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Summary 

 

Direction Of Arrival (DOA) estimation of Frequency Hopping (FH) signal 

sources is important and useful in a number of applications.  FCC requires the future 

mobile communication systems to have the ability to accurately locate emergency 

calls made from mobile phones. In military communications using FH technique, 

DOA estimation is also required for both non-cooperative signal interception and 

jammer localization.  

In this thesis, we propose a new method for DOA estimation in the presence of 

multipath propagation and Mutual Coupling (MC) in a FH system. We take these two 

effects into account, and derive a Maximum Likelihood (ML) estimator for both MC 

matrix and DOA estimation. We then formulate an iterative Alternating Minimization 

(AM) algorithm for finding the MC and DOA parameters in an alternate manner. To 

illustrate the performance of the technique, we simulate the scenario where 

narrowband signals transmitted from one far-field source impinge on a Uniform 

Linear Array (ULA) of two half-wavelength spaced antenna elements via two paths. 

The simulation results presented illustrate the convergence of the algorithm and its 

statistical efficiency at high SNR. 

In addition, we introduce a new method for joint time-delay and DOA 

estimation using two antennas and one receiver for a FH system in the presence of 

multipath.  We derive a Least Square (LS) estimator for both time-delay and DOA 

estimation.  We then formulate an iterative Alternating Maximization (AM) algorithm 

to jointly estimate the time-delays and DOA parameters. The simulation results 

demonstrate the performance of the algorithm. 
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Chapter 1 

Introduction 

 

Over the past three decades, sensor array signal processing emerged as an 

active area of research which centers on the ability to fuse data collected at several 

sensors in order to carry out a given estimation task. This framework takes advantage 

of prior information on the data acquisition system, for example, array geometry, 

sensor characteristics and so on. The corresponding signal processing methods are 

often used to solve several real-world problems such as DOA estimation in radar, 

sonar and wireless communications. 

1.1 INTTRODUCTION TO A WIRELESS COMMUNICATION SYSTEM 

The development of wireless communications stems from the works of 

Oersted, Faraday, Gauss, Maxwell and Hertz during the nineteenth century. In 1897, 

Marconi patented a radio telegraph system and established the Wireless Telegraph 

and Signal Company which was probably the first wireless communication system put 

into commercial use [1]. However, the ability to provide wireless communications to 

an entire population was not even conceived until the cellular concept developed by 

Bell Laboratories emerged in the 1960s. In 1970s, the highly reliable, miniature and 

solid-state RF hardware was developed. Then, the wireless communications era was 

born [2]. A typical functional block diagram of a wireless communication system is 

shown in Figure 1.1. 
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Figure 1.1   Functional block diagram of a wireless communication system [1]. 

 

1.2 WIRELESS COMMUNICATIONS THROUGH FADING MULTIPATH 

CHANNELS [3] 

When electromagnetic wave propagates via sky wave in the high frequency 

range, a well-known phenomenon called signal multipath will occur. That is, the 

transmitted signal will arrive at the receiver via multiple propagation paths at different 

delays. Multipath propagation results in intersymbol interference in a digital 

communication system. Moreover, the signal components arriving via different 

propagation paths may add destructively, resulting in a phenomenon called signal 

fading. 

1.2.1 Characterization of Fading Multipath Channels 

In general, a narrowband band-pass signal takes the form  

( ) ( ){ }tfj
l

cetsts π2Re= ,        (1.1) 

where ( )tsl  is the equivalent low-pass signal,  cf is the carrier frequency, and 

{ }•Re denotes the real part of a complex-valued quantity. If we transmit this signal 

through the multipath propagation channel, a propagation delay and an attenuation 

factor will be associated with each path. The propagation delays and the attenuation 

factors are time-variant as a result of changes in the structure of the medium. 

Therefore the received band-pass signal can be expressed in the form 

( ) ( ) ( )( )∑ −=
n

nn ttsttr τα ,       (1.2) 
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where ( )tnα  is the attenuation factor for the signal received on the nth path and ( )tnτ  

is the propagation delay for the nth path. And both of them are real-valued.  

Substituting (1.1) back into (1.2) yields 

( ) ( ) ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −= ∑ − tfj

n
nl

tfj
n

cnc ettsettr πτπ τα 22Re .    (1.3) 

Obviously, the equivalent low-pass received signal is 

( ) ( ) ( ) ( )( )∑ −= −

n
nl

tfj
nl ttsettr nc τα τπ2 .      (1.4) 

Note that if we define 

( ) ( )tft ncn τπθ 2= ,        (1.5) 

then the received low-pass signal will be 

( ) ( ) ( ) ( )( )∑ −= −

n
nl

tj
nl ttsettr n τα θ .      (1.6) 

Further, by defining the complex-valued path attenuation factor 

( ) ( ) ( )tj
nn

nettg θα −= ,        (1.7) 

we finally get the received low-pass signal 

( ) ( ) ( )( )∑ −=
n

nlnl ttstgtr τ .       (1.8) 

Thus, it is the sum of a number of delayed versions of the transmitted baseband signal 

weighted by complex-valued path attenuation factors. 

The multipath propagation model for the channel embodied in the received 

signal ( )trl  given in (1.8), results in signal fading. The fading phenomenon is 

primarily due to the time variation in the phases ( ){ }tnθ . Note that large dynamic 

changes in the medium are required for ( )tnα to change sufficiently to cause a 

significant change in the complex-valued path attenuation factor ( )tgn  in equation 
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(1.7). However, on the other hand, ( )tnθ  will change by π2 rad whenever ( )tnτ  

changes by cf1 . Because cf1 is a very small number in the case of high frequency 

communications, ( )tnθ can change by π2 rad with relatively small motions of the 

medium. 

The delays ( )tnτ  associated with the different signal paths are usually 

expected to change at different rates and in an unpredictable manner. This implies that 

both the corresponding phase ( )tnθ  and the received signal ( )trl  can be modeled as a 

random processes. The fading phenomenon is primarily a result of the time variation 

in the phases set ( ){ }tnθ , or the stochastic disturbance of ( )tnθ . That is, the randomly 

time variant phased ( ){ }tnθ  associated with the complex-valued path attenuation 

factors ( ){ }tgn  result in the delayed versions of the transmitted baseband signal adding 

destructively. When that occurs, the resultant received signal ( )trl  turns out to be very 

small. At other times, the delayed versions of the transmitted baseband signal may 

add constructively, so that ( )trl  is large. Such amplitude variations in the received 

signal are termed signal fading. Moreover, it follows from (1.4) that the 

corresponding equivalent low-pass channel can be described by the linear time-variant 

impulse response 

( ) ( ) ( ) ( )( )∑ −= −

n
n

tfj
n ttettc nc τδατ τπ2; ,      (1.9) 

where ( )tδ  denotes the delta function. 

Due to the assumption of random ( )tnτ , the channel impulse response can also 

be modeled as a stochastic process. According to different statistical distribution, the 

linear time-variant channel can be divided into three main categories. If the channel 
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impulse response ( )tc ;τ  is modeled as a zero-mean complex-valued Gaussian process, 

the channel is said to be Rayleigh fading channel for the envelope ( )tc ;τ  being 

Rayleigh-distributed.  In the presence of fixed scatterers or signal reflectors in the 

medium, in addition to randomly moving scatterers, the envelope ( )tc ;τ  will no 

longer be Rayleigh-distributed but Ricean-distributed. Therefore, the corresponding 

channel is called Ricean fading channel.  Another model is Nakagami fading channel, 

where the envelope ( )tc ;τ  is Nakagami-m distributed. 

Also, if we take the noise into consideration, the corresponding channel can be 

modeled as in Figure 1.2, where ( )tn  is the Additive White Gaussian Noise (AWGN) 

which may come from atmospheric noise and thermal noise. 

 

Figure 1.2   Linear time-variant model of the channel with additive noise [3]. 

 
1.2.2 Two Types of Distortions 

Note that the equivalent low-pass received signal can be written as 

( ) ( ) ( ) τττ dtstctr ll ∫
+∞

∞−
−= ; . (1.10) 

If we define ( )tf ;C  and ( )flS  as the Fourier transformation of the channel impulse 

response ( )tc ;τ  and transmitted baseband signal ( )tsl , respectively, then the received 

signal can also be expressed in the form 
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( ) ( ) ( ) dfeftftr ftj
ll ∫

+∞

∞−
= π2; SC . (1.11) 

Note that ( )tf ;C  is called time-variant transfer function, where f is the frequency 

variable. 

Suppose that we are transmitting digital information over the channel by 

modulating the basic pulse ( )tsl  at a rate T, where T is the signaling interval. We may 

suffer two types of distortion as follows. 

A. Frequency selectivity 

We assume that the channel impulse response ( )tc ;τ  is Wide Sense Stationary 

(WSS). Then the corresponding autocorrelation function is defined as 

( ) ( ) ( )[ ]ttctcEtc ∆+=∆ ;;
2
1;, 21

*
21 ττττϕ , (1.12) 

where [ ]•E  denotes statistical expectation. 

 Assuming that the scattering at two different delays is uncorrelated, we get 

( ) ( ) ( )21121 ;;, ττδτϕττϕ −∆=∆ tt cc . (1.13) 

If we let 0=∆t , the resulting autocorrelation function ( )0;τϕc  is simply the average 

power output of the channel as a function of the time delay τ . For this reason,  

( )0;τϕc  is called the multipath intensity profile. The range of values of τ  over which 

( )0;τϕc  is essentially nonzero is termed multipath spread and is denoted by mT .  

Frequency selectivity is caused by multipath spread mT  or, equivalently, the 

coherence bandwidth ( )cf∆  which is the reciprocal of the multipath spread. 
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If the coherent bandwidth ( )cf∆  is small compared with the bandwidth of the 

transmitted signal, the channel is said to be frequency-selective. In this case, ( )flS  is 

subjected to different gains and phase shifts across the band, and the signal will be 

severely distorted by the channel. On the other hand, if ( )cf∆ is large in comparison 

with the bandwidth of the transmitted signal, the channel is said to be frequency-

nonselective. That is, all the frequency components of the transmitted baseband signal 

( )tsl undergo the same attenuation and phase shift in transmission through the channel. 

B. Fading 

In the frequency domain, we define the autocorrelation function of the time-

variant transfer function ( )tf ;C  as 

( ) ( ) ( )[ ],;;
2
1; 21

* ttfCtfCEtfC ∆+=∆∆Φ  (1.14) 

where 21 fff −=∆ . Defining ( )λ;fSC ∆  as the Fourier transform of ( )tfC ∆∆Φ ;  with 

respect to the variable t∆ , we get 

( ) ( ) tdetffS
tj

CC ∆∆∆Φ=∆
∆−+∞

∞−∫
πλ

λ
2

;; , (1.15) 

where λ  is the Doppler frequency. With f∆ set to zero, the above equation becomes 

( ) ( ) tdetS
tj

CC ∆∆Φ=
∆−+∞

∞−∫
πλ

λ
2

;0;0 . (1.16) 

The function ( )λ;0CS  is called the Doppler power spectrum of the channel, 

which is a power spectrum that gives the signal intensity as a function of the Doppler 

frequency λ . The range of values of λ  over which ( )λ;0CS  is essentially nonzero is 

termed the Doppler spread dB .  
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  Fading is caused by the time variations of the channel, which are roughly 

characterized by the Doppler spread dB  or, equivalently, by the coherence time ( )ct∆  

which is the reciprocal of the Doppler spread. 

