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Abstract 
 
A big problem in the life-sciences is the ability to calculate, in-silico, the binding 

affinity between a protein active site and a lead-ligand. This thesis introduces a 

new method to predict the binding affinity of a given drug ligand and active site, 

using backpropagation neural networks of 128 protein ligand complexes, with 

electrostatic, hydrogen bonding and molecular weight parameters. The 

parameters are given space and magnitude consideration, through the use of 

physico-chemical autocorrelation for the preparation of the input parameters. 

Self-Organizing Maps(SOM) are used as well to visualize the distribution of the 

input cases in similarity space. The results showed an improvement in accuracy 

over multiple regressive and the BLEEP method for calculation of binding affinity, 

using Root Mean Square, Relative Root Mean Square, Mean Absolute and 

Relative Mean Absolute Error calculations. The SOM additionally showed 

positive clustering of protein-ligand complexes, from similar families spread 

through the input space. 
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Thesis Summary 

 

This thesis presents a new methodology to be used for predicting the binding 

affinity of ligands (drug leads) to protein active sites, using neural networks. A 

large part of healthcare is derived from the suitability of medication and as well its 

affordability. Medicines today do not come cheap due to the laborious process 

through which they are developed. These more traditional methods of drug 

development involve a large amount of potential drug leads being screened 

against the active sites (functional regions) within proteins which are believed to 

either excite or inhibit a particular physiological activity within our complex 

systems. This brute force mass screening not only introduces great waste in time 

and resources, but is not able to guarantee the successful outcome of a drug 

with suitable efficacy. As such, a more informed approach has been taken to 

design these drug leads – rational drug design.  

 

Rational drug design involves the development of drugs based on the structural 

and physico-chemical characteristics held by these bioactive molecules, with the 

aim of identifying the pharmacophore, or set of complementary characteristics 

within the ligand and the active site, to produce a bind with high affinity and 

specificity. Two characteristics known to be vital to this interaction are 

electrostatic charge, and hydrogen bonding capacity. These very two factors are 

modeled in this thesis, with the aim of finding a good correlation with binding 

affinity. The adaptation of the physico-chemical information to its computable 
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representation is carried out by autocorrelation, a method that enables multiple 

properties of varied molecules, in terms of size, structure and chemical 

composition, to be represented by a fixed number of parameters, making it ideal 

for any statistical or machine learning approach.  

 

Neural networks have chosen to be trained by a set of 128 protein-ligand 

complexes with known binding affinity. Before supervised training is carried out, 

the protein-ligand complexes are clustered, based on their modeled 

characteristics, by Kohonen Self Organizing Maps(SOM). SOMs make visible the 

spread of physico-chemical and structural diversity allowing any bias to be 

identified before the supervised training is started, and as well complements 

analysis of supervised training results. Once seen to be fairly spread out across 

the input space of the SOM, the backpropagation algorithm is used to train the 

network towards increasing its predictability of binding affinity being given a 

protein active site-ligand complex as input.  

 

A range of tests were carried out to identify the best possible training topology of 

the neural network and once secured, comparisons were made to understand the 

relative strength of the method developed. Comparisons with Multiple Linear 

Regression  and a previously published method of Biomolecular Ligand Energy 

Evaluation Protocol (BLEEP) were made and the developed method produced 

higher binding prediction accuracies than both methods. Further analysis into the 

clustering of the complexes alongside the supervised training highlighted 
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additional factors that could potentially improve binding results even more. 

Further research into these improvements is thus highly anticipated and 

expected to bring new light into the field of drug design. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1

Chapter 1. Introduction 
 
 
This chapter is intended to introduce the reader to the arena of drug design and 

development, and the importance of the research undertaken in a wider 

perspective. The motivation behind the research undertaken will as such be 

described and followed by the organization and scope of this report. 

 
1.1 Motivation 
 
 
Drugs work with our biological systems through their interaction with receptors 

causing alterations in their activities to bring about biochemical changes within 

our bodies. These interactions can be agonistic, where the activity of the 

receptor is stimulated or antagonistic, where the activity is retarded.  

 

Discovering and developing an effective drug is by no means an easy task. 

Many drugs we use today have been discovered by chance observation, 

second-hand analysis of traditional remedies or by taking note of the side 

effects of already developed drugs, and manipulating them to elevate the 

desired effects. A more systematic means of discovering drugs has been 

developed, that is, through combinatorial chemistry. Combinatorial chemistry 

involves large libraries of test compounds being screened against potential 

drug targets and their interactions studied. This trial and error methodology is 

understood to be a time-consuming and expensive method, requiring an 

inefficiently large amount of time and chemical resources. 

 

A more organized approach to discovering drugs is known as rational drug 

design. As its name implies, it is a more systematic method of designing drugs 
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which rather than through brute force methods, uses information (such as the 

three dimensional structure and physico-chemical properties) inherent within 

the target receptor and that of potential ligands (drug compounds) that might 

bind with these receptors, to identify feasible candidate drug compounds. This 

more informed methodology was developed to reduce the number of 

candidates eventually being tested in vivo and in vitro (in the wet-lab) and 

reduce waste in the process. Several drugs have already been developed 

through rational drug design. Among them are Relenza for influenza, Ritonivir 

and Indinavir for HIV infections and as well as Viagra for the treatment of 

sexual dysfunction.  

 

Many computational techniques have been developed to support this 

methodology, from the analysis and comparison of the protein sequences (to 

find homologous regions that could potentially reflect the actual active-sites 

within the protein structures that the candidate compound will interact with), 

through the prediction of protein structures from their sequential information, all 

the way to the predictive calculation of the binding affinity between the 

candidate ligands and the target protein receptors (active sites). 

 

The motivation of this paper is to develop a methodology for predicting the 

binding affinity between candidate ligands and the active sites of the target 

protein molecules using neural networks. This will enable bench scientists to 

actually run dry experiments before taking on the much larger and longer task 

of synthesizing the drug compounds. A neural network is a computational 

model that uses concepts from that of the central nervous system to solve 
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computational problems involving association, classification, transformation and 

modeling [Zupan et al., 1999]. 

 

By using neural networks, this research therefore aims to develop a method to 

calculate how well a given drug compound binds to a target receptor in silico 

(computationally). This will enable better predictions and ranking of feasible 

ligands to be performed, reducing waste of biochemical compounds in the wet-

lab. Current computational methods of predicting binding affinity have not yet 

been able to provide sure-fire results due to the multidi-mensional complexity of 

the molecular interactions involving a large number of parameters, some of 

which are not yet even be known. Thus, to deal with this complexity, the neural 

network designed will be based on results obtained directly from wet lab 

experiments. This will not only provide a means of predicting binding affinity 

based on real-life interactions but will as well better provide insight into the 

discovery of parameters that contribute more to the binding. 
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Chapter 2. Literature Review and Related Work 
 
 
In this chapter, the field of proteomics and drug design will first be introduced 

including methods, technologies and the terminology used in the field. The 

transition of wet-lab to dry-lab will then be discussed with reference to the 

current computational methods used to approach these drug design 

challenges. The technology of neural networks will then be described along 

with how it has been used in various related life science problems, and the 

challenges its application poses. Finally, special focus will be made on the use 

of these neural network technologies to Quantitative Structure Activity 

Relationships (QSAR) problems, such as the one approached by this thesis. 

 

2.1 Proteomics and Drug Design 

The post-genomic era has brought about a whole new set of challenges, 

increasingly and especially so in the field of proteomics. The design of 

pharmaceutical leads as is an extremely complex process and is up to this day, 

not yet completely understood [Balbes et al. (1994)]. A great amount of 

computational effort has been put into the study of protein sequences, their 

relative homology, the prediction of their three dimensional conformations, the 

identification of sites of interaction within these complex 3D structures, and the 

design of suitable small molecular structures as therapeutic drugs with 

appropriate structural and physico-chemical constitution to bind to these 

macromolecules with high specificity so as to provide high efficacy with little, or 

ideally, no side effect.  
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The currently more traditional method of drug development, using mass 

screening of large combinatorial libraries against target protein structures, even 

with their evolutionary increase in speed, incur high costs and waste through 

their brute force methodology of blindly ‘attacking’ proteins with millions of 

ligand analogues. The basis of rational drug design is that drug activity arises 

through the molecular binding of a small molecule, or ligand, to a receptor or 

active-site of a larger molecule, which is usually a protein [Finn et al. (1999)]. In 

their bound state, the protein-ligand complex exhibits some biological activity, 

activated through their structural and chemical complementarity, both of which 

are vital for drug activity [Lengauer (1993), Finn et al. (1999)].  By binding to the 

active-site of the macromolecule, the designed ligand can either play an 

inhibitory (antagonist) or excitatory (agonist) role by replacing the activity of the 

macromolecules complex with its natural substrate with that of one created. 

Figure 2.1.1 below shows an example of a such a complex, of haemoglobin 

with oxygen bound at all four haems [Bernstein et al. (1977)].  

 
 

 

Due to the non-static, constantly changing conformation of molecules, their 

modeling becomes a complex task. This not only involves the varying degrees 

Figure 2.1.1 – Haemoglobin molecule with oxygen bound at all four haems. 
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of movement of the small ligand alone, but that of the macromolecule as well, 

with particular focus on its active site. To increase the complexity further, the 

properties and composition of the molecules’ solvent environment also need to 

be taken into consideration. This makes the exact simulation or modeling of the 

whole binding process, that of determining the molecular complex with the 

lowest energy, or most stable state, a huge feat. Biochemists, medicinal 

chemists and physicists together all work at increasing the accuracy of these 

molecular models through their energetic studies involving quantum physics 

and chemistry, and using technologies such as Nuclear Magnetic Resonance 

(NMR) Spectroscopy and X-Ray Crystallography, they are even able to attain 

the three dimensional structure of the molecules. The structures obtained from 

such processes are however just a snapshot of these molecules in motion and 

therefore are still not able to tackle the complexity of intermolecular binding. To 

deal with such complexity, studies are therefore made within certain limits of 

assumption determined by the complexity and flexibility of the molecules 

themselves.  

 
A common term used to describe the computational binding of a ligand to its 

best matched active site within a macromolecule is ‘docking’ [Halperin et al. 

(2002)]. Halperin et al. (2002) discussed the two main challenges in docking, 

namely unbound and bound docking. Unbound docking is generally the greater 

challenge of the two types as it involves fitting optimally an unbound ligand to a 

receptor macromolecule’s active site(s) to form a complex in its lowest 

composite energy level, or most stable state. This challenge is better known as 

the ‘docking problem’ [Finn et al. (1999)]. Algorithms written to solve this 

problem try to achieve one or both of two goals. The first one is that of enabling 
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the researcher to study the detailed interaction of the ligand with the 

microstructure of the active site. The second goal is that of predicting the 

‘wellness of fit’, of the ligand to the active site enabling the researcher to rank a 

library of ligands according to how well they fit, and help chemists filter out the 

less likely leads to save resources on less informed biochemical synthesis. The 

docking problem presents yet another challenge, that of the identification of the 

active site, in terms of where on the macromolecule it resides, and what amino 

acid composition it has, in the case of proteins for example.  

 

 

 

 

To begin, researchers have used ‘bound docking’, mentioned earlier to gain 

more knowledge on these molecular interactions. Bound docking on its own is 

a much simpler problem as in this case, the location of the active site is known 

[Halperin et al. (2002)]. In bound docking, the location of the active site is  

made directly visible through wet-lab experimental means where the three 

dimensional structure of a protein-ligand complex is obtained through either 

NMR Spectroscopy or X-ray crystallography. The goal of this method is to 

extract these ligands from the complex in-silico and study the characteristics 

Figure 2.1.2 : A ligand bound within the active site of a macromolecule 
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within both interacting members of the complex individually and to establish 

their geometric and physico-chemical complementarity which will then help 

determine the vital factors involved in that particular binding.  It is therefore 

valuable to find complexes of the same particular specific active site, with that 

of many different experimentally bound ligands. This enables the researcher to 

study the ‘pharmacophore’ within the ligands [Finn et al. (1999)]. Finn et al. 

(1999) describe the pharmacophore as the set of features present in a specific 

three dimensional configuration, regardless of its conformation. The 

pharmacophore is intended to reveal a template present in all reacting ligands 

to a specific site, for that specific site, that present the essential constituents 

that are required for a reaction to take place. The remainder of the molecule, 

not part of the pharmacophore thus acts merely as its scaffold, holding it in 

place. To exemplify this, Glen et al. (1995) used these principles to help in the 

discovery of a drug for migraine, 311C90(6), by identifying the interacting 

pharmacophore to comprise a protonated amine site, an aromatic site, a 

hydrophobic pocket, and two hydrogen bonding sites. It can be inferred from 

this that the geometry of a potentially binding ligand to be bound is of utmost 

importance, and has been the grounds for the development of several docking 

algorithms [Kuntz et al. (1982), Connolly (1983), Lee et al. (1985), DesJarlais et 

al. (1986)].   

 

How is this geometrical and spatial data then made useful? A correlative study 

is required to link up the structure of the ligand/active-site complex to its 

function. These studies are known as Structure Activity Relationship (SAR) or 

Structure Property Relationship (SPR) studies. The functions proteins hold are 

often uncovered through the study of their evolutionary history, visible through 
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sequence similarity, or homology [Lichtarge et al. (1996), Marcotte et al. 

(1999)]. Predictive methods, as well, have been developed for the identification 

of potential active sites within macromolecules. These methods either use 

comparative similarities amongst proteins with similar function, surface 

searches for geometric cleavages in the macromolecular structure [Laskowski 

et al. (1996)], searches through simulated docking [Oshiro et al. (1998)] of 

ligand libraries [Chen et al. (2001)], or through the study of chemical and 

electrostatic properties throughout the protein [Shehadi (2003)]. 

 

Due to the mobility of proteins and therefore their active sites in vivo, it is 

difficult to ‘capture’ the actual molecular conformation of either the active site 

required for a successful bind or predict the best conformation of a ligand for it 

to bind to a particular active site. This is due to the varying degrees of freedom 

each chemical bond holds. Therefore, to simulate a docking between the active 

site and a ligand, the varying flexibilities tend to determine the algorithms used 

[Fraga et al. (1995)]. Fraga et al. (1995) has classified docking into three 

categories, according to their degrees of flexibility, rigid body docking, semi-

flexible docking, and flexible docking. In rigid body docking, both the molecules 

are considered to have a fixed conformation, while in semi-flexible docking, one 

of the molecules, more often than not the smaller, is considered flexible while 

the active site is taken to be rigid. In flexible docking, both molecules are 

considered flexible but only to a pre-defined extent to simplify the complexity of 

the problem. Among these three methods, the first is the most simplistic and 

may not provide accurate predictions on the wellness of fit amongst the ligand 

and macromolecule. Therefore, it is desirable to have at least one of the two 

molecules, usually the ligand as a flexible molecule to allow the study of the fit 
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of the same molecule in its various conformations. This wellness of fit is usually 

measured in terms of energy, and the goal of a good fit would be one which 

delivers the lowest energy level [Lengauer et al. (1996)]. 

 

2.2 Currently Used Computational Docking Methodologies 
 

Many docking algorithms can be thought of to act as search functions, 

searching for the optimum conformation (the actually docked state), of both the 

ligand and the active site, within the limitations of their conformational flexibility. 

Such a search algorithm, may however produce an impractically large number 

of solutions. In theory, zeroing down on the best solution using free-energy 

simulations is reliable [Pearlman et al. (2001)], but impractical due to the 

computational time involved. As such, the use of structure, and not energy, 

based methods have been vastly used in drug design enabling the prediction of 

suitably binding compounds. The six well known docking programs that shall be 

discussed here are FlexX [Rarey et al., (1996)], DOCK [Kuntz et al., (1982)], 

GOLD [Jones et al., (1997)], Glide [Eldridge et al., (1997)], Ligand-Fit 

[Kontoyianni et al. (2004)], and BLEEP [Nobeli et al., (2001)].  

 

FlexX [Rarey et al. (1996)] uses an incremental construction algorithm, 

combining physico-chemical interactions as well as geometric conformational 

sampling to find the optimum binding conformation of the protein-ligand 

complex, and predict the binding affinity. It is used when the three dimensional 

structures of the proteins are known and a single or a library of ligands is 

available for docking. FlexX attempts to predict the complex conformation, 

which is useful when the protein-ligand complex has not been found through 
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experimental means. It’s mass virtual screening abilities comes in useful when 

ranking of a ligand library is needed before proceeding to further wet-lab 

experimental synthesis. FlexX works by first placing a fragment into a pre-

defined active site of the protein followed by a tree search algorithm based on a 

greedy strategy to incrementally grow the first fragment to its final optimal 

conformation. This is similar to the algorithm used by Leach and Kuntz (1992). 

Adaptations from LUDI [Bohm (1992a/b)] are then used to model the protein-

ligand interactions, using geometric pairwise assignments based on physico-

chemical complementarity. To deal with conformational flexibility (of the ligand, 

as the active site is considered rigid in FlexX), the same method as used in 

MIMUMBA [Klebe et al. (1994)], a conformational search program, is used. 

Pose clustering [Linnainmaa et al. (1988)], a pattern recognition technique is 

first used for the placement of the first (base) fragment. Once the first fragment 

has been placed, fragments are added to it in all possible conformations, and 

the k best choices are then taken to the next similar iteration, to build a ligand 

to its eventual full structure. 

 

DOCK [Kuntz et al. (1982)] uses shape based algorithms to run its protein-

ligand binding. In DOCK, as in FlexX, a three dimensional macromolecular 

structure is required with its active site defined and a single or library of ligands 

to be either bound optimally (predictively), or ranked according to their wellness 

of fit. In DOCK, a Connolly (1983) molecular surface of the active site is first 

generated. The cleavage shape presented by the Connolly surface is then used 

to define spheres within the ‘pocket’. The centre of each of these spheres is 

now taken as potential locations for atoms of the ligand to be docked. The 

ligands presented to the program are then geometrically manipulated for their 
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atomic positions to match the centre of these spheres, determining all possible 

conformations of the ligand within the active site. Each conformation is then 

scored, using one of three scoring strategies, namely shape scoring, which 

uses a Lennard-Jones (1932) potential approximation, electrostatic scoring 

using DELPHI [Rocchia et al. (2001)] to calculate the electrostatic potential, 

and Force-field scoring which uses AMBER [Pearlman et al. (1995)] force 

fields. 

 

GOLD [Jones et al. (1997)] (Genetic Optimization for Ligand Docking) is yet 

another automated ligand docking software based on an algorithm by Jones et 

al. (1995) which this time uses genetic algorithms to explore the full range of 

ligand conformations, and flexibility of the molecules comprising the active site. 

This flexibility within the active site is however limited to that of the side chains 

of amino acids within it. Scoring then ranks the ligands in their respective 

conformations taking into consideration hydrogen bonding, a pairwise 

dispersion potential to describe hydrophobicity contributions, and molecular 

mechanics for the internal energetic representation of the ligand. Good results 

from the genetic algorithm are therefore likely to produce protein-ligand 

complexes with maximal interactions at hydrogen bonding sites between the 

respective hydrogen donors, acceptors and acceptor/donors, as well as burial 

of hydrophobic surfaces.  

 

Glide [Eldridge et al., (1997)] uses its own algorithm for conformational 

generation allowing efficient systematic searches within the ligand 

conformational space by hierarchically filtering out undesirable conformations 

leaving fewer combinations to compute. This is illustrated in Figure 2.2.1 below 
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from Hhttp://www.schrodinger.com/Products/glide.htmlH. It clusters the core 

regions of the generated ligand conformations, treating the end groups 

independently. Optimal binding conformations are then identified using a 

combination of Monte-Carlo sampling and minimization of the ligand within the 

active site.  

 

 
Figure 2.2.1 – The Glide Funnel 

 

This system, similar to DOCK and FlexX above performs binding between a 

rigid active site and flexible ligands allowing both the identification of a ligand in 

its predicted optimal complex conformation, as well as a ranking of a ligand 

library according to binding affinity, in this case using a scoring strategy 

involving grid-based energy minimization, Monte-Carlo sampling, and a 

modified ChemScore [Eldridge et al. (1997)], known to the application as 

GlideScore. 
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The next docking system that will be discussed in this chapter is that of 

LigandFit [Venkatachalam et al. (2003)], a shape based methodology used to 

dock ligands into protein active sites. In LigandFit, the active sites of the protein 

need not be known before the docking is carried out. It is able to detect 

invaginations within the protein structure surface using a flood-fill algorithm 

[Foley et al. (1982), Rogers (1985)] representing possible sites of interaction. 

LigandFit as well allows the determination and extraction of a site from a pre-

bound three dimensional complex for manipulation of the site to more 

accurately simulate its dynamics in vivo or as well to dock alternative ligands to 

those from the complex. LigandFit’s docking procedure then employs 

stochastic selection of the ligands variable torsional angles as a means of 

conformational searching, selection of a particular conformation based on 

shape matching with the active site, and a predictive binding affinity calculation 

using a grid-based energy calculation to estimate interaction energies within 

the docked complex.  

