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Summary 

The applications of hard and brittle materials such as glass, silicon and ceramics have 

been increasing due to their excellent properties suitable for the components produced in 

the newer manufacturing industries. However, finishing of those materials is a great 

challenge in the manufacturing industries until now. Several new processes and 

techniques have been implemented in order to finish the difficult-to-machine materials 

at submicron level. Grinding is a versatile and finishing process, which is generally used 

for finishing hard and brittle work surfaces up to several micrometers. The greater 

control realized on the geometry (geometrical accuracy) of the work during the fixed 

abrasive processes replenish the old grinding process into newer manufacturing. 

Finishing of non-axi-symmetric components with the aid of finer abrasive grinding 

wheels eliminates the necessity of polishing, which also increases the geometrical 

accuracy because the final shape could be achieved in a single machining setup and 

process. However, several difficulties have been experienced while manufacturing and 

machining with nanoabrasive (size of the abrasive in nanometers) grinding wheels and 

hence the fixed abrasive grinding process such as nanogrinding is not used as a robust 

method for finishing components made of hard and brittle materials. Grinding wheels 

made of harder metal bonds provide sufficient strength to hold the micro/nanoabrasives, 

but the wheels need a special dressing process in order to establish self-sharpening 

effect for uninterrupted grinding.  

 

The Electrolytic In-process Dressing (ELID) is a new technique that is used for dressing 

harder metal-bonded superabrasive grinding wheels while performing grinding.  Though 

the application of ELID eliminates the wheel loading problems, it makes grinding as a 

hybrid process. The ELID grinding process is the combination of an electrolytic process 



 x

and a mechanical process and hence if there is a change in any one of the processes this 

may have a strong influence on the other. The ambiguities experienced during the 

selection of the electrolytic parameters for dressing, the lack of knowledge of wear 

mechanism of the ELID-grinding wheels, etc., are reducing the wide spread use of the 

ELID process in the manufacturing industries.  There were no general rules or 

procedures available to choose the electrical parameters for good association with the 

grinding parameters. Therefore, fundamental analyses are necessary in order to 

understand the hybrid process and to minimize the difficulties arise during its 

implementation.  

 

This project is mainly focused on the fundamental studies on the ELID grinding. A wide 

variety of experiments were conducted by varying the electrical parameters and grinding 

parameters in order to analyze the influence of one process to the other (influence of the 

electrolytic process on grinding and vise versa). The analysis strongly evident that the 

oxidized layer produced during the ELID influences the grinding forces, the wear 

mechanism and the quality of the ground surface, which lead for a detailed analysis on 

the ELID-layer (oxidized layer). The investigations show that the thickness and the 

micro/nanomechanical properties of the ELID-layer were found to be different when the 

grinding wheel was dressed using different electrolytic dressing parameters. When 

grinding is performed using micro/nanoabrasive grinding wheels, the oxidized layer acts 

as a binder for the active grits, which produces the discrepancies during the 

mico/nanoELID grinding. An analytical model has been developed for ELID grinding 

and it has been substantiated by the experimental investigations.  The research work 

conducted in this project will be more helpful to promote better understanding while 

implementing the ELID, and to improve its robustness in the field of precision 

manufacturing.  
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Chapter 1                       

Introduction 

 

 

1.1  The requirement of the micro/nanogrinding 

 

Applications of hard and brittle materials have been increasing in the recent years due to 

their excellent properties suitable for the optical, electrical and electronics industries. 

High geometrical accuracy and mirror surface finish are the main requirements for 

components produced in the optical industries.  Machining with either fixed or loose 

abrasives with decreasing abrasive sizes are generally used to establish the desired shape 

and surface finish. This conventional finishing process requires several processing steps 

such as microgrinding, lapping and polishing. Microgrinding is used to produce the 

required geometry, and then the final finish is obtained using lapping and polishing 

processes. However, this method of finishing is limited to the geometrical shapes such 

as plain and spherical surfaces. Aspheres are the recent interest in the optical industries, 

which may be difficult to produce using the existing conventional processes. 

Automobile and aeronautic industries use ceramics for producing components such as 

automobile engine parts and turbine blades, which also find difficult to manufacture 

using the conventional methods [Blaedel et al., 1999]. 

 

Grinding is a versatile finishing process which is normally used for finishing 

components up to a surface roughness of few micrometers. However, it is possible to 
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produce various geometrical shapes using grinding with the aid of CNC (Computerized 

Numerical Control) machines and fixed abrasive tools (grinding wheels). The surface 

produced by grinding usually produces two different types of layers on the ground 

surface. The layer in which the roughness is measured is known as the surface relief 

layer and the layer beneath is known as the damaged layer. An array of microcracks 

beneath the finished surface leads to strength degradation, which reduces the life of the 

finished components.  Therefore, the damaged layer should be removed using a process 

which does not make an additional damage on the surface. Loose abrasive polishing can 

be used to eliminate the surface defects but it is only suitable for limited applications, 

and it also experience difficulties such as poor geometrical accuracy and undetermined 

polishing time. Finally, the micro/nanogrinding was found to be an alternative and an 

efficient process because it removes the damaged layer without producing any 

additional subsurface damages and controls the final geometry [Blaedel et al., 1999].  

 

1.2  Difficulties encountered during micro/nanogrinding 

 

Although grinding with micro/nanoabrasive grits is an efficient method to finish the 

brittle materials, the method is not robust due to several difficulties experienced during 

real applications. There are many difficulties associated when manufacturing 

superabrasive grinding wheels. The major problem is the preparation of the bonding 

matrix for the superabrasives. The superabrasives should be held firmly by the bonding 

system while grinding. The grit holding ability can be increased using harder metal-

bond, but self-sharpening ability of the grinding wheel become very poor and, truing 

and dressing of harder metal-bonded grinding wheels also become difficult. Because of 
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the smaller protrusion height of the superabrasives the problem of wheel loading and 

glazing increases, which diminishes the effectiveness of the grinding wheel. Periodical 

dressing is essential to eliminate the difficulties such as wheel loading and glazing, 

which makes the grinding process very tedious.  

 

1.3  Remedies 

 

Different dressing methods have been proposed for continuous dressing of 

superabrasive wheels. One method is introducing loose abrasives into the grinding fluid 

and the other is using a multi-point diamond dresser. Some in-process methods like 

passing the grinding wheel on an alumina stick during grinding are also used [Blaedel et 

al., 1999]. Among the dressing processes, the Electrolytic In-process Dressing (ELID) is 

found to be a simple and efficient technique that utilizes electrolysis for dressing metal-

bonded grinding wheels. During the ELID, the metal-bond is slowly corroded and the 

corrosion product is then mechanically removed by abrasion during the grinding 

process. This method removes the swarf from the bonding matrix as well as produces 

enough grain protrusion. In some grinding wheels such as cast iron-bonded wheels, a 

protective layer is formed on the grinding wheel during electrolysis and it resists the 

current flow. So, the conductivity of the grinding wheel is reduced after every dressing 

due to the oxidized layer deposition, which also prevents the bonding material from 

further oxidization. The grinding wheels that can produce such a protective layer during 

electrolysis are more suitable for in-process dressing.  
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Different grinding wheels made of metals and alloys such as cast iron, cobalt, copper, 

bronze, cast iron-cobalt, etc., can be dressed using the ELID. However, the thickness of 

the protective oxide layer and its resistance to current depends on the bond material of 

the wheel, the power supplied and the electrolyte chosen. When the protective oxide 

layer is removed during grinding by the chip/wheel interactions the in-process dressing 

is stimulated. Thus the condition of the grinding wheel topography is maintained 

throughout the grinding process that encourages the continuous application of the metal-

bonded grinding wheels. 

 

 1.4 Objective of this study 

 

Grinding is the finishing process which mainly depends on the operator skill when 

compared to other machining processes. Finishing components of complicated shapes 

using fine grinding process requires more skills. However, grinding with the aid of the 

ELID increases the complicateness of the process though it is an efficient method for 

finishing brittle materials. There is a great difficulty of selection of the ELID parameters 

with respect to the grit size of the grinding wheel, bond-material, and the grinding 

parameters, which restrict the application of the ELID. This may be apparently one of 

the reasons some industries still using resin-bonded grinding wheels for fine grinding. 

Therefore, the main objective of this project is to increase the robustness of the ELID by 

eliminating the ambiguities encountered during ELID grinding. 

  

A study on the fundamental mechanism of the ELID becomes necessary for better 

understanding, which includes the influences of the ELID parameters on the grinding 
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forces; surface finish and the wheel wear. The influence of the grinding parameters on 

the ELID must be evaluated for selecting suitable grinding conditions. The wear 

mechanism of the ELID-grinding wheels should be experimented in order to achieve 

better geometrical accuracy and tolerance. Investigation of the ELID-layer is inevitable 

for better understanding and controlling of the ELID grinding. 

 

Model for micro/nanogrinding with the aid of the ELID has been proposed in order to 

reduce the cumbersome grinding experiments. The model should be useful to predict the 

grinding forces for a particular work surface and a particular bond dressed at a defined 

conditions. The simulated grinding forces at different dressing conditions will be more 

useful in order to choose the efficient dressing and grinding conditions during ELID 

grinding.  

 

1.5 Thesis organization  

 

This thesis consists of nine chapters. Chapter 1 gives an introduction to the work done in 

this research. In chapter 2, the literature review of the ELID techniques, principles of the 

ELID, different techniques and the applications of the ELID are presented.  

 

Chapter 3 explains the basic principle and the classifications of the ELID.  The principle 

of the electrolysis, the basic components of the ELID, classification and the mechanism 

of the ELID are described. The description of experimental setup, grinding experiments, 

measuring equipments and the measuring techniques have been explained in Chapter 4.  
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 Chapter 5 explains the fundamental studies conducted on ELID grinding. The influence 

of the ELID parameters on the grinding forces, surface finish and wheel wear are 

investigated.   

 

The wear mechanisms of the ELID-grinding wheels are discussed in the Chapter 6.  The 

characters of the ELID-grinding wheels, the wear of wheels during pre-dressing and 

during in-process dressing have been explained in detail. The influence of the wear of 

grinding wheels for different geometrical surfaces has been experimented. The wear 

reduction strategies are also proposed. 

 

 Chapter 7 contains the investigations on the ELID-layer. The mechanical properties of 

the ELID-layer are investigated, which provides necessary information about the layer 

needed for achieving defect free grinding.  

 

Chapter 8 proposes a model for Micro/nanoELID grinding. This model helps to predict 

the bond material and suitable dressing conditions for a particular work material by 

comparing the simulated grinding forces at various ELID dressing conditions. 

 

Chapter 9 contains the main conclusions and main contributions drawn from this 

project. The suggestions for future work is also presented and discussed in this chapter.  
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Chapter 2       
                 
Literature review   
 

 
 

The ELID technique originated from Japan, and most of the works reviewed were 

reported from Material Fabrication Lab, RIKEN, Japan. The previous relevant reports 

are systematically arranged, classified and presented in this chapter. This chapter covers 

the development and mechanism of ELID, different methods of ELID grinding and 

various applications of the ELID grinding in the field of precision manufacturing. The 

advantages and drawbacks of the ELID grinding is analyzed and presented at the last 

section of this chapter.  

 

2.1 Development and mechanism of the ELID grinding 

 

Murata et al. [Murata et al., 1985] introduced ELID in 1985 for the application of 

abrasive cut-off of ceramic. The structural ceramics are highly difficult to grind due to 

its hard and brittle nature.  Normally for grinding harder materials, the softer grade 

grinding wheels have been used. But, the softer grinding wheels have the problem of 

large diameter decrease due to wheel wear. Therefore, stronger bond with harder 

abrasives have been selected for grinding hard and brittle materials. When the grits are 

worn out, a new layer in the outer surface is electrolyzed and necessary bonding is 

removed from the grinding wheel surface in order to realize grit protrusion. The 

experiments were performed using metal bonded grinding wheels (not specified) of grit 

size #80, #100, #150 and #400. The results showed that the grinding force was reduced 
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to a significant amount when the in-process dressing was done. Even though the surface 

finish is not a major criterion in abrasive cut-off, the surface roughness also improved 

due to the application of the ELID. The experiments show that ELID is an effective 

process of increasing surface quality even though it has some problems like rust 

formation due to electrolyte application [Murata et al., 1985]. 

 

Ohmori et al. [Ohmori and Nakagawa, 1990] further improved ELID suitable for 

superabrasive grinding wheels. Different types of grinding wheels have been used along 

with ELID grinding [Ohmori et al., 1999, 2000]. The grinding wheels used in ELID are 

broadly classified into the following: 

 

• Metal-bonded diamond grinding wheels and 

• Metal-resin-bonded diamond grinding wheels  

 

Normally cast iron or copper is used as the bonding material. Some amount of cobalt 

can also be included in the bonding material for better grinding performance. Metal and 

resin are mixed into a definite ratio in order to get a good grinding performance. 

Normally copper is used as a bonding material for metal-resin bonded grinding wheels. 

The grades of the grinding wheels are ranging from #325 to #300,000, which has an 

average grit size from 38 µm to 5 nm.  The basic ELID system consists of a metal 

bonded diamond grinding wheel, an electrode, a power supply and an electrolyte 

[Ohmori and Nakagawa, 1990].  
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2.2 Different methods of ELID grinding 

 

ELID is classified into four major groups based on the materials to be ground and the 

applications of grinding, even though the principle of in-process dressing is similar for 

all the methods. The different methods are as follows: 

 

1. Electrolytic In-process Dressing (ELID – I), 

2. Electrolytic Interval Dressing (ELID – II), 

3. Electrolytic Electrode-less dressing (ELID – III) and 

4. Electrolytic Electrode-less dressing using alternate current (ELID – IIIA). 

 

2.2.1 Electrolytic in-process dressing (ELID – I) 

The basic ELID system consists of an ELID power supply, a metal-bonded grinding 

wheel and an electrode. The electrode used could be 1/ 4 or 1/6 of the perimeter of the 

grinding wheel. Normally copper or graphite could be selected as the electrode 

materials. The gap between the electrode and the grinding wheel was adjusted up to 0.1 

to 0.3 mm. Proper gap and coolant flow rate should be selected for an efficient in-

process dressing. Normally arc shaped electrodes are used in this type of ELID and the 

wheel used is either straight type or cup type. 

          

2.2.2 Electrolytic Interval Dressing (ELID – II) 

Small-hole machining of hard and brittle materials is highly demanded in most of the 

industrial fields. The problem in micro-hole machining includes the following: 

 

• Difficult to prepare  small grinding wheels with high quality, 
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• Calculation of grinding wheel wear compensation and 

• Accuracy and surface finish of the holes are not satisfactory. 

 

The existing ELID grinding process is not suitable for micro-hole machining because of 

the difficulty of mounting of an electrode. Using the combination of sintered metal 

bonded grinding wheels of small diameter, Electric Discharge Truing (EDT) and 

Electrolytic Interval Dressing (ELID–II) could solve the problems in micro-hole 

machining.  The smallest grinding wheel for example 0.1 mm can also be trued 

accurately by using EDT method, which uses DC-RC electric power. The small grinding 

wheels can be pre-dressed using electrolysis in order to gain better grain protrusions. 

The dressing parameters should be selected carefully to avoid excessive wear of 

grinding wheel.  The grinding wheel is dressed at a definite interval based on the 

grinding force. If the grinding force increases beyond certain threshold value, the wheel 

is re-dressed [Ohmori and Nakagawa, 1995; Qian et al., 2000; Zhang et al., 2000].  

 

2.2.3 Electrode-less In-process dressing (ELID– III) 

Grinding of materials such as steel increases the wheel loading and clogging due to the 

embedding of swarf on the grinding wheel surface and reduces the wheel effectiveness. 

If the size of swarf removal is smaller, the effectiveness of the grinding wheel increases. 

For machining conductive materials like hardened steels, metal-resin-bonded grinding 

wheels have been used. The conductive workpiece acts as the electrode and the 

electrolysis occurs between the grinding wheel and the workpiece. Normally the 

bonding material used for grinding wheel is copper or bronze. The electrolytic layer is 

formed on the workpiece and it is removed by the diamond grits. Thus the swarf 

production is controlled by using electrode-less in-process dressing (ELID–III).  During 
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electrolytic dressing, the base material is oxidized and the wheel surface contains resin 

and diamond grits. Theoretically the metal bond is removed by electrolysis, but the 

experimental results showed that the grinding wheel surface contains cavities, which is 

caused due to electric discharge. When high electric parameters are elected, the amount 

of electric discharge increases and it causes damage on both the wheel and ground 

surfaces. For better surface finish, low voltage, low current, low duty ratio and low in-

feed rate should be selected  [Ohmori et al., 2000].  

 

2.2.4 Electrode-less In-process dressing using alternative current (ELID–IIIA) 

The difficulties of using electrode-less in-process dressing could be eliminated with the 

application of ELID-IIIA. The alternative current produces a thick oxide layer film on 

the surface of the workpiece, which prevents the direct contact between the grinding 

wheel and the workpiece. Thus the electric discharge between the wheel and workpiece 

is completely eliminated and the ground surface finish is improved [Lim et al., 2000; 

2001]. 

 

2.3 Applications of ELID grinding process 

 

This section explains the applications of the ELID for different difficult to grind 

materials used for various applications.  

 

2.3.1 The structural ceramic components 

Structural ceramic has been used widely because of its excellent properties such as high 

wear resistance, high thermal resistance and high resistance to chemical degradations. 

Cutting tools, automobile parts and aerospace turbocharger are the most important 
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components that use structural ceramic materials. However grinding of ceramic 

becomes difficult and costlier due to the lower material removal rates (MRR). Cast 

iron–bonded diamond grinding wheels with the aid of ELID produces high material 

removal rates since the grain protrusion from the wheel size is maintained constantly 

using ELID. The results show that the normal grinding force was reduced when there is 

an increase of MRR using ELID grinding. The final surface roughness obtained from 

conventional and ELID grinding processes were found to be 0.211 µm and 0.117 µm, 

respectively [Bandyopadyay et al., 1996; Fujihara et al., 1997; Bandyopadhyay and 

Ohmori, 1999; Zhang Bi et al., 2000]. 

 

2.3.2 Bearing steel 

The applications of cylindrical surfaces are wider in manufacturing industries. The 

surface roughness and the waviness are the two major factors, which affects the 

performance of rolling surfaces, because it induces noise and vibration of the 

components. Precision grinding of bearing steel was carried out using ELID and the 

surface finish, waviness and the roundness of the samples are compared with the 

conventional methods. The experiments were performed using both cast iron-bonded 

diamond wheels and CBN grinding wheels. The surface finish obtained using ELID was 

with an average surface roughness of 20 nm with #4000 grinding wheel. A comparison 

of waviness obtained using different processes shows that the waviness of the surface 

obtained using ELID was smaller than the maximum allowable level (MAX) [Qian et 

al., 2000]. 
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2.3.3 Chemical vapor deposited silicon carbide (CVD- SiC) 

The application of CVD-SiC has been increasing in recent years because of its excellent 

physical and optical properties. It is an ideal material for making reflection mirrors, but 

finishing of this material is very difficult due to its hard and brittle nature. Nanosurface 

finish could be possible only when the material removal have done at ductile mode. 

ELID grinding using cast iron-bonded diamond wheel of grit size #4000 produced an 

average surface roughness of 7.2 nm. The reason for better surface finish using ELID 

was found due to the thickness of the insulating layer, which acts as a damper during 

ELID [Zhang et al., 2001; Kato et al., 2001].  

 

2.3.4 Precision internal grinding 

Precision cylindrical surfaces are widely used in manufacturing industries. Finishing of 

internal cylindrical holes for a hard and brittle material becomes difficult because the 

accuracy and the tolerance mainly depend on the profile of the grinding wheel. The 

wheel profile should be perfect in order to get good tolerance. Cast iron-fiber-bonded 

grinding wheels using ELID-II method is highly suitable for internal grinding. The 

wheel profile is further improved by using Electro Discharge Truing (EDT) [Ohmori et 

al., 1999]. 

 

2.3.5 Mirror surface finish on optical mirrors 

Finishing of larger X-Ray mirrors is highly difficult using the conventional grinding 

processes. Superabrasive diamond grinding wheels and ELID are used to produce a 

mirror of 1 m length with an average surface finish less than 10 nm. It indicates that by 

using ELID grinding, high accuracy also can be obtained because roughing to finishing 
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processes could be performed in the same machining setup [Zhang et al., 2000; Wang et 

al., 2000]. 

 

2.3.6 Micro lens 

Micro optical components are more useful in fiber optics, optical storage systems and 

portable information devices. Fabrication of micro components needs smaller grinding 

wheels, low grinding speed and sufficient wheel-workpiece stiffness. A new grinding 

method known as one-pass method was implemented, in which larger depth of cut and 

lower feed rate were used. The produced micro-lens of diameter 250 µm shows good 

profile accuracy using cast-iron bonded grinding wheel with the aid of ELID [Ohmori 

and Qian, 2000].   

