

SURFACE MODELLING AND RENDERING
WITH LINE SEGMENTS

OUYANG XIN

NATIONAL UNIVERSITY OF SINGAPORE
2004

Name: OUYANG XIN
Degree: MASTER OF SCIENCE
Dept: COMPUTER SCIENCE
Thesis Title: SURFACE MODELLING AND RENDERING WITH

LINE SEGMENTS

Abstract

Bridging the modelling and rendering gap between the existing triangle and point

primitives, we explore the use of line segments as a new primitive to represent and render

3D models. For the task of modelling, we propose two methods to extract hybrid point

and line segment models from scanned point clouds, one is (ε, δ) error bounded and one

is based on L2,1 variational shape approximation. In addition, we also present a method

for obtaining pure line segment models from triangle meshes. For the task of rendering,

we extend the anti-aliasing theory in texture mapping to anti-aliased line segment

rendering, and present an approximation algorithm to render high quality anti-aliased

opaque, transparent and textured line segments in 3D models. The anti-aliasing rendering

technique is empirically validated by building a software pipeline to render point, line

segment as well as hybrid point and line segment models that are acquired using our

proposed modelling methods. Experiments show that models comprising of line segments

are more effective for modelling and more efficient for high quality rendering as

compared to their corresponding pure point models.

Keywords:
I.3.3 [Computer Graphics]: Picture/Image Generation

Anti-aliasing, viewing algorithms

I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling

 Curve, surface, solid and object representations

Other keywords: Graphic Primitive, Rendering and modelling system, Point based

 Graphics, Surface reconstruction

 i

SURFACE MODELLING AND RENDERING

WITH LINE SEGMENTS

OUYANG XIN
(B.Comp.(Hons. 1st Class), NUS)

A THESIS SUBMMITED
FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2004

 ii

Acknowledgments

I would like to thanks my supervisor A/P. Tan Tiow-Seng for his guidance and

encouragements in the past two years’ time. I would like to thanks Prof. Jurg Nievergelt

for his insights and sharing of experiences. I would like to thanks Lim Chi-Wan for

working on surface modelling with me and Wong Keen Hon for working on surface

rendering with me.

 iii

Table of Contents

Cover Page ……………………………………………………………………………..i

Acknowledgement …………………………………………………………………….ii

Table of Contents ……………………………………………………………………iii

List of Figures …………………………………………………………………...vii

List of Tables ……………………………………………………………………ix

Summary ……………………………………………………………………………..x

Chapter 1. Introduction …………………………………………………......1

1.1. Surface Primitive Beyond Triangle and Point ……………………………..1

1.1.1. The Choice of Surface Primitive ……………………………..1

1.1.2. Anti-aliasing High Quality Rendering ……………………………..3

1.2. Line Segment as A Surface Primitive ……………………………………..4

1.2.1. Observations ……………………………………………………..4

1.2.2. Motivations ……………………………………………………..6

1.3. Objectives ……………………………………………………………..7

1.4. Contributions ……………………………………………………………..9

1.5. Outline ……………………………………………………………………10

Chapter 2. Literature Survey ………………………………………..…………..11

2.1. Point Based Surface Modelling and Rendering ……………………………11

2.2. Surface Anisotropy …………………………………………………....16

2.3. Modelling and Rendering With Lines ……………………………………20

2.4. Hybrid Surface Rendering ……………………………………………23

2.5. Texture Mapping and Anti-aliasing Techniques …………………………....24

 iv

2.6. Implicit Surface ……………………………………………………………26

2.7. Hardware Accelerated Rendering ……………………………………27

Chapter 3. Surface Modelling with Line Segments ……………………31

3.1. (,)ε δ Error Bounded Line Segment Extraction ……………………………32

3.1.1. Problem Formulation ……………………………………………33

3.1.2. (,)ε δ Errors ……………………………………………………34

3.1.2.1. (,)ε δ Error Definitions and (,) Line Segmentε δ − ……34

3.1.2.2. Discussions on Error Measures ……………………………35

3.1.3. NP Hard Problem ……………………………………………………37

3.1.4. The Line Segment Extraction Algorithm ……………………………37

3.1.5. Observations, Problems and Discussions ……………………………38

3.2. Shape Approximation Based Line Segment Extraction ……………………39

3.2.1. Problem Formulation ……………………………………………40

3.2.2. Normal Variation and 2,1L Shape Error Metric ……………………41

3.2.3. The Clustering Algorithm ……………………………………………42

3.2.3.1. Greedy Clustering ……………………………………………43

3.2.3.2. Hierarchical Distortion Minimized Clustering ……………43

3.2.3.3. Discussions on Clustering Algorithms ……………………45

3.2.4. The Line Segment Extraction Algorithm ……………………46

3.2.4.1. Constructing Local Coordinate Systems ……………………46

3.2.4.2. Determining Surface Anisotropic Direction …………....47

3.2.4.3. Computing Average Distances ……………………………48

3.2.4.4. Constructing 2D Grid Structures ……………………………49

3.2.4.5. Tracing Out Line Segments ……………………………51

 v

3.2.5. Observations, Problems and Discussions ……………………………52

3.3. Contour Plane Based Line Segment Extraction ……………………………53

Chapter 4. Mathematical Framework for Surface Rendering …....56

4.1. EWA Resampling Filter ……………………………………………………56

4.2. EWA Splatting ……………………………………………………………61

4.2.1. Screen Space EWA Splatting ……………………………………63

4.2.2. Object Space EWA Splatting ……………………………………64

Chapter 5. Surface Rendering with Line Segments ……………………66

5.1. Object Space EWA Resampling Filter for Line Segments ……………67

5.1.1. Mathematical Formulation ……………………………………67

5.1.2. Evaluation ……………..……………………………………..71

5.2. Object Space EWA Splatting For Line Segments ……………………………76

5.2.1. Splatting Procedure Illustrated ……………………………………76

5.2.2. Geometric Observations ……………………………………………77

5.2.3. The Approximation Method ……………………………………79

5.2.3.1. Approximating The Shape ……………………………79

5.2.3.2. Mapping Weight Textures ……………………………83

5.2.3.3. Assigning Scaling Factors ……………………………84

5.2.4. Rendering Texture Mapped Line Segments ……………………85

Chapter 6. Implementations ………………………………………………...….86

6.1. Surface Geometry Processing Pipeline ……………………………………86

6.1.1. Geometry Processing Pipeline Illustrated ……………………87

6.1.2. Curvature Estimation …………………………………………....90

 vi

6.1.3. Implementation Problems and Discussions ……………………92

6.2. Surface Rendering Engine ……………………………………………93

6.2.1. Design Considerations ……………………………………………93

6.2.2. Rendering Pipeline Illustrated ……………………………………94

6.2.3. Visibility and Blending Algorithms …………………………..100

6.2.3.1. The Modified Z3 Algorithm …………………………..100

6.2.3.2. The Delta-Z-Buffer Algorithm …………………………..106

6.2.4. Implementation Problems and Discussions …………………..107

Chapter 7. Experiments and Results …………………………………..109

7.1. Experiment Goals and Settings …………………………………………..109

7.2. Point Cloud Based Experiments …………………………………………..109

7.2.1. Clustering Algorithms …………………………………………..112

7.2.2. Effective and Compact Representation …………………………..114

7.2.3. Efficient High Quality Rendering ………………………......114

7.3. Triangle Mesh Based Experiments ………………………………..…115

Chapter 8. Conclusions ………………………………………………………..…125

Chapter 9. Future Work …………………………………………………..127

9.1. Line Segment Based Surface Definition …………………………………..127

9.2. Extract Line Segments from Reconstructed Object Surfaces …………..128

9.3. Hardware Accelerated Line Segment Rendering …………………………..128

9.4. Non-photorealistic Rendering ………………………………………..…129

9.5. Hybrid Surface Modelling and Its Applications ………………………..…129

 vii

References …………………………………………………………………………..131

 viii

List of Figures

[Figure 1] The existence of surface line features. ……………………………..4

[Figure 2] Triangle, point and line segment primitive. ……………………………..5

[Figure 3] Stanford Bunny modeled with triangles, points and line segments. ……..6

[Figure 4] Aliased, point, flat and curved line segment checkerboards. ……………..8

[Figure 5] Definition of (,)ε δ error and the computation of ()max iL p . ……35

[Figure 6] The computation of =()d P and the contour plan sets =P and P . …....54

[Figure 7] EWA resampling filter block diagram. ……………………………58

[Figure 8] Screen space and object space EWA splatting. ..…………………..62

[Figure 9] Surface point and line segment point local parameterization. ……71

[Figure 10] The computation of the Jacobian matrix),(tkJ . …………………....72

[Figure 11] Object space EWA splatting procedure for line segments. ……………77

[Figure 12] Geometric observations on line segment’s prefilter. ……………………78

[Figure 13] Geometric observations on the splatting of line segments. ……………79

[Figure 14] Weight texture mapping on long and short line segments. ……………81

[Figure 15] Examples of texture mapped line segment models. ……………………85

[Figure 16] The geometry processing pipeline. …….…….………………………..87

[Figure 17] Problems with estimating principle curvature vectors. ……………92

[Figure 18] The surface rendering pipeline. ……………………………………94

[Figure 19] Implementation of weight scaling factor interpolation. ……………97

[Figure 20] The Flamingo model rendered with different z thresholds. …………..104

[Figure 21] The Skull model rendered with different number of buffer layers. …..105

 ix

[Figure 22] The Rocker arm model clustered using different algorithms. …..113

[Figure 23] Five extracted hybrid models with (,)ε δ error bounded. …..………117

[Figure 24] Other five extracted hybrid models with (,)ε δ error bounded. …..118

[Figure 25] Five extracted hybrid models based on shape approximation. …..119

[Figure 26] Other five extracted hybrid models based on shape approximation. …..120

[Figure 27] Rendered hybrid models images. …………..………………………121

[Figure 28] Rendered pure line segment models images. ………………..…………122

[Figure 29] A summary of future research work. ………………………..…………130

 x

List of Tables

[Table 1] Experiment statistics on hybrid point and line segment

model obtained using (,)ε δ error bounded line

segment extraction algorithm. …………………………………..111

[Table 2] Experiment statistics on hybrid point and line segment

models obtained using shape approximation based line

segment extraction algorithm with greedy clustering. …………..111

[Table 3] Experiment statistics on hybrid point and line segment

 models obtained using shape approximation based line

 segment extraction algorithm with hierarchical distortion

minimized clustering. …………………………………………..111

[Table 4] Comparison on the number of clusters generated using

 greedy clustering algorithm and hierarchical distortion

 minimized clustering algorithm. …………………………………..112

[Table 5] Experiment statistics on pure point and pure line segment

 models obtained using contour plane based line segment

 extraction algorithm. …………………………………………………..115

 xi

Summary

Bridging the modelling and rendering gap between the existing triangle and point

primitives, we explore the use of line segments as a new primitive to represent and render

3D models. For the task of modelling, we propose two methods to extract hybrid point

and line segment models from scanned point clouds, one is (ε, δ) error bounded and one

is based on L2,1 variational shape approximation. In addition, we also present a method

for obtaining pure line segment models from triangle meshes. For the task of rendering,

we extend the anti-aliasing theory in texture mapping to anti-aliased line segment

rendering, and present an approximation algorithm to render high quality anti-aliased

opaque, transparent and textured line segments in 3D models. The anti-aliasing rendering

technique is empirically validated by building a software pipeline to render point, line

segment as well as hybrid point and line segment models that are acquired using our

proposed modelling methods. Experiments show that models comprising of line segments

are more effective for modelling and more efficient for high quality rendering as

compared to their corresponding pure point models.

 1

Chapter 1.

Introduction

1.1. Surface Primitive Beyond Triangle and Point

1.1.1. The Choice of Surface Primitive

Triangle is the de facto surface primitive of graphics systems ever since the beginning of

the computer graphics adventure. Triangle models can effectively represent objects that

have large portion of their surfaces being of flat. Examples are the floors of a room, the

walls of a building and the boxes piled in a warehouse. However triangle based modelling

becomes less adequate and inefficient when used to model objects with highly curved

surfaces, such as human faces and ancient Roman statues. Triangle meshes faithful to these

objects with high surface details and complex geometry are usually made up from

hundreds of thousands to tens of millions small triangles. To fetch such huge amount of

triangles from memory to GPU at interactive frame rate requires enormous data bus

transferring capacity, exceeding the current graphics card memory bandwidth limit.

Rasterizing tiny triangles that are projected onto the screen with footprint sizes less than

one pixel does not add much more realism into rendered images, in fact would

unnecessarily degrade the performance of the rendering pipeline both at the primitive

assembly unit and at the texturing unit.

 2

Point is not fully developed into a surface primitive until in recent four years. Thanks the

advance of laser range and optical scanner technology, which makes acquiring mass

amount of raw point-wise data accurately from object surfaces becoming feasible and

practical. In contrast to triangle meshes, densely sampled point clouds are quite suitable for

representing complicated surface geometry and being used when high surface details are to

be preserved. By keeping only point data, unnecessary linking edges and covering faces in

the triangle meshes that benefit neither modelling nor rendering get removed. This

ignorance of explicit connectivity information among vertices helps point clouds achieve

representation compactness as well as gain rendering speedups. However it would be a

great suffer of efficiency when flat object surface areas that can be fully covered by a

single polygon have to be represented with thousands of isolated point samples in a pure

point based model. Unlike triangle meshes having triangles spanning among vertices

explicitly forming a piecewise linear surface, point cloud by its discrete nature cannot

provide a straightforward surface description. This inevitably complicates a number of

applications, such as ray tracing which needs to perform intersection tests between rays

and surfaces.

Witnessing the emerge of point as a new surface primitive in addition to the longtime

predominant – triangle, deliberating on both pros and cons of modelling and rendering

with the two primitives for various surfaces, all suggest that depending on applications,

appropriate surface primitives should be chosen, adapting to surface geometry, for

modelling and rendering different objects’ surfaces as well as different regions of one same

object surface. So, are the two existing surface primitives – triangle and point, the only two

 3

surface primitives? It makes sense for us to conduct further study in this project to assess

the necessities and possibilities to introduce a new surface primitive, a primitive that could

potentially complete the role not yet played by triangle and point.

1.1.2. Anti-aliasing High Quality Rendering

Aliasing problem in computer graphics is caused by the disparity of image representation

in continuous real world and discrete computer world. Images are represented as

continuous signals in the world space, and discrete signals in the screen space. The screen

images are created by sampling and quantizing their corresponding world space images. If

the sampling frequency is less than the Nyquist frequency, high frequency portions of the

continuous signals will masquerade as low frequencies, creating aliasing effects.

To achieve high quality rendering of 3D models, ideally, aliasing effects should be

removed completely from final synthesized images. However due to the digital nature of

computer systems, aliasing remains and is expected to continue to remain as a problem.

Nervelessly, various techniques have since been proposed to mitigate it. Nowadays, high

quality anti-aliasing rendering of texture mapped triangle models can be achieved in real

time through graphics hardware implementations of both super sampling and anisotropic

texture filtering. Recently the Elliptical Weighted Average (EWA) resampling filter – a

low pass filter that removes high frequencies from texture images before sampling

[Heck89], has been extended for rendering anti-aliased high quality point models

[ZPVG01, RPZ02]. Thus, any surface primitive which is equally important in aiding

visualizations as triangles and points, should be able to follow the common high quality

rendering practice shared by them as well. Introduction of a new surface primitive would

 4

require corresponding high quality anti-aliasing rendering techniques be simultaneously

developed too.

1.2. Line Segment as A Surface Primitive

1.2.1. Observations

It should not be surprising to observe that lines are prominent features in many types of

scenes, in particular of man-built objects; see the Screwdriver and Rocker arm models in

Figure 1. Even objects of irregular shape contain features that are best modelled by lines,

such as ridges or boundaries of various kinds, see the Ball joint and Upper body models in

Figure 1. Line segment is the best primitive candidate to represent these surface regions

Figure 1: Line features are observed in both man-built objects, such as the Screw driver and

Rocker arm model, as well as irregular shapes, such as the Ball joint and Upper body model.

Models in the figure are all rendered using our proposed approximate rendering method.

 5

that are highly stretched in one particular direction. However it is really surprising for us to

find out that line segments have only been used as a modelling primitive in very special

contexts, such as [DCSD02, LoTa97]. To date, there is no literature work that aims to

develop 3D line segments as a full primitive for both surface modelling and rendering.

It is wasteful to ignore lines, a feature that appears so nature, so often. It is wasteful not to

make good use of line segments, a possible surface primitive that is as simple as triangle

and point (see Figure 2).

It is also interesting to reflect on the fact that the two existing prominent primitives, point

and triangle, are simplexes in 0 and in 2 dimensions. What is missing between them is a 1-

dimension simplex primitive, line segment is the primitive that rightly fits into this position.

Figure 3 shows the Stanford Rabbit modelled by the three primitives respectively. We

argue that line segments should be treated as a primitive, rather than as a degenerate

special case of triangles or polygons, for the same reason that points are treated as a

Figure 2: Triangle primitive, point primitive and line segment primitive. N denotes the

normal. The green dot O denotes the point primitive’s center. And the two green dots S and

T denote the two endpoints of a line segment primitive.

 6

Figure 3: Stanford Bunny modeled using triangles (left), points (middle) and line segments

(right). Here both the line segment model and the point model are generated using our contour

plane based line segment extraction algorithm presented in Section 3.3.

primitive by themselves rather than as tiny triangles or polygons. A line segment is a

simpler surface element than a long, thin triangle or rectangle. A lines segment is uniquely

defined by its two endpoints and a normal vector that is perpendicular to the line segment

itself (see Figure 2).

1.2.2. Motivations

Using line segments as a surface primitive would greatly benefit both the surface

modelling process and the surface rendering process. Specifically, there are three

advantages brought along.

Effective Representation. While triangles can provide an effective representation for

surfaces that are fairly flat and points can provide an effective representation for irregular

surfaces that are jagged or highly curved, line segments are capable of effectively

modelling surfaces that exhibit strong anisotropy in one particular direction. A typical such

surface is the cylindrical surface. The effectiveness of line segment representations implies

 7

geometric faithfulness. The line segment based representation faithfully preserves

geometric fidelities of actual surfaces by orienting line segments along surface anisotropic

directions.

Compact Representation. Using line segments to model surfaces with regularity along one

dimension also means great data savings. Comparing with triangle meshes, line segments

achieve representation compactness by keeping only connectivity information between

endpoints, discarding all the linking edges in meshes. Comparing with point clouds, very

few line segments can often effectively replace quite a number of sequentially aligned

points, thus storing far less data.

Efficient Rendering. Line segments can be rendered far more efficiently than sequences of

points. Experiments in Section 7.2.3 shows that a maximum of 65.96% speedup can be

achieved as compared to rendering pure point models. However, it is unfair to compare the

rendering performance of line segments with triangles, as today’s graphics pipelines are

designed, built and optimized specially for triangle meshes, while high quality anti-aliasing

rendering of line segments currently are supported by a software pipeline.

1.3. Objectives

In this project, our objective is to develop line segments into a full primitive for both

surface modelling and rendering. For the modelling task, we would study how to obtain

line segments from scanned point clouds as well as from triangle meshes. For the rendering

task, we would focus on developing high quality anti-aliasing line segment rendering

 8

techniques. We need to design corresponding algorithms for both the modelling and the

rendering process, study the consequences, and report experiments to show the validity of

the approaches we take. We would also describe future directions that promise to make

line segment based surface modelling and rendering standard technique in the growing

arsenal of computer graphics tools.

Figure 4: The checkerboard on the top left is rendered without anti-aliasing. The checkerboard

on the top right is rendered from EWA resampled points. Both the opaque checkerboard on the

bottom left and the transparent curved checkerboard on the bottom right are rendered from

EWA resampled line segments using our approximate rendering method.

 9

1.4. Contributions

Our contribution in this project is the introduction and developing of line segments into a

full primitive for both surface modelling and rendering. For the modelling, we propose two

methods to extract hybrid point and line segment models from scanned point clouds, one is

(,)ε δ error bounded and one is based on 2,1L variational shape approximation. We also

present a contour plane cutting based method for obtaining pure line segment models from

triangle meshes. For the rendering, we extend the anti-aliasing theory in texture mapping

[Heck89] to render anti-aliased line segments in 3D models. Though the extension does

not result in a closed form solution, we present an approximation method to render high

quality anti-aliased opaque, transparent and textured line segments representing 3D models

as shown in Figure 4 and Figure 15.

We implement a software graphics pipeline that unifies both high quality point rendering

and high quality line segment rendering. Our pipeline can render point models, line

segment models as well as hybrid point and line segment models. Our experiments show

that the rendered quality of line segment models as well as hybrid point and line segment

models are comparable to their corresponding high quality anti-aliased point models.

Additionally, there is a significant speed up in the rendering time using hybrid models.

This establishes hybrid of points and line segments as a competitive modelling and

rendering alternative to pure point models.

 10

1.5. Outlines

This report is organized in such way: In Chapter 2, previous work in various related

research fields are extensively surveyed. We discuss in details how these previous work

lead us to our problem, how they influence our problem solutions, and in what aspects that

our proposed techniques are different from them. In Chapter 3, we discuss how to obtain

line segments for surface modelling from both point clouds and triangle meshes.

Considerations and problems with each of our proposed methods are also discussed.

Mathematical framework for EWA surface rendering procedure appears in Chapter 4. In

particular, EWA resampling filters and EWA splatting techniques are examined in full

details. In Chapter 5, we show that the mathematical formulation of line segment’s EWA

resampling filter is of non-closed-form and hence introduce an object space approximation

method for rendering line segments. Chapter 6 talks about implementation details of the

geometry processing pipeline and the rendering engine. Rendered images, data reduction

ratios, performance statistics and image quality comparison results are reported in Chapter

7. Finally, we conclude in Chapter 8 and point out possible future work in Chapter 9.

 11

Chapter 2.

Literature Survey

In this section we give detailed survey of seven research areas that are related to our

project work. They are point based surface modelling and rendering, surface anisotropy,

modelling and rendering with lines, hybrid surface rendering, texture mapping and anti-

aliasing, implicit surface and hardware accelerated rendering.

2.1. Point Based Surface Modelling and Rendering

In 1984, Levoy and Whitted [LeWh85] pointed out that classic modelling primitives, i.e.

triangles (or polygons), were less appealing for rendering objects with extremely complex

geometry. They suggested decoupling modelling geometry from the rendering process by

introducing point as a universal primitive, where each point is associated with a small

surface area and a normal for rendering. Using Levoy and Whitted’s idea, Rusinkiewicz

and Levoy [RuLe00] proposed the QSplat system to render 3D point models. In the QSplat

system, points are rendered as screen aligned squares, circles, Gaussian filtered circles, or

ellipses. The QSplat system was in fact designed during the course of the Digital

Michelangelo Project [LGSF00] to render models consisting of hundreds of millions of

scanned points at interactive frame rate.

