detection Cost Estimation 
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Figure 2.10 Probability Distribution of the Working NICs  

By comparing Figure 2.9 and Figure 2.10 we can find that under normal 

condition, where W is close to N, the detection cost is small. The cost will increase 

only when many interfaces have fault (W is much less than N). However, the 

probability of many faults is so small that the detection cost normally remains to (n-1). 

This means that it is worthy maintaining a periodical fault detection mechanism. 



43 

In this chapter the theories of the network topology and parallel data 

transmission model was studied. An end-to-end parallel data transmission architecture 

was presented based on packet switching network that has variable bandwidth and 

packet size. The model of this transmission architecture is composed of two stage load 

balancing algorithm, data flow priority algorithm, data flow restoring, reordering and 

fault tolerance algorithm.  

On sender devices, four theoretical reverse FQ algorithms, RGPS, RWRR, 

RDRR and RWFQ, were proposed for scheduling with small computation overhead. 

Then we proved that one virtual channel is better than multiple sub channels and used 

service disciplines algorithm to provide different priorities and rate-control for each 

data flow. On receiver devices, a chaining hashing algorithm was presented to search 

senders’ address table with bounded delay. An efficient out-of-order estimation 

algorithm was proposed to setup retransmission threshold and allocate reordering 

buffer. The mechanism of the out-of-order in parallel architecture was analyzed by 

schedule delay and out-of-order distance. Fault detection algorithms of hardware 

based, software local loop back and remote acknowledge detection methods were 

proposed. SAN using this end-to-end parallel transmission architecture can have good 

scalability and fault tolerance without much additional complexity. 
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Chapter Three 
 
 

3 Implementation 

In Chapter 2, the theory of end-to-end parallel transmission architecture was 

proposed to provide scalability and fault tolerance for SAN. Based on this architecture, 

a transmission protocol will be implemented in this chapter. Firstly, the individual 

elements of the end-to-end parallel transmission architecture will be mapped to the 

major modules and sub functions of the protocol. Secondly, the logical relationship 

between these modules and functions will be demonstrated by software flow charts. 

3.1 Multiple Address Parallel Transmission Protocol  

The multiple address parallel transmission (Multi-Channel) protocol can be 

programmed above the Link layer or Network layer. The load balancing scheduler can 

use either Ethernet MAC address or IP address. To demonstrate the Multi-Channel 

performance in SAN, HyperSCSI [8] network storage protocol is employed as the 

Multi-Channel upper layer. The Multi-Channel protocol is implemented in the Linux 

kernel [85, 86], where a virtual network device driver was created to control the data 

flows and the data link layer. The general protocol structure is shown in Figure 3.1.  

The Multi-Channel protocol includes three major function modules in Figure 

3.1: data module, control module and a global state machine module. The data module 

is responsible for sending and receiving data flow packets through multiple network 

channels. The control module is used to manage multiple channels and select load 

balancing algorithm. The fault tolerance is also involved in the control module. The 

global state machine inspects global parameters and synchronizes the control and data 
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transmission states transition. In the following sections, we will specify the functions 

of each module. 
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Figure 3.1 Multi-Channel Protocol Layer Diagram 

3.1.1 Multi-Channel Data Module 

Multi-channel data module is in charge of scheduling the data flow packets 

through multiple network channels.  

When sending packets, the data module first checks the address table of the 

destination node and selects a load balancing algorithm and marks the destination 

address of this data flow. Thus the destination node will receive a balanced traffic load 

without the interference of the switches in between. In the second stage, the data 
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module checks the address table of sender node and selects a load balancing algorithm 

and marks the source address of all data flows. Since the second stage scheduler is a 

global scheduler, different data flows can share all the network channels. A balanced 

traffic load will be sent into the network. 

When receiving packets, Multi-Channel data module collects packets from all 

the network channels. Data flows are distinguished by checking the address tables of 

the nodes. Using a proper hash chaining structure, the computation overhead of 

address searching is not significant. After the data flow is distinguished, the receiver 

will handle retransmission, window size and buffer size if there is out-of-order delivery. 

Then the packets will be reordered and sent to the upper layer applications.  

