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Summary 

 

In this thesis, a novel idea of nonintrusively identifying the electrical loads 

present in a power system by analyzing the current waveform harmonics at the power 

supply mains using the artificial neural network (ANN) or support vector machine 

(SVM) was developed. 

 

In general, electrical devices’ current waveforms are distorted due to the 

inherent nonlinearity of the devices.  From the study of each device’s current 

waveforms, it was shown that different devices produced distinctly different current 

harmonics, which were used as signatures for the devices.  Some devices also 

produced different harmonic signatures under different modes of operation. 

 

Various ANN architectures such as the multilayer perceptron (MLP), radial 

basis function (RBF) and time delay neural network (TDNN) and SVM-based 

classifiers with various kernels including the linear, polynomial and RBF kernels were 

applied to the harmonic signature identification.  A new multi-class SVM technique 

for non-mutually exclusive classes was developed, to cater to the multiple outputs 

requirement of this research, and its feasibility was verified. 

 

The ANN and SVM-based classifiers were trained to map phase angles and 

magnitudes (represented in the complex form) of the current waveform harmonics to 

the combinations of devices present in the system.  The trained ANN and SVM 

classifiers were then applied to a test set to obtain the classification accuracy.  The 



 v

generalization performance from a reduced training set size and noise tolerance limits 

of the classifiers were explored.  The results were favorable with the ANN and SVM-

based models being able to correctly determine the combinations of the devices 

present with high accuracy. 

 

Differences in the harmonic signatures from electrical devices of the same 

model were studied and the MLP was shown to perform classification accurately on 

current harmonics of a system containing multiples of similar model devices.  

Classification performance of three phase devices was shown to be higher than that of 

single phase devices because it had three times the amount of harmonic information 

from its three phases.  Besides that, using the time delay neural network, step change 

information was utilized to allow identification of large numbers of devices.  As the 

number of devices increases, the process of disaggregating individual signatures from 

the total load harmonic information would become more difficult without tracking 

step changes. 

 

The MLP was concluded as the best classifier due to its high accuracy yet low 

computational resource requirement.  However, it also suffered from the problem of 

having a large number of local minima, thus causing difficulty in optimizing its 

weights.  Evolution of MLP weights using genetic algorithm (GA) was successfully 

implemented in the search for an optimal initial set of MLP weights while 

backpropagation algorithm was used to update the MLP weights towards the optimal 

values. 
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Chapter 1 Introduction 

 

1.1 Power Harmonics Analysis 
 

Power harmonics analysis refers to the study of waveform distortion resulting 

from the non-linearity of electrical loads such as power electronic devices, fluorescent 

lighting, inverters, saturated transformers and arc furnaces.  There has been a rapid 

increase in the quantity and power rating of highly non-linear power electronic devices, 

especially in computer systems and the control of power apparatus and systems.  

Power harmonics cause voltage distortion which affects sensitive equipment, nuisance 

tripping of circuit breakers and alter meter readings that are based on zero crossings.  

Besides that, higher order harmonic currents may cause overheating problems in 

transformers or electrical wirings.  Hence, power harmonics remains as a major power 

quality problem [1,2,3,4]. 

 

1.1.1 Transient and Steady State Signals 
 

Power systems waveforms can be broadly divided into two main categories, 

namely transients and steady state signals.  Transients refer to short duration signals 

that usually occur during sudden transition of states of electrical devices whereas 

steady state signals are constant or cyclical signals that are repeated with time when 

the electrical devices have settled down to a stable state of operation (Figure 1-1).   
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Fig. 1-1   Transient and steady state signals 

 

Due to their short duration, transients are inherently more difficult to analyze 

compared to steady state signals.  Generally, transients require continuous monitoring 

and recording of the signal at high sampling rate.  Techniques such as edge detection 

are often employed to initiate the capturing of the transient waveforms.  On the other 

hand, steady state signals are obtained only when the waveform has stabilized and thus 

require lower resolution.  Both transients and steady state signals provide vital 

information in the analysis of power harmonics. 

 

1.1.2 Signal Analysis Techniques 
 

 Power harmonics analysis is performed in either the time domain or frequency 

domain.  The frequency information is obtained through techniques such as Fourier 

Transform and Wavelet Transform of the original time domain signal.  The two 

domains offer two different perspectives of a waveform and are widely used for 

analysis of power harmonics. 

 

Transient Steady state 

Time 
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State space simulations of the power system are performed in the time domain, 

using the available modern digital computers to perform high speed difference 

equation calculations.  Edge detection to track transients or step changes in waveforms 

is also carried out in the time domain by measuring the rate of change of a signal and 

comparing it to a threshold. 

 

 

Fig. 1-2   Distorted waveform in time domain 

 

The frequency information allows the extraction of characteristic features in 

terms of frequency components of the waveform.  Frequency domain analysis greatly 

reduces the data size by representing the time domain information (Figure 1-2), which 

was recorded at high sampling rate, with the two frequency peaks in the frequency 

counterpart (Figure 1-3).  Therefore, it also simplifies the process of characterizing the 

waveform using computational intelligence techniques. 
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Fig. 1-3   Distorted waveform in frequency domain 

 

 Both the Fourier Transform and Wavelet Transform extract the frequency 

information from a waveform.  However, the areas of application for the two methods 

are slightly different.  Fourier Transform is more suited to steady state signal analysis 

where the frequency components are constant with time.  On the other hand, Wavelet 

Transform is able to analyze transient signals by providing both frequency information 

and the corresponding locations in time simultaneously.  The Fourier Transform and 

Wavelet Transform are given by equations (1.1) and (1.2) respectively. 

 

∫
∞

∞−

−= dtetxfX ftj π2)()(  (1.1) 

∫
∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

bttx
a

baW ψ)(1),(  (1.2) 

where x(t) is the time domain signal, X(f) is the Fourier Transform of x(t), W(a,b) is the 

Wavelet Transform of x(t), Ψ((t-b)/a) is the baby wavelet obtained by the stretching by 

a factor a and shifting in time by b of the wavelet w(t).  In the Wavelet Transform, 

scale a can be converted into frequency f while b provides time locality for the 

frequency information a. 
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 Apart from Fourier Transform and Wavelet Transform, various other 

techniques for signal processing are available in the literature [5,6,7].  The techniques 

include autoregressive modeling (AR) that uses polynomials to perform regression on 

the waveform [5].  The coefficients of the AR are used in the feature vector for 

signature identification.  There are various other coefficient states to model the 

waveform, namely cepstral, autocorrelation (ARC), reflection (RC) and Mel-frequency 

cepstral (MFCC) [6].   

 

 Besides that, threshold crossing (TC), differentiation algorithm and sine wave 

crossing algorithm were discussed in [7].  Due to it computational complexity, FFT 

cannot be used in real time computation.  On the other hand, while the TC is less 

computational intensive, the DC bias had to be removed manually.  Noise is generated 

by the differentiation algorithm causing it to be less accurate in recognizing some 

signatures. 

 

1.2 Application of Computational Intelligence in 
Power Harmonics Analysis 

 

 Computational intelligence techniques have been widely applied in the field of 

power harmonics analysis, especially in situations where conventional methods require 

high computational power or human expertise.   

 

Expectedly, deployment of computational intelligence techniques for power 

harmonics analysis has traditionally been focused in the field of power quality.  The 

classification and function approximation capabilities of an artificial neural network 
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(ANN) have been used in power quality disturbances categorization, fault diagnosis 

and harmonic sources classification, particularly for power quality analysis or active 

filter applications [8,9,10,11,12,13,14].  Similarly, support vector machines (SVM) has 

shown promising potential in power harmonics related pattern recognition [15,16,17]. 

 

1.2.1 Harmonic Detection 
 

 The extraction of harmonics information from the waveform is conventionally 

performed using Fourier Transform.  However, ANN has been shown to be capable of 

outperforming the Fourier Transform in terms of speed in extracting harmonics 

information [9,10,12].  The higher speed of harmonic detection is vital to the operation 

of active filters that need to react fast to remove harmonics from the power system. 

 

 In [9] and [12], the ANNs proposed were trained with samples of simulated 

current waveforms distorted with odd harmonics from the 3rd to the 7th harmonic with 

magnitude of up to 33.33% and varying phase angles.  The ANNs only required the 

data from ½ a cycle of the fundamental component, hence the claim of faster 

processing compared to the Fourier Transform.  The ANNs output the magnitude and 

phase angle of the current waveform harmonic contents.  The authors in [10] offered 

an ANN design that is capable of detecting harmonic components up to the 11th 

harmonic. 

 

 

 



Introduction 
 

 
7 

1.2.2 Harmonic Source Detection 
 

 The IEEE Std 519-1992 (IEEE Recommended Practices and Requirements for 

Harmonic Control in Electrical Power Systems) established a set of limits to the 

amount of current harmonics that is acceptable in the power system [18].  The standard 

indicates the importance of harmonic sources detection at the power system level, to 

ensure that each power consumer will play his part in keeping the harmonic distortion 

level low. 

 

 The conventional approach to harmonic source detection is to remove shunt 

capacitors to eliminate possible redirection of harmonic flow before performing the 

analysis.  However, it tends to disrupt the normal operating condition in certain cases, 

causing undervoltage problems and missing resonance phenomena.  The authors in [18] 

proposed to go through an elimination process of possible sources instead of changing 

the system.  Paper [19] suggested that negative harmonic power is a sufficient but not 

necessary condition of being an active harmonic source in a branch and developed a 

method of monoparameter variation to identify the existence of a harmonic source. 

 

 In [20] and [21], state estimation using least square estimators to identify the 

location of harmonic sources with a few properly placed measurements was used.  

Measurement placement was based on observability analysis [21].  The proposed 

method was applied on a large interconnected transmission network.  Some 

inaccuracies in the detection could be due to losses that were not accounted for, 

estimation errors and modeling errors.  In [22], the Kalman filter estimation model 

with the harmonic injection as a random state variable was used instead.  The error 
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covariance analysis of harmonic injection was used to determine the optimal metering 

locations. 

 

 A constrained ANN was proposed in [8] for the identification of harmonic 

producing buses.  Both data from permanent instruments and portable instruments 

placed on specific buses were used as the input to the ANN.  The ANN was 

constrained by data from some permanent harmonic instrumentation.  The ANN 

showed high accuracy in determining the harmonic sources. 

 

1.2.3 Power Disturbance Classification 
 

 Power harmonics analysis presents a useful form of power disturbance 

classification, especially since power harmonics is a major contributor to power 

quality problems.  Power disturbance can be divided into steady state events such as 

supply interruption, undervoltage and overvoltage or transient events such as 

impulsive transients, oscillatory transients, voltage swell and voltage sag. 

 

 Papers [11], [13] and [14] used the self organizing map class (SOM) of ANN to 

perform the classification of disturbances.  In [14], feature extraction for the steady 

state events and transient events were performed using Fast Fourier Transform (FFT) 

and Discrete Wavelet Transform (DWT) respectively.  Disturbance detection 

mechanism such as the edge detection was employed to capture the waveform of 

potential disturbances. 
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 In [23], power harmonics analysis was applied to the stator current and 

voltages of induction motor drives to perform fault diagnosis using artificial 

intelligence techniques.  The types of faults included rotor and stator asymmetry or 

dynamic eccentricity and bearing failures.  Under stationary condition or steady state, 

the spectrum lines formed provided the fault signature.  With suitable normalization, it 

could even be extended to a family of induction motors.  Unfortunately, in some cases, 

load anomalies introduced harmonics, thus leading to confusion.  An expert system 

threshold handler was used together with an unsupervised ANN to perform the 

clustering of spectrum lines and thus fault types, while fuzzy logic was used to 

determine the severity of the fault. 

 

1.3 Device Signature Identification in Nonintrusive 
Appliance Load Monitoring 

 

 Nonintrusive appliance load monitoring (NALM) refers to the monitoring of 

electrical circuits from a central location to identify electrical devices that have been 

connected to the circuit and to track their states of operation.  No access to the 

individual devices is necessary for installing sensors or making measurements.  

Therefore, instead of having dedicated hardware and wiring to monitor the states of the 

electrical devices, complex software for signal processing and analysis is required for 

device signature identification.  This section discusses past publications on electrical 

signal information or analysis techniques to be used in NALM, thus the novelty of the 

approach taken in this thesis.  
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1.3.1 Electrical Device Categories 
 

 The electrical device operation states can be broadly divided into three 

categories:- on/off state machine, finite state machine and continuously variable 

machine [24]. 

 

 For the purpose of signature identification, the on/off state machines are the 

easiest to identify because of their binary state.  The signatures of this device category 

are constants that can be accurately determined at any time period of their operation.  

Examples of on/off state machines include light bulbs and fluorescent lamps. 

 

 Finite state machines have multiple distinct states of power consumption.  

Therefore, a more complicated signature model is required to identify a finite state 

machine.  The model will need to include all the available states and possibly a time 

reference to characterize cyclical transitions between the states.  The state transitions 

may be automatic (e.g. a washing machine which moves from washing to spinning) or 

require human input (e.g. a multi-speed fan switched from low speed to high speed). 

 

 In the third category, the continuously variable machines, as the name implies, 

have an infinite number of states within an operational range.  Using conventional 

NALM techniques which will be discussed in the chapter, it is very difficult to 

accurately identify this category of devices.  Examples of the continuously variable 

machines are the light bulb with a dimmer, sewing machines and variable speed drills.   
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1.3.2 Device Signatures 
 

 In order to form the signature to represent an electrical device, different types 

of information obtained from the voltage and current measurements of the electrical 

circuit have been used.  These information or features are usually stored in a vector 

format and thus a device signature is also referred to as the feature vector of the 

electrical device.  Some of the commonly used information are the steady state powers, 

the transient characteristics and the higher harmonic components [24,25,26,27,28,29]. 

 

1.3.2.1  Steady State Power 
 

 In [24,25,26,29], the step changes in the steady state aggregate complex power 

consumption of various commonly used electrical devices were plotted in the P-Q 

chart (Figure 1-4).  Different regions of the P-Q plane would represent different 

devices and formed the feature vector of the devices.  The positive and negative 

clusters of the P-Q chart were matched to correspond to the on and off state changes of 

the electrical devices respectively.  The Zero Loop-Sum Constraint in [24] stated that 

the sum of the power changes in any cycle of state transition would be equal to zero.  

In [25], other information such as the modeling of the state transition cycles of a 

device, the functional sequences of a group of devices and the time of event that may 

determine the likelihood of a device being used were associated to the P-Q chart for 

better identification accuracy. 

 



Introduction 
 

 
12 

 

Fig. 1-4   Example of a P-Q chart [24] 

 

 Unfortunately, the P-Q analysis did not have sufficient resolution for some 

devices or device combinations that had almost similar power consumption.  Current 

fluctuation and drift also posed some error in the signature obtained [25].  In [24], the 

Switch Continuity Principle, which stated that in a small time interval only a small 

number of appliances were expected to change state in a typical load, was 

implemented to avoid the deduction of sudden change of combinations of devices that 

had similar power consumptions.  However, electrically identical devices were still 

indistinguishable. 

 

 The detection of events was also a complicated task [24].  It required 

continuous monitoring of the electrical system.  If more than one device were to 

change its state simultaneously, the event might be misjudged as an unknown device 
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or some other devices.  Devices with multiple states required a corresponding time 

stamp to track its state transition cycles.  Transient effects could also cause the 

magnitude of the events detected to be inaccurate. 

 

1.3.2.2  Transients Characteristics 
 

 In [29], it was proposed a feature vector consisting of the time domain 

waveform of detected transients to be compared with waveform templates that were 

shifted in time or offset in magnitude to determine the signature.  However, as stated in 

[25] and discussed in section 1.1.1, transients remain difficult to detect and analyze.   

 

To be able to derive useful information about the transient waveform, the 

electrical circuit needs to be monitored continuously and at high sampling rate.  For 

the recognition of current demand signatures in the space shuttle telemetry data [27], 

the actual current waveform was sampled at 10Hz and the time domain data after an 

edge detection trigger event was used as the signature. 

 

 The characteristics of a transient signal depend heavily on the instantaneous 

state of the electrical system when it occurs.  Therefore, the shape of the transient 

waveform may differ significantly for each measurement instance.  Accurate modeling 

is complicated and will require all the possible states to be taken into consideration.  A 

high time resolution transient detection system is required to tear apart overlapping 

transients. 
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1.3.2.3  Higher Harmonics Information 
 

 References [24,25,26,29,30] have proposed the use of higher harmonics 

information to provide higher resolution in disaggregating multiple loads including 

continuously variable loads in the P-Q chart.  The advantage is especially evident with 

the rapid increase in use of power electronic devices and other devices that produce 

high amounts of harmonic distortions.  Current measurement was preferred to the 

voltage measurement in power harmonics analysis because of the inherent series 

inductive and shunt capacitive natures of the electrical wirings causing higher 

attenuation of voltage with frequency [20]. 

 

 The use of harmonics information for NALM have been suggested in 

references [24,25,26,28,29,30].  Reference [30] recorded fuzzy harmonics patterns 

from various loads.  The measurement records from the different types of loads were 

used to create fuzzy templates consisting of harmonic magnitudes and phase angles in 

the complex plane (Figure 1-5) for signature identification.  Three main harmonic 

sources were used including the full wave converter, fluorescent tube and iron core.  

Reference [28] proposed the use of Discrete Wavelet Transform (DWT) preprocessing 

of the signal to obtain a feature vector based on the normalized energy of each DWT 

level coefficient.   
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Fig. 1-5   Harmonics signature of a PC power supply in complex plane [30] 

 

However, the references discussed have neither performed a thorough research 

nor focused on the utilization harmonics information as signatures for NALM.  Most 

of the devices taken into consideration were generally of high power rating and 

produced low harmonic distortion.   

 

The focus of this thesis was to perform a full study on the potential of the 

harmonics information in signature identification.  This thesis aimed to use the higher 

harmonics information of the current waveform, drawn at the main incoming source by 

the electrical devices, to accurately disaggregate the waveform and obtain the 

individual device signatures. 

 
 

1.3.3 Application of Computational Intelligence Techniques in 
NALM 

 

 Several researches have applied computational intelligence techniques such as 

expert systems, fuzzy arithmetic, ANN and SVM for non-intrusive load monitoring 

[15,25,26,27,30,31]. 
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 In identifying an electrical device, the expert system identification algorithm in 

[25] used the multiple features or characteristics of the household appliances including 

the effective current, effective voltage, active power, duration and shape of the current 

transient and current harmonics.  The household appliances used for experiment in [25] 

were divided into categories such as resistive, pump-operated, motor-driven, 

electronically fed, electronic power control and fluorescent lighting.  However, the 

expert system in [25] depended on the engineer’s domain knowledge and required 

accurate knowledge representation. 

 

In [30], unknown harmonic patterns were identified by calculating the possible 

contribution from each type of load through solving a set of fuzzy linear equations.  

The reference only presented a small number of experiments for the case of 

combinations of devices present in the electrical system. 

 

 Reference [26] proposed the use of cascaded ANNs to identify industrial loads.  

The main feature used was the step change recorded in the P-Q chart and distortion 

power, D.  Varying loads were identified as a locus in the P-Q-D space.  The ANN 

performed binary classifications and formed a family tree in the identification 

algorithm.  Reference [15] performed an experimental analysis of the SVM 

performance using different kernels.  Measurement data in terms of the harmonic 

information of 10 electrical appliances were used to train and test the SVMs.  The 

reference highlighted the significance of a proper choice of SVM cost parameter to 

improve classification accuracy. 