 
The Biomolecular Ligand Energy Evaluation Protocol (BLEEP) [Nobeli et al., 

(2001)], is yet another methodology that has been developed to predict protein-

ligand interactions, in this case through potentials of mean force (PMF) 

[Muegge et al., 1999]. BLEEP does this by considering atom distances 

between 2.5Å and 8 Å between proteins and ligands and converting them into 

pair potential functions. The atoms of the protein and ligand are respectively 

first typed, using  the Simple Atom Type Information System (SATIS) [Mitchell 

et al., (1999)]. Each atom within the protein-ligand system is then assigned a 

ten digit code, the first two digits representing the atoms atomic number, and 

the remaining eight consisting of the two digit atomic numbers of the atoms 
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covalently bonded to it. To take account of the important hydrogen bonding 

parameter [Jones et al.,1997], polar hydrogens were added as interaction sites, 

their coordinates calculated by HBPLUS [McDonald, 1994]. In addition to that, 

to account for interactions with water particles, missing water particles were 

added using AQUARIUS2 [Pitt, et al., 1993, Goodfellow et al., 1995]. Once 

done, BLEEP then uses thermodynamics to convert these typed distance 

distributed atoms into pair potentials. This thermodynamic equation used is as 

follows, 
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where )(sEab∆  is the net potential within a pair comprising atom types a and b 

at distance s, k is the Boltzman constant, T is the absolute temperature, mab is 

the total number of contacts between atom types a and b, )(sf ab  is the distance 

distribution between atom types a and b at distance s,  σ  is a weighting 

function and )(sf  is the reference potential, derived from the average of the 

atom-atom distances for the entire dataset. The overall interaction is then 

calculated by summing up all PMF scores between all the atom pairs within the 

protein-ligand complex.  

 

The six methods  described above have exemplified how current popular 

applications have adopted a combination of geometric, energetic and physico-

chemical complementarity to find optimal binding conformations and to predict 

binding affinity. The following section will discuss how machine learning 

methodologies, in particular that of neural networks, work and further how they 

[Eq.2.2.1] 



 16

have been used in chemistry and drug design, and the potential for such 

techniques to be further used in the prediction of binding affinity and 

conformation. 

 

2.3 Neural Network Review 
 

The motivation towards the development of neural networks has been to mimic 

the information processing capabilities of the brain, a completely different 

means of processing when compared to that of the traditional von Neumann 

architecture. Neural networks are used today mostly where complex data 

needs to be processed for the sieving of useful information from it, with 

applications ranging from stock market analysis and predictions, to biometric 

fingerprint pattern recognition and medical diagnoses. Neural networks are 

commonly used to approach challenges of the following types [Gasteiger et al., 

1993]: 

 

- Classification: This is where an object with several characteristics or 

parameters, is assigned to one of many predetermined categories. 

 

- Modeling: This is where an analytical function is derived from the 

correlation of a set of inputs to a set of outputs of the network. This is 

especially useful in cases where input and output data to a process is 

available but no mathematical function is available to correlate the two. 

 

- Association: This type of problem can be divided into auto-association and 

hetero-associative categories. In auto-association, patterns learned by the 
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network can be reproduced given the incomplete patterns as inputs, a 

common application being character recognition in handwriting. Hetero-

association involves the one-to-one correlation of two discrete sets of 

patterns that need not have any correlative similarity. 

  

- Mapping: This is where a transformation of dimensionality from a higher to 

a lower level, or vice versa takes place, an example of this being the 

property mapping of a three dimensional object to a two dimensional plane.  

 

The main neural network strategies adopted to tackle such problems are that of 

back-propagation, counter-propagation, and Kohonen networks. The back 

propagation [Werbos (1982), Rumelhart et al. (1986)] strategy of neural 

networks is one which involves at least three layers of  nodes (neurons), an 

input layer, one or more hidden layers and an output layer.  

 

Back propagation networks use supervised learning methods. This means that 

the output must be known for each set of input data. The network first has its 

edges initialized with weights. The data is then passed through the network and 

the transfer functions within the nodes, and the output layer calculates the 

error, which is the difference between the output of the network and its 

intended response. The error is then propagated backwards through the 

network, and its weights adjusted using the Widrow-Hoff [Widrow et al. (1960)] 

delta learning rule to decrease the error the next time the same inputs are 

presented to the network. The correction of weights can either be done 

immediately after each individual input, after the error is detected (interactive), 

or as a batch using the accumulated errors from each training iteration.   
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Kohonen networks or maps [Kohonen (1982)], are yet another neural network 

strategy, this time aimed at preserving the topology of a multidimensional 

representation within a one or two-dimensional array of neurons. Kohonen 

networks are a means of unsupervised learning in which the algorithms 

involved identify clusters in the data they are subjected to. Such an 

unsupervised learning methodology enable the grouping of data according to 

the closeness of their parameters relative to one another in an n-dimensional 

space (where n is the number of parameters or variables imposed onto the 

data). Each neuron in a Kohonen network has a set of weights with which it is 

associated, each one corresponding to one of the data inputs. Applying a set of 

data to a Kohonen network thus involves the calculation of an activation level at 

each neuron. This activation level is represented by the Euclidean distance 

between the input vector and the weight vector at each neuron or 

mathematically represented as: 

 

Activation Level = 2

0
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i inputweight −∑
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A neuron whose weight vector is thus ‘close’ to that of an input vector would 

have a low activation level and conversely, vector pairs with higher Euclidean 

distance will have a higher activation level. For each input vector presentation, 

the neuron with the smallest activation level takes the title “winner” of that 

iteration. During the training process, input vectors are introduced to the 

network and at each cycle as a winner arises, the winner along with a 

predefined group of neurons around it (in its neighborhood, which may change 

throughout the training), have their weight vectors adjusted to more closely 

[Eq.2.2.2] 
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match the input vector presented. The size of the neighborhood is usually 

decreased linearly as the training proceeds till eventually, the only neuron 

having its weights adjusted is the winner. The weight vector alteration depends 

on a factor known as the learning rate, each weight in the weight vector is 

adjusted according to the following equation:  

 

)( iii iww −−= αδ  

 

where α is the learning rate and iwδ is the weight change. This learning rule is 

meant to distribute the neurons evenly throughout the n-dimensional space 

[Hecht-Nielsen, 1990; Hertz et al., 1991; Kohonen, 1989]. With iteration of this 

learning algorithm, the input patterns which ‘trigger’ the same winning node are 

therefore said to belong to the same cluster or group. Lines can then be drawn 

to enclose the different groups to attain a contour like map, similar to the one 

below in Figure 2.1.2 [Zupan et al., (1999)]. 

 

 

 

 
 
 
 
 

Figure 2.3.1 : Kohonen Contour Map 

[Eq.2.2.3] 
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2.4 Applicability of Neural Networks to Drug Design 

 

Drug design is vastly considered as a challenge involving the linking of 

structural and physico-chemical as well as energetic characteristics of 

molecules to their complementary reactivity. Neural networks have to date, 

been used vastly in the field of quantitative structure activity relationships 

(QSAR), a field introduced in the 1960’s by Hansch and his co-workers 

[Hansch (1969), Martin (1978)]. These researchers were able to demonstrate 

that the biological activity taken on by chemical compounds has a direct 

mathematical correlation to their physico-chemical characteristics such as 

molecular weight, lipophillic potential, as well its electrostatic properties [Andrea 

et al. (1991)]. The modeling of such ideas is carried out through the mapping of 

a biological activity, A, to linear or parabolic functions of its physico-chemical 

properties (X,Y,…) [Andrea et al. (1991)] in the form 

 

A = C0 + C1X + C2X2 + C3Y + C4Y2 + … 

 

and by using multiple linear regression to determine the values of C0, C1,…, 

which then helps to minimize the variance between the data and the model. 

Due to the non-linear feature extraction capability of neural networks, it has 

become a potential candidate to help solve QSAR problems. Amongst the 

different types of neural networks that exist, the one used most commonly is 

the back-propagation network [Zupan et al. (1991)]. Andrea et al. (1991) for 

instance have used back propagation neural networks to link the inhibitory 

activity of 256 2,4-diamino-6,6-dimethyl-5-phenyldihydrotriazines to 

dihydrofolate reductase (DFHR), by modeling the physico-chemical properties 

[Eq.2.4.1] 
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of its ortho, meta and para positions of its phenyl rings, particularly their free 

energy and hydrophobicity.   Similar functional group substitution methods were 

carried out by Aoyama et al. (1990) to study SAR in mitomycins and 

arylacryloylpiperazines with favorable results when compared to those obtained 

via the Adaptive Least Square (ALS) method [Moriguchi (1986)]. Before delving 

further into the applicability of Neural Networks in the various fields of drug 

design and QSAR, the representation and coding of input data for these neural 

networks will be described. 

 

2.5 Coding chemical structures 

 

The most important factor to the successful implementation of a neural network 

is the proper representation of the data used in it. Using neural networks for 

QSAR and drug design purposes, we thus need to represent the data suitably 

to allow correlations to be made between the structural, chemical and biological 

properties [Zupan et al., (1999)]. Of utmost importance is the representation of 

molecular data. Many representations of such data exist, such as 2-D,and 3-D 

representation of molecules in various formats, such as PDB, MOL, and 

mmCIF to name a few [Baxevanis et al., (1998)]. These formats further allow 

manipulation of the visual representation of molecular data in ball-and-stick 

forms, anti-aliased forms and spaced filled forms. At its simplest, the 

representation of a molecule takes on a graphs format with nodes (atoms), and 

edges (bonds). Such representations provide the user with topographical 

information of the constitution of a molecule. Most applications of such 

chemical data usually require more substantial information from the molecular 
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structure. This is usually done through the coding of the atomic coordinates, 

and in some cases, the bond data as well. In such cases, the larger the 

molecules, the larger the representations. However, in order to use molecular 

data for statistical, pattern recognition and machine learning methods such as 

neural networks, the molecules need to be represented by a fixed number of 

parameters, irrespective of their size [Zupan et al, (1999)]. Zupan et al. further 

mention that such a structure representation should satisfy four conditions, 

 

i) Uniqueness – Each compound should have only one code to 

uniquely distinguish it from other molecules 

ii) Uniformity – Each compound should be represented by the same 

number and type of parameters 

iii) Reversibility – The molecular structure should be able to be retrieved 

from the representation 

iv) Translational and Rotational Invariance – The representation should 

remain unchanged for translated and rotated structures 

 

Three methods that aim to meet this goal of representative uniformity will now 

be discussed, one using an autocorrelation descriptor [Moreau et al., 1980], 

another using 3d-MoRSE (3D Molecule Representation of Structures based on 

Electron diffraction) [Schuur et al., 1996], and the final one using an infra 

spectral representation [Hemmer et al., 1999].  

 

The autocorrelation descriptor represents a molecular structure as a graph and 

the physico-chemical properties, px, its atoms hold, for example, electrostatic 

charge, as real values assigned to the vertices of the graph. The descriptor is 
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then used by correlating this property of a particular atom i, px(i), with the same 

property of another atom j, px(j). These two values are then multiplied and 

summed up over all atom pairs within a predefined topological distance, d. This 

gives us the following function adapted from [Zupan et al., (1999)], 
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where ijδ if dij=d, otherwise ijδ = 0. This distance is usually calculated in bond 

terms, that is, if d=3, the atoms under consideration within the molecular 

structure will have three bonds between them. As molecular graphs are likely to 

have different maximum distances, the value A(d) is usually calculated for a 

range of values, d ≤ d* to obtain a vector representation such as (A(1), A(2), …, 

A(d*)), where typical values of d* are 8 or 10 [Hollas, 2002]. Such 

autocorrelation descriptors have been used successfully with neural networks 

to predict the biodegradability of organic chemicals [Devillers et al., 1996]. In 

turn, Bauknecht et al. [1996] have used such autocorrelation descriptors to 

code partial atomic charges, electronegativity and polarizability from molecules. 

These representative vectors were then used with self-organizing neural 

network maps to distinguish dopamine agonists from benzodiazepine agonists, 

and thus enabling biological characterization of new potential leads to be 

carried out.  

 

Another method of characterizing molecular structures of varying size by a 

fixed number of values has been introduced by Schuur et al. (1996), using a 

molecular transform derived from electron diffraction studies, called 3D-MoRSE 

[Eq.2.5.1] 
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(Molecule Representation of Structures based on Electron diffraction). This 

work was based mainly on earlier electron diffraction study by Soltzberg and 

Wilkins (1977) for transforming three-dimensional atomic coordinates into a 

molecular code through the modification of an equation used in electron 

diffraction studies as follows, 

 

∑
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where S

r
=the scattering in various directions, by N atoms at points ir

r , and if  

represents the form factors. This equation [2.5.2], is usually used in diffraction 

studies in the form in Eq. 2.5.3 [Wierl, 1931] 
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where I(s) is the intensity of scattered radiation, r represents the interatomic 

distances, Pij(r) is the probability distribution of the vibrational variation between 

atoms I and j with if  and jf  being their respective form factors, and K contains 

the instrument dependent constants. s here represents the scattering angle 

through the formula in Eq. 2.4.4 [Wierl, 1931], 

 

λϑπ /)2/sin(4=s  

  

with λ  being the wavelength and ϑ  being the scattering angle. Schuur et al. 

(1996) further made the assumptions that all molecules were rigid and atoms 

within them were point scatterers. Additionally, atomic parameters were used in 

place of the form factors, represented by Ai, leading to the final equation, 

[Eq.2.5.2] 

[Eq.2.5.3] 

[Eq.2.5.4] 
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By now calculating I(s) over a range of values of s and taking them as a vector, 

this vector can now be used to represent the molecular structure. Schuur et al. 

(1996) in their experiments took 32 values, ranging s from 0 to 31.0 Å-1, and 

used these vectors with counterpropagation neural networks to distinguish D1 

dopamine agonists from D2 dopamine agonists, and as well to rank steroids 

binding to the corticosteroid binding globulin receptor into 3 categories 

according to their activity. 

The final method of molecular representation that will be discussed is based on 

a representation of a 3-dimensional molecular structure by a unique vector with 

n elements despite the size of the structure, by projecting the molecules 

constituent atoms onto three perpendicular equatorial trajectories on an 

imaginary sphere large enough to accommodate the molecule [Zupan et al., 

1997]. In order to convert the representation of the 3-dimensional molecule of N 

atoms, each represented by a [xj,yj,zj] triplet, the zj, the yj and xj coordinates are 

set to 0, in turn. This enables a projection of (x,y), (x,z), and (y,z)-planar 

molecules to be made on the respective circles defined by the cross section of 

the sphere and the respective planes. A molecule with N atoms would thus give 

three sets of N pairs, (x1,y1, x2,y2, …, xn,yn), (x1,z1, x2,z2, …, xn,zn) and (y1,z1, 

y2,z2, …, yn,zn). The problem of translation invariance is solved by adjusting the 

coordinates such that the origin of the coordinate system is set to the centre of 

mass of the molecule. The radius of the sphere chosen is arbitrary as long as it 

is larger or equal to the distance between the atoms centre of mass and 

[Eq.2.5.5] 
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furthest atom. The representation is then converted to one independent of the 

number of atoms in the molecule, S = (s1, s2, …, sn) containing 3n variables, n 

for each plane. Each element of the vector S is defined as the cumulative 

intensity, si, at a predefined finite interval i, on the circle with arbitrary radius R, 

as illustrated in Figure 2.4.1, and is calculated as follows, 
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for i=1,…,n. Any bell shaped function can be used to measure the intensity, 

),,,( jjjriI σϕ .  Figure 2.5.1 for instance describes the projection using a 

Lorentzian shape.  The cumulative intensity si is a sum of N contributions of 

),,( jjriI ϕ  from each atom j in the molecule.  

 
 

 

Therefore, a Lorentzian curve peak represents for each atom j, a projection 

located at angle jϕ . The last parameter of the intensity function, jσ represents 

the width of the curve associated with each atom, and therefore is the means 

for the equation to include any possible physico-chemical properties, such as 

the atom type, electrostatic charge or any other desired atomic property.  

 

Figure 2.5.1 : Contribution of atoms No.1 and No. 2(at (r1, ϕ 1) and (r2, ϕ 2) to the intensity si at interval i 

on the circle with radius R, shown as shaded areas of the corresponding Lorentzian bell-shape functions  

[Eq.2.5.6] 
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Comparing the three methods of molecular structural representation in a form 

with a fixed number of parameters, regardless of the size of the structure, we 

see that all the four desired characteristics of uniformity, uniqueness, 

reversibility and rotational/translational invariance have been achieved. Not a 

single one of the four however achieved all four. While the method using 

physico-chemical autocorrelation achieved uniqueness, uniformity and 

translational/rotational invariance, its converted representation is not reversible 

to the structure of the actual molecule. Moreover, by using bonds as distance 

parameters, the representation is restricted to two dimensional molecular 

representations. Finally, this method of representation takes similarities 

between pairs of atoms with similar characteristics. Therefore, if a molecule 

were to occur with only a single atom with a particular characteristic value, 

regardless of its importance, it will not be characterized by such a method. The 

second method of deriving representations through the 3D-MoRSE code 

method, was however able to cope with this limitation but was not reversible. 

While the final method using projection of structures onto imaginary spheres 

was able to produce reversibility, this is only in the case where the resolution of 

the intervals on the circular planes is very high, resulting in a larger number of 

parameters, or at the expense of its reversibility, on top of its lack of rotational 

and translational invariance. It is as well evident that all three methods are not 

totally independent of the size of the molecular structure. A smaller 

representation results in a loss of unique characterization, and as such, should 

be scaled to accommodate the largest molecules in the data set chosen. It 

should be noted therefore that the choice of representation is problem specific, 

and need not necessarily be one that is able to satisfy all the four requirements.   
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2.6 Neural Networks In Structure Activity Relationships (SAR) and 
Drug Design 
 
This section will discuss related research that has been carried out using the 

various implementations of neural networks in the study of SAR and the various 

disciplines of drug design. The use of unsupervised neural networks will first be 

discussed followed by supervised training applications and their overall 

applicability discussed. 

 

Unsupervised neural networks, in particular Kohonen [Kohonen, (1982)] 

networks, or Self-Organising Maps (SOMs), have been employed in various 

applications in drug design and SAR studies. Anzali et al. (1996) used Kohonen 

networks for the transformation of 3-D molecular surfaces into 2-D Kohonen 

maps. In this study, the molecular electrostatic potentials (MEP) for the van der 

Waals surface of cardiac glycosides and ryanodines were calculated and a 

Kohonen network trained using samples of coordinates from random points on 

this surface as inputs. Following in with the continuous 3-D structure of 

molecular surfaces, the mapping was done using a 2-D torus shaped Kohonen 

Network, with three inputs per neuron, one for each 3-D axis. This strictly 

structurally inspired network (not taking into consideration any electrostatic or 

physico-chemical properties) was then trained to bring points with similar 

coordinates closer to one another. The trained neurons were then colored 

according to the MEP values of the points represented by the respective 

coordinates. Anzali et al. (1996) further suggested that any molecular 

properties can be mapped onto this network including hydrogen-bonding 

potential and atom type.  
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Visual reference and comparison of such maps offers a means to look for 

similarities and differences between molecular structures, for instance ligands, 

binding to the same active site and relate these comparisons to their binding 

affinity. This was verified through tests with two different types of receptors, 

muscarinic and nicotinic. Not only did the analysis of the ligands binding to the 

same receptors show distinct similarities, characteristic differences were also 

visible between the two groups of ligands. Taking this study further, Kohonen 

networks were built using the same methodology, of 31 steroids of known 

binding affinities with corticosteroid binding globulin (CBG), and divided into 

three groups according to their binding affinity, one low, one intermediate and 

one high affinity group. The maps of the ligands within each group were then 

averaged via indexes assigned to the colours associated with their MEPs. 

Distinct patterns found in each of the three average maps then proved useful in 

identifying which group a new ligands might most likely belong to through 

comparison, with the average map which now represented a pharmacophore of 

the molecular interaction. Transforming the coloured maps further into vectors 

(of MEP or colour indexes), as well introduces an alternative in 3-D molecular 

structure represented earlier discussed in Section 2.3. The feasibility of this 

method has lead to Kohonen networks representing particular template 

molecules to be used as a benchmark for comparison with the maps of other 

molecules to study their degree of similarity of difference. For better 

comparison, any two molecules, one template and one test, can be 

superimposed and their respective positional similarity expressed through 

colouring, such that different degrees of similarity can be represented by 

different colours and lack of it by white space. Resultant superimpositions of 
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mainly white space would thus infer a large difference between the two 

molecules being compared. Template methods as such have been used to 

study binding between steroids and CBG and TBG [Anzali et al., 1996], 

[Polanski, 1996, 1997], ryanodine derivatives to membrane proteins [Anzali et 

al., 1996], and to detect correlations between histamine analogues and H2 

activities [Barlow, 1995], nitro and cyanoanilines and arylsulfonylalkanoic acid 

to sweetness activity, and as well ethylcarboxylates to Taft’s Es constant [Anzali 

et al., 1998], based on mapping of MEP. Polanski (1996) came up with a 

similar system, this time using many templates instead of one, called the Multi 

Template Approach, and used partial least squares (PLS) to analyze it, with 

applications for modeling structure 3D QSAR of colchicinoids, as potential anti-

cancer leads. This method was yet taken further in the classification of 

dopamine 2 (D2) receptor antagonists [Hasegawa et al., 2002], which are 

believed to have effect on the corpus striatum and pallidum of the brain where 

mental diseases such as Parkinson’s disease are caused due to dopamine 

imbalance. Similar methods as those used by Polanski [1999] in colchicinoid 

characterization were used as far as the mapping of the structural MEP onto 

the 2-D Kohonen map was concerned, but this time, instead of using the 

conventional PLS method, a 3-way PLS was used instead for the analysis 

enhancing the contour mapping density and including neighbouring relations 

providing the ability for the contour map to be visualized on the van der Waals 

surface of the molecules themselves making the interpretation of SAR more 

intuitive. 