If the signaling interval T satisfies the condition ( )ctT ∆<< , then the channel 

attenuation and phase shift are essentially fixed for the duration of at least one 

signaling interval. When this condition holds, the corresponding channel is called a 

slow fading channel; Otherwise, it will be referred to as fast fading channel. 

A channel model can be well described by the combination of the two types of 

distortions above. The frequency non-selective and slow fading channel model is by 

far the simplest channel model to analyze. It yields insight into the performance 

characteristics for digital signaling on a fading channel and serves to suggest the type 

of signal waveforms that are effective in overcoming the fading caused by the channel. 

1.3 DOA ESTIMATION IN A WIRELESS COMMUNICATION SYSTEM 

Receiving arrays and related estimation or detection techniques have long 

been used in high frequency wireless communications. And they are expected to play 

an important role in accommodating a multiuser personnel communication scenario in 

the presence of severe multipath. 

For example, one of the most important problems in a multiuser asynchronous 

environment is the inter-user interference, which can degrade the performance quite 

severely. This is also the case in a practical Code Division Multiple Access (CDMA) 

system, because the varying delays of different users generate non-orthogonal codes. 

To combat fading due to the severe multipath, the base stations in mobile 
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communication systems have been using spatial diversity for a long time. However, 

using an antenna array gradually becomes preferable, because it can introduce 

additional degrees of freedom which can be used to obtain higher selectivity. An 

adaptive receiving array can be steered in the direction of one user at a time, while 

simultaneously nulling interference from other users. To do so, the DOA should be 

estimated first. 

In addition, DOA estimation can make directive transmission possible in the 

downlink of Direct Sequence (DS)-CDMA base station. In detail, the base station first 

estimates the DOA using which the main part of the user signal is received. Then, 

based on the assumption of direction reciprocity, this estimated direction is used on 

downlink by choosing the weights of adaptive array so that the radiation pattern is a 

lobe (or lobes) directed toward the desired user. 

As a typical spread spectrum communication method, Frequency Hopping (FH) 

shares the same basic advantage as direct sequence, namely, the Low Probability of 

Intercept (LPI). However, to some extent, an FH signal is preferred over a DS spread 

spectrum signal due to the fact that FH has a better performance of anti-jamming. 

Furthermore, FH does not need the stringent synchronization and power control, 

which is usually required in a DS spread spectrum system. Therefore, FH is the 

prevailing spread-spectrum technique in military communications.  FH has also been 

adopted in two commercial standards, i.e., IEEE 802.11 and Bluetooth. 

DOA estimation of frequency hopping signal sources is important in a number 

of applications.  For instance, in military communications using FH technique, DOA 

estimation is required for both non-cooperative signal interception and jammer 

localization.  



 10

1.4 ORGANIZATION OF THIS THESIS 

This thesis deals with the DOA estimation problem in a frequency hopping 

system. In Chapter 1, a wireless communication system is briefly introduced. And 

then the distortion caused by the wireless communication channel is stressed. Finally, 

the significance of DOA estimation in a wireless communication system is addressed. 

Chapter 1 forms the broad background of the research topic. 

In Chapter 2, the main DOA estimation methods are summarized, and the 

frequency hopping system is introduced. Also, the DOA estimation methods for a 

frequency hopping system are reviewed. Chapter 2 is the cornerstone of the whole 

thesis, which also serves as a “reference” to the following chapters. 

Chapter 3 concentrates on ML estimation and Cramer Rao Lower Bound 

(CRLB), which will be used in Chapter 4 and 5. 

In Chapter 4, a new method for DOA estimation in the presence of Mutual 

Coupling (MC) and multipath propagation for a FH System is presented. We first 

present a signal model that takes MC and multipath propagation into account.  Then, 

we derive a ML estimator for both MC and DOA estimation and introduce the 

associated Alternating Minimization algorithm. Furthermore, we present some 

simulation results to illustrate the performance of the technique, and finally we give 

some concluding remarks. 

In Chapter 5, we propose a new method for joint time-delay and DOA 

estimation with a reduced number of receivers in the presence of multipath 

propagation for a frequency hopping system. First, we derive an LS estimator for both 

time delay and DOA estimation based on the corresponding signal model. Then, the 
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associated Alternating Maximization algorithm is introduced. Finally, we present 

some simulation results and concluding remarks. 

Chapter 6 gives overall conclusion and some suggestions on future research 

work that can be done to extend the existing work. 
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Chapter 2 

DOA Estimation in A Frequency Hopping (FH) System 

 

For decades, Direction Of Arrival (DOA) estimation has been a hot research 

topic of signal processing in radar, sonar or wireless communications.  Its purpose is 

to find the direction of interested signal emitted by a source or reflected from an 

object. 

DOA estimation is of importance. For example, FCC requires the future 

mobile communication systems to have the ability to accurately locate emergency 

calls made from mobile phones. In military communications using FH technique, 

DOA estimation is also required for both non-cooperative signal interception and 

jammer localization.  

2.1  INTRODUCTION TO DOA ESTIMATION METHODS 

For convenience, we first introduce the signal model commonly used in array 

signal processing. Assuming that M signals impinge on the antenna array consisting 

of K antennas with arbitrary geometrical distribution, after the signals are down-

converted to baseband and sampled, the array output vector takes the form 

)()()()(
1

nnsn m

M

m
m nax += ∑

=

θ ,       (2.1) 

where )( mθa  is the steering vector, )(nn is the Additive White Gaussian Noise 

(AWGN) vector, and )(nsm  is the thm   signal. For notational convenience, we also 

define 

( ) ( ) ( )[ ]Mθθ aaθA ,,1=  (2.2) 
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and 

( ) ( ) ( )[ ]nsnsn M,,1=s , (2.3) 

where )(θA is the steering matrix, )(ns is the signal waveforms vector. Thus, (2.1) 

can be written as 

)()()()( nnn nsθAx += ,       (2.4) 

Considering the noise at all antenna elements are spatially white with a 

common variance 2σ , the corresponding spatial covariance matrix is then defined by 

IAPAR 2σ+= H , (2.5) 

where P is termed the source covariance matrix which takes the form 

( ) ( )[ ]nnE HssP = , (2.6) 

and I is the identity matrix. Here, for simplicity, we have suppressed the parentheses 

portion of )(θA . 

2.1.1  DOA Estimation for Noncoherent Signals 

Assuming matrix P is nonsingular, the corresponding spectral factorization 

can be implemented, which partitions P into two parts, namely, 

H
nnn

H
sss VΛVVΛVR += , (2.7) 

where sV  and nV  are matrices containing the signal and noise eigenvectors, 

respectively, sΛ  and nΛ  are diagonal matrices consisting of signal and noise 

eigenvalues, respectively. The columns of sV  span the vector space called signal 

subspace, and the columns of nV  span the vector space called noise subspace. Note 

that in this case, IΛ 2σ=n . The projection matrices onto the signal and noise 

subspaces are defined, respectively, as 
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( ) HHH
ss AAAAAAVVΠ A

1−+ === , (2.8) 

AA ΠIVVΠ −==⊥ H
nn . (2.9) 

In retrospection, we can see that the DOA estimation methods of the early-

stage are non-model based and are therefore referred to as conventional methods. 

Such methods are typically based on classical beamforming techniques, in which the 

beam is scanned over the angular space of interest and the corresponding output 

power is measured, resulting what is termed spatial spectrum. The DOA estimation is 

obtained by locating peaks in the spatial spectrum.  For this reason, the conventional 

methods are also named as spectral-based methods, among which are Bartlett 

beamformer, Capon’s beamformer and so on.  

Although it is computationally attractive, such spectral-based methods have 

limited estimation accuracy and angular resolution. To overcome these shortages, 

alternatively, the underlying data model is exploited much more extensively, which 

gives rise to the model-based methods. Because of the remarkable improvement in 

resolution, the model-based methods are also named as super-resolution methods.  

Roughly speaking, the model-based methods can be classified into three 

categories. The first one is Maximum Likelihood (ML) method, which will be 

discussed in detail in Chapter 3. 

The second one is subspace-based method. Schmidt [4] was the first to fully 

exploit the input data model structure for the case of sensor array of arbitrary form. 

Since then, the subspace approach has held tremendous interest. In his famous paper 

published in 1986 [4], Schmidt gave a perfect geometric interpretation of the DOA 

estimation problem in the absence of noise, and a reasonable approximation was also 
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obtained by extending it to the case in the presence of noise. That is, the signal 

subspace is orthogonal to the noise subspace, which results in ( ) 0=m
H

n θaV . Schmidt 

called his proposed technique the MUltiple SIgnal Classification (MUSIC) algorithm, 

which estimates the DOAs by locating the peaks of a so-called MUSIC spatial 

spectrum defined by 

( ) ( ) ( )
( ) ( )θaVVθa

θaθaθ H
nn

H

H

MUSICP = .  (2.10) 

Assuming both the steering matrix A and source covariance matrix P are full 

rank, i.e., the column vectors of A are linearly independent for any DOA set { }mθ  and 

the signals are of least correlation, then the array will be unambiguous. That is, the 

corresponding DOA estimated is unique. 

Compared with beamforming techniques, MUSIC method can theoretically 

obtain the DOA estimation of an arbitrary accuracy as long as the data collection time 

is long enough or the SNR is sufficiently high, or the signal model is adequately 

accurate. That is, the MUSIC algorithm provides statistically consistent estimation.  

However, in practice, it may be not the case. As we have stated before, for 

MUSIC method to work, the corresponding array steering matrix )(θA must be full 

rank, i.e., each pair of column vectors must be linearly independent. Moreover, the 

associated source covariance matrix P should be non-singular. Therefore, in small 

samples and at low SNR scenarios, MUSIC may fail to resolve two closely spaced 

signals. Further, if the array is not well-calibrated, or signals are highly correlated, the 

MUSIC algorithm also can not work. 
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Besides MUSIC, the Estimation of Signal Parameters via Rotational 

Invariance Technique (ESPRIT) algorithm proposed by Roy and Kailath [5] and the 

Minimum-Norm (MN) algorithm proposed by Kumaresan and Tufts [6] also make 

great contribution to the subspace-based approach. Like MUSIC method, ESPRIT 

also relies on properties of the eigen-decomposition of the array covariance matrix. 

However, because ESPRIT produces the DOA estimates directly in terms of 

the eigenvalues, its computational and storage requirement is much less than that of 

MUSIC where an exhaustive search through all possible steering vectors to is needed. 

Also, the corresponding array calibration requirement is not as stringent as that of 

MUSIC. ESPRIT derives its advantage at the cost of a much more stringent array 

structure. That means the array should possess a translational invariance, and the 

sensors should occur in matched pairs with identical displacement.  

The basic idea behind ESPRIT is to exploit the rotational invariance of the 

underlying signal subspace induced by the rotational invariance of the sensor array. 

