
SECURE ACCESS CONTROL IN UNIX

HEMAL NAMDEV RATHOD

(B.E. - Computer Science & Engg.)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I would like to express my gratitude to my supervisor Assoc. Prof Roland H. C. Yap for

his valuable guidance throughout my research work. I am grateful to him for instilling

in me the art of thinking diversely while tackling issues during research.

I would also like to thank my friends Vijay Kothari, Arun Shenoy and Roshni Mo-

hapatra for supporting me morally and academically during the course of my study.

To my beloved parents: For whatever I am today, its because of you and I will remain

grateful to you all my life.

- Hemal

ii

Contents

Acknowledgments ii

Summary ix

1 Introduction 1

2 Background and Related Work 5

2.1 Motivation . 5

2.1.1 Inadequate Operating System Support 5

2.1.2 The Preexisting Reference Monitor 7

2.1.3 The Conventional Network Firewall 7

2.2 Current Approaches . 7

2.2.1 Mandatory Access Control . 7

2.2.2 Role Based Access Control . 11

2.2.3 Sandboxing . 13

2.3 Existing Capability Mechanisms . 15

3 Design Goals and Approach 18

3.1 Fine Grained Security . 18

3.2 Features of both DAC and MAC . 18

3.3 Dynamic Support for Policies . 19

iii

3.4 Decentralisation . 19

3.5 Flexibility . 19

3.6 Sandboxing . 19

3.7 Why Capabilities? . 20

3.7.1 Confinement . 20

3.7.2 Fine Grained Security . 20

3.7.3 Decentralisation . 21

3.7.4 Dynamic Control . 21

4 CBox: Capability Based Sandboxing 22

4.1 Capabilities . 22

4.2 Capabilities : Structure and Types . 23

4.2.1 Master Capabilities . 23

4.2.2 Derived Capabilities . 23

4.2.3 Encrypted Capabilities . 25

4.2.4 Resource Capabilities . 25

4.2.5 Other types of Capabilities . 26

4.3 Operations on Capabilities . 27

4.3.1 Creation . 27

4.3.2 Revocation . 27

4.3.3 Propagation . 28

4.4 Introduction to CBoxes . 28

4.5 Operations on CBoxes . 30

4.5.1 Creation . 30

4.5.2 Locking CBoxes . 32

4.5.3 Modifying CBoxes . 32

iv

4.6 A Detailed Example . 33

5 Implementation on a Linux Kernel 36

5.1 LSM - Linux Security Modules . 37

5.2 Design of Capability Based Mechanism using LSM 38

5.2.1 Opaque Security Fields - Master Capabilities 39

5.2.2 Calls to Security Hook Functions 40

5.2.3 Creation of Other Capabilities and CBoxes 41

5.3 Performance Evaluation . 43

5.3.1 Microbenchmark - Test programs and Results 43

5.3.2 Using LMBench for microbenchmarking 43

5.3.3 Macrobenchmark . 44

6 Using Capabilities to Implement RBAC 46

6.1 A Capability based RBAC . 46

6.1.1 Implementing the Core RBAC 46

6.1.2 Hierarchical RBAC using Capabilities 48

6.1.3 User Sessions . 50

6.1.4 Constraints using Capabilities . 51

6.1.5 Dynamic RBAC using Capabilities 52

6.2 Administrating Capability-based RBAC 52

6.2.1 Delegation of Administration in RBAC 53

6.3 Some Examples . 54

7 Conclusion and Future Work 58

A 64

A.1 Creation of Master Capability using the Hook 64

v

A.2 Hook implemented for security inode create(dir,

dentry, mode) . 65

B 66

B.1 Example - open.c . 66

B.2 Example - fork.c . 66

B.3 Example - tar.sh . 67

vi

List of Tables

5.1 Objects and Fine Grained Permissions in CBox 39

5.2 Kernel data structures modified by the LSM kernel patch and the corre-

sponding abstract objects. 39

5.3 Algorithm for Access Hook . 41

5.4 Microbenchmark for open() and fork() in seconds 44

5.5 File and VM system latencies in microseconds - smaller is better 44

5.6 Macrobenchmark using tar . 45

vii

List of Figures

4.1 Basic Structure of a CBox . 29

4.2 Example describing CBoxes . 35

5.1 LSM Hook Architecture . 37

5.2 The vfs create kernel function with one security hook call to mediate ac-

cess and one security hook call to manage the security field. The security

hooks are marked by <-> . 40

5.3 Capability Structures . 42

5.4 CBox Structures . 42

6.1 Example of a role and session in core RBAC 48

6.2 Example Role Hierarchy . 49

6.3 Distributed Administration Example . 52

6.4 Example describing usage of capabilities for RBAC 55

6.5 Delegation Example . 56

A.1 Simple Logging is used here for illustration 65

viii

Summary

Computer Security has been a chronic problem since a very long time. Several ap-

proaches have been employed but are usually flawed because they rely on existing secu-

rity mechanism of the mainstream operating systems. Security needs to be addressed at

the operating system level. Unix, in its various forms uses access control lists(ACLs) to

achieve access control which is not sufficiently powerful to achieve security at the higher

level. Unix also does not conform with the principle of least privilege. Various other

mechanisms and models have been developed recently for access control in Unix based

systems. In this research, we identify the major problems with the current Unix model,

outline the various research techniques which are employed to address them and present

our solution which achieves more flexibility and a more fine grained model.

Our approach is to use capabilities for achieving access control. Capabilities have

been used several times in the past for achieving access control. We have altered the

traditional capability structure to create environments to confine processes in a domain.

These environments, called CBoxes can be used to provide confinement since processes

can only access objects whose capabilities are available in that CBox. Capabilities can

also be added and dropped from the CBoxes dynamically thereby achieving dynamic

access control. We have defined several other types of capabilities like one-time capa-

bilities and time-stamped capabilities to achieve more flexibility. Fine grained access

permissions are defined for each type of object in the system so that capabilities for

only those fine grained permissions can be issued and nothing more. Not only are the

objects accessed using capabilities, we also define resource capabilities which are used

for limited usages of resources. We also address the issue of the all powerful ‘root’ in the

Unix system and propose methods of delegation of power using capabilities. We have

implemented our model in a Linux system and carried out performance evaluation. We

ix

show how capabilities can be used to implement higher level abstraction such as RBAC.

x

Chapter 1

Introduction

Over the past several years, the internet environment has changed drastically. This

network which was once populated almost exclusively by cooperating researchers, who

shared trusted software and data, is now inhabited by a much larger and more diverse

group that includes pranksters, crackers and business competitors. Since the software

and data exchanged on the internet is very often unauthenticated, it could easily have

been created by an adversary [Gol96].

Computer security has been a chronic problem since a very long time. Microsoft’s

windows operating system have had several security attacks since it was developed.

The infamous “Melissa” virus infected thousands of computers with alarming speed,

infected Microsoft Word documents on the user’s hard drive, and mailed them out

through Outlook to the several recipients. The “I Love You” virus infected millions

of computers virtually overnight, using a method similar to the Melissa virus. The

virus also sent passwords and user names stored on infected computers back to the

virus’s author. The first virus developed was actually a Unix one - called the “Morris”

worm that invaded ARPANET computers and disabled roughly 6,000 computers on the

network.

Surprisingly, the computer security problem might not have a standard solution to

1

it. Anti-virus software and Firewalls have limited applicability to the problem. The

increased awareness of the need for security has resulted in an increase of efforts to

add enhanced security to computing environments. However, most of the efforts to do

so suffer from the flawed assumption that security can adequately be provided without

certain security features in the operating system. In reality, operating system security

mechanisms play a critical role in supporting security at higher levels. The computer

industry has not accepted the critical role of the operating system to security, as ev-

idenced by the inadequacies of the basic protection mechanisms provided by current

mainstream operating systems [Los98].

Access control forms the core of system security in an operating system. Access con-

trol is any mechanism by which a system grants or revokes the right to access some data,

or perform some action. Normally, a user must first Login to a system, using some Au-

thentication system. Typically, the Access Control mechanism controls what operations

the user may or may not make by comparing the User ID to an Access Control data-

base. Access control mechanisms (User/Group IDs and ACLs) in mainstream operating

systems like Unix and Windows are inadequate to provide high level of security. The

Unix kernel only provides discretionary access controls and lacks any direct support for

enhanced access control mechanisms. In Windows, protection is largely based on access

control lists.

Variations of Lampson’s access matrix [Lam73] in the form of access control lists

(ACLs) have been used as the security mechanism for basic access to objects. Unix in

its various versions also does the same either at the granularity of user/group/world or

some Unix have ACL. However the basic ACL mechanism is not sufficiently powerful to

obtain a high level of security. Furthermore, there are security problems which arise from

exploiting the fact that privilege users such as root have too much access. The root cause

can often be traced to not using the principle of least privilege [Sch75]. Applying least

2

privilege however is problematic since that requires a more powerful security mechanism

in place and it cannot be achieved using ACLs. There have been a number of basic

approaches to the problem of too much privilege. One way is to use mandatory access

control mechanisms (MAC). Some examples in Linux are SELinux [Los01], LIDS [Xie01]

and RSBAC [Ott01]. Another approach is to confine an untrusted process by using

sandboxing techniques. Again there are numerous systems, such as Janus [Ian96] and

Systrace [Pro02]. Capabilities [Den65] were invented as a fine grained mechanism for

protecting objects. While it has been used in the past in various secure operating

systems [Dat89, Coh75, Tan86], it is fair to say that existing mainstream operating

systems do not employ capabilities as their security mechanism. In short, it seems to

have fallen out of use. There is recent work on capability based operating systems, such

as KeyKOS [Har85] and EROS [Sha99], however these operating systems are designed

from the ground up to be based on capabilities and are thus not compatible with existing

operating systems. This is a major issue when it comes to usage, compatibility, porting

and availability of applications. One reason for the lack of interest for a long time in

capabilities as a basic security mechanism may be due to several myths which have

been associated with capabilities. Miller et al. [Mil03] describes the three important

misconceptions:

• The equivalence myth: ACL and capability systems are formally equivalent.

• The confinement myth: Capability systems cannot enforce confinement

• The irrevocability myth: Capability systems do not support revocation

It is more correct to say that these myths depend very much on the precise properties

of the capability system and how it is used (in the operating system or otherwise). It is

useful to note also that other solutions such as MAC and sandboxing may not address

these issues well either. Revocation in particular may not make sense in either MAC

3

or sandboxing. MAC however does not directly address confinement while sandboxing

does. We propose a new capability based system which we have designed to be essentially

compatible with Unix. Compatibility means that it is possible to setup the environment

and Unix to take advantage of the extra security introduced with capabilities and yet

allow existing Unix applications to remain unchanged (binary compatibility) and also

keep the feel of Unix unchanged. Applications could be written of course to get increased

security using these mechanisms but it is possible to achieve that even with existing

binaries. Unlike the myth, our system can be used to provide confinement. However

it goes beyond confinement since capabilities can be used to produce either a highly

confined environment which is similar to a sandbox or a more loose environment where

collections of processes can share access in a cooperative fashion. For example, based

on their own computation several processes could exchange capabilities or even trade

resources such as CPU time, disk quota, etc. Unlike systems like EROS, we achieve

more compatibility with regular Unix behavior and yet provide both fine grained access

control as well as confinement.