 

2.3.7 Form grinding  

Micro thread production is an important process in micro machining. The produced 

threads should be of good form accuracy and tolerance. Small and hard diamond bonded 

grinding wheels are highly suitable for machining micro threads. Cast iron-bonded 

diamond grinding wheels with the aid of ELID produces high profile accuracy. Special 

forms of wheels were prepared based on the shape requirement [Zhang et al., 2000]. 

 

2.3.8 Die materials 

Finishing of harder die materials such as SKDII and SKII51 with fine surface finish and 

accuracy is a great challenge in the manufacturing industries. The grinding ratio for such 

harder materials is lower, and the wheel wear rate will be increasing significantly. 

ELID–IIIA technique has been implemented successfully for grinding of this kind of 

harder conductive materials. The workpiece is connected to the positive pole and the 
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metal-resin bonded grinding wheel is connected to the negative pole. The electrolysis 

occurs between the workpiece and the grinding wheel, and a passive layer is formed on 

the workpiece surface, which reduces the effective depth of cut and improves the ground 

surface and the shape accuracy of the grinding wheel [Lim et al., 2000; 2001].  

 

2.3.9 Precision grinding of Ni-Cr-B-Si composite coating  

Surface coatings are necessary to prevent the material surface from wear and corrosion. 

Stephenson et al. used CBN grinding wheels with the aid of ELID to finish the coated 

surface. They found that the surface finish using ELID shows limited damage to primary 

and secondary carbides. The surface ground without ELID shows damages in the form 

of carbide pullout and localized fracture due to the removal of large WC particles. The 

reason is ELID produces good protrusion of CBN grits that eliminates the carbide 

pullout. The ground surface measured shows an average surface roughness of 5-10 nm 

and 60-80 nm for with ELID and without ELID, respectively [Stephenson et al., 2001; 

2002]. 

 

2.3.10 Micro-hole machining 

Machining of micro-hole in a hard and brittle is a great challenge in manufacturing 

industries. Micro-hole of diameter 250 µm was produced on ceramic material. The 

micro-holes were produced using two types of grinding wheels such as cobalt-cast iron 

compound diamond grinding wheel and cast iron-bond diamond grinding wheel. The 

grit sizes of the grinding wheels used in the experiments are #325, #500, and #1200. 

Three different grinding fluids were also used to compare the efficiency of the grinding 

process.  
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The experimental results show that the coolant selection also has a strong influence on 

the grinding forces. The proportion of oxide layer thickness and the etched layer 

thickness are varying with the application of grinding fluid. Normally two kinds of 

electrodes such as arc and tube have been selected for interval dressing based on the 

grinding applications [Bandyopadhyay and Ohmori, 1999]. 

 

2.3.11 ELID-lap grinding 

High flatness and mirror surface finish are the requirements in many industries 

nowadays. ELID-lap grinding is a constant pressure grinding which uses metal-bonded 

grinding wheels finer than #8000. This method is highly efficient to ground surfaces of 

different hardness at the same time. Experiments were conducted on two different 

materials such as silicon and cemented carbide. At first, the materials were ground 

separately and then ground together. The result shows that the surface finish is improved 

when they are ground together than ground separately [Itoh et al., 1998]. 

 

2.3.12 Grinding of silicon wafers 

Finishing of silicon wafers with nano accuracy and mirror surface finish is a great 

demand in semiconductor industry. Grinding with superabrasive metal-bonded grinding 

wheels using ELID was found to be a good choice of producing mirror surface finish on 

silicon wafers [Ohmori and Nakagawa, 1990; Venkatesh et al., 1995].  

 

2.4 ELID-EDM grinding 

 

Truing of metal bonded grinding wheel is highly difficult due to its high bonding 

strength. Recent development of Electro Discharge Truing (EDT) shows good truing 
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accuracy. A new rotating truing device is also developed for the purpose of truing metal 

bonded grinding wheels. Nagakawa [Suzuki et al., 1997] introduced on-machine EDT 

that eliminates the difficulty of truing. In this method the grinding wheel can be trued 

after mounting on the machine spindle, which reduces the mounting errors and increases 

better truing accuracy. The grinding wheel profile obtained after truing using on-

machine truing shows an accuracy of 3 µm.  Recent studies show that the combination 

of ELID and EDM process could be successfully used for nanogrinding, because the 

grinding wheel profile is corrected during grinding. [Okuyama et al., 2001; Ohmori and 

Nakagawa, 1997]. 

 

2.5 Summary and problem formation 

 

From the literature survey it is clear that the application of the ELID is wider, and the 

process is used to finish a variety of hard metals and non-metals. However, several 

factors are not clearly reported elsewhere in those reports. For example the selection of 

bond materials, electrode materials, selection of electrolytic parameters, etc., this makes 

the ELID users difficult to implement the process. The wheel wear mechanism of the 

ELID-grinding wheel, which is more essential for precision finishing of the non-axis-

symmetric components has not been reported. Though the importance of the oxidized 

layer was indicated in some articles, the information such as the phenomena of the layer, 

wear rate and the mechanical properties of the layer are not discussed in detail. 

Therefore, with these limitations and insufficient data it is highly difficult to implement 

the ELID for precision finishing. Therefore, the major objective of this thesis is to 

reduce the ambiguities experienced while grinding with the aid of the ELID, and 

promotes the robustness of the process in the precision manufacturing field.  



 18

 
 
Chapter 3 
 
The basic principle and classifications of the ELID  
 

 

 

3.1 Introduction 

 

The micro/nanogrinding is a motion copying method, which mainly depends on the 

wheel-work interactions [Yoshioka et al., 1987]. Periodic dressing of grinding wheels is 

cumbersome and also produces inaccuracy during the process. The main requirement for 

a grinding wheel is its ability to replenish the topography and promotes an uninterrupted 

grinding (or with minimum interruptions). When grinding is performed with 

conventional grinding wheels (other than metal-bonded), the worn out grits are removed 

automatically by the grinding force and the grits beneath come into contact with the 

workpiece. This is known as the ‘self-sharpening’ effect [Figure 3.1], which makes the 

in-process dressing unnecessary, and grinding becomes continuous. The conventional 

wheels are also prepared with certain porosity in order to provide space for chip and 

coolant [Malkin, 1987; Shaw, 1996]. However, the wheels have the properties described 

above are suitable for machining metals or materials with less hardness, and they are not 

recommended for grinding harder material because of intense diminution of wheel 

diameter. Therefore, wheels with high bonding strength are quite suitable in order to 

withstand higher grinding forces generated during grinding.  
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                    (a) Grinding                                    (b) Self-sharpening effect 

           Figure 3.1 Self-sharpening effect of the conventional grinding wheel. 

 

Though the metal-bonded grinding wheels possess excellent properties (such as high 

bond strength, high stability and high grindability) its usage was not widespread because 

they are not suitable for continuous usage due to their poor self-sharpening effect, and 

there is no space for chip and coolant because the grits are bonded in the metal matrix. 

The metal bond around the grit should be removed to a certain amount in order to 

produce grain protrusion as well as space for coolant and chip flow. The necessary bond 

material is removed electrochemically by anodic dissolution, but  when the grit size of 

the grinding wheel becomes smaller, problems such as wheel loading and glazing are 

encountered which impedes the effectiveness of the grinding wheel. Therefore, an 

additional process is necessary in order to rectify the above problems and promotes 

uninterrupted grinding using metal-bonded grinding wheels.  

 

The concept of the ELID is to provide uninterrupted grinding using harder metal-bonded 

wheels. The problems such as wheel loading and glazing can be eliminated by 

introducing an ‘electrolyze cell’ (anode, cathode, power source and electrolyte) during 

grinding, which stimulates electrolysis whenever necessary. The electrolyze cell 
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required for the in-process dressing is different from the cell used for standard 

electrolysis or electroplating.  Therefore, attention should be focused on the selection of 

factors such as the bond-material for the grinding wheels, electrode material, the 

electrolyte and the power source. If any one of the parameters is not chosen properly, 

the result obtained from the electrolysis will be different. Therefore, an adequate 

knowledge about the electrolysis is necessary before incorporate with the machining 

process. This chapter provides the necessary information about the ELID, selection of 

bond material for the ELID, the electrode material selection for the grinding wheels, 

electrolyte and the power source selections.  

 

3.2 The principle of electrolysis and the ELID 

 

Electrolysis is a process where electrical energy is converted into chemical energy. The 

process happens in an electrolyte, which gives the ions a possibility to transfer between 

two electrodes. The electrolyte is the connection between the two electrodes which are 

also connected to a direct current as illustrated in Figure 3.2, and the unit is called the 

electrolyze cell. When electrical current is supplied, the positive ions migrate to the 

cathode while the negative ions will migrate to the anode. Positive ions are called 

cations and are all metals. Because of their valency they lost electrons and are able to 

pick up electrons. Anions are negative ions. They carry more electrons than normal and 

have the opportunity to give them up. If the cations have contact with the cathode, they 

get the electrons they lost back to become the elemental state. The anions react in an 

opposite way when they contact with the anode. They give up their superfluous 

electrons and become the elemental state. Therefore the cations are reduced and the 

anions are oxidized. To control the reactions in the electrolyze cell various electrolytes 
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(the electrolyte contains the ions, which conduct the current) can be chosen in order to 

stimulate special reactions and effects.  The ELID uses similar principle but the cell is 

varied by using different anode and cathode materials, electrolyte and the power sources 

suitable for machining conditions.  

 

 

 

 

 

                                        

                        

                                            Figure 3.2 Electrolytic cell. 

 

3.3 The basic components of the ELID 

 

As discussed earlier, an electrolyze cell is necessary in order to facilitate the self-

sharpening effect on the grinding wheels. The cell is created using a conductive wheel, 

an electrode, an electrolyte and a power supply, which is known as the ELID system. 

Figure 3.3 shows the schematic illustration of the ELID system. The metal-bonded 

grinding wheel is made into a positive pole through the application of a brush smoothly 

contacting the wheel shaft. The electrode is made into a negative pole. In the small 

clearance of approximately 0.1 to 0.3 mm between the positive and negative poles, 

electrolysis occurs through the supply of the grinding fluid and an electrical current. The 

descriptions of different components are discussed in the subsequent sections of this 

chapter. 
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                          Figure 3.3 Schematic illustration of the ELID system. 

 

3.3.1 The ELID-grinding wheels 

The ELID grinding wheels are made of conductive materials i.e. metals such as cast 

iron, copper and bronze (the properties of the metal-bonds are tabulated in Table A.1). 

The diamond layer is prepared by mixing the metal and the diamond grits with certain 

volume percentage, and the wheels were prepared by powder metallurgy. The prepared 

diamond layer is attached with the steel hub as shown in Figure 3.4. The grinding 

wheels are available in different size and shapes. Among them the straight type and the 

cup shape wheels are commonly used.  

 

 

 

                                    Figure 3.4 Metal bonded grinding wheel. 
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3.3.2 The electrode  

The dimension of the electrode depends on the size and shape of the grinding wheel. 

The size of the electrode can be chosen in such a way that there is no hindrance for the 

machining process. However, the spindle speed (spindle rotation of the machine) of the 

grinding wheel is higher and it reduces the effect of electrolysis. Hence the size of the 

electrode should be sufficient to produce the effect of in-process dressing. Generally the 

size of the electrode can be chosen from 1/6 th to 1/4 th of the grinding wheel perimeter. 

The thickness of the electrode is made by 1 – 2 mm more than the width of the grinding 

wheel [Ohmori and Nakagawa, 1990].  

 

3.3.3. Material for the ELID electrodes 

Material such as copper, graphite and stainless steel are commonly used as the electrode 

materials. The metal ions of the anode migrate to the cathode and become a thin layer on 

the surface, which needs to be galvanized. Therefore, care should be taken when 

selecting the cathode material. To predict the reactions during electrolysis, the 

“electrochemical electromotive series” is used.  Metals with a more noble character than 

copper will not react, but fall down as an anode mud. However, metals with a standard 

potential less than copper will also be electrolyzed and migrate at the cathode. The 

elements ordered by their standard potentials (E0) are tabulated in Table A.2. The 

standard potential shows the capability, with regard to hydrogen ions, to give up 

electrons. In this table the standard potential of hydrogen is zero. The other elements 

have a positive or a negative standard potential. That means elements with a negative 

potential were easier to oxidate than hydrogen and elements with a positive potential 

were more difficult to oxidate than hydrogen. From the table, it is clear that copper can 

be used as the electrode material for all type of ELID-grinding wheels.  
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When grinding with copper bonded grinding wheels, the Cu2+ ions in solution is 

precipitated on the cathode, and a more pure copper layer is formed than before.  The 

pollution from the grinding wheel will not react but fall down to the ground as the anode 

mud. Therefore, the cathode is always pure and conductive when used with copper or 

bronze bonded wheels.  

 

3.3.4 The gap between the electrodes 

The gap between the electrodes should be more than the oxidized layer formed on the 

grinding wheel surface and also sufficient for electrolyte flow. It is recommended that 

the gap between the electrodes can be adjusted to 100 – 300 µm. However, the gap 

between the electrodes can not be maintained throughout the process because of the 

wheel wear. The gap should be measured using the gap sensor and it is adjusted by an 

automatic gap adjustment system [Lee, 2000]. 

 

3.3.5 The function of the Electrolyte  

The electrolyte plays an important role during in-process dressing. The performance of 

the ELID depends on the properties of the electrolyte. If the oxide layer produced during 

electrolysis is solvable, there will not be any oxide layer on the wheel surface and the 

material oxidized from the wheel surface depends on the Faraday’s law. However, the 

ELID (developed by Ohmori, 1990) uses an electrolyte in which the oxide is not 

solvable and therefore the metal oxides are deposited on the grinding wheel surface 

during in-process dressing. The performance of different electrolytes has been studied 

by Ohmori et al., which shows the importance of the selection of the electrolyte 

[Ohmori, 1997]. The electrolyte is diluted (2%) with water and used as an electrolyte 

and coolant for grinding. The amount of chlorine presents in the water should be 
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considered because it has a positive potential, which has a significant influences on 

electrolysis.  

 

3.3.6 Power sources 

Different power sources such as AC, DC and pulsed DC have been experimented with 

the ELID. The applications and the advantages of different power sources were 

compared, and the results were described in the previous studies [Ohmori, 1995, 1997]. 

However, the recent developments show that the pulsed power sources can produce 

more control over the dressing current than other power sources. When the DC-pulsed 

power source is used as the ELID power supply, it is essential to understand the basics 

of pulsed electrolysis in order to achieve better performance and control.  

 

3.4 Basic concepts of pulse electrolysis 

 

The rate of reaction and the change of magnitude of the driving force are the two main 

factors that control the electrolysis. The reaction rate can be controlled by changing the 

current density, and the driving force can be changed by adjusting the electrode 

potential. Modern electronic enhanced the advantage of allowing the current and voltage 

to be applied as the function of time. The control of pulsed voltage during electrolysis 

needs a third electrode as a reference electrode, which makes the control very tedious.  

Therefore the control of pulse current is more suitable for electrolysis [Puippe, 1986]. 

There are varieties of pulses such as unipolar, bipolar and reversed pulses have been 

used for pulsed electrolysis, but for simplicity, unipolar cathodic pulses followed by 

zero current have been analyzed in this study. Figure 3.5 shows the schematic 
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illustration of a glavanostatic pulse train and its nomenclatures. The duty ratio of the 

pulse current can be expressed as 

 

                    

         Figure 3.5 Galvanic pulse train and its nomenclatures. 

[Ton – Pulse ON-time, Toff – Pulse OFF-time, T – time of the cycle, Ip – Peak current and 

Im – Mean current] 

 

T
TR on

c =                        (3.1)

  

where T is the period, offon TTT +=  

 

The current density of the pulse current is expressed as shown below 

 

e

p
d A

I
I =                      (3.2) 

 

where Ae - Area of the cathode, the value of the average current can be expressed as 

 

cdm RII .=                          (3.3) 
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                                    Figure 3.6 Pulse with similar current density. 

 

The average current density can be maintained either changes the pulse width or the 

peak current as illustrated in Figure 3.6. However, the advantage of pulse electrolysis 

cannot be fully utilized due to the natural phenomena, which produces some limiting 

factors. They are the electrical double layer at the metal/electrolyte interface and the 

mass transfer considerations.  

 

 

 

 

 

 

                     

                    (a)    Electrical double layer        (b) Circuit diagram for double layer        

                 Figure 3.7 Electric double layer and its equivalent electric circuit.  
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The concept of double layer is an important phenomenon in pulse electrolysis. If a solid 

phase is in contact with a liquid phase, the positive and negative charges on the 

solid/liquid interface oppose each other that form an electric condenser. This condenser 

is called as electric double layer, which is represented schematically in Figure 3.7 (a). 

The electrical double layer at the electrode/electrolyte interface can be approximated to 

a plate capacitor with an interface distance of few angstroms. The capacitance is 

inversely proportional to the distance between the parallel plates, and hence the 

capacitance at the interface is considered as high capacitance. The equivalent diagram of 

electrode can be represented as a capacitor connected with a resistance in parallel as 

schematically illustrated in Figure 3.7 (b). The selection of Ton and Toff should be greater 

than the Tc (charging time of the double layer) and Td (discharging time of the double 

layer), respectively, otherwise there will be a heavy distortion of the pulse current. 

Figure 3.8 (a) and 3.8 (b) shows an ideal pulse and pulse with small damping, 

respectively. Figure 3.8 (c) shows the condition of heavy damping and the pulse 

oscillates around an average value and it never reach the value of zero, which violets the 

concept of pulse current.  

 

  

                 

 

 

 

 

 

          Figure 3.8   Pulse train with damping. 
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The limitation of the useful range of pulse conditions due to mass transport effects arise 

from the reduction of cations in the diffusion layer. Pulse electrolysis using short pulses 

creates a second diffusion layer instead of one as in DC. The layer near the cathode is 

called as pulsated diffusion layer (Tp) and the layer next to that is known as stationary 

diffusion layer (Ts) as seen in Figure 3.9. The concentration of the electrolyte 

surrounding the cathode pulsates with the same frequency of the pulse current. The 

concentration decreases during the OFF-time. If shorter pulse is used for electrolysis, 

the diffusion layer does not have time to extend very far into the solution where 

convection takes over the mass transport, which creates concentration gradient into the 

electrolyte [Puippe, 1986].  

 

 

                                              

 

 

 

                                                 Figure 3.9 Pulsation layer. 

 

Diffusion occurs as a result of the inhomogeneity of the system, i.e., when its separate 

parts contains either different substances or the same substances but in different 

concentrations. The transport processes of diffusion can be expressed quantitatively with 

the aid of Fick’s law (Appendix B).  

 

Finishing of brittle materials at submicron level with good control of final geometry is 

the attraction of fixed abrasive process. For precision finishing, the replenishment of the 
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grinding wheel topography is very important, which could be achieved by the precision 

control of electrolysis. For better control of current, the pulsed current has been 

preferred than the DC current. Pulsed current has various control parameters such as 

pulse ON-time, OFF-time, pulse width, and pulse frequency. The change of any one of 

these parameters affects the electrolysis. 

 

3.5 Classification of ELID based on grit size of the grinding wheel 

 

The application of the grinding process can be broadly classified into two different types 

such as the rough grinding (macrogrinding) and the micro/nanogrinding. The 

requirements for the above processes are entirely different [Hans et al., 1997]. However, 

the application of the ELID is unavoidable for uninterrupted grinding for both the 

processes, and hence the application of ELID can be classified into two types based on 

the requirements:  

 

1. The application of the ELID using courser grit wheels, and 

2. The ELID using superabrasive wheels 

 

When grinding with courser grits, the requirement of the wheels are high grinding ratio 

and self-sharpening ability. The ELID uses to dress the grinding wheels in a method 

known as ‘slow corrosion’ of the bond material using low current (Ip – 5 A) and low 

voltage (Vp – 20-30 V). This method can be useful for abrasive cutting and stock 

removal processes.  
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The ‘slow corrosion’ method is not suitable for grinding with superabrasive grinding 

wheels of grit sizes smaller than 10 µm.  The grit protrusion or the protrusion height of 

the superabrasive wheels are very smaller and hence controlling electrolysis within the 

small scale is difficult. If the control is not appropriate it leads to excessive bond erosion 

and the grits are removed along with the bond material. Therefore the bond erosion 

should be controlled as fast as possible as in the case of grinding with superabrasives. 

The in-process dressing method for superabrasive (introduced by Ohmori,1990) uses a 

different method which produces a self-protective oxide layer as the fastest rate, which 

can be possible when using higher voltage and current.  Generally current 10 A and 

voltage 60 – 90 V can be used for the purpose of speed up the electrolysis.  

 

3.6 Mechanism of the ELID grinding 

 

Based on the analysis, the mechanism of the ELID grinding can be explained as shown 

in Figure 3.10. After truing, the grains and bonding material of the wheel surface are 

flattened. It is necessary for the trued wheel to be electrically pre-dressed to protrude the 

grains on the wheel surface. When pre-dressing starts, the bonding material flows out 

from the grinding wheel and an insulating layer composed of the oxidized bonding 

material is formed on the wheel surface. This insulating layer reduces the electrical 

conductivity of the wheel surface and prevents excessive flow out of the bonding 

material from the wheel. As grinding begins, diamond grains as well as the layer 

gradually wears out. As a result, the electrical conductivity of the wheel surface 

increases and the electrolytic dressing restarts with the flow out of bonding material 

from grinding wheel. The protrusion of diamond grains from the grinding wheel 
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therefore remains constants. This cycle is repeated during the grinding process to 

achieve stable grinding.  