 

Kohonen neural networks are however not restricted to mapping single 

molecules modeling 3-D structural characteristics in QSAR applications. These 



networks as well work with groups or library of molecules where self 

organization is based more on numerically measurable properties of the 

molecule that may not be inherent to the molecular structure but instead to its 

experimental reactivity, through more conventional Kohonen clustering. One 

such example is that of calculating the yield of para-xylene under specific 

reaction conditions [Petit et al., 2002]. para-Xylene is a very commonly used 

chemical compound in the synthesis of textile polyester fibers. It is commonly 

produced through the alkylation of toluene with methanol under acidic catalysis 

conditions, as shown in Figure 2.6.1. 

 

  
 
 

 
Figure 2.6.1: Reaction scheme on the production of xylene isomers (including relative
distribution) 
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The relative proportions of the three isomers produced, ortho-, meta-, and para-

xylene, as seen on the right hand side of Figure 2.6.1, are 16/60/24 [Kaeding et 

al., 1981]. The separation of the three to get the para isomer is made difficult 

due to their similar boiling points. Through catalysis with crystalline alumino-

silicates called zeolites,  particularly ZSM-5,  yield of the para-isomer has been 

found to increase. This largely empirical catalysis process whose influential 

factors are still not fully understood is studied in this case using a combination 

of unsupervised and supervised neural network techniques through the use of 

Kohonen and counter-propagation (CPG) networks. The three inputs that, in 
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this case, were chosen based on availability of data, were chosen to be the 

temperature, the molar ratio of the reagents in the mixture, and the weight 

hourly space velocity. The output parameters (for the CPG networks), included 

the conversion of toluene, the weight percentage of the total xylene, and the 

proportion of para-xylene among all the three isomers (all for which 

experimental target data was available). In this study, Kohonen maps were first 

used in the division of the entire dataset of 79 samples into a training set and a 

test set. For the training set, the three dimensional inputs were applied to the 

network and 37 of the samples were chosen from them to represent the training 

set based on their uniform spread across the Kohonen map. These 37 samples 

were then used to train the network to obtain a distinction of regions on the 

Kohonen map based on the percentage of para-xylene among the xylenes. The 

42 test samples were then run through the CPG network and their predicted 

values compared against the targets to find their model feasible in showing a 

correlation between the input and output parameters chosen.  

 

This far, research in QSAR using Kohonen networks have been primarily 

discussed. They are however, not the only means of classification in QSAR 

studies. Backpropagation neural networks as well have been used as a 

categorization tool in QSAR. One such instance is the odor classification for 

chemical compounds [Song et al., 1993]. In this study, inputs were that of the 

plural semiconductor gas sensors’ response data (SGSRD), and each of the 

set of 47 chemical compounds including alcohols and ketones, were to be 

classified into one of five categories based on their odor. The compounds were 

either to be classified as ethereal, pungent, minty, ethereal-pungent, and 

ethereal minty. For this to be accomplished, a three layer feedforward 
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backpropagation network, with a single input layer, one hidden layer, one 

output layer. The output layer comprised 3 output neurons, each one 

corresponding to one of the ethereal, pungent or minty categories. If a single 

output neuron in the trained network fires with the introduction of a sample, the 

introduced sample is then said to belong to the corresponding fired neurons 

category, e.g. ethereal. If however two of the output neurons fire, this would 

then indicate the classification of the sample into either the ethereal-pungent or 

ethereal-minty categories. The data coding in this experiment took three 

phases. In the initial stage, 6 inputs from the characteristic SGSRG were 

chosen, after which the squares of these 6 vectors were added to the 6 giving a 

total of twelve and finally, to best describe each chemical compound, a set of 5 

more molecular structure codes, namely the first order connectivity index, the 

number of oxygen atoms, the number of double bonds, the number of carbonyl 

groups, and finally the number of hydroxy groups. While these parameters do 

not describe the three dimensional structure of the data, they do provide 

information on the molecular composition and substructures present. The 

addition of these molecular properties, though not structurally detail in nature, 

improved the neural network performance. As well, improvement was seen 

when using the squared values together with the original ones and correlation 

was found in between the molecular descriptives chosen and the SGSRD data, 

through the networks predictability. 

 

Having discussed primarily the use of Kohonen neural networks, The focus 

from here on will be shifted to that of backpropagation and its applications. In 

the separation of solutes in capillary zone electrophoresis (CZE), one of the 
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major influencing factors to the separation is the electrophoretic mobility, µ0, 

whose general form is given below [Eq. 2.6.1], 

 

hf
q

=0µ  

 
where µ0 is the mobility at infinite dilution, q is the charge of the solute and fh is 

the hydrodynamic friction factor for moving a solute through a continuous 

solvent of finite viscosity.  Li et al. (2002) have developed a means of predicting 

the electrophoretic mobilities of aliphatic carboxylates and amines using other 

simpler experimental properties of the compounds as inputs to a feedforward 

multilayer backpropagation neural network using the extended delta-bar-delta 

algorithm, a modification to the standard algorithm chosen to overcome the 

long training times required in stabilizing the network to a suitable weight state.  

The network designed for this purpose, after a great amount of iterative testing, 

consisted of 4 input parameters (and neurons), a single hidden layer with 6 

neurons, and a single neuron in the output layer for the prediction of the 

electrophoretic mobility. The input parameters chosen included the molecular 

volume, weight and charge distribution (pK) value through their influence on the 

solute radius and orientation of solvent dipoles relative to the solute charge. 

The last parameter used was a code representing the acidity of the solute, +1 

representing a base and –1, an acid. 56 compounds were used in the 

experiment with 40 reserved for the training, 10 for validation, and the 

remaining 6 as the test set. The training was set to 28000 epochs, and the 

results obtained showed a positive correlation between the inputs and the 

predictability of electrophoretic motility.  

 

[Eq.2.6.1] 
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While experimental parameters are useful in many cases of QSAR and QSPR, 

in some, structural inputs are required to better characterize the compounds 

involved and associate them to some property. For instance, molecular 

descriptors including 2-D structural, or more so topological input was used to 

predict the boiling point, density and refractive index of alkenes [Zhang et al., 

1997]. In this study, topological indices were used to define the molecular 

descriptor, which was important to the experiments conducted as the intended 

predictions were based mainly on the interactions of the molecules used with 

respect to their size and symmetry. The primary structural parameters 

considered here were W, based on the molecular distance matrix, and the 

polarity number, P. The distance matrix, D of the molecule with N atoms is a 

symmetric NxN matrix whose elements (D)ij are defined as follows, 
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where lij is the length of the shortest path between the two atoms i and j. The 

parameter W is then obtained from the distance matrix as follows, 
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where N is the total number of carbon atoms in the molecule.  The polarity 

number P is equal to half the number of pairs of atoms that are separated by 

exactly three bonds. The three outputs to be predicted were also strongly 

dependent on the double bonding within the molecule. It was seen that the 

influence of the double bond on the molecule decreases with increasing 

[Eq.2.6.2] 

[Eq.2.6.3] 
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molecular size, and this was used to define two further input parameters w and 

p, as follows, 
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where k and l represent two carbon atoms connected by a double bond. A fifth 

and final parameter, s was as well defined to take into consideration the 

influence of alkene enantiomers, as follows, 
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With these parameters, 80 input samples with number of carbon atoms ranging 

from 4 to 20, were divided into a training set of 51, a validation set of 18 and a 

test set of 16 samples were processed by a backpropagation network with 5 

neurons in its only hidden layer to obtain a positive correlation between the 

input s and the outputs, the most accurate output being the refractive index. 

 

As can be seen from the methods used above to describe correlations between 

structure and activity/property, many methods can be adapted to represent the 

data to be used in a neural network. The representation must always depend 

on the respective study and should be chosen to maximize the dependence of 

the output on the input. The next chapter will run through the methodologies 

[Eq.2.6.4] 

[Eq.2.6.5] 

[Eq.2.6.6] 
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chosen to study interactions between generic ligands and protein active sites, 

and how well they bind.  
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Chapter 3. Methodologies 

 
This chapter will state, define and describe the methodologies used in the 

experiments run in this thesis. Section 3.1 will first describe how the protein and 

ligand structures used in the experiments were obtained and prepared to be 

experimentally viable. Section 3.2 will then go into physico-chemical 

autocorrelation, the transformative technique enabling the scaling of a 

molecular structure file format to that acceptable as input into a feed-forward 

backpropagation neural network, as well as run through an example of its 

manipulation.  The remaining sections of the chapter will then describe the 

techniques involved in the design and application of neural networks. Section 

3.3 will describe how the data required was prepared for its use in neural 

networks. Section 3.4 will then explain how Self-Organizing Maps were used to 

study the experimental data categorically, while Section 3.5 will explain feed-

forward backpropagation and the considerations taken in its exploitation. Finally 

Sections, 3.6 and 3.7 will respectively describe the use of Multiple Linear 

Regression as a comparative means of analysis and how the performance of 

the neural networks were studied using various error measurements. It is to be 

noted that this particular methodology can be categorized as a semi-flexible 

docking methodology. Even though there is no docking involved, the 

predictions on the binding affinity are made on a fixed active site and a fixed 

ligand. This ligand is however expected to be tested against the active site in all 

feasible conformations, thus making the system a semi-flexible one. 
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3.1 Preparation of Interacting Molecules 

 

All molecular structures used in the experiments within this thesis were 

downloaded from the Research Collaboratory for Structural Bioinformatics’ 

Protein Data Bank (PDB) [Berman et al., (2000)]. All structures were 

downloaded as protein-ligand complexes, and separation of the molecules was 

thus required in order for their characterization to be performed as individual 

elements. All molecular modeling was carried out using Tripos’ Sybyl 6.8 

[Tripos, USA].  

 

The ligand molecules were first extracted from the protein ligand complexes 

and saved as individual PDB files. The interaction site residing on the protein 

molecule was then marked and all amino acid residues with atoms within 5 

angstroms of the interaction site were then carved out and saved as the active 

site in PDB format. PDB files store the structure of molecules as a set of atom 

coordinates. The bonds between these atoms are however, not explicitly stated 

within the file format. The PDB format infers the bonds between any two atoms 

by referring to a table of chemistry rules. By mapping spatial Euclidean 

distance between two atoms to a particular bond type (e.g. single or double 

bond), software packages are able to infer bond types. As these rules have 

never been specifically enforced, various software packages may derive 

different bond types from the same PDB file. This introduces even further 

complication when non-biopolymer structures, such as those of ligands, are 

included in the PDB files. Specific atom types, as used in this thesis’ 

experiments, are defined through the bonds they hold with their surrounding 
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atoms. Sticking to the PDB format for such experiments might thus prove 

detrimental to their accurate results.  

 

To overcome the shortcomings of the PDB format (through which the protein-

ligand complex structures were archived), each active site as well as ligand, 

was converted to their respective mol2 format (Tripos’ native file format) 

equivalents. The mol2 format expresses the bonds between any two atoms 

explicitly, and additionally has provision to store the specific type of each atom 

within the file.  

 

Once converted, each molecular structure was then manually checked and 

corrected to ensure the proper bonding and atom typing. Active site bonds 

were corrected according to each amino acids native structure, while each 

ligand was corrected according to their representation within PDBSum 

[Laskowski et al., 1997]. Once all the bonds were corrected, the individual 

atoms were then typed using the Sybyl atom types reflected in Table 3.1.1. 

 

Once the correct atom types were verified manually, all hydrogen atoms were 

removed from the active site, and ligand structures. This was done primarily to 

avoid any discrepancies in the hydrogen locations, which are usually there as 

locations of hydrogen atoms in space cannot be resolved through X-Ray 

Crystallographic methods, and as such most database structures lack 

appropriate hydrogen atom coordinates [Baxevanis, 1998].  

 

 
Table 3.1.1 :  Atom Types Selected For Characterization with Hydrogen Bonding Characteristics  
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Atom Type Definition Mnemonic 

Code 

Hydrogen 

Donor 

Hydrogen 

Acceptor 

Carbon sp3 C.3 No No 

Carbon sp2 C.2 No No 

Nitrogen sp3 N.3 Yes Yes 

Nitrogen sp2 N.2 Yes Yes 

Nitrogen sp N.1 No Yes 

Nitrogen aromatic N.ar No  Yes 

Nitrogen trigonal planar N.pl3 Yes No 

Nitrogen ap3 positively charged N.4 Yes No 

Nitrogen amide N.am Yes No 

Oxygen sp3 O.3 Yes Yes 

Oxygen SP2 O.2 No Yes 

Oxygen in carboxylate and phosphate 
groups 
 

O.co2 No Yes 

Oxygen in Single Point Charge (SPC) 
water model 
 

O.spc Yes Yes 

 

The next step in preparing the  ligand and active site structures was in the 

addition of electrostatic atom point charges to the atoms of the molecules. 

These parameters are essential in the consideration of electrostatic interactions 

between the protein and ligand leading to their binding [Honig et al., 1995]. As 

PDB files do not contain reliable electrostatic data, the partial atom point 

charges needed to be computed for electrostatic characterization of the ligands 

and active sites. Gasteiger-Huckel charges were used for this, computed by 

Sybyl. Gasteiger-Huckel charges are a combination of the Gasteiger-Marsili 

[Gasteiger et al., 1980] and Huckel [Streitwieser, 1961] method of charge 

calculation, the former incorporating the σ component while the later calculates 

the π component. No further formal charges were then added to the molecules. 
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Attention was taken to keep the molecules in their original conformation to 

retain the molecular shape at binding, which is essential input to the 

autocorrelation process described in Section 3.2. 

 

3.2 Physico-chemical Autocorrelation 

 

This section will describe the physico-chemical structure encoding 

methodology, autocorrelation, used to transform a chemical structure from the 

PDB to one suitable as input into a neural network.  

 

Each molecule presents its unique set of characteristics. It comprises various 

atom types, each possessing its own range of properties, in differing quantity, 

in its unique topological arrangement. This poses a challenge to machine 

learning methods such as neural networks where a fixed number of descriptors 

is required despite the differentiation between molecules. The neural network 

requires a fixed number of inputs, which should contain within, the chosen 

properties of the molecular structure, that are responsible for the biological 

effect being investigated [Zupan et al., 1999]. A transformation is thus needed 

for the physico-chemical representation of a molecule into a fixed number of 

parameters.  

 

The transformation method used in this thesis is autocorrelation [Moreau et al., 

1980]. In autocorrelation, each property, p, of an atom, a, under investigation is 

correlated with the same property, p, on another atom, b. The summation of 

these autocorrelated products over all the atom pairs are then taken over 
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predefined topological distances (number of bonds between two atoms), d, as 

is described as the function, A(d) in Eq. (3.2.1). 
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The experiments run in this thesis modified Moreau’s method in two ways. 

Firstly, topographical distances were used instead of topological, and secondly, 

molecular characteristics without magnitude, such as Atom Type, were given 

the value of 1, instead of the product, p(a)p(b). These modifications were made 

firstly to account for differences in molecules of the same composition but with 

varying conformations. The distances taken into consideration are thus the 

Euclidean distances between the atoms in 3D space. The second modification 

was made primarily to enable representation of characteristics that were 

without magnitude but are essential to be considered spatially. To illustrate this, 

let us take the water molecule in Figure 3.2.1 as a simplified example. 

 

  

 

 

 

 

Table 3.2.1 below contains arbitrary  3D coordinate data along with charge of 

the atoms for explanatory purposes. 

 

 

 

 

O 

H2 H1

Figure 3.2.1 : 2D Structure of water molecule. 

[Eq. 3.2.1] 



 44

Table 3.2.1 – Atom coordinates and charge for water molecule 

Atom X-Coordinate Y-Coordinate Z-Coordinate Charge 

O 4.013 0.831 -9.083 1.2 

H1 4.941 0.844 -8.837 2.3 

H2 3.75 -0.068 -9.293 2.3 

 

Assuming we would like to find A(d), for all atoms whose charge, p, lies 

between 2.0 and 3.0, where d is a range of 1 to 2 angstroms. As we know the 

two hydrogen atoms present the only atom pair that meet the property 

requirement, we calculate their Euclidean distance,  

 

dH1H2 = Sqrt((4.941-3.75)2 + (0.844+0.068)2 + (-8.837+9.293)2 )) =1.567 

 

Therefore, 

 

A(d) = 2.3 x 2.3 = 5.29 

 

Similarly, if the property required, p, was for the atom to be a hydrogen atom, 

given the same d, as there is only 1 such atom pair, A(d) = 1 in the latter case. 

This is different from Moreau’s methodology as his would require the 

topological distance d to be 2 for the same A(d) as in Equation 3.2.3. 

 

In this study, the properties and respective distance ranges were selected for 

both the ligand and the active site structures, as tabulated in Table 3.2.2. The 

ranges were chosen through a process of iterative refinement to scale the 

values of A(d) accordingly, thus avoiding large differences amongst the various 

parameters. 

 

 

 

[Eq. 3.2.2] 

[Eq. 3.2.3] 
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Table 3.2.2 : Parameters and respective ranges used for autocorrelation 

Atom Parameter, p Distance Ranges, d/Å 

T = N.1, O.2, N.ar, O.co2 d < 3, 3 <= d < 6, 6 <= d < 9, 9 <= d < 12, 12 <= 

d < 15, 15 <= d < 18, 18 <= d < 21, d >= 21 

T = N.pl3, N.am, N.4 D < 3, 3 <= d < 6, d >= 6 

T = N.2, N.3, O.3, O.spc D < 3, 3 <= d < 6, d >= 6 

T = C.2 D < 3, 3 <= d < 6, d >= 6 

T = C.3 d < 3, 3 <= d < 6, 6 <= d < 9, 9 <= d < 12, 12 <= 

d < 15, 15 <= d < 18, d >= 18 

C > -0.5 d < 3, 3 <= d < 6, 6 <= d < 9, 9 <= d < 12, d >= 

12 

 -1 < C <= -0.5 d < 3, 3 <= d < 6, 6 <= d < 9, 9 <= d < 12, 12 <= 

d < 15, 15 <= d < 18, 18 <= d < 21, d >= 21 

C <= -1 d < 3, 3 <= d < 6, 6 <= d < 9, 9 <= d < 12, 12 <= 

d < 15, 15 <= d < 18, 18 <= d < 21, 21 <= d < 

24, d >= 24 

T = atom type, C = Gasteiger-Huckel charge 
 

All autocorrelative vectors were obtained by parsing mol2 files using Perl 

scripts, extracting coordinate and physico-chemical data (charge and atom 

type) from them to produce the required A(d) values. The Perl scripts used can 

be referred to in Appendix A. 

 

3.3 Preprocessing, Postprocessing and Normalization  

 

The data used in this thesis for the training and testing of the neural network 

vary in magnitude to a great extent. As such, to prevent the more significant 

vector components from dominating the training, in this case, for the Self-

Organizing Map (SOM) and Feed-forward Backpropagation (FFBP) networks, 

the data(input and target) needs to be preprocessed through normalization.  
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The normalization method used for the SOM training was taken from the SOM 

Toolbox [Kohonen et al., (1996)], through the command SOM_NORMALIZE. 

For this method, variance normalization was selected to be performed such 

that the values of the input vectors are scaled through a linear transformation 

such that their variance is equal to 1. The command was used as follows: 

 

inNorm = som_normalize (in, ‘var’) 

 

where inNorm is the resultant set of normalized vectors, taking in as the actual 

input vector, and using the variance method, ‘var’.  

 

The normalization method adopted for the backpropagation experiments, 

prestd, were adapted from the MATLAB software package. prestd scales the 

network inputs and targets by being normalized to have a mean of zero and a 

unity standard deviation, through the command, 

 

[pn, meanp, stdp, tn, meant, stdt] = prestd (p,t) 

 

where p = input vector, t = target vector, pn = normalized input vector, meanp = 

input vector mean, stdp = input standard deviation, tn = normalized target 

vector, meant = target mean, and stdt = target vector’s standard deviation. 

Once training was complete, the normalized vectors were converted back to 

their original scale through the command poststd requiring the normalized input 

or target vectors along with their respective means and standard deviations as 

inputs to the function. 
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3.4 Self-Organizing Maps (SOM) 
 
This section deals with a method of self-organized or unsupervised learning 

known as the SOM [Kohonen, 1982, 1989], which is often used to visualize and 

help better understand high dimensional data sets through the geometric 

clustering among data sets with similar characteristics on a 2-D display. In this 

thesis, the SOM is used to adaptively transform the input vectors of the protein-

ligand complex, which is a 94 dimensional vector into a 2-D map. The aim of 

this is to uncover significant characteristic of the input data without the 

necessity of correlating them to any output. This means that the data organizes 

itself according to the similarities and differences inherent in its structure. Such 

a method was important in primarily ensuring that the input data was spread 

well throughout the SOM, to provide for a fair training in the later 

backpropagation stage (input data clustering around one region of a SOM 

would imply that the data is biased and would not necessarily be optimal for 

training a generic back propagation neural network that is to be used for all 

possible protein-ligand complexes).  

The SOM comprises a grid of neurons each with a model vector, and upon 

completion of training, the models are arranged on the grid such that similar 

models are topologically closer to one another. SOM training is based on two 

processes, the first of competition and the next, cooperation. The process of 

competitive learning where the introduction of the input, i into a network 

induces the firing of one and only one of the neurons in the output layer. This 

output neuron is known as the winning neuron, c, or Best Matching Unit (BMU). 

