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Summary

In the past decade, researchers have combined deductive and object-oriented

features to produce systems that are powerful and have excellent modeling

capabilities. Many deductive and object-oriented features have been investi-

gated, such as deductive rules, negation, inheritance and multiple inheritance

with conflict handling.

XML is fast emerging as the dominant standard for data representation

and exchange in the web. How to query XML documents to extract and

restructure the data is still an important issue in XML research. Currently,

XQuery based on XPath is the standard XML query language from W3C.

However, it has some limitations and XTree has recently been proposed.

Queries written in XTree are more compact, more convenient to write and

easier to understand than queries written in XPath.

In this thesis, we propose a novel XML query language XDO2 which is

based on XTree and has deductive database features such as deductive rules

and negation, and object-oriented features such as inheritance and methods.

The major contributions of the XDO2 query language are:

1. Negation is supported in the XDO2 language with semantics similar

to the not-predicate instead of the conventional logic negation which

vii
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negates the boolean predicate and is used in XQuery. A consequence

of this decision is that XDO2 is able to support nested negation and

negation of sub-trees in a more compact form.

2. Methods that deduce new properties are implemented as deductive

rules. XDO2 can use the new properties directly. The presence of

recursive deductive rules makes recursive querying possible.

3. Schema querying is made possible with a special term stru : value to

explicitly distinguish the element tag (attribute name) from the ele-

ment value (attribute value). Stru binds to the element tag (attribute

name) and value binds to the element value (attribute value). Unlike in

XQuery, the name and value pairs are bound to the variables together.

4. Inheritance enables a subclass object to inherit all the attributes, sub-

elements and methods from its superclass objects. These inherited

properties can be directly used in querying.

5. Features such as the binding of multiple variables in one expression,

compact return format and explicit multi-valued variables are sup-

ported in the XDO2 language naturally due to the influence of XTree.

In summary, we have developed a more compact, convenient to use, and

powerful XML query language with deductive rules, not-predicate negation,

and the support of some object-oriented features.

In addition, a database example is presented to motivate the discussion

of our XDO2 language. The formal treatment of the language syntax and

semantics are presented. We also present some extensions on XML Schema

definitions in the appendix.



Chapter 1

Introduction

In the 1980’s, the object-oriented paradigm was introduced and became very

popular because it can naturally model the real world objects. Some object-

oriented programming languages were proposed, developed and widely used,

such as Java, C++ and C#. Many object-oriented data models, such as

ONTOS [38], O2 [19], Orion [24], IRIS [18] and ObjectStore [25] have been

proposed. Based on these, a large number of object-oriented features have

been proposed. These features include object identity, complex object, typ-

ing, class inheritance, overriding, blocking, multiple inheritances with conflict

handling mechanism, method encapsulation, method overloading, late bind-

ing, and polymorphism.

Deductive databases are an extension of relational databases that support

a more powerful query language. In deductive databases, the most impor-

tant feature is the introduction of deductive rules to derive new information.

Especially the presence of recursive deductive rules makes recursive querying

possible. Another important feature is negation which enables more mean-

ingful queries.

1
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In the past decade, a large number of deductive object-oriented database

systems have been proposed, such as O-logic [34], C-logic [9], F-logic [23], IQL

[1], LOGRES [8], LLO [33], Datalogmeth [2], CORAL++ [39], ROCK&ROLL

[4], Gulog [16], ROL [30], Datalog++ [21], and DO2 [27]. The objective of

deductive object-oriented databases is to combine the best of the deductive

and object-oriented approaches, namely to combine the logical foundation of

the deductive approach with the modelling capabilities of the object-oriented

approach.

In the late 1990’s, XML which provides a way to represent typical semi-

structured data is fast emerging as the dominant standard for data represen-

tation and exchange in the web. The flexibility of XML means it is widely

used for data exchange. However, the world is full of compromise, and due

to the flexibility of XML the relational data model is not suitable for storing

XML data since the structure of XML is not fixed. Many researchers are re-

searching this new kind of data from many perspectives. How to store XML

data and how to query XML data efficiently are still the important fields in

the new area of database research and development. In our thesis, we will

not talk about how to store the XML data, but we will concentrate on how

to query the XML data, how to make the query more simple, compact while

still declarative and powerful. We assume the XML data is a tree structure

data. Many query languages have been proposed in the past few years, such

as XPath [13], XQuery [6], Lorel [3], XQL [36], XSLT [12], a rule-based query

language [11], a declarative XML query language [29] and XTree [10]. Among

these query languages, XQuery [6] developed by W3C has become a standard

and widely been accepted by the XML database research community. XTree
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[10] has been proposed as an XML query language to be more compact, more

convenient to write and understand than XPath [13]. However, these XML

query languages currently can not support the deductive and object-oriented

features in the XML database system. How to apply these deductive object-

oriented features into current XML query languages is the main focus of our

thesis.

In this thesis, we propose a novel XML query language XDO2 which is

based on XTree and has deductive object-oriented features. We present an

XDO2 database example to give users an overview of what the XML de-

ductive object-oriented database looks like and motivate the discussion of

the XDO2 language. Some important features are presented in the exam-

ple, such as deductive rules and inheritance. The XDO2 language features

are presented in a more systematic and detailed way to include the features

coming from XTree, such as multiple variables in one expression, compact re-

turn format, aggregation functions, and naturally separating structure from

value. It also includes negation and recursion features coming from deduc-

tive databases and the features coming from object-oriented databases. The

syntax and the semantics of the XDO2 language are formally defined. In

addition, we also investigate the definition of deductive rules, the definition

of relationship type as in the ORA-SS [17] model and the definition of the

superclass attribute in XML Schema [5, 20, 40].

The major contributions of the XDO2 query language are:

1. Negation is supported in the XDO2 language with semantics similar

to the not-predicate instead of the conventional logic negation which

negates the boolean predicate and is used in XQuery. A consequence
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of this decision is that XDO2 is able to support nested negation and

negation of sub-trees in a more compact form.

2. Methods that deduce new properties are implemented as deductive

rules. XDO2 can use the new properties directly. The presence of

recursive deductive rules makes recursive querying possible.

3. Schema querying is made possible with a special term stru : value to

explicitly distinguish the element tag (attribute name) from the ele-

ment value (attribute value). Stru binds to the element tag (attribute

name) and value binds to the element value (attribute value). Unlike in

XQuery, the name and value pairs are bound to the variables together.

4. Inheritance enables a subclass object to inherit all the attributes, sub-

elements and methods from its superclass objects. These inherited

properties can be directly used in querying.

5. Features such as the binding of multiple variables in one expression,

compact return format and explicit multi-valued variables are sup-

ported in the XDO2 language naturally due to the influence of XTree.

The rest of the thesis is organized as follows. We introduce the pre-

liminary works including XTree, deductive databases, and object-oriented

databases in chapter 2. We introduce the XML deductive object-oriented

database using an example in chapter 3. Chapter 4 describes the features

of the XDO2 language. Chapter 5 defines the syntax of the XDO2 language

and chapter 6 defines the semantics of the XDO2 language. In chapter 7,

we compare the XDO2 language with related works. Finally, chapter 8 sum-
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marizes this thesis and points out some future research directions. In the

appendix, some extensions of the XML Schema are presented.



Chapter 2

Preliminaries

XML is becoming prevalent in data representation and data exchange on the

Internet. Many XML query languages have been proposed and XPath [13]

which is a linear navigational path to the target XML node set is used in some

of these query languages. However, XPath has some limitations and XTree

[10] has been proposed to resolve these limitations. XTree is designed to have

a tree structure instead of a path structure as in XPath. The advantages of

XTree as an XML path language over XPath will be explained in more detail

in section 2.1.

In relational databases, recursive queries are not supported in relational

algebra or relational calculus. However, in deductive databases, recursive

queries are supported naturally. Deductive databases have an extensional

database and an intentional database. The extensional database are those

data facts which correspond to the relational database tuples. The inten-

tional database is composed of a list of rules so that some new facts can

be deduced from the current data facts. If the rules are defined recursively,

then recursive queries are supported naturally. Another important issue in

6
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deductive database is negation. It enables more meaningful queries, but it

complicates the query interpretation and evaluation. These deductive fea-

tures are explained in more detail in section 2.2.

The relational database systems support only a small, fixed collection

of data types (e.g., integers, dates, strings), which can not handle complex

kinds of data. The object-oriented database was introduced in the 1980’s

and became very popular because it can naturally model the real world ob-

jects in a human’s mind and support complex data types which are needed

in some applications. The features in object-oriented paradigm include ob-

ject identity, complex object and typing, class, inheritance, overriding and

blocking, multiple inheritance and conflict handling, method encapsulation,

overloading and late binding, and polymorphism. Section 2.3 describes these

features in more detail.

2.1 XTree

XTree [10] has been proposed as an XML path language. The major contri-

bution of XTree is to use square bracket [ ] to group the same level attributes

and elements together so that the query languages based on XTree have a

tree structure instead of a path structure in XPath [13]. In the following, we

compare XTree with XPath and XTreeQuery [10] (an XML query language

based on XTree) with XQuery [6] (an XML query language based on XPath)

using some examples.

Example 2.1. Find the year and title of each book, and its authors’ last

name and first name.

XTree expression:
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/bib/book/[@year → $y, title → $t, author/[last → $last, first → $first]]

XPath expressions:

$book in /bib/book, $y in $book/@year, $t in $book/title, $author in

$book/author, $last in $author/last, $first in $author/first

As we can see from the above, one XTree expression corresponds to the

six XPath expressions although they express the same meaning. The XTree

expression is much more simple and compact using the square bracket [ ] to

group the same level attributes and elements. We also noticed the XTree ex-

pression has only four variables defined which are the interested information

while there are six variables in XPath expressions. The extra variables $book

and $author are necessary to keep the correlation between the variables.

Example 2.2. List the titles and publishers of books which are published

after 2000.

XTreeQuery expression:

query /bib/book/[@year → $y, title → $t, publisher → $p]

where $y > 2000

construct /result/recentbook/[title ← $t, publisher ← $p]

XQuery expression:

for $book in /bib/book, $y in $book/@year, $t in $book/title,

$p in $book/publisher

where $y > 2000

return <result><recentbook>{$t}{$p}</recentbook></result>

As we can see from the result construction part of both the XTreeQuery

and XQuery, only one XTree expression is used for the query result format.
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However, in XQuery, the XML element tags are mixed with the XPath ex-

pressions. Therefore, with the help of XTree, the result format is much more

simple and compact instead of mixing the element tags with XPath expres-

sions.

Example 2.3. List the title of the books that have more than 1 author.

XTreeQuery expression:

query /bib/book/[title → $t, author → {$a}]
where {$a}.count() > 1

construct /result/multiAuthorBook/title ← $t

XQuery expression:

for $book in /bib/book, $t in $book/title

let $a in $book/author

where count($a) > 1

return <result><multiAuthorBook>{$t}</multiAuthorBook></result>

In XQuery, there is no syntactic difference between single-valued variables

and multi-valued variables, but the multi-valued variables are defined in the

let clause. However, in XTree, the multi-valued variables are explicitly indi-

cated by surrounding curly braces { }. Therefore, the let clause can be avoid

in those query languages based on XTree. We also noticed that the object-

oriented fashion built-in aggregate functions are supported in XTree, such

as {$a}.count() in this example. However, in XQuery, the built-in aggregate

functions are supported as functions, such as count($a).

Example 2.4. Obtain some attribute with value 2000 in some book element.

XTreeQuery expression:
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query /bib/book/@$attr → $value

where $value = 2000

construct $attr

XQuery expression:

for $pair in /bib/book/@*

where string($pair) = “2000”

return local-name($pair)

As we can see from this example, in XTree, the XML attribute names

(element tags) are separated from the values naturally. The left of symbol

→ binds to the structure while the right of the symbol → binds to the value.

However, in XQuery, we have to use symbol “*” (all) since the structure is

unknown and have to use two built-in functions string() and local-name() to

get the values and attribute names (element tags) respectively.

As a summary, XTree is a generalization of XPath [13] and has the fol-

lowing advantages over XPath or XQuery [6].

1. In XPath, it is only possible to specify a linear path to the target

XML node set. In the querying part of a query, such as an XQuery

expression, one XPath expression can only bind one variable. However,

XTree has a tree structure which is similar to the structure of an XML

document. In the querying part of a query, such as an XTreeQuery

expression, one XTree expression can bind multiple variables.

2. XPath cannot be used to define the return format. However, in the

result format part of a query, one XTree expression can be used to

define the result format. This effectively avoids the mixing of element
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tags (attribute names) with XPath expressions and nested structure in

the result format in XQuery.

