
 MATERIALIZED VIEW MAINTENANCE

FOR XML DOCUMENTS

FA YUAN

(B. Comp. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Materialized View Maintenance for XML Documents

 i

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Professor Ling

Tok Wang, for his guidance and valuable advice, without which the work of this

thesis would not have been possible.

I also appreciate the people in the Database Research Lab, Chen Yabing, Dong

Xiaoan, Zhou Yongluan, Ji Liping, Chen Zhuo and Chen Ting, who are both very

nice and helpful, and their presence has made the lab a nice place to work in.

I would also like to thank my parents for their constant support and care.

Fa Yuan

April 2004

Materialized View Maintenance for XML Documents

 ii

Contents

Contents ii

List of Figures iv

Summary vi

Chapter 1 Introduction 1

1.1 Problem description 1

1.2 Motivating example 4

1.3 Research Contributions 7

1.4 The Organization of this Thesis 8

Chapter 2 ORA-SS Data Model 10

2.1 Object Classes 11

2.2 Relationship Types 11

2.3 Attributes 12

2.4 Functional Dependencies 14

Chapter 3 XML Document Update 18

3.1 XML Update Language 18

3.2 Update validation 22

Chapter 4 Views and Materialized Views 29

4.1 View Specification 29

Materialized View Maintenance for XML Documents

 iii

4.2 View Materialization 32

Chapter 5 Incremental XML View Maintenance 39

5.1 The View_Maintenance Algorithm 45

5.2 The Procedure GenerateSourceUpdateTree 46

5.3 The Procedure CheckSourceUpdateRelevance 48

5.4 The Procedure GenerateViewUpdateTree 57

5.5 The Procedure MergeViewUpdateTree 60

5.6 Strategy Analysis 64

5.7 A Complete Example 66

5.8 View Self-Maintenance for Deletion/Modification 69

Chapter 6 Previous Works 73

6.1 Research in View Maintenance 73

6.2 Related Works 75

6.2.1 Abiteboul and McHugh Algorithm 75

6.2.2 Zhuge and Garcia-Molina Algorithm 79

6.2.3 Suciu Algorithm 82

6.3 Comparison 84

Chapter 7 Conclusion 86

7.1 Contributions 86

7.2 Future Works 88

References 90

Appendix 95

Materialized View Maintenance for XML Documents

 iv

List of Figures

Figure 1.1(a) ORA-SS Instance Diagram for XML Document 1 in

Project-Supplier-Part Database 5

Figure 1.1(b) ORA-SS Instance Diagram for XML Document 2 in

Project-Supplier-Part Database 5

Figure 1.2 XML View Content 6

Figure 1.3 Updated XML View Content 7

Figure 2.1 Object Class Project in an ORA-SS Schema Diagram 11

Figure 2.2 Representing ORA-SS Relationship Types 13

Figure 2.3 Demonstrating Functional Dependency 15

Figure 2.4 (a) ORA-SS Schema Diagram for XML Document 1 in

Project-Supplier-Part Database 16

Figure 2. 4(b) ORA-SS schema Diagram for XML Document 2 in

Project-Supplier-Part Database 16

Figure 3.1 Syntax of our Update Language Extending XQuery 19

Figure 3.2 ORA-SS Schema Diagram Demonstrating Functional Dependency

Constraint Rule 24

Figure 3.3 ORA-SS Instance Diagram Demonstrating Functional Dependency

Constraint Rule 24

Figure 4.1 ORA-SS View Schema Diagram 32

Materialized View Maintenance for XML Documents

 v

Figure 4.2 ORA-SS Instance Diagram of the View 33

Figure 4.3 Generation of Initial Content of the Materialized View 38

Figure 5.1 Source Update Tree in Example 5.1 41

Figure 5.2 Updated Materialized View in Example 5.1 42

Figure 5.3 Source Update Tree in Example 5.2 43

Figure 5.4 Updated Materialized View in Example 5.2 43

Figure 5.5 Source Update Tree in Example 5.3 44

Figure 5.6 Updated Materialized View in Example 5.3 45

Figure 5.7 Source ORA-SS Schema Diagram 50

Figure 5.8 View ORA-SS Schema Diagram 50

Figure 5.9 Source Update Tree in Example 5.4 52

Figure 5.10 Source Update Tree in Example 5.5 54

Figure 5.11 Relevant Source Update Tree in Example 5.5 54

Figure 5.12 View Update Tree for Example 5.7 60

Figure 5.13 (a) Source Update Tree in Example 5.9 67

Figure 5.13 (b) Relevant Source Update Tree in Example 5.9 68

Figure 5.13 (c) View Update Tree in Example 5.9 68

Figure 5.13 (d) Updated Materialized View in Example 5.9 69

Figure 5.14 ORA-SS View Schema Diagram in Example 5.10 71

Figure 5.15 ORA-SS Instance Diagram of the View in Example 5.10 71

Figure 5.16 Updated View in Example 5.10 72

Figure 6.1 OEM Database 77

Materialized View Maintenance for XML Documents

 vi

Figure 6.2 View Specification on Lorel 77

Figure 6.3 The Materialized View 78

Figure 6.4 View Maintenance Statement 78

Figure 6.5 The Updated Materialized View 79

Figure 6.6 Source Semi-Structured Data 81

Figure 6.7 View Specification 81

Figure 6.8 The Materialized View 81

Figure 6.9 Updated Materialized View 82

Figure 6.10 Marker Demonstration 83

Materialized View Maintenance for XML Documents

 vii

Summary

Researches in the area of materialized view maintenance have gained popularity

since 1990s due to its application in data warehousing. But the research on XML

view maintenance is still limited. XML is rapidly emerging as a standard for

publishing and exchanging data on the Web. Views over XML documents can be

used to cache the interest data and to restructure it. People may be more interested in

some small portion of the XML document rather than the whole set of documents.

So we can specify XML views on these more interesting parts. Sometimes, we need

to restructure the XML documents. Interchanging the ascendant/descendant

relationships in XML data is possibly made to meet the specific needs of the

database applications. Joining different XML documents is used to centralize the

data. XML views are often materialized to speed up the query processing.

Aggregation is often made to derive summarized information. People need only to

query the materialized views rather than the whole XML source documents.

 The consistency of the materialized XML view needs to be maintained against

the updates of the underlying source data. Re-computing the XML materialized view

from scratch each time a source XML document changes is not a feasible solution. In

this thesis, we focus our work on incrementally maintaining the materialized XML

view through the computation of view changes in an environment of multiple,

distributed source XML documents, with a separate database for housing the XML

Materialized View Maintenance for XML Documents

 viii

view.

We define the view, which can involve selection, project, join, swap and

aggregation of elements on multiple source XML documents. The hierarchical

structure in the view can be much different from any source. The reason we use

ORA-SS to define the view is because by using ORA-SS schema diagram, we are

able to define not only binary relationship type, but also n-ary relationship type,

which helps define the views as we need.

Most of the existing view maintenance methods do not check whether the

source update queries will make the source documents inconsistent. We will detect

the invalid update query, which will make the XML document inconsistent. We

defined a set of update operations with the XQuery syntax, which can be updates on

both single element/attribute and subtree. The update consistency for each kind of

update operation can be checked based on the ORA-SS data model. The essential

constraints to validate an update query include participation constraint, key

constraint, and functional dependency constraint, which can be all expressed in

ORA-SS data model.

We generate view update tree which contains changes to the view and

conforms to the view schema, such that we are able to merge the view update tree

with the existing materialized view tree to produce the final updated view.

Materialized View Maintenance for XML Documents

 ix

Aggregation attributes in the view are updated properly, when we merge the view

update tree into the existing materialized view. Different strategies are taken for

insertion, deletion and modification.

Beyond the normal generation of view update tree by querying all the source

XML documents, we also provide view self-maintenance. By querying the XML

view content, we can generate the view update tree much fast because the view

resides locally while the source XML documents are remote. Information like object

identifier constraint is used to achieve the view self-maintenance.

Materialized View Maintenance for XML Documents

 1

Chapter 1

Introduction

1.1 Problem Description

Database views are useful for restricting the data access rules, joining data from

distributed databases, and caching commonly used data. Views can be materialized to

speed up querying when the underlying data is remote, e.g., distributed, or query

response time is critical [2, 5]. It is an important thing to keep the contents of the

materialized view consistent with the contents of the base data as the source data are

updated. Traditionally, people re-compute the sources to maintain the materialized

view periodically. The current prevailing method is to compute the incremental

changes to the view based on changes to the source data. In this thesis, we study the

problem of incrementally maintaining materialized views for XML documents.

XML is rapidly emerging as a standard for publishing and exchanging data on

the Web. Views over XML documents can be used to cache the interest data and to

restructure it. People may be more interested in some small portion of the XML

document rather than the whole set of documents. So we can specify XML views on

Materialized View Maintenance for XML Documents

 2

these more interesting parts. Sometimes, we need to restructure the XML documents.

Interchanging the ascendant/descendant relationships in XML data is possibly made to

meet the specific needs of the database applications. Joining different XML documents

is used to centralize the data. XML views are often materialized to speed up the query

processing. People need only to query the materialized views rather than the whole

XML source documents.

Incremental maintenance for materialized views in relational databases has been

studied extensively [3, 11, 21] in the last few years. A survey can be found in [12].

Early work by Shmueli [18] and Blakeley [5, 6] focus on the question of incremental

view maintenance in Selection-Projection-Join views and the detection of irrelevant

updates. [5] and [18] use counts to annotate tuples in the view with the number of

derivations. Gupta et.al. [11] extended the counting method to views with aggregates

and (stratified) negation. The issue of view consistency in a concurrent warehouse

environment has been studied recently. The paper [15], which incrementally maintains

view using version number, is focusing to handle views over distributed source

databases.

In order to maintain the materialized views for XML documents, theoretically,

we can first transform all the XML documents into relations, and then use any existing

relational maintenance algorithm to maintain the materialized views. The updates to

the relational views are then transformed into updates to the XML views. Because each

Materialized View Maintenance for XML Documents

 3

change to XML document may impact several relations, so the above maintenance

method is not efficient. We will discuss it in more detail in Chapter 6. We need to find

the method to directly maintain the materialized view for XML documents.

The study of materialized view maintenance for XML documents is still limited.

The article [19] studies about the incremental view maintenance for semistructured

data. It uses an algebraic approach to maintain the views. That is, it finds expressions

that can compute delta views corresponding to the changes of base data. However, in

[19], the view definition language is limited to select-project queries and only insertion

update to the source document is considered. The article [20] studies the graph

structured views and their incremental maintenance. However, it can only handle very

simple views consisting of object collections, without edges. The article [2] studies the

view maintenance for semistructured data based on the Object Exchange Model (OEM)

[17] and on the Lorel query language [1] for OEM.

The above three papers have some common shortcomings. First, they do not

validate the source update. Semantic constraints are not considered, such that they

cannot confirm the XML document is still meaningful after the update. Second, the

source updates they support are limited. For example, in insertion update, they do not

support inserting an element with sub-elements. In modification update, they only

support the atomic value change. Third, their view definition is too simple. They do

not allow XML views that interchange the ascendant/descendant relationships in XML

Materialized View Maintenance for XML Documents

 4

data, and they do not allow joining different XML documents also. Such views are

natural in a tree structure data set. We will overcome the shortcomings in this thesis.

In this thesis, we introduce a set of incremental constraint checking rules to

validate the source XML update based on the semantically rich Object – Relationship -

Attribute model for Semi-structured data (ORA-SS) [10]. With these rules, we can

make sure the source XML document is updated consistently and safely. We design the

update operations consist of insertion, deletion and modification of both attributes and

elements. The elements we can handle can be complex like consisting of sub-elements.

We developed the incremental view maintenance to handle complex XML views,

which may be resulting from interchanging ascendant/descendant relationships in

source XML documents. Also joining of several XML documents are supported. The

incremental maintenance algorithm is triggered to generate view update queries once

an update happens to the source. Views defined in this thesis cannot generally be

handled by techniques discussed in the other existing papers.