The MN method is actually an extension of MUSIC applied to uniform linear array, 

and the corresponding spatial spectrum is defined by 

( ) ( ) ( )
( ) ( )θθ

θθθ
aΠeeΠa

aaP
⊥⊥

=
A

H
A

H

H

MN
11

, (2.11) 

where e1 denotes the first column of the LL×  identity matrix. 

Although subspace-based methods offer significant performance improvement 

compared with the conventional beamforming methods, they usually exhibit large 

bias in finite samples, leading to resolution problems. This problem is especially 

notable for high source correlations. 
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The third one is subspace fitting method. Essentially, it is the subspace-based 

ML approximation. In [7], Viberg and Ottersten proposed the method of Signal 

Subspace Fitting (SSF). The main idea is as follows.  

Note that in the general case, the source covariance matrix P may not be 

guaranteed to be of full rank M, where M represents the number of signals.  Consider 

the case where the rank of P is M~  ( MM ≤~ ), then the columns of sV will span a M~ -

dimensional subspace of A which is of M dimension. Using the fact that 

IVVVV =+ H
nn

H
ss , the spectral factorization can further be written as 

H
sss

H
ss

H VΛVVVAPA =+ 2σ . (2.12) 

Post-multiplying on the right by sV  and noting that IVV =s
H

s give 

ATV =s , (2.13) 

where  

( ) 12 −
−= IΛVPAT σss

H . (2.14) 

Equation (2.13) forms the basis for SSF approach. Using the least-square estimator, 

the SSF estimate is given by 

{ } { }2

,
minargˆ,ˆ

Fs ATVTθ
Tθ

−= , (2.15) 

where 2

F
• denotes the Frobenius norm. And the corresponding concentrated objective 

function is obtained as 

{ }H
sssASSF tr VΛVΠθ

θ

⊥= minargˆ , (2.16) 

where { }•tr  denotes the trace of a matrix. As an extension, the SSF approach can be 

generalized as 

{ }H
ssAtr WVVΠθ

θ

⊥= minargˆ , (2.17) 



 18

where W is a weighting matrix. It has been shown that if W is chosen as 

( ) 122 −−= ssopt ΛIΛW σ , (2.18) 

the corresponding estimation accuracy will be maximized.  This results in the well-

known method of Weighted Signal Subspace Fitting (WSSF). 

Alternatively, if we replace signal subspace with noise subspace, it will lead to 

Weighted Noise Subspace Fitting (WNSF) approach which can be dated back to 

Stoica and Sharman’s work in [8]. The associated criterion is given by 

{ }WAVVAθ
θ

~minargˆ H
nn

Htr= , (2.19) 

where W~ is some positive or positive semidefinite weighting matrix. 

It has shown that the WSSF and WNSF will asymptotically coincide if the 

following relationship holds [8] 

( ) ( )[ ]*~
o

H
sso θθ ++= AWVVAW , (2.20) 

where oθ represents the optimal value of DOA. Note that the subspace fitting method 

also involves a multi-dimensional search. 

2.1.2  DOA Estimation for Coherent Signals 

The subspace-based methods work on the premise that the signals impinging 

on the array are independent or low correlated. If such premise is violated, the 

corresponding signal source covariance matrix will no longer be of full rank. The 

performances of subspace-based methods will no doubt greatly degrade in the case of 

highly correlated or coherent signals as encountered in multipath propagation scenario 

where multiple versions of the same signal arrive in one resolvable chip duration. 
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To make the subspace-based methods work in the presence of coherent signals, 

some modifications have been proposed. The well-known one is spatial smoothing [9], 

which first splits the array into many identical sub-arrays and then averages the 

covariance matrix of each.  The spatial smoothing induces a random phase 

modulation which in turn tends to decorrelate the signals that caused the rank 

deficiency. Although spatial smoothing extends the subspace-based methods to the 

scenario where coherent signals exist while retaining the computational efficiency of 

the one-dimensional search, it reduces the effective aperture of array due to the fact 

that the subarrays are smaller than the original array. 

The other is Multi-Dimensional MUSIC (MD-MUSIC) [10], where all of the 

coherent signals are grouped together as a single signal. Thus the full rank condition 

of the source covariance matrix still holds.  However, now the steering matrix A will 

not consist of steering vectors corresponding to distinct DOA, but group of coherent 

signals instead. Therefore, MD-MUSIC has to search through all possible steering 

vectors to find peaks in the spectrum. For example, in the case where a single source 

arrives at an antenna array through mpM  paths, the corresponding MD-MUSIC has to 

perform a mpM -dimensional search. Therefore, MD-MUSIC is computationally 

expensive. 

Because of the drawbacks of spatial smoothing and MD-MUSIC, the ML 

method is frequently used in the scenario of coherent signals [11 - 15]. 
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2.2  INTRODUCTION TO A FREQUENCY HOPPING SYSTEM 

Spread spectrum signals are characterized by the fact that their bandwidth W is 

much bigger than the information rate R (bits per second). The two basic spread-

spectrum techniques are Direct-Sequence (DS) and Frequency Hopping (FH). 

In a FH spread spectrum communications system, the available bandwidth is 

divided into a large number of sub-bands referred to as frequency slots. The 

transmitted signal can occupy one or more of the frequency slots in any signaling 

duration. The selection of the corresponding frequency slot(s) in each signaling 

duration is made in a pseudorandom manner. Roughly speaking, taking a basic 

modulation and at the same time changing the carrier frequency by a pseudorandom 

mechanism is the FH approach to generate a spread-spectrum signal. 

Based on the different modulation methods adopted, FH signals can be mainly 

classified into FH/BPSK and FH/MFSK. In some wireless communication 

applications, FH/MFSK is a little bit more popular than FH/BPSK. One reason for 

that is FH/MFSK system has a simpler receiver. That is to say, for FH/MFSK receiver, 

it only needs to detect the signal frequency. While for that of FH/BPSK, it has to 

detect both the signal amplitude and frequency. The other reason is that FH/MFSK is 

much more insensitive to rapid phase variations in the received signal that may occur 

in mobile communication channel. Figure 2.1 illustrates the typical FH system. 
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Figure 2.1   Block diagram of a FH spread spectrum system [3]. 

Also, according to the different hopping rate used, FH signal can be 

categorized into two classes, namely, Fast FH (FFH) and Slow FH (SFH). For a FFH 

signal, there are multiple hops per symbol. While for a SFH signal, there are one or 

multiple symbols per hop. SFH is often used in the scenario of flat (or frequency non-

selective) fading and narrow-band signal, where the signal information bandwidth is 

centered at the sum of carrier frequency and instantaneous hopping frequency at any 

moment in time. And the instantaneous bandwidth is equal to the information 

bandwidth. Consequently, the total spread bandwidth is occupied only over longer 

time periods. 

FFH is preferable for the scenario of frequency-selective fading and wideband 

signal, where the information signal is transmitted as a number of chips to fully 

exploit the frequency diversity. With each of them being transmitted at a different 

frequency, the chips will be faded independently, and thus only a portion of them will 

be greatly distorted. This is different form narrowband systems where the entire 

symbol can be faded. 

As a typical spread spectrum communication method, frequency hopping 

shares the same basic advantage as direct sequence, namely, the Low Probability of 

Intercept (LPI). However, to some extent, an FH signal is preferred over a DS spread 
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spectrum signal due to the following fact. First, FH has a better performance of anti-

jamming. For example, FFH can effectively prevent the follower jammer from 

creating interference. Second, FH does not need the stringent synchronization and 

power control, which is usually required in a DS spread spectrum system. Therefore, 

FH is the prevailing spread-spectrum technique in military communications.  FH has 

also been adopted in two commercial standards, i.e., IEEE 802.11 and Bluetooth. 

2.3  DOA ESTIMATION IN A FREQUENCY HOPPING SYSTEM 

DOA estimation or localization of frequency hopping signal sources is 

important or useful in a number of applications.  For instance, in military 

communications using FH technique, DOA estimation is required for both non-

cooperative signal interception and jammer localization. Furthermore, the 

corresponding solution should be blind, i.e., unlike the mobile communication signals, 

both of the hopping sequence and the hopping instants are unknown and therefore 

have to be estimated blindly.  

However, there are few papers on this topic [16 - 20]. In [16], Lemma et al. 

proposed a method to jointly estimate the DOA and frequency for SFH signals. But it 

will introduce some defects to the perfection of the algorithm because of the 

assumption that the hopping instants are known. Further, when generalizing from the 

scenario of one FH signal to that of multiple FH signals, the authors assume that only 

one signal hops at certain time instant, which may not the case in practice.  

In [17], Wong presented a DOA estimation method for wideband-FFH signals 

using one electromagnetic vector-sensor. Unlike conventional spatially distributed 

arrays, the vector-sensor introduced by Wong eliminates the time-delay difference 
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caused by different DOAs and thus make the vector-sensor array-manifold 

independent of the impinging signal frequency. This characteristic will no doubt 

significantly simplify the received signal model.  Although it is said that such novel 

electromagnetic vector-sensor is already commercially available, yet it has not been 

the mainstream of the relevant research work.  

In [18 - 19], Liu et al. proposed a method to blindly localize and track multiple 

FH signals. The key point of their method is to model the snapshot as a 2-D harmonic 

mixture, and thus the DOA and frequency estimation is considered as a 2-D harmonic 

retrieval problem. However, their method is only applicable to the case of SFH/MFSK. 

And further, to get a high resolution solution, dynamic programming has to be used in 

their method, which will be of heavy computational load and the convergence of the 

algorithm can not be ensured as well.  

In [20], sub-array was adopted to estimate the DOA for a HF system. The 

main purpose to do so is to reduce the number of receivers. The authors claimed that 

only two receivers were required. The one is fixed to a reference antenna, while the 

other is connected to the remaining elements of an antenna array by switching. 

Although such idea sounds like reasonable, yet there are some drawbacks. First, the 

parameter identifiability problem is not investigated, which is quite important in DOA 

estimation. Then, because the RF must switch at the same speed of hop, in FFH case, 

such RF switch may be unavailable. Finally, due to the basic assumption that the 

hopping sequence and hopping instants must be known, such a method is not 

applicable to military use.   

What is more, while the methods discussed are efficient, they do not consider 

MC or multipath effect. 
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2.4  SUMMARY 

In this chapter, we first give a thorough review on the research work done in 

the field of DOA estimation. Then, we also introduce the frequency hopping system. 

Finally, we review the DOA estimation method used in a FH system. This chapter is 

the cornerstone of the whole thesis, and it also serves as a “reference” to the following 

chapters.  
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Chapter 3 

Maximum Likelihood (ML) DOA Estimation and Cramer-

Rao Lower Bound (CRLB) 

 

In this chapter, we briefly introduce the main mathematical tools which are used 

in the following chapters. 

3.1  INTRODUCTION TO ESTIMATION IN SIGNAL PROCESSING 

 Modern signal processing systems such as radar, sonar, seismology and so on 

share a common problem of extracting parameters of interest based on continuous-

time waveforms. Due to the use of digital computers to sample and store the 

continuous-time waveforms, this problem is equivalent to extract parameters of 

interest from a discrete-time waveform or data set.  