3. In XTree expressions, multi-valued variables are explicitly indicated,

and their values are uniquely determined. Some natural built-in aggre-

gate functions are defined to manipulate multi-valued variables in an

object-oriented fashion. However, in XPath, there is no difference be-

tween single-valued variables and multi-valued variables. In XQuery, it

must use a let clause to define the multi-valued variables. The built-in

functions are in functional fashion instead of object-oriented fashion in

XQuery.

4. In XTree expression, the element tags (attribute names) are separated

from the values naturally using the term structure left → right. This

will make the querying on the structure or schema more convenient.

However, in XPath, the variables bound to the structure and value to-

gether. Therefore, symbol “*” (all) must be used and built-in functions

are used to query the schema in XQuery.

Thus, although XPath and XTree have the same expressive power (i.e.,

anything that can be expressed by XTree can also be expressed by several

XPaths), XTree is more compact and convenient to use than XPath, and

queries based on XTree expressions are shorter in length and easier to write

and comprehend. In short, XTree is designed to have a tree structure while

XPath does not. For more details, please refer to [10].
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2.2 Deductive Databases

Deductive databases are an extension of relational databases to support more

powerful querying, such as recursive querying. Deductive databases consist of

extensional databases, which are exactly the relational database relations and

intentional databases, which are composed of a collection of rules. The rules

defined in a query langauge called Datalog [41] are used to deduce new data

tuples from the extensional databases. Datalog, which is a relational query

language is inspired by Prolog, the well-known logic programming language

and the notation of Datalog follows Prolog.

Example 2.5. Consider the following collection of rules.

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

These are rules in Datalog and the first rule means if there is a tuple

<X, Y> in a parent relation, then there must be a tuple <X, Y> in the

ancestor relation. The second rule means if there is a tuple <X, Z> in a

parent relation and a tuple <Z, Y> in an ancestor relation, then there must

be a tuple <X, Y> in the ancestor relation.

The part to the right of the :- symbol is called the body of the rule, and

the part to the left is called the head of the rule. All the variables start with

an uppercase letter, such as X, Y, and Z and constants start with a lowercase

letter.

Suppose there is a parent relation shown in Table 2.1. By applying the

first rule, we can get the ancestor relation with exactly the same four tuples

as in parent relation. Now we have four tuples in the parent relation and the

four newly deduced tuples in ancestor relation.
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Now we do not need to consider the first rule since it can not deduce new

tuples because parent relation does not have any new tuples created. We

can apply the second rule by considering the cross-product of parent relation

and ancestor relation. Notice the repeated use of variable Z in both parent

and ancestor relation in the rule. It means the two column values should

be equal and in fact it specifies an equality join condition on parent and

ancestor relation. After applying the second rule once, two newly deduced

tuples <john, sandy>, <mary, lucy> are created in the ancestor relation.

Now we still do not need to consider the first rule since no new tuples are

created in the parent relation. Notice it is not advisable to considering the

cross-product of parent relation and the whole ancestor relation since parent

relation does not change and many tuples in ancestor relation have already

joined with the parent relation in the previous step. We only need to join

the parent relation with the two new tuples in ancestor relation. Then we

get one more tuple <john, lucy> in the ancestor relation.

Again, after applying the second rule with parent relation and the newly

created tuple in ancestor relation, we can not get any more tuples in ancestor

relation. And finally, the ancestor relation is created and shown in Figure

2.2.

Now suppose there is a query to query john’s descendants as follows,

:- ancestor(john, X).

Since ancestor relation is created using the deductive rules, we can get

john’s descendants naturally. The result will be X = mary, X = ben, X =

sandy, and X = lucy.

In this example, we have seen the most important feature of deductive
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parent child

john mary

john ben

mary sandy

sandy lucy

Table 2.1: Parent relation

ancestor descendant

john mary

john ben

mary sandy

sandy lucy

john sandy

mary lucy

john lucy

Table 2.2: Ancestor relation

databases. Rules can be used to deduce new tuples in a relation. Recursive

rules recursively deduce new tuples and support recursive querying naturally.

In the next section, the meaning or semantics of the deductive rules are

defined.

2.2.1 Semantics of deductive rules

Given a set of deductive rules in deductive databases, there are two ap-

proaches to define the semantics. The first approach is called the least model

semantics, which gives users a way to understand the program (deductive

rules) without thinking about how the program is to be executed and the

second approach is called the least fixpoint semantics, which gives a concep-

tual evaluation strategy to compute the desired relation instances.

Before defining the least model, we need to define the model first. A

model is a collection of relation instances such that the relation instances

satisfies all the rules in the sense that for each rule, after we replace the
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variables by constants, if the tuples in the body are in the relation instances,

then the tuples generated in the head are in the relation instances.

Observe that in the Example 2.5, the parent instance shown in Table 2.1

and the ancestor instance shown in Table 2.2 actually form a model of the

deductive rules. This is because for the first rule, every tuple of the parent

relation instance in the body, the tuple generated for the ancestor relation is

also in the ancestor relation instance. Also for the second rule, every tuple of

the parent relation instance joined with every tuple of the ancestor relation

instance in the body, the tuple generated for the ancestor relation is also in

the ancestor relation instance.

However, suppose we add one more tuple such as <john, dale> into the

ancestor instance, the parent and the new ancestor instances satisfies the

first rule trivially. They satisfies the second rule also since <john, dale> can

not be used to join with parent instance to generate new tuple in ancestor

relation. Therefore, the parent instance with the new ancestor instances (by

added one more tuple) form a model too. In order to make the semantics

unique, the least model is defined to be a model M such that for any other

model M2 of the same rules, M is “minimum” in the sense that for every

tuple in the instance of M, the tuple is also in the instance of M2.

The above definition only defines the conditions that the least model

satisfies. It does not give an evaluation strategy on how to compute the

least model. Fixpoint is defined to be an instance such that the deductive

rules applied to the fixpoint instance returns the same fixpoint instance.

Least fixpoint is defined that the instance is smaller than every other fixpoint

similar to the definition of least model.
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In example 2.5, we have roughly go through on how to get the least

fixpoint step by step. Initially, the parent instance and the empty ancestor

instance are not fixpoint since after the rules are applied to the input instance,

the output ancestor instance (four new tuples) is not the same as the input

ancestor instance (empty). Therefore, we must add the output tuples into

ancestor instance to try to make it be a fixpoint. When we apply the rules

to the new input instance again, we get two more ancestor tuples not in the

input instance. Then we add the new output tuples into the input instances

again and repeat the process until every tuple generated is already in the

current instance. Therefore, intuitively, with this process is repeated, the

fixpoint computed is the least fixpoint.

In fact, the least model and least fixpoint are identical. It has also shown

that every Datalog program (deductive rules) has a least fixpoint and it can

be computed by repeatedly applying the rules on the given relation instances.

Unfortunately, when set-difference (negation) is allowed in the body of

the rule, there may no longer be a least model or a least fixpoint and we

explain it in the next section.

2.2.2 Stratification

Generally, every Datalog program has a least fixpoint which can be computed

by repeatedly applying the rules on the given relation instances. But with

set-difference (negation), which is the logical negation allowed inside the body

of the rule, there may not be a least fixpoint for the set of rules. In this case,

a technique called stratification is used to resolve this problem. You can find

some more details on [35].
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Example 2.6. Consider the following set of rules.

solid (X) :- substance (X), not liquid (X), not gas (X).

liquid (X) :- substance (X), not solid (X), not gas (X).

gas (X) :- substance (X), not solid (X), not liquid (X).

The first rule defines a substance X is solid if it is not liquid and not

gas. The second rule defines a substance X is liquid if it is not solid and not

gas. And the third rule defines a substance X is gas if it is not solid and not

liquid.

Assume there is only one tuple <book> in substance relation instance.

If we apply the first rule first, <book> will be the newly generated tuple

for the solid relation (solid, liquid and gas relation instances are initially

empty). However, if we apply the second rule first, <book> will be in the

liquid relation. <book> will be in the gas relation if we apply the third

rule first. This program (deductive rules) has three fixpoints, none of which

is smaller than the other two. Therefore, there is no least fixpoint in this

program which involves negation.

A widely used solution to the problem caused by negation, or the use

of not, is to impose some strata or layers to the relations and so called

stratification. We say that a relation T depends on a relation S if some rule

with T in the head contains S, or (recursively) contains a predicate that

depends on S, in the body. We say that a relation T depends negatively on

a relation S if some rule with T in the head contains not S, or (recursively)

contains a predicate that depends negatively on S, in the body. For example,

solid depends (negatively) on liquid, gas and recursively (negatively) on itself.

We classify the relations in the program into strata as follows. The rela-
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tions that do not depend on any other tables are in stratum 0. In example

2.6, only the substance relation is in stratum 0. The relations in stratum

1 are those that depend only on relations in stratum 0 or stratum 1 and

depend negatively only on relations in stratum 0. The relations in stratum

i are those that do not appear in lower strata, depend only on relations in

stratum i or lower strata, and depend negatively only on relations in lower

strata. A program is stratified if and only if it can be classified into strata

according to the above algorithm.

The example 2.6 is not stratified since solid, liquid and gas depend on each

other, they must be in the same stratum. However, they depend negatively on

the other two, violating the requirement that a relation can depend negatively

only on relations in lower strata.

Example 2.7. Consider the following variant of the program,

solid2 (X) :- substance (X), static (X).

liquid2 (X) :- substance (X), flow (X), not solid2 (X).

gas2 (X) :- substance (X), not solid2 (X), not liquid2 (X).

This program is stratified. Liquid2 depends on solid2, and gas2 depends

on solid2 and liquid2 but not vice versa. Substance, static and flow are in

stratum 0, solid2 is in stratum 1, liquid2 is in stratum 2, and gas2 is in

stratum 3.

A stratified program is evaluated stratum-by-stratum, starting with stra-

tum 0. To evaluate a stratum, we compute the fixpoint of all rules defining

relations that belong to this stratum. Therefore, when evaluating a stra-

tum, any occurrence of not involves a relation from a lower stratum, which

has already been evaluated. Intuitively, the requirement that programs be
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stratified gives us a natural order for evaluating rules. When the rules are

evaluated in this order, the result is a unique fixpoint which usually corre-

sponds well to our intuitive reading of a stratified program.

In this section, we have covered the most basic features in deductive

database. Deductive rules which can be used to deduce new tuples are talked

about and the use of recursive rules for recursive querying is presented. The

semantics of the rules are defined precisely using both least model and least

fixpoint. We have also covered the negation feature, the problem it brings,

and how to solve it. For more details, please refer to [41].

2.3 Object-Oriented Databases

The object-oriented paradigm became very popular in the 1980’s. It has

been applied in many areas, such as the programming langauges Java, C++,

C#. Object-oriented databases support more complex object structure than

the flat table in relational databases. Object identity, complex object and

typing, class, inheritance, overriding and blocking, multiple inheritance and

conflict handling, method encapsulation, overloading, late binding, and poly-

morphism are some main features in object-oriented databases.

2.3.1 Object identity

In object-oriented database systems, data objects have an object identifier

(oid), which is some value that is unique in the database across time. The

database management system is responsible for generating oids and ensuring

that an oid identifies an object uniquely over its entire lifetime. Many de-
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Figure 2.1: An inheritance diagram

ductive object-oriented database systems, including Florid [22], Rock & Roll

[4], and Rol [30] implement object-identifier using OIDs.

2.3.2 Complex object and typing

In relational database systems, only a small, fixed collection of data types

(e.g., integers, dates, strings) are supported. However, in the real world

and in many application domains, much more complex kinds of data must

be handled. In order to meet such applications’ requirement, the database

management systems must be able to support complex data types which are

defined by the applications.

2.3.3 Class, inheritance, overriding and blocking

In the object-oriented paradigm, objects are defined in terms of classes. A

class is the model, or pattern, from which an object is created. A class

defines some properties, including attribute and behaviors (methods) such

that all the objects defined by the class have the same properties.
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Not only objects are defined by classes, object-oriented systems allow

classes to be defined in terms of classes. As Figure 2.1 shows, undergraduate

class and graduate class are all kinds of student class. In object-oriented

terminology, undergraduate and graduate are all subclasses of the student

class. Sometimes, we said undergraduate ISA student and graduate ISA

student. Similarly, the student class is the superclass of undergraduate and

graduate.

Each subclass can inherit all the properties from its superclass, such as

attributes name, GPA, and method tuition() are inherited by the under-

graduate and graduate subclasses. Besides these inherited properties, the

subclasses can have their own properties, such as year in undergraduate and

phd in graduate.

Subclasses can also override the properties from its superclass and provide

specialized implementations for the properties, such as undergraduate class

overrides the tuition() method so that the tuition() method has a different

specialized interpretation in undergraduate class.

Subclasses can also block the properties that they do not want to inherit

from their superclasses, such as graduate class blocks the GPA so that GPA

will not be inherited from the student class. Notice we use an arrow with a

dash to block a property as shown in Figure 2.1.