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Mechanism of the ELID grinding. 

 

3.7 Concluding remarks 

 

The knowledge about the ELID system and its different components are necessary for 

efficient control of the process. The ELID improves the ‘self-sharpening’ effect of the 

harder metal-bonded grinding wheels with the aid of an electrolyze cell, and hence the 

wheel loading and glazing problems are eliminated. The information provided regarding 

the mechanism of ELID and the pulse electrolysis are useful to understand the 

experiments conducted on the fundamental studies and wheel wear mechanism.  

(d)During grinding

(c)After dressing

Elid cycle

(b)Begining of dressing

(e)End of grinding
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Chapter 4           
 
Experimental setup and procedures  
 

 
 
 

This chapter describes the details of the experimental setup and the experimental 

procedures used in this study. Grinding methods and procedures implemented for 

different investigations, the configurations of the measuring equipments and measuring 

methods are described in detail.   

 

4.1 Description of the grinding machine  

 

The experiments were conducted on a five axis CNC machining center – DECKEL 

MAHO: DMU 50 V. The motor power of the machine is 10 kW. The feed drive 

resolution and position tolerance for the three axes (X, Y and Z) are 1 µm and 10 µm, 

respectively.  

 

4.2 Workpiece material 

4.2.1 Workpiece properties 

Glass has been chosen as the workpiece material mainly for two reasons. Firstly, glass, 

which is uniform without any grain, slip or twin, is an ideal material for ultraprecision 

grinding. Secondly, the BK7 glass is a widely used material in optical industries due to 

its excellent properties such as transparency, homogeneity, isotropy, hardness, durability 

and high chemical resistance.  However, BK7 is highly hard and brittle, and that makes 
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the finishing process very difficult. The properties and of the glass workpiece are 

tabulated in Table A.3. 

 

4.2.2 Mounting of specimens 

The method of specimen attachment and the alignment of the specimen are important 

aspects, which affects the flatness of the ground specimen. The specimens were attached 

by a thin layer of wax (NX-AF/EW: NEXSYS) to a steel mounting plate. The adhesive 

chosen have superior strength to withstand high force and temperature during grinding.  

The mounting plate was attached on a dynamometer, and the assembly was mounted 

vertical on the machine table.  

 

4.2.3 Sample preparation 

The samples were prepared from the BK7 glass block of diameter 80 mm and thickness 

10 mm.  The glass pieces were ground using #325 grit size grinding wheel in order to 

make it flat. The average surface roughness of the brittle surface produced on the 

workpiece was less than 1 µm, which was used as the workpiece for the grinding 

experiments. 

 

4.3 Grinding wheels 

  

Grinding wheels consists of abrasive grains known as grits, and the bonding material 

that holds the grits together.  Diamond or CBN grits are generally preferred as 

superabrasive grit material for their extreme hardness suitable for machining brittle 

material like glass, silicon and ceramics. The ELID-grinding wheels are made of metal 

or metal-resin bonded. The grinding wheels are produced from powder-metallurgy 
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methods. The bonding-materials used are cast iron, cast iron-cobalt, copper, bronze and 

copper-resin bonded.  

 

4.3.1 Measurement of wheel Profile  

The active-surface of the ELID-grinding wheel is covered by oxidized layer after pre-

dressing, and hence a non-contact profile measurement is necessary for measuring radial 

wear. A profile sensor was developed based on the principle of photoelectric effect. The 

schematic illustration and the photographic view of the profile sensor are shown in 

Figures 4.1 (a) and 4.1 (b), respectively. When the grinding wheel moves in between the 

LED and phototransistor, the light from LED is interrupted and the change of light 

intensity is measured in the form of electric current by the phototransistor. The 

calibrated displacement output characteristic of the sensor is shown in Figure 4.1 (c). 

The liner range from 3 ~ 9 volts have been chosen for measurements, and the reference 

point was always set at the output range of 4 – 6 volts.  

 

 

      

 

 

 

       (a) Schematic illustration of the sensor                   (b) Photographic view 
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                                (c) The calibration curve for the sensor 

 Figure 4.1 Measurement of wheel profile using the developed profile sensor. 

 

4.3.2 Preparation of the grinding wheel  

The method of preparation of the ELID-grinding wheels is different from the 

conventional grinding wheels. For conventional metal-bonded grinding wheels, truing 

and dressing are performed in a single operation. A single point diamond truing tool is 

used for truing and dressing of conventional wheels. However, the conventional method 

of preparation is not suitable for superabrasive grinding wheels and hence the ELID-

grinding wheels are prepared using two different operations as described below:  

 

4.3.2.1 Truing process 

The wheel profile should be free from irregularities or eccentricity before start grinding. 

Spark erosion methods are more suitable for the removal of unwanted material from 

harder grinding wheels. An electric spark is created in between the work and an 

electrode that removes the unwanted material from the workpiece. This process is 

known as Electro Discharge Truing (EDT) or plasma truing.   
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The EDT method is simple and highly accurate, and therefore it is more suitable for 

preparing grinding wheels for precision grinding. The truing process has been 

performed after mounting the grinding wheel in the machine spindle which reduces the 

inaccuracies created during wheel mounting. The grinding wheel is connected to the 

positive pole of the power supply.  A steel bar clamped on the machine table was made 

as electrode. The thickness of the electrode should be at least twice of the grinding 

wheel thickness. The circuit diagram and the photographic view of the truing setup are 

shown in Figure 4.2 (a) and 4.2 (b). The grinding wheel profile was measured using the 

profile sensor before performing the truing operation. The eccentricity of the grinding 

wheel was measured and, the resistance and the capacitance were selected based on the 

requirement of material removal. The required accuracy can be obtained by choosing 

suitable resistance and capacitance. The capacitances used were 0.1 µF, 1 µF and 100 

µF. The resistances used were 100 Ω - 1000 Ω.  

 

Figures 4.2 (a) and (b) show the grinding wheel (diameter 100 mm and thickness 5 mm) 

profile before and after truing. The eccentricity was measured about 50 µm and it was 

reduced to 3 µm P-V after truing.  The truing conditions were: spindle rotation:  1000 

rpm, feed:  50 mm/min and in-feed: 1 µm for five passes. The profile of the grinding 

wheel was measured at equal intervals in order to avoid excessive bond wear.   
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(a) Circuit diagram for EDT

(b) Photographic View of EDT process

(c ) Grinding wheel profile before truing (d) Grinding wheel profile after truing
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          Figure 4.2 The Electro Discharge Truing of ELID-grinding wheel. 

 

4.3.2.2 Pre-dressing 

Pre-dressing is the process of producing grin protrusion on the grinding wheel active-

surface. After truing, the grinding wheel surface is flat and without any grain protrusion, 

and hence pre-dressing is essential to produce grain protrusion by eroding the bond 

material around the grits. The grinding wheel was mounted on the machine spindle, the 

electrode was placed in position and the gap was adjusted to 100 – 300 µm.  Then the 

electrolysis was started with the supply of electrolyte and current. The pre-dressing 

conditions used in this study were 90 V, 10 A, RC – 50% (ON-time – 5 µs and OFF-time 
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– 5 µs) and spindle rotation of 1000 rpm.  At the beginning, an increase of current and a 

decrease of voltage were noticed. After some time, the current started reducing and 

almost the voltage rose approximately equal to the applied voltage. However, the above 

mentioned conditions were noticed after 20 – 30 min of pre-dressing.    

 

4.3.3 Wear measurement of the grinding wheel 

An unavoidable result from the grinding process is the wear of grinding wheel. The 

wear rate of the grinding wheels should be minimized in order to achieve better 

tolerance.  Faster wheel wear influences the ground surface integrity. The wheel wear 

can be quantified by the volumetric loss of material from the grinding wheel during 

grinding. The radial grinding wheel wear was measured using the profile sensor. The 

volume removed from the grinding wheel (Vw) is calculated as 

ww LbdRV =                                                                                                                (4.1) 

 

where,  dR – Radial wear in mm, 

 b – Grinding width in mm and 

 Lw – Circumference of the wheel in mm 

When the wheel was moved in between the photodiode and LED; the voltage started 

increasing related to the light blocked by the grinding wheel which was monitored by a 

digital oscilloscope. When the voltage was between 4 – 6 V, the X, Y and Z co-ordinates 

of the machine was set to zero, which was used as the reference point. After grinding, 

the grinding wheel was brought into the same position, and the new profile was 

measured as illustrated in Figure 4.3. The difference in voltage measured was converted 

into micrometers, which is equal to the radial wheel wear. The grinding ratio is a 
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common measure used to characterize the resistance to wheel wear. The grinding ratio is 

generally indicated as ‘G’ ratio, which can be expressed as 

 

w

m

V
VG =                                                                                                                          (4.2) 

where, 

 Vm – Volume of material removal from the workpiece in mm3 

Vw – Volume of material removal from the wheel in mm3 

 

 

                         

 

                   

 

 

   

 

 

                           Figure 4.3 Measurement of radial wear. 

 

4.4 Coolant and electrolyte 

 

The electrolyte GC-7 supplied from NEXSYS Corporation, Japan, was diluted with 

water in the ratio of 1:50 and used as an electrolyte and coolant for the experiments.  

The pH value and the electric conductivity for the electrolyte were measured as 11 and 

Position of the wheel before 
grinding 

Position of the wheel after 
grinding 
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2300-2800 micro-Siemens after dilution, respectively. Basically, ELID coolant consists 

of some corrosion inhibitor such as triethanol amine and alkaline salts.  

 

4.5 ELID power supply  

 

The power supply used for ELID is FUJI ELIDER: 921. The ELID power supply 

produces DC pulsed current. The current and voltage can be varied from 1 – 30 A and 

30 – 90 V, respectively. The pulse ON-time and OFF-time can be varied from 1 – 10 µs.  

The output current and voltage during the ELID process can be recorded through an 

output channel provided.  

                          

4.6 Force measurement system 

 

A data-acquisition instrument was used to monitor and record normal and tangential 

grinding forces. The four major components of the force measurement system were 

Kistler three component piezoelectric dynamometer (model: 9256A1), a set of three 

Kistler 5007 dual-mode charge amplifiers and an interface PCIF 260 EP, a digital 

oscilloscope and a data recorder (PC208Ax: Sony). The grinding forces were recorded 

using a data recorder and the digital oscilloscope was used to monitor the grinding 

forces while recording. The drip value of the grinding forces was compensated using a 

software program written using Borland C++.  

 

4.6.1 Force calibration 

Calibration is the process of converting raw date into meaningful values of the 

appropriate unit. The calibration process provides a relationship between the raw output 
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voltage recorded by the data-acquisition system and force encountered by the workpiece 

during grinding. The grinding forces recorded were digitized using an Analog to Digital 

converter.  The grinding forces were recorded with respect to every rotation of the 

grinding wheel. Figure 4.4 shows a plot of normal grinding force with respect to a 

rotation of the grinding wheel. Every wheel rotation was divided into 200 data points. 

An average value from four rotations was calculated for minimizing the error.  

 

 

 

 

 

                                    

                            Figure 4.4 Measurement of grinding force. 

 

4.7 Experimental setup 

 

The schematic illustration of the experimental setup is shown in Figure 4.5. This setup 

consists of three main systems such as the ELID system, force measurement system and 

the wear monitoring system.  The ELID system consists of an ELID-grinding wheel, an 

electrode, an electrolyte and a power supply.  The force measurement system consists of 

a dynamometer, a fiber optical sensor to deduct the spindle rotation, a digital scope and 

a data acquisition system. The wear monitoring system consists of the profile sensor and 

a digital oscilloscope. The electrode for the grinding wheel was attached near the 
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grinding wheel and the gap between the grinding wheel and the electrode was adjusted 

to 0.1 – 0.3 mm.  The pulse current was supplied from the ELID power supply.  The 

positive pole of the power supply was connected to the metal-bonded grinding wheel 

and the negative pole was connected to the electrode. A carbon brush was used for 

smooth contact with the machine spindle through which the current passing. The 

electrolysis began at the small gap between the electrodes with the application of pulse 

current and the supply of electrolyte.  

 

The workpiece was pasted on a metal piece and mounted vertically on the angle plate. 

The dynamometer was mounted in between the workpiece and the angle plate, and the 

assembly was mounted on the machine table.  The developed profile sensor was 

mounted on the table which was used to measure the wheel profiles before and after 

grinding. The normal force, tangential force, wheel rotation and the dressing current 

were recorded using a data recorder and stored in a PC through a data acquisition 

system.  

 

                    Figure 4.5 Schematic illustration of the experimental setup. 
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4.8 Grinding methods 

 

Three types of grinding methods have been used based for the investigations. They were 

surface grinding, vertical groove grinding and creep feed grinding. The above methods 

produced flat surfaces, deep convex grooves and horizontal slots. The grinding methods 

are illustrated in Figures 4.6 (a), (b) and (c). For studying the phenomenon of the oxide 

layer and for the fundamental analysis, vertical grooving method had been used. During 

vertical groove grinding, the contact area between the grinding wheel and the workpiece 

was increasing at every depth of cut/pass. The increase of grinding area within a small 

volume of material removal made it easy to study the topographical changes of the 

grinding wheel.  Creep feed grinding was used to study the behavior of the oxide layer 

and the cutting stability of the ELID-grinding wheels dressed at different current 

densities.  There are two general parameters that influence the ground surface finish; 

they are the grinding parameters and the ELID parameters.  The change of grinding 

parameters was obtained by changing the feed rate or the depth-of-cut. The feed rate can 

be chosen from 100 mm/min, and the maximum feed rate that can be feasible was 

determined by the experiments. The depth-of-cut can be varied from 1 µm to 5 µm for 

superabrasive wheels from mesh size #4000.  

 

     

                                  Figure 4.6 Different grinding methods. 
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The change of ELID conditions were obtained by changing the average current supplied 

for the electrolysis. The average current supplied can be varied by simply changing the 

ON and OFF time of the pulse. The pulse width for the experiments was set to 10 µs, 

which was the maximum pulse width obtained from the ELID-power supply. The 

change of ON and OFF-times vary the current duty ratio and the average current. Thus 

different in-process dressing conditions were achieved by the current variations. The 

current duty ratio (Rc) is defined as the ratio between ON-time of a cycle to the total 

time of a cycle as shown in Eq. (4.3). 

(%)100)( ×
+

=
offon

on
c

TT
TRRatioDutyCurrent                                                              (4.3) 

where, 

Ton   - ON-time of a cycle, 

Toff    - OFF-time of a cycle. 

 

Table 4.1 shows the different pulses at different current duty ratios. The pulse frequency 

can be varied by changing the ON and OFF time. Different grinding methods have been 

used for the investigations based on the requirements. The surface grinding has been 

used to compare the surface finish of the ELID and without ELID processes.  

 

Table 4.1 The Current duty ratio and the pulse width 

 
ton

toff

Cycle

Duty ratio % ton µs toff µs

30

40

50

60

3 7

4 6

5 5

6 4
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4.9 Measuring methods and measuring instruments  

 

4.9.1 Surface measurements 

Measurement of the ground surface is an importance measure to evaluate the grinding 

process. The surface roughness was measured perpendicular to the grinding direction. 

Surface roughness and the waviness of the workpiece were measured using Form 

Talysurf – 120 series. The measuring probe was 2 µm in diameter, the measuring speed 

chosen was 0.5 mm/min and the measured data were filtered using Gaussian filter.  

Normarski illuminated microscope was used to study the ground surface obtained from 

various grinding processes. The surface texture, surface roughness and the subsurface 

damages have been measured using Atomic Force Microscope (AFM). The grinding 

wheel surfaces were examined under Scanning Electron Microscope (SEM). 

 

4.9.2 Microhardness 

Microhardness of the grinding wheel samples were studied using Matsuzawa MXT 50 

digital microhardness tester. Specimens were tested under varying loads from 20 g to 

200 g. The dwelling period for the load application was 15 s. The sample was placed on 

the table and the microscope is focused on the spot where the microhardness to be 

measured, and then the indenter was placed on the spot. After the application of load, 

the indentation diagonals were measured, and the microhardness of the specimen was 

displayed on the digital display.  The table movements (X, Y) were measured using the 

micrometer provided. 
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4.9.3. Microconstituents  

The microconstituents of the grinding wheel samples at different spots were analyzed 

using Energy Dispersive X-ray (EDX) analysis. 

4.9.4 Nanoindentation 

The mechanical properties of the oxidize layers were analyzed using nanoindentation 

technique. A Triboscope of Hysitron Inc. was used to for the nanoindentation 

experiments.  
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  Chapter 5    
 
  Fundamental analysis of the ELID  
 

 
 
 
5.1 Introduction 
 
 
The ELID grinding is used to establish nano-surface finish on difficult to machine 

materials. This fixed abrasive finishing process is highly suitable for components with 

varying cross sections such as aspheres. These components need better geometrical 

accuracy as well as free from subsurface damages.  The finishing process should be 

controlled very accurately in order to achieve the requirements. For better process 

control, the mechanism of the process should be well known. The ELID grinding is a 

hybrid process, which consists of an electrochemical and a mechanical process. The 

change of ones parameter may influence the other but, there were no such previous 

studies reported so for, which promotes the fundamental analysis of the ELID 

grinding. It is evident that the fundamental studies will be more helpful to understand 

the importance of the selection of the ELID parameters and its influences.    

 

The mechanism of the ELID grinding has been studied by comparing the grinding 

forces, the stability of the forces, the surface finish and the wheel wear with the 

conventional method. The fundamental studies were conducted by  

 

1. Changing the ELID parameters at similar grinding process parameters,   

2. Changing the grinding process parameters with similar ELID parameter and  
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3. Changing the grinding process parameters and the ELID parameters. 

In addition, the advantage of the ELID can be examined using a comparison between 

the ELID and without ELID processes. The phenomena of the oxide layer can be 

studied by comparing the grinding forces pattern reordered during ELID and without 

ELID grinding. The following sections explain how the oxidized layer formed during 

ELID will facilitate to promote good surface finish. 

 

5.2 A comparison between conventional and ELID grinding processes 

 

The mechanism of material removal from a brittle surface is entirely different from the 

material removal mechanism of metals. The material removal from the brittle surface 

can be performed using anyone of the following material removal modes 

1. Brittle mode, 

2. Semi-ductile mode  and  

3. Ductile mode. 

Every component almost uses all the above three modes in order to achieve the 

requirements. Therefore it is necessary to investigate the effectiveness of the ELID at 

different grinding modes. The experiments were performed by grinding the optical 

glass (BK7) specimens using three different grinding wheels of grades #325, #1200 

and #4000 for producing brittle, semi-ductile and ductile mode, respectively. The bond 

material of the above grinding wheels was cast iron-cobalt hybrid bonding (FCI-X), 

which are mostly recommended with the ELID [Ohmori and Nakagawa, 1990]. The 

mean grit sizes of the grinding wheels are 40/60 µm, 8/20 µm and 2/6 µm for the above 

grade wheels, respectively.  The grinding conditions for the brittle mode grinding were 

spindle speed: 3000 rpm, feed rate:  200 mm/min and depth-of-cut: 5 µm. The grinding 
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conditions for the semi-ductile mode grinding were spindle speed: 3000 rpm, feed rate:  

200 mm/min and depth-of-cut: 2 µm, and for the ductile mode grinding spindle speed: 

3000 rpm, feed rate:  200 mm/min and depth-of-cut: 1 µm. The ELID parameters for all 

the above grinding modes were Ip = 10 A, Vp = 90 V and current duty ratio of 50% (Ton 

– 5 µs, Toff – 5 µs).  

 

Experiments were conducted at two different grinding modes: without ELID 

(conventional) and ELID. The average surface roughnesses of the above grinding 

modes measured perpendicular to the grinding direction were 1.533 µm, 0.567 µm and 

0.026 µm for without ELID, and 0.563 µm, 0.161 µm and 0.006 µm for the ELID, 

respectively. The improvement in surface finish shows clear evidence that the ELID is 

an efficient process for finishing hard and brittle material, and it is also found that the 

ELID works efficiently in all grinding modes. Figures 5.1(a), (b) and (c) show the 

Normarski interference micrographs of ground glass surface at brittle, semi-ductile and 

ductile modes using the ELID, respectively.  