Hoppe et al. [HDD92] described and demonstrated a surface reconstruction algorithm from

unorganized point cloud in 1992. Hoppe et al.’s algorithm estimates a normal for each

 12

point sample by fitting a best tangent plane into the point’s vicinity. With the use of

Euclidean Minimum Spanning Trees, points’ normals are then adjusted to be consistent.

Subsequently a signed distance function is defined based on the estimated normals and best

fitted tangent planes, giving isosurfaces. However at the end, surfaces are not rendered

directly from points; instead it is a triangle mesh extracted from isosurfaces using the

marching cube algorithm is eventually outputted onto the screen.

In 1998, Grossman and Dally [GrDa98] developed the point sample rendering algorithm

for real-time rendering of objects with complex geometry. Point samples are acquired from

orthographic views without knowing surface topology. Images are synthesized from

several views, with each point sample corresponding to one pixel. However each such

sampled point pixel contains position and normal data as well. With this approach tears

and holes are expected to be visible, Grossman and Dally proposed to fill holes by

interpolating from neighbouring pixels.

In 2000, Pfister et al. [PZVG00] introduced the surfel, i.e. surface element, paradigm and

developed the surfel point rendering pipeline. In this proposal, sampled points are

associated with tangent circular disks in object space, thus ellipses on screen after the

orthographic projection. However to achieve efficiency and gain hardware support, it is the

partially axis aligned bounding boxes of the ellipses that are eventually rendered into

graphics buffers. One year later, in 2001, Zwicker et al. [ZPVG01, Zwic03] extended

Heckbert’s EWA filter [Heck89], deriving a rigorous mathematical formulation of screen

space EWA resampling filter for irregular point data. Based on this newly derived filter,

 13

they developed another point rendering technique called surface splatting. Now not the

bounding rectangles, but the EWA low pass filter filtered ellipses get rendered into buffers.

Surface splatting technique is capable of producing high quality anti-aliased images from

point samples. Together with it, a set of other point based graphics techniques were

simultaneously or subsequently developed in ETH (Federal Institute of Technology),

including EWA volume splatting [ZPBG01, ZPBG02, Zwic03], spectral processing of

point clouds [PaGr01, Paul03], PointShop3D [ZPKG02], free form shape modelling of

point clouds [PKKG03], point cloud simplification [PGK02], feature extraction of point

clouds [PKG03] and many other point cloud based applications.

In 2002, Ren et al. [RPZ02] proposed a hardware implementation method for the surface

splatting technique, called object space EWA splatting. In this proposal, EWA prefiltering

is performed by deforming texture mapped surfel polygons. By exploiting the

programmability of the vertex shader of the latest graphics hardware, it is Ren et al.’s

method for the first time achieves high quality anti-aliasing rendering of point clouds at

satisfactory real time frame rate.

Wand et al. [WFPH01] presented an output-sensitive point modelling algorithm. Points are

sampled dynamically and randomly from triangulated object surfaces. Stamminger and

Drettakis [StDr01] suggested using a hierarchical sampling scheme which adapts sample

densities locally according to the projected sizes in the image to generate point samples. In

both [WFPH01] and [StDr01], the emphasis is placed on how to use points to model

objects with complex or procedural geometry so as to achieve data saving as well as

 14

rendering efficiency. And both [WFPH01] and [StDr01] are open to either the rendering

method in [PZVG00] or the approach taken in [GrDa98] with hole filling.

Kalaiah and Varsheney [KaVa01, KaVa03a] observed that the variations of normals in the

vicinities of point samples play an important role in human perception of images’ visual

quality. Therefore they proposed to store curvature information estimated from each

sample point’s neighbourhood with the point as well. Such points are named as differential

points by them. Differential points are rendered as normal mapped rectangles using

graphics hardware. However the total number of different normal maps is infinite. Thus

they proposed to quantize the normal maps into 256 different types, and select the normal

map that most closely approximates a sample point’s neighbourhood’s curvatures for

rendering. They reported that this rendering approach results better visual quality than

splatting based rendering methods.

In the year 2003, besides [KaVa03a], Kalaiah and Varsheney [KaVa03b] also proposed

another point modelling and rendering technique which is based on statistical analysis. In

this method, point clouds are group into elliptical point clusters via an octree based

hierarchical principal component analysis (PCA). By doing so, object models are

partitioned into ellipses, it is only the ellipses’ information that is to be stored. During

rendering, random points are generated on the ellipses’ surfaces using trivariate Gaussian

random number generator. Each point is to occupy only one screen pixel, thus the random

number generator’s parameters have to be tuned so as to assure enough points would be

 15

produced. Kalaiah and Varsheney claimed that the statistical point sampling method

provides orders of magnitudes saving of data storage.

Alexa et al. [ABCF03] used Levin’s moving least square method [Levi98, Levi03] to

define a smooth manifold surface from a set of points closed to the original surface. With

this definition, points can be up sampled and down sampled with bounded approximation

errors. Based on this definition, a small polynomial patch embedding local differential

geometry can be associated with each point as well. Points are rendered as individual

pixels onto the screen. However most likely the number of scanned point samples is

insufficient to fully cover the projected screen area of an object. Alexa et al. thus suggested

sampling more points in points’ neighbourhoods from the associated local polynomial

patches so as to fill tears and holes. The polynomial patches are locally 2.5D, and thus can

be parameterized onto tangent planes of the points. Sampling densities are adjusted by

increasing or decreasing the resolutions of parameterization grids that reside on the tangent

planes.

In our work, we model object surfaces with a set of unorganized points and line segments

that are close and faithful to actual object surfaces as in [RuLe00, HDD92, ZPBG01,

ZPBG02, Zwic03]. We do not artificially increase modelling points or line segments

dynamically, procedurally or statistically [WFPH01, ABCF03, StDr01, KaVa03b]. We

follow the direction of [PZVG00, ZPVG01, RPZ02], developing our high quality anti-

aliasing line segment rendering technique. We extend the anti-aliasing theory in texture

mapping [Heck89] for rendering anti-aliased line segments contained in 3D models.

 16

Unlike the approach taken in [GrDa98, WFPH01, StDr01, KaVa03b, ABCF03] which

renders points as screen pixels and fill tears and holes later, we associate a local surface

with each line segment.

2.2. Surface Anisotropy

Before we dive into the details of surface anisotropy, the first question that should be

answered is what surface anisotropy is. Surface anisotropy is an intrinsic geometric

property of surfaces. It indicates the direction along which a surface region is smooth; it

follows the smallest eigenvector and eigenvalue of the curvature tensors of the surface

region. However in general, in the context of surface modelling, surface anisotropy refers

to surface elements that are intentionally stretched in order to capture some physical

phenomena in object models [TART04]. Specifically, in the context of surface meshing or

remeshing, anisotropic remeshing refers to align or stretch surface mesh elements with a

certain direction field [ACDL03].

The study of surface anisotropy helps to reveal problems and advance visualization

techniques pertaining to quite a number of graphics applications. First and the most

important, anisotropic surface elements naturally, faithfully and economically model

surfaces that exhibit anisotropies. Second, often, elongated mesh elements with large

aspect ratios are desired to be generated for turbulent flow simulation problems to improve

computation accuracies as well as to better capture transient phenomena [JaSh01, FrAl03].

Third, surprisingly, it is discovered that stretched long and thin triangles are good for linear

interpolation [Ripp92]. Finally, it is reported in [BoKo01] that aligning stretched triangles

 17

along sharp features of surfaces help to mitigate aliasing artifacts and improve image

quality.

For a given 2D triangle mesh, Bossen and Heckbert [BoHe96] suggested using a 2×2

positive definite, symmetric tensor as anisotropic metric to quantify desired mesh element

shapes and sizes. The metric value for a triangle is calculated by taking the average of the

metric values evaluated at the triangle’s three vertices. Bossen and Heckbert modified the

Delaunay triangulation criterion to take this metric into account. The new anisotropic

Delaunay triangulate swaps edges to maximize the minimal angle in the normalized space

defined by the metric.

Similar to [BoHe96], Li et al. [LTU99] also used a 2×2 matrix as the metric tensor to

quantify the desired size and shape of a triangle in a 2D triangle mesh near a particular

selected point. However Li et al. further developed and defined a set of operations on this

tensor metric, such as expanding, rotation, summation, subtraction, union and so on. Based

on these operations, the distance between two metric measures can be computed, Lipschitz

property of anisotropic spacing function can be measured and similar to [BoHe96], the

condition of anisotropic Delaunay triangulation can be reformulated to reflect the capturing

of anisotropy of meshings. Noting that the 2×2 matrix tensor metric can be geometrically

realized as 2D ellipses, Li et al. thus designed an advancing front based ellipse biting

scheme to pack the ellipses on the meshes. Since the packing of the ellipses respects the

underlying control space, the anisotropic mesh can thus be generated from the set of

ellipses center vertices by checking anisotropic Delaunay triangulation conditions. In 2000,

 18

Yamakawa and Shimada [YaSh00] extended Li et al’s work by proposing an ellipsoidal

bubble packing algorithm to generate high quality anisotropic tetrahedral meshes.

In 1997, Garland and Heckbert [GaHe97] proposed a quadric error metric based surface

simplification algorithm. Quadric error is a heuristic to characterize the surface geometric

error. For a vertex in a triangle mesh, its quadric error is evaluated as a matrix defined as

the sum of squared distances to its incident triangles. Later in 1999, Heckber and Garland

[HeGa99, Garl99] proved that when triangle areas reduce to zero on a differential surface,

the quadric error based mesh simplification algorithm would generate triangles with aspect

ratio that is the square root of the ratio of principle curvatures of the curvature tensor at the

particular surface point in consideration. The triangles’ aspect ratios are optimal in the

sense of L2 geometric error; they in fact capture surface anisotropies of the covered surface

regions.

Two latest works in anisotropic meshing and remeshing [ACDL03, CAD04] were

presented in 2003 and 2004 SIGGRAPH conferences respectively. Based on the

observation that surface anisotropies generally follow in the directions of surface minimum

curvatures, Alliez et al. [ACDL03] proposed to use surface curvature directions to drive

the anisotropic remeshing process. By tracing and intersecting minimum and maximum

curvature lines on object surfaces, object surfaces can be remeshed by having quads placed

in anisotropic surface regions and triangles placed in spherical surface regions.

 19

Later in 2004, Cohen-Steiner et al. [CAD04] proposed a so called 2,1L geometric error

metric, which is related to the 2L metric in [HeGa99, Garl99], to measure the variations of

surface normals. Cohen-Steiner et al proved that the 2,1L metric can effectively capture the

asymptotic behavior of surface elements. Given a target number of surface elements, the

2,1L metric based surface remeshing algorithm in [CAD04] would produce meshes that

best approximate object surfaces and best capture surface anisotropies. Specifically, the

remeshing algorithm remeshes object surfaces by first iteratively clustering given mesh

triangles in the manner of minimizing the total 2,1L metric error and subsequently extracts

polygons and triangles from the clusters.

Labelle and Shewchuk [LaSh03] pointed out that the anisotropic Delaunay triangulation

algorithms in [BoHe96, LTU99] could neither guarantee the termination of edge flipping

nor assure to produce a unique anisotropic mesh configuration. In [LaSh03], Labelle and

Shewchuk generalized the multiplicatively weighted Voronoi diagrams into the definition

of anisotropic Voronoi diagrams, the kind of Voronoi diagrams specially catering for the

generation of long and skin triangles. Unfortunately, the dual of anisotropic Voronoi

diagrams do not necessarily correspond to anisotropic Delaunay triangulations. Labelle and

Shewchuk proved that in 2D, only under the circumstances in which the sites could see all

their entire Voronoi cells, would the anisotropic Voronoi diagrams be guaranteed to be

dualizeable.

One of our objectives, modelling object surfaces with line segments, is by no means

anything else, but to mine surface curvature information so as to capture as much surface

 20

anisotropies as possible, and properly orientate and place line segment in identified

anisotropic surface regions. Our shape approximation based line segment extraction

algorithm in Section 3.2 thus makes use of the 2,1L metric [CAD04] to hierarchically

cluster sampled surface points into clusters that would satisfy a prescribed maximum

normal deviation tolerance. Due to the proved effectiveness of the 2,1L metric in capturing

surface anisotropies, the clusters obtained in our algorithm would thus be able to not only

satisfy a normal deviation tolerance but also well capture surface anisotropies.

2.3. Modelling and Rendering With Lines

Directly using surface lines to model and render object surfaces attracts a lot of attentions

in the computer graphics field. Sousa and Prusinkiewicz [SoPr03] presented a method for

rendering 3D models in the line-drawing style. They first extract feature lines from object

surfaces and then use a non-photorealistic renderer to draw the lines on screen. The feature

lines can be classified into five different types. They are silhouette, boundary, crease, cap

and pit edges. During rendering, these curved lines are segmented into small line segments

and smoothed. Chains of line segments with varying path, length, thickness, gaps and

closures are drawn to create perceptually convincing images.

Rossl and Kobbelt [RoKo00] presented an interactive line art drawing system for

illustrating 3D models. Normal and curvatures are computed for every vertex of a triangle

mesh. The mesh model is then projected into buffers, with normal and curvature linearly

interpolated for every rasterized pixel. The enhanced 2D view of the object model is

subsequently segmented into regions based on the analysis of curvature information, and

 21

streamlines are traced through pixels. User can sketch some references lines to aid the

system to deduce well oriented and aligned streamlines. By exploiting the special structure

of the streamlines, shadings and hatches can be easily added to create visual pleasing

images.

In [GIHL00], Girshick et al. argued that principle curvature lines should be used for 3D

surface drawings. This is backed by psychological studies which suggest that lines in

principle curvature directions can communicate shapes better than lines in other directions.

Girshick et al. used short line segments to denote principle curvature directions. These

short line segments are then traced, trained together and smoothed. Subsequently, by

employing standard non-photorealistic stroke drawing techniques, images of 3D models

get emerged on the screen.

In 2000, McNamara et al. [MMJ00] described a high quality anti-aliasing line segment

rendering algorithm. In their method, a surrounding rectangle is associated with each line

segment. Distance functions are defined on all the four rectangle edges. Upon rasterizing a

line segment, signed distances from any fragment within its associated rectangle to the four

rectangle edges are calculated and combined. The result value is used as an index to access

a pre-computed intensity table. It is the convolution results between a filter and a

prototypical line segment at various distances that are stored in the intensity table. To anti-

aliase line segments’ endpoints, two extra anti-aliased OpenGL points are added.

McNamara et al. reported that this algorithm generates smooth anti-aliased line segments.

 22

Many papers treat the 2D problem of anti-aliasing line segments on screen. A good

reference on the desirable characteristics for an anti-aliased 2D line segment is described in

[Nels96].

In our work, we develop 3D line segments into a full primitive for both surface modelling

and rendering. We extract line segments directly from input point clouds or triangle

meshes for surface modelling and render high quality photorealistic line segments. While

in [SoPr03, RoKo00], curved feature lines or traced streamlines are only used as an

intermediate modelling primitive to describe the shape of surfaces. And eventually these

lines have to be broken into short line segments and rendered as non-photorealistic strokes.

As [GIHL00], our line segment extraction algorithms also prefer line segments that orient

along minimum principle curvature directions.

Both [MMJ00] and our rendering task share the same goal, to render high quality anti-

aliased line segments; however there are three distinct differences. First, in our work, each

line segment is associated with a piece of local surface. The size of a line segment is

determined by the surface area the line segment represents. While in [MMJ00], the size of

a line segment is the width of the line segment to be rasterized onto the screen. Second, in

[MMJ00], the intensities to be assigned to rasterized line segments have to be computed

fragment by fragment. In our line segment rendering procedure, a pre-computed intensity

texture is mapped once for each line segment. Third, unlike [MMJ00] which anti-aliases

the endpoints of line segments with OpenGL anti-aliased points, in our work, the pre-

computed weight texture anti-aliases the whole line segment’s rasterized footprint.

 23

2.4. Hybrid Surface Rendering

Chen and Nguyen [ChNg01] introduced a hybrid point and polygon rendering system

called POP. In POP, a hierarchical tree structure, same as the one used in QSplat [RuLe00],

is constructed with triangles as leaf nodes and points as non-leaf nodes. In POP, points are

represented as bounding spheres as in QSplat. During rendering, depending on screen

contributions, point non-leaf nodes are used for displaying when objects are far away, and

triangle leaf nodes are selected when objects are nearby. With the use of points, rendering

speed gets accelerated and with the use of triangles, surface details are preserved.

Dey and Hudson [DeHu02] proposed another hybrid point and polygon rendering system

called PMR. In PMR, an octree based spatial hierarchy is used. For each leaf node of the

hierarchy, several versions of points and triangles of different level of details are stored. A

metric measure reflecting surface local feature size is used to decimate points from highest

level of details to the lowest. Triangles are meshed from point set using Delaunay

triangulation. During rendering, for each leaf node, depending on projected pixel size, an

appropriate version of points and triangles is selected. For each individual point selected,

again depending on projected pixel size, either the point is rendered as a pixel or the

triangle umbrella anchored at this point is selected for rendering.

In our hybrid surface rendering solution, a point is rendered as an anti-aliased splat

suggested by Zwicker et al. [ZPVG01], while in POP points are rendered as spheres, and

in PMR points are rendered as screen pixels. Using our line segment rendering method,

points and line segments can be seamlessly hybridized together, producing high quality

 24

anti-aliased images. However it is noticed that the hybrid rendering approach taken by both

POP and PMR could produce aliasing artifacts. Both POP and PMR build hierarchical

LOD structures to organize the primitives. The LOD supported hybrid renderings in both

systems put their emphasis on performance. This is different from our approach. We

handle a set of unorganized points and line segments.

2.5. Texture Mapping and Anti-aliasing Techniques

Here, we survey several prefiltering based anti-aliasing techniques. Mip-map [Will83] is

the most widely used such method. It gains full hardware support. For Mip-map, a texture

pyramid is pre-computed storing several versions of an input texture image. Resolutions of

the textures in the pyramid decrease from bottom to top. Two such textures are chosen for

each backward projected screen pixel, one is of higher resolution and one lower. Isotropic

filters are then used to sample the textures, and the linearly interpolated result of the

sampled texture values is assigned as the pixel’s color intensity. Due to the use of isotropic

filtering, Mip-map performs poor for pixels that are backward anisotropically projected –

the anisotropic texture filtering problem.

The NIL-maps method [FoFi88] was then proposed to remedy this problem. For NIL-maps,

a set of basis functions are used to substitute the space variant filter. These basis functions

are convoluted with the input texture image, and resulted convoluted textures are used to

build the pyramid structures as in Mip-map. The biggest problem with the NIL-maps

approach is that a large number of basis functions are needed to approximate an arbitrary

filter. Heckbert’s EWA [Heck89] resampling filter proposal attacks the anisotropic texture

 25

filtering problem directly by sampling texels that lie within the filter’s footprint. Although

the footprint of the EWA resampling filter is known to be anisotropic, be elliptical, the

computation required knowing the footprint’s size and orientation is still too expensive to

afford.

To achieve efficiency of anisotropic texture filtering, three methods that employ a set of

isotropic filters to replace the anisotropic filter have since been proposed [SKS96, MFPJ99,

MPFJ99, CDK04]. In the footprint assembly method [SKS96], pixels are treated as 1 pixel

wide rectangles, and isotropic filters are sampled along the major axis of the backward

projected parallelograms. In the Feline method [MFPJ99, MPFJ99], pixels are treated as

circles with radii equaling to 1 pixel, and isotropic filters are sampled along the major axis

of the backward projected ellipses. Mccormack et al. reported that images anti-aliased

using the Feline method achieve high visual quality comparable to those using EWA

resampling filter. Chen et al. [CDK04] pointed that both the footprint assembly method

and Feline method could suffer oversampling in lower resolution texture and

undersampling in higher resolution texture, of the texture pyramid. They thus suggest

adjusting the sampling rate at two different levels of the texture pyramid differently.

Reduce the number of samples used in the lower resolution texture and spread the samples

around within the footprint area. Similarly, increase the number of samples used in the

higher resolution texture and spread them around as well.

In our work, we do not anti-aliase any texture image. Our objective is to anti-aliase surface

primitives, in particular line segments. Scanned points, as well as the line segments that are

 26

extracted from the scanned points scatter all over object surfaces. They are samples taken

from a continuous object surface. Thus anti-aliasing these surface primitives during

rendering is a task as challenging as anti-aliasing texture images. We make the same

choice as Zwicker et al. [ZPBG01, ZPBG02, Zwic03] for rendering anti-aliased points, a

EWA resampling filter for line segments is formulated and developed in our work to

provide anti-aliase for surface line segments. We note that EWA resampling filter is well

recognized as the best efficient software based anti-aliasing solution [MPFJ99].

2.6. Implicit Surface

McCormack and Sherstyuk [McSh98] expanded the set of skeletal primitives that can be

used to construct convolution surfaces. In [McSh98], points, line segments, polygons, arcs

and planes all can be used to model and render convolution surfaces. McCormack and

Sherstyuk also presented an analytic method based ray tracing algorithm to visualize the

convolution surfaces. In [Sher99, JiTa02], discussions on the choice of kernel function

used in convolution surfaces are presented. The kernel functions include Gaussian, inverse

linear, inverse squared, Cauchy and quartic functions.

Levin proposed a point set surface definition using Moving Least Square (MLS)

approximation method [Levi98, Levi03], so called MLS surface. The MLS surface is a set

of stationary points that would be mapped to their selves by a weighted minimum least

square function. The MLS surface is defined procedurally using the MLS projection

operator. The MLS surface is define locally, MLS projection would be applied only using

a local reference domain. The MLS surface is proved to be C∞ smooth [Levi03]. To

 27

visualize MLS surface, Adamson and Alexa [AdAl03] developed a ray tracing method.

Using similar projection procedure like MLS surface, Amenta and Yong [AmYo04] gave a

surface definition for points with known normals. The MLS surface definition is currently

the most rigorous and most widely accepted point set surface definition proposal.

In our work, we need to know what kernel function should be used for the line segment’s

EWA resampling filter. For points, it is the Gaussian function that is being used. We

propose using line segment field function with Gaussian kernel as the kernel for line

segments’ EWA resampling filter, since it is proved in [JiTa02] that the line Gaussian

function is of closed form. One challenging question posted is how to define continuous

object surface for line segment models, or mixed point and line segment models as like

either the convolution surface in [McSh98] or MLS surface in [Levi98, Levi03]. In this

project we do not address this problem. It is left as part of our future work.

