

POWER HARMONICS ANALYSIS FOR
ELECTRICAL DEVICE SIGNATURE IDENTIFICATION

USING THE ARTIFICIAL NEURAL NETWORK
AND SUPPORT VECTOR MACHINE

NG WIN SIAU
(B.Eng.(Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Acknowledgement

I would like to convey my most sincere thanks to the following persons whose help

and guidance have contributed greatly to this project’s success.

First and foremost, my supervisors, Dr. Dipti Srinivasan and Prof. A.C. Liew who

have provided me with invaluable advices, so as to guide me through the whole

project. Their profound knowledge and experiences in the field of computational

intelligence techniques and power system harmonics had been my greatest source of

inspiration and insights into the potentials of the project.

Secondly, Mr. Looi Fook Chee from Power Systems Technology lab who provided

technical assistance in creating the experimental setup to analyze the power

harmonics of electrical devices in the project.

Also, Mr. Y. C. Woo and M. Chandra from Electrical Machine and Drives Laboratory

who helped me in setting up measurement systems for the 3-phase devices used in the

project.

Last but not least, Mr. Seow Hung Cheng from Power Systems Laboratory who

helped me in preparing a workstation for MATLAB simulations.

 ii

Table of Contents

Summary iv

Nomenclature vi

List of Figures viii

List of Tables x

List of Relevant Publications xii

Chapter 1 Introduction 1

1.1 Power Harmonics Analysis 1
1.1.1 Transient and Steady State Signals 1
1.1.2 Signal Analysis Techniques 2

1.2 Application of Computational Intelligence in Power Harmonics
 Analysis 5

1.2.1 Harmonic Detection 6
1.2.2 Harmonic Source Detection 7
1.2.3 Power Disturbance Classification 8

1.3 Device Signature Identification in Nonintrusive Appliance Load
 Monitoring 9

1.3.1 Electrical Device Categories 10
1.3.2 Device Signature 11

1.3.2.1 Steady State Power 11
1.3.2.2 Transient Characteristics 13
1.3.2.3 Higher Harmonics Information 14

1.3.3 Application of Computational Intelligence Techniques in NALM 15
1.3.4 A Novel Approach to Device Signature Identification 17

1.4 Proposed Power Harmonics Analysis for Electrical Device Signature
 Identification Using the ANN and SVM 17
1.5 Report Organization 20

Chapter 2 Feature Vector Characteristics 21

2.1 Data Collection 21
2.2 Harmonics Signature Characteristics 27
2.3 Feature Vector Analysis Results 35

Chapter 3 Proposed ANN and SVM Architectures 36

3.1 Input and Output Vector Dimensions 36
3.2 Performance Definition 38
3.3 ANN Architecture 40

3.3.1 MLP and RBF Neural Networks 40
3.3.2 Time Delay Neural Networks 43

3.4 SVM Configuration 46
3.4.1 SVM for Combinations of Classes 47

 iii

Chapter 4 Performance of Developed ANN and SVM Classifiers 51

4.1 Classification Using Multi-class SVM-based Model 51
4.1.1 Identifying Combinations of Devices 52
4.1.2 Noise Filtering 53
4.1.3 Scaling of Input to Improve Performance 55
4.1.4 Resource Usage 57
4.1.5 Feasibility of Developed Multi-Class SVM for Power Harmonics
 Signature Identification 58

4.2 Performance Comparison of ANN and SVM-based Models 59
4.2.1 Training Using Complete Dataset 59
4.2.2 Reduction of Training Set Size 61
4.2.3 Noise Tolerance 64

4.3 Performance on Different Datasets 67
4.4 Harmonic Signature Identification of Three Phase Devices 69
4.5 Identification of Multiples of Similar Model Devices 70
4.6 Performance of TDNN Architectures 73

Chapter 5 MLP Weights Optimization 76

5.1 Preparation of Training Samples 76
5.2 MLP Architecture 77
5.3 GA Algorithm 78
5.4 GA-ANN Combination 81
5.5 Results 83

5.5.1 Evolution of MLP Weights with GA 83
5.5.2 Evolution of MLP Initial Weights Coupled With Backpropagation 86

5.6 Performance of GA-ANN Combination 88

Chapter 6 Conclusion and Recommendations 89

References 92

Appendix A Feature Vector Sets 97

Appendix B MATLAB Codes 102

Appendix C Detailed Classification Results 112

Appendix D ANN and SVM Techniques 118

D.1 ANN Architectures 118
D.1.1 Self Organizing Map (SOM) 118
D.1.2 Multilayer Perceptron (MLP) 120
D.1.3 Radial Basis Function (RBF) Neural Networks 123
D.1.4 Other ANN Architectures 125

D.2 Support Vector Machines (SVM) 127
D.2.1 SVM in Multi-class Classification 130

D.3 Genetic Algorithm – Artificial Neural Network (GA-ANN) Hybrid 132

 iv

Summary

In this thesis, a novel idea of nonintrusively identifying the electrical loads

present in a power system by analyzing the current waveform harmonics at the power

supply mains using the artificial neural network (ANN) or support vector machine

(SVM) was developed.

In general, electrical devices’ current waveforms are distorted due to the

inherent nonlinearity of the devices. From the study of each device’s current

waveforms, it was shown that different devices produced distinctly different current

harmonics, which were used as signatures for the devices. Some devices also

produced different harmonic signatures under different modes of operation.

Various ANN architectures such as the multilayer perceptron (MLP), radial

basis function (RBF) and time delay neural network (TDNN) and SVM-based

classifiers with various kernels including the linear, polynomial and RBF kernels were

applied to the harmonic signature identification. A new multi-class SVM technique

for non-mutually exclusive classes was developed, to cater to the multiple outputs

requirement of this research, and its feasibility was verified.

The ANN and SVM-based classifiers were trained to map phase angles and

magnitudes (represented in the complex form) of the current waveform harmonics to

the combinations of devices present in the system. The trained ANN and SVM

classifiers were then applied to a test set to obtain the classification accuracy. The

 v

generalization performance from a reduced training set size and noise tolerance limits

of the classifiers were explored. The results were favorable with the ANN and SVM-

based models being able to correctly determine the combinations of the devices

present with high accuracy.

Differences in the harmonic signatures from electrical devices of the same

model were studied and the MLP was shown to perform classification accurately on

current harmonics of a system containing multiples of similar model devices.

Classification performance of three phase devices was shown to be higher than that of

single phase devices because it had three times the amount of harmonic information

from its three phases. Besides that, using the time delay neural network, step change

information was utilized to allow identification of large numbers of devices. As the

number of devices increases, the process of disaggregating individual signatures from

the total load harmonic information would become more difficult without tracking

step changes.

The MLP was concluded as the best classifier due to its high accuracy yet low

computational resource requirement. However, it also suffered from the problem of

having a large number of local minima, thus causing difficulty in optimizing its

weights. Evolution of MLP weights using genetic algorithm (GA) was successfully

implemented in the search for an optimal initial set of MLP weights while

backpropagation algorithm was used to update the MLP weights towards the optimal

values.

 vi

Nomenclature

Subscripts/Superscripts

i input/output number

j input vector number

k device combination number

n odd harmonic number

p connection number to a neuron

q neuron number

Symbols and Abbreviations

xi ith input

X input vector

zi ith output from a neural network’s output layer neuron

yi ith output

Y output vector

y' desired output or class label

nmax number of harmonics taken into consideration

mmax number of electrical devices in the setup

Ei misclassification rate for device i

Ĕi false alarm rate for device i

Fi classification accuracy for device i

 vii

Favg average classification accuracy for all devices in the setup

wp weight of pth input to the neuron

wp,q weight of the connection between neuron p and neuron q

W weight vector

σ Gaussian function width variable

C cost parameter of the support vector machine

In RMS magnitude of the nth odd current harmonic

Φn phase of the nth odd current harmonic

si,k minimum magnitude of the ith input, xi, for all input vectors representing
device combination k

di,k fluctuation range of the ith input, xi, for all input vectors representing device

combination k

ni,k ratio of di,k to the mean magnitude of the ith input, xi, for all input vectors

representing device combination k

ri,k ratio of the difference between actual laboratory measurements and the

mathematically calculated data to the value of the mathematically calculated
data

ANN artificial neural network

SVM support vector machine

MLP multilayer perceptron

RBF radial basis function

TDNN time delay neural network

GA genetic algorithm

BP backpropagation

NALM nonintrusive appliance load monitoring

 viii

List of Figures

Fig. 1-1 Transient and steady state signals 2

Fig. 1-2 Distorted waveform in time domain 3

Fig. 1-3 Distorted waveform in frequency domain 4

Fig. 1-4 Example of a P-Q chart [24] 12

Fig. 1-5 Harmonics signature of a PC power supply in complex plane [30] 15

Fig. 1-6 Power harmonics analysis for device identification system proposal 19

Fig. 2-1 Experimental setup 22

Fig. 2-2 Signature identification feature vector 23

Fig. 2-3 Summation of individual feature vectors to form two new feature
 vectors 27

Fig. 2-4 Harmonic signatures 32

Fig. 2-5 Mean fluctuation magnitude of harmonic 34

Fig. 2-6 Maximum fluctuation magnitude of harmonic 34

Fig. 2-7 Ratio of fluctuation to the mean harmonic magnitude 35

Fig. 3-1 ANN and SVM block diagram 38

Fig. 3-2 Average accuracy, Favg against no. of odd harmonics in feature vector 42

Fig. 3-3 Average accuracy, Favg against no. of hidden neurons 42

Fig. 3-4 Proposed MLP architecture 43

Fig. 3-5 TDNN-1 architecture 45

Fig. 3-6 TDNN-2 - Elman Network 45

Fig. 3-7 Mutually exclusive classes 47

Fig. 3-8 Non-mutually exclusive classes 48

Fig. 3-9 Multi-class SVM signature identification 49

 ix

Fig. 4-1 Difference between laboratory measurements and mathematical sums 63

Fig. 4-2 Effect of random noise on classification accuracy 66

Fig. 4-3 Signature difference between devices of the same model 71

Fig. 5-1 Effect of varying the number of neurons in the hidden layer on
 performance 78

Fig. 5-2 Stochastic universal sampling 80

Fig. 5-3 GA algorithm 80

Fig. 5-4 Proposed GA chromosome 81

Fig. 5-5 Fixing stagnant MLP performance by introducing fresh individuals 83

Fig. 5-6 Effect of varying population size on performance 84

Fig. 5-7 Effect of varying child population size on performance 85

Fig. 5-8 Effect of varying the mutation probability on performance 85

Fig. 5-9 Evolution of the MLP performance 86

Fig. 5-10 Effect of varying population size on performance 87

Fig. 5-11 Effect of varying child population size on performance 87

Fig. 5-12 Effect of varying the mutation probability on performance 87

Fig. 5-13 Evolution of the MLP performance 88

Fig. C-1 K-fold test algorithm 113

Fig. D-1 SOM with n inputs and 6 output neurons in a 2-dimensional lattice 119

Fig. D-2 MLP with a single hidden layer 121

Fig. D-3 Perceptron architecture 122

Fig. D-4 RBF neuron architecture 124

Fig. D-5 Elman TDNN Architecture 127

Fig. D-6 SVM Margin 129

Fig. D-7 Example of the Directed Acyclic Graph SVM (DAGSVM) 131

Fig. D-8 Crossover and mutation genetic operations 133

 x

List of Tables

Table 2-1 Individual device feature vectors 24

Table 2-2 Source voltage harmonic components 28

Table 3-1 Variation of SVM parameters 46

Table 4-1 Performance of multi-class SVM on identifying combinations of
 devices 53

Table 4-2 Range of added noise 54

Table 4-3 Performance of multi-class SVM on filtering noise 55

Table 4-4 Average amplitude of harmonics 56

Table 4-5 Effect of input scaling on performance of multi-class SVM 57

Table 4-6 CPU time and memory usage 58

Table 4-7 Classification accuracy when using laboratory measurements 60

Table 4-8 Classification accuracy when using mean of laboratory
 measurements 61

Table 4-9 Classification accuracy after reduction of training set size 64

Table 4-10 Magnitude of random noise for each harmonic 65

Table 4-11 Classification accuracy when random noise was added 66

Table 4-12 Classification accuracy of 10-devices set A 68

Table 4-13 Classification accuracy of 10-devices set B 68

Table 4-14 Classification accuracy of three phase devices 70

Table 4-15 Classification accuracy on combinations of multiple devices of the
 same model 73

Table 4-16 Classification accuracy of TDNNs 74

Table A-1a 10-devices set A name list 97

Table A-1b 10-devices set A feature vectors 97

Table A-2a 10-devices set B name list 98

 xi

Table A-2b 10-devices set B feature vectors 98

Table A-3 Combination of devices 98

Table A-4a Three phase devices set name list 99

Table A-4b Three phase devices set feature vectors 99

Table A-5a 4-devices set name list 100

Table A-5b 4-devices set feature vectors 100

Table A-6 8-devices setup database structure 101

Table C-1 Detailed results of SVM-based classifiers in Table 6-1 112

Table C-2 Detailed results of SVM-based classifiers in Table 6-3 112

Table C-3 Detailed results of SVM-based classifiers in Table 6-5 113

Table C-4a Detailed results of ANN classifiers in Table 6-7 114

Table C-4b Detailed results of SVM-based classifiers in Table 6-7 114

Table C-5a Detailed results of ANN classifiers in Table 6-8 114

Table C-5b Detailed results of SVM-based classifiers in Table 6-8 114

Table C-6a Detailed results of ANN classifiers in Table 6-9 115

Table C-6b Detailed results of SVM-based classifiers in Table 6-9 115

Table C-7a Detailed results of ANN classifiers in Table 6-11 115

Table C-7b Detailed results of SVM-based classifiers in Table 6-11 115

Table C-8 Detailed results of ANN classifier in Table 6-12 116

Table C-9 Detailed results of ANN classifier in Table 6-13 116

Table C-10 Detailed results of ANN classifier in Table 6-14 116

Table C-11 Detailed results of ANN classifier in Table 6-15 116

Table C-12 Detailed results of TDNN classifiers in Table 6-16 117

 xii

List of Relevant Publications

W.S. Ng, D. Srinivasan, A.C. Liew, “SVM in Multiclass Signature Identification”, 2nd

International Conference on Computational Intelligence, Robotics and Autonomous

Systems (2003)

W.S. Ng, D. Srinivasan, A.C. Liew, “Evolving Feedforward Neural Network for

Harmonics Signature Identification”, 3rd International Conference on Hybrid

Intelligent Systems (2003)

D. Srinivasan, W.S. Ng, A.C. Liew, “Neural Network-based Signature Recognition

for Harmonic Source Identification”, manuscript submitted for publication in IEEE

Trans. on Power Delivery.

1

Chapter 1 Introduction

1.1 Power Harmonics Analysis

Power harmonics analysis refers to the study of waveform distortion resulting

from the non-linearity of electrical loads such as power electronic devices, fluorescent

lighting, inverters, saturated transformers and arc furnaces. There has been a rapid

increase in the quantity and power rating of highly non-linear power electronic devices,

especially in computer systems and the control of power apparatus and systems.

Power harmonics cause voltage distortion which affects sensitive equipment, nuisance

tripping of circuit breakers and alter meter readings that are based on zero crossings.

Besides that, higher order harmonic currents may cause overheating problems in

transformers or electrical wirings. Hence, power harmonics remains as a major power

quality problem [1,2,3,4].

1.1.1 Transient and Steady State Signals

Power systems waveforms can be broadly divided into two main categories,

namely transients and steady state signals. Transients refer to short duration signals

that usually occur during sudden transition of states of electrical devices whereas

steady state signals are constant or cyclical signals that are repeated with time when

the electrical devices have settled down to a stable state of operation (Figure 1-1).

Introduction

2

Fig. 1-1 Transient and steady state signals

Due to their short duration, transients are inherently more difficult to analyze

compared to steady state signals. Generally, transients require continuous monitoring

and recording of the signal at high sampling rate. Techniques such as edge detection

are often employed to initiate the capturing of the transient waveforms. On the other

hand, steady state signals are obtained only when the waveform has stabilized and thus

require lower resolution. Both transients and steady state signals provide vital

information in the analysis of power harmonics.

1.1.2 Signal Analysis Techniques

 Power harmonics analysis is performed in either the time domain or frequency

domain. The frequency information is obtained through techniques such as Fourier

Transform and Wavelet Transform of the original time domain signal. The two

domains offer two different perspectives of a waveform and are widely used for

analysis of power harmonics.

Transient Steady state

Time

C
ur

re
nt

Introduction

3

State space simulations of the power system are performed in the time domain,

using the available modern digital computers to perform high speed difference

equation calculations. Edge detection to track transients or step changes in waveforms

is also carried out in the time domain by measuring the rate of change of a signal and

comparing it to a threshold.

Fig. 1-2 Distorted waveform in time domain

The frequency information allows the extraction of characteristic features in

terms of frequency components of the waveform. Frequency domain analysis greatly

reduces the data size by representing the time domain information (Figure 1-2), which

was recorded at high sampling rate, with the two frequency peaks in the frequency

counterpart (Figure 1-3). Therefore, it also simplifies the process of characterizing the

waveform using computational intelligence techniques.

Introduction

4

Fig. 1-3 Distorted waveform in frequency domain

 Both the Fourier Transform and Wavelet Transform extract the frequency

information from a waveform. However, the areas of application for the two methods

are slightly different. Fourier Transform is more suited to steady state signal analysis

where the frequency components are constant with time. On the other hand, Wavelet

Transform is able to analyze transient signals by providing both frequency information

and the corresponding locations in time simultaneously. The Fourier Transform and

Wavelet Transform are given by equations (1.1) and (1.2) respectively.

∫
∞

∞−

−= dtetxfX ftj π2)()((1.1)

∫
∞

∞−
⎟
⎠
⎞

⎜
⎝
⎛ −

= dt
a

bttx
a

baW ψ)(1),((1.2)

where x(t) is the time domain signal, X(f) is the Fourier Transform of x(t), W(a,b) is the

Wavelet Transform of x(t), Ψ((t-b)/a) is the baby wavelet obtained by the stretching by

a factor a and shifting in time by b of the wavelet w(t). In the Wavelet Transform,

scale a can be converted into frequency f while b provides time locality for the

frequency information a.

Introduction

5

 Apart from Fourier Transform and Wavelet Transform, various other

techniques for signal processing are available in the literature [5,6,7]. The techniques

include autoregressive modeling (AR) that uses polynomials to perform regression on

the waveform [5]. The coefficients of the AR are used in the feature vector for

signature identification. There are various other coefficient states to model the

waveform, namely cepstral, autocorrelation (ARC), reflection (RC) and Mel-frequency

cepstral (MFCC) [6].

 Besides that, threshold crossing (TC), differentiation algorithm and sine wave

crossing algorithm were discussed in [7]. Due to it computational complexity, FFT

cannot be used in real time computation. On the other hand, while the TC is less

computational intensive, the DC bias had to be removed manually. Noise is generated

by the differentiation algorithm causing it to be less accurate in recognizing some

signatures.

1.2 Application of Computational Intelligence in
Power Harmonics Analysis

 Computational intelligence techniques have been widely applied in the field of

power harmonics analysis, especially in situations where conventional methods require

high computational power or human expertise.

Expectedly, deployment of computational intelligence techniques for power

harmonics analysis has traditionally been focused in the field of power quality. The

classification and function approximation capabilities of an artificial neural network

Introduction

6

(ANN) have been used in power quality disturbances categorization, fault diagnosis

and harmonic sources classification, particularly for power quality analysis or active

filter applications [8,9,10,11,12,13,14]. Similarly, support vector machines (SVM) has

shown promising potential in power harmonics related pattern recognition [15,16,17].

1.2.1 Harmonic Detection

 The extraction of harmonics information from the waveform is conventionally

performed using Fourier Transform. However, ANN has been shown to be capable of

outperforming the Fourier Transform in terms of speed in extracting harmonics

information [9,10,12]. The higher speed of harmonic detection is vital to the operation

of active filters that need to react fast to remove harmonics from the power system.

 In [9] and [12], the ANNs proposed were trained with samples of simulated

current waveforms distorted with odd harmonics from the 3rd to the 7th harmonic with

magnitude of up to 33.33% and varying phase angles. The ANNs only required the

data from ½ a cycle of the fundamental component, hence the claim of faster

processing compared to the Fourier Transform. The ANNs output the magnitude and

phase angle of the current waveform harmonic contents. The authors in [10] offered

an ANN design that is capable of detecting harmonic components up to the 11th

harmonic.

Introduction

7

1.2.2 Harmonic Source Detection

 The IEEE Std 519-1992 (IEEE Recommended Practices and Requirements for

Harmonic Control in Electrical Power Systems) established a set of limits to the

amount of current harmonics that is acceptable in the power system [18]. The standard

indicates the importance of harmonic sources detection at the power system level, to

ensure that each power consumer will play his part in keeping the harmonic distortion

level low.

 The conventional approach to harmonic source detection is to remove shunt

capacitors to eliminate possible redirection of harmonic flow before performing the

analysis. However, it tends to disrupt the normal operating condition in certain cases,

causing undervoltage problems and missing resonance phenomena. The authors in [18]

proposed to go through an elimination process of possible sources instead of changing

the system. Paper [19] suggested that negative harmonic power is a sufficient but not

necessary condition of being an active harmonic source in a branch and developed a

method of monoparameter variation to identify the existence of a harmonic source.

 In [20] and [21], state estimation using least square estimators to identify the

location of harmonic sources with a few properly placed measurements was used.

Measurement placement was based on observability analysis [21]. The proposed

method was applied on a large interconnected transmission network. Some

inaccuracies in the detection could be due to losses that were not accounted for,

estimation errors and modeling errors. In [22], the Kalman filter estimation model

with the harmonic injection as a random state variable was used instead. The error

Introduction

8

covariance analysis of harmonic injection was used to determine the optimal metering

locations.

 A constrained ANN was proposed in [8] for the identification of harmonic

producing buses. Both data from permanent instruments and portable instruments

placed on specific buses were used as the input to the ANN. The ANN was

constrained by data from some permanent harmonic instrumentation. The ANN

showed high accuracy in determining the harmonic sources.

1.2.3 Power Disturbance Classification

 Power harmonics analysis presents a useful form of power disturbance

classification, especially since power harmonics is a major contributor to power

quality problems. Power disturbance can be divided into steady state events such as

supply interruption, undervoltage and overvoltage or transient events such as

impulsive transients, oscillatory transients, voltage swell and voltage sag.