2.3.4 Multiple inheritance and conflict handling

In the previous section, we covered inheritance (the feature of inherit) and

this is a good place to begin discussing multiple inheritance, which is one of

the more powerful and challenging concepts in the object-oriented paradigm.
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submarinemotorised_vehicle water_vehicleISA ISAsize sizevehicleISA ISA
Figure 2.2: A multiple inheritance diagram

As the name implies, multiple inheritance allows a class to inherit proper-

ties from more than one class. This is a great idea which models the real

world more naturally and there are many real-world examples of multiple

inheritance. For example, parents are a good example of multiple inheri-

tance. Each child has two parents and inherits the properties from his/her

parents. In some object-oriented languages, such as C++, multiple inheri-

tance is supported. However, multiple inheritance can significantly increase

the complexity of a system and bring many problems, such as multiple in-

heritance conflict. Multiple inheritance conflict occurs when a class inherits

several commonly named properties from its superclasses.

Figure 2.2 shows a multiple inheritance example. Class submarine has

two superclasses: motorised vehicle and water vehicle which are subclasses

of vehicle. As we can see, size is defined in both motorised vehicle and

water vehicle. Thus, submarine does not know which size attribute it should

inherit.

Many techniques are used to resolve such conflicts. Such as choosing the

first in the list of superclass in ORION [24]. POSTGRES [37] do not allow
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the creation of a subclass that inherits conflicting attributes. O2 [19] allows

the explicit selection of the properties to inherit and emphasizes the path

along which the property is to be inherited from. IRIS [18] uses the type

information to resolve conflicts.

Many of these techniques examine neither the semantics of the properties

involved in a conflict situation nor the reasons for the conflict. In [28], such

conflicts are resolved by using a Conflict Resolution Algorithm considering

the semantics of the properties and the reasons for the conflict. The tech-

niques include redesigning the schema, removing redundant ISA relationship,

redefining an overload property, renaming properties, factoring attributes to

a more general class, and explicitly selecting the desired property.

Redesigning the schema is used when the schema design is poor or erro-

neous. For example, given a subclass, the intersection of its superclasses may

be empty. Therefore, the subclass objects can not exist in the real world and

the schema should be redesigned.

Since ISA relationship is transitive, it is possible that there exist redun-

dant ISA relationship in the schema design. For example, if there is a ISA

relationship between submarine and vehicle and the ISA relationship be-

tween submarine and water vehicle is dropped. Suppose the vehicle class

also defines the attribute size. In this case, we can remove the redundant

ISA relationship between submarine and vehicle since submarine is a mo-

torised vehicle which is a vehicle. Therefore, multiple inheritance is changed

to single inheritance and the conflict problem is solved.

Suppose in Figure 2.2, the submarine class also defines its own size at-

tribute which redefines the size attribute from its superclasses. Therefore,
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the submarine has its own size attribute and does not need to worry about

which class the attribute size it should inherit from.

Given a subclass, the inherited properties of its superclasses may have

the same name but different semantics. For example in Figure 2.2, if size

in class motorised vehicle means weight while the size in class water vehicle

means capacity, then renaming is recommended to resolve the conflict by

changing the name of size in motorised vehicle to weight and the name of

size in water vehicle to capacity.

When the conflicting inherited attributes have the same semantics, we

can factor the attributes to a more general class. For example, the size

attribute can be moved to the more general class vehicle. In this case, both

motorised vehicle and water vehicle do not have size attribute and inherit it

from the general class vehicle. The submarine can also inherit it from the

general class vehicle without the conflict problem.

Another way to solve the same semantics conflicting attributes is by ex-

plicitly selecting the desired property. The submarine can explicitly select

the class name of the size attribute it wants to inherit from.

2.3.5 Method encapsulation, overloading and late bind-

ing

In the object-oriented paradigm, methods are used to describe the behaviors

of objects. Method encapsulation is defined by having methods defined within

the class definitions instead of outside of class scope.

The method is identified by its name, the return type and its list of

arguments. When two methods with the same name but different list of



25

arguments (including the difference of the number of arguments, the types of

the arguments and the order of the types), then we say one method overloads

another method.

A subclass may implement a method to override that in its superclass.

Method resolution that determines which implementation is associated with

a given method name and class at runtime, is known as late binding. Sup-

pose Manager ISA Employee and bonus() is a method implemented in both

Manager and Employee. When a bonus() message is sent to an instance of

Employee who is also a manager, the bonus() method in Manager class is

executed instead of bonus() method in Employee class if late binding is sup-

ported in the system. Method late binding is also known as dynamic binding

since the method resolution is determined at runtime instead of compile time.

2.3.6 Polymorphism

Inheritance makes another key object-oriented concept polymorphism pos-

sible. In a programming language definition, it is used to express the fact

that the same message (method name) can be sent to different objects and

interpreted in different ways by each object. In this meaning, it is equiva-

lent to the definition of method late binding. However, polymorphism has

some other meanings. For example, motorcycle and car are subclasses of

vehicle class. Then we can group the motorcycle objects and cars objects to-

gether in a set with type vehicle. In this way, polymorphism makes different

kinds of objects organized together, and each object retains their individual

properties.



Chapter 3

XDO2 Database Example

In this chapter, using an example, we demonstrate many of the features

of the XDO2 language. We show an XDO2 database example to moti-

vate the discussion of XDO2 query language. The database presented is

Person Company Employee, which combines features from XML, deductive

databases, and object-oriented databases.

In section 3.1, we present the database schema using the ORASS model

[17]. The schema is extended to include the deductive rules and the object-

oriented features such as class hierarchy relationships (relationships of class

inheritance). We also briefly explain how to express deductive rules in our

XDO2 database. In section 3.2, we present the XML database data, includ-

ing the XML extensional data element facts, intentional data which are the

deductive rules, and the class hierarchy relationships. An XDO2 query with

its result is also presented. The syntax and semantics of the XDO2 language

are presented in chapter 5 and 6.

26



27root companyperson employee cno namepno ISAname salaryaddressstreet city birthyear, D:2004 sex age bacheloreno +hobbyspousepno pno
Figure 3.1: Person Company Employee ORASS schema diagram

3.1 Schema and Rules

The ORASS schema model [17], which captures more schematic information

than any other XML schema models, is used and extended to include the

deductive and inheritance features as shown in Figure 3.1. Notice in ORASS

schema model, there are object classes and attributes which are different

from elements and attributes as in XML. The elements with ID attribute

in XML are mapped to object classes while the remaining elements in XML

are mapped to attributes in ORASS. All the attributes in XML are mapped

to attributes in ORASS. In the schema diagram, root is the XML document

root, which contains object class person and company shown in rectangles.

The person object class has an attribute pno which uniquely identifies

the person object and the pno identifier attribute is shown as a filled circle

in the schema diagram. It also includes attribute name, composite attribute

address which contains street and city, birthyear with a default value 2004

indicated by prefixing character D before 2004, sex, and object class spouse

which contains pno referring to person.

Since birthyear is already defined in the person class, to avoid duplicate
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information, it is not advisable to define the age for person. Another reason

is that the age attribute needs to be updated once a year. However, the

age attribute is often used as part of a query. Therefore, it is better to

define age as a derived attribute. The person object class has two derived

attributes, age and bachelor which are indicated by dashed circles in the

schema diagram. Derived attribute age is used to calculate the age of a

person from the birthyear. Derived attribute bachelor is used to indicate

whether a person is a bachelor or not.

The company object class has an attribute cno which uniquely identify the

company object. It also includes attribute name and object class employee.

The employee object class who is a subclass of person object class in-

herits all the attributes, object classes, and derived attributes from person

class. The inheritance relationship is denoted by ISA diamond in the schema

diagram. The employee object class has its own identifier eno, the candidate

identifier pno indicated by a filled circle inside a circle referring to the person

object, and two extra attributes salary and hobby. Hobby is a multi-valued

attribute as indicated by “+” which means an employee may have one or

more hobbies.

In this example, we can see the two new features that are not present in

XML databases: derived attribute and class inheritance. Class inheritance

is supported in current XML Schema [20]. We now highlight how to de-

fine the derived attributes of object classes. In object-oriented programming

languages, methods are defined using functions or procedures and are encap-

sulated in class definitions. In deductive databases, rules are used instead

of functions and procedures. By analogy, derived attributes or methods in
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XDO2 are defined using deductive rules and encapsulated in class definitions.

In the following, we use deductive rules to define the method age and bachelor

encapsulated in object class person.

$p/age : $a :- /root/person : $p/birthyear : $b, $a = 2004− $b.

This rule says if there is a person element under the root element, and

the person has sub-element birthyear, then the age is equal to 2004 minus the

birthyear. In the method age above, the notation “:-” means if a substitution

of all variables to values makes the right hand side true, then the left hand

side is also true. The notation “:” binds the value of the left hand side to the

right hand side. If the left hand side is an object class, then the right hand

side binds to the object identifier, such as $p binds to the person’s identifier.

Otherwise, it binds to the value of the left hand side. The single-valued

variable is denoted by a “$” followed by a string literal.

$p/bachelor : true :- /root/person : $p/[sex : “Male”, not(spouse : $s)].

This rule says if a person element under root element has an attribute sex

with string value “Male”, and this same person does not have spouse, then

the derived attribute bachelor of the object class person has boolean value

true. The two boolean value true and false are reserved in the language. The

notation “[ ]” in the bachelor method above is used to group the attributes,

elements or methods which are directly defined under the same parent ele-

ment, such as person in this case. The notation “not” negates the existence

of the enclosed expression and is similar to not-predicate.
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<root>

<person pno="p1">

<name>John</name>

<address>

<street>King</street>

<city>Ottawa</city>

</address>

<birthyear>1975</birthyear>

<sex>Male</sex>

</person>

<person pno="p2">

<spouse pno="p3" />

<name>Mike</name>

<address>

<street>Albert</street>

<city>Ottawa</city>

</address>

<birthyear>1954</birthyear>

<sex>Male</sex>

</person>

<person pno="p3">

<spouse pno="p2" />

<name>Mary</name>

<address>

<street>Albert</street>

<city>Ottawa</city>

</address>

<birthyear>1958</birthyear>

<sex>Female</sex>

</person>

<company cno="c1">

<name>Star</name>

<employee eno="e1" pno="p1">

<salary>6000</salary>

<hobby>Tennis</hobby>

<hobby>Soccer</hobby>

</employee>

<employee eno="e2" pno="p2">

<salary>4000</salary>

<hobby>Tennis</hobby>

</employee>

</company>

</root>

(a) XML extensional database

% Rule R1 defines that the age of a

% person is 2004 minus his/her

% birthyear.

(R1) $p/age : $a :- /root/person : $p/

birthyear : $b, $a = 2004 - $b.

% Rule R2 defines that a person is a

% bachelor if he is a male and without

% spouse.

(R2) $p/bachelor : true :- /root/

person : $p/[sex : "Male",

not(spouse : $s)].

(b) XML intentional database

employee ISA person

by employee.pno ISA person.pno

(c) XML class hierarchy relationships

Figure 3.2: Person Company Employee database
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3.2 Data and Query

The data or instance of the Person Company Employee database is shown

in Figure 3.2. For highlighting, we also include the definitions of deductive

rules and definitions of class hierarchy relationships which are defined in

the schema of the XDO2 database. There are three parts to the database:

the XML extensional database, the XML intentional database, and the XML

class hierarchy relationships. The XML extensional database contains the

XML data element facts with their tree structure. The XML intentional

database contains the deductive rules which can be used to derive new XML

data elements or attributes from the extensional database. The XML class

hierarchy relationships define the object class hierarchy in the database such

as employee is a subclass of person. Storing the deductive rules and class

hierarchy relationships in the XML database system, enables querying using

deductive rules and the class hierarchy, as shown in the following example.

Example 3.1. This query retrieves the employees’ age and salary who are

a bachelor, with age less than 30, and salary larger than 5000.

/db/youngRichBachelor : $e/[age : $a, payroll : $s] ⇐ /root/company/

employee : $e/[age : $a, bachelor : true, salary : $s], $a < 30,

$s > 5000.

Notice the query format is similar to the deductive rule used to describe

methods. The notation “⇐” separates the return format of the query from

the query and conditional part. The left hand side is used to define the XML

result format, like in the return clause in XQuery, and the right hand side

is the query and the conditional parts like the for, let and where clauses in

XQuery. Therefore, our XDO2 query language is more simple and compact
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with only one line of some predicate expressions instead of FLWR clause in

XQuery. With the deductive rules and the inheritance feature defined in the

XML database, the user can directly query the attributes or methods both in

employee and its superclass person, such as age and bachelor in the example.