3.1.2 Multi-Channel Control Module 

The control module is responsible for managing multiple Ethernet or IP 

channels and selecting load balancing algorithm. The major control processes are listed 

below.  

Multi-Channel startup process is used to initialize one virtual network driver by 

using multiple sub-channels. Data flow structures are connected to the address tables 

and address searching tables, which are used to send and receive data packets. 

Address-discover process sends address-discover packets and retrieves address 

table from the address-discover ACK packets. In Ethernet network, the address-

discover packets can be broadcasted to the LAN, while in IP network the address-

discover packets are sent by point-to-point fashion. 

Channel management process is used to dynamically append or remove sub-

channels in virtual connection. For data link layer, operations will work on network 

device drivers. For IP layer, socket will be used. Whenever there is new channel 
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configuration, the process will call address service processes to update local and 

remote address tables.  

Changing local address process is one of the address service processes. It is in 

charge of updating the local address table and sending this new address table to other 

active partners who have built connections with it. 

Checking remote address process is also one of the address service processes. It 

enquires remote partners’ address table and reschedules the data flow whenever there 

is address changing. 

Fault detect processes include hardware detect, local loop back fault detect and 

remote acknowledge fault detect process. They check the channel status periodically. If 

there are channel faults, the channel management process will be informed and hence 

the channels will be rescheduled. 

Channel services process sends and receives control packets which exchange 

channel information. The load balancing algorithms on two stage schedulers can also 

be selected by the control packets in this process.  

3.1.3 Global State Machine Module 

Global state machine manages all control and data transmission states 

transition. It inspects global parameters, such as, address table lists, fault detection 

algorithm, load balancing algorithm, control configuration, etc. So the data 

transmission and control flow can be synchronized. All the operation commands will 

refer to this module to avoid operating disorder. 

Each connection can have a major state and a minor state at one time. The 

major states describe the major operation groups. The state of the connection must 

follow the state transition diagram in Figure 3.2. In each major state, there are several 
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detail steps exists. The minor states describe these steps that the operation should 

follow.  They may be dissimilar in different applications. 
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Figure 3.2 Multi-Channel Data Transmission State Transition Diagram 

Here we list the major and minor states: 

• Channel setup state: address discover, address table exchange, load balancing 

algorithm select, data flow setup. 

• Data transmission state: data packets sending and receiving in multiple 

channels, hashing address search, out-of-order delivery control. 

• Channel dynamic configure: new address table exchange and load balancing 

algorithm change. 

• Fault detection state: hardware detect, local loop back detect, remote 

acknowledge detect. If fault detected, update address table and inform both side. 

• Channel services state: channel information query and control command 

decode. 

• Channel exit state: channel disconnect, channel resource release. 
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3.2 Multi-Channel Protocol Processes Software Flow Charts  

In previous sections we discussed the MAP-TP protocol and functions that the 

protocol supports. In following sections, we will present the flow charts of the software 

protocol implementation. 

3.2.1 Major Flow Charts, Key Data Structures and Events List  

 The software flow chart of MAP-TP protocol is composed of two major 

process flow groups, which conduct the functions of data module and control module 

as shown in Figure 3.3. 

One flow group is data processes, which include channel address scheduling 

process and address restore process. The data processes start operating after the Multi-

channel startup process and address discover process and stop operating before the 

channel exit process. These data processes can operate with other control processes 

simultaneously. Dynamical channel changing and fault detection should not stop the 

data transmission, unless there is not available channel at all. 

The other flow group is Multi-channel management processes which employ: 

Multi-channel startup process, address discover process, channel manage process, fault 

detect process, change local address process, check remote address process, channel 

services process and channel exit process. Excluding the channel startup and channel 

exit processes, all other management processes can operate independently. The 

channel manage process is a public interface which accepts all kinds of commands and 

sends events to other processes. It is also in charge of the state synchronization. 
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Figure 3.3 Data and Control Processes’ Flow Chart 
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Figure 3.4 Multi-Channel Virtual Device and Hashing Address Table 

The key data structure of the MAP-TP protocol is the Multi-channel virtual 

device and two address tables (Figure 3.4). The virtual device acts like a real network 

interface device and is in charge of multiple real slave NIC devices. With each slave 
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device, one local address entry is generated. The remote address table structure is built 

up in the procedure of address discovery where the bandwidth information is fed back. 
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Figure 3.5 Events List for Sender, Receiver and Controller 
 

The MAP-TP protocol data and control flow are driven by events. These events 

can be issued by system control module, in coming control packets or several timers. 