In the next chapter we discuss the background and related work. Design goals and

approach is discussed in chapter 3. A detailed design of the capability based mechanism

is outlined in chapter 4. Implementation details and performance evaluation is discussed

in chapter 5. In chapter 6 we show how capability based mechanism can also be used

for Role Based Access Control. Chapter 7 outlines the conclusion and future work.

4

Chapter 2

Background and Related Work

This chapter is divided into two sections. The first section discusses the various mo-

tivation points and problems existing in current mainstream operating systems. The

later sections discusses the related work to indicate various approaches taken to provide

security.

2.1 Motivation

2.1.1 Inadequate Operating System Support

Operating systems like Unix were not designed to protect against current security is-

sues arising due to networked environments. Hence, it has various loopholes leading to

security being compromised. We elaborate the problems with the current Unix security

model.

Principle of least privilege

The lack of flexibility in modern operating systems is one of the main reasons security

is compromised. In addition, Unix allows the granting of temporary privileges, namely

setuid(2) and setgid(2). Special care must be taken any time these primitives are used

5

since it is well known that it is difficult to write secure programs. Access decisions are

made on the basis of the effective userid of the process. An attacker can utilize a flaw

in the program and could use inputs much larger than the defined size leading to buffer

overflow.

Coarse Granularity

There is the small granularity of discretionary access rights only dividing between read,

write and execute rights for file owner, file group members and all others. The fact that

access control relies on a file owner’s discretion already leads to various problems, like

the level of trust that has to be put in a user, the vulnerability from malware working

on behalf of a user, etc.

All Powerful Root

The worst problem however is the system administrator account ‘root’. Numerous sys-

tem tasks are only allowed to be done by this user, even various network services have

to be started or, worse run as root. The root account has full access to every object

in the system. This is one of the main reasons many Unix family systems have been

compromised locally or by remote access. For example, when an attacker is running

a program owned by root, it can utilize any loopholes in the program which leads to

execution of a shell. Since the root can access all objects in the system, the attacker

can also do anything if he can obtain a root shell.

These mechanisms are inadequate to handle the complex security needs of today’s

applications. Hence, extra security is needed for the user to run these applications safely.

6

2.1.2 The Preexisting Reference Monitor

The traditional Operating System’s monolithic reference monitor cannot protect against

attacks on applications directly. It could at most, prevent a penetration from spreading

to new accounts once the user’s account has been compromised, but by then the damage

is already been done. In practice, against a motivated attacker most operating systems

fail to prevent the spread of penetration; once one account has been subverted, the whole

system typically falls in rapid succession.

2.1.3 The Conventional Network Firewall

Packet filters cannot distinguish between different types of HTTP traffic, let alone an-

alyze the data for security threat. A proxy could, but it would be hard-pressed to

understand all possible file formats, interpret the often-complex application languages,

and squelch all dangerous data. This would make for a very complex and thus un-

trustworthy proxy. Firewalls only provide some protection at network packet level and

no protection against malicious insiders. Typically, insiders can easily leak information

through the firewall.

2.2 Current Approaches

2.2.1 Mandatory Access Control

The philosophy underlying discretionary access control (DAC) is that the owner or

administrator of the information has the knowledge, skill, and ability to limit access

appropriately, to control who can see or work with the information. A person running

a working group could provide working group members with access to shared files but

deny access to anyone else. Alternatively, and more frequently, global access is provided

by default.

7

In MAC, information is categorized according to sensitivity rather than subject mat-

ter. Data in the same general subject matter area can exist in files with different sensitiv-

ity concerns. People and processes within a MAC-managed environment are adjudicated

as to what kinds of sensitivity levels they are allowed access to. The MAC processes

enforce these access limitations. For example, information classified secret is accessi-

ble only by people or processes adjudicated for access to secret or more highly secret

information. People or processes not adjudicated for secret-level information would be

barred from accessing it.

Various systems have used MAC as their design principle. In this section we describe

approaches of a few systems like SELINUX [Los01] and RSBAC [Ott01].

DTE

A DTE [Lee96] system associates a domain with each running process and a type with

each object (e.g., file, packet). As a DTE UNIX system runs, a kernel-level DTE sub-

system compares a process’s domain with the type of any file or the domain of any

process it attempts to access. The DTE subsystem denies the attempt if the requesting

process’s domain does not include a right to the requested access mode for that type.

SELINUX

Secure-Enhanced Linux [Los01], or SELinux for short, is an application of the Flask

architecture in the Linux operating system. MAC has been integrated into the ma-

jor subsystems of the Linux kernel, including fine-grained controls for operations on

processes, files and sockets. The security policy decision logic has been encapsulated

into a new kernel component called the Security Server (SS) which makes labeling,

access and polyinstantiation decisions in response to policy-independent requests that

have been placed throughout the kernel. This architecture enables the kernel to enforce

8

policy decisions without needing access to the details of the policy. SELinux is designed

around two key concepts: fine-grained mandatory access controls and a separation be-

tween enforcement mechanisms and policies.

SELinux ensures that every system call is authorized as a function of:

• The running program

• The user running the program and

• The context that invoked the program

Similar to DTE, the security policy configuration in SELinux uses a high-level lan-

guage for specification. Type enforcement can be combined with Role-Based Access

Control (RBAC), wherein each process has an associated role. System processes run in

the system r role, while user may have roles such as sysadm r and user r. A role is only

allowed to enter a specified set of domains. Domain transitions may occur, for example,

to a more restricted domain when the user runs an application that should be run with

a subset of the user’s privileges.

A policy could be designed so that a program could only read and not write to the

filesystem while at the same time have the ability to write to log files, but when running

the same program as a different user have the program be able to write to the filesystem.

Security Server : The flexibility of the Flask Architecture allows the security server to

be modified, or even replaced, to alter the supported security model to meet additional

requirements. The content and format of labels used in the system depend on the

particular security model implemented by the security server. Security decisions within

the security server are based on security contexts which represent security labels. A

security context is a policy independent data type that can be handled by different

parts of the system but should only be interpreted by the security server. It contains all

9

of the security attributes associated with a particular labeled object which are relevant

to the policy decision login.

Security contexts are usually not bound directly to objects. A second policy-independent

data type called a security identifier (SID) is bound to each object that requires a label.

SIDs are nonglobal and nonpersistent opaque objects that are mapped to security con-

texts. This mapping is created at run time maintained by the security server. When an

object is created, the security server decides which SID to use as a label. SIDs associ-

ated with objects are passed into the security server and used as the basis for security

decisions.

The mandatory access controls of SELinux are implemented as permission checks

that have been inserted as control points throughout the Linux kernel. Approximately

140 fine-grained permissions, grouped into 28 object classes, have been defined to allow

the control of nearly every system operation. Permission checks are made between a

source SID and a target SID for a particular permission in some object class. Usually, but

not always, these are the SIDs associated with a calling process and some object, like a

file, that is being accessed. To respond to permission checks, the security server’s policy

logic uses the security relevant attributes contained in the security contexts associated

with the source and target SIDs to determine if permission can be granted.

RSBAC

RSBAC [Ott01] is a flexible, powerful and fast open source access control framework for

current Linux kernels. The RSBAC framework is based on the Generalized Framework

for Access Control (GFAC) by Abrams and LaPadula. All security relevant system

calls are extended by security enforcement code. This code calls the central decision

component, which in turn calls all active decision modules and generates a combined

decision. This decision is then enforced by the system call extensions.

10

Decisions are based on the type of access (request type), the access target and

on the values of attributes attached to the subject calling and to the target to be

accessed. Additional independent attributes can be used by individual modules, e.g.

the privacy module (PM). All attributes are stored in fully protected directories, one on

each mounted device. Thus changes to attributes require special system calls provided.

As all types of access decisions are based on general decision requests, many different

security policies can be implemented as a decision module. Apart from the built-in

models, the optional Module Registration (REG) allows for registration of additional,

individual decision modules at runtime.

The RSBAC framework gives detailed access control information, and you can im-

plement almost any access control model in it, e.g. as a runtime registered kernel

module. Also, there is a powerful logging system which makes intrusion attempts easily

detectable.

2.2.2 Role Based Access Control

The Role-Based Access Control (RBAC) model provides a flexible method for managing

access control in complex systems. It has been widely used for access control in many

environments including organizations, databases and operating systems. Implementing

and administrating the RBAC model is an important issue since the model can contain

large number of users, roles, permissions and constraints.

RBAC96

Four different models RBAC0, RBAC1, RBAC2, RBAC3 were described in the RBAC96

paper by Sandhu et al. [San96]. There are three sets of entities called users, roles and

permissions. A user can be a human being or agents like robots and computers. A role

is a job function or job title within an organization. A permission is an approval of a

11

particular mode of access to one or more objects in the system. Users are assigned to

roles, permissions are assigned to roles and user acquire permissions by being member

of roles. The user-role and permission-role assignment can be many-to-many. A sessions

is defined as a mapping of one user to many roles. A user can establish a session and

activate a subset of roles assigned to the user. During this session the user can utilize

the union of the permissions assigned to the roles which are active. Each session is

associated with a single user and it remains constant for the life of a session.

Hierarchical RBAC

Hierarchical RBAC organizes roles into a hierarchy. The hierarchy defines a partial or-

dering defining a seniority relation between roles, whereby senior roles acquire permis-

sions of their juniors. The NIST model [Dav01] recognizes two types, General Hierarchy

and Restricted Hierarchy. In general hierarchical RBAC, there is support for an arbi-

trary partial order to serve as the role hierarchy. In restricted hierarchy, hierarchies are

restricted to structures like trees.

Constraints in RBAC

Constraints are introduced in the RBAC model in the form of separation of duties(SOD).

Three different types of SOD exist in the form of Static SOD, Dynamic SOD and His-

torical SOD. Static SOD constrains the assignment of users and permissions to roles.

Dynamic SOD constrains the activation of roles and invocation at run time. Historical

SOD constrains the invocation of permissions over the course of time.

Administration

Managing RBAC includes managing the roles, their interrelationships, assigning users

and permissions to roles and various other complex administrative tasks. RBAC96

12

[San96] proposed using RBAC itself to manage RBAC. This is called ARBAC where A

denotes administrative. Other methods proposed are ARBAC97 and its improved model

ARBAC02 by Oh and Sandhu [Oh02]. These models are used mainly for organizing role

hierarchies.

2.2.3 Sandboxing

A widely used technique for securing computer systems is to execute programs inside

protection domains that enforce established security policies. These containers, often

referred to as sandboxes, come in a variety of forms. Although current sandboxing

techniques have individual strengths, they also have limitations that reduce the scope of

their applicability. This section describes in brief various research done on this technique.

System Call Interposition

Janus [Ian96] is a secure environment for untrusted helper applications built by taking

advantage of the Solaris process tracing facility. Janus intercepts and filters dangerous

system calls via the Solaris process tracing facility. An application can do anything it

likes that does not involve a system call. A configurable policy decides whether system

calls like open and rename can be allowed or denied.

Consh [Ale99] incorporates a modified version of Janus as one of its modules. Consh

virtualizes all the resources visible to untrusted applications which allows protected

resources such as files and directories or networking to be replaced with safe alternative

local or remote ones transparently. It works by intercepting the system calls issued by the

applications and modifying their behavior. To provide protection, Consh aborts system

calls that attempt to access forbidden resources. To provide access to remote resources,

Consh handles or modifies the behavior of system calls that access such resources.

Systrace [Pro02] enforces system call policies for applications by constraining the

13

application’s access to the system. The policy is generated interactively. Operations not

covered by the policy raises an alarm, allowing a user to refine the currently configured

policy. The Systrace project is similar to Janus, but Systrace has a GUI monitor program

to manage policies and is able to modify policies at run time.