 



Introduction 
 

 
17 

1.3.4 A Novel Approach to Device Signature Identification 
 

 The performance of the ANN and SVM in device signature identification for 

NALM based on higher harmonics information has yet to be evaluated in the current 

literature.  Higher harmonics information provides highly accurate signatures for the 

classification of the various electrical devices.  While other electrical information can 

also be obtained from the electrical waveform to further improve the accuracy of the 

identification, the additional complexity and processing time required do not justify 

the minimal improvement in accuracy. 

 

The main advantage of the ANN and SVM lies in their ability to perform 

accurate classification and generalization after training based on available information.  

The two techniques also eliminate the need for human expertise in determining the 

necessary structure of the identification models. 

 

1.4 Proposed Power Harmonics Analysis for 
Electrical Device Signature Identification using 
the ANN and SVM 

 

The literature review as shown in section 1.2 and 1.3 highlighted the potential 

of power harmonics analysis using computational intelligence techniques in signature 

identification problems.  Thus far, computational intelligence techniques applied to 

power harmonics analysis had been limited to system level harmonics source 

identification and power quality disturbances classification.  The notion of power 

harmonics analysis was directed towards the elimination of power harmonics for 

power quality improvement.  In NALM, various electrical device signature 
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information such as the steady state power and transient characteristics of the electrical 

signal have been used to identify the load in an electrical system.  However, little 

research has been done on the use of power harmonics analysis for signature 

identification. 

 

In contrast, this thesis analyzed the harmonic components from a non-power 

quality point of view, as valuable information for signature identification. Due to the 

different power conditioning involved, different categories of devices produce 

different current waveform distortions and thus different current harmonics.   Current 

harmonics can be used as a form of signature for the device, distinct from that of other 

devices.  From only its current waveform measurement, it is possible to identify the 

devices present in the electrical power system. 

 

The objectives of the thesis research are as follows:- 

• To study the characteristics of the signatures obtained from power harmonics 

analysis of electrical devices. 

• To propose and train the artificial neural network and support vector machine 

based models for classification of electrical devices based on their power 

harmonics signatures. 

• To non-intrusively identify the electrical devices present in an electrical system 

using the trained ANN and SVM and power harmonics data from the main 

incoming supply. 

 

In the course of the research, several ANN architectures such as the multilayer 

perceptron, radial basis function neural network and time delay neural network were 
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implemented.  A new multi-class SVM for classification of patterns involving non-

mutually exclusive classes was proposed to cater to the requirements of the research.  

Lastly, evolution of multilayer perceptron weights using genetic algorithm was 

implemented to search for the optimal multilayer perceptron architecture. 

 

In summary, this thesis proposed a novel concept of electrical device 

identification through power harmonics analysis using computational intelligence 

techniques such as ANN and SVM.  The ANN and SVM models for multi-class 

classification were developed and trained with current harmonics information from a 

power source mapped to a corresponding output to show the devices present in the 

electrical power system.  Finally, the trained ANN or SVM was used to identify the 

devices present from just the current harmonics at the power source (Figure 1-6). 

 

 

Fig. 1-6   Power harmonics analysis for device identification system proposal 
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1.5 Thesis Organization 
 

This thesis consists of eight chapters that describe the different aspects of the 

whole research project.  Chapter 2 presents the characteristic analysis of the feature 

vector of various electrical devices used in the research.  Chapter 3 illustrates the 

proposed artificial neural network and support vector machine architectures for 

electrical device signature identification based on current harmonics.  Chapter 4 

contains the training and testing results of the developed artificial neural networks and 

support vector machines based on different sets of devices and different criteria.  

Chapter 5 is a discussion of the artificial neural network architecture optimization by 

using genetic algorithm for evolving the multilayer perceptron weights to improve the 

classification accuracy.  Chapter 6 gives the conclusion of the research and 

recommendations on some potential future research areas. 
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Chapter 2 Feature Vector Characteristics 

 

From the literature reviews of nonintrusive appliance load monitoring in 

section 1.3, the importance of selecting distinctive features to form the signature of an 

electrical device was highlighted.  This chapter discusses the analysis of the proposed 

feature vectors based on the higher current harmonics information collected from 

several setups of electrical devices in the laboratory.  It aims to verify the presence of 

distinctive features within the feature vectors before proceeding with the identification 

using the ANN and SVM classifiers. 

 

2.1 Data Collection 
 

In this research, an experimental setup to represent a simple electrical system 

with various devices was created.  For the main phase of the research, eight single-

phase electrical devices were connected in parallel using the laboratory’s existing 

electrical wiring as shown in Figure 2-1 to allow full measurement of all possible 

combinations of devices.  Besides the primary 8-device setup, several 10-device and 4-

device setups (Appendix A) were created to allow preliminary tests using the multi-

class SVM for signature identification and optimization of ANN weights using genetic 

algorithm.  Measurements were made at the main incoming source of the laboratory 

using Fluke 41 Power Harmonics Analyser. 

 

The eight devices were switched on and off in steps to allow current waveform 

measurement of all possible combinations of devices being present at a specific time. 

With eight devices, 256 discrete states were obtained, each representing different 
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combinations of devices switched on in the electrical system.    For each combination, 

18 current waveform readings (each 10 seconds apart) were recorded.  In total, 4608 

current waveform readings were recorded.  The Fluke 41 immediately calculated the 

harmonics contents (magnitude and phase angle) of the current waveform through fast 

fourier transform. 

 

 

Fig. 2-1   Experimental setup 

 

With the Fluke 41, transient signals were neglected due to the low time 

resolution of the measuring device.  Moreover, as discussed in section 1.3.2.2, 

transient signals require complex modeling to obtain accurate results. 

 

In the experiments, only the odd harmonics from the fundamental to the 15th 

harmonic of the current waveforms were of significant magnitude.  Therefore, only the 

first eight odd harmonics (fundamental, 3rd, 5th, 7th, 9th, 11th, 13th, 15th) were 

chosen as the features of the device signature.  For easier representation, the magnitude 

and phase angle of the harmonics were converted into the complex representation, 

where each harmonic had a real and imaginary part.  With 8 harmonics taken into 
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consideration, the feature vector presented to the ANN had 16 inputs as shown in 

equations (2.1a) and (2.1b). 

( ) ( ) 2/12/1 cos ++= iii Ix φ   for i = 1,3,5,7,9,11,13 and 15  (2.1a) 

2/2/ sin iii Ix φ=   for i = 2,4,6,8,10,12,14 and 16 (2.2b) 

where xi is the ith input, In is the magnitude of the nth odd current harmonic and nφ  is 

phase angle of the nth odd current harmonic. 

 

 Figure 2-2 illustrates how x1 and x2 of the input vector were calculated from 

the real and imaginary parts of the fundamental harmonic according to equations (2.1a) 

and (2.1b) respectively while the real and imaginary parts of the 11th harmonic were 

used as x11 and x12 respectively.  Tables 2-1a and 2-1b show the feature vectors of each 

device in the 8-device setup.  The structure and segments of the database containing all 

the feature vectors created from the 4608 measurements available are shown in Table 

A-6 in Appendix A. 
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Fig. 2-2   Signature identification feature vector 
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Table 2-1a   Individual device feature vectors 

Monitor CPU Fluorescent Lamp Television Input 

No, i 
Harmonic 

I (A) Φ ( o ) xi I (A) Φ ( o ) xi I (A) Φ ( o ) xi I (A) Φ ( o ) xi 

1 0.316 0.172 0.405 0.188

2 
Fundamental 0.328 15.6 

0.088
0.198 29.6 

0.098 
0.436 -21.7 

-0.161
0.194 14.5 

0.048

3 -0.272 -0.147 0.043 -0.149

4 
3rd 0.282 -15.3 

0.075
0.156 -19.7 

0.053 
0.080 -56.9 

-0.067
0.153 -12.1 

0.032

5 0.191 0.094 0.009 0.108

6 
5th 0.232 -34.6 

-0.132
0.135 -45.6 

-0.096 
0.021 -65.8 

-0.019
0.125 -30.5 

-0.064

7 -0.108 -0.038 0.006 -0.059

8 
7th 0.170 -50.8 

0.132
0.103 -68.1 

0.096 
0.036 79.8 

0.036
0.085 -46.4 

0.062

9 0.042 -0.004 0.002 0.022

10 
9th 0.108 -67.2 

-0.100
0.071 87.0 

-0.070 
0.048 -88.2 

-0.048
0.050 -64.3 

-0.045

11 -0.010 0.020 0.020 -0.004

12 
11th 0.054 -79.4 

0.053
0.040 59.9 

0.034 
0.021 -12.7 

-0.005
0.020 -78.0 

0.020

13 0.004 -0.015 -0.012 0.001

14 
13th 0.015 -74.9 

-0.014
0.016 13.5 

-0.004 
0.020 52.8 

-0.016
0.003 71.2 

0.003

15 -0.011 0.001 -0.028 -0.001

16 
15th 0.014 32.8 

-0.007
0.015 -86.1 

-0.015 
0.058 61.1 

-0.051
0.015 86.5 

-0.015
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Table 2-1b   Individual device feature vectors 

Battery charger Fan Fridge Light Bulb Input 

No, i 
Harmonic 

I (A) Φ ( o ) xi I (A) Φ ( o ) xi I (A) Φ ( o ) xi I (A) Φ ( o ) xi 

1 0.125 0.159 0.212 0.474

2 
Fundamental 0.178 -45.5 

-0.127
0.176 25.0 

0.074 
0.232 24.1 

0.095
0.476 6.0 

0.050

3 0.045 0.004 -0.153 0.027

4 
3rd 0.047 16.3 

0.013
0.025 80.5 

0.025 
0.181 32.3 

-0.097
0.028 11.2 

0.005

5 -0.030 -0.009 0.058 0.011

6 
5th 0.042 -43.8 

0.029
0.010 -10.1 

0.002 
0.114 59.2 

0.098
0.011 20.0 

0.004

7 -0.018 0.001 0.027 0.012

8 
7th 0.024 42.2 

-0.016
0.003 -70.2 

-0.003 
0.067 -66.2 

-0.061
0.014 26.5 

0.006

9 0.001 -0.002 -0.069 0.002

10 
9th 0.001 -19.7 

0.000
0.005 -68.4 

0.005 
0.069 -5.3 

0.006
0.007 70.4 

0.007

11 -0.007 -0.003 0.059 0.003

12 
11th 0.007 -11.4 

0.001
0.004 -32.9 

0.002 
0.071 33.8 

0.039
0.006 55.9 

0.005

13 0.002 0.000 -0.016 0.003

14 
13th 0.005 -71.7 

-0.005
0.003 82.5 

0.003 
0.056 74.0 

-0.054
0.007 61.8 

0.006

15 0.003 -0.002 -0.025 -0.001

16 
15th 0.004 37.5 

0.003
0.002 -20.8 

0.001 
0.043 -54.7 

0.035
0.009 -80.4 

0.009
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 Similarly, for the 10-device and 4-device setups in Appendix A, the different 

setups of electrical devices were connected to the main incoming source of the 

laboratory and the current harmonics were measured and recorded at the incoming 

point.  The feature vectors for each measurement were calculated according to 

equations (2.1a) and (2.1b).  The feature vectors for current harmonics measurements 

of individual devices of each setup are tabulated in Appendix A. 

 

Due to the large number of possible combinations of devices from the 10-

devices setup, instead of experimentally measuring the current harmonics for each 

combination, the complete data set was created from sums of different combinations of 

the feature vectors of the individual signatures.  Only one of each signature of devices 

present was added in one combination.  The summation process is illustrated in Fig. 2-

3.  In some experiments, noise of predefined magnitude was added to the sum to 

simulate a practical situation. 

 

For the 4-devices setup, a total of 26 and 78 feature vectors from random 

combinations of the four devices were recorded for the training set and test set 

respectively.  The feature vectors recorded were time sequential data (recorded in time 

steps of 15 seconds), meant to be used for the Time Delay Neural Network (TDNN) 

that requires the input vectors to be sequential in the time domain. 
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Fig. 2-3   Summation of individual feature vectors to form two new feature vectors 

 

2.2 Harmonics Signature Characteristics 
 

From the measurements made in the experiment, the harmonics magnitude and 

phase angle of the devices demonstrated small random fluctuations with time.  The 

fluctuations could be due to the fluctuation of the source power supply or inherent 

electrical characteristics of the devices. 

 

The source voltage measured over the period of experiments had a mean of 

231.5V, a standard deviation of 1.26V and higher harmonic contents of below 1.5% of 

the fundamental (Table 2-2).  The effect of the 8 experiment loads on the source 

voltage was negligible since the wiring resistances were small.  High voltage 

harmonics distortion is expected to change the harmonics signature of the electrical 

Feature vector of device 1 

Feature vector of device 2 

Feature vector of device 3 

Feature vector of device 4 

Feature vector of device 5 

Feature vector of device 6 

Feature vector of device 7 

Feature vector of device 8 

Feature vector of device 9 

Feature vector of device 10 

Combination 1:  1 -1 1 -1 -1 -1 -1 -1 -1 -1 

+ Combination 1 feature vector 

Combination 2:  -1 -1 -1 -1 -1 -1 1 1 -1 1 

+ Combination 2 feature vector 
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devices.  However, the voltage source of the laboratory was of reasonably low 

harmonics distortion and also a good representation of the voltage source in common 

areas where the electrical devices are used.  Besides that, highly distorted data due to 

voltage dips can be pre-filtered and removed to avoid being misclassified by the ANN 

or SVM. 

 

Apart from these random fluctuations, most of the devices had some short 

transient states or were capable of multiple modes of operation that could produce 

significantly different signatures.  As a result, for the purpose of this experiment, all 

the devices were set to operate in a specific mode in all instances and only steady state 

current harmonics were taken into consideration.  This limitation is fair because these 

devices are expected to operate in the specific mode for large proportions of their 

operation time. 

 

Table 2-2   Source voltage harmonic components 

Harmonic Magnitude (V) Standard Deviation (V) 

Fundamental 231.46 1.26 

3rd 2.70 0.21 

5th 2.44 0.24 

7th 1.93 0.17 

9th 2.14 0.16 

11th 0.96 0.09 

13th 0.71 0.11 
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 In order to study the range of fluctuations of the various harmonic components, 

the minimum and maximum values of each harmonic component were calculated 

according to the following equations: 

 

))(min( ,, jxs kiki =   (2.2) 

kikiki sjxd ,,, ))(max( −=  (2.3) 

for i = 1, 2, …, 16 

k = 1, 2, …, 256 

 

where si,k is the minimum magnitude, di,k is the fluctuation range and xi,j,k is the input 

data in instance, j, for input, i, of combination, k. 

 

Figure 2-3 shows the distinctive harmonic signatures of all the devices in the 

experimental setup.  The fluctuation ranges, d, of the harmonic components are also 

shown.  With these measurements, the fluctuation magnitudes are shown to be at least 

5 times smaller than the minimum harmonic magnitudes for each individual device.  

Besides that, Figure 2-3 shows the characteristics of each harmonic component in the 

signature. If the fluctuations are large, the characteristic of the harmonic will not be 

apparent enough for signature identification. 
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(b) CPU
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(c) Fluorescent lamp
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(d) Television
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(e) Battery charger
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(f) Fan
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(g) Fridge
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(h) Light bulb
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Fig. 2-4   Harmonic signatures 

 

The computer central processing unit (CPU) shows the largest fluctuation 

magnitude to mean harmonic magnitude ratio (Figure 2-4b) because of the large 

number of different electrical components inside the CPU that draw independent 

amount of current from the CPU power supply.  When taking measurements of 

combinations of devices, the computer CPU was set to a constant operation, by 

repeatedly playing an audio file. 

 

On the other hand, resistive loads such as the light bulb show low harmonic 

distortion but have characteristically higher power consumption (Figure 2-4h) 
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compared to the other devices.  The monitor and CPU show largely similar shaped 

signature patterns but are different in terms of magnitude scale (Figures 2-4a and 2-4b). 

 

Equation (2.4) was used to calculate the ratio of fluctuation, d, in equation (2.3) 

to the mean magnitude of each harmonic component. 

 

18)(
18

1
,

,
,

∑
=

=

j
ki

ki
ki

jx

d
n

  (2.4) 

 

where ni,k is the ratio of the fluctuation, di,k , of input, i, to the mean harmonic 

magnitude for combination, k.  There were 18 instances, j, of input data, xi,k , for each 

combination, k. 

 

 As the number of devices in a combination increases, the individual 

fluctuations from each device may sum up to a large fluctuation range for the 

combination.  However, Figure 2-5 shows a fairly low mean fluctuation range, d when 

averaged over all combinations.  The maximum fluctuation, d shown in Figure 2-6 is 

approximately equal in magnitude to the signature of a single electrical device.  

Therefore, the ANN or SVM had to be able to model all these fluctuations in order to 

accurately identify the devices present. 
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Fig. 2-5   Mean fluctuation magnitude of harmonic 
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Fig. 2-6   Maximum fluctuation magnitude of harmonic 

 

Figure 2-7 shows the average ratio, n, of the fluctuations to the mean harmonic 

magnitude calculated from the complete dataset of all possible combinations of 

devices.  The spikes at input no 9 and 16 were caused by exceptionally large 

fluctuations in a few samples.  If the fluctuations are treated as noise whereas the mean 

harmonic magnitudes are treated as the original signal, then the signal to noise ratios 

(SNR) are above 3dB for most inputs.  The SNR is low for the 13th and 15th 

harmonics (input no 13 to 16) because of the smaller signal magnitude.  The ANN and 

SVM were expected to be able to perform well under these SNR conditions. 
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Fig. 2-7   Ratio of fluctuation to the mean harmonic magnitude 

 

2.3 Feature Vector Analysis Results 
 
 
 The study in section 2.2 has shown that the current harmonics feature vectors 

were able to provide distinctive signatures for both individual devices and combination 

of devices.  Even variable load devices such as the computer displayed prominent 

signature characteristics that can be identified easily.  Although the current harmonics 

for each combination displayed small fluctuations with time, the SNR conditions were 

appropriate for the ANN and SVM. 
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Chapter 3 Proposed ANN and SVM 
Architectures 

 

 After characterizing the feature vectors based on higher current harmonics 

information to be used for signature identification, this chapter presents the proposed 

ANN and SVM architectures with the most efficient input and output vector 

dimensions to perform the classification of devices present in the electrical system. 

 

3.1 Input and Output Vector Dimensions 

 
The ANN and SVM were required to accept the current harmonics information, 

xi for i ranging from 1 to 16 as defined by equations (2.1a) and (2.1b), as inputs but in 

the vector form.  The input vector, X, is defined by 

 

( ) ( ) ( ) ( ) ( ) T
ni jxjxjxjxjX ]......[ 2max21 ×=   (3.1) 

 

where X(j) is the jth instance of the input vector, xi(j) are the jth instances of the ith 

inputs and nmax is the number of harmonics taken into consideration.  Depending on 

the number of harmonics taken into consideration, the number of input nodes for the 

ANN or SVM differs.  Each node will represent one input xi.  Each harmonic would 

require two nodes, for the real and imaginary parts of its complex representation.  

Therefore, the number of input nodes changes in multiples of twos.  For example, if 

the first five odd current harmonics were taken into consideration, then the proposed 

ANN or SVM would have ten input nodes and the input vector, X, would have a 

dimension of 10. 
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For each electrical device taken into consideration, the ANN or SVM would 

need to have one output node to represent the presence or absence of the device.  The 

output node produced a binary output, yi, is defined as 

 

( )
⎩
⎨
⎧
−
+

=
absentisidevicewhen
presentisidevicewhen

jyi 1
1

 (3.2) 

 

where yi(j) is the ANN or SVM output for device i corresponding to the jth instance of 

the input vector, X(j). 