Using the XDO2 database in Figure 3.2, only employee ‘e1’, whose pno

is ‘p1’ satisfies the conditions. Using the youngRichBachelor element and

its two sub-elements age and payroll for the result format, the query result

is as follows.

<db>

<youngRichBachelor eno="e1">

<age>29</age>

<payroll>6000</payroll>

</youngRichBachelor>

</db>

Notice $e binds to the object identifier value of the employee object, i.e.,

eno value. The attributes of youngRichBachelor, age and payroll are from

the derived attribute age of person object ‘p1’, and salary of employee object

‘e1’ respectively.



Chapter 4

XDO2 Language Features

In the previous chapter, we have already given a typical XDO2 database ex-

ample to motivate the discussion of our XDO2 language. In that example, we

present some important features such as the deductive rules and inheritance

to simplify the query. However, the language features are not covered com-

pletely. In this chapter, we provide a more detailed coverage of the features

that XDO2 language has.

As we know, the XDO2 language combines the techniques from XTree

[10], deductive databases and object-oriented databases. Therefore, most of

the salient features of XDO2 language are from the three paradigms. From

XTree, we can get a more compact and simple query language than XPath

[13] since XTree is designed to have a tree structure while XPath does not.

XTree can also be used to define the query return format which effectively

avoids the nested structure as in XQuery [6]. In XTree, multi-valued variables

are explicitly indicated, and their values are uniquely determined while in

XQuery, there is no syntactic difference between single-valued variables and

multi-valued variables. These multi-valued variables are manipulated to have

33



34

some natural built-in functions in an object-oriented fashion. XTree can also

explicitly distinguish the XML structure or schema from the XML data value,

supporting schema querying naturally. Unlike in XQuery, the schema of XML

and XML data are bound to the variables together.

In deductive databases, negation is one of the most important features

which negates the predicate. It makes the language more meaningful and

powerful. In XDO2 language, we will use the not-predicate as presented in

[26] for negation querying instead of using logical negation as in deductive

databases and in XQuery. It will be explained in more detail later. Another

important feature is that recursive queries are supported naturally using

recursive rules which makes the language more powerful.

There are many features in the object-oriented paradigm. Some of the

main features include object identity, complex object, typing, class inher-

itance, multiple inheritance with conflict handling mechanism, overriding,

blocking, method encapsulation, method overloading, late binding, and poly-

morphism. As we know, complex object is the feature used to model real

world objects. However, in XDO2, we consider the XML document as a tree

structure and use the XML model as the basis. Therefore, we are not going

to talk about the complex object feature in XDO2.

This chapter is organized as follows. Section 4.1 presents those XDO2

features from XTree. It includes four features. One is compact and simple

properties compared to XPath. Another is single return format expression

which differs from nested queries with plain text as in XQuery. The third one

is the explicit use of multi-valued variables with its object-oriented fashion

built-in functions. And the fourth one is separating structure from value.
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Section 4.2 covers the XDO2 deductive features which includes negation

and recursion. Section 4.3 covers the XDO2 features from object-oriented

databases.

4.1 XDO2 Features from XTree

The major contribution of XTree is the use of square bracket [ ] to group the

same level attributes and/or elements together so that multiple navigational

paths are grouped together. As a result, the XTree [10] language corresponds

to the XML tree structure and is more suitable for XML querying than XPath

[13] which is designed as one navigational path. Since our XDO2 language

is designed based on XTree, our XDO2 query language support the features

from XTree technique naturally. Due to the XDO2 language has features

from deductive and object-oriented paradigm, there are some notation dif-

ferences and extensions from XTree (XTreeQuery) which are summarized as

follows,

1. Stru : value term is used in XDO2 instead of stru → value and stru ←
value used in querying and result format as in XTreeQuery.

2. There are query, where and construct clauses used in XTreeQuery while

there is only one clause with format result ⇐ conditions in XDO2.

result is similar to the construct clause in XTree and the conditions

consist of a list of expressions which are equivalent to query and where

clauses in XTree.

3. In XML, the order of sub-elements is important and thus we introduce

list-valued variables in XDO2 as an extension of set-valued variables in
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XTree.

4.1.1 Simple and compact

An XPath [13] expression is just a linear path to a target XML node set.

In the querying part of a query, one XPath expression can only bind one

variable. However, XDO2 use square bracket [ ] to group the same level

attributes, elements and methods together so that it has a tree structure

which is similar to the structure of an XML document. In the querying part

of a query, one XDO2 expression can bind multiple variables. Therefore,

when a user requires data from many paths, only one XDO2 expression is

needed, and the XPath expressions will be much more complex.

Example 4.1. To find the year and title of each book, and its authors’ last

name and first name.

XDO2 expression:

/bib/book/[@year : $y, title : $t, author/[last : $l, first : $f ]]

XPath expressions:

$book in /bib/book, $y in $book/@year, $t in $book/title, $author in

$book/author, $last in $author/last, $first in $author/first

From the two expressions above, we can see the first XDO2 expression is

much more simple and compact than the second XPath expressions although

they express the same meaning. We also notice the XDO2 expression has

only four variables defined which are the user required information while

the XPath expressions need six variables. The reason is because the XPath

expressions need extra $book and $author defined to keep the correlation

between the variables.
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4.1.2 Compact query return format

XDO2 expressions can not only be used to bind variables in the querying

part, but also can be used to define the result format. For the symbol “:”, if

the right side is a single-valued variable, we just bind the value in the current

iteration to the left side; if the right side is a multi-valued variable, we bind

all the values in the set or list to the left side. Unlike the return clause in

XQuery that often mixes XML plain text, enclosed expression and even sub-

queries, here the result construction part is just an XDO2 expression without

nesting, which is very simple and easy to read.

Example 4.2. To list the titles and publishers of books which are published

after 2000.

XDO2 query expression:

/result/recentbook/[title : $t, publisher : $p] ⇐ /bib/book/[@year : $y,

title : $t, publisher : $p], $y > 2000.

XQuery expression:

for $book in /bib/book, $y in $book/@year, $t in $book/title,

$p in $book/publisher

where $y > 2000

return <result><recentbook>{$t}{$p}</recentbook></result>

As we can see from the result construction part of both XDO2 and

XQuery, only one XDO2 expression is used for the query result format while

in XQuery, the XML plain text (element tags) is mixed with the XPath

expressions.
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4.1.3 Aggregate functions

In XDO2, multi-valued variables are explicitly indicated and include list-

valued and set-valued variables. List-valued variables are explicitly indicated

by angle bracket < >. Set-valued variables are explicitly indicated by curly

braces { }. Object-oriented fashion built-in aggregate functions are sup-

ported through the use of multi-valued variables. Suppose a multi-valued

variable {$num} or <$num> binds to a set or a list of numbers, then the

aggregate functions supported are as follows,

{$num}.max() or <$num>.max() maximum value in the set or list

{$num}.min() or <$num>.min() minimum value in the set or list

{$num}.count() or <$num>.count() number of items in the set or list

{$num}.sum() or <$num>.sum() sum of values in the set or list

{$num}.avg() or <$num>.avg() average value of items in the set or list

Example 4.3. List the title of the books which has more than 1 author.

XDO2 query expression:

/result/multiAuthorBook/title : $t⇐ /bib/book/[title : $t, author : <$a>],

<$a>.count() > 1.

XQuery expression:

for $book in /bib/book, $t in $book/title

let $a in $book/author

where count($a) > 1

return <result><multiAuthorBook>{$t}</multiAuthorBook></result>

In XQuery, there is no syntactic difference between single-valued variables

and multi-valued variables. The multi-valued variables are defined in the let

clause. However, in XDO2, the multi-valued variables are explicitly indicated
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by surrounding angle brackets < > (curly braces { }). We also noticed

that the object-oriented fashion built-in aggregate functions are supported

in XDO2, such as {$a}.count() in this example. However, in XQuery, the

built-in aggregate functions are supported in function based fashion, such as

count($a).

4.1.4 Separating structure and value

One of the disadvantages of XPath is that the variable which binds to one

XPath expression denote both the structure of the element (attribute) and

the value of the element (attribute). While in the XDO2 language, we can

separate the two parts using term stru : value. On the left of : symbol stru

denotes the structure while the right of : symbol value denotes the value.

Example 4.4. To obtain some sub-element with value “John” in some per-

son element.

XDO2 query expression:

⇐ /root/person/$ele : “John”

XQuery expression:

for $b in /root/person/*

where string($b) = “John”

return local-name($b)

Notice we omit the result format expression in the XDO2 query and the

variable $ele with its value pairs are returned. As we can see from this

example, in XDO2, the XML element tags (attribute names) are separated

from the values naturally because of the term structure stru : value used.

However, in XQuery, we have to use symbol “*” (all) since the structure is



40

unknown and have to use two built-in functions string() and local-name() to

get the values and element tags (attribute names) respectively.

4.2 XDO2 Features from Deductive Databases

In deductive database, deductive rules are used to derive new information.

There are two important issues in deductive database. One is negation which

negates the predicate and makes the query more meaningful or powerful. We

will use the not-predicate [26] for querying instead of conventional logical

negation. The other one is recursive querying which directly uses the re-

cursive deductive rules and makes the query more powerful. In this section,

we present the two issues in our XDO2 languages and make these queries

possible.

4.2.1 Negation

In deductive databases, negation makes the rules more powerful and queries

more meaningful. However, it complicates the query’s interpretation and

evaluation. To represent negation in XDO2, we choose the not-predicate [26]

instead of the conventional logical negation symbol “∼”, which just negates

the boolean expression. It has been noted in [26] that the not-predicate is

not always equivalent to “∼” in negation expression. The main difference

between the not-predicate and “∼” lies in the interpretation of the uninstan-

tiable variables (i.e. variables that do not appear in any positive expression

in the body of the rule or query) in the negation expression. Otherwise,

they are equivalent. Using the not-predicate, the uninstantiable variables



41

are existentially quantified while they are universally quantified using “∼”.

We illustrate the difference in example 4.5 as follows.

Example 4.5. Consider a query that retrieves all the bachelors, i.e., a male

person without a spouse.

(Q4.5.1) /db/bachelor : $p ⇐ /root/person : $p/sex : “Male”,

$p/not(spouse : $s).

Using the not-predicate, the uninstantiable variable $s is existential in

nature and Q4.5.1 is interpreted as follows,

∀$p(/root/person : $p/sex : “Male”∧ ∼ ∃$s($p/spouse : $s)

→ /db/bachelor : $p).

This interpretation says for any person $p, if $p is a male and there

does not exist a spouse of $p, then $p is a bachelor. This interpretation

corresponds to the user’s meaning.

However, in order to express the query using “∼” for negation expression,

it is not correct if we simply change “not” in Q4.5.1 to “∼” as shown in

Q4.5.2,

(Q4.5.2) /db/bachelor : $p ⇐ /root/person : $p/sex : “Male”,

$p/ ∼ (spouse : $s).

Using “∼”, the uninstantiable variable $s is universally quantified and

Q4.5.2 is interpreted as follows,

∀$p∀$s(/root/person : $p/sex : “Male”∧ ∼ ($p/spouse : $s)

→ /db/bachelor : $p).

This interpretation says for any person $p, for any $s, if $p is a male

and $p do not have spouse relationship to $s, then $p is a bachelor. So only

those person who have spouse relationship to everything do not belong to
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the result and the others belong to the result. Therefore, this interpretation

does not correspond to the user’s meaning. On the other hand, from Clark’s

safe computation rule [14], Q4.5.2 is defined as a not safe query since there

exist uninstantiable variables in the negation expression.

In order to make the query safe while still use “∼” as negation expression,

a new deductive rule is needed to express the query as follows,

(R3) $p/married : true :- /root/person : $p/spouse : $s.

(Q4.5.3) /db/bachelor : $p ⇐ /root/person : $p/sex : “Male”,

$p/ ∼ (married : true).

With the help of a deductive rule R3 that hides the uninstantiable variable

$s from the query, Q4.5.3 is a safe query and the interpretation is what the

user required. However, using the “∼” as negation expression, users may

need to define new rules for some simple queries. This is not acceptable

as users should not need to define and add deductive rules during querying.

Moreover in a multi-user environment, this could lead to unpredictable results

if different users declare the same rule more than once differently. Therefore,

we use the not-predicate instead of the conventional logical negation symbol

“∼” in a negation expression.

As we know, XQuery [6] provides a function not() which needs a boolean

value as its argument and similar to the meaning of “∼”, and it does not

support the not-predicate operator. The function not() is usually combined

with some and every quantifiers for those universal and existential queries.

However, by using the logic not-predicate operator alone in XDO2, we can

achieve the same expressive power and make our queries more simple and

compact. Using not-predicate, nested negation and negation on sub-tree
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features are possible and shown in the two examples as follows.

Example 4.6. Consider the following query that retrieves the company

name of companies where each employee of the company has hobby “Tennis”.