 Without loss of generality, mathematically, we have N-point data set 

( ) ( ) ( ){ }Nxxx ,,2,1  which depends on a parameter of interestθ . For simplicity, we 

define the data vector 

 ( ) ( ) ( )[ ]TNxxx ,,2,1=x .       (3.1) 

 And we want to determine θ  based on data or to define an estimator  

( )xg=θ̂ ,         (3.2) 

where g is some function. To determine a good estimator, the first step is to 

mathematically model the data. Because the data are inherently random, they are 

described by a Probability Density Function (PDF). The corresponding PDF will be 

different due to different assumptions of the parameter of interestθ . 
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3.1.1 Classical Estimation 

If we assume that the parameter of interestθ  is deterministic but unknown, the 

corresponding PDF will take the form ( ) ( ) ( )θ;,,1 xXX Nf . Estimation based on PDFs 

such as above is termed classical estimation. Note that the PDF is parameterized by 

the unknown parameterθ , i.e., we have a class of PDFs where each one is different 

due to a different value ofθ . We will use a semicolon to denote this dependence. 

3.1.2 Bayesian Estimation 

If we assume that the parameter of interest θ is no longer deterministic but a 

random variable and assign it a PDF, the parameter we are attempting to estimate is 

then viewed as a realization of the random variableθ . And the corresponding PDF 

will be a joint PDF described by 

( ) ( ) ( ) ( ) ( ) ( ) ( )θθθ θθXXθXX xx fff NN |, |,,1,,,1 = ,     (3.3) 

where ( )θθf  is the prior PDF that summarizes our knowledge about θ  before any 

data are observed, and ( ) ( ) ( )θ||,,1 xθXX Nf  is a conditional PDF summarizing our 

knowledge provided by the data x conditioned on knowing θ . Such an approach 

above is termed Bayesian estimation. Note that the results above can be extended to 

the case where we wish to estimate a vector parameter [ ]TMθθθ ,,, 21=θ  by 

replacing θ  with θ . 

 When the PDF is viewed as a function of the unknown parameter (with x 

fixed), it is termed the likelihood function. 
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3.2  ML DOA ESTIMATION 

ML estimation is achieved by finding out the value of the unknown parameter 

that maximizes the likelihood function. According to the different statistical 

assumption of signal generation process, ML methods for DOA estimation can be 

classified into two categories, namely, Deterministic ML (DML) method and 

Stochastic ML (SML) method.  

3.2.1  DML DOA Estimation 

In DML method, the noise is modeled as a stationary Additive White Gaussian 

Noise (AWGN) random process, whereas the signal waveforms are deterministic 

(arbitrary) and unknown. And the carrier frequencies are also assumed to be known. 

Therefore, DML DOA estimation belongs to the category of classical estimation.  

Considering the signal model introduced in Chapter 2, after the signals are 

down-converted to baseband and sampled, the PDF of one snapshot is a K-variate 

complex Gaussian process 

( ) ( ) ( )( ) ( )
22

1

)()()(

2,,

1 σ

πσ
nn

Knn enf
K

sθAx
XX x −−= .     (3.4) 

where )(nx is defined by 

( ) ( ) ( ) ( )[ ]TK nxnxnxn ,,, 21=x .      (3.5) 

Note that a snapshot is defined as the set of array outputs collected at a particular 

instant of time. Since the measurements are independent, the normalized negative log-

likelihood function for N snapshots takes the form [41] 
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 (3.6) 

And the corresponding DOA estimates can be obtained as 

{ }{ }RΠθ Aθ
ˆminargˆ ⊥= trDML ,       (3.7) 

where 

∑
=

=
N

n

Hnn
N 1

)()(1ˆ xxR .       (3.8) 

3.2.2  SML DOA Estimation 

In SML method, however, the signal waveforms are modeled as AWGN 

random process. Therefore, SML DOA estimation belongs to the category of 

Bayesian estimation. The corresponding negative log-likelihood function is 

proportional to  

{ }RΠxΠ AA
ˆ)(1

1

2 ⊥

=

⊥ =∑ trn
N

N

n

.       (3.9) 

And the DOA estimates are given by [11] 

{ }2
2 )(ˆ)(ˆlogminargˆ IθAθPAθ

θ SML
H

SMLSML σ+= , (3.10) 

where 

H
SMLSML ))()(ˆˆ()(ˆ 2 ++ −= AIθRAθP σ , (3.11) 

{ }⊥
−

= AΠθ tr
MLSML

1)(ˆ 2σ . (3.12) 
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Note that the cost functions of ML DOA estimation are highly non-linear, and 

therefore non-linear programming techniques must be used. Although the ML method 

costs somewhat high computation, yet it achieves the optimal DOA estimation. 

 

3.3 CRAMER-RAO LOWER BOUND (CRLB) [21] 

In practice, being able to set a lower bound on the variance of any unbiased 

estimator proves to be extremely useful. At best, it allows us to assert that an 

estimator is the Minimum Variance Unbiased (MVU) estimator. This will be the case 

if the estimator attains the bound for all values of the unknown parameter. At worst, it 

provides us with a benchmark against which we can compare the performance of any 

unbiased estimator. Furthermore, it alerts us to the physical impossibility of finding an 

unbiased estimator whose variance is less than the bound. The latter is often useful in 

signal processing feasibility studies. 

Although there are many such variance bounds, the Cramer-Rao Lower Bound 

(CRLB) is by far the easiest to determine. Also, the theory allows us to immediately 

determine if an estimator exists that attains the bound. If no such estimator exists, then 

all is not lost since estimators can be found that attain the bound in an approximate 

sense. 

3.3.1  CRLB of a Scalar Parameter 

Assume that the PDF ( ) ( ) ( )θ;,,1 xXX Nf  satisfies the “regularity” condition 

( ) ( ) ( )
0

;log ,,1 =⎥
⎦

⎤
⎢
⎣

⎡
∂

∂

θ
θxXX Nf

E     for all θ , (3.13) 
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where the expectation is taken with respect to ( ) ( ) ( )θ;,,1 xXX Nf . Then the variance of 

any unbiased estimator θ̂  satisfies 

( )
( ) ( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
−

≥

2
,,1

2 ;log
1ˆvar

θ
θ

θ
xXX Nf

E
, (3.14) 

where the derivative is evaluated at the true value of θ  and the expectation is taken 

with respect to ( ) ( ) ( )θ;,,1 xXX Nf . Furthermore, an unbiased estimator may be found 

that attains the bound for all θ  if and only if 

( ) ( ) ( ) ( ) ( )[ ]θθ
θ

θ
−=

∂

∂
x

xXX gZ
f N ;log ,,1 ,  (3.15) 

for some functions g and Z. That estimator, which is the MVU estimator, is ( )xg=θ̂ . 

And the minimum variance is ( )θZ1 . 

3.3.2  CRLB of a Vector Parameter 

Assume that the PDF ( ) ( ) ( )θxXX ;,,1 Nf  satisfies the “regularity” conditions 

( ) ( ) ( )
0

θ
θxXX =⎥
⎦

⎤
⎢
⎣

⎡
∂

∂ ;log ,,1 Nf
E     for all θ ,   (3.16) 

where the expectation is taken with respect to ( ) ( ) ( )θxXX ;,,1 Nf  and [ ]TMθθθ ,,, 21=θ . 

Then the covariance matrix of any unbiased estimator θ̂  satisfies 

( ) 0θZC
θ

≥− −1
ˆ , (3.17) 

where greater or equal to zero is interpreted as meaning that the matrix is positive 

semidefinite.  

The pp× Fisher Information Matrix (FIM) is defined by 
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where the derivatives are evaluated at the true value of θ and the expectation is taken 

with respect to ( ) ( ) ( )θxXX ;,,1 Nf . An unbiased estimator may be found that attains the 

bound in that ( )θZC
θ

1
ˆ

−=  if and only if 

( ) ( ) ( ) ( ) ( )[ ]θxθZ
θ

θxXX −=
∂

∂
g

f N ;log ,,1 , (3.19) 

for some p-dimensional function g and some pp×  matrix Z. That estimator, which is 

the MVU estimator, is ( )xθ g=ˆ , and its covariance matrix is ( )θZ 1− . 

3.4  SUMMARY 

In this chapter, we briefly introduce the main mathematical tools which will be 

used in the following chapters. Due to the fact that it can be implemented for 

complicated estimation problems, ML estimator is a quite popular approach. In 

addition, for most cases of practical interest, the ML performance is optimal for large 

enough data records. 

The Cramer-Rao Lower Bound (CRLB) is by far the easiest to determine. 

Also, it allows us to immediately determine if an estimator exists that attains the 

bound. Therefore, CRLB is extensively used in performance comparison. 
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Chapter 4 

DOA Estimation in the Presence of Unknown Mutual 

Coupling and Multipath Propagation in a FH System 

 

In early DOA estimation works, Mutual Coupling (MC) between the antenna 

elements was ignored and the antenna elements were assumed to be isotropic point 

sensors which sample but do not re-radiate the incident fields. However, in practice, 

MC is unavoidable. 

Actually, when an antenna element receives the incident electromagnetic 

fields, it will at the same time reradiate part of them to other elements. The re-radiated 

EM fields interact with the other elements causing the sensors to be mutually coupled. 

This results in MC which will in turn affect the array manifold. 

4.1 INTRODUCTION TO DOA ESTIMATION IN THE PRESENCE OF 

UNKNOWN MUTUAL COUPLING 

As a matter of fact, with the emergence of high-resolution DOA estimation 

algorithms, MC becomes an important factor to be taken into consideration in the 

model. As we know, the high-resolution DOA estimation algorithms need an accurate 

knowledge of the array manifold (i.e. array response for any DOA). Otherwise, the 

corresponding performance will be significantly deteriorated.  

To a great extent, the uncertainty in the array manifold (or model mismatch) 

stems from the electromagnetic perturbations of the antenna array, and an important 

characteristic of which is none other than MC. 
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Gupta and Ksienski may be the first who systematically studied the effect of 

MC on the performance of adaptive arrays [22]. By regarding an antenna array as a 

bilateral network responding to an outside source, they proposed that the MC effect 

can be characterized by a mutual impedance matrix (or MC matrix). The “true” vector 

of element output voltages should be the normalized by the MC matrix. In their work, 

they found that MC affects the performance of adaptive arrays even for large 

interelement spacing. For small interelement spacing case, such effect is much more 

remarkable and the corresponding array output SNR is significantly lower than that 

obtained in the scenario where MC is ignored. 

In fact, a number of algorithms and techniques have been proposed for DOA 

estimation in the presence of MC in the past two decades. The “true” array steering 

vector is then obtained as the product of MC matrix and the “ideal” one, based on 

which succeeding DOA estimation can be performed with ordinary methods. So, how 

to get the MC matrix and do the corresponding compensation is of most importance. 

Generally, there are two conventional methods for MC compensation. 