 

Better performance of ELID process compared to conventional grinding (without 

ELID) can be easily observed at the semi-ductile mode when the ground surfaces are 

investigated under Normarski microscope. Figures 5.1 (d) and (e) show the Normarski 

micrograph of the ground surfaces machined using #1200 grade wheels without and 

with ELID respectively. The ground surface obtained using the ELID grinding 

technique contains less crashed parts (produced due to the interruption of grinding 

steaks) than that without ELID.  
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 (a) Brittle mode (#325 , Ra : 0.215 µm)    (b) Brittle & Ductile (#1200, Ra: 0.112 µm) 

                 

 

 

 

                                 

                                                    

                                                  (c) Ductile mode (#4000, Ra: 0.009 µm) 

 

 

 

 

 

 

(d) Without ELID (#1200, Ra: 0.184 µm)       (e) With ELID (#1200, Ra: 0.099 µm) 

 

            Figure 5.1: Normarski micrographs of ground glass surfaces [50 X]. 
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5.3 The phenomenon of the oxide layer 

 

The main difference between the conventional grinding and the ELID grinding is the 

application of current to facilitate the self-sharpening effect of the harder metal bonded 

grinding wheels.  However, the application of current oxidizes the wheel-active-

surface (where the active grits are bonded), and the produced oxide deposited on the 

wheel surface. The oxide layer is named as ‘self-protecting layer’ of the ELID, which 

controls the bond material from further oxidation. The bond material of the ELID-

grinding wheels is subjected to a hybrid process of electrolytic corrosion and 

mechanical etching (wheel/work interface), which may cause the change of topography 

of the grinding wheel while grind. If there is any change in the wheel topography, the 

effect will be reflected in the grinding forces. Therefore, the phenomena of the oxide 

layer can be explained by the deviation of grinding forces from the conventional 

grinding forces. The grinding parameters chosen for the experiments were spindle 

speed: 3000 rpm, feed rate: 200 m/min, depth-of-cut: 1 µm/pass. The ELID conditions 

were Ip = 10 A, Vp = 90 V and current duty ratio of 50% (Ton – 5 µs, Toff – 5 µs). 

 

The normal and tangential forces obtained during conventional grinding are shown in 

figures 5.2 (a) and 5.2 (b), respectively. It can be observed that the normal and 

tangential forces almost remain constant although the grinding time increases. There is 

no much difference between the force recorded at the beginning and the end of the 

process. The normal force at the beginning and the end of the process were 60.13 N 

and 62.44 N, respectively. Figure 5.3 shows the normal and tangential forces, and 

dressing current information of the ELID grinding. Here the normal force increases 

gradually and reduces after reaching a peak point. Repeation of the increase and 

decrease of force occurs throughout the ELID grinding process and creates periodic 
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patterns on the normal force diagram. From Figure 5.3 (a) it is observed that the 

normal force gradually increases to 50.75 N and decreases to 19.73 N. After reaching a 

minimum force, the normal force starts to increase and forms a periodic pattern.  

 

 

                 (a) Normal grinding force                                 (b) Tangential grinding force 

               

     Figure 5.2: The Normal and tangential forces during conventional grinding. 

                                                                  

The analysis of the normal and the tangential forces, and the dressing current explain 

the phenomena of the oxide layer. Figure 5.3 (b) shows the sudden increase of 

tangential force which may be due to the breakage of the insulating layer from the 

wheel surface, which was verified by the behavior of the dressing current. During that 

period an increase of dressing current to a maximum of 1.617 A was noticed, and then 

it reduced to 1.242 A. This kind of phenomena was observed throughout the grinding 

process [Figure 5.3(c)]. The breakage of the oxide layer increases the conductivity of 

the wheel surface that stimulates the electrolysis, which causes an increase of current 

and gradually decreases when the layer was formed. The behavior of insulating layer is 

characterized by comparing the phase relations between the grinding forces and 

current. The dressing current and the tangential force increases when the normal force 

decreases as can be seen in Figures 5.3 (c), 5.3 (b) and 5.3 (a), respectively.  From 
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these periodic patterns, it is clear that the oxide layer is not fully worn out, but breaks 

suddenly after reaching a certain condition. The condition of breakage of the insulating 

layer is not clear but the factors influencing the layer breakage may be the thickness of 

the insulating layer, the contact area between the workpiece and the wheel, and the 

grinding parameters. The study on the phenomena of the insulating layer provides 

important information about the ELID. They are the reduction of forces and the 

instabilities.  Therefore, it is necessary to examine the force instabilities at different 

ELID conditions. 

                                 

 

 

 

 

 

                 (a) Normal force         

                                         

  

                            

 

 

 

 

                 (b) Tangential force                                        c) Dressing current  

Figure 5.3: Normal and tangential forces and dressing current during the ELID 

grinding. 
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5.4 The effect of the ELID parameters 

 

The effect of the change of the ELID parameters on the grinding forces, the surface 

finish and the wear of wheels has been presented in this section. The influence of Ton 

and Toff on pulsed plating has been reported by Ibl et al [Ibl et al., 1978; Ibl, 1980]. 

However, there were no such studies reported on ELID. Varying the current duty ratio 

is the easiest way of varying the average current (Im) supplied for the electrolysis. 

 

5.4.1 Effect of current duty ratio on the grinding forces 

 

The stability of the grinding forces is an important factor in the grinding process. 

Therefore it is essential to analyze the stabilities of the forces at different in-process 

dressing conditions. The experiments were performed at similar grinding conditions 

(similar feed rate, spindle speed and depth-of-cut), and the in-process dressing 

conditions were varied by changing the current duty ratio from 30% to 60%.   

 

The grinding forces were recorded with respect to the wheel rotation, and four 

rotations of the grinding wheel makes 900 points. An average force was calculated 

from every four rotations of the grinding wheel in order to minimize the error. The 

glass surface was ground using FCI-X – #325 wheels and an average surface 

roughness of 0.564 µm was achieved.  The vertical grooves were ground on the glass 

surface using FCI-X – #4000 wheel. Each groove was ground to a depth of 250 µm. 

The grinding parameters for the above experiments were spindle speed: 3000 rpm, feed 

rate: 200 mm/min and depth-of-cut: 1 µm/pass.  
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Average values for every 200 sec are taken to show the overall changes during the 

whole grinding process. A comparison of grinding forces between conventional 

grinding and ELID (current duty ratio of 50%) are shown in Figures 5.4 (a) and (b), 

respectively. The normal grinding force obtained during the ELID grinding was less 

than the normal force of the conventional grinding at any instant,  for example at 2000 

sec for conventional and ELID grinding process were found to be 59.6 N and 21.1 N 

respectively. The normal cutting force was reduced almost three times by the 

application of the ELID.   

  

                     (a) Normal grinding force                             (b) Tangential grinding force 

Figure 5.4: Normal and tangential grinding forces during conventional and the 

ELID grinding. 

 

Figures 5.5 (a) and (b) show the comparison of normal and tangential forces at 

different current duty ratios. Figure 5.5 (a) shows that the normal cutting forces are 

minimum and more stable when the current duty ratio increases. The normal cutting 

forces at 2000 sec were found to be 28.7, 26.4 and 20.43 N for current duty ratios of 

30, 40 and 60%, respectively. Figure 5.5 (b) shows that the tangential force is unstable 
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irrespective of current duty ratio. The instability of tangential force is due to the 

breakage and formation of the insulating layer from the grinding wheel that is 

unavoidable during in-process dressing. In-process dressing with high current duty 

ratio can minimize the tangential force even though it is unstable. The normal grinding 

force was found to be more stable and minimum when grinding with current duty ratio 

more than 40%.   

                     (a) Normal grinding force                       (b) Tangential grinding force 

Figure 5.5: Normal and tangential grinding forces during ELID grinding at 

different current duty ratios. 

 

The current recorded during in-process dressing at 50% and 60% current duty ratios 

are shown in figures 5.6 (a) and 5.6 (b), respectively. From the comparison, it was 

found that at 60% duty ratio the dressing frequency was more as compared to that of 

the 50% duty ratio. The increase of the dressing frequency with the increase of current 

duty ratio explains that the layer on the wheel-active-surface is softer, which causes the 

breakage of the layer often.  From the above result it can be thought that higher the 

current duty ratio thicker the oxidized bond material or produces more oxide on the 

surface of the wheel.  The oxidized layer thickness varies the grit holding strength. The 

grit holding strength can be related to the grit protrusion height to the thickness of the 
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oxidized bond material. It is difficult to measure the actual thickness of the bond 

material oxidized, but a comparison can be done by the oxide layer deposition on the 

grinding wheel. Thinner oxidized layer can hold the worn diamond grains for a longer 

duration than the thicker layer. When the surface is ground with a thinner layer, it has 

more chance of grinding using worn diamond particles and hence there is an increase 

in the normal force. The breakage and the formation of layer take longer time, which 

make the force unstable at very low current duty ratios. 

 

 (a) Dressing current at 50% current duty ratio        (b) Dressing current at 60% 

current duty ratio 

 

Figure 5.6: Comparison of frequency of dressing between 50% and 60% current 

duty ratios. 

               

5.4.2 Influence of in-process dressing conditions on surface roughness and tool 

wear. 

 

The surface finish and the wheel wear are other two important results obtained at 

different in-process dressing conditions. The radial wear of the grinding wheel was 

measured using the profile sensor. The surface roughness and the tool wear ratio with 
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respect to different current duty ratios are shown in Figure 5.7. The tool wear ratio is 

defined as the reciprocal of the grinding ratio as indicated in the Eq. (5.1). 
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               Figure 5.7: Effect of duty ratio on surface finish and tool wear ratio. 

 

The average surface roughness (Ra) and the Tool wear ratio (Wt) obtained from 

conventional grinding were 0.154 µm and 0.093, respectively. The Ra and Wt from 

ELID grinding process at 50% current duty ratio were found to be 0.012 µm and 0.207, 

respectively. The average surface roughness improved more than 12 times and the tool 

wear ratio increased more than 2.23 times when applying the ELID grinding technique. 

Comparison between the in-process dressing at 50% and 60% current duty ratio shows 

the average surface roughness improved 1.5 times and tool wear ratio increased 13%.  

From the above results it is clear that when the current duty ratio is more than 50%, the 

wheel wear increases without much improvement in surface finish. From the results it 

is clear that the average current supplied for the electrolysis has a strong influence on 
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the surface finish and wheel wear. There is a remarkable improvement of surface 

roughness when the wheel is dressed up to an average current of 2 - 3 A than the 

conventional grinding.  The grinding ratio decreased from 22 to 15 when dressed more 

than the average current of 4 A, and if it is more than 5 A the grinding ratio was 

dropped to 5. The results obtained show that there should be significant changes taking 

place on the active-wheel-surface when varying average current. 

 

 The wheel surface was assumed to have been ground by three types of grit. The first 

type of grit is tightly held by the bonding material and partially held by the oxide layer. 

The second type of grits is fully held by the oxide layer and the third type are worn 

diamond particles held by the layer. If the cutting pressure exceeds the holding 

pressure of a diamond grit, the worn diamond particles come out of the bonding matrix 

and become like loose abrasives and do the polishing process (if the grit size is more 

than depth of cut). The grit held by the oxide layer is loosely held in the bond and the 

process is same as the lapping process. The oxide layer holding the diamond grit is like 

the lapping pad and the bonding material acts like a supporting pad. The real grinding 

process is done by the grit which is tightly held by the bonding material. Thus, during 

ELID a smoother surface can be obtained. When the thickness of the oxide layer 

increases, the abrasives are loosely bonded and the grinding process becomes almost 

like polishing process. From the experiments it was observed that the surface 

roughness is much better when the current duty ratio increases. The oxide layer formed 

on the grinding wheel surface also acts as a damper and minimizes grinding chatter. 

 

The rigidity of the machine is also important to get a fine surface finish. But ELID 

minimizes machine stability problems because the oxide layer formed on the surface of 
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the wheel improves the quality of protrusion height of grain cutting edge and mirror 

surface finish is possible with low rigidity machines [Zhang et al., 2001]. If the 

grinding wheel is dressed more frequently, the work surface is always ground with 

freshly protruded diamond particles, which can produce smoother surface.  

5.4.3 The surface defects and the ELID parameter 

Figures 5.8 (a), (b) and (c) show the Normarski micrographs of ground glass surfaces 

at current duty ratios of 20%, 40 % and 60%, respectively. The ground surface 

machined at 20% shows a sudden failure of ductile surface in the form of cracks that 

originated beneath the surface. There is a visible microcrack observed in the ground 

surface obtained using 40% current duty ratio. The surface free from visible 

microcracks was observed when grinding with 50% and more. Though, the subsurface 

damage (SSD) of the ground surface surfaces was not examined in this analysis  it is 

clear that the grinding defects can be minimized when grinding using 50% current duty 

ratio.  

 

 

 

(a) Surface defects                         (b) Surface cracks                   (c) Defect free surface  

 (Current duty ratio: 20%)    (Current duty ratio: 40%)  (Current duty ratio: 60%)                                  

   Figure 5.8: Normarski micrographs [50 X] of ground surfaces at different duty 

ratios.  
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5.5 The effect of the grinding parameters 

 

5.5.1 Effect of feed rate on ELID grinding 

When the grinding wheel is dressed at various conditions, the grinding forces, the 

surface roughness and the wheel wear differ though the grinding conditions are similar 

as discussed in the previous section.  Now the influence on change of grinding 

parameters at similar dressing condition has been experimented.  The experiments 

were conducted by varying the feed rate from 200 – 600 mm/min without varying the 

spindle speed and the depth-of-cut. Cast iron-cobalt bonded grinding wheel of 

diameter 75 mm, width 3 mm and grade #4000 was used for the experiments. The 

grinding parameters were spindle speed: 3000 rpm and depth-of-cut: 1 µm/pass; the 

ELID parameters were Ip – 10 A, Vp – 90 V and Rc – 50% (Ton – 5 µs, Toff – 5 µs).   

 

Figures 5.9 (a) and (b) show the normal and tangential grinding forces at different feed 

rates. When the feed rate increases, the normal and the tangential forces also increase. 

However, the process was stopped due to the appearance of the black strips on the 

work surface.  There was no defective surface reported up to 400 mm/min, and the 

process was stopped at 150 µm and 100 µm for the feed rates 500 mm/min and 600 

mm/min, respectively.   
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                     (a) Normal grinding force                           (b) Tangential grinding force 

 

 

 

 

 

                                                             (c) Dressing current   

                                    Figure 5.9: Effect of feed rate on the ELID. 

 

Figure 5.9 (c) shows that the dressing current increases with increase of feed rate. At 

feed rate 200 mm/min, the current gradually increased up to 0.468 A at a total depth of 

cut of 150 µm and almost remains constant throughout the process.  At feed rates 300 

mm/min and 400 mm/min, the current gradually increased up to a total depth of cut of 

200 µm and almost remains constant. However, the dressing current at the beginning 

of feed rates of 500 and 600 mm/min are found to be much higher. It was observed that 

when the current increases more than 2 A the black strips started to appear on the 

surface of the workpiece. 
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       500µm
       500µm

(a) Clean Surface after using
feed rate 200 mm/min

(b) Black strips after using
feed rate 500 mm/min

(c) Grinding wheel surface after
machining Clean Surface

(d) Grinding wheel surface after
machining Black strips

 

 

  

 

 

 

 

 

 

 

 

             Figure 5.10: Microscopic views of ground surfaces and grinding wheels. 

 

Figure 5.10 (a) is a microscopic view of a clean surface ground at feed rate of 200 

mm/min and figure 5.10 (b) shows the microscopic view of a ground surface with black 

strips at 500 mm/min. Figures 5.10 (c) and 5.10 (d) show the microscopic view of 

grinding wheels after machining the clean and black strips, respectively.  It was found 

that the grinding wheel surface was more uniform after producing clean surface than 

the wheel surface after producing the black strip on the workpiece. Black spots were 

found on the surface of the grinding wheel as can be seen in Figure 5.10 (d).  

 

5.5.2 The effect of the feed rate and current duty ratio on the ELID grinding 

The grinding experiments were conducted using feed rates 100 – 600 mm/min and the 

current duty ratio 20 – 60 %.  Figure 5.11 shows the correlation between the grinding 

parameter and the ELID parameter. From the results it is clear that the correlation 

between the grinding parameters and the ELID parameters have a strong influence on 
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the surface defects. Increase in feed rate increases the removal rate of oxide layer from 

the grinding wheel surface and leads to an increase in current. If the removal of oxide 

layer from the grinding wheel is more than the formation of oxide layer, the work 

surface has more chances of being ground by a grinding wheel surface containing 

bonding material and worn diamond grits of the wheel. The nature of the wheel and 

workpiece contact in grinding has a strong effect on the temperature, force, surface 

integrity and wheel wear in grinding. The grinding speed, feed rate and the depth-of-

cut have strong influences on the energy (heat) conduction to the workpiece. If the 

work surface is ground by bonding material and worn diamond particles, rubbing takes 

place rather than grinding. The rubbing action increases grinding forces and the heat 

passed into the workpiece and for this condition carbon particles from the bonding 

material may be deposited on the surface of the workpiece and produces the black 

strips. From the results it is clear that dressing with high current duty ratio increases 

the possibilities of increasing of the feed rate without producing surface defects. 

 

 

 

 

 

 

        

                      

               Figure 5.11: Effect of feed rate and the ELID on ground surface. 
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The equivalent-chip-thickness introduced by Peters [Peters, 1990] is a useful measure 

of the amount of material removed per unit area of wheel surface. The equivalent-chip-

thickness is expressed as 

a
v
vh
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w
eq ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=                                                                                                             (5.2) 

where heq – Equivalent-chip-thickness, 

 vw – work velocity, 

 vs – wheel velocity and  

 a – depth-of-cut.  

The heq is increases with the increases of feed rate when the spindle speed and the 

depth-of-cut were unchanged. However, it can be concluded that if the equivalent-

chip-thickness increases beyond certain value, the application of the ELID become 

ineffective.   

5.6 Concluding remarks 

The application of the ELID is found to be effective in all grinding modes such as 

brittle, semi-ductile and ductile. The self-protected oxide layer produced on the active-

wheel surface breaks at certain condition, which depends on the properties of the oxide 

layer. The breakage of the oxide layer from the wheel-active-surface increases the 

conductivity, which stimulates electrolysis and the oxide layer is reformed on the 

wheel-active-surface. The breakage of the oxide layer makes the wheel surface free 

from worn grits and loaded chips. The breakage and formation cycle produces some 

force instabilities, which can be minimized when dressing using high current duty 

ratio.  The surface finish improves when the wheel is dressed using high current duty 

ratio. However, it can be achieved with the increase of wheel wear, which shows that 

the active grits are bonded by less harder bonding matrix than the actual bond matrix 
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(metal). The machining parameters such as feed rate influence the ELID. When the 

equivalent chip thickness exceeds to a certain condition, the ELID totally fails and 

produces surface defects. If the removal rate of the oxide layer is more than the 

formation rate, the possibility of failure of the ELID is more. Therefore care should be 

taken when grinding with high feed rate, larger depth of cut and larger contact area. 

The surface defect produced at ductile mode removal was reduced when dressed the 

wheel using 40 % and more current duty ratios. 

 

The wear mechanism of the grinding wheels dressed using the ELID, the wear 

reduction strategies and the model for in-process dressing has been presented in the 

forthcoming chapter. 
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Chapter 6 
 
Wear mechanism of the ELID-grinding wheels 
 

 
 
 
6.1 Introduction 
 
 
The ELID-grinding wheels have a conductive bond matrix made of either metals or 

metal-resin bond. The superabrasives such as diamond and CBN are embedded into the 

metal/metal-resin matrix. The grains are exposed from the wheel-active-surface when 

necessary bond matrix is removed. The removal occurs by electrolytic corrosion when the 

wheel is dressed using low current and voltage, and the process continues until a required 

grit protrusion is achieved. The dressing current is controlled based on the force ratio 

during grinding or monitoring the sharpness of the grits [Murata et al., 1985; Karmer et 

al., 1999]. However, the above control methods are not suitable for superabrasive wheels 

because of the following reasons:  

• The grit protrusion needed (50 % of mean grit size) is less than 1µm for most of 

the wheels, and 

• The wheel life (the time between the dressing intervals) is shorter due to wheel 

loading. 

Therefore, the ELID uses different technique, which produces an oxidized layer on the 

wheel surface to control the electrolysis which produces non-linearity during electrolysis. 

The behavior of different bonding materials has been reported based on the thickness of 

the oxide layer formation by Ohmori et al. [Ohmori et al.., 1997]. However, the wear rate 
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of the oxide layer during grinding depends on the grinding parameter and hence the wear 

mechanisms of the ELID-grinding wheels need to be studied carefully in order to control 

the process efficiently. 

 

6.2 The character of the ELID-grinding wheels 

The bond-materials used for the ELID-grinding wheels have been classified in a group as 

‘Transition metals’ in the periodic table as shown in Figure 6.1. The 38 elements in 

groups 3 through 12 of the periodic table are called "transition metals". Among the 

metals, the transition elements are both ductile and malleable, and conduct electricity and 

heat. The interesting thing about transition metals is that their valence electrons, or the 

electrons they use to combine with other elements, are present in more than one shell. The 

Transition metals are the elements found between the Group IIA elements and the Group 

IIB elements in the periodic table.  The Group IIB is sometimes considered transition 

elements. The transition elements are also known as the d-block elements, because while 

the outermost level contains at most two electrons, their next to outermost main levels 

have incompletely filled d-sub-orbital, which are filled-up progressively on going across 

the periodic table from 8 to 18 electrons. The filling of the d sub-orbital of the transition 

elements across a row of the periodic table is not always regular.  
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The Properties of transition metals are largely dependent on the electronic configuration 

of the electrons in the outer shell and in the penultimate outer shell. The transition 

elements readily form alloys with themselves and with other elements. The atomic size is 

fairly constant since the electrons in the outer most shells have similar environments. The 

low ionization potentials mean that the elements show variable valency states by loss of 

electrons from the‘s’ and ‘3d’ orbital. The elements in this group can have different 

oxidation states which makes them useful as catalysts.  The common material used for the 

ELID-grinding wheels are copper, bronze, cobalt and cast iron, which possesses the 

above said properties.  