 

  The output vector, Y, is thus defined as 

 

( ) ( ) ( ) ( ) ( ) T
mi jyjyjyjyjY ]......[ max21=   (3.3) 

 

where Y(j) is the jth instance of the output vector, yi(j) is the jth instance of the binary 

output which represents device i and mmax is the number of electrical devices to be 

identified.  For example, in the 8-device setup where there were eight devices, the 

output vector, Y, would have a dimension of 8. 

 

Figure 3-1 illustrates the block diagram of the ANN or SVM which shows the 

inputs and outputs. 
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Fig. 3-1   ANN and SVM block diagram 

 

3.2  Performance Definition 
 

 The performance of the ANN and SVM were measured by the accuracy in 

identifying the devices present in the electrical system based on the input vectors in the 

test set. 

 

For each device, the input vectors in the test set were divided into two groups:- 

Group A containing all the input vectors of current harmonics recorded when the 

device was present and Group B containing all the input vectors of current harmonics 

recorded when the device was absent.  In other words, when fed with the input vectors 

from Group A, the ANN or SVM should produce an output of +1 for that device.  On 

the other hand, when fed with input vectors from Group B, the ANN or SVM should 

produce an output of -1. 
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Misclassification refers to the scenario where the device is present but wrongly 

classified as absent.  Therefore, for the calculation of misclassification, only input 

vectors from Group A were used.  The misclassification rate for device i, Ei, is defined 

as 

present

l

j

i

i l

jy

E

present

∑
=

−

= 1 2
))(1(

 (3.4) 

where yi(j) is the jth instance of the output of the ANN or SVM for device i and lpresent 

is the total number of input vectors in Group A. 

 

 False alarm refers to the scenario where the device is present but wrongly 

classified as present.  Therefore, for the calculation of false alarms, only input vectors 

from Group B were used.  The false alarm rate for device i, Ĕi, is defined as 

 

abbsent

l

j

i

i l

jy

E

absent

∑
=

−−

= 1 2
))(1(

(
 (3.5) 

where yi(j) is the jth instance of the output of the ANN or SVM for device i and labsent 

is the total number of input vectors in Group B. 

 

 The classification accuracy, Fi, for device i of the ANN and SVM is defined as 

 

2
1 ii

i
EE

F
(

+
−=  (3.6) 

where Ei and Ĕi are the misclassification rate and false alarm rate of device i 

respectively. 
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 In some tests, the average classification accuracy for all devices was used to 

evaluate the performance of the ANN and SVM.  The average accuracy, Favg, is 

defined as 

 

max
1

max

1

m

F
F

m

i
i

avg

∑
=−=  (3.7) 

 

where Fi is the classification accuracy for device i and mmax is the number of 

electrical devices. 

 

3.3  ANN Architecture 
 

3.3.1 MLP and RBF Neural Networks 
 

The single-hidden-layer multilayer perceptron (MLP) and radial basis function 

(RBF) neural networks were used in the classification of the devices present in the 

experiment.  The nodes of any two sequential layers were fully connected.  

 

The number of input nodes in the MLP and RBF neural networks depended on 

the number of harmonics taken into consideration.  To measure the effectiveness of the 

additional harmonics taken into consideration, the dimension of input vector, X for the 

MLP was varied from 2 to 16.  The fundamental harmonic was first selected.  

Sequentially, the higher order harmonics were taken into consideration. 
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The number of hidden nodes for the MLP was also varied from 4 to 60 to 

choose the optimum configuration for the neural network.  On the other hand, the 

hidden nodes of the RBF neural networks were sequentially added based on maximum 

variance until a maximum of 300 nodes.  The RBF hidden neurons used the Gaussian 

function with width parameter, σ, equal to 1. 

 

The number of output nodes depended on the number of classes, hence the 

number of devices to be classified in the experiment.  With an initial setup of 8 devices 

(Table 2-1a and Table 2-1b), the number of output nodes was fixed at 8.  The outputs 

of the neural networks, z1 to z8, were passed through a signum function such that in the 

final output, y1 to y8, all positive values were converted to the integer +1 (device was 

present) whereas all the negative values were converted to -1 (device was absent). 

 

Figure 3-2 and 3-3 show the plot of average accuracy, Favg, obtained by the 

MLP against the number of inputs and number of hidden neurons respectively.  The 

optimum number of inputs and hidden nodes were 12 (6 harmonics taken into 

consideration) and 20 respectively.  Above 12 input neurons and 20 hidden neurons, 

the accuracy performance increase is small compared to the increase in training time.  

However, in order to minimize the risk of ignoring important information from the 

13th and 15th harmonics, a maximum of 16 inputs was still deemed the best.  

Consequently, the standard network configuration for the MLP to be used in all other 

tests in this thesis was chosen to be 16-20-8 (16 input neurons, 20 hidden neurons, 8 

output neurons) (Figure 3-4). 
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Fig. 3-2   Average accuracy, Favg, against no. of odd harmonics in feature vector 

 

 

Fig. 3-3   Average accuracy, Favg, against no. of hidden neurons 
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Fig. 3-4   Proposed MLP architecture 

 

Both the gradient descent with momentum [36] and resilient backpropagation 

[33] training algorithms were used in the training of the MLP.  However, the resilient 

backpropagation performed significantly better than the gradient descent method,  

showing better and faster convergence within the limit of 3000 epochs set. 

 

3.3.2 Time Delay Neural Networks 
 

 To study the effect of using temporal information in the classification of 

devices, two simple TDNN architectures were designed and trained on a reduced 

device set of 4 devices (Appendix A – Table A-4).  The TDNNs were designed to 

capture the time step changes in the current harmonics feature vector, distinguishing 

between changes due to a change in device combination and changes due to small 

fluctuations in the current harmonics. 
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With only 4 devices, the dimension of the output vector is 4.  The input vectors 

used for training and testing were time sequential data.  Therefore, the time index, t, is 

used to replace the instance index j, of the input and output vectors in equations (3.1) 

and (3.2). 

 

The first TDNN architecture, TDNN-1, was based on the feedforward MLP 

design with modified input vector (Figure 3-5).  The input vector for TDNN-1, Xtdnn1(t) 

is defined as 

( ) ( ) ( ) ( )[ ]TTTT
tdnn tYtXtXtX 111 −−=  (3.8) 

where X(t) is the current harmonics feature vector at time t, X(t-1) is the time-delayed 

current harmonics feature vector and Y(t-1) is time-delayed output vector from the 

TDNN which represents the previous state of the electrical devices.  X(t-1) and Y(t-1) 

served as the state feedback to the MLP.  The training was performed using the 

backpropagation algorithm. 

 

 The second TDNN architecture, TDNN-2, was based on the Elman network, a 

single-hidden-layer MLP with the addition of a feedback connection from the output 

of the hidden layer to the input (Figure 3-6).  The feedback information underwent a 

time delay before it was added to the input information.  The time delay allowed the 

Elman network to detect time varying patterns, therefore suitable for the detection of 

step changes in the current harmonics feature vector.  The input of the Elman network 

was the same as the input vector defined in equation (3.1) except that the instance 

index, j, was replaced with time index, t, to represent the time sequential data.  Unlike 

TDNN-1, the time delayed states were stored internally in the network itself.  The 

number of hidden neuron for the Elman network was chosen to be 60 neurons which is 
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three times the number of hidden neurons in the MLP because Elman networks 

generally require a much larger number of hidden neurons to perform well [36]. 

 

Fig. 3-5   TDNN-1 architecture 

 

Fig. 3-6   TDNN-2 - Elman Network 
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3.4 SVM Configuration 
 

In this research, the SVM was implemented in various configurations to obtain 

the most optimized configuration for each different experimental setup. 

 

Various kernels including the linear, polynomial and RBF kernels were 

compared.  When using the linear kernel, the SVM performs the classification in the 

original input vector space.  The polynomial and RBF kernels perform the 

classification in the higher order polynomial space and Gaussian function space 

respectively. 

 

As shown in Table 3-1, the cost parameter, C, was slowly varied from 0.3 to 

1.5.  Polynomial kernels of degree 2 to 5 were compared while the widths of the RBF 

functions, σ, were varied from 0.5 to 3.0.  C and σ are defined in equations (D.4) and 

(D.3) respectively. 

 

Table 3-1 Variation of SVM parameters 

Parameter Range 

Cost, C 0.5 – 2.5 

Polynomial degree 2 – 5 

Gaussian function width, σ 0.5 – 3.0 

 

In each experiment, the performance of the SVM linear, polynomial and radial 

basis function (RBF) kernels were compared.  The cost parameter, C and various 

parameters of each kernel such as the degree of the polynomial kernel and σ value of 

the RBF kernel giving the best performance were obtained. 
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In the experiment, the input vector to the SVM classifier was fixed at 16 inputs 

(8 harmonics taken into consideration).  Similar to the ANN, the SVM outputs were 

passed through the signum function to be converted to +1 or -1.  The optimization or 

training of the SVMs were computed using the SVM-Light software by T. Joachims 

[57]. 

 

3.4.1 SVM for Combinations of Classes 
 

In contrast with the multi-class SVM classification methods discussed in 

Appendix D.2.1, this thesis proposed a novel approach to identify signatures of 

combinations of classes which are not mutually exclusive.  These classes may be 

present simultaneously in a single input vector.  Hence, it is not possible to produce the 

necessary outputs with the conventional multi-class SVM approaches [38]. 

 

 

Fig. 3-7   Mutually exclusive classes 
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Such non-mutually exclusive classes (Figure 3-8) often exist in the current 

waveform of electrical supply systems with many loads, particularly in this research 

where the current harmonics in a main electrical cable were analyzed to determine the 

devices present.  In general, the experiments in this thesis required a multi-class output. 

 

 

Fig. 3-8   Non-mutually exclusive classes 

 

The SVM was employed to perform multi-class identification to uniquely 

identify the combinations of devices based on just one set of data, which was the 

current harmonics.  The challenge lies in the fact that SVM is just a two-class classifier 

whereas for each current harmonics input, it was necessary to produce multiple outputs.  

As the number of devices increased, the total possible combination also increased 

exponentially.  

 

An SVM-based model for classifying combinations of classes has been 

developed.  The combination output was first divided into several distinct 2-class 

(present or absent) problems.  The technique was similar to the “one versus the rest” 

multi-class technique except that no comparison of output values between the SVM 

classifiers was required to resolve for the final classification. 
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Due to the unique multi-class nature of the problem, the classification task was 

divided to several SVM classifiers, one for each device.  Each SVM classifier was 

assigned the task of classifying the presence or absence of its corresponding device.  

The training for each SVM classifier was done using the same training set or feature 

vectors but unique output set for its corresponding device. 

 

Finally, the outputs of the individual SVM classifiers were combined to 

produce the device combination for the particular feature vector.  The process is 

illustrated in Figure 3-9. 

 

 

Fig. 3-9   Multi-class SVM Signature Identification 
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training set, the classification accuracy relied on the generalization ability of the SVM-

based classifier.  The SVM-based classifier was required to generalize well and to 

filter out each individual device signature from potentially noisy signals and all other 

signatures. 
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Chapter 4 Performance of Developed ANN and 
SVM Classifiers 

 

This chapter presents the performance comparison of the developed ANN and 

SVM classifiers in the identification of electrical devices present in the system from 

the current waveform harmonics.  The performance of the developed multi-class 

SVM-based models was first evaluated using a 10-device setup.  Next, training and 

testing was performed in several stages to compare the ANN and SVM-based models 

on the data readings collected from the main setup of eight devices.  Subsequently, the 

MLP was applied on other experimental setups, three phase devices and multiples of 

devices of the same model.  The developed time delay neural network (TDNN) 

architectures were also tested on time sequential data from an experimental setup of 4 

devices.  

 

4.1 Classification Using Multi-Class SVM-based 
Model 
 

Prior to a full comparison between the ANN and SVM in the identification of 

electrical devices in an electrical system, a 10-device experimental setup was first 

employed to study the performance of the newly developed multi-class SVM in 

section 3.4.1 in generalization and filtering of noise in the signature identification.  

Through this experiment, the practical performance of the new multi-class SVM was 

measured to ensure that it would meet the objectives of the thesis. 

 

The current harmonics of a total of 10 individual electrical devices operating at 

specific modes were measured.  The feature vector representing each device is 
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tabulated in Appendix A (10-devices Set B).  The database of input vectors was 

created using the mathematical summation of individual device’s feature vectors as 

described in section 2.1. 

 

The feature vector used in the classification consisted of the magnitude and 

phase angle of current harmonics of electrical devices.  It included the odd harmonics 

from the fundamental harmonic up to the 15th harmonic.  Each harmonic was 

represented in the complex form (real and imaginary).  Therefore, with 8 harmonics, 

there were a total of 16 inputs to the SVM. 

 

4.1.1 Identifying Combinations of Devices 
 

By alternating the state of each device, different combinations of devices with 

unique signatures were generated.  From the 210 or 1024 possible permutations of 

devices as shown in Table A-3 in Appendix A, 1024 input vectors were created where 

67% (683 input vectors) were used in the training set while 33% (341 input vectors) 

were used in the test set.  In this experiment, the SVM was forced to generalize well to 

correctly identify combinations that were not in the training set. 

 

The performance of the multi-class SVM in identifying the combinations of 

devices is shown in Table 4-1.  The classification accuracy, F, in Table 4-1 refers to 

the best percentage correct classification for each device after tuning the SVM 

parameters.  As seen from Table 4-1, the polynomial kernel performed best in this 

situation.  The classification accuracy using the polynomial kernel was above 90% for 

all devices.  The higher inaccuracy in identifying the DC Power Supply at different 
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loads could be due to the fact that the signatures are similar (scalar multiples of each 

other).  The mobile phone charger also suffered from lower classification accuracy due 

to the relatively small magnitude of its feature vector. 

 

Table 4-1   Performance of multi-class SVM in identifying combinations of devices 

Accuracy, F (%) Device 

Linear Poly RBF 

PC CPU 100 100 100 

Monitor 99.42 100 100 

PC CPU (Shutdown mode) 100 100 100 

DC Power Supply (0.1A) 74.06 98.56 79.25 

DC Power Supply (0.5A) 76.95 97.69 76.95 

DC Power Supply (0.25A) 65.13 91.64 64.84 

DC Power Supply (0.4A) 76.37 93.37 74.93 

Notebook computer 100 100 100 

Mobile phone charger 53.89 96.25 56.48 

Fluorescent lamp 100 100 100 

 

4.1.2 Noise Filtering 
 

To determine the ability of SVM in filtering noise from the signatures, random 

noise of different maximum magnitude level for different inputs were added to the 

training and test sets.  To create the training database, the input vectors for 2000 

random combinations of devices were created according to the summation process 

explained in section 2.1.  Then random noise of the magnitude shown in Table 4-2 was 
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added to the input vectors.  From the total of 2000 random combinations of device 

signatures with added noise, 67% (1340 input vectors) were used in the training set 

while 33% (660 input vectors) were used for testing. 

 

Table 4-2   Range of Added Noise 

Harmonic Range of Noise Amplitude 

Fundamental -0.1 – 0.1 

3rd -0.1 – 0.1 

5th -0.1 – 0.1 

7th -0.05 – 0.05 

9th -0.01 – 0.01 

11th -0.01 – 0.01 

13th -0.01 – 0.01 

15th -0.01 – 0.01 

 

 

Compared to the results in section 4.1.1, the performance of the SVM suffered 

marginally.  The classification results of the DC Power Supply with different loads and 

the mobile phone charger suffered the most because of weak feature vector 

characteristics.  The SVM with polynomial kernel performed best again, with 

classification accuracy above 70% for all devices.  With this experiment, the Multi-

Class SVM technique has proven its ability to perform well under practical situations. 
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Table 4-3   Performance of Multi-Class SVM on Filtering Noise 

Accuracy, F (%) Device 

Linear Poly RBF 

PC CPU 97.75 99.85 98.95 

Monitor 98.44 99.84 99.07 

PC CPU (Shutdown mode) 93.79 99.70 96.45 

DC Power Supply (0.1A) 72.16 91.60 74.81 

DC Power Supply (0.5A) 74.38 84.28 77.87 

DC Power Supply (0.25A) 66.21 74.89 66.67 

DC Power Supply (0.4A) 69.93 73.33 70.64 

Notebook computer 98.59 99.29 98.87 

Mobile phone charger 61.43 72.49 62.74 

Fluorescent lamp 91.39 96.44 93.47 

 

4.1.3 Scaling of Input to Improve Performance 
 

In order to place equal emphasis on every input in the input vector, using the 

same training database as in section 4.1.2, the magnitudes of all the inputs were scaled 

according to their average value shown in Table 4-4.  After the scaling, the average 

magnitudes of all inputs were approximately equal.  Since the SVM algorithm is 

structured such that a smaller input magnitude will have less effect on the weights of 

the SVM hyperplanes, an equal average magnitude of all the inputs will mean equal 

emphasis on all the inputs.  However, there was a risk of amplifying the fluctuations at 

the higher harmonics, where the ratio of the fluctuation magnitudes to the signal 
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magnitude was higher as discussed in section 2.2.  Therefore, the multi-class SVM 

would be required to tolerate a higher feature vector fluctuation range for each 

combination. 

 

Table 4-5 shows an improvement in performance of the multi-class SVM 

compared to the results in section 4.1.2.  With an equal distribution of emphasis on the 

inputs in the feature vector, the signature characteristics were enhanced.  Instead of 

focusing on the first few inputs that had higher magnitudes, the SVM was able to 

identify the characteristics more apparent in the higher order harmonics. 

 

Table 4-4   Average Amplitude of Harmonics 

Harmonic Scaling ratio 

Fundamental 1:2 

3rd 1:2 

5th 2:3 

7th 4:3 

9th 2:1 

11th 5:1 

13th 5:1 

15th 5:1 
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Table 4-5   Effect of Input Scaling on Performance of Multi-Class SVM 

Accuracy, F (%) Device 
Linear Poly RBF 

PC CPU 100 100 100 

Monitor 99.85 100 100 

PC CPU (Shutdown mode) 99.86 99.86 99.86 

DC Power Supply (0.1A) 91.40 91.70 91.10 

DC Power Supply (0.5A) 81.86 83.51 82.31 

DC Power Supply (0.25A) 71.66 73.55 72.24 

DC Power Supply (0.4A) 72.62 73.06 72.91 

Notebook computer 99.40 99.55 99.40 

Mobile phone charger 70.02 74.73 75.04 

Fluorescent lamp 96.57 97.76 97.17 

 

4.1.4 Resource Usage 
 

In the multi-class classification process using the trained SVM classifiers from 

the developed multi-class SVM, there were 10 comparisons as opposed to the 45 

comparisons using the “Pairwise method” or 9 comparisons using the Directed Acyclic 

Graph SVM method. 

 

The SVM training was performed using a Pentium Xeon 1000MHz processor 

Linux workstation.  For a small training set of about 1300 samples, the CPU time used 

for the training of the SVM across a fixed variation of the SVM parameters was below 

15 minutes.  This training time included processing 10 SVM classifiers for the various 

classes and fine-tuning the parameters. 
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From Table 4-6, it is shown that the linear kernel SVM used the least amount 

of CPU time and computer memory.  The polynomial kernel SVM which produced the 

best results used the highest amount of CPU time and computer memory because of 

the large number of support vectors in the classifier. 