The winning neuron then adapts its weight along with the weight of the neurons 

around it, called its neighbourhood, hc(w).  



 48

Let the dimension of the input space be n. Let any input vector within this input 

space be denoted by  

x = [x1,x2,…,xn]T 

Each model vector (also known as weight vector), w, associated with each 

neuron, i, generally has the same dimension as the input vector,  

Wi = [wi1, wi2,…, win]T 

for i = 1,2,…,l, where l is the number of neurons in the network. The winning 

neuron, c is thus found by identifying the neuron with the minimum Euclidean 

distance between the vectors x and wj  [Eq. 3.4.3]: 

|x(t) – wc(t)| ≤ |x(t) – wi(t)| ∀ i  

Then comes the cooperation step. The process of regressing the ordered set of 

model vectors, wi into the space of input vectors, x is traditionally made by the 

following equation :  

wi(t+1) = wi(t) + hc(x),i(x(t) – wi(t)) 

where  hc(x),i is the neighbourhood function which is often a Gaussian function : 

hc(x),i  = α (t) exp ⎟
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where  0<α (t)<1 is the learning-rate factor, decreasing monotonically with the 

number of iterations, ri 2ℜ∈ and rc
2ℜ∈  are the vector locations on the neuron 

map and σ (t) corresponds to the width of the neighbourhood function, which 

also decreases monotonically with the number of iterations. 

[Eq. 3.4.1] 

[Eq. 3.4.2] 

[Eq. 3.4.3] 

[Eq. 3.4.4] 

[Eq. 3.4.5] 
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Instead of randomly initializing the weight vectors wi, the initial values of the 

weight vectors of the neurons are selected as a regular array of vector values 

that lie on the subspace spanned by the eigenvectors corresponding to the two 

largest principal components of input data. This makes the training of the 

organization of the SOM much more efficient since the SOM is already partially 

organized in the beginning [Kohonen, (1995)].  

In this thesis, a modification of the traditional algorithm just discussed was 

used, known as a batch algorithm for significantly faster computation. In the 

batch method, once the model vectors, wi are initialized, a list of all the input 

samples x(t) is collected for each neuron i, whose most similar model vector 

belongs to the neighbourhood, Ni of node i. Then for each new model vector, 

the mean over the respective list is taken. The steps after the initialization are 

then iterated for a pre-defined number of times. The number of iterations used 

in this thesis’ experiments ranged from 50 to 3500, based on when the SOM 

stabilized (when the neurons on the map to which the input vectors were most 

similar stopped changing). The SOM grid was chosen to be hexagonal in shape 

for better visualization, and the number of units in the grid was determined by 

choosing the ‘big’ size option on the mapsize variable of the SOM. This ‘big’ 

size translated to the size of the network being calculated as follows: 

No. neurons in ‘big’ mapsize = 4 * 5 * (No.of samples)0.54321 

The dimensions of the map were then determined by taking the two biggest 

eigenvalues of the training data and the ratio between them sets the ratio 

between the sidelengths of the map grid. The actual sidelengths are then 

calculated in a manner that makes their product as close to the number of 

[Eq. 3.4.6] 
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neurons in the map as possible. In the experiments run, the dimensions of the 

maps used were 22 x 10 neurons. For visualization purposes, the actual maps 

were generated with the PDB IDs of the protein-ligand complexes displayed 

over their respective BMUs.  

3.5 Feed-forward Backpropagation 

This section will describe the fundamentals about Feed-Forward 

Backpropagation Neural Networks (FFBPNN), a supervised learning method 

(requiring pairs of input-targets), and will explain how this technology was 

adapted suitably to the experiments run in this thesis, how it was implemented 

as well as the justification of the parameters chosen for its running. 

3.5.1 Introduction to Backpropagation 

 A neural network, can be viewed as a ‘black box’ whereby an ‘m’ variable input 

can be transformed into a ‘n’ variable output. The input and output variables are 

usually normalized real numbers, binary numbers (0 or 1), or bipolar numbers (-

1 or +1) [Zupan et al., (1999)]. The problems neural networks are used to solve 

are that of association, classification, transformation, and modeling. The 

experiments run here were those of the modeling category using normalized 

real numbers as input and as outputs. Modeling in neural network problems 

searches for an analytical methodology to predict a particular ‘n’ variable output 

from an ‘m’ variable input. Neural networks make this possible without the 

advance knowledge of a mathematical function. Training of the neural networks 

(to be described in greater detail) involves finding the best fitting between the 

input parameters and the outputs. Accuracy of the predictions increases when 
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the experimental data is spread evenly and sufficiently over the entire region. 

For this purpose, Self-Organising Maps, as described in Section 3.5, were first 

used to ensure the even spread of the experimental data selected. In this 

thesis, there were 94 input parameters, collectively describing the spatial 

atomic distribution of charges and hydrogen bonding capacity as well as 

molecular weight of the protein active sites and the ligands, respectively,  and a 

single output parameter, describing the binding affinity. The neural network 

designed can be better visualized through Figure 3.5.1. 

 
 

 
 
 

Section 3.5.1 Neural Network Training and Architecture 

 

FFBPNNs work through a process of input data first being fed forward into the 

neural network (Feed-forward part) through a series of weighted links, 

processed at each node (neuron) within the network to eventually come up with 

a prediction, have the output prediction compared to the actual results, and the 
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Figure 3.5.1 : Structure of a Feed-forward Backpropagation Neural Network 



weights on the edges are corrected from the last layer back to the first (back-

propagation part). This is illustrated in the schematic diagram in Figure 3.5.2 

[Zupan et al., (1999)] 

 

input 
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W2 

W3 

Output 
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Error 

correction 

Corrected W3 

Corrected W2 

Corrected W1 
Figure 3.5.2 : Schematic presentation of weight correction with backpropagation. Wx represents 
weights in layer x. 
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The architecture is the most prominent characteristic that influences the 

performance of the neural network it represents. The architecture comprises 

the number of neurons there are in each layer of the network, the number of 

layers in the network and the way in which the neurons in one layer are 

connected to those in the next. In these experiments, fully connected inter-layer 

neural networks were used. This means that each neuron in a layer in the 

neural network was connected to every other neuron in the next layer. As in the 

case of most neural networks, the ones used for these experiments comprised 

a single input layer of 94 neurons or nodes, and two active layers, a hidden 

layer with a range of nodes, for testing purposes, and an output layer for a 

single result. The number of nodes in the hidden layer ranged from 5 to 60, with 
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intervals of 5 (5, 10,…, 60) in order to find the best topology which presented 

the best fitting and lowest error.  

 

 
 

 

 

At each layer of nodes, each neuron model has associated with it an activation 

function. Several activation functions exist including the tangent-sigmoid, 

logarithmic-sigmoid and linear activation functions. The activation functions can 

differ between layers and if strict customization is required, between neurons in 

the same layer as well. In this thesis, the neurons in the hidden layer all used 

the tangent-sigmoid activation function while the output neuron used the linear 

activation function. The graphs of the two functions are illustrated in Figure 

3.5.4. 

 

 
 

 

Figure 3.5.4: Tangent-Sigmoid (left) and Linear (right) Functions used in the experiments.  

Figure 3.5.3: Illustration of a general neuron within a backpropagation neural network 
R=No. of elements in input vector, p , W = weight vector, w = individual weight, 
f = activation function, n = summation of input-weight products and bias b, a = output from node 
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In a FFBPNN, there are two main phases, the training of the network, and the 

use of the trained network to model/predict results given a new input vector. 

Within the training phase, as described above, there is the feed-forward of the 

inputs and back-propagation of error. In the feed-forward phase, the input 

vector p of input elements p1, p2, …, pR, where R is the number of elements in 

the input vector, is first introduced into the network and propagated towards the 

first layer of hidden neurons, through the respective synaptic weights. The error 

is then calculated at the output node, and propagated backwards by computing 

the gradient using the chain rule and correcting the weights in the direction of 

the negative gradient of the performance function. The basis of the error 

calculation at the output node is the Delta Rule, where the error for N the output 

nodes at iteration n is calculated as,  
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where tj(n) is the target of the nth training sample at node j, and yj(n) is the 

actual output. In our case, however, N = 1, as there is only a single output 

node, giving us, 
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Having now calculated E(n), the local gradient )(njδ  for the output node can be 

calculated through the formula [Haykin, 1999], 

 

)(njδ  = ))(()( ' nvne jjj ϕ  

[Eq. 3.5.1] 

[Eq. 3.5.2] 

[Eq. 3.5.3] 
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where ))((' nv jjϕ  is the derivative of the activation function used, (vj(n)) being 

the induced local field produced at the input of neuron j’s activation function, 

and ej(n) = tj(n) – yj(n). We however need to perform a gradient descent for 

error calculation on all the weights, in the output layer as well as the hidden 

layer. The challenge is now to calculate the error for the hidden layer as we do 

not know its direct target output.  

 

To calculate the local gradient at a single hidden node g, considering its 

connection to nodes in succeeding layer h, and using the same symbolic 

convention as in equation 3.5.3 above,  

 

∑=
h

hghggg nwnnvn )()())(()( ' δϕδ  

As this thesis’ experiments used a single hidden layer with a single output 

node, the calculation for )(ngδ  at each hidden node j, can be described as 

follows, 

 

)()())(()( ,
' nwnnvn goutoutggg δϕδ =  

 

where )(noutδ  and )(, nw gout  are the gradient at the output node and the weight 

between hidden node j and the output node, respectively. Now that the 

gradients for both the output and hidden nodes are calculable, the change to 

the weights between any two nodes a and b  at iteration n is made as follows, 

 

)()()( nynnw abab ηδ=∆  

 

[Eq. 3.5.4] 

[Eq. 3.5.5] 

[Eq. 3.5.6] 
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where η  is the pre-defined learning rate, and and ya(n) is the input signal of 

neuron b. In these experiments, to make the training faster, a momentum term 

was included in the training.  The momentum term help training by adjusting the 

weights in proportion to the previous weight adjustment. The parameter λ 

represents this momentum term included in equation 3.5.7 below, 

 

)1()()()( −∆+=∆ nwnynnw ababab ληδ  

 

The backpropagation algorithm used in these experiments used batch training, 

where the weights and biases of the network were updated only after the whole 

training set was applied to the network (also known as 1 epoch). The MATLAB 

Neural Network Toolbox was used for this using the function traingdm.  

 

Due to the nature and quantity of the data sample size used, the leave-one-out 

procedure of training was adopted. This meant that the neural network was 

trained for each of the 128 samples individually, by leaving out the sample for 

which the binding affinity was to be predicted, and training the network using 

the remaining 127 samples. The binding affinity was then tested by applying 

the left out sample to the network, thus computing the predicted result. For 128 

samples, the training of the network was therefore done 128 times, for all the 

topologies previously mentioned. The number of epochs each training session 

was run was for was 10,000, with a learning rate of 0.05 and a momentum 

coefficient of 0.9. These parameters were obtained through a series of iterative 

testing with various topologies, and chosen based on the lowest error readings.   

 
 
 
 

[Eq. 3.5.7] 
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3.6 Multiple Linear Regression Analysis 
 

This section will explain the means by which Multiple Linear Regression(MLP) 

analysis was used as a comparison for the prediction of binding affinity, and 

how it was used.  

 

MLP was used in this thesis to test the relationship between the input 

vectors/parameters chosen (independent variables) and the target binding 

affinity results (dependent variables).  The SPSS software application was used 

for all regression runs and the results to these experiments can be referred to 

in Appendix B along with all the other binding results. The leave-one-out 

method was used once again for the MLP runs, as they were for the 

backpropagation experiments in this thesis. In this case, the regression line 

was obtained for the prediction of each complexes binding affinity by leaving 

that sample out and calculating the regression line using the remaining 127 

samples. The binding affinity for the left out sample, Yi, was then calculated 

using the equation  

 

Yi = ai + ∑
=

N

j
jj xb

,1
 

 

Where N = no. of parameters, which is 94 in this case, ai represents the 

constant, bj, the respective slope, and xi, the value if the parameter concerned. 

This provided an alternative set of predicted results for each of the 128 data 

samples. This methodology provided an alternative for the backpropagation 

methodology to be compared against, in order to grade its relative 

performance. 

[Eq. 3.6.1] 
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3.7 Error Calculation 
 

This section will describe the various methods used to calculate how well the 

neural network performed compared to predictions by Multiple Linear 

Regression (MLP) as well as the BLEEP [Nobeli et al., (2001)] method, namely 

using Root Mean Squared Errors (RMSE), Mean Absolute Errors (MAE), 

Relative Root Mean Squared Errors (RRMSE) and finally Relative Mean 

Absolute Errors (RMAE) [Setiono et al., (2002)]. 

 

To calculate the performance of the neural network designed and implemented, 

and as well compare its performance to that of other methods, in this case, that 

of MLP and the BLEEP methods, a means of error calculation was needed. 

The following equations 3.7.1 to 3.7.4 define the RMSE and MAE methods 

used, 

 

RMSE = ∑
=

−P

p

pp

P
yy

1

2)~(
 

 

MAE = ∑
=

−
P

p
pp yy

P 1

~1  

 
where P is the total number of all samples, i.e. 128, py~  is the value predicted 

by the respective method used for sample p, and yp is the target value of 

sample p.  While these methods prove to be useful comparing one method 

against the next, a further analysis method was used to calculate the error 

produced relative to that produced through a naïve calculation of average 

values of the samples [Setiono et al., (2002)], through the calculation of the 

RRMSE and RMAE, as shown in equations 3.7.3 and 3.7.4 , 

[Eq. 3.7.1] 

[Eq. 3.7.2] 
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RRMSE = 100 * RMSE / ∑
=

−P

p

pp

P
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1
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RMAE = 100 * MAE / )1(
1
∑
=

−
P

p
pp yy

P
 

 
where py is the average result taken for all the samples. To ensure fairness in 

comparison, the leave-one-out method was used in the calculation of this 

average as well. To thus find the naïve result for a protein-ligand complex, iy , 

the following calculation was used 

 

iy  = )(
1

1
,1
∑

≠=−

P

ipp
py

P
 

 
The calculation of relative errors RRMSE and RMAE provide the advantage by 

showing that a relative error result greater than 100 shows that the predictive 

methodology used performs worse than a method that uses averages of results 

for its predictions. 

[Eq. 3.7.3] 

[Eq. 3.7.4] 

[Eq. 3.7.5] 
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Chapter 4. Data Used 

 
This chapter will discuss the relevance, format and structure of the data used 

for the experiments run in this thesis. Section 4.1 will discuss the requirements 

of the data chosen and the importance of the parameters being studied. 

Section 4.2 will then describe the selection process, and sources of the data. 

The data requirements for adaptation to neural networks will consecutively be 

explained in Section 4.3, which will as well describe the outputs of the neural 

networks, both for Self-Organizing Maps and Feed-Forward Back propagation 

Neural Networks. 

 
4.1 Data Relevance and Requirements 
 
In the drug design and development arena, the predictability of chemical 

processes is vital for the saving of cost and resources. In this thesis, protein-

ligand interactions are being studied and their binding affinity predicted. 

Accurate predictions made in-silico give synthetic chemists, and biochemists an 

advantage by increasing the confidence levels of their respective experiments, 

in-vitro and in-vivo, enabling them to make more informed decisions on the 

viability of each experiment. It is essential, as well, that the data required for the 

predictive experiments to be run are easily available, and the outputs, in an 

easily understood format. Chemists synthesize ligands (drug leads), in the form 

of powders and solution by first having a single chemical structure in mind, 

such as that of benzamidine in Figure 4.1.1. 
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predictive methodology. The adaptatation of the input requirements to the 

appropriate format for neural network study has been explained in Chapter 3.  

 
4.2 Data Selection 
 
This section will describe the source and selection criteria of the 128 samples, 

their molecular structures and the file formats of the manipulated molecular 

data. In order to perform experiments predicting binding affinity using neural 

networks, training data that contained actual results from wet-lab protein-ligand 

binding  was required.  

 

The protein-ligand complexes sought after were firstly, those whose bound 

structures were available, along with the experimental binding energy. 3-D 

structures, with atom coordinate data were important due to the necessity for 

inter-atomic Euclidean distance calculations. The desired complexes had to 

have a single active site, with a single ligand bound to it for two reasons. Firstly, 

the neural network was designed to accommodate one of each of the molecular 

structures. With a multiplicative effect, scaling and comparisons with 1-to-1 

bound structures would not have produced fair results. Secondly, binding 

energy is calculated in its totality. The binding energy is not localized to each 

binding interaction, therefore modeling a multiple active site, multiple ligand 

bind would not truly reflect the local interactions that this thesis’ experiments 

are modeling.  

 

128 datasets that met these criteria (reflected in Table 4.2.1) were taken from 

the Protein Ligand Database (PLD) [Puvanendrampillai et al., 2003], a 

repository of binding information including wet-lab molecular binding energy of 
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protein-ligand complexes, whose structures were readily available from the 

PDB.  

 
Table 4.2.1 : List of 128 Protein-Ligand Complexes Used in Experiments 

PDB 
ID 

Protein Name Ligand Name Binding 
Energy(kJ/mol)

1add Adenosine deaminase 1 - deaza - adenosine (DAA) -38.45 

1adf Alcohol dehydrogenase Beta - methylene thiazole - 4 - 
carboxamide adenine dinucleotide 
(beta-tad) (inhibitor) 

-26.11 

1am6 Carbonic anhydrase ii Acetohydroxamate -24.7 

1anf Maltodextrin binding protein GLC - GLC -31.13 

1b5g Human thrombin Novel synthetic peptide mimetic 
inhibitor and hirugen  

-45.64 

1bcd Carbonic anhydrase ii Trifluoromethane sulphonamide -22.25 

1bll Leucine aminopeptidase 5 Residues [ LEU - FOR - VAL - 
VAL - ASP ] Amastatin 

-38.22 

1bn1 
Carbonic anhydrase ii 

N - [ 4 - methylohenyl ) methyl ] 2 , 
5 - thiophenedisulfonamide [ 
Al5917 ] 

-53.29 

1bn3 Carbonic anhydrase ii 2 - ( 3 - methoxyphenyl ) - 2h - 
thieno - [ 3 , 2 - e ] - 1, 2 - thiazine 
- 6 - sulfinamide - 1 , 1 - dioxide 

-56.42 

1bnn Carbonic anhydrase ii 3 , 4 - dihydro - 2 - ( 3 - 
methoxyphenyl ) - 2h - thieno - [ 3 
, 2 - e ] - 1, 2 - thiazine - 6 - 
sulfonamide - 1 , 1 - dioxide [ 
Al7182 ] 

-57.05 

1bnq 

Carbonic anhydrase ii 

( R ) - 4 - ethylamino - 3 , 4 - 
dihydro - 2 - ( 2 - methoylethyl ) - 
2h - thieno [ 3 , 2 - e ] - 1 , 2 - 
thiazine - 6 - sulfonamide - 1 , 1 - 
dioxide [ Al4623 ]  

-54.14 

1bnt 

Carbonic anhydrase ii 

3 , 4 - dihydro - 4 - hydroxy - 2 - ( 4 
- methoxyphenyl ) - 2h - thieno [ 3 
, 2 - e ] - 1, 2 - thiazine - 6 - 
sulfonamide - 1 , 1 - dioxide [ 
Al5424 ] 

-55.92 

1bnu 

Carbonic anhydrase ii 

3 , 4 - dihydro - 4 - hydroxy - 2 - ( 2 
- thienymethyl ) - 2h - thieno [ 3 , 2 
- e ] - 1 , 2 - thiazine - 6 - 
sulfonamide - 1 , 1 - dioxide [ 
Al5300 ]  

-55.33 

1bnv 

Carbonic anhydrase ii 

( S ) - 3 , 4 - dihydro - 2 - ( 3 - 
methoxyphenyl ) - 4 - methylamino 
- 2h - thieno [ 3 , 2 - e ] - 1 , 2 - 
thiazine - 6 - sulfonamide - 1 , 1 - 
dioxide [ Al7099a ] 

-50.03 

1bnw Carbonic anhydrase ii 
inhibitor 

N - ( 2 - thienylmethyl ) - 2 , 5 - 
thiophenedisulfonamide  -51.8 

1bra Trypsin Benzamidine -10.44 
1byg Kinase domain of human c - 

terminal src kinase Staurosporine  -56.6 
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1bzm Human carbonic anhydrase i Sulfonamide  -34.4 
1c83 Tyrosine phosphatase 1b 6 - ( oxalyl - amino ) - 1H - indole - 

5 - carboxylic acid  -19.24 

1cbs Retinoic - acid - binding 
protein type ii All - trans - retinoic acid -41.08 

1cbx Carboxypeptidase L - benzylsuccinate -36.23 
1cf8 19a4 4a - methyl - 5 , 6 - epoxy - 

octahydroquinoline - N - oxide -34.41 

1cil 

Carbonic anhydrase ii 

( 4S - trans ) - 4 - ( ethylamino ) - 5 
, 6 - dihydro - 6 - methyl - 4H - 
thieno ( 2 , 3 - b ) thiopyran - 2 - 
sulfonamide - 7 , 7 - dioxide 

-53.8 

1cps Carboxypeptidase a S - ( 2 - carboxy - 3 - phenylpropyl 
) thiodiimine - S - methane ( CPM ) -37.99 