1.2 Motivating Example

In this thesis, we use an XML Project-Supplier-Part database as running example. The

XML document 1 in Figure 1.1(a) consists of information on suppliers, parts supplied

by each supplier, and projects that each supplier is supplying each part to. The XML

document 2 in Figure 1.1(b) contains information on projects and the department that

Materialized View Maintenance for XML Documents

 5

each project belongs to. We represent the document 1 and 2 as two ORA-SS instance

diagrams respectively. The ORA-SS data model will be introduced in Chapter 3.

We want to construct and maintain a view, which shows information of project

jname:
jn1

project

jno:
j1

department

dno:
d1

dname:
dn1

XML document 2

jname:
jn2

project

jno:
j2

department

dno:
d2

dname:
dn2

jname:
jn3

project

jno:
j3

department

dno:
d2

dname:
dn2

Figure 1. 2(b): ORA-SS Instance Diagram for XML document 2 in
Project-Supplier-Part Database

XML document 1

jname:
jn1

project

jno:
j1

sname:
sn1

supplier

sno:
s1 part

pno:
p1

pname:
pn1

quantity:
15

jname:
jn1

project

jno:
j1

sname:
sn3

supplier

sno:
s3 part

pno:
p2

pname:
pn2

quantity:
30

jname:
jn1

project

jno:
j1

sname:
sn2

supplier

sno:
s2 part

pno:
p1

pname:
pn1

quantity:
20

jname:
jn2

project

jno:
j2

quantity:
10

Figure 1. 1(a): ORA-SS Instance Diagram for XML Document 1 in
Project-Supplier-Part Database

Materialized View Maintenance for XML Documents

 6

of department dn1 and parts of each project. A new attribute called total_quantity is

created, which is the sum of quantity of a specific part that the suppliers are supplying

for the project. The initial content of the view is in Figure 1.2.

Suppose supplier s3 is going to supply part p1 to project j1 with a quantity of 10.

This will insert part p1 with child project p1 as the child element of supplier s3 in the

source XML document 1. This source update will impact the view. The total_quantity

of part p1 of project j1 will be increased by 10.

The updated materialized view is shown in Figure 1.3 with the updated part in

the dashed circle. Compared with the whole materialized view, the update is relative

small. To incrementally maintain the view is more efficient way to update the

materialized view compared with the re-computation method.

Figure 1. 3: XML View Content

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
35

Materialized View Maintenance for XML Documents

 7

1.3 Research Contributions

In this thesis, we proposed an incremental view maintenance algorithm for XML

documents in an environment of multiple, distributed source XML documents, with a

separate database for housing the XML view.

We handle the update validation as the invalid update query will make the XML

document inconsistent. We defined a set of update operations, which have the XQuery

syntax. The update consistency for each kind of update operation can be checked based

on the ORA-SS data model. The essential constraints to validate an update query

include participation constraint, key constraint, and functional dependency constraint,

which can be all expressed in ORA-SS data model.

Figure 1. 4: Updated XML View Content

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
45

Materialized View Maintenance for XML Documents

 8

We define the view in ORA-SS schema diagram, which can involve selection,

project, join and swapping elements on multiple source XML documents. The

hierarchical structure in the view can be much different from any source. Using

ORA-SS schema diagram, we are able to define not only binary relationship type, but

also ternary relationship type, which makes the view more meaningful.

We are able to query all the source XML documents to generate the view update

tree. With ORA-SS view schema diagram, we are able to design the query plan

according to the relationship types in the view schema.

Beyond the correct generation of view update tree, we also provide view

self-maintenance when the update query meets the specific conditions. Information

like key constraint is used to achieve the view self-maintenance for deletion and

modification updates.

1.4 The Organization of this Thesis

The thesis is organized as follows.

Chapter 2 describes the ORA-SS data model and the reason why we choose

ORA-SS as our data model.

Materialized View Maintenance for XML Documents

 9

Chapter 3 describes our XML update language and the validation rules to keep

the XML document consistent after the update.

Chapter 4 discusses the view definition in ORA-SS schema diagram and how to

make the materialized view.

Chapter 5 presents the algorithm to incrementally maintain the materialized

views for XML documents.

In Chapter 6, we describe the previous works on the area of materialized view

maintenance and provide a comparison between these works with that of ours. We

conclude that our approach is better than the existing works because we are able to

handle more complex views.

Chapter 7 discusses the conclusion and suggestions for further work.

Materialized View Maintenance for XML Documents

 10

Chapter 2

The ORA-SS Data Model

The data model we are using is ORA-SS (Object-Relationship-Attribute model for

Semi-Structured data) [10]. We adopt ORA-SS because it is a semantically richer data

model that has been proposed for modeling semi-structured data compared to OEM or

Dataguide. Using ORA-SS, we can define flexible XML views, and develop efficient

incremental view maintenance algorithm.

There are three main concepts in the ORA-SS data model, which are object

class, relationship type and attribute (of object class or relationship type). The

ORA-SS data model not only reflects the nested structured of semi-structured data, but

also distinguishes object classes, relationship types and attributes. The main

advantages of ORA-SS over existing data models are its abilities to specify functional

dependency and referential integrity constraints. These semantics are essential for

implementing an efficient XML view management system.

Materialized View Maintenance for XML Documents

 11

2.1 Object Classes

An object class in ORA-SS is like a set of entities in the real world, an entity

type in an ER diagram, a class in an object-oriented diagram or an element in

semi-structured data model. An object class is represented as a labeled rectangle.

Example 2.1 Consider an example where each project can have a project no, a project

name, and budget. This is represented in Figure 2.1 by an object project with key jno,

and attributes sname and budget.

2.2 Relationship Types

A relationship type in the ORA-SS data model represents a nesting relationship.

An object class is related to another object class through a relationship type. Each

relationship type has a degree and participation constraints. A relationship type of

degree 2 (i.e. a binary relationship type) relates two object classes. One object class is

the parent and the other is the child. A relationship type of degree 3 (i.e. a ternary

relationship type) is a relationship type between three objects classes. In a ternary

jname

project

jno budget

Figure 2.1: Object Project with Attributes in an ORA-SS Schema Diagram

Materialized View Maintenance for XML Documents

 12

relationship type, there is a binary relationship type between two object classes, and a

relationship type between this binary relationship type and the other object class.

A relationship type is represented by a labeled diamond in an ORA-SS schema

diagram. The label, “name, n, p, c”, contains a relationship type name, an integer n

indicating the degree of the relationship type (n = 2 indicates binary, n = 3 indicates

ternary, etc.), the participation constraint p on the parent of the relationship type, and

the participation constraint c on the child. By defining participation constraints with

min:max notation, we are also able to represent numerical constraints. ?, * and + are

the usual shorthand to represent the participation constraints 0:1, 0:n, and 1:n

respectively. All fields in the label are optional. There is no default value for name. The

default value for degree is 2. The default value for the parent participation constraint is

0:n and the default value for the child participation constraint is 1:m.

Example 2.2 Figure 2.2 shows a binary relationship type between project and supplier,

a binary relationship type between supplier and part, and a ternary relationship type

between project, supplier and part. The relationship type between project and supplier

is annotated with “js, 2, 0:n, 0:n”, which represents a many to many relationship

between project and supplier. The ternary relationship type jsp is a relationship type

between the project and supplier relationship type and part. The schema in Figure 2.2

models the relationship between parts supplied by a particular supplier while supplying

for a particular project, and only the parts supplied by a supplier while supplying for a

Materialized View Maintenance for XML Documents

 13

project will be nested within that supplier and project.

2.3 Attributes

Attributes represent properties. An attribute can be a property of an object class

or a property of a relationship type.

 Attributes are denoted by labeled circles, the label consists of name, [F|D: value].

The name is compulsory, and the rest of the label is optional. The letter F precedes a

fix value, while D precedes a default value. The identifiers are indicated by filled

circles, while other candidate keys are a double circle with the inner circle filled. An

attribute’s cardinality is shown inside the attribute circle, using ?, *, + to represent 0:1,

0:n, 1:n, where the default is 1:1. An attribute can be single-valued or multi-valued. A

multi-valued attribute is represented using an * or + inside the attribute circle.

sp

project

jno
supplier

sno part

pno

Figure 2.2: Representing ORA-SS Relationship Types

price quantity

js, 2, 0:n, 0:n

sp, 2, 0:n, 0:n
jsp, 3, 0:n, 0:n

jsp

Materialized View Maintenance for XML Documents

 14

 The special attribute name ANY denotes an attribute of unknown or

heterogeneous structure.

 Attributes of an object class can be distinguished from attributes of a

relationship type. The former has no label on its incoming edge while the latter has the

name of the relationship type to which it belongs on its incoming edge.

Example 2.3 Consider the ORA-SS schema diagram in Figure 2.2. The object part has

a key attribute pno. The attribute price belongs to the relationship type, sp, between

supplier and part, i.e. it is the price for a part supplied by a supplier. Attribute quantity

belongs to the relationship type, jsp, between project, supplier relationship type and

part, i.e. it is the quantity of a part supplied by a supplier for a specific project.

2.4 Functional Dependencies

Functional dependencies model real world constraints, showing how some of the

attributes depend on other attributes. The functional dependencies of binary

relationships can be derived from the schema diagrams. Separate functional

dependency diagrams are drawn for ternary or other functional dependencies. With the

separate functional dependency diagrams, we can express more information, and the

Materialized View Maintenance for XML Documents

 15

information can be expressed without crowding the ORA-SS diagrams. For each

functional dependency, the values of a set of objects (we call them conditional objects)

determine the value of certain objects or attributes (we call them resulting

objects/attributes). Sample XML functional dependency is given in Example 2.4.

Example 2.4 Consider the ORA-SS schema diagram in Figure 2.2. An instance of this

schema is shown in Figure 2.3. In the schema diagram, attribute price is the attribute of

the relationship type sp. One functional dependency is enforced such that one supplier

supplies one part at the same price to all projects. The instance in Figure 2.3 satisfies

this functional dependency since for different project j1 and j2, supplier s2 provide

part p2 at the same price 300.

 We provide the ORA-SS schema diagrams for our Project-Supplier-Part

project

jno:
j1

XML Instance

project

jno:
j2

project

jno:
j3

supplier

sno:
s2

part

pno:
p2

Figure 2.3: Demonstrating Functional Dependency

price:
300

quantity
: 2

supplier

sno:
s2

part

pno:
p1

price:
200

quantity
: 3

part

pno:
p2

price:
300

quantity
: 3

supplier

sno:
s3

part

pno:
p3

price:
400

quantity
: 3

Materialized View Maintenance for XML Documents

 16

database in Figure 2.4.

Existing semi-structured data models, like OEM, are not possible to represent

the participation constraints of object classes in relationship types, whether an attribute

is an attribute of an object class or an attribute of a relationship type, and the degree of

n-ary relationship types for the hierarchical semi-structured data. The inadequacy of

the Dataguide is its inability to express the degree of n-ary relationships for the

hierarchical semi-structured data. Also Dataguide cannot express the functional

supplier

pname

part

pno
project

jno jname

snamesno

quantity

sp, 2, 0:n, 0:n

spj, 3, 0:n, 0:n

spj

Figure 2.4 (a): ORA-SS Schema Diagram for XML Document 1 in
Project-Supplier-Part Database

project

dname

department

dno

jnamejno

jd, 2, 0:n, 0:n

Figure 2. 4(b): ORA-SS Schema Diagram for XML Document 2 in
Project-Supplier-Part Database

Materialized View Maintenance for XML Documents

 17

dependency constraint.

An algorithm has been developed to extract the ORA-SS schema from XML

documents. The algorithm has two steps. The first step is to process the XML

document and generate a rough ORA-SS schema tree, which contains hierarchical

information only. The second step is to ask the user necessary questions, and refine the

ORA-SS schema according to the answers provided by the user. This information

includes primary key and candidate keys, degrees of relationship types, participation

constraints in relationship types, logic residence of attributes (whether an attribute

belongs to an object class or to a relationship type), etc. Such information cannot be

derived by scanning XML documents only. After answering all the questions, the

ORA-SS schema will contain much more semantic information, and the user can still

make changes on the properties of object classes, relationship types and attributes to

refine the schema.