2.7. Hardware Accelerated Rendering

The high quality point rendering algorithm initially developed in [ZPVG01] is software

based. Since then, several attempts have been made to port this software pipeline into

graphics hardware. Ren et al.’s work [RPZ02] is the first such attempt. Ren et al.

programmed in the vertex shader, and precisely compute the rotation matrix and scaling

matrix that are defined by the point’s object space EWA resampling filter. The drawback

with their approach is that, for every Gaussian weight texture mapped rectangle, the same

piece of vertex program has to be executed once for each vertex. That is four times for

every sampled surface point, creating a lot of computation redundancies.

 28

Ren et al.’s hardware implementation method is an object space based approach [RPZ02].

In the following years, there emerge three other hardware implementation proposals

[CoHe02, BoKo03, ZRBD04]. All are screen space based approaches, all make use of the

NV_point_spirte feature provided by the latest graphics cards and all are implemented in

the pixel shader. In all the three approaches [CoHe02, BoKo03, ZRBD04], point sprites

that bound the screen projections of sampled surface points are rasterized. However the

three methods rasterize the actual elliptical point projections differently and assign the

Gaussian weight texture to the rasterized pixels differently. Coconu and Hege [CoHe02]

used the multiplication between a circular Gaussian and a liner approximation of Elliptical

Gaussian to approximate the point’s screen space EWA resampling filter. It was reported

that their approximation method yields satisfactory results in practice.

In [BoKo03], Botsch and Kobbelt used circular discs to represent sampled object surface

points, and developed a simple yet efficient approximation method to render these discs

into elliptical point splats on screen. During the rasterization of the point sprites, z depth

values of pixels within the point sprites are computed via bilinear interpolation. And

subsequently, the pixels with their corresponding object space positions known are

checked to see whether locating inside or outside the elliptical point splats. In Botsch and

Kobbelt’s method, it is simply a Gaussian weight texture mapped elliptical point splat that

is finally rasterized on the screen. This point splat is not filtered by any low pass filter. It is

questionable whether high quality anti-aliasing rendering can in fact be achieved in

[BoKo03].

 29

Zwicker et al. [ZRBD04] observed that Heckbert’s EWA resampling theory [Heck89]

leads to series artifacts under extreme perspective projections, due the affine

transformation assumption and local affine approximation assumption used. In fact, the

EWA splatting technique is only perspective correct at sampled points, and wrong with

regarding to the shape of the splats. Based on the fact that conics are closed under

perspective projections, Zwicker et al. [ZRBD04] thus derived a new formulation of the

EWA resampling filter that gives perspective correct splat shapes. Upon rasterization, the

multiplication results between the locations of pixels within point sprites and 2×2 square

matrices derived from the new EWA resampling filter are computed and compared with a

predefined threshold to check whether the pixels lie inside the resampling filters or not.

However, in [ZRBD04], the centers of the EWA resampling filters usually do not coincide

with the actual screen projection locations of sampled surface points.

From the above discussions, it is not difficult to see that none of the existing hardware

methods implements the EWA splatting technique perfectly. [CoHe02, BoKo03] are

approximation methods. The method in [ZRBD04] would deviate the centers of

resampling filters a lot away from actual screen projection locations of sampled points.

Although the implementation in [RPZ02] follows the EWA resampling theory exactly, it is

so far the slowest method reported achieving merely 2M-3M splats per second. All the

methods strive to sit the EWA splatting technique on top of the existing triangle oriented

hardware rendering pipeline. We think, ideally, only when dedicated hardware is

developed for the EWA splatting technique, would all the various hardware constraints and

 30

restrictions be removed completely and make practical implementations simple and

straightforward. Thus in our work, we have only developed a software pipeline for

rendering line segments, we leave the hardware implementation development on existing

graphics hardware as part of our future work.

 31

Chapter 3.

Surface Modelling with Line Segments

Today, point cloud models can be obtained efficiently and accurately using laser range and

optical scanners. And triangle meshes can be obtained either via triangulating scanned

point clouds or through the hands of model designers and computer artists with the aid of

modelling software tools, such as Maya and 3D Studio Max. However line segment based

models so far can only be artificially generated for certain special types of objects, for

example, a set of equally spaced and parallel line segments that are parameterized on the

surface of an elliptical cylinder. To develop line segments as a full primitive for both

surface modelling and rendering, the question of how to model a given object surface with

line segments has to be answered in the first place.

In this section, we study how to model object surfaces with line segments. We take

scanned point clouds as well as triangle meshes as input raw surface data. We design line

segment extraction algorithms from different perspectives by formulating the surface line

segment modelling problem differently and solving the problem with different emphases.

Our line segment extraction algorithms extract hybrid point and line segment models from

point clouds and pure line segment models from triangle meshes. We also talk about the

error measures used in the line segment extraction algorithms, discuss how the scanning of

point clouds in actual practices affects the line segment extraction algorithms and explain

the reasons why certain other seeming possible approaches are not implemented by us.

 32

This section is organized in the following way: two methods for extracting surface line

segments from point clouds are presented in Section 3.1 and 3.2. Section 3.1 gives a

Euclidean distance and normal deviation error bounded surface line segment extraction

algorithm. While in Section 3.2, a shape approximation based surface line segment

extraction algorithm is proposed. In Section 3.3, we discuss how to cut contour planes

through triangle meshes to obtain pure line segment based models.

3.1. (,)ε δ Error Bounded Line Segment Extraction

In this subsection, we introduce a Euclidean distance and normal deviation error bounded

surface line segment extraction algorithm, called (,)ε δ error bounded line segment

extraction algorithm. We further organize our discussions into five parts. In Section 3.1.1,

we formulate the problem. In Section 3.1.2, we define what ε and δ are. We then point

out that our problem is NP-hard in Section 3.1.3. In Section 3.1.4, we present the details of

our algorithm. Lastly, we discuss the problems associated with our proposed algorithm in

Section 3.1.5.

Before we proceed to the details of our discussions, it should be pointed out first that both

our error bounded line segment extraction algorithm and the shape approximation based

line segment extraction algorithm presented in next subsection target to obtain hybrid point

and line segment models from scanned point clouds. As we know, due to the complexity

and diversity of surface geometry of both natural and man-built objects, most likely, a

single choice of surface primitive among point, line segment and triangle for modelling

 33

would not give the overall best surface representation. To achieve the goals of

representation compactness and representation effectiveness, surface primitives should be

mixed in use. Since objects exhibit anisotropies along certain directions only in parts of

their surfaces, line segments should be used together with other surface primitives to give

hybrid surface representations that adapt to surface geometry. As we develop our high

quality anti-aliasing line segment rendering technique based on the EWA resampling

theory, thus the hybridization of points and line segments in use for surface modelling is

our best primitive combination choice. In this project we focus on the hybrid point and line

segment surface modelling and rendering problem.

3.1.1. Problem Formulation

The past decade has seen the emergence of a vast literature on surface reconstruction from

a point cloud [ACDL00, AGJ00]. The standard assumption is that the given point cloud is

sampled from a uniquely defined object surface which is to be reconstructed. Appropriate

assumptions about surface properties and sampling density have led to reconstruction

algorithms that respect surface topology and error bounds. Here we look at the problem

from a less stringent point of view. Rather than attempting to reconstruct a uniquely

defined surface, we ask first, what surfaces are compatible with the given point cloud

within some margin of error, and second, how to construct or approximate an arbitrary

surface that respects the stated error bounds.

In our study, the unknown surface is to be represented by a set of mixed points and line

segments. A line segment can be viewed as the compressed form of a sequence of well

aligned sampled points, given that the sampled points do to locate too far away from the

 34

line segment and the normals of the sampled points are almost equal to the normal of the

line segment. Thus here, we formulate the surface line segment modelling problem as

searching for a set of surface points and line segments that are close to original sampled

point cloud with both Euclidean distance and normal deviation errors bounded within

prescribed tolerances.

3.1.2. (,)ε δ Errors

Let 1 2 3{ , , .., }n= p p p pP be a given sampled point cloud. We use in to denote the normal

vector associated with each sampled point ip and ()d ipN to denote the set of local

delaunay neighbours of ip . The normal vectors cannot be acquired through scanning. We

derive the normals using Hoppe’s method [HDD92]. Refer to Section 6.1.1 for details.

3.1.2.1. (,)ε δ Error Definitions and (,)ε δ - Line Segment

We define a (,) - line segmentε δ ()iL p anchored at a sampled point i ∈p P as a line

segment lying on the plane iP that passes through ip and perpendicular to the 'i sp normal

vector in . Let 1 2 3{ , , .., }m= q q q qQ be the set of points replaced by a line segment ()iL p .

Then all the points in Q are sufficiently near to ()iL p and have nearly equal normals (see

figure 5). Specifically, let
1 2 3

' ' ' ' '{ , , .., }
m

= q q q qQ denote the set of the points on ()iL p that

are nearest to the points in Q , with each '
j

q corresponding to a jq . Then every j ∈q Q

satisfies an Euclidean distance error tolerance ε such that '
jj ε− ≤q q . And the deviation

between the normal vector in of point ip and jn of point jq is also bounded by a normal

 35

error tolerance δ such that 1 i j δ− ⋅ ≤n n . The maximal (,) - line segmentε δ ()max iL p is the

(,) - line segmentε δ anchored at ip that replaces the largest number of sampled points

belonging to P .

3.1.2.2. Discussions on Error Measures

There exist various kinds of error measures used to quantify the differences between two

point sampled object surfaces. Hausdorff distance dh is defined as the maximum of the set

of minimum Euclidean distances measured from a chosen point in one point cloud to all

points in another point cloud. The Hausdorff distance dh is the most straightforward error

measure for comparing two point clouds. In [PGK02], the continuous surface defined by

one point cloud is constructed using the MLS surface definition proposal. Distances from

Figure 5: The left half shows how the (,)ε δ error is defined for the line segment ()iL p that

passes through the point i ∈p P . ip is represented with a red ball and i Q∈q are colored

blue. The right half shows how ()iLmax p is computed. ip ’s neighborhood is colored yellow,

and crimson balls are used to denote neighbouring points ()k d i∈p pN . ()iLmax p is given

along the red line segment with double arrowheads. And other two pink line segments denote

other shorter (,) - line segmentε δ .

 36

points in another point cloud to the constructed continuous surfaces are point-wise

computed. The maximum such distance maxΔ and the average avgΔ serve as the error

measures of surface differences. Recently, Wu and Kobbelt [WuKo04] presented a method

to approximate sampled point clouds with circular or elliptical object space point splats.

Their method guarantees the maximum distance between sampled points and substitute

point splats is bounded by a prescribed Euclidean distance error dε . Apart from that their

method also ensures the set of point splats would form a hole-free surface.

Throughout the surface modelling and rendering process, there are in general three

approaches that can be taken to make a fair comparison between two sampled object

surfaces. The first approach is to compare the two sets of sampled surface primitives

directly. The Hausdorff distance dh error measure is such an approach. Our (,)ε δ error

measure also falls into this category. The second approach is to compare the two

constructed object surfaces. It does not mater whether the object surfaces are constructed to

be continuous or are just consisting of discrete splats. However both parties in the

comparison should be constructed using the same surface construction algorithm. Since the

MLS projection operator projects sampled surface points exactly onto the MLS surface, the

maxΔ and avgΔ error measures used in [PGK02] fall into this second approach category.

The third approach is to compare the two rendered object surface images. This happens at

the end of the surface rendering process. In our experiments, we compare the rendering

quality of pure line segment models and hybrid point and line segment models with pure

point models.

 37

We disagree that the dε error measure used in [WuKo04] would make a fair comparison

between two object surfaces. As one party of the comparison is a point could, and the other

one is a reconstructed object surface comprising point splats. This explains the reason why

we opt not to implement a similar method in [WuKo04] to extract surface line segments.

3.1.3. NP Hard Problem

Given the prescribed (,)ε δ error tolerances, one goal reasonably to set is to search for a

hybrid point and line segment surface representation that maximize the number of sampled

points replaced by line segments. Unfortunately this problem turns out to be NP-hard. In

fact it can be mapped into a minimum dominating set problem. This issue has also been

noticed in [CAD04, WuKo04]. Therefore we propose a greedy algorithm solution.

3.1.4. The Line Segment Extraction Algorithm

We compute for each point i ∈p P its maximal (,) - line segmentε δ ()max iL p . For

practical reason, this computation starts with forming (,) - line segmentε δ ()k iL p that

passes close to a neighbouring point ()k d i∈p pN having location kp satisfying

k ε− ≤ip p and normal kn satisfying 1 i k δ− ⋅ ≤n n . Then it progressively extends each

such ()k iL p whenever possible to further represent neighbours of points already included

in ()k iL p . Let us denote the set of candidate points to be replaced by ()k iL p using

(())k iL pS . Points in (())k iL pS are checked with the (,)ε δ error tolerances in increasing

order of their minimum distances to ()k iL p . The candidate point (())e k iL∈p pS that is

nearest to ()k iL p is projected onto ()k iL p . If ep is bounded by the (,)ε δ error tolerances,

 38

one of the endpoints of ()k iL p would be further extended to the projected position of ep ,

otherwise one side of ()k iL p stops growing further. Among all the possible ()k iL p

computed for ip , the one representing the largest set of points is chosen as the maximal

(,) - line segmentε δ ()max iL p (see Figure 5).

The set of maximal (,) - line segmentε δ ()max iL p are then sorted in a heap H in the

decreasing order of the number of points they represent. The ()max iL p representing the

largest number of points is the first ()max iL p removed from H and outputted as a line

segment. Points in Q being replaced are then removed from subsequent processes and the

priorities of remaining ()max iL p in H are also updated reflecting the removal of Q from

P . The maximal (,) - line segmentε δ ()max iL p that represent too few points (3 or less in

our experiments) are rejected and are not converted into line segments. Any point left over

after line segments have been extracted remains a surface primitive of type “point”. See

Figure 23 and 24 for the hybrid point and line segment models obtained.

3.1.5. Observations, Problems and Discussions

Although our (,)ε δ error bounded line segment extraction algorithm produces hybrid

point and line segment representations that are close and faithful to scanned point clouds, it

does not guarantee the rendered surface images would not have holes. However in practice,

this is not a serious problem. We find that by simply increasing the radius of the

reconstruction filter ε amount, holes will become invisible in almost all rendered images.

 39

We observe that in most scanned models, sampled points are arranged quite regularly on

object surfaces. In some flat surface regions, points are almost being spaced at equal

distance away from their neighbours. Our (,)ε δ error bounded line segment extraction

algorithm takes great advantage of this regularity. In fact the success of the algorithm relies

on it too much. If some random noises are present in the point cloud, the error bounded

algorithm could perform quite badly.

Another problem with our (,)ε δ error bounded algorithm is that it is too sensitive to the

point cloud’s scanning direction. We observe that a large number of line segments

extracted orientate in the direction along which sampled surface points were actually

scanned. This is especially noticeable when the Euclidean distance error tolerance ε is set

very small. In some of these situations, the line segments found are actually the “virtual

lines” that are beamed from the scanner onto the object surface.

3.2. Shape Approximation Based Line Segment Extraction

Using our (,)ε δ error bounded line segment extraction algorithm, extracted points and

line segments are placed very close to the scanned point cloud bounded by tight ε and δ

error tolerances. It is the scanned point cloud that the constructed hybrid surface

representation is faithful to, not necessarily the actual surface geometry. Furthermore the

(,)ε δ error bounded line segment extraction algorithm extracts the maximal

(,) - line segmentε δ ()max iL p that is only the longest line segment local to each individual

sampled point ip . The line segments do not necessarily follow the surface anisotropic

direction. The line segments may also intersect with each other, creating overlapping. We

 40

observe that seldom an isolated line segment is used to model object surfaces alone. In

general, it would be a bunch of nearly parallel line segments that are employed for

modelling anisotropic surface regions. Thus fitting line segments onto object surfaces one

by one is an inefficient line segment extraction process.

In this subsection we propose another line segment extraction algorithm, called shape

approximation based line segment extraction algorithm. This second line segment

extraction algorithm produces hybrid point and line segment models that are faithful to

surface geometry. With the new algorithm, line segments are no longer being processed

separately, they are extracted in bunches from anisotropic surface regions.

We organize our subsequent discussions as such: in Section 3.2.1 we reformulate our line

segment extraction problem. In Section 3.2.2, we talk about surface normal variations and

2,1L error metric. We then compare two clustering algorithms in Section 3.2.3. One is a

greedy algorithm and the other one is a hierarchical iterative optimization algorithm. In

Section 3.2.4, we present the details of our line segment extraction algorithm. Finally, we

discuss the problems with this approach in Section 3.2.5.

3.2.1. Problem Formulation

In the (,)ε δ error bounded line segment extraction algorithm, the Euclidean distance error

tolerance ε and normal deviation error tolerance δ are enforced strictly. Essentially the

line segment extraction problem becomes only a primitive replacement problem –

replacing sets of sequentially aligned points that meet the ε and δ error tolerances with

 41

line segments. Here we look at the problem from a different perspective. We treat the line

segment extraction problem as a shape approximation problem that aims to extract, retain

and explicitly represent the primal surface anisotropic information. Specifically, we

formulate the surface line segment modelling problem as searching for a set of points and

line segments that adapt to surface geometry, approximating the surface shape with the

approximation error controlled by a prescribed normal variation tolerance.

In this shape approximation based approach, we lift up the ε and δ error tolerances

imposed in our first error bounded algorithm and do not insist in sticking closely to the

original scanned point cloud any more. Instead, the geometric faithfulness of the hybrid

representation now truly becomes the primary goal we pursue. To be in tune with the

actual surface geometry, prior to extracting line segments, we segment the object surface

into clusters having different geometric characteristics first. By doing so, anisotropic point

clusters would be identified, and line segments can then be extracted effectively and

efficiently from points residing in these anisotropic clusters. Eventually, extracted line

segment together with leftover points form a shape approximation of the object surface.

3.2.2. Normal Variation and 2, 1L Shape Error Metric

Surface anisotropy indicates the direction along which a surface region is smooth.

Smoothness implies the least variation of surface normals. We thus choose normal as the

criteria for grouping sampled points. In the final output clusters of our line segment

extraction algorithm, for a seed point i ∈p P and the point cluster iC generated with ip ,

the variation between the normal jn of any point j iC∈p and the seeding normal ()iCn of

 42

iC must be less than the normal variation tolerance nδ . That is
2

()i j nC δ≤n - n . And

similar to [CAD04], we define the 2,1L shape approximation error measure for the point

cluster iC as
2

() ()
j i

2,1
i i j

C
L C C

∈

= ∑
p

n - n . The ()2,1
iL C accounts for the total amount of

normal variations in iC . Obviously ()2,1
iL C is upper bounded by i nC δ⋅ .

3.2.3. The Clustering Algorithm

We develop two algorithms to segment P into point clusters. The first one is a greedy

clustering algorithm. It groups points in P into clusters through flooding. The normal

variation tolerance nδ is used as the flooding criteria. nδ is capable of effectively

capturing surface anisotropies. Given a fixed normal variation tolerance, it comes

straightforward that more points in the anisotropic direction of a surface region will be

collected into the point cluster.

The second algorithm is modified from the shape error metric 2,1L based distortion

minimized clustering algorithm. Proved in [CAD04], the 2,1L metric is quite effective in

capturing surface anisotropies. We actually turn the original algorithm in [CAD04] into a

new hierarchical iterative algorithm. Instead of looking for the best way of clustering that

minimizes the overall 2,1L error measure for a fixed number of clusters, we search for a set

of clusters having their maximal normal variations controlled by nδ while at the same time

still attaining a small total normal variation. We give details of the two clustering

algorithms in Section 3.2.3.1 and 3.2.3.2 respectively.

 43

3.2.3.1. Greedy Clustering

Let cov,iM denote the 3 3× covariance matrix computed for every i ∈p P . Refer to Section

6.1.1 for how to compute cov,iM . And let 0λ , 1λ and 2λ be the three eigenvalues of cov,iM

and order them as 0 1 2λ λ λ≤ ≤ . Define the surface variation measure at ip as

0

0 1 2
()s iV λ

λ λ λ+ +=p . The value of ()s iV p indicates the flatness of the surface region near ip .

We compute ()s iV p for all the points in P and flood the points into P in the increasing

order of the values of the their ()s iV p . For every point ip being picked up for flooding, we

create a new point cluster iC with ip as the seed and ()i iCn = n as the seeding normal. We

then expand the cluster iC through the set of neighbouring points of iC , denoted as

()d iCN . The neighbour point ()k d iC∈p N that has not yet been included into any other

point cluster, is checked against the normal variation tolerance nδ . If 2()i k nC δ≤n - n ,

then kp is added into iC and updated as a new boundary point of iC . The status of kp is

also set as already being flooded over. The greedy algorithm terminates when all the points

in P are marked as flooded. At the end a set of point clusters is returned.

3.2.3.2. Hierarchical Distortion Minimized Clustering

We randomly pick up two points sp and tp from P and create two new point clusters sC

and tC . sC has sp as its seed and ()s sCn = n as its seeding normal. Similarly, tC has tp

as its seed and ()t tCn = n as its seeding normal. We then grow sC and tC through their

neighbouring points. Let us denote the set of neighbouring points of sC and tC using

() () ()d s t d s d tC C C C∪ = ∪N N N . For each point ()k d s tC C∈ ∪p N that has not yet been

 44

assigned to any cluster, we keep track of its neighbouring clusters. kp may have only one

neighbouring cluster, either sC or tC , or both of them. For each such pair of neighbouring

point and cluster (),k bCp where orb s t= , we compute their normal variation

2(,) ()n k b k bV C C=p n - n . And then push (),k bCp into a priority queue PQ with

(,)n k bV Cp as the key value. The (),k bCp pair having the smallest (,)n k bV Cp is then

popped out from PQ and the point kp is assigned to the cluster bC . kp is updated as a

new boundary point of bC and the status of kp is set already being assigned. This pushing

and popping operation continues until all points in P are assigned to a cluster.

After the first iteration of clustering, although the point i ∈p P is assigned to the reachable

cluster bC with which it has smaller normal variation (,)n i bV Cp , the total amount of

normal variation
,

(,)
j b

n j b
b r s C

V C
= ∈
∑ ∑

p
p over the object surface has not yet been minimized.