1ctr Calmodulin Trifluoperazine -24.45 
1ctt Cytidine deaminase 3 , 4 - dihydrozebularine -25.79 
1dbb Fab' fragment of the 

monoclonal antibody db3 Progesterone -51.38 

1dbj Fab' fragment of monoclonal 
antibody db3 Aetiocholanolone -43.83 

1dbk Fab' fragment of monoclonal 
antibody db3 

5 - beta - androstane - 3 , 17 – 
dione  -46.22 

1dbm Fab' fragment of monoclonal 
antibody db3 

Progesterone - 11 - alpha - ol - 
hemisuccinate -53.9 

1dwb Alpha - thrombin Benzamidine -16.66 
1dwc Alpha - thrombin Md - 805 ( mitsubishi inhibitor )  -42.27 
1dwd Alpha - thrombin Napap  -46.62 
1e96 Ras - related c3 botulinum 

toxin substrate 1 Guanosine - 5' - triphosphate -29.78 

1eap 17E8 Phenyl [ 1 - ( 1 - N - succinylamino 
) pentyl ] phosphonate  -35.42 

1eed Endothiapepsin Cyclohexyl renin inhibitor 
pd125754 -27.39 

1epo Endothiapepsin (aspartic 
proteinase) 

5 Residues [ MOR - PHE - NLE - 
CHF - NME ] cp-81,282 -45.41 

1etr Epsilon - thrombin 3 Residues [ MQI - ARG - MCP ] 
mqpa  -42.28 

1fkf FK506 binding protein ( FKBP 
) Fk506 ( tacromilus ) -55.37 

1fkg 

Fk506 binding protein (fkbp) 

( 1R)- 1, 3 - diphenyl - 1 - propyl ( 
2S ) - 1 - ( 3 , 3 - dimethyl - 1 , 2 - 
dioxopentyl ) - 2 - 
piperidinecarboxylate 

-36.86 

1flr 4 - 4 - 20 fab fragment Fluorescein  -26.55 
1hbv 

Hiv - 1 protease 

Sb203238 - 2 - [ 3 - benzyl - 5 - ( 1 
- alanyl - aminoethyl ) - 2 , 3 , 6 , 7 
- tetrahydro - 1h - azepin - 1 - yl ] - 
1 - oxopropyl - valinyl - valine - 
methylester 

-36.34 

1hew 
Lysozyme 

3 Residues [ NAG - NAG - NAG ] 
N - acetyl - D - glucosamine ( tri - 
N - acetylchitotriose ) 

-34.23 
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1hfc 
Fibroblast collagenase 

( N - ( 2 - hydroxamatemethylene - 
4 - methyl - pentoyl ) phenylalanyl 
) methyl amine 

-31.3 

1hiv 
HIV - 1 protease 

( NOA - HIS - CHA - PSI [ CH 
(OH) CH (OH) ] VAL - ILE -APY ) 
U75875 

-75.34 

1hpv 

HIV - 1 protease 

{ 3 -[( 4 - amino - benzenesulfonyl 
)- isobutyl - amino ] - 1 - benzyl - 2 
- hydroxy - propyl } - carbamic acid 
tetrahydro - furan - 3 -yl ester 

-52.64 

1hri Human rhinovirus 14 Sch 38057  -24.76 
1hvi HIV - 1 protease A-77003 ( c2 symmetry - based 

diol)  -57.51 

1hvj HIV - 1 protease A-78791  -59.67 
1hvk HIV - 1 protease A-76928  -57.73 
1hvl HIV - 1 protease A-76889  -51.4 
1hvr 

HIV - 1 protease 

[ 4R - ( 4 alpha , 5 alpha , 6 beta , 
7 beta )] - hexahydro - 5 , 6 - 
dihydroxy - 1 , 3 - bis [2 - naphthyl 
- methyl ] - 4 , 7- bis ( 
phenylmethyl ) - 2H - 1, 3 - 
diazepin - 2 - one 

-54.26 

1ida HIV - 2 protease Bila 1906 -49.63 
1jao Neutrophil collagenase 3- mercapto - 2 - benzylpropanoyl 

- ALA - GLY - NH2 -33.78 

1kel Antibody 28b4 fab fragment Hapten -41.56 
1lgr Glutamine synthetase Adenosine monophosphate  -17.52 
1mcb Immunoglobulin lambda N - acetyl - L- GLN - D - PHE - L - 

HIS - D - PRO - OH -27.61 

1mcf 
Immunoglobulin lambda 

N - acetyl - L - GLN - D - PHE - L - 
HIS - D - PRO - b - ALA - b - ALA - 
OH  

-29.36 

1mch 
Immunoglobulin lambda 

N - acetyl - L - GLN - D - PHE - L - 
HIS - D - PRO - b - ALA - b - ALA - 
OH  

-29.36 

1mcj Immunoglobulin lambda N - acetyl - D - PHE - L - HIS - D - 
PRO - NH2 -21.59 

1mcs Immunoglobulin lambda N - acetyl - L - GLN - D - PHE - L - 
HIS - D - PRO - OH  -27.61 

1mfe 

Fab fragment (murine se155 - 
4) 

Dodecasaccharide { - 3 ) alpha - D 
- galactose ( 1 - 2 ) [ alpha - D - 
abequose ( 1 - 3 ) ] alpha - D - 
mannose ( 1 - 4 ) alpha - L - 
rhamnose ( 1 - }  

-30.3 

1mmb 

Metalloproteinase - 8 

4 - ( N - hydroxyamino ) - 2R - 
isobutyl - 2S - ( 2 - 
thienylthiomethyl ) succinyl - L - 
phenylalanine - N - methylamide 

-52.64 

1mmq Matrilysin Hydroxamate inhibitor -51.35 
1mmr Matrilysin Sulfodiimine inhibitor  -33.6 
1mnc Neutrophil collagenase Methylamino - phenylalanyl - 

leucyl - hydroxamic acid  -51.38 

1mrk Alpha - trichosanthin Formycin -25.84 
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1mtw 

Factor Xa 

[ DX9056a ] (+) - 2 - [ 4 -[((S)- 1 - 
acetimidoyl - 3 - pyrrodinyl ) oxy ] - 
3 - ( 7 - amidino - 2 - napthyl ) 
propionic acid 

-42.15 

1nnb Neuraminidase 2 -deoxy - 2 , 3 - dehydro - N - 
acetly - neuraminic acid ( DANA )  -22.83 

1okl 
Carbonic anhydrase ii 

5 -( dimethylamino )- 1 - 
naphthalenesulfonamide ( 
Dansylamide ) 

-34.43 

1ola Oligo - peptide binding 
protein 

4 Residues [ VAL - LYS - PRO - 
GLY ] -39.95 

1phf Cytochrome p450 - cam 2 - phenylimidazole -25.1 
1phg Cytochrome p450 - cam Metyrapone -49.42 
1ppc Trypsin 4 Residues [ NAS - GLY - APH - 

PIP ] NAPAP -36.85 

1qbr 

HIV - 1 protease 

[ 4 R - ( 4 alpha, 5 alpha, 6 beta , 7 
beta)]- 3 , 3' - [ [ tetrahydro - 5 , 6 - 
dihydroxy - 2 - oxo- 4 , 7 - bis ( 
phenylmethyl ) - 1H - 1 , 3 - 
diazepine - 1 , 3 ( 2H )-diyl ] bis ( 
methylene )] bis [ N - 2 - 
thiazolylbenzamide ] 

-60.32 

1qbt 

HIV - 1 protease 

[ 4 R - ( 4 alpha , 5 alpha , 6 alpha 
, 7 alpha )] - 3 , 3' - { { tetrahydro - 
5 , 6 - dihydroxy - 2 - oxo - 4 , 7 - 
bis ( phenylmethyl ) - 1H - 1 , 3 - 
diazepine - 1 , 3 ( 2H ) - diyl ] bis ( 
methylene )] bis [ N - 1H - 
benzimidazol - 2 - ylbenzamide ] 

-60.62 

1qbu 

HIV - 1 protease 

[ 4 R - ( 1 alpha , 5 alpha , 7 beta 
)] - 3 - [( cycloprophylmethyl ) 
hexahydro - 5 , 6 - dihydroxy - 2 - 
oxo - 4 , 7 - bis ( phenylmethyl ) - 
1H - 1 , 3 - diazepin ] methyl - 2 - 
thiazolylbenzamide 

-58.43 

1rbp Retinol binding protein Retinol -38.33 
1rgk Ribonuclease T1(Rnase T1) 

mutant - E46Q 2' - adenylic acid  -24.59 

1rgl Ribonuclease T1(Rnase T1) 
mutant - E46Q 2' - guanylic acid  -25.27 

1sln 

Stromelysin - 1 

L - 702,842 ( N - ( R - carboxy - 
ethyl ) - alpha - (S) - ( 2 - 
phenylethyl ) glycyl - L - arginine - 
N - phenylamide) 

-37.89 

1stp Streptavidin Biotin -71.48 
1tet Te33 - Fab fragment of 

monoclonal antibody elicited 
against cholera toxin peptide 
3 (CTP3) 

Citrate  -35.41 

1thl 
Thermolysin 

N -( 1 -( 2( R , S )- carboxy - 4 - 
phenylbutyl ) cyclopentylcarbonyl 
)-( S ) - tryptophan  

-36.63 

1tlp Thermolysin RHA - LEU - TRP ( 3 residues )  -43.12 
1tmn Thermolysin 1 - carboxy - 3 - phenylpropyl -41.67 
1tng Trypsin Aminomethylcyclohexane -16.75 
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1tnh Trypsin 4 - fluorobenzylamine -19.22 
1tni Trypsin 4 - phenylbutylamine -9.69 
1tnj Trypsin 2 - phenylethylamine  -6.15 
1tnk Trypsin 3 - phenylpropylamine -8.5 
1tnl Trypsin Tranylcypromine -10.7 
1uvs Thrombin Bm12.1700 complex ( i11 ) -30.81 
1uvt Thrombin Bm12.1700 complex ( i48 ) -43.6 
1zzz Trypsin SO2 - RON - GLY - 1PI  -29.27 
2abh Phosphate - binding protein Phosphate ion  -37.13 
2cgr 

Igg2b 
N -( P - cyanophenyl )- N '- 
diphenylmethyl - guanidine - acetic 
acid 

-41.53 

2cmd Malate dehydrogenase Citrate -26.1 
2dbl Fab' fragment of monoclonal 

antibody db3 (igg1, subgroup 
2a, kappa 1) 

5 - alpha - pregnane - 3 - beta - ol 
- hemisuccinate -49.63 

2er0 
Endothiapepsin (Endothia 
aspartic proteinase ) 

8 Residues [ IVA - HIS - PRO - 
PHE - HIS - CHS - LEU - PHE] 4 - 
amino - 5 - cyclohexyl - 3 - 
hydroxy - pentanoic acid 

-36.51 

2er6 Endothia aspartic proteinase 7 Residues [ PRO - THR - GLU - 
PHE - PHE - ARG - GLU ] -41.22 

2er9 Endothia aspartic proteinase 8 Residues [ BOC - HIS - PRO - 
PHE - HIS - STA - LEU - PHE ] -44.56 

2gbp D - Galactose D - GLUCOSE 
BINDING PROTEIN ( GGBP ) Beta - D - glucose -43.36 

2h4n Carbonic anhydrase ii 5 - acetamido - 1 , 3 , 4 - 
thiadiazole - 2 - sulfonamide -49.65 

2ifb Intestinal fatty acid binding 
protein (holo form) ( I - FABP 
) 

Palmitic acid -30.98 

2mcp Immunoglobulin Phosphocholine  -29.85 
2r04 

Rhinovirus 14 ( HRV 14) 
5 -( 7 -( 4 - ( 4 , 5 - dihydro - 2 - 
oxazolyl ) phenoxy ) heptyl ) - 3 - 
methyl isoxazole compound IV 

-35.51 

2tmn Thermolysin 3 Residues [ PHO - LEU - NH2 ] -33.6 
3cla Type III chloramphenicol 

acetyltransferase Chloramphenicol  -28.18 

3cpa Carboxypeptidase a GLY - TYR -22.13 
3er3 Endothia aspartic proteinase 5 Residues [ BOC - PHE - HIS - 

CAL - LYS ] ( CP71,362 ) -40.48 

3ptb Beta - trypsin Benzamidine -27.06 
3tmn Thermolysin Val - TRP (VW) -33.72 
3ts1 Tyrosyl - transfer RNA Tyrosinyl adenylate  -25.07 
4cpa Carboxypeptidase a GLY -47.38 
4er1 Endothia aspartic proteinase Pd125967  -37.83 
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4er4 
Endothia aspartic proteinase 

10 Residues [ PRO - HIS - PRO - 
PHE - HIS - LEU - VAL - ILE - HIS 
- LYS ] (H - 142) 

-38.79 

4sga Proteinase A 5 residues [ ACE - PRO - ALA - 
PRO - PHE ] -18.66 

4tln Thermolysin L - leucyl - hydroxylamine -21.23 
4tmn Thermolysin CBZ - PHE == p ==- LEU - ALA ( 

ZFPLA ) -58.16 

5er2 Endothia aspartic proteinase 6 residues [ BOC - PHE - HIS - 
AHS - LYS - PHE ] -37.49 

5p21 C - h - ras p21 protein Guanosine - 5' - ( beta , gamma - 
imido ) triphosphate ( gpp np ) -30.35 

5sga Proteinase A 5 residues [ ACE - PRO - ALA - 
PRO - TYR ]  -16.26 

5tmn Thermolysin 4 residues [ CBZ - PGL - LEU - 
LEU ] -45.89 

6cpa 

Carboxypeptidase a 

O - [ [ ( 1R ) - [ [ N - 
phenylmethoxycarbonyl ) - L - 
alanyl ] amino ] ethyl ] 
hydroxyphosphinyl ] - L - 3 - 
phenyllactate 

-65.77 

6tim Triosephosphate isomerase Glycerol - 3 - phosphate  -18.31 
6tmn Thermolysin 4 residues [ CBZ - PGL - OLE - 

LEU ] -28.83 

7hvp 
HIV - 1 protease 

10 residues [ ACE - SER - LEU - 
ASN - PHE - CH2 - PRO - ILE - 
VAL - OME ]  

-54.95 

 
 
The selected complexes were downloaded in the PDB format, which while 

popular, tends to contain inherent atom typing errors. This problem is caused 

mainly by the inability of the file format to represent bond information. Another 

problem with the use of the PDB format was the lack of its ability to store the 

Gasteiger Huckel charges, used to represent the electrostatic component in the 

neural network inputs.  

 

A new file format was required and the Tripos MOL2 format was chosen for 

meeting all the above requirements. The MOL2 format contains specific fields 

representing the Sybyl atom types used (which work best on the Sybyl 6.8 

system used for all the molecular modeling done), atom coordinate data, as 

well as explicit bond information, as well as the capacity to store Gasteiger 
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Huckel charges, altogether in its @<TRIPOS>ATOM field (with exception of the 

bond data which is in the @<TRIPOS>BOND field) as depicted in the file 

extraction in Figure 4.2.1. 

 
Each protein-ligand PDB file was thus first converted to the MOL2 format 

before the carving out of the active site using the Sybyl 6.8 software, and 

extraction of the ligand from the site, were performed. Each complex PDB file, 

was thus translated into two MOL2 files, one for the active site, and another for 

the ligand of each of the 128 data sets. The MOL2 files finally used after all the 

extraction and preparation can be referred to in Appendix C. 

 
4.3 Input and Output Parameters 
 
 
This section will describe the input parameters for the neural network 

experiments performed. As mentioned in Section 3.2, a fixed number of 

parameters are required to represent molecules of various shapes and of 

 15 @<TRIPOS>ATOM  
         16 1 C1 1.207 2.091 0.000 C.ar 
         17 2 C2 2.414 1.394 0.000 C.ar 
         18 3 C3 2.414 0.000 0.000 C.ar 
         19 4 C4 1.207 -0.697 0.000 C.ar 
         20 5 C5 0.000 0.000 0.000 C.ar 
         21 6 C6 0.000 1.394 0.000 C.ar 
         22 7 H1 1.207 3.175 0.000 H 
         23 8 H2 3.353 1.936 0.000 H 
         24 9 H3 3.353 -0.542 0.000 H 
         25 10 H4 1.207 -1.781 0.000 H 
         26 11 H5 -0.939 -0.542 0.000 H 
         27 12 H6 -0.939 1.936 0.000 H 
         28 @<TRIPOS>BOND  
         29 1 1 2 ar  
         30 2 1 6 ar  
         31 3 2 3 ar  
         32 4 3 4 ar  
         33 5 4 5 ar  
         34 6 5 6 ar  
         35 7 1 7 1  
         36 8 2 8 1  
         37 9 3 9 1  
         38 10 4 10 1  
         39 11 5 11 1  
         40 12 6 12 1  
 

Figure 4.2.1 : An extract of the MOL2 file format used 
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various molecular weights. There needs to be a mapping of the required 

characteristics, in this case, electrostatic charge and atom type to a fixed 

number of variables. For this physico-chemical autocorrelation is used. Table 

4.3.1 lists the parameters chosen for this. The input for each protein-ligand 

interaction was represented in a vector with 94 parameters, 47 containing 

information on the ligand and another 47 for the exact same characteristics of 

the active site. Table 4.3.1 lists the 47 parameters in the order used for the 

characterization of the ligand (and active site). Each protein-ligand complex is 

thus characterized by a single vector. The actual input vectors used are listed 

in Appendix D. 

 
Table 4.3.1 : Parameters for characterization of ligands and active sites (47 from each) 

Parameter No./ 
Ligand (Active Site) 

Description 
(T = Atom Type, d = Distance, C = Charge) 

1(48) Autocorrelative descriptor of T = N.pl3, N.am, N.4 and d < 3 

2(49) Autocorrelative descriptor of T = N.pl3, N.am, N.4 and 3 <= d < 6 

3(50) Autocorrelative descriptor of T = N.pl3, N.am, N.4 and d >= 6 

4(51) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and d < 3 

5(52) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 3 <= d < 6 

6(53) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 6 <= d < 9 

7(54) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 9 <= d < 12 

8(55) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 12 <= d < 15 

9(56) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 15 <= d < 18 

10(57) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and 18 <= d < 21 

11(58) Autocorrelative descriptor of T = N.1, O.2, N.ar, O.co2 and d >= 21 

12(59) Autocorrelative descriptor of T = N.2, N.3, O.3, O.spc and d < 3 

13(60) Autocorrelative descriptor of T = N.2, N.3, O.3, O.spc and 3 <= d < 6 

14(61) Autocorrelative descriptor of T = N.2, N.3, O.3, O.spc and d >= 6 

15(62) Autocorrelative descriptor of T = C.2 and d < 3 

16(63) Autocorrelative descriptor of T = C.2 and 3 <= d < 6 

17(64) Autocorrelative descriptor of T = C.2 and d >= 6 

18(65) Autocorrelative descriptor of T = C.3 and d < 3 

19(66) Autocorrelative descriptor of T = C.3 and 3 <= d < 6 



 71

20(67) Autocorrelative descriptor of T = C.3 and 6 <= d < 9 

21(68) Autocorrelative descriptor of T = C.3 and 9 <= d < 12 

22(69) Autocorrelative descriptor of T = C.3 and 12 <= d < 15 

23(70) Autocorrelative descriptor of T = C.3 and 15 <= d < 18 

24(71) Autocorrelative descriptor of T = C.3 and d >= 18 

25(72) Autocorrelative descriptor of C > -0.5 and d < 3 

26(73) Autocorrelative descriptor of C > -0.5 and 3 <= d < 6 

27(74) Autocorrelative descriptor of C > -0.5 and 6 <= d < 9 

28(75) Autocorrelative descriptor of C > -0.5 and 9 <= d < 12 

29(76) Autocorrelative descriptor of C > -0.5 and d >= 12 

30(77) Autocorrelative descriptor of  -1 < C <= -0.5 and d < 3 

31(78) Autocorrelative descriptor of  -1 < C <= -0.5 and 3 <= d < 6 

32(79) Autocorrelative descriptor of  -1 < C <= -0.5 and 6 <= d < 9 

33(80) Autocorrelative descriptor of  -1 < C <= -0.5 and 9 <= d < 12 

34(81) Autocorrelative descriptor of  -1 < C <= -0.5 and 12 <= d < 15 

35(82) Autocorrelative descriptor of  -1 < C <= -0.5 and 15 <= d < 18 

36(83) Autocorrelative descriptor of  -1 < C <= -0.5 and 18 <= d < 21 

37(84) Autocorrelative descriptor of  -1 < C <= -0.5 and d >= 21 

38(85) Autocorrelative descriptor of  C <= -1 and d < 3 

39(86) Autocorrelative descriptor of  C <= -1 and 3 <= d < 6 

40(87) Autocorrelative descriptor of  C <= -1 and 6 <= d < 9 

41(88) Autocorrelative descriptor of  C <= -1 and 9 <= d < 12 

42(89) Autocorrelative descriptor of  C <= -1 and 12 <= d < 15 

43(90) Autocorrelative descriptor of  C <= -1 and 15 <= d < 18 

44(91) Autocorrelative descriptor of  C <= -1 and 18 <= d < 21 

45(92) Autocorrelative descriptor of  C <= -1 and 21 <= d < 24 

46(93) Autocorrelative descriptor of  C <= -1 and d >= 24 

47(94) Molecular Weight 

 
The Self-Organizing Map (SOM) used takes in the input parameters of each 

protein-ligand pair and returns an organized map of showing clusters of these 

pairs in the 2-D input space. The main graphical method used in analyzing the 

output from the SOMs was the unified distance matrix (U-matrix) [Ultsch et al., 

1990], which shows the intensity of the input sample clustering through colour 

or shading. Figure 4.3.1 shows an example of a U-matrix. 
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The output of the neural network in the backpropagation phase is in the form of 

a normalized real number, as required by most neural network simulations, 

which after denormalization, will give the predicted binding affinity (in kJ/mol). 