 Papers [11], [13] and [14] used the self organizing map class (SOM) of ANN to

perform the classification of disturbances. In [14], feature extraction for the steady

state events and transient events were performed using Fast Fourier Transform (FFT)

and Discrete Wavelet Transform (DWT) respectively. Disturbance detection

mechanism such as the edge detection was employed to capture the waveform of

potential disturbances.

Introduction

9

 In [23], power harmonics analysis was applied to the stator current and

voltages of induction motor drives to perform fault diagnosis using artificial

intelligence techniques. The types of faults included rotor and stator asymmetry or

dynamic eccentricity and bearing failures. Under stationary condition or steady state,

the spectrum lines formed provided the fault signature. With suitable normalization, it

could even be extended to a family of induction motors. Unfortunately, in some cases,

load anomalies introduced harmonics, thus leading to confusion. An expert system

threshold handler was used together with an unsupervised ANN to perform the

clustering of spectrum lines and thus fault types, while fuzzy logic was used to

determine the severity of the fault.

1.3 Device Signature Identification in Nonintrusive
Appliance Load Monitoring

 Nonintrusive appliance load monitoring (NALM) refers to the monitoring of

electrical circuits from a central location to identify electrical devices that have been

connected to the circuit and to track their states of operation. No access to the

individual devices is necessary for installing sensors or making measurements.

Therefore, instead of having dedicated hardware and wiring to monitor the states of the

electrical devices, complex software for signal processing and analysis is required for

device signature identification. This section discusses past publications on electrical

signal information or analysis techniques to be used in NALM, thus the novelty of the

approach taken in this thesis.

Introduction

10

1.3.1 Electrical Device Categories

 The electrical device operation states can be broadly divided into three

categories:- on/off state machine, finite state machine and continuously variable

machine [24].

 For the purpose of signature identification, the on/off state machines are the

easiest to identify because of their binary state. The signatures of this device category

are constants that can be accurately determined at any time period of their operation.

Examples of on/off state machines include light bulbs and fluorescent lamps.

 Finite state machines have multiple distinct states of power consumption.

Therefore, a more complicated signature model is required to identify a finite state

machine. The model will need to include all the available states and possibly a time

reference to characterize cyclical transitions between the states. The state transitions

may be automatic (e.g. a washing machine which moves from washing to spinning) or

require human input (e.g. a multi-speed fan switched from low speed to high speed).

 In the third category, the continuously variable machines, as the name implies,

have an infinite number of states within an operational range. Using conventional

NALM techniques which will be discussed in the chapter, it is very difficult to

accurately identify this category of devices. Examples of the continuously variable

machines are the light bulb with a dimmer, sewing machines and variable speed drills.

Introduction

11

1.3.2 Device Signatures

 In order to form the signature to represent an electrical device, different types

of information obtained from the voltage and current measurements of the electrical

circuit have been used. These information or features are usually stored in a vector

format and thus a device signature is also referred to as the feature vector of the

electrical device. Some of the commonly used information are the steady state powers,

the transient characteristics and the higher harmonic components [24,25,26,27,28,29].

1.3.2.1 Steady State Power

 In [24,25,26,29], the step changes in the steady state aggregate complex power

consumption of various commonly used electrical devices were plotted in the P-Q

chart (Figure 1-4). Different regions of the P-Q plane would represent different

devices and formed the feature vector of the devices. The positive and negative

clusters of the P-Q chart were matched to correspond to the on and off state changes of

the electrical devices respectively. The Zero Loop-Sum Constraint in [24] stated that

the sum of the power changes in any cycle of state transition would be equal to zero.

In [25], other information such as the modeling of the state transition cycles of a

device, the functional sequences of a group of devices and the time of event that may

determine the likelihood of a device being used were associated to the P-Q chart for

better identification accuracy.

Introduction

12

Fig. 1-4 Example of a P-Q chart [24]

 Unfortunately, the P-Q analysis did not have sufficient resolution for some

devices or device combinations that had almost similar power consumption. Current

fluctuation and drift also posed some error in the signature obtained [25]. In [24], the

Switch Continuity Principle, which stated that in a small time interval only a small

number of appliances were expected to change state in a typical load, was

implemented to avoid the deduction of sudden change of combinations of devices that

had similar power consumptions. However, electrically identical devices were still

indistinguishable.

 The detection of events was also a complicated task [24]. It required

continuous monitoring of the electrical system. If more than one device were to

change its state simultaneously, the event might be misjudged as an unknown device

Introduction

13

or some other devices. Devices with multiple states required a corresponding time

stamp to track its state transition cycles. Transient effects could also cause the

magnitude of the events detected to be inaccurate.

1.3.2.2 Transients Characteristics

 In [29], it was proposed a feature vector consisting of the time domain

waveform of detected transients to be compared with waveform templates that were

shifted in time or offset in magnitude to determine the signature. However, as stated in

[25] and discussed in section 1.1.1, transients remain difficult to detect and analyze.

To be able to derive useful information about the transient waveform, the

electrical circuit needs to be monitored continuously and at high sampling rate. For

the recognition of current demand signatures in the space shuttle telemetry data [27],

the actual current waveform was sampled at 10Hz and the time domain data after an

edge detection trigger event was used as the signature.

 The characteristics of a transient signal depend heavily on the instantaneous

state of the electrical system when it occurs. Therefore, the shape of the transient

waveform may differ significantly for each measurement instance. Accurate modeling

is complicated and will require all the possible states to be taken into consideration. A

high time resolution transient detection system is required to tear apart overlapping

transients.

Introduction

14

1.3.2.3 Higher Harmonics Information

 References [24,25,26,29,30] have proposed the use of higher harmonics

information to provide higher resolution in disaggregating multiple loads including

continuously variable loads in the P-Q chart. The advantage is especially evident with

the rapid increase in use of power electronic devices and other devices that produce

high amounts of harmonic distortions. Current measurement was preferred to the

voltage measurement in power harmonics analysis because of the inherent series

inductive and shunt capacitive natures of the electrical wirings causing higher

attenuation of voltage with frequency [20].

 The use of harmonics information for NALM have been suggested in

references [24,25,26,28,29,30]. Reference [30] recorded fuzzy harmonics patterns

from various loads. The measurement records from the different types of loads were

used to create fuzzy templates consisting of harmonic magnitudes and phase angles in

the complex plane (Figure 1-5) for signature identification. Three main harmonic

sources were used including the full wave converter, fluorescent tube and iron core.

Reference [28] proposed the use of Discrete Wavelet Transform (DWT) preprocessing

of the signal to obtain a feature vector based on the normalized energy of each DWT

level coefficient.

Introduction

15

Fig. 1-5 Harmonics signature of a PC power supply in complex plane [30]

However, the references discussed have neither performed a thorough research

nor focused on the utilization harmonics information as signatures for NALM. Most

of the devices taken into consideration were generally of high power rating and

produced low harmonic distortion.

The focus of this thesis was to perform a full study on the potential of the

harmonics information in signature identification. This thesis aimed to use the higher

harmonics information of the current waveform, drawn at the main incoming source by

the electrical devices, to accurately disaggregate the waveform and obtain the

individual device signatures.

1.3.3 Application of Computational Intelligence Techniques in
NALM

 Several researches have applied computational intelligence techniques such as

expert systems, fuzzy arithmetic, ANN and SVM for non-intrusive load monitoring

[15,25,26,27,30,31].

Introduction

16

 In identifying an electrical device, the expert system identification algorithm in

[25] used the multiple features or characteristics of the household appliances including

the effective current, effective voltage, active power, duration and shape of the current

transient and current harmonics. The household appliances used for experiment in [25]

were divided into categories such as resistive, pump-operated, motor-driven,

electronically fed, electronic power control and fluorescent lighting. However, the

expert system in [25] depended on the engineer’s domain knowledge and required

accurate knowledge representation.

In [30], unknown harmonic patterns were identified by calculating the possible

contribution from each type of load through solving a set of fuzzy linear equations.

The reference only presented a small number of experiments for the case of

combinations of devices present in the electrical system.

 Reference [26] proposed the use of cascaded ANNs to identify industrial loads.

The main feature used was the step change recorded in the P-Q chart and distortion

power, D. Varying loads were identified as a locus in the P-Q-D space. The ANN

performed binary classifications and formed a family tree in the identification

algorithm. Reference [15] performed an experimental analysis of the SVM

performance using different kernels. Measurement data in terms of the harmonic

information of 10 electrical appliances were used to train and test the SVMs. The

reference highlighted the significance of a proper choice of SVM cost parameter to

improve classification accuracy.

Introduction

17

1.3.4 A Novel Approach to Device Signature Identification

 The performance of the ANN and SVM in device signature identification for

NALM based on higher harmonics information has yet to be evaluated in the current

literature. Higher harmonics information provides highly accurate signatures for the

classification of the various electrical devices. While other electrical information can

also be obtained from the electrical waveform to further improve the accuracy of the

identification, the additional complexity and processing time required do not justify

the minimal improvement in accuracy.

The main advantage of the ANN and SVM lies in their ability to perform

accurate classification and generalization after training based on available information.

The two techniques also eliminate the need for human expertise in determining the

necessary structure of the identification models.

1.4 Proposed Power Harmonics Analysis for
Electrical Device Signature Identification using
the ANN and SVM

The literature review as shown in section 1.2 and 1.3 highlighted the potential

of power harmonics analysis using computational intelligence techniques in signature

identification problems. Thus far, computational intelligence techniques applied to

power harmonics analysis had been limited to system level harmonics source

identification and power quality disturbances classification. The notion of power

harmonics analysis was directed towards the elimination of power harmonics for

power quality improvement. In NALM, various electrical device signature

Introduction

18

information such as the steady state power and transient characteristics of the electrical

signal have been used to identify the load in an electrical system. However, little

research has been done on the use of power harmonics analysis for signature

identification.

In contrast, this thesis analyzed the harmonic components from a non-power

quality point of view, as valuable information for signature identification. Due to the

different power conditioning involved, different categories of devices produce

different current waveform distortions and thus different current harmonics. Current

harmonics can be used as a form of signature for the device, distinct from that of other

devices. From only its current waveform measurement, it is possible to identify the

devices present in the electrical power system.

The objectives of the thesis research are as follows:-

• To study the characteristics of the signatures obtained from power harmonics

analysis of electrical devices.

• To propose and train the artificial neural network and support vector machine

based models for classification of electrical devices based on their power

harmonics signatures.

• To non-intrusively identify the electrical devices present in an electrical system

using the trained ANN and SVM and power harmonics data from the main

incoming supply.

In the course of the research, several ANN architectures such as the multilayer

perceptron, radial basis function neural network and time delay neural network were

Introduction

19

implemented. A new multi-class SVM for classification of patterns involving non-

mutually exclusive classes was proposed to cater to the requirements of the research.

Lastly, evolution of multilayer perceptron weights using genetic algorithm was

implemented to search for the optimal multilayer perceptron architecture.

In summary, this thesis proposed a novel concept of electrical device

identification through power harmonics analysis using computational intelligence

techniques such as ANN and SVM. The ANN and SVM models for multi-class

classification were developed and trained with current harmonics information from a

power source mapped to a corresponding output to show the devices present in the

electrical power system. Finally, the trained ANN or SVM was used to identify the

devices present from just the current harmonics at the power source (Figure 1-6).

Fig. 1-6 Power harmonics analysis for device identification system proposal

Incoming
Power
Supply

Power
Harmonics
Analyser

Trained ANN
or SVM
classifier

Devices present in
the electrical
power system

Device 1 Device 2 … Device n

Proposed system

Harmonics

Introduction

20

1.5 Thesis Organization

This thesis consists of eight chapters that describe the different aspects of the

whole research project. Chapter 2 presents the characteristic analysis of the feature

vector of various electrical devices used in the research. Chapter 3 illustrates the

proposed artificial neural network and support vector machine architectures for

electrical device signature identification based on current harmonics. Chapter 4

contains the training and testing results of the developed artificial neural networks and

support vector machines based on different sets of devices and different criteria.

Chapter 5 is a discussion of the artificial neural network architecture optimization by

using genetic algorithm for evolving the multilayer perceptron weights to improve the

classification accuracy. Chapter 6 gives the conclusion of the research and

recommendations on some potential future research areas.

21

Chapter 2 Feature Vector Characteristics

From the literature reviews of nonintrusive appliance load monitoring in

section 1.3, the importance of selecting distinctive features to form the signature of an

electrical device was highlighted. This chapter discusses the analysis of the proposed

feature vectors based on the higher current harmonics information collected from

several setups of electrical devices in the laboratory. It aims to verify the presence of

distinctive features within the feature vectors before proceeding with the identification

using the ANN and SVM classifiers.

2.1 Data Collection

In this research, an experimental setup to represent a simple electrical system

with various devices was created. For the main phase of the research, eight single-

phase electrical devices were connected in parallel using the laboratory’s existing

electrical wiring as shown in Figure 2-1 to allow full measurement of all possible

combinations of devices. Besides the primary 8-device setup, several 10-device and 4-

device setups (Appendix A) were created to allow preliminary tests using the multi-

class SVM for signature identification and optimization of ANN weights using genetic

algorithm. Measurements were made at the main incoming source of the laboratory

using Fluke 41 Power Harmonics Analyser.

The eight devices were switched on and off in steps to allow current waveform

measurement of all possible combinations of devices being present at a specific time.

With eight devices, 256 discrete states were obtained, each representing different

Feature Vector Characteristics

22

combinations of devices switched on in the electrical system. For each combination,

18 current waveform readings (each 10 seconds apart) were recorded. In total, 4608

current waveform readings were recorded. The Fluke 41 immediately calculated the

harmonics contents (magnitude and phase angle) of the current waveform through fast

fourier transform.

Fig. 2-1 Experimental setup

With the Fluke 41, transient signals were neglected due to the low time

resolution of the measuring device. Moreover, as discussed in section 1.3.2.2,

transient signals require complex modeling to obtain accurate results.

In the experiments, only the odd harmonics from the fundamental to the 15th

harmonic of the current waveforms were of significant magnitude. Therefore, only the

first eight odd harmonics (fundamental, 3rd, 5th, 7th, 9th, 11th, 13th, 15th) were

chosen as the features of the device signature. For easier representation, the magnitude

and phase angle of the harmonics were converted into the complex representation,

where each harmonic had a real and imaginary part. With 8 harmonics taken into

Incoming
Power Supply

Monitor CPU

Fluorescent
Lamp

Fan

Battery
Charger Television

Fridge

Light
Bulb

Power Harmonics Analyser

Feature Vector Characteristics

23

consideration, the feature vector presented to the ANN had 16 inputs as shown in

equations (2.1a) and (2.1b).

() () 2/12/1 cos ++= iii Ix φ for i = 1,3,5,7,9,11,13 and 15 (2.1a)

2/2/ sin iii Ix φ= for i = 2,4,6,8,10,12,14 and 16 (2.2b)

where xi is the ith input, In is the magnitude of the nth odd current harmonic and nφ is

phase angle of the nth odd current harmonic.

 Figure 2-2 illustrates how x1 and x2 of the input vector were calculated from

the real and imaginary parts of the fundamental harmonic according to equations (2.1a)

and (2.1b) respectively while the real and imaginary parts of the 11th harmonic were

used as x11 and x12 respectively. Tables 2-1a and 2-1b show the feature vectors of each

device in the 8-device setup. The structure and segments of the database containing all

the feature vectors created from the 4608 measurements available are shown in Table

A-6 in Appendix A.

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Real Imaginary

Fundamental harmonic

Real Imaginary

11th harmonic

Fig. 2-2 Signature identification feature vector

Feature Vector Characteristics

24

Table 2-1a Individual device feature vectors

Monitor CPU Fluorescent Lamp Television Input

No, i
Harmonic

I (A) Φ (o) xi I (A) Φ (o) xi I (A) Φ (o) xi I (A) Φ (o) xi

1 0.316 0.172 0.405 0.188

2
Fundamental 0.328 15.6

0.088
0.198 29.6

0.098
0.436 -21.7

-0.161
0.194 14.5

0.048

3 -0.272 -0.147 0.043 -0.149

4
3rd 0.282 -15.3

0.075
0.156 -19.7

0.053
0.080 -56.9

-0.067
0.153 -12.1

0.032

5 0.191 0.094 0.009 0.108

6
5th 0.232 -34.6

-0.132
0.135 -45.6

-0.096
0.021 -65.8

-0.019
0.125 -30.5

-0.064

7 -0.108 -0.038 0.006 -0.059

8
7th 0.170 -50.8

0.132
0.103 -68.1

0.096
0.036 79.8

0.036
0.085 -46.4

0.062

9 0.042 -0.004 0.002 0.022

10
9th 0.108 -67.2

-0.100
0.071 87.0

-0.070
0.048 -88.2

-0.048
0.050 -64.3

-0.045

11 -0.010 0.020 0.020 -0.004

12
11th 0.054 -79.4

0.053
0.040 59.9

0.034
0.021 -12.7

-0.005
0.020 -78.0

0.020

13 0.004 -0.015 -0.012 0.001

14
13th 0.015 -74.9

-0.014
0.016 13.5

-0.004
0.020 52.8

-0.016
0.003 71.2

0.003

15 -0.011 0.001 -0.028 -0.001

16
15th 0.014 32.8

-0.007
0.015 -86.1

-0.015
0.058 61.1

-0.051
0.015 86.5

-0.015

Feature Vector Characteristics

25

Table 2-1b Individual device feature vectors

Battery charger Fan Fridge Light Bulb Input

No, i
Harmonic

I (A) Φ (o) xi I (A) Φ (o) xi I (A) Φ (o) xi I (A) Φ (o) xi

1 0.125 0.159 0.212 0.474

2
Fundamental 0.178 -45.5

-0.127
0.176 25.0

0.074
0.232 24.1

0.095
0.476 6.0

0.050

3 0.045 0.004 -0.153 0.027

4
3rd 0.047 16.3

0.013
0.025 80.5

0.025
0.181 32.3

-0.097
0.028 11.2

0.005

5 -0.030 -0.009 0.058 0.011

6
5th 0.042 -43.8

0.029
0.010 -10.1

0.002
0.114 59.2

0.098
0.011 20.0

0.004

7 -0.018 0.001 0.027 0.012

8
7th 0.024 42.2

-0.016
0.003 -70.2

-0.003
0.067 -66.2

-0.061
0.014 26.5

0.006

9 0.001 -0.002 -0.069 0.002

10
9th 0.001 -19.7

0.000
0.005 -68.4

0.005
0.069 -5.3

0.006
0.007 70.4

0.007

11 -0.007 -0.003 0.059 0.003

12
11th 0.007 -11.4

0.001
0.004 -32.9

0.002
0.071 33.8

0.039
0.006 55.9

0.005

13 0.002 0.000 -0.016 0.003

14
13th 0.005 -71.7

-0.005
0.003 82.5

0.003
0.056 74.0

-0.054
0.007 61.8

0.006

15 0.003 -0.002 -0.025 -0.001

16
15th 0.004 37.5

0.003
0.002 -20.8

0.001
0.043 -54.7

0.035
0.009 -80.4

0.009

Feature Vector Characteristics

26

 Similarly, for the 10-device and 4-device setups in Appendix A, the different

setups of electrical devices were connected to the main incoming source of the

laboratory and the current harmonics were measured and recorded at the incoming

point. The feature vectors for each measurement were calculated according to

equations (2.1a) and (2.1b). The feature vectors for current harmonics measurements

of individual devices of each setup are tabulated in Appendix A.

Due to the large number of possible combinations of devices from the 10-

devices setup, instead of experimentally measuring the current harmonics for each

combination, the complete data set was created from sums of different combinations of

the feature vectors of the individual signatures. Only one of each signature of devices

present was added in one combination. The summation process is illustrated in Fig. 2-

3. In some experiments, noise of predefined magnitude was added to the sum to

simulate a practical situation.

For the 4-devices setup, a total of 26 and 78 feature vectors from random

combinations of the four devices were recorded for the training set and test set

respectively. The feature vectors recorded were time sequential data (recorded in time

steps of 15 seconds), meant to be used for the Time Delay Neural Network (TDNN)

that requires the input vectors to be sequential in the time domain.

Feature Vector Characteristics

27

Fig. 2-3 Summation of individual feature vectors to form two new feature vectors

2.2 Harmonics Signature Characteristics

From the measurements made in the experiment, the harmonics magnitude and

phase angle of the devices demonstrated small random fluctuations with time. The

fluctuations could be due to the fluctuation of the source power supply or inherent

electrical characteristics of the devices.

The source voltage measured over the period of experiments had a mean of

231.5V, a standard deviation of 1.26V and higher harmonic contents of below 1.5% of

the fundamental (Table 2-2). The effect of the 8 experiment loads on the source

voltage was negligible since the wiring resistances were small. High voltage

harmonics distortion is expected to change the harmonics signature of the electrical

Feature vector of device 1

Feature vector of device 2

Feature vector of device 3

Feature vector of device 4

Feature vector of device 5

Feature vector of device 6

Feature vector of device 7

Feature vector of device 8

Feature vector of device 9

Feature vector of device 10

Combination 1: 1 -1 1 -1 -1 -1 -1 -1 -1 -1

+ Combination 1 feature vector

Combination 2: -1 -1 -1 -1 -1 -1 1 1 -1 1

+ Combination 2 feature vector

Feature Vector Characteristics

28

devices. However, the voltage source of the laboratory was of reasonably low

harmonics distortion and also a good representation of the voltage source in common

areas where the electrical devices are used. Besides that, highly distorted data due to

voltage dips can be pre-filtered and removed to avoid being misclassified by the ANN

or SVM.

Apart from these random fluctuations, most of the devices had some short

transient states or were capable of multiple modes of operation that could produce

significantly different signatures. As a result, for the purpose of this experiment, all

the devices were set to operate in a specific mode in all instances and only steady state

current harmonics were taken into consideration. This limitation is fair because these

devices are expected to operate in the specific mode for large proportions of their

operation time.

Table 2-2 Source voltage harmonic components

Harmonic Magnitude (V) Standard Deviation (V)

Fundamental 231.46 1.26

3rd 2.70 0.21

5th 2.44 0.24

7th 1.93 0.17

9th 2.14 0.16

11th 0.96 0.09

13th 0.71 0.11

Feature Vector Characteristics

29

 In order to study the range of fluctuations of the various harmonic components,

the minimum and maximum values of each harmonic component were calculated

according to the following equations:

))(min(,, jxs kiki = (2.2)

kikiki sjxd ,,,))(max(−= (2.3)

for i = 1, 2, …, 16

k = 1, 2, …, 256

where si,k is the minimum magnitude, di,k is the fluctuation range and xi,j,k is the input

data in instance, j, for input, i, of combination, k.