Here we list three group events and event sources. 
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3.2.2 Multi-Channel Packets Flow and Packet Types 

There are two categories of packets in the MAP-TP protocol, data packets and 

control packets. As mentioned in previous sections, several types of control packets are 

used to exchange information and issue commands between devices. 

The control packet types include:  discover broadcast packet, discover unicast 

packet, discover ACK packet, discover ACK broadcast packet (don’t need to reply), 

local detect packet, remote detect packet and remote detect ACK packet. Each type of 

packet will be issued by a sender event and this packet will cause a receiver event at 

the receiver device.  

The data packets and control packets will be filtered and sent to different 

processes. The packet flow is illustrated in Figure 3.6.  
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Figure 3.6 Multi-Channel Packet Flow 
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3.2.3 Multi-Channel Address Discover  

After the initialization of the Multi-channel virtual device, the local address 

table is built up. Then, the local device broadcasts this address table to its neighboring 

hosts. When other devices receive this broadcast packet, they refresh their remote 

address table. After that, they send back an acknowledgment packet which includes 

their own local address table. Thus, all the devices will know each other’s address 

tables (Figure 3.7). 
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Figure 3.7 Multi-Channel Address Discover 
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The address discover packet can also be a unicast packet. This address-discover 

packet is used to enquire address table of a particular device (Figure 3.7). This method 

can be used where broadcast is inapplicable such as IP WAN.  

3.2.4 Multi-Channel Address Table Change and Rebuild  

From time to time, the address table can be changed under several conditions. 

For instance, one channel is added or deleted, channel fault is detected or channel fault 

is recovered. When the local address table is modified, the new local address table 

should be sent to its partner devices, and then these devices will update their remote 

address table (Figure 3.8).  
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Figure 3.8 Multi-Channel Address Change and Address Table Rebuild 
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3.2.5 Multi-Channel Fault Detection Flow Chart  

Fault tolerance is always a complicated part for network protocol design, 

because there are various of fault sources. A fault could be triggered by NIC interface 

fault, cable fault, switch fault or malfunctioned device driver. The Multi-channel fault 

detection flow is shown as Figure 3.9. 

Multi-Channel fault
detect process

TITLE

Multi-Channel Fault detect

Timer

Diagnose timer

Multi-Channel fault
detect process end

Multi-Channel remote
fault detect process

Multi-Channel local
fault detect process

Send Event

Send local
detect packet

Send Event

Send remote
detect packet

Receive Event

Receive local
detect packet

Receive Event

Receive
remote

detect packet

Multi-Channel
change local address

process

Check local
detect state

Local detect
not finish

Check local
detect success

Timer

Local     detect

Timer

Remote detect

Local detect
finished

Local address
have change

If any remote
reply

Local detect
succeed Local detect

failed, 0 or 1
channel alive

Local address
no change

Local address
changed one channel

still alive All channel
down or no

other host in
LAN. Waiting

for next
diagnose.

Receive Event

Receive
remote

detect packet
ACK

Send Event

Send remote
detect packet

ACK

 

Figure 3.9 Flow Chart of Multi-Channel Fault Detect  
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Figure 3.10 Multi-Channel Local Loop Back Detect 

After checking the NIC hardware register, a local loop back fault detection 

solution is exploited as shown in Figure 3.10. The local loop back channels can be 

built by using NIC pairs on the same device. This can check all the cables, switches or 

other devices between two NICs. If any fault is found, the local address table will be 

updated and sent to other connected devices. If the fault can not be located by local 

loop back fault detection, a remote acknowledge fault detection might be issued. 

