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Summary

One of the fundamental challenges faced by the wireless communication industry is

how to meet rapidly growing demands for wireless services and applications with

limited radio spectrum. Cognitive radio (CR) is a promisingsolution to tackle this

challenge by introducing the secondary (unlicensed) usersto opportunistically or con-

currently access the spectrum allocated to primary (licensed) users. However, such

spectrum access by secondary users (SUs) needs to avoid causing detrimental interfer-

ence to the primary users (PUs). There are two popular CR models: the opportunistic

spectrum access (OSA) model and spectrum sharing (SS) model. In an opportunistic

spectrum access model, the SUs are allowed to access the spectrum only if the PUs

are detected to be inactive. In a spectrum sharing model, theSUs are allowed to co-

exist with the PUs, subject to the constraint, namely the interference power constraint,

which defines the maximum tolerable interference power fromthe SUs to the PUs.

This thesis studies a number of topics in multi-antenna CR networks under the

spectrum sharing model. First, we study the resource optimization problems for three

different multi-antenna CR channels, including the CR single-input multiple-output

multiple access channels (SIMO-MAC), the CR multiple-input multiple-output broad-

cast channels (MIMO-BC), and the CR multiple-input single-output (MISO) channels.

Then, we apply the solution of the resource allocation problem for CR MIMO channels

to solve the capacity computation problem for secrecy MIMO channels.

Specifically, for the CR SIMO-MAC, we first consider the jointbeamforming and
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CONTENTS

power allocation for the sum rate maximization problem subject to transmit and inter-

ference power constraints. A capped multi-level water-filling algorithm is proposed to

obtain the optimal power allocation. Secondly, we considerthe signal-to-interference-

plus-noise ratio (SINR) balancing problem, in which the minimal ratio of the achiev-

able SINRs relative to the target SINRs of the users is maximized. It is proved that

the linear power constraints can be completely decoupled, and thus a high-efficiency

algorithm is proposed to solve the corresponding problem.

For the CR MIMO-BC, we focus on determining the optimal transmit covariance

matrix to achieve the entire capacity region. Conventionally, the MIMO-BC is subject

to a single sum power constraint, and the corresponding capacity computation prob-

lem can be transformed into that of a dual MIMO-MAC by using the conventional

BC-MAC duality. This duality, however, cannot be applied tothe CR case due to the

existence of the extra interference power constraints. To handle this difficulty, a gener-

alized BC-MAC duality is proposed for the MIMO-BC with multiple linear constraints.

By exploiting the new duality, a subgradient based algorithm is developed.

For the CR MISO channels, we consider a robust design problem, where the chan-

nel state information (CSI) of the channel from the SU transmitter to the PU is assumed

to be partially known by the SU. Our design objective is to determine the transmit co-

variance matrix that maximizes the rate of the SU while the interference power con-

straint is satisfied for all possible channel realizations.This problem is formulated as

a semi-infinite programming (SIP) problem. Two solutions, including a closed-form

solution and a second order cone programming (SOCP) based solution, are proposed.

Finally, we apply the resource allocation solution for the CR MIMO channels to

solve the capacity computation problem for secrecy MIMO channels. By exploiting

the relationship between these two channels, the capacity computation problem for

secrecy MIMO channels is transformed to a sequence of optimization problems for

CR MIMO channels, through which several efficient algorithms are proposed.

ix
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4.4 Comparison of the results obtained by the SOCP algorithmand Algo-

rithm 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Comparison of the results obtained by the SOCP algorithmand Algo-

rithm 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Effect ofl2/l1 on the achievable rate of the CR network (ǫ = 1, N =

3). (1) P̄ = 10 dB; (2)P̄ = 8 dB; (1)P̄ = 6 dB. . . . . . . . . . . . . . 97

4.7 Comparison of the rate under different constraints of (P1). (i) the

maximal rate subject to interference constraint and transmit power con-

straint simultaneously; (ii) the maximal rate subject to a single transmit

power constraint; (iii) the maximal rate subject to a singleinterference

constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 The system models: (a) the MISO CR channel withK single-antenna

PUs; and (b) the MISO secrecy channel withK single-antenna eaves-

droppers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Comparison of the secrecy rate by Algorithm 1 (A1) and that by the P-