As in [CAD04], we need to reseed for each bC and repeat the clustering process until

certain stopping criteria are met. For each bC we compute the average normal of all points

belonging to it, ()
j j

C Cj b j b

b bb C CC ∈ ∈
∑ ∑

= p p

n n
'n . The point b bC∈'p where orb s t= , that has the

least normal variation with ()bC'n is chosen as the new seed of bC . And ()bC'n is used as

the new seeding normal in the next iteration of clustering. The stopping criterion is either

the seeds of all bC remain unchanged or the number of clustering iterations has reached a

specified limit.

 45

For each point cluster bC where orb s t= , we also record its maximum normal variation

2

,max () max(())n b j bV C C= n - n where jn is the normal of the point j bC∈p . If

,max ()n b nV C δ> , it means the cluster bC does not satisfy the normal variation tolerance

constraint. Thus we apply the iterative distortion minimized clustering algorithm to the

point cluster bC again, further splitting bC into two smaller clusters. At the end, the

algorithm will return a set of clusters , such that ,max ()n i nV C δ≤ for any iC ∈ .

3.2.3.3. Discussions on Clustering Algorithms

Both the greedy clustering algorithm and the hierarchical distortion minimized clustering

algorithm can effectively form anisotropic clusters on point clouds. And the hierarchical

algorithm generally produces fewer clusters than the greedy algorithm. See our experiment

results in Section 7.2.1. This is as being expected. Through several iterations of seeding

and reseeding, the hierarchical algorithm adjusts the point clusters to optimal shape that

efficiently fit to the surface geometry. While the greedy algorithm processes every sampled

point once and only once, thus much of the clustering depends on the surface variation

heuristic sV used, which may be good locally to each individual point but could be bad

when need to be aware of the nieghbouring points too. However we find that less number

of clusters does not help the distortion minimized clustering algorithm extract more line

segments (check Section 7.2.1 for the detailed explanations).

At first glance, it seems to be very promising to estimate a minimum curvature vector for

every sampled point in input point cloud and use it to collect points into anisotropic point

 46

clusters. This is backed by the fact that the direction of surface anisotropy follows the

surface’s minimum curvature vector. However this method turns out to be infeasible in

practice. The reality is that none of the existing curvature calculation methods is capable of

estimating the curvature information of point cloud data reliably. The point cloud’s

scanning direction and scanning pattern can badly affect the accuracy of curvature

computations. Refer to our discussions in Section 6.1.2 for more details.

3.2.4. The Line Segment Extraction Algorithm

3.2.4.1. Constructing Local Coordinate Systems

We try to extract line segments from every point cluster iC ∈ that owns more than 3

points. We first calculate the centroid of points in iC , ()
j

Cj i

ii CC ∈
∑

= p

p

c . Then we compute the

householder matrix of ()iCn , (())h iCnM , where ()iCn is the seeding normal of iC . From

the second and third columns of hM , we obtain the other two bases ()iCx and ()iCy .

()iCn , ()iCx together with ()iCy form a local coordinate system centered at ()iCc . We

then project all the points in iC along ()iCn onto the xy plan xyP . Let us denote the set of

projected points as '
iC with each ' '

j iC∈p corresponding to a j iC∈p . To prevent the

surface region represented by iC from being folded in the projection, we need to ensure no

jp ’s normal jn spans more than 90 away from - ()iCn . Thus the value of the normal

variation tolerance nδ is set to be no less than 2 .

 47

3.2.4.2. Determining Surface Anisotropic Direction

Points in most of iC and '
iC are unevenly distributed. This irregularity causes the biggest

trouble to the line segment extraction process. In the (,)ε δ error bounded algorithm, we

attack the problem by greedily fitting line segments. Here since we have already known

that the point cluster iC is anisotropically shaped, we can regularize the points towards the

anisotropic direction and subsequently extract line segments from sequences of regularized

points.

We compute the minimum area enclosing rectangle '()a iR C of points in '
iC using the

rotating caliper algorithm suggested in [Tous83]. Let us denote the direction of the longer

edges of '()a iR C as '(())a iR Cd . Essentially '(())a iR Cd gives the shape anisotropic direction

()s iCd of iC . That is '() (())s i a iC R C=d d . Refer to [KFR04] for a recent interesting

discussion on the shape anisotropy concept. Let us use ()f iCd to denote the surface

anisotropic direction of iC . Since the point cluster iC is anisotropically formed, according

to nδ and ()2,1
iL C , the surface shape of iC would be stretched along ()f iCd . That is to

say, in general for iC , its shape anisotropic direction ()s iCd agrees with its surface

anisotropic direction ()f iCd .

However this is not necessarily always be the case. The short yet wide cylindrical surface

patch has its shape anisotropy direction 90 deviated away from its surface anisotropy

direction. To prevent such insistency, we also estimate the minimum curvature direction

 48

min ()ik p for every point j iC∈p and assign their average as the minimum curvature

direction of iC ,
min min() ()

min ()
i i

C Ci i i i

i ii C CC ∈ ∈
∑ ∑

= p p

k p k p

k . We then check whether ()s iCd is

consistent with min ()iCk . If min ()iCk differs from ()s iCd for more than 45 , we assign

min ()iCk to ()f iCd . That is min() ()f i iC C=d k . Otherwise we use the shape anisotropic

direction as the surface anisotropic direction, () ()f i s iC C=d d . The reason why we do not

use min ()iCk straightforwardly as the surface anisotropic direction is again because none of

existing methods can estimate the curvature information accurately. Refer to Section 6.1.2

for detailed discussions.

3.2.4.3. Computing Average Distances

For convenience, we then rotate the xy plan xyP around ()iCn , and align the ()iCy axis

with the surface anisotropic direction ()f iCd . Let us denote the set of local Delaunay

neighbours of every point ' '
j iC∈p as ' '()d jpN , where ' ' '()k d j∈p pN is the projection of

()k d j∈p pN on xyP . We compute the projected average distance on the ()iCx basis

'
, ()avg x jd p from every ' '

j iC∈p to its neighbours ' '()d jpN ,
' '

' ' '()

' '

() ()
'

, ()
()

j k i

k d j

d j

C

avg x jd ∈

− ⋅∑
= p p

p p x

p
p N

N
.

And similarly
' '

' ' '()

' '

() ()
'

, ()
()

j k i

k d j

d j

y C

avg y jd ∈

− ⋅∑
= p p

p p

p
p N

N
. Subsequently we obtain the projected average

distance on the ()iCx between any two neighbouring points of '
iC ,

'
,

' '

'

()
'

, ()
avg x j

Cj i

i

d

avg x i C
d C ∈

∑
= p

p
 .

And similarly
'

,
' '

'

()
'

, ()
avg y j

Cj i

i

d

avg y i C
d C ∈

∑
= p

p
 .

 49

3.2.4.4. Constructing 2D Grid Structures

We use a nonuniform 2D grid structure '()iG C to regularize points in '
iC . '()iG C is aligned

with the two bases ()iCx and ()iCy and centered at ()iCc . We find the ()iCx and ()iCy

bases aligned minimum enclosing rectangle '()s iR C of the points in '
iC . '()s iR C gives the

region in xyP that is covered by the grid structure '()iG C . Use '(())x s id R C and '(())y s id R C

to denote the length of the edges of '()s iR C that are parallel to ()iCx and ()iCy

respectively. We cut '()iG C uniformly into
'

'
,

(())

()
y s i

avg y i

d R C
x d C

c ⎡ ⎤= ⎢ ⎥⎢ ⎥
 number of x-slices along the

()iCx basis.

Similarly we also cut '()iG C into
'

'
,

(())
()

x s i

avg x i

d R C
y d C

c ⎡ ⎤= ⎢ ⎥⎢ ⎥
 number of y-slices along the ()iCy basis.

However the y-slices are not cut uniformly in terms of the distance. Instead we allocate

equal number of points in every y-slice. That is i

y

C
c points per y-slice. Such way of cutting

y-slices ensures the spacing of line segments extracted will match the density of points in

iC . We number x-slices from 1 to xc along the positive ()iCx direction and number y-

slices from 1 to yc along the positive ()iCy direction. The thm y-slice is addressed as

mySlice and similarly the thn x-slice is addressed as nxSlice . And now any gird square in

'()iG C can be address as ,m ng , where 1 ym c≤ ≤ and 1 xn c≤ ≤ .

For each grid square '
, ()m n ig G C∈ , we keep track of all points in '

iC that lie within it. If it

is the case that some point lies inside ,m ng , we then mark ,m ng as being occupied. We keep

 50

one more tag with ,m ng , we mark ,m ng as being influenced if ,m ng is influenced by some

nearby point. We associate an influence zone '()jZ p with every point ' '
j iC∈p . '()jZ p is

defined as a 2D rectangle centered at '
jp . For each '()jZ p , we set the length of its edges

parallel to ()iCx be '
,2 ()avg x jd⋅ p and the length of its edges parallel to ()iCy be

'
,2 ()avg y jd⋅ p . Any ,m ng that is overlapped with '()jZ p is marked as being influenced by

'
jp . By keeping a record of the tags “occupied” and “influenced”, essentially we obtain a

2D description of the surface geometry represented by the point cluster iC in '()iG C .

Not all the surface geometry information is recorded in '()iG C , in fact only partially. But

that is sufficient for our purpose. Extracting line segments from a fully reconstructed

object surface is left as part of our future work. Given a discrete set of points, we need to

know how to grow the line segments through them. For two sampled points, we need to

decide whether a line segment could pass through both of them or not, as there might be a

surface gap in-between them. In the (,)ε δ error bounded algorithm, we extend the line

segments in a try and error manner. Refer to Section 3.1.4 for the details. Here, via reading

the geometry information stored in '()iG C , we can easily know how to grow the line

segments. By checking the tags “occupied” and “influenced”, we are able to tell which part

of the surface region represented by iC is continuous, around which part there might be a

hole, and whether the line segments have already reached the boundary of iC thus they

should be stopped from growing longer.

 51

3.2.4.5. Tracing Out Line Segments

Since the ()iCy axis has already been aligned with the surface anisotropic direction

()f iCd , we are to extract line segments from the y-slices. Each mySlice contains a

sequence of n grid squares ,1 ,2 ,3 ,() { , , .., }m m m m m nG ySlice g g g g= . We trace every

()mG ySlice along the positive ()iCy direction. We attempt to extract a line segment from

each sequence of consecutive grid squares , , , 1 , 2 ,() { , , .., }p q m m p m p m p m qG ySlice g g g g+ += that

are all marked as being influenced, where 1 p q n≤ ≤ ≤ .

Let us denote the set of points contained in all gird squares of , ()p q mG ySlice as

'
,(())i p q mC G ySlice and their corresponding points in iC as ,(())i p q mC G ySlice , where

' '
,(())i p q m iC G ySlice C⊆ and ,(())i p q m iC G ySlice C⊆ . If ,(()) 4i p q mC G ySlice < , we would

just leave the points in ,(())i p q mC G ySlice as they are. Otherwise, we find the points

' ' '
,, (())s e i p q mC G ySlice∈p p that have the smallest and largest ()iCy coordinate respectively.

Then we use the two points ,, (())s e i p q mC G ySlice∈p p that correspond to '
sp and '

ep as the

endpoints of the line segment ,(())p q mL G ySlice extracted from , ()p q mG ySlice . Let us

denote the unit direction vector of ,(())p q mL G ySlice as ,((())) s e

s ep q mL G ySlice = p - p
p - pd . We

then compute the average normal of all points in ,(())i p q mC G ySlice ,

(()) (()), ,

, ,
, (()) (())

(())
k k

C G ySlice C G ySlicek i p q m k i p q m

i p q m i p q m
avg p q m C G ySlice C G ySlice

G ySlice ∈ ∈
∑ ∑

= p p

n n

n . Denote the dot product between

,(())avg p q mG ySlicen and ,((()))p q mL G ySliced as

 52

, , ,(()) ((()))avg p q m p q md G ySlice L G ySlice= ⋅n d n d . Eventually the normal of the line segment

,(())p q mL G ySlice is computed out as , , ,

, , ,

(()) ((()))
, (()) ((()))

((())) avg p q m p q m

avg p q m p q m

G ySlice d L G ySlice
p q m G ySlice d L G ySlice

L G ySlice − ⋅

− ⋅
= n d

n d

n d

n d
n .

,((()))p q mL G ySlicen is perpendicular to the line segment ,(())p q mL G ySlice . See Figure 25

and 26 for the hybrid point and line segment models obtained.

3.2.5. Observations, Problems and Discussions

Our shape approximation based line segment extraction algorithm produces hybrid point

and line segment representations that are truly faithful to the surface geometry represented

by the scanned point cloud. In this algorithm, a normal variation tolerance nδ is used to

control the maximum shape approximation error. Due to the approximation nature of this

approach, in case when nδ is quite large, a lot of surface geometry details could become

lost in the new hybrid models and surface topology could be altered as well. Like the first

(,)ε δ error bounded algorithm, this second line segment extraction algorithm could not

guarantee a hole in rendered surface images either. We found that often there are slightly

bigger visible holes. However better than the first greedy algorithm, this second algorithm

performs far less dependent on the scanning process of point clouds.

We have seen work on tracing curvature lines on triangle meshes [CAD04, MaKo04]. To

extract line segments from point clouds, it seems to be quite promising to similarly trace

curvature lines on point clouds first and subsequently break the curvature lines into straight

line segments. However there are two difficulties that hinder us from taking this approach.

First, to trace curvature lines, the surface must be known in advance. Both [CAD04] and

 53

[MaKo04] work on triangle meshes, so they do have a complete surface description.

However we have no idea of what the surface represented by a discrete set of points looks

like. Or otherwise surface reconstruction algorithms must be used to recover the surface

first. However this would make the problem much more complicated. We leave the

problem of extracting line segments from reconstructed point set surfaces as part of

possible future work. The second problem still lies on the curvature estimation of point

cloud data. Without being able to estimate curvature information accurately, it would not

be of too much meaning to trace out the curvature lines first.

3.3. Contour Plane Based Line Segment Extraction

In this subsection we describe an algorithm that uses contour planes to cut out line

segments from triangle meshes. Our previous two algorithms in Section 3.1 and 3.2 extract

hybrid point and line segment models from point clouds, while this contour plane based

algorithm is able to extract pure line segment models from triangle meshes. The extracted

line segment model would be faithful to the given triangle mesh. Since the triangle mesh

gives a complete surface description, the rendered images using the line segment model

could be hole-free. The length of extracted line segments is dependant on the size of

triangles used in the input mesh.

Let d be a given value with the constraint that it is smaller than twice the cutoff radius of

the Gaussian kernel used in the reconstruction and low pass filter of our rendering

algorithm (see Section 4 and 5 for detailed discussions on filtering). Let us denote the input

triangle mesh as M . We choose two set of parallel contour planes P and =P to intersect

 54

M for line segments (see Figure 6). Any contour plane in P is perpendicular to all the

contour planes in =P , and consequently any contour plane in =P is perpendicular to all the

contour planes in P as well. The orientations of the contour planes in P and =P are

chosen arbitrarily without any preference, neither are they aligned with the bases of the

coordinate system of M .

For each triangle T ∈M , we first try intersecting it using contour planes in =P . With the

distance constraint d , we need to set the spacing distance =()d P between contour planes

in =P appropriately. Let θ be the intersected slope between the triangle T and contour

planes in =P . =()d P must satisfy =() sin()d d θ≤ ×P (see Figure 6). We thus set the value

of =()d P as
2= log (1 sin())()

2
dd θ⎡ ⎤⎢ ⎥

=P . With =()d P determined, we obtain one line segment

from each intersection between T and the contour planes in =P . The normal of the

intersected line segment inherits the normal of T . Sufficient number of line segments

Figure 6: The left and middle parts illustrate how we compute the spacing distance =()d P

between contour planes of =P . The right part shows the two set of perpendicular contour

planes =P and P that are used to cut triangle meshes.

 55

would be extracted using =()d P if θ is not too small. In case θ is quite small, which

implies T is nearly parallel to the contour planes in =P , we then choose the other contour

plane set P to intersect with T instead. Eventually the collection of line segments

extracted from all the triangles in M form a line segment model of M .

To extract a textured line segment model from a textured triangle mesh, texture coordinates

need to be assigned to the endpoints of line segments too. This can be done easily. We

simply have the texture coordinates of the line segments’ endpoints bilinearly interpolated

from the texture coordinates of the triangle’s vertices, the triangle from which the line

segments are extracted.

Points can also be obtained using our contour plane based algorithm. We obtain hybrid

point and line segment models by converting extracted line segments that are short than a

specified length into points, and obtain pure point models by converting all extracted line

segments into points. For the same reason to ensure that no hole will exist in the model,

distance between two extracted points must also be less than d . Thus given an extracted

line segment of length l , we convert it into 1l
d +⎡ ⎤⎢ ⎥ points at regular interval.

 56

Chapter 4.

Mathematical Framework for Surface Rendering

In this section, a rigorous mathematical framework for EWA point based rendering

procedure is presented. Two alternative approaches exist on top of this common

framework – screen space EWA splatting and object space EWA splatting. This

framework is an evolvement of Heckbert’s EWA resampling theory [Heck89], extending

texture mapping to point rendering. This framework defines a generic rendering paradigm.

Our rendering pipeline for surface line segment primitive is also founded on it.

In Section 4.1 we discuss Heckbert’s EWA resampling theory in great details. Then we

talk about the EWA splatting techniques in Section 4.2. Formulation of screen space EWA

splatting and Object space EWA splatting appear in Section 4.2.1 and 4.2.2

correspondingly. Most of mathematical derivations here are combined and modified from

[Heck89, ZPVG01, RuLe00].

4.1. EWA Resampling Filter

Images and textures are digitized and sampled at certain frequency in the world space of a

computer. Then they are warped onto screen and sampled to the screen grid before being

displayed out. Aliasing is caused throughout the course of both the first sampling and the

second sampling. To avoid aliasing artifacts, raising sampling frequency is what we can do

for the first sampling practice; for the second round of sampling, we prefilter the warped

 57

images before we sample. The prefiltering process stops high frequencies and passes only

low frequencies, thus enabling the subsequent sampling to meet the Nyquist criterion. The

entire process of warping, prefiltering and sampling is referred as resampling.

Ideal resampling is a resampling process that inputs a properly sampled signal, warps it,

and outputs a properly sampled signal, minimizing information loss [Heck89]. It is

consisting of four steps: reconstructing, warping, prefiltering and sampling.

1. Reconstruct the continuous signal from the discrete input signal

2. Warp the domain of the continuous signal

3. Prefilter the warped, continuous signal

4. Sample this signal to produce the discrete output signal

The mathematical formulation for ideal resampling process is derived as followings.

Given an input signal ()f u , a forward mapping from object space to screen space

()m=x u where the object space coordinates are (,)u v=u and the screen space

coordinates are (,)x y=x , the inverse mapping 1()m−=u x , a reconstruction filter ()r u

and a prefilter ()h x , it is the output signal ()g x we want to compute. Signal progresses

through the four resampling steps as bellowing:

Discrete input signal ()f u

Reconstructed input signal
2

() () () () ()c
k

f f r f r
∈

= ⊗ = −∑u u u k u k

 58

Warped signal 1() (())c cg f m−=x x

Continuous output signal
2

' () () () () ()c cg g h g h d= ⊗ = −∫x x x t x t t

Discrete output signal '() () ()cg g i=x x x

In step 1, we convolute the discrete input signal ()f u with the reconstruction filter ()r u

producing the continuous signal ()cf u in object space. In step 2, we warp the domain of

the ()cf u from object space to screen space using the inverse mapping 1()m−=u x . We

get the warped continuous signal ()cg x in screen space. In step 3, we convolute ()cg x

with the prefilter ()h x . This gives us the low pass filtered continuous signal ' ()cg x in

screen space. Finally, we sample ' ()cg x with the impulse function ()i x giving us the

discrete output signal ()g x . (See Figure 7)

Expand the above signal progression procedure in reverse order, for every x aligned to

screen pixel grid we has

 Figure 7: EWA resampling filter block diagram.

 59

2

22

2

2

'

1

1

() ()

() ()

() () (())

() (,)

where : (,) () (())

c

c

k

k

g g

g h d

h f r m d

f

h r m d

ρ

ρ

−

∈

∈

−

=

= −

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

=

= − −

∫

∑∫

∑

∫

x x

t x t t

x t k t k t

k x k

x k x t t k t

R

ZR

Z

R

.

(,)ρ x k is called resampling filter [Heck89]. (,)ρ x k specifies the weight contributed by

an input sample k in object space to an output sample x in screen space.

Substitute ()m=t u into (,)ρ x k , yields

2

(,) (()) ()

where: is the determinant of Jocabian matrix u v

u v

mh m r d

x xm
y y

ρ ∂
= − −

∂

⎧ ⎫∂
⎨ ⎬∂ ⎩ ⎭

∫x k x u u k u
u

u

R
.

Next we make two assumptions. The first one is local affine approximation assumption,

which states that, in object space, for u in the neighborhood of ou , given 1()o om−=u x we

have () ()
o oo om J= + ⋅ −u uu x u u where ()

o o
mJ ∂

=
∂u u
u

 is the value of Jacobian matrix

⎭
⎬
⎫

⎩
⎨
⎧

=
vu

vu

yy
xx

J evaluated at ou . The second one is affine mapping assumption made for

both forward mapping m and backward mapping 1−m . This gives us the formula

 60

1 1 1() () ()
o o

l m m− − −− = −
u u

x y x y where l and 1−l are linear functions. Keep in mind that linear

mappings can be expressed in terms of Jacobians, ()
o

l J= ⋅uu u and 1 1()
o

l J− −= ⋅
u

x x .

Substitute formulas implied by above two assumptions into the resampling filter (,)ρ x k ,

(,)ρ x k get further simplified in the neighborhood of o=x x as following,

2

2

2

' 1 '

' 1

' 1 ' '

(,) (,)

(()) ()

((())) () where: () ()

(()) ()

(()) where: () () ()

o

o o

o o o

o

o o o o

o

h m r J d

h l m r d h J h J

h m r d

m h r

ρ ρ

ρ ρ

−

−

−

=

= − −

= − − = ⋅

= − −

= − = ⊗

∫

∫

∫

u

u u

u u u

u

u u u u

x k x k

x u u k u

x u u k u u u

x u u k u

x k u u u

R

R

R

.

Now the output signal ()g x at o=x x can be expressed as a convolution of the discrete

input signal with the resampling filter,

2

2

' 1

' 1

' 1

() () (())

() (())

()(())

o o

o o

k

k

g f m

f m

f m

ρ

ρ

ρ

−

∈

−

∈

−

= −

= −

= ⊗

∑

∑ u u

u u

x k x k

k x k

x

Z

Z

.