 

Table 4-6   CPU Time and Memory Usage 

Kernel Type CPU Time (seconds) Memory Usage (MB) 

Linear 71 13 

Polynomial 779 59 

RBF 557 57 

 

4.1.5 Feasibility of Developed Multi-Class SVM for Power 
Harmonics Signature Identification 

 

The experimental results have shown the feasibility of using the SVM on non-

mutually exclusive multi-class classification.  Using the methodology shown in section 

3.4.1, the binary classifier SVM was extended into a multi-class classifier capable of 

identifying multiple signatures present in an input signal.  In the case of current 

harmonics signatures from electrical devices, the polynomial kernel performed best 

and was able to give classification accuracy of between 70%-100% in terms of 

generalization ability.  An accuracy of above 70% is usually considered good for a 

signature identification problem [38,48].  Scaling of the input vectors had normalized 

the magnitudes of each input, thus enhancing the characteristics hidden in the higher 

harmonics and increasing the classification accuracy of the SVM. 
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4.2 Performance Comparison of ANN and SVM-based 
Models 

 

 After the classification ability of the developed multi-class SVM has been 

verified, the primary focus of this thesis, which was the study of the ANN and SVM-

based model performances in the classification of electrical devices, was executed.  In 

this section, the training and test were based on the 8-device setup elaborated in 

chapter 2. 

 

4.2.1 Training Using Complete Dataset 
 

In the first stage, the laboratory data measurements (to be referred to as the 

original dataset from here onwards) as explained in section 2.1 were split randomly 

into training and testing data to test the ability of the ANN and SVM-based models in 

classifying the presence or absence of combinations of devices after training on all 

possible scenarios.  In this stage, the original dataset was split such that 66% (3072 

input vectors) of the data was used for training whereas the remaining data was used 

for testing. 

 

A K-fold test was performed to include all data in training and testing.  The 

original dataset was split into 3 equal portions.  In three experiments, each of the 1/3 

portions (1536 input vectors) was used as the test set sequentially while the remaining 

data for that experiment was used as the training set.  The average classification results 

from the three experiments were obtained.  The K-fold test algorithm and classification 

equations are described in Appendix C. 
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Table 4-7 shows the classification result.  Although the ANN classified all 8 

devices at once for each set of testing sample, the result for each device was tabulated 

individually.  The percentage correct classification was calculated from the number of 

correct classification of the presence or absence of a device divided by the size of the 

test set.  All classifiers show excellent classification results. 

 

In a further test, instead of using samples from the original dataset for training, 

the mean value of the input vectors representing each combination was calculated from 

the original dataset to create a feature vector for each combination.  Only the 256 mean 

value feature vectors (one for each combination) were used for training.  The whole of 

the original dataset (4608 input vectors) was used for testing.  Table 4-8 shows the 

corresponding test result where all classifiers again show excellent classification 

results. 

Table 4-7   Classification accuracy when using laboratory measurements 

Accuracy, F (%) 
ANN SVM Device 

MLP RBF Linear Polynomial RBF 

Monitor 100 100 99.1 99.5 99.5 

CPU 99.9 99.8 95.8 99.6 99.2 

Fluo. lamp 99.9 99.8 99.7 99.8 99.8 

TV 99.6 99.8 86.0 98.9 97.3 

Charger 99.9 99.7 99.6 99.8 99.7 

Fan 99.9 99.9 57.0 95.4 82.2 

Fridge 99.8 99.7 99.9 100 99.9 

Light bulb 100 99.8 99.7 99.7 99.7 
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Table 4-8  Classification accuracy when using mean of laboratory measurements 

Accuracy, F (%) 
ANN SVM Device 

MLP RBF Linear Polynomial RBF 

Monitor 99.9 99.9 94.9 99.5 97.7 

CPU 99.4 99.8 77.9 98.5 89.3 

Fluo. lamp 99.9 99.9 100 100 100 

TV 99.0 99.9 67.5 92.0 70.4 

Charger 99.8 99.9 97.4 99.8 99.4 

Fan 99.8 98.9 58.6 84.1 58.4 

Fridge 99.9 100 100 100 100 

Light bulb 100 99.9 99.8 100 99.9 

 

This result proves the ANN and SVM’s ability to generalize well to include all 

the fluctuations in measurement of current harmonics.  The reduction in the size of the 

training set also reduced the training time by a considerable factor especially for the 

RBF neural network and SVM-based models that performs quadratic programming 

(QP) optimization. 

 

4.2.2 Reduction of Training Set Size 
 

Theoretically, since all the electrical devices in the experimental setup were 

connected in parallel and were electrically independent of each other, the current 

drawn by a combination of the devices should be equal to the sum of the current drawn 

by each of the devices present in the combination.  Based on this assumption, a new 
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set of training data based on the mathematical sums of current harmonics of individual 

devices was created. 

 

In order to study the representation accuracy of the mathematical sums to the 

actual laboratory measurements, the ratio of the difference between the two values to 

the magnitude of the mathematical sum was calculated as follows: 
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kiki
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,

,,
,

))(( −
=   (4.1) 

 

where ri,k is the ratio of the difference between actual laboratory measurements, xi,k and 

mathematically calculated data, mi,k, to mi,k  for input, i, of combination, k. 

 

When compared with the actual laboratory measurements, the mathematical 

sums showed some differences.  Figure 4-1 shows the average ratio, r, of the 

difference to the magnitude of the mathematically calculated training data for each 

input.  Inputs 2 and 4 that represent the imaginary components of the fundamental 

harmonic and 3rd harmonic respectively show a high value of r because the sine 

component changes more rapidly with phase angle at small phase angles of less than 

60o.  After removing samples with large difference resulting from voltage dips and 

ignoring the spikes at input number 2, 4, 9 and 11, the average ratio was shown to be 

below 0.5.  It was concluded that the mathematical sums provided a good estimate of 

the actual measurements. 
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Fig. 4-1   Difference between laboratory measurements and mathematical sums 

 

The newly created training set was used to train the ANN and SVM.  The 

whole original dataset was used for testing of the SVM-based models and RBF neural 

network.  Due to the problem of a large number of local minima, if the initial weights 

were not selected correctly, the MLP would not achieve the best performance.  

Therefore, the training and testing for the MLP were repeated 100 times with different 

random initial weights to reach the global minimum.  When training the MLP, 66% 

(3072 input vectors) of the original dataset was used for validation stop (early stopping) 

to avoid over-fitting whereas the remaining data (1536 input vectors) was used for 

testing. 

 

Table 4-9 shows the classification result.  There was no apparent best classifier 

between the ANNs and SVM-based models.  Although the average classification 

accuracy has dropped, it is still above 85%.  The reasonable reduction in accuracy is 

however greatly compensated by the ability of the ANN and SVM to perform 

classification from just information of individual devices, thus a great step towards 

non-intrusive monitoring. 
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Table 4-9  Classification accuracy after reduction of training set size 

Accuracy, F (%) 

ANN SVM Device 

MLP RBF Linear Polynomial RBF 

Monitor 98.5 99.8 92.5 99.4 98.7 

CPU 86.9 87.4 74.3 74.5 75.0 

Fluo. lamp 99.8 99.5 99.9 99.9 99.9 

TV 67.9 88.0 63.6 90.5 78.5 

Charger 66.1 65.1 69.7 71.7 70.3 

Fan 62.1 69.1 66.0 68.0 68.4 

Fridge 98.8 98.8 99.9 99.9 99.9 

Light bulb 97.9 79.2 93.1 95.0 94.5 

 

 

4.2.3 Noise Tolerance 
 

In the final stage of the experiment on 8-device setup, random noise of 

magnitude specified in Table 4-10 was added to the original dataset.  The magnitudes 

in Table 4-10 were based on the magnitude of the current harmonics of individual 

devices.  After adding the noise, the dataset (4608 input vectors) was split into training 

and testing sets with a ratio of 2:1. 
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Table 4-10  Magnitude of random noise for each harmonic 

Harmonic Inputs Noise magnitude 

Fundamental 1,2 0.3 

3rd 3,4 0.3 

5th 5,6 0.2 

7th 7,8 0.2 

9th 9,10 0.1 

11th 11,12 0.1 

13th 13,14 0.1 

15th 15,16 0.1 

 

For the MLP ANN, the random noise added was varied from 0.1 to 1.5 times 

the specified magnitude.  For each step, the training and testing were repeated 100 

times with different random initial weights and the best result was used.  Figure 4-2 

shows a decrease in the average classification accuracy of the 8 devices with an 

increase in noise magnitude.  Even at 1.5 times the average magnitude, the average 

accuracy was still above 70%.  Hence, it is shown here that the ANN was capable of 

filtering noise that may be caused by unknown or faulty devices. 

 

Table 4-11 compares the classification accuracy of ANN and SVM classifiers.  

The performance of the RBF neural network was greatly affected.  Although the test 

results of the SVM classifiers show favorable classification accuracy, the MLP ANN 

had a significantly lower computational resource requirement. 
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Fig. 4-2   Effect of random noise on classification accuracy 

 

Table 4-11  Classification accuracy when random noise was added 

Accuracy, F (%) 

ANN SVM Device 

MLP RBF Linear Polynomial RBF 

Monitor 88.3 71.8 89.0 89.0 88.3 

CPU 71.2 63.8 71.4 71.4 71.4 

Fluo. lamp 84.2 58.1 84.7 84.8 84.8 

TV 68.0 52.7 64.7 64.7 65.0 

Charger 66.8 53.1 66.1 66.5 66.1 

Fan 59.5 50.3 61.6 62.0 61.5 

Fridge 89.0 67.6 88.6 89.0 88.8 

Light bulb 78.6 54.9 78.8 78.8 78.6 
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4.3 Performance on Different Datasets 
 

In order to test the generalization of the MLP ANN classifier on other types of 

devices, two additional experiments with 10 devices were set up (Appendix A – Table 

A-1a and A-2a).  Only harmonic signatures of individual devices were measured due 

to the large number of possible combinations.  Using the mean values of the harmonic 

signatures of individual devices, the harmonic signatures for the combinations of the 

devices were generated from the sums of the mean values. Random noise was added to 

simulate the fluctuations expected in the experimental measurements and the resulting 

dataset was used in the training set. 

 

The first setup (set A) was tested using experimental measurement of random 

combinations of the device.  The training set for set A contained 105 input vectors.  

The second setup (set B) was tested using mathematical combinations with similar 

random noise added to it.  The training set for set B consisted of 430 input vectors.  

The training and testing were done on the MLP ANN with 16-20-10 (16 input neurons, 

20 hidden neurons and 10 output neurons) configuration.  Table 4-12 and Table 4-13 

shows the test results of the first and second setup respectively.  The MLP ANN has 

shown to perform well in the two 10-device setups with results comparable to that of 

the 8-device setup. 
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Table 4-12  Classification accuracy of 10-devices set A 

No Device Accuracy, F (%) 

1 Monitor 97.7 

2 CPU 95.5 

3 Fluorescent lamp 99.8 

4 Television 75.5 

5 Soldering iron 92.0 

6 Fridge 99.7 

7 Fan 77.8 

8 Battery charger 93.8 

9 Light bulb 71.4 

10 Power drill 93.4 

 

Table 4-13  Classification accuracy of 10-devices set B 

No Device Accuracy, F (%) 

1 PC CPU 99.5 

2 PC Monitor 99.5 

3 PC CPU (shutdown) 98.8 

4 DC Power supply (0.1A) 83.5 

5 DC Power supply (0.5A) 76.5 

6 DC Power supply (0.25A) 73.0 

7 DC Power supply (0.4A) 72.6 

8 Notebook computer 99.3 

9 Mobile phone charger 77.2 

10 Fluorescent lamp 90.5 
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4.4 Harmonic Signature Identification of Three Phase 
Devices 

 

An extension of the harmonics signature identification to three phase devices 

required only an extension of the feature vector dimension.  Three phase devices 

generally have more distinct signatures due to the additional information from the 

other two phases.  The current harmonics of 8 three phase devices (Appendix A – 

Table A-4a) were measured using the Dranetz 8000-2 Energy Analyser.  With three 

phases and 8 odd harmonics from each phase, there were a total of 48 inputs (real and 

imaginary for each phase).  However, it should be noted that some of the three phase 

devices have capacitors that could affect the flow of current harmonics thus affecting 

the current harmonics measured at the supply mains. 

 

Similar to the 10-device setup, the training (1280 input vectors) and testing 

(1280 input vectors) sets containing combinations of 3-phase devices were created by 

adding up of the individual 3-phase device signatures.  Random noise of the magnitude 

shown in Table 4-10 was added to the harmonics of each phase to simulate any 

fluctuation or inaccurate representation of the current harmonics of device 

combinations.  An MLP ANN with 48-20-8 (48 input neurons, 20 hidden neurons and 

8 output neurons) configuration was used to perform the classification.  Table 4-14 

presents the test result that is clearly better than the result of the 8-device single phase 

devices considering the magnitude of the random noise added. 
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Table 4-14  Classification accuracy of three phase devices 

No Device Accuracy, F 

(%) 

1 Motor #1 87.5 

2 Motor #2 99.9 

3 Motor #2 with capacitors 97.7 

4 Inverter #1 99.6 

5 Inverter #2 (low frequency) 99.6 

6 Inverter #2 (high frequency) 99.6 

7 Fluorescent lamp without capacitor 65.1 

8 Fluorescent lamp with capacitors 69.1 

 

4.5  Identification of Multiples of Similar Model 
Devices 

 

In order to study the feasibility of generalizing to devices of the same model 

and make, the harmonic signatures of 4 computer CPUs and 4 computer monitors of 

the same model were compared.  Figure 4-3 shows the differences between the 

harmonic signatures. 

  

From Figure 4-3, it was concluded that the differences, which were smaller 

than the random noise magnitude in Table 4-10, were within the generalization ability 

of the ANN.  The ANN can potentially be used to identify multiples of devices of the 

same model using only the harmonics signature from one of the devices.  

Consequently, it would not be possible for the ANN to distinguish two or more devices 

of the same model. 
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 Referring to set B in the 10-devices setup where 4 DC-power supplies of the 

same model were used, although each consuming different amount of current, the 

classification accuracies for the DC-power supplies were low.  When studied closely, 

it was discovered that the harmonics signatures of the 4 DC-power supplies were 

scalar multiples of each other, hence the difficulty faced by the ANN in distinguishing 

the individual units. 
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Fig. 4-3   Signature difference between devices of the same model 

 

 On the other hand, it should be noted that devices of the same nature or 

function, but different model or make (such as motor #1 and motor #2 in three phase 
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devices set) should be separately identified because their harmonics signatures are 

likely to differ significantly. 

 

 Two simulated dataset containing multiples of devices were created using the 

10-device set B setup or the same set of devices in Table 4-13.  The new datasets 

aimed to simulate typical office or home setups where multiple devices of the same 

model would be used simultaneously. 

 

Similar to the technique used in section 4.3, the datasets containing 

combinations of the devices were created using the mean individual device feature 

vectors.  In the two new datasets, device feature vectors were multiplied by a positive 

integer to simulate the presence of multiples of the particular device.  The first dataset 

contained multiples of up to 3 of each device whereas the second dataset contained 

multiples of up to 10 of each device.  However, these datasets did not take into account 

the possible random fluctuations of the feature vectors with time. 

 

 Table 4-15 shows the results of the MLP classification accuracy of 

combinations of multiple devices of the same model.  The MLP performed very well 

with 100% accuracy on the first test set with 818 input vectors.  On the second test set 

with also 818 input vectors, the MLP’s classification accuracy began to decrease.  The 

decrease in classification accuracy is expected because as the number of devices 

increases, the input vector magnitude tends to eclipse the feature vector signature of 

each device. 
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Table 4-15  Classification accuracy on combinations of multiple devices of the same model 

Accuracy, F (%) No Device 

Up to 3 of each 
device 

Up to 10 of 
each device 

1 PC CPU 100 100 

2 PC Monitor 100 100 

3 PC CPU (shutdown) 100 100 

4 DC Power supply (0.1A) 100 100 

5 DC Power supply (0.5A) 100 97.3 

6 DC Power supply (0.25A) 100 95.5 

7 DC Power supply (0.4A) 100 93.5 

8 Notebook computer 100 100 

9 Mobile phone charger 100 96.8 

10 Fluorescent lamp 100 100 

 

4.6 Performance of TDNN Architectures 
 

 Due to the time axis association of the time delay neural network (TDNN), the 

training data for this part of the experiment were collected in a continuous time 

sequence.  Besides that, more focus had to be placed on the collection of training data 

that involved changes in the state of the electrical devices.  A total of 4 electrical 

devices (Appendix A – Table A-5a) were switched on and off in random sequences to 

produce the training data.  The whole process was repeated to produce the test set (76 

input vectors).  Both the training and test sets started from a zero device state so as to 

allow the TDNN to be initialized properly. 
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 Table 4-16 shows the classification accuracies of the various TDNN 

architectures in comparison to the accuracy of the MLP architecture proposed in this 

research.  The TDNNs performed reasonably well, but the accuracy was still low 

compared to the best MLP.  However, it should be noted that the results were based on 

only a limited set and quantity of electrical devices.  As the number of devices 

increases, the classification accuracy of the MLP will drop. 

 

Table 4-16   Classification accuracy of TDNNs 

Accuracy, F (%) 
Device 

MLP TDNN-1 TDNN-2 

Fluorescent lamp 100.0 100 100 

PC CPU 98.3 96.2 97.2 

PC Monitor 95.4 93.4 95.2 

Television 91.7 89.5 90.3 

 

 During testing since all the inputs of the TDNN-1 were obtained directly from 

the test set, the TDNN-1 was able to obtain accurate previous state information of the 

electrical devices, hence the relatively high classification accuracy.  However, in 

actual implementation, the updating of the state information is based solely on the 

prediction of the TDNN-1 itself.  The TDNN-1 output vector itself is routed to the 

subsequent input vector of the TDNN-1.  Consequently, the classification accuracy 

result in Table 4-16 for TDNN-1 was only an estimate of the actual accuracy, which 

may be lower.  Any prediction error in the current step will be brought forward to the 

next prediction process thus possibly causing further prediction errors down the chain. 
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 On the other hand, the classification accuracy result for TDNN-2 was a more 

reliable representation of the practical implementation accuracy since no information 

other than the current harmonics feature vector sequence was available to the network 

during testing.  The classification accuracy of the TDNN-2 is lower because any 

misclassification of the previous input vector might cause a misclassification in the 

next input vector. 

 

The accuracy of the TDNN architectures is low compared to that of the simple 

MLP.  Nevertheless, the TDNN is expected to outperform the MLP when the number 

of devices taken into consideration increases.  As the number of devices increases, the 

main incoming’s current harmonics will be in orders of magnitude larger than that of 

the individual device’s harmonics signatures.  Therefore, the MLP will no longer be 

able to disaggregate the individual harmonics signatures from the instantaneous main 

incoming current harmonics measurements.  Since the TDNN monitors time step 

changes in current harmonics measurements, it will be able to disaggregate the 

signatures by keeping track of the devices present and comparing the step changes to 

the signatures of individual devices. 

 

In order for the TDNN to be used effectively, there is a need to improve the 

accuracy to nearly 100%.  Since the predicted states are used as future inputs, even a 

small percentage of prediction error may result in a trail of future errors, unless the 

TDNN is able to correct itself at the next stage. 
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Chapter 5 MLP Weights Optimization 

 

This chapter illustrates the research extensions towards improving the 

performance of the MLP towards the objectives of this thesis by evolving the MLP 

weights using GA. 

 

In the previous experiments, the MLP performance was heavily affected by the 

choice of its initial weights because of the large number of local minima.  Therefore, 

the GA has been employed to assist the MLP in finding an optimal set of weights.  