Information critical to sound security policy decisions is not available at system call

interposition. At the system call interface, userspace data, such as a path name,has yet

to be translated to the kernel object it represents, such as an inode. Thus, system call

interposition is both inefficient and prone to time-of-check-to-time-of-use (TOCTTOU)

races [Bib96].

Monitor Based Sandboxes

Monitor based sandboxing techniques uses a process to monitor a particular sandbox.

[Pet02] illustrates one such mechanism which uses monitors to control the sandbox. The

sandboxing mechanism in this system is implemented as a system call API that serves

as a general-purpose framework for confining untrusted programs. It supports nested

monitor (or nested sandbox) and uses monitors to manage ACLs. The monitors are

used to manage all policies. For each syscall from the confined process, the kernel will

asks the monitor to decide allow/deny.

Other Sandboxing Techniques

MAPbox [Ach99] focuses on classifying application behaviors in order to implement an

application-class-specific sandboxing mechanism. The key idea is to group application

behaviors into classes based on their expected functionality and the resources required

to achieve that functionality. Applications are classified into Behavior classes, such as

reader, compiler, editor and shell.

BSD Jail - Jails [BsdJa] are typically set up using one of two philosophies: either to

14

constrain a specific application (possibly running with privilege), or to create a “virtual

system image” running a variety of daemons and services. Jail can be used to restrict

a process to access only a specific directory tree. A fairly complete filesystem install on

the directory tree is required. This feature is similar to chroot(). In addition, we can

use jail to restrict a process to access (e.g. bind, listen) a specific network interface.

FMAC [Pre01] describes a portable system that tracks the file requests made by

applications creating an access log. The same system can then use the access log as a

template to regulate file access requests made by sandboxed applications.

2.3 Existing Capability Mechanisms

Capabilities [Den65] were invented as a fine grained mechanism for protecting objects.

A capability list can be realized by vertically compressing the Access Control Matrix

as defined by Lampson [Lam73]. A capability can be defined as a ticket which has the

name or the identity of an object and the access rights. The holder of the capability

can access the object with the access right on the capability upon authentication of the

capability.

Several systems using the capability concept have been marketed (IBM System 38,

CAP, i432, Plessey S250) [Lev84]. These capability based systems have been used only

for certain types of systems and require support of special hardware. In traditional

operating systems, capabilities were created and managed only by the kernel processes

and stored in the privileged system space. Distributed capability based systems like

Amoeba [Tan86] used capabilities in the user space. Amoeba uses cryptographic tech-

niques for ensuring the integrity of capability in user space. The commonly used method

is to append to the capability a check field which is usually the output of a one-way

hash function applied to all data on the capability, and only the object manager has the

knowledge to recompute this field and verify its genuineness.

15

[Kao96] proposes an extended capability architecture which extends the traditional

capability scheme to enforce as many dynamic access control policies as possible while

keeping the extra overhead minimum. It embeds the owner into the capability similar

to the mechanism proposed by Gong [Gon89] so that malicious users cannot use them

illegally. It also embeds an expire field indicating the time at which the capability

expires. Access control information like policy number and policy dependent information

is also added to the capability. A check field is used for protecting the capability from

forgery.

The basic idea in Split capabilities [Kar03] is to divide the capability into two parts,

a handle to the resource being accessed and a handle to a separate resource representing

the access rights being requested. Using split capabilities with visibility controls allows

the simple specification of complex security policies.

KeyKos [Har85] and EROS [Sha99] are capability based operating systems and are

created from the ground up. EROS is a pure capability system. Authority in the system

is conveyed exclusively by secure capabilities, down to the granularity of individual

pages. Some features of EROS are as follows:-

Orthogonal Global Persistence - All user state, including both data and running

programs, are transparently saved on a periodic basis. In the event of system failure

processes are resumed as of the last checkpoint. No special action or programming on

the part of the application is required.

Kernel Threads - The EROS kernel itself is implemented using multiple kernel-mode

threads. This improves the performance of EROS drivers, makes them simpler to code,

and greatly simplifies the design of the kernel. In addition, it enables selected kernel

functionality to be preempted by higher priority user activities.

Security - Because EROS processes are persistent, processes can hold authorities in

their own right rather than inheriting them from the user. This enables a rich variety of

16

options for security and access control that are impossible in systems lacking persistent

processes.

17

Chapter 3

Design Goals and Approach

3.1 Fine Grained Security

File protection in a UNIX system is achieved by using Read, Write and eXecute per-

missions at three different levels, the file owner, other users in the owners group and

the rest of the world. The UNIX protection mechanism, therefore, is coarse grained and

cannot affect objects whose access has been obtained, eg. open files.

3.2 Features of both DAC and MAC

The philosophy underlying discretionary access control (DAC) is that the owner or

administrator of the information has the knowledge, skill, and ability to limit access

appropriately, to control who can see or work with the information. In mandatory

access control (MAC) and role-based access control (RBAC), management of access is

much more structured. Both assume a set of formal rules about who can have access to

what kind of information and what can be done with that information. Systems which

use MAC rely on administrators to define security. However, the administrators may

not always be correct. DAC provides user programmability which can be convenient

but has the disadvantage that system administrator policies may not be enforced. One

18

goal is to provide a combination of both MAC and DAC features.

3.3 Dynamic Support for Policies

One needs a mechanism which supports dynamic changes to the policies not only once

but several times for the system while its running. One also needs a mechanism to

revoke permissions that are implicitly retained in the state of the system, e.g. open file

descriptions, memory-mapped files, established TCP connections, and even operations

currently in progress that have already checked permissions.

3.4 Decentralisation

Traditionally, the root account has full access to every object in the system. We want

a system where the power can be decentralized to users and root has limited privilege.

Hence, even when a root account is hacked into, not much of damage can be done with

limited root permissions except to those objects accessible with a root account.

3.5 Flexibility

Most security policies are designed to work towards providing security by restricting the

access to a specified set of objects. They are simple mechanisms to use but they often

lack the flexibility. Therefore the problem lies in understanding where the compromise

is.

3.6 Sandboxing

A sandbox provides a safe environment for programs to execute in. A sandbox is an

environment in which the actions of a process are restricted according to a security

policy. Untrusted applications and programs which are possibly infected with virus can

19

be mitigated by means of sandboxing. The sandboxing of application would provide fine

grained confinement for multiple applications.

3.7 Why Capabilities?

We have modified the traditional capability structure and this allows us to attain the

goals that we have mentioned in the previous section. We discuss how they can be

achieved using capabilities.

3.7.1 Confinement

Using capabilities for access control provides confinement. Capabilities can be used to

confine a particular process by restricting it in an environment in which access to objects

is limited to the capabilities available for those objects. For example, if a process run-

ning a compiler is attached to an environment containing read capabilities for compiler

program files, only those files can be accessed and nothing more. If more confinement

is required, capabilities can be dropped to create a tighter environment. Only objects

whose capabilities are available can be accessed and nothing more. These capabilities

are neither forgeable nor can they can be exploited outside the desired process. They

cannot be propagated illegally as will be explained in detail in the sections describing

capabilities. Hence these capabilities can be used to provide confinement and conforms

with the principle of least privileges.

3.7.2 Fine Grained Security

Most of the mechanisms available do not provide fine grained security. Access to each

object in a system needs to be fine grained and using capabilities makes it easier for a fine

grained security model. These capabilities are then used in environments for accessing

objects with only those fine grained permissions which are present in the capabilities

20

and nothing else.

3.7.3 Decentralisation

Since access to each object requires a capability, root may no longer possess all of them,

thus root is restricted. Capabilities for objects and permissions can be appropriately

propagated to various users and the root might just possess capabilities for certain

objects which it requires. This way root cannot access all the objects in the system and

can access only those which required.

3.7.4 Dynamic Control

Capabilities can be added and dropped from environment to provide dynamic control

of access rights. Providing access to objects and revoking the rights is just a matter of

adding and dropping capabilities from environments. Dynamic control of capabilities

provides dynamic access control.

Various other types of capabilities are defined to achieve other features in the ca-

pability based mechanism. One-time capabilities can be used only once and becomes

invalid after that. There could also be time stamped on each capability so that these

capabilities expire after certain time. There might be resource constraints requirements

in a program or access to certain resources needs to be limited. Resource capabilities

are used to achieve that.

21

Chapter 4

CBox: Capability Based

Sandboxing

4.1 Capabilities

A capability as defined by Dennis [Den65] is an unforgeable (object, type, authority)

triple. The object in capability refers to object for which access is being controlled, type

field refers to the type of the object(file, directory etc.) and authority refers to the mode

in which the object can be accessed. To access any object in a capability based system,

a user or a process must possess a capability for it. Possessing a capability is a sufficient

and necessary proof for performing the operations. This section illustrates the capability

based system which we have designed and explains how it can be used to provide secure

access control and confinement. The traditional capability structure is modified so that

it can neither be forged nor can it be propagated illegally. Chapter 2 discusses the

traditional capability based systems being implemented. We use these capabilities to

create dynamically created sandboxes [Ian96],[Pet02],[Ale99],[BsdJa]. These sandboxes,

explained in later sections, are called CBoxes since they can either be used it as a tight

environment for confinement or a loose environment where capabilities can be added

22

dynamically. Various types of capabilities are used depending on the user and owner

of capabilities. Capabilities are also categorized depending on the type of objects in

the system. In the next section we discuss the types and structures of various types of

capabilities available.

4.2 Capabilities : Structure and Types

The capabilities are categorized into Master and Derived depending on its structure and

where it is being used. Structure of each capability is defined in the next section. We

also define other types of capabilities which we have designed to provide other features

apart from access control.

4.2.1 Master Capabilities

A Master capability is like a master key to any lock. The structure of a master capability

is as follows:

ObjID Rights=ALL Type

The ObjID field contains the identity of the object and is a randomly generated

integer. The Rights field is set to ‘ALL’ since it is the master capability. The Type

field is set to the type of object. The master capability is attached to the object. The

owner of the object owns the capability and can use this capability to create derived

capabilities.

4.2.2 Derived Capabilities

A Derived capability is created from the master and is created specifically for a partic-

ular domain or environment (called a CBox in our system). These protected domains

(CBoxes) are created specifically for a process to use the derived capabilities attached to

23

the CBox for accessing the objects and resources. The structure of a derived capability

is as follows

ObjID Rights Stamp Lease Properties

The ObjID field is the same as in the master capability and the Rights field can

be restricted to a particular right from the set of rights defined for that type of object.

The Stamp field is used to stamp the process id (pid) and userID onto the capability to

identify which process or user can use it. The set for the stamp field could be defined

as follows:

Stamp = {〈UserID, pid〉, 〈UserID, ∗〉, 〈∗, pid〉, 〈∗, ∗〉}

The first value has stamped the userID and the pid on the capability. This means

that only that particular user and process can utilize the capability for access. If the

capability is leaked to other users, it is invalid. The second value in the set implies that

any process executing on behalf of the user can use the capability. The third value is not

generally used since the same pid cannot be used for processes executing for different

users. The final value signifies that any user or process can use the capability.

The properties field contains bits which signify whether the capability can be fur-

ther derived or not. If the ’derived’ bit is set to 1 then the capability can be further

derived. Note that instead of stamping the user ID alone in the capability as described

by Gong, [Gon89] and in [Kao96], we stamp the pid as well so that only the particular

process can make use of it. Apart from these fields, the Lease field is used to make the

capability invalid after the time specified by lease expires. Leasing is useful for time

critical capabilities. Leasing was mainly used for revocation in [Kao96].