XDO2 query expression:

/db/allLikeTennisCom : $n ⇐ /root/company : $c/name : $n,

$c/not(employee/not(hobby : “Tennis”)).

XQuery expression:

for $c in /root/company

where EVERY $e IN $c/employee SATISFIES

SOME $h IN $e/hobby SATISFIES string($h)=“Tennis”

return <db><allLikeTennisCom>{string($c/name)}
</allLikeTennisCom></db>

Notice in the XDO2 query, the company may have many employees and

employees may have many hobbies. The interpretation of this query says if

the company does not exist an employee who does not have hobby of tennis,

which is equivalent to say that each employee has hobby of tennis, then the

company’s name is in the result. Notice in the nested negation term, there is

an uninstantiable variable omitted for employee. That is in the negation term

not(employee/not(hobby : “Tennis”)), employee can be equivalently written

as employee : $e and $e is the uninstantiable variable. Therefore, the not-

predicate should be used instead of “∼” for the first not() operator. But for

the second not() operator, which is the one of not(hobby : “Tennis”), since

no uninstantiable variable exists in the term, we can use ∼(hobby : “Tennis”)

instead.

The equivalent XQuery expression is also given. As we can see, our XDO2
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query using the not-predicate is much more simple and compact compared

with the XQuery which needs the key word “EVERY”, “IN”, “SATISFIES”

to express the same meaning.

Example 4.7. Consider the following query that retrieves the companies

which do not have employees who have sex “Male” and birthyear 1975.

XDO2 query expression:

/db/company : $c ⇐ /root/company : $c/not(employee/

[sex : “Male”, birthyear : 1975]).

XQuery expression:

for $c in /root/company

where NOT (SOME $e IN $c/employee SATISFIES

($e/sex = “Male” AND $e/birthyear = 1975))

return <db>{$c}</db>

In XDO2 query, note the term enclosed by the not() operator is a sub-

tree structure instead of a path. The meaning is that the company does not

have the sub-tree pattern of the employee element with two sub-elements:

sex with value “Male” and birthyear with value 1975.

The equivalent XQuery is presented in a complicated format. Notice the

“NOT” in XQuery is used to negate the boolean expression and needs to

combine with SOME and EVERY for those existential and universal queries.

Strictly speaking, $e/sex which binds to the structure and value together

should not compare with the value “Male”. But XQuery allows it for sim-

plicity.
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4.2.2 Recursion querying

Recursion is a very important feature of deductive databases. In deductive

databases, it is natural to have the recursive query using recursive deductive

rules. Similarly, in XDO2, we also support recursive deductive rules and

make the recursive query possible to extend the expressive power of our

XDO2 language.

Example 4.8. Suppose there is a sub-element child directly under the person

element and the following deductive rules are defined in the database.

(R4) $p/descendant : $c :- /root/person : $p/child : $c.

(R5) $p/descendant : $d :- /root/person : $p/child : $c,

$c/descendant : $d.

Notice the variables in the rules are bind to the object identifiers if the

left part of the symbol “:” is an object class, such as $c, $p, $d are all bind

to the object identifiers in the example. The rule R4 says for each person

identified by $p, if $c is his/her child, then $c is a descendant of $p. The rule

R5 says if $c is a child of $p, and $d is a descendant of $c, then $d is also

a descendant of $p. Note the predicate descendant is recursively defined.

Using the rules defined, we can write a recursive query to retrieve all the

descendant of a person ‘p1’ as follows,

⇐ /root/person : ‘p1’/descendant : $d.

Suppose there is a data instance in Figure 4.1. After we get the fixpoint

of the set of rules which computes all the descendants of all the persons using

the rules, we can naturally get the result $d = ‘p2’, $d = ‘p3’.
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<root>

<person pno="p1">

<child pno="p2"/>

</person>

<person pno="p2">

<child pno="p3"/>

</person>

<person pno="p3"/>

</root>

Figure 4.1: An XML instance

4.3 XDO2 Features from Object-Oriented

Databases

Object-oriented databases appeared in the late 1980’s and the object-oriented

technique has been a very hot topic in the past decade. In this section, we

will present the object-oriented features used in our XDO2 system.

4.3.1 Object identity

Each object in an object-oriented database has an identifier to uniquely iden-

tify an object. In XDO2, we use an object-identifier to identify an object.

Therefore, we assume for each object class definition in the schema of XML,

an ID required attribute must be defined as the identifier. As in Figure 3.1,

the pno is defined as an ID attribute of person object class. The cno is de-

fined as an ID attribute of company object class and the eno is defined as an

ID attribute of employee object class.
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4.3.2 Typing

In the object-oriented paradigm, strong typing is important and we support

typing in XDO2. In the previous examples, we use : symbol to specify the

value of the attribute or element. However, a user can use :: symbol to

specify the type of the attribute or element by writing the type or single-

valued variable on the right side of :: symbol.

Example 4.9. Find the element tag with type string and element tag with

type person.

⇐ /person/[$ele1 :: string, $ele2 :: person]

In this query, we omit the result format expression. Only the variable with

its value pairs are returned. We bind the element tag to $ele1 which has type

string. We also bind the element tag to $ele2 which has type person. From

the database schema diagram of Figure 3.1, $ele1 = name, $ele2 = spouse

and $ele1 = sex, $ele2 = spouse satisfy the query.

4.3.3 Inheritance

Inheritance is one of the most important features in object-oriented databases.

It enables the reusability of the schema. In XDO2, the inheritance semantics

is specified in the XML schema using ISA diamond as in Figure 3.1. The

attributes, sub-elements, and encapsulated methods in the superclasses can

be inherited by the subclasses. As in Figure 3.1, the employee object class

inherits all the properties from its superclass person.

Example 4.10. List the name and age of employee ‘e1’.
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Figure 4.2: Multiple inheritance in ORASS

/db/person e1/[name : $n, age : $a] ⇐ /root/company/employee : ‘e1’/

[name : $n, age : $a].

Notice the sub-element name and method age are not defined directly

under the object class employee. The employee object class inherits these

properties from its superclass object person and use them directly as normal

sub-elements.

4.3.4 Multiple inheritance

Multiple inheritance means one object class can have more than one super-

class. A problem that arises when multiple inheritance is supported is the

inheritance conflict problem, that is ambiguity may arise when the same

property is defined in more than one superclass. XDO2 resolves such con-

flicts using the explicit selection technique adopted from [28], which has been

roughly explained in chapter 2. The explicit selection technique involves in-

dicating explicitly which class a property is to be inherited from.

Suppose Figure 4.2 is part of the ORASS schema model. The class sub-

marine is not only a subclass of motorised vehicle but also a subclass of
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water vehicle. Since size is defined in both the class motorised vehicle and

class water vehicle, there is a conflict and the submarine class does not know

which size attribute it should inherit. So in the schema, we need to explicitly

select which size attribute to inherit. This can be achieved by the following

statements,

submarine ISA motorised vehicle, water vehicle

by submarine.mid ISA motorised vehicle.mid

by submarine.wid ISA water vehicle.wid

with size INHERITED water vehicle

The above statements define that the submarine is a subclass of mo-

torised vehicle and water vehicle and the attribute size is inherited from

class water vehicle instead of other classes.

If there is a conflict and there is no conflict resolution declaration, then by

default the property is inherited from the first superclass in the superclass list.

In this case without the statement of with size INHERITED water vehicle,

the conflicting attribute size is inherited from class motorised vehicle by de-

fault.

Other techniques to resolve multiple inheritance conflicts such as redesign-

ing the schema, removing redundant ISA relationship, redefining an overload

property, renaming properties, factoring attributes to a general class are

roughly explained in chapter 2 and can be found in [28].

4.3.5 Overriding

When a subclass defines some attributes which have the same name as the

attributes in its superclass, the attributes defined in the subclass override the
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attributes defined in the superclass and it is known as attribute overriding.

Method overriding is defined similarly as long as the two methods have the

same signature (same method name, same number of arguments and same

type of the arguments in order). We can support the overriding feature in

XDO2 similarly. Because the methods in XDO2 can be considered the same

as the derived attributes and the method overriding is the same as attribute

overriding.

4.3.6 Blocking

When a subclass inherits the properties from its superclass, by default all

the properties of the superclass, including the attributes and methods are

inherited. But in reality, it is possible that the subclass does not want some

property to be inherited. Therefore, the blocking technique is used here to

handle this problem and it can block the properties to be inherited from the

superclass. As the technique used in [32], we can redefine the property with

a return class of none. Then this property is blocked in the current class as

if never defined.

Refer to the example as in Figure 3.2, if the class employee want to block

the address property from the class person, the following statements can be

used and defined in the schema.

employee ISA person

by employee.pno ISA person.pno

with address BLOCKED FROM person

The above statements define that the employee is a subclass of person

and the attribute address is blocked from person as if the address attribute
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is never defined in employee class. Notice we explicitly specify which class

address is blocked from since multiple inheritance is possible. Therefore, we

can also use blocking technique to block the conflicting properties from some

classes to resolve the multiple inheritance conflicting problem.

4.3.7 Method encapsulation, overloading, and late bind-

ing

Without the object-oriented methods encapsulated or supported in the XML

database, users have to write their own method in the query system to query

the XML data. This will make the query more complicated and prone to

errors. By using the deductive rule methods in the XDO2 database system,

the XDO2 query language can be simplified by using the method directly

like normal properties.

Example 4.11. List all the people who are older than 40 years old and a

bachelor.

/db/oldBachelor : $p ⇐ /root/person : $p/[age : $a, bachelor : true],

$a > 40.

Refer to the Figure 3.2, in this query, the methods age and bachelor which

are defined under class person using deductive rules are directly used in the

query language. Users do not need to define the methods in the query system

but can take the derived properties as a normal sub-element in the query.

In object-oriented paradigm, method overloading means methods may

have the same method name with different arguments. So that one method

name can have multiple different interpretations depends on the arguments



52

list. In the XDO2 language, we support method overloading naturally since

we use deductive rules to define the method. The head of the deductive rule

is the object class, the method name, and the return variables or values. The

pass in arguments are in the body part of the deductive rule. So two methods

with same name are considered as one method with different interpretations,

such as the method descendant in example 4.8.

Because of inheritance, a subclass may implement a method to override

that in its superclass. Method resolution that determines which implementa-

tion is associated with a given method name and class at runtime, is known

as late binding. Suppose manager ISA employee and bonus() is a method im-

plemented in both manager and employee. When a bonus() message is sent

to an instance of employee who is also a manager, the bonus() method in

manager class should be executed instead of the bonus() method in employee

class. In our XDO2 system, we support late binding naturally since we do

not define the type of the variables that are used in the deductive rules or

query. The XDO2 query evaluation combines the compile step and runtime

step so that the method resolution is determined at runtime.

4.3.8 Polymorphism

As we have stated, polymorphism is equivalent to method late binding in pro-

gramming language definitions and polymorphism has some other meanings

which means multiple forms. It makes objects with common characteris-

tics organized together. A good application of polymorphism is in the XML

Schema definition. For example, given an XML document with element root

and a list of person elements. The XML Schema for element root may be as



53

follows.

<xs:element name = “root” type = “rootType” />

<xs:complexType name=“rootType”>

<xs:element name=“person” type=“personType” minOccurs=“0”

maxOccurs=“unbounded” />

</xs:complexType>

From the schema definition above, a list of person elements is expected

under the root element. However, if there are some subclasses of person, such

as employee and student defined, then we can have employee and student

elements as the sub-elements of root if polymorphism is supported in the

system. It is also considered as a valid document to the XML Schema.

Since typing is supported in XDO2 system, it is easy to support the

polymorphism feature. When a type A data is queried, then data of type A

and any data of types that are subtypes of A are considered as valid data.



Chapter 5

XDO2 Language Syntax

In the previous chapters, we have already shown many XDO2 deductive rules

and queries. In this chapter, we will define the syntax of the XDO2 language

formally. For simplicity, we will not consider the typing feature and “//”,

which means multiple levels down.

The values are defined so that they correspond to the XML document

text data, such as the string data of element sex, integer data of element

birthyear, set value data of attribute children of type IDREFS, list value

data of element hobby of a person. Particularly, NULL can be used for the

empty value.

The terms are recursively defined so that they can be used to form the

expressions. Attribute term, element term, attribute value term, and ele-

ment value term are defined so that they correspond to the XML document

attribute or element with optional value bound. Negation term is recur-

sively defined so that XDO2 language supports negation querying using not-

predicate [26]. Grouping term is recursively defined so that XDO2 language

supports tree structure querying as in XTree [10]. Finally, path term is re-

54
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cursively defined similar to navigational path as in XPath [13].

Using the terms, expressions are defined. The deductive rule and query

are just composed of a list of expressions.

Let U be a set of URLs, C be a set of constants, and V be a set of

variables.