Before the actual selection of the best GA parameters to perform the evolution of the 

MLP weights, the MLP architecture (number of neurons) to be used in the GA-ANN 

combination had to be pre-determined.  By varying the number of hidden neurons in 

the MLP, the best performing hidden layer configuration was found. 

 

5.1 Preparation of Training Samples 
 

In studying the feasibility of obtaining the optional set of MLP weights, a small 

dataset was used for testing and training.  The reason for choosing a smaller set was 

because the number of weights in the MLP increases exponentially with the number of 

neurons. 

 

In this experiment, 4 devices (Appendix A – Table A-5a) were used for 

signature identification:- personal computer central processing unit, computer monitor, 

television and fluorescent lamp.  From this, a total of 16 combinations were available 

and when combined with the transient states and different operating modes of the 
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devices, a large training (28 input vectors) and test (76 input vectors) set was obtained.  

For each combination, several readings were taken to ensure that the transient states of 

the devices were also considered.  The whole process was repeated a second time in 

order to collect the data for creating the validation set. 

 

The feature vector of the samples included the magnitude and phase angle of 

the odd current harmonics from the fundamental harmonic to the 15th harmonic.  The 

magnitudes and phase angles were represented in the feature vector in the complex 

forms (real and imaginary).  Therefore, in total, each feature vector consisted of 16 

inputs, representing 8 harmonics and 4 outputs representing the presence or absence of 

the 4 devices.  The presence and absence were denoted by 1 and –1 respectively in the 

output. 

 

5.2 MLP Architecture 
 

In this experiment, a single-hidden-layer MLP was used to perform the 

classification of the device signatures.  The hidden layer consisted of 20 neurons 

which were chosen based on the optimum performance to computational requirement 

ratio (Figure 5-1).  The input and output had 16 and 4 neurons respectively.  All 

neurons in every layer used the tangential-sigmoidal activation function. 
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Fig. 5-1  Effect of varying the number of neurons in the hidden layer on performance 

 

The MLP used was a fully connected feedforward network where each neuron 

in one layer was linked to every other neuron in the previous and next layers.  The 

hidden and output layer neurons each had a bias connected to it. 

 

5.3 GA Algorithm 
 

 The GA algorithm used in the GA-ANN combination is illustrated in Figure 5-

3.  The GA population was evolved up to a maximum of 50 generations.  The fitness 

function given by equation (5.1) was based on the average classification accuracy of 

the 4 devices.  A chromosome was first decoded into MLP weights.  Then, an MLP 

was created according to the MLP weights and its performance was evaluated on the 

test set.  The fitness of the chromosome would depend on the classification accuracy of 

the corresponding MLP. 
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where yi(j) was the jth instance of the ith output of the MLP with the weights defined 

in chromosome u and yi’(j) was the actual state (present or absent) of the ith device and 

l is the total number of input vectors in the test set. 

 

In the evolution process, only mutation was used.  Recombination was left out 

because if two functionally equivalent MLP which order their hidden nodes differently 

have two different genotypical representations, the probability of producing a highly 

fit offspring by recombining them is often very low [50].  The lack of exploration 

ability resulting from the absence of recombination was compensated by the better 

convergence ability since the accidental destruction of the structure of the hidden 

nodes was avoided. 

 

The GA employed the stochastic universal sampling (SUS) technique (Figure 

5-2) in the selection of the chromosomes for the child population to be mutated.  After 

fitness evaluation, the chromosomes were mapped to contiguous segments of a line.  

The segment width of each chromosome corresponds to its fitness level.  A fitter 

chromosome would occupy a longer segment.  Then a random number was chosen 

within the range of the line’s length.  Stochastic universal sampling would create as 

many pointers as the number of chromosomes to be chosen for the child population 

and would evenly space them along the line starting from the chosen random number.  

Finally, the chromosome pointed to by the pointers was selected for mutation. 
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Fig. 5-2   Stochastic universal sampling (SUS) 

 

 

Fig. 5-3   GA algorithm 
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5.4 GA-ANN Combination 
 

The GA chromosomes were used to represent the weights and biases in the 

MLP as shown in Figure 5-4.  With 16 input neurons, 20 hidden neurons and 4 output 

neurons, a total of 16 x 20 + 20 x 4 or 400 links were present.  In addition, 24 biases 

were present thus making the total base pairs required for the chromosome to be 424.  

Direct encoding scheme [50] was used where each base pair had a direct one-to-one 

mapping to a weight or bias.  Using real-valued base pairs, the chromosome was made 

up of an array of 424 integers. 

 

 

Fig. 5-4   Proposed GA chromosome 

 

 

w1,2 … w16,20 w2,1 … 

w'1,1 w'1,2 … w'20,4 w'2,1 … 

b1 b2 … b20 

b'1 b'2 … b'4 

w1,1 

wp,q is the weight linking input neuron p and hidden neuron q. 
w’p,q is the weight linking hidden neuron p and output neuron q. 
bp is the bias for hidden neuron p. 
b’p is the bias for output neuron p. 
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Since real-valued base pairs were used, the mutations were executed by adding 

a random number within –1 to 1 to the original base pairs. This range was decreased 

linearly with the number of generations that had passed.  The probability of mutation 

was varied from 0.01 to 0.2 through different experiments. 

 

For each experiment, the number of individuals in the population was varied 

from 10 to 100.  Finding the optimum number of individuals required was important 

due to the large increase in computational resource requirement for each additional 

individual because of the large chromosome length.  The size of the child population 

was also varied within 70% to 90% of the parent population size.  In each generation, 

the child population was evaluated and reinserted into the parent population based on 

its fitness. 

As the result of a potentially small population chosen, there were times when 

the fitness level became stagnant after just a few generations.  Therefore, in order to 

avoid this scenario, if the best fitness remains the same after 5 generations, the 

mutation probability was increased to 100% and the mutation range was increased to 

the maximum for 1 generation.  This step would bring new individuals into the child 

population which would in turn be reinserted into the parent population if the fitness 

was found to be better.  The algorithm is illustrated in Figure 5-5. 
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Fig. 5-5   Fixing stagnant MLP performance by introducing fresh individuals 

 

5.5 Results 
 

5.5.1 Evolution of MLP Weights with GA 
 

For the first part of the experiment, the aim was to determine the extent in 

which the GA would perform in fine-tuning the weights and biases of the MLP. In this 

section, the values of base pairs from the chromosomes were used to create an MLP 

with the corresponding weight and bias values.  Next, the chromosomes’ fitness, tuned 

only by the GA algorithm, were evaluated based on how the MLP performed on the 

validation set.  Since there was not any backpropagation training of the MLP, the 

training set was not required. 

 

 The GA parameters including population size, child population size and initial 

mutation probability were varied to fine-tune the GA algorithm.  Figures 5-6, 5-7, 5-8, 

5-10, 5-11 and 5-12 show the average result for a particular value of the tested 
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parameter from a variety of other parameters.  In other words, for each point on the 

graph, the value of the tested parameter was fixed while the other parameters were 

varied and the average result was used.  The error referred to the sum of classification 

errors of the 4 devices. 

 

Figure 5-6 shows that a larger population size would reduce the error, thus 

increasing the performance of the final MLP constructed.  Apparently, the signature 

identification problem set was plagued with a lot of local minima, hence a need for a 

larger population size to search through a larger solution set.  The main compromise 

was the larger computational resource requirement. 
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Fig. 5-6   Effect of varying population size on performance 

 

As for the size of child population, Figure 5-7 shows that a larger child 

population gives only a marginally better MLP performance.  On the other hand, 

Figure 5-8 shows that the optimum mutation probability was around 0.1.  A value that 

is too low will not allow enough mutation to reach the minima while a value that is too 

high will cause the chromosomes to over-mutate and overlook the minima. 
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Fig. 5-7   Effect of varying child population size on performance 
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Fig. 5-8  Effect of varying the mutation probability on performance 

 

Figure 5-9 illustrates the convergence of the GA-ANN towards the global 

minimum.  However, even after 50 generations, the minimum error reached, which 

referred to the average error of the 4 devices, was 0.1006.  The error is translated into 

0.8994 average accuracy of the classification of the 4 electrical devices.  Unfortunately, 

this value is still much lower than that achievable by a properly tuned MLP that was 

obtained from a random selection of 1000 initial weights. 
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Fig. 5-9   Evolution of the MLP performance 

 

5.5.2 Evolution of MLP Initial Weights Coupled With 
Backpropagation 

 

Due to the slow convergence of the MLP weights into the best performing 

MLP by the GA, the GA-ANN combination was modified such that the GA was used 

to find the best initial weights while backpropagation training was used to converge 

the MLP weights to the global minimum.  From this coupling, the GA could be seen as 

a search for a potential region for global minimum while the backpropagation training 

did the local search [50,56]. 

 

 The MLP was trained using the training set and its performance was evaluated 

based on the validation set.  The stopping criterion was the minimum improvement 

gradient of the MLP performance on the validation set. 

 

 In general, the trend of the MLP performance against the GA parameters is 

similar to that in section 5.5.1.  However, as expected and as shown in Figures 5-10, 5-
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11, and 5-12, the general error value is in the scale of 10 times lower.  The 

backpropagation proves to be much more efficient at fine-tuning the weights of the 

MLP to reach a local minimum in this scenario.  The only penalty may be in terms of 

additional computation time required in executing the large number of 

backpropagation trainings for each individual in each generation. 
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Fig. 5-10   Effect of varying population size on performance 
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Fig. 5-11   Effect of varying child population size on performance 
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Fig. 5-12   Effect of varying the mutation probability on performance 
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 Figure 5-13 shows the MLP reaching the best classification accuracy of 0.987.  

This result also outperformed the results from a purely backpropagation optimization 

alone where 5000 MLP with different random initial weights were trained sequentially.  

It is deduced that the GA has avoided the local minima and shifted the initial weights 

to the region of the global minimum. 

 

 

Fig. 5-13   Evolution of the MLP performance 

 

5.6 Performance of GA-ANN Combination 
 

The evolution of the MLP initial weights and biases using GA coupled with 

local minima search using backpropagation has produced excellent results in the area 

of signature identification of electrical devices based on their power harmonics.  The 

results based solely on GA optimization suffered from the GA’s inability to fully 

converge to the minima.  On the other hand, using backpropagation training alone, the 

MLP would be susceptible to local minima problems.  A classification accuracy of 

98.7% is usually considered very high for a signature identification problem. 
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Chapter 6 Conclusion and Recommendations 

 

The ANN and SVM-based models have been successfully applied in the 

signature identification of electrical devices based on the current harmonics even under 

noisy conditions.  The harmonics information provides a finer signature resolution 

compared to the P-Q chart proposed in conventional methods and does not require step 

change detection.  Although transient information, which requires high sampling rate 

and continuous monitoring, was not used, the harmonics information proved to be 

sufficient for the signature identification. 

 

From the test results, the conclusion was that the MLP performs well and 

produces better results or results comparable to that of the RBF neural network and 

SVM while maintaining the architectural simplicity of the MLP.  The RBF neural 

network and SVM are limited by the size of the training set that can be used practically 

to avoid huge QP problems.  The potential of the time delay neural network was 

demonstrated but requires further research to reach the required 100% accuracy.  

Further optimization of the MLP was performed by evolving the MLP weights using 

GA.  For future work, other forms of combination besides the weights evolution can 

also be used to further optimize the architecture of the MLP. 

 

In the course of the research, this thesis has proposed and implemented a new 

multi-class SVM for non-mutually exclusive classes and novel application of MLP 

weights evolution using GA for harmonics signature identification. 
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Identification of the devices present from the current waveform gives an easier 

and more reliable access to the information.  By nature of an electrical system, most of 

the electrical wirings are connected to a central location, which is the incoming point 

from the electrical power supplier.  This fact means that a central management system 

to monitor all the devices from one point can be set up. 

 

The reliability lies in the fact that almost any device, which is functioning 

properly, shows a normal current waveform.  In the case of an electrical fault, the 

current waveform detected will be abnormal.  Therefore, the current waveform 

signature is a reliable source of information on any abnormalities in the functioning of 

the devices, without additional sensors or wiring. 

 

Last but not least, this new approach allows us to perform a black box analysis, 

to determine the possible devices present, from just the electrical wiring that leads to 

the black box.  All devices that draw electrical energy from the external source will 

leave a corresponding current signature. 

 

Future directions include extending the classification scope to incorporate the 

various operational modes of each device or operation under different voltage source 

conditions.  From the current approach, training the ANN or SVM to model the 

various operational modes will require a large training set that may affect performance.  

Future work should aim towards the search for a better signature modeling technique 

such as using principal component analysis or SOM. 
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Currently, the set of electrical devices included in the research work is also still 

limited.  The scope of the types of electrical devices can be further widened.  Devices 

with the same function but different models such as the CPU with different power 

supply ratings and monitors of different sizes can also be added to the list.  More study 

should be performed on multiples of devices of the same model since it is very likely 

for a workplace environment to have several such devices. 

 

On the other hand, the approach proposed in this thesis may be applied to 

special integrated systems where the devices are known and there is a need to 

continuously monitor the operation of the various components in the system.  The size 

of the system may range from as small as the components in the CPU to as large as a 

manufacturing plant. 

 

Besides that, research can also be focused on the automatic detection of new 

devices, marking new regions of correspondence in the feature space, possibly by 

setting thresholds to signify presence of unknown devices.  Adaptive neural networks 

are potential candidates for this purpose due to its ability to automatically include the 

new devices without complete restructuring of the ANN architecture. 
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Appendix A Feature Vector Sets 

 

10-devices set A 
 
This set of devices was used in the experiments in Section 4.3. 
 

Table A-1a   10-devices set A name list 

No Name 
1 Monitor 
2 CPU 
3 Fluorescent lamp 
4 Television 
5 Soldering iron 
6 Fridge 
7 Fan 
8 Battery charger 
9 Light bulb 
10 Power drill 

 
 

Table A-1b   10-devices set A feature vectors 

 1 2 3 4 5 6 7 8 9 10 
x1 0.265 0.198 0.410 0.183 0.251 0.200 0.166 0.134 0.557 0.600 
x2 0.085 0.098 -0.143 0.059 -0.046 0.113 0.072 -0.119 0.059 -0.038 
x3 -0.230 -0.169 0.044 -0.158 0.012 -0.155 0.007 0.034 0.024 -0.022 
x4 0.069 0.047 -0.063 0.032 -0.036 -0.096 0.028 0.019 0.007 0.030 
x5 0.159 0.113 0.007 0.108 -0.002 0.065 -0.008 -0.038 0.011 0.014 
x6 -0.115 -0.090 -0.017 -0.061 -0.020 0.097 0.005 0.017 0.006 -0.016 
x7 -0.086 -0.056 0.002 -0.060 -0.003 0.016 -0.001 -0.010 0.012 0.019 
x8 0.112 0.088 0.028 0.060 -0.013 -0.068 0.001 -0.021 0.007 -0.005 
x9 0.028 0.011 0.000 0.022 -0.012 -0.065 -0.005 0.002 -0.001 0.003 
x10 -0.082 -0.063 -0.045 -0.047 -0.003 0.014 0.003 0.002 0.008 0.003 
x11 -0.002 0.009 0.017 -0.004 -0.010 0.066 -0.003 -0.005 0.003 0.006 
x12 0.040 0.027 0.005 0.022 0.000 0.031 0.000 -0.001 0.006 -0.005 
x13 0.000 -0.008 -0.018 -0.001 -0.005 -0.032 -0.001 0.004 0.002 0.008 
x14 -0.006 0.002 -0.022 0.000 0.004 -0.054 0.001 -0.002 0.007 -0.001 
x15 -0.010 -0.004 -0.032 -0.001 -0.003 -0.014 -0.001 0.001 -0.002 0.005 
x16 -0.013 -0.019 -0.042 -0.015 0.007 0.042 0.000 0.004 0.006 0.000 
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10-devices set B 
 
This set of devices was used in the experiments in Section 4.1, 4.3 and 4.5. 
 

Table A-2a   10-devices set B name list 

No Name 
1 CPU 
2 Monitor 
3 CPU (Shutdown) 
4 DC Power Supply (0.1A) 
5 DC Power Supply (0.5A) 
6 DC Power Supply (0.25A) 
7 DC Power Supply (0.4A) 
8 Notebook Computer 
9 Mobile phone charger 
10 Flourescent lamp 

 
 

Table A-2b   10-devices set B feature vectors 

 1 2 3 4 5 6 7 8 9 10 
x1 0.238 0.254 0.134 0.208 0.274 0.232 0.254 0.099 0.029 0.266 
x2 0.127 0.092 0.105 -0.120 -0.122 -0.118 -0.118 0.099 0.006 -0.087 
x3 -0.209 -0.209 -0.119 -0.042 -0.088 -0.057 -0.075 -0.109 -0.040 0.038 
x4 -0.022 0.068 0.013 -0.056 -0.020 -0.040 -0.029 0.015 -0.004 -0.032 
x5 0.150 0.130 0.091 0.008 0.027 0.012 0.022 0.093 0.028 0.004 
x6 0.001 -0.109 -0.042 -0.029 -0.064 -0.038 -0.056 -0.037 0.011 -0.020 
x7 -0.080 -0.054 -0.054 -0.010 -0.007 -0.007 -0.005 -0.065 -0.016 -0.008 
x8 -0.007 0.107 0.044 0.017 0.039 0.019 0.030 0.047 -0.011 0.006 
x9 0.027 0.001 0.023 -0.019 -0.030 -0.020 -0.020 0.040 0.005 -0.006 
x10 0.014 -0.070 0.033 0.007 0.000 0.001 0.000 -0.045 0.009 -0.019 
x11 0.011 0.014 0.002 0.020 0.029 0.030 0.029 -0.024 0.000 0.000 
x12 -0.017 0.014 0.010 -0.002 -0.009 -0.005 -0.006 0.032 0.000 0.000 
x13 -0.033 -0.010 -0.005 0.000 0.000 -0.006 -0.003 0.014 0.000 -0.006 
x14 0.022 0.017 0.009 0.000 0.010 0.008 0.009 -0.014 0.000 0.008 
x15 0.035 -0.010 0.003 -0.002 -0.007 -0.005 -0.005 -0.010 0.010 0.000 
x16 -0.020 -0.028 -0.020 -0.020 -0.007 -0.009 -0.009 -0.001 0.003 0.000 

 
 

Table A-3   Combinations of devices 
 

Devices No. 1 2 3 4 5 6 7 8 9 10 
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 
3 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 

…. 

1023 1 1 1 1 1 1 1 1 1 -1 
1024 1 1 1 1 1 1 1 1 1 1 
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Three phase devices set 
 
This set of devices was used in the experiments in Section 4.4. 
 