4.1.1 Array Calibration 

Array calibration involves accurate measurement of the RF channel associated 

with each element of the array, a basic form of which is to collect the corresponding 

array manifold information. This is usually done by moving a pilot source over a fine 

grid of directions covered by the array and measuring the corresponding array 

response vectors for these directions.  And the array response vector between the grid 

steps is usually estimated by interpolation. Also, it can be performed by rotating the 

array relative to a fixed source at closely spaced angles, say, iφ . 
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Throughout the whole calibration process, the array response at each angle, 

( )iθu , is recorded and normalized to estimate the steering vectors ( )iθa  which will 

further be mapped to corresponding DOA. However, the process of array calibration 

can be time consuming and costly. That is, array calibration has to be done from time 

to time, because array manifold may change over time due to many factors such as the 

behavior of sensor itself, environment around sensor array, location of the sensors and 

so on. 

Again, storing the array manifold once it has been measured may take a great 

number of system memories. In practice, array calibration may fail to achieve the 

precision of array manifold that super-resolution DOA estimation algorithms require. 

Thus the associated system performance will be remarkably degraded, sometimes 

making it worse than that of the conventional methods.  What is more, in the case of 

unknown multipath propagation, it is hardly possible to implement array calibration. 

To overcome this problem, a method referred to as self-calibration came out, 

which make use of the received signal to perfect the array calibration. In [23 - 24]  

Rockah and Schultheiss studied in detail the self-calibration problem for the scenario 

of passive sensor arrays with sensor locations being imprecisely known.  

In [25] Paulraj and Kailath developed a method to estimate DOA and 

meanwhile calibrate gain and phase perturbation. However, the method is 

significantly limited in that there exists a rotation uncertainty in the corresponding 

DOA estimation. 

In [26], Brown et al. proposed a method to calibrate gain, phase and MC 

uncertainty using a single source of unknown position. This method works based on 
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the fundamental assumption that the initial DOA estimation is roughly near the true 

value. 

In [27] Pierre and Kaveh developed a calibration procedure based on least 

square fitting. In [28] Jaffer proposed an array calibration method which estimates the 

sparse distortion matrix subject to linear constraints that force zeros in known position 

in the estimated distortion matrix. Note that because at least a single source has to be 

known or partially known, the method introduced in [27 - 28] is not a self-calibration 

in strict sense.  

4.1.2 Fundamental Electromagnetic Viewpoint 

This method deals with the electromagnetic model of the sensor array. The 

MC parameters are estimated from the actual antenna voltages. Generally speaking, 

this method can be subdivided into two classes according the different antenna model 

used. 

The infinite array model fits the central elements of a large but finite array 

quite well and implicitly includes the MC effect. The corresponding MC 

compensation method is discussed in [29]. The finite phased array model is especially 

critical in adaptive array applications. This model gives much more practical 

information than the former, but much more difficult to analyze as well.   For this 

model, the Method of Moment (MOM) is quite often proposed to model and eliminate 

the MC for signals impinging on the array from a given DOA, which converts close-

form integrodifferential equations to a numerical matrix equation [30 -34]. 

However, due to the complex numerical computation, the MOM method is 

almost unacceptable for the case where the number of DOAs is greater than 1. Instead, 
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two viewpoints for MC compensation based on  the finite phased array model have 

been proposed. The first one is MC compensation using open-circuit voltages which 

was proposed by Gupta and Ksienski [22]. They argue that the open-circuit voltages 

are free of MC because no terminal current exists and therefore the reradiated fields 

are reduced. And they derive the open-circuits voltages from the measured voltages. 

However, their theory is valid only for half-wave dipoles with half-wavelength 

spacing. 

The second one is MC compensation using the Minimum Norm Formulation 

(MOF). In [34], Adve and Sarkar presented an MC compensation method for direct 

data domain adaptive algorithms, in which the MOM admittance matrix is used to 

estimate the incident fields that would generate the received voltages. However, their 

method is only applicable for linear arrays of linearly polarized dipole elements. This 

method is further generalized to general antenna arrays with arbitrary-shaped 

elements, called MOF [35]. Although MOF does not require the solution to the entire 

MOM problem, yet its computation load is still heavy, which may prevent it from 

being popular. 

Alternatively, we can jointly estimate both the MC matrix and DOA directly 

by carrying out some statistical signal processing on the received signals [36 - 40].  In 

[36], Friedlander and Weiss proposed a modified MUSIC algorithm to estimate DOA 

and array calibration parameters including mutual coupling for a narrowband circular 

array. This method is iterative in nature.  However, this algorithm was proven to have 

nonunique solutions for some special cases [37]. 

In some recent studies, Svantesson [38] introduced an algorithm based on a 

modified version of Noise Subspace Fitting (NSF), where the MC matrix is simplified 
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to a banded symmetric Toeplitz matrix. The main idea is as follows. First, the 

conventional NSF algorithm is extended to the case where MC is present. Then 

concentrate the NSF criterion with respect to MC parameters, and the DOAs are 

accordingly obtained by a numerical search. However, the global convergence of the 

algorithm can not be ensured because the performance surface on which the multi-

dimensional search is done usually has locally optimum solutions. 

In [39], Mao et al. proposed a separable dimension subspace method to estimate 

signal frequencies, direction of arrivals and MC jointly. The frequency is estimated 

first by subspace method in temporal dimension, and after that, the estimates of DOA 

and MC are obtained by subspace method in spatial dimension. Because it is not 

iterative, the accuracy of DOA and MC estimation greatly depends on that of the 

frequency estimation in the first step. Therefore, any small error generated in the first 

step may cause considerable errors in DOA or MC estimations.  

In [40], Jaffer proposed a method to iteratively estimate the DOA and 

distortion matrix which accounts for the gain and phase errors and MC effect. The 

author argued that the MC effect can be negligible for elements separated by a few 

wavelengths and therefore the distortion matrix should be a sparse one. Based on this 

argument, a constrained MC estimation method is developed.  

In summary, all these algorithms are only effective in scenarios where the 

transmitted signals are noncoherent and do not exhibit multipath propagation.  In 

typical wireless communication systems where multipath propagation is unavoidable, 

these algorithms may not be effective.  
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4.2 SIGNAL MODEL 

Consider a multipath propagation scenario where a far-field narrowband signal 

impinges on a Uniform Linear Array (ULA) with K antenna elements via M distinct 

paths (as shown in Figure 4.1).  In the presence of mutual coupling, the MC matrix of 

the antenna array will be symmetric and Toeplitz [38]. 

 

Figure 4.1   Receiving antenna array. 

Assume also that frequency hopping is used and the transmitted signal in the 

hth hop is 

{ }2 ( )( ) Re ( ) c hj f f t
h ht s t e πϕ += .       (4.1) 

where cf is the center frequency, while hf denotes the hop frequency. After down 

conversion, the array output vector becomes 

( ) [ ] ( ) ( ) ( )tett h
tfj

hhh
T

Khhh
h nGsΦθCAxxx +== π2

1 ,, ,    (4.2) 

where C  is the KK ×  MC matrix, ( )hA θ is the steering matrix, hΦ is the phase shift 

matrix, G is the multipath attenuation matrix and ( )h ts  is a M-dimensional baseband 

signal vector given by 
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[ ]1( ) ( ), , ( )h h h Mθ θ=A θ a a ,       (4.4) 

( ) ( ) ( )( )[ ]TKffjffj
ih

ihcihc ee βπβπθ 122 ,,,1 −+−+−=a , Mi ,...,1= ,   (4.5) 

( )12 ( ) 2 ( ), ,c h c h Mj f f j f f
h diag e eπ τ π τ− + − +=Φ ,     (4.6) 

( )1, , Mdiag g g=G         (4.7) 

and 

[ ]1( ) ( ), , ( ) T

h h h Mt s t s tτ τ= − −s .      (4.8) 

Note that in (4.5), iβ  is given by 
lt

i
i v

d θβ cos
= , where d is the spacing between two 

neighboring antennas, and ltv  is the speed of light.  

Without loss of generality, suppose that ( ) 1hs t = for H hops as when pilots are 

sent during initial training.  The output vector of the kth antenna in all H hops 

therefore becomes 

( )( ) [ ] ( )( )tgxxt k
M

m
mm

T
kHk

k nΓζx +== ∑
=1

1 ,, , Kk ,,1= , (4.9) 

where  

( )12 2, , Hj f t j f tdiag e eπ π− −=Γ , (4.10) 

( ) ( ) ( ) ( )[ ]TmH
T
k

ffj
m

T
k

ffj
m

mHcmc ee θθ τπτπ acacζ +−+−= 2
1

2 ,,1 , (4.11) 

and kc  is the kth column of  the MC matrix C. Pre-multiplying (4.9) by the matrix 

1−Γ yields the normalized vector 
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( ) ( ) ( ) ( )tgt k
Nor

M

m
mm

k
Nor .

1
. nζx +=∑

=

. (4.12) 

The received signals at the K antennas in all H hops can then be characterized 

by the KH-dimensional signal vector  

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )tttvect K
NorNor ngηDγFxxx +== .

1
. ,,)( , (4.13) 

where [ ]•vec denotes the column vectorizing operator which stacks the column of a 

matrix in a column vector, )(tn is the noise vector, γ  is a ( )1−K -dimensional MC 

parameter vector, η  is a 2M-dimensional delay-DOA joint parameter vector, g is a M-

dimensional multipath attenuation parameter vector, )(γF  is a KHKH × symmetric 

Toeplitz sparse matrix, md  is a LH -dimensional vector and )(ηD is a MKH × matrix 

given by 

T
Kcc ],...,[ 2=γ , (4.14) 

[ ]TMM βββτττ ,,, ,21,,2,1=η , (4.15) 

[ ]Mggg ,,, 21=g , (4.16) 
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( )[ ] ( )[ ][ ]TKjKjjj
m

mmHmmmHm eeee βτϖβτϖτϖτϖ 11 ,,,,,, 11 −+−−+−−−=d , (4.18) 

[ ]1( ) , , M=D η d d  (4.19) 
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Notice that hereafter we define ( )hch ff += πω 2 , Hh ,,1= . 

4.3 ML ESTIMATOR 

Figure 4.2 illustrates the receiver structure of the l th element of the antenna 

array. 

 

Figure 4.2   Block diagram of the receiver structure of the kth element of the antenna array. 