The set of constants C contain strings enclosed by “ ”, integers, real

numbers, two boolean values and object identifiers enclosed by ‘ ’. The

object identifiers are all the values of identifiers with ID type in the XML

data. Unlike in XML data both the value of ID type and string type of XML

attribute are enclosed by “ ”, in XDO2 the object id which denotes an object

is enclosed by ‘ ’ and thus is different from the string data enclosed by “ ”.

The set of variables V are partitioned into single-valued and multi-valued

variables. Single-valued variables have format $S where S is a string lit-

eral. Multi-valued variables include set-valued variables with format {$S}
and list-valued variables with format <$S> where S is a string literal. Set-

valued variables denote a set of items without duplicates and the order does

not matter. In XML, only attributes with IDREFS type can have a set of

values and the set-valued variables are used here only. List-valued variables

denote a list of items with duplicates possible, where order does matter. In

XML, the list-valued variables are used to denote the values of the multi-

valued elements such as hobbies of an employee. Particularly, $ is defined

as the anonymous single-valued variable, {$ } is defined as the anonymous

set-valued variable and <$ > is defined as the anonymous list-valued vari-

able.

Definition 5.1. The values are defined as follows,
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1. null is a null value.

2. Let c ∈ C be a constant. Then c is a constant value.

3. A set of object identifiers is a set value. Set values are only used to

denote the values of XML attributes which have type IDREFS. A set

value is only possible to have a set of object identifiers.

4. A list of constant values is a list value. List values denote the value of

the multi-valued XML element, such as the value of hobbies.

Example 5.1.

Constant values: “John”, 30, 4.8, true, false, ‘p2’

Set values: {‘e1’}, {‘p1’, ‘p2’, ‘p3’}
List values: <“John”, “Mary”>, <68742779, 68742556>

Definition 5.2. The terms are defined recursively as follows,

1. Let t be an XML attribute name. Then @t is an attribute term.

2. Let t be an XML element tag. Then t is an element term.

3. Let X be an attribute name or a single-valued variable, and Y a constant

value, a set value, a single-valued variable or a set-valued variable.

Then @X : Y is an attribute value term, and Y denotes the value of the

attribute X.

4. Let X be an element tag or a single-valued variable, and Y a constant

value, a list value, a single-valued variable or a list-valued variable.

Then X : Y is an element value term, and Y denotes the value of the

element X.
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5. Let X be a term. Then not(X) is a negation term.

6. Let X1, . . . , Xn, (n ≥ 2) be a set of terms. Then [X1, . . . , Xn] is a

grouping term.

7. Let X1, . . . , Xn, (n ≥ 2) be a set of terms and X1, . . . , Xn−1 are not

grouping terms or negation terms. Then X1/ . . . /Xn is a path term.

Example 5.2.

Attribute terms: @pno, @birthyear

Element terms: sex, address, age

Attribute value terms: @birthyear : $y, @$attr : {‘p2’, ‘p3’}, @$x : {$y}
Element value terms: name : $n, author : <$a>, $ele : “Male”

Negation terms: not(spouse : $s), not(employee/not(hobby : “Tennis”))

Grouping terms: [age : $a, bachelor : true, salary : $s],

[spouse : $s, name : $n, address/street : $st]

Path terms: person/name : $n, root/[company : $c, person : $p]

Definition 5.3. The expressions are defined exclusively as follows,

1. Let u ∈ U be a URL and P be a path term. Then (u)/P is an absolute

path expression. If URL u is the default one, such as standard input,

we can omit it and use /P instead.

2. Let X be a variable or an object id, and P be a term. Then X/P is

a relative path expression. An instantiable relative path expression is

a relative path expression X/P where either X is some object id, or

the variable X has been defined in some positive terms (which is not a

negation terms or inside a negation term).
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3. Arithmetic, logical expressions are defined using variables, values, ag-

gregate functions and operators in the usual way. Instantiable arith-

metic, logical expressions are arithmetic, logical expressions such that

all the variables inside are defined in some positive terms.

Example 5.3.

Absolute path expression:

(http://www.abc.com/root.xml)/root/person : $p

Relative path expressions: $u/salary, $p/name, ‘p1’/age : $a

Arithmetic or logical expressions: $a = $b * 2, $age > 30,

<$s>.distinct().count() = 3

Definition 5.4. A deductive rule has the form

H :- L1, . . . , Ln.

where H is the head and L1, . . . , Ln is the body of the rule. H is a positive

instantiable relative path expression and L1, . . . , Ln are either absolute path

expressions or instantiable expressions.

Example 5.4.

$p/age : $a :- /root/person : $p/birthyear : $b, $a = 2004 - $b.

$p/bachelor : true :- /root/person : $p/[sex : “Male”, not(spouse : $s)].

Definition 5.5. A query has the form

R ⇐ L1, . . . , Ln.



59

where R is the result format expression and L1, . . . , Ln are the query or con-

ditional expressions. R is a positive absolute path expression and L1, . . . , Ln

are either absolute path expressions or instantiable expressions. If there is

no result format expression specified, we use

⇐ L1, . . . , Ln.

instead.

Example 5.5.

/db/youngRichBachelor : $e/[age : $a, payroll : $s] ⇐ /root/company/

employee : $e/[age : $a, bachelor : true, salary : $s], $a < 30,

$s > 5000.



Chapter 6

XDO2 Language Semantics

In this chapter, we will formally define the semantics of the XDO2 language.

Importantly, given a query, we need to define the semantics of the query

precisely. Our main idea is: firstly, we get all the deductive rules that are used

by the query; secondly, we need to find a minimal model or a least fixpoint

(an XML database) for these deductive rules; thirdly, we use the minimal

model to retrieve and format the results. The challenging part is the second

step for finding a minimal model for a set of deductive rules. In this step, we

need to define a model first and then to define the minimal model. There are

two important definitions needed to be introduced, one is part-of definition

used for XML tree structure and the other one is the satisfaction definition

used for whether an XML tree data satisfies the deductive rule or not.

Definition 6.1. A list L ≡< L1, . . . , Lm > is a sublist of another list L
′ ≡<

L
′
1, . . . , L

′
n > if and only if m ≤ n and ∃ a list < L

′
a1

, L
′
a2

, . . . , L
′
am

>, such

that 1 ≤ a1 < a2 < . . . < am ≤ n, and Li = L
′
ai

for 1 ≤ i ≤ m.

A list L1 is a sublist of another list L2 means L1 is contained in L2
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pertaining the order.

Definition 6.2. A ground substitution θ is a mapping from the set of vari-

ables V - {$ , {$ }, <$ >} to the set of all attribute names, element tags

and the set of all the values except null. Single-valued variables are mapped

to attribute names, element tags and constant value. Set-valued variables

are mapped to set value and list-valued variables are mapped to list value.

Notice we disallow anonymous variables when we deal with semantics. If

anonymous variables are used, we should change them to named variables

where the names have never been used by other variables.

Definition 6.3. A ground term is a term with a ground substitution θ such

that each variable is instantialized to an attribute name, element tag, or a

value. Ground expression is defined similarly.

In the definition of terms in previous chapter, there may have variables

in the terms. Ground term is defined here so that each variable is initialized

and no variables are inside the ground term.

Definition 6.4. A value v is part-of another value v
′
, denoted by v ¹ v

′
, if

and only if one of the following holds,

1. v is null.

2. v is a constant value.

- v
′
is a constant value and v

′
= v;

- v
′

is a list value v
′ ≡< v

′
1, . . . , v

′
n >, and ∃ some value v

′
j for

1 ≤ j ≤ n such that v
′
j = v.
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3. v is a set value. v
′
is a set value and v

′
= v.

4. v is a list value. v
′
is a list value such that v is a sublist of v

′
.

Example 6.1. Some examples on part-of of values,

“John” ¹ “John”

68742779 ¹ <68742556, 68742779>

{‘p1’, ‘p2’} ¹ {‘p1’, ‘p2’}
<“John”, “Mary”> ¹ <“John”, “Smith”, “Mary”>

The definition of part-of is very important in the language semantics

definitions. Informally, a tree A is part-of a tree B means we can find a tree

pattern A inside B. In this definition, we defined the part-of for values. In

the following, we will also define the part-of for ground terms, part-of for

ground absolute path expressions, part-of for XML documents, and part-of

for XML databases. Notice we define a set value is part-of another set value

only when they are equal.

Definition 6.5. A ground term p is part-of of another positive ground term

p
′
, denoted by p ¹ p

′
and its negation, denoted by p � p

′
, if and only if one

of the following holds,

1. p is an attribute or attribute value term with p ≡ p1 : v1 (v1 is null if

p is an attribute term).

- p
′

is an attribute or attribute value term with p
′ ≡ p

′
1 : v

′
1 such

that p
′
1 = p1 and v

′
1 ¹ v1;

- p
′
is a grouping term with p

′ ≡ [p
′
1, . . . , p

′
n] and ∃p′i for 1 ≤ i ≤ n

such that p ¹ p
′
i.
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2. p is an element or element value term with p ≡ p1 : v1 (v1 is null if p is

an element term).

- p
′
is an element or element value term with p

′ ≡ p
′
1 : v

′
1 such that

p
′
1 = p1 and v1 ¹ v

′
1;

- p
′
is a grouping term with p

′ ≡ [p
′
1, . . . , p

′
n] and ∃p′i for 1 ≤ i ≤ n

such that p ¹ p
′
i;

- p
′
is a path term with p

′ ≡ p
′
1/ . . . /p

′
n, and p ¹ p

′
1.

3. p is a negation term with p ≡ not(x) and x � p
′
.

4. p is a grouping term with p ≡ [p1, . . . , pm]. p
′
is a grouping term with

p
′ ≡ [p

′
1, . . . , p

′
n], and ∀pi(1 ≤ i ≤ m), ∃p′j(1 ≤ j ≤ n) such that pi ¹ p

′
j.

5. p is a path term with p ≡ p1/ . . . /pm.

- p
′
is a grouping term with p

′ ≡ [p
′
1, . . . , p

′
n] and ∃p′i for 1 ≤ i ≤ n

such that p ¹ p
′
i;

- p
′

is a path term with p
′ ≡ p

′
1/ . . . /p

′
n such that p1 ¹ p

′
1 and

(p2/ . . . /pm) ¹ (p
′
2/ . . . /p

′
n).

Example 6.2. Some examples on part-of of ground terms,

@birthyear ¹ @birthyear

@birthyear ¹ @birthyear : 1981

person ¹ person

name ¹ name : “John”

address ¹ address/[street : “King Street”, city : “Ottawa”]

person : ‘p1’ ¹ person : ‘p1’/name : “John”

root/person/[name : “John”, address, birthyear : 1975] ¹
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root/person : ‘p1’/[name : “John”, address/[street : “King Street”,

city : “Ottawa”], sex : “Male”, birthyear : 1975]

root/not(employee/not(hobby : “Tennis”)) ¹
root/[employee/[hobby : “Tennis”, hobby : “Soccer”], employee/

hobby : “Tennis”]

From the word meaning of “part-of”, users may think that “part-of”

has a transitivity property. However, because the not-predicate is possible,

the transitivity property fails. For example, employee/not(hobby : “Ten-

nis”) ¹ employee, and employee ¹ employee/hobby : “Tennis”. However

employee/not(hobby : “Tennis”) � employee/hobby : “Tennis”. Therefore,

“part-of” property does not have the transitivity property as the name pos-

sibly implies.

Definition 6.6. Let L = (u)/p be a ground absolute path expression and

L
′
= (u

′
)/p

′
be a positive ground absolute path expression. Then L is part-of

L
′
, denoted by L ¹ L

′
, if and only if u = u

′
and p ¹ p

′
.

Theorem 1. Let O be an XML document in XML database XDB, then O

can be expressed by a positive ground absolute path expression (u)/p. Order

information is retained by giving a constraint that terms in grouping term

are ordered.

Proof . Let O be an XML document with URL u and tree structure of height

n.

1. n = 1, let r be the root of O. Let p = r, then O can be expressed by

(u)/p.
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2. Suppose when n ≤ k, O can be expressed by (u)/p. When n = k +

1, let r be the root of O and c1, . . . , cm be the child elements of r

with height at most k. By assumption, c1, . . . , cm can be expressed

by terms p1, . . . , pm, Then O can be expressed by (u)/r/[p1, . . . , pm].

Since r/[p1, . . . , pm] is a path term, so O can be expressed by (u)/p

with p = r/[p1, . . . , pm].

Our XDO2 query expression has a tree structure using the square bracket

[ ] to group the same level attributes or elements. When querying, the terms

inside the grouping term is logical “AND”, and the order does not matter.

However, by giving a constraint that terms in grouping term are ordered, we

can naturally express the XML tree with one positive ground absolute path

expression.