 

 
 
 

Figure 6.1: Periodic Table. 
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6.3 Wear mechanisms of the ELID-grinding wheels 

Wheel wear is an extremely complex process, which involves the culmination of 

numerous wear events encountered between many single grits and the workpiece. The 

conventional way of quantifying wheel wear is to express it as volumetric loss of 

material, which tells little about the wear mechanism. It is generally recognized that there 

are three main mechanisms of wheel wear: - attritious wear, grain fracture and bond 

fracture. Attritious wear involves dulling of abrasive grains and the growth of wear flats 

by rubbing against the workpiece. Grain fracture refers to removal of abrasive fragments 

by fracture within the grain, and bond fracture occurs by dislodging the abrasive from the 

binder. Binder erosion is caused by reduction of bond strength and promotes grain 

dislodgement, especially with resin and metal-bonded wheels [Malkin, 1987]. Attritious 

wear has the smallest contribution to the decrease in volume but the wheel life is 

determined based on the attritious wear. Attritious wear reduces the sharpness and the 

protrusion height of the grit, and it leads to wheel glazing, which is an indication of the 

end of wheel life. 

 

Generally the end of wheel life is indicated by excessive forces, or by loss of finish, form, 

or size of the workpiece. The end of wheel life is deduced by a skilled operator, or with 

the help of special sensors [Hassui et al..., 1998; Amin et al.., 2000; Gomes et al.., 2001]. 

During ELID grinding, the wheel is redressed during the grinding operation. The wheel 

wear must be compensated in order to obtain high accuracy and tolerance. If the wheel is 

dressed prior to the end of wheel life, the wear rate will increase, and if it occurs later the 
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workpiece surface will be affected. The dressing intervals should be selected in a way that 

balances better grinding performance with reasonable wheel wear.  

The wear mechanism of the ELID-grinding wheels is classified into two different stages. 

The first stage of wear occurs during pre-dressing and the second stage is during in-

process dressing.  The knowledge of wear during both the stages should be essential for 

precision grinding. 

6.3.1 Wear during pre-dressing 

The grinding wheel need to be pre-dressed in order to provide enough grit protrusion to 

facilitates grinding. The transition bond metals sometimes give away two electrons and 

sometimes three electrons during electrolysis. For example iron gives Fe2+ or Fe 3+ to 

form oxide or hydroxides during electrolysis. The anodic reaction during the ELID is as 

follows: 

−+ +→ eFeFe 22                                                                                                             (6.1) 

−++ +→ eFeFe 32                                                                                                            (6.2) 

−+ +→ eFeFe 22                                                                                                            (6.3) 

−+ +→ OHHOH2                                                                                                         (6.4) 

2
2 )(2 OHFeOHFe →++                                                                                                (6.5) 

3
3 )(3 OHFeOHFe →++                                                                                                (6.6) 
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Figure 6.2: Average current and voltage during pre-dressing. 

The self-protected oxide layer (iron hydroxide) resists the flow of current and therefore a 

drop in current and increase in voltage has been reported. Figure 6.2 shows the average 

current and the voltage recorded during pre-dressing. Figure 6.3 shows the grinding wheel 

profile measured using the profile-sensor before and after pre-dressing. The pre-dressing 

conditions were 90 V, 10 A, pulse width of 10 µs (Ton - 5 µs, Toff - 5 µs) and spindle 

rotation of 1000 rpm. An increase of wheel diameter of about 250 µm was noticed after 

pre-dressing. The wheel after dressing was inspected under an optical microscope and it 

was found that the surface was completely covered by the oxide of the flow out bond 

material, which covers the active grits and only few grits were exposed on the top layer of 

the wheel. However, if the layer was formed by the metal oxide deposition, it will be 

totally removed during grinding and that makes some inaccuracies in the precision 

grinding process. The reason for the increase of diameter can be due to the oxide 

produced which is not solvable in the electrolyte. It started growing on the grinding wheel 

surface, which prevents the bond material from further oxidizing. Hence the wear of 
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grinding wheels during pre-dressing depends on the bond material and the type of 

electrolyte used. 

 
 
 
 
 
      
 (Bond + oxidized layer) 
 
 
 
 
 
         (Bond material) 
 

 
             
 
         Figure 6.3: Grinding wheel profiles before and after dressing. 

 

The wear rate of the oxide layer was analyzed by comparing the wear rate of the oxide 

layers on a partially over dressed wheel. A grinding wheel was pre-dressed for 10 min 

with the similar dressing conditions stated earlier and the wheel rotation was stopped for 

5 min without stopping the dressing current. Figure 6.4 (a) shows a partially over dressed 

grinding wheel that shows the wheel portion near the electrode was increased by about 25 

µm. The eccentric wheel was used to grind BK7 glass using the grinding conditions of 

feed rate: 200 mm/min, depth-of-cut: 1 µm/pass and spindle rotation: 3000 rpm. Figures 

6.4 (b) and (c) show the wheel profiles after 20 and 40 passes respectively. From the 

result the following conclusions can be drawn:  
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• The over dressed portion wears much faster than the dressed portion, 

which means that the over dressed portion should be less hard than the 

layer previously formed on the wheel surface during pre-dressing. 

• The oxide layer produced is not an oxide deposit on the wheel surface 

because it withstands the grinding forces unto 40 passes and wears slowly, 

which shows that  the layer has enough strength to hold the active grits. 

 

 

 

 

 

 

 

 
 

(a) Partially dressed wheel                                (b) After 20 passes machining 
 

 
 
 
 
 
 
 
 
 
 
                                                (c) After 40 passes machining 
 

Figure 6.4: Change of wheel profile of an eccentric over dressed wheel. 
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The phenomena of pre-dressing for wheels other than cast iron-bonded wheels (copper 

and bronze bonded) were found to be different when dressed at similar dressing 

conditions.  Figure 6.5 shows the copper-bonded grinding wheel profile before and after 

pre-dressing, and found that there is no change of diameter. However, change of color at 

the wheel surface due to the deposition of oxide layer was noticed. The bronze bonded 

wheel wears gradually with the increase of dressing time and there was no oxide layer 

formed on the grinding wheel (the oxide was soluble in the electrolyte). The above 

investigations clearly show that there is no bond wear during pre-dressing when the oxide 

layer is not dissolved by the electrolyte, and this is a process of producing a protective 

layer on the wheel surface.                 

         

                             (a) Before dressing                                 (b) After dressing 

  

Figure 6.5: Profiles of a copper bonded grinding wheel before and after pre- 
dressing. 
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6.3.2 Wear mechanism during in-process dressing 

The pre-dressed cast iron-bonded grinding wheel shows different results when pre-

dressed and hence the wear mechanism of the wheel draws attention than other grinding 

wheels. The mechanisms of wheel wear, the end of wheel life (wheel glazing) and the 

phenomena of in-process dressing have been analyzed in this section using a simple 

grinding experiment. A vertical groove was ground on BK7 glass using cast iron-bonded 

diamond grinding wheel of grade #4000. The force components and the dressing current 

were recorded with respect to the spindle rotation. The machining conditions were spindle 

speed: 3000 rpm, feed rate: 200 mm/min and depth of cut: 1µm/pass. The wheel dressing 

conditions were 90 V, 10 A and pulse width of 10 µs (Ton - 5 µs, Toff - 5 µs). The normal 

force, tangential force and dressing current during ELID grinding are shown in figures 6.6 

(a), (b) and (c), respectively.  

The drop in dressing current during the air cut region shows that the wheel surface 

contains thick oxide layer that resists the flow of current. The increase of grinding forces 

from point A to B shows the condition of instability of the grinding wheel. The pre-

dressed wheel surface contains large amount of dislodged grits, which can be identified 

by larger protrusion from the wheel surface. When the wheel contacts the workpiece, the 

dislodged grits are removed from the grinding wheel surface that reduces the grit density 

at the beginning stage and it increases the normal grinding force at the beginning of 

grinding as seen in Figure 6.6 (a). After the point B, normal force is found to be more 

stable and it shows that the wheel surface is in a stable condition. After the point C the 

normal grinding force gradually reduces and started increasing gradually once again. This 
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kind of phenomena repeats throughout the grinding process, and the cycle time becomes 

longer or shorter depending upon the material removal/pass. When the normal force starts 

decreasing, a sudden increase of tangential force is noticed, and it retains only for the few 

cycles. The increase of dressing current during the above cycle shows the occurrence of 

electrolytic in-process dressing of the grinding wheel. Similar cycles repeat in between 

the points D, E and F, which shows the end of wheel lives and the in-process dressing 

cycles. 
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(b) Tangential force 
 
 

   
          
 
 
 
 
 

(c) Dressing current 
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                   Figure 6.7 Different states of grit-workpiece interaction. 
 

When the diamond grit performs grinding, there are two major forces that are acting 

opposite to each other on the grit. They are the maximum grit holding force exerted by 

the bond strength (fh) and the grinding force per grit (fg). Figure 6.7 shows the different 

states of grit-workpiece interaction based on the condition of forces during grinding. 

Normally the grinding wheel surface consists of diamond grits at different conditions 

such as dislodged grits, worn out grits and sharp grits. For the dislodged grits, the holding 

force fh is lower than fg, so that the grit cannot penetrate into the workpiece. If the grit 

cannot penetrate into the work, it is removed from the bond matrix due to the hardness of 

the workpiece while grinding as illustrated in Figure 6.7 (a). For a sharp grit, fh is greater 

than fg and the grit penetrates and cuts the workpiece material (Figure 6.7 (b)). The depth 

of penetration depends on the condition of the grit i.e., the sharpness and the size of the 

grit. Now, the holding force and grinding force for single grit during ELID grinding can 

be expressed as shown below: 
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gsh akf ..1 σ=                                                (6.7)  

max2 hSkfg =                                                                 (6.8) 

where, 

 k1 – Constant related to wheel topography 

k2 – Constant related to material properties 

 S – Sharpness factor depends on condition of the grit (size and sharpness), 

ag – Holding area of grit, and      

 σs – Yield strength of the layer. 

 

The grinding force of the grit gradually increases during grinding because of the grit 

wear. When worn out grit performs grinding, the fg exceeds fh and the force exerted on the 

grit produces cracks on the bonding matrix as seen in Figure 6.8 (c).  At this stage, the 

percentage of grits on active-wheel-surface is dominated by the worn out grits, which 

promotes the crack propagation throughout the wheel active-surface and creates a macro 

fracture from the grinding wheel surface. When the insulating outer layer is separated 

from the wheel-active-surface due to macro fracture, the electrical conductivity of the 

grinding wheel increases and that stimulates electrolytic in-process dressing. 

 

Assuming that the grinding wheel profile is uniform with equal grit protrusion and that 

there are N numbers of active grits per unit area, the total holding force can be 

approximated as, 

ghh AfNF =                                        (6.9) 
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When the force per grit is resolved into normal and tangential components, the total 

normal and tangential forces can be expressed as: 

ggn AfNF α=                                            (6.10) 

ggt AfNF β=                                            (6.11) 

where  

α, β – The normal and tangential force components of fg, and  

 Ag – Total grinding area. 

The condition of macro fracture from the wheel or the wheel end of life can be expressed 

as when, 

hn FF >                            (6.12)  

The above grinding experiment was conducted using copper bonded grinding wheel with 

similar machining and in-process dressing conditions and similar results were obtained. 

However, the initial wear rate was comparatively smaller than the cast iron-bonded 

wheel.  

 

6.4 Wear reduction strategies  

 

According to Faradays law of electrolysis, the amount of material removal is proportional 

to peak current (Ip ) and pulse ON-time (Ton ).  

onp TIm ∝                                                   (6.13) 

 

The wheel wear increases with increase in either Ton or Ip. If the thickness of layer 

removed from the wheel surface during macro fracture is more than the grit size of the 

grinding wheel, the sharp new diamond grits are also removed along with the fractured 
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layer. This will increase the reduction of wheel diameter and increases the wastage of 

diamond grits that may cause more form error.  

 

An attempt is made to control the bond fracture by controlling the electrolysis based on 

the grit size of the grinding wheel. The first step is to control the pre-dressing time of the 

grinding wheel. If the wheel is pre-dressed for a longer time, it increases more bond 

fracture at the beginning of grinding. The pre-dressing time for finer grit size wheels 

(#4000 and more) could be 5 – 10 min to produce enough grit protrusion, and courser grit 

size wheels need to be dressed (# 325 and below) 20 – 30 min for better grinding 

performance. 

 

The second step is controlling the wear during in-process dressing. The simple method of 

measuring the wheel wear is by measuring the reduction of grinding wheel diameter. 

Figure 6.8 shows the effect of Ton time on wheel wear. The decrease of wheel diameter 

can be reduced if shorter Ton time is used during in-process dressing. Changing the Ton 

time will control the amount of material oxidized or the amount of macro fracture. 

Courser grit sized wheel needs high grinding efficiency therefore it is recommended that 

shorter Ton (2-4 µs) time is suitable for courser grit size such as #325 and # 1200 which 

have an average grit size of 46 µm and 12.5 µm respectively. Finer grit size wheels of  

about an average grit size from 4 µm (#4000) and finer need to be dressed often and a 

longer Ton time is preferable. For finer grits, equal Ton and Toff time could be selected for 

better results. Increase of Ton time more than Toff time, increases the radial wear without 

any significant improvement in ground surface finish.  
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                              Figure 6.8: Radial wheel wear at different Ton time. 
 

6.5 Influence of grinding parameters on wheel-wear  

 

A grinding wheel can be used to perform different operations such as surface grinding, 

plunge grinding and creep-feed grinding. The operations can be performed using different 

grinding parameters but, there is no rule for selecting the ELID parameters suitable for 

different operations. Therefore it is essential to study the behavior of the ELID-wheels at 

various grinding processes in order to achieve better tolerance. The influence of the 

combination of the grinding parameter, grinding process (grinding method) and the 

dressing method has been reverberated in terms of the grinding forces and the surface 

quality. 

 

The regenerative grinding chatter is mainly influenced by the cutting stability. Grinding 

hard and brittle materials using grinding wheels with harder binder increases the 

possibilities of regenerative chatter. The best method of reducing the chatter is by 
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reducing the wheel hardness [Malkin, 1987]. The application of the ELID reduces the 

hardness at the wheel active-surface can be more useful to reduce the grinding forces. 

However, the excessive reduction of bond strength may lead to excessive wheel wear and 

influences the tolerance of the ground surface.  The surface profile traced by the grits and 

the change of grit density were measured by measuring the surface waviness 

perpendicular to the grinding direction. Similarly the waviness caused due to the change 

of wheel profile was also measured and the occurrence of topographical changes was 

observed using different grinding methods. 

 

Three types of grinding geometry namely a slot, a vertical groove and a flat surface were 

ground to study the influence of the change of dressing parameters with different 

machining conditions. The horizontal slot was ground using a larger depth of cut 

(approximately 3 times of the mean grit size of the wheel) and slower feed rate. The 

vertical groove was ground by using an increase of contact area for every depth-of-

cut/pass and a flat surface was ground using depth-of-cut equal to the resolution of the 

machine (the allowable minimum depth of cut i.e. 1 µm).  

 

6.5.1 Horizontal slots 

The dimensions of the slots were 70 mm length, 5 mm width and depth of 5 µm. The 

grinding conditions used were feed rate: 20 mm/min, depth of cut: 5 µm/pass and spindle 

speed: 3000 rpm. The dressing conditions were Ip – 10 A, Vp – 90 V and Rc – (20% - 

50%). Figure 6.9 (a) shows the average normal and tangential forces measured during 

machining the slots. The results show that the increase of current duty ratio reduces the 
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grinding forces. The surface roughness and the waviness of the ground slots measured 

parallel and perpendicular to the grinding direction are shown in Figure 6.9 (b) and (c) 

respectively.  The surface roughness and waviness increases with the increase of current 

duty ratio when measured parallel to the grinding direction, but when measured 

perpendicular to the grinding direction it gradually reduced until it reaches Rc – 30% and 

then started increasing again. The increase of average surface roughness and waviness 

measured parallel to the grinding direction shows that higher dressing current changes the 

wheel profile (due to wheel wear) while grinding. The measurements were perpendicular 

to the grinding direction which shows that the grit density was higher or grit interaction 

with the work was found to be better up to 30% current duty ratio. From the results it is 

found that for better results the grinding wheel should be dressed between 20 – 30% 

current duty ratio.  

 
The reason for reduction of grinding forces during machining the slots was closely 

observed. Figures 6.9 (d) and (e) show the grinding forces (digitized using scope) 

recorded during 20% and 50% current duty ratios respectively. From the results it is clear 

that the reduction of grinding forces in this case is caused due to the removal of the binder 

from the grinding wheel due to the hardness of the workpiece.  
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(b) Average surface roughness and waviness measure parallel to grinding direction

(c) Average surface roughness and waviness measure parallel to grinding direction
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                      (i) Normal force                                              (ii) Tangential force 

                  (d) The normal and tangential forces recorded during Rc – 20% 

 

 

 

 

 

 

 

                    (i) Normal force                                              (ii) Tangential force 

                  (e) The normal and tangential forces recorded during Rc – 50% 

 

           Figure 6.9: Grinding forces and surface texture during slot grinding. 
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6.5.2 Vertical grooves 

The grit-depth-of-cut or the undeformed chip thickness is a useful measure in grinding. 

The chip thickness is influenced by the factors such as the properties of the material, the 

machining parameters and the grinding wheel conditions.  The condition for defect free 

ductile surface was reported by Bifano et al. [Biafano et al., 1991]. The critical-depth-of-

cut to produce a defect free surface on hard and brittle material is expressed as shown in 

Eq. (6.14).  

( )
H
K

H
Ed c

c

2

.⎟
⎠
⎞

⎜
⎝
⎛∝                                            (6.14) 

where dc is the critical-depth-of-cut 

 E is the Young’s modulus 

 H is the hardness of the material 

 Kc is the fracture toughness 

 

The critical depth-of-cut solely depends on the properties of material to be machined. For 

BK7 optical glass, the critical-depth-of-cut is approximately equal to 45 nm. The 

maximum chip thickness or grit-depth-of-cut, h max, is expressed as:  

s

e

s

w
s

d
a

v
vLh ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2max                                     (6.15)  

where, hmax – Maximum chip thickness, 

 Ls – Distance between the active grits, 

 vw – Velocity of work, 

 vs – Velocity of the wheel, 

 ae – Effective depth-of-cut and 
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 ds – Effective diameter of the grinding wheels. 

From the above expression, it is clear that the maximum chip thickness depends on both 

machining and wheel parameters. If the penetration depth of a single grit is less than the 

critical-depth-of-cut, the chip deformation takes place plastically and that reduces the 

subsurface damages. Now the condition for ductile mode grinding can be expressed as 

shown below: 

cdh <max                                     (6.16)  

The above condition can be obtained by controlling different machining parameters 

during grinding. For example, the increase of wheel speed or reduction of depth-of-cut 

reduces the chip thickness but, it needs special machines or special attachments. Recent 

studies show that ductile mode could be achieved using the conventional machine with 

the superabrasive grinding wheels and the ELID. The superabrasive wheels reduce the 

distance between the adjacent grits (Ls) and minimize the chip thickness. But, there is no 

explanation about the significance of dressing parameters that influence the grinding 

wheel topography in a significant amount.  

 

The method of vertical groove grinding is highly useful for determining the grit 

interaction with the work surface. Each grit cuts as well as scratches the work surface 

since the grinding wheel is rotating and moving up and down. This method is more 

efficient to analyze the significance of the dressing effect. The grooves were ground to a 

length of 70 mm and a depth of 250 µm. Figures 6.10 (a), (b) and (c) show the grinding 

forces, surface roughness and waviness measured parallel and perpendicular to the 

grinding directions, respectively. The grinding condition were feed rate: 200 mm/min, 
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depth of cut: 1 µm/pass and spindle speed: 3000 rpm. The dressing conditions were Ip – 

10 A, Vp – 90 V and Rc – 20% to 50%. The grinding forces were found to be reduced with 

the increase of current duty ratio. The average surface roughness and waviness measured 

parallel to the grinding direction was found to be almost constant for 30 % and more.  The 

parameters measured perpendicular to the grinding direction shows that the surface 

roughness and waviness reduces when dressed more than Rc – 30 %.  The result obtained 

using ELID grinding dressed at 30% of current duty ratio shows a P–V surface roughness 

of 27 nm, which is less than the critical depth-of-cut of glass material. From the above 

experimental result, it is clear that the hmax during ELID is also influenced by the bond 

strength of the grinding wheel. The hmax for the ELID grinding can be written as shown 

below: 

 
s

e
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d
a

V
VLkh ⎟

⎠
⎞

⎜
⎝
⎛= 2max                        (6.17)  

where k – ELID dressing constant and, 

  cp RVIk ,,∝                       (6.18) 
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Figure 6.10:  Vertical groove grinding (a) grinding forces (b) and (c) surface   
measurements parallel and perpendicular to the grinding direction. 
 