Using local loop back detection can eliminate unnecessary detection load in the 

LAN, and it can also speed up the detection. Furthermore, since all loop back NICs are 

located on the same device, no acknowledge packets are required. 
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Figure 3.11 Multi-Channel Remote Acknowledge Fault Detect 

The remote acknowledge detection is quite similar to the local loop back 

detection. The difference is that the neighboring devices are used to send back 

detection acknowledge packets as shown in Figure 3.11. This may consume more time 

and increase traffic load. However, the full data path is checked and a fault can be 

located even if there is only one NIC can communicate with other devices.  
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3.2.6 Virtual Device Management Flow Chart 

The Multi-channel virtual device management flow chart involves four 

processes: Multi-channel startup process, exit process, channel management process 

and channel service process.  

 The startup process will register HyperSCSI packet type and transmit function 

handle, set up address, register NICs to Multi-channel, begin first address discovery. 

The exit process will do the reverse procedure as shown in Figure 3.12. 
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Figure 3.12 Multi-Channel Virtual Device Startup and Exit  

The channel management process can dynamically add or remove slave devices 

to Multi-channel, update address table, and then synchronize neighboring devices’ 

remote address table (Figure 3.13). The channel service process provides detailed 
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information for each NIC, manages the diagnose timer and monitors the status of 

Multi-channel system. 
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Figure 3.13 Channel Management and Channel Service 



61 

In this chapter, an implementation of multiple address parallel transmission 

protocol was proposed. The design of data module, control module and global state 

machine module was presented in detail. The protocol was programmed as a network 

layer module in Linux kernel. Furthermore, the major framework of the software was 

demonstrated by serial flow charts, which is a guideline for the implementations on 

other operating systems. After the MAP-TP protocol has been programmed, network 

storage applications can utilize it as a network layer interface, where the throughput 

and fault tolerance feature of the I/O can be measured and evaluated.  
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Chapter Four 

 

4 Results and Discussion 

As seen in Chapter 1, the HyperSCSI protocol provides a virtual SCSI interface 

service by packing SCSI protocol into network packets. We applied Multi-Channel on 

the network layer of the HyperSCSI storage device servers and clients. The packet 

switching network test platform was composed of switched Fast Ethernet (FE) and 

Gigabit Ethernet (GE) links. The computers were equipped with Intel Pentium III 

1GHz, 256MB 133MHz SDRAM, two SCSI channels with 8 Seagate ST318406 LC 

Cheetah SCSI disks. The OS was RedHat Linux 7.21 (glibc RPM 2.2.4-24) with Linux 

Extended File System 2 (Ext2). 

The performance was measured by testing the disk read speed of the virtual 

SCSI device. The throughput was bounded by the capability of the speed of the system 

bus and RAID bandwidth. Three popular benchmark tools, HDPARM, DD and 

IOZONE, were used to read 5GB data in the experiments.  

HDPARM is a Linux shell utility for viewing and manipulating various IDE 

drive and driver parameters. The –t option means to report stats on the disk in question, 

reading data not in the cache. The command used is:  

hdparm -tT <device> 

DD copies a file with a user selectable block size, while optionally performing 

conversions on it. In each round, 1GB data is transmitted, so the result will reflect real 

disk read performance without the influence from cache size. The command used is: 

time dd if=<device> of=/dev/null bs=4096 count=250000 
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IOZONE is a file system benchmark tool. The benchmark generates and 

measures a variety of file operations. A large file size of 500MB is also used to 

eliminate the influence of cache size. The command used is: 

iozone -R -I 0 -I 1 -s 500M  

In the following sections, the results of Multi-Channel disk read performance 

and out-of-order delivery will be discussed. Since many parameters map affect the 

result, experiments will be based on different channel numbers, channel bandwidths, 

packet sizes and system resources.  

4.1 Disk Read Performance  

4.1.1 Multi-Channel with Symmetrical Parallel Network 

First a symmetrical parallel architecture of multiple FE NIC pairs is studied. Up 

to 7 pairs of FE cards are used to build a parallel transmission channel. To balance the 

computation load, the server provides separate virtual SCSI disks while the client 

utilizes these virtual disks to build software RAID.  
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Figure 4.1 Client RAID Symmetrical FE Pairs HDPARM Read 
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Figure 4.2 Client RAID Symmetrical FE Pairs DD Read 
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Figure 4.3 Client RAID Symmetrical FE Pairs IOZONE Read 

From Figure 4.1, Figure 4.2 and Figure 4.3, with more sub channels added, the 

symmetrical disk read performance of the HyperSCSI device increases nearly linearly 

until the limit of the system performance is reached.  