Materialized View Maintenance for XML Documents

 18

Chapter 3

XML Document Update

The source update can be an insertion, a deletion or a modification. The insertion

operation inserts a sub-tree of object classes into a source XML document. The

deletion operation deletes a sub-tree of object classes from a source XML document.

The modification operation modifies the value of attribute of an object class or a

relationship type in ORA-SS schema.

3.1 XML Update Language

We propose our simple XML update language in this chapter. As a good XML update

language, it should be able to specify both the update point of the XML document and

the update content clearly. The update point should be expressed as a path from the

root of the XML document to the specific element, where the update takes place. The

update content should be constructed as a XML sub-tree. It should not be represented

as object ID or other internal representation as in Lorel update statement [1]. Details of

it will be discussed in Chapter 6. Our XML update language is designed for clear

specification of both update path and update content.

Materialized View Maintenance for XML Documents

 19

The World Wide Web Consortium has proposed an XML query language called

XQuery [23]. XQuery provides flexible query facilities to extract data from real and

virtual documents on the Web. The basic form of an XQuery expression consists of For,

Let, Where and Return (FLWR) expressions. XQuery currently does not provide for

the definition of updates.

We propose the new XQuery syntax with update language added in Figure 3.1.

Each actioni above is an expression of the form

insert r into e [AT LAST]

or

delete e

or

replace e with v,

where r is an XML sub-tree, e is a simple XPath [24] expression, and v is text value.

We use the key attribute of the objects to represent the path. For example, e is

update doc-name{
for attr1 in XPath-expr1, attr2 in XPath-expr2, …
let attr3 := XPath-expr3, attr4 := XPath-expr4, …
where selection_pred1, selection_pred2, selection_pred3, …
action1; action2; …; actionn

}

Figure 3.1 Syntax of Our Update Language Extending XQuery

Materialized View Maintenance for XML Documents

 20

supplier[sname = ‘s1’]/part, which matches part elements that are descendants of

supplier elements that have an attribute sname whose content is the string value “s1”.

In an INSERT action, the expression e specifies a node, N, immediately below

which a subtree will be inserted. The subtree is specified by the expression r. By

default, e is inserted after the last child of r. So the keyword AT LAST can always be

omitted.

 In a DELETE action, expression e specifies a node which will be deleted

(together with its sub-tree).

In a REPLACE action, expression e specifies an attribute which will be

modified. The new attribute value replacing e is specified by v.

Example 3.1 Consider the XML Project-Supplier-Part database in Figure 1.1.

Suppose supplier s3 is going to supply part p1 to project j1 with a quantity of 10. This

will insert part p1 as the child element of supplier s3 in the source XML document 1.

part p1 has a child element project j1 with a quantity of value 10. In the update

language, a subtree will be inserted to document 1 as follows:

Materialized View Maintenance for XML Documents

 21

Example 3.2 Suppose supplier s2 will not supply part p1 to project j1 any longer. This

will delete project j1 from part p1 of supplier s2. We form the following update query.

Example 3.3 Suppose supplier s2 will supply part p1 to project j1 with quantity 30

instead of 20. This will update the value of attribute quantity from 20 to 30.

We have defined the XML update query language in the XQuery syntax. All the

update queries can also be translated into graphical presentation in the form of

ORA-SS instance diagram, which will be shown in Chapter 5. In order to keep the

XML database consistent, we need to valid the update query before it is executed in the

database. We discuss it in the next section.

update document1{
 for $a in /supplier[sno = “s2”]/part[pno = “p1”]/project[jno = “j1”]

replace $a/quantity/text() with “30”
 }

update document1{
 let $r1 := “<part pno = ’p1’ pname = ‘pn1’>
 <project jno=’j1’ jname = ‘jn1’>

<quantity>10</quantity>
 </project>
 </part>”

insert $r1 into /supplier[sno = “s3”]/ AT LAST;
 }

update document1{
delete /supplier[sno = “s2”]/part[pno = “p1”]/project[jno = “j1”]

 }

Materialized View Maintenance for XML Documents

 22

3.2 Update Validation

There are two levels of validation for an XML document: well-formed and valid

against a data model. An XML document is well formed if it follows all specifications

of the World Wide Web standard. That means the XML document should satisfy two

conditions. One is the ending tag matches with the beginning tag. The other is no two

attributes of the same element have the same name. When a well formed XML

document is associated with a schema, and it satisfies all the constraints expressed in

the schema, we say the XML document is valid. The XML schema we are going to use

is ORA-SS. We now present the validation rules based on ORA-SS, which should be

enforced when an update operation takes place on the XML document. The constraints

to be verified include functional dependency constraint, participation constraint, key

constraint, and structure checking. We assume that the XML document is initially well

formed and valid against the ORA-SS schema.

Rule 1: Functional Dependency Constraint Rule

This rule guarantees none of the functional dependencies in the XML document are

violated. For each functional dependency, the values of a set of objects (called

conditional) determine the value of certain objects or attributes (called resulting). Upon

an insertion or modification update, if any functional dependency is affected, we will

verify the functional dependency. Instead of verifying the functional dependency on

Materialized View Maintenance for XML Documents

 23

the whole updated XML document, we will verify the functional dependency

incrementally. The disadvantage of the full verification of functional dependency is

time-consuming, and if the update violates the functional dependency, the time to

apply the update on the XML document and verify the functional dependency on the

updated XML document is wasted. So we will discover the way to incrementally

verification of functional dependency.

For each affected instance Fa of any functional dependency, we just need to find

another instance Fb of the same functional dependency with the same values of

conditional objects in the original XML document. If there is no other instance of the

same functional dependency, then the affected instance is satisfied with the functional

dependency. Otherwise, we compare the values of the resulting objects and attributes

of Fa and Fb. If equal, then Fa is satisfied with the functional dependency. Otherwise,

Fa is not satisfied with the functional dependency.

If any of the affected instances of the functional dependency does not pass the

functional dependency constraint check, we fail the source update.

Example 3.4 Consider the ORA-SS schema diagram in Figure 3.2, one functional

dependency enforced is one supplier supplies one part at the same price to all projects.

An instance of the schema is shown in Figure 3.3. Suppose now supplier s2 supplies

part p2 at price 200 to project j3. We need to determine whether the update is valid.

Materialized View Maintenance for XML Documents

 24

We look for one relationship type sp from the original ORA-SS instance in Figure 3.3.

If we did a depth first search, we will find supplier s2 is supplying part p2 at price 300

to project j1. Since the value of price is different from the price in the update, we

conclude that the update will violate the functional dependency constraint rule. The

update is invalid, and will be rejected.

sp

project

jno
supplier

sno part

pno

Figure 3.2: ORA-SS Schema Diagram Demonstrating
Functional Dependency Constraint Rule

price quantity

js, 2, 0:n, 0:n

sp, 2, 0:2, 0:n
jsp, 3, 0:n, 0:n

jsp

Materialized View Maintenance for XML Documents

 25

Rule 2: Participation Constraint Rule

This rule guarantees none of the participation constraint rules are violated. As

illustrated in the Chapter 2, a relationship in the ORA-SS schema diagram has two

participation constraints, one is the participation constraint on the parent of the

relationship, and the other is the participation constraint on the child. The two

participation constraints have the form of min:max. We say the minimum constraint is

the minimum value in the participation constraint for either parent object class or child

object class. The maximum constraint is the maximum value in the participation

constraint. Table 3.1 shows all the participation constraint rules for insertion and

deletion update. Since the modification update will only modify the value of attribute,

but not object class or relationship type, so it will never violate the participation

constraint in the schema.

project

jno:
j1

XML Instance

project

jno:
j2

project

jno:
j3

supplier

sno:
s2

part

pno:
p2

price:
300

quantity
: 2

supplier

sno:
s2

part

pno:
p1

price:
200

quantity
: 3

part

pno:
p2

price:
300

quantity
: 3

supplier

sno:
s3

part

pno:
p3

price:
400

quantity
: 3

Figure 3.3: ORA-SS Instance Diagram Demonstrating
Functional Dependency Constraint Rule

Materialized View Maintenance for XML Documents

 26

Table 3.1 Participation Constraint Rules for Different Types of Update

Parent Object Class

Rule (1) If one parent object class P of
relationship type R is inserted, we need to check
whether the maximum constraint of P is
violated, also we need to check whether the
minimum constraint of the child object
class/relationship type of R is violated. For
example, the relationship type course-student
requires that a course has at least 6 students, so
the insertion of a new course without student
will violate the minimum constraint of the child
object class of the relationship type, which is at
least 6 students for a course.

Child Object Class

Rule (2) If one child object class C of a
relationship type R is inserted, we need to check
whether the maximum constraint of the parent
object class P of R is violated. For example, the
relationship type course-student requires that a
course has at most 60 students, so the insertion
of a new student will violate the maximum
constraint of the Course if the course has 60
students already before the insertion.

Insertion

Relationship Type
Rule (3) If one relationship type R is inserted,
we have to check the participation constraints of
each object classes of R as in Rule (1) and (2).

Materialized View Maintenance for XML Documents

 27

Parent Object Class

Rule (4) If one parent object class P of
relationship type R is deleted, we need to check
whether the minimum constraint of P is violated.
For example, the relationship type
course-student requires that a student has to take
at least four courses, so the deletion of an
existing course may result in that the students
that are taking the course take three courses after
the deletion.

Child Object Class

Rule (5) If one child object class C of a
relationship type R is deleted, we need to check
whether the minimum constraint of the parent
object class P of R is violated. For example, the
relationship type course-student requires that a
course has at least 6 students, so the deletion of
an existing student will violate the minimum
constraint of the Course if the course has exactly
6 students before the insertion.

Deletion

Relationship Type
Rule (6) If one relationship type is deleted, we
have to check the participation constraints of
each object classes of R as in Rule (4) and (5).

Example 3.5 Consider the ORA-SS schema diagram in Figure 3.2 and its instance

diagram in Figure 3.3. For the relationship type sp between supplier and part, the

participation constraint for the parent object class supplier is set to be 0:2. That means

a supplier can not supply more than two parts for a specific project. Suppose now we

want to insert a new part p3 to supplier s2 for the project j1, it is valid since the

constraint for project is not violated. But if we want to insert a new part p3 to supplier

s2 for the project j2, it is invalid. Because the update will cause the supplier s2 of

project j2 has more than two parts.

For each update, the above constraint checking rules are applied accordingly.

The XML document will be kept consistent with its ORA-SS schema diagram after

Materialized View Maintenance for XML Documents

 28

each update. Such that the semantic rules enforced in the XML document will remain.

This property is necessary for the future processing of the XML document. In the next

chapter, we are going to discuss the specification of the view using ORA-SS schema

diagram and also the initialization of the materialized view.

Materialized View Maintenance for XML Documents

 29

Chapter 4

Views and Materialized Views

In this Chapter, we discuss how to define the flexible views over multiple source XML

documents. There are two main approaches. One way is to define views or queries in

script language like XQuery [23]. The alternative approach is to define views through

source schema and view schema mappings. The latter approach alleviates user from

writing complex scripts to define an XML view. Then we use the view transformation

method to initialize the materialized view. The view transformation method is first

proposed in [8]. Here we enrich the method to handle the complex views which can be

over multiple source XML documents, have selection conditions, and have aggregation

functions.

4.1 View Specification

We use ORA-SS schema diagram to specify the XML view with the following

semantic meanings.

Selection: In relational database, one common feature is the selection applied to

Materialized View Maintenance for XML Documents

 30

relation tuples. In the ORA-SS schema diagram of the view, we specify a selection

condition via a predicate associated to an object or attribute in the ORA-SS

schema diagram.

Projection: Another way to project out the interest data from source XML documents

is to specify which nodes are projected, and which nodes are eliminated from the

source XML documents. All objects and attributes in the ORA-SS schema diagram

of the view are supposed to be projected from the source XML.

Join: Similar to relational database, we have join for a set of source XML documents.

Our join is strictly more general than relational join. It could be the joining of

different elements either in the same document or in the different documents. In

the ORA-SS schema diagram of the view, you will see one joined object class only

instead of the original two object classes.