6.5.3 Surface grinding 

From the previous experimental results it is clear that for deeper cut (for geometrical 

accuracy) the grinding wheel needs to be dressed below Rc – 30 % and for low depth (for 

mirror surface finish) the wheel needs to be dressed above Rc – 30. However, the Surface 

grinding experiments were used to study the performance of the dressing methods. Two 

different methods have been used for finishing the brittle surface. They are in-process 

dressing and interval dressing. The difference between the processes was described in 
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Chapter 2.  The grinding conditions were feed rate:  200 mm/min, depth-of-cut: 1 µm/pass 

and spindle speed: 3000 rpm. The dressing conditions were Ip – 10 A, Vp – 90 V and Rc –

50%. The grinding pitch was 1 mm with zigzag direction. The surface was ground to a 

depth of 250 µm. The dressing interval for the interval dressing was 15 min. There is no 

significant difference in grinding forces and surface roughness. The average surface 

roughness of the ground surfaces was found to be 3 nm and 3.2 nm, respectively. 

However, there was a significant different in grinding marks on the surfaces were 

reported. Figures 6.11 (a) and (b) show the Normarski interface micrographs of surface 

obtained from the above conditions. The grinding marks obtained during in-process 

dressing shows the mode is closer to the plastic scratching mode obtained during 

polishing [Izumitani, 1986].  Therefore, it is concluded that the in-process dressing 

method is the most suitable process for finishing brittle surfaces at submicron level. 

 

 

 

 

 

 

                                   (a)                                                    (b) 

Figure 6.11: Normarski micrographs of ground surface using in-process and 

interval dressing [50 X]. 
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6.6 Model for the in-process dressing 

  

Figure 6.12 (a) shows the change of normal force and dressing current during ELID 

grinding with the grinding conditions of spindle speed: 3000 rpm, depth of cut: 1 µm, 

feed rate: 200 mm/min and 60% of current duty cycle. Figure 6.12 (b) shows the force 

profile with respect to the wheel angles. The frame numbers are used to relate the normal 

force in figures 6.12 (a) and 6.12 (b). In this process a breakage cycle starts 

approximately between 180 – 220 sec, which is represented by the frames 10 and 15. This 

clearly shows the condition of the grinding wheel and the oxide layer breakage from the 

grinding wheel. From the above example it is clear that the breakage of the oxide layer 

from the grinding wheel occurs segment by segment. 

 

Based on the experimental results the model for in-process dressing has been proposed. 

The increase of wheel diameter happens only in cast iron bonded grinding wheels. 

However, similar mechanism was found when grinding using copper bonded grinding 

wheels. Even though electrolytic dressing reduces the strength of the bonding material, 

the layer has enough strength to hold the diamond grits during grinding. Figure 6.12 (c) 

shows the change of wheel surface while grinding. If the grinding force exceeds a certain 

value, which depends on the machining conditions, the layer starts breaking. The outer 

layer contains worn grits and grinding chips are removed along with the layer. The new 

layer of the grinding wheel beneath the broken layer contains fresh diamond grits that 

come into cutting action. The new layer is softened by electrolysis and the speed of the 

electrolysis depends on the duty ratio of the dressing current. If the grits are worn out, 
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which leads to macro fracture and the crack propagates as shown in Figure 6.12 (c). The 

whole layer is removed due to the hardness of the workpiece. The breakage of the outer 

insulating layer increases the electro-conductivity of the grinding wheel, which stimulates 

electrolysis, causing an increase in dressing current and reducing the normal cutting force. 

This cycle repeats throughout the grinding process.   
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(c) 

 

 

 

 

 

 

 

                                              Figure 6.12: Model for in-process dressing. 

6.7 Concluding remarks 

 

The wear mechanism of the ELID grinding wheels is different from the conventional 

grinding wheels. The dressing interval during in-process dressing influences the radial 

wear/grinding ratio which depends on the layer that holds the grit during grinding. 

However, the produced ELID-layer strongly depends on the dressing current and the bond 

material. When the grinding method is different, the requirement of in-process dressing is 

also different. For deeper cut, the wheel needs to be dressed with lower current duty ratio 

(20 – 30 %), but the results for smaller depths shows that it is better to dress the grinding 

wheel about approximately 50 %.  It may be concluded that the layer produced on the 

grinding wheel during in-process dressing is very important when grinding with the aid of 

the ELID and hence a detailed analysis is necessary to understand the ELID-layer 

(oxidized layer).  



 96

 
 
 Chapter 7 
 
 Investigations on the ELID-layer   
 

 
  
 
7.1. Introduction 
 
 
The studies conducted in the previous chapters clearly proves that the oxide layer formed on 

the wheel-active-surface influences the grinding forces, the surface finish and the wheel 

wear. Therefore, the characterization of the ELID-layer (oxidized layer) becomes inevitable 

for better control of grinding process, but characterization of the thin layer is a difficult task 

and hence it is almost overlooked. Recent advances in measuring equipments make it 

possible to analyze the properties of thin layers. Microhardness testing and nanoindentation 

are some of the techniques that can be used to investigate the thin layers. A detailed 

investigation on the ELID-layer has been presented in this chapter. These investigations 

include the studies on microconstituents and the mechanical properties of the layer. The 

results obtained are more helpful for better understanding about the layer, and measurement 

of mechanical properties such as microhardness and modulus of elasticity are useful because 

the layer acts as the binder for the active grits. 

 

7.2 Analysis on the pre-dressed wheel 

 

Pre-dressing is the process of producing ELID-layer on the active-surface of the wheel using 

electrolysis as discussed in the previous chapter. The idea behind the pre-dressing is 
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producing high resistance to current in order to make the wheel suitable for in-process 

dressing. The conductivity of the wheel should be very low for in-process dressing in order to 

reduce the radial wheel wear while grinding. From the previous chapters it found that the 

grinding performance is found to be better when the grinding wheel is dressed at high current 

densities. Therefore, the layer produced at high current densities has been chosen for the 

analysis, and almost full thickness of the layer has been produced on the wheel surface for 

the purpose of analysis. A cast iron-cobalt bonded grinding wheel of 100 mm diameter, 5 

mm width, 3 mm diamond layer thickness and mesh #4000 was pre-dressed with an electrode 

that covers ¼th of the perimeter of the grinding wheel.  The wheel was pre-dressed using the 

ELID condition of Ip – 10 A, Vp – 90 V, Ton – 5 µs, Toff – 5 µs and the spindle rotation of 1000 

rpm.  The increase of average current and decreases of voltage at the beginning of pre-

dressing indicates the good electrical conductivity of the wheel surface [Please refer Figure 

6.2]. During electrolysis, voltage increases gradually with the decrease of current, and the 

process was stopped after 30 min because of the voltage and current remains almost constant. 

The current drops to a small value of 1.3 A and the voltage was approximately equal to the 

applied voltage (Vp).  An increase of wheel radius about 200 µm was measured after pre-

dressing. Figures 7.1 (a) and (b) show the EDX test results of the wheel surfaces before and 

after pre-dressing, respectively. The EDX test on wheel surfaces before and after dressing 

conforms that the wheel active-surface is covered by the oxidized layer that contains the 

metal oxides.  
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(a) 

 

 

 

 

(b) 

 

 

 

 

 

Figure 7.1: The EDX test results of an ELID grinding wheel before and after pre-
dressing. 
 

The active-surface of the grinding wheel is important because it contains the active grits that 

perform grinding. When the metal-bond is oxidized, the properties of the layer such as 

hardness and Young’s modulus are important because if the wheel surface is not hard enough 

to hold the grits while perform grinding, almost the whole thickness is removed from the 

wheel surface due to the hardness of the work. Therefore, a comparative study has been 

performed on the active-wheel-surface. The microhardness of the ELID-layer (pre-dressed 

wheel) and the metal-bond (wheel without layer i.e. after truing or new grinding wheel) at 

different points was measured using Matsuzawa MXT50 digital microhardness tester. The 

behavior of the active-wheel-surfaces has been experimented by measuring the 
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microhardness of the surfaces at a series of loads from 20 g to 200 g with the dwelling period 

of 15 sec. Figure 7.2 shows the behavior of the active wheel surfaces under various loads. 

From the observations it is clear that the microhardness of ELID-layer is much lower than the 

metal-bond. However, the above experiment does not provide information about the whole 

layer. Therefore a detailed analysis on the whole layer is necessary in order to know the 

properties of the layer.  

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Microhardness of the actual bond and the layer at different loads. 
 

 

7.3 Microconstituents of the ELID layer 

 

The samples were taken from grinding wheels at different conditions for the purpose of 

microstructural analysis. The samples were taken from an undressed wheel and dressed 

wheel with different ELID conditions. Sample A was taken from the grinding wheel before 
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dressing, and samples B and C were from dressed grinding wheels dressed at current 

densities of 1 A/cm2 and 3.25 A/cm2, respectively. The samples were taken from grinding 

wheels (all samples from FCI-X wheels) of diameter 8 mm, diamond layer 10 mm and mesh 

#4000. The grinding wheel specimens were sliced to a thickness of 3 mm using wire-EDM. 

The molded specimens were ground to flat and then polished using slurry containing abrasive 

size of 1 µm. After polishing, the specimens were etched in order to reveal the 

microstructural difference between the real bond and the oxide layer. For cast iron bonded 

grinding wheels, the specimens were etched using an etchant Nital – 2%. There was a clear 

microstructural difference as observed at the wheel edges in samples B and C after etching, 

which shows the actual thickness of the oxidized layer. Figures 7.3 (a), (b) and (c) show 

SEM micrographs of the grinding wheel samples A, B and C, respectively.  The thicknesses 

of the oxidized layers at the wheel edges were found to be 50 µm and 200 µm for samples B 

and C.   

 

 
 
(a) Sample – A (undressed wheel) 
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(b) Sample – B (dressed at 1 A/cm2) 

 
 

 
 
 
 
 
 
 
 
 

 
 
(e) Microhardness of the Sample - B 
 

 

 
 
(c) Sample – C (dressed at 3.25 A/cm2) 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
(f) Microhardness of the Sample - C 

  

Figure 7.3: SEM micrographs of grinding wheel samples and the microhardness of the 
samples. 
 

The microhardness of the samples was measured at a load of 200 g with the dwelling period 

of 15 Sec. The actual microhardness of the bonding material (sample-A) was measured as 

110 GPa (200 g) (Figure 6.3 (d)). The microhardness of the layer was measured at different 

points on the oxide layer from the edge to towards the layer/metal-bond interface. Figures 7.3 

(e) and (f) show the microhardness measured at different points on the layers of the samples 
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B and C, respectively. The microhardness of the oxidized layer on both the wheel surfaces 

increases from the wheel edge to towards the layer/metal-bond interface. The hardest layer 

on the grinding wheel surface was found at the interface, which has microhardness of 220 

GPa (200 g). 

 

 

 

 

 

 

 

 

 

Figure 7.4: Microconstituents of the layer at different points from wheel edge to the    
layer/bond interface. 
 

The reason for the change of microhardness of sample C (after etching) has been investigated 

using EDX testing of the layers at different points. Figure 7.4 shows the EDX testing results, 

which shows the difference in the microconstituents and the amount of oxygen present in the 

layer. These variations of microhardness and microconstituents confirm that the layer is not 

the oxide film produced during electrolytic corrosion, but it seems a resistive layer that grows 

from the surface of the grinding wheel. The oxidized layer obtained during the ELID 

resembles a layer that consists of number of small layers with different microconstituents. 

The step etching method was used for further analysis of microstructure at different layers.  
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Figure 7.5 shows the SEM micrographs of the layers at different levels. The microstructure 

of the outer layer and the layer beneath are found to be different. Based on the experimental 

results, the model for the ELID-layer is represented schematically as shown in Figure 7.6. 

 

 
 
(a) Schematic illustration of the etched wheel 

 
 

(b) Microstructure of outer layer (View 
A) 

 
 
 
 
 
 
 
 
 
 
 
 

 
(c) Microstructure of the inner layer ( 20 µm 
beneath) View B 

 
 
(d) Different layers at View C 

 

             Figure 7.5: SEM micrographs of barrier oxide layer showing different layers.  
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Figure 7.6: Schematic illustration of the anodized ELID-layer. 

 

7.4 Analysis on the ELID-layer 

 

The investigations conducted on the ELID-layer confirm that the wheel is being anodized 

during in-process dressing because of the similarity of the properties of the anodized layer. 

An oxide film can be grown on certain metals (chromium, iron and nickel) by an 

electrochemical process called anodizing. When a metal is anodically polarized in an 

aqueous solution, the metal ions combined with electrolyte anions and formed 

oxide/hydroxide films on the metal surface.  A thin, dense barrier oxide film of uniform 

thickness was formed on the metal surface. The barrier oxide layer stabilizes the surface 

against further reaction with the environment because it is an excellent electrical insulator. 

The electrolytes are selected in which the oxide is insoluble, or dissolves at a slower rate than 

it deposits, and then an adherent oxide layer grows. The layer formed on the surface on the 

anodic metals is classified into either conductive type or nonconductive type. Conductive 

type oxide layers conduct electrons through the film but the non-conductive layer has no 

electro-conductivity. However, the ions can transfer into and from the nonconductive layer.  
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The oxide layer of nonconductive type is classified into barrier type and porous type. The 

barrier type layer is very common in the transition metals and its thickness is about few 

nanometers.  However, when the anode potential is raised, barrier or porous layers of several 

hundred nanometers are formed. The thickness of the oxide layer increases linearly with the 

voltage. After reaching a critical value, the arc discharge stats that crease the film thickness. 

When anodizing is performed at constant voltage, the current reduces exponentially and 

finally attains a very small value, which is known as leakage current. But, prolonged 

anodizing improves the quality of the oxidize layer [Konno, 1986]. The above phenomena is 

verified using the relation between the current and voltage recorded during pre-dressing as 

shown in Figure 7.7. 

 

 

 

 

 

 

 

 

 

Figure 7.7: Relation between the average dressing current and the voltage during pre-
dressing. 
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Figure 7.8: Equivalent circuit diagram of the ELID-layer. 

 

During the formation of the barrier type layer, the oxide/hydroxide ions migrate through the 

barrier oxide film and formed oxide/hydroxide films to the metal/oxide layer interface. The 

new oxide layers are formed at both interfaces depending on the transport number of the ions, 

which provide high electrical insulation and corrosion resistance. Therefore, the 

microhardness and the microconstituents at every micrometer are found to be different, 

which resembles the property of a dielectric material. Therefore, the anodic oxide layer can 

be approximated as a capacitance and a resistance in parallel. Figure 7.8 shows the schematic 

illustration of the anodized ELID layer. The anodized layer formed on the grinding wheel 

provided strong corrosion resistance to the bonding material. The anodic oxide layer grows 

towards the metal/oxide interface while the outer barrier layer is removed by the work/wheel 

interface. Then the oxide layer grows on the surface until a steady state is attained (this 

phenomenon is verified by observing the dressing current during in-process dressing). When 

the in-process dressing is performed with high anodic potential, there is no chance of the 

actual bonding material to come in contact with the workpiece during ELID grinding. 
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7.5 Investigation of the mechanical properties of the ELID layer  

 

Nanoindentation has been used to evaluate the mechanical properties of the surface layers 

and thin films in the recent years. Nanoindentation involves an instrument that continuously 

monitors the depth of the indent relative to sample surface during indentation. The load – 

displacement characteristics are used to determine the mechanical properties such as 

hardness and Young’s modulus [Bharat Bhushan, 1999, Wolf and Richter, 2003]. 

 

7.5.1 Principle of nanoindentation  

 

Figure 7.9: Schematic illustrations of the load – displacement curve and the indentation 
process [ Bharat Bhushan, 1999]. 
 

The development of depth-sensing indentation techniques has increased in the recent years. 

Therefore, the nanoindentation technique has been used to evaluate the mechanical properties 

of surface layers and thin films. However, the procedures used for nanoindentation are based 

on simplified assumptions about the material behavior during unloading and empirical 

relations of the contact area with little input from analytical and numerical solutions. Figure 

7.9 shows the schematic illustration of the load – displacement curve and the indentation 
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process. At peak load, the load and displacements are Wmax and hmax, respectively. The depth 

measured during indentation h is the summation of hs  and hc.  The depth hf represents the 

final depth of the residual hardness when the intender is fully withdrawn. Figure 7.10 shows 

the typical load – displacement curve during nanoindentation of the ELID layer. The change 

of mechanical properties has been evaluated by the nanoindentation on the metal-bond and 

the ELID-layer.  Figures 7.11 (a) and (b) show the AFM picture of the metal-bond before and 

after nanoindentation. The Young’s modulus and the Poison ratio of the indenter were 1140 

Gpa and 0.07, respectively.  

 
 

 

 

 

                   

 

 

 

 

 

Figure 7.10: A typical load – displacement curve during nanoindentation.  

 

Figures 7.11 (c) and (d) show the AFM picture of the oxide layer before and after 

nanoindentation. The Young’s modulus of the layer at a distance 180 µm from the wheel 

edge can be calculated using equation (7.1). The results obtained from the nanoindentation 
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for the actual bond and the ELID-layer is shown in Table 7.1. From the nanoindentation 

results, it is clear that the Young’s modulus of the layer is lower than the actual metal-bond. 

Therefore, the hardness and the Young’s modulus of the layer at the active-wheel surface 

were found to be lower than the actual metal-bond. The increase of hardness from the wheel 

edge towards the layer/metal-bond interface reduces the radial wheel wear to a remarkable 

amount because the grit is bonded by different layers with varying hardness.  

 

  

 

 

 

                          (a)                                                                 (b) 

 

 

 

 

 

 

 

                          (c)                                                               (d) 

Figure 7.11: AFM views of Nanoindentation on the ELID-layer and the actual bond 
material.  
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Table 7.1 Nanoindentation results 

Parameters/ Properties                     Bond material                         ELID-layer 

Stiffness (k) µN / nm                           44.34                                     16.34 

Er GPa(measured)         63.78                                     23.36 

H GPa                                                   5. 22                                      5.13 

Er Gpa (actual)                                    82.00                                      31.00 

 

 

7.6 Grit size and the anodized wheels 

 

The investigations on the ELID-layer show that the performance of the grinding wheel is 

found to be better when the active-wheel-surface contains the anodic layer that is generated 

during the ELID.  Grinding wheels with bond materials such as cast iron and copper can be 

easily anodized using the ELID. The advantages of grinding with the anodized ELID-layer 

have been experimented by wheels with different mesh sizes. Three different grinding wheels 

of mesh sizes of #325, #1200 and #4000 have been anodized using the ELID.  

 

Figures 7.12 (a), (b) and (c) show the grinding wheel-active-surfaces of grinding wheels of 

grade #325, #1200 and #4000, respectively. The actual bond strength for the diamond grits is 

different since the anodic layer was made of different layers with varying mechanical 

properties. Therefore, the bond matrix for the above grinding wheels at wheel-active-surface 

was found to be different. The grit-depth-of-cut depends on the grinding parameters and the 
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binder properties [Sharp, 2000].  The radial wheel wear of a FCI-X wheel of grade #325 was 

measured after ground a glass workpiece of 80 mm diameter to a depth of 200 µm. The 

grinding conditions were spindle speed: 3000 rpm, feed rate: 200 mm/min and depth-of-cut: 5 

µm/pass. The wheel was dressed with the current density of 3.25 A/cm2 (pulse width 4 µs). 

When comparing the grinding wheel profile before and after machining no radial wear was 

observed.  

 

The radial wheel wear of FCI-X wheels of grade #1200 and #4000 was measured after 

ground the workpiece to a depth of 50 µm and 10 µm, respectively. The grinding conditions 

were spindle speed: 3000 rpm, feed rate: 200 mm/min. The depth-of-cuts were 2 and 1 

µm/pass for the above wheels. The grinding wheels were dressed with similar current density 

with pulse width of 10 µs. The radial wheel wear of the above grinding wheels were found to 

be approximately 23 µm and 75 µm respectively. From the results it is found that the wheel 

wear depends on the grit size of the grinding wheel.  

 

From the above experimental results, it is clear that grinding with anodic ELID-layer was 

very effective for the grinding wheels of grit size more than 10 µm. However, the advantage 

of grinding  with anodic ELID-layer for grit size less than 4 µm was found to be more useful 

because there was no bond metal exist in the surface and hence the grinding scratches were 

very much reduced. Therefore the work surface was ground in the similar way as abrasive 

pad used in polishing. 
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              (a)  

 

 

               (b) 

 

 

               (c) 

                

                     

             Figure 7.12:   Active-surfaces of grinding wheels with different grades. 