With all three scheduling algorithm RWRR, RDRR and RWFQ, HyperSCSI 

bandwidth can be increased above 380% when 4 links are used. Thus the network 
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utilization rate of the multiple channels HyperSCSI is 95%. The overhead caused by 

MAP-TP is roughly 5% per channel, which is acceptable when compared to the 

bandwidth increment.  

Since most packets in the experiment have similar size, all three algorithms can 

achieve similar performance result. In real environment, if packets have various sizes, 

the RWFQ and RDRR can have better channel utilization. All these algorithms can be 

used for load balancing with little computation overhead. 

4.1.2 Multi-Channel with Asymmetrical Parallel Network 

To demonstrate the flexibility of the MAP-TP protocol, an asymmetrical 

parallel network was built for the Multi-Channel experiment. The server used seven FE 

cards while the client used only one GE network card. The RAID algorithm was also 

running on the client. 
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Figure 4.4 Client RAID Asymmetrical GE-FE Pairs HDPARM Read 
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Figure 4.5 Client RAID Asymmetrical GE-FE Pairs DD Read 

From Figure 4.4 and Figure 4.5, the MAP-TP protocol can achieve the same 

linear increment. Since this experiment uses high speed GE network interface cards, 

the asymmetrical transmission result is slightly better. The schedule load is the same 

with the symmetrical situation, while the GE network interface card does provide 

larger bandwidth. 

4.1.3 Influence of System Resources on Disk Read Performance 

In the experiments, the disk read performance approaches a limit when the 

network bandwidth keeps increasing. The reason of this limit is that the performance is 

constrained by the system resources. Besides the data transmission, the CPU rounds 

and cache memory  are also consumed [87] by scheduling algorithms, SCSI command 

block packaging, RAID algorithms, network interface interruption handling, fault-

handling, end-to-end flow control, and reliable transmission, etc. The distribution of 

these algorithms will influence the maximum disk read performance, however the 

increasing rate will keep constant. 
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Figure 4.6 Server RAID Symmetrical FE Pairs HDPARM Read 
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Figure 4.7 Server RAID Asymmetrical GE-FE Pairs HDPARM Read 

When few FE NICs are used, the network bandwidth is the bottleneck of whole 

storage system. System resources can meet the requirement of network traffic load. 

The total computation cost is low and the performance can increase linearly when 

more bandwidth is provided. However, with the increasing bandwidth, the system 
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resources are gradually used up. The disk read performance will keep constant under 

heavy traffic load.  

In previous sections, the RAID algorithm was applied on the client device. In 

this experiment, we apply RAID algorithms on the server device with various parallel 

architectures (Figure 4.6, Figure 4.7, Figure 4.8). For all these experiments, the 

increasing rate of disk read performances are linear when traffic load is low. However, 

the read performance ends up with different values when reaching the limit of system 

resource. These results show that the MAP-TP has good scalability. The performance 

is only bounded by total available system resource. By reallocating the system 

resources, maximum disk read performance can be improved without compromising 

the scalability. 
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Figure 4.8 Server RAID Asymmetrical FE-GE Pairs HDPARM Read 
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4.2 Out-of-order Rate Analysis 

In this section, we will discuss the architecture influence on the out-of-order 

rate and the relationship between the out-of-order rate and disk read performance. First 

a symmetrical FE pair parallel architecture was studied. In Figure 4.9 and Figure 4.10, 

the out-of-order rate decreases when more FE pairs are used. Although the decreasing 

curves differ for various benchmark tools, we can draw a conclusion that more 

identical channels lower the probability of out-of-order delivery.  