Table A-4a   Three phase devices set name list 

No Name 
1 Motor #1 
2 Motor #2 
3 Motor #2 with capacitors 
4 Inverter #1 
5 Inverter #2 (low frequency) 
6 Inverter #2 (High frequency) 
7 Fluorescent lamp without capacitors 
8 Fluorescent lamp with capacitors 
9 Motor #1 
10 Motor #2 

 
 

Table A-4b   Three phase devices set feature vectors 

 1 2 3 4 5 6 7 8 9 10 
x1 0.656 0.386 0.495 0.600 0.387 0.196 2.074 0.279 0.656 0.386 
x2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
x3 0.009 0.173 0.316 0.348 0.019 -0.020 0.060 0.029 0.009 0.173 
x4 -0.006 -0.180 -0.073 -0.140 -0.029 0.011 0.047 0.071 -0.006 -0.180 
x5 0.000 0.027 0.396 0.400 -0.003 0.011 -0.068 0.052 0.000 0.027 
x6 0.011 -0.389 -0.229 -0.400 0.007 -0.006 -0.017 -0.093 0.011 -0.389 
x7 -0.011 -0.025 0.379 0.404 0.002 0.027 0.043 0.006 -0.011 -0.025 
x8 -0.005 -0.362 -0.138 -0.293 -0.004 -0.009 -0.012 0.170 -0.005 -0.362 
x9 0.000 -0.184 0.205 0.109 -0.001 0.024 0.002 -0.006 0.000 -0.184 
x10 0.000 -0.144 -0.198 -0.299 0.001 -0.004 0.002 -0.019 0.000 -0.144 
x11 0.000 -0.368 0.239 0.035 0.001 0.000 -0.011 -0.031 0.000 -0.368 
x12 0.000 -0.019 -0.328 -0.503 -0.001 -0.014 -0.002 -0.064 0.000 -0.019 
x13 0.000 -0.317 0.248 0.100 -0.001 -0.004 0.002 -0.028 0.000 -0.317 
x14 0.000 0.028 -0.231 -0.402 0.000 -0.007 -0.001 0.038 0.000 0.028 
x15 0.000 -0.112 0.069 -0.125 0.000 -0.010 0.000 -0.027 0.000 -0.112 
x16 0.000 0.172 -0.241 -0.245 0.000 -0.009 0.000 0.002 0.000 0.172 
x17 0.657 0.172 0.179 0.233 0.385 0.196 1.971 0.440 0.657 0.172 
x18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
x19 -0.006 0.010 0.020 0.003 0.021 -0.023 -0.032 -0.026 -0.006 0.010 
x20 0.003 0.021 0.039 0.023 -0.026 0.012 -0.023 -0.017 0.003 0.021 
x21 0.002 -0.120 -0.099 -0.208 -0.003 0.014 -0.076 -0.070 0.002 -0.120 
x22 0.013 0.116 0.147 0.106 0.007 -0.006 -0.003 -0.126 0.013 0.116 
x23 -0.012 -0.103 -0.080 -0.192 0.002 0.024 0.028 0.143 -0.012 -0.103 
x24 0.001 0.131 0.151 0.115 -0.003 -0.004 -0.021 0.010 0.001 0.131 
x25 0.000 -0.021 -0.040 -0.009 -0.001 0.021 -0.002 0.020 0.000 -0.021 
x26 0.000 -0.003 -0.007 -0.023 0.001 0.004 -0.001 0.008 0.000 -0.003 
x27 0.001 -0.006 -0.075 0.122 0.001 0.006 -0.013 -0.044 0.001 -0.006 
x28 0.000 -0.158 -0.155 -0.189 -0.001 -0.012 0.004 0.071 0.000 -0.158 
x29 0.000 -0.030 -0.085 0.100 -0.001 0.008 0.004 0.043 0.000 -0.030 
x30 0.000 -0.156 -0.136 -0.181 0.001 -0.008 -0.001 0.035 0.000 -0.156 
x31 0.000 0.012 0.028 0.014 0.000 -0.015 0.000 -0.023 0.000 0.012 
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x32 0.000 -0.012 -0.026 0.020 0.000 -0.021 0.000 -0.035 0.000 -0.012 
x33 0.689 0.406 0.551 0.648 0.388 0.199 2.154 0.445 0.689 0.406 
x34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
x35 -0.001 0.199 0.216 0.269 0.021 -0.023 -0.035 0.006 -0.001 0.199 
x36 0.005 0.106 0.195 0.226 -0.028 0.013 -0.012 -0.045 0.005 0.106 
x37 -0.001 0.170 0.016 0.056 -0.003 0.006 -0.068 0.123 -0.001 0.170 
x38 0.011 0.348 0.446 0.535 0.007 -0.007 0.000 0.011 0.011 0.348 
x39 -0.010 0.223 -0.025 0.030 0.003 0.020 0.033 -0.153 -0.010 0.223 
x40 -0.003 0.330 0.473 0.564 -0.004 -0.004 -0.020 0.038 -0.003 0.330 
x41 0.000 0.029 -0.129 -0.128 -0.001 0.025 0.000 -0.003 0.000 0.029 
x42 0.000 0.210 0.215 0.274 0.001 -0.004 0.000 0.021 0.000 0.210 
x43 0.001 -0.188 -0.362 -0.434 0.001 0.004 -0.010 0.065 0.001 -0.188 
x44 0.001 0.290 -0.006 0.061 -0.001 -0.011 0.003 0.010 0.001 0.290 
x45 0.001 -0.156 -0.431 -0.507 0.000 0.002 0.004 0.031 0.001 -0.156 
x46 0.001 0.334 -0.030 0.053 0.000 -0.008 -0.004 -0.089 0.001 0.334 
x47 0.000 -0.131 -0.218 -0.265 0.000 -0.015 0.000 0.015 0.000 -0.131 
x48 0.000 0.131 -0.088 -0.056 0.000 -0.005 -0.001 0.035 0.000 0.131 

 
 
 

4-devices set 
 
This set of devices was used in the experiments in Section 4.6 and Chapter 5 
 

Table A-5a   4-devices set name list 

No Name 
1 Fluorescent lamp 
2 CPU 
3 Monitor 
4 Television 

 
Table A-5b   4-devices set feature vectors 

 1 2 3 4 
x1 0.437 0.179 0.278 0.191 
x2 -0.194 0.112 0.096 0.097 
x3 0.043 -0.150 -0.240 -0.172 
x4 -0.074 0.055 0.064 0.030 
x5 0.009 0.096 0.168 0.125 
x6 -0.013 -0.100 -0.114 -0.064 
x7 0.002 -0.039 -0.091 -0.073 
x8 0.043 0.107 0.117 0.068 
x9 0.009 -0.004 0.032 0.031 
x10 -0.048 -0.082 -0.088 -0.050 
x11 0.026 0.027 0.000 -0.002 
x12 0.008 0.040 0.045 0.024 
x13 -0.017 -0.026 -0.006 -0.008 
x14 -0.026 -0.007 -0.010 0.000 
x15 -0.022 0.007 -0.004 0.003 
x16 -0.060 -0.017 -0.012 -0.017 
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Segment of 8-devices Setup’s Database 
 

Table A-6   8-devices setup database structure 

Inputs Device 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 1 2 3 4 5 6 7 8 

0.009 -0.017 0.000 -0.005 -0.002 0.005 0.009 -0.008 -0.002 0.002 -0.006 -0.002 0.007 0.001 0.003 0.001 -1 -1 -1 -1 -1 -1 -1 -1 
0.005 -0.015 0.001 -0.002 0.001 0.004 0.010 -0.006 -0.003 -0.001 -0.004 -0.005 0.012 0.000 0.000 -0.006 -1 -1 -1 -1 -1 -1 -1 -1 

…. 

0.472 0.050 0.027 0.008 0.009 0.005 0.011 0.006 0.002 0.008 0.001 0.006 0.004 0.006 -0.002 0.009 -1 -1 -1 -1 -1 -1 -1 1 
0.473 0.050 0.027 0.006 0.009 0.004 0.010 0.007 0.003 0.008 0.002 0.005 0.004 0.006 -0.001 0.009 -1 -1 -1 -1 -1 -1 -1 1 

…. 

0.233 0.094 -0.164 -0.102 0.055 0.109 0.034 -0.064 -0.077 0.007 0.060 0.042 -0.013 -0.055 -0.029 0.035 -1 -1 -1 -1 -1 -1 1 -1 
0.233 0.094 -0.164 -0.102 0.055 0.109 0.034 -0.064 -0.077 0.007 0.060 0.042 -0.013 -0.055 -0.029 0.035 -1 -1 -1 -1 -1 -1 1 -1 
0.678 0.095 -0.108 -0.076 0.062 0.100 0.033 -0.057 -0.061 0.020 0.056 0.040 -0.017 -0.047 -0.024 0.048 -1 -1 -1 -1 -1 -1 1 1 
0.679 0.095 -0.109 -0.074 0.063 0.100 0.031 -0.058 -0.059 0.022 0.056 0.038 -0.018 -0.046 -0.023 0.046 -1 -1 -1 -1 -1 -1 1 1 

…. 

1.895 -0.132 -0.560 0.079 0.438 -0.177 -0.214 0.186 0.067 -0.207 0.041 0.114 -0.042 -0.079 -0.013 -0.033 1 1 1 1 1 1 1 1 
1.898 -0.133 -0.558 0.078 0.434 -0.175 -0.213 0.185 0.067 -0.206 0.041 0.113 -0.039 -0.077 -0.016 -0.035 1 1 1 1 1 1 1 1 
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Appendix B MATLAB Codes 

 

Training and Testing of MLP 
 
% Training and testing of the MLP ANN with different number of hidden  
% neurons and number of inputs. 
 
% Training set -  mathematical combinations using basis.txt which   
%                    contains the feature vectors of individual devices 
 
% Validation -   2/3 of dataset.txt which contains the laboratory 
% (Early         measurements of the input vectors of all combinations of 
%  stopping)     devices 
 
% Testing - remaining 1/3 of dataset.txt 
 
% Loading of the input vectors from dataset.txt. 
load dataset.txt; 
[datasetR datasetC] = size(dataset); 
 
% Splitting of the dataset.txt input vectors into validation and test sets. 
validation = zeros(datasetR*2/3,datasetC); 
test = zeros(datasetR*1/3,datasetC); 
j = 1; 
k = 1; 
for i = 1:datasetR 
 if mod(i,3) == 0 
         test(j,:) = dataset(i,:); 
         j = j+1; 
     else 
         validation(k,:) = dataset(i,:); 
         k = k+1; 
     end 
end 
 
% Loading of the feature vectors from basis.txt. 
load basis.txt; 
 
% Creation of the training set by mathematically summing various feature 
% vectors from the basis.txt for the various combinations of devices. 
training = zeros(256,datasetC); 
i = 1; 
for dev1 = 0:1 
     for dev2 = 0:1 
         for dev3 = 0:1 
              for dev4 = 0:1 
                  for dev5 = 0:1 
                      for dev6 = 0:1 
                           for dev7 = 0:1 
                               for dev8 = 0:1 
                                    array = zeros(1,24); 
                                    if dev1 
                                        array(1,:)=array(1,:)+basis(1,:); 
                                    end 
                                    if dev2 



Appendix B   MATLAB Codes 
 

 
103 

                                        array(1,:)=array(1,:)+basis(2,:); 
                                    end 
                                    if dev3 
                                        array(1,:)=array(1,:)+basis(3,:); 
                                    end 
                                    if dev4 
                                        array(1,:)=array(1,:)+basis(4,:); 
                                    end 
                                    if dev5 
                                        array(1,:)=array(1,:)+basis(5,:); 
                                    end 
                                    if dev6 
                                        array(1,:)=array(1,:)+basis(6,:); 
                                    end 
                                    if dev7 
                                        array(1,:)=array(1,:)+basis(7,:); 
                                    end 
                                    if dev8 
                                        array(1,:)=array(1,:)+basis(8,:); 
                                    end 
                                    training(i,:) = array(1,:); 
                                    i = i+1; 
                               end 
                           end 
                      end 
                  end 
              end 
         end 
     end 
end 
 
% Setting up of the MLP ANN with varying number of input neurons and hidden 
% neurons. 
 
% Varying the number of input neurons from 2 to 16 in steps of 2. 
for inputs = 1:8 
     
     % Setting up of the training set. 
 p = training(:,1:inputs*2)'; 
 t = training(:,17:24)'; 
 t = t*2-1; 
  
     % Setting up of the validation set. 
 ptest = validation(:,1:inputs*2)'; 
 ttest = validation(:,17:24)'; 
 ttest = ttest*2-1; 
  
     % Normalization of training and validation sets. 
 [pn, meanp, stdp, tn, meant, stdt] = prestd(p,t); 
 pntest = trastd(ptest, meanp, stdp); 
 tntest = trastd(ttest, meant, stdt); 
 val.P = pntest; 
 val.T = tntest; 
  
     % Varying the number of hidden neurons from 4 to 60. 
     for nodes = 1:57 
         
  bestaccuracy = 0; 
   
         % Repeating the training using different initial weights and 
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         % finding the best MLP architecture. 
  for iteration = 1:100 
             
              % Creation of the MLP ANN. 
              % Hidden and output layer neurons uses the tangential sigmoidal 
              % activation function.  The training is performed using 
              % resilient backpropagation algorithm. 
              net = newff(minmax(pn), [nodes+3,8], {'tansig', 'tansig'}, 'trainrp'); 
              net.trainParam.show = 25; 
              net.trainParam.epochs = 3000; 
              net = init(net); 
             
              % Initiation of the MLP training with early stopping based on 
              % the validation set. 
              [net,tr]=train(net,pn,tn,[],[],val); 
             
   % Simulation of the trained MLP on validation set input 
   % vectors. 
              results = sim(net, pntest); 
              results = poststd(results, meant, stdt); 
              results = sign(results); 
       
              % Calculation of the error. 
              errors = ttest - results; 
              [m,n] = size(errors); 
   
              sizepresent = sum((ttest'+1)/2);   % No of input vectors with output = 1 
              sizeabsent = n-sizepresent;          % No of input vectors with output = -1 
              mispredictpresent = sum((errors > 0)'); % No of input vectors wrongly classified 
              % with output = -1 
              mispredictabsent = sum((errors < 0)');  % No of input vectors wrongly classified 
               % with output = 1 
       
              % Classification accuracy of each class. 
              accuracy(iteration,:) = 1 - (mispredictpresent./sizepresent)*0.5 - 
(mispredictabsent./sizeabsent)*0.5; 
             
              % Updating and saving of the MLP in the current iteration 
              % if it is better than previous best MLP. 
              if sum(accuracy(iteration,:)) > bestaccuracy 
                  bestaccuracy = sum(accuracy(iteration,:)); 
                  bestnet = net; 
              end 
  end 
   
         % Setting up of the test set. 
  ptest = test(:,1:inputs*2)'; 
  ttest = test(:,17:24)'; 
  ttest = ttest*2-1; 
   
         % Normalization of the test set. 
  pntest = trastd(ptest, meanp, stdp); 
  tntest = trastd(ttest, meant, stdt); 
   
         % Simulation of the best trained MLP on the test set. 
  results = sim(bestnet, pntest); 
  results = poststd(results, meant, stdt); 
  results = sign(results); 
 
         % Calculation of the classification accuracy on the test set. 



Appendix B   MATLAB Codes 
 

 
105 

         errors = ttest - results; 
  [m,n] = size(errors); 
   
  sizepresent = sum((ttest'+1)/2); 
  sizeabsent = n-sizepresent; 
  mispredictpresent = sum((errors > 0)'); 
  mispredictabsent = sum((errors < 0)'); 
   
  accuracy = 1 - (mispredictpresent./sizepresent)*0.5 - 
(mispredictabsent./sizeabsent)*0.5; 
   
         % Updating of the classification results for the current number 
         % of input and hidden neurons.  
  stats{inputs,nodes} = [mispredictpresent' sizepresent' mispredictpresent'./sizepresent' 
mispredictabsent' sizeabsent' mispredictabsent'./sizeabsent' accuracy']; 
 
         % Saving of the best MLP architecture for the current number of 
         % input and hidden neurons. 
         bestnetwork{inputs,nodes} = bestnet; 
     end 
end 
 
 

Training and Testing of RBF Neural Network 
 
% Training and testing of the RBF ANN with different number of hidden  
% nodes. 
 
% Training set -  mathematical combinations using basis.txt which   
%                     contains the feature vectors of individual devices 
 
% Testing -  1/3 of dataset.txt which contains the laboratory measurements 
%            of the input vectors of all combinations of devices 
 
% Loading of the input vectors from dataset.txt. 
load dataset.txt; 
[datasetR datasetC] = size(dataset); 
 
% Creation of the test set from 1/3 of the input vectors in dataset.txt. 
test = zeros(datasetR*1/3,datasetC); 
j = 1; 
for i = 1:datasetR 
     if mod(i,3) == 0 
         test(j,:) = dataset(i,:); 
         j = j+1; 
     end 
end 
 
% Loading of the feature vectors from basis.txt. 
load basis.txt; 
 
% Creation of the training set by mathematically summing various feature 
% vectors from the basis.txt for the various combinations of devices. 
training = zeros(256,datasetC); 
i = 1; 
for dev1 = 0:1 
     for dev2 = 0:1 
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         ... 
             
     end 
end 
 
% Setting up of the training set. 
p = training(:,1:16)'; 
t = training(:,17:24)'; 
t = t*2-1; 
 
% Setting up of the test set. 
ptest = test(:,1:16)'; 
ttest = test(:,17:24)'; 
ttest = ttest*2-1; 
 
% Normalization of training and validation sets. 
[pn, meanp, stdp, tn, meant, stdt] = prestd(p,t); 
pntest = trastd(ptest, meanp, stdp); 
tntest = trastd(ttest, meant, stdt); 
val.P = pntest; 
val.T = tntest; 
 
bestaccuracy = 0; 
 
% Varying the number of centers from 25 to 225 in steps of 25. 
for iteration = 1:9 
     net = newrb(pn,tn,0,1,iteration*25,25); 
 
     % Simulation of the trained MLP on validation set input 
     % vectors. 
     results = sim(net, pntest); 
     results = poststd(results, meant, stdt); 
     results = sign(results); 
 
     % Calculation of the classification accuracy. 
     errors = ttest - results; 
     m,n] = size(errors); 
 
     sizepresent = sum((ttest'+1)/2);     % No of input vectors with output = 1 
     sizeabsent = n-sizepresent;          % No of input vectors with output = -1 
     mispredictpresent = sum((errors > 0)');  % No of input vectors wrongly classified with  
          % output = -1 
     mispredictabsent = sum((errors < 0)');   % No of input vectors wrongly classified with 
          % output = 1 
 
     % Classification accuracy of each class in this iteration. 
     accuracy(iteration,:) = 1 - (mispredictpresent./sizepresent)*0.5 - 
(mispredictabsent./sizeabsent)*0.5 
end 
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Evolution of MLP Weights 
 
% Evolution of MLP ANN weights using GA. 
 
% Note:  This matlab program requires the GATBX toolbox from 
%         http://www.shef.ac.uk/~gaipp/ga-toolbox/ 
 
inputs = 16;     % No of input neurons 
nodes = 20;      % No of hidden neurons 
outputs = 4;     % No of output neurons 
 
% Loading of train.txt which contains the training set. 
load train.txt; 
p = [train(:,1:inputs)]'; 
t = train(:,17:20)'; 
t = t*2-1; 
 
% Loading of validation.txt which contains the validation set. 
load validation.txt; 
ptest = [validation(:,1:inputs)]'; 
ttest = validation(:,17:20)'; 
ttest = ttest*2-1; 
 
% Normalization of training and testing sets. 
[pn, meanp, stdp, tn, meant, stdt] = prestd(p,t); 
pntest = trastd(ptest, meanp, stdp); 
tntest = trastd(ttest, meant, stdt); 
val.P = pntest; 
val.T = tntest; 
 
% GA Parameters: 
MAXGEN = 50;                 % maximum Number of generations 
NIND = [10 25 50 100];       % Number of individuals per subpopulations 
GGAP = [0.7 0.8 0.9];        % Generation gap, how many new individuals are created 
MUTPROB = [0.01 0.1 0.2];  % Mutation probability 
 
max_nind = size(NIND,2); 
max_ggap = size(GGAP,2); 
max_mutprob = size(MUTPROB,2); 
 
% Study of the effects of the various GA parameters. 
for nind_counter = 1:max_nind 
     for ggap_counter = 1:max_ggap 
         for mutprob_counter = 1:max_mutprob 
 
       % Mutation probability initialisation. 
              mut_prob = MUTPROB(mutprob_counter); 
              mut_shrink = 0;   % Defines reduction in mutation range. 
                