Figure 2-3 shows the distinctive harmonic signatures of all the devices in the

experimental setup. The fluctuation ranges, d, of the harmonic components are also

shown. With these measurements, the fluctuation magnitudes are shown to be at least

5 times smaller than the minimum harmonic magnitudes for each individual device.

Besides that, Figure 2-3 shows the characteristics of each harmonic component in the

signature. If the fluctuations are large, the characteristic of the harmonic will not be

apparent enough for signature identification.

Feature Vector Characteristics

30

(a) Monitor

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(b) CPU

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(c) Fluorescent lamp

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Feature Vector Characteristics

31

(d) Television

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(e) Battery charger

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(f) Fan

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Feature Vector Characteristics

32

(g) Fridge

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(h) Light bulb

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

s,signal d,fluctuation

Fig. 2-4 Harmonic signatures

The computer central processing unit (CPU) shows the largest fluctuation

magnitude to mean harmonic magnitude ratio (Figure 2-4b) because of the large

number of different electrical components inside the CPU that draw independent

amount of current from the CPU power supply. When taking measurements of

combinations of devices, the computer CPU was set to a constant operation, by

repeatedly playing an audio file.

On the other hand, resistive loads such as the light bulb show low harmonic

distortion but have characteristically higher power consumption (Figure 2-4h)

Feature Vector Characteristics

33

compared to the other devices. The monitor and CPU show largely similar shaped

signature patterns but are different in terms of magnitude scale (Figures 2-4a and 2-4b).

Equation (2.4) was used to calculate the ratio of fluctuation, d, in equation (2.3)

to the mean magnitude of each harmonic component.

18)(
18

1
,

,
,

∑
=

=

j
ki

ki
ki

jx

d
n

 (2.4)

where ni,k is the ratio of the fluctuation, di,k , of input, i, to the mean harmonic

magnitude for combination, k. There were 18 instances, j, of input data, xi,k , for each

combination, k.

 As the number of devices in a combination increases, the individual

fluctuations from each device may sum up to a large fluctuation range for the

combination. However, Figure 2-5 shows a fairly low mean fluctuation range, d when

averaged over all combinations. The maximum fluctuation, d shown in Figure 2-6 is

approximately equal in magnitude to the signature of a single electrical device.

Therefore, the ANN or SVM had to be able to model all these fluctuations in order to

accurately identify the devices present.

Feature Vector Characteristics

34

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Fig. 2-5 Mean fluctuation magnitude of harmonic

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Fig. 2-6 Maximum fluctuation magnitude of harmonic

Figure 2-7 shows the average ratio, n, of the fluctuations to the mean harmonic

magnitude calculated from the complete dataset of all possible combinations of

devices. The spikes at input no 9 and 16 were caused by exceptionally large

fluctuations in a few samples. If the fluctuations are treated as noise whereas the mean

harmonic magnitudes are treated as the original signal, then the signal to noise ratios

(SNR) are above 3dB for most inputs. The SNR is low for the 13th and 15th

harmonics (input no 13 to 16) because of the smaller signal magnitude. The ANN and

SVM were expected to be able to perform well under these SNR conditions.

Feature Vector Characteristics

35

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

input

R
at

io

Fig. 2-7 Ratio of fluctuation to the mean harmonic magnitude

2.3 Feature Vector Analysis Results

 The study in section 2.2 has shown that the current harmonics feature vectors

were able to provide distinctive signatures for both individual devices and combination

of devices. Even variable load devices such as the computer displayed prominent

signature characteristics that can be identified easily. Although the current harmonics

for each combination displayed small fluctuations with time, the SNR conditions were

appropriate for the ANN and SVM.

36

Chapter 3 Proposed ANN and SVM
Architectures

 After characterizing the feature vectors based on higher current harmonics

information to be used for signature identification, this chapter presents the proposed

ANN and SVM architectures with the most efficient input and output vector

dimensions to perform the classification of devices present in the electrical system.

3.1 Input and Output Vector Dimensions

The ANN and SVM were required to accept the current harmonics information,

xi for i ranging from 1 to 16 as defined by equations (2.1a) and (2.1b), as inputs but in

the vector form. The input vector, X, is defined by

() () () () () T
ni jxjxjxjxjX]......[2max21 ×= (3.1)

where X(j) is the jth instance of the input vector, xi(j) are the jth instances of the ith

inputs and nmax is the number of harmonics taken into consideration. Depending on

the number of harmonics taken into consideration, the number of input nodes for the

ANN or SVM differs. Each node will represent one input xi. Each harmonic would

require two nodes, for the real and imaginary parts of its complex representation.

Therefore, the number of input nodes changes in multiples of twos. For example, if

the first five odd current harmonics were taken into consideration, then the proposed

ANN or SVM would have ten input nodes and the input vector, X, would have a

dimension of 10.

Proposed ANN and SVM Architectures

37

For each electrical device taken into consideration, the ANN or SVM would

need to have one output node to represent the presence or absence of the device. The

output node produced a binary output, yi, is defined as

()
⎩
⎨
⎧
−
+

=
absentisidevicewhen
presentisidevicewhen

jyi 1
1

 (3.2)

where yi(j) is the ANN or SVM output for device i corresponding to the jth instance of

the input vector, X(j).

 The output vector, Y, is thus defined as

() () () () () T
mi jyjyjyjyjY]......[max21= (3.3)

where Y(j) is the jth instance of the output vector, yi(j) is the jth instance of the binary

output which represents device i and mmax is the number of electrical devices to be

identified. For example, in the 8-device setup where there were eight devices, the

output vector, Y, would have a dimension of 8.

Figure 3-1 illustrates the block diagram of the ANN or SVM which shows the

inputs and outputs.

Proposed ANN and SVM Architectures

38

Fig. 3-1 ANN and SVM block diagram

3.2 Performance Definition

 The performance of the ANN and SVM were measured by the accuracy in

identifying the devices present in the electrical system based on the input vectors in the

test set.

For each device, the input vectors in the test set were divided into two groups:-

Group A containing all the input vectors of current harmonics recorded when the

device was present and Group B containing all the input vectors of current harmonics

recorded when the device was absent. In other words, when fed with the input vectors

from Group A, the ANN or SVM should produce an output of +1 for that device. On

the other hand, when fed with input vectors from Group B, the ANN or SVM should

produce an output of -1.

ANN

or
SVM

…

…

x1

x2

x3

xnmax×2

y1

y2

y3

ymmax

nmax : number of harmonics taken into consideration
mmax: number of electrical devices

C
ur

re
nt

 H
ar

m
on

ic
s m

ea
su

re
m

en
t

Device 1
present/absent

Device 2
present/absent

Device 3
present/absent

Last device
present/absent

Proposed ANN and SVM Architectures

39

Misclassification refers to the scenario where the device is present but wrongly

classified as absent. Therefore, for the calculation of misclassification, only input

vectors from Group A were used. The misclassification rate for device i, Ei, is defined

as

present

l

j

i

i l

jy

E

present

∑
=

−

= 1 2
))(1(

 (3.4)

where yi(j) is the jth instance of the output of the ANN or SVM for device i and lpresent

is the total number of input vectors in Group A.

 False alarm refers to the scenario where the device is present but wrongly

classified as present. Therefore, for the calculation of false alarms, only input vectors

from Group B were used. The false alarm rate for device i, Ĕi, is defined as

abbsent

l

j

i

i l

jy

E

absent

∑
=

−−

= 1 2
))(1(

(
 (3.5)

where yi(j) is the jth instance of the output of the ANN or SVM for device i and labsent

is the total number of input vectors in Group B.

 The classification accuracy, Fi, for device i of the ANN and SVM is defined as

2
1 ii

i
EE

F
(

+
−= (3.6)

where Ei and Ĕi are the misclassification rate and false alarm rate of device i

respectively.

Proposed ANN and SVM Architectures

40

 In some tests, the average classification accuracy for all devices was used to

evaluate the performance of the ANN and SVM. The average accuracy, Favg, is

defined as

max
1

max

1

m

F
F

m

i
i

avg

∑
=−= (3.7)

where Fi is the classification accuracy for device i and mmax is the number of

electrical devices.

3.3 ANN Architecture

3.3.1 MLP and RBF Neural Networks

The single-hidden-layer multilayer perceptron (MLP) and radial basis function

(RBF) neural networks were used in the classification of the devices present in the

experiment. The nodes of any two sequential layers were fully connected.

The number of input nodes in the MLP and RBF neural networks depended on

the number of harmonics taken into consideration. To measure the effectiveness of the

additional harmonics taken into consideration, the dimension of input vector, X for the

MLP was varied from 2 to 16. The fundamental harmonic was first selected.

Sequentially, the higher order harmonics were taken into consideration.

Proposed ANN and SVM Architectures

41

The number of hidden nodes for the MLP was also varied from 4 to 60 to

choose the optimum configuration for the neural network. On the other hand, the

hidden nodes of the RBF neural networks were sequentially added based on maximum

variance until a maximum of 300 nodes. The RBF hidden neurons used the Gaussian

function with width parameter, σ, equal to 1.

The number of output nodes depended on the number of classes, hence the

number of devices to be classified in the experiment. With an initial setup of 8 devices

(Table 2-1a and Table 2-1b), the number of output nodes was fixed at 8. The outputs

of the neural networks, z1 to z8, were passed through a signum function such that in the

final output, y1 to y8, all positive values were converted to the integer +1 (device was

present) whereas all the negative values were converted to -1 (device was absent).

Figure 3-2 and 3-3 show the plot of average accuracy, Favg, obtained by the

MLP against the number of inputs and number of hidden neurons respectively. The

optimum number of inputs and hidden nodes were 12 (6 harmonics taken into

consideration) and 20 respectively. Above 12 input neurons and 20 hidden neurons,

the accuracy performance increase is small compared to the increase in training time.

However, in order to minimize the risk of ignoring important information from the

13th and 15th harmonics, a maximum of 16 inputs was still deemed the best.

Consequently, the standard network configuration for the MLP to be used in all other

tests in this thesis was chosen to be 16-20-8 (16 input neurons, 20 hidden neurons, 8

output neurons) (Figure 3-4).

Proposed ANN and SVM Architectures

42

Fig. 3-2 Average accuracy, Favg, against no. of odd harmonics in feature vector

Fig. 3-3 Average accuracy, Favg, against no. of hidden neurons

Proposed ANN and SVM Architectures

43

Fig. 3-4 Proposed MLP architecture

Both the gradient descent with momentum [36] and resilient backpropagation

[33] training algorithms were used in the training of the MLP. However, the resilient

backpropagation performed significantly better than the gradient descent method,

showing better and faster convergence within the limit of 3000 epochs set.

3.3.2 Time Delay Neural Networks

 To study the effect of using temporal information in the classification of

devices, two simple TDNN architectures were designed and trained on a reduced

device set of 4 devices (Appendix A – Table A-4). The TDNNs were designed to

capture the time step changes in the current harmonics feature vector, distinguishing

between changes due to a change in device combination and changes due to small

fluctuations in the current harmonics.

…

…
 …

x1

x2

x16

z1

z2

z8

h1

h2

h20

Input layer

Hidden layer

Output layer

y1

y2

y8

signum

Proposed ANN and SVM Architectures

44

With only 4 devices, the dimension of the output vector is 4. The input vectors

used for training and testing were time sequential data. Therefore, the time index, t, is

used to replace the instance index j, of the input and output vectors in equations (3.1)

and (3.2).

The first TDNN architecture, TDNN-1, was based on the feedforward MLP

design with modified input vector (Figure 3-5). The input vector for TDNN-1, Xtdnn1(t)

is defined as

() () () ()[]TTTT
tdnn tYtXtXtX 111 −−= (3.8)

where X(t) is the current harmonics feature vector at time t, X(t-1) is the time-delayed

current harmonics feature vector and Y(t-1) is time-delayed output vector from the

TDNN which represents the previous state of the electrical devices. X(t-1) and Y(t-1)

served as the state feedback to the MLP. The training was performed using the

backpropagation algorithm.

 The second TDNN architecture, TDNN-2, was based on the Elman network, a

single-hidden-layer MLP with the addition of a feedback connection from the output

of the hidden layer to the input (Figure 3-6). The feedback information underwent a

time delay before it was added to the input information. The time delay allowed the

Elman network to detect time varying patterns, therefore suitable for the detection of

step changes in the current harmonics feature vector. The input of the Elman network

was the same as the input vector defined in equation (3.1) except that the instance

index, j, was replaced with time index, t, to represent the time sequential data. Unlike

TDNN-1, the time delayed states were stored internally in the network itself. The

number of hidden neuron for the Elman network was chosen to be 60 neurons which is

Proposed ANN and SVM Architectures

45

three times the number of hidden neurons in the MLP because Elman networks

generally require a much larger number of hidden neurons to perform well [36].

Fig. 3-5 TDNN-1 architecture

Fig. 3-6 TDNN-2 - Elman Network

…

…
…

…

x1(t)

x16(t)

x1(t-1)

x16(t-1)

y1(t-1)

y4(t-1)

…

…
…

z1(t)

z2(t)

z3(t)

z4(t)

y1(t)

y2(t)

y3(t)

y4(t)

input vector

output vector

signum

z-1

x1(t)

h1

h2

h60

z1(t)

z2(t)

z4(t)

… … …

x2(t)

x16(t)

signum

y1(t)

y2(t)

y4(t)

output vectorinput vector

time delay

Proposed ANN and SVM Architectures

46

3.4 SVM Configuration

In this research, the SVM was implemented in various configurations to obtain

the most optimized configuration for each different experimental setup.

Various kernels including the linear, polynomial and RBF kernels were

compared. When using the linear kernel, the SVM performs the classification in the

original input vector space. The polynomial and RBF kernels perform the

classification in the higher order polynomial space and Gaussian function space

respectively.

As shown in Table 3-1, the cost parameter, C, was slowly varied from 0.3 to

1.5. Polynomial kernels of degree 2 to 5 were compared while the widths of the RBF

functions, σ, were varied from 0.5 to 3.0. C and σ are defined in equations (D.4) and

(D.3) respectively.

Table 3-1 Variation of SVM parameters

Parameter Range

Cost, C 0.5 – 2.5

Polynomial degree 2 – 5

Gaussian function width, σ 0.5 – 3.0

In each experiment, the performance of the SVM linear, polynomial and radial

basis function (RBF) kernels were compared. The cost parameter, C and various

parameters of each kernel such as the degree of the polynomial kernel and σ value of

the RBF kernel giving the best performance were obtained.

Proposed ANN and SVM Architectures

47

In the experiment, the input vector to the SVM classifier was fixed at 16 inputs

(8 harmonics taken into consideration). Similar to the ANN, the SVM outputs were

passed through the signum function to be converted to +1 or -1. The optimization or

training of the SVMs were computed using the SVM-Light software by T. Joachims

[57].

3.4.1 SVM for Combinations of Classes

In contrast with the multi-class SVM classification methods discussed in

Appendix D.2.1, this thesis proposed a novel approach to identify signatures of

combinations of classes which are not mutually exclusive. These classes may be

present simultaneously in a single input vector. Hence, it is not possible to produce the

necessary outputs with the conventional multi-class SVM approaches [38].

Fig. 3-7 Mutually exclusive classes

X1

X2

X3

P(Xi|Xj) = 0 for all i≠j

Proposed ANN and SVM Architectures

48

Such non-mutually exclusive classes (Figure 3-8) often exist in the current

waveform of electrical supply systems with many loads, particularly in this research

where the current harmonics in a main electrical cable were analyzed to determine the

devices present. In general, the experiments in this thesis required a multi-class output.

Fig. 3-8 Non-mutually exclusive classes

The SVM was employed to perform multi-class identification to uniquely

identify the combinations of devices based on just one set of data, which was the

current harmonics. The challenge lies in the fact that SVM is just a two-class classifier

whereas for each current harmonics input, it was necessary to produce multiple outputs.

As the number of devices increased, the total possible combination also increased

exponentially.

An SVM-based model for classifying combinations of classes has been

developed. The combination output was first divided into several distinct 2-class

(present or absent) problems. The technique was similar to the “one versus the rest”

multi-class technique except that no comparison of output values between the SVM

classifiers was required to resolve for the final classification.

A
B

P(A|B) > 0

Proposed ANN and SVM Architectures

49

Due to the unique multi-class nature of the problem, the classification task was

divided to several SVM classifiers, one for each device. Each SVM classifier was

assigned the task of classifying the presence or absence of its corresponding device.

The training for each SVM classifier was done using the same training set or feature

vectors but unique output set for its corresponding device.

Finally, the outputs of the individual SVM classifiers were combined to

produce the device combination for the particular feature vector. The process is

illustrated in Figure 3-9.

Fig. 3-9 Multi-class SVM Signature Identification

 From the same set of training data, the combinations of the various signatures

were ascertained. As some combinations in the test set may not be present in the

Feature Vector

SVM
Classifier

1

SVM
Classifier

2

SVM
Classifier

n
…

1 1 1 O
ut

pu
t

…

Corresponding Combination
(1 -1 … 1)

1 1 1 …

Calculate classification
accuracy for Device 1

Calculate classification
accuracy for Device 2

Calculate classification
accuracy for Device n

In
pu

t

D
es

ire
d

O
ut

pu
t

-

-

Proposed ANN and SVM Architectures

50

training set, the classification accuracy relied on the generalization ability of the SVM-

based classifier. The SVM-based classifier was required to generalize well and to

filter out each individual device signature from potentially noisy signals and all other

signatures.

51

Chapter 4 Performance of Developed ANN and
SVM Classifiers

This chapter presents the performance comparison of the developed ANN and

SVM classifiers in the identification of electrical devices present in the system from

the current waveform harmonics. The performance of the developed multi-class

SVM-based models was first evaluated using a 10-device setup. Next, training and

testing was performed in several stages to compare the ANN and SVM-based models

on the data readings collected from the main setup of eight devices. Subsequently, the

MLP was applied on other experimental setups, three phase devices and multiples of

devices of the same model. The developed time delay neural network (TDNN)

architectures were also tested on time sequential data from an experimental setup of 4

devices.

4.1 Classification Using Multi-Class SVM-based
Model

Prior to a full comparison between the ANN and SVM in the identification of

electrical devices in an electrical system, a 10-device experimental setup was first

employed to study the performance of the newly developed multi-class SVM in

section 3.4.1 in generalization and filtering of noise in the signature identification.

Through this experiment, the practical performance of the new multi-class SVM was

measured to ensure that it would meet the objectives of the thesis.

The current harmonics of a total of 10 individual electrical devices operating at

specific modes were measured. The feature vector representing each device is

Performance of Developed ANN and SVM Classifiers

52

tabulated in Appendix A (10-devices Set B). The database of input vectors was

created using the mathematical summation of individual device’s feature vectors as

described in section 2.1.

The feature vector used in the classification consisted of the magnitude and

phase angle of current harmonics of electrical devices. It included the odd harmonics

from the fundamental harmonic up to the 15th harmonic. Each harmonic was

represented in the complex form (real and imaginary). Therefore, with 8 harmonics,

there were a total of 16 inputs to the SVM.

4.1.1 Identifying Combinations of Devices

By alternating the state of each device, different combinations of devices with

unique signatures were generated. From the 210 or 1024 possible permutations of

devices as shown in Table A-3 in Appendix A, 1024 input vectors were created where

67% (683 input vectors) were used in the training set while 33% (341 input vectors)

were used in the test set. In this experiment, the SVM was forced to generalize well to

correctly identify combinations that were not in the training set.

The performance of the multi-class SVM in identifying the combinations of

devices is shown in Table 4-1. The classification accuracy, F, in Table 4-1 refers to

the best percentage correct classification for each device after tuning the SVM

parameters. As seen from Table 4-1, the polynomial kernel performed best in this

situation. The classification accuracy using the polynomial kernel was above 90% for

all devices. The higher inaccuracy in identifying the DC Power Supply at different

Performance of Developed ANN and SVM Classifiers

53

loads could be due to the fact that the signatures are similar (scalar multiples of each

other). The mobile phone charger also suffered from lower classification accuracy due

to the relatively small magnitude of its feature vector.

Table 4-1 Performance of multi-class SVM in identifying combinations of devices

Accuracy, F (%) Device

Linear Poly RBF

PC CPU 100 100 100

Monitor 99.42 100 100

PC CPU (Shutdown mode) 100 100 100

DC Power Supply (0.1A) 74.06 98.56 79.25

DC Power Supply (0.5A) 76.95 97.69 76.95

DC Power Supply (0.25A) 65.13 91.64 64.84

DC Power Supply (0.4A) 76.37 93.37 74.93

Notebook computer 100 100 100

Mobile phone charger 53.89 96.25 56.48

Fluorescent lamp 100 100 100

4.1.2 Noise Filtering

To determine the ability of SVM in filtering noise from the signatures, random

noise of different maximum magnitude level for different inputs were added to the

training and test sets. To create the training database, the input vectors for 2000

random combinations of devices were created according to the summation process

explained in section 2.1. Then random noise of the magnitude shown in Table 4-2 was

Performance of Developed ANN and SVM Classifiers

54

added to the input vectors. From the total of 2000 random combinations of device

signatures with added noise, 67% (1340 input vectors) were used in the training set

while 33% (660 input vectors) were used for testing.

Table 4-2 Range of Added Noise

Harmonic Range of Noise Amplitude

Fundamental -0.1 – 0.1

3rd -0.1 – 0.1

5th -0.1 – 0.1

7th -0.05 – 0.05

9th -0.01 – 0.01

11th -0.01 – 0.01

13th -0.01 – 0.01

15th -0.01 – 0.01

Compared to the results in section 4.1.1, the performance of the SVM suffered

marginally. The classification results of the DC Power Supply with different loads and

the mobile phone charger suffered the most because of weak feature vector

characteristics. The SVM with polynomial kernel performed best again, with

classification accuracy above 70% for all devices. With this experiment, the Multi-

Class SVM technique has proven its ability to perform well under practical situations.