The reason of the decrease is that in each schedule round, the schedule delay 

between sequential packets increases with more channels added. As proved in 

theoretical section, larger schedule delay between packets results in the small 

probability of out-of-order delivery.  
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Figure 4.9 Client RAID Symmetrical FE Pairs HDPARM Out-of-order Rate 
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Figure 4.10 Client RAID Symmetrical FE Pairs DD Out-of-order Rate 
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Figure 4.11 Asymmetrical GE-FE Pairs DD Out-of-order Rate 

Second, an asymmetrical architecture was examined. The client device used 

one GE NIC and the server device used 7 identical FE NICs (Figure 4.11). The out-of-

order rate curve provides similar result as symmetrical architecture. Since the client 
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device has wider bandwidth, the schedule delay is smaller than that of a symmetrical 

architecture. This makes the out-of-order rate curve decreasing slower. 
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Figure 4.12 Asymmetrical GE-FE Mixed Pairs, HDPARM Out-of-order Rate 

Finally, an asymmetrical architecture was built with mixed bandwidths. On 

each client and server device, 5 FE and 2 GE NICs were used (Figure 4.12). From the 

result, it is observed that the out-of-order rate increases with different bandwidth 

channels mixed together. This increment can also be explained by the changing of 

schedule delay. Since the GE channel is ten times faster than FE channel, packets on 

GE channels have shorter transmission time which means a shorter schedule delay 

between the packets. 

From the discussion above, a conclusion can be drawn that the architecture of 

the parallel network has great impact on the out-of-order delivery. To decrease the out-

of-order rate, we should use identical channels and increase the number of identical 

channels. 
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The relationship between performance and out-of-order rate can be found by 

comparing the figures of performance with that of the out-of-order.  

Before the experiments, it is supposed that larger out-of-order rate might cause 

larger performance decrease. However, the result shows that the out-of-order rate does 

not evidently affect the disk read performance. Although the out-of-order rate is very 

large with a few channels, the performance keep increasing linearly and the channels 

are fully utilized. 

This phenomenon can be explained by the out-of-order distance. Although the 

out-of-order rate is large, the out-of-order distance is only a few packets. So the 

receiver can reorder the data flow without affecting the disk read performance. In the 

theoretical part the out-of-order waiting buffer was already provided. Actually, the out-

of-order rate only consumes certain system resource and causes a bounded delay. 

Whenever the system resource is adequate, the transmission performance will not be 

affected too much by the out-of-order delivery. 

4.3 Packet Size’s Affect on Out-of-order and Performance 

In this section, the affect of packet size on out-of-order rate and transmission 

performance will be discussed. The experiment was designed working on maximum 

performance to demonstrate the influence of the packet size. The parallel channels 

employed two GE NICs. 1500 Maximum Transport Unit (MTU) and 9000 MTU 

packet size were studied respectively. 

The influence of packet size on out-of-order rate is first checked. Figure 4.13 

and Figure 4.14 show the maximum throughput of HDPARM and DD on 1500 MTU. 

The out-of-order rate results are similar with different scheduling algorithms and 

benchmark tools. For this two GE architecture, the 1500 MTU causes 43% out-of-

order rate. While in Figure 4.15 and Figure 4.16, 9000 MTU causes only 15% out-of-
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order rate. A conclusion can be drawn that larger packet size will decrease the out-of-

order delivery. Again, this decrement can be explained by larger schedule delay which 

is caused by longer packet. 

 

One and Two GE Pairs  - 1500 MTU, overhead at upper bound
with 43% out-of-order rate, Hdparm disk read
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Figure 4.13 GE Pairs HDPARM Read, MTU = 1500, Out-of-order Rate = 43% 

One and Two GE Pairs 1500 MTU, overhead at upper bound
with 43% out-of-order rate, DD disk read
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Figure 4.14 GE Pairs DD Read, MTU = 1500, Out-of-order Rate = 43% 
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Next the performance was examined. Compared with 1500 MTU, the 9000 

MTU has better maximum performance. One reason is that the packet packaging 

computation is more efficient for larger packet size. The other reason is that the 

reordering overhead also decreases with a small out-of-order rate.  

The computation overhead of the out-of-order delivery is illustrated in this 

experiment. Since the single channel maximum performance was provided, the 

difference between the single GE and double GE can only be caused by scheduling 

algorithms and reordering algorithms. It is found that the difference is larger when 

1500 MTU is used. This can be explained that larger out-of-order rate needs more 

computation power. 