24

4.2.3 Encrypted Capabilities

Derived capabilities are encrypted with Advanced Encryption Standard (AES) algo-

rithm to generate Encrypted capabilities. The structure of an encrypted capability is

as follows:-

ObjID Rights Code

The code field in the encrypted capability is obtained by encrypting all the fields in

the derived capability using AES. A unique key is used to encrypt the capability.

Capabilities need not be encrypted since we only use references to use the master

and derived capabilities in the kernel space. Encrypted capabilities were traditionally

used in distributed systems [Tan86] where it needs to be used in the user space to avoid

forgery. Encrypted capabilities are used for a different purpose in our system. The

derived capabilities are only encrypted when they need to be stored in the filesystem for

persistance.

4.2.4 Resource Capabilities

Resource capabilities are capabilities used to control access over resources like CPU

time, disk quota etc. The structure of a resource capability is as shown.

ResourceID Limit CID Lease Properties

A unique ID is given to each resource which is a randomly generated integer similar

to ObjID. ‘Limit’ refers to the amount of resource which can be used by the CBox to

which the capability is attached to. This is specific to the underlying object, eg. space,

time, number of pages etc. The rest of the fields are similar to the derived capability

fields.

25

4.2.5 Other types of Capabilities

Negative Capabilities

Negative capabilities are specially designed capabilities to realize negative permissions.

As the name suggests, possessing such a capability for an object implies that the object

cannot be accessed even if a normal capability is available. Negative capabilities (either

a master or derived) is used to cancel out the positive capabilities (master or derived

capabilities). The structure of negative capability is

CapID Stamp Negative Properties

The CapID is the capability ID of the capability for which this negative capability

is created. The stamp field is required to attach it to a particular process or a user so

that other cannot use them. Negative field implies that it is a negative capability. The

properties field is used to check whether the capability can be further derived. This

capability can also be encrypted when it needs to be stored in the filesystem. The

structure of an encrypted negative capability is similar to the structure described in the

encrypted capability section.

One-time Capabilities

One-time capabilities, as the name suggests, can only be used once. This means that

once the capability is used to access the object that it represents, it becomes invalid

and using it further would give an error. Several ways of implementing a one-time

capability are possible. One way is to use the a separate bit in the properties section

of the capability called ‘One-time’. When this bit is set, the capability is invalid and

cannot be used. Other way of implementing a one-time capability is to revoke the

capability after it has been used once. Revocation is discussed in the next section.

[Kao96] also mentions one-time capabilities but they are used in user space and hence

26

are implemented in a different way as compared to our scheme.

4.3 Operations on Capabilities

This section describes various operations that can be performed on the capabilities in

this system.

4.3.1 Creation

Master capabilities for an object is created when the object is created. Once the object

is created, this master capability is attached to the data structure of the object. A

random number is generated for creating the ObjID and the Type field is set to the

type of the object. If the object already exists, master capabilities are created when the

system requests for it. The ObjID could also be the inode number in case the object

has an inode.

Creating derived capabilities is done when it needs to be attached to a CBox. The

ObjID of the master capability is used to create the derived capability. Appropriate ac-

cess permission is attached to the derived capability. The pid of process is then stamped

onto the capability for which it is meant for and the properties field set accordingly. If

the capability can be further derived, the ‘Derivable’ bit is set to 1. Once the derived

capability is created, it is attached to the CBox.

Encrypted capabilities are created by encrypting the derived capabilities using the

key for the particular CBox. As described earlier, capabilities needs to be encrypted

only when it needs to be stored in the filesystem and not otherwise.

4.3.2 Revocation

Revocation is a process of taking back the rights which were originally granted. Revo-

cation of capabilities is required when any process to whom the capability was granted,

27

should no longer be able to use it. Revocation addresses a major shortcoming of Unix

that it is not possible to revoke access to most objects.

Revocation of a capability from a particular CBox can be done by just dropping the

capability from the CBox. Details regarding CBoxes is explained in the coming sections.

When a particular process is destroyed, capabilities which are stamped for that process

needs to be revoked since they are invalid and of no use. This process of revocation of

capabilities for destroyed process is analogous to Garbage Collection.

4.3.3 Propagation

Capabilities attached to CBoxes cannot be propagated illegally to other CBoxes since

the capability is valid only for its corresponding CBoxes. This is because the pid or the

user id stamped on the capability for which it is actually meant for, hence if it is give

to some other CBox, it wont be valid. Propagation can be done among CBoxes if they

have the permission to do so. A capability attached to a CBox can be derived further

and propagated to other CBoxes. For this, a special API function is available which

can be called in order to further derive and propagate. A new capability is then created

with the CID of the receiving CBox and other appropriate fields. Depending on the

properties field, the capability can be further derived and propagated to other CBoxes.

4.4 Introduction to CBoxes

In our capability based mechanism, capabilities are implicitly used with Unix processes

and system calls. Derived capabilities are packaged into CBoxes. A CBox is a composite

object which can hold derived capabilities and can be attached to a process running in

the system. Environment can be likened to a sandbox created using capabilities. We

create our environments using capabilities and call it a CBox. CBoxes are created when

a process needs to be restricted. Either a process can be attached to existing CBoxes

28

or a new CBox can be created for that particular process.

List of Negative
Capabilities

List of Object and
Resource Capabilities

Processes

Locked

CID

Unlocked

Figure 4.1: Basic Structure of a CBox

A different terminology (CBox) is used since the environment that we create using

capabilities can also be a loose environment unlike a tighter environment so it is different

from a sandbox. Each CBox has a separate sub section for positive capabilities perm+

(derived and resource) and negative capabilities perm−. Positive capabilities are derived

capabilities for objects and resources and are used for accessing them. Capabilities can

be added or dropped from the CBoxes depending on whether the CBox is locked or not.

If its locked, capabilities can only be dropped to restrict the CBox further and if its in

the unlocked state, capabilities can be both added and dropped to the CBox.

Figure 4.1 shows the basic structure of the CBox. As shown, the CBox has a unique

ID called the CID. This is a randomly generated integer. This is used as a handle for

the CBox created. The CBox has two sub-sections. The Negative capabilities are stored

in the negative section. This section is locked, meaning that the negative capabilities

cannot be dropped. The other section contains object and resource capabilities. They

are derived from the master and can be attached to the CBox. Processes are contained

in these boxes and can access objects using capabilities attached to their CBoxes. The

notation used for derived capabilities of objects with limited permissions are represented

as deriv(objects.perm) and derived capabilities of negative permissions are represented

29

by deriv(Negative). Stamping of these capabilities with a pid or a UserID is written

as deriv(objects.perm)Stamp and similarly for negative and resource capabilities. Hence

the CBox containing these capabilities could be represented as

CBox(P1) = {〈deriv(objects.perm)Stamp〉, 〈deriv(resources)Stamp〉,

〈deriv(Negative)Stamp〉}

where P1 is the process which is attached to CBox.

This CBox itself can be treated as a special type of capability called a container

capability. This means that this atomic CBox structure could be used to package a

set of capabilities and then be attached to a bigger CBox. For example, if we consider

two CBoxes, say CBox1 and CBox2, CBox2 could contain a set of positive and negative

capabilities and then be attached to CBox1 which has its own positive and negative

capabilities. Hence the CBox can now be represented as

CBox = {〈perm+〉, 〈perm−〉, 〈Caplist〉}

where perm+ is a list of positive capabilities, perm− is a list of negative capabilities and

Caplist is a list of CBox container capabilities. All negative capabilities are global and

are used to cancel out any positive capabilities in any containers including the container

capability.

4.5 Operations on CBoxes

4.5.1 Creation

A CBox is created when a program needs to be executed. Execution of a program

involves accessing objects like files, directories etc. and resources. When a user wants

to execute an untrusted program, he can choose to initially create an empty CBox. The

user can then request for addition of capabilities to the CBox. Depending on which

30

program is being executed capabilities are derived from the master capabilities attached

to the objects and are added to the CBox.

An executable file can have capabilities associated with it. When an exec is called,

derived capabilities are created from the master capabilities associated with executable.

These derived capabilities are for the executable files which the process needs to access.

The permissions field of the derived capabilities is appropriately set for successful ex-

ecution of the program. The capabilities are then stamped with the pid or the userID

depending on the process and the user executing it. The properties field is also set

depending on whether the capability can be further derived. If constraints need to be

placed on the CBoxes, negative capabilities are created to negate the usage of certain

positive capabilities. This CBox is then attached to a process and the process is said to

be confined within an environment created by the CBox.

There are several sources of capabilities. They are

• Regular Unix processes implicitly has all the capabilities associated with that

process in the normal Unix sense.

• A regular Unix process which is root has more capabilities and could choose to

delegate them.

• The capabilities could be packed in CBoxes as explained above and then be passed

around.

• Executables can have capabilities associated with it which could be added dynam-

ically to CBoxes.

Whenever the process tries to access any object, the applied CBox needs to contain

the capability for that object. If the capability is unavailable with the CBox, access

is denied. Negative capabilities cancels the positive one so the access is denied. When

capabilities are available, its rights is checked and if it passes, the access is allowed. These

31

CBoxes are created in the kernel space and not in the user space. Hence, capabilities

cannot be changed or forged or created illegally.

4.5.2 Locking CBoxes

A CBox which is in an unlocked state can be locked. If a CBox is locked the process

is confined only to what the CBox has and no new capabilities could be added to it.

In figure 4.1, the object and resource capabilities section is not locked and hence new

capabilities can be added or dropped. If the section is locked then capabilities cannot

be added but can be dropped for further confinement.

An important property of negative capabilities is that they can never be dropped

irrespective of the CBox being locked or unlocked. This is an important property since

the negative capabilities are used to apply important constraints and should not be

dropped even if the negative sub section is in unlocked state. If the negative capabilities

section is locked then negative capabilities cannot be added.

4.5.3 Modifying CBoxes

Once CBoxes are created, they could be modified dynamically. Modifications means

that capabilities for objects can be added or dropped from the CBox. When a tighter

environment is required, certain capabilities can be dropped. For example, capabilities

for a particular user file can be dropped from the CBox so that the process can no longer

access the file.

Capabilities can be added to CBoxes when required if they are not locked. This

is done when access to certain objects is allowed dynamically. For example, a process

attached to a CBox might require a capability to access files created by the user. Ca-

pabilities for this new file could be derived from the master and attached to the CBox

so that the process could access the file. This feature also helps in realizing dynamic

32

changes in policies.

4.6 A Detailed Example

Let us explain using an example how capabilities can be used to create CBoxes and

how programs can be confined within CBoxes to prevent any malicious activities. Let

us consider a shell running in the Unix system. We want to successfully confine a mail

program, mail, for that particular user. The mail executable has capabilities associated

with it. These capabilities are derived from the master capabilities of mail program files

and then attached to the CBox. For example, the capabilities for the file /etc/mail.rc

is added to the CBox with the pid of the process and userID of the user stamped on

it. This capability has the execute permission for the file. Next, capabilities for the

spool directory for the user are derived and added to the CBox. One of these files is

/var/spool/mail/username. Hence a read and a write capability is created for this file

since read and write operations are required for the file while execution of the program.

These capabilities are also stamped with the pid and the userID. Apart from these two

files, one needs access to the /tmp directory to create temporary files and use them later

on. One might also require a resource capability to print the mail that the user has

received. For example it could be a capability to print 50 pages and can be used like

money.