Using these visualizations and numbers, analyses were carried out to identify 

patterns and correlations between molecular characteristics and binding 

affinity. 

 
 

Figure 4.3.1 : An example of a U-matrix 
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Chapter 5. Results and Analysis 
 
This chapter will introduce the various results obtained from the experiments 

conducted in this thesis. Section 5.1 will first discuss the results obtained from 

the Self-Organizing Maps, through an analysis of a selected U-matrix. Its 

following subsections will then go into further detail on the clustering and the 

factors affecting it, namely the protein and ligand within the complex as 

individuals and as well the residues within the active site. Section 5.2 will then 

discuss the results obtained from the backpropagation experiments with 

comparison of error to two other methods, and do a comparative analysis with 

the results obtained from Section 5.1. 

 
5.1 Self Organizing Maps (SOM) 
 
The SOMs used to visualize the extent of protein-ligand complex clustering and 

distribution were run for 50, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 

2250, 2500, 2750, 3000, 3250 and 3500 epochs respectively. The number of 

epochs chosen for testing was stopped at 3500 as the SOM visibly achieved 

stability at that point (runs for 3250 and 3500 epochs showed no further 

difference in the distribution and clustering of complexes). On each U-matrix, 

the inputs used (128 altogether) have been superimposed onto the neurons 

(map elements) to show which of the inputs have parameters most similar to 

the weights of the respective neurons onto which they have been 

superimposed. The stabilized U-matrix of the SOM at 3500 epochs is 

presented below in Figure 5.1.1. 
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(a) (b) 

(c) 

(d) (e) 

(f) 

(g) 

(h) 

(i) (j) 

(k) 

(n) 

(m) (l) 

Figure 5.1.1: Stabilized U-Matrix of SOM at 3500 iterations 
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The occurrence of clusters throughout the SOM firstly confirms the even spread 

of input data used. This is vital in such experiments as unbiased data is a 

necessity to allow the following backpropagation method to be as generic as 

possible, enabling it to maximize its use to a variety of proteins and ligands 

rather than those belonging to a certain family or classification group. 

 

5.1.1 Clustering Through Protein Active Site Similarity 
 

While a protein structure can have more than a single active site, more often 

than not, the ligands have a tendency to bind to the same amino acid residues 

for the same physiological function. As such, the protein to which the ligand 

binds can be used as a clustering reference, similar proteins with similar 

physiological functions should be clustered together. This can be clearly seen 

in Figure 5.1.1. To illustrate this, further analysis will be carried out on the 

protein-ligand complexes listed in Table 5.1.1.    

 
Table 5.1.1 : Breakdown of Protein-Ligand Complexes by cluster and majority protein 

Group Protein Type Clustered Complexes 

(a) 
Ribonuclease T1(Rnase T1) mutant – 
E46Q 

1rgk, 1rgl 

(b) Trypsin 1tng, 1tnh, 1tni, 1tnj, 1tnk, 3ptb(beta) 

(c) Carbonic Anhydrase II 
1bn1, 1bn3, 1bnn, 1bnq, 1bnt, 1bnu, 1bnv, 1bnw, 
1cil 

(d) Thermolysin 1tmn, 2tmn 

(e) 
Fab’ fragment of the monoclonal 
antibody db3 

1dbb, 1dbj, 1dbk, 2dbl, 1dbm 

(f) Matrilysin 1mmq, 1mmr 

(g) Thermolysin 4tmn, 5tmn, 6tmn, 1thl, 1tlp 

(i) Proteinase A 4sga, 5sga 

(j) Immunoglobulin Lambda 1mcj, 1mcb, 1mcs, 1mcf, 1mch 

(k) HIV – 1 Protease 1hvr, 1qbt, 1qbr, 1qbu, 1hpv 
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(l) Cytochrome p450 – cam 1phf, 1phg 

(m) HIV – 1 Protease 1hiv, 1hvi, 1hvj, 1hvk, 1hvl 

(n) Endothia Aspartic Proteinase 2er0, 2er6, 2er9, 3er3, 4er1, 4er4, 5er2 

 
 

Clustering can be seen for the complexes above showing the influence of the 

protein involved. Analyzing individually the active site of each of the complexes, 

Table 6.1.2 details the common amino acid residues present within each group 

of protein types. The amino acid residues listed are contained in all the 

complexes listed in Table 51.2.  The representation of the three character 

amino acid residue codes can be referred to in Appendix E. 

 
Table 5.1.2 : Protein Families and Common Amino Acid Residues Present 

Group Protein-Ligand Complex PDB ID Common Amino Acid Residues 

(a) 1rgk, 1rgl His40, Tyr38, Arg77, His92, Glu58 

(b) 1tng, 1tnh, 1tni, 1tnj, 1tnk, 3ptb(beta) Asp189, Gly219 

(c) 
1bn1, 1bn3, 1bnn, 1bnq, 1bnt, 1bnu, 
1bnv, 1bnw, 1cil 

His94, His96, His119, Thr199 

(d) 1tmn, 2tmn Asn112, Ala113, Arg203, Asp226, His231,  

(e) 1dbb, 1dbj, 1dbk, 2dbl, 1dbm Asn35 

(f) 1mmq, 1mmr 
Glu219, His228, Leu181, Pro238, Tyr240, 
Asn179  

(g) 4tmn, 5tmn, 6tmn, 1thl, 1tlp Arg203, Asn112, Asp226 

(i) 4sga, 5sga His57, Asp102, Gly193, Ser195, Ser214, Gly216 

(j) 1mcj, 1mcb, 1mcs, 1mcf, 1mch Glu52 

(k) 1hvr, 1qbt, 1qbr, 1qbu, 1hpv Asp25(A), Asp25(B) 

(l) 1phf, 1phg Arg299, Asp297, Cys357, Arg112, His355 

(m) 1hiv, 1hvi, 1hvj, 1hvk, 1hvl Asp25(B), Asp29(A), Asp29(B), Gly48(A)  

(n) 2er0, 2er6, 2er9, 3er3, 4er1, 4er4, 5er2 Gly76, Thr219 

 
Table 5.1.2 above shows that the amino acids in the active sites, play a big part 

in the clustering, causing the complexes to either be found in the same neuron 
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or the same region(this difference is caused by differential conformation of the 

active sites as well as the ligand structure and properties). The numbers 

following the amino acid codes represent their position within the protein 

sequence and were included to emphasize that these clusters did not just 

contain similar amino acids, which can also cause grouping, but are the very 

same amino acids, and therefore are the same active sites. It should be further 

noted that these amino acids were present in all the complexes tabulated, and 

that more common amino acids occurred between individual acids in the same 

group, but not in all the group members. 

 

5.1.2 Influence of Ligand Similarity on Clustering 

 

It is also evident from both Figure 5.1.1 and Table 5.1.1 respectively, that while 

many of the complexes from similar proteins have clustered together, the 

ligands bound to them have an impact on the complex distribution as well. 

While groups (d) and (g), and (k) and (l), have ligands bound to the same 

respective proteins, the complexes have not been clustered together in Figure 

5.1.1. This is due to differences in the ligands structure, with respect to their 

size (molecular weight) and atomic components that cause the complexes to 

be spread apart. For ease of viewing, the molecular coloring represents 

oxygens by red, nitrogens by blue, carbons by black, and sulphur atoms by 

yellow dots. 
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Tables 5.1.4 and 5.1.3 illustrate the effect of structural and physico-chemical 

difference of the ligands in groups (d) and (g) respectively, on the distribution of 

protein-ligand complexes within the U-matrix in Figure 5.1.1. 

 
 

Table 5.1.3 : Ligands for groups (g) [Ligand structures from PDBSum] 

Group (g) Ligands 

PDB ID Structure 

4tmn 

 

5tmn 

 

6tmn 

 

1tlp 
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1thl 

 
 
 
 
 
 

Table 5.1.4 : Ligands for group (d)[Ligand structures from PDBSum] 

Group (d) Ligands 

PDB ID Structure 

1tmn 
(1CLT) 

 

2tmn 

 
 
 

Studying the structures in Table 5.1.3, it can be visibly seen that the ligands in 

group (g) are much larger than those in Table 5.1.4. They are as well very 

similar in their atomic composition, indicating they are probably analogues of 

the same molecule. 1thl, while being similar to the other atoms in the cluster, is 

the least similar having the lowest number of oxygen atoms and as well 

containing two ends of aromatic carbon atoms, for which the molecules were 

not characterized. This makes 1thl effectively a smaller molecule through its 

characterized vector. Even so, a combination of the similarities within the 

remaining characterized molecules and that of the active site bring 1thl into an 
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adjacent neuron, and part of the cluster. The ligands in Table 5.1.4 on the other 

hand, are much smaller in size, containing fewer oxygen, carbon and nitrogen 

atoms(except for 1CLT in 1tmn which contains no nitrogen atoms). This differs 

from the atoms in Table 5.1.3 which have a minimum of 5 oxygen atoms, and a 

maximum of 10 oxygen atoms (1tlp). Additionally, the dispersion of these 

oxygen and nitrogen atoms are much wider in the Table 5.1.3 atoms. All these 

factors, influencing the atom type (and therefore charge) and distance values 

therefore cause the separation in the two groups of complexes. The similarities 

in the active site composition have however caused their relative clustering.  

 

The example given above illustrates one particular obvious difference in the 

chemical structure and properties of two groups of molecules. Sometimes 

however, a more defined grouping is required to enable differentiating a 

molecule that might bind well to an active site from one that does not. Tables 

5.1.5 and 5.1.6 show two sets of molecules, both binding to the same active 

site, but yet separated on the SOM. 

 

Table 5.1.5 : Ligands for group (k)[Ligand structures from PDBSum] 

Group (k) Ligands 

PDB ID Structure 

1hvr 
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1qbt 

 

1qbr 

 

1qbu 

 

1hpv 

 
 

 
Table 5.1.6 : Ligands for group (m)[Ligand structures from PDBSum] 

Group (m) Ligands 

PDB ID Structure 

1hvj 
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1hvi 

 

1hvk 

 

1hvl 

 

1hiv 

 
 

Looking at the two groups of molecules does not show any obvious reason for 

their separation. More detailed analysis into the structures however, explain 

their separation on different levels. Looking closer at group (k), it is realized that 

all of the ligands, except for 1hpv, contain a substructure of a central ring of 

seven identical members of five carbon atoms and two amide nitrogen atoms 

shown in Figure 5.1.2. 
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The presence of this substructure in the group (k) ligands and lack of it in those 

of group(m) explains their separation. 1 hpv dies not contain this substructure 

and is probably the reason it is relatively furthest from the group. Further 

analysis of the molecules in group (m) show their extremely similar structure 

indicating as well, that they are most probably derived from the same molecule. 

This similar structure has as well pushed 1hpv from its cluster to group (k), 

where the molecular weight of the molecules are more varied, and whose 

molecules do not comprise six membered rings containing aromatic nitrogen 

atoms. 

 

5.1.3 Clustering Through Structural and Physico-Chemical Similarity  
 

The examples given so far have all shown clustering of protein-ligand 

complexes and as well their separation using the same protein active sites. We 

need to show that the clustering works as well for situations where the proteins 

used are different and therefore have different active sites.  Table 5.1.7 lists the 

ligands from group (h) of the U-matrix in Figure 5.1.1. These complexes have 

clustered on the same node even though they are all from different proteins. 

Analyzing their active sites, they are all seen to contain the common amino 

acids Serine, Glycine, Leucine, Valine, Aspartic acid, Lysine, Proline and 

Threonine. Even so, the active sites are nowhere as similar to one another as 

Figure 5.1.2: Common substructure found in group (k) ligands 
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could be in the case of various ligands binding to the same active site. As such 

further study into the ligand similarity brings us to the individual binding ligands 

listed in Table 5.1.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5.1.7 : Ligands for group (h) [Ligand structures from PDBSum] 

Group (h) Ligands 

PDB ID Structure 

5p21 

 

1e96 

 

1adf 

 
 

From Table 5.1.7, we can immediately see the similarity of the ligands, each 

having an almost identical cluster of oxygen atoms at one end and rings of 

nitrogen atoms on the other. An exception to the three is 1adf whose similarity 
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lies in the right half of the molecule being almost identical to the two other 

entire molecules. This similarity in shape and composition thus explains further 

why the three protein-ligand complexes were clustered on the same neuron by 

the SOM.  

 

From this example, along with the previous two, it is seen that the SOM has 

clustered the complexes correctly, according to the parameters of the individual 

protein-ligand complexes. The examples have shown that this works for 

complexes with similar active sites and ligands, similar active sites and different 

ligands, as well as different active sites and similar ligands. The next section 

shall discuss the results obtained from the backpropagation experiments 

carried out. 

 

5.2 Backpropagation Neural Networks 

 

This section will list the results obtained from the various backpropagation 

experiments, and their performance (in terms of error) compared to predictions 

made by Multiple Linear Regression and  the BLEEP method [Nobeli et 

al.,(2001)] of calculating binding affinity. The analysis of the results obtained 

will then be made with regard to the distribution of the neural network inputs on 

the SOM. 

 

The backpropagation algorithm described in the Methodology chapter, was run 

for a series of topologies, each with a different number of neurons in the hidden 

layer, namely 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 in order to find a 
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suitable neural network topology with the lowest error relative to the other 

topologies. Table 5.2.1 below lists the results, in terms of root mean square 

error (RMSE), mean absolute error (MAE), relative root mean square error 

(RRMSE) and relative mean absolute error (RMAE), when compared to the 

experimental results, from the runs of each of these topologies. Figure 5.2.1 

and 5.2.2 in turn illustrate these differences in error graphically. The detailed 

results for each protein-ligand complex can be referred to in Appendix B. 

 
 
 

Table 5.2.1 : Error calculated from backpropagation neural network with varying hidden 
neurons 

Error 
Type Number of Neurons in Hidden Layer 

 5 10 15 20 25 30 35 40 45 50 55 60 

RMSE 20.80 20.68 18.70 16.99 29.63 20.53 17.46 19.00 22.91 21.23 25.45 34.43 

RRMSE 147.23 146.36 132.37 120.25 209.72 145.30 123.59 134.51 162.15 150.24 180.16 243.69 

MAE 15.74 16.35 14.09 12.93 16.52 14.98 13.43 14.63 15.60 14.49 16.11 19.72 

RMAE 136.30 141.51 122.01 111.92 142.99 129.68 116.24 126.61 135.08 125.41 139.50 170.75 

 
 

RMSE & MAE vs No. of Hidden Neurons

0
5

10
15
20
25
30
35

5 10 15 20 25 30 35 40 45 50 55

Hidden Neurons

RM
S

E 
an

d 
M

A
E

RMSE
MAE

 
 
 
 

Figure 5.2.1 : Root Mean Squared Error and Mean Absolute Error vs No. of Hidden Neurons 
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RRMSE & RMAE vs No. of Hidden Neurons
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As illustrated in the table and graphs above, the backpropagation neural 

network with 20 neurons in the hidden layer proved to be the best topology to 

use, giving the lowest MAE, RMAE, RMSE and as well RRMSE. As such, the 

rest of this chapter will focus on the 20 hidden neuron network.  

 

In order to provide more perspective on the complexity and performance of the 

backpropagation neural network, further comparison was made with scores 

predicted through multiple linear regression methods, using the leave-one-out 

method and as well, with the binding scores predicted for the same dataset 

using the BLEEP [Nobeli et al.,(2001)] method. These comparative results are 

tabulated below in Table 5.2.2.  

 
Table 5.2.2 : Comparison of backpropagation with Multiple Linear Regression and BLEEP 
methods 

Error 
Type Prediction Method 

 Backpropagation Multiple Linear Regression BLEEP 

RMSE 16.99 30.20873 17.93821 

RRMSE 120.25 213.8002 126.9602 

Figure 5.2.2 : Relative Root Mean Squared Error and Relative Mean Absolute Error vs 
No. of Hidden Neurons 
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MAE 12.93 20.74753 13.72516 

RMAE 111.92 179.6167 118.8222 

 
From Table 5.2.2, we see that the backpropagation method performs better 

than both the multiple linear regression method and the BLEEP method. The 

RMSE and MAE of the backpropagation method are 43.8% and 37.7% lower 

respectively when compared to that of the multiple linear regression method, 

and when compared to the BLEEP method,  5.3% and 5.8% lower. Even with 

these improvements over other methods, the backpropagation predictive 

method still has an RRMSE score of 120.25. This implies that the 

backpropagation method still performs worse than one that simply uses the 

average value of the samples [Setiono et al., (2002)]. As such, further analysis 

was carried out to find out at which point and which of the samples were 

responsible for pushing the RRMSE above 100.  

 

To do this, the entire set of 128 samples was sorted according to ascending 

absolute error and the RMSE was calculated for the entire set but in increments 

of 10 samples each time. Therefore, the RRMSE was calculated for the top 10, 

20, 30 all the way to 128 from the samples that gave the least error to those 

that produced the highest. Figure 5.2.3 shows how the RRMSE ranged with 

increasing number of samples from those with the smallest absolute error 

onward.  
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Figure 5.2.3 shows that for the top 93.75% of input samples (120 samples), the 

backpropagation neural network performs better than average, in fact for the 

first 100 samples, the RRMSE is just above 70% (70.04%). The eight bottom 

data samples with the highest absolute error responsible for the RRMSE 

moving above 100 are identified as 1dwc, 1mtw, 1hbv, 6cpa, 1hri, 1thl, 1stp, 

and 1mch with absolute errors of 52.40, 52.11, 43.65, 43.01, 37.21, 34.57, 

34.10, and 34.01, respectively. These 8 protein-ligand complexes have been 

marked in Figure 5.1.1 by dotted circles. The inaccurate predictions imply that 

lack of similar training data is available to properly form correlations between 

the protein-ligand complexes and the active site. We thus expect these 

complexes to be alone in individual neurons in the U-matrix. This is however 

only true for the complexes 1dwc, 6cpa, and 1 hbv. 1hri, 1stp, 1mtw, 1mch all 

occur within neurons with clustered with other complexes, and while 1thl does 

occur in a neuron of its own, it has similarity to the complexes in group (g) as 

discussed earlier. As such, these complexes with similarity to others were 

studied further.  

 

Figure 5.2.3 : Increase in RRMSE with increasing number of data samples 
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1hri was clustered with the complexes of 1byg and 1cbs. As similar amino acid 

residues were identified in their active sites, their individual ligand structures 

were studied. It was noticed from the atomic analysis of the three molecules 

that a large part of the molecules 1hri (6 out of 21) and 1byg (12 out of 35) 

were composed of aromatic carbon molecules. In the representation of the 

molecules using autocorrelation, these atom types were not accounted for due 

to their lack of hydrogen bonding/donating capacity. As such, the molecules 

were characterized based on their remaining atoms, to which similarity was 

found with 1cbs, which contained no aromatic carbon atoms. This collectively 

had the effect of bringing down the accuracy of their binding predictivity 

altogether. This is evident upon analysis of the other absolute binding accuracy 

of 1byg and 1cbs, which were in the bottom 19th and 29th positions, 

respectively. A similar situation occurred with 1mtw, which was composed of 33 

atoms, 12 of which were aromatic carbons, thus causing it to be clustered with 

1tnh and 1tnk, two other molecules comprising a majority of aromatic carbon 

atoms, clustered predominantly by active site similarities and similar lack of 

ligand characterization, which is expressed through low ligand parameter 

representation. This phenomenon, was expressed earlier in Section 5.1.2 with 

regard to the complex 1thl and its appearance adjacent but not within the same 

neuron as all the other complexes binding to the same protein active site, 

namely 1tlp, 4tmn, 5tmn, and 6tmn.  

 

When a neural network is trained, it is as well dependent on the random 

initialization of the weights. This is usually seen in cases where the 

backpropagation neural network is trained over several different topologies and 

where there are mostly consistently good and bad predictions, due to the 
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random initialization of weights, some predictions are accurate at some runs, 

and inaccurate at others. This is as well made worse by a lack of firm similarity 

with its most similar training samples. 1mch is one such example. While being 

found in a cluster, the clustering is not as tight as required to qualify as similar 

training samples. This can be seen in the U-matrix in Figure 5.1.1, where the 

complexes in group (j) are found in three dispersed clusters on the right vertical 

edge of the matrix. This lack of ‘closeness’, together with the presence of 

aromatic carbons in the molecules lead the unsteady predictions of 1mch’s 

binding affinity. While it produced a high error on the experiments with 20 

neurons in the hidden layer, it did as well produce good predictions on the 

experiments run on topologies with 15 and 40 hidden neurons, with absolute 

errors of 1.48 and 3.39 respectively, markedly smaller than that of 34.01 in the 

run with 20 hidden neurons. While it is important to keep initialization of 

parameters random to avoid bias in the experiments, it is as well important to 

run each experiment with a particular topology several times, and take the 

eventual error to be recorded as the average of each set of runs for each single 

topology. 