Swap: One great feature about XML is its heterogeneity. XML documents have

complex tree structures, so does the XML view. We allow the new relationship to

be created in the ORA-SS schema diagram of the view. More precisely, two object

classes with parent/child relationship in the ORA-SS schema diagram of the view

do not necessarily have such relationship in any source XML document. They

even do not have to come from the same source XML document.

Aggregation: The purpose of aggregation is to map collections of values to aggregate

or summary values. Common aggregate functions are MIN, MAX, COUNT, SUM,

AVG, etc. Aggregate functions can be applied to the attributes of object class or the

relationship type to derive new attributes. When generating summary values, we

Materialized View Maintenance for XML Documents

 31

should specify exactly where the newly computed value should be inserted. In the

ORA-SS schema diagram of the view, we will specify the aggregated attribute and

its aggregate function.

When the key value of certain object class is not projected in the view schema,

we add a count attribute to that object class. This count attribute is to record the

number of same instances of the object class in the same path of the view. So that we

do not have to store the same instances multiple times. This count attribute is treated as

an attribute with a COUNT aggregate function.

All in all, ORA-SS allows users to define view schema with rich semantic

meanings. The following example shows the power of ORA-SS.

Example 4.1 Figure 4.1 depicts a view based on the two source schemas in Figure 2.4

by using schema mapping method. The view swaps, joins and drops the object classes

in the source schemas. It shows information of project of department dn1 and part of

each project. Object class supplier is dropped from the source schema 1. part and

project are swapped. A new relationship type jp is created between project and part. A

new attribute called total_quantity is created for jp, which is the sum of quantity of a

specific part that the suppliers are supplying for the project.

Materialized View Maintenance for XML Documents

 32

The initial content of the materialized view specified in Figure 4.1 will be shown

in Figure 4.2.

4.2 View Materialization

Having designed XML views based on ORA-SS, we can produce the views content

based on some materialization strategy. In this thesis, we adopt view transformation

strategy in [8] to produce materialized views. It can perform accurate and efficient

view transformation based on ORA-SS. But the method is only transforming a single

source ORA-SS schema to a view schema. Here we enrich the method to handle the

complex views which can be over multiple source XML schemas, have selection

conditions, and have aggregation functions.

Figure 4.2 depicts the materialized view for the view schema in Figure 4.1. To

emphasize the importance of aggregation, we can see from this example, in the

Figure 4.1: ORA-SS Schema Diagram of the View over Source Schemas in Fig. 2.4

project

total_quantity
[SUM(quantity)]

part

pno

department

jno
jp, 2, 0:n, 0:n jd, 2, 0:n, 0:n

dname [= ‘dn1’]

jp

Materialized View Maintenance for XML Documents

 33

materialized view, the value of total_quantity for part p1 is 35 for project j1, which is

the sum of quantities 15 and 20 supplied by supplier s1 and s2 in source XML

document 1.

In outline, the view materialization plan has the following four main procedures:

1) Projection (on object type or relationship type)

2) Selection (on attribute of object class or relationship type)

3) Join (different object classes)

4) Aggregation (on attributes)

In the following, let us discuss each of the procedures in more details.

The Projection Procedure selects instances of object classes and relationship

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
35

Figure 4.2: ORA-SS Instance Diagram of the View

Materialized View Maintenance for XML Documents

 34

types from the source XML documents. The paper [8] presents the strategy to retrieve

the instances of object classes or relationship types by querying the source XML

documents according to the object classes and relationship types in the view schema.

The Selection Procedure prunes the instances retrieved from Projection

Procedure by checking the selection conditions in the view schema. We enforce the

selection condition on the attributes of the object class or the relationship type if there

is any. If the value satisfies the condition, we keep the instance, if it does not satisfy,

we delete it. This procedure is not present in the paper [8] as it does not consider the

selection conditions expressed in view schema.

 The Join Procedure joins the elements with the same name and key attributes

together from different source XML documents. The combined instance of the object

class or relationship type has all the attributes together. This procedure is not present in

paper [8] as well because the previous work does not consider the complex view which

is over multiple source XML documents.

The Aggregation Procedure applies the aggregation function to the values of

aggregate attribute if there is an aggregation function associated with the attribute. This

procedure is not present in paper [8] as well because the previous work does not

consider the aggregation function in the view specification. Table 4.1 shows all

possible types of aggregation functions that we can handle.

Materialized View Maintenance for XML Documents

 35

Table 4.1 Cases of the Aggregation Functions in the View Specification

Type Method

(1) COUNT

We will count the number of object classes or attributes the

aggregation function is applied to and store the value in the

aggregate attribute

(2) SUM

We will add all the values of the attribute that the aggregation

function is applied to and store the summation in the aggregate

attribute

(3) AVG

We will apply the two methods for calculating COUNT and SUM

aggregate functions on the attribute, then we divide SUM by

COUNT, and store the average value in the aggregate attribute

(4) MAX

We find the maximum value among all the values of the attribute

the aggregate function is applied to and store it in the aggregate

attribute

(5) MIN

We find the minimum value among all the values of the attribute

the aggregate function is applied to and store it in the aggregate

attribute

The following example shows the procedures used to initialize the materialized

view based on the view materialization plan discussed above.

Materialized View Maintenance for XML Documents

 36

Example 4.2 We use the XML Project-Supplier-Part database in Figure 1.1. The view

schema is defined in Figure 4.1. In Figure 4.3, we show the steps of creating the initial

content of the materialized view. In our algorithm, we firstly retrieve the instances of

project and department from source XML document 2 in Figure 1.2 (b). The result is

shown in Figure 4.3 (a). Then we apply the selection condition of department name on

the results. Only the projects of department d1 are left in Figure 4.3 (b). Then we join

the projects in Figure 4.3 (b) with the projects in source XML document 1. The

instances of joined project and part are retrieved as shown in Figure 4.3 (c). Lastly,

aggregation function SUM is applied on attribute quantity of relationship type jp to

produce the aggregate attribute totoal_quantity, which is shown in Figure 4.4 (d).

Figure 4.4 (d) is the generated initial content of the view.

project

jno:
j1

department

dname:
dn1

Materialized View

project

jno:
j2

department

dname:
dn2

project

jno:
j3

department

dname:
dn2

Fig 4.3 (a) Step 1: Projection of Relationship Type project-department

Materialized View Maintenance for XML Documents

 37

project

jno:
j1

department

dname:
dn1

Materialized View

Fig 4.3 (b) Step 2: Selection on Attribute dname where dname = ‘dn1’

Materialized View

project

jno:
j1

part

pno:
p2

department

dname:
dn1

part

pno:
p1

quantity:
15

Fig 4.3 (c) Step 3: Join on project and Projection of Relationship Type project-part

quantity:
30

part

pno:
p1

quantity:
20

Materialized View Maintenance for XML Documents

 38

In this chapter, we define the view specification using ORA-SS schema diagram,

which can have very rich semantic meanings. We improve the algorithm of view

transformation to perform accurate and efficient view materialization for the view

defined by the ORA-SS schema diagram. In the next chapter, we will discuss our

technique to incrementally maintain the materialized view upon each update to the

source XML documents.

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
35

Figure 4.3 Generation of Initial Content of the Materialized View

Fig 4.3 (d) Aggregation on attribute quantity

Materialized View Maintenance for XML Documents

 39

Chapter 5

Incremental XML View Maintenance

In this chapter, we discuss how the incremental maintenance for the materialized XML

view is carried out. The environment that we are dealing with is that there are multiple

source XML documents in one location. Multiple views defined upon the source XML

documents. Views can be either in the same location as source or in a different location.

If the views and source XML documents are in the different locations, we assume no

data are lost in the query and query results transmission.

XML views are more complex than relational views because of their hierarchical

structures. For example, elements in source XML documents may be swapped or

joined in the views. Thus, it is more difficult to incrementally maintain the

materialized XML views than relational views. Our technique composes of three main

steps. Upon an update to a source XML document, we treat the update to the source as

a list of source update trees. First, we will check whether the update is relevant, if it is

an irrelevant update and will not affect the view content, we will stop here. Second,

from the source update trees and other un-updated source XML documents, we

Materialized View Maintenance for XML Documents

 40

compute update view trees, which contain only update part of the view. Third, we

merge the update view trees with the existing materialized view tree to produce the

complete updated view. In the following, we give the formal definitions of source

update tree and view update tree.

Definition of Source Update Tree A path in a source XML document is said to be in a

source update tree iff it is from the root of the updated source XML document to the

updated sub-tree in source, or to the object class or the relationship type with the

modified attribute. A source update tree contains the update information and conforms

to the source ORA-SS schema.

Definition of View Update Tree A path in an XML view is said to be in a view update

tree iff it is from the root of view to the updated sub-tree in the view, or to the object

class or the relationship type with the modified attribute. A view update tree contains

the update information and conforms to the view ORA-SS schema.

The task of our incremental maintenance is to find the update part of the view (view

update tree) according to the update of the source (source update tree), and maintain

the view properly. We will first give a few examples on both source update tree and

view update tree, followed by the detailed algorithm of incremental view maintenance

in next section.

Materialized View Maintenance for XML Documents

 41

Example 5.1 [Insertion] Using the XML Project-Supplier-Part database in Figure 1.1

and the view in Figure 4.1, suppose supplier s3 is going to supply part p1 to project j1

with a quantity of 10. This will insert part p1 as the child element of supplier s3 in the

source XML document 1. part p1 has a child element project j1 with a quantity of

value 10. The source update tree in this case is shown in Figure 5.1, which contains the

path from supplier s3 to project j1. This source update will impact the view. The

total_quantity of part p1 of project j1 will be increased by 10. The updated view is

shown in Figure 5.2 with the updated part in the dashed circle.

Source update tree

supplier

sno:
s3

Figure 5.1: Source Update Tree in Example 5.1

part

pno:
p1

project

jno:
j1

quantity:
10

Materialized View Maintenance for XML Documents

 42

Example 5.2 [Deletion] Using the XML Project-Supplier-Part database in Figure 1.1

and the view in Figure 4.1, suppose supplier s2 will not supply part p1 to project j1

any longer. This will delete project j1 from part p1 of supplier s2. The source update

tree in this case is shown in Figure 5.3, which contains the path from supplier s2 to

project j1. This source update will impact the view. The total_quantity of part p1 of

project j1 will be decreased by 20. The updated view is shown in Figure 5.4 with the

updated part in the dashed circle.

Figure 5.2 Updated Materialized View in Example 5.1

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
45

Materialized View Maintenance for XML Documents

 43

Example 5.3 [Modification] Using the XML Project-Supplier-Part database in Figure

1.1 and the view in Figure 4.1, suppose supplier s2 will supply part p1 to project j1

with quantity 30 instead of 20. This modification happens on the quantity attribute of

the relationship type pj. 30 is the new value of the attribute, and 20 is the old value.

Figure 5.4 Updated Materialized View in Example 5.2

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
15

Source update tree

supplier

sno:
s2

Figure 5.3: Source Update Tree in Example 5.2

part

pno:
p1

project

jno:
j1

quantity:
20

Materialized View Maintenance for XML Documents

 44

The source update tree in this case is shown in Figure 5.5, which contains the path

from supplier s2 to project j1. The new quantity value is shown. The old value is also

recorded in the source update tree, because later we will use it to update the aggregate

attribute if there is any. This source update will impact the view. The total_quantity of

part p1 of project j1 will be increased by 10. The updated view is shown in Figure 5.6

with the updated part in the dashed circle.

Source update tree

supplier

sno:
s2

Figure 5.5: Source Update Tree in Example 5.3

part

pno:
p1

project

jno:
j1

quantity: 30
(old: 20)

Materialized View Maintenance for XML Documents

 45

5.1 The View_Maintenance Algorithm

The View_Maintenance algorithm receives as input an update on one source XML

document, the source XML documents, the ORA-SS schemas of the source, the

existing materialized view, and the existing materialized view.

 In outline, the main steps of the View_Maintenance algorithm are:

1. Obtain the source update tree according to the update specification and the

source document and source schema.

2. Check the relevance of the source update to see whether the update will affect

the view. If the source update is relevant, we proceed to step 3, otherwise we

stop here.