Finally, we replace both reconstruction filter and prefilter with Gaussians, yielding

() ()
rVr g=u u and () ()

hVh g=x x where rV and hV are the variances of these Gaussians.

 61

Since elliptical Gaussian is closed under convolution, this makes it possible for us to write

resampling filter at o=u u into a much simpler form,

1 1

1 1

' '

'

() ()

() ()

() ()

()

o

o

T r
ho o

T
h ro o

VJ V J

J V J V

h r

g g

g

ρ ρ

− −

− − +

=

= ⊗

= ⊗

=

u u

u u

u

u

u u

u u

u u

u

.

We notice that the resampling filter ' ()ρ u is in fact of elliptical Gaussian shape. Heckbert

names it Elliptical Weighted Average (EWA) filter. Elliptical Gaussians are closed under

affine warps and convolution, so they form a very convenient class of filters for image

resampling [Heck89]. EWA resampling filter can be implemented efficiently at the same

time minimize aliasing.

4.2. EWA Splatting

Point rendering procedure is equivalent to the resampling process of textures. However,

different from texture functions which are 2D functions, surface functions are of 3D. We

need to define surface function from point cloud firstly before we can actually resample it.

Let us use ()qN to denote the set of neighbouring sampled points of an arbitrary object

surface point q . We construct a 2D local parameterization S in the neighborhood of q .

Let ∈u S be the local coordinate of q , and k ∈u S be the local coordinate of some

sampled point ()k ∈p qN . The continuous surface function can thus be defined

 62

as
()

() ()
k

c k k kf w r
∈

= −∑
p q

u u u
N

, where kw is the color contribution of kp to q and kr is the

reconstruction filter of kp .

Thereafter, we warp surface function ()cf u to screen space using forward mapping

()m=x u , obtaining the continuous screen space signal 1() (())c cg f m−=x x . Next we

apply prefiltering operation to ()cg x , resulting in the low pass filtered continuous function

2

' () () () () ()c c cg g h g h d= ⊗ = −∫x x x t x t t
R

. Lastly, we sample ' ()cg x with impulse

function ()i x , getting '() () ()cg g i=x x x .

Figure 8: Two forms of EWA splatting, in object space and screen space respectively.

Reconstruction filters are colored red and prefilters are colored blue.

 63

Combine reconstruction, warping and prefiltering in different order, we obtain EWA

resampling filters belonging to different domains. This leads to two different ways to

resample and splat points (See Figure 8).

4.2.1. Screen Space EWA Splatting

We write output function ()cg x aligned to pixel grid as a weighted sum of screen space

resampling filter as following,

'

()

'

' 1

() ()

()

where: () ()(())

() (())

k

c c

k k

k k k k

k k

g g

w

r h m

r r m

ρ

ρ

∈

−

=

=

= ⊗ −

=

∑
p q

x x

x

x x u

x x

N .

Here, x corresponds to the screen projection of object surface point q . The resampling

filter ()kρ x for the point kp at ku is combined from the warped reconstruction filter

' ()kr x and the prefilter ()h x in screen space. Replace both reconstruction filter and prefilter

with Gaussian kernels, () ()r
kV

r g=u u and () ()h
kV

h g=x x . Denote the value of Jacobian

matrix evaluated at ku as kJ . Then with the use of local affine approximation assumption

and affine mapping assumption, we get ()kρ x further simplified,

1

1() (())
| | r T h

k k k k
k k kJ V J V

k

g m
J

ρ − +
= −x x u , which is named as screen space EWA resampling

filter in [ZPBG01]. The point rendering procedure in screen space works in such a way:

 64

project every sample point kp at ku from object space onto screen space, and splat the

resampling filter ()kρ x at kx .

4.2.2. Object Space EWA Splatting

Let us rearrange the screen space EWA resampling filter ()kρ x as following,

'

' 1

' 1

'

'

'

() ()(())

()((()) ())

()((()))

()()

()

where: () | | ()

k k k k

k k k k k

k k k k

k k

k

k k k

r h m

r h m m m

r h J m

r h

h J h J

ρ

ρ

−

−

= ⊗ −

= ⊗ −

= ⊗ ⋅ −

= ⊗ −

=

= ⋅

x x u

x u

x u

u u

u

u u

.

The output function ()cg x aligned to pixel grid can then be formulated as

'

'

()

() ()

()
k

c c

k k

g g

w ρ
∈

=

= ∑
p q

x x

u
N

.

The resampling filter ' ()kρ u for each point kp at ku is combined from the reconstruction

filter ()r u and the warped prefilter ' ()kh u in object space. We still use Gaussian kernels for

the reconstruction filter and prefilter. With the two affine assumptions, we get ' ()kρ u

simplified,
1 1

' () ()Tr h
k k k k

k kV J V J
gρ

− −+
= −u u u which is called object space EWA resampling filter.

The point rendering process in object space works in the following way: splat the

 65

resampling filter ' ()kρ u at each sample point kp in object space and project every splat

onto screen.

 66

Chapter 5.

Surface Rendering with Line Segments

In this section, we discuss how to render surface line segment primitive by introducing a

mathematical formulation of the object space EWA resampling filter for line segments.

However our derivation shows that the resampling filter has no close form, which is also

true in screen space. To overcome this theoretical difficulty, we propose an approximation

method to splat the resampling filter in object space instead [Wong03]. Our method is

constructed on top of the common EWA surface rendering framework. Our method can be

implemented easily and efficiently. Further more the rendering results in our experiments

show that there is no visible image quality scarification.

Although we only implement our approximation method for object space line segment

EWA splatting, we believe that, with little modifications, the screen space line segment

EWA splatting can be similarly implemented as well. In our formulation of the line

segments’ resampling filter, each line segment is allowed to be assigned with only one

color. However practices tell us rendering linear texture mapped line segments can still

produce good quality images. We describe such a texturing algorithm for line segments as

well.

We organize our presentation in this section as such: in Section 5.1 we step by step derive

the mathematical formulation of the object space EWA resampling filter for line segments.

 67

In Section 5.2, we first illustrate the object space EWA splatting procedure of line

segments. Then we describe the geometric observations we have made from this splatting

procedure. Subsequently we give out the details of our rendering algorithm. Lastly we

describe how to render texture mapped line segment models.

5.1. Object Space EWA Resampling Filter for Line Segments

This subsection is split into two parts. In the first part we work out the resampling filter’s

formula. In the second part we show the steps for evaluating the formula, hence concluding

the none-existence of the closed form. We use the method presented in Ren et al.’s work

[RPZ02] to compute the Jacobian matrix.

5.1.1. Mathematical Formulation

For any arbitrary object surface point q , we construct a 2D local parameterization S in its

neighborhood. Let u be the local coordinate of q . There exists a set of sampled surface

lines segment L that lie in q ’s neighborhood. Let kL represent a line segment belonging

to L . For a point in kL , we use ()k tp to denote, where t is the Euclidian distance from

()k tp to kL ’s endpoint o which is chosen as kL ’s starting endpoint, and [0,]kt l∈ . Here

kl denotes the length of kL . Let ()k tu be the local coordinate of point ()k tp . Having ()r u

representing the reconstruction filter for point, the reconstruction filter ()kR u of a line

segment kL is calculated by integrate ()r u along the line segment,

0
() (())

l

k kR r t dt= −∫u u u . The object surface function can then be defined by summing

 68

()kR u for L . That is
0

() (())
k

l

c k k
L

f w r t dt
∈

= −∑ ∫u u u
L

 where kw is the value of kL ’s color

contribution to surface points. (See Figure 9)

We then warp surface function ()cf u to screen space using forward mapping ()m=x u ,

obtaining the continuous screen space signal 1() (())c cg f m−=x x . Next we apply

prefiltering operation to ()cg x , resulting in the low pass filtered continuous function

2

' () () () () ()c c cg g h g h d= ⊗ = −∫x x x ξ x ξ ξ . Lastly, we sample ' ()cg x with impulse

function ()i x , getting '() () ()cg g i=x x x .

Expand above formulas of the four rendering steps in reverse order; we then obtain the

continuous output function ()cg x aligned to screen pixel grid as following,

()
2

2

2

'

1

0

1

0

1

0

() ()

(() ()) ()

(() ()) ()

()

where: () (() ()) ()

k

k

k

c c

l

k k
L

l

k k
L

k k
L

l

k k

g g

w r m t dt h d

w r m t h d dt

w

r m t h d dt

ρ

ρ

−

∈

−

∈

∈

−

=

= − −

= − −

=

= − −

∑∫ ∫

∑ ∫ ∫

∑

∫ ∫

x x

ξ u x ξ ξ

ξ u x ξ ξ

x

x ξ u x ξ ξ

R

R

R

L

L

L

.

Substitute the object space to screen space mapping ()m=ξ u into ()kρ x , yields

 69

2
0

() (()) (())

where: is the determinant of Jocabian matrix

l

k k
mr t h m d dt

m m

ρ ∂
= − −

∂

∂ ∂
∂ ∂

∫ ∫x u u x u u
u

u u

R
.

The general forward mapping ()m u in ()kρ x can then be replaced locally by (,) ()k tm u

which is the forward mapping defined at every point ()k tp of line kL . This gives us

2
(,) (,)0

(,)
(,)

() (()) (())

where:

l

k k k t k t

k t
k t

r t h m J d dt

m
J

ρ = − −

∂
=

∂

∫ ∫x u u x u u

u

R

.

Use affine mapping assumption and local affine approximation assumption made, we can

rewrite ()kρ x as bellowing,

2

2

' 1
(,)0

' 1
(,)0

' 1
(,) (,)0

'
(,) (,)

' '
(,)

() (()) ((())

(()) (())

(() ())

where: () ()

where: () () ()

l

k k k t

l

k k t

l

k t k t k

k t k t

k t

r t h l m d dt

r t h m d dt

m t dt

h J h J

h r

ρ

ρ

ρ

−

−

−

= − −

= − −

= −

= ⋅

= ⊗

∫ ∫

∫ ∫

∫

ux u u x u

u u x u u

x u

u u

u u u

R

R

.

We then replace the point reconstruction filter and prefilter with Gaussian

kernels, () ()
rVr g=u u and () ()

hVh g=x x where rV and hV are the variances of these

Gaussians. We get

 70

1 1
(,) (,)

'
(,) (,)

(,) (,)

() ()

()

()

h

T
k t h k t

k t k t

k t V k t

J V J

h J h J

J g J

g
− −

= ⋅

= ⋅

=

u u

u

u

,

and

1 1
(,) (,)

1 1
(,) (,)

' '
(,) () () ()

() ()

()

T r
k t h k t

T
k t h k t r

k t

VJ V J

J V J V

h r

g g

g

ρ

− −

− − +

= ⊗

= ⊗

=

u u u

u u

u

.

Now substitute our newly derived '
(,) ()k tρ u back into ()kρ x , we obtain the following

equivalence relation,

1 1
(,) (,)

1 1
(,) (,)

1
(,)0

0

'

() (() ())

(())

()

T
k t h k t r

T
k t h k t r

l

k k t kJ V J V

l

kJ V J V

k

g m t dt

g t dt

ρ

ρ

− −

− −

−

+

+

= −

= −

=

∫

∫

x x u

u u

u

.

Thus we have formulated ' ()kρ u – the object space EWA resampling filter of line segment

kL . ' ()kρ u is combined from reconstruction filter ()r u and kL ’s warped prefilter

1 1
(,) (,)0

()T
k t h k t

l

J V J
g dt

− −∫ u which is referred as line segment’s field function with Gaussian kernel

in the area of convolution surface [Sher99].

 71

5.1.2. Evaluation

To evaluate line segment kL 's resampling filter ' ()kρ u , we need to determine the Jacobian

matrix bound with every point ()k tp first.

We construct a local parameterization for each point ()k tp . It is the tangent plane given by

line segment kL ’s normal kn where the neighborhoods of all the points ()k tp in line

segment kL lie on. For convenience we use n to denote kn in subsequent discussions. Use

s and t denote the pair of orthogonal basis vectors of the point ()k tp ’s 2D neighborhood.

We always align t with the line segment kL , t pointing from kL ’s starting endpoint o to

another endpoint. Having s perpendicular to both t and n , the triple (, ,)s t n thus forms a

right hand local 3D coordinate system centered at ()k tp (See Figure 9) .

Figure 9: The left part illustrates the local parameterization around any object surface point

q , where the line segments kL ∈L are lying in q ’s neighbourhood. And the right figure

illustrates the local parameterization of a point ()k kt L∈p . The blue circle denotes he

boundary of ()k tp ’s neighbourhood.

 72

A point at u with local coordinate (,)s tu u in ()k tp ’ neighborhood thus corresponds to a

point () ()o
k s tt u u= + ⋅ + ⋅ + ⋅p u o t s t in object space. Make the assumptions that the object

space to camera space mapping only contains uniform scaling S , rotation R , and

translation T , this is similar to what Liu has done [RPZ02]. Then the corresponding point

in camera space is

() ()

(())

()

where: (); ;

c o
k k

s t

s t

s t

t u u

t u u

u t u

= ⋅ ⋅ +

= ⋅ ⋅ + ⋅ + + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

= ⋅ ⋅ + + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

= + + +

= ⋅ ⋅ + = ⋅ ⋅ = ⋅ ⋅

R S T

R S T R S R S

R S T R S R S R S

R S T R S R S

p u p u

o t s t

o t s t

o s t

o o s s t t

.

 Figure 10: Computation of the Jacobian matrix (,)k tJ for point ()k tp .

 73

More specifically, the 3D vectors ()x y zo ,o ,o=o , (, ,)x y zs s s=s , and (, ,)x y zt t t=t in

camera space. (See Figure 10)

Next we project the camera space point ()c
kp u to screen space point x . This includes the

projection by perspective division, followed by a scaling with a factor η [RPZ02].

2 tan()
2

where: is viewport height

is the field of view of the view frustum

h

h

v
fov

v

fov

η =

.

The coordinate of (,)s tx x=x is

0

1

0 1

()
()

()
()

where: and are translation constants

x s x t x
s

z s z t z

y s y t y
t

z s z t z

o u s t u tx c
o u s t u t

o u s t u t
x c

o u s t u t

c c

η

η

+ + +
= ⋅ +

+ + +

+ + +
= − ⋅ +

+ + +
.

Since every point ()k tp itself is the center of its own neighborhood, the local coordinate of

()k tp is thus (0,0) . The Jacobian matrix),(tkJ at point ()k tp consists of partial derivates

evaluated at)0,0(

(,)

2

()1
()()

s s s t
k t

t s t t

x z z x x z z x x z z x

z y y z z y y z z y y zz z

x u x u
J

x u x u

s o s o t s t s t t o t o
s o s o t s t s t t o t oo t t

η

∂ ∂ ∂ ∂⎡ ⎤
= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

− + − −⎡ ⎤
= ⋅ ⎢ ⎥− + − −+ ⋅ ⎣ ⎦

.

 74

Once we obtain),(tkJ , we then can derive 1
),(

−
tkJ and

T

tkJ 1
),(

− . To simplify subsequent

formulas, we let

2

2

2

2

1 (())
()

1 ()
()

1 (())
()

1 ()
()

J x z z x x z z x
z z

J x z z x
z z

J z y y z z y y z
z z

J z y y z
z z

e s o s o t s t s t
o t t

f t o t o
o t t

g s o s o t s t s t
o t t

h t o t o
o t t

η

η

η

η

= ⋅ − + −
+ ⋅

= ⋅ −
+ ⋅

= ⋅ − + −
+ ⋅

= ⋅ −
+ ⋅

.

With Je , Jf , Jg and Jh substituted, we have followings

(,)

1
(,)

1
(,)

1

1T

J J
k t

J J

J J
k t

J JJ J J J

J J
k t

J JJ J J J

e f
J

g h

h f
J

g ee h g h

h g
J

f ee h g h

−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

.

Recall previously we have the resampling filter

1 1
(,) (,)

1 1
(,) (,)

1
(,)0

0

'

() (() ())

(())

()

T
k t h k t r

T
k t h k t r

l

k k t kJ V J V

l

kJ V J V

k

g m t dt

g t dt

ρ

ρ

− −

− −

−

+

+

= −

= −

=

∫

∫

x x u

u u

u

.

 75

For simplicity reason, let’s assign rtkhtktk VJVJV
T

+= −− 1
),(

1
),(),(and 1

(,) () ()k t km t−= −x u , we then

have
(,)0

()
k t

l

k Vg dtρ = ∫x . Quite often we use identity matrix for the variance matrices of

both reconstruction filter and prefilter [Heck89, ZPVG01, RPZ02],
1 0
0 1rV ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and

1 0
0 1h hV c ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. Then we get

1 1
(,) (,) (,)

2 2

2 2 2

1
()

T

k t k t h k t r

J J h J J J J

J J J J J J J J J J h

V J V J V

h f c g h e f
e h g f g h e f e g c

− −= +

⎡ ⎤+ + − −
= ⎢ ⎥− − − + +⎣ ⎦ .

To keep formulas simple and concise, we let 2

22

)(JJJJ

hJJ

fghe
cfh

a
−

++
= , 2)(JJJJ

JJJJ

fghe
fehg

b
−

−−
=

and 2

22

)(JJJJ

hJJ

fghe
cged

−
++

= . We then have ⎥
⎦

⎤
⎢
⎣

⎡
=

db
ba

V tk),(and

(,)

1
(,)

(,)

'

0

1
2

10
2

(,)

(,)

(,) 1
2

(,)

(,) 2

1
(,) (,)

() ()

1 exp
2

1where:
2

1
2()

k t

T
k t

T
k t

l

k k V

l V

k t

d b
d

b a
k t

k t

k t

k t

T
k t k t

g dt

dt
V

c e

c
V

d
ad b

h V

ρ ρ

π

π

−−

−⎡ ⎤
⎢ ⎥−⎣ ⎦

−

= =

=

=

=

= −
−

=

∫

∫

x u

.

 76

Now, the formula of object space EWA resampling filter for every sampled surface line kL

is of the form (,) (,).'
(,)0

() () k t k t
l d h

k k k tc e dtρ ρ= = ∫x u . The only unknown variable left is t and

others are constants. We then expand the formulas all the way back, we find

(,) (,)
()
()k t k t

p td h
q t

⋅ = where)(tp and)(tq are polynomials of degree 6. In general, an

exponential whose exponent is a rational function cannot be integrated in closed form.

Hence the resampling filter is of non-closed-from.

5.2. Object Space EWA Splatting for Line Segments

Although the straightforward implementation of the resampling filter’s formula is

unattainable, being aware of the existence of several geometric equivalences between

Gaussian textures mapped polygons and Gaussian based filters through the rendering

procedure, we propose an approximation method to splat line segment’s resampling filter.

5.2.1. Splatting Procedure Illustrated

A line segment’s prefilter on screen is integrated from circular Gaussians along the line

segment. Theoretically, the prefilter has infinite support; however in practice only a limited

range of Gaussian influence is computed. A cutoff radius R is applied to Gaussian

function. Different from the screen space to object space mapping 1()m−=u x used in the

warping stage of point rendering, which is assumed to be affine, we perspective project a

line segment back to object space. However, it is the case that we still keep the affine

assumptions for the mappings in the neighborhoods of points in the line segment.

 77

Following warping, we convolute the warped prefilter for the line segment with the

reconstruction filter which is a circular Gaussian as well, resulting in the splatted

resampling filter for line segments in object space. As the same case for the prefilter, the

reconstruction filter is also cut within a limited distance. Finally we forward perspective

project the line segment splat onto screen. (See Figure 11)

5.2.2. Geometric Observations

The prefilter is characterized by line segment’s field function with Gaussian kernel.

Examining the formula as well as the graphs plotted, it turns out that the prefilter can

essentially be sliced into three portions in terms of its weight distribution. This includes

two endpoint portions, and one middle portion. While the endpoint portions are of circular

shapes, the middle portion consists of parallel straight line segments connecting endpoint

portions. Inside the prefilter, locations that receive the same amount of influences form

 Figure 11: Object space EWA splatting procedure for line segments.

 78

into closed contour lines. As Gaussians are cut with R , therefore the boundary of the

prefilter is enclosed. Geometrically speaking, it is the two most outward line segments of

the middle portion and circular arcs of the endpoint portions being tied up together into the

prefilter’s exterior border. In addition, the two boundary line segments are tangent to both

circles. The weight contributions received by points along the line segment are higher than

those received by points within endpoint circles. (See Figure 12)

Since we perspective project the prefilter when carrying out warping operation, the straight

line segments in the middle portion remain straight in object space, however endpoint

circles would be deformed into distorted ellipses. Geometric analysis show that the

boundary of the warped prefilter keeps in closed and the two bordering line segments stay

tangent to distorted ellipses centered at endpoints [Wong03].

 Figure 12: Geometric observations on line segment’s prefilter.

 79

Convoluting with the reconstruction filter expands and blurs the warped prefilter, yielding

the resampling filter. The border of the warped prefilter uniformly stretches out a distance

of cutoff radius R . As a result, the closure property of filter’s boundary is still preserved;

bordering line segments remain tangent lines. (See Figure 13)

5.2.3. The Approximation Method

5.2.3.1. Approximating The Shape

We find endpoints’ resampling filters’ shapes in object space first. With affine mapping

assumption and local affine approximation assumption made around endpoints’

neighborhoods, it is the case that endpoints’ resampling filters are of elliptical shape,

because we use circular Gaussian as point’s prefilter on screen. Ren et al. propose a

method to compute it [RPZ02]. Recall that the formula for point’s object space EWA

resampling filter is
1 1

' () ()Tr h
k k k k

k V J V J
gρ

− −+
=u u . Let T

k
h

kk
r

kk JVJVM 11 −−+= . We use the method

 Figure 13: Geometric observations on the splatting procedure of line segments.

 80

discussed in 5.1.2 to find endpoints’ Jacobian matrices, hence determining kM . Since in

practice we use identity matrix for both the reconstruction filter and prefilter’s variance

matrices, IV r
k = and h

kV I= , the matrix kM is thus a symmetric matrix, and it can be

decomposed as following,

0

1

() ()

cos() sin()
where: ()

sin() cos()

0
0

T
kM Rot Rot

Rot

r
r

θ θ

θ θ
θ

θ θ

= ⋅ Λ ⋅ Λ ⋅

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦

.

The rotation matrix)(θRot consists of eigenvectors, and scaling matrix Λ consists of

square roots of eigenvalues of kM . Let ()Rot θ= ⋅Λ ⋅u y , which is a linear relationship,

we then get 1T T
kM −=y y u u and the following equation,

1
2

0 1 0 1

1 1(()) ()
2

T

kM Ig Rot e g
r r r r

θ
π

−
⋅Λ ⋅ = =

⋅

y y
y y .