After sampling, the likelihood function of N snapshots takes the form  

( ) ( )
( )

2

2)()(

1

22 ,,,
σ

πσσ
gηDγFx

gγη
−

−

=

×−∏=
n

N

n

HK el , (4.20) 

where 2σ  is the variance of the sampled noise. The log-likelihood function is 

( ) ( )∑
=

−−××−=
N

n

nNHKL
1

2

2
22 )()(1log)(,,, gηDγFxgγη

σ
σσ . (4.21) 

And the normalized negative log-likelihood function is [41] 

( ) ( )∑
=

−+×=
N

n
NegNor n

N
HKL

1

2

2
22

._. )()(1log)(,,, gηDγFxgγη
σ

σσ . (4.22) 

Therefore, the ML estimator can be obtained from solving 

{ } ( )
⎭
⎬
⎫

⎩
⎨
⎧ −+×= ∑

=

N

n

n
N

HK
1

2

2
2

,,,

2 )()(1log)(minargˆ,ˆ,ˆ,ˆ
2

gηDγFxgγη
Gγη σ

σσ
σ

. (4.23) 



 42

Minimizing with respect to 2σ yields 

( ) ( )∑
=

−
×

=
N

n

n
NHK 1

22 )()(1ˆ gηDγFxσ . (4.24) 

Substituting (4.24) back into (4.23) gives 

{ } ( )gγηgγη
Gγη

,,minargˆ,ˆ,ˆ
,,

J= , (4.25) 

where the objective function ( , , )J η γ g is 

( ) ( ) 2

1

1, , ( ) ( )
N

n

J n
N =

= −∑η γ g x F γ D η g . (4.26) 

Note that equation (4.25) is a nonlinear ( )[ ]MK 412 +− -dimensional 

optimization problem. That is, there are ( )1−K  complex-valued mutual coupling 

parameters, M real-valued time-delay parameters, M real-valued DOA parameters and 

M complex-valued multipath attenuation parameters. Furthermore, the unknown 

parameter vectors η , γ and g cannot be completely separated.  Therefore, 

straightforward minimization of (4.26) with respect to η , γ and g is rarely feasible. 

To tackle this problem, we will now derive an Alternating Minimization (AM) 

algorithm for finding the unknown parameters in an iterative manner.  Specifically, 

similar to that in [42], instead of minimizing (4.26) directly, the AM algorithm will 

iteratively perform minimization to obtain the two ML estimators in succession as 

follows. 

A. ML estimator for delay-DOA joint parameter vector 

With the MC parameter vector γ  equal to γ̂ , the ML estimation of η  

and g can be derived from (4.25) by minimizing 

( ) ( )∑
=

−=
N

n

n
N

J
1

2
1 )()ˆ(1,ˆ, gηDγFxgγη . (4.27) 
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Defining the matrix 

( )ηDγFB )ˆ(= , (4.28) 

we have, from (4.27), 

xmBg +=ˆ , (4.29) 

where 

( ) HH BBBB 1−+ = , (4.30) 

( )∑
=

=
N

n

n
N 1

1 xm x . (4.31) 

Substituting (4.29) back into (4.27) yields the concentrated objective function 

( ) ( ) { }xBx MΠRmBBxγη −=−= ∑
=

+ ˆ1ˆ,
1

2

2 trn
N

J
N

n

, (4.32) 

where 

∑
=

=
N

n

Hnn
N 1

)()(1ˆ xxR , (4.33) 

( ) HH BBBBBBΠ B

1−+ == , (4.34) 

H
xxx mmM = . (4.35) 

Therefore, minimizing (4.27) is equivalent to maximizing 

( ) { }xB MΠγη trJ =ˆ,3 , (4.36) 

or 

{ }xBη
MΠη trmaxargˆ = . (4.37) 

Note that equation (4.37) is a nonlinear M2 -dimensional optimization problem. Thus 

the problem is not strictly well posed unless MHK 2≥× . If the number of antennas 

K is fixed, the number of hopping frequencies used should satisfy 
K
MH 2

≥ . 

 B. ML estimator for MC parameter vector 
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Likewise, withη  and g  given by η̂  and ĝ , respectively, the ML estimation of 

the MC parameter vector γ  can also be derived from (4.26) by minimizing 

( ) ( )∑
=

−=
N

n

n
N

J
1

2
4 ˆ)ˆ()(1ˆ,,ˆ gηDγFxgγη . (4.38) 

Defining the KH -dimensional vector 

gηDu ˆ)ˆ(= , (4.39) 

(4.38) can be rewritten as 

( ) ( )∑
=

−=
N

n

n
N

J
1

2
4 )(1ˆ,,ˆ γuQxgγη , (4.40) 

where )(uQ is a KKH × matrix given by the sum of two KKH ×  matrices 

[ ] [ ] ( ) ( ) ( )
⎩
⎨
⎧ ×≤×−+

= ×−+

otherwise
HKHqpHqp

pq ,0
1,1

1

u
Ψ   (4.41) 
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[ ] [ ] ( 1)
2

, , 2, ( 1) 1

0,
p q H

pq

p H q p q H

otherwise
− − ×

⎧ ≥ ≥ − − × ≥⎪= ⎨
⎪⎩

u
Ψ . (4.42) 

Note that 11 =c implies that minimizing equation (4.40) with respect to γ is a 

constrained optimization problem, with the constraint given by 

1=wγ H , (4.43) 

and w being the K-dimensional vector  

[ ]T0,,0,1=w . (4.44) 

Using the method of Lagrange Multipliers, we finally obtain  

[ ] [ ] wQQ
wQQw

mQwmQγ X
X

1

1

1ˆ −

−

+
+ −

−= H

HH

H

, (4.45) 

where +Q denotes the pseudo-inverse of the matrix )(uQ  
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( ) HH QQQQ 1−+ = . (4.46) 

Here, for simplicity, we have suppressed the parentheses portion of )(uQ . 

In the light of the results in (4.37) and (4.45), the corresponding AM algorithm 

can be formulated to find the MC and DOA parameters individually in succession.  

The algorithm is described in detail below. 

 A. Global Initialization 

A.1. Set the iteration counter number k to 0. 

A.2. Set the MC parameter vector T
Kccc ],...,,[ 21=γ to T]0,...,0,1[ˆ )0( =γ . This 

is identical to the case where no MC exists. 

A.3. Select the global initial values for the delay-DOA joint parameter 

vectorη  as )0(η̂ which may come from some previous knowledge such 

as coarse estimation and so on. 

B. Iteration 

B.1. Estimating the delay-DOA joint parameter vector η  and the path 

attenuation parameter vector g. 

i. For the kth ( 1≥k ) iteration, hold γ  fixed as )1(ˆ −kγ . 

ii. Set the initial value of η  as )1(ˆ −kη . Obtain )(ˆ kη using the SD 

algorithm [43]: ( ) ( ) ( ) ( ) ( ) ( ) ( )m

kkk
kJmm

ηηη γηηη
=

−∇−=+ )1(
3 ˆ,1 µ  

(the gradient of ( )γη ˆ,3J  with respect to η  is given in Section 

4.3.1). Of course, we can also resort to the Gauss-Newton 

algorithm [43], if necessary (the Hessian matrix is given in 

Section 4.3.2). 
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iii. xmγηBg )ˆ,ˆ(ˆ )1()1()( −−+= kkk . 

B.2. Estimating the MC parameter vector γ . 

i. Fix η  as )(ˆ kη and g as ( )ˆ kg . 

ii. [ ] [ ] wQQ
wQQw

mQwmQγ X
x

1

1
)( 1ˆ −

−

+
+ −

−= H

HH

H
k . 

Once )(ˆ kγ is obtained, let 1+= kk and go back to step B.1 until convergence. 

4.3.1 Gradient of ( )γη ˆ,3J  with respect to η  

The gradient of ( )γη ˆ,3J  with respect toη  takes the form  
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where both of 1Ω and 2Ω are KHKH × diagonal matrices, and they can be expressed 

as 

( )HHHdiag ωωωωωω ,,,,,,,,, 1111 =Ω , (4.55) 

( ) ( )( )HH KKdiag ωωωω 1,,1,,,,,0,,0 112 −−=Ω . (4.56) 

4.3.2 Derivation of Hessian Matrix 

Define ( )ijH  as the ( )thji, entry of the Hessian matrix, we have 
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4.3.3 Derivation of CRLB 

For simplicity, we now break the delay-DOA joint parameter vector η  into 

two parts ,
TT T⎡ ⎤= ⎣ ⎦η τ θ , where τ denotes the delay vector, and θ denotes the DOA 

vector 

[ ]TMττ ,,1=τ , (4.61) 
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[ ]TMθθ ,,1=θ . (4.62) 

For arbitrary complex variable { } { }xjxx ImRe += , we define its partial 

derivative as { } { }⎥⎦
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⎡ ∂
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∂
∂

x
j

xx ImRe2
1 . Hereafter, for notational simplicity, we will 

omit the parentheses portions of ( )F γ and ( )D η . 

A. First order partial derivatives 

A.1. First order partial derivatives with respect to multipath delays 
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A.2. First order partial derivatives with respect to multipath DOA 
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A.3. First order partial derivatives with respect to multipath attenuations 
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where 

i

H

i g∂
∂

=
• gg . (4.71) 

Note that ig is an M-dimension row vector with 1 in the thi  entry and zeros elsewhere. 

A.4. First order partial derivatives with respect to MC parameters 

{ } ( ){ }2
1

12 Re
Re

N H H

ni

L N tr n
c Nσ =

∂ ⎧ ⎫⎡ ⎤= − −⎨ ⎬⎣ ⎦∂ ⎩ ⎭
∑ iFDg x gD F , (4.72) 

{ } ( ){ }2
1

12 Im
Im

N
H H

ni

L N tr n
c Nσ =

∂ ⎧ ⎫⎡ ⎤= − −⎨ ⎬⎣ ⎦∂ ⎩ ⎭
∑ iFDg x g D F , (4.73) 

i

H

i c∂
∂

=
• FF . (4.74) 

 B. Expectation of  Second order partial derivatives 

B.1. Expectation of Second order partial derivatives with respect to 

multipath delays 
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B.2. Expectation of Second order partial derivatives with respect to 

multipath DOA 
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B.3. Expectation of Second order partial derivatives with respect to 

multipath attenuations 
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B.4. Expectation of Second order partial derivatives with respect to MC 

parameters 
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B.5. Expectation of Second order partial derivatives with respect to 

multipath delay-DOA cross terms 
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B.6. Expectation of Second order partial derivatives with respect to 

multipath delay-attenuation cross terms 
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B.7. Expectation of Second order partial derivatives with respect to 

multipath delay-MC parameter cross terms 
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B.8. Expectation of Second order partial derivatives with respect to 

multipath DOA-attenuation cross terms 
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B.9. Expectation of Second order partial derivatives with respect to 

multipath DOA-MC parameter cross terms 
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B.10. Expectation of Second order partial derivatives with respect to 

multipath attenuation-MC parameter cross terms 
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The FIM is given by the following partitioned matrix 

{ } { } { } { }

{ } { } { } { }

{ } { } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { } { }

{ } { } { } { } { } { } { } { } { } { } ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

γγγγgγgγθγτγ

γγγγgγgγθγτγ

γgγgggggθgτg

γgγgggggθgτg

γθγθgθgθθθθτ

γτγτgτgττθττ

ZZZZZZ
ZZZZZZ
ZZZZZZ
ZZZZZZ

ZZZZZZ
ZZZZZZ

Z

ImImReImImImReImImIm

ImReReReImReReReReRe

ImImReImImImReImImIm

ImReReReImReReReReRe

ImReImRe

ImReImRe

, (4.96) 

where each sub-matrix has the same structure as ρξZ , with both ρ and ξ being vectors. 

And the corresponding ( )thji,  entry takes the form 
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where iρ  denotes the thi  entry of the vector ρ , and jξ  represents the thj  entry of the 

vector ξ . 