Figure 5.6 Updated Materialized View in Example 5.3

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
45

Materialized View Maintenance for XML Documents

 46

3. Generate the view update tree, which contains the update information to the

view.

4. Merge the view update tree into the view to produce the completed updated

materialized view.

In the following sections we discuss the procedures used in Step 1 to 4.

5.2 The Procedure GenerateSourceUpdateTree

The procedure GenerateSourceUpdateTree receives as input an update U to a source

XML document D, D itself, and the ORA-SS schema S of D. The procedure generates

the source update tree, which contains the update information to D upon U. Table 5.1

shows all possible types of source update tree that GenerateSourceUpdateTree can

produce.

Materialized View Maintenance for XML Documents

 47

Table 5.1 Cases of the GenerateSourceUpdateTree

Case SourceUpdateTree

(1) insertion

We locate the points in source XML D where update U takes

place. We form a source update tree by concatenating the paths of

the update points and the sub-tree to be inserted into. Each path in

the source update tree is not present in D before the insertion U

takes place.

(2) deletion

We locate the points in D where the sub-tree is deleted from

according to U. We form a source update tree by concatenating the

paths of the update points and the sub-tree to be deleted. Each path

in the source update tree is present in D before U, but it is no

longer in D after the update.

(3) modification

We locate the object class or the relationship type in D where its

attribute is modified as specified in U. We form a source update

tree with the paths from the root of the document to the object

class or the relationship type with the updated attribute. Both old

value and the new value of the attribute are recorded in the tree.

Example 5.1 specifies a source update which is an insertion on the source XML

document 1. According to case (1) in Table 5.1, we locate the update point first. We

use object class and its key attribute value to textually represent the path. Here the path

Materialized View Maintenance for XML Documents

 48

of the update point is supplier [sno = “s3”]. The sub-tree to be inserted is made up of

part p1 and its child element - the project j1 and a quantity attribute with the value of

10. We get the source update tree by concatenating the path and the sub-tree for this

insertion, which is shown in Figure 5.1. The tree conforms to the ORA-SS schema

diagram of XML document 1 in Figure 2.4 (a) as well.

5.3 The Procedure CheckSourceUpdateRelevance

The procedure CheckSourceUpdateRelevance receives as input the source update tree,

the source ORA-SS schemas and the view ORA-SS schema. It checks whether the

source update will have impact on the existing materialized view. We call the update

which will affect the view as the relevant update. Only the relevant source update will

be processed further.

5.3.1 Insertion/Deletion

Upon an insertion or deletion update, we use the following lemmas and theorem

to do the source update tree relevance checking.

Lemma 5.1 When we insert/delete a subtree into/from a source XML document, if all

of the object classes and the relationship types in the source update tree schema are

not in the view schema, we say the insertion/deletion is irrelevant. (This lemma checks

the schema only)

Materialized View Maintenance for XML Documents

 49

Proof We will prove Lemma 5.1 by controversy. Given all the object classes and the

relationship types in the sub-tree of one insertion update are not in the view schema,

suppose the update is relevant to the view and will cause the view content to be

updated. Suppose object class O1 is to be updated by having a new instance in the view

due to the insertion update. There are two cases, one is O1 is in source update tree

schema, in this case, we show at least one object class in the source update tree schema

is in the view schema. The other case is the newly inserted instance of O1 is because

O1 can join with some instance of object class O2 in the view and the instance of O2 is

in the source update tree, such that O2 is in the source update tree schema as well. In

the second case, we also show at least one object class in the source update tree

schema is in the view schema. So we conclude the update tree cannot be relevant.

Lemma 5.1 checks the schema of source and view only. For example, using the

source schema in Figure 5.7 and the view schema in Fig. 5.8, the deletion of any

instances of the object class department will not affect the view as department is not

involved in the view schema. So we conclude the insertion/deletion update on object

class department is irrelevant.

Materialized View Maintenance for XML Documents

 50

Lemma 5.2 When we insert/delete a subtree into/from a source XML document, for

one path in the source update tree, if it does not satisfy the selection conditions of the

view schema, we say the path is irrelevant.

Proof We will prove Lemma 5.2 by controversy. Given none of the path in the source

update tree satisfies the selection conditions in the view schema, suppose the update is

relevant to the view and will cause the view content to be updated. Suppose object

class O1 is to be updated by having a new instance in the view due to the insertion

update. The attributes of O1 must satisfy the selection conditions of the view, so that O1

part

pno supplier

jno quantity

ps, 2, 0:n, 0:n

ps

Figure 5.8 View ORA-SS Schema Diagram for Demonstrating Lemma 5.1

project

part

pno supplier

jno

Figure 5.7 Source ORA-SS Schema Diagram for Demonstrating Lemma 5.1

sno

quantity

jp, 2, 0:n, 0:n

jps, 3, 0:n, 0:n

jpsdname

department

dno

jd, 2, 0:n, 0:n

Materialized View Maintenance for XML Documents

 51

can appear in the view. If O1 is in the source update tree schema, we show that the

path in the source update tree containing the instance of O1 must satisfy the selection

conditions of the view. If the newly inserted instance of O1 is because O1 can join with

some instance of object class O2 in the view and the instance of O2 is in the source

update tree, we say the path in the source update tree containing the instance of O2

must satisfy the selection conditions of the view. In both two cases, we conclude at

least one path in the source update tree satisfies the selection conditions of the view

schema, which violates the hypothesis that none of the paths in the source update tree

satisfy the selection conditions in the view schema. So we conclude the update tree

cannot be relevant.

 Lemma 5.2 checks the schema of the source update tree and the view schema. If

the selection conditions are applied to the object class or the relationship type in the

source update tree, we will check whether the source update paths satisfy the selection

conditions.

Example 5.4 Using the XML Project-Supplier-Part database in Figure 1.1 and the

view in Figure 4.1, suppose we want to add a new project j4 into source XML

document 2 and project j4 belongs to department dn4. The source update tree is shown

in Figure 5.9. For this insertion update, we will use Theorem 5.1 to check the update

relevance. Firstly, Lemma 5.1 passed as object class project is involved in the view

schema. For Lemma 5.2, we know in the view, one selection condition is that only the

Materialized View Maintenance for XML Documents

 52

projects belonging to dn1 will be selected. So the selection condition is applied to the

path in the source update tree, and the path does not satisfy the condition because the

project j4 belongs to dn4 instead of dn1. So we conclude the source update tree in

Figure 5.9 is irrelevant and it will not affect the view.

Lemma 5.3 When we insert/delete a subtree into/from a source XML document, if any

path in the subtree does not join with any other object classes for all the join conditions

in the view schema (it has at least one join condition), we say the path is irrelevant. (It

checks the view schema, the source update tree, and the source XML document)

Proof We will prove Lemma 5.3 by controversy. Given one path in the source update

tree does not join with any other object classes for all the join conditions in the view

schema and the path is relevant to the materialized view. Suppose object class O1 is to

be updated by having a new instance in the view due to the insertion update. The

Source update tree

Figure 5.9: Source Update Tree in Example 5.4

project

jno:
j4

department

dno:
d4

dname:
dn4

jname:
jn4

Materialized View Maintenance for XML Documents

 53

instance of O1 can be in the path of source update tree or it can join with one object in

the path of the source update tree. In both cases, it shows the path in the source update

tree does join with certain object for one join condition to make O1 be inserted into the

materialized view. So we conclude the path cannot be relevant.

Lemma 5.3 checks the view schema, the source update tree and the source XML

documents. Lemma 5.3 is most expensive one for evaluation and checking. Lemma 5.1

is the cheapest. The following example shows how we use the three Lemmas to

determine irrelevant update tree.

Example 5.5 Using the XML Project-Supplier-Part database in Figure 1.1 and the

view in Figure 4.1, suppose a new supplier s4 is going to supply part p1 to project j2

with a quantity of 20, and to supply part p2 to project j1 with a quantity of 30 as well.

This update is formed into a source update as shown in Figure 5.10. Irrelevant update

is not found according to Lemma 5.1 because object class project and part are present

in the view schema. Again irrelevant update is not found according to Lemma 5.2

because no selection conditions in the view schema are applied to the object classes in

the source update tree directly. Now let’s consider Lemma 5.3, and according to the

selection condition in the view, only the projects of department dn1 are selected. So for

the projects selected from the source XML document 1 will only have project j1 as

only j1 belongs to dn1. Here the project in one path of the source update tree is j2,

which will not join with the project j1 from the source XML document 2. So that path

Materialized View Maintenance for XML Documents

 54

of the source update tree with project j2 does not satisfy Lemma 5.3 and that path is

considered as irrelevant. The irrelevant update path is removed and the relevant source

update tree is shown in Figure 5.11.

Source update tree

supplier

sno:
s4

Figure 5.10: Source Update Tree in Example 5.5

part

pno:
p1

project

jno:
j2

quantity:
20

part

pno:
p2

project

jno:
j1

quantity:
30

Source update tree

supplier

sno:
s4

Figure 5.11: Relevant Source Update Tree in Example 5.5

part

pno:
p2

project

jno:
j1

quantity:
30

Materialized View Maintenance for XML Documents

 55

Theorem 5.1 For each source update tree, we check every path in the source update

tree using Lemma 5.1, 5.2, and 5.3. If all update paths in the tree are irrelevant, we say

the update tree is irrelevant, so is the source update. If some update paths in the tree

are irrelevant, we say the update tree is partial relevant. The irrelevant update paths

will be removed from the source update tree. So only the relevant update path will

remain in the source update tree.

Intuitively, if any of the lemmas are not satisfied, the update to source will not

contribute to the view content update.

5.3.2 Modification

 Upon a modification update, we use the following Checking Lemma 5.4 and 5.5

to do the relevance checking for source update tree.

Lemma 5.4 When we modify an attribute of a source XML document, if the

modification happens on the attribute, which is not involved in the view schema and it

is not used as the join attribute, we say the modification is irrelevant.

Proof We will prove Lemma 5.4 by controversy. Given the modified attribute is not in

the view schema and it is not used as the join attribute, suppose the update is relevant

Materialized View Maintenance for XML Documents

 56

to the view and will cause the view content to be updated. Suppose attribute A1 is to be

updated by having a new value in the view due to the modification update. There are

two cases, one is A1 is the modified attribute in source update tree schema itself, in this

case, we show the modified attribute in the source update tree schema is in the view

schema. The other case is A1 is the aggregation attribute on certain attribute A’, which

is the modified attribute in the source update tree schema. Such that A’ is both in the

source update tree schema and in the view schema. So we conclude the update tree

cannot be relevant.

 The following example shows how to use Lemma 5.4 to check the modification

update relevance.

Example 5.6 Using the XML Project-Supplier-Part database in Figure 1.1 and the

view in Figure 4.1, suppose we want to change the name of project j1 from jn1 to

new_jn1 for every instance of project j1 in both source XML document 1 and 2. The

value of the attribute jname of object class project will be affected. Since it is a

modification update, we consider the Theorem 5.2 for source update relevance

checking. The modified attribute jname is not present in the view schema, and it is not

used in the join attribute as well. So we conclude the modification on jname is

irrelevant and will not affect the view.

Lemma 5.5 When we modify an attribute of a source XML document, when Lemma5.4

Materialized View Maintenance for XML Documents

 57

has conclude it is a relevant update, we check whether both the new value and old

value of the affected attribute satisfy the selection condition, if both do not satisfy, we

say the update is irrelevant.

Proof We will prove Lemma 5.5 by controversy. Given both the new value and the old

value of the affected attribute do not satisfy the selection conditions in the view

schema, and also the update is relevant to the view. Suppose attribute A1 is the updated

attribute, and Object O1 with A1 was inserted into the view due to the modification

update on A1. That shows the new value of A1 satisfies the selection condition of the

view. Suppose the Object O1 with A1 was deleted from the view due to the

modification update on A1. That shows the old value of A1 satisfies the selection

condition of the view. In both cases, it shows either the old value or the new value

satisfies the selection conditions of the view, which violates the hypothesis. So we

conclude the update tree cannot be relevant.

The following example shows how to use Lemma 5.5 to check the modification update

relevance.