The above suggests that we can obtain an endpoint’ resampling filter’ elliptical shape by

scaling a circle with radius R , 0r and 1r in its two orthogonal basis vectors’ directions

respectively, followed by a counter clockwise rotation of angle θ . Notice that the two

ellipses centered at the line segment’s endpoints and lie on the plane which is given by the

line segment’s normal kn .

 81

Next we determine the line segment’s resampling filter’s bordering line segments. The two

boundary line segments are tangent to the ellipses centered at endpoints; this is one of our

geometric observations. Wong proposes a method to compute them out by solving this 2D

geometry problem in its dual space [Wong03]. Let us number the points where the

boundary line segments meet the ellipses 1, 2, 3 and 4. For convenience, we call the two

tangent line segments, line 1-2 and line 3-4 afterwards. The line segments that connect

tangent points on the same ellipse are referred as crossing line segments; they are line 1-4

and line 2-3 respectively. Line 1-4 intersects with the actual surface line segment at point 9,

and point 10 for line 2-3, forming the line 9-10 (See Figure 14).

So far, we only get the boundary of the line segment’s resampling filter. From the

geometric observations, we know that the middle portion of the resampling filter is made

up from Gaussian blurred straight line segments, and endpoint portions are accumulated

 Figure 14: Long line segment, short line segment and weight texture mapping.

 82

from sequences of circular Gaussians. Therefore before we map weight textures to the

resampling filter, we need to further cut down the filter’s shape. There are two scenarios,

depending on whether the two endpoint ellipses intersect with each other or not. If the

ellipses overlap, we call it short line segment case; otherwise it is the long line segment

case.

In either case, we extend the line 9-10 further longer, obtaining a set of intersection points

between the line 9-10 and the two endpoint ellipses. For the long line segment case, we

record all the intersection points 5, 6, 7 and 8. For the short line segment case, we only

keep intersection points 5 and 8. Next, we compute out a set of straight lines that are

tangent to the endpoint ellipses at these intersection points. We then intersect these newly

computed tangent lines with line 1-2 and line 3-4, slicing the resampling filter into a

number of connected quadrilaterals. For a long line segment case, we have four such newly

computed tangent lines. They are line 11-18, line 12-17, line 13-16 and line 14-15. The

resampling filter is split into 10 small quadrilaterals. The quadrilateral 11-12-17-18 and 13-

14-15-16 bound the line segment’s two endpoint portions respectively, while quadrilateral

12-13-16-17 bounds the middle portion. For a short line segment case, we have only two

such newly computed tangent lines. They are line 11-18 and line 14-15. Since the two

endpoint ellipses intercross, this implies that the surface line segment may be too short

such that its middle portion vanishes away, only left with endpoint portions. Thus one

extra line is needed to separate the two endpoint portions. We choose the line that connects

the intersection points between the two ellipses. This separating line crosses the boarding

tangent line segments line 1-2 and line 3-4 at point 12 and 17 respectively. The resampling

 83

filter is thus decomposed into 8 small quadrilaterals. Endpoint portions are bounded by

quadrilateral 11-12-17-18 and 12-14-15-17 (see Figure 14).

5.2.3.2. Mapping Weight Textures

The weight texture is generated using line segment field function with Gaussian kernel of

cutoff radius R . Let us place a line segment L of length l , where 2l R> , in a 2D

coordinate system, with L ’s starting point o coincide with the 2D coordinate system

center. We align the line segment along the positive x axis. We compute the following,

1

2

21- 2 21 1 12(,) (((-)) ())2 2 2 2

21- 2 21 12(,) (((-)))2 2

y
T x y e erf R y erf x

y
T x y e erf R y

π
π

π
π

= +

=

Here, x gives the x coordinate value. It measures the distance to L ’s starting point o .

While y gives the y coordinate value. It is in the direction perpendicular to the line

segment L . erf denotes the error function. The result of the integration of unit Gaussians

from [0,]r is the weight texture for endpoint portion, given by 1T when 2 2 2x y R+ ≤ , and

by 2T when 2 2 2x y R+ > , 0 x R< < and R y R− < < ; while the result of the integration of

unit Gaussians from (,)r l r− is the weight texture for middle portion, given by T2 when

R x l R< < − and R y R− < < .

Now, the task of mapping weight texture to resampling filter becomes mapping weight

textures belonging to different portions to corresponding bounding quadrilaterals. For a

 84

long line segment, we need to map the weight texture for the middle portion to the

quadrilateral 12-13-16-17, and the weight texture for the endpoint portion to quadrilateral

11-12-17-18 and 13-14-15-16. For a short line segment, we only need to map the texture

for the endpoint portion to quadrilateral 11-12-17-18 and 12-14-15-17. Note that, to further

reduce the texture mapping errors caused by the affine mapping assumption, we can divide

a piece of weight texture into 2 or 4 smaller pieces, and map them to those smaller

quadrilaterals, such as the quadrilateral 11-1-9-5 bounded in 11-12-17-18. However we

learn from practices that this is only necessary when the line segments are rendered very

close to the eyes.

5.2.3.3. Assigning Scaling Factors

Lastly, notice that in the equation
1
2

0 1 0 1

1 1(()) ()
2

T

kM Ig Rot e g
r r r r

θ
π

−
⋅Λ ⋅ = =

⋅

y y
y y , we

have a scaling factor
10

1
rr

 in front of the unit Gaussian function, this means we need to

scale the basis function for every point along the line segment, before we accumulate them

together. By tracing the formulas derived in Section 5.1.2, we find that the scaling factor is

non-linear along the line segment. However, to facilitate simplicity and efficiency of

implementation, we approximate the scaling factor linearly along the line segment. We

compute
10

1
rr

 at the line segment’s two endpoints explicitly, and interpolate it for the

remaining points in the line segment. Our results show that there is nearly no visual artifact

on account of this approximation approach.

 85

5.2.4. Rendering Texture Mapped Line Segments

As what we have already discussed in Section 3.3, we only sample image texture

coordinates at the two endpoints of each line segment. Similar to mapping weight scaling

factors discussed in Section 5.2.3.3, we linearly interpolate the texture coordinates along

the line segment as well. Linearly interpolating texture coordinates may cause some visible

artifacts when sampled line segments are too long. We notice that texturing short line

segments would result less interpolation errors. Generally, this linear interpolation method

maps texture images to line segment models well (see Figure 15).

Figure 15: On the left is a textured line segment plan. In the middle is a cylindrical surface

mapped with a cat image. On the right is a line segment human head model rendered with a

human face image mapped. This line segment head model is obtained using our contour plane

based line segment extraction algorithm.

 86

Chapter 6.

Implementations

6.1. Surface Geometry Processing Pipeline

The surface geometry processing pipeline serves for our (,)ε δ error bounded line segment

extraction algorithm in Section 3.1 and the shape approximation based line segment

extraction algorithm in Section 3.2. Both of these two line segment extraction algorithms

target at obtaining surface line segments from scanned point clouds. However a discrete set

of scanned points convey zero connectivity information. Without even knowing the local

surfaces nearby the points, none of the surface geometry information needed by the line

segment extraction algorithms can possibly be provided. Thus the tasks of this surface

geometry processing pipeline are first, establishing the neighbouring connectivity

information among the scanned points. Second, compute out the basic surface geometry

information required by the line segment extraction algorithms, in particular the surface

normal and curvature.

This subsection is organized in such way: we first go through each computation stage in

the geometry processing pipeline one by one. We then devote our discussions to the

normal and curvature estimation problem. Lastly we talk out some implementation

problems and performance issues.

 87

6.1.1. Geometry Processing Pipeline Illustrated

The geometry processing pipeline consists of five stages (see Figure 16). They are

constructing 3D grids structure, extracting Euclidean neighbours, estimating normals,

extracting local Delaunay neighbours and estimating curvatures. The pipeline takes a

scanned point cloud 1 2 3{ , , .., }n= p p p pP as input.

Constructing 3D Grid Structure. In this stage we build a simple 3D grid structure 3G over

the point cloud P . 3G serves as a global spatial data structure, providing location

information for P . We first find the minimum axis aligned bounding box B of the points

in P . B gives the size of 3G . We then split 3G uniformly into N N N× × small cubic

grids. The value of N depends on the number of points in P . If P is large, we would

then also set N to be bigger so as to keep the average number of points in the cubic grid

sufficiently small. For each i ∈p P , we determine the cubic gird 3()ig G∈p it lies in. For

 Figure 16: The geometry processing pipeline.

 88

each cubic gird 3
, ,r s tg G∈ , we keep track of all the points in P that locate within it,

, ,()r s tgP .

Extracting Euclidean Neighbours. To establish connectivity information among points in

P , we try to find the nearest k points ()e ipN for each i ∈p P . We first check whether

(())ig k≥pP . If this is the case then the nearest k points in (())ig pP would be stored

into ()e ipN . Otherwise, we expand the search space, by including the 26 neighbouring

cubic grids 3
, ,a b cg G∈ of ()ig p as well. Let 1n = , ()ir p , ()is p and ()it p denote

()ig p ’s indices to 3G . Here we have ()ia r n− ≤p , ()ib s n− ≤p and ()ic t n− ≤p . The

search continues with the search space further expanded until the k nearest neighbouring

points are found or n N> . Note ()e ipN may not contain the actual k nearest neighbours,

but so found k points in ()e ipN could have already provided sufficient neighboring

information to ip .

Estimating Normals. We then use the method in [HDD92] to estimate the normal in for

each ip . We first compute the centroid of points in ()e ipN as ()

()

k
k e i

d i

∈
∑

= p p

p

i pc N

N . We then

compute the 3 3× covariance matrix cov,iM defined on ()e ipN , where

cov,
()

() ()
k e i

T
i k i k i

∈

= ⋅∑
p p

p - p p - p
N

M . Let 0λ , 1λ and 2λ be the three eigenvalues of cov,iM

ordered as 0 1 2λ λ λ≤ ≤ . Let 0v , 1v and 2v be the three eigenvectors corresponding to 0λ ,

1λ and 2λ . Then we have 0i = +n v or 0i = −n v . To fix the direction of in , as suggest by

 89

Hoppe et al., we find the a point z ∈p P that has maximum z coordinate first. The

direction of zp ’s normal zn can be fixed easily as zn always points outwards from P .

Then we construct a minimum spanning tree (MST) with every pair of neighbouring points

(,)i kp p as an edge of the MST, where ()k d i∈p pN . And 1 i j− ⋅n n is assigned as the

weight of (,)i kp p . Thus the correct normal direction of zn can get propagated over P

through the MST, eventually fixing the direction of in .

Extracting Local Delaunay Neighbours. With the centroid ic and normal in known for

each ip , we can fix the best fitting plan iP of ()e ipN . iP passes through ic and

perpendicular to in . We then project all ()k e i∈p pN onto iP , obtaining a set of projected

points '()e ipN . Here '
ip corresponds to ip , and each ' '()k e i∈p pN corresponds to the

()k e i∈p pN . We use the 2D delaunay triangulation algorithm provided by CGAL

[CGAL04] to obtain the delaunay neighbors of '
ip from '()e ipN , denoted as '()d ipN . We

then collect '()d ipN ’s corresponding points in ()e ipN into ()d ipN . Here ()d ipN

denotes the set of local delaunay neighbours of ip .

Estimating Curvatures. Normals are computed as the first derivatives of positions, while

curvatures are the second derivatives. Therefore the accuracy of curvature estimation is

problematic. In fact simply due to the unreliability of curvature information estimation,

quite a number of promising alternative approaches that can be used to extract line

 90

segments from point clouds turn to be difficult to implement. We discuss the curvature

estimation problem in more details in the following subsection.

6.1.2. Curvature Estimation

Once the normal in have been estimated and the delaunay neighbours ()d ipN have been

found out, we then can start to estimate the minimum and maximum curvature vectors

min ()ik p and max ()ik p for ip . We implement the method suggested in [Taub95]. We first

compute the matrix , , , , ,
()k d i

T
cur i i k i k i k i kw k T T

∈

= ⋅ ⋅ ⋅∑
p pN

M . Here,
' '

' ',
i k

i k
i kT −

−
= p p

p p
, ,i kT is an unit

vector pointing from '
kp to '

ip . 2
2 ()

,
i k i

k i
i kk ⋅ ⋅ −

−
= n p p

p p
, ,i kk is the direction curvature along ,i kT .

Let ' ' '
, , , ,, ()i k s i k t d i∈p p pN denote the two projected points on iP that are incident to both '

ip

and '
kp . Use , ,i k sΔ and , ,i k tΔ denote the triangles formed by '

ip , '
kp , '

, ,i k sp and '
ip , '

kp ,

'
, ,i k tp respectively. Then , , , ,

, , , ,
' '()

() ()
, () ()

i k s i k t

i k s i k t

k d i

area area
i k area area

w
∈

Δ + Δ

Δ + Δ
= ∑

p pN

, ,i kw measure the amount of

contribution of ,i kk to ,cur iM .

We now construct the householder matrix ()h inM of in . Thus from the second and third

column of ()h inM , we obtain two unit vector ix and iy . ix , iy together with in form a

3D local coordinate system on iP . Examining the construction function of ,cur iM , we can

see that in is an eigenvector of ,cur iM . Thus we could have the following,

 , 11, 12,

21, 22,

0 0 0
() () 0

0

T
h i cur i h i i i

i i

m m
m m

⎛ ⎞
⎜ ⎟⋅ ⋅ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

n nM M M .

 91

Inside the 2 2× matrix 11, 12,

21, 22,

i i

i i

m m
m m

⎛ ⎞
⎜ ⎟
⎝ ⎠

, we have 12, 21,i im m= . This matrix can be

diagnoalized, giving a rotation angle θ . Thus the two principle curvature vectors are given

by 1, cos() sin()i i iθ θ= −k x y and 2, sin() cos()i i iθ θ= +k x y . And corresponding two

principle curvature values are given by 1, 11, 22,3i i ik m m= − and 2, 22, 11,3i i ik m m= − .

Comparing the values of 1,ik and 2,ik , we can then obtain the maximum principle curvature

vector and value at ip , max ()ik p and max ()ik p . As well as the minimum principle curvature

vector and value min ()ik p and min ()ik p .

As we have discussed, to our knowledge, there is no curvature estimation algorithm

designed for point cloud data. Taubin’s curvature estimation method [Taub95] is meant for

polyhedral models. There are two reasons why we choose Taubin’s method for

implementation. First, [Taub95] gives a rigorous mathematical formulation of the

curvature computation problem. Second, by reading the derivations and proofs in [Taub95],

we find that Taubin’s method is actually not that much dependent on the underlying

polyhedral models. Only the weighting factor ,i kw is determined from triangle areas. In

fact it is quite adaptable to point cloud data.

We have also seen some other curvature estimation method on triangle or polyhedral

meshes, such as [CoMo03]. Cohen-Steiner and Morvan’s algorithm is quite widely

accepted and recognized. Their method is used in [ACDL03] to trace curvature lines on

 92

triangle meshes. However in [ACDL03], Gaussian filters are still used to smooth the

estimated principle curvature vectors to remove inaccuracies and noises.

It is not surprising to find out that the performance of the curvature estimation algorithms

is quite dependant on the local surfaces that they are applied to. In our case of processing

scanned point clouds, the input point cloud data’s scanning direction and scanning pattern

could affect the curvature estimation algorithm a lot. For some regularly sampled point

clouds, estimated principle curvature vectors may all be shifted towards the point cloud’s

scanning direction (see Figure 17). Given a set of randomly sampled points on an elliptical

cylinder surface, we can see the estimated principle curvature vectors are scattered towards

all around, not really being aligned with the actual surface minimum curvature direction

(see Figure 17).

6.1.3. Implementation Problems and Discussions

In the implementation, we find out that the value of k – the number of nearest Euclidean

neighbours, is hard to be set properly. If k is too small, the connectivity information

among points may only be partially explored. If k is too large, quite often the

 Figure 17: Problems with estimating principle curvature vectors from point cloud data.

 93

neighbouring points counted would include scanned points locating at nearby surfaces as

well, or even from opposite surfaces. And when k is large, estimated surface attributes

would behave as if have been low pass filtered. This could result in removing too much

surface geometry details and creating a lot of blurring in rendered surface images.

6.2. Surface Rendering Engine

In this subsection, we first talk about design considerations of our rendering engine’s

architecture. After that, we go through the entire rendering pipeline in the front-end to

back-end order, stage by stage. Computation methods and algorithms used in each

rendering step are discussed. We then give an extensive coverage of the visibility and

blending algorithm in a separate subsection, where the modified Z3 algorithm is presented

and compared with delta-z-buffer algorithm. We end this section with a discussion on

miscellaneous implementation problems we have encountered in the course of developing

the engine.

6.2.1. Design Considerations

The surface rendering engine should support all the necessary fundamental 3D graphics

rendering operations. It should support basic culling operations such as view frustum

culling and back face culling. It should support basic transformation operations such as

projective and affine mapping. It should also support basic lighting features, such as point

light source and local illumination model [SeAk91].

 94

The surface rendering engine should support hybrid rendering, accepting a set of basic

surface primitives. It should support direct rendering of both surface point primitive and

line segment primitive. With our approximation method, while a point’s resampling filter

is only a weight texture mapped quadrilateral, 2 to 10 such quadrilaterals are used for one

line segment’s resampling filter. These make quadrilateral best primitive candidate for our

pipeline. This is different from both the OpenGL pipeline which uses triangle as the basic

pipeline primitive, as well as the Surfel rendering pipeline where point is the pipeline

primitive.

6.2.2. Rendering Pipeline Illustrated

Altogether the rendering pipeline is consisting of 10 stages (See Figure 18). They are back-

face culling, modelview transformation, local parameterization, warping, texturing,

clipping, lighting, perspective projection, rasterization and blending. The pipeline takes

either a surface point primitive or a surface line segment primitive as input. The data

attributes associated with each point are its center, normal and color. For a line segment,

this includes two endpoints, normal and color.

 Figure 18: The surface rendering pipeline.

 95

Back-face Culling. In the stage of back face culling, a surface primitive is culled away,

only if it is facing back from the camera. This test is done by computing the dot product

between the primitive’s normal vector and a distance vector which points from the camera

space center to either a point’s center or a line segment’s starting point.

Modelview Transformation. Next we multiply every surface primitive’s normal, and

center or endpoints with the modelview matrix. This transforms surface primitives from

object space into camera space.

Local Parameterization. In the pipeline stage local parameterization, we construct a local

3D coordinate system for every surface primitive. For a point primitive, the center of the

local coordinate system coincides with the point’s center, and the z axis aligned with the

point’s normal. We use a simple yet efficient method similar to the householder

transformation to compute the other two orthogonal basis vectors x and y . Let

(, ,)a b c=x , it works by checking three if conditions. If 0≠a , then (/ , 1,0)b a= −x and

(, () / , (/))c b c a a b b a= × − − ×y . If 0=a and 0≠b , then (1, / ,0)x a b= − and

(() / , , () /)a c b c a a b b= − × − × +y . If 0=a and 0=b , then (1,0,0)=x and (0,1,0)y = .

For a line segment primitive, the coordinate center is placed at the line segment’s starting

point o , the z axis is aligned with the line segment’s normal, y axis is aligned with the

line segment itself pointing to the other endpoint, and x axis is computed by finding the

cross product of y and z .

 96

Warping. We then want to warp surface primitives. This is done within every primitive’s

own local coordinate system. For a point, we compute out the local coordinates of the four

corner vertices of its bounding quadrilateral by using the rotation matrix)(θRot and

scaling matrix Λ . For a line segment, we locate the 15 or 18 points, as discussed in our

approximation method in 5.2.3. With these points known, we then can slice a surface

primitive’s object space EWA resampling filter into a set of interconnected bounding

quadrilaterals. From warping onwards, all subsequent pipeline operations are defined on

these bounding quadrilaterals and convex polygons that are clipped from them. At the end

of the warping stage, we need to rewrite these locally defined quadrilaterals’ coordinates

with reference to the camera space. This is easily implemented using straightforward 3D

coordinate mapping.

Texturing. Now we need to map weight textures onto the quadrilaterals. With the support

to bilinear interpolation by the rasterizer, the color, camera space coordinate, texture

coordinate and other numerical attribute values can be derived from respective values

assigned to corner vertices. As we have discussed in Section 5.2.3.2, the task of weight

texture mapping now becomes to assign appropriate texture coordinates to the vertices of

each quadrilateral. (See Figure 14)

A weight scaling factor is also assigned to each quadrilateral vertex at the texturing stage.

Similar to the case of texture coordinate, weight scaling factor is bilinearly interpolated as

well. Let’s use a long line segment as an example. In fact we only compute the scaling

factor values for point 9,
10

1
rr

 and point 10, ''
10

1
rr

. With our approximation method, along

 97

the line 5-8, the scaling factor is linearly interpolated. So we deduce the scaling factor

values of point 5, 6, 7 and 8 from
10

1
rr

 and ''
10

1
rr

. Points along the lines that intersect line

5-9, including line 11-18, line 1-4, line 12-17, line 13-16, line 2-3 and line 14-15, are

considered being scaled by almost the same amount. This is not clearly true from our

geometry observations and approximation method in 5.2.2. However in order to devise a

workable solution, we approximate those points’ scaling factor value in such way. Our

rendering results show that almost no loss of image quality with this approximation. Thus

we assign point 5’s scaling factor value to point 11 and 18, point 9’s to point 1 and 4 and

so on (See Figure 19).

Mapping an image texture to line segments is implemented more or less the same as

assigning weight scaling factors. There is only a small difference. To match with textured

triangle meshes, we only interpolate texture coordinates in-between an extracted line

segment’s two endpoints and extrapolate the texture coordinates outwards at the endpoints.

 Figure 19: Implementation of the weight scaling factor interpolation.

 98

For example, for a textured short line segment, texture coordinates of endpoints 9 and 10

are assigned to the every point of the set {1, 4, 5, 9, 11, 18} and {2, 3, 8, 10, 14, 15}

respectively.

Clipping. Moving forward to the clipping step, we clip every quadrilateral to our six view

frustum planes. Notice, our view frustum clipping is done in camera space. This is

different from the implementation provided by OpenGL, which is done in clipping

coordinate system after perspective projection. The clipping space is bounded by a cube,

and each of the six faces of the cube is parallel to one of the coordinate system’s three

basis axes. Clipping to these axis-aligned faces usually saves time, and can be

implemented efficiently with hardware support. Since OpenGL takes hardware

acceleration advantages, this is the most efficient approach for OpenGL. However, our

rendering pipeline is software based; we are not able to benefit from graphics card

acceleration features. In addition perspective projecting every quadrilateral to clipping

space incurs extra time burden. Therefore very likely, a software implemented camera

space clipping may be superior to a software implemented clipping space clipping.