Performance of Developed ANN and SVM Classifiers

55

Table 4-3 Performance of Multi-Class SVM on Filtering Noise

Accuracy, F (%) Device

Linear Poly RBF

PC CPU 97.75 99.85 98.95

Monitor 98.44 99.84 99.07

PC CPU (Shutdown mode) 93.79 99.70 96.45

DC Power Supply (0.1A) 72.16 91.60 74.81

DC Power Supply (0.5A) 74.38 84.28 77.87

DC Power Supply (0.25A) 66.21 74.89 66.67

DC Power Supply (0.4A) 69.93 73.33 70.64

Notebook computer 98.59 99.29 98.87

Mobile phone charger 61.43 72.49 62.74

Fluorescent lamp 91.39 96.44 93.47

4.1.3 Scaling of Input to Improve Performance

In order to place equal emphasis on every input in the input vector, using the

same training database as in section 4.1.2, the magnitudes of all the inputs were scaled

according to their average value shown in Table 4-4. After the scaling, the average

magnitudes of all inputs were approximately equal. Since the SVM algorithm is

structured such that a smaller input magnitude will have less effect on the weights of

the SVM hyperplanes, an equal average magnitude of all the inputs will mean equal

emphasis on all the inputs. However, there was a risk of amplifying the fluctuations at

the higher harmonics, where the ratio of the fluctuation magnitudes to the signal

Performance of Developed ANN and SVM Classifiers

56

magnitude was higher as discussed in section 2.2. Therefore, the multi-class SVM

would be required to tolerate a higher feature vector fluctuation range for each

combination.

Table 4-5 shows an improvement in performance of the multi-class SVM

compared to the results in section 4.1.2. With an equal distribution of emphasis on the

inputs in the feature vector, the signature characteristics were enhanced. Instead of

focusing on the first few inputs that had higher magnitudes, the SVM was able to

identify the characteristics more apparent in the higher order harmonics.

Table 4-4 Average Amplitude of Harmonics

Harmonic Scaling ratio

Fundamental 1:2

3rd 1:2

5th 2:3

7th 4:3

9th 2:1

11th 5:1

13th 5:1

15th 5:1

Performance of Developed ANN and SVM Classifiers

57

Table 4-5 Effect of Input Scaling on Performance of Multi-Class SVM

Accuracy, F (%) Device
Linear Poly RBF

PC CPU 100 100 100

Monitor 99.85 100 100

PC CPU (Shutdown mode) 99.86 99.86 99.86

DC Power Supply (0.1A) 91.40 91.70 91.10

DC Power Supply (0.5A) 81.86 83.51 82.31

DC Power Supply (0.25A) 71.66 73.55 72.24

DC Power Supply (0.4A) 72.62 73.06 72.91

Notebook computer 99.40 99.55 99.40

Mobile phone charger 70.02 74.73 75.04

Fluorescent lamp 96.57 97.76 97.17

4.1.4 Resource Usage

In the multi-class classification process using the trained SVM classifiers from

the developed multi-class SVM, there were 10 comparisons as opposed to the 45

comparisons using the “Pairwise method” or 9 comparisons using the Directed Acyclic

Graph SVM method.

The SVM training was performed using a Pentium Xeon 1000MHz processor

Linux workstation. For a small training set of about 1300 samples, the CPU time used

for the training of the SVM across a fixed variation of the SVM parameters was below

15 minutes. This training time included processing 10 SVM classifiers for the various

classes and fine-tuning the parameters.

Performance of Developed ANN and SVM Classifiers

58

From Table 4-6, it is shown that the linear kernel SVM used the least amount

of CPU time and computer memory. The polynomial kernel SVM which produced the

best results used the highest amount of CPU time and computer memory because of

the large number of support vectors in the classifier.

Table 4-6 CPU Time and Memory Usage

Kernel Type CPU Time (seconds) Memory Usage (MB)

Linear 71 13

Polynomial 779 59

RBF 557 57

4.1.5 Feasibility of Developed Multi-Class SVM for Power
Harmonics Signature Identification

The experimental results have shown the feasibility of using the SVM on non-

mutually exclusive multi-class classification. Using the methodology shown in section

3.4.1, the binary classifier SVM was extended into a multi-class classifier capable of

identifying multiple signatures present in an input signal. In the case of current

harmonics signatures from electrical devices, the polynomial kernel performed best

and was able to give classification accuracy of between 70%-100% in terms of

generalization ability. An accuracy of above 70% is usually considered good for a

signature identification problem [38,48]. Scaling of the input vectors had normalized

the magnitudes of each input, thus enhancing the characteristics hidden in the higher

harmonics and increasing the classification accuracy of the SVM.

Performance of Developed ANN and SVM Classifiers

59

4.2 Performance Comparison of ANN and SVM-based
Models

 After the classification ability of the developed multi-class SVM has been

verified, the primary focus of this thesis, which was the study of the ANN and SVM-

based model performances in the classification of electrical devices, was executed. In

this section, the training and test were based on the 8-device setup elaborated in

chapter 2.

4.2.1 Training Using Complete Dataset

In the first stage, the laboratory data measurements (to be referred to as the

original dataset from here onwards) as explained in section 2.1 were split randomly

into training and testing data to test the ability of the ANN and SVM-based models in

classifying the presence or absence of combinations of devices after training on all

possible scenarios. In this stage, the original dataset was split such that 66% (3072

input vectors) of the data was used for training whereas the remaining data was used

for testing.

A K-fold test was performed to include all data in training and testing. The

original dataset was split into 3 equal portions. In three experiments, each of the 1/3

portions (1536 input vectors) was used as the test set sequentially while the remaining

data for that experiment was used as the training set. The average classification results

from the three experiments were obtained. The K-fold test algorithm and classification

equations are described in Appendix C.

Performance of Developed ANN and SVM Classifiers

60

Table 4-7 shows the classification result. Although the ANN classified all 8

devices at once for each set of testing sample, the result for each device was tabulated

individually. The percentage correct classification was calculated from the number of

correct classification of the presence or absence of a device divided by the size of the

test set. All classifiers show excellent classification results.

In a further test, instead of using samples from the original dataset for training,

the mean value of the input vectors representing each combination was calculated from

the original dataset to create a feature vector for each combination. Only the 256 mean

value feature vectors (one for each combination) were used for training. The whole of

the original dataset (4608 input vectors) was used for testing. Table 4-8 shows the

corresponding test result where all classifiers again show excellent classification

results.

Table 4-7 Classification accuracy when using laboratory measurements

Accuracy, F (%)
ANN SVM Device

MLP RBF Linear Polynomial RBF

Monitor 100 100 99.1 99.5 99.5

CPU 99.9 99.8 95.8 99.6 99.2

Fluo. lamp 99.9 99.8 99.7 99.8 99.8

TV 99.6 99.8 86.0 98.9 97.3

Charger 99.9 99.7 99.6 99.8 99.7

Fan 99.9 99.9 57.0 95.4 82.2

Fridge 99.8 99.7 99.9 100 99.9

Light bulb 100 99.8 99.7 99.7 99.7

Performance of Developed ANN and SVM Classifiers

61

Table 4-8 Classification accuracy when using mean of laboratory measurements

Accuracy, F (%)
ANN SVM Device

MLP RBF Linear Polynomial RBF

Monitor 99.9 99.9 94.9 99.5 97.7

CPU 99.4 99.8 77.9 98.5 89.3

Fluo. lamp 99.9 99.9 100 100 100

TV 99.0 99.9 67.5 92.0 70.4

Charger 99.8 99.9 97.4 99.8 99.4

Fan 99.8 98.9 58.6 84.1 58.4

Fridge 99.9 100 100 100 100

Light bulb 100 99.9 99.8 100 99.9

This result proves the ANN and SVM’s ability to generalize well to include all

the fluctuations in measurement of current harmonics. The reduction in the size of the

training set also reduced the training time by a considerable factor especially for the

RBF neural network and SVM-based models that performs quadratic programming

(QP) optimization.

4.2.2 Reduction of Training Set Size

Theoretically, since all the electrical devices in the experimental setup were

connected in parallel and were electrically independent of each other, the current

drawn by a combination of the devices should be equal to the sum of the current drawn

by each of the devices present in the combination. Based on this assumption, a new

Performance of Developed ANN and SVM Classifiers

62

set of training data based on the mathematical sums of current harmonics of individual

devices was created.

In order to study the representation accuracy of the mathematical sums to the

actual laboratory measurements, the ratio of the difference between the two values to

the magnitude of the mathematical sum was calculated as follows:

ki

kiki
ki m

mjxmean
r

,

,,
,

))((−
= (4.1)

where ri,k is the ratio of the difference between actual laboratory measurements, xi,k and

mathematically calculated data, mi,k, to mi,k for input, i, of combination, k.

When compared with the actual laboratory measurements, the mathematical

sums showed some differences. Figure 4-1 shows the average ratio, r, of the

difference to the magnitude of the mathematically calculated training data for each

input. Inputs 2 and 4 that represent the imaginary components of the fundamental

harmonic and 3rd harmonic respectively show a high value of r because the sine

component changes more rapidly with phase angle at small phase angles of less than

60o. After removing samples with large difference resulting from voltage dips and

ignoring the spikes at input number 2, 4, 9 and 11, the average ratio was shown to be

below 0.5. It was concluded that the mathematical sums provided a good estimate of

the actual measurements.

Performance of Developed ANN and SVM Classifiers

63

0

1
2

3

4

5
6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

R
at

io

Fig. 4-1 Difference between laboratory measurements and mathematical sums

The newly created training set was used to train the ANN and SVM. The

whole original dataset was used for testing of the SVM-based models and RBF neural

network. Due to the problem of a large number of local minima, if the initial weights

were not selected correctly, the MLP would not achieve the best performance.

Therefore, the training and testing for the MLP were repeated 100 times with different

random initial weights to reach the global minimum. When training the MLP, 66%

(3072 input vectors) of the original dataset was used for validation stop (early stopping)

to avoid over-fitting whereas the remaining data (1536 input vectors) was used for

testing.

Table 4-9 shows the classification result. There was no apparent best classifier

between the ANNs and SVM-based models. Although the average classification

accuracy has dropped, it is still above 85%. The reasonable reduction in accuracy is

however greatly compensated by the ability of the ANN and SVM to perform

classification from just information of individual devices, thus a great step towards

non-intrusive monitoring.

Performance of Developed ANN and SVM Classifiers

64

Table 4-9 Classification accuracy after reduction of training set size

Accuracy, F (%)

ANN SVM Device

MLP RBF Linear Polynomial RBF

Monitor 98.5 99.8 92.5 99.4 98.7

CPU 86.9 87.4 74.3 74.5 75.0

Fluo. lamp 99.8 99.5 99.9 99.9 99.9

TV 67.9 88.0 63.6 90.5 78.5

Charger 66.1 65.1 69.7 71.7 70.3

Fan 62.1 69.1 66.0 68.0 68.4

Fridge 98.8 98.8 99.9 99.9 99.9

Light bulb 97.9 79.2 93.1 95.0 94.5

4.2.3 Noise Tolerance

In the final stage of the experiment on 8-device setup, random noise of

magnitude specified in Table 4-10 was added to the original dataset. The magnitudes

in Table 4-10 were based on the magnitude of the current harmonics of individual

devices. After adding the noise, the dataset (4608 input vectors) was split into training

and testing sets with a ratio of 2:1.

Performance of Developed ANN and SVM Classifiers

65

Table 4-10 Magnitude of random noise for each harmonic

Harmonic Inputs Noise magnitude

Fundamental 1,2 0.3

3rd 3,4 0.3

5th 5,6 0.2

7th 7,8 0.2

9th 9,10 0.1

11th 11,12 0.1

13th 13,14 0.1

15th 15,16 0.1

For the MLP ANN, the random noise added was varied from 0.1 to 1.5 times

the specified magnitude. For each step, the training and testing were repeated 100

times with different random initial weights and the best result was used. Figure 4-2

shows a decrease in the average classification accuracy of the 8 devices with an

increase in noise magnitude. Even at 1.5 times the average magnitude, the average

accuracy was still above 70%. Hence, it is shown here that the ANN was capable of

filtering noise that may be caused by unknown or faulty devices.

Table 4-11 compares the classification accuracy of ANN and SVM classifiers.

The performance of the RBF neural network was greatly affected. Although the test

results of the SVM classifiers show favorable classification accuracy, the MLP ANN

had a significantly lower computational resource requirement.

Performance of Developed ANN and SVM Classifiers

66

Fig. 4-2 Effect of random noise on classification accuracy

Table 4-11 Classification accuracy when random noise was added

Accuracy, F (%)

ANN SVM Device

MLP RBF Linear Polynomial RBF

Monitor 88.3 71.8 89.0 89.0 88.3

CPU 71.2 63.8 71.4 71.4 71.4

Fluo. lamp 84.2 58.1 84.7 84.8 84.8

TV 68.0 52.7 64.7 64.7 65.0

Charger 66.8 53.1 66.1 66.5 66.1

Fan 59.5 50.3 61.6 62.0 61.5

Fridge 89.0 67.6 88.6 89.0 88.8

Light bulb 78.6 54.9 78.8 78.8 78.6

Performance of Developed ANN and SVM Classifiers

67

4.3 Performance on Different Datasets

In order to test the generalization of the MLP ANN classifier on other types of

devices, two additional experiments with 10 devices were set up (Appendix A – Table

A-1a and A-2a). Only harmonic signatures of individual devices were measured due

to the large number of possible combinations. Using the mean values of the harmonic

signatures of individual devices, the harmonic signatures for the combinations of the

devices were generated from the sums of the mean values. Random noise was added to

simulate the fluctuations expected in the experimental measurements and the resulting

dataset was used in the training set.

The first setup (set A) was tested using experimental measurement of random

combinations of the device. The training set for set A contained 105 input vectors.

The second setup (set B) was tested using mathematical combinations with similar

random noise added to it. The training set for set B consisted of 430 input vectors.

The training and testing were done on the MLP ANN with 16-20-10 (16 input neurons,

20 hidden neurons and 10 output neurons) configuration. Table 4-12 and Table 4-13

shows the test results of the first and second setup respectively. The MLP ANN has

shown to perform well in the two 10-device setups with results comparable to that of

the 8-device setup.

Performance of Developed ANN and SVM Classifiers

68

Table 4-12 Classification accuracy of 10-devices set A

No Device Accuracy, F (%)

1 Monitor 97.7

2 CPU 95.5

3 Fluorescent lamp 99.8

4 Television 75.5

5 Soldering iron 92.0

6 Fridge 99.7

7 Fan 77.8

8 Battery charger 93.8

9 Light bulb 71.4

10 Power drill 93.4

Table 4-13 Classification accuracy of 10-devices set B

No Device Accuracy, F (%)

1 PC CPU 99.5

2 PC Monitor 99.5

3 PC CPU (shutdown) 98.8

4 DC Power supply (0.1A) 83.5

5 DC Power supply (0.5A) 76.5

6 DC Power supply (0.25A) 73.0

7 DC Power supply (0.4A) 72.6

8 Notebook computer 99.3

9 Mobile phone charger 77.2

10 Fluorescent lamp 90.5

Performance of Developed ANN and SVM Classifiers

69

4.4 Harmonic Signature Identification of Three Phase
Devices

An extension of the harmonics signature identification to three phase devices

required only an extension of the feature vector dimension. Three phase devices

generally have more distinct signatures due to the additional information from the

other two phases. The current harmonics of 8 three phase devices (Appendix A –

Table A-4a) were measured using the Dranetz 8000-2 Energy Analyser. With three

phases and 8 odd harmonics from each phase, there were a total of 48 inputs (real and

imaginary for each phase). However, it should be noted that some of the three phase

devices have capacitors that could affect the flow of current harmonics thus affecting

the current harmonics measured at the supply mains.

Similar to the 10-device setup, the training (1280 input vectors) and testing

(1280 input vectors) sets containing combinations of 3-phase devices were created by

adding up of the individual 3-phase device signatures. Random noise of the magnitude

shown in Table 4-10 was added to the harmonics of each phase to simulate any

fluctuation or inaccurate representation of the current harmonics of device

combinations. An MLP ANN with 48-20-8 (48 input neurons, 20 hidden neurons and

8 output neurons) configuration was used to perform the classification. Table 4-14

presents the test result that is clearly better than the result of the 8-device single phase

devices considering the magnitude of the random noise added.

Performance of Developed ANN and SVM Classifiers

70

Table 4-14 Classification accuracy of three phase devices

No Device Accuracy, F

(%)

1 Motor #1 87.5

2 Motor #2 99.9

3 Motor #2 with capacitors 97.7

4 Inverter #1 99.6

5 Inverter #2 (low frequency) 99.6

6 Inverter #2 (high frequency) 99.6

7 Fluorescent lamp without capacitor 65.1

8 Fluorescent lamp with capacitors 69.1

4.5 Identification of Multiples of Similar Model
Devices

In order to study the feasibility of generalizing to devices of the same model

and make, the harmonic signatures of 4 computer CPUs and 4 computer monitors of

the same model were compared. Figure 4-3 shows the differences between the

harmonic signatures.

From Figure 4-3, it was concluded that the differences, which were smaller

than the random noise magnitude in Table 4-10, were within the generalization ability

of the ANN. The ANN can potentially be used to identify multiples of devices of the

same model using only the harmonics signature from one of the devices.

Consequently, it would not be possible for the ANN to distinguish two or more devices

of the same model.

Performance of Developed ANN and SVM Classifiers

71

 Referring to set B in the 10-devices setup where 4 DC-power supplies of the

same model were used, although each consuming different amount of current, the

classification accuracies for the DC-power supplies were low. When studied closely,

it was discovered that the harmonics signatures of the 4 DC-power supplies were

scalar multiples of each other, hence the difficulty faced by the ANN in distinguishing

the individual units.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

(a) CPUs

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input

M
ag

ni
tu

de
 (A

)

Min Max

(b) Monitors

Fig. 4-3 Signature difference between devices of the same model

 On the other hand, it should be noted that devices of the same nature or

function, but different model or make (such as motor #1 and motor #2 in three phase

Performance of Developed ANN and SVM Classifiers

72

devices set) should be separately identified because their harmonics signatures are

likely to differ significantly.

 Two simulated dataset containing multiples of devices were created using the

10-device set B setup or the same set of devices in Table 4-13. The new datasets

aimed to simulate typical office or home setups where multiple devices of the same

model would be used simultaneously.

Similar to the technique used in section 4.3, the datasets containing

combinations of the devices were created using the mean individual device feature

vectors. In the two new datasets, device feature vectors were multiplied by a positive

integer to simulate the presence of multiples of the particular device. The first dataset

contained multiples of up to 3 of each device whereas the second dataset contained

multiples of up to 10 of each device. However, these datasets did not take into account

the possible random fluctuations of the feature vectors with time.

 Table 4-15 shows the results of the MLP classification accuracy of

combinations of multiple devices of the same model. The MLP performed very well

with 100% accuracy on the first test set with 818 input vectors. On the second test set

with also 818 input vectors, the MLP’s classification accuracy began to decrease. The

decrease in classification accuracy is expected because as the number of devices

increases, the input vector magnitude tends to eclipse the feature vector signature of

each device.

Performance of Developed ANN and SVM Classifiers

73

Table 4-15 Classification accuracy on combinations of multiple devices of the same model

Accuracy, F (%) No Device

Up to 3 of each
device

Up to 10 of
each device

1 PC CPU 100 100

2 PC Monitor 100 100

3 PC CPU (shutdown) 100 100

4 DC Power supply (0.1A) 100 100

5 DC Power supply (0.5A) 100 97.3

6 DC Power supply (0.25A) 100 95.5

7 DC Power supply (0.4A) 100 93.5

8 Notebook computer 100 100

9 Mobile phone charger 100 96.8

10 Fluorescent lamp 100 100

4.6 Performance of TDNN Architectures

 Due to the time axis association of the time delay neural network (TDNN), the

training data for this part of the experiment were collected in a continuous time

sequence. Besides that, more focus had to be placed on the collection of training data

that involved changes in the state of the electrical devices. A total of 4 electrical

devices (Appendix A – Table A-5a) were switched on and off in random sequences to

produce the training data. The whole process was repeated to produce the test set (76

input vectors). Both the training and test sets started from a zero device state so as to

allow the TDNN to be initialized properly.

Performance of Developed ANN and SVM Classifiers

74

 Table 4-16 shows the classification accuracies of the various TDNN

architectures in comparison to the accuracy of the MLP architecture proposed in this

research. The TDNNs performed reasonably well, but the accuracy was still low

compared to the best MLP. However, it should be noted that the results were based on

only a limited set and quantity of electrical devices. As the number of devices

increases, the classification accuracy of the MLP will drop.

Table 4-16 Classification accuracy of TDNNs

Accuracy, F (%)
Device

MLP TDNN-1 TDNN-2

Fluorescent lamp 100.0 100 100

PC CPU 98.3 96.2 97.2

PC Monitor 95.4 93.4 95.2

Television 91.7 89.5 90.3

 During testing since all the inputs of the TDNN-1 were obtained directly from

the test set, the TDNN-1 was able to obtain accurate previous state information of the

electrical devices, hence the relatively high classification accuracy. However, in

actual implementation, the updating of the state information is based solely on the

prediction of the TDNN-1 itself. The TDNN-1 output vector itself is routed to the

subsequent input vector of the TDNN-1. Consequently, the classification accuracy

result in Table 4-16 for TDNN-1 was only an estimate of the actual accuracy, which

may be lower. Any prediction error in the current step will be brought forward to the

next prediction process thus possibly causing further prediction errors down the chain.

Performance of Developed ANN and SVM Classifiers

75

 On the other hand, the classification accuracy result for TDNN-2 was a more

reliable representation of the practical implementation accuracy since no information

other than the current harmonics feature vector sequence was available to the network

during testing. The classification accuracy of the TDNN-2 is lower because any

misclassification of the previous input vector might cause a misclassification in the

next input vector.

The accuracy of the TDNN architectures is low compared to that of the simple

MLP. Nevertheless, the TDNN is expected to outperform the MLP when the number

of devices taken into consideration increases. As the number of devices increases, the

main incoming’s current harmonics will be in orders of magnitude larger than that of

the individual device’s harmonics signatures. Therefore, the MLP will no longer be

able to disaggregate the individual harmonics signatures from the instantaneous main

incoming current harmonics measurements. Since the TDNN monitors time step

changes in current harmonics measurements, it will be able to disaggregate the

signatures by keeping track of the devices present and comparing the step changes to

the signatures of individual devices.

In order for the TDNN to be used effectively, there is a need to improve the

accuracy to nearly 100%. Since the predicted states are used as future inputs, even a

small percentage of prediction error may result in a trail of future errors, unless the

TDNN is able to correct itself at the next stage.

76

Chapter 5 MLP Weights Optimization

This chapter illustrates the research extensions towards improving the

performance of the MLP towards the objectives of this thesis by evolving the MLP

weights using GA.