Hence the CBox created for mail program is defined as

CBox(mail) = {〈deriv(mail.files)Stamp〉, 〈deriv(resource)Stamp〉,

〈deriv(spool.files)Stamp〉, 〈(dummy.files)Stamp〉}

Here deriv(mail.files) refers to the collection of derived capabilities for the mail pro-

gram. The set contains the capability for the file /etc/mail.rc and a capability to create

33

files in the /tmp directory. Next, deriv(resource) refers to the derived capabilities of re-

sources. In this case it contains a capability for printing a limited set of pages. It could be

written as (PrinterID, limit, Stamp, Lease, Properties). The deriv(spool.files) refers

to the derived capabilities for the spool files of the user. Two separate capabilities are

required for read and write. They are (FileID, read, Stamp, Lease, Properties) and

(FileID, write, Stamp, Lease, Properties). These capabilities are used separately for

read and write operations respectively. The (dummy.files) refers to a set of dummy

capabilities attached to the CBox for creating capabilities for files created in the /tmp

directory.

After creating the CBox, the process is attached to it. When a process needs to

access the mail program files and the spool files, it succeeds since the capabilities are

available with the CBox. When the process tries to create a temporary files in the

/tmp directory, it is allowed since it has the capability to do so. Also, access to only

those files created by the process is available and no other files present in the /tmp

directory since it does not have the capability for those files. Capability for creating

files in /tmp directory does not mean that it can access all files in the directory. This

achieves confinement as well as conforms with principle of least privileges.

When the process needs to print the mail, it can use the resource capability to do

so. Once it uses the capability, the limit for the number of pages it can print is reduced

by the number of pages it has printed.

Now, when the mail program tries to access any other files or objects, it wont be

able to do so since it does not have the capability for them.

The mail program might need to execute a jpeg viewer in order to display the image

attached to the mail that it receives. Hence, when the mail process forks, the jpeg viewer

is executed and the capabilities associated with it are added to the CBox. Figure 4.2

illustrates the state of the CBox before and after the process forks. As shown in the

34

‹deriv(mail.files)P1›, ‹deriv(resource)P1›, ‹deriv(spool.files)P1›, ‹deriv(dummy.files)P1›Null

C1

CBox

Process P1
executing mail

‹deriv(mail.files)P1›, ‹deriv(resource)P1›, ‹deriv(spool.files)P1›, ‹deriv(dummy.files)P1›,
‹deriv(jpeg.files)P2›, ‹deriv(resource)P2›, ‹deriv(image.files)P2›Null

C1

CBox

Process P1
executing mail

Process P2 executing
jpeg viewer

Forks

CBox, after process P1 forks

Figure 4.2: Example describing CBoxes

diagram when the newly added derived capabilities are stamped with the pid of the

new process and hence can be accessed only by it and not P1. Also, P2 cannot access

the mail files since the derived capabilities for mails files are stamped with pid P1. P2

can use the capabilities for jpegviewer files to execute the program. It can access the

image files using deriv(image.files). If the jpeg image needs to be printed it can use

the resource capability stamped with P2 to do so.

This way, CBox is changed dynamically and various programs that are executed

can be confined and provide security. The next chapter illustrates the implementation

details of the mechanism on a linux kernel.

35

Chapter 5

Implementation on a Linux

Kernel

The Linux Operating System is used as the platform to test the effectiveness of the

capability based mechanism. We use the Linux Security Module(LSM) [Wri02] as the

access control framework which enables many different access control models to be im-

plemented as loadable kernel modules. SELinux [Los01] and Domain and Type Enforce-

ment [Lee96] have already been adapted to use the LSM framework. We choose LSM

because of the following reasons:

• The generality of LSM permits enhanced access controls to be effectively imple-

mented without requiring kernel patches.

• Truly generic, where using a different security model is merely a matter of loading

a different kernel module.

• Conceptually simple, minimally invasive, and efficient.

• No kernel modifications are required to overwrite entries in the system call lookup

table.

36

• LSM allows modules to mediate access to kernel objects by placing hooks in the

kernel code just ahead of the access.

In the next section we describe LSM in brief to provide a context for describing the

capability based system.

5.1 LSM - Linux Security Modules

LSM takes the approach of mediating access to the kernel’s internal objects: tasks,

inodes, open files, etc., as shown in Figure 5.1. User processes execute system calls,

which first traverse the Linux kernel’s existing logic for finding and allocating resources,

performing error checking, and passing the classical UNIX discretionary access controls.

Just before the kernel attempts to access the internal object, an LSM hook makes an

out-call to the module posing the question, “Is this access ok with you?” The module

processes this policy question and returns either “yes” or “no.”

User Level process

Open system call

look up inode

error checks

DAC checks

LSM hook

access inode

Examine context.
Does request pass policy?
Grant or deny.

“OK with you?”
Yes or No

User space

Kernel Space

LSM Module Policy Engine

Figure 5.1: LSM Hook Architecture

The basic abstraction of the LSM interface is to mediate access to internal kernel

37

objects. LSM seeks to allow modules to answer the question ”May a subject S perform

a kernel operation OP on an internal kernel object OBJ?”

The LSM kernel patch modifies the kernel in five primary ways. First, it adds

opaque security fields to certain kernel data structures. Second, the patch inserts calls

to security hook functions at various points within the kernel code. Third, the patch

adds a generic security system call. Fourth, the patch provides functions to allow kernel

modules to register and unregister themselves as security modules. Finally, the patch

moves most of the capabilities logic into an optional security module.

There are various hooks available in LSM to mediate various structures which forms

an integral part of the kernel and security. For example, program loading hooks include

the binprm

security ops, to manage the process of loading new programs. LSM adds a security field

to the linux binprm structure. File system hooks include hooks for mediating objects

like files and directories. LSM adds a security field to each of the associated kernel

data structures: super block, inode, and file. Several other hooks are also available for

network, IPC and module hooks.

5.2 Design of Capability Based Mechanism using LSM

As mentioned earlier, we make use of the LSM hooks to mediate the access to an object.

For achieving a fine grained access control, we have defined several access rights for each

type of object. As shown in table 5.1 the object ‘file’ has not only the conventional

‘read’, ‘write’, ‘execute’ permissions but also other permissions like ‘create’, ‘open’, etc.

Similarly, other objects like ‘dir’, ‘socket’ and ‘ipc’ also have fine grained permissions.

38

Table 5.1: Objects and Fine Grained Permissions in CBox

OBJECT PERMISSIONS

file execute, unlink, setattr, quotaon, relabelfrom, link, write, ioctl, relabelto, read,
rename, append, lock, swapon, getattr, removeattr, mounton, create, execute no trans,

entrypoint
dir create, read, write, execute, link, unlink, rename, append, setattr, getattr, removeattr,

ioctl, search, rmdir, mount, lock, swapon, quotaon, relabelfrom, relabelto, add name,
remove name, reparent

socket relabelto, recvmsg, relabelfrom, setopt, append, setattr, sendto, getopt, read, shutdown,
listen, bind, write, accept, connect, lock, ioctl, create, namebind, sendmsg, recvfrom,

getattr, connectfrom, connectto, sendfrom, node bind
file mount, remount, unmount, getattr, relabelfrom, relabelto, transition, associate,
system quotamod, quotaget
ipc sem setattr, sem read, sem associate, sem destroy, sem unix write, sem create,

sem unix read, sem getattr, sem write, msgq setattr, msgq read, msgq associate,
msgq destroy, msgq unix write, msgq create, msgq unix read, msgq getattr,
msgq write,msgq enqueue, msg send, msg receive, ipc create, ipc destroy,

ipc getattr,ipc setattr,ipc read, ipc write, ipc associate, ipc unix read,
ipc unix write

process fork, transition, sigchld, sigkill,sigstop, signull, signal, ptrace,getsched,setsched,
getsession, getpgid, setpgid, getcap, setcap, share, getattr, setexec, noatsecure, siginh,

setrlimit, rlimitinh, file receive

5.2.1 Opaque Security Fields - Master Capabilities

The opaque security fields are void* pointers, which enable security modules to associate security

information with kernel objects. Table 5.2 shows the kernel data structures that are modified by

the LSM kernel patch and the corresponding abstract object. These opaque security fields are

used to store the master capability for the objects. Separate structures are defined for master

capabilities of different objects. The master capability structure of inode is shown in figure 5.3.

The master capability contains an integer field for ‘ObjID’ and the ‘type’ field to identify the

Table 5.2: Kernel data structures modified by the LSM kernel patch and the correspond-
ing abstract objects.

STRUCTURE OBJECT

task struct Task(Process)
linux binprm Program
superblock Filesystem

inode Pipe, File or Socket
sk buff Network Buffer (Packet)

net device Network Device
kern ipc perm Semaphore, Shared Memory Segment,

or Message Queue
msg msg Individual Message

39

int vfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)

 {
 int error = may_create(dir, dentry, nd);

 if (error)

 return error;

 if (!dir->i_op || !dir->i_op->create)
 return -EACCES;

 mode &= S_IALLUGO;

 mode |= S_IFREG;
<-> error = security_inode_create(dir, dentry, mode);

 if (error)
 return error;

 DQUOT_INIT(dir);
 error = dir->i_op->create(dir, dentry, mode, nd);

 if (!error) {
 inode_dir_notify(dir, DN_CREATE);

<-> security_inode_post_create(dir, dentry, mode);

 }
 return error;

 }

Figure 5.2: The vfs create kernel function with one security hook call to mediate
access and one security hook call to manage the security field. The security hooks are
marked by <->

type of object. For most kinds of objects, an alloc security hook and a free security hook

are defined that permit the security module to allocate and free security data (master capability)

when the corresponding kernel data structure is allocated and freed. Other hooks are provided

to permit the security module to update the security data as necessary, e.g. a post lookup hook

that can be used to set security data for an inode after a successful lookup operation.

5.2.2 Calls to Security Hook Functions

LSM provides a set of calls to security hooks to manage the security fields of kernel objects. It

also provides a set of calls to security hooks to mediate access to these objects. Both sets of hook

functions are called via function pointers in a global security ops table. This structure consists

of a collection of substructures that group related hooks based on kernel object or subsystem,

as well as some top-level hooks for system operations.

Figure 5.2 shows the vfs create kernel function after the LSM kernel patch has been applied.

This kernel function is used to create new inodes. Two calls to security hook functions have

40

been inserted into this function. The first hook call, security inode create(dir, dentry,

mode), is used to control the ability to create new inodes. If the hook returns an error status,

then the new inode will not be created and the error status will be propagated to the caller.

This hook is used to check whether the current process has the capability to access the object

and whether the capability is valid or not. The implemented code for this hook is as shown

in Figure A.1 of Appendix A. The general algorithm which is used to implement is illustrated

in Table 5.3 and needs to be tailored for specific type of capabilities. The second hook call,

security inode post create(dir, dentry, mode), can be used to set the security field for

the new inode structure. This hook is used to update the master capability for the inode created

as explained earlier. The implementation details are shown in Figure A.1 of Appendix A.

Table 5.3: Algorithm for Access Hook

1. Check whether the current process requesting the access is attached to a CBox.

2. If it is not, then access is allowed since the process is not confined to any CBox and is thus
controlled by the Unix security mechanism.

3. If the process is attached to a CBox do the following -

3.1 Check whether CBox contains the capability for the object with the permission. If its not,
access is denied, else goto next step

3.2 Check whether the PID of the capability matches with the PID of process. If it does not,
return error “Capability Not Valid”, else goto next step.