SVD algorithm for the MISO secrecy channel withN = 4 andK = 2

single-antenna eavesdroppers. . . . . . . . . . . . . . . . . . . . . . 116

xiii



LIST OF FIGURES

5.3 Illustration of the functionmini=1,2 Fi(Γ1, Γ2). . . . . . . . . . . . . 116

5.4 Comparison of the secrecy capacity by Algorithm 2 and thesecrecy

rate by the P-SVD algorithm forM = N = 4 andK = 1 single-

antenna eavesdropper. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 The value of the functionF (Γ) for M = N = 4, K = 1 single-antenna

eavesdropper, and̄P = 5 dB. . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Comparison of the lower and upper bounds on the secrecy rate and the

secrecy rate by the P-SVD algorithm for the MISO secrecy channel

with N = 4, andK = 1 eavesdropper withNe = 2 receive antennas. . 119

xiv



List of Tables

2.1 Recursive Decoupled Power Allocation Algorithm for TwoPUs (RDPA-

2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Recursive Decoupled Power Allocation Algorithm forN PUs (RDPA-

N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Decoupled Multiple-Constraint Power Allocation Algorithm (DMCPA). 37

3.1 Decoupled Iterative Power Allocation (DIPA) Algorithm. . . . . . . . 64

3.2 Subgradient Iterative Power Allocation (SIPA) Algorithm. . . . . . . 67

4.1 The algorithm for SP2. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 The algorithm for problemP3 in the case where two constraints are

satisfied simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 The complete algorithm for problemP3. . . . . . . . . . . . . . . . . 91

4.4 The algorithm for problemP4 in the case where two constraints are

satisfied simultaneously. . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 The complete algorithm for (P1). . . . . . . . . . . . . . . . . . . . 94

5.1 Algorithm for Problem (5.3). . . . . . . . . . . . . . . . . . . . . . . 109

xv



List of Notations

a lowercase letters are used to denote scalars

a boldface lowercase letters are used to denote column vectors

A boldface uppercase letters are used to denote matrices

(·)T the transpose of a vector or a matrix

(·)H the conjugate transpose of a vector or a matrix

E[·] the statistical expectation operator

IM theM ×M identity matrix

1M theM × 1 vector with all elements being one

diag(x) the diagonal matrix with the diagonal elements being vectorx

tr(·) the matrix trace operation

Rank(·) the matrix rank operation

|S| the determinant of a matrixS

R the field of real numbers

[x]+ max(x, 0)

(·)b/(·)m the quantities associated with a BC or a MAC,

xvi



List of Abbreviations

BS Base Station

CR Cognitive Radio

DMCPA Decoupled Multiple-Constraint Power Allocation algorithm

CML Capped Multi-Level

DFE Decision Feedback Equalizer

MMSE Minimum Mean-Square-Error

PU/PUn Primary User/Primary Usern

QoS Quality-of-Service

RDPA-2 (N) Recursive Decoupled Power Allocation algorithmwith Two (N) primary users

SIMO Single-Input Multiple-Output

MISO multiple-input single-output

MIMO multiple-input multiple-output

SINR Signal-to-Interference-plus-Noise Ratio

SU/SUi Secondary User/Secondary Useri

ZF Zero-Forcing

CSI channel state information

SOCP second order cone programming

BC broadcast channel

MAC multiple access channel

xvii



Abbreviations

IC interference channels

SU-Tx SU transmitter

SU-Rx SU receiver

PU-Tx PU transmitter

PU-Rx PU receiver

CSCG circularly symmetric complex Gaussian

SIC successive interference cancelation

DPC dirty paper coding

RV random variable

xviii



Chapter 1

Introduction

Traditional spectrum regulation is based primarily on the command-and-control strat-

egy that assigns users to prescribed frequency bands, and restricts the potential users to

dynamically access the allocated radio spectrum. In a report published by the Federal

Communications Committee (FCC) [1], it has been shown that asignificant amount of

the licensed radio spectrum is unused for 90% of time in the United States. Similar

observations have been made in other countries [2]. This static spectrum allocation

policy, together with the rapid deployment of various wireless services, leads to in-

creasing scarcity and congestion in the radio spectrum. Cognitive Radio (CR) that

allows the secondary (unlicensed) users to opportunistically or concurrently access the

licensed spectrum, show a great potential to improve the spectrum utilization [3,4].