4.4 SIMULATION RESULTS 

In this section, we will present some simulation results to illustrate the 

performance of the proposed algorithm.  
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In the following experiments, we simulated the scenario where narrowband 

signals transmitted from one far-field source impinge on an ULA of two half-

wavelength spaced antenna elements via 2=M paths. The DOAs are given by 

0
1 30=θ and 0

2 65=θ . The time delays are ms41 =τ and ms5.62 =τ , while the path 

attenuations are jg 3.085.01 −= and jg 2.05.02 += . The complex MC parameter 

vector is [ ]Tc,1=γ , where jc 03.006.0 −= . The transmitted signal adopts FH 

operating at the center frequency GHzf c 1= . A set of 32 hopping carriers with 

2.5MHz spacing are allocated in the hopping frequency band with a bandwidth of 

about 80 MHz. While the parameters are not exactly the same, this is similar to the 

IEEE 802.11 FHSS Standard [18]. During the initial training period, pilots are sent 

using 4=H  hops, where the corresponding instantaneous frequencies 

are MHzf 5.21 = , MHzf 5.122 = , MHzf 653 =  and MHzf 754 = . 

In the first experiment, we demonstrated the convergence of the algorithm 

using 250 snapshots at 30dB SNR. The SNR is defined as ( )22
10log10 nsSNR σσ= , 

where 2
sσ and 2

nσ  are the average power of the source and the receiver noise, 

respectively. The initial parameter values are given by ( ) ms3ˆ 0
1 =τ , ( ) ms5.5ˆ 0

2 =τ , 

( ) 00
1 20ˆ =θ , and ( ) 00

2 55ˆ =θ .Figure 4.3 shows the convergence of all the parameters 

being estimated. 
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(a) 1τ versus number of iterations. 
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(b) 2τ versus number of iterations. 
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(c) 1θ  versus number of iterations. 
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(d) 2θ versus number of iterations. 
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(e) { }cRe  versus number of iterations. 
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(f) { }cIm versus number of iterations. 

Figure 4.3   Convergence curves of all the parameters estimated. 
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Obviously, the parameters converge quickly in about 50 iterations. 

In the second experiment, we investigated the statistical efficiency of the AM 

algorithm at different SNR. For each SNR, we performed 100 Monte Carlo runs of 

250 snapshots and computed the associated Root Mean Square Error (RMSE). We 

also derived the Cramer-Rao Lower Bound (CRLB) to compare with the RMSE 

obtained. Figure 4.4 shows the RMSE of 1θ , 2θ , { }cRe  and { }cIm , respectively, versus 

SNR. The corresponding CRLB curves are also plotted for comparison. The results 

show that the AM algorithm is statistically efficient, and for dBSNR 25≥ , it achieves 

the CRLB which is plotted using solid lines in the figure. Also, If we follow the 

standard used by [35] and [36], which tend to set the SNR value corresponding to the 

case where DOA RMSE equals to 01.0  as a threshold, then our algorithm works even 

in a fairly low SNR case. 
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(a)   RMSE of 1θ versus SNR. 
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(b)   RMSE of 2θ versus SNR. 
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(c)   RMSE of { }cRe versus SNR. 
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(d)  RMSE of { }cIm versus SNR. 

Figure 4.4   RMSE versus SNR. The solid lines give the CRLB theoretical value. The asterisk points 
denote the RMSE at a corresponding SNR, obtained by 100 Monte Carlo runs of 250 snapshots. 

 
4.5 SUMMARY 

In this chapter, we propose a new method for DOA estimation in the presence 

of multipath propagation and unknown MC for a FH system.  We present a signal 

model that takes these effects into account and derived the ML estimators for both 

DOA and MC parameters.  We then formulate an iterative Alternating Minimization 

(AM) algorithm for finding the MC and DOA parameters in an alternate manner.  The 

simulation results presented illustrate the convergence of the algorithm and its 

statistical efficiency at high SNR. 

 

 

 

 

 



 60

Chapter 5 

DOA Estimation with A Reduced Number of Receivers in 

the Presence of Multipath Propagation in A FH System 

 
Detection and localization of multiple narrowband sources by a passive sensor 

array is a fundamental problem in radar, communication, sonar, seismology and radio-

astronomy. The existing super-resolution solutions to this problem require that the 

whole array be sampled simultaneously and therefore demand that the number of 

receivers be equal to the number of sensors. This requirement may prevent such 

solutions from practical implementation especially in cases where the number of 

sensors is large, due to the high cost of receivers and difficulty in array calibration. 

To facilitate the implementation of super-resolution techniques in practice, a 

reduction in receiver channels is preferable, which is often referred to as “sequential 

scanning” of the angular space. And some propositions were presented in recent years. 

5.1 INTRODUCTION TO DOA ESTIMATION USING FEWER 

RECEIVERS THAN ANTENNAS 

In a loose sense, such propositions can be classified into two categories. The 

first one is the introduction of subarray. The primitive idea of DOA estimation using 

subarray may come from [44], where a switching technique is used in conventional 

interferometers to sequentially sample different “baselines” of the array. 

However, there are certain difficulties in performing DOA estimation of 

multiple sources using subarray data. First, no single subarray can implement DOA 

estimation on its own. Moreover, when only part of the different pairs of the sensors 
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are sampled, the existing high-resolution techniques are not applicable since no 

estimate of the whole array covariance matrix can be constructed. 

In [45], Sheinvald and Wax proposed a subarray-based method to localize 

multiple narrow band signals. In their method, the SML estimator is used, and it is 

further approximated by a generalized LS estimator to reduce the computational 

complexity. However, because the corresponding premise is covariance matrix of 

subarray, consequently the minimum antenna number of a subarray should be no less 

than two. 

In [46 - 47], the problem of DOA estimation using a time-varying array was 

studied, where the corresponding elements move during the observation interval in an 

arbitrary but known way. Such scenario is comparable to the DOA estimation using 

subarray.  However, the main drawback is that only one source case is considered 

therein. 

The second one is using a preprocessing beamforming network. In [48], a 

linear, time-varying network was used as preprocessing stage which performed the 

dimension reduction.  In [49], the author considered the case of multiple source DOA 

estimation using a preprocessing network with two output ports, i.e., only two 

receivers were needed. However, the method can not be applicable to the multipath 

propagation scenario in that it is eigen-decomposition-based. In [50 - 51], the 

corresponding preprocessing transformation matrix is assumed to be known. In [52], a 

method to derive the optimal transformation matrix was presented, which was based 

on CRLB of DOA estimation error variance. 
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In this chapter, we briefly introduce a new method for joint time delay and 

DOA estimation using two antennas and one receiver for a FH system in the presence 

of multipath. 

5.2 SIGNAL MODEL 

Consider a multipath propagation scenario where a far-field narrowband signal 

impinges on a Uniform Linear Array (ULA) with two antenna elements via M distinct 

paths (as shown in Figure 5.1). The two antennas share the same receiver by 

sequential switching. 

 

Figure 5.1   The structure with two antennas and one receiver. 

Assume also that slow frequency hopping is used and the transmitted signal in 

the hth hop is 

{ }2 ( )( ) Re ( ) c hj f f t
h ht s t e πϕ += ,       (5.1) 

where cf is the center frequency, while hf denotes the hop frequency. Of course, we 

can also express the whole baseband signal as 

( ) [ ] [ ]∑
=

−− −−=
H

h
c

Thtfj Thtpets ch

1

)1(2 )1(π ,      (5.2) 

where cT denotes the FH chip period and ( )p t represents a rectangular function with 

the form 
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( )
1, 0
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ct T
p t

otherwise
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⎩

.       (5.3) 

To solve the problem, we assume that the RF switch time ∆  is exactly the 

same as the FH chip period cT , and we sequentially switch receiver from antenna 1 to 

antenna 2, with the starting time point being 0t . Also, 0t  and the time-delay of every 

path are assumed to be less than the FH chip period cT . Such assumptions are 

reasonable for a suitable cT . 

Assume that 2N samples are collected after down-conversion and sampling, 

and they are labeled with the numbers from 1 to 2N. Then we can see that the samples 

with odd numbers are obtained from antenna 1. The corresponding values are 
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1,2, ,n N= .         (5.4) 

Further we define a sample sequence (or time series) as ( ) ( ){ }Nuu ,,1 , where 

( ) 12 −= nynu . This time series can be broken into P neighboring time windows of 

length L (without loss of generality, we assume LPN ×=  ). Thus we get 

( )( ) ( )[ ] ( )( ) ( )[ ] ( ) pp
T

pLLp
T

p yypLuLpu 1112112 ,...,,...,11 ngτΦu +==+−= −+− , 

Pp ,,2,1= .         (5.5) 

where 

[ ]1 2, , , T

Mg g g=g ,        (5.6) 
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( )( ) ( )( )[ ]ccp TpLtnLTptn 12,,12 01011 −+−+=n .    (5.9) 

Hence, the corresponding data matrix can be written as 
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Likewise, the samples with even numbers are obtained from antenna 2, which 

take the form 
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( )[ ] ( )( )c

M

m

Tntfjdj
m

cn

Tntneeg

Tntxy

mcnm 12

12

02
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where 
λ
πα 2

=  is the phase propagation factor.  

As we have mentioned before, we only consider the scenario of narrow band 

frequency hopping signal herein, i.e., ch ff << , so α  is a constant. Further, let 
2
λ

=d . 

We can rewrite (5.11) as  

( )[ ] ( )( )c

M

m

Tntfjj
mn Tntneegy mcnm 1202

1

122cos
2

02 −++=∑
=

−−+ τπθπ . (5.12) 

Similarly, we define a sample sequence as ( ) ( ){ }Nvv ,,1 , where ( ) nynv 2= . 

This time series can be broken into P neighboring time windows of length L (without 

loss of generality, we assume LPN ×=  ). Thus we get 
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where 
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( ) ( )1 2, , , Mdiag g g g=G g , (5.15) 

( ) 1cos cos, , M
Tj je eπ θ π θ− −⎡ ⎤= ⎣ ⎦q θ ,

 
(5.16) 

( ) ( )( )2 2 0 2 0, , 2 1c m c mn t T n t N Tτ τ⎡ ⎤= + − + − −⎣ ⎦n . (5.17) 

Therefore, the associated data matrix can be expressed as 
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5.3 LEAST SQUARE ESTIMATOR 

The main idea of our joint estimation method is first to obtain τ̂  from 

equation (5.5), based on which the DOA estimate θ̂  is then achieved from equation 

(5.11). The first step, time-delay estimation, is crucial for our joint estimation 

algorithm.  