3.3 Check whether there is any negative capability for the object. If there is, return error
“Capability Invalid”, else goto next step.

3.4 Access Allowed. Return 0.

4. End hook.

Similar hooks were written for other types of objects like IPC, Filesystem, Network etc. Now

we discuss how other types of capabilities are created and the implementation details of CBox.

5.2.3 Creation of Other Capabilities and CBoxes

Separate structure are defined for master, derived, resource and encrypted capabilities. The

derived capability structure has five fields and each field has appropriate types set. Different

41

structures for capabilities are defined for different types of objects. The structure of file capa-

bilities is depicted in Figure 5.3.

struct cap_struct_master_inode {

 unsigned long i_no; /* Inode Number*/
 unsigned int type; /* type of object */
 enum cbox_file_permissions perm;
 struct inode *inode; /* back pointer */
 };

Master Capability attached to Inode

struct cap_struct_derived_file {

 unsigned long i_no;
 enum cbox_file_permissions perm;
 unsigned int type;
 unsigned int pid;
 unsigned int uid;
 unsigned int derivable; /* Properties */
 unsigned long lease; /* Expiry Time */
 };

Derived Capability attached to CBox

struct cap_struct_encrypted_file {

unsigned long i_no;
unsigned int type;
enum cbox_file_permissions perm;
char code[]; /* Encrypted Code */

};

Encrypted Capability Structure

struct cap_struct_resource {

unsigned int ResourceID;
unsigned int type;
unsigned int limit

};

Resource Capability attached to CBox

Figure 5.3: Capability Structures

For CBoxes, we define a structure which has a list of derived, negative, resource and dummy

capabilities. The CBox structure has an integer field for CID. The structure of CBox is as shown

in Figure 5.4

struct cbox_struct {

unsigned int cid; /* CBox ID. */

unsigned int size; /*Max No. of Capabilities */

struct cbox_capability_derived *deriv_list; /*List of Capabilities in CBox.*/
struct cbox_capability_negative *negative_list; /* Negative Capabilities */

struct cbox_capability_resource *resource_list; /* Resource Capabilities */
struct cbox_capability_dummy *dummy_list; /* Dummy Capabilities */

unsigned int lock;
struct cbox_struct_list *cbox_list;

}

Figure 5.4: CBox Structures

As defined earlier, processes need to use capabilities if they are in a CBox. When a process

does an exec, a new CBox structure is allocated and the capabilities associated with the exec

42

are attached to the CBox. The process is then attached to the CBox by adding the CID to the

security structure of the process created by LSM. To access an object the algorithm shown in

table 5.3 is used. This algorithm describes how we implement all the features of the capabilities

including positive and negative capabilities. This basic algorithm applies for all the accesses

performed through the CBox.

5.3 Performance Evaluation

We have implemented the capability based mechanism in a Red Hat Professional Workstation

with the linux kernel version 2.6.9. The Linux kernel runs on a Pentium-4 3.2GHz system with

512MB RAM.

5.3.1 Microbenchmark - Test programs and Results

To evaluate the performance overhead introduced by the capability checking, microbenchmarks

were performed, which uses the open-file program and the fork program found in the Appendix

B. The open-file program is used to test the overhead introduced by the file capability attached

to the process used for access control. Here, the process accessing the file is attached to a CBox

and the capability for that file is contained in the CBox. This program tries to open a file

1000000 times and the total time taken is as shown. Table 5.4 illustrates the overhead incurred

while using capabilities in CBox to access the file and without using the capability.

The fork program is used to test the overhead introduced when a new CBox is created for

the forked process. This program tries to fork 10000 times. Every time it forks, a new CBox

structure is allocated and capabilities attached to it. The child process exits immediately and

the CBox structure is freed. Hence the time taken to create a CBox leads to the extra overhead

shown in table 5.4.

5.3.2 Using LMBench for microbenchmarking

We also use LMBench [McV96] as our microbenchmark. LMBench was developed specifically

to measure the performance of core kernel system calls and facilities, such as file access, context

switching, and memory access. LMBench has been particularly effective at establishing and

43

Table 5.4: Microbenchmark for open() and fork() in seconds

Open File fork

User System Real User System Real

2.6.9 0.13 0.67 0.81 0.15 0.52 0.68
2.6.9-lsm 0.13 0.67 0.82 0.15 0.52 0.69

% Overhead 0% 0% 1.2% 0% 0% 1.4%
2.6.9-CBox 0.135 0.69 0.85 0.16 0.55 0.70
%Overhead 3.8% 2.9% 3.65% 6.67% 5.7% 2.9%

maintaining excellent performance in these core facilities in the Linux kernel.

We use LMBench to measure the time taken for creating and removing files. The files are

created in a particular directory. Initially LMBench is run without CBoxes and the values are

recorded. Later, the same process is attached to a CBox and capabilities are attached to the

CBox for creating files in the directory. On successful creation of the file, a master capability

is created and attached to the file. When the file is deleted the master capability structure is

freed. The LSM framework imposes minimal overhead when compared with a standard Linux

kernel. We compared a standard 2.6.9 kernel with and without LSM. Then, we determined the

time taken with CBox attached to the process. The overhead as shown in table 5.5 is around

2-3% which is negligible and can be improved further by efficient implementation.

Table 5.5: File and VM system latencies in microseconds - smaller is better

Test Type 2.6.9 2.6.9-lsm % Overhead 2.6.9-CBox % Overhead

0K file create 24.1 24.2 0.4% 24.8 2.9%
0K file delete 3.70 3.70 0% 3.70 0%
10K file create 56.2 56.8 1% 58.0 3.2%
10K file delete 10.8 10.9 0.9% 11.0 0.9%

5.3.3 Macrobenchmark

For macrobenchmark, we ran an “untar linux kernel source” script. The “untar linux kernel

source” script is used to test the overhead on a general application. The script will untar a

compressed linux source tarball (linux-2.6.9.tar), tar the source tree again, finally remove the

tarball and the source tree. The shell script written is shown in Appendix B. Initially the script

was executed with the tar process not attached to any CBox. The CBox was then attached to

the process and appropriate capabilities added. The results of the overhead are shown in table

44

5.6

Table 5.6: Macrobenchmark using tar

Kernel Untar Kernel Source

User System Real

linux-2.6.9 0.28 1.88 27.57
linux-2.6.9-lsm 0.28 1.88 27.57

% Overhead 0% 0% 0%
linux-2.6.9-cbox 0.28 1.94 28.61

% Overhead 0% 3.2% 3.77%

The overhead as shown in the table is around 3% which is not too high. To summarize,

preliminary prototype implementation shows that overheads leavel are small given the addi-

tional security. A more sophisticated and optimized implementation we believe will reduce it to

practically negligible as the current prototype is unoptimized.

45

Chapter 6

Using Capabilities to Implement

RBAC

This chapter shows the flexibility of the capability mechanism . RBAC is a general scheme

for providing least privilege. We show how our capability system can be used as a mechanism

for implementing RBAC. Each section discusses how various parts of the RBAC model can be

modeled using capabilities discussed in the previous chapters. The following work has been

submitted as a conference paper [Yap05] and awaiting the result.

6.1 A Capability based RBAC

The capability mechanism can be used to implement the core components of RBAC. Capabilities

are used directly to provide the permissions associated with roles and also enable the inheritance

of permissions in roles. Switching of roles in sessions and session locking also use features of

the capability system. Capabilities are also used as keys (tokens) to enable authentication for

operations on roles.

6.1.1 Implementing the Core RBAC

In this section, for simplicity, we will consider the administration of RBAC and operations on

RBAC to be managed by a single role manager. The simplest role manager would be a distin-

46

guished process which already has all the capabilities it needs for all role permissions. Rather

than a superuser style role manager, it is also possible for the role manager to be unprivileged

and acquire the appropriate capabilities. For example, the human administrator could pass to

the role manager the capabilities needed in a demand-driven fashion. For now, we will assume

that the role manager already has capabilities for all the basic permissions needed in all roles.

Roles are viewed as objects which are managed by the role manager. A role is an object

with a master capability and the following fields:

• keys of children roles (child field): these are derived capabilities which serve as authoriza-

tion keys for a child role.

• permissions of this role (perm field): this is a container capability which consists of two

sub-containers, perm+ for those capabilities which give the access permissions and perm−

which are used to impose constraints. The containers themselves may either be locked or

not depending on how much power is given to the role manager to manipulate permissions.

• other fields such as users, pointers, etc. which are required to manage the role hierarchy

and RBAC. We remark that the user role assignments (URA) in RBAC is simply the

correct use and maintenance of the user fields in the role objects by the role manager. We

focus in this thesis on how capabilities can be used to operate on roles and maintain the

permissions.

Permissions are granted by deriving capabilities from master capability of the original object.

Derived capabilities are used in sessions so that permissions can only be further restricted rather

than being arbitrarily changed.

Consider the role R1 in the role hierarchy in Figure 6.2. The RBAC permissions for a user

U1 in session S1 is modeled as follows as depicted in Figure 6.1. The R3 role object has: (i)

child capabilities for R2, deriv(R2), and R3, deriv(R3); and permissions capability container

R1.perm. For user U1, a capability deriv(R1.perm)U1 which is stamped with U1 serves as U1’s

role permissions in all sessions with role R1. A session S1 depicted in Figure 6.1 is created as

follows:

• The R1 capability for U1 is added to the environment, Env(S1) = 〈deriv(R1.perm)U1,S1〉

47

{ U1 : R1, R2, R3 }

{ deriv(R2),
deriv(R3) }

‹deriv(R1.perm)U1›

User Role
Assignment

Session by
U1

Role R1

User U1

Session S1 { deriv(R2)S1,deriv(R3)S1 }

R1.perm

Figure 6.1: Example of a role and session in core RBAC

and is additionally stamped with S1.

• The derived child role capabilities are stamped with S1, deriv(R2)S1 and deriv(R3)S1,

are given to S1. Note that these are not added to the environment and are meant to be

used as authorization keys.

• The current role(s) for the session is set to R1.

Since the permission capability in S1 is stamped with U1, no other user can make use of

it. This however is not strictly needed because capability deriv(R1.perm)U1 is already in S1’s

environment and hence cannot be extracted. The stamping here is useful for revocation. The

child capabilities are stamped with S1, these capabilities are meant as keys and not as permissions

to access the role object and the stamping serves to uniquely identify the session and roles.

The permissions of R1 are contained in its capability container which is already in the

environment so S1 has exactly the permissions it needs. If S1 can obtain more capabilities, this

can only occur by the use of its existing capabilities. It is also possible to ensure that S1 cannot

acquire any more capabilities beyond its role R1 by locking the environment. We however do

allow S1 to further restrict permissions by deleting positive capabilities or by adding negative

capabilities to its environment.

6.1.2 Hierarchical RBAC using Capabilities

The RBAC model organizes roles into hierarchies using the � relation for role inheritance. A

role r1 � r2 if the permissions of r2 are a subset of r1, r1.perm �c r2.perm, and the users of r1

48

R1

R2 R3

R4

Figure 6.2: Example Role Hierarchy

are a subset of the users of r2.

The role hierarchy can be represented by a directed acyclic graph induced by role inheritance.

The role objects mimic the DAG structure because the derived child record the immediate sub-

roles of any role. In Figure 6.2, the downward arrows show the role inheritance while the upward

arrows show the derived child capabilities.