 

7.7 Advantages of grinding with anodized ELID layer 

 

7.7.1 The profile of the grinding wheel 

Maintaining the grinding wheel profile throughout the grinding process is an essential factor 

in precision grinding.  Though the grinding wheel is trued and dressed before starting 

grinding, the wheel is redressed while performing grinding with the aid of the ELID.  The 

investigations have shown that the oxide layer breaks and reforms on the wheel surface in 

order to promote in-process dressing. Hence the investigation on the wheel profile during 

ELID grinding becomes necessary.  
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The wheel profile with anodized ELID-layer has been monitored at equal intervals.  A 

grinding wheel with eccentric profile was dressed and used for the grinding experiments. It is 

found that the wheel profile improved with the increase of grinding time. The experiment 

conducted using a over dressed eccentric grinding wheel discussed in Section 6.3.1 shows 

that the wheel profile is improved with the increase of grinding time.  Figure 7.13 also shows 

that the grinding wheel profiles are also better after grinding approximately 15 mm3.  

 

7.7.2 Control of the wear rate of ELID-layer (Effect of pulse ON-time and OFF-time) 

 

The ELID uses square pulses which are separated by interval with zero current. The main 

advantage of using pulsed electrolysis is the versatility. The pulse ON-time and OFF-time are 

very important parameters since it affects the damping and the concentration gradient of the 

electrolyte. In pulsed electrolysis, the Ton time is known as the reaction time and the Toff time 

is known as the relaxing time, which is considered as the most important factor for nucleation 

and crystallization. In pulse electrolysis, instead of one parameter three parameters - the 

pulse density, the Ton time and the Toff time can be varied independently over a broad range. 

The experiments conducted on pulsed electroplating show that the change of Toff time has a 

strong influence on the surface produced [Ibl et al., 1978]. There is no reported result 

explaining the influence of Ton and Toff time during electrolytic dressing.  

 

The simplest way of studying the influence of double layer and the diffusion layer effect is 

by varying the Ton and Toff during in-process dressing. There are two methods adopted in this 

study. The first method used is keeping the peak current and the pulse width as constants, and 
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varying the Ton and Toff times. The first method varies the average current densities. The 

influence of the change of average current density on the grinding forces, the surface finish 

and the wheel wear were reported in the previous chapters. The second method is keeping the 

peak current and the average current as constants and varying the pulse frequency. A set of 

experiments were conducted by using pulsed current at different frequencies. The lowest and 

the highest frequency obtained using the ELID power supply are 50 (Ton = 1 µs and Toff = 1 

µs) Hz and 250 (Ton = 10 µs and Toff = 10 µs) Hz, respectively. The Ip value of 10 A, voltage 

90 V and Im of 3.25 A/cm2 were chosen for the above experiments with similar machining 

conditions. 

 

Figure 7.13 shows the effect of pulse frequencies on the ELID-layer at 50 Hz and 250 Hz. 

The wheel profiles after pre-dressing  (Figure 7.13 (b) and (e)) show that the wheel radius 

increased about 25 µm after dressing using pulse frequency 50 Hz, but the wheel radius was 

found to be reduced by about 10 µm while pre-dressed using 250 Hz. The radial wheel wear 

observed was approximately 25 µm and 250 µm for the above pulse frequencies.  The radial 

wear increased when dressing with high frequency pulse current without any significant 

improvement in the surface roughness (Ra – 3 nm for both). Therefore at similar peak and 

average current densities, low frequency pulse reduces the wear rate of the ELID-layer to a 

significant amount.  When grinding with superabrasives, it is recommended to dress the 

wheel using pulse frequency not less than 100 Hz. 
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(a) Wheel profile before pre-dressing (50 
Hz) 

 
 
 
 
 
 
 
 
 
 
(d) Wheel profile before pre-dressing (250 
Hz) 

 
 
 
 

 
 
 

 
(b) 

Wheel profile after  10 min of pre-dressing 
(50 Hz) 

 
 
 
 
 
 
 
 
 
 
 
(e) Wheel profile after 10 min of pre-
dressing (250 Hz) 
 

 
 
 
 

 
 
 
 

 
 
 
(c) Wheel profile after grinding (50 Hz) 

 
 
 

 
 
 
 

 
 
 
 
(f) Wheel profile before pre-dressing (250 
Hz) 

 

          Figure 7.13: Effect of pulse frequency on the ELID-layer. 
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7.8 Concluding remarks 

 

When a cast-iron bonded grinding wheel is dressed with the current density above 2 A/cm2 

and voltage 60 – 90, an anodized layer was formed on the wheel-active-surface. This 

thickness depends on the bond material of the grinding wheel.  This layer has a strong 

corrosion resistance to the electric current and makes the grinding wheel suitable for in-

process dressing. The mechanical properties such as hardness and Young’s modulus are 

found to be different from the actual bond material. The layer hardness is different and that 

depends on the thickness of the layer. The hardest layer is at the bond/layer interface and the 

hardness reduced towards the wheel edge. The bond matrix of the active grits is influenced 

by the layer properties such as hardness and Young’s modulus and the grit size. 

 

The wear rate of the ELID-layer is influenced by the frequency of the pulse, higher the 

frequency more will be the wear of the oxide layer. When grinding with the ELID-layer, the 

profile is improved or maintained throughout the grinding process.  



 
 

117

 

Chapter 8                       

Modeling of micro/nanoELID grinding  

 

 

8.1 Introduction  

 

Grinding is known as a complex machining process because it is influenced by 

numerous parameters. The early grinding models developed [Tonshoff et al., 1992; 

Malkin, 1989; Kun Li and Liao, 1997; Chan, 1999] are based on the parameters such as 

wheel and work velocities, depth-of-cut and the grit size of the grinding wheel.  The 

early models show that the grits penetrate and cut the material from the work surface, 

and the grinding forces generated are proportional to the material removal.  However, 

those models are not suitable for micro/nanoscale grinding because the mode of material 

removal and the method of contact between the surfaces (wheel and work) are different 

from the macroscale material removal. In macrogrinding, there may not be any direct 

contact between the bond material and the work material because the depth-of-cut 

chosen is relatively smaller than the abrasive size. The abrasives on the wheel surface 

penetrate and cut the work, and the material removal has been obtained by propagation 

of cracks. However, during micro/nanoELID grinding, the contact between the oxidized 

layer and the work surface is unavoidable since the sizes of the abrasives are very small.  

 

Apart from the machining parameters the role of several other parameters such as the 

mechanical properties of the oxidized layer formed on the grinding wheel surface during 

the ELID, surface topographies of the wheel/work, and the contact made between the 
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surfaces are also play a vital role during micro/nanoELID grinding. Therefore, a new 

grinding model for micro/nanoELID grinding is necessary in order to predict closer 

correlations with the actual results produced during grinding, which may reduce the 

expensive and cumbersome grinding experimental trials. The grinding forces are the 

result of the cumulative effect obtained from the process and hence they are widely used 

as the performance measures. Therefore, a force model for micro/nanoELID grinding 

has been proposed in this chapter, the simulated results are compared with the 

experimental results in order to evaluate the developed grinding model.     

 

8.2 Principle and modeling of micro/nanoELID grinding 

 

 

(a) 

 

 

(b) 

 

 

 

(c) 

 
 

 
 

 
 
 

Figure 8.1: Micro/nanoELID grinding. 
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For achieving nanosurface finish, the ground surface should be free from microcracks 

and grinding marks. Grinding and polishing processes are widely used for producing 

nanosurface finish on brittle materials. Though, the processes are using fine abrasive 

particles for the material removal there is a definite difference between the processes. 

The main difference between the micro/nanoELID grinding and the polishing processes 

is the method of contact created between the surfaces (wheel and work). The contact 

between the surfaces during polishing is made by the application of known down 

pressure. The pressure has been chosen in such a way that the asperities are in plastic 

contact. The abrasive grits entrapped by the polishing pad removes the material from the 

work surface and the volume of material removal is proportional to the applied pressure. 

Unlike polishing, the contact between the surfaces has been achieved by the downward 

(infeed) movement of the grinding wheel as illustrated in Figure 8.1 (a). Different 

techniques have been adopted for establishing nanocontact between the surfaces during 

grinding. Using smaller infeed in steps of few nanometers is one of the methods to 

achieve nanocontact.  

 

No surface is perfectly flat in nature and hence the asperities of the surfaces are in real 

contact when a pair of surfaces in nanocontact. The asperities are deformed plastically 

when the applied load is very small. However, it is difficult to know the type of contact 

(plastic or elastic) would be made between the asperities during grinding. If the load 

exceeds a certain value the deformation becomes elastic, which should be avoided 

during nanogrinding. The downward movement of the wheel ensures the contact 

between the asperities and the grits embedded on the wheel asperities are indent into the 

work asperities (Figure 8.1 (b)), the material removal has been performed by the relative 

movement between the wheel and work surfaces as illustrated in Figure 8.1 (c).  
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The grinding force generated during micro/nanoELID grinding is a useful measure to 

know the contact zone was made between the surfaces. However, the grinding forces are 

generated during micro/nanoELID grinding depending on the real contact between the 

wheel/work surfaces. The real contact area between the surfaces is comparatively very 

small as illustrated in Figure 8.1 (b).   The real contact area during grinding depends on 

the following:  

1. The surface micro/nanotopography of the wheel and work surfaces,  

2. The micro/nanomechanical properties of the wheel and work surfaces, and  

3. The machining (grinding) parameters.  

 

The model proposed in this thesis has been developed by considering all the above listed 

parameters.  However, some assumptions are also necessary in order to simplify the task 

of modeling of complicate machining processes such as grinding.  In real grinding 

environment, the surfaces are in hydrodynamic contact because there is a possibility of 

thin film of coolant could be present between the contact surfaces. The sizes of the 

asperities are very small and hence the contact between the asperities is assumed as 

solid-solid contact in this model. The contact between the asperities is also assumed in 

plastic contact that obeys the Heritizian law.  The main objective of the model 

developed in this study is to develop a force model for micro/nanoELID grinding in 

order to know the method of contact and contact zone created during grinding. The 

simulated grinding forces represented at pure plastic deformation of the material, and 

the simulated results are used as a threshold value for the micro/nanoELID grinding 

process.  
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The force model considers two types of contact as shown below:  

• The contact between the wheel and work asperity:  Modeling of wheel and work 

surfaces, the contact between the asperities and the real contact between the 

surfaces. 

• The contact between the grit and work: The force per grit. 

The normal force generated during the ELID grinding is related with the actual area of 

contact between the surfaces, grit density and the force generated per grit. The model 

development consists of several steps, which are listed below: 

1. Modeling of the work surface 

2. Modeling of the wheel surface 

3. Modeling the contact between the asperities 

4. Estimation of real area of contact and  

5. Modeling of the grinding forces. 

Each step is described and discussed in the following sections. 

 

8.2.1 Modeling of the work surface 

 

 

 

Figure 8.2: (a) Illustration of rough surface (b) Shape of an asperity. 

 

The micro/nanoELID grinding usually performed on a brittle/semi-ductile surfaces. A 

rough surface consists of summits distributed throughout the surface. The information of 
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the size of the summits and their distribution have a great influence on the area of 

contact during grinding. Figure 8.2 (a) shows a schematic illustration of a rough surface. 

Consider three asperities with radii R1, R2 and R3 in the sampling length at distances h1, 

h2 and h3 from a reference level. Figure 8.2 (b) shows the shape of an asperity. The 

cross-sectional area of the asperity is gradually increases towards the base. Let A1 be the 

area of the summit and A2 be the area near the base of the asperity. When consider A1 

<< A2, the radius of the summits R1, R2 and R3 are comparatively very small. For a 

rough surface, if Ra ≈ Rt, the height difference between the asperities ∆x1 and ∆x2 are 

ignorable and hence the asperities are assumed as spheres of similar sizes.  

 

The distribution of asperities on the work surface can be estimated using Greenwood-

Williamson model [Bharat Bhushan, 1999] that assumes the work surface composed of 

hemispherical asperities of radius of curvature that contacts a flat plane. Assuming the 

asperity distribution is under Gaussian distribution with standard deviation of σs. Now 

the probability of distribution is 

∫
∞

sd
ss hdhg

σ/

)(                                                                                                               (8.1) 

where sh  - The summit height normalized by summit rms height σs, 

 d – Distance between the contact planes 

Now assuming the surface density of summits is Dsum, and the number of contact, Ncont, 

per area, can be calculated as 

∫
∞

=
sd

sssumcont hdhgDN
σ/

)(                                                                                           (8.2) 

The increase in number of contact between the surfaces increases the grinding forces 

generated during grinding.   
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8.2.2 Modeling of the ELID-grinding wheel surface 

The surface of the ELID-grinding wheel consists of oxidized layer and abrasive grits. 

The dressed grinding wheel surface is covered by the oxidized layer, and the grits 

become active when the oxide around the grits is removed while rubbing on the work 

surface. Therefore, the conventional methods such as profile measurement and imprint 

method are difficult to implement on the ELID grinding wheel.  The mesh size stamped 

on the grinding wheel is used to estimate the mean grit size (dg) of the grinding wheel as 

shown below   

 
wheelgrindingtheofsizemesh

dg
15000

=                                                                       (8.3) 

The abrasive grits are generally irregular in shape and they are assumed as spheres of 

diameter dg, and the volume of grit is calculated as shown below 

3

23
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= g

g

d
v π                                                                                                             (8.4) 

The number of diamond particles in the diamond layer (metal bond and diamond mix) 

per unit volume can be calculated as 

g

lv
v v

Vf
N =                                                                                                                    (8.5) 

where fv  is the volume percentage of the diamond grits, and 

 Vl  is the volume of the diamond layer 

The grit density per unit area of diamond layer can be estimated by using the formula 

given below: 

3/2
vg NN =                                                                                                                (8.6)                      

The active grit density for macroabrasive wheels can be estimated by the grit protrusion 

from the wheel surface [Fuji Die Catalog]. However, the active grit density for 



                                                                              Modeling of micro/nanoELID grinding 
 

 

 
 

124

micro/nanoabrasives depends on the actual contact between the asperities and hence the 

total grits present on the wheel-active-surface consists of active and inactive grits. 

Therefore, the grit density obtained from the equation (8.6) can be written as the sum of 

active and inactive grits as shown below; 

iag NNN +=     and                                                                                                  (8.7) 

cga ANN =                                                                                                                 (8.8) 

gcoi NAAN )( −=                                                                                                      (8.9) 

where  Ng is the number of grits per unit area, 

Na is the number of active grit per unit area,  

 Ni  is the number of inactive grits per unit area of the grinding wheel, 

 Ao is the apparent area of contact, and  

 Ac is the actual area of contact. 

 

Grits on the wheel-active-surface becomes either active or inactive depending on the 

contact between the wheel-work asperities. Increase in area of contact increase the 

number of grits in action. The advantage of micro/nanoELID grinding is the grit density 

per unit area remains constant throughout the process, which can produce more uniform 

material removal from the work surface. The grit concentration on the grinding wheel 

surface can be increased or decreased by choosing suitable wheel concentration.  

 

8.2.3 Modeling the contact between the asperities  

During grinding, the surfaces with dissimilar properties are brought into contact, and 

one of the surfaces is slowly fed into the other surface in order to remove the material 

from the other surface. For every in-feed (depth-of-cut), the wheel is fed into the work 

and the contact was made between the asperities. The contact radius and the contact 
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displacement can be derived using contact mechanics (assuming the asperities as 

spheres) [Johnson, 2000]. According to Hertz, when two spherical surfaces are in plastic 

contact, the contact-radius (rc) is 

3/1

*4
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

E
RWrc                                                                                                          (8.10) 

where W is the load applied on perpendicular to the surface in contact, and 

           R is the composite or effective curvature, which can be expressed as  

 

                                                (8.11) 

where Rw – the radius of the asperity on the work surface and 

 Rs – The radius of the asperity on the wheel surface. 

The E* is known as the effective modulus which can be written as 

s

s

w

w

EEE

22 11
*

1 γγ −
+

−
=                                                                                                 (8.12) 

where γw  is the Poisson ratio of the work material,  

γs  is the Poisson ratio of the ELID layer,  

 

 Ew is the Modulus of elasticity of the work material and 

 Es is the Modulus of elasticity of the ELID layer. 

Now the area of contact (ac) is expressed as  

3/2
2

*4
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

E
RWra cc ππ                                                                                         (8.13) 

The displacement within the contact, δ, is expressed as 

3/1

2

2
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⎛
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Wδ                                                                                                  (8.14) 
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The depth of plastic zone for a hard and brittle material is depending on the material 

properties such as hardness, elastic modulus and the fracture toughness. When the 

contact between the asperities is assumed in plastic contact, the total displacement δ 

should be within the maximum plastic deformation of the brittle material. 

Assuming pR≈δ  , then the maximum load required to cause the asperities in contact 

can be written as 

*
3
4 2/12/3 ERRW p=                                                                                                  (8.15) 

where Rp is the radius of plastic zone. 

The load ’W’ is the load applied on the grits embedded into the wheel surface. The grits 

penetrate and plow the work during grinding and generate grinding forces, which can be 

described latter part of the modeling.  

 

8.2.4 Estimation of the real area of contact 

Estimation of the real area of contact between the wheel and work surfaces is an 

important task because it provides the number of active grits within the area of contact. 

The real surface contains hills and valleys and the equation of a rough surface can be 

expresses as a mathematical function as shown below 

),( yxfz =                                                                                                                  (8.16) 

where x and y are the co-ordinates of a point on the two dimensional plane, and 

z is the vertical height 

Assuming a hard flat plan is in contact with the surface, the ratio of real contact and the 

apparent area can be written as 

∫
∞

=
da

r dzzg
A
A )(                                                                                                           (8.17) 

where Ar is the real area of contact, 
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 Aa is the apparent area of contact and 

 g(z) is the probability of height distribution. 

The height distribution is assumed as Gaussian distribution,  

+∞<<∞−⎥
⎦

⎤
⎢
⎣

⎡ −
−= zzzzg m

2
)(exp

2
1)(

2

π
                                                   (8.18) 

where z is the non-dimensional surface height ( σ/zz = ) 

 σ is the standard deviation and 

mz is the non-dimensional mean height  

Now the above equation can be written as 

∫
∞

=
σ/

)(
da

r zdzg
A
A                                                                                                         (8.19) 

The apparent contact between the wheel-work can be written as 

blA ca =                                                                                                                    (8.20) 

where lc is the arc length between the wheel and work and b is the grinding wheel. The 

apparent contact length is 

aDl wc =                                                                                                                (8.21) 

Dw is the diameter of the grinding wheel and 

a is the depth-of-cut. 

 

8.2.5 The development of force model for micro/nanoELID grinding  

The grinding forces generated can be predicted from the grinding action of grits. The 

grinding forces generated during grinding are proportional to the real contact area, the 

active grit concentration and the co-efficient of friction. 
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8.2.5.1 Force per grit model  

The shape of a single grit is assumed as an indenter (the shape of the indenter is either 

pyramid or sphere), and the load applied on grit is derived using the Equation 8.5. Now, 

the radius of impression during indentation of grit can be estimated as  

wH
Wr 854.1

int =     for grits assumed as pyramids                                                     (8.22) 

wH
Wr

π
2

int =         for spherical shape                                                                      (8.23) 

When the load W is applied on grit, the material displaced by the indentation is assumed 

as a hemisphere of radius rint as shown in Figure 8.3 (a). The volume of material 

replaced by the grit depending on the grinding parameter as illustrated in Figure 8.3 (b). 

The relative movement between the wheel and work is expressed as 

ND
v

v
v

V
w

w

s

w
ratio π

==                                                                                              (8.24) 

where N is the spindle rotation in rpm. 

The volume of material displaced by grit during grinding can be written as  

ratiogrit VrV 3
int3

2 π=                                                                                             (8.25) 

The force generated per grit while removing Vgrit of material from the work asperity can 

be written as the product of the hardness of the work and the area of contact during 

sliding. Now the force per grit can be expressed as 

 

ratiowg VrHf int*=                                                                                                   (8.26) 
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                      (a) Indentation of grit                   (b) Plowing of grit   

 
 

                           Figure 8.3: Grinding action of single grit. 
 

8.2.5.2 Normal and tangential grinding forces 

The normal force generated during grinding is the cumulative effect of force generated 

by the active grits on the wheel surface. The number of active grits depends on the grit 

concentration of the grinding wheel and the real contact area between the wheel and 

work.  Now the normal grinding force generated is 

rggN ANfF =                                                                                                      (8.27) 

The specific frictional or tangential force can be estimated from the equation given 

below 

NT FF µ=                                                                                                             (8.28) 

where µ – Frictional co-efficient depends on the work/bond material, and  

FN, FT – Normal and tangential forces during grinding. 

The normal and tangential grinding forces given in Equations (8.27) and (8.28) are 

simulated and used as a measure to the grinding process. 
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8.3 Simulation and verification of the model 
 

The developed model for micro/nanoELID grinding is simulated and compared with the 

experimental results. The simulation of the developed model consists of the following 

steps: 

• Selection of the grinding method, grinding parameters and dressing parameters, 

• Simulating the actual contact area and the grit density  and 

• Simulation and verification of the grinding forces.  