 

The results from the experiments run have not only justified the strengths of the 

method used, producing better predictions than those of regression methods 

and the previously developed BLEEP method, but have also highlighted 

potential improvements in the structure of the characterized data, and training 

methodology. It is needless safe to say that with increasing realization in the 

importance of the life sciences and medicinal research, that more data will be 

made available, increasing the accuracy of predictions.  
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Chapter 6. Conclusion and Future Work 
 

This final chapter will bring the report to a close with an overall perspective of 

the study carried out, its strengths, weaknesses as well as it’s potential 

improvements. The later part of the chapter will then discuss the potential of the 

study and how far it can be carried out into the field of drug design, to 

potentially enable drugs to be designed altogether with a high certainty, fully 

computationally without ever having to move to chemical synthesis until the 

outcome is certain. 

 

6.1 Conclusion 

 

In this paper, a predictive method of calculating binding affinity was developed 

using a combination of ideas from artificial neural networks, biochemistry and 

physics. Kohonen Self Organising Maps (SOMs) were first used to categorize 

protein-ligand complexes with known binding affinity according to their 

similarity. This similarity was based on two biochemical phenomena of protein-

ligand interactions being based on electrostatic charge, hydrogen bonding and 

molecular weight parameters. As such, physico-chemical autocorrelative 

methods were adopted to create a representation of three dimensional 

chemical structures, along with these characteristics. Once the SOMs 

succeeded in clustering the complexes accordingly, showing sensitivity to 

similar active sites and ligands individually as well as together, the clusters 

were subjected to a backpropagation neural network to train it such that it 

would be able to predict the binding affinity of a test sample. Due to the inability 
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to acquire large numbers of protein-ligand complexes with known binding 

affinity, more conventional train-validate-test sets could not be used. Instead, 

the leave-one-out system of training was utilized. These results were then 

compared to those obtained through Multiple Linear Regression and a 

previously published method, the Biomolecular Ligand Energy Evaluation 

Protocol (BLEEP). While the method developed throughout this report 

performed better than both compared methods, it nevertheless produced 

Relative Root Mean Square (RRMSE) and Relative Mean Absolute errors 

exceeding 100%, implying its inferiority to a naïve averaging method. Even so, 

the RRMSE scores were maintained above average up to the prediction of the 

top 100 samples. 

 

The data extraction and representation through autocorrelation proved to 

successfully characterize each protein-ligand complex. Due to the large amount 

of different atom types, priority was given to atom types which either 

contributed to intermolecular interactions as hydrogen donors or as hydrogen 

acceptors. For a fair balance of representations, certain non-donors and non-

acceptors were chosen as well. In the SOM clustering, the chosen parameters 

for molecular representation proved successful for the majority of complexes. 

However, there were nevertheless outliers which highlighted certain important 

potential improvements to the characterization. Ideally, all atom types would be 

characterized. Practically, this is made difficult through long training due to the 

large amounts of weighted edges needing tuning, and is made worse if large 

amounts of data are not available, to represent equally each facet of the 

parameter representation. In this report, aromatic carbons were not included 
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and this resulted in a mis-characterization of the respective molecules, 

eventually leading to poorer predictive scores.  The choice of parameters is 

thus a very important one, as it proves to introduce time and space tradeoffs.  

 

Another subject of question this report highlighted was that of random 

initialization of backpropagation neural networks. While its importance lies in 

the fairness of experimentation, by reducing biases to a minimum, it can as well 

introduce undesirable “side-effects” to the training of the network, hinting at the 

necessity to train a backpropagation network with the same training parameters 

in order to average out this randomness. This as well introduces a tradeoff of 

time versus accuracy.  

 

On the whole, while the experiments run showed positive results, at the same 

time highlighting certain factors that should be given attention. Possible 

improvements to the current study as well as the future of such a methodology 

will be discussed in the following section. 

 

6.2 Future Work 

 

The ideal situation in any machine learning environment comes about when 

ample training data is available. In the drug design arena, this means more 

wet-lab experiments being carried out wit regard to binding affinity to allow for 

more training samples to be obtained. As well, a good variance in training data 

is required. Many laboratories study a single protein-ligand interaction. This 

usually comprises a protein with known physiological effect and a library of 
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ligands to screen against the protein active site. While this may prove useful for 

local predictions, a more generic predictive methodology is desirable. A large 

diversity of active sites and ligands should thus be studied, and their binding 

affinity recorded, good and bad. With this large amount of data, better and 

more even characterization of molecules will be able to be studied and their 

varying pharmacophore structures obtained.  

 

Large amounts of data alone are however insufficient for good predictivity of 

neural networks. The characterization of the molecules involved at the same 

time require further research, in order to develop a mapping of molecules, 

allowing for every atoms within it, along with its properties to be mapped onto 

two dimensions, while at the same time maintaining its uniqueness, uniformity, 

reversibility and translational as well as rotational invariance. This full 

characterization of a molecule, together with high powered computers to 

tolerate a large number of descriptive parameters might just make the road to 

perfect drug design a lot shorter.  

 

As such, it would be highly desirable for researchers of different physiological 

perspectives to come together with their molecular interaction data and 

together create a universal, generic drug binding system, which will create not 

only a huge saving in drug production costs, but as well, a much shorter time 

for drugs from conception to reach the market at much lower costs.  
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Appendix A.

Perl Script For Autocorrelation of Mol2 Files.

#!/usr/bin/perl
# Extract inter-atomic distances from a Tripos Mol2 file and
autocorrelate
# the distances accordingly into a matrix file

# Read in the folder ‘mol2used’ present in the same directory

@files = ();
$folder = 'mol2used';

opendir(FOLDER,$folder);
@files = grep (!/^\./, readdir(FOLDER));
closedir(FOLDER);

foreach $file (@files){

$molfilename = "$folder/$file";

# Initialise check to 0
$check = 0;

# Open and handle the file
open(MOL2FILE, $molfilename);

%type = ();
%charge = ();
%x = ();
%y = ();
%z = ();

# Store file in variable
while ($molecule = <MOL2FILE>) {
  if ($molecule =~ /@<TRIPOS>ATOM/) {
    $check = 1;
  }
  if ($molecule =~ /@<TRIPOS>BOND/) {
    $check = 0;
  }
  if ($check == 1){
    unless ($molecule =~ /@<TRIPOS>ATOM/){

        $id = substr($molecule, 4,3);
        $xcoor = substr($molecule, 19,7);
        $ycoor = substr($molecule, 29,7);
        $zcoor = substr($molecule, 39,7);
        $atype = substr($molecule, 47,5);
        $acharge = substr($molecule, 70,7);
        $id =~ s/^\s*//;
        $xcoor =~ s/^\s*//;
        $ycoor =~ s/^\s*//;
        $zcoor =~ s/^\s*//;
        $atype =~ s/^\s*//;
        $acharge =~ s/^\*//;
        $type{$id} = $atype;
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        $charge{$id} = $acharge;
        $x{$id} = $xcoor;
        $y{$id} = $ycoor;
        $z{$id} = $zcoor;

    } #unless
  }
}

# Store the vector in an array
@vector =
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0);

$total = $id;

for ($counter1 = 1; $counter1 < $total; ++$counter1){
  for ($counter2 = ($counter1 + 1); $counter2 < ($total+1);
++$counter2){

    $distance = sqrt((($x{$counter1} - $x{$counter2})**2) +
(($y{$counter1} - $y{$counter2})**2) + (($z{$counter1} -
$z{$counter2})**2));

########## Atom Type Autocorrelation #############################

################# If Atoms are N.pl3, N.am or N.4##################

    if ($type{$counter1} eq "N.pl3" || $type{$counter1} eq "N.am " ||
$type{$counter1} eq "N.4  "){
      if ($type{$counter2} eq "N.pl3" || $type{$counter2} eq "N.am "
|| $type{$counter2} eq "N.4  "){

        if ($distance < 3){
          ++$vector[0];
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          ++$vector[1];
        }# elsif 1

        elsif ($distance >= 6){
          ++$vector[2];
        }# elsif 2

      } #if
    } #if

################# If Atoms are N.1, O.2, N.ar, O.co2 ################

    elsif ($type{$counter1} eq "N.1  " || $type{$counter1} eq "O.2  "
|| $type{$counter1} eq "N.ar " || $type{$counter1} eq "O.co2"){
      if ($type{$counter2} eq "N.1  " || $type{$counter2} eq "O.2  "
|| $type{$counter2} eq "N.ar " || $type{$counter2} eq "O.co2"){

        if ($distance < 3){
          ++$vector[3];
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
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          ++$vector[4];
        }# elsif 1

        elsif (($distance >= 6) && ($distance < 9)){
          ++$vector[5];
        }# elsif 1

        elsif (($distance >= 9) && ($distance < 12)){
          ++$vector[6];
        }# elsif 1

        elsif (($distance >= 12) && ($distance < 15)){
          ++$vector[7];
        }# elsif 1

        elsif (($distance >= 15) && ($distance < 18)){
          ++$vector[8];
        }# elsif 1

        elsif (($distance >= 18) && ($distance < 21)){
          ++$vector[9];
        }# elsif 1

        elsif ($distance >= 21){
          ++$vector[10];
        }# elsif 2

      }#if
    }#elsif

############### If Atoms are N.2, N.3, O.3, or O.SPC ################

    elsif ($type{$counter1} eq "N.2  " || $type{$counter1} eq "N.3  "
|| $type{$counter1} eq "O.3  " || $type{$counter1} eq "O.SPC"){
      if ($type{$counter2} eq "N.2  " || $type{$counter2} eq "N.3  "
|| $type{$counter2} eq "O.3  " || $type{$counter2} eq "O.SPC"){

        if ($distance < 3){
          ++$vector[11];
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          ++$vector[12];
        }# elsif 1

        elsif ($distance >= 6){
          ++$vector[13];
        }# elsif 2

      }#if
    }#elsif

######################## If Atoms are C.2 ###########################

    elsif ($type{$counter1} eq "C.2  "){
      if ($type{$counter2} eq "C.2  "){
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        if ($distance < 3){
          ++$vector[14];
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          ++$vector[15];
        }# elsif 1

        elsif ($distance >= 6){
          ++$vector[16];
        }# elsif 2

      }#if
    }#elsif

#################### If Atoms are C.3 ##########################

    elsif ($type{$counter1} eq "C.3  "){
      if ($type{$counter2} eq "C.3  "){

        if ($distance < 3){
          ++$vector[17];
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          ++$vector[18];
        }# elsif 1

        elsif (($distance >= 6) && ($distance < 9)){
          ++$vector[19];
        }# elsif 1

        elsif (($distance >= 9) && ($distance < 12)){
          ++$vector[20];
        }# elsif 1

        elsif (($distance >= 12) && ($distance < 15)){
          ++$vector[21];
        }# elsif 1

        elsif (($distance >= 15) && ($distance < 18)){
          ++$vector[22];
        }# elsif 1

        elsif ($distance >= 18){
          ++$vector[23];
        }# elsif 2

      }#if
    }#elsif

################## End Of Atom Type Autocorrelation ################

################### Now For The Charges ############################

    if ($charge{$counter1} > -0.5){
      if ($charge{$counter2} > -0.5){
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        if ($distance < 3){
          $vector[24] = sprintf("%.3f", $vector[24] +
abs($charge{$counter1} * $charge{$counter2}));
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          $vector[25] = sprintf("%.3f", $vector[25] +
abs($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 6) && ($distance < 9)){
          $vector[26] = sprintf("%.3f", $vector[26] +
abs($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 9) && ($distance < 12)){
          $vector[27] = sprintf("%.3f", $vector[27] +
abs($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif ($distance >= 12){
          $vector[28] = sprintf("%.3f", $vector[28] +
abs($charge{$counter1} * $charge{$counter2}));
        }# elsif 2

      } #if
    } #if

    elsif (($charge{$counter1} <= -0.5) && ($charge{$counter1} > -
1)){
      if(($charge{$counter2} <= -0.5) && ($charge{$counter2} > -1)) {

        if ($distance < 3){
          $vector[29] = sprintf("%.3f", $vector[29] +
($charge{$counter1} * $charge{$counter2}));
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          $vector[30] = sprintf("%.3f", $vector[30] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 6) && ($distance < 9)){
          $vector[31] = sprintf("%.3f", $vector[31] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 9) && ($distance < 12)){
          $vector[32] = sprintf("%.3f", $vector[32] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 12) && ($distance < 15)){
          $vector[33] = sprintf("%.3f", $vector[33] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 15) && ($distance < 18)){
          $vector[34] = sprintf("%.3f", $vector[34] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1
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        elsif (($distance >= 18) && ($distance < 21)){
          $vector[35] = sprintf("%.3f", $vector[35] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif ($distance >= 21){
          $vector[36] = sprintf("%.3f", $vector[36] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 2

      }#if
    }#elsif

    elsif ($charge{$counter1} < -1){
      if ($charge{$counter2} < -1){

        if ($distance < 3){
          $vector[37] = $vector[37] + ($charge{$counter1} *
$charge{$counter2});

  $vector[37] = sprintf("%.3f",$vector[37]);
        }# if distance less than 3 A

        elsif (($distance >= 3) && ($distance < 6)){
          $vector[38] = sprintf("%.3f", $vector[38] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 6) && ($distance < 9)){
          $vector[39] = sprintf("%.3f", $vector[39] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 9) && ($distance < 12)){
          $vector[40] = sprintf("%.3f", $vector[40] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 12) && ($distance < 15)){
          $vector[41] = sprintf("%.3f", $vector[41] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 15) && ($distance < 18)){
          $vector[42] = sprintf("%.3f", $vector[42] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 18) && ($distance < 21)){
          $vector[43] = sprintf("%.3f", $vector[43] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif (($distance >= 21) && ($distance < 24)){
          $vector[44] = sprintf("%.3f", $vector[44] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 1

        elsif ($distance >= 24){
          $vector[45] = sprintf("%.3f", $vector[45] +
($charge{$counter1} * $charge{$counter2}));
        }# elsif 2
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      }#if
    }#elsif

###################### End Of Charge Code ##########################

#Close the file
close MOL2FILE;

print "\n\n";
print $file;
print "\n";
printf "[@vector]";

}#endfor
exit;



Appendix B 
 
Binding Scores For All Topologies Including BLEEP Scores and Multiple Linear 
Regression(MLR) 
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ID Experimental 5 Neurons 10 

Neurons 
15 
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20 
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25 
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30 
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35 