Definition 6.7. Let O and O
′
be two XML documents. By theorem 1, O

can be denoted as (u)/p and O
′
can be denoted as (u

′
)/p

′
. Then O is part-of

O
′
, denoted by O ¹ O

′
, if and only if u = u

′
and p ¹ p

′
.

Definition 6.8. Let XDB and XDB
′
be two XML databases, which consists

of a set of XML documents. Then XDB is part-of XDB
′
, denoted by

XDB ¹ XDB
′
, if and only if for each O ∈ XDB − XDB

′
, there exists

O
′ ∈ XDB

′ −XDB such that O ¹ O
′
.

Theorem 2. Every instantiable relative path expression can be transformed

to its absolute path expression form.

Proof . Let X/P be an instantiable relative path expression. If X is an

object identifier, let R be the associated path from the root to the object
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identified by X, then the absolute path expression of X/P is R/P . If X

is a variable defined in some positive terms, then X has its associated path

identified by R and the absolute path expression of X/P is R/P .

This theorem is straightforward since instantiable relative path must have

its starting variable or object id defined (which has a path from the root to

the target node), so by replacing the starting variable or object id with its

path, it results in its absolute path expression.

Definition 6.9. Let O be an XML document in XDB, the inheritance com-

pleteness O∗ is an extension of O that takes the inheritance, overriding and

blocking of attributes, elements, and derived properties into consideration.

Definition 6.10. Let XDB be an XML database. The notation of satis-

faction (denoted by ²) and its negation (denoted by 2) based on XDB are

defined as follows.

1. For a ground absolute path expression (u)/p, XDB ² (u)/p if and

only if there exists O ∈ XDB with O∗ = (u
′
)/p

′
such that u = u

′
and

p ¹ p
′
.

2. For a ground arithmetic, logical expression ψ, XDB ² ψ if and only if

ψ is true in the usual sense.

3. For a deductive rule r of the form H :- L1, . . . , Ln, where by theorem

2, H is an absolute path expression and L1, . . . , Ln are either absolute

path expressions, or arithmetic or logical expression, XDB ² r if and

only if for every ground substitution θ, XDB ² θL1, . . . , XDB ² θLn

implies XDB ² θH.
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Example 6.3. Let XDB be the XML database in Figure 3.2. Then we have

XDB ² /root/person/[name : “John”, sex : “Male”]

XDB ² /root/company/employee : ‘e1’/[birthyear : 1975, salary : 6000]

XDB ² /root/company : ‘c1’/not(employee/not(hobby : “Tennis”))

XDB ² <‘e1’, ‘e2’>.count()>1, 29 = 2004 - 1975, 6000 > 5000

The definition satisfaction is defined between the XML database and

the expressions at first. The satisfaction for a deductive rule is also defined

that when the expressions in the body of the rule are satisfied by the XML

database, then the head expression should also be satisfied by the XML

database.

Definition 6.11. Let R be a set of deductive rules. A model M of R is

an XML database XDB that satisfies each rule in R. A model M of R is

minimal if and only if for each model N of R, M ¹ N .

Similar to the model definition for a deductive database with a set of

rules, we also define a model for the XML database with a set of deductive

rules to be an XML database that satisfies each rule. By using the part-of

definition for XML database, we can easily define the minimal model.

Definition 6.12. Let p and p
′
be two positive ground terms. The tree join

operator denoted by ] is defined as follows,

1. p is an attribute term, element term, attribute value term, or ele-

ment value term.

- p
′
is a grouping term with p

′ ≡ [p
′
1, . . . , p

′
n], then p ] p

′
= [p, p

′
1,

. . . , p
′
n];
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- Otherwise, p ] p
′
= [p, p

′
].

2. p is a grouping term with p ≡ [p1, . . . , pm].

- p
′

is a grouping term with p
′ ≡ [p

′
1, . . . , p

′
n], then p ] p

′
= [p1,

. . . , pm, p
′
1, . . . , p

′
n];

- Otherwise, p ] p
′
= [p1, . . . , pm, p

′
].

3. p is a path term with p ≡ p1/. . . /pm.

- p
′
is a grouping term with p

′ ≡ [p
′
1, . . . , p

′
n], then p ] p

′
= [p, p

′
1,

. . . , p
′
n];

- p
′
is a path term with p

′ ≡ p
′
1/. . . /p

′
n.

. p1 = p
′
1, then p ] p

′
= p1/(p2/. . . /pm ] p

′
2/. . . /p

′
n);

. Otherwise, p ] p
′
= [p, p

′
].

- Otherwise, p ] p
′
= [p, p

′
].

The purpose of tree join operator is used to union two path terms together

to form one path term if these two path terms have the same URL. The

common path between the two terms are merged into one path.

Definition 6.13. Let XDB be a set of positive ground absolute path ex-

pressions with XDB ≡ {(u1)/p1, . . . , (um)/pm}. Then tree join operation on

XDB, denoted by ]XDB is generated as for any two expressions ui/pi and

uj/pj in XDB, if ui = uj, then uj/pj is removed and combined into ui/pi

to form an expression as ui/(pi ] pj). When all expressions in XDB have

different URLs, then the XDB is the result of tree join operation.
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Definition 6.14. Let XDB be an XML database, R is a set of deductive

rules defined in XDB. The immediate deductive consequence operator TR

over XDB is defined as follows,

TR(XDB) = ]{θH|H :- L1, . . . , Ln ∈ R and ∃ a ground substitution θ

such that XDB ² θL1, . . . , XDB ² θLn}

The immediate deductive consequence operator is used to generate the

derived properties from the deductive rules.

Definition 6.15. Let XDB be an XML database, R is a set of deductive

rules defined in XDB. The deductive completeness of XDB, denoted by

XDB∗ is generated as follows,

XDB∗ = XDB

while (TR(XDB∗) � XDB∗)
XDB∗ = ]((XDB∗) ∪ TR(XDB∗))

The deductive completeness is generated using the immediate deductive

consequence step by step until no new derived properties come out.

Theorem 3. Let XDB be an XML database and R is a set of rules defined

in XDB. Then XDB∗ is a minimal model of R.

Proof . First we prove XDB∗ is a model of R. From the algorithm of

generating XDB∗, we know TR(XDB∗) ¹ XDB∗. ∀r ∈ R, let r ≡ H :-

L1, . . . , Ln. ∀θ, suppose XDB ² θL1, . . . , XDB ² θLn, then by definition

6.15, we know TR(XDB∗) ² θH. Since TR(XDB∗) ¹ XDB∗, XDB∗ ² θH.

Therefore XDB∗ ² r, and XDB∗ is a model of R.
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Suppose XDB∗ is not a minimal model of R, then ∃ a model N such

that XDB∗ � N . Since XDB∗ is generated by union with TR(XDB∗),
so ∃θH ∈ TR(XDB∗) such that N 2 θH. However, since N is a model,

so N ² θH and result in a contradiction. Therefore XDB∗ is a minimal

model.

Intuitively, the deductive completeness XDB∗ is extended with those

new properties that are derived from the deductive rules and are necessary.

No other properties are inside the XDB∗. So the XDB∗ is a minimal model.

Definition 6.16. Let XDB be an XML database and Q a query. Then the

semantics of Q under XDB is given by TQ(XDB∗) as follows,

TQ(XDB∗) = ]{θA|A ⇐ L1, . . . , Ln and ∃ a ground substitution θ

such that XDB∗ ² θL1, . . . , XDB∗ ² θLn}
where XDB∗ is a minimal model of R and R is the set of deductive rules

used directly or indirectly in L1, . . . , Ln.

Given a query, we need to get those rules that are used by this query.

Then a minimal model of these involved rules is generated using the bottom

up approach similar to Datalog. Finally, the semantics of the query is trivially

defined by a tree join operator.



Chapter 7

Comparison with Related

Works

In this chapter, we will compare our XDO2 language with some other popular

and powerful XML querying languages, such as XQuery [6] which is the

current standard of W3C, and XTreeQuery [10] which is briefly introduced in

section 2.1. We will also compare our XDO2 language with some other logical

querying languages, such as F-logic [23], which combines the object-oriented

paradigm and deductive paradigm elegantly, and a logical foundation for

XML [31].

When we compare the XDO2 language with other languages, we will

compare the expressive power and the features they support both in syntax

and semantics level. This is because in syntax level, some features may not be

supported while they are supported in semantics level for some languages.

For example, the multi-valued variable feature is not supported in syntax

level in XQuery. However, the multi-valued variable feature is supported in

semantics level using the LET clause in XQuery.

71



72

The comparison is based on the expressive power of the query languages

and the features they support both in syntax and semantics level. The fol-

lowing criteria are used:

1. Underlying data: what kind of data the querying supports.

2. Path expressions: how paths are specified in the query.

3. Deductive rule: whether the query language supports deductive rules

as part of querying.

4. Negation: how to express the negation querying, using not-predicate

or using the conventional logical negation.

5. Recursion: how to express recursion, using recursive rules, using recur-

sive querying directly, or using recursive functions.

6. Quantification: whether it is necessary to use quantifiers to express

universal and existential queries.

7. Multi-valued variable: whether the multi-valued variables are explicitly

indicated or not.

8. Structure query: whether the query of the structure information is

supported naturally or directly.

9. Object-oriented features: whether the query language support object-

oriented features or not.

Table 7.1 and table 7.2 compare the expressive power and the features of

five query languages, XDO2 query language, XQuery, XTreeQuery, F-logic,

and a logical foundation for XML in both syntactic and semantic level.
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XDO2 XQuery XTree
Query

F-logic Logical
foundation
for XML

Underlying
data

XML tree XML tree XML tree Object XML tree

Path expres-
sion

XTree XPath XTree Path
expression

XTree-like ex-
pression

Deductive
rule

Yes No No Yes Partial

Negation not-
predicate

logical
negation

logical
negation

logical
negation

logical nega-
tion

Recursion recursive
rules

recursive
function

recursive
query

recursive
rule

recursive
query

Quantification No Yes Yes Yes Yes
Multi-valued
variable

Yes No Yes No Yes

Structure
querying

Yes No Yes Yes Yes

Object-
oriented
features

Yes No No Yes No

Table 7.1: Syntactic comparison between XML query languages

From the table 7.1 and table 7.2, we can see that there are four different

entry pairs highlighted in the comparison criteria of Quantification, Multi-

valued variable and Structure querying. In syntax level speaking, XDO2 does

not support quantification. However, XDO2 supports the meaning of quan-

tification through an equivalent way of using not-predicate. For multi-valued

variable issue, both the XQuery and F-logic do not support it syntactically.

The multi-valued variables are supported using some special clauses or ex-

pressions. For the structure query issue, the XQuery can not support it

directly. It needs to use some functions to support it.

In semantics level speaking, we can see that all the five languages sup-

port the quantification, multi-valued variable, and structure querying, which

means they have the same expressive power or have the same features sup-
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XDO2 XQuery XTree
Query

F-logic Logical
foundation
for XML

Underlying
data

XML tree XML tree XML tree Object XML tree

Path expres-
sion

XTree XPath XTree Path
expression

XTree-like ex-
pression

Deductive
rule

Yes No No Yes Partial

Negation not-
predicate

logical
negation

logical
negation

logical
negation

logical nega-
tion

Recursion recursive
rules

recursive
function

recursive
query

recursive
rule

recursive
query

Quantification Yes Yes Yes Yes Yes
Multi-valued
variable

Yes Yes Yes Yes Yes

Structure
querying

Yes Yes Yes Yes Yes

Object-
oriented
features

Yes No No Yes No

Table 7.2: Semantic comparison between XML query languages

ported. However, our XDO2 language supports these either in syntax level

or through an equivalent simple way, which results in the XDO2 language is

more simple and compact, and more convenient to use.

After discussing the difference between the syntax and semantics level,

we will start to compare our XDO2 language with other query languages.

The success of F-logic [23] was due to the clean combination of the object-

oriented and deductive paradigms. However, the underlying data in F-logic

are objects and can not handle the current popular XML tree data structure.

The XDO2 language is designed for the XML tree data while including the

deductive and object-oriented features.

The XML query languages, such as XQuery [6], and XTreeQuery [10] can

not support the deductive rule which can be used to derive new properties
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to simplify the querying as in XDO2. The XDO2 query language supports

the recursive query more naturally by using the recursive deductive rules

instead of by using recursive querying or by recursive functions. The logical

foundation [31] for XML is a language with the deductive features, however it

can not support object-oriented features like XDO2 can. Furthermore, since

XDO2 is based on XTree, where queries are more compact, more convenient

to write and understand than XPath queries, the XDO2 inherits these merits.