There are a number of ways to model the effect of the role inheritance on the permissions.

Assuming that the role manager has access to capabilities representing individual permissions,

the permissions of each role can be modeled using a master container capability with the appro-

priate capabilities inserted to represent the permission role assignment (PA) relation.

Suppose the role hierarchy is a collection of trees. One could view the permissions of an imme-

diate sub-role to be a restriction of the permissions of its parent role. Suppose role R1 is a parent

of role R2. The permission of R2 can simply be a container capability with deriv(R1.perm) in-

serted where the role manager has removed the capabilities in R2 which are not in R1. If the

role manager changes the permissions of R1, e.g. a capability is removed from R1.perm (note

that R1.perm could itself be a derived capability), the effect is propagated to R2.perm by virtue

of it containing a derived capability from R1. We will call this use of the capability system,

derived role permissions. It is still possible to change R2.perm since it is a container, so the

current deriv(R1.perm) could be deleted and a new one with different restrictions inserted as

deriv(R1.perm)′.

In RBAC, the parent role is considered to inherit the permissions of the child roles. How-

ever, with multiple inheritance, this would lead to roles which are incomparable in the hierarchy

inheriting permissions from each other. Using Figure 6.2 as our reference example, role R3 is

contained in both roles R1 and R4. This means that because of upward inheritance of per-

49

missions R1 can gain permissions of R4 which are in R3 (and vice versa). Capabilities allow

a stricter interpretation that a parent role R1 can assume the permissions of a child role like

R3 without inheriting the permissions of R3. By using derived role permissions in the pres-

ence of multiple inheritance, we can make R1.perm incomparable with R3.perm rather than

R1.perm �c R3.perm. The R3.perm container consists of 〈deriv(R1.perm), deriv(R4.perm)〉.

A session which assumes roles R1 and R3 will have the original RBAC definition of upward

permission inheritance since its environment will contain

〈R1.perm, 〈deriv(R1.perm), deriv(R4.perm)〉〉.

6.1.3 User Sessions

User sessions can be created to assume one or more active roles. This gives the user session

the permissions of its active roles. A new user session is created with the help of the role

manager to have an environment containing the capabilities of all its active roles. In the multiple

inheritance example earlier, the session having activated roles R1 and R3 has both capabilities

in its environment.

An existing session can choose to further restrict its active roles to sub-roles of those active

roles. Changing roles in this fashion is a voluntary operation on the part of the session which

serves to reduce its existing privileges. Thus, the only issue is to ensure the environment is

correctly set up. As the session already has capability keys for its immediate child roles, it just

has to present the appropriate ancestor key(s) of the role(s) to switch to. Because the keys are

stamped to the current session, only this session can have access to the keys. Even if the session

attempts to leak the capabilities obtained by the role manager to another session, it would be

useless since the session stamp on the capabilities would make them invalid.

The new capabilities for the new roles can be added to the environment and the old ones

deleted. Locking the environment of the session serves to stop any changes to the roles of a

session.

50

6.1.4 Constraints using Capabilities

There are two kinds of constraints in RBAC: static (SSD) and dynamic (DSD) separation of

duties. SSD prevents a user from being a member of one or more roles. Another way of looking

at this for a binary static separation constraint is that two roles are mutually exclusive.

While any constraint can simply be enforced by the correct behavior from the role manager,

it is desirable to be able to ensure that the underlying security mechanism be able to also

enforce this. Consider two roles R1 and R2 which are in a SSD constraint. We can attach to R1

(respectively R2) a negative capability to its permissions. So R1.perm (respectively R2.perm)

has the capability deriv−(R2.perm) added (respectively deriv−(R1.perm)). Now even if a user

was incorrectly added to both roles R1 and R2, the environment with the two capabilities would

cancel out leading to no permissions at all. One subtlety is that when derived role permissions

are used, the negative capabilities cannot be attached directly to the permissions but rather to

the derived capabilities which are to be used in the environment. We remark that because SSD

is inherited upwards, the same process is used for ancestor roles as well.

DSD cannot be directly enforced by capabilities as it requires taking into account the history

of a session. However the role manager can assist in the enforcement. Essentially DSD is a mutual

exclusion requirement placed on role activation within a session. Consider role R1 which cannot

be activated together with role R2. When role R1 is activated by user U1, the role manager

adds deriv−(R2) to its derived capability for this role which it will use for sessions from U1 and

also deriv−(R2) to the corresponding capability for R2 for U1.1 This situation is one where the

DSD has scope across all sessions of U1. After role R1 is invoked, the capabilities from role R2

can never be used in any further sessions of U1. The DSD scope can be restricted to just the

session itself by the role manager maintaining the derived capability on both a user and session

basis.

1The use of a deriv
−(R2) is similar to revoking the capability but saves having to remember that R2

cannot be used further.

51

Director (DIR)

Project Lead 1 (PL1) Project Lead 2 (PL2)

Production
Engineer 1

(PE1)

Quality
Engineer 1

(QE1)

Production
Engineer 2

(PE2)

Quality
Engineer 2

(QE2)

Engineer 1 (E1) Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

Project 1 Project 2

(a) Roles

Senior Security
 Officer (SSO)

Department Security
Officer (DSO)

Project Security
Officer 1 (PSO1)

Project Security
 Officer 2 (PSO2)

(b) Administrative Roles

Figure 6.3: Distributed Administration Example

6.1.5 Dynamic RBAC using Capabilities

Implementing RBAC with capabilities allows more fine grained control than vanilla RBAC. In

RBAC, a session can reduce its privileges by switching to a sub-role. While a role does achieve

a form of least privilege, the privileges to which a role has may still be more than needed simply

because a role is pre-defined statically by the role administrator and has to cater for a general

instance of the role.

The capability system here allows the session to determine dynamically how to reduce its own

privileges by either deleting capabilities from its own environment, adding negative capabilities

or by replacing its capabilities with further derived ones. Even if the environment is locked, the

session is still allowed to further restrict its existing capabilities.

6.2 Administrating Capability-based RBAC

The capability-based RBAC gives some advantages in administration in the handling of permis-

sions and in the deletion of roles. Permissions in the form of capability containers allows the

packaging of permissions with arbitrary granularity inside a container. Revoking a container ca-

pability allows in a single operation to remove all its permissions. Conversely, adding a container

52

to a role adds its set of positive and negative capabilities. This can simplify administration by

organizing sets of permissions together. The delegation example below illustrates this use of

containers as atomic building blocks.

The use of derived role permissions can simplify the management of permissions since permis-

sion changes on a parent role propagate to its children. While this means that the role manager

is restricted to making only certain changes, this restriction could be a good thing (note that

it is not necessary to use derived role permissions). For example, consider the role hierarchy in

Figure 6.3. Suppose the goal is have any changes to permissions to an employee E be automat-

ically reflected in all higher roles. Furthermore, changes in the project file access for PL1 are

to be reflected to PE1, QE1 and E1 modulo the restrictions on permissions in those roles. The

basic permissions of E can be encapsulated in a container capability which is derived to all the

other roles The project file access permission for PL1 are encapsulated in a sub-container which

is derived and added to the permission containers for roles PE1, QE1 and E1. In this example,

the derived role permission flow is in both upward and downward directions in the hierarchy

with respect to permission changes to E and PL1.

Deleting a user from a role is just a matter of revoking the derived capability which is in

the active user sessions. Since the capability in the environment of active sessions for that role

is now unusable, the sessions no longer have the permissions of that role. A similar approach to

DSD constraints can be used to delete the user from sub-roles if desired.

Deleting a role similarly also revokes the capabilities from that role object. When derived

role permission is used in the sub-roles, then the permissions from sub-roles which derived from

the deleted role are also revoked. This saves some management on the part of the role manager

and also ensures that the effect on sessions from the deletion is effective upon deletion.

6.2.1 Delegation of Administration in RBAC

Capabilities can be used for decentralized administration by delegating some of the permissions

for maintaining RBAC to several role managers. Consider several role managers organized

in an administrative hierarchy. For example in Figure 6.3 the delegation is as follows: the

administrative scope of PS01 is PL1, PE1, QE1 and E1; DSO administers PL1 and PL2; and

53

SSO administers DIR, ED and E. DSO can give PS01 the derived permission capabilities for

PL1. Thus PS01 can only further restrict those permissions. Furthermore, the role objects

for PL1, PE1, QE1 and E1 could already be created with the derived capabilities also given

to PS01. PS01 may be operating in a restricted and locked environment so that pretty much

all it can do is to refine the permission assignment to the roles that it is administrating or to

change user role assignments. Further restrictions on user role assignments by only giving say

the engineering group a stamped capability which allows these users to communicate with PS01.

Thus administration can be distributed but the power of the delegated administration can still

be restricted.

DSO is allowed to change the permissions of PS01 within his own restrictions imposed by

SSO. Only SSO the capabilities for the role objects of DIR, ED and E, so only SSO can change

them.

6.3 Some Examples

In this section, we will illustrate a simple complete example of RBAC and also an extension of

the example to delegation of administration. The example in Figure 6.4 considers a Computer

Science department with two courses Cryptography and Algorithms with the hierarchy given in

6.4(a). The roles here concern the six objects O1 to O6 each with its own master capability, e.g.

(O1, ALL) is the master capability with all rights to O1. An object could be a file or another

resource such as a printer, scanner, etc.

The permission role assignment gives the roles access to the objects using derived capabil-

ities. For example, role R1 has read access to the file crypto assignment.pdf A special limit

capability is illustrated in O6 for role R3, this could for example restricted how many pages can

be printed on a printer.

The child hierarchy is illustrated with the deriv(R3) capability in R1 and R2. There is a

SSD which arises because students taking Cryptography are not allowed to take Algorithms and

vice versa. This may be due to a change in the syllabus requirements. This gives rise to a

negative capability, (R2, Negative) in the permissions container of R1.

Students Bob and Alice are assigned to roles R1 and R2 respectively which are their courses

54

crypto_assi
gnment.pdf

crypto_n
otes.pdf

Algorithms_
notes.pdf

Resource1 Resource2Marks.pdf

(“O1”,all) (“O2”,all) (“O3”,all) (“O4”,all) (“O5”,all) (“O6”,all)

Master Capability attached to
the object

D
erive m

as ter capability

and assign to R
ole

D
erive m

aster capability

and assign to R
ole

D
erive m

aster capability and

assign to R
ole

D
erive m

aster capability and

assign to R
ole

D
erive m

aster capability and

assign to R
ole

D
er iv e m

aster ca pability
and assign to R

ole

Objects

{ Bob: R1,R3 }
{ Alice: R2, R3 }

Bob is assigned to

“Computer Science”

Bob is assigned to
“Cryptography”

Alice is assigned to
“Algorithms”

Alice is assigned to

“Computer_science”

Users

Session1
Session3 { deriv(R2.perm)Alice }

(R1)
<(O1,read,R1) ,
(O2,read,R1),

(R2,Negative) >
deriv(R3)

(R2)
<(O3,read,R2),
(O4,limit,R2),

(R1,Negative)>
deriv(R3)

(R3)
<(O5,read,R3) ,
(O6,limit,R3) >

Null

‹ O1,read,R1,Bob,S1 › ‹ O3,read,R2,Alice,S3 ›

 Session2

‹ ‹ O2,read,R1,Bob,S2 ›,
‹ O5,read,R3,Bob,S2 › ›

‹ ‹ O5,read,R3,Alice,S4 ›
‹ O6,limit,R3,Alice,S4 › ›

Session4 { deriv(R3.perm)Alice }

Cryptography

Computer Sceince

Algorithms

Role R1

Role R3

Role R2

(a) Role Hierarchy

{ deriv(R1.perm)Bob }
{ ‹deriv(R1.perm)Bob› ,
‹deriv(R3.perm)Bob› }

Roles

Figure 6.4: Example describing usage of capabilities for RBAC

55

A1 A10

Lecturer

Course
Assignment

Roles

Tutor

A1 A10

Lecturer

Course

Assignment
Roles

...