   % Field descriptor which specifies the allowed range of initial 
   % weights in the ANN.  It has the same dimension as that of a GA 
   % chromosome. 
              FieldD = rep([-1;1],[1,inputs*nodes+nodes*outputs+nodes+outputs]); 
    
   % Creation of the initial population 
              Chrom = crtrp(NIND(nind_counter), FieldD); 
    
   % Reset counters 
              Best = NaN*ones(MAXGEN,1); % best fitness in current population 
              gen = 0;             % generation counter 
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   % Evaluation of initial population 
              ObjV = ones(NIND(nind_counter),1); % Accuracy matrix of the population 
             
              % Creation of neural network. 
              net = newff(minmax(pn), [nodes,4], {'tansig', 'tansig'}, 'trainrp'); 
              net.trainParam.show = 25; 
              net.trainParam.epochs = 300; 
              net = init(net); 
             
              % Decoding of the chromosomes into ANN weights and biases. 
              % Iterate through all the chromosomes in the population. 
              for iteration = 1:NIND(nind_counter) 
                 
                  % Pointer in chromosome string initialisation. 
                  offset = 1;      
                 
                  % Decoding of weights of connections from inputs to  
                  % hidden layer neurons.  
                  for i = 0:(inputs-1) 
                      net.iw{1}(:,i+1) = Chrom(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1)))'; 
                  end 
                  offset = offset+nodes*inputs; 
                 
                  % Decoding of weights of connections from the hidden 
                  % layer neurons to the output layer neurons. 
                  for i = 0:(outputs-1) 
                      net.lw{2,1}(i+1,:) = Chrom(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1))); 
                  end 
                  offset = offset+nodes*outputs; 
                 
                  % Decoding of the biases of the hidden layer neurons. 
                  net.b{1} = Chrom(iteration,offset:offset+nodes-1)'; 
                  offset = offset+nodes; 
                 
                  % Decoding of the biases of the output layer neurons. 
                  net.b{2} = Chrom(iteration,offset:offset+outputs-1)'; 
                 
                  % Backpropagation learning of the MLP ANN. 
                  [net,tr]=train(net,pn,tn,[],[],val); 
                 
                  % Simulation of the MLP ANN on the test set. 
                  results = sim(net, pntest); 
                  results = poststd(results, meant, stdt); 
   
                  % Calculation of classification accuracy 
                  errors = sign(tntest) - sign(results); 
                  [m,n] = size(errors); 
                  for j=1:m 
                      row_error(j) = 0; 
                      for i=1:n 
                           row_error(j) = row_error(j) + sign(abs(errors(j,i))); 
                      end 
                      accuracy(j) = 1 - row_error(j)/n; 
                 end 
                 
                  % Storing of the classification accuracy in ObjV 
                  ObjV(iteration) = m - sum(accuracy); 
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              end 
    
   % Tracking of best individual and convergence display 
             
              % Storing of best fitness result for first generation 
              Best(gen+1) = min(ObjV); % Best fitness result of each generation 
              OldBest = Best(gen+1);   % Best fitness result of previous generation 
              no_improvement = 0;      % Stagnant performance counter 
                
              % Plotting of first point in GA results 
              figure(10); 
              plot(Best,'ro');xlabel('generation'); ylabel('error'); 
              text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');    
              drawnow;         
    
   % Generation loop. 
              while gen < MAXGEN, 
    
                  % Assigning of fitness-value to entire population using 
                  % classification accuracy from ObjV. 
                  FitnV = ranking(ObjV); 
    
                  % Selection of individuals for breeding.  Creation of new 
                  % offspring population. 
                  SelCh = select('sus', Chrom, FitnV, GGAP(ggap_counter)); 
                  [SelCh_row SelCh_col] = size(SelCh); 
    
                  % Mutation on offspring 
                    
                  % Stagnant performance counter check.  If it exceeds 
                  % 5, then change the mutation probability to 1 in this 
                  % round and reset no_improvement. 
                  if no_improvement > 5 
                      mut_prob = 1; 
                      mut_shrink = 0; 
                      no_improvement = 0; 
                  end 
                    
                  % Mutation.  
                  SelCh = mutbga(SelCh,FieldD, [mut_prob mut_shrink]); 
                  mut_prob = MUTPROB(mutprob_counter); 
                   
                  % Increase of mut_shrink size to reduce mutation magnitude. 
                  mut_shrink = (1-(gen+1)/MAXGEN);  
                    
                  % Performance evaluation of offspring 
                     
                  % Creation of MLP ANN. 
                  net = newff(minmax(pn), [nodes,4], {'tansig', 'tansig'}, 'trainrp'); 
                  net.trainParam.show = 25; 
                  net.trainParam.epochs = 300; 
 
                  % Initialisation of offspring classification accuracy 
                  % matrix. 
                  ObjVSel = ones(SelCh_row,1); 
                 
                  % Iterate through all the chromosomes in the off spring 
                  % population. 
                  for iteration = 1:SelCh_row 
                      offset = 1; 
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                      % Decoding of the offspring chromosomes into ANN weights and biases. 
                      for i = 0:(inputs-1) 
                           net.iw{1}(:,i+1) = SelCh(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1)))'; 
                      end 
                      offset = offset+nodes*inputs; 
                      for i = 0:(outputs-1) 
                           net.lw{2,1}(i+1,:) = SelCh(iteration,(offset+i*nodes):(offset+((i+1)* 
nodes-1))); 
                      end 
                      offset = offset+nodes*outputs; 
                      net.b{1} = SelCh(iteration,offset:offset+nodes-1)'; 
                      offset = offset+nodes; 
                      net.b{2} = SelCh(iteration,offset:offset+outputs-1)'; 
 
                      % Backpropagation learning of the MLP ANN. 
                      [net,tr]=train(net,pn,tn,[],[],val); 
                     
                      % Simulation of the MLP ANN on the test set. 
                      results = sim(net, pntest); 
                      results = poststd(results, meant, stdt); 
                     
                      % Calculation of classification accuracy 
                      errors = sign(tntest) - sign(results); 
            [m,n] = size(errors); 
                      for j=1:m 
                           row_error(j) = 0; 
                           for i=1:n 
                               row_error(j) = row_error(j) + sign(abs(errors(j,i))); 
                           end 
                           accuracy(j) = 1 - row_error(j)/n; 
                      end 
                     
                      % Storing of the classification accuracy in ObjVSel 
                      ObjVSel(iteration) = m - sum(accuracy); 
                  end 
    
                  % Reinsertion of offspring into parent population based on 
                  % accuracy in ObjV and ObjVSel. 
                  [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); 
                
                  % Increment of generation counter 
                  gen = gen+1; 
   
                  % Recording of current best individual 
                  Best(gen+1) = min(ObjV); 
                
                  % If there is no improvement, increment the stagnant 
                  % improvement counter. 
                  if Best(gen+1) == OldBest 
                      no_improvement = no_improvement + 1; 
                  end 
                  OldBest = Best(gen+1); 
                
                  % Display update 
                  figure(10); 
                  plot(Best,'ro'); xlabel('generation'); ylabel('error'); 
                  text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized'); 
                  drawnow; 
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              end % Loop for next generation. 
                
              % Update of result for parameters NIND, GGAP and MUTPROB 
              result{nind_counter,ggap_counter,mutprob_counter} = Best; 
                
   % End of GA 
             
         end % Next MUTPROB value 
     end % Next GGAP value 
end % Next NIND value 
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Appendix C Detailed Classification Results 

 
Appendix C provides the detailed classification results of the artificial neural network 

and support vector machine-based classifiers in the experiments in chapter 4. 

 

Experiments in section 4.1.1 
Table C-1   Detailed results of SVM-based classifiers in Table 4-1 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

PC CPU 0 0 100 0 0 100 0 0 100 
Monitor 0.6 0 99.4 0 0 100 0 0 100 
PC CPU 
(Shutdown) 

0 0 100 0 0 100 0 0 100 

DC P.S. 
(0.1A) 

11.4 14.5 74.1 1.4 0 98.6 8.3 12.4 79.3 

DC P.S. 
(0.5A) 

10.8 12.2 77.0 2.1 0.2 97.7 10.8 12.2 77.0 

DC P.S. 
(0.25A) 

18.4 16.5 65.1 7.4 1.0 91.6 18.4 16.8 64.8 

DC P.S. 
(0.4A) 

13.5 10.1 76.4 6.6 0 93.4 14.1 11.0 74.9 

Notebook 0 0 100 0 0 100 0 0 100 
M. charger 25.3 20.8 53.9 3.5 0.2 96.3 24.5 19.0 56.5 
F. lamp 0 0 100 0 0 100 0 0 100 

 

Experiments in section 4.1.2 
Table C-2   Detailed results of SVM-based classifiers in Table 4-3 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

PC CPU 1.1 1.1 97.8 0.1 0 99.9 0.6 0.4 99.0 
Monitor 0.4 1.2 98.4 0.1 0 99.9 0.3 0.7 99.0 
PC CPU 
(Shutdown) 

2.6 3.6 93.8 0.3 0 99.7 1.4 2.1 96.4 

DC P.S. 
(0.1A) 

13.7 14.1 72.2 4.5 3.9 91.6 13.4 11.9 74.7 

DC P.S. 
(0.5A) 

10.9 14.7 74.4 7.8 7.9 84.3 9.1 13.0 77.9 

DC P.S. 
(0.25A) 

17.3 16.5 66.2 16.0 8.8 75.2 18.2 15.3 66.5 

DC P.S. 
(0.4A) 

14.6 15.6 69.9 16.0 10.3 73.6 13.1 16.5 70.5 

Notebook 0.6 0.8 98.6 0.3 0.4 99.3 0.6 0.5 98.9 
M. charger 21.8 17.1 61.1 16.8 11.1 72.1 19.7 17.7 62.6 
F. lamp 3.8 4.9 91.3 2.5 1.0 96.5 2.7 3.9 93.4 
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Experiments in section 4.1.3 
Table C-3   Detailed results of SVM-based classifiers in Table 4-5 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

PC CPU 0 0 100 0 0 100 0 0 100 
Monitor 0 0.1 99.9 0 0 100 0 0 100 
PC CPU 
(Shutdown) 

0 0.1 99.9 0 0.1 99.9 0 0.1 99.9 

DC P.S. 
(0.1A) 

4.9 3.7 91.4 4.6 3.7 91.7 4.3 4.6 91.1 

DC P.S. 
(0.5A) 

10.6 7.3 82.1 11.5 4.4 84.1 10.8 6.5 82.7 

DC P.S. 
(0.25A) 

15.2 13.1 71.7 15.6 10.7 73.7 14.9 12.8 72.3 

DC P.S. 
(0.4A) 

12.3 15.2 72.5 13.7 13.2 73.1 11.0 16.3 72.7 

Notebook 0.3 0.3 99.4 0.1 0.3 99.6 0.3 0.3 99.4 
M. charger 15.0 15.0 70.0 10.8 14.4 74.8 10.0 14.9 75.1 
F. lamp 2.6 0.9 96.5 1.9 0.4 97.7 2.2 0.7 97.1 

 

Experiments in section 4.2.1 
The K-fold test performed is illustrated in Figure C-1. 

 

Fig. C-1   K-fold test algorithm 
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Table C-4a   Detailed results of ANN classifiers in Table 4-7 

MLP Accuracy (%) RBF Accuracy (%) 
Device Misclassification* False 

Alarm+ 
Correct 

Classification Misclassification* False 
Alarm+ 

Correct 
Classification 

Monitor 0 0 100 0 0 100 
CPU 0.1 0 99.9 0 02 99.8 
Fluo. lamp 0 0.1 99.9 0 0.2 99.8 
TV 0.2 0.2 99.6 0.2 0 99.8 
Charger 0.1 0 99.9 0.3 0 99.7 
Fan 0.1 0 99.9 0.1 0.1 99.9 
Fridge 0 0.2 99.8 0 0.3 99.7 
Light bulb 0 0 100 0.2 0 99.8 

 

Table C-4b   Detailed results of SVM-based classifiers in Table 4-7 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Monitor 0.9 0 99.1 0.5 0 99.5 0.5 0 99.5 
CPU 0.7 3.6 95.7 0.2 0.2 99.6 0.7 0.1 99.2 
F. lamp 0.3 0 99.7 0.2 0 99.8 0.2 0 99.8 
TV 11.7 2.2 86.1 0.3 0.8 98.9 1.0 1.7 97.3 
Charger 0.1 0.3 99.6 0.1 0.1 99.8 0.1 0.2 99.7 
Fan 18.6 24.4 57.0 2.3 2.3 95.4 11.1 6.6 82.2 
Fridge 0.1 0 99.9 0 0 100 0.1 0 99.9 
L. bulb 0.1 0.2 99.7 0.1 0.2 99.7 0.1 0.1 99.7 

 

Table C-5a   Detailed results of ANN classifiers in Table 4-8 

MLP Accuracy (%) RBF Accuracy (%) 
Device Misclassification* False 

Alarm+ 
Correct 

Classification Misclassification* False 
Alarm+ 

Correct 
Classification 

Monitor 0.1 0 99.9 0 0.1 99.9 
CPU 0.3 0.3 99.4 0.2 0 99.8 
Fluo. lamp 0.1 0 99.9 0 0.1 99.9 
TV 0.4 0.6 99.0 0 0.1 99.9 
Charger 0.1 0.1 99.8 0.1 0 99.9 
Fan 0.2 0 99.8 0.4 0.7 98.9 
Fridge 0 0.1 99.9 0 0 100 
Light bulb 0 0 100 0.1 0 99.9 

 
Table C-5b   Detailed results of SVM-based classifiers in Table 4-8 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Monitor 5.0 0.1 94.9 0.5 0 99.5 2.3 0 97.7 
CPU 9.4 12.7 77.9 1.4 0.1 98.5 2.1 8.6 89.3 
F. lamp 0 0 100 0 0 100 0 0 100 
TV 17.5 15.1 67.5 7.1 0.9 92.0 14.4 15.2 70.4 
Charger 0.7 1.9 97.4 0.1 0.1 99.8 0.2 0.4 99.4 
Fan 21.7 19.6 58.6 11.7 4.2 84.1 22.3 19.3 58.4 
Fridge 0 0 100 0 0 100 0 0 100 
L. bulb 0 0.2 99.8 0 0 100 0 0.1 99.9 

 
 
 
 
 



Appendix C   Detailed Classification Results 
 

 
115 

Experiments in section 4.2.2 
Table C-6a   Detailed results of ANN classifiers in Table 4-9 

MLP Accuracy (%) RBF Accuracy (%) 
Device Misclassification* False 

Alarm+ 
Correct 

Classification Misclassification* False 
Alarm+ 

Correct 
Classification 

Monitor 0.2 1.3 98.5 0.1 0 99.8 
CPU 8.2 4.9 86.9 12.2 0.4 87.4 
Fluo. lamp 0.2 0 99.8 0.5 0 99.5 
TV 19.5 12.4 67.9 0.4 11.6 88.0 
Charger 0 33.9 66.1 0 34.9 65.1 
Fan 28.5 9.4 62.1 13.1 17.8 69.1 
Fridge 0 1.2 98.8 1.1 0 98.8 
Light bulb 2.1 0 97.9 20.8 0 79.2 

 

Table C-6b   Detailed results of SVM-based classifiers in Table 4-9 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Monitor 0.6 6.9 92.5 0.5 0.1 99.4 0.5 0.8 98.7 
CPU 25.5 0.1 74.4 25.4 0 74.6 24.9 0.1 75.1 
F. lamp 0.1 0 99.9 0.1 0 99.9 0.1 0 99.9 
TV 19.8 16.6 63.6 2.7 6.9 90.4 4.3 17.3 78.4 
Charger 0 30.4 69.6 0 28.5 71.5 0 29.9 70.1 
Fan 28.6 5.3 66.1 27.8 4.1 68.1 27.8 3.7 68.5 
Fridge 0.1 0 99.9 0.1 0 99.9 0.1 0 99.9 
L. bulb 6.8 0 93.2 5.0 0 95.0 5.5 0 94.5 

 

Experiments in section 4.2.3 
Table C-7a   Detailed results of ANN classifiers in Table 4-11 

MLP Accuracy (%) RBF Accuracy (%) 
Device Misclassification* False 

Alarm+ 
Correct 

Classification Misclassification* False 
Alarm+ 

Correct 
Classification 

Monitor 6.6 0.5 88.3 4.4 23.8 71.8 
CPU 14.9 13.9 71.2 15.9 20.3 63.8 
Fluo. lamp 8.1 7.7 84.2 4.8 37.1 58.1 
TV 15.6 16.4 68.0 5.0 42.3 52.7 
Charger 15.2 18.0 66.8 9.1 37.8 53.1 
Fan 18.1 22.4 59.5 4.0 45.7 50.3 
Fridge 5.0 6.0 89.0 3.5 28.9 67.6 
Light bulb 9.6 11.8 78.6 3.4 41.7 54.9 
 

Table C-7b   Detailed results of SVM-based classifiers in Table 4-11 

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Monitor 6.4 4.6 89.0 6.4 4.6 89.0 6.8 4.9 88.3 
CPU 13.7 14.9 71.4 13.7 14.9 71.4 14.8 13.8 71.4 
F. lamp 7.5 7.8 84.7 7.8 7.5 84.8 7.7 7.5 84.8 
TV 17.5 17.8 64.7 17.5 17.8 64.7 18.8 16.2 65.0 
Charger 16.4 17.5 66.1 14.4 19.1 66.5 15.0 19.0 66.1 
Fan 18.9 19.5 61.6 18.0 20.0 62.0 15.9 22.6 61.5 
Fridge 5.9 5.5 88.6 5.7 5.4 89.0 5.7 5.5 88.8 
L. bulb 10.3 10.9 78.8 10.3 10.9 78.8 10.3 11.1 78.6 
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Experiments in section 4.3 
Table C-8   Detailed results of ANN classifier in Table 4-12 

Accuracy (%) 
Device Misclassification* False Alarm+ Correct 

Classification 
Monitor 0 2.3 97.7 
CPU 4.0 0.5 95.5 
Fluorescent lamp 0 0.2 99.8 
Television 23.8 0.7 75.5 
Soldering iron 8.0 0 92.0 
Fridge 0 0.3 99.7 
Fan 18.2 4.0 77.8 
Battery charger 0 6.2 93.8 
Light bulb 28.6 0 71.4 
Power drill 0 6.6 93.4 

 
Table C-9   Detailed results of ANN classifier in Table 4-13 

Accuracy (%) 
Device Misclassification* False Alarm+ Correct 

Classification 
PC CPU 0.5 0 99.5 
PC Monitor 0.2 0.3 99.5 
PC CPU (shutdown) 0.9 0.3 98.8 
DC Power supply (0.1A) 8.4 8.1 83.5 
DC Power supply (0.5A) 12.8 10.7 76.5 
DC Power supply (0.25A) 15.1 11.9 73.0 
DC Power supply (0.4A) 8.8 18.6 72.6 
Notebook computer 0.7 0 99.3 
Mobile phone charger 9.5 13.3 77.2 
Fluorescent lamp 4.2 5.3 90.5 

 

Experiments in section 4.4 
Table C-10   Detailed results of ANN classifier in Table 4-14 

Accuracy (%) 
Device Misclassification* False Alarm+ Correct 

Classification 
Motor #1 6.1 6.4 87.5 
Motor #2 0.1 0 99.9 
Motor #2 with capacitors 1.3 1.0 97.7 
Inverter #1 0.2 0.2 99.6 
Inverter #2 (low frequency) 0.2 0.2 99.6 
Inverter #2 (high frequency) 0 0.4 99.6 
Fluorescent lamp without capacitor 18.4 16.3 65.1 
Fluorescent lamp with capacitors 15.1 15.8 69.1 

 

Experiments in section 4.5 
Table C-11   Detailed results of ANN classifier in Table 4-15 

 Accuracy – < 3 of each device  (%) Accuracy – <10 of each device (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

PC CPU 0 0 100 0 0 100 
PC Monitor 0 0 100 0 0 100 
PC CPU (shutdown) 0 0 100 0 0 100 
DC Power supply (0.1A) 0 0 100 0 0 100 
DC Power supply (0.5A) 0 0 100 2.7 0 97.3 
DC Power supply (0.25A) 0 0 100 4.5 0 95.5 
DC Power supply (0.4A) 0 0 100 6.0 0.5 93.5 
Notebook computer 0 0 100 0 0 100 
Mobile phone charger 0 0 100 3.2 0 96.8 
Fluorescent lamp 0 0 100 0 0 100 
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Experiments in section 4.5 
Table C-12   Detailed results of TDNN classifiers in Table 4-16 

MLP Accuracy (%) TDNN-1 Accuracy (%) TDNN-2 Accuracy (%) 
Device Misclassi-

fication* 
False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

Misclassi-
fication* 

False 
Alarm+ 

Correct 
Classification 

F. lamp 0 0 100.0 0 0 100 0 0 100 
CPU 1.7 0 98.3 0.9 2.9 96.2 0 2.8 97.2 
Monitor 1.0 3.6 95.4 1.0 5.6 93.4 3.0 1.8 95.2 
TV 5.2 3.1 91.7 5.2 5.3 89.5 3.5 6.2 90.3 

 
 
* Misclassification refers to wrong classification of devices present 
+ False alarm refers to wrong classification of devices absent 
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Appendix D ANN and SVM Techniques 

 

 Appendix D discusses various architectures of the artificial neural network 

(ANN) and multi-class support vector machine (SVM) models in signature 

identification, discussing the benefits and disadvantages of each architecture. 