Example 5.7 Suppose in the source database, there are part with colors like yellow,

blue, red, etc. Now only the red parts are selected in the view. Let’s change yellow to

green for one yellow part. Since the modified attribute COLOR is involved in the view

schema, the update will be treated as a relevant update by Rule 5.1. Since the old and

Materialized View Maintenance for XML Documents

 58

new values of COLOR in the update do not satisfy the view selection condition, the

update is treated as an irrelevant update by Rule 5.2.

All the irrelevant update paths are detected by the above lemmas. The relevant

source update tree will be processed by the algorithm in next section to generate view

update tree to incrementally maintain the materialized view.

5.4 The Procedure GenerateViewUpdateTree

The procedure GenerateViewUpdateTree receives as input the relevant source update

tree SUT in source XML document D1, the un-updated source XML documents

(D2, …, Dn) and the ORA-SS schema of the view (SV). It generates the view update

tree which contains the update information to the existing materialized view and

conforms to the view schema Sv as well. It uses the view transformation technique in

paper [8]. It uses the source update tree instead of the source document D1, so that the

output is the update to the view instead of the initial content of the view.

As discussed in Chapter 4.2, we will follow the four steps to produce the view

update tree. In the first step, we select instances of object classes and relationship types

from the source update tree and the other un-updated source XML documents. The

reason why we are using source update tree instead of the updated source XML

document is because only the source update tree contains the update information,

Materialized View Maintenance for XML Documents

 59

which is going to change the materialized view. In the second step, instances retrieved

from previous step are pruned by considering the selection conditions in the view

schema. In the third step, the instances from source update tree and other un-updated

source XML documents, which have the same name and key attributes, are joined

together. The combined instance of the object class or relationship type has all the

attributes together. In the fourth step, the aggregation functions in the view schema are

applied to the aggregate attributes if they are in the retrieved instances.

We use the following example to do a demonstration.

Example 5.8 Upon receiving the source update tree in Figure 5.1, we use the

procedure GenerateViewUpdateTree to generate the view update tree. Firstly, we take

the updated object class supplier, which has one instance j1 in the source update tree.

From the view schema in Figure 4.1, there are two relationship types jp and jd

associated with supplier. jp is a binary relationship type, in which supplier is the parent

object class, and part is the child object class. Project j1 and department d1 are

retrieved from source XML document 2 as they are the only instance of relationship

type jd which satisfies the selection condition in the view schema. This project j1 in

source XML document 2 joins with the project j1 in source update tree in Figure 5.1.

The part p1 with quantity value 10 is returned, since part p1 is in the same path as

project j1 in the source update tree. By now, all the object classes and attributes in Sv

are queried. We form the view update tree from the returned instances and it is shown

Materialized View Maintenance for XML Documents

 60

in Figure 5.12.

5.5 The Procedure MergeViewUpdateTree

The procedure MergeViewUpdateTree receives as input the view update tree, the view

ORA-SS schema, and the existing materialized view MV. It merges the view update

tree into the existing materialized view MV and produces the updated materialized

view. Table 5.2 shows all possible situations that the view update tree could be merged

into MV.

Figure 5.12 View Update Tree for Example 5.7

View update tree

project

jno:
j1

part

pno:
p1

quantity:
10

department

dname:
dn1

Materialized View Maintenance for XML Documents

 61

Table 5.2 Cases of the MergeViewUpdateTree

Case Merge ViewUpdateTree Strategy

(1) insertion

For each path in the view update tree, we divide it into head_path

and tail_path. The head_path is the longest sub-path from the head

that already exists in the materialized view. The tail_path is the rest

of the path. The tail_path will be concatenated to head_path in the

materialized view. If the view has the aggregation function, it is

handled as in Table 5.3.

(2) deletion

If the view does not have the aggregation function, the paths in view

update tree will be deleted from the view. For each path of the view

update tree, we separate it according to relationship types. We will

delete the elements of each relationship type in the materialized

view only if the parent object class has only one single child in the

materialized view, otherwise we will drop the child object from the

view only. If the view has the aggregation function, it is handled as

in Table 5.3.

(3) modification

We locate each path of the view update tree in the view, and since

each path is pointing to the attribute of an object class or a

relationship type, we will modify the value of the attribute that the

path specifies. If the view has the aggregation function, it is handled

as in Table 5.3.

Materialized View Maintenance for XML Documents

 62

Table 5.3 shows how we update the value of aggregate attribute when the view

update tree is merged into the materialized view. For each attribute which is associated

with the aggregation function, we have both the new attribute value and the old

attribute value recorded in the view update tree.

Table 5.3 Cases for Updating Aggregate Attribute for Different Types of Aggregation

Aggregation Update Method

Insertion We increase the original value by 1

Deletion

We decrease the original value by 1. If the new
aggregation value drops down to 0, we will delete
the object or the relationship which the aggregate
attribute belongs to.

(1) COUNT

Modification

Count will be only affected when the modified
attribute is one of the conditions of the Count. We
will increase the original value by 1 if the new
value of the modified attribute meets the
condition of the Count, otherwise, the original
value will be decreased by 1.

Insertion We add the new value of the attribute to the
original value

Deletion We deduct the value of the deleted attribute from
the original value (2) SUM

Modification
We update the original value by deducting the old
value of the modified attribute and adding the
new value of the modified attribute

Insertion

Deletion (3) AVG

Modification

We will first calculate the new value of COUNT
and SUM, then we divide SUM by COUNT, and
store the average value as the new value of the
aggregate attribute

Materialized View Maintenance for XML Documents

 63

Insertion We compare the original value with the new
value of the attribute, and choose the bigger one.

Deletion

We will always store the highest and the second
highest value. If the current aggregate value is the
same as the deleted value, the second highest is
used as the new highest value. We will retrieve
the second highest from source in the
background.

(4) MAX

Modification

If the current aggregate value is modified to a
larger value, we will choose the new value of the
modification as the MAX value; otherwise we
need to query the source to retrieve the second
highest value as the new aggregate value

Insertion We compare the original value with the new
value of the attribute, and choose the smaller one.

Deletion

We will always store the smallest and the second
smallest value. If the current aggregate value is
the same as the deleted value, the second smallest
is used as the new smallest value. We will
retrieve the second smallest from source in the
background.

(5) MIN

Modification

If the current aggregate value is modified to a
smaller value, we will choose the new value of
the modification as the MIN value; otherwise we
need to query the source to retrieve the second
smallest value as the new aggregate value

Example 5.9 Using the source update example in Example 5.1 where a source insertion happens.

The view update tree is shown in Figure 5.12. In the view update tree, the two paths are Path1 =

project [jno = “jn1”] / part [pno = “p1”] and Path2 = project [jno = “j1”] / department [dname =

“dn1”]. The head_path of Path1 is project [jno = “j1”] / part [pno = “p1”], as it is the longest

sub-path from the head of Path1, which also exists in the materialized view. The tail_path is NULL.

There is an aggregate attribute total_attribute associated with this path. So we update the view by

increasing the value of total_attribute by 10, which is the value of quantity in the view update tree.

For the second path Path2, we will do nothing as it already exists in the view and no aggregate

Materialized View Maintenance for XML Documents

 64

attribute is associated. By now, we successfully updated the materialized view as shown in Figure

5.2. The aggregate attribute total_quantity in the dashed circle is modified in this case.

5.6 Strategy Analysis

In this section, we are going to analyze the complexity of the incremental maintenance

strategy and compare with the view re-computation. Table 5.4 lists the four steps used

in the incremental maintenance and their computation complexity analysis.

Materialized View Maintenance for XML Documents

 65

Table 5.4 Analysis for the Four Incremental Maintenance Steps

Steps Analysis

GenerateSourceUpdateTree

In this step, only the objects in the affected source
document are involved. Each path in the source
update tree is generated by getting all the objects
along the path, which is done by a linear scan,
defined as O(n), where n is the number of objects
in the source XML document tree.

CheckSourceUpdateRelevance

In this step, the complexity varies according to the
lemmas. Lemma 5.1 checks the schema of source
and view only. Lemma 5.2 checks the schema of
the source update tree and the view schema.
Lemma 5.3 checks the view schema, the source
update tree and the source XML documents.
Lemma 5.3 is most expensive one for evaluation
and checking. It does a full scan on all the objects
in the source XML documents which are possibly
joining with the affected object class according to
the view schema. So the time complexity is O(m),
where m is the number of objects in all the source
XML document trees.

GenerateViewUpdateTree In this step, there are four sub-steps as explained
early. First sub-step is the selection of objects
from the source according to the view schema, the
time complexity is O(m), where m is the number
of objects in all the source XML document trees.
The second sub-step is pruning using the selection
conditions in the view, still O(m). The third step is
the joining of selected object classes, still O(m).
The fourth sub-step is applying the aggregation
function on the related attributes, the time
complexity is still O(m) as a full scan on the
related attributes will do. So combing all the four
sub-steps, this step has the time complexity of
O(m).

MergeViewUpdateTree In this step, we need to do a full scan on the
materialized view to merge the view update tree
by either concatenation or deletion on the
materialized view. The time complexity is O(m),
where m is the number of object classes in the
materialized view.

Materialized View Maintenance for XML Documents

 66

As discussed in Chapter 5.4, the step GenerateViewUpdateTree uses the view

transformation technique in paper [8]. It uses the source update tree instead of the

affected source document D1, so that the output is the update to the view instead of the

whole updated content of the view. By using only the source update tree instead of the

huge affected source XML document, we are saving a lot of time on processing the

un-updated objects in the source XML document. So basically the incremental process

will be much faster than the re-computation of materialized view if the update on

source is relatively small compare to the source XML documents. If the source update

is very huge like almost the whole source XML document, then the incremental

approach has no advantage over the re-computation.

5.7 A Complete Example

To demonstrate the main strategy of incrementally maintaining the view for

XML documents, we use the following complete example for deletion update. This

demonstration will show the four steps to do the incremental view maintenance as

sketched in Chapter 5.1.

Example 5.10 Using the XML Project-Supplier-Part database in Figure 1.1 and the

view in Figure 4.1, suppose supplier s2 will not supply part p1 to project j1 and

project j2 any longer. This will delete project j1 and project j2 from part p1 of supplier

s2. Upon the source update, we do the followings,

Materialized View Maintenance for XML Documents

 67

Step 1: Transform the update to source update tree, which are shown in Figure 5.13(a);

Step 2: Check the relevance of the source update tree, the irrelevant update paths are

removed from the update tree and only the relevant source update paths are left.

Project j2 in the source update tree will not join with any project from the source XML

document 2, because only project j2 is not the project of department dn1. The path

with project j2 is pruned from the source update tree and the relevant source update

tree is shown in Figure 5.13(b);

Step 3: Generate the view update tree by using the method discussed in Chapter 5.4,

the view update tree is shown in Figure 5.13(c);

Step 4: Delete each update path in the view update tree from the original materialized

view. In this case, the view path has a SUM aggregate function on quantity attribute of

the view update tree, according to the rule in Table 5.3, we deduct the value of the

deleted attribute from the original value. The resulting view is shown in figure 5.13(d).

Source update tree

supplier

sno:
s2

part

pno:
p1

project

jno:
j1

quantity:
20

Figure 5.13 (a): Source Update Tree in Example 5.9

project

jno:
j2

quantity:
10

Materialized View Maintenance for XML Documents

 68

View update tree

project

jno:
j1

part

pno:
p1

quantity:
20

department

dname:
dn1

Figure 5.13 (c): View Update Tree in Example 5.9

Source update tree

supplier

sno:
s2

part

pno:
p1

project

jno:
j1

quantity:
20

Figure 5.13 (b): Relevant Source Update Tree in Example 5.9

Materialized View Maintenance for XML Documents

 69

We have shown the general strategy to maintain the materialized XML view so

as to guarantee the consistency of the materialized views when the source XML

document is updated. In next section, the general view maintenance process will be

improved.