Note that the time windows in (5.5) are non-overlapping, therefore the 

corresponding noise vector are pair-wise uncorrelated. Based on (5.10), the associated 

cost function is given by 



 66

( )
( )

( )
( ) ( )∑∑

==

−=−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

P

p
pp

P

p

T
p

TT
p

F

T
P

T

TT

J
1

2

1
1

2

1

2

1

11

1 , gτΦuτΦgu
τΦg

τΦg
Ugτ , (5.19) 

where 2

F
• denotes Frobenius norm. Equation (5.19) can be rewritten as 

( ) ( ) 2

11 , gτΦugτ −=J , (5.20) 

where  
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Minimizing (5.20) with respect to g yields 

( )uτΦg += 1ˆ , (5.23) 

where 

( ) ( ) ( ) ( )1

1 1 1 1

HH −+ ⎡ ⎤= ⎣ ⎦Φ τ Φ τ Φ τ Φ τ . (5.24) 

Substituting (5.23) back into (5.20) yields the concentrated cost function 

( ) ( ) ( ) ( )
22

111 1

~ uΠuτΦτΦuτ τΦ
⊥+ =−=J , (5.25) 

where 

( ) ( ) ( )τΦτΦΠ τΦ
+= 111

, (5.26) 

( ) ( )τΦτΦ ΠIΠ
11

−=⊥ . (5.27) 

Therefore, the Least Square (LS) estimation of time-delay becomes 

( ){ } ( ) ( )
22

1 11
maxargminarg~minargˆ uΠuΠττ τΦττΦττ

=== ⊥J . (5.28) 

Further, from equation (5.18), we get the corresponding cost function 
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Equation (5.29) can be rewritten as 

( ) ( ) ( ) ( ) 2
22 ,, θqgGτΦvθgτ −=J .  (5.30) 

where 
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Minimizing (5.30) with respect to q yields 

( ) ( ) ( )[ ] vgGτΦθq += 2ˆ . (5.33) 

Replacing τ  and g with τ̂  and ĝ coming from (5.28) and (5.23) respectively, we get 

( ) ( ) ( )[ ] vgGτΦθq += ˆˆˆ 2 . (5.34) 

Comparing (5.16) with (5.34), we get the corresponding DOA estimates as 

( )1 ˆargˆ cos m
m

q
θ

π
− ⎡ ⎤

= −⎢ ⎥
⎣ ⎦

, 1, 2, ,m M= , (5.35) 

where ˆmq represents the mth entry of the estimated vector ( )q̂ θ  in (5.34). 

Once the estimators have been derived, the associated algorithm is quite self-

explanatory. In detail, it consists of two main steps as follows. 

A. Time-delay estimation 

To solve the non-linear M-dimensional optimization problem of (5.28), we 

resort to the Alternating Maximization (AM) algorithm, which performs M one-

dimensional searches iteratively instead of a direct M-dimensional search.  
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A.1. Initialization 

The initialization procedure consists of M steps. For the mth step, we solve the 

maximization problem assuming that there exists m path(s), and the associated time-

delay estimation will be [42] 

( ) ( )( ) ( )( ){ }000 ˆ,ˆ,maxargˆ mmmm
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= , (5.36) 
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Note that ( )mτφ  denotes the mth column vector of the MN ×  matrix ( )1Φ τ , and 

( )( )0
1 ˆmτΦ  is a ( )1−× mN  matrix given by 

( )( )
( )( )

( )( )

( )1

..................
0

1

..................

0
11

0
1

ˆ

ˆ

ˆ

−×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

mN

mP

m

m

τΦ

τΦ

τΦ , (5.41) 

( )( )
( )( ) ( ) ( )[ ] ( )( ) ( ) ( )[ ]

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]

( )1

ˆ122ˆ122

ˆ122ˆ122

0
1

0
1012

0
1012

0
10112

0
10112

ˆ

−×

−−+−−+

−−+−−+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
−−−

−+−+−
mL

TpLtfjTpLtfj

LTptfjLTptfj

mp
mcpLcpL

mcLPcLP

ee

ee

τπτπ

τπτπ

τΦ . (5.42) 

A.2. Iteration 

For 1,2, ,m M= , do the following maximization until ( ) ( ) εττ <−+ n
m

n
m ˆˆ 1 . 
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where 
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Note that ( )( )n
mτΦ ˆ1  is a ( )1−× MN  matrix given by 
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B. DOA estimation 

Once the time-delay estimation τ̂  is achieved, the corresponding DOA 

estimation θ̂  will be readily obtained from equation (5.35). 

5.4 SIMULATION RESULTS 

In this section, some simulation results will be presented to illustrate the 

performance of the proposed algorithm.  

We simulated the case where narrowband signals transmitted from one far-

field source impinge on a ULA of two half-wavelength spaced antenna elements via 

2=M  paths. The corresponding DOAs are given by 0
1 30=θ  and 0

2 45=θ . The 
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time-delays are CT
8
1

1 =τ  and CT
4
1

2 =τ , where Tc represents the chip duration equal 

to sµ1 . And the associated complex path attenuations are 5.08.01 jg −=  

and 35.06.02 jg += . The transmitted signal adopts FH operating at the center 

frequency GHzfc 1= . Also, there are twenty hopping frequencies used, i.e., 

hfh 3.0= MHz  and 20,,1=h . The initial sampling time is 20 CTt = . 

For the stage of time-delay estimation, the method of unit step search [43] was 

used, with step size being 200CT=µ . Figure 5.2 shows the initialization of the time-

delays 1τ  and 2τ  in the absence of noise. By locating the peak values of the 

corresponding cost functions, the initial estimation values of 1τ  and 2τ are given by 

sµ160.0  and sµ235.0 , respectively.  
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Figure 5.2   Initialization of the time-delays 1τ  and 2τ  in the absence of noise. 
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Based on the initial estimation, the following iteration is performed to find the 

optimal estimation of 1τ  and 2τ . Table 5.1 shows this process for the scenarios of no 

noise and dBSNR 5= . The SNR is defined as ( )22
10log10 nsSNR σσ= , where 2

sσ and 

2
nσ  are the average power of the source and the receiver noise, respectively. We can 

see that the iteration algorithm converges well after 2 iterations. 

Table 5.1   Time-delay estimation 
 

          Iteration No. 
SNR (dB) 

0* 
 

1 2 3 

1τ ( sµ ) 0.160 0.125 0.125 0.125        ∞   
   
     (No Noise) 2τ ( sµ ) 0.235 0.250 0.250 0.250 

1τ ( sµ ) 0.155 0.125 0.130 0.130  
        5 

2τ ( sµ ) 0.240 0.245 0.245 0.245 
* Iteration number 0 corresponds to initial value estimation of 1τ  and 2τ . 

Also, we computed the corresponding Root Mean Square Error (RMSE) of 

DOA estimation with 50 Monte Carlo runs. The associated curve is shown as Figure 

5.3.  
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Figure 5.3   Root Mean Square Error (RMSE) of DOA estimation. 
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From the above curve, we can see that, for dBSNR 15≥ , the RMSE is smaller 

than 01.0 . If we follow the standard used by [35] and [36], which tend to set the SNR 

value corresponding to the case where DOA RMSE equals to 01.0 as a threshold, then 

our method operates properly for dBSNR 15≥ . 

5.5 SUMMARY 

In this chapter, we briefly introduce a new method for joint time delay and 

DOA estimation using two antennas and one receiver for a FH system in the presence 

of multipath.  We derive a Least Square (LS) estimator for both time delay and DOA 

estimation.  We then formulate an iterative Alternating Maximization (AM) algorithm 

to jointly estimate the time delays and DOA parameters. The simulation results 

demonstrate the performance of the algorithm. 
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Chapter 6 

Conclusions and Future Work 

 

6.1 CONCLUSIONS 

DOA estimation or localization of frequency hopping signal sources is 

important or useful in a number of applications. FCC requires the future mobile 

communication systems to have the ability to accurately locate emergency calls made 

from mobile phones. In military communications using FH technique, DOA 

estimation is also required for both non-cooperative signal interception and jammer 

localization.  

Although some work has been done in this area, they did not consider the 

effect of unknown mutual coupling. As a matter of fact, super-resolution DOA 

estimation algorithms require an accurate knowledge of the array manifold, especially 

the unknown mutual coupling between the antenna elements. Otherwise, the 

corresponding performance will be dramatically deteriorated.  

Furthermore, all the algorithms of the work mentioned above are only 

effective in the scenario where the transmitted signals are noncoherent and do not 

exhibit multipath propagation. However, in typical wireless communication systems 

where multipath propagation is unavoidable, these algorithms may not be effective.  

In this thesis, we propose a new method for DOA estimation in the presence of 

multipath propagation and mutual coupling for a FH system [52 - 53]. We take these 

two effects into account and derive a Maximum Likelihood (ML) estimator for both 
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MC matrix and DOA estimation.  We then formulate an iterative Alternating 

Minimization (AM) algorithm for finding the MC and DOA parameters in an alternate 

manner. To illustrate the performance of the technique, we simulate the scenario 

where narrowband signals transmitted from one far-field source impinge on an ULA 

of two half-wavelength spaced antenna elements via two paths. The simulation results 

presented illustrate the convergence of the algorithm and its statistical efficiency at 

high SNR. 

In addition, we introduce a new method for joint time delay and DOA 

estimation using two antennas and one receiver for a FH system in the presence of 

multipath.  We derive a Least Square (LS) estimator for both time delay and DOA 

estimation.  We then formulate an iterative Alternating Maximization (AM) algorithm 

to jointly estimate the time delays and DOA parameters. The simulation results 

demonstrate the performance of the algorithm. 

6.2 FUTURE WORK 

Note that in this thesis, we only consider the scenario of cooperative 

communication. That is, both the hopping sequence and the hopping instants are 

assumed to be known. 

However, if we want to extend our work to the scenario of non-cooperative 

communication where both the hopping sequence and the hopping instants are 

unknown, we have to estimate these parameters first. Perhaps we can get some 

inspiration from the work done in [16 - 18].  
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Appendix A 

Proof of Equation (4.49) 

 

Note that 
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To prove Equation (4.49), we have to evaluate 
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∂ +B  first, which is given by 
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 Let ( )xA  be a non-singular square matrix whose elements are differentiable 

functions with respect to real-valued variable x, we get [54]  
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Note that the pseudo-inverse and projection matrix for matrix B are defined by 

( ) HH BBBB 1−+ = , (A.6) 



 76

+= BBΠ B , (A.7) 

respectively. We can rewrite Equation (A.5) as 
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where ⊥
BΠ  denotes the complementary projection matrix for matrix B, that is, 

BΠIΠ −=⊥
B , (A.9) 

with I being the identity matrix. Substituting (A.8) back into (A.1), we get 
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Note that for arbitrary non-singular matrix A, we have [54] 

( ) ( ) 11 −− = HH AA . (A.11) 

Thus, we get 
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Based on Equation (A.12) and (A.13), Equation (A.10) can be written as 
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Therefore, Equation (4.49) in Chapter 4 is proved. 
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Appendix B 

Proof of Equation (4.75) 

 

Note that the first order partial derivative with respect to multipath delays 

takes the form 
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And the second order partial derivative with respect to multipath delays is given by 
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Take the statistical expectation at both sides of Equation (B.2), we get 
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Note that, in the second term of Equation (B.3),  ( )[ ]nxFDg −  corresponds to an 

AWGN noise vector, therefore, 

( )( )[ ] 0xFDg =− nE . (B.4) 
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Substituting Equation (B.4) back into Equation (B.3) yields 
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Thus, Equation (4.75) in Chapter 4 is proved. Likewise, the other expectations of 

second order partial derivatives in Section 4.3.3, Chapter 4 can be proved in this way. 
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