Another major difference between XDO2 and other query languages for

XML lies in the use of the not-predicate [26] for querying. By using the

not-predicate for querying, the variables inside the negation terms are ex-

istentially quantified. However, the negation querying in other query lan-

guages is achieved by using logical negation which needs the argument to

be a boolean value. As a result, using the not-predicate, the universal and

existential quantifiers can be avoided in XDO2 which can still achieve the

same expressive power as those languages using the universal, existential and

logical negation quantifiers. The queries using not-predicate are more simple

and compact.

Finally, I would like to highlight again that our XDO2 query language is

based on XTree and has all the advantages of XTree compared with XPath.

The expressions based on XTree are more simple and compact, have a com-

pact query return format, indicate multi-valued variables explicitly, and sup-

port structure querying naturally. All these features makes the XDO2 lan-

guage to be more simple and compact, and more convenient to use.



Chapter 8

Conclusion and Future Works

In this chapter, we summarize our research work and what we have done in

section 8.1. In addition, we point out some research directions that can be

used for further research study in section 8.2.

8.1 Conclusion

Deductive database and object-oriented database are two extensions of the

current relational database system. More recently, an XML query language

XTree was proposed. Queries written in XTree are more compact, more

convenient to write and easier to understand than queries written in XPath.

Guided by this, we propose a novel new XML query language XDO2 which

is based on XTree and has deductive database features and object-oriented

features. Our XDO2 language is more compact, and convenient to use than

current query languages for XML such as XQuery or XPath because it is

based on XTree, and supports deductive rules and not-predicate negation. It

is also very powerful because of the recursive deductive rules. Some object-
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oriented features are also supported.

In this thesis, we present some preliminary background on XTree, deduc-

tive databases, and object-oriented databases. An XDO2 database example

is presented to motivate the discussion of the XDO2 language. The XDO2

language features from XTree, from object-oriented databases, and from de-

ductive databases are explained in a more systematic and complete manner.

The formal treatment of the language syntax and semantics are presented.

Finally, a comparison of our XDO2 language with other XML query lan-

guages is presented. In addition, we also introduce how to define deductive

rules, the relationship type of ORA-SS schema model, and superclass at-

tribute in XML Schema in the appendices.

A summary of comparison of the XDO2 language with XQuery are:

1. Negation is supported in the XDO2 language with semantics similar

to the not-predicate instead of the conventional logic negation symbol

“∼” which negates the boolean expression and is used in XQuery by

“NOT”. In XQuery, the logical negation “NOT” is usually used with

“EVERY”, “SOME” for those universal and existential queries. While

XDO2 uses not-predicate alone and gains the same expressive power.

A consequence of this decision is that XDO2 is able to support nested

negation and negation of sub-trees naturally in a compact form. Al-

though XQuery can also use multiple XPath expressions and quantified

expressions to achieve the same expressive power, our XDO2 langauge

will be more simple and compact.

2. Methods that deduce new properties are implemented as deductive

rules. XDO2 can use the new properties directly. The presence of
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recursive deductive rules makes the recursive querying possible. While

in XQuery, it can use the functions to achieve the same thing, but it

complicates the querying while our deductive rules are defined within

the database.

3. Schema querying is made possible with a special term stru : value to

explicitly distinguish the element tag (attribute name) from the ele-

ment value (attribute value). Stru binds to the element tag (attribute

name) and value binds to the element value (attribute value). Unlike in

XQuery, the name and value pair are bound to the variables together.

Therefore, in XQuery, in order to get the element tag (attribute name)

or the value of the element (attribute), we have to use predefined built-

in functions on the variables, such as local-name and string to get the

element tag (attribute name) and value of the variables respectively.

4. Inheritance enables a subclass object can inherit all the attributes and

sub-elements from its superclass objects. These inherited properties

can be directly used in querying. However, XQuery currently does not

support it.

5. Features such as the binding of multiple variables in one expression,

compact return format and explicit multi-valued variables are sup-

ported in the XDO2 language naturally due to the influence of XTree.

Since XQuery is based on XPath, it does not have these merits.

In summary, we have developed a more compact, convenient to use, and

powerful XML query language with deductive rules, not-predicate negation,

and the support of some object-oriented features.
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8.2 Future Works

In the future, we would like to use the XDO2 query language to define views.

Since our XDO2 query language has a simple compact result format for XML

query result compared with nested queries or mixed data with queries as in

XQuery, it is expected that an XDO2 view definition will be more compact

and easier to understand compared with XQuery.

We would also like to investigate how to evaluate the XDO2 query lan-

guage efficiently, using a Prolog like top-down approach, or Datalog like

bottom-up approach, or combine both. It may be possible that some queries

are efficient using a top-down approach while some queries are efficient using

a bottom-up approach. How to handle the negation querying and recur-

sive querying efficiently will be the major problem in the query evaluation

procedure.
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Appendix A

XML Schema Extension

Several XML schema languages have been proposed, such as DTD [7], SOX

[15], XML Schema [5, 20, 40] whhich are used to constrain and define a class of

XML documents. Some object-oriented features, such as typing, inheritance

and complex object are already supported and standardized by W3C. In [42],

the XML Schema is extended to include polymorphism, overriding, blocking,

multiple inheritances and conflict handling. Specifically, it supports class

inheritance, multiple inheritance with conflict resolution mechanism, such as

rename, blocking, and explicitly inheriting, polymorphism with polymorphic

elements and polymorphic references. However, the inclusion of deductive

rules into XML Schema definition is still missing in the literature. Another

XML Schema extension of this section is to include the definition of relation-

ship type semantics as in ORASS model. Finally, we define the superclass

attribute, which is used to combine this object with its superclass object in

XML Schema.
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A.1 Deductive Rule in XML Schema

Figure A.1 shows the type definitions for the person object class in XML

Schema. We distinguish the object class from complex element using the ID

attribute. If the element has an ID attribute defined in XML Schema, we

say this is an object class, such as person object class. If the element does

not have ID attribute defined, while it contains attributes or sub-elements,

we say it is a complex element, such as the address complex element. Simple

elements are those elements without attributes or sub-elements, i.e., the type

is a simple type, such as string, or IDREF type. These simple elements are

usually the attributes of some object class.

In person object class of Figure A.1, there is an attribute pno which

uniquely identifies a person. An object class spouse of person is also specified

with a pno id reference to person in the schema. There are a name simple

element which is the name of the person and an address complex element

which keeps the address of the person. The address complex element contains

street and city simple elements. There is an birthyear simple element with

default value 2004 in the schema. The sex simple element of person is defined.

As an extension to the XML Schema definitions, there are two methods

defined for the person object class. One is the age method and the other is

the bachelor method which are encapsulated inside the person object class

definition. The age method returns the age of a person given the person’s

birthyear. It defines the method name as age, return type as integer, and

a rule with head and body. The rule specifies that if the birthyear of the

person is $b and $a is 2004 minus $b, then $a is the age of the person. The

bachelor method returns a true value if the person’s sex is “Male”, and the
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<xs:complexType name="personType">

<xs:attribute name="pno"

type="xs:ID" use="required" />

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="address" type="addressType" />

<xs:element name="birthyear" type="xs:integer"

default="2004" />

<xs:element name="sex" type="xs:string" />

<xs:element name="spouse" type="spouseType" />

</xs:sequence>

<xs:method name="age" returnType="xs:integer">

<xs:rule>

<xs:head>age : $a</xs:head>

<xs:body>birthyear : $b, $a=2004-$b</xs:body>

</xs:rule>

</xs:method>

<xs:method name="bachelor" returnType="xs:boolean">

<xs:rule>

<xs:head>bachelor : true</xs:head>

<xs:body>sex : "Male", not(spouse : $s)</xs:body>

</xs:rule>

</xs:method>

</xs:complexType>

<xs:complexType name="addressType">

<xs:sequence>

<xs:element name="street" type="xs:string" />

<xs:element name="city" type="xs:string" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="spouseType">

<xs:sequence>

<xs:attribute name="pno" type="IDREF"

target="personType" use="implied" />

</xs:sequence>

</xs:complexType>

Figure A.1: Type definition for class person
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person does not have any spouse. It defines method name as bachelor, return

type as boolean, and a rule with head and body. The rule specifies that if

the person’s sex is “Male”, and the person does not have any spouse, then

the true value is returned for bachelor method. Notice both the methods are

simplified with relative path to person class instead of absolute path staring

from the root since the method is encapsulated inside the object class.

As we noticed in the method definition of the schema, the <xs:method>

construct is used to specify the method of an object class. It includes the

method’s name and method return type. It also contains the method’s rule

definition, possibly with multiple rules, such as method ancestor in example

4.8. Each rule has a head and body part with the meaning that by substitut-

ing variables with values, if the body part are satisfied, then the head part

is true. The syntax of method declaration in XML Schema is as follows,

<XS:METHOD NAME=“method name” RETURNTYPE=“type”>

<XS:RULE>

<XS:HEAD>exp</XS:HEAD>

<XS:BODY>exp 1,...,exp n</XS:BODY>

</XS:RULE>

...

</XS:METHOD>

The method name is a name of the method. Type is one of the build-in

types or user defined types. Exp, exp 1, . . . , and exp n are relative path

expressions under the object class that are explained in chapter 5.
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<xs:relationshipType name="ps">

<xs:classsequence>

<xs:element name="part" type="partType"

minOccurs="0" maxOccurs="unbounded" />

<xs:element name="supplier" type="supplierType"

minOccurs="0" maxOccurs="unbounded" />

</xs:classsequence>

<xs:sequence>

<xs:element name="price" type="xs:integer" />

</xs:sequence>

</xs:relationshipType>

Figure A.2: Type definition for relationship type ps

A.2 Relationship Type in XML Schema

Figure A.2 shows the type definition for relationship type ps. The binary re-

lationship type ps defines the relationship between part and supplier object

class. The participating constraint of part is 0:n, which means each part can

be supplied by zero supplier, one supplier or more suppliers. The participat-

ing constraint of supplier is also 0:n, which means each supplier can supply

zero part, one part or more parts. The simple element price is defined under

the relationship type.

To extend the relationship type definition of ORASS schema model in

XML Schema, we need to add the <xs:relationshipType> construct to spec-

ify it is a relationship definition instead of an element or attribute definition.

It contains the participating object classes as well as their participating con-

straints and the elements that belong to the relationship type instead of some

object class. The syntax of relationship type definition is as follows,
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<XS:RELATIONSHIPTYPE NAME=“relationship name”>

<XS:CLASSSEQUENCE>

<XS:ELEMENT NAME=“class name 1” TYPE=“class type 1” />

...

<XS:ELEMENT NAME=“class name d” TYPE=“class type d” />

</XS:CLASSSEQUENCE>

<XS:SEQUENCE>

<XS:ELEMENT NAME=“element name 1” TYPE=“type 1” />

...

<XS:ELEMENT NAME=“element name n” TYPE=“type n” />

</XS:SEQUENCE>

</XS:RELATIONSHIPTYPE>

In the <xs:classsequence> construct, the class names class name 1, . . . ,

class name d are the names of the object classes that participating in the

relationship type, such as part and supplier in Figure A.2. And the class

types class type 1, . . . , class name d are the types of the object classes, such

as partType and supplierType in Figure A.2. In the <xs:sequence> construct,

these element definitions are defined under the relationship type. Therefore,

these elements belongs to the relationship type instead of the object classes.

A.3 Superclass Attribute in XML Schema

Figure A.3 shows the type definition for the subclass employee whose su-

perclass is person. As we can see, the XML Schema use <xs:extension>

construct with bases attribute to specify the superclass types. The attribute

eno is defined as an ID for the employee class. The subelements salary and
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<xs:complexType name="employeeType">

<xs:extension bases="personType">

<xs:attribute name="eno" type="xs:ID" use="required"/>

<xs:attribute name="spouse" type="IDREF"

target="personType" use="implied"/>

<xs:attribute name="pno" type="SUPERCLASS"

target="personType" use="required"/>

<xs:sequence>

<xs:element name="salary" type="xs:integer"/>

<xs:element name="hobby" type="xs:string"

minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

Figure A.3: Type definition for subclass employee with superclass person

hobby are also defined in the employee class. The most interesting part is the

attribute pno definition which is used to refer the person object class. It is

different from the normal IDREF attribute. The IDREF attribute refers to

some object id and this attribute value is the object id. While superclass at-

tribute also refers to some object id but this attribute is used to combine the

two objects. In Figure A.3, the employee’s IDREF attribute spouse means

this employee object has spouse relationship with the person object identified

by the oid value of spouse. But the SUPERCLASS attribute pno means this

employee object is also a person object identified by the oid value of pno.

The syntax used to define the superclass attribute is as follows,

<XS:ATTRIBUTE NAME=“attribute name” TYPE=“SUPERCLASS”

TARGET=“class type” USE=“required” />

The attribute name is some attribute name and the class type is some
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base class that this class extends. SUPERCLASS is used as the keyword for

superclass attribute similar to IDREF.