As a conclusion, we suggest using larger packet size whenever the network 

supports. 
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Figure 4.15 GE Pairs HDPARM Read, MTU = 9000, Out-of-order Rate = 15% 
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One and Two GE Pairs 9000 MTU, overhead at upper bound
with 15% out-of-order rate, DD disk read
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Figure 4.16 GE Pairs DD Read, MTU = 9000, Out-of-order Rate = 15% 

4.4 Multiple Clients - Multiple Channels Load Balancing 

In the previous sections, the experiments are based on multiple channels on one 

pair of client and sever. In this section, the multiple clients and multiple channels load 

balancing will be studied, where one server with GE and two clients with multiple FEs 

were employed.  

Figure 4.17, Figure 4.18 and Figure 4.19 show that with all three scheduling 

algorithms, the traffic load is evenly balanced on both clients and channels. Since 

RAID and multiple devices management work load were distributed on two clients, the 

system resource could be fully utilized. The sum of the disk read performance could 

approach the maximum throughput when 6 FEs were used. 

In this experiment, not only does the network topology have influence on the 

performance, the distribution of the system resource is also critical for achieving better 

throughput. 
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Figure 4.17 RWRR Load Balancing on Two Clients with GE-FE Pairs 
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Figure 4.18 RDRR Load Balancing on Two Clients with GE-FE Pairs 
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Reverse Weighted Fair Queueing load balancing 
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Figure 4.19 RWFQ Load Balancing on Two Clients with GE-FE Pairs 

In this chapter, the throughput of the MAP-TP was measured by testing the 

disk read of the HyperSCSI network storage device. Parallel symmetrical and 

asymmetrical architectures were studied under three scheduling algorithms, RWRR, 

RDRR and RWFQ. The result showed that HyperSCSI bandwidth could be increased 

above 380% when 4 channels were employed. By analyzing the system resource 

distribution and out-of-order rate, it was found that MAP-TP has good scalability 

continuously within the range of maximum performance. Furthermore, the packet size 

was studied to improve the throughput and reduce the out-of-order rate. The last 

experiment demonstrated that the traffic load can be balanced on multiple nodes and 

channels. 
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Chapter Five 
 
 

5 Conclusions and Future Work 

In this thesis, we provide a theoretical model and an implementation 

demonstrating the multiple address parallel transmission architecture. In this chapter, 

we first summarize the major results and then discuss some of the future work of 

parallel architecture. 

In chapter 2, the theories of the network topology and parallel data transmission 

model were discussed. The SAN topology requires working in both LAN and WAN by 

supporting Ethernet MAC and IP packets. The storage devices in SAN may have 

variable bandwidth and packet sizes.  

Based on packet switching network, an end-to-end parallel data transmission 

architecture was designed. SAN topology using this structure will have good 

scalability and fault tolerance but without much additional complexity. The model of 

this transmission architecture is composed of two stage load balancing algorithm, data 

flow priority algorithm, data flow restoring, reordering and fault tolerance algorithm. 

On sender device, four theoretical load balancing algorithms, RGPS, RWRR, 

RDRR and RWFQ, were deduced from reverse Fair Queuing algorithm. For different 

network environment and data transmission models, we have shown that RWRR, 

RDRR and RWFQ can be utilized and implemented with small computation overhead. 

Then we proved that one virtual channel is better than multiple sub channels and used 

service discipline algorithm to provide different priorities and rate-control for each 

data flow. 

On receiver device, data flows are restored and reordered. A chaining hashing 

algorithm was used to search senders’ address table with bounded delay. An efficient 
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out-of-order estimation algorithm was used to setup retransmission threshold and 

allocate reordering buffer. The mechanism of the out-of-order in parallel architecture 

differs from a normal network. Different bandwidths and packet sizes are the major 

reason of this out-of-order delivery. The out-of-order rates were analyzed by schedule 

delay and out-of-order distance.  

Since the end-to-end parallel transmission architecture uses redundant 

channels, the scheduler can provide fault tolerance by detecting channel fault and 

rescheduling data flows to usable channels. The fault detection algorithm can use 

either hardware based, software local loop back and/or remote acknowledge detection 

methods. With different computation complexity, the failure of the first hop link, the 

nearest switch and the full data path could be detected.  