In the previous experiments, the MLP performance was heavily affected by the

choice of its initial weights because of the large number of local minima. Therefore,

the GA has been employed to assist the MLP in finding an optimal set of weights.

Before the actual selection of the best GA parameters to perform the evolution of the

MLP weights, the MLP architecture (number of neurons) to be used in the GA-ANN

combination had to be pre-determined. By varying the number of hidden neurons in

the MLP, the best performing hidden layer configuration was found.

5.1 Preparation of Training Samples

In studying the feasibility of obtaining the optional set of MLP weights, a small

dataset was used for testing and training. The reason for choosing a smaller set was

because the number of weights in the MLP increases exponentially with the number of

neurons.

In this experiment, 4 devices (Appendix A – Table A-5a) were used for

signature identification:- personal computer central processing unit, computer monitor,

television and fluorescent lamp. From this, a total of 16 combinations were available

and when combined with the transient states and different operating modes of the

MLP Weights Optimization

77

devices, a large training (28 input vectors) and test (76 input vectors) set was obtained.

For each combination, several readings were taken to ensure that the transient states of

the devices were also considered. The whole process was repeated a second time in

order to collect the data for creating the validation set.

The feature vector of the samples included the magnitude and phase angle of

the odd current harmonics from the fundamental harmonic to the 15th harmonic. The

magnitudes and phase angles were represented in the feature vector in the complex

forms (real and imaginary). Therefore, in total, each feature vector consisted of 16

inputs, representing 8 harmonics and 4 outputs representing the presence or absence of

the 4 devices. The presence and absence were denoted by 1 and –1 respectively in the

output.

5.2 MLP Architecture

In this experiment, a single-hidden-layer MLP was used to perform the

classification of the device signatures. The hidden layer consisted of 20 neurons

which were chosen based on the optimum performance to computational requirement

ratio (Figure 5-1). The input and output had 16 and 4 neurons respectively. All

neurons in every layer used the tangential-sigmoidal activation function.

MLP Weights Optimization

78

Fig. 5-1 Effect of varying the number of neurons in the hidden layer on performance

The MLP used was a fully connected feedforward network where each neuron

in one layer was linked to every other neuron in the previous and next layers. The

hidden and output layer neurons each had a bias connected to it.

5.3 GA Algorithm

 The GA algorithm used in the GA-ANN combination is illustrated in Figure 5-

3. The GA population was evolved up to a maximum of 50 generations. The fitness

function given by equation (5.1) was based on the average classification accuracy of

the 4 devices. A chromosome was first decoded into MLP weights. Then, an MLP

was created according to the MLP weights and its performance was evaluated on the

test set. The fitness of the chromosome would depend on the classification accuracy of

the corresponding MLP.

MLP Weights Optimization

79

∑ ∑
= =

−
=

4

1 1 2
)()('1

4
1)(

i

l

j

ii
avg

jyjy
l

uF (5.1)

where yi(j) was the jth instance of the ith output of the MLP with the weights defined

in chromosome u and yi’(j) was the actual state (present or absent) of the ith device and

l is the total number of input vectors in the test set.

In the evolution process, only mutation was used. Recombination was left out

because if two functionally equivalent MLP which order their hidden nodes differently

have two different genotypical representations, the probability of producing a highly

fit offspring by recombining them is often very low [50]. The lack of exploration

ability resulting from the absence of recombination was compensated by the better

convergence ability since the accidental destruction of the structure of the hidden

nodes was avoided.

The GA employed the stochastic universal sampling (SUS) technique (Figure

5-2) in the selection of the chromosomes for the child population to be mutated. After

fitness evaluation, the chromosomes were mapped to contiguous segments of a line.

The segment width of each chromosome corresponds to its fitness level. A fitter

chromosome would occupy a longer segment. Then a random number was chosen

within the range of the line’s length. Stochastic universal sampling would create as

many pointers as the number of chromosomes to be chosen for the child population

and would evenly space them along the line starting from the chosen random number.

Finally, the chromosome pointed to by the pointers was selected for mutation.

MLP Weights Optimization

80

Fig. 5-2 Stochastic universal sampling (SUS)

Fig. 5-3 GA algorithm

Initialize population
P(t)

Evaluate fitness of
P(t)

Select child
population

Mutate chromosomes
in P’(t)

Evaluate fitness of
P’(t)

Select survivors from
P(t) and P’(t) to form

P(t+1)

t = t + 1

t > tmax

Fitness
satisfied

End

Decode the chromosomes into
MLP weights

Create MLP with decoded
MLP weights

Evaluate performance of MLP
from each chromosome

Chromosome

MLP Weights Optimization

81

5.4 GA-ANN Combination

The GA chromosomes were used to represent the weights and biases in the

MLP as shown in Figure 5-4. With 16 input neurons, 20 hidden neurons and 4 output

neurons, a total of 16 x 20 + 20 x 4 or 400 links were present. In addition, 24 biases

were present thus making the total base pairs required for the chromosome to be 424.

Direct encoding scheme [50] was used where each base pair had a direct one-to-one

mapping to a weight or bias. Using real-valued base pairs, the chromosome was made

up of an array of 424 integers.

Fig. 5-4 Proposed GA chromosome

w1,2 … w16,20 w2,1 …

w'1,1 w'1,2 … w'20,4 w'2,1 …

b1 b2 … b20

b'1 b'2 … b'4

w1,1

wp,q is the weight linking input neuron p and hidden neuron q.
w’p,q is the weight linking hidden neuron p and output neuron q.
bp is the bias for hidden neuron p.
b’p is the bias for output neuron p.

MLP Weights Optimization

82

Since real-valued base pairs were used, the mutations were executed by adding

a random number within –1 to 1 to the original base pairs. This range was decreased

linearly with the number of generations that had passed. The probability of mutation

was varied from 0.01 to 0.2 through different experiments.

For each experiment, the number of individuals in the population was varied

from 10 to 100. Finding the optimum number of individuals required was important

due to the large increase in computational resource requirement for each additional

individual because of the large chromosome length. The size of the child population

was also varied within 70% to 90% of the parent population size. In each generation,

the child population was evaluated and reinserted into the parent population based on

its fitness.

As the result of a potentially small population chosen, there were times when

the fitness level became stagnant after just a few generations. Therefore, in order to

avoid this scenario, if the best fitness remains the same after 5 generations, the

mutation probability was increased to 100% and the mutation range was increased to

the maximum for 1 generation. This step would bring new individuals into the child

population which would in turn be reinserted into the parent population if the fitness

was found to be better. The algorithm is illustrated in Figure 5-5.

MLP Weights Optimization

83

Fig. 5-5 Fixing stagnant MLP performance by introducing fresh individuals

5.5 Results

5.5.1 Evolution of MLP Weights with GA

For the first part of the experiment, the aim was to determine the extent in

which the GA would perform in fine-tuning the weights and biases of the MLP. In this

section, the values of base pairs from the chromosomes were used to create an MLP

with the corresponding weight and bias values. Next, the chromosomes’ fitness, tuned

only by the GA algorithm, were evaluated based on how the MLP performed on the

validation set. Since there was not any backpropagation training of the MLP, the

training set was not required.

 The GA parameters including population size, child population size and initial

mutation probability were varied to fine-tune the GA algorithm. Figures 5-6, 5-7, 5-8,

5-10, 5-11 and 5-12 show the average result for a particular value of the tested

Reinsert child
population into
parent population

Is there any
improvement in

performance in past
5 generations?

Mutate child population
with 0.1 probability

100% mutation in
child population

Reevaluate
ANN
performance

No

Yes

MLP Weights Optimization

84

parameter from a variety of other parameters. In other words, for each point on the

graph, the value of the tested parameter was fixed while the other parameters were

varied and the average result was used. The error referred to the sum of classification

errors of the 4 devices.

Figure 5-6 shows that a larger population size would reduce the error, thus

increasing the performance of the final MLP constructed. Apparently, the signature

identification problem set was plagued with a lot of local minima, hence a need for a

larger population size to search through a larger solution set. The main compromise

was the larger computational resource requirement.

0

0.5

1

1.5

10 25 50 100

No of individuals

Er
ro

r

Fig. 5-6 Effect of varying population size on performance

As for the size of child population, Figure 5-7 shows that a larger child

population gives only a marginally better MLP performance. On the other hand,

Figure 5-8 shows that the optimum mutation probability was around 0.1. A value that

is too low will not allow enough mutation to reach the minima while a value that is too

high will cause the chromosomes to over-mutate and overlook the minima.

MLP Weights Optimization

85

0

0.2

0.4

0.6

0.8

70 80 90

% of parent population

Er
ro

r

Fig. 5-7 Effect of varying child population size on performance

0
0.2
0.4
0.6
0.8

1

0.01 0.1 0.2

Mutation probability

Er
ro

r

Fig. 5-8 Effect of varying the mutation probability on performance

Figure 5-9 illustrates the convergence of the GA-ANN towards the global

minimum. However, even after 50 generations, the minimum error reached, which

referred to the average error of the 4 devices, was 0.1006. The error is translated into

0.8994 average accuracy of the classification of the 4 electrical devices. Unfortunately,

this value is still much lower than that achievable by a properly tuned MLP that was

obtained from a random selection of 1000 initial weights.

MLP Weights Optimization

86

Fig. 5-9 Evolution of the MLP performance

5.5.2 Evolution of MLP Initial Weights Coupled With
Backpropagation

Due to the slow convergence of the MLP weights into the best performing

MLP by the GA, the GA-ANN combination was modified such that the GA was used

to find the best initial weights while backpropagation training was used to converge

the MLP weights to the global minimum. From this coupling, the GA could be seen as

a search for a potential region for global minimum while the backpropagation training

did the local search [50,56].

 The MLP was trained using the training set and its performance was evaluated

based on the validation set. The stopping criterion was the minimum improvement

gradient of the MLP performance on the validation set.

 In general, the trend of the MLP performance against the GA parameters is

similar to that in section 5.5.1. However, as expected and as shown in Figures 5-10, 5-

MLP Weights Optimization

87

11, and 5-12, the general error value is in the scale of 10 times lower. The

backpropagation proves to be much more efficient at fine-tuning the weights of the

MLP to reach a local minimum in this scenario. The only penalty may be in terms of

additional computation time required in executing the large number of

backpropagation trainings for each individual in each generation.

0

0.05

0.1

0.15

0.2

0.25

10 25 50 100

No of individuals

Er
ro

r

Fig. 5-10 Effect of varying population size on performance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

70 80 90

% of parent population

Er
ro

r

Fig. 5-11 Effect of varying child population size on performance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.01 0.1 0.2

Mutation probability

Er
ro

r

Fig. 5-12 Effect of varying the mutation probability on performance

MLP Weights Optimization

88

 Figure 5-13 shows the MLP reaching the best classification accuracy of 0.987.

This result also outperformed the results from a purely backpropagation optimization

alone where 5000 MLP with different random initial weights were trained sequentially.

It is deduced that the GA has avoided the local minima and shifted the initial weights

to the region of the global minimum.

Fig. 5-13 Evolution of the MLP performance

5.6 Performance of GA-ANN Combination

The evolution of the MLP initial weights and biases using GA coupled with

local minima search using backpropagation has produced excellent results in the area

of signature identification of electrical devices based on their power harmonics. The

results based solely on GA optimization suffered from the GA’s inability to fully

converge to the minima. On the other hand, using backpropagation training alone, the

MLP would be susceptible to local minima problems. A classification accuracy of

98.7% is usually considered very high for a signature identification problem.

89

Chapter 6 Conclusion and Recommendations

The ANN and SVM-based models have been successfully applied in the

signature identification of electrical devices based on the current harmonics even under

noisy conditions. The harmonics information provides a finer signature resolution

compared to the P-Q chart proposed in conventional methods and does not require step

change detection. Although transient information, which requires high sampling rate

and continuous monitoring, was not used, the harmonics information proved to be

sufficient for the signature identification.

From the test results, the conclusion was that the MLP performs well and

produces better results or results comparable to that of the RBF neural network and

SVM while maintaining the architectural simplicity of the MLP. The RBF neural

network and SVM are limited by the size of the training set that can be used practically

to avoid huge QP problems. The potential of the time delay neural network was

demonstrated but requires further research to reach the required 100% accuracy.

Further optimization of the MLP was performed by evolving the MLP weights using

GA. For future work, other forms of combination besides the weights evolution can

also be used to further optimize the architecture of the MLP.

In the course of the research, this thesis has proposed and implemented a new

multi-class SVM for non-mutually exclusive classes and novel application of MLP

weights evolution using GA for harmonics signature identification.

Conclusion and Recommendations

90

Identification of the devices present from the current waveform gives an easier

and more reliable access to the information. By nature of an electrical system, most of

the electrical wirings are connected to a central location, which is the incoming point

from the electrical power supplier. This fact means that a central management system

to monitor all the devices from one point can be set up.

The reliability lies in the fact that almost any device, which is functioning

properly, shows a normal current waveform. In the case of an electrical fault, the

current waveform detected will be abnormal. Therefore, the current waveform

signature is a reliable source of information on any abnormalities in the functioning of

the devices, without additional sensors or wiring.

Last but not least, this new approach allows us to perform a black box analysis,

to determine the possible devices present, from just the electrical wiring that leads to

the black box. All devices that draw electrical energy from the external source will

leave a corresponding current signature.

Future directions include extending the classification scope to incorporate the

various operational modes of each device or operation under different voltage source

conditions. From the current approach, training the ANN or SVM to model the

various operational modes will require a large training set that may affect performance.

Future work should aim towards the search for a better signature modeling technique

such as using principal component analysis or SOM.

Conclusion and Recommendations

91

Currently, the set of electrical devices included in the research work is also still

limited. The scope of the types of electrical devices can be further widened. Devices

with the same function but different models such as the CPU with different power

supply ratings and monitors of different sizes can also be added to the list. More study

should be performed on multiples of devices of the same model since it is very likely

for a workplace environment to have several such devices.

On the other hand, the approach proposed in this thesis may be applied to

special integrated systems where the devices are known and there is a need to

continuously monitor the operation of the various components in the system. The size

of the system may range from as small as the components in the CPU to as large as a

manufacturing plant.

Besides that, research can also be focused on the automatic detection of new

devices, marking new regions of correspondence in the feature space, possibly by

setting thresholds to signify presence of unknown devices. Adaptive neural networks

are potential candidates for this purpose due to its ability to automatically include the

new devices without complete restructuring of the ANN architecture.

92

References

[1] W. Tan and V. I. John, “Nonlinear Fluorescent Systems: Their Impact on Power
Quality”, Canadian Conference on Electrical and Computer Engineering, Vol. 1,
page 144-147 (1994).

[2] J. Arrillaga, “Power System Harmonic Analysis”, New York: Wiley (1997).

[3] C. W. Smith, Jr., “Power systems and harmonic factors”, IEEE Potentials, Vol. 20,

page 10-12 (2001).

[4] W. Mack Grady and S. Santoso, “Understanding Power System Harmonics”,

IEEE Power Engineering Review, Vol. 21, page 8-11 (2001).

[5] K. Kuah, M. Bodruzzaman, S. Zein-Sabatto, “A Neural Network-based Text

Independent Voice Recognition System”, IEEE Southeastcon ’94 ‘Creative
Technology Transfer - A Global Affair’, page 131-135 (1994)

[6] D.G. Childers, Ke Wu, K.S. Bae, D.M. Hicks, “Automatic Recognition of Gender

by Voice”, International Conference on Acoustics, Speech, and Signal Processing,
Vol. 1, page 603 – 606 (1988)

[7] R.H. Seireg, A.E. Barbour, “A New Algorithm for Pattern Recognition of Voices”,

Midwest Symposium on Circuits and Systems, Vol. 1, page 707-710 (1992)

[8] R.K. Hartana and G.G. Richards, “Constrained Neural Network-Based

Identification of Harmonic Sources”, IEEE Transactions on Industry Applications,
Vol. 29, page 202-208 (1993).

[9] N. Pecharanin, M. Sone and H. Mitsui, “An Application of Neural Network for

Harmonic Detection in Active Filter”, IEEE International Conference on Neural
Networks, Vol. 6, page 3756-3760 (1994).

[10] P.K. Dash, D.P. Swain, B.R. Mishra and S. Rahman, “Power Quality Assessment

Using an Adaptive Neural Network”, International Conference on Power
Electronics, Drives and Energy Systems for Industrial Growth, Vol. 2, page 770-
775 (1996).

[11] B. Perunicid, M. Mallini, Z. Wang and Y. Liu, “Power Quality Disturbance

Detection and Classification Using Wavelets and Artificial Neural Networks”,
International Conference on Harmonics and Quality of Power, Vol. 1, page 77-82
(1998).

[12] M. Rukonuzzaman and M. Nakaoka, “Magnitude and Phase Determination of

Harmonic Currents by Adaptive Learning Back-Propagation Neural Network”,
IEEE 1999 International Conference on Power Electronics and Drive Systems,
page 1168-1171 (1999).

References

93

[13] S. Santoso, E.J. Powers, W.M. Grady and A.C. Parsons, “Power Quality

Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier –
Part 1: Theoretical Foundation”, IEEE Transactions on Power Delivery, Vol. 15,
page 222-228 (2000).

[14] J.V. Wijayakulasooriya, G.A. Putrus and P.D. Minns, “Electric power quality

disturbance classification using self-adapting artificial neural networks”, IEE
Proc.- Generation Transmission and Distribution, Vol. 149, page 98-101 (2002).

[15] T. Onoda, H. Murata, G. Ratsch and K.-R. Muller, “Experimental analysis of

support vector machines with different kernels based on non-intrusive monitoring
data”, 2002 International Joint Conference on Neural Networks, Vol. 3, page
2186-2191 (2002)

[16] S. Poyhonen, M. Negrea, A. Arkkio, H. Hyotyniemi and H. Koivo, “Fault

diagnostics of an electrical machine with multiple support vector classifiers”,
2002 IEEE International Symposium on Intelligent Control, page 373-378 (2002)

[17] L.S. Moulin, A.P.A. da Silva, M.A. El-Sharkawi and R.J. Marks, “Support vector

and multilayer preceptron neural networks applied to power systems transient
stability analysis with input dimensionality reduction”, IEEE Power Engineering
Society Summer Meeting, Vol. 3, page 1308-1313 (2002).

[18] M.-C.T. Nguyen, W.J. Lee, “An approach to enhance the harmonic sources

identification process”, IEEE Industrial and Commercial Power Systems
Technical Conference, page 127-132 (2000).

[19] A.M. Dan, Z. Czira, “Identification of harmonic sources”, International

Conference on Harmonics and Quality of Power, Vol. 2, page 831-836 (1998).

[20] G.T. Heydt, “Identification of harmonic sources by a state estimation technique”,

IEEE Transactions on Power Delivery, Vol. 4, page 569-576 (1989).

[21] Z.P. Du, J. Arrillaga, N.R. Watson, S. Chen, “Identification of harmonic sources

of power systems using state estimation”, IEE Proceedings – Generation,
Transmission and Distribution, Vol. 146, page 7-12 (1999).

[22] H. Ma, A.A. Girgis, “Identification and tracking of harmonic sources in a power

system using a Kalman filter”, IEEE Transactions on Power Delivery, Vol. 11,
page 1659-1665 (1996).

[23] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas, “Recent developments of

induction motor drives fault diagnosis using AI techniques”, Vol. 47, page 994-
1004 (2000).

[24] G.W. Hart, “Nonintrusive appliance load monitoring”, Proceedings of the IEEE,

Vol. 80, page 1870-1891 (1992).

References

94

[25] F. Sultanem, “Using appliance signatures for monitoring residential loads at meter
panel level”, IEEE Transactions on Power Delivery, Vol. 6, page 1380-1385
(1991)

[26] J.G. Roos, I.E. Lane, E.C. Botha, G.P. Hancke, “Using neural networks for non-

intrusive monitoring of industrial electrical loads”, IEEE Instrumentation and
Measurement Technology Conference, Vol. 3, page 1115-1118 (1994).

[27] T. Lindblad, S. Hultberg, C.S. Lindsey, R.O. Shelton, “Performance of a neural

network for recognizing AC current demand signatures in the space shuttle
telemetry data”, American Control Conference, Vol. 2, page 1373-1377 (1995).

[28] W.L. Chan, A.T.P. So, L.L. Lai, “Harmonics load signature recognition by

wavelets transforms”, International Conference on Electric Utility Deregulation
and Restructuring and Power Technologies, page 666-671 (2000).

[29] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, P. Armstrong,

“Power signature analysis”, IEEE Power and Energy Magazine, Vol. 1, page 56-
63 (2003).

[30] W.L. Chan, A.T.P. So, “Fuzzy arithmetic based power harmonics signature

recognition”, International Conference on Advances in Power Systems Control,
Operation and Management, Vol. 1, page 404-409 (1993).

[31] D. Raisz, M. Sakulin, H. Renner, Y. Tehlivets, “Recognition of the operational

states in electric arc furnaces”, International Conference on Harmonics and
Quality of Power, Vol. 2, page 475-480 (2000).

[32] D. Alexandrou, D. Pantzartzis, “A Methodology for Acoustic Seafloor

Classification”, IEEE Journal of Oceanic Engineering, Vol. 18, page 81 – 86
(1993)

[33] M. Riedmiller, H. Braun, “A direct adaptive method for faster backpropagation

learning: the RPROP algorithm”, IEEE International Conference on Neural
Networks, Vol. 1, page 586-591 (1993).

[34] Del Boca, D.C. Park, “Myoelectric Signal Recognition using Fuzzy Clustering

and Artificial Neural Networks in Real Time”, IEEE International Conference on
Neural Networks, Vol. 5, page 3098 – 4103 (1994)

[35] Pacut, A. Czajka, “Recognition of Human Signatures”, International Joint

Conference on Neural Networks, Vol. 2, page 1560 – 1564 (2001)

[36] S.S. Warren, “Neural Network FAQ”, ftp://ftp.sas.com/pub/neural/FAQ.html

(2001).

[37] Kevin M. Coggins, Jose Principe, “Detection and Classification of Insect Sounds

in a Grain Silo using a Neural Network”, IEEE International Joint Conference on
Neural Networks, Vol. 3, page 1760 – 1765 (1998)

References

95

[38] Chih-Wei Hsu, Chih-Jen Lin, “A comparison of methods for multiclass support
vector machines”, IEEE Transactions on Neural Networks, Vol. 13, pp 415-425,
2002.

[39] J.A.K. Suykens, J. Vandewalle, “Multiclass least squares support vector

machines”, International Joint Conference on Neural Networks, Vol. 2, pp. 900-
903, 1999.