Lighting. Now we proceed to the lighting stage. Our pipeline implements Gourand shading,

supporting ambient light, diffuse light as well as specular light. Each vertex’s color is

recalculated, taking illumination and surface material property into account. Our lighting

calculation is delayed until after clipping. This is different from OpenGL approach, in

which case lighting is done prior to clipping. The reason is that some quadrilaterals may

 99

have been totally discarded or partially discarded due to the view frustum culling, so

delayed lighting helps us saving computation time.

Perspective Projection. Next we perspective project all the quadrilaterals as well as the

convex polygons which are the results of clipping quadrilaterals, into the normalized

device coordinate system. The perspective projection matrix is computed using view

frustum parameters, involving z near value, aspect ratio, and field of view.

Rasterization and Blending. Finally we arrive at the last two pipeline stages, rasterization

and blending. As the bounding quadrilaterals are also convex polygons, this means only

convex polygons are to be rasterized by the rasterizer. Hence, we use a modified scan

conversion algorithm for the rasterizer, which is optimized for convex polygon

rasterization. Similar to the original scan conversion algorithm, the modified one also

keeps track of an edge table and an active edge table. However, at any time, the size of the

active edge table is at most two, because a scan line can intersect a convex polygon at most

twice, firstly goes into the polygon from one left edge, then leaves away from one right

edge. So as the scan line advances from bottom to top along the y axis of the normalized

device coordinate system, in stead of updating the active edge table at every y value, we

only need to keep a left edge pointer, a right edge pointer, and compute out which edge’s y

top is first reached by the scan line, and update the active edge table with next left or right

edge only when the scan line actually arrives there. In contrast to concave polygon

rasterization which requires sorting the active edge table at every y, we do not need to do it

any more; therefore the modified rasterization algorithm works more efficiently.

 100

Convex polygons are thus tessellated into pixel fragments, and subsequently these

fragments are written into frame buffers one by one. For each such fragment, we bilinearly

interpolate its z depth value, color, weight texture coordinate, weight scaling factor value

as well as texture image coordinate. Before we write a fragment’s color into color buffer,

we need to do a visibility test with its z depth value, checking whether the fragment has

been occluded away or not. We implement the modified Z3 algorithm for visibility testing

and blending. For each fragment, we also need to compute out its weight contribution

which is used later when the fragment is blended with other fragments to form object

surface. It is equal to the product of corresponding weigh texture value and weight scaling

factor value. Fragment’s weight texture value is retrieved from texture memory with its

interpolated texture coordinate. Fragment could also be transparent, or semitransparent. Z3

algorithm supports order independent transparency. We discuss Z3 algorithm with more

details in next subsection.

6.2.3. Visibility and Blending Algorithm

6.2.3.1. The Modified Z3 Algorithm

For triangle based rendering, visibility algorithm is separated from blending algorithm.

Consider the scenario when two fragments arrive at the same pixel location. The Z buffer

algorithm compares their z depth values, decides which fragment is in front and which

fragment is at back. If the front fragment is opaque, then only the front fragment will be

written into the frame buffer, and the back fragment is occluded away. The blending

 101

algorithm will blend the front and back fragments into one fragment only if the front

fragment is transparent.

However, for point based rendering as well as our line segment based rendering, we cannot

simply discard the back fragment in the case when the front fragment is opaque. Because

quite often, it is the circumstance that these two fragments are rasterized from surface

points or surface line segments sampled next to each other. If the difference of the z depth

values between these two fragments is quite small, then the blending algorithm should

compress them together to form one piece of surface. Usually we set a z threshold and

compare the z difference with the z threshold, if the difference is larger than the threshold,

these two fragments are considered coming from two separate pieces of surfaces and are

not merged. In addition, like triangle case, the blending algorithm needs to take care of

transparency problem as well. As visibility testing algorithm and blending algorithm are

highly coherent, we would like to combine them into one instead.

Before we list out the details of Z3 algorithm, we discuss the buffers supported by our

engine first. Altogether there are three different kinds of buffers used in our rendering

pipeline; they are color buffer, z buffer and accumulation buffer. Color buffer is used to

store fragments’ color values, which includes four channels – red, green, blue and alpha.

Accumulation buffer is used to store fragment’s weigh contributions. Weight contribution

value is within the range [0,1] . Z buffer is used to store fragments’ z depths. Buffers are

grouped into layers. Each layer has only one color buffer, one z buffer and one

accumulation buffer.

 102

Let us use n to denote the number buffer layers available, c to denote color, a to denote

alpha value, w to denote weight contribution and z to denote z depth value. The modified

Z3 algorithm operates in the following way:

1. For a newly added fragment f at pixel location l

a. Fragment Insertion. We first search all the existing fragments at l , across the

n buffer layers, to check whether the difference of the z depth value between

f and any existing fragment e is less than the z threshold or not. If this turns

out to be the case, then f is merged with e , and its color and weight

contribution are added into e ’s corresponding buffer entries, ffee wccc +=

and fee www += . We keep e ’s z depth value unchanged.

b. Fragment Allocation. Otherwise, we check whether the number of buffer

layers used at l has already exceeded the limit of available layers n or not. If

not yet, then we allocate a new layer for inserting f . Usually we keep all the

fragments at l sorted in the increasing order of z. If f is opaque, then all the

fragments behind it are occluded away, consequently buffer entries occupied by

them are freed, and additional layers at l become available.

c. Fragment Compression. Otherwise, if we have already used up all the

available n layers, then we merge the nearest two layers, so that one layer can

be freed for storing fragment f . We use subscript f for the front layer to be

merged, b for the back layer to be merged and m for the merged layer, the

 103

formulas for compression are)1(fbbffm aacacc −+= ,)1(fbfm aaaa −+=

2/)(bfm zzz += and 1=mw .

2. After all the fragments have been added, we combine the n buffer layers into one layer

in the back-to-front order. Formulas for computing color and alpha values are similarly

defined as those used at fragment compression step; however z depth and weight

contribution information is no longer needed to be kept, hence discarded. It is the final

combined layer where the image to be displayed on screen is stored.

Our results show that Z3 algorithm works appropriately well for a variety of different

models, at different viewing distances, resulting smooth surface blending, correct

transparency accumulating. In OpenGL, with the standard A-buffer algorithm, to correctly

render translucent objects, especially when the complexity of the scene increases, a lot of

objects exist in the environment, we must always place objects into the rendering context

in the back-to-front manner. This restriction makes programming very tricky, and is

difficult to satisfy in an animated scene, where characters keep moving around.

With use of multiple layers, the Z3 algorithm sort transparent objects in the buffers before

combining them, to certain extent, providing order independent transparency. There also

exists a hardware solution of order independent transparency problem, however it is a

multi-pass algorithm, and because the blending nature of point and line rendering, our

pipeline cannot be supported by existing hardware, therefore multi-pass algorithm is too

costly for us [NVID01].

 104

In our implementation, we encounter two problems with the modified Z3 algorithm. The

first one is the setting of the z threshold value. Z3 algorithm only supports one fixed z

threshold value. According the algorithm, two fragments are treated as coming from the

same piece of surface and merged as long as the difference between their z depth values is

less the z threshold, regardless the actual values of their z depths. However the fact with

perspective projection is that, for a set of equally distanced points along one line, after

projection, points with smaller z values in original eye space are placed further apart from

each other then those having larger z values. To make sure that fragments from the same

surface are always blended together, the z threshold should be set adaptively with respect

to the fragments’ actual z values, if they are near to our eye, a relatively larger z threshold

should be chosen, if they are far away, use a smaller z threshold value is more accurate. In

our implementation, we let the z threshold to be 0.001 (See Figure 20).

Figure 20: The flamingo model rendered with different z thresholds. The z threshold value for

the flamingo model on the left is set to be 0, thus there is no blending at all. While the z

threshold value for the flamingo model on the right is set to be 0.3, causing too much blending.

The flamingo’s body can even been seen through. And the flamingo model in the middle is

rendered with z threshold value of 0.01 which gives an adequate blending.

 105

The second problem with Z3 algorithm is the decision of the number of buffer layers to be

used. Z3 algorithm supports only a fixed number of buffer layers. As mentioned before

order independent transparency is only supported to certain extent, it is only accurate when

the depth complexity of a transparent object is less than the number of buffer layers. As

specified in the algorithm, when two fragments are merged in the “fragment compression”

step, the merged fragment’s depth value is set as the average of the two being merged, this

practice inevitably causes loss of the depth information, which could be crucial for

subsequently arriving fragment. Because it may happen that the next coming fragment lie

just in-between the two already merged fragments, as a result, transparency is calculated

wrongly, visual artifacts could be introduced (See Figure 21). Meanwhile we cannot use

too many layers of buffers in Z3 algorithm either, because the more buffer layers used, the

Figure 21: A transparent skull model is rendered using different number of buffer layers. On

the left, 4 layers are used which is much less than the depth complexity of the skull, thus the

surfaces are wrongly blended, creating visible artifacts. While for the skull model on the right,

we allocate 10 layers of buffers, which is larger than the skull’s depth complexity, thus surfaces

are correctly blended.

 106

heavier the cost burden incurred by sorting becomes, evidently slowing down the whole

rendering process. In our implementation we use 4 buffer layers.

6.2.3.2. The Delta-Z-Buffer Algorithm

The delta-z-buffer algorithm proposed by Peng et al. [PHY01], is primarily designed for

point based rendering. Like Z3 algorithm, it also uses multi buffer layers, however it allows

a specifically calculated z threshold assigned for each point individually. Peng et al. calls

the z threshold a different name delta z. Inside the z buffer, besides storing a fragment’s z

depth value, two extra depth values are also collected, zmax and zmin, where zmax is

computed by adding delta z to the z depth value and zmin is obtained by subtracting delta z

from z depth value. A newly come fragment is considered to lie on the same surface with

the existing fragment, only if its z depth value falls inside the z range set by the existing

fragment’s zmin and zmax.

The algorithm assumes that around a point’s neighborhood, all the fragments being

rasterized have the same delta z value. Delta z value is conservatively estimated by finding

max(of () (), of () ())z r z r− ⋅ − + ⋅ −T T T Tp v p p v p , where T denotes the transformation

function of the perspective projection, p denotes the position of the point center, v stands

for the unit vector pointing form the point center to the eye, and r is the radius that bounds

the neighborhood of the point. We know, the resampling filter of a point is of elliptical

shape, therefore the value of r is actually equal to the length of the major axis the ellipse.

Before perspective projection, along the z direction, the two most outwards fragments are

of the same distance away from the point center. However after projection, as what we

have discussed, their z differences varies, so in order to guarantee that no fragment will be

 107

mistakenly treated coming from different piece of surface when being blended, we should

use the maximal distance difference as delta-z.

A blending algorithm almost the same as delta-z-buffer algorithm is implemented in

Pointshop 3D [ZPKG02]. It shows that fragments are merged more accurately, creating

less blending errors, comparing with the Z3 algorithm which is used by earlier surface

splatting technique. However this algorithm does not fit well to the hybrid rendering

paradigm of our surface engine. Because applying the method of computing z threshold to

line, it is assumed that nearby the line segment, there is only one delta-z. But a line

segment could be very long, hence the assumption cannot be held. It could only be true

around a very small neighborhood. A possible way to apply delta-z-buffer algorithm to line

segment rendering is to compute z threshold at the two endpoint of a line segment, and

interpolate it along the line. However this could be too costly, interpolation could be

inaccurate and introduces blending errors. Therefore we choose the modified Z3 algorithm

for implementation, which benefits us with its simplicity and efficiency.

6.2.4. Implementation Problems

The rasterizer of a hardware graphics pipeline, such as OpenGL pipeline, implements

various rasterization algorithms, for example the middle point algorithm, at very low cost.

These 2D algorithms help points, lines, curves and other 2D primitives appear more

smooth and nicer when displaying on the screen. As our entire rendering pipeline is

software implemented, incorporating these algorithms could significantly slow down the

rendering process. So we choose only to implement the essential modified scan conversion

algorithm for convex polygons. Hence, some artifacts may pop up when rasterizing very

 108

thin polygons, edges could appear very jagged. However this problem is minor, no obvious

loss of image quality due to it is observed.

In our approximation method, to get the tangent lines of two ellipses, we need to solve

quadratic equations. Floating number errors emerge when the ellipses either too small or

too near to each other. For example, a small number less than 610− may appear to be a

denominator, hence causes the result of a division extremely large, and the intersection

point is in turn miscalculated as outside the view frustum. To avoid and reduce these

numerical errors, we increase the number of bits used for floating numbers, replacing 64

bit double numbers with 128 bit long double numbers. However some errors still cannot be

removed. We find that most of these problems occur at the silhouettes of the model, when

the neighborhoods of points or line segments lie nearly parallel to our eyesight. Therefore

even we ignore these wrongly computed points and lines completely, not projecting them

onto the screen at all; no apparent visual artifact will be resulted noticeable to our eyes.

 109

Chapter 7.

Experiments and Results

7.1. Experiment Goals and Settings

The goal of our experiments is to validate the modelling and rendering approaches we have

taken. We are to verify that the line segment based modelling could indeed achieve

representation compactness. We are to verify that rendering line segments would truly be

more efficient than rendering sequence of points. And also important, we are to compare

the quality of the rendered images using our proposed anti-aliasing line segment rendering

algorithm with those using EWA point rendering method to show our approach could

produce equivalent high quality rendering results. We implemented our line segment

extraction algorithms in Section 3 and the proposed rendering pipeline described in Section

5 in C/C++, and performed the experiments on a P4 3.0 GHz with 2GB RAM PC. Note

that the rendering results of point models are also from our own implementation of the

theory given in [RPZ02, ZPVG01] rather than the probably more optimized version of

[ZPKG02].

7.2. Point Cloud Based Experiments

We experiment with both the (,)ε δ error bounded line segment extraction algorithm and

the shape approximation based line segment extraction algorithm to extract hybrid point

and line segment models from pure point models. For the (,)ε δ error bounded algorithm,

 110

ε is set to be 5% of the average distance between two neighbouring points in the model

and δ is assigned to be of 0.004 , which is equivalent to about 5.1264 degree of angular

difference. For the shape approximation based algorithm, we let the value of nδ be 0.008 ,

matching exactly with the value of δ , as it can be derived that 2nδ δ= .

In Table 1, 2 and 3, we list down the statistics collected from three different experiment

settings that compare our solutions with the pure point cloud data approach. Table 1

corresponds to the comparison between pure point models and hybrid point and line

segment models obtained using the (,)ε δ error bounded algorithm. And both Table 2 and

Table 3 report the comparisons between pure point models and hybrid point and line

segment models produced with our shape approximation based line segment extraction

algorithm. While in Table 2, we use the greedy clustering algorithm in Section 3.2.3.1 to

obtain anisotropic point clusters, it is the distortion minimized clustering algorithm in

Section 3.2.3.2 that is used for the experiment reported in Table 3.

In all the three tables, we first list out the number of points and line segments obtained

using respective line segment extraction algorithms. Then between every two

corresponding images of pure point models and hybrid point and line segment models, we

show their mean square error (mse, measuring the difference) and the normalized cross-

correlation measure (nccm, measuring the similarity with 1 means identical image) [ASS02]

in the table. Both mse and nccm are image quality comparison measures which are

obtained by rendering color images (each channel has 256 values) of size 512x512 pixels

for 50 different viewpoints chosen around each of the model without any priori knowledge.

 111

Points Hybrid Point and Line Segments
Quality Models # Points # Points # Line

Segments mse nccm
Speedup

Armadillo 172974 141864 6720 0.0043 0.9995 10.18%
Ball joint 137062 79741 11075 0.0049 0.9994 24.01%
Golf club 209779 37754 19149 0.0058 0.9993 55.75%
Igea artifact 134345 62780 12800 0.0047 0.9998 31.69%
Male 303380 86106 10814 0.0136 0.9995 27.54%
Rabbit 67038 35037 5974 0.0054 0.9997 23.38%
Rocker arm 40177 17342 3347 0.0045 0.9996 36.45%
Santa 75781 53335 4249 0.0041 0.9995 18.33%
Screwdriver 27152 12689 2311 0.0073 0.9989 35.81%
Teeth casting 116604 54407 8316 0.0068 0.9985 43.19%

Table 3: Hybrid point and line segment model obtained using the shape approximation based

line segment extraction algorithm with hierarchical distortion minimized clustering.

Points Hybrid Point and Line Segments
Quality Models # Points # Points # Line

Segments mse nccm
Speedup

Armadillo 172974 131284 8391 0.0043 0.9995 10.64%
Ball joint 137062 68831 11616 0.0057 0.9993 28.65%
Golf club 209779 27335 13391 0.0086 0.9972 65.96%
Igea artifact 134345 52920 12391 0.0051 0.9995 38.13%
Male 303380 72863 12065 0.0151 0.9992 33.93%
Rabbit 67038 27844 6406 0.006 0.9994 35.10%
Rocker arm 40177 14609 2607 0.0047 0.9991 43.29%
Santa 75781 48922 4650 0.0043 0.9991 22.26%
Screwdriver 27152 11126 2050 0.0072 0.9994 34.03%
Teeth casting 116604 43852 5734 0.0069 0.9994 55.06%

Table 2: Hybrid point and line segment model obtained using the shape approximation based

line segment extraction algorithm with greedy clustering.

Points Hybrid Point and Line Segments
Quality Models # Points # Points # Line

Segments mse nccm
Speedup

Armadillo 172974 153169 2793 0.0016 1.0 7.27%
Ball joint 137062 89060 6202 0.0036 0.9999 23.77%
Golf club 209779 52287 12887 0.0042 0.9993 57.25%
Igea artifact 134345 75565 6823 0.0035 0.9999 31.38%
Male 303380 90457 6993 0.0101 1.0 30.19%
Rabbit 67038 46047 2789 0.0042 0.998 21.35%
Rocker arm 40177 27132 1502 0.0015 1.0 22.07%
Santa 75781 62360 1849 0.0019 0.9998 12.57%
Screwdriver 27152 17479 1058 0.0039 0.9998 21.80%
Teeth casting 116604 65250 4287 0.003 1.0006 41.99%

Table 1: Hybrid point and line segment model obtained using (,)ε δ error bounded algorithm.

 112

Lastly we show the speedup of the rendering performance of using hybrid point and line

segment models compared with using pure point models.

7.2.1. Clustering Algorithms

The experiment results show that generally the hierarchical distortion minimized clustering

algorithm produces less number of clusters than the greedy clustering algorithm (Table 4).

Intuitively this suggests larger clusters would be formed by the hierarchical distortion

minimized algorithm, consequently the hierarchical distortion minimized algorithm should

be likely to extract more line segments than the greedy approach. However by examining

the number counts of the extracted points and line segments listed in Table 2 and 3, we

find that conversely, it is the greedy clustering algorithm which always generates more line

segments for replacing points in all the ten tested point models used in our experiment.

Number of Clusters
Models Greedy Clustering Hierarchical Distortion

Minimized Clustering
Armadillo 56173 49211
Ball joint 20378 17807
Golf club 5576 5892
Igea artifact 17062 14627
Male 22297 20107
Rabbit 7784 7710
Rocker arm 7574 6941
Santa 19357 17767
Screwdriver 4564 4310
Teeth casting 18467 17003

Table 4: Number of clusters generated from the greedy clustering

and hierarchical distortion minimized clustering algorithm.

 113

Further investigation reveals the fact that although in average, the clusters generated by the

greedy clustering algorithm contain less number of points, there are more large clusters

formed. For example, for the Rocker arm model, with the greedy clustering, there are 66

clusters having size larger than 100 points are found, accounting for the replacement of

13818 points. However using the hierarchical distortion minimized clustering algorithm,

there are just 16 clusters with size larger than 100 points found, replacing merely 2578

points in total. Figure 22 gives a screenshot of the Rocker arm model being segmented

using these two different clustering algorithms.

Figure 22: The Rocker arm model segmented using the hierarchical distortion minimized

clustering algorithm and the greedy clustering algorithm are shown on the left and right

respectively. It can be seen that there are more large clusters formed on the right Rocker arm

model than on the left one.

 114

7.2.2. Effective and Compact Representation

The statistics data in Table 1, 2 and 3 shows that large amount of points in the scanned

point models are substituted by the line segments extracted using our proposed line

segment extraction algorithms. In fact, the hybrid point and line segment model provides

an effective yet more compact model representation alternative to the pure point cloud

representation. Let us just consider the essential geometry information associated with the

point and line segment primitive. That is two 3D vectors are used to store the location and

the normal of each point and three 3D vectors are used to store the two endpoints and the

normal of each line segment. It can be computed out that the hybrid models in Table 1 gain

an average 34.03% data reduction ratio comparing to their respective point clouds. And

this average number is even higher for hybrid models in Table 2 and 3, 47.51% and

39.85% respectively. A maximum 77.39% data saving ratio is achieved by the hybrid

Golf club model in Table 2. Screenshots of the extracted hybrid point and line segment

models can be found in figure 23, 24, 25 and 26.

7.2.3. Efficient High Quality Rendering

Figures in Table 1, 2 and 3 also show significant speedups are achieved to render hybrid

point and line segment models as compared with their corresponding point models. The

hybrid models in Table 1 achieve an average 26.96% speedup, and this number is 36.71%

and 30.63% for the hybrid models in Table 2 and Table 3 respectively. A maximum

speedup of 65.96% is also achieved by the hybrid Golf club model in Table 2. This is in

line with the fact that this same hybrid Golf Club model also owns the maximum data

reduction ratio.

 115

The quality of the rendered images of the hybrid point and line segment models can be

evaluated both numerically and visually. It can be observed that the values of mse are all

quite near to 0 and the values of nccm are near to 1. These suggest that the rendered hybrid

point and line segment models and their corresponding point models indeed have nearly

the same quality. Figure 27 shows the rendering outcome of the hybrid models.

7.3. Triangle Mesh Based Experiments

The point and line segment models used in this experiment are all obtained using our

contour plane based line segment extraction algorithm from triangle meshes. We render

each model in Table 5 at 20 different viewpoints chosen around the model without any

priori knowledge. Altogether 180 images of point models and 180 images of pure line

segment models are used. These images are of size 512x512 pixels. As in Section 7.2.3,

the rendering quality is evaluated both visually and numerically. Figure 28 shows

Number of Primitives Image Differences
Models # Points # Line Segments Mean Standard

Deviation
Bunny 128642 26834 0.13 2.91
Flamingo 126938 27876 0.12 2.70
Al 163205 46595 0.09 2.17
Gargoyle 146704 46106 0.09 1.88
Dragon 241893 78305 0.19 3.62
Buddha 338709 115883 0.31 4.45
Horse 76601 26518 0.02 1.56
Skull 156434 57247 0.04 1.83
Skeleton 221856 87838 0.17 3.89

Average 0.13 2.78
Maximum 0.31 4.45

Table 5: Pure point and line segment models obtained using the contour plane based line

segment extraction algorithm. Their rendered image differences are also computed out.