 

D.1 ANN Architectures 
 

 In terms of learning algorithm, the ANN can be divided into two main classes:- 

supervised learning and unsupervised learning.  Supervised learning ANNs refer to the 

class of ANNs that are trained to map inputs to specified targets whereas unsupervised 

learning ANNs are free to form clusters, automatically classifying the inputs.  In this 

thesis, the ANN architectures that will be discussed include the self organizing map 

(SOM) that belongs to the unsupervised learning class and multilayer perceptron (MLP) 

and radial basis function (RBF) networks that belong to the supervised learning class 

[36]. 

 

D.1.1 Self Organizing Map (SOM) 
 

 The SOM is a powerful ANN that is capable of automatically clustering the 

input vectors to which it is fed, thus learning the distribution of the input vectors.  

Therefore, it is also seen as a feature extractor, capable of characterizing or identifying 

the similarities between input vectors. 
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 The SOM consists of a multidimensional lattice of neurons (Figure D-1).  

During the training period, when an input vector is fed to the SOM, the neuron with 

the smallest Euclidean distance from the input vector will be chosen as the winning 

neuron.  The weights of the winning neuron and its neighbors will be updated such that 

the likelihood of it winning the next time a similar input vector is presented will be 

higher.  As a result, the winning neuron and its neighbors will slowly shift towards the 

input vector, thus learning its distribution. 

 

 

Fig. D-1   SOM with n inputs and 6 output neurons in a 2-dimensional lattice 

 

 In the field of signature identification, SOM has been successfully applied in 

[11,13,14] to automatically classify the input vectors into various power quality 

disturbance categories.  In [14], the SA-ANN, an SOM with automatic structuring of 

the number of nodes was applied to classify power quality disturbances.  Each neuron 

in the SA-ANN had an additional deviation vector that tracked how groups of input 

vectors were scattered around the neuron and a counter that contained the number of 

input vectors represented by the neuron.  The proposed algorithm allowed an increase 

in the number of neurons to improve performance, or the merging of two neurons 
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without significantly affecting the performance.  Paper [13] proposed the use of the 

learning vector quantization (LVQ), which is a supervised version of the SOM. 

 

 In some cases, SOM training requires a large number of epochs to converge to 

the distribution of the input vectors.  The training length also depends on the selection 

of initial weights, which are usually randomly chosen.  Besides that, it is difficult to 

control the number of clusters that the SOM forms unless the training is supervised.  

Correspondence between the clusters and the actual input vector characteristic may be 

unpredictable, with missing or unexpected new characteristics [36]. 

 

In this thesis, the training data available have inputs with corresponding 

outputs.  As the number of devices increases, each combination of devices will require 

an output neuron, thus causing the number of neurons in the SOM to grow 

exponentially.  Therefore, the SOM was not used in this thesis but remains a potential 

tool when future works on automatic detection of unknown devices require 

unsupervised learning. 

 

D.1.2 Multilayer Perceptron (MLP) 
 

 The MLP is a universal classifier and a non-linear function approximator.  

Under supervised learning, it can be trained to perform non-linear mapping between 

input and output vectors.   

 

 An MLP consists of an input layer, with the number of neurons equal to the 

dimension of the input vector, an output layer, with the number of neurons equal to the 
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dimension of the output vector, and one or more hidden layers with an arbitrarily 

chosen number of hidden neurons.  In most practical applications, only one hidden 

layer is used.  In [32], it was shown that larger numbers of hidden layers and nodes 

resulted in slower convergence but did not improve performance.  Unlike the SOM 

that activates only one output neuron for each input vector, the multiple output feature 

of the MLP allows it to represent combinations of devices present by producing 

positive or negative values at each output neuron which represents a particular device.  

 

 

Fig. D-2   MLP with a single hidden layer 

 

During training, the weights and biases of the MLP are updated towards 

minimizing the least mean squares (LMS) of the error between the neural network 

output and the desired output.  In this thesis, the backpropagation (BP) training 

algorithm given in equation (D.1) was the primary training algorithm because of its 

simplicity, smaller memory requirement and higher speed in pattern recognition 

problems. 
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where w is the weight associated to an input of the neuron and η is known as the 

learning rate which is arbitrarily chosen.  w is updated based on the gradient of the 

error function E with respect to w.  y’(j) and z(j) are the desired output and neuron 

outputs respectively for input j.  Φ’(v(j)) is the derivative of the neuron activation 

function evaluated at preactivation value v(j).  X(j) is the input vector value. 

 

 

Fig. D-3   Perceptron architecture 

 

 Proper structuring of the MLP such as the number of neurons, connection 

between neurons, number of layers and activation function of the neurons play an 

important role in its optimization and performance.  In [9], partially connected MLP 

was shown to perform better than a fully connected MLP where a neuron is connected 
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to all neurons in the adjacent layers.  Adaptive learning BP such as the one proposed in 

[12] or the resilient backpropagation (RP) [33] greatly increased the convergence rate.  

In [9,10,12], the MLP was used to perform harmonic detection in power systems so as 

to indicate necessary harmonic compensation from active filters.  The MLP was also 

applied to the identification of electrical load signatures in [26] and [28].  In [26], 

multiple MLP were placed in cascade to perform binary classifications while 

traversing a family tree.  The MLP’s high noise tolerance was demonstrated in [34] 

where it was applied to recognize the myoelectric control signal used to trigger a 

functional neuromuscular stimulation. 

 

 Nonetheless, the MLP faces the problem of overfitting that may cause it to 

become susceptible to noise and to lose its generalization ability.  Fortunately, 

overfitting can be avoided by using a test set to measure its performance and to end the 

training when the test set error increases.  Besides that, when using the BP training 

algorithm, the MLP tends to get trapped at a local minimum.  Therefore, care should 

be taken in the selection of the initial weights. 

 

D.1.3 Radial Basis Function (RBF) Neural Networks 
 

 Similar to the MLP, the RBF neural network is also a universal classifier and 

non-linear function approximator.  While also being similar structurally, the 

fundamental difference between the RBF neural network and MLP lies in the way the 

hidden neurons combine inputs from the preceding layers in the network; the MLP 

uses the inner products whereas RBF uses the Euclidean distance.  The most popular 

RBF is the Gaussian RBF.  The Gaussian function is given by equation (D.3) 
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where u is the Euclidean distance of the input vector from the center of the RBF 

neuron and σ is the Gaussian width variable. 

 

 The RBF neural network usually has only 1 hidden layer.  Each neuron (Figure 

D-4) in the hidden layer consists of 1 center, which in the case of the Gaussian RBF is 

the mean of the Gaussian function.  In the literature, there are many methods of 

choosing the centers, usually from the set of input vectors [36].  In function 

approximation, each center usually represents a part of the curve.   Due to this 

structure, the Gaussian RBF neural network usually performs well for interpolation but 

poorly for extrapolation.  During training, the Euclidean distances of the input vector 

from the centers are calculated and the weights of connections between the hidden 

layer and the output layer are updated towards minimizing the least mean square of the 

error between the neural network outputs and the desired outputs. 

 

 

Fig. D-4   RBF neuron architecture 
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 In [35], a two-layer MLP and an restricted Coulomb energy (RCE) network, 

which is a variety of RBF neural network, were used in the recognition of pen 

signatures.  The RCE network showed better generalization abilities than the MLP in 

classification tasks but failed in verification tasks. 

 

 To optimize the RBF neural network, the centers must be selected properly so 

as to cover the maximum variance of the input vector set.  For the Gaussian RBF, the 

Gaussian function width can be varied to find the optimum value and preferably 

should be sufficient to cover the area between neighboring centers.  The RBF neural 

network also faces the problem of overfitting which can be similarly dealt with using a 

test set.  The RBF neural network was also chosen as a classifier in this thesis due to 

its structural and functional similarity to the MLP that met the requirements of the 

thesis. 

 

D.1.4 Other ANN Architectures 
 

 Some of the architectures beside those mentioned above that may be suitable 

for signal processing and signature identification are the probabilistic neural network 

(PNN) [36] and time delay neural network (TDNN) [37]. 

 

PNN is a universal approximator for smooth class-conditional densities and 

therefore should be able to solve any smooth classification problem given enough data.  

It can be viewed as a normalized RBF network with a hidden unit centered at every 

training case.  If all the inputs are relevant, PNN has the very useful ability to tell 
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whether a test case is similar to any of the training data; if not, the classification made 

was based on extrapolation and should be viewed with skepticism. 

 

The PNN required reasonable signal-to-noise ratio (SNR) to achieve good 

performance.  PNN tended to have a long computational time because of the vast 

amount of neurons it contained.  Due to its similarity to the RBF neural network, the 

PNN was not used in this thesis. 

 

Time delay neural network is a dynamic neural network capable of using 

temporal information by utilizing time delayed state information in its hidden layers.  

In [37], the artificial neural network is composed of a preprocessor based on principal 

component analysis (PCA) and a one-hidden layer time delay neural network trained 

with backpropagation.  The TDNN was used because information to discriminate four 

classes of sounds was contained in the history of the time series and the TDNN trained 

on the shape of the waveform. 

 

In the discussion of the conventional NALM techniques (Section 1.3), the step 

change in steady state power was noted as the main form of signature used to identify 

the various electrical devices.  Although the proposed method in this thesis has only 

considered the instantaneous current harmonics pattern as the signature, the focus was 

on a singular quantity of each device.  The limitation of using only instantaneous 

harmonics information appears when the number of devices increases such that it 

becomes impossible to uniquely disaggregate the individual devices from the total load. 
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Fig. D-5   Elman TDNN Architecture 

 

 The TDNN offers the ability to utilize past information in the input-output 

mapping of the ANN.  Therefore, by continuously tracking the states of the electrical 

devices and detecting step changes in the current harmonics information, theoretically 

the TDNN will be able to track an unlimited number of electrical devices.  In this 

thesis, a simple feasibility study was performed on the use of TDNN for device 

classification in NALM. 

 

D.2 Support Vector Machines (SVM) 
 

SVM is a learning technique that can be seen as a new method for training 

neural network, polynomial, or radial basis functions classifiers. It is essentially a two-

class linear classifier in a high dimensional feature space that may be nonlinearly 
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related in the input space.  Linear equations are used to separate the high dimensional 

feature space into two regions. SVMs are very well founded from the mathematical 

point of view, being an approximate implementation of the structural risk 

minimization induction principle [38]. The decision surfaces are found by solving a 

linearly constrained quadratic programming (QP) problem. 

 

Most real world problems can not be solved by a linear classifier, and the 

techniques have to be extended to allow for non-linear decision surfaces. Projecting 

the original set of variables into a higher dimensional feature space is a possible way to 

address this problem.  Fortunately, using the kernel, the high dimensional feature space 

computations can be performed directly in the original input space.  However, the QP 

problem is challenging when the size of the data set becomes large.     

 

 The generalization ability of SVM is measured by the margin between the two 

classes (Figure D-6).  The size of the margin is governed by the divisibility of the two 

classes and a cost parameter that needs to be fine tuned when choosing the optimum 

SVM configuration.  The cost parameter allows a “soft” margin to be set between the 

two regions of classification, ignoring outlier input vectors that could have been 

distorted by noise and allowing these outliers to cross the dividing hyperplane. 

 

 Maximizing the margin is equivalent to minimizing the objective function in 

equation (D.4) under the inequality constraints given by equations (D.5) and (D.6). 
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[ ] ljbjXWjy j ,...,11)(.)(' =∀−≥− ξ   (D.5) 

ljj ,...,10 =∀≥ξ   (D.6) 

 

where W is the hyperplane vector, C is the cost parameter, ξj is the slack variable to 

allow errors when outlier input vectors cross the hyperplane to the wrong class, y’(j) is 

the class label (+1 or -1), X(j) is the input vector and W.X(j)-b is the hyperplane 

equation.  l is the number of input vectors in the training set. 

 

 

 
(c) Support vectors 

 
The hyperplane in (a) gives a wider margin between the two classes compared to (b). 
In (c) the support vectors are marked by the boxes and the hyperplane vector, w that 
needs to be optimized is shown. 
 

Fig. D-6   SVM Margin 

 

hyperplane hyperplane 

hyperplane 
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D.2.1 SVM in Multi-class Classification 
 

Several approaches have been implemented to extend the SVM into a multi-

class classifier [38,39,40,41,42].  This includes dividing the problem into several 

binary classifications such as in the “One versus the rest method”, “Pairwise method” 

and “Directed Acyclic Graph SVM (DAGSVM) method” [38].  There are also 

approaches to multi-class problems that involve solving one single optimization 

problem by implementing decomposition method [38,39,40,41].  Reference [42] 

proposed a multistage SVM which repeatedly clustered the samples into two classes 

until the final class was obtained.  

 

In the “One versus the rest method”, for a k-classes classification, a total of k 

SVM classifiers are created.  Each SVM classifier will differentiate class k from the 

remaining classes.  The SVM classifier which produces the largest value corresponds 

to the correct class. 

 

In the “Pairwise method” [43], the classes are paired up.  A total of k(k-1)/2 

SVM classifiers are created to divide the training data into one of the classes in the 

pairs.  Each SVM classifier produces a vote for one of the two classes.  Finally, the 

class which collects the highest number of votes is identified as the correct class. 

 

Another approach, “DAGSVM method” modifies the “Pairwise method” by 

putting the SVM classifiers for class pairs into a binary tree (Figure D-7).  The correct 

class is determined by traversing down a tree until reaching a leave node, which 

represents the correct class [44,45,46,47].  This method significantly reduces the 
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problem complexity from O(k2) to O(k).  On the other hand, it also introduces the 

problem of choosing the tree structure, to arrange the order of classes for comparison. 

 

 

Fig. D-7   Example of the Directed Acyclic Graph SVM (DAGSVM) 

 

However these conventional approaches have typically focused on mutually 

exclusive classes, and posed certain limitations when applied to problems that require 

non-mutually exclusive multi-class classifications. All the multi-class SVM 

approaches discussed above only produce a single class result.  The classes must be 

mutually exclusive, otherwise, the input vector which holds a signature representing 

more than one class is classified as only the class with the highest SVM classifier 

output value. 

 

In [48], a “Pairwise method” with associated probability to the results was 

introduced.  In [49], by normalizing the distance from the input vector to each 

hyperplane of the SVM, the relative distance was obtained to provide a form of 

ranking.  Unfortunately, these approaches did not present a ranking so as to allow 
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more than one class to be specified.  Instead, the main aim was to provide a 

comparison between classes and thus selecting a single correct class. 

 

D.3 Evolving the ANN Weights Using Genetic 
Algorithm (GA) 

 

Genetic algorithm (GA) is a class of evolutionary algorithm that is inspired by 

the concept of natural evolution.  In GA, the solutions to a problem are represented by 

chromosomes or strings of numbers. 

 

The GA randomly creates a population of solutions and applies genetic 

operators such as mutation and crossover to evolve the solutions in order to find the 

best solution.  In each generation, an arbitrary percentage of the chromosomes from 

the current population representing the best solutions are chosen to be evolved.  The 

fitness or qualities of the solutions in the new chromosomes are then evaluated.  

Finally, during reproduction, the chromosomes are ranked and the best chromosomes 

are used to create the next generation population. 

 

In the crossover genetic operation, a random splicing point is chosen in two 

chromosomes where the two chromosomes are spliced or cut.  Then the spliced 

regions are mixed to create two new chromosomes.  In the mutation genetic operation, 

each element in the chromosome is randomly changed to a new value with an arbitrary 

mutation probability.  The two genetic operations are illustrated in Figure D-8. 
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Fig. D-8   Crossover and mutation genetic operations 

 

Artificial intelligence techniques such as GA and ANN have been widely used 

to solve problems of signature identification in various fields.  The ANN, which 

provides a nonlinear mapping between the input and output vectors, usually minimizes 

its least mean square output error using gradient descent techniques such as 

backpropagation (BP) while the GA provides a stochastic mean of minimizing a given 

cost function.  The GA, if tuned correctly, is known to be less affected by the problem 

of local minima and much less sensitive to initial conditions of training [50,51].  

Therefore, by combining the two techniques, it is possible to tap the benefits of both 

worlds. 

 

Various combinations of the GA and ANN have been researched on including 

the evolution of the ANN weights and architectures using the GA [50,52,53].  In the 

evolution of ANN weights, GA replaces the conventional gradient descent method to 

optimize the weights towards the global optimum.  By eliminating the differentiation 
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process required in gradient descent, GA also removes the requirement for the 

activation function of the ANN neurons to be differentiable, thus allowing new types 

of ANN activation function to be explored.  Furthermore, the architecture of the ANN 

such as the number of layers and the number of neurons in each layer can also be 

modified in the optimization process. 

 

The evolution of the single-hidden-layer perceptron ANN weights using GA 

was chosen for the optimization of the ANN architecture in this thesis.  Although other 

variants of the ANN such as the radial basis function (RBF) ANN have been 

successfully evolved using GA [54,55], the simple single-hidden-layer perceptron 

weights are naturally easier to be encoded into the chromosomes and evolved with the 

GA.  The GA’s chromosomes may hold the weight values of all the neuron 

connections in the ANN.  Therefore, by evolving the GA chromosomes, the weights or 

even the whole architecture of the ANN may converge towards the global minimum of 

the classification function.  On the other hand, GA is relatively inefficient in fine-tuned 

local search [50] while the BP algorithm of the ANN, which is based on gradient 

descent, generally has faster training phase angles and has better convergence ability.  

Therefore, by employing the BP algorithm of the ANN to perform a local search, an 

efficient and fine-tuned global minimum can be found. 

  

 