[40] F. Masulli, G. Valentini, “Comparing decomposition methods for classification”,

Fourth International Conference on Knowledge-Based Intelligent Engineering
Systems and Allied Technologies, Vol. 2, pp. 788-791, 2000.

[41] V. Franc, V. Hlavac, “Multi-class support vector machine”, International

Conference on Pattern Recognition, Vol. 2, pp. 236-239, 2002.

[42] Hong-Jie Xing, Xi-Zhao Wang, Qiang He, Hong-Wei Yang, “The multistage

support vector machine”, International Conference on Machine Learning and
Cybernetics, Vol. 4, pp. 1815-1818, 2002.

[43] U. Kressel, “Pairwise classification and Support Vector Machines”, Advances in

Kernel Methods: Support Vector Machines, MIT Press, Cambridge, MA, 1998.

[44] F. Schwenker, “Hierarchical support vector machines for multi-class pattern

recognition”, Knowledge-Based Intelligent Engineering Systems and Allied
Technologies, Vol. 2, pp. 561-565, 2000.

[45] J.C. Platt, N. Cristianini and J. Shawe-Taylor, “Large margin DAGs for multiclass

classification”, Neural Information Processing Systems, Vol. 12, pp. 547-553,
2000.

[46] F. Takahashi, S. Abe, “Decision-tree-based multiclass support vector machines”,

Proceedings of the 9th InternationalConference on Neural Information Processing,
Vol. 3, pp. 1418-1422, 2002.

[47] B. Kijsirikul, N. Ussivakul, “Multiclass support vector machines using adaptive

directed acyclic graph ”, International Joing Conference on Neural Networks, Vol.
1, pp. 980-985, 2002.

[48] Zeyu Li, Shiwei Tang, Jing Xue, “A novel SVM multi-class classifier based on

pairwise coupling”, IEEE International Conference on Systems, Man and
Cybernetics, Vol. 7, pp. 5, 2002.

[49] Jae-Jin Kim, Bon-Woo Hwang, Seong-Whan Lee, “Retrieval of the top N matches

with support vector machines”, International Conference on Pattern Recognition,
Vol. 2, pp. 716-719, 2000.

[50] Xin Yao, “Evolving artificial neural networks”, Proceedings of the IEEE, Vol. 87,

page 1423-1447 (1999)

References

96

[51] D.B. Fogel, “What is evolutionary computation?”, IEEE Spectrum, Vol. 37, page
26, 28-32 (2000)

[52] K.J. Hintz and J.J. Spofford, “Evolving a neural network”, 5th IEEE International

Symposium on Intelligent Control, Vol. 1, page 479-484 (1990)

[53] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural

networks”, IEEE Transactions on Neural Networks, Vol. 8, page 694-713 (1997)

[54] B. Carse, A.G. Pipe, T.C. Forgarty and T. Hill, “Evolving radial basis function

neural networks using a genetic algorithm”, IEEE International Conference on
Evolutionary Computation, Vol. 1, page 300 (1995)

[55] S. Yao, C. Wei and Z. He, “Evolving wavelet neural networks”, IEEE

International Conference on Neural Networks, Vol. 4, page 1851-1854 (1995)

[56] R.K. Belew, J. McInerney, and N.N. Schraudolph, “Evolving networks: Using the

genetic algorithm with connectionist learning”, Comput. Sci. Eng. Dep. (C-014),
Univ. of California, San Diego, Tech. Rep. CS90-174 (revised) (1991).

[57] T. Joachims, “Making large-scale SVM learning practical. Advances in Kernel

Methods – Support Vector Learning”, B. Scholkopf and C. Burges and A. Smola,
MIT-Press (1999).

97

Appendix A Feature Vector Sets

10-devices set A

This set of devices was used in the experiments in Section 4.3.

Table A-1a 10-devices set A name list

No Name
1 Monitor
2 CPU
3 Fluorescent lamp
4 Television
5 Soldering iron
6 Fridge
7 Fan
8 Battery charger
9 Light bulb
10 Power drill

Table A-1b 10-devices set A feature vectors

 1 2 3 4 5 6 7 8 9 10
x1 0.265 0.198 0.410 0.183 0.251 0.200 0.166 0.134 0.557 0.600
x2 0.085 0.098 -0.143 0.059 -0.046 0.113 0.072 -0.119 0.059 -0.038
x3 -0.230 -0.169 0.044 -0.158 0.012 -0.155 0.007 0.034 0.024 -0.022
x4 0.069 0.047 -0.063 0.032 -0.036 -0.096 0.028 0.019 0.007 0.030
x5 0.159 0.113 0.007 0.108 -0.002 0.065 -0.008 -0.038 0.011 0.014
x6 -0.115 -0.090 -0.017 -0.061 -0.020 0.097 0.005 0.017 0.006 -0.016
x7 -0.086 -0.056 0.002 -0.060 -0.003 0.016 -0.001 -0.010 0.012 0.019
x8 0.112 0.088 0.028 0.060 -0.013 -0.068 0.001 -0.021 0.007 -0.005
x9 0.028 0.011 0.000 0.022 -0.012 -0.065 -0.005 0.002 -0.001 0.003
x10 -0.082 -0.063 -0.045 -0.047 -0.003 0.014 0.003 0.002 0.008 0.003
x11 -0.002 0.009 0.017 -0.004 -0.010 0.066 -0.003 -0.005 0.003 0.006
x12 0.040 0.027 0.005 0.022 0.000 0.031 0.000 -0.001 0.006 -0.005
x13 0.000 -0.008 -0.018 -0.001 -0.005 -0.032 -0.001 0.004 0.002 0.008
x14 -0.006 0.002 -0.022 0.000 0.004 -0.054 0.001 -0.002 0.007 -0.001
x15 -0.010 -0.004 -0.032 -0.001 -0.003 -0.014 -0.001 0.001 -0.002 0.005
x16 -0.013 -0.019 -0.042 -0.015 0.007 0.042 0.000 0.004 0.006 0.000

Appendix A Feature Vector Sets

98

10-devices set B

This set of devices was used in the experiments in Section 4.1, 4.3 and 4.5.

Table A-2a 10-devices set B name list

No Name
1 CPU
2 Monitor
3 CPU (Shutdown)
4 DC Power Supply (0.1A)
5 DC Power Supply (0.5A)
6 DC Power Supply (0.25A)
7 DC Power Supply (0.4A)
8 Notebook Computer
9 Mobile phone charger
10 Flourescent lamp

Table A-2b 10-devices set B feature vectors

 1 2 3 4 5 6 7 8 9 10
x1 0.238 0.254 0.134 0.208 0.274 0.232 0.254 0.099 0.029 0.266
x2 0.127 0.092 0.105 -0.120 -0.122 -0.118 -0.118 0.099 0.006 -0.087
x3 -0.209 -0.209 -0.119 -0.042 -0.088 -0.057 -0.075 -0.109 -0.040 0.038
x4 -0.022 0.068 0.013 -0.056 -0.020 -0.040 -0.029 0.015 -0.004 -0.032
x5 0.150 0.130 0.091 0.008 0.027 0.012 0.022 0.093 0.028 0.004
x6 0.001 -0.109 -0.042 -0.029 -0.064 -0.038 -0.056 -0.037 0.011 -0.020
x7 -0.080 -0.054 -0.054 -0.010 -0.007 -0.007 -0.005 -0.065 -0.016 -0.008
x8 -0.007 0.107 0.044 0.017 0.039 0.019 0.030 0.047 -0.011 0.006
x9 0.027 0.001 0.023 -0.019 -0.030 -0.020 -0.020 0.040 0.005 -0.006
x10 0.014 -0.070 0.033 0.007 0.000 0.001 0.000 -0.045 0.009 -0.019
x11 0.011 0.014 0.002 0.020 0.029 0.030 0.029 -0.024 0.000 0.000
x12 -0.017 0.014 0.010 -0.002 -0.009 -0.005 -0.006 0.032 0.000 0.000
x13 -0.033 -0.010 -0.005 0.000 0.000 -0.006 -0.003 0.014 0.000 -0.006
x14 0.022 0.017 0.009 0.000 0.010 0.008 0.009 -0.014 0.000 0.008
x15 0.035 -0.010 0.003 -0.002 -0.007 -0.005 -0.005 -0.010 0.010 0.000
x16 -0.020 -0.028 -0.020 -0.020 -0.007 -0.009 -0.009 -0.001 0.003 0.000

Table A-3 Combinations of devices

Devices No. 1 2 3 4 5 6 7 8 9 10
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
3 -1 -1 -1 -1 -1 -1 -1 -1 1 -1

….

1023 1 1 1 1 1 1 1 1 1 -1
1024 1 1 1 1 1 1 1 1 1 1

Appendix A Feature Vector Sets

99

Three phase devices set

This set of devices was used in the experiments in Section 4.4.

Table A-4a Three phase devices set name list

No Name
1 Motor #1
2 Motor #2
3 Motor #2 with capacitors
4 Inverter #1
5 Inverter #2 (low frequency)
6 Inverter #2 (High frequency)
7 Fluorescent lamp without capacitors
8 Fluorescent lamp with capacitors
9 Motor #1
10 Motor #2

Table A-4b Three phase devices set feature vectors

 1 2 3 4 5 6 7 8 9 10
x1 0.656 0.386 0.495 0.600 0.387 0.196 2.074 0.279 0.656 0.386
x2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
x3 0.009 0.173 0.316 0.348 0.019 -0.020 0.060 0.029 0.009 0.173
x4 -0.006 -0.180 -0.073 -0.140 -0.029 0.011 0.047 0.071 -0.006 -0.180
x5 0.000 0.027 0.396 0.400 -0.003 0.011 -0.068 0.052 0.000 0.027
x6 0.011 -0.389 -0.229 -0.400 0.007 -0.006 -0.017 -0.093 0.011 -0.389
x7 -0.011 -0.025 0.379 0.404 0.002 0.027 0.043 0.006 -0.011 -0.025
x8 -0.005 -0.362 -0.138 -0.293 -0.004 -0.009 -0.012 0.170 -0.005 -0.362
x9 0.000 -0.184 0.205 0.109 -0.001 0.024 0.002 -0.006 0.000 -0.184
x10 0.000 -0.144 -0.198 -0.299 0.001 -0.004 0.002 -0.019 0.000 -0.144
x11 0.000 -0.368 0.239 0.035 0.001 0.000 -0.011 -0.031 0.000 -0.368
x12 0.000 -0.019 -0.328 -0.503 -0.001 -0.014 -0.002 -0.064 0.000 -0.019
x13 0.000 -0.317 0.248 0.100 -0.001 -0.004 0.002 -0.028 0.000 -0.317
x14 0.000 0.028 -0.231 -0.402 0.000 -0.007 -0.001 0.038 0.000 0.028
x15 0.000 -0.112 0.069 -0.125 0.000 -0.010 0.000 -0.027 0.000 -0.112
x16 0.000 0.172 -0.241 -0.245 0.000 -0.009 0.000 0.002 0.000 0.172
x17 0.657 0.172 0.179 0.233 0.385 0.196 1.971 0.440 0.657 0.172
x18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
x19 -0.006 0.010 0.020 0.003 0.021 -0.023 -0.032 -0.026 -0.006 0.010
x20 0.003 0.021 0.039 0.023 -0.026 0.012 -0.023 -0.017 0.003 0.021
x21 0.002 -0.120 -0.099 -0.208 -0.003 0.014 -0.076 -0.070 0.002 -0.120
x22 0.013 0.116 0.147 0.106 0.007 -0.006 -0.003 -0.126 0.013 0.116
x23 -0.012 -0.103 -0.080 -0.192 0.002 0.024 0.028 0.143 -0.012 -0.103
x24 0.001 0.131 0.151 0.115 -0.003 -0.004 -0.021 0.010 0.001 0.131
x25 0.000 -0.021 -0.040 -0.009 -0.001 0.021 -0.002 0.020 0.000 -0.021
x26 0.000 -0.003 -0.007 -0.023 0.001 0.004 -0.001 0.008 0.000 -0.003
x27 0.001 -0.006 -0.075 0.122 0.001 0.006 -0.013 -0.044 0.001 -0.006
x28 0.000 -0.158 -0.155 -0.189 -0.001 -0.012 0.004 0.071 0.000 -0.158
x29 0.000 -0.030 -0.085 0.100 -0.001 0.008 0.004 0.043 0.000 -0.030
x30 0.000 -0.156 -0.136 -0.181 0.001 -0.008 -0.001 0.035 0.000 -0.156
x31 0.000 0.012 0.028 0.014 0.000 -0.015 0.000 -0.023 0.000 0.012

Appendix A Feature Vector Sets

100

x32 0.000 -0.012 -0.026 0.020 0.000 -0.021 0.000 -0.035 0.000 -0.012
x33 0.689 0.406 0.551 0.648 0.388 0.199 2.154 0.445 0.689 0.406
x34 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
x35 -0.001 0.199 0.216 0.269 0.021 -0.023 -0.035 0.006 -0.001 0.199
x36 0.005 0.106 0.195 0.226 -0.028 0.013 -0.012 -0.045 0.005 0.106
x37 -0.001 0.170 0.016 0.056 -0.003 0.006 -0.068 0.123 -0.001 0.170
x38 0.011 0.348 0.446 0.535 0.007 -0.007 0.000 0.011 0.011 0.348
x39 -0.010 0.223 -0.025 0.030 0.003 0.020 0.033 -0.153 -0.010 0.223
x40 -0.003 0.330 0.473 0.564 -0.004 -0.004 -0.020 0.038 -0.003 0.330
x41 0.000 0.029 -0.129 -0.128 -0.001 0.025 0.000 -0.003 0.000 0.029
x42 0.000 0.210 0.215 0.274 0.001 -0.004 0.000 0.021 0.000 0.210
x43 0.001 -0.188 -0.362 -0.434 0.001 0.004 -0.010 0.065 0.001 -0.188
x44 0.001 0.290 -0.006 0.061 -0.001 -0.011 0.003 0.010 0.001 0.290
x45 0.001 -0.156 -0.431 -0.507 0.000 0.002 0.004 0.031 0.001 -0.156
x46 0.001 0.334 -0.030 0.053 0.000 -0.008 -0.004 -0.089 0.001 0.334
x47 0.000 -0.131 -0.218 -0.265 0.000 -0.015 0.000 0.015 0.000 -0.131
x48 0.000 0.131 -0.088 -0.056 0.000 -0.005 -0.001 0.035 0.000 0.131

4-devices set

This set of devices was used in the experiments in Section 4.6 and Chapter 5

Table A-5a 4-devices set name list

No Name
1 Fluorescent lamp
2 CPU
3 Monitor
4 Television

Table A-5b 4-devices set feature vectors

 1 2 3 4
x1 0.437 0.179 0.278 0.191
x2 -0.194 0.112 0.096 0.097
x3 0.043 -0.150 -0.240 -0.172
x4 -0.074 0.055 0.064 0.030
x5 0.009 0.096 0.168 0.125
x6 -0.013 -0.100 -0.114 -0.064
x7 0.002 -0.039 -0.091 -0.073
x8 0.043 0.107 0.117 0.068
x9 0.009 -0.004 0.032 0.031
x10 -0.048 -0.082 -0.088 -0.050
x11 0.026 0.027 0.000 -0.002
x12 0.008 0.040 0.045 0.024
x13 -0.017 -0.026 -0.006 -0.008
x14 -0.026 -0.007 -0.010 0.000
x15 -0.022 0.007 -0.004 0.003
x16 -0.060 -0.017 -0.012 -0.017

101

Segment of 8-devices Setup’s Database

Table A-6 8-devices setup database structure

Inputs Device
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 1 2 3 4 5 6 7 8

0.009 -0.017 0.000 -0.005 -0.002 0.005 0.009 -0.008 -0.002 0.002 -0.006 -0.002 0.007 0.001 0.003 0.001 -1 -1 -1 -1 -1 -1 -1 -1
0.005 -0.015 0.001 -0.002 0.001 0.004 0.010 -0.006 -0.003 -0.001 -0.004 -0.005 0.012 0.000 0.000 -0.006 -1 -1 -1 -1 -1 -1 -1 -1

….

0.472 0.050 0.027 0.008 0.009 0.005 0.011 0.006 0.002 0.008 0.001 0.006 0.004 0.006 -0.002 0.009 -1 -1 -1 -1 -1 -1 -1 1
0.473 0.050 0.027 0.006 0.009 0.004 0.010 0.007 0.003 0.008 0.002 0.005 0.004 0.006 -0.001 0.009 -1 -1 -1 -1 -1 -1 -1 1

….

0.233 0.094 -0.164 -0.102 0.055 0.109 0.034 -0.064 -0.077 0.007 0.060 0.042 -0.013 -0.055 -0.029 0.035 -1 -1 -1 -1 -1 -1 1 -1
0.233 0.094 -0.164 -0.102 0.055 0.109 0.034 -0.064 -0.077 0.007 0.060 0.042 -0.013 -0.055 -0.029 0.035 -1 -1 -1 -1 -1 -1 1 -1
0.678 0.095 -0.108 -0.076 0.062 0.100 0.033 -0.057 -0.061 0.020 0.056 0.040 -0.017 -0.047 -0.024 0.048 -1 -1 -1 -1 -1 -1 1 1
0.679 0.095 -0.109 -0.074 0.063 0.100 0.031 -0.058 -0.059 0.022 0.056 0.038 -0.018 -0.046 -0.023 0.046 -1 -1 -1 -1 -1 -1 1 1

….

1.895 -0.132 -0.560 0.079 0.438 -0.177 -0.214 0.186 0.067 -0.207 0.041 0.114 -0.042 -0.079 -0.013 -0.033 1 1 1 1 1 1 1 1
1.898 -0.133 -0.558 0.078 0.434 -0.175 -0.213 0.185 0.067 -0.206 0.041 0.113 -0.039 -0.077 -0.016 -0.035 1 1 1 1 1 1 1 1

102

Appendix B MATLAB Codes

Training and Testing of MLP

% Training and testing of the MLP ANN with different number of hidden
% neurons and number of inputs.

% Training set - mathematical combinations using basis.txt which
% contains the feature vectors of individual devices

% Validation - 2/3 of dataset.txt which contains the laboratory
% (Early measurements of the input vectors of all combinations of
% stopping) devices

% Testing - remaining 1/3 of dataset.txt

% Loading of the input vectors from dataset.txt.
load dataset.txt;
[datasetR datasetC] = size(dataset);

% Splitting of the dataset.txt input vectors into validation and test sets.
validation = zeros(datasetR*2/3,datasetC);
test = zeros(datasetR*1/3,datasetC);
j = 1;
k = 1;
for i = 1:datasetR
 if mod(i,3) == 0
 test(j,:) = dataset(i,:);
 j = j+1;
 else
 validation(k,:) = dataset(i,:);
 k = k+1;
 end
end

% Loading of the feature vectors from basis.txt.
load basis.txt;

% Creation of the training set by mathematically summing various feature
% vectors from the basis.txt for the various combinations of devices.
training = zeros(256,datasetC);
i = 1;
for dev1 = 0:1
 for dev2 = 0:1
 for dev3 = 0:1
 for dev4 = 0:1
 for dev5 = 0:1
 for dev6 = 0:1
 for dev7 = 0:1
 for dev8 = 0:1
 array = zeros(1,24);
 if dev1
 array(1,:)=array(1,:)+basis(1,:);
 end
 if dev2

Appendix B MATLAB Codes

103

 array(1,:)=array(1,:)+basis(2,:);
 end
 if dev3
 array(1,:)=array(1,:)+basis(3,:);
 end
 if dev4
 array(1,:)=array(1,:)+basis(4,:);
 end
 if dev5
 array(1,:)=array(1,:)+basis(5,:);
 end
 if dev6
 array(1,:)=array(1,:)+basis(6,:);
 end
 if dev7
 array(1,:)=array(1,:)+basis(7,:);
 end
 if dev8
 array(1,:)=array(1,:)+basis(8,:);
 end
 training(i,:) = array(1,:);
 i = i+1;
 end
 end
 end
 end
 end
 end
 end
end

% Setting up of the MLP ANN with varying number of input neurons and hidden
% neurons.

% Varying the number of input neurons from 2 to 16 in steps of 2.
for inputs = 1:8

 % Setting up of the training set.
 p = training(:,1:inputs*2)';
 t = training(:,17:24)';
 t = t*2-1;

 % Setting up of the validation set.
 ptest = validation(:,1:inputs*2)';
 ttest = validation(:,17:24)';
 ttest = ttest*2-1;

 % Normalization of training and validation sets.
 [pn, meanp, stdp, tn, meant, stdt] = prestd(p,t);
 pntest = trastd(ptest, meanp, stdp);
 tntest = trastd(ttest, meant, stdt);
 val.P = pntest;
 val.T = tntest;

 % Varying the number of hidden neurons from 4 to 60.
 for nodes = 1:57

 bestaccuracy = 0;

 % Repeating the training using different initial weights and

Appendix B MATLAB Codes

104

 % finding the best MLP architecture.
 for iteration = 1:100

 % Creation of the MLP ANN.
 % Hidden and output layer neurons uses the tangential sigmoidal
 % activation function. The training is performed using
 % resilient backpropagation algorithm.
 net = newff(minmax(pn), [nodes+3,8], {'tansig', 'tansig'}, 'trainrp');
 net.trainParam.show = 25;
 net.trainParam.epochs = 3000;
 net = init(net);

 % Initiation of the MLP training with early stopping based on
 % the validation set.
 [net,tr]=train(net,pn,tn,[],[],val);

 % Simulation of the trained MLP on validation set input
 % vectors.
 results = sim(net, pntest);
 results = poststd(results, meant, stdt);
 results = sign(results);

 % Calculation of the error.
 errors = ttest - results;
 [m,n] = size(errors);

 sizepresent = sum((ttest'+1)/2); % No of input vectors with output = 1
 sizeabsent = n-sizepresent; % No of input vectors with output = -1
 mispredictpresent = sum((errors > 0)'); % No of input vectors wrongly classified
 % with output = -1
 mispredictabsent = sum((errors < 0)'); % No of input vectors wrongly classified
 % with output = 1

 % Classification accuracy of each class.
 accuracy(iteration,:) = 1 - (mispredictpresent./sizepresent)*0.5 -
(mispredictabsent./sizeabsent)*0.5;

 % Updating and saving of the MLP in the current iteration
 % if it is better than previous best MLP.
 if sum(accuracy(iteration,:)) > bestaccuracy
 bestaccuracy = sum(accuracy(iteration,:));
 bestnet = net;
 end
 end

 % Setting up of the test set.
 ptest = test(:,1:inputs*2)';
 ttest = test(:,17:24)';
 ttest = ttest*2-1;

 % Normalization of the test set.
 pntest = trastd(ptest, meanp, stdp);
 tntest = trastd(ttest, meant, stdt);

 % Simulation of the best trained MLP on the test set.
 results = sim(bestnet, pntest);
 results = poststd(results, meant, stdt);
 results = sign(results);

 % Calculation of the classification accuracy on the test set.