 116

rendering outcome of line segment models in Table 5. We compute the mean of the

absolute (pixel) differences between two images rendered using line segments and points.

These differences are calculated from a composite of red, green and blue channels (each

channel has 256 values). Table 5 shows the average of the means from the 20 different

viewpoints per model and the average of the standard deviations. We find that the means of

the absolute differences are nearly zero with an average of 0.13 and the average standard

deviations of 2.78 (second last row in the table). The maximum of such mean is 0.31 and

the maximum standard deviation is 4.45 (last row in the table). The numerical results

suggest that the rendered line segment and point models have nearly the same quality again.

 117

Figure 23: Hybrid Man, Igea artifact, Rocker arm, Ball joint and Armadillo models extracted

using the (,)ε δ error bounded line segment extraction algorithm.

 118

Figure 24: Hybrid Golf club, Rabbit, Screwdriver, Santa and Teeth casting models extracted

using the (,)ε δ error bounded line segment extraction algorithm.

 119

Figure 25: Hybrid Man, Igea artifact, Rocker arm, Ball joint and Armadillo models extracted

using the shape approximation bounded line segment extraction algorithm.

 120

Figure 26: Hybrid Golf club, Rabbit, Screwdriver, Santa and Teeth casting models extracted

using the shape approximation bounded line segment extraction algorithm.

 121

 122

Figure 27: Hybrid Armadillo, Ball joint, Golf club, Igea artifact, Man, Rabbit, Rocker arm,

Santa, Screwdriver, and Teeth casting model rendered using our approximate rendering

algorithm in Section 5.

 123

 124

Figure 28: Line segment Bunny, Flamingo, Gargoyle, Dragon, Skull, Skeleton, AL, Horse,

Budda, rendered using our approximate rendering algorithm in Section 5.

 125

Chapter 8.

Conclusions

This report demonstrates the feasibility of using 3D line segments as a primitive for both

surface modelling and rendering. In modelling, we propose one (,)ε δ error bounded and

one shape approximation based line segment extraction algorithm for extracting hybrid

point and line segment models from scanned point clouds. We present a method for

obtaining pure line segment models from triangle meshes as well. In rendering, we extend

the anti-aliasing theory in texture mapping to anti-aliased line segment rendering, and

present an approximation algorithm to render high quality anti-aliased opaque, transparent

and textured line segments in 3D models. Experiments show that the rendered pure line

segment models as well as hybrid point and line segment models have the same high

quality as their counterparts using points only. As compared to pure point models, hybrid

point and line segment models enjoy significant rendering efficiency too.

There are three limitations identified with our current hybrid point and line segment

modelling and rendering approach. First, like pure point models, the explicit connectivity

information is also absent in hybrid point and line segment models, which makes the

model deformation more difficult than it is in surface triangulations. Second, the use of

local affine assumptions in the neighborhood of a point or line segment produces artifacts

in the presence of highly nonlinear mappings. Lastly, our current formulation of line

 126

segments requires each line segment possess only one normal, which rules out the

possibility of using line segments to render ruled surfaces.

 127

Chapter 9.

Future Work

9.1. Line Segment Based Surface Definition

We learn from our hand-on experiences on the (,)ε δ error bounded line segment

extraction algorithm and the shape approximation based line segment extraction algorithm

that error control is the key issue of extracting line segments from a discrete point cloud.

The error measures ε , δ and nδ used in our line segment extraction algorithm can

confine the geometric deviations from the extracted line segments to scanned points. But

they are unable to assure the surface formed by the extracted line segments would be really

close to the actual object surface. Thus holes can be visible in our rendered images. Thus

we are lead to the problem, for a given set of line segments, what continuous surface do

they imply? This question is fundamental and important. The answer to it would give a

complete surface description for discrete line segments. Recently we have seen a number

of proposals on defining point set surfaces [Levi98, Levi03, AmYo04]. In particular, the

MLS surface [Levi98, Levi03] receives a lot of attentions, as it is defined both analytically

and procedurally. There exists the possibility that line segment based surface can be

similarly defined.

 128

9.2. Extract Line Segments from Reconstructed Object Surfaces

Not knowing the shape of the surface spanning across sampled points is one of the two

difficulties that hinder us from tracing curvature lines on point cloud data. But if we have

the object surface reconstructed first, then the idea of following surface curvature lines is

very promising. As not only a continuous surface description is given but also the surface

curvatures can be estimated accurately from the implicit functions that define the point set

surface, helping us taking out the other difficulty too. A possible approach can be tried out

is to use the MLS method [Levi98, Levi03] to reconstruct the surface of the input point

cloud part by part and then trace curvature lines across the reconstructed polynomial

surface patches. The last step would then be straightening and segmenting extracted

curvature lines into sequences of interconnected line segments.

9.3. Hardware Accelerated Line Segment Rendering

Currently the main obstacle that blocks us from porting our line segment rendering

algorithm into the hardware pipeline comes from the computation of the tangent line

segments on the endpoint ellipses. Our C/C++ code for computing the duals of ellipses and

for solving the quadratic equations is of around 1500 lines long. It would be extremely

hard to implement the shaders’ code counterpart directly, as only a limited set of CPU

functionalities is supported by the graphics cards. And our current formulation of the line

segment’s resampling filter is in object space. However, a hardware implementation of the

object space EWA resampling filter only consumes the vertex shaders’ computational

power, pixel shaders are left hang up without taking any workload. This is not desirable, as

the performance bottleneck in our problem is the lack of sufficient computational power.

 129

Given the fact that a number of efficient screen space implementations of the EWA point

splatting [CoHe02, BoKo03, ZRBD04] are reported performing faster than the object

space approach in [RPZ02], we think likely, a hardware accelerated screen space

implementation of the line segment’s EWA resampling filter is likely easier to be attained.

9.4. Non-photorealistic Rendering

The hybrid point and line segment models extracted using our shape approximation based

line segment extraction algorithm contain bunches of nearly parallel line segments. These

line segments are faithfully aligned with surface anisotropic directions. Girshick et al.

[GIHL00] have already pointed out that the curvature aligned line segments are quite

efficient for communicating object shape information to our human beings. We believe

there is a great potential for our extracted hybrid point and line segment models being used

in the non-photorealistic rendering contexts. By exploiting the nearly parallel nature of the

extracted line segments, non-photorealistic rendering techniques can be easily

implemented on top of the hybrid model’s geometric structure. For example, cross-

hatching strokes can be drawn along the nearly parallel line segments.

9.5. Hybrid Surface Modelling and Its Applications

Stemming from our extracted hybrid point and line segment models, there emerges quite a

number of thrilling fields that the future research can further explore. The photorealistic

rendering technique should continuously strive for speed, searching for a graphics

hardware supported rendering solution; and the non-photorealistic rendering technique

could explore the faithful yet flexible shape representation given by the hybrid surface

 130

modelling structure, so as to better illustrate shape features as well as help to speed up the

conceptualization of modelled shapes. Meaning while, research efforts can also be invested

with emphasis on 3D geometry processing. As what we have already discussed in Section

9.1, a complete analytic surface description with solid mathematical foundations for hybrid

point and line segment models is what we can aim for. Line segments extracted in the

hybrid models could be further processed to extract the models’ skeleton lines and to

reveal salient feature lines of the described object surfaces. There exist the possibilities to

extend the use of line segments in shape modelling to level of details controls and

simplifications of shapes as well. These might be achieved similarly as what have been

discussed in [ChNg01] and [DeHu02]. Figure 29 summarizes all these possible future work.

 Figure 29: A summary of future research work.

 131

References

[ABCF03] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin and C.T. Silva.

Computing and Rendering Point Set Surfaces. In Proc. of IEEE Transaction

on Visualization and Computer Graphics, Vol. 9, No. 1, pp. 3-15.

[ACDL00] N. Amenta, S. Choi, T.K. Dey and N. Leekha. A Simple Algorithm for

Homeomorphic Surface Reconstruction, In Proc. of ACM Symposium on

Computational Geometry 2000, pp. 213–222.

[ACDL03] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy and M. Desbrun.

Anisotropic Polygonal Remeshing. In Proc of SIGGRAPH 2003, pp. 485-

493.

[AdAl03] A. Adamson and M. Alexa. Approximating and Intersecting Surfaces from

Points. In Proc. of Eurographics Symposium on Geometry Processing 2003,

pp. 245-254.

[AGJ00] U. Adamy, J. Giesen and M, John. New Techniques for Topologically

Correct Surface Reconstruction. In Proc. of IEEE Visualization 2000, pp.

373–380.

[AmYo04] N. Amenta and J.K. Yong. Defining Point-Set Surfaces. In Proc. of

SIGGRAPH 2004, pp. 264-270.

[ASS02] I. Avcibas, B. Sankur and K. Sayood. Statistical Evaluation of Image

Quality Measures. In Journal of Electronic Imaging, vol. 11, no. 2, 2002, pp.

206–223.

 132

[BoHe96] F.J. Bossen and P.S. Heckbert. A Pliant Method for Anisotropic Mesh

Generation. In Proc. of 5th International Meshing Roundatable, pp 63-67.

[BoKo01] M. Botsch and L. Kobbelt. Resampling Feature and Blend Regions in

Polygonal Meshes for Surface Anti-Aliasing. In Proc. of Eurographics 2001,

pp 402-410.

[BoKo03] M. Botsch and L. Kobbelt. High Quality Point Based Rendering on Modern

GPUs. In Proc. of Pacific Graphics 2003, 335-343.

[CAD04] D. Cohen-Steiner, P. Alliez and M. Desbrun. Variational Shape

Approximation. In Proc. of SIGGRAPH 2004, pp. 905-914.

[CDK04] B. Chen, F. Dachille and A.E. Kaufman. Footprint Area Sampled Texturing.

In Proc. of IEEE Transactions on Visualization and Computer Graphics,

Vol. 10, No. 2, pp. 230-240.

[CGAL04] Computational Geometry Algorithm Library. Webpage Address:

http://www.cgal.org.

[ChNg01] B. Chen and M.X. Nguyen. POP: A Hybrid Point and Polygon Rendering

System for Large Data. In Proc. of IEEE Visualization 2001, pp. 45–52.

[CoHe02] L. Coconu and H.C. Hege. Hardware Accelerated Point Based Rendering of

Complex Scenes. In Proc. of Eurographics Workshop on Rendering, pp. 43-

52.

[CoMo03] D. Cohen-Steiner and J. Morvan. Restricted Delaunay Triangulations and

Normal Cycle. In Proc. of Symposium on Computational Geometry 2003, pp.

237-246.

 133

[DCSD02] O. Deussen, C. Colditz, M. Stamminger and G. Drettakis. Interactive

Visualization of Complex Plant Ecosystems. In Proc. of IEEE Visualization

2002, pp. 219–226.

[DeHu02] T.K. Dey and J. Hudson. PMR: Point to Mesh Rendering, A Feature-Based

Approach. In Proc. of IEEE Visualization 2002, pp. 155–162.

[FoFi88] A. Fournier and E. Fiume. Constant-Time Filtering with Space-Variant

Kernals. In Proc. of SIGGRAPH 1988, pp. 229-238.

[FrAl03] P.J. Frey and F. Alauzet. Anisotropic Mesh Adaptation for Transient Flows

Simulations. In Proc. of 12th International Meshing Roundtable, pp 335-348.

[GaHe97] M. Garland and P. Heckbert. Surface Simplification Using Quadric Error

Metrics. In Proc. of SIGGRAPH 1997, pp. 209-216.

[Garl99] M. Garland. Quadric-Based Polygonal Surface Simplification. Phd Thesis,

Carnegie Mellon University, 1999.

[GIHL00] A. Girshick, V. Interrante, S. Haker and T. Lemoine. Line Direction Matters:

An Argument for the Use of Principle Directions in 3D Line Drawings. In

Proc. of 1st International Symposium on Non-photorealistic Animation and

Rendering, pp 43-52.

[GrDa98] J.P. Grossman and W.J. Dally. Point Sample Rendering. In Proc. of 9th

Eurographics Workshop on Rendering 1998, pp. 181–192.

[HDD92] H. Hoppe, T. DeRose, T. Duchamp. Surface Reconstruction from

Unorganized Points. In Proc. of SIGGRAPH 1992, pp 71-78.

[Heck89] P. Heckbert. Fundamentals of Texture Mapping and Image Warping. Master

Thesis, University of California, Berkeley, 1989.

 134

[HeGa99] P.S. Heckbert and M. Garland. Optimal Triangulation and Quadric-Based

Surface Simplification. In Journal of Computation Geometry: Theory and

Applications, Vol. 14, No. 1, pp 49-65.

[JaSh01] K.E Jansen and M.S. Shephard. On Anisotropic Mesh Generation and

Quality Control in Complex Flow Problems. In Proc. of 10th International

Meshing Roundtable, pp 341-349.

[JiTa02] X. Jin and C.L. Tai. Analytical Methods for Polynomial Weighted

Convolution Surfaces with Various Kernels. In Computer & Graphics, Vol.

23, No. 3, pp. 437 ~ 447.

[KaVa01] A. Kalaiah and A. Varshney. Differential Point Rendering. In Proc. of

Eurographics Workshop on Rendering Techniques, pp. 139-150.

[KaVa03a] A. Kalaiah and A. Varshney. Modelling and Rendering of Points with Local

Geometry. In IEEE Transaction of Visualization and Computer Graphics,

Vol. 9, No. 1, pp. 30-42.

[KaVa03b] A. Kalaiah and A. Varshney. Statistical Point Geometry. In Proc. of

Eurographics Symposium on Geometry Processing, pp. 107-115.

[KFR04] M. Kazhdan, T. Funkhouser and S. Rusinkiewicz. Shape Matching and

Anisotorpy. In Proc. of SIGGRAPH 2004, pp. 623-629.

[LaSh03] F. Labelle and J.R. Shewchuk. Anisotropic Voronoi Diagrams and

Guaranteed-Quality Anisotropic Mesh Generation. In Proc. of ACM

Symposium on Computational Geometry 2004, pp 191-200.

[Levi03] D. Levin. Mesh-independent Surface Interpolation. In Geometric Modelling

for Scientific Visualization 2003, pp. 37-49.

 135

[Levi98] D. Levin. The Approximation Power of Moving Least-squares. In

Mathematics of Computations, Vol. 67, No. 224, pp. 1517-1531.

[LeWh85] M. Levoy and T. Whitted. The Use of Points as a Display Primitive.

Technical Report TR 85-022, University of North Carolina at Chapel Hill,

1985.

[LGSF00] M. Levoy, K, Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M.

Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade and D. Fulk. The

Digital Michelangelo Project: 3D Scanning of Large Statues. In Proc. of

SIGGRAPH 2000, pp. 131-144.

[LoTa97] K.L. Low and T.S. Tan. Model Simplification using Vertex Clustering. In

Proc. of Symposium on Interactive 3D Graphics 1997, pp. 75–81.

[LTU99] X.Y Li, S.H. Teng and A. Ungor. Biting Ellipses to Generate Anisotropic

Mesh. In Proc. of 8th International Meshing Roundtable, pp. 97-108.

[MaKo04] M. Marinov and L. Kobbelt. Direct Anisotropic Quad-Dominant Remeshing.

In Proc. of Pacific Graphics 2004.

[McSh98] J. McCormack and A. Sherstyuk. Creating and Rendering Covolution

Surfaces. In Computer Graphics Forum, Vol. 17, No. 2, pp. 113-120.

[MFPJ99] J. Mccormack, K.I. Farkas, R. Perry and N.P. Jouppi. Simple and Table

Feline: Fast Elliptical Lines for Anisotropic Texture Mapping. Technical

Report, Compaq Western Research Laboratory, 1999.

[MMJ00] R. McNamara, J. McCormack and N.P. Jouppi. Prefiltered Anti-aliased

Lines Using Half-Plane Distance Functions. In Proc. of

 136

SIGGRRAPH/Eurographics Work Shop on Graphics Hardware 2000, pp 77-

85.

[MPFJ99] J. Mccormack, K.I. Farkas, R. Perry and N.P. Jouppi. Feline: Fast Elliptical

Lines for Anisotropic Texture Mapping. In Proc. of SIGGRAPH 1999, p

243-250.

[Nels96] S.R. Nelson. Twelve Characteristics of Correct Antialiased Lines. In Journal

of Graphics Tools, vol.1:4, 1996, pp. 1–20.

[NVID01] NVIDIA. Order Independent Transparency, 2001. Webpage Address:

http://developer.nvidia.com/view.asp?IO=order_independent_transparency.

[PaGr01] M. Pauly and M. Gross. Spectral Processing of Point-sampled Geometry. In

Proc. of SIGGRAPH 2001, pp 379-386.

[Paul03] M. Pauly. Point Primitive for Interactive Modelling and Processing of 3D

Geometry. Phd Thesis, Federal Institute of Technology (ETH) of Zurich,

2003.

[PGK02] M. Pauly, M. Gross and L. Kobbelt. Efficient Simplification of Point-

sampled Geometry. In Proc. of IEEE Visualization 2002, pp. 163-170.

[PHY01] Q. Peng, W. Hua and X. Yang. A New Approach of Point-Based Rendering.

In proc. IEEE Computer Graphics International 2001, pp. 275-282.

[PKG03] M. Pauly, R. Keiser and M. Gross. Multi-scale Feature Extraction on Point

Sampled Surfaces. In Proc. of Eurographics 2003, pp. 281-289.

[PKKG03] M. Pauly, R. Keiser, L.P. Kobbelt and M. Gross. Shape Modelling with

Point-sampled Geometry. In Proc. of SIGGRAPH 2003, pp. 641-650.

 137

[PZVG00] H. Pfister, M. Zwicker, J. van Baar and M. Gross. Surfels: Surface Elements

as Rendering Primitives. In Proc. of SIGGRAPH 2000, pp. 335–342.

[Ripp92] S. Rippa. Long and Thin Triangles Can Be Good for Linear Interpolation. In

SIAM Journal of Numerical Analysis, Vol. 29, No. 1, pp 257-270.

[RoKo00] C. Rossl and L. Kobbelt. Line-Art Rendering of 3D-Models. In Proc. of

Pacific Graphics 2000, pp 231-239.

[RPZ02] L. Ren, H. Pfister and M. Zwicker. Object Space EWA Surface Splatting: A

Hardware Accelerated Approach to High Quality Point Rendering. In Proc.

of Eurographics 2002, pp. 461–470.

[RuLe00] S. Rusinkiewicz and M. Levoy. QSplat: A Multiresolution Point Rendering

System for Large Meshes. In Proc. of SIGGRAPH 2000, pp. 343–352.

[SeAk91] M. Segal and K. Akeley. The Design of the OpenGL Graphics Interface.

Silicon Graphics Computer Systems, 1991.

[Sher99] A. Sherstyuk. Kernel Functions in Convolution Surfaces: A Comparative

Analysis. Technical Report, Monash University, 1999.

[SKS96] A. Schilling, G. Knittel and W. Strasser. Texram: Smart Memory for

Texturing. In Computer Graphics and Application, Vol. 16, No. 3, pp. 32-41.

[SoPr03] M.C. Sousa and P. Prusinkiewicz. A Few Good Lines: Suggestive Drawing

of 3D Models. In Proc. of Eurographics 2003, pp. 381-390.

[StDr01] M. Stamminger and G. Drettakis. Interactive Sampling and Rendering for

Complex and Procedural Geometry. In Proc. of Eurographics Workshop on

Rendering 2001, pp. 151-162.

 138

[TART04] The Anisotropic Remeshing Topic Webpage of Meshing Research Center.

Web Address: http://www.andrew.cmu.edu/user/sowen/topics/aniso.html.

[Taub95] G. Taubin. Estimating the Tensor of Curvature of A Surface from A

Polyhedral Approximation. In Proc. of ICCV 1995, pp. 902-907.

[Tous83] G.T. Toussaint. Solving Geometric Problems with the Rotating Calipers. In

Proc. of IEEE MELECON 1983, pp. 1-4.

[WFPH01] M. Wand, M. Fischer, I. Peter, F.M. auf der Heide and W. StraBer. The

Randomized z-Buffer Algorithm: Interactive Rendering of Highly Complex

Scenes. In Proc. of SIGGRAPH 2001, pp. 361-370.

[Will83] L. Williams. Pyramidal Parametrics. In Proc. of SIGGRAPH 1983, pp. 1-11.

[Wong03] K.H. Wong. Line Rendering Primitive. Master Thesis, National University

of Singapore, 2003.

[WuKo04] J. Wu and L. Kobbelt. Optimized Sub-Sampling of Point Sets for Surface

Splatting. In Proc. of Eurographics 2004, pp. 643-652.

[YaSh00] S. Yamakawa and K. Shimada. High Quality Anisotropic Tetrahedral Mesh

Generation Via Ellipsoidal Bubble Packing. In Proc. of 9th International

Meshing Roundtable, pp. 263-273.

[ZPBG01] M. Zwicker, H. Pfister, J. van Baar and M.H. Gross. EWA Volume Splatting.

In Proc. of IEEE Visualization 2001, pp. 29-36.

[ZPBG02] M. Zwicker, H. Pfister, J. Van Baar and M. Gross. EWA Splatting. In IEEE

Transactions on Visualization and Computer Graphics, Vol. 8, No. 3, pp.

223-238.

 139

[ZPKG02] M. Zwicker, M. Pauly, O. Knoll and M. Gross. Pointshop 3D: An Interactive

System for Point-based Surface Editing. In Proc. of SIGGRAPH 2002, pp.

322–329.

[ZPVG01] M. Zwicker, H. Pfister, J. van Baar and M. H. Gross. Surface Splatting. In

Proc. of SIGGRAPH 2001, pp. 371–378.

[ZRBD04] M. Zwicker, J. Rasanen, M. Botsch, C. Dachsbacher and M. Pauly.

Perspective Accurate Splatting. In Proc. of Graphics Interface 2004, pp 247-

254.

[Zwic03] M. Zwicker. Continuous Reconstruction, Rendering and Editing of Point-

Sampled Surfaces. Phd Thesis, Federal Institute of Technology (ETH) of

Zurich, 2003.

	cover.pdf
	abstract.pdf
	toc.pdf
	body_standard.pdf