5.8 View Self-Maintenance for Deletion/Modification

In this section, we discuss one kind of situation when we can improve the

general view maintenance algorithm, so that the view can be fast and efficiently

maintained. This optimization is that we involve the XML view to improve the

efficiency of the maintenance algorithm by cutting down the need to access the source

XML documents. By querying the materialized XML view, we do not have to compute

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
15

Figure 5.13 (d): Updated Materialized View in Example 5.9

Materialized View Maintenance for XML Documents

 70

the full view update tree before we can update the materialized view. Information like

object identifier constraint are used to achieve the view self maintenance.

In the cases of modification or deletion updates, we can make use of the

materialized view to maintain itself by considering object identifier constraint. Lemma

5.4 states how we make use of object identifier constraint to do view self-maintenance

without querying any source XML documents when the source updates are deletion or

modification.

Lemma 5.4 For a modification or deletion update to object class O, if the key of O is

in the view, then maintenance can be carried out by modifying or deleting the

corresponding node instances of O in the view through using the key values, without

the need to compute the complete view instance.

In example 5.11, we give an example on the view self-maintenance upon a

modification update on a source XML document.

Example 5.11 We use the Project-Supplier-Part XML database in Figure 1.1 and the

view schema is shown in Figure 5.14. The view schema is similar to the one in Figure

4.1, and the only difference is that the attribute pname of part is present in the view.

The initial content of the materialized view is shown in Figure 5.15. Suppose we

modify the pname of object part p2 from “pn2” to “newpn2”. Instead of generating the

Materialized View Maintenance for XML Documents

 71

view update tree and merge it to the materialized view, we can use view

self-maintenance. We know this is a modification on object class part. The key

attribute of part is pno, which is in the view also. The conditions to do view

self-maintenance are satisfied, so we can use Lemma 5.4 to do view self-maintenance.

Step 1: Find all instances of part in the materialized view with pno = ‘p2’;

Step 2: Modify the value of pname in each part element obtained in Step 1, and the

resulting view is shown in Figure 5.16.

Figure 5.14: ORA-SS View Schema Diagram in Example 5.10

project

total_quantity
[SUM(quantity)]

part

pno

department

sno
jp, 2, 0:n, 0:n jd, 2, 0:n, 0:n

dname [= ‘dn1’] pname

jp

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
35

Figure 5.15: ORA-SS Instance Diagram of the View in Example 5.10

pname:
pn1

pname:
pn2

Materialized View Maintenance for XML Documents

 72

 In this chapter, we discuss how the materialized XML views are incrementally

maintained upon an update in the source XML document. We are able to handle the

XML views with complex hierarchical structures and rich semantics. Views with

projection, selection, aggregation, join and swapping are able to be handled properly.

Simple situation for view self-maintenance is also discussed as to show the direction

on view self-maintenance for XML documents.

In the next chapter, we will survey on the previous works on the materialized

view maintenance, and compare our work with them.

Materialized View

project

jno:
j1

part

pno:
p2

total_quantity:
30

department

dname:
dn1

part

pno:
p1

total_quantity:
35

Figure 5.16: Updated ORA-SS Instance Diagram of the View in Example 5.10

pname:
pn1

pname:
newpn2

Materialized View Maintenance for XML Documents

 73

Chapter 6

Previous Works

In this chapter, we look at the current researches that have been done in the area of

materialized view maintenance both for relational database and XML documents. We

first look at in general some of the existing works in relational view maintenance, and

then we examine in greater detail a few works that are closer to the work in this thesis.

6.1 Researches in View Maintenance

From 1990s, incremental view maintenance for relational database became popular.

Many incremental materialized maintenance algorithms [3, 5, 6, 11, 15, 18, 21] have

been developed to efficiently compute the incremental change rather than to

re-compute the view from scratch in response to the updates at the data sources. A

survey can be found in [12], which extensively study the problems and techniques for

materialized view maintenance. Early work by Shmueli [18] and Blakeley [5, 6]

focuses on the question of incremental view maintenance in Selection-Projection-Join

views and the detection of irrelevant updates. [5] and [18] use counts to annotate tuples

Materialized View Maintenance for XML Documents

 74

in the view with the number of derivations. Gupta et.al. [11] extended the counting

method to views with aggregates and (stratified) negation.

After the complex relational views have been well handled, the issue of view

consistency in centralized database systems has been studied recently. Problems of

interfering updates and missing updates arise, and the main focus of the research

becomes how to detect and remove the interfering updates and missing updates from

the result of incremental computation. The paper [15], which incrementally maintains

view using version number, is the best one on handling views over distributed source

databases. [15] is designed for the environment of multiple, distributed data sources,

with a separate database for housing the view relations. The view maintenance

technique in [15] can handle an update transaction involving multiple source relations,

and the processing of the updates for incremental computation is handled in parallel.

So far, the view maintenance techniques for relational databases have been well

studied. However, the study of materialized view maintenance for XML documents is

still limited. The paper [19] studies about the incremental view maintenance for

semi-structured data. It uses an algebraic approach to maintain the views. That is, it

finds expressions that can compute the changes to the view corresponding to the

changes of source data. However, in [19], the view definition language is limited to

select-project queries and only insertion update to the source document is considered.

The paper [20] studies the graph structured views and their incremental maintenance.

Materialized View Maintenance for XML Documents

 75

However, it can only handle very simple views consisting of object collections,

without edges. The article [2] studies the view maintenance for semi-structured data

based on the Object Exchange Model (OEM) [17] and on the Lorel query language [1]

for OEM. These three works will be discussed in more details in the next section, and

we compare our work with them in the end.

6.2 Related Works

In this section, we examine in greater detail a few works that are closer to our research

work in this thesis.

6.2.1 Abiteboul and McHugh Algorithm

The Abiteboul and McHugh algorithm [2] is defined for an environment with a single

semi-structured data source, and a view in the same location. For each update to the

source semi-structured data, the view maintenance algorithm is triggered to compute

the changes to the view.

The view is specified using select-from-where query language, which intents to

extract portion of the source semi-structured data. Whenever the view maintenance

algorithm is triggered, it examines the view specification to search for the place where

the update can be substituted. The new specification is generated according to the

Materialized View Maintenance for XML Documents

 76

update. The new specification is executed upon the source semi-structured data to

generate the changes to the materialized view.

[2] uses Object Exchange Model (OEM) [17] to represent both the source

semi-structured data and the materialized view. The internal node ID is uniquely

assigned to each object of the semi-structured data. The update query language is

designed to use internal node ID also, which makes the language difficult to

understand without looking at the OEM representation of semi-structured data.

Example 6.1 is taken from [2], which shows how the Abiteboul and McHugh

algorithm incrementally update a materialized view upon an insertion update. Ins

indicates it is an insertion update. &6 and &8 are two node IDs of the database in

Figure 6.1. The insertion update is to add node &8 as child of &6 with the link named

Ingredient. The view is specified in Lorel [1] as shown in Figure 6.2. The OEM

representation of the materialized view is shown in Figure 6.3.

Example 6.1 Suppose the update <Ins, &6, Ingredient, &8> is performed on the

database in Figure 6.1. The Baghdad Café restaurant now has two entrees with the

ingredient “Mushroom”. The algorithm generates the statement to find the new entree

&6, which is to be inserted into the materialized view. The updated materialized view

is shown in Figure 6.5.

Materialized View Maintenance for XML Documents

 77

The following Figure 6.2 is the view specification in Lorel language [1]. It

selects the specific Entrée of “Baghdad Café” restaurant and with Ingredient

“Mushroom”. In the language, two initials n and i in the with clause is defined but

never used in other place of the view specification.

 The following Figure 6.3 is the materialized view content defined by the

define view FavoriteEntrees as
 Entrees = select e
 from Guide.Restaurant r, r. Entrée e
 where exists x in r.Name: x = “Baghdad Cafe"
 and exists y in e.Ingredient: y = “Mushroom”
 with e.Name n, e.Ingredient i;

Figure 6.2 View Specification on Lorel

&1

Guide

&2

Restaurant

&3 &4 &5 &6

&7 &8 &9

Name

Baghdad Cafe

Rating

9

Entree Entree

Name Ingredient Ingredient

Beef Stew Mushroom Tomato

Figure 6.1 OEM Database

Materialized View Maintenance for XML Documents

 78

specification in Figure 6.2.

 As the update in Example 6.1 happens, the algorithm generates a statement to

find the changes of the materialized view. The statement is shown in Figure 6.4, and

the updated materialized view is shown in Figure 6.5.

ADD = select e
 from Guide.Restaurant r, r. Entrée e
 where exists x in r.Name: x = “Baghdad Cafe"
 and exists &8 in &6.Ingredient: &8 = “Mushroom”
 and e = &6;

Figure 6.4 View Maintenance Statement

&5

&7 &8

Entree

Name Ingredient

Beef Stew Mushroom

Figure 6.3 The Materialized View

&55

Entrees

Materialized View Maintenance for XML Documents

 79

6.2.2 Zhuge and Garcia-Molina Algorithm

The Zhuge and Garcia-Molina algorithm [20] is defined for an environment with a

single semi-structured data source, and a view in the same location. For each update to

the source semi-structured data, the view maintenance algorithm is triggered to

compute the changes to the view.

 The paper provided a procedural algorithm for maintaining a simple type of view.

This simple type of view is to retrieve a set of specific objects with their children from

the source semi-structured data. That means the only hierarchical structure in the view

is a binary relationship, and the view only have the set of objects and their children

which are originally in the source semi-structured data and satisfying the view

specification.

&5 &6

&7 &8 &9

Entree

Name Ingredient Ingredient

Beef Stew Mushroom Tomato

Figure 6.5 The Updated Materialized View

&55

Entree

Entrees

Materialized View Maintenance for XML Documents

 80

 The view maintenance algorithm is triggered once an update takes place in the

source semi-structured data. Suppose the object X in the source is updated, the

algorithm first locates the ancestor object Y. After the algorithm locates Y, it tests

whether the original condition in the view specification that makes Y appear or not in

the view has been changed because of the recent update on X. If so, Y is inserted or

deleted from the view as appropriate.

Example 6.2 is taken from [20], which shows how the Zhuge and Garcia-Molina

algorithm incrementally update a materialized view upon an insertion update. P2 is

one node ID of the database in Figure 6.6. A2 is one node ID to be inserted into the

database, which represent one age element <A2, age, integer, 40>. The insertion

update is to add one node A2 as child of P2. The view is specified in Figure 6.7. The

text representation of the materialized view is shown in Figure 6.6.

Example 6.2 Suppose the update insert<P2, A2> is performed on the database in

Figure 6.6. The professor P2 now has a new child element A2. The algorithm finds that

P2 now satisfies the view specification and could be inserted into the materialized view.

The updated materialized view is shown in Figure 9.

Materialized View Maintenance for XML Documents

 81

The following Figure 6.7 is the view specification. It selects the professor

element with age less than 50. The initial content of the materialized view is shown in

Figure 6.8. Only professor P1 exists in the view, since his age is 45. P2 will not be in

the view since there is no child element age in the source.

As the update in Example 6.2 happens, the algorithm generates the changes of

the materialized view. As described in Example 6.2, the element P2 will be added into

the materialized view, and the updated materialized view is shown in Figure 6.9.

<P1, professor, set, {N1, A1, S1}>

Figure 6.8 The Materialized View

Define mview YP as: SELECT ROOT.professor X
 WHERE X.age < 50

Figure 6.7 View Specification

<ROOT, person, set, {P1, P2}>
 <P1, professor, set, {N1, A1, S1}>
 <N1, name, string, ‘John’>
 <A1, age, integer, 45>
 <S1, salary, dollar, $100,000>
 <P2, professor, set, {N2, ADD2}>
 <N2, name, string, ‘Sally’>
 <ADD2, address, string, ‘Palo Alto’>

Figure 6.6 Source Semi-Structured Data

Materialized View Maintenance for XML Documents

 82

6.2.3 Suciu Algorithm

The Suciu algorithm [19] is defined for an environment with a single semi-structured

data source, and a view in a different location. For each update to the source

semi-structured data, the view maintenance algorithm is triggered to compute the

changes to the view. The algorithm assumes that the data transmitted in the network is

not lost and misordered.

 The paper uses an algebraic approach to maintain the XML views. Only views

with simple selection-project feature are considered. This simple type of view is to

retrieve a portion of the source semi-structured data with specific conditions in the

view definition.