Appendix B MATLAB Codes

105

 errors = ttest - results;
 [m,n] = size(errors);

 sizepresent = sum((ttest'+1)/2);
 sizeabsent = n-sizepresent;
 mispredictpresent = sum((errors > 0)');
 mispredictabsent = sum((errors < 0)');

 accuracy = 1 - (mispredictpresent./sizepresent)*0.5 -
(mispredictabsent./sizeabsent)*0.5;

 % Updating of the classification results for the current number
 % of input and hidden neurons.
 stats{inputs,nodes} = [mispredictpresent' sizepresent' mispredictpresent'./sizepresent'
mispredictabsent' sizeabsent' mispredictabsent'./sizeabsent' accuracy'];

 % Saving of the best MLP architecture for the current number of
 % input and hidden neurons.
 bestnetwork{inputs,nodes} = bestnet;
 end
end

Training and Testing of RBF Neural Network

% Training and testing of the RBF ANN with different number of hidden
% nodes.

% Training set - mathematical combinations using basis.txt which
% contains the feature vectors of individual devices

% Testing - 1/3 of dataset.txt which contains the laboratory measurements
% of the input vectors of all combinations of devices

% Loading of the input vectors from dataset.txt.
load dataset.txt;
[datasetR datasetC] = size(dataset);

% Creation of the test set from 1/3 of the input vectors in dataset.txt.
test = zeros(datasetR*1/3,datasetC);
j = 1;
for i = 1:datasetR
 if mod(i,3) == 0
 test(j,:) = dataset(i,:);
 j = j+1;
 end
end

% Loading of the feature vectors from basis.txt.
load basis.txt;

% Creation of the training set by mathematically summing various feature
% vectors from the basis.txt for the various combinations of devices.
training = zeros(256,datasetC);
i = 1;
for dev1 = 0:1
 for dev2 = 0:1

Appendix B MATLAB Codes

106

 ...

 end
end

% Setting up of the training set.
p = training(:,1:16)';
t = training(:,17:24)';
t = t*2-1;

% Setting up of the test set.
ptest = test(:,1:16)';
ttest = test(:,17:24)';
ttest = ttest*2-1;

% Normalization of training and validation sets.
[pn, meanp, stdp, tn, meant, stdt] = prestd(p,t);
pntest = trastd(ptest, meanp, stdp);
tntest = trastd(ttest, meant, stdt);
val.P = pntest;
val.T = tntest;

bestaccuracy = 0;

% Varying the number of centers from 25 to 225 in steps of 25.
for iteration = 1:9
 net = newrb(pn,tn,0,1,iteration*25,25);

 % Simulation of the trained MLP on validation set input
 % vectors.
 results = sim(net, pntest);
 results = poststd(results, meant, stdt);
 results = sign(results);

 % Calculation of the classification accuracy.
 errors = ttest - results;
 m,n] = size(errors);

 sizepresent = sum((ttest'+1)/2); % No of input vectors with output = 1
 sizeabsent = n-sizepresent; % No of input vectors with output = -1
 mispredictpresent = sum((errors > 0)'); % No of input vectors wrongly classified with
 % output = -1
 mispredictabsent = sum((errors < 0)'); % No of input vectors wrongly classified with
 % output = 1

 % Classification accuracy of each class in this iteration.
 accuracy(iteration,:) = 1 - (mispredictpresent./sizepresent)*0.5 -
(mispredictabsent./sizeabsent)*0.5
end

Appendix B MATLAB Codes

107

Evolution of MLP Weights

% Evolution of MLP ANN weights using GA.

% Note: This matlab program requires the GATBX toolbox from
% http://www.shef.ac.uk/~gaipp/ga-toolbox/

inputs = 16; % No of input neurons
nodes = 20; % No of hidden neurons
outputs = 4; % No of output neurons

% Loading of train.txt which contains the training set.
load train.txt;
p = [train(:,1:inputs)]';
t = train(:,17:20)';
t = t*2-1;

% Loading of validation.txt which contains the validation set.
load validation.txt;
ptest = [validation(:,1:inputs)]';
ttest = validation(:,17:20)';
ttest = ttest*2-1;

% Normalization of training and testing sets.
[pn, meanp, stdp, tn, meant, stdt] = prestd(p,t);
pntest = trastd(ptest, meanp, stdp);
tntest = trastd(ttest, meant, stdt);
val.P = pntest;
val.T = tntest;

% GA Parameters:
MAXGEN = 50; % maximum Number of generations
NIND = [10 25 50 100]; % Number of individuals per subpopulations
GGAP = [0.7 0.8 0.9]; % Generation gap, how many new individuals are created
MUTPROB = [0.01 0.1 0.2]; % Mutation probability

max_nind = size(NIND,2);
max_ggap = size(GGAP,2);
max_mutprob = size(MUTPROB,2);

% Study of the effects of the various GA parameters.
for nind_counter = 1:max_nind
 for ggap_counter = 1:max_ggap
 for mutprob_counter = 1:max_mutprob

 % Mutation probability initialisation.
 mut_prob = MUTPROB(mutprob_counter);
 mut_shrink = 0; % Defines reduction in mutation range.

 % Field descriptor which specifies the allowed range of initial
 % weights in the ANN. It has the same dimension as that of a GA
 % chromosome.
 FieldD = rep([-1;1],[1,inputs*nodes+nodes*outputs+nodes+outputs]);

 % Creation of the initial population
 Chrom = crtrp(NIND(nind_counter), FieldD);

 % Reset counters
 Best = NaN*ones(MAXGEN,1); % best fitness in current population
 gen = 0; % generation counter

Appendix B MATLAB Codes

108

 % Evaluation of initial population
 ObjV = ones(NIND(nind_counter),1); % Accuracy matrix of the population

 % Creation of neural network.
 net = newff(minmax(pn), [nodes,4], {'tansig', 'tansig'}, 'trainrp');
 net.trainParam.show = 25;
 net.trainParam.epochs = 300;
 net = init(net);

 % Decoding of the chromosomes into ANN weights and biases.
 % Iterate through all the chromosomes in the population.
 for iteration = 1:NIND(nind_counter)

 % Pointer in chromosome string initialisation.
 offset = 1;

 % Decoding of weights of connections from inputs to
 % hidden layer neurons.
 for i = 0:(inputs-1)
 net.iw{1}(:,i+1) = Chrom(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1)))';
 end
 offset = offset+nodes*inputs;

 % Decoding of weights of connections from the hidden
 % layer neurons to the output layer neurons.
 for i = 0:(outputs-1)
 net.lw{2,1}(i+1,:) = Chrom(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1)));
 end
 offset = offset+nodes*outputs;

 % Decoding of the biases of the hidden layer neurons.
 net.b{1} = Chrom(iteration,offset:offset+nodes-1)';
 offset = offset+nodes;

 % Decoding of the biases of the output layer neurons.
 net.b{2} = Chrom(iteration,offset:offset+outputs-1)';

 % Backpropagation learning of the MLP ANN.
 [net,tr]=train(net,pn,tn,[],[],val);

 % Simulation of the MLP ANN on the test set.
 results = sim(net, pntest);
 results = poststd(results, meant, stdt);

 % Calculation of classification accuracy
 errors = sign(tntest) - sign(results);
 [m,n] = size(errors);
 for j=1:m
 row_error(j) = 0;
 for i=1:n
 row_error(j) = row_error(j) + sign(abs(errors(j,i)));
 end
 accuracy(j) = 1 - row_error(j)/n;
 end

 % Storing of the classification accuracy in ObjV
 ObjV(iteration) = m - sum(accuracy);

Appendix B MATLAB Codes

109

 end

 % Tracking of best individual and convergence display

 % Storing of best fitness result for first generation
 Best(gen+1) = min(ObjV); % Best fitness result of each generation
 OldBest = Best(gen+1); % Best fitness result of previous generation
 no_improvement = 0; % Stagnant performance counter

 % Plotting of first point in GA results
 figure(10);
 plot(Best,'ro');xlabel('generation'); ylabel('error');
 text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
 drawnow;

 % Generation loop.
 while gen < MAXGEN,

 % Assigning of fitness-value to entire population using
 % classification accuracy from ObjV.
 FitnV = ranking(ObjV);

 % Selection of individuals for breeding. Creation of new
 % offspring population.
 SelCh = select('sus', Chrom, FitnV, GGAP(ggap_counter));
 [SelCh_row SelCh_col] = size(SelCh);

 % Mutation on offspring

 % Stagnant performance counter check. If it exceeds
 % 5, then change the mutation probability to 1 in this
 % round and reset no_improvement.
 if no_improvement > 5
 mut_prob = 1;
 mut_shrink = 0;
 no_improvement = 0;
 end

 % Mutation.
 SelCh = mutbga(SelCh,FieldD, [mut_prob mut_shrink]);
 mut_prob = MUTPROB(mutprob_counter);

 % Increase of mut_shrink size to reduce mutation magnitude.
 mut_shrink = (1-(gen+1)/MAXGEN);

 % Performance evaluation of offspring

 % Creation of MLP ANN.
 net = newff(minmax(pn), [nodes,4], {'tansig', 'tansig'}, 'trainrp');
 net.trainParam.show = 25;
 net.trainParam.epochs = 300;

 % Initialisation of offspring classification accuracy
 % matrix.
 ObjVSel = ones(SelCh_row,1);

 % Iterate through all the chromosomes in the off spring
 % population.
 for iteration = 1:SelCh_row
 offset = 1;

Appendix B MATLAB Codes

110

 % Decoding of the offspring chromosomes into ANN weights and biases.
 for i = 0:(inputs-1)
 net.iw{1}(:,i+1) = SelCh(iteration,(offset+i*nodes):(offset+((i+1)*nodes-
1)))';
 end
 offset = offset+nodes*inputs;
 for i = 0:(outputs-1)
 net.lw{2,1}(i+1,:) = SelCh(iteration,(offset+i*nodes):(offset+((i+1)*
nodes-1)));
 end
 offset = offset+nodes*outputs;
 net.b{1} = SelCh(iteration,offset:offset+nodes-1)';
 offset = offset+nodes;
 net.b{2} = SelCh(iteration,offset:offset+outputs-1)';

 % Backpropagation learning of the MLP ANN.
 [net,tr]=train(net,pn,tn,[],[],val);

 % Simulation of the MLP ANN on the test set.
 results = sim(net, pntest);
 results = poststd(results, meant, stdt);

 % Calculation of classification accuracy
 errors = sign(tntest) - sign(results);
 [m,n] = size(errors);
 for j=1:m
 row_error(j) = 0;
 for i=1:n
 row_error(j) = row_error(j) + sign(abs(errors(j,i)));
 end
 accuracy(j) = 1 - row_error(j)/n;
 end

 % Storing of the classification accuracy in ObjVSel
 ObjVSel(iteration) = m - sum(accuracy);
 end

 % Reinsertion of offspring into parent population based on
 % accuracy in ObjV and ObjVSel.
 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel);

 % Increment of generation counter
 gen = gen+1;

 % Recording of current best individual
 Best(gen+1) = min(ObjV);

 % If there is no improvement, increment the stagnant
 % improvement counter.
 if Best(gen+1) == OldBest
 no_improvement = no_improvement + 1;
 end
 OldBest = Best(gen+1);

 % Display update
 figure(10);
 plot(Best,'ro'); xlabel('generation'); ylabel('error');
 text(0.5,0.95,['Best = ', num2str(Best(gen+1))],'Units','normalized');
 drawnow;

Appendix B MATLAB Codes

111

 end % Loop for next generation.

 % Update of result for parameters NIND, GGAP and MUTPROB
 result{nind_counter,ggap_counter,mutprob_counter} = Best;

 % End of GA

 end % Next MUTPROB value
 end % Next GGAP value
end % Next NIND value

112

Appendix C Detailed Classification Results

Appendix C provides the detailed classification results of the artificial neural network

and support vector machine-based classifiers in the experiments in chapter 4.

Experiments in section 4.1.1
Table C-1 Detailed results of SVM-based classifiers in Table 4-1

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

PC CPU 0 0 100 0 0 100 0 0 100
Monitor 0.6 0 99.4 0 0 100 0 0 100
PC CPU
(Shutdown)

0 0 100 0 0 100 0 0 100

DC P.S.
(0.1A)

11.4 14.5 74.1 1.4 0 98.6 8.3 12.4 79.3

DC P.S.
(0.5A)

10.8 12.2 77.0 2.1 0.2 97.7 10.8 12.2 77.0

DC P.S.
(0.25A)

18.4 16.5 65.1 7.4 1.0 91.6 18.4 16.8 64.8

DC P.S.
(0.4A)

13.5 10.1 76.4 6.6 0 93.4 14.1 11.0 74.9

Notebook 0 0 100 0 0 100 0 0 100
M. charger 25.3 20.8 53.9 3.5 0.2 96.3 24.5 19.0 56.5
F. lamp 0 0 100 0 0 100 0 0 100

Experiments in section 4.1.2
Table C-2 Detailed results of SVM-based classifiers in Table 4-3

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

PC CPU 1.1 1.1 97.8 0.1 0 99.9 0.6 0.4 99.0
Monitor 0.4 1.2 98.4 0.1 0 99.9 0.3 0.7 99.0
PC CPU
(Shutdown)

2.6 3.6 93.8 0.3 0 99.7 1.4 2.1 96.4

DC P.S.
(0.1A)

13.7 14.1 72.2 4.5 3.9 91.6 13.4 11.9 74.7

DC P.S.
(0.5A)

10.9 14.7 74.4 7.8 7.9 84.3 9.1 13.0 77.9

DC P.S.
(0.25A)

17.3 16.5 66.2 16.0 8.8 75.2 18.2 15.3 66.5

DC P.S.
(0.4A)

14.6 15.6 69.9 16.0 10.3 73.6 13.1 16.5 70.5

Notebook 0.6 0.8 98.6 0.3 0.4 99.3 0.6 0.5 98.9
M. charger 21.8 17.1 61.1 16.8 11.1 72.1 19.7 17.7 62.6
F. lamp 3.8 4.9 91.3 2.5 1.0 96.5 2.7 3.9 93.4

Appendix C Detailed Classification Results

113

Experiments in section 4.1.3
Table C-3 Detailed results of SVM-based classifiers in Table 4-5

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

PC CPU 0 0 100 0 0 100 0 0 100
Monitor 0 0.1 99.9 0 0 100 0 0 100
PC CPU
(Shutdown)

0 0.1 99.9 0 0.1 99.9 0 0.1 99.9

DC P.S.
(0.1A)

4.9 3.7 91.4 4.6 3.7 91.7 4.3 4.6 91.1

DC P.S.
(0.5A)

10.6 7.3 82.1 11.5 4.4 84.1 10.8 6.5 82.7

DC P.S.
(0.25A)

15.2 13.1 71.7 15.6 10.7 73.7 14.9 12.8 72.3

DC P.S.
(0.4A)

12.3 15.2 72.5 13.7 13.2 73.1 11.0 16.3 72.7

Notebook 0.3 0.3 99.4 0.1 0.3 99.6 0.3 0.3 99.4
M. charger 15.0 15.0 70.0 10.8 14.4 74.8 10.0 14.9 75.1
F. lamp 2.6 0.9 96.5 1.9 0.4 97.7 2.2 0.7 97.1

Experiments in section 4.2.1
The K-fold test performed is illustrated in Figure C-1.

Fig. C-1 K-fold test algorithm

Original
Dataset

1/3
Original
Dataset

1/3
Original
Dataset

1/3
Original
Dataset

Untrained
Neural

Network I

Untrained
Neural

Network II

Untrained
Neural

Network III

Trained
Neural

Network I

Trained
Neural

Network II

Trained
Neural

Network III

Accuracy
I

Accuracy
II

Accuracy
III

Training

Testing Split Dataset

Final
classification

accuracy

Accuracy
I

Accuracy
II

Accuracy
III + +

=

3

Appendix C Detailed Classification Results

114

Table C-4a Detailed results of ANN classifiers in Table 4-7

MLP Accuracy (%) RBF Accuracy (%)
Device Misclassification* False

Alarm+
Correct

Classification Misclassification* False
Alarm+

Correct
Classification

Monitor 0 0 100 0 0 100
CPU 0.1 0 99.9 0 02 99.8
Fluo. lamp 0 0.1 99.9 0 0.2 99.8
TV 0.2 0.2 99.6 0.2 0 99.8
Charger 0.1 0 99.9 0.3 0 99.7
Fan 0.1 0 99.9 0.1 0.1 99.9
Fridge 0 0.2 99.8 0 0.3 99.7
Light bulb 0 0 100 0.2 0 99.8

Table C-4b Detailed results of SVM-based classifiers in Table 4-7

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Monitor 0.9 0 99.1 0.5 0 99.5 0.5 0 99.5
CPU 0.7 3.6 95.7 0.2 0.2 99.6 0.7 0.1 99.2
F. lamp 0.3 0 99.7 0.2 0 99.8 0.2 0 99.8
TV 11.7 2.2 86.1 0.3 0.8 98.9 1.0 1.7 97.3
Charger 0.1 0.3 99.6 0.1 0.1 99.8 0.1 0.2 99.7
Fan 18.6 24.4 57.0 2.3 2.3 95.4 11.1 6.6 82.2
Fridge 0.1 0 99.9 0 0 100 0.1 0 99.9
L. bulb 0.1 0.2 99.7 0.1 0.2 99.7 0.1 0.1 99.7

Table C-5a Detailed results of ANN classifiers in Table 4-8

MLP Accuracy (%) RBF Accuracy (%)
Device Misclassification* False

Alarm+
Correct

Classification Misclassification* False
Alarm+

Correct
Classification

Monitor 0.1 0 99.9 0 0.1 99.9
CPU 0.3 0.3 99.4 0.2 0 99.8
Fluo. lamp 0.1 0 99.9 0 0.1 99.9
TV 0.4 0.6 99.0 0 0.1 99.9
Charger 0.1 0.1 99.8 0.1 0 99.9
Fan 0.2 0 99.8 0.4 0.7 98.9
Fridge 0 0.1 99.9 0 0 100
Light bulb 0 0 100 0.1 0 99.9

Table C-5b Detailed results of SVM-based classifiers in Table 4-8

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Monitor 5.0 0.1 94.9 0.5 0 99.5 2.3 0 97.7
CPU 9.4 12.7 77.9 1.4 0.1 98.5 2.1 8.6 89.3
F. lamp 0 0 100 0 0 100 0 0 100
TV 17.5 15.1 67.5 7.1 0.9 92.0 14.4 15.2 70.4
Charger 0.7 1.9 97.4 0.1 0.1 99.8 0.2 0.4 99.4
Fan 21.7 19.6 58.6 11.7 4.2 84.1 22.3 19.3 58.4
Fridge 0 0 100 0 0 100 0 0 100
L. bulb 0 0.2 99.8 0 0 100 0 0.1 99.9

Appendix C Detailed Classification Results

115

Experiments in section 4.2.2
Table C-6a Detailed results of ANN classifiers in Table 4-9

MLP Accuracy (%) RBF Accuracy (%)
Device Misclassification* False

Alarm+
Correct

Classification Misclassification* False
Alarm+

Correct
Classification

Monitor 0.2 1.3 98.5 0.1 0 99.8
CPU 8.2 4.9 86.9 12.2 0.4 87.4
Fluo. lamp 0.2 0 99.8 0.5 0 99.5
TV 19.5 12.4 67.9 0.4 11.6 88.0
Charger 0 33.9 66.1 0 34.9 65.1
Fan 28.5 9.4 62.1 13.1 17.8 69.1
Fridge 0 1.2 98.8 1.1 0 98.8
Light bulb 2.1 0 97.9 20.8 0 79.2

Table C-6b Detailed results of SVM-based classifiers in Table 4-9

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Monitor 0.6 6.9 92.5 0.5 0.1 99.4 0.5 0.8 98.7
CPU 25.5 0.1 74.4 25.4 0 74.6 24.9 0.1 75.1
F. lamp 0.1 0 99.9 0.1 0 99.9 0.1 0 99.9
TV 19.8 16.6 63.6 2.7 6.9 90.4 4.3 17.3 78.4
Charger 0 30.4 69.6 0 28.5 71.5 0 29.9 70.1
Fan 28.6 5.3 66.1 27.8 4.1 68.1 27.8 3.7 68.5
Fridge 0.1 0 99.9 0.1 0 99.9 0.1 0 99.9
L. bulb 6.8 0 93.2 5.0 0 95.0 5.5 0 94.5

Experiments in section 4.2.3
Table C-7a Detailed results of ANN classifiers in Table 4-11

MLP Accuracy (%) RBF Accuracy (%)
Device Misclassification* False

Alarm+
Correct

Classification Misclassification* False
Alarm+

Correct
Classification

Monitor 6.6 0.5 88.3 4.4 23.8 71.8
CPU 14.9 13.9 71.2 15.9 20.3 63.8
Fluo. lamp 8.1 7.7 84.2 4.8 37.1 58.1
TV 15.6 16.4 68.0 5.0 42.3 52.7
Charger 15.2 18.0 66.8 9.1 37.8 53.1
Fan 18.1 22.4 59.5 4.0 45.7 50.3
Fridge 5.0 6.0 89.0 3.5 28.9 67.6
Light bulb 9.6 11.8 78.6 3.4 41.7 54.9

Table C-7b Detailed results of SVM-based classifiers in Table 4-11

Linear SVM Accuracy (%) Polynomial SVM Accuracy (%) RBF SVM Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Monitor 6.4 4.6 89.0 6.4 4.6 89.0 6.8 4.9 88.3
CPU 13.7 14.9 71.4 13.7 14.9 71.4 14.8 13.8 71.4
F. lamp 7.5 7.8 84.7 7.8 7.5 84.8 7.7 7.5 84.8
TV 17.5 17.8 64.7 17.5 17.8 64.7 18.8 16.2 65.0
Charger 16.4 17.5 66.1 14.4 19.1 66.5 15.0 19.0 66.1
Fan 18.9 19.5 61.6 18.0 20.0 62.0 15.9 22.6 61.5
Fridge 5.9 5.5 88.6 5.7 5.4 89.0 5.7 5.5 88.8
L. bulb 10.3 10.9 78.8 10.3 10.9 78.8 10.3 11.1 78.6