The above steps are explained in the following sections.  

 

8.3.1 Selection of grinding method, grinding parameters and dressing parameters 

 

 

 

 

 

 

 

Figure 8.4 Schematic illustration of the contact length between the wheel and work.  

 

The model developed for micro/nanoELID grinding claims that the grinding forces 

generated are proportional to the actual contact between the asperities of the wheel-work 

surfaces in contact, and hence the vertical grooving method (described in Chapter 3) is 

found to be more suitable for the verification. The method for prediction the theoretical 

contact area between the wheel and work during the vertical groove method is illustrated 

in figure 8.4. The main objective of the experiment is to produce nanosurface finish on 
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the brittle surface. Hence the grinding parameters and the ELID dressing parameters 

have been chosen based on the investigations conducted in Chapter 5. The grinding 

parameters chosen for the simulation are the spindle rotation of 3000 rpm, the feed rate 

of 200 mm/min and the depth-of-cut of 1 µm/pass. Then the pre-dressing and in-process 

dressing conditions have been chosen in such a way that it could work good association 

with the grinding parameters chosen. The dressing conditions chosen for the simulation 

are Ip – 10 A, Vp – 90 V, Ton – 5 µs and Toff – 5 µs.  

 

8.3.2 Simulation of the actual contact area and the grit density 

 

The mechanical properties of BK7 glass (workpiece material) have been used for the 

simulation. The optical glass was ground using macrogrinding (#325) in order to 

produce a flat and brittle surface for the experiments. The brittle surface with an average 

surface roughness of 1.432 µm has been characterized in order to obtain the parameters 

such as the size of the asperity, distribution of the asperity and the ratio between the real 

and apparent contact areas. The replica of the brittle surface was used for the 

characterization. From the results, the size of the asperity, Dsum and Ar/A0 for the brittle 

surface were found to be 500 µm, 28 /mm and 0.15, respectively. The bond properties 

such as Poisson ratio and the Young’s modulus for various bond materials are tabulated 

in Table 8.1. The mean grit size and abrasive grit concentration of different mesh sized 

grinding wheels have been simulated using Equations (8.3) – (8.6) and tabulated in 

Table 8.2. A cast iron-bonded grinding wheel with dimensions diameter 100 mm, 

thickness 3 mm and grade #4000 has been chosen for the simulation. From the Table 8.1 

the mean grit size and the grit concentration of the wheel are found to be 3.75 µm and 

45839 /mm2, respectively. A copper electrode of 1/4th of perimeter of the wheel with the 
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true area of the electrode of 2.35 cm2 has been chosen for the purpose of simulation. The 

current density for the in-process dressing condition was calculated as 2.15 A/cm2.  The 

above data are used to simulate the grinding forces.  

 

Table 8.1 Properties of various bond materials 
 
 
Material 
 

 
Poisson ratio (bond) 
 

 
E(b) Gpa 

 
Bronze                                    

      
0.34 

     
 104 

 
Cast iron 

 
0.28 

  
173 

 
Copper 

 
0.35 

  
117 

 
Layer (on cast iron) 
 

 
0.3 (assumed) 

    
31 

 
 
Table 8.2 Mean grit size and the grit density on the wheel surface 

 
Grade 
 

 
dg µm 

 
Vg / mm3 

 
Ng / mm2 

 
Ng / mm2 

 
# 4000 

 
3.75 

 
27.597 

  
9058740 

  
45839 

 
#8000 

 
1.875 

  
3.449 

 
72469922 

 
184631 

 
#12000 

 
1.25 

  
1.022 

 
2.45E+08 

  
417108 

 
#30000 
 

 
0.5 

  
0.065 

 
3.82E+09 

 
2630925 

 

8.3.3 Simulating and verification of the grinding forces 
 
Substituting the values of the mechanical properties of wheel and work in Equations  

8.10 – 8.15 provide the contact radius, contact modulus  and the load W on the asperities 

under plastic contact. The contact modulus obtained for different bond materials and the 

BK7 glass are tabulated in Table 8.3. From the table it is found that the oxide layer 
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produced on the grinding wheel surface (cast iron) produced very lower contact 

modulus of 24.29 GPa and the highest contact modulus was produced by the cast iron 

bonded wheel  (58.38 GPa).   

 
Table 8.3 The contact modulus obtained for various bond materials. 
 
 
Material 
 

 
E* Gpa 

 
Bronze                                    

     
49.248 

 
Cast iron 

  
58.382 

 
Copper 

  
51.810 

 
Layer (on cast iron) 
 

    
24.297 

 

The grinding forces were simulated using Equations 8.27 and 8.28 for two different 

conditions stated below:  

• The grinding wheel was pre-dressed and then used without the application of the 

ELID (can be considered as without ELID condition).  

• The grinding wheel is pre-dressed and then used with the application of the 

ELID. The pre-dressing and the in-process dressing conditions were chosen as 2 

A/cm2.   

The simulated results for the above conditions were tabulated in the appendix tables 

Table C.1 and Table C.2 (Appendix C), respectively. The value of friction-co-efficient 

was found to be 0.09 and 0.05 for without ELID and ELID with 2 A/cm2, respectively. 

 

Figures 8.5 (a) and (b) show a comparison of the simulated and experimental normal 

and tangential grinding forces for the above prescribed conditions. Figure 8.5 (a) shows 

the simulated and experimental grinding forces. The grinding forces were simulated 
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using the properties of the cast iron, and the experiment was conducted using a pre-

dressed cast iron wheel. The normal and the tangential grinding forces are found to be 

much lower than the simulated results until the apparent contact length reaches 4 mm. 

After that the grinding forces were raised and almost have a good correlation with the 

simulated results. From the results, it is clear that the oxide layer present on the surface 

after pre-dressing was the reason for the reduction of forces at the initial stage, and after 

the wear of the layer the forces were behaved as similar with the simulated results.  

 

 

 

 

 

 

 

 

                                    (a) Pre-dressed wheel (without ELID) 

 

 

 

 

 

 

 

           
                           (b) Pre-dressed wheel with the application of the ELID 
   
  Figure 8.5: Comparison between the simulated and experimental results.  
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Figure 8.5 (b) was simulated using the micro/nanomechanical properties of the oxide 

layer from Table 8.3. The experimental and the simulated results show good correlation 

with each other. The surface roughness was found to be 0.034 µm and 0.007 µm for 

without ELID and with ELID processes, respectively. From the verification it is very 

clear that the properties of the oxide layer play a vital role in micro/nanoELID grinding.   

 

8.4 Concluding remarks 

 

From the compatibility found between the simulated and the experimental results the 

following conclusions are achieved:  

 

• The results obtained from the verification of the model clearly evident that the 

application of ELID reduce the grinding forces to a significant amount and 

improves the quality of the ground surface.  

 

• Grinding with ELID produces a soft oxide layer at the wheel-active-surface, 

which reduces the friction between the surfaces.  

 

• Selection of suitable ELID parameters helps to produce an oxidized layer with 

certain micro/nanomechanical properties and facilitate a defect free surface.  

 

•   The developed model would be more useful for choosing the suitable bond 

material and the in-process dressing conditions for a particular work material. 
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Chapter 9                      

Conclusions, contributions and recommendations 

 

 
This chapter includes the conclusions obtained from the fundamental analysis of the 

ELID grinding, the contributions of the thesis in the field of precision finishing and 

future recommendations.  

 

9.1 Conclusions 

 

The conclusions obtained from the fundamental analysis of the ELID grinding are 

grouped under the following headings: 

1. The  grinding forces 

2. The surface finish  

3. The wheel wear 

4. Conclusions about the ELID-layer (oxidized layer) 

5. Conclusion obtained from the developed grinding model 

 

9.1.1 The grinding forces 

The conclusions obtained regarding the grinding forces during ELID grinding are listed 

as follows: 

• At similar grinding conditions, the application of the ELID reduces the grinding 

forces to a significant amount (when compared to the conventional grinding).  
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• The grinding forces generated during the ELID grinding are generally found to 

be unstable due to the breakage and formation of the oxidized layer on the 

grinding wheel surface.  

 

• The increase of current duty ratio reduces the grinding forces and improves the 

stability of the forces. 

 

• The tangential grinding forces are found to be unstable throughout the grinding 

process irrespective of the current duty ratio. The macrofracture of the oxidized 

layer from the grinding wheel causes the instability, which is an essential 

phenomenon for stimulating the electrolysis. 

 

• The grinding forces are gradually increased during ELID grinding until the 

normal force reached a certain value. After the value, certain thickness of the 

layer was separated from the grinding wheel, which causes a drop in normal and 

tangential grinding forces. The separation of the oxidized layer from the surface 

helps the wheel free from loaded chips and worn grits and allows the fresh layer 

beneath comes in contact with the work surface.  

 

9.1.2 The surface finish  

The conclusions drawn related to the surface finish and the surface defects are listed 

below: 

• The application of the ELID shows significant improvement on surface finish in 

all grinding modes.  
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• A comparison between the surfaces obtained from in-process dressing and 

interval dressing shows that better surface finish could be obtained by the in-

process dressing.  

 

• The surface finish obtained from the ELID grinding depends on the current duty 

ratio chosen for the in-process dressing. The higher the dressing current duty 

ratio the finer the surface finishes.  

 

• The surface defects and surface cracks have been reported when grinding with 

dressing current duty ratio from 20 % - 40%. The defect free surface has been 

reported when grinding with current duty ratio 50% and more. 

 

• For deeper cuts (depth-of-cut greater than the mean grit size of the wheel), the 

surface roughness and waviness are found to be better while grinding with 

current duty ratio of 30%. Grinding with more than 30% current duty ratio 

increases the roughness and waviness of the ground surfaces.  

 

• For smaller depth-of-cuts (the depth-of-cut less than the mean grit size of the 

grinding wheel) the surface roughness and waviness are found to be improved 

with the increase of current duty ratio.  Average surface roughnesses of 3 nm and 

7 nm (for #4000 grade wheels) have been achieved from the surface grinding and 

vertical groove grinding processes, respectively.  
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9.1.3 The wheel wear 

The conclusions obtained from the wheel wear mechanism of the ELID grinding wheels 

are listed below: 

• The wear mechanism of the ELID grinding wheels is different from the wear 

mechanism of the conventional grinding wheels. The oxidized layer on the 

grinding wheel surface undergoes grit wear, microfracture and finally 

macrofracture of the layer. The macrofracture of the oxidized layer is the 

indication of the wheel end-of-life.  The grinding wheels are dressed after every 

macrofracture while performing grinding. 

 

• The wear ratio of the grinding wheels is increasing with the increase of the 

current duty ratio.  When the current duty ratio increases beyond 50%, the wear 

rate of the grinding wheels increases without showing any significant 

improvement on the surface finish.  

 

• The oxidized layer wears faster than the actual bond material, but the wheel 

diameter was found to be increased after pre-dressing.  

 

• The radial wear rate of the grinding wheel is influenced by ON-time of the pulse. 

The wheel wear rate increases for shorter pulse ON-time.  

 

• The radial wear increases with the frequency of current pulses without 

significant improvement on the grinding parameters. 
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9.1.4 ELID-layer (oxidized layer) 

The characterization of the ELID-layer can be concluded as follows: 

• The ELID-grinding wheels are made of transition materials, and they can 

produce an oxidized layer during the electrolytic dressing, which prevents 

the bond material from further oxidization. The oxidized layer formed on the 

grinding wheel surface has been produced in two different phases. The first 

phase of the layer produced during pre-dressing and the second phase of the 

layer formation occurs during in-process dressing.  

 

• The thickness of the oxidized layer produced by the ELID depends on the 

dressing current density. The thickest oxidized layer of 250 µm was formed 

on the cast iron-bonded grinding wheels when dressed using current density 

of about 3 A/cm2.  The layer formed on the other bond materials such as 

copper and bronze are not as thick as the layer formed on the cast iron-

bonded grinding wheels.   

 

• The microconstituents and the microhardness of the oxidized layer show that 

the layers have different micro/nanomechanical properties. The hardness of 

the layer increases from the wheel edge towards the layer-bond interface, 

which reduces the excessive layer wear. 

 

• The microhardness of the layer produced at 3 A/cm2 has a hardness of 60 

GPa (200 g) and the layer produced at 1 A/cm2 was found to be 110 GPa 
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(200 g). The lower hardness improves the self-sharpening effect and reduces 

the depth of grit penetration and produces good surface finish. 

 

• According to the pulse electrolysis, the selection of ON-time and OFF-time 

of the pulse should be greater than the charging and discharging time of the 

electrical double layer. If the above condition is not satisfied, heavy damping 

occurs and it leads to larger wear of the oxidized layer. 

 

• Among the grinding wheels the cast iron-bonded grinding wheel shows the 

most non-liner character during the ELID.  The non-liner character shows 

high resistance to bond wear and also produces good self-sharpening effect. 

 

9.1.5 Conclusion obtained from the developed grinding model 

The model developed for micro/nanoELID grinding fetch the following conclusions: 

• The developed model shows that the grinding forces produced during 

micro/nanoELID grinding depends on the micro/nanomechanical properties of 

the work surface, the ELID-layer and the topography of the surfaces in contact. 

 

• The actual grit density during micro/nanoELID grinding depending on the actual 

area of contact between the asperities and the grit density of the ELID-layer. 

 

• The simulated grinding forces are used as a threshold value for the plastic 

deformation of the work material. The developed model would be more useful 

for selecting suitable bond material and the dressing parameters for the 

micro/nanoELID grinding.  
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9.2 The research contributions  

 

The contributions of this thesis in the field of precision grinding have been classified 

and discussed in the following headings:  

 

9.2.1 The approaches and analyses on ELID grinding 

 

 The approaches used in this thesis for the prediction of effectiveness of the ELID 

technique are never been reported earlier. The analytical studies and 

investigations conducted in this thesis will be certainly helpful for the ELID 

users to understand the importance of choosing dressing parameters that works 

in good association with the grinding parameters, and to utilize the full 

effectiveness of the ELID for precision finishing. 

 

 The analyses conducted in this thesis on the wear mechanisms, wear rate of the 

ELID grinding wheels and the wear reduction strategies are new and never been 

reported.  The relation between the dressing current and the wear ratio of the 

grinding wheels, the influence of the pulse frequency on the wheel wear are 

entirely new and useful analyses, which are more essential for wear 

compensation.   The relation between the dressing current and the depth-of-cut 

given by the grinding wheels for different geometrical shapes will be more 

helpful for precision finishing of non-axis-symmetrical components using the 

ELID.  
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 The investigations conducted on the ELID-layer reveals the characters and 

behavior of the ELID. The knowledge of the micro/nanomechanical properties of 

the ELID-layers promotes the importance of selection of suitable bond material 

for finishing a particular workpiece.  

 

9.2.2 Proposal of new grinding model 

The grinding model proposed in this thesis for micro/nanoELID grinding has a different 

approach from the conventional grinding models. It depends more on the real 

environment factors such as the topographies of the wheel and work surfaces. The 

substantiated results show that the model will be more useful in nanoscale finishing.  

The developed model will be useful to examine the effectiveness of the grinding process 

when the micro/nanomechanical properties of the ELID-layer have been supplied.  

 

The research contributions described are certainly useful for increasing the robustness of 

the ELID grinding for precision grinding.  

 

9.3 Recommendations for Future research  

 

The ELID is a new technique need to be analyzed and improved further. This chapter 

covers few directions  

 

 Optimization of the ELID grinding process  

Proper guidance is essential for the ELID user to select the suitable 

parameters in order to avoid the malfunction of the ELID process. 
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Optimization of the grinding process reduces the ambiguities and increases 

the robustness of the process in the field of precision manufacturing.  

 

 Wear monitoring and wear compensation  

On-line wheel wear monitoring and compensation are the essential steps to 

be performed in order to maintain the geometrical accuracy of the machined 

components.  

 

 The improvement of the ELID cell 

The power supply, grinding wheel materials and the electrolyte are the 

importance factors in the ELID-cell. For better performance of the ELID-cell, 

the following recommendations are proposed:  

  A programmable power supply is much essential for ELID, 

which reduces the risk of malfunctioning of the ELID-cell.  

 

 Though different materials have been used as bond material for 

the wheels, a unique bond material will reduce the ambiguity of 

selecting the in-process dressing parameters since different bond 

materials respond to the ELID in a different way. 

 

 Though the ELID electrolyte contains rust preventing additives, 

the problem of rusting was reported. A rust free electrolyte improves 

the grinding environment and reduces the maintenance difficulties. 
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Table A.1 Properties of the bond materials 

Material                   Young’s Modulus (E)         Shear Modulus(S)       Poisson’s ratio (γ) 

    GPa                              GPa                          

Bronze                                  104                                44.9                              0.34 

Cast iron                               173                                86.3                              0.28 

Copper                                  117                                43.5                              0.35 

  

 

Table A.2 Electromotive series 

Material      Standard potential (Eo) 

Zn /Zn 2+                                                                                - 0.76 mV 

Cr/Cr 3+                                                                                  - 0.74 mV 

Fe/Fe 2+       - 0.56 mV 

Fe/Fe 3+       - 0.44 mV 

Co/Co 2+        - 0.28 mV 

Ni/Ni 2+       - 0.23 mV 

H2/2H +       ± 0.00 mV 

Cu/Cu +       + 0.34 mV 

Au/Au +       + 0.1.50 mV  
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Table A.3 Properties of BK7 glass 

 

 

 

Properties 

 

Density (g /cm3) 

Glass transition temperature (˚ C) 

Co-efficient of thermal expansion ( 10 -6 C-1) 

Young’s modulus (GPa) 

Poisson ratio 

Values  

 

2.51 

559 

7.1 

81 

0.21 

Vickers Hardness (GPa) 

Fracture toughness  (MPa m½ )                                     

5.1 

0.82 
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Fick’s law of diffusion 

 

The assumptions during the pulsed electrolysis are listed below: 

 
1. The concentration of the electrolyte is independent of the time and the 

distance. 
 
 

2. The limiting current in pulse electrolysis could be higher when compared 
with that of DC electrolysis. 

 
 

3. The distance between the poles is larger than the diffusion layer, so that the 
cathode can be assumed to be located as for away from the electrode. 

 
 
 
According to the Fick’s second law of diffusion, 
 
 

2

2 ),(),(
dx

txCdD
dt

txdC
=                       

(4.4) 
 
 
The boundary conditions are 
 
C(x,t) = Co   for t = 0 and for all the x values 
 
C(x,t) = Co   for t > 0 and x = 0 
 
 

Fn
I

dt
txdCD

=
)),((  for t >0 and x = dl                        

 
While   I = Ip’ for all Ton time, and 
 
I = 0 for all Toff time. 
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Table C.1 Simulated grinding forces for the conventional grinding process 

 
Cumulative depth-of-cut 
in mm 

Contact length in 
mm FN  in N Ft in N 

 
0 0 0 0 
 

0.01 1.7320893 18.3792 1.286544 
 

0.02 2.449598622 25.99269 1.819488 
 

0.03 3.000200036 31.83512 2.228459 
 

0.04 3.464409609 36.76085 2.57326 
 

0.05 3.873413807 41.10079 2.877056 
 

0.06 4.243206576 45.02466 3.151727 
 

0.07 4.58328884 48.63328 3.404329 
 

0.08 4.899850834 51.99232 3.639462 
 

0.09 5.197192215 55.14741 3.860318 
 

0.1 5.478443467 58.13176 4.069223 
 

0.11 5.745967801 60.97046 4.267933 
 

0.12 6.001601153 63.68299 4.457809 
 

0.13 6.246803518 66.28483 4.639938 
 

0.14 6.482758624 68.78855 4.815199 
 

0.15 6.710442015 71.2045 4.984315 
 

0.16 6.930668959 73.54133 5.147893 
 

0.17 7.144129057 75.80635 5.306445 
 

0.18 
0.18 7.351411795 78.00583 5.460408 
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Table C.2 Simulated grinding forces for ELID grinding 
 
 
Cumulative depth-of-cut 
in mm 

Contact length in 
mm FN  in N Ft in N 

 
0 0 0 0 
 

0.01 1.7320893 11.80679 0.590339 
 

0.02 2.449598622 16.69769 0.834884 
 

0.03 3.000200036 20.45086 1.022543 
 

0.04 3.464409609 23.61515 1.180757 
 

0.05 3.873413807 26.40313 1.320156 
 

0.06 4.243206576 28.92382 1.446191 
 

0.07 4.58328884 31.24199 1.562099 
 

0.08 4.899850834 33.39983 1.669992 
 

0.09 5.197192215 35.42666 1.771333 
 

0.1 5.478443467 37.34381 1.86719 
 

0.11 5.745967801 39.16739 1.958369 
 

0.12 6.001601153 40.90991 2.045496 
 

0.13 6.246803518 42.58134 2.129067 
 

0.14 6.482758624 44.18972 2.209486 
 

0.15 6.710442015 45.74173 2.287086 
 

0.16 6.930668959 47.2429 2.362145 
 

0.17 7.144129057 48.69796 2.434898 
 

0.18 7.351411795 50.1109 2.505545 