Neurons 
40 
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1add -38.45 -17.813 -24.588 -35.095 -27.6 -14.926 -36.318 -13.605 -25.779 
1adf -26.11 -78.654 -63.192 -41.071 -41.95 -66.286 -48.386 -50.825 -46.714 
1am6 -24.7 -52.367 -22.898 -40.234 -33.304 -31.135 -33.255 -31.455 -31.081 
1anf -31.13 -18.944 -31.641 -12.339 -39.349 -38.424 -18.368 -35.483 -31.53 
1b5g -45.64 -43.35 -51.414 -52.523 -34.263 -45.347 -61.198 -68.609 -34.151 
1bcd -22.25 -43.538 -31.287 -28.611 -20.103 -31.467 -31.945 -29.056 -40.298 
1bll -38.22 -38.723 -23.996 -14.434 -10.508 16.271 -7.5847 -20.744 -23.364 
1bn1 -53.29 -46.282 -60.151 -58.733 -63.208 -56.388 -59.704 -52.657 -58.38 
1bn3 -56.42 -20.991 -21.833 -32.217 -26.438 -32.207 -39.049 -48.873 -37.413 
1bnn -57.05 -56.104 -48.143 -55.866 -52.783 -52.94 -56.173 -56.2 -52.492 
1bnq -54.14 -51.701 -53.779 -57.309 -53.347 -51.569 -50.235 -55.043 -45.851 
1bnt -55.92 -53.193 -86.912 -67.663 -61.33 -68.752 -70.057 -61.601 -58.432 
1bnu -55.33 -64.599 -63.54 -56.946 -61.639 -55.258 -62.129 -67.676 -52.533 
1bnv -50.03 -55.757 -52.513 -53.091 -57.549 -51.34 -55.518 -53.497 -55.762 
1bnw -51.8 -61.765 -63.982 -52.333 -55.412 -61.913 -63.832 -53.801 -55.981 
1bra -10.44 -16.24 -34.8 -28.357 -35.523 -25.125 -19.171 -27.159 -35.92 
1byg -56.6 -12.754 -21.632 -19.609 -31.146 -39.994 -25.654 -19.03 -45.458 
1bzm -34.4 -34.31 -61.284 -48.3 -46.461 -47.316 -50.565 -50.786 -54.56 
1c83 -19.24 -42.207 -46.604 -41.174 -52.653 -31.546 -70.481 -44.925 -51.566 
1cbs -41.08 -18.575 -10.087 -52.792 -25.542 -35.142 -58.761 -40.624 -33.576 
1cbx -36.23 -42.578 -57.132 -46.458 -37.983 -40.905 -38.823 -42.658 -39.974 
1cf8 -34.41 -29.273 -25.866 -17.33 -22.677 -39.083 -39.3 -14.778 -28.095 
1cil -53.8 -53.914 -49.831 -51.103 -51.065 -53.216 -42.637 -55.146 -52.768 
1cps -37.99 -31.215 -17.739 -35.092 -28.184 -29.135 -33.972 -30.096 -34.498 
1ctr -24.45 -15.475 -3.5954 -12.29 -25.872 -30.338 -13.792 -16.185 -24.373 
1ctt -25.79 -27.684 -14.322 -38.149 -28.106 -22.781 -27.217 -25.006 -20.648 
1dbb -51.38 -35.562 -39.893 -49.141 -40.258 -37.64 -33.093 -44.674 -38.445 
1dbj -43.83 -58.883 -53.172 -57.959 -52.886 -48.769 -40.546 -52.909 -51.238 
1dbk -46.22 -55.098 -40.868 -44.436 -54.16 -49.161 -43.297 -46.356 -33.842 
1dbm -53.9 -28.166 -39.786 -35.013 -23.368 -47.347 -68.93 -52.392 -45.773 
1dwb -16.66 -57.671 -20.713 -36.534 -30.308 -25.207 -23.333 -28.854 -9.9183 
1dwc -42.27 5.3896 10.042 -36.581 -94.669 -278.44 -15.898 -23.629 -16.489 
1dwd -46.62 -56.12 -46.076 -11.588 -43.715 -18.877 -2.224 -28.427 -44.135 
1e96 -29.78 -14.948 -26.604 -40.887 -31.969 -40.55 -36.809 -42.188 -35.545 
1eap -35.42 -3.2036 -39.976 -29.529 -26.813 -25.935 -38.058 -27.093 -23.44 
1eed -27.39 -20.113 -51.077 -35.547 -41.677 -36.793 -35.97 -39.282 -38.87 
1epo -45.41 -42.668 -55.284 -33.64 -46.915 -53.262 -35.586 -30.605 -28.909 
1etr -42.28 -92.222 -73.562 -47.399 -62.877 -34.112 -119.95 -55.69 -53.183 
1fkf -55.37 -9.0194 -48.565 22.204 -60.05 -9.2292 -93.167 -31.734 -14.875 
1fkg -36.86 -40.89 -35.423 -26.548 -53.52 -35.866 -43.355 -13.616 -24.99 
1flr -26.55 -38.734 -42.167 -47.928 -49.373 -64.837 -65.673 -64.566 -38.663 
1hbv -36.34 -83.825 -74.62 -65.82 -79.99 -53.605 -69.066 -84.569 -60.03 
1hew -34.23 -43.594 -14.925 -31.279 -33.637 -9.096 -42.544 -30.077 -61.264 
1hfc -31.3 -52.149 -52.126 -51.268 -39.904 -44.95 -35.677 -52.542 -42.083 
1hiv -75.34 -41.187 -33.426 -55.229 -46.604 -44.197 -48.322 -49.722 -40.393 
1hpv -52.64 -32.323 -30.411 -11.856 -36.491 -44.991 -45.086 -50.347 -53.661 
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1hri -24.76 -29.812 -71.432 -43.656 -61.974 -47.649 -74.689 -68.386 -85.035 
1hvi -57.51 -53.099 -56.326 -54.353 -60.858 -51.075 -60.251 -53.899 -50.87 
1hvj -59.67 -55.278 -43.319 -54.321 -68.385 -49.683 -75.563 -52.7 -37.78 
1hvk -57.73 -59.885 -35.619 -53.52 -61.486 -62.162 -59.216 -69.377 -66.567 
1hvl -51.4 -52.247 -75.314 -55.957 -65.139 -58.8 -59.299 -64.512 -55.566 
1hvr -54.26 -75.434 -59.498 -68.5 -57.66 -63.58 -60.918 -43.941 -60.838 
1ida -49.63 -71.584 -72.936 -58.704 -70.868 -61.516 -73.048 -57.565 -68.082 
1jao -33.78 -39.787 -25.548 -33.149 -50.057 -38.382 -30.419 -35.959 -32.18 
1kel -41.56 -37.742 -40.252 -25.908 -66.088 -38.096 -58.211 -25.835 -33.94 
1lgr -17.52 -28.628 -20.555 -24.085 -9.4335 -2.6302 -26.799 -22.32 -19.105 
1mcb -27.61 -45.633 -11.1 -50.832 -28.375 -30.825 -29.11 -61.806 9.2267 
1mcf -29.36 -69.414 -56.777 -35.434 -35.809 -56.662 -29.592 -55.931 -49.756 
1mch -29.36 -37.012 3.0141 -27.879 -63.37 -54.991 2.6697 -2.6681 -25.962 
1mcj -21.59 -7.2015 -20.107 -9.6037 -22.394 -3.3885 -30.513 -29.576 -27.743 
1mcs -27.61 -24.502 12.555 -25.558 -25.509 -7.0073 -36.602 -24.177 -31.683 
1mfe -30.3 -31.514 -71.387 -40.91 -35.665 -67.639 -36.668 -24.038 7.7542 
1mmb -52.64 -37.445 -45.403 -41.592 -50.868 -38.262 -49.605 -44.782 -49.582 
1mmq -51.35 -37.931 -40.597 -32.5 -34.411 -37.816 -34.957 -35.642 -35.208 
1mmr -33.6 -47.993 -52.079 -56.858 -48.347 -52.733 -52.486 -53.853 -56.175 
1mnc -51.38 -27.983 -24.77 -43.683 -37.612 -29.422 -25.692 -22.46 -25.639 
1mrk -25.84 -27.453 -26.919 -21.349 -18.293 -14.43 -19.237 -48.682 -20.954 
1mtw -42.15 2.3649 -29.313 -33.891 9.9597 3.6168 -2.1096 -9.7298 -6.0201 
1nnb -22.83 -41.573 -42.624 -36.626 -49.089 -27.63 -42.462 -34.48 -58.289 
1okl -34.43 -34.604 -27.052 -28.912 -31.679 -35.907 -27.96 -27.516 -22.572 
1ola -39.95 -76.147 -56.71 -57.35 -64.491 -76.535 -40.424 -40.991 -66.904 
1phf -25.1 -51.964 -48.295 -52.502 -45.201 -49.682 -74.871 -40.697 -50.212 
1phg -49.42 -26.535 16.356 -45.926 -37.434 -31.999 -56.025 -45.64 -4.181 
1ppc -36.85 -30.935 -21.566 -43.589 -26.356 -40.667 -58.1 -50.905 -49.49 
1qbr -60.32 -30.52 -51.545 -53.59 -55.489 -59.227 -55.07 -55.227 -55.873 
1qbt -60.62 -104.23 -63.732 -60.464 -76.153 -67.561 -70.744 -57.072 -90.596 
1qbu -58.43 -56.562 -60.635 -56.097 -62.472 -52.846 -50.855 -60.429 -52.13 
1rbp -38.33 -1.8502 -69.014 -23.02 -14.441 -34.455 6.0784 -45.284 -58.965 
1rgk -24.59 -26.455 -30.226 -28.792 -29.051 -31.595 -33.114 -31.654 -30.386 
1rgl -25.27 -26.004 -58.729 -42.326 -26.394 -30.293 -25.848 -83.243 -30.89 
1sln -37.89 -39.615 -62.81 -71.528 -41.658 -46.603 -56.035 -51.77 -44.916 
1stp -71.48 -42.917 -34.488 -27.212 -37.384 -12.659 -24.016 -32.998 -48.594 
1tet -35.41 -38.52 -31.926 -22.557 -18.125 -10.111 -13.505 -30.675 -11.813 
1thl -36.63 -69.215 -46.737 -78.633 -71.202 -67.181 -64.784 -67.896 -63.445 
1tlp -43.12 -50.163 -78.174 -49.599 -45.652 -35.781 -62.337 -46.654 -36 
1tmn -41.67 -22.987 -15.77 -28.774 -26.058 -15.352 -20.795 -22.523 -24.869 
1tng -16.75 -24.004 -28.635 -20.096 -25.824 -15.84 -16.381 -22.954 -18.521 
1tnh -19.22 -5.0782 -8.8622 -13.974 -10.176 -19.668 -14.753 -10.761 -11.856 
1tni -9.69 -6.8783 -11.506 -10.007 -5.6448 -6.8533 -7.3066 -6.5328 -10.269 
1tnj -6.15 -11.208 -8.0308 -7.4591 -11.105 -8.8197 -13.298 -13.785 -9.4889 
1tnk -8.5 -13.004 -17.171 -16.291 -15.763 -17.21 -23.934 -17.007 -26.539 
1tnl -10.7 -14.515 -25.108 -25.911 -16.136 -21.336 -16.706 -11.073 -7.7219 
1uvs -30.81 -66.113 -56.995 -38.951 -52.39 -27.449 -46.3 -11.996 -37.208 
1uvt -43.6 -6.58 -15.94 18.385 -26.427 68.102 23.93 -4.9906 -8.3968 
1zzz -29.27 -19.173 -10.376 0.27584 -15.102 -34.682 -17.412 -26.552 -66.705 
2abh -37.13 -19.196 -46.447 -24.677 -28.749 -44.898 -19.026 -44.736 -24.548 
2cgr -41.53 -28.47 -39.592 -12.584 -30.777 -7.3739 -37.083 -13.555 -23.641 
2cmd -26.1 -35.65 -31.897 -44.056 -31.402 -23.739 -29.371 -54.835 -24.4 
2dbl -49.63 -56.146 -63.147 -56.871 -44.682 -39.356 -40.121 -43.709 -13.862 
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2er0 -36.51 -33.101 -39.815 -44.299 -33.254 -40.151 -40.849 -46.892 -64.659 
2er6 -41.22 -62.143 -74.033 -55.859 -33.028 -40.909 -44.261 -46.64 -60.131 
2er9 -44.56 -27.977 -33.723 -9.7054 -36.042 -27.752 -31.845 -41.423 -37.112 
2gbp -15.8 -46.337 -24.406 -35.626 -29.609 -25.116 -33.605 -25.201 -32.951 
2h4n -49.65 -14.345 -36.198 -20.907 -22.356 -38.004 -34.952 -23.211 -36.405 
2ifb -30.98 -63.372 -57.315 -54.558 -33.001 -62.051 -44.009 -42.812 -35.665 
2mcp -29.85 -13.037 -11.437 -0.58315 -33.186 -7.031 -3.04 -12.045 -11.775 
2ro4 -35.51 -75.365 -79.302 -52.048 -29.884 -26.003 -27.889 -41.986 -77.299 
2tmn -33.6 -39.881 -48.511 -41.063 -38.56 -33.028 -35.743 -35.85 -33.461 
3cla -28.18 -44.055 -38.488 -46.705 -32.631 -50.745 -36.178 -21.742 -28.834 
3cpa -22.13 -61.007 -40.665 -30.303 -52.937 -34.563 -37.529 -47.157 -53.267 
3er3 -40.48 -44.958 -43.232 -45.093 -33.424 -26.635 -37.632 -32.661 -36.013 
3ptp -27.06 1.8376 -14.585 -9.2145 -9.5086 -12.247 -3.6238 -6.3324 -9.7393 
3tmn -33.72 -43.573 -56.131 -46.407 -45.246 -38.839 -51.9 -42.933 -46.849 
3ts1 -25.07 -21.227 -34.169 -62.132 -11.49 -15.581 -23.586 -49.351 -14.907 
4cpa -47.38 -39.529 -28.711 -30.878 -21.689 -19.71 -27.269 -21.27 -22.686 
4er1 -37.83 -24.784 -37.254 -46.37 -42.475 -4.8212 -52.121 -38.214 -38.905 
4er4 -38.79 -51.443 -38.968 -64.444 -49.621 -67.113 -43.74 -49.482 -44.525 
4sga -18.66 -13.087 -17.588 -21.37 -20.529 -28.88 -21.877 -22.835 -24.277 
4tln -21.23 -28.489 -38.217 -34.853 -34.629 -33.653 -30.52 -37.712 -31.62 
4tmn -58.16 -45.081 -52.597 -49.185 -53.055 -53.66 -47.053 -41.024 -69.03 
5er2 -37.49 -37.731 -32.209 -43.263 -39.807 -42.499 -36.993 -46.759 -60.314 
5p21 -30.35 -21.996 -20.887 -42.223 -19.447 -8.4623 -4.5498 -22.709 -22.158 
5sga -16.26 -22.536 -42.671 -26.106 -24.508 -28.779 -32.089 -28.031 -23.471 
5tmn -45.89 -30.867 -29.614 -45.203 -30.802 -33.297 -34.817 -45.716 -37.734 
6cpa -65.77 -35.408 -42.959 -28.637 -22.756 -16.921 -33.548 -89.001 -24.549 
6tim -18.31 -28.63 -34.17 -28.859 -31.559 -30.448 -35.13 -30.13 -39.414 
6tmn -28.83 -34.965 -55.085 -45.397 -50.15 -41.089 -43.686 -47.804 -43.698 
7hvp -54.95 -67.792 -37.997 -46.824 -25.108 -12.807 -11.913 -41.576 -9.2373 
                    
  RMSE 20.801622 20.679473 18.702127 16.989507 29.631234 20.52988 17.4617 19.004412 
  RRMSE 147.22643 146.3619 132.36696 120.24564 209.71926 145.30314 123.58765 134.50642 
  MAE 15.743788 16.345682 14.093876 12.927631 16.517341 14.979286 13.426666 14.625087 
  RMAE 136.29805 141.5088 122.01434 111.91785 142.9949 129.67956 116.23813 126.61317 
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Neurons 

50 
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55 
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60 
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1add -34.748 -15.145 -20.301 -18.064 -27.28 5.360651 
1adf -45.629 -30.398 -45.676 -61.618 -28.95 -10.83647 
1am6 -24.435 -45.598 -43.317 -22.809 -3.79 -22.0016 
1anf -27.151 -50.354 -27.754 -74.364 -28.03 -24.39436 
1b5g -93.079 -50.799 -51.301 -34.381 -32.41 -94.82947 
1bcd -38.106 -33.152 -33.612 -41.651 -12.9 -43.03428 
1bll 29.029 -55.394 41.055 205.95 -25.09 3.9098668 
1bn1 -61.6 -57.393 -61.317 -56.019 -25.38 -47.82966 
1bn3 -41.557 -44.823 -22.87 -32.343 -27.31 -28.91048 
1bnn -49.148 -45.707 -50.104 -54.247 -28.63 -51.8972 
1bnq -59.618 -51.375 -44.358 -48.95 -29.96 -61.80163 
1bnt -58.953 -59.447 -64.73 -77.775 -32.45 -50.71039 
1bnu -62.461 -51.006 -64.557 -60.465 -31.29 -63.59276 
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Neurons 

55 
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60 
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1bnv -53.426 -59.691 -62.601 -56.314 -32.96 -52.45682 
1bnw -61.694 -81.194 -52.908 -17.413 -23.28 -60.88594 
1bra -36.123 -26.912 -31.441 -24.754 -1.34 -17.20958 
1byg -24.435 -30.699 -18.824 -29.74 -54.29 -10.11504 
1bzm -48.725 -47.272 -52.754 -17.926 -19.44 -38.05532 
1c83 -45.041 -44.169 -53.671 -38.394 -19.23 -61.03022 
1cbs -63.14 -34.703 -69.39 -72.917 -41.27 -47.69156 
1cbx -36.47 -61.625 -13.059 -19.873 -28.78 -45.85763 
1cf8 -27.202 -3.3414 -39.865 -23.26 -35.09 -48.71704 
1cil -67.228 -55.401 -53.172 -26.561 -26.92 -56.32598 
1cps -27.219 -45.273 -34.025 -30.916 -20.77 -41.47457 
1ctr -63.11 -32.655 -17.071 -11.014 -24.43 -30.18622 
1ctt -17.299 -34.104 -29.445 -41.994 -22.87 -32.45087 
1dbb -41.098 -42.334 -26.374 -38.429 -27.88 -41.49349 
1dbj -43.387 -50.722 -52.231 -37.038 -33.9 -53.56427 
1dbk -31.844 -41.838 -32.97 -45.866 -33.35 -57.23415 
1dbm -47.938 -49.621 -45.839 -47.204 -26.53 -37.35019 
1dwb -22.761 -14.98 -13.982 -16.13 -6.7 -48.55336 
1dwc -22.938 5.853 7.9677 -8.5942 -35.84 -35.85784 
1dwd -39.265 -88.072 -46.996 -76.028 -31.24 -13.83432 
1e96 -20.999 -30.203 -15.413 6.8451 -53.58 -33.68243 
1eap -23.767 -21.42 -22.975 -37.923 -32.49 -24.64858 
1eed -43.155 -40.762 -37.152 -20.32 -55.53 -21.98477 
1epo -33.632 -30.361 -29.903 -24.728 -50.73 -115.5333 
1etr -46.468 -87.405 -46.795 -93.81 -39.98 -41.00977 
1fkf -51.479 17.49 30.326 -24.748 -42.34 -3.072732 
1fkg -37.603 -31.941 -25.128 -53.576 -36.84 -33.17162 
1flr -56.262 -37.607 -57.754 -49.398 -26.77 -47.75799 
1hbv -75.193 -70.065 -49.063 -73.094 -55.08 -17.17352 
1hew -122.98 -36.483 -35.266 -58.919 -37.8 -56.48376 
1hfc -55.152 -30.288 -51.374 -50.656 -34.77 -59.23829 
1hiv -45.437 -36.097 -44.377 -57.33 -79.93 -47.82382 
1hpv -26.969 -48.853 -49.691 -21.907 -45.91 -36.52997 
1hri -52.34 -59.49 -72.405 -62.332 -31.61 -39.72048 
1hvi -60.188 -52.415 -54.822 -46.11 -79.27 -64.74279 
1hvj -42.501 -59.811 -54.329 -55.952 -75.77 103.58693 
1hvk -61.722 -56.055 -61.267 -61.208 -73.82 -72.49398 
1hvl -53.298 -55.18 -62.484 -63.086 -75.25 -32.38906 
1hvr -56.789 -54.871 -59.965 -57.649 -64.72 -102.9656 
1ida -61.33 -55.914 -68.91 -55.137 -73.82 -98.33388 
1jao -15.906 -44.076 -42.726 -29.819 -25.18 -36.26335 
1kel -20.744 -43.559 -35.904 -81.768 -30.24 9.3204569 
1lgr -5.7913 -15.229 -20.934 -22.604 -28.99 -18.14402 
1mcb -16.462 -31.197 -35.1 -39.677 -34.43 -42.12545 
1mcf -71.574 -46.882 -23.871 -115.56 -38.43 -42.78391 
1mch -68.613 -44.702 125.86 -27.472 -52.94 -55.99329 
1mcj -14.1 -29.062 -19.559 -31.528 -32.52 4.2627389 
1mcs -32.572 -61.512 -20.167 -37.445 -32.01 -21.0688 
1mfe -38.314 -31.412 -34.976 -36.482 -27.66 -1.160578 
1mmb -35.568 -38.747 -45.796 -36.39 -36.37 -26.54248 
1mmq -36.755 -33.525 -36.996 -33.375 -34.23 -37.47334 
1mmr -57.088 -50.597 -56.352 -51.641 -29.24 -60.08334 
1mnc -29.218 -25.468 -26.53 -25.046 -33.61 -34.73934 
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1mrk -7.92 -12.032 -1.4857 -9.8644 -24.16 -27.30874 
1mtw -28.202 0.98939 2.5722 -5.9335 -28.04 -40.49146 
1nnb -25.7 -51.825 -37.541 -36.104 -23.81 -27.16819 
1okl -29.605 -22.806 -42.768 -37.105 -26.75 -42.77077 
1ola -37.444 -50.501 -40.692 -50.584 -40.2 -102.4568 
1phf -44.161 -43.8 -52.241 -62.266 -86.56 -41.13791 
1phg -27.6 -47.319 -28.744 -36.517 -96.61 -36.73098 
1ppc -42.61 -42.053 -16.772 -65.65 -32.05 -10.57321 
1qbr -51.263 -52.177 -55.522 -61.395 -65.76 -36.82952 
1qbt -73.63 -59.829 -63.617 -58.203 -73.35 -73.14919 
1qbu -50.658 -55.902 -59.185 -47.27 -57.65 -59.82452 
1rbp -28.263 -31.632 -49.368 18.605 -41.29 -16.01811 
1rgk -29.245 -54.072 -37.403 -31.072 -22.63 -30.14643 
1rgl -33.571 -37.689 -24.134 -40.147 -19.75 -37.61635 
1sln -60.397 -43.069 -52.362 -20.326 -43.23 -59.97601 
1stp -36.512 -39.964 -22.336 -22.475 -25.27 -8.750975 
1tet -39.606 -33.586 -16.817 -21.65 -53.93 -11.00445 
1thl -72.486 -76.98 -71.56 -68.464 -34.93 -64.70907 
1tlp -65.221 -18.794 -47.429 -39.767 -27.35 -73.55076 
1tmn -25.628 -22.348 -27.166 -29.576 -37.52 -30.01495 
1tng -21.478 -25.627 -15.407 -23.14 -14.66 -15.34461 
1tnh -12.082 -10.493 -15.823 -11.227 -15.86 -13.30505 
1tni -7.2758 -11.045 -6.5698 -7.8349 -2.86 -19.10679 
1tnj -10.933 -11.784 -9.9523 -12.533 -5.49 -10.88752 
1tnk -15.883 -16.548 -18.296 -18.963 -8.42 -10.89278 
1tnl -37.865 -12.033 -12.48 -21.187 -6.33 4.3317124 
1uvs -44.867 18.426 -49.57 -59.502 -32.63 -53.4947 
1uvt -18.283 30.922 -36.09 -75.049 -23.89 -30.30484 
1zzz -34.749 -27.877 -39.572 -45.05 -17.04 -29.52086 
2abh -41.393 -40.552 -34.413 -30.148 -19.22 -33.53702 
2cgr -37.224 -24.513 -33.928 -34.124 -24.22 -37.16395 
2cmd -29.424 -24.688 -34.005 -48.895 -20.91 -57.38261 
2dbl -47.07 -39.392 -45.884 -24.5 -29.87 -41.49038 
2er0 -25.645 -40.809 -42.076 -33.26 -76.29 -24.57333 
2er6 -73.541 -53.974 -78.177 -39.124 -74.93 -39.84075 
2er9 -39.243 -42.884 -46.604 -39.106 -66.02 -81.18833 
2gbp -45.617 -23.778 -36.091 -39.328 -29.39 -35.45512 
2h4n -19.663 -29.891 -27.405 -25.126 -14.05 -22.51004 
2ifb 98.95 -58.938 -11.245 -50.997 -33.74 -69.25606 
2mcp -5.0106 1.9166 -10.91 -7.8123 -7.61 7.4217113 
2ro4 -52.368 -62.357 -44.518 -77.704 -42.68 -16.47788 
2tmn -37 -34.17 -32.76 -34.994 -18.01 -40.47972 
3cla -35.879 -30.912 -16.394 -45.074 -32.69 -45.35104 
3cpa -40.221 -43.325 -12.262 -45.084 -27.46 -71.77603 
3er3 -41.245 -34.884 -24.366 -31.656 -68 -57.94815 
3ptp -14.726 -12.212 -14.392 -7.0545 -4.48 -8.22444 
3tmn -37.78 -44.938 -44.657 -48.236 -25.29 -10.68501 
3ts1 -40.839 -33.295 -93.424 -31.784 -30.95 13.821158 
4cpa -28.161 -34.854 -21.683 -25.289 -64.88 -25.84186 
4er1 -51.086 -27.168 -44.85 -40.2 -76.3 -17.52369 
4er4 -38.444 -27.435 -18.294 -48.263 -77.26 68.90024 
4sga -21.456 -25.623 -20.712 -36.547 -29.51 -18.92978 
4tln -29.221 -27.74 -31.992 -32.537 -10.25 -34.69118 
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4tmn -48.607 -56.328 -54.584 -52.303 -42.19 -39.93665 
5er2 -43.805 -38.047 -39.149 -37.671 -74.62 -2.303404 
5p21 -23.366 -30.488 -42.033 -28.81 -60.96 -37.41412 
5sga 8.4634 -26.735 -19.922 -22.237 -29.93 -35.52933 
5tmn -28.933 -48.416 -37.493 -41.054 -35.99 -46.39222 
6cpa -21.111 27.811 -20.055 -248.09 -41.31 -4.575591 
6tim -28.945 -29.736 -36.095 -29.482 -10.93 -50.52273 
6tmn -24.463 -43.213 -40.455 -33.829 -34.59 -30.49769 
7hvp -40.431 -28.284 4.5091 -22.467 -73.78 17.26058 
              
RMSE 22.909963 21.227373 25.454161 34.43159 17.938208 30.208732 
RRMSE 162.14851 150.23974 180.15543 243.69446 126.96021 213.80023 
MAE 15.602607 14.485637 16.113694 19.723174 13.725156 20.747528 
RMAE 135.07581 125.40592 139.50042 170.74863 118.82223 179.61673 
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Appendices C & D 
 
Due to the extremely large sizes of Appendices C & D respectively, they have 
been attached in the accompanying CD as a MS Word(C) and Excel File(D). 
Thank you for your understanding. 
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Appendix E.  
 
Character Codes(1 and 3) For Amino Acid Residues 
 
 
G 
Glycine 
Gly 
 
P 
Proline 
Pro 
 
A 
Alanine 
Ala 
 
V 
Valine 
Val 
 
L 
Leucine 
Leu 
 
I 
Isoleucine 
Ile 
 
M 
Methionine 
Met 
 
C 
Cysteine 
Cys 
 
F 
Phenylalanine 
Phe 
 
Y 
Tyrosine 
Tyr 

W 
Tryptophan 
Trp 
 
H 
Histidine 
His 
 
K 
Lysine 
Lys 
 
R 
Arginine 
Arg 
 
Q 
Glutamine 
Gln 
 
N 
Asparagine 
Asn 
 
E 
Glutamic Acid 
Glu 
 
D 
Aspartic Acid 
Asp 
 
S 
Serine 
Ser 
 
T 
Threonine 
Thr 
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