To demonstrate the multiple addresses parallel transmission protocol (MAP-

TP) in SAN, we implemented the protocol as network layer in the Linux kernel module 

of the HyperSCSI in Chapter 3.  

The MAP-TP protocol includes three major function modules: data module, 

control module and a global state machine module. The data module is responsible for 

sending and receiving data flow packets through multiple network channels. The 

control module is used to manage multiple channels and selecting load balancing 

algorithm. The fault tolerance is also provided in the control module. The global state 

machine inspects global parameters and synchronizes the control and data transmission 

states transition. Each major module is composed of group of processes and events, 

and they were illustrated in detail by software flow charts.  

In Chapter 4, the parallel transmission performance was measured by testing 

the disk read speed of the virtual SCSI device with three popular benchmark tools, 

HDPARM, DD and IOZONE. Different parallel symmetrical and asymmetrical 
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architectures were studied under all three scheduling algorithms, RWRR, RDRR and 

RWFQ. 

The result shows that HyperSCSI bandwidth can be increased above 380% 

when 4 links are used. Thus the network utilization rate of the multiple channels 

HyperSCSI is 95%, which is acceptable for high speed transmission. Interestingly, by 

analyzing results of the out-of-order rate, it is found that out-of-order rate did not affect 

the disk read performance very much, which could be explained by the theory of 

schedule delay and out-of-order distance. 

To improve transmission performance and decrease out-of-order rate, the 

network architecture and system resource distribution must be designed wisely. We 

suggest using identical channels on one device, increasing the number of identical 

channels and utilizing larger packet size whenever possible. 

As a conclusion, this multiple address parallel transmission architecture 

supports flexible performance scaling in a packet switching network. As such, SAN 

topology using this structure will have good scalability and fault tolerance but without 

much additional complexity. In addition, by supporting Ethernet MAC and IP packets, 

the network storage devices can work in both LAN and WAN environments. This 

architecture could be a key factor in deploying SANs, which can provide a highly 

scalable bandwidth with full redundancy over switched, parallel data paths. 

 

 

5.1 Extensions 

In this thesis, simple priority service discipline was employed on the scheduler. 

However, service disciplines which can provide per-connection end-to-end 

performance guarantee are still unavailable along the path. In future, parallel packet 
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switching network will have to support QoS services that allow clients to transport 

information with performance guarantee.  

Thus, future research work may focus on QoS applications in parallel 

transmission packet switching SAN, where the delay model of parallel transmission is 

quite different from normal end-to-end transmission. Characteristics such as, delay, 

delay jitter, throughput and loss rate should be studied to control the rate of each data 

flow and avoid the congestion. Traditional congestion control methods did not 

consider about the parallel architecture where out-of-order delivery is quite prevalent.  

 In this thesis, features of out-of-order delivery has been studied which is 

expressed by characteristics such as, retransmission, window size, drop rate estimation, 

and buffer size. More study should be conducted on delay and delay jitter caused by 

out-of-order delivery. Both single and multiple channel end-to-end queuing models 

should be analyzed by factors of out-of-order delivery.  

Additionally, parallel architecture should be studied on emerging Data Grids, 

which could be fundamental in future data-intensive applications such as 

geographically dispersed extraction of complex scientific information from very large 

collections of measured or computed data. The reliability and performance of the 

GridFTP might be enhanced by applying Multi-channel technology on striping and 

partial file access. 

Last but not the least, high level data management interface should be studied 

for the implementation of the parallel SAN architecture. A new standard, the Storage 

Management Initiative Specification (SMI-S) by Storage Network Industry 

Association (SNIA), is rapidly emerging as the architecture for fully interoperable 

SANs. SMI-S is intended to be the unifying interface between storage objects that 
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must be managed and the management applications. It is necessary to trace this 

standard in future research works. 
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Appendices 
 
 

Appendix A Fault Tolerance Cost Estimation 

 
Below is the reliability and fault tolerance cost estimation functions and some 

numerical result: 
 

 
 
 

 

 From the estimation data, we found that with the increment of the channels, the 

reliability ratio increases rapidly. 
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 From the estimation result we found that fault detection cost remains low when 

most channels are working. 
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