...

(a) Role Hierarchy before Delegation

(b) Role Hierarchy after Delegation

Figure 6.5: Delegation Example

for the current semester. They are also implicitly a user to role R3.

In this example, the role permissions do not follow strictly the role inheritance of normal

RBAC to illustrate that rbac-like models can be created. Here, we want a CS student has some

basic permissions while a course student can access both the CS role and the course role but the

course permissions do not necessarily contain the permissions in the CS role.

Bob creates session 1 activating only R1. Session 2 activates R1 and R3 but has further

restriction beyond the role permissions. Here its environment only contains permissions for O2

and O6. This could be achieved either by the role manager or Bob himself removing capabilities

for O1 and O5. The capability O6 in session 2 is a resource limited one so one could view

session 2 as one specially created just for printing the crypto notes.pdf and the limit resource

capability could restrict the maximum number of pages printed per session.

Now consider the Cryptography course where students can be given access to particular

assignments A1, A2, Different students may have access to different assignments. One way

to do so is that a lecturer role assigns a user to the student role and the chosen set of assignment

roles as shown in Figure 6.5. A lecturer would rather delegate this task to a tutor and gives

56

him the container capability with all the permissions for roles A1, A2, The tutor also gets

a role manager for the assignments. So the tutor can now assign students to their respective

assignment roles independently of the lecturer.

57

Chapter 7

Conclusion and Future Work

This capability based mechanism has several advantages. Its a dynamic scheme and provides

flexibility in terms of managing the capabilities and using it for access control. For propagation,

capabilities need to be derived and attached to CBoxes. To demonstrate the power and flexibility,

the capability based mechanism can also be used to implement all the aspects of RBAC including

hierarchy, constraints and administration. CBoxes can be easily created by users and the derived

capability is the proof of possessing a right to access the object. This capability based mechanism

helps create a powerful permission model. Use of special capabilities like one-time capabilities can

provide more restriction. Dropping of capabilities can provide revocation dynamically. Leasing

can also be introduced where capabilities are leased for a certain amount of time providing time

dependent capabilities.

We obtain confinement using capabilities by creating closed domains for programs to run in.

The principle of least privileges forms an important basis of using capabilities. The all powerful

root is eliminated in our system. Hence, even if a malicious user gets access of the root account,

he cannot do much since root can be confined. Users gets the option to create a dynamic CBox

to restrict untrusted programs. This in a way is a combination of MAC and DAC. Fine grained

capabilities are created for fine grained permissions.

Future work could include using this capability based mechanism in distributed operating

systems and networks. This would require introduction of a few more types of capabilities.

Distributed Capability based systems could be similar to the one proposed in Amoeba [Tan86]

58

with a more powerful permission model using the capabilities.

59

Bibliography

[Ach99] Anurag Acharya and Mandar Raje. MAPbox: Using Parameterized Behavior Classes

to Confine Untrusted Application. Dept. of Computer Science, University of Califor-

nia, Santa Barbara. 1999.

[Ale99] A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A confined execution environment

for internet computations. In USENIX Annual Technical Conference 1999.

[Bib96] M. Bishop and M. Dilger, Checking for Race Conditions in File Accesses, Computing

Systems 9 (2) pp. 131-152 Spring 1996.

[BsdJa] FreeBSD jail manual page. JAIL(2) http://www.freebsd.org/cgi/man.cgi?query=jail&sektion=2

[Coh75] Ellis Cohen and David Jefferson. Protection in the Hydra Operating System, Proceed-

ings of the fifth ACM symposium on Operating systems principles,pg 141–160 1975.

[Dat89] Datapro and Bull HN. Information Systems Inc: Security Capabilities of Multics,

USA: Datapro Research; IS56-115-101. Datapro Reports on Information Security; Vol

3, April 1989.

[Dav01] David Ferraiolo, Ravi Sandhu, Seban Gavrila, D. Richard Kuhn, Ramaswamy Chan-

dramouli. Proposed NIST Standard for Role-Based Access Control. ACM Transactions

on Information and System Security, Vol. 4, No. 3, August 2001, 224274.

[Den65] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed

computations MIT/LCS/TR-23 1965.

[Gol96] Ian Goldberg, David Wagner, Randi Thomas, Eric A. Brewer. A Secure Environment

60

for Untrusted Helper Applications Confining the Wily Hacker. USENIX Security Sym-

posium, 1996.

[Gon89] L. Gong. A Secure Identity-Based Capability System. Proceedings of the 1989 IEEE

Symposium on Security and Privacy, p. 5665. 1989.

[Har85] N.Hardy. Keykos architecture. SIGOPS Oper. Syst. Rev., 19(4):825, 1985.

[Ian96] Ian Goldberg, David Wagner, Randi Thomas and Eric A. Brewer A Secure Envi-

ronment for Untrusted Helper Applications, Proceedings of the 6th Usenix Security

Symposium, San Jose, CA, USA, 1996.

[Kao96] L.Kao and R.Chow. An extended capability architecture to enforce dynamic access

control policies. In ACSAC, pages148157, 1996.

[Kar03] A. H. Karp, R. Gupta, G. J. Rozas, A. Banerji. Using Split Capabilities for Access

Control. IEEE Software 20(1), January 2003, p. 4249.

[Lam73] B.W. Lampson. A Note on the Confinement Problem CACM on Operating Systems,

Vol.16, No.10 October, 1973.

[Lee96] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and Sheila A.

Haghighat. A Domain and Type Enforcement UNIX Prototype. In Proceedings of the

5th USENIX Security Symposium. 1996.

[Lev84] H. M. Levy. Capability-Based Computer Systems. Digital Press, 1984.

[Los98] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S.

Jeff Turner, and John F. Farrell. The Inevitability of Failure: The Flawed Assumption

of Security in Modern Computing Environments. In Proceedings of the 21st National

Information Systems Security Conference, pages 303-314, October 1998.

[Los01] Peter A. Loscocco and Stephen D. Smalley. Meeting Critical Security Objectives with

Security-Enhanced Linux In the Proceedings of the 2001 Ottawa Linux Symposium

July, 2001.

61

[McV96] L. McVoy and C. Staelin, lmbench: Portable Tools for Performance Analysis, Pro-

ceedings of USENIX 1996, January 1996, pp. 279294.

[Mil03] Mark S. Miller, Ka Ping Yee, and Jonathan Shapiro. Capability myths demolished

Technical report, Combex, Inc., 2003.

[Oh02] Sejong Oh and Ravi Sandhu. A model for role administration using organization

structure, Proceedings of the seventh ACM symposium on Access control models and

technologies, Monterey, California, USA, 155–162, 2002.

[Ott01] Amon Ott. The Rule Set Based Access Control (RSBAC) Linux Kernel Security

Extension, In Proceedings of the 8th International Linux Kongress, November, 2001.

[Pre01] V. Prevelakis and D. Spinellis. Sandboxing Applications. In Proceedings of the

USENIX Technical Annual Conference, Freenix Track, pages 119–126, June 2001.

[Pet02] David S. Peterson, Matt Bishop, and Raju Pandey. A Flexible Containment Mecha-

nism for Executing Untrusted Code. Department of Computer Science, University of

California, Davis. 2002.

[Pro02] Niels Provos. Improving host security with system call policies, Technical Report 02-3,

CITI, November 2002.

[San96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein and Charles E. Youman. Role-

Based Access Control Models, IEEE Computer 29(2): 38-47, IEEE Press, 1996.

[Sch75] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in com-

puter systems Proceedings of the IEEE, 63(9):1278–1308 September, 1975.

[Sha99] Jonathan S. Shapiro and Jonathan M. Smith and David J. Farber. EROS: a fast capa-

bility system, Proceedings of the seventeenth ACM symposium on Operating systems

principles,1999.

[Tan86] Tanenbaum, A.S., Mullender, S.J., and Renesse, R. Van. Using Sparse Capabilities

in a Distributed Operating System, Proc. Sixth Int’l Conf on Distributed Computing

Systems, IEEE, 1986

62

[Wri02] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux security

modules: General security support for the Linux kernel. USENIX Security Symposium,

2002.

[Xie01] Huagang Xie and Philippe Biondi. The Linux Intrustion Detection Project

http://www.lids.org, 2001.

[Yap05] Hemal Rathod and Roland H. C. Yap. Using Capabilities to Implement Role Based

Access Control. Submitted to the Proceedings of the seventh ACM symposium on Access

control models and technologies, Stockholm, Sweden, June 2005.

63

Appendix A

A.1 Creation of Master Capability using the Hook

static void cbox_inode_alloc_security (struct inode *dir, struct dentry *dentry,
int mask)
{
 struct cap_struct_master_inode *icap; /*For master capability of the inode*/
 icap = kmalloc(sizeof(struct cap_struct_master_inode), GFP_KERNEL);

 if (!icap)
 return -ENOMEM;
 memset(icap, 0, sizeof(struct cap_struct_master_inode));

 icap->inode = inode; /*point to the inode*/
 icap->i_ino = inode->i_ino; /* ObjID of the master capability */
 inode->i_security = icap;

 return 0;
}

static int cbox_inode_post_create (struct inode *dir,struct dentry *dentry, int
type)
 {

dentry->d_inode->i_security->type = type; /*Type of the Object */
return 0;

}

64

A.2 Hook implemented for security inode create(dir,

dentry, mode)

int check_capability_file_perm (struct task_struct *task, unsigned long i_no, int file_type, cbox_file_permissions
perm)
{

struct cap_struct_derived_file *ifile = kmalloc(sizeof(struct cap_struct_derived_file), GFP_KERNEL);
ifile = check_capability_list(i_no,perm); //Loads the capability in the ifile structure
if(!ifile)
{

 printk("You do not have the Capability to perform permission on file”);
 return -1;

}

if((ifile->lease <= current_lease()) || (check_Negative_Capability(inode,perm))
{
 printk("Capability Not Valid");
 return -1;
}

if ((task->pid != ifile->pid) || (task->uid != ifile->uid)) /* Checking Stamp */
{
 printk("Capability Forged");
 return -1;
}

if (ifile->type != file_type)
{
 printk("File type is not the same");
 return -1;
}

return 0;

}

Figure A.1: Simple Logging is used here for illustration

65

Appendix B

B.1 Example - open.c

#include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>

#include <unistd.h>

int main (void)
{

int count;

for (count = 0; count < 1000000; count ++) {

int fd = open("hehe.txt", O_RDWR);
close(fd);

}
return 0;

}

B.2 Example - fork.c

#include <sys/types.h>

#include <unistd.h>
#include <sys/wait.h>

int main (void)

{
int count;

for (count = 0; count < 10000; count ++) {

if (!fork())

return 0;
wait(NULL);

}
return 0;

}

66

B.3 Example - tar.sh

#!/bin/bash

tar -xf linux-2.6.9.tar
tar -cf linux-2.6.9.tar linux-2.9.4
rm -rf linux-2.6.9 linux-2.6.9.tar

67