 The database is modeled as a rooted graph (i.e. a graph with a distinguished

node called the root), whose edges are labeled with elements with the type of strings,

numbers, Booleans, etc. Trees form a particularly interesting subset of the rooted

graphs, and they suffice to represent sets and records. In addition to the edge labels,

<P1, professor, set, {N1, A1, S1}>
<P2, professor, set, {N2, A2, ADD2}>

Figure 6.9 Updated Materialized View

Materialized View Maintenance for XML Documents

 83

some of the leaves of a graph are allowed to be labeled with special symbols, denoted

X, Y, …, called markers. Unlike labels, markers are not part of the information

content of the database, but are used to control (1) where updates take place, and (2)

how to connect fragments of a distributed database. Markers allow us to define the

concatenation operation ++X: given two graphs t1, t2 and a marker X, t1 ++X t2 denotes

the database obtained by connecting all leaves labeled X in t1 to the root of t2. All

occurrences of the old marker X in t1 disappear in t1 ++X t2, as well as all markers from

t2. Figure 6.10 demonstrates the data model with t1 ++X t2.

The paper uses an algebraic approach to maintain the views. That is, it finds

expressions that can compute delta views corresponding to the changes of base data. It

requires a database DB to have all its updatable nodes explicitly marked. When the

view V = Q(DB) is first computed, the result V encapsulates some (or all) markers of

the updatable pages in DB. Suppose now that the database DB is updated, say at a page

a b

c d e

T1 =

X Y

e f

T2 =

Z

a b

c d e

T1 ++X T2 =

Y e f

Z

Figure 6.10 Marker Demonstration

Materialized View Maintenance for XML Documents

 84

marked X, in that a link to a new subgraph ∆ is added to that page: in notation DB’ :=

DB ++X ∆. The server notifies the client about the update, by sending X and ∆. The

client “look up” the marker X in its view, and, if present, reads the tag of the region

where it occurred (R1, R2, or R3), then updates the view dynamically.

The algorithm only considers the insertion and replacement update of the source

semi-structured data.

6.3 Comparison

Our view maintenance algorithm is designed for the complex views which are joined

from different source XML documents, and have different hierarchical structures as

any of the source XML documents.

We use a user friendly data model ORA-SS data model to define both view and

source XML documents. The ORA-SS schema diagram not only specifies the complex

views correctly, but also ensures the unique interpretation of view definition because of

its rich semantic information. The existing works are only considering the views of

selection and projection of nodes of source XML documents. The views handled in the

existing works are containing the binary relationship only. By using ORA-SS, we can

define ternary relationships, which are necessary to retrieve valuable information from

the source. The ORA-SS schema diagram of XML documents help to validate the

Materialized View Maintenance for XML Documents

 85

updates of XML documents also.

 We validate the source update before it is sent to trigger the view maintenance

algorithm. This is to ensure the source update is valid, and the source database is

consistent after the update. The source update validation process is usually ignored in

the existing works.

 Based on the view schema defined in ORA-SS schema diagram, we are able to

compute the changes of view in the form of view update tree upon each source XML

update. The way to generate the view update tree is to find the relationship object

instances which are related to the update. The generated view update tree conforms to

the view ORA-SS schema.

The existing works only considered one source XML document. However we

maintain the view over multiple source XML documents. We involve the materialized

XML view to improve the efficiency of the maintenance algorithm by cutting down the

need to access the source XML documents.

 The modification is usually treated as a deletion followed by an insertion update.

We treat modification update as one type of update if the update is not on the joining

elements. This allows us to consider the optimizing issue of view self-maintenance for

a single modification update.

Materialized View Maintenance for XML Documents

 86

Chapter 7

Conclusion

7.1 Contributions

In this thesis, we proposed an incremental view maintenance algorithm for XML

documents in an environment of multiple source XML documents in one database,

with a separate database for housing the XML views. It supports immediate refresh of

the views when source XML documents are updated.

In summary, upon a valid source update on either single element/attribute or

subtree, first, we generate the source update tree, then we check the relevance of the

update, thirdly, we compute the view update tree, which contain only updated part of

the view. Fourthly, we merge the view update tree into the existing materialized view

tree to produce the completed updated view.

Compared with the other existing works, the advantages of our work are

summarized as follows.

Most of the existing methods do not validate the source update queries. We

Materialized View Maintenance for XML Documents

 87

handle the update validation as the invalid update query will make the XML document

inconsistent. We defined a set of update operations, which have the XQuery syntax.

We define more types of updates, such as insertion and deletion of sub-tree from the

source XML document. The update consistency for each kind of update operation can

be checked based on the ORA-SS data model. The essential constraints to validate an

update query include participation constraint, object identifier constraint, and

functional dependency constraint, which can be all expressed in ORA-SS data model.

Most of the existing methods place restrictions on the view definition, such as

simple views without any swapping and joining of elements in source XML documents.

We do not have such requirement. We define the view in ORA-SS schema diagram,

which can involve selection, project, join and swapping elements on multiple source

XML documents. The hierarchical structure in the view can be very much different

from any source. We even allow aggregate functions in the view definition. Using

ORA-SS schema diagram, we are able to define not only binary relationship types, but

also n-ary relationship types, which makes the view more meaningful.

The most advantage of our work is the use of update tree, which greatly

simplifies the task of the materialized view maintenance. We traverse the source

update tree and the un-updated source XML documents and combine the elements

according to the view schema to generate the view update tree. Exceeding the existing

works, we are able to capture all the source update information in the source update

Materialized View Maintenance for XML Documents

 88

tree for different types of updates. The update for view can be refreshed into the view

by merging the view update tree and the materialized view tree.

Beyond the correct generation of view update tree, we also provide view

self-maintenance when the update query meets the specific conditions. By querying the

materialized XML view, we do not have to compute the full view update tree before

we can update the materialized view. Information like object identifier constraint is

used to achieve the view self-maintenance.

7.2 Future Works

The following challenges are worth looking into:

1. We would like to trigger the view maintenance algorithm based on each update

transaction, which can involve multiple updates from different source XML

documents. To handle transaction, we will enable multiple changes to be specified

in one single update tree. All the updates with counter effects need to be removed.

Thus, the view update tree can be derived together at one time. The performance

of view maintenance will certainly be improved compared to the current view

maintenance triggered by each single source update.

2. We would like to develop the system which can handle order-preserving update

and view maintenance. To broaden the search scope, we need an efficient

Materialized View Maintenance for XML Documents

 89

order-preserving labeling schema for XML documents. Our XML update language

can be easily extended to have order information by changing the AT LAST

default keyword to the specific position. Furthermore, our view maintenance

algorithm needs to be enhanced by storing order information in the source update

tree. When the view update tree is generated, it will have the order information as

well in order to update the materialized view with order preservation.

Materialized View Maintenance for XML Documents

 90

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query

Language for Semistructured Data. Journal of Digital Libraries, 1(1), Nov. 1996.

[2] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. Wiener. Incremental

Maintenance for Materialized Views over Semistructured Data. In VLDB, pages 38-49,

1998.

[3] D. Agrawal, A. Abbadi, and T. Yurek. Efficient View Maintenance at Data

Warehouses. In proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 417-427, 1997.

[4] Shurug Al-Khalifa, H. V. Jagadish, Nick Kouda, Jignesh M. Patel, Divesh

Srivastava, Yuqing Wu. Structural Joins: A Primitive for Efficient XML Query Pattern

Matching. In Proceedings of ICDE, 2002

[5] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Updating Materialized

Views. In C. Zaniolo, editor, ACM SIGMOD Proceedings, page 61-71, Washington,

D.C., May 1986.

Materialized View Maintenance for XML Documents

 91

[6] J.A. Blakeley, P.-A. Larson. Updating derived relations: Detecting irrelevant and

autonomously computable updates. ACM Transactions on Database Systems,

14(3):369-400, September 1989.

[7] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and

optimization techniques for unstructured data. In SIGMOD, pages 505-516, Montreal,

Quebec, Canada, June 1996.

[8] Daofeng Luo, Ting Chen, Tok Wang Ling, and Xiaofeng Meng. On View

Transformation Support for a Native DBMS. DASFAA 2004, pages 226-231, Jeju

Island, Korea, March 2004

[9] Yabing Chen, Tok Wang Ling and Mong Li Lee: Automatic Generation of XQuery

View Definitions from ORA-SS views. In 22end International Conference on

Conceptual Modeling (ER'2003), Chicago, Illinois, USA13-16 October 2003.

[10] G. Dobbie, Xiao Ying Wu, Tok Wang Ling and Mong Lee Lee. ORA-SS: An

Object – Relationship - Attribute Model for Semistructured Data. Technical Report

TR21/00, School of Computing, National University of Singapore, 2000.

[11] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining view incrementally.

In ACM SIGMOD Conference, pages 157-166, Washington, DC, May 1993

Materialized View Maintenance for XML Documents

 92

[12] A. Gupta and I.S. Mumick. Maintenance of materialized views: Problems,

techniques, and applications. IEEE Data Engineering Bulletin, 18(2):3-18, June 1995.

[13] Bintou Kane, Hong Su, and Elke A. Rundensteiner. Consistently Updating XML

Documents using Incremental Constraint Check Queries. In WIDM’02, McLean,

Virginia, USA, Nov 8, 2002.

[14] Mong Li Lee, Tok Wang Ling, and W. L. Low. Designing Functional

Dependencies for XML. In EDBT, pages, 124-141, 2002.

[15] Tok Wang Ling and Eng Koon Sze. Materialized View Maintenance Using

Version Numbers. In Proceedings of the Sixth International Conference on Database

Systems for Advanced Applications, pages 263-270, 1999.

[16] Xiaofeng Meng, Daofeng Luo, Mong Li Lee, Jing An. OrientStore: A Schema

Based Native XML Storage System. In Proceedings of the 29th VLDB Conference,

Berlin, Germany, 2003

[17] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange across

Heterogeneous Information Sources. In Proceedings of the 11th International

Conference on Data Engineering, pages 251-260, Taipei, Taiwan, Mar. 1995.

Materialized View Maintenance for XML Documents

 93

[18] O. Shmueli and A. Itai. Maintenance of views. In Proceedings of ACM SIGMOD

International Conference on Management of Data, pages 240-255, Boston, June 1984.

[19] D. Suciu. Query Decomposition and View Maintenance for Query Language for

Unstructured Data. In VLDB, pages 227-238, Bombay, India, September 1996.

[20] Y. Zhuge and H. Garcia-Molina. Graph Structured Views and Their Incremental

Maintenance. In Proceedings of the 14th International Conference on Data

Engineering (DE), 1998.

[21] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a

Warehousing Environment. In SIGMOD, pages 316-327, San Jose, California, May

1995.

[22] World Wide Web Consortium, “XML Schema”, W3C Recommendation, 2001.

http://www.w3.org/XML/Schema

[23] World Wide Web Consortium, “XQuery: A Query Language for XML”, W3C

Working Draft, 2002. http://www.w3.org/XML/Query

[24] World Wide Web Consortium, “XML Path Language”, W3C Recommendation,

Materialized View Maintenance for XML Documents

 94

1999. http://www.w3c.org/TR/xpath

Materialized View Maintenance for XML Documents

 95

Appendix

The following table summarizes the notion of ORA-SS diagrams.

Notation Description

Materialized View Maintenance for XML Documents

 96

Relationship with name W (among object classes o1, o2, …, on), of degree
n, where the participation of the parent has minimum a and maximum b, and
the child has minimal c and maximum d, and the ordering of the object
classes is important. The default degree is 2, default parent cardinality is
0:m, default child cardinality is 1:n, and default on ordering is no ordering.

Attribute e belongs to relationship W (among object classes o1, o2, …, on).
The default (without label W on the edge) shows that attribute e belongs to
object class f.

Reference object class a references object class b

Disjunctive relationship: either object class f or object class g

b inherits from a (inheritance diagram)

Weak object class: attribute a is a weak identifier

w(o1, o2, …, on),
n, a:b, c:d, <

f

w(o1, o2, …, on),
n, a:b, c:d, <

f
w

e

a b