Appendix C Detailed Classification Results

116

Experiments in section 4.3
Table C-8 Detailed results of ANN classifier in Table 4-12

Accuracy (%)
Device Misclassification* False Alarm+ Correct

Classification
Monitor 0 2.3 97.7
CPU 4.0 0.5 95.5
Fluorescent lamp 0 0.2 99.8
Television 23.8 0.7 75.5
Soldering iron 8.0 0 92.0
Fridge 0 0.3 99.7
Fan 18.2 4.0 77.8
Battery charger 0 6.2 93.8
Light bulb 28.6 0 71.4
Power drill 0 6.6 93.4

Table C-9 Detailed results of ANN classifier in Table 4-13

Accuracy (%)
Device Misclassification* False Alarm+ Correct

Classification
PC CPU 0.5 0 99.5
PC Monitor 0.2 0.3 99.5
PC CPU (shutdown) 0.9 0.3 98.8
DC Power supply (0.1A) 8.4 8.1 83.5
DC Power supply (0.5A) 12.8 10.7 76.5
DC Power supply (0.25A) 15.1 11.9 73.0
DC Power supply (0.4A) 8.8 18.6 72.6
Notebook computer 0.7 0 99.3
Mobile phone charger 9.5 13.3 77.2
Fluorescent lamp 4.2 5.3 90.5

Experiments in section 4.4
Table C-10 Detailed results of ANN classifier in Table 4-14

Accuracy (%)
Device Misclassification* False Alarm+ Correct

Classification
Motor #1 6.1 6.4 87.5
Motor #2 0.1 0 99.9
Motor #2 with capacitors 1.3 1.0 97.7
Inverter #1 0.2 0.2 99.6
Inverter #2 (low frequency) 0.2 0.2 99.6
Inverter #2 (high frequency) 0 0.4 99.6
Fluorescent lamp without capacitor 18.4 16.3 65.1
Fluorescent lamp with capacitors 15.1 15.8 69.1

Experiments in section 4.5
Table C-11 Detailed results of ANN classifier in Table 4-15

 Accuracy – < 3 of each device (%) Accuracy – <10 of each device (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

PC CPU 0 0 100 0 0 100
PC Monitor 0 0 100 0 0 100
PC CPU (shutdown) 0 0 100 0 0 100
DC Power supply (0.1A) 0 0 100 0 0 100
DC Power supply (0.5A) 0 0 100 2.7 0 97.3
DC Power supply (0.25A) 0 0 100 4.5 0 95.5
DC Power supply (0.4A) 0 0 100 6.0 0.5 93.5
Notebook computer 0 0 100 0 0 100
Mobile phone charger 0 0 100 3.2 0 96.8
Fluorescent lamp 0 0 100 0 0 100

Appendix C Detailed Classification Results

117

Experiments in section 4.5
Table C-12 Detailed results of TDNN classifiers in Table 4-16

MLP Accuracy (%) TDNN-1 Accuracy (%) TDNN-2 Accuracy (%)
Device Misclassi-

fication*
False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

Misclassi-
fication*

False
Alarm+

Correct
Classification

F. lamp 0 0 100.0 0 0 100 0 0 100
CPU 1.7 0 98.3 0.9 2.9 96.2 0 2.8 97.2
Monitor 1.0 3.6 95.4 1.0 5.6 93.4 3.0 1.8 95.2
TV 5.2 3.1 91.7 5.2 5.3 89.5 3.5 6.2 90.3

* Misclassification refers to wrong classification of devices present
+ False alarm refers to wrong classification of devices absent

118

Appendix D ANN and SVM Techniques

 Appendix D discusses various architectures of the artificial neural network

(ANN) and multi-class support vector machine (SVM) models in signature

identification, discussing the benefits and disadvantages of each architecture.

D.1 ANN Architectures

 In terms of learning algorithm, the ANN can be divided into two main classes:-

supervised learning and unsupervised learning. Supervised learning ANNs refer to the

class of ANNs that are trained to map inputs to specified targets whereas unsupervised

learning ANNs are free to form clusters, automatically classifying the inputs. In this

thesis, the ANN architectures that will be discussed include the self organizing map

(SOM) that belongs to the unsupervised learning class and multilayer perceptron (MLP)

and radial basis function (RBF) networks that belong to the supervised learning class

[36].

D.1.1 Self Organizing Map (SOM)

 The SOM is a powerful ANN that is capable of automatically clustering the

input vectors to which it is fed, thus learning the distribution of the input vectors.

Therefore, it is also seen as a feature extractor, capable of characterizing or identifying

the similarities between input vectors.

Appendix D ANN and SVM Techniques

119

 The SOM consists of a multidimensional lattice of neurons (Figure D-1).

During the training period, when an input vector is fed to the SOM, the neuron with

the smallest Euclidean distance from the input vector will be chosen as the winning

neuron. The weights of the winning neuron and its neighbors will be updated such that

the likelihood of it winning the next time a similar input vector is presented will be

higher. As a result, the winning neuron and its neighbors will slowly shift towards the

input vector, thus learning its distribution.

Fig. D-1 SOM with n inputs and 6 output neurons in a 2-dimensional lattice

 In the field of signature identification, SOM has been successfully applied in

[11,13,14] to automatically classify the input vectors into various power quality

disturbance categories. In [14], the SA-ANN, an SOM with automatic structuring of

the number of nodes was applied to classify power quality disturbances. Each neuron

in the SA-ANN had an additional deviation vector that tracked how groups of input

vectors were scattered around the neuron and a counter that contained the number of

input vectors represented by the neuron. The proposed algorithm allowed an increase

in the number of neurons to improve performance, or the merging of two neurons

Appendix D ANN and SVM Techniques

120

without significantly affecting the performance. Paper [13] proposed the use of the

learning vector quantization (LVQ), which is a supervised version of the SOM.

 In some cases, SOM training requires a large number of epochs to converge to

the distribution of the input vectors. The training length also depends on the selection

of initial weights, which are usually randomly chosen. Besides that, it is difficult to

control the number of clusters that the SOM forms unless the training is supervised.

Correspondence between the clusters and the actual input vector characteristic may be

unpredictable, with missing or unexpected new characteristics [36].

In this thesis, the training data available have inputs with corresponding

outputs. As the number of devices increases, each combination of devices will require

an output neuron, thus causing the number of neurons in the SOM to grow

exponentially. Therefore, the SOM was not used in this thesis but remains a potential

tool when future works on automatic detection of unknown devices require

unsupervised learning.

D.1.2 Multilayer Perceptron (MLP)

 The MLP is a universal classifier and a non-linear function approximator.

Under supervised learning, it can be trained to perform non-linear mapping between

input and output vectors.

 An MLP consists of an input layer, with the number of neurons equal to the

dimension of the input vector, an output layer, with the number of neurons equal to the

Appendix D ANN and SVM Techniques

121

dimension of the output vector, and one or more hidden layers with an arbitrarily

chosen number of hidden neurons. In most practical applications, only one hidden

layer is used. In [32], it was shown that larger numbers of hidden layers and nodes

resulted in slower convergence but did not improve performance. Unlike the SOM

that activates only one output neuron for each input vector, the multiple output feature

of the MLP allows it to represent combinations of devices present by producing

positive or negative values at each output neuron which represents a particular device.

Fig. D-2 MLP with a single hidden layer

During training, the weights and biases of the MLP are updated towards

minimizing the least mean squares (LMS) of the error between the neural network

output and the desired output. In this thesis, the backpropagation (BP) training

algorithm given in equation (D.1) was the primary training algorithm because of its

simplicity, smaller memory requirement and higher speed in pattern recognition

problems.

…

…

…

x1

x2

xl

z1

z2

zn

h1

h2

hm

Input
layer

Hidden layer

Output
layer

In
pu

t v
ec

to
r

O
ut

pu
t v

ec
to

r

Appendix D ANN and SVM Techniques

122

)()()1(t
w
Etwtw
∂
∂

−=+ η (D.1)

[]∑ −=
j

jzjyE 2)()('
2
1 (D.2a)

[]∑ −−=
∂
∂

j

jXjvjzjy
w
E)())((')()(' φ (D.2b)

where w is the weight associated to an input of the neuron and η is known as the

learning rate which is arbitrarily chosen. w is updated based on the gradient of the

error function E with respect to w. y’(j) and z(j) are the desired output and neuron

outputs respectively for input j. Φ’(v(j)) is the derivative of the neuron activation

function evaluated at preactivation value v(j). X(j) is the input vector value.

Fig. D-3 Perceptron architecture

 Proper structuring of the MLP such as the number of neurons, connection

between neurons, number of layers and activation function of the neurons play an

important role in its optimization and performance. In [9], partially connected MLP

was shown to perform better than a fully connected MLP where a neuron is connected

+

x1

x2

xn

z

…

Neuron
Input Vector

Sum

Activation
function

Neuron
output

bias

w1

w2

wn

v

Appendix D ANN and SVM Techniques

123

to all neurons in the adjacent layers. Adaptive learning BP such as the one proposed in

[12] or the resilient backpropagation (RP) [33] greatly increased the convergence rate.

In [9,10,12], the MLP was used to perform harmonic detection in power systems so as

to indicate necessary harmonic compensation from active filters. The MLP was also

applied to the identification of electrical load signatures in [26] and [28]. In [26],

multiple MLP were placed in cascade to perform binary classifications while

traversing a family tree. The MLP’s high noise tolerance was demonstrated in [34]

where it was applied to recognize the myoelectric control signal used to trigger a

functional neuromuscular stimulation.

 Nonetheless, the MLP faces the problem of overfitting that may cause it to

become susceptible to noise and to lose its generalization ability. Fortunately,

overfitting can be avoided by using a test set to measure its performance and to end the

training when the test set error increases. Besides that, when using the BP training

algorithm, the MLP tends to get trapped at a local minimum. Therefore, care should

be taken in the selection of the initial weights.

D.1.3 Radial Basis Function (RBF) Neural Networks

 Similar to the MLP, the RBF neural network is also a universal classifier and

non-linear function approximator. While also being similar structurally, the

fundamental difference between the RBF neural network and MLP lies in the way the

hidden neurons combine inputs from the preceding layers in the network; the MLP

uses the inner products whereas RBF uses the Euclidean distance. The most popular

RBF is the Gaussian RBF. The Gaussian function is given by equation (D.3)

Appendix D ANN and SVM Techniques

124

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=
2

2

2)(σ
u

eug (D.3)

where u is the Euclidean distance of the input vector from the center of the RBF

neuron and σ is the Gaussian width variable.

 The RBF neural network usually has only 1 hidden layer. Each neuron (Figure

D-4) in the hidden layer consists of 1 center, which in the case of the Gaussian RBF is

the mean of the Gaussian function. In the literature, there are many methods of

choosing the centers, usually from the set of input vectors [36]. In function

approximation, each center usually represents a part of the curve. Due to this

structure, the Gaussian RBF neural network usually performs well for interpolation but

poorly for extrapolation. During training, the Euclidean distances of the input vector

from the centers are calculated and the weights of connections between the hidden

layer and the output layer are updated towards minimizing the least mean square of the

error between the neural network outputs and the desired outputs.

Fig. D-4 RBF neuron architecture

x1

x2

xn

z

…

Neuron
 Input Vector

Radial basis
function

Neuron
Output

Center Vector

–

Euclidean
distance

+
+

+

u

Appendix D ANN and SVM Techniques

125

 In [35], a two-layer MLP and an restricted Coulomb energy (RCE) network,

which is a variety of RBF neural network, were used in the recognition of pen

signatures. The RCE network showed better generalization abilities than the MLP in

classification tasks but failed in verification tasks.

 To optimize the RBF neural network, the centers must be selected properly so

as to cover the maximum variance of the input vector set. For the Gaussian RBF, the

Gaussian function width can be varied to find the optimum value and preferably

should be sufficient to cover the area between neighboring centers. The RBF neural

network also faces the problem of overfitting which can be similarly dealt with using a

test set. The RBF neural network was also chosen as a classifier in this thesis due to

its structural and functional similarity to the MLP that met the requirements of the

thesis.

D.1.4 Other ANN Architectures

 Some of the architectures beside those mentioned above that may be suitable

for signal processing and signature identification are the probabilistic neural network

(PNN) [36] and time delay neural network (TDNN) [37].

PNN is a universal approximator for smooth class-conditional densities and

therefore should be able to solve any smooth classification problem given enough data.

It can be viewed as a normalized RBF network with a hidden unit centered at every

training case. If all the inputs are relevant, PNN has the very useful ability to tell

Appendix D ANN and SVM Techniques

126

whether a test case is similar to any of the training data; if not, the classification made

was based on extrapolation and should be viewed with skepticism.

The PNN required reasonable signal-to-noise ratio (SNR) to achieve good

performance. PNN tended to have a long computational time because of the vast

amount of neurons it contained. Due to its similarity to the RBF neural network, the

PNN was not used in this thesis.

Time delay neural network is a dynamic neural network capable of using

temporal information by utilizing time delayed state information in its hidden layers.

In [37], the artificial neural network is composed of a preprocessor based on principal

component analysis (PCA) and a one-hidden layer time delay neural network trained

with backpropagation. The TDNN was used because information to discriminate four

classes of sounds was contained in the history of the time series and the TDNN trained

on the shape of the waveform.

In the discussion of the conventional NALM techniques (Section 1.3), the step

change in steady state power was noted as the main form of signature used to identify

the various electrical devices. Although the proposed method in this thesis has only

considered the instantaneous current harmonics pattern as the signature, the focus was

on a singular quantity of each device. The limitation of using only instantaneous

harmonics information appears when the number of devices increases such that it

becomes impossible to uniquely disaggregate the individual devices from the total load.

Appendix D ANN and SVM Techniques

127

Fig. D-5 Elman TDNN Architecture

 The TDNN offers the ability to utilize past information in the input-output

mapping of the ANN. Therefore, by continuously tracking the states of the electrical

devices and detecting step changes in the current harmonics information, theoretically

the TDNN will be able to track an unlimited number of electrical devices. In this

thesis, a simple feasibility study was performed on the use of TDNN for device

classification in NALM.

D.2 Support Vector Machines (SVM)

SVM is a learning technique that can be seen as a new method for training

neural network, polynomial, or radial basis functions classifiers. It is essentially a two-

class linear classifier in a high dimensional feature space that may be nonlinearly

z-1

x1

x2

xl

h1

h2

hm

z1

z2

zn

…

…

…

Input
vector

Input
layer

Hidden
layer

Output
vector

Time delay

Appendix D ANN and SVM Techniques

128

related in the input space. Linear equations are used to separate the high dimensional

feature space into two regions. SVMs are very well founded from the mathematical

point of view, being an approximate implementation of the structural risk

minimization induction principle [38]. The decision surfaces are found by solving a

linearly constrained quadratic programming (QP) problem.

Most real world problems can not be solved by a linear classifier, and the

techniques have to be extended to allow for non-linear decision surfaces. Projecting

the original set of variables into a higher dimensional feature space is a possible way to

address this problem. Fortunately, using the kernel, the high dimensional feature space

computations can be performed directly in the original input space. However, the QP

problem is challenging when the size of the data set becomes large.

 The generalization ability of SVM is measured by the margin between the two

classes (Figure D-6). The size of the margin is governed by the divisibility of the two

classes and a cost parameter that needs to be fine tuned when choosing the optimum

SVM configuration. The cost parameter allows a “soft” margin to be set between the

two regions of classification, ignoring outlier input vectors that could have been

distorted by noise and allowing these outliers to cross the dividing hyperplane.

 Maximizing the margin is equivalent to minimizing the objective function in

equation (D.4) under the inequality constraints given by equations (D.5) and (D.6).

∑
=

+=
m

j
jCWJ

1

2

2
1 ξ (D.4)

Appendix D ANN and SVM Techniques

129

[] ljbjXWjy j ,...,11)(.)(' =∀−≥− ξ (D.5)

ljj ,...,10 =∀≥ξ (D.6)

where W is the hyperplane vector, C is the cost parameter, ξj is the slack variable to

allow errors when outlier input vectors cross the hyperplane to the wrong class, y’(j) is

the class label (+1 or -1), X(j) is the input vector and W.X(j)-b is the hyperplane

equation. l is the number of input vectors in the training set.

(c) Support vectors

The hyperplane in (a) gives a wider margin between the two classes compared to (b).
In (c) the support vectors are marked by the boxes and the hyperplane vector, w that
needs to be optimized is shown.

Fig. D-6 SVM Margin

hyperplane hyperplane

hyperplane

Appendix D ANN and SVM Techniques

130

D.2.1 SVM in Multi-class Classification

Several approaches have been implemented to extend the SVM into a multi-

class classifier [38,39,40,41,42]. This includes dividing the problem into several

binary classifications such as in the “One versus the rest method”, “Pairwise method”

and “Directed Acyclic Graph SVM (DAGSVM) method” [38]. There are also

approaches to multi-class problems that involve solving one single optimization

problem by implementing decomposition method [38,39,40,41]. Reference [42]

proposed a multistage SVM which repeatedly clustered the samples into two classes

until the final class was obtained.

In the “One versus the rest method”, for a k-classes classification, a total of k

SVM classifiers are created. Each SVM classifier will differentiate class k from the

remaining classes. The SVM classifier which produces the largest value corresponds

to the correct class.

In the “Pairwise method” [43], the classes are paired up. A total of k(k-1)/2

SVM classifiers are created to divide the training data into one of the classes in the

pairs. Each SVM classifier produces a vote for one of the two classes. Finally, the

class which collects the highest number of votes is identified as the correct class.

Another approach, “DAGSVM method” modifies the “Pairwise method” by

putting the SVM classifiers for class pairs into a binary tree (Figure D-7). The correct

class is determined by traversing down a tree until reaching a leave node, which

represents the correct class [44,45,46,47]. This method significantly reduces the

Appendix D ANN and SVM Techniques

131

problem complexity from O(k2) to O(k). On the other hand, it also introduces the

problem of choosing the tree structure, to arrange the order of classes for comparison.

Fig. D-7 Example of the Directed Acyclic Graph SVM (DAGSVM)

However these conventional approaches have typically focused on mutually

exclusive classes, and posed certain limitations when applied to problems that require

non-mutually exclusive multi-class classifications. All the multi-class SVM

approaches discussed above only produce a single class result. The classes must be

mutually exclusive, otherwise, the input vector which holds a signature representing

more than one class is classified as only the class with the highest SVM classifier

output value.

In [48], a “Pairwise method” with associated probability to the results was

introduced. In [49], by normalizing the distance from the input vector to each

hyperplane of the SVM, the relative distance was obtained to provide a form of

ranking. Unfortunately, these approaches did not present a ranking so as to allow

1 Versus 4

2 Versus 4 1 Versus 3

3 Versus 4 2 Versus 3 1 Versus 2

Not 1

Not 2 Not 4 Not 1

Not 4

Not 3

4 3 2 1

Not 3 Not 4 Not 2 Not 3 Not 1 Not 2

Appendix D ANN and SVM Techniques

132

more than one class to be specified. Instead, the main aim was to provide a

comparison between classes and thus selecting a single correct class.

D.3 Evolving the ANN Weights Using Genetic
Algorithm (GA)

Genetic algorithm (GA) is a class of evolutionary algorithm that is inspired by

the concept of natural evolution. In GA, the solutions to a problem are represented by

chromosomes or strings of numbers.

The GA randomly creates a population of solutions and applies genetic

operators such as mutation and crossover to evolve the solutions in order to find the

best solution. In each generation, an arbitrary percentage of the chromosomes from

the current population representing the best solutions are chosen to be evolved. The

fitness or qualities of the solutions in the new chromosomes are then evaluated.

Finally, during reproduction, the chromosomes are ranked and the best chromosomes

are used to create the next generation population.

In the crossover genetic operation, a random splicing point is chosen in two

chromosomes where the two chromosomes are spliced or cut. Then the spliced

regions are mixed to create two new chromosomes. In the mutation genetic operation,

each element in the chromosome is randomly changed to a new value with an arbitrary

mutation probability. The two genetic operations are illustrated in Figure D-8.

Appendix D ANN and SVM Techniques

133

Fig. D-8 Crossover and mutation genetic operations

Artificial intelligence techniques such as GA and ANN have been widely used

to solve problems of signature identification in various fields. The ANN, which

provides a nonlinear mapping between the input and output vectors, usually minimizes

its least mean square output error using gradient descent techniques such as

backpropagation (BP) while the GA provides a stochastic mean of minimizing a given

cost function. The GA, if tuned correctly, is known to be less affected by the problem

of local minima and much less sensitive to initial conditions of training [50,51].

Therefore, by combining the two techniques, it is possible to tap the benefits of both

worlds.

Various combinations of the GA and ANN have been researched on including

the evolution of the ANN weights and architectures using the GA [50,52,53]. In the

evolution of ANN weights, GA replaces the conventional gradient descent method to

optimize the weights towards the global optimum. By eliminating the differentiation

1 1 0 1 0 0 1

0 1 1 0 1 0 1

1 1 0 0 1 0 1

0 1 1 1 0 0 1

1 1 0 0 1 0 1 1 1 0 1 1 0 1

crossover

mutation

splicing point

Chromosome A

Chromosome B

New Chromosome A’

New Chromosome A’

Chromosome C New Chromosome C’

mutated element

Appendix D ANN and SVM Techniques

134

process required in gradient descent, GA also removes the requirement for the

activation function of the ANN neurons to be differentiable, thus allowing new types

of ANN activation function to be explored. Furthermore, the architecture of the ANN

such as the number of layers and the number of neurons in each layer can also be

modified in the optimization process.

The evolution of the single-hidden-layer perceptron ANN weights using GA

was chosen for the optimization of the ANN architecture in this thesis. Although other

variants of the ANN such as the radial basis function (RBF) ANN have been

successfully evolved using GA [54,55], the simple single-hidden-layer perceptron

weights are naturally easier to be encoded into the chromosomes and evolved with the

GA. The GA’s chromosomes may hold the weight values of all the neuron

connections in the ANN. Therefore, by evolving the GA chromosomes, the weights or

even the whole architecture of the ANN may converge towards the global minimum of

the classification function. On the other hand, GA is relatively inefficient in fine-tuned

local search [50] while the BP algorithm of the ANN, which is based on gradient

descent, generally has faster training phase angles and has better convergence ability.

Therefore, by employing the BP algorithm of the ANN to perform a local search, an

efficient and fine-tuned global minimum can be found.