This thesis investigates the resource optimization problems for three multi-antenna

based CR channels, including the CR single-input multiple-output multiple access

channels (SIMO-MAC), CR multiple-input multiple-output broadcast channels (MIMO-

BC), and CR multiple-input multiple-output (MISO) channels, and applies the resource

allocation results of CR MIMO channels to solve the capacitycomputation problem for

secrecy MIMO channels. In this chapter, we briefly introducethe recent development

and challenges of CR research, provide overviews on resource allocation for multi-
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1.1 Cognitive Radio Models

antenna systems and secrecy communication systems, and present the contributions

and organization of this thesis.

1.1 Cognitive Radio Models

According to the definition in [4], CR is an intelligent wireless communication system

that is aware of its surrounding environment, adapts its transmission to the electromag-

netic environment, and improves the utilization efficiencyof the radio spectrum. When

a CR is operating in a spectrum allocated to a primary user (PU), the CR is also called

the secondary user (SU). According to the capability of the SU in obtaining its sur-

rounding spectrum environment, the CR models can be classified into three categories:

the opportunistic spectrum access model, the spectrum sharing model, and the overlay

model. In the opportunistic spectrum access model, the SU has the lowest capability

in understanding its radio spectrum environment, i.e., it can only detect whether the

PU is on or off. If the SU finds that the spectrum is unoccupied by the PU, then the

SU can access this spectrum; otherwise, it cannot. In spectrum sharing model, the SU

regulates its transmission power such that the caused interference power at the PU is

lower than one threshold. In this case, the SU can access the spectrum even if the PU

is active. In overlay model, the SU is assumed to havea priori knowledge of the PU’s

messages. With that, the SU transmitter is able to send messages to its own receiver

and, at the same time, compensate for the resultant interference to the PU by assisting

the PU transmission.

1.1.1 The Opportunistic Spectrum Access Model

In opportunistic spectrum access model, the SUs are allowedto access the spectrum

only if it is not being used by the PUs as shown in Fig. 1.1. The key point in this model
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1.1 Cognitive Radio Models

is to accurately detect the existence of the PUs, and the process to detect the PU’s ac-

tivity is termed asspectrum sensing. Spectrum sensing is one of the most fundamental

elements in a CR due to its crucial role in discovering spectrum opportunities. There
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Figure 1.1: The opportunistic spectrum access model: The SUis allowed to access the

spectrum only if the PU is inactive. The shadowed area denotes the spectrum occupied

by the PU. The area with dash line denotes the spectrum which could be utilized by

the SU.

are several well-known conventional spectrum sensing algorithms, including the en-

ergy detection [5], matched filter [6–9], and feature detection [10,11]. Recently, there

are several new algorithms proposed for CR spectrum sensing, such as the eigenvalue

based algorithm [12, 13] and the covariance based algorithm[14, 15]. These spectrum

sensing algorithms usually rely on the local observations of a single SU. However, us-

ing the observations from a single SU might result in ahidden terminal problem[16],

with which the detection for PU may fail due to the shadowing.An efficient approach,

which is termed as cooperative spectrum sensing [16–20], isto have several SUs to co-

operate with each other for detecting the presence of the PU.If the SUs span a distance

that is larger than the correlation distance of the shadowing fading, it is unlikely that

all of them are under a deep shadow simultaneously. Thus, cooperative sensing has

better PU detection performance with the cost of additionaloperations and overhead

traffic.
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In order to protect the PUs, from medium access perspective,each medium access

control frame needs to have one sensing slot to sense the PU’sactivity and one data

transmission slot for SU transmission in case the spectrum is found to be available.

The longer duration of the sensing slot, the better performance of the PU detection,

and thus the better protection to PUs. However, the longer sensing slot leads to the

shorter transmission time, and thus the lower SU throughput. The tradeoff between the

sensing time and the SU throughput was studied in [21].

1.1.2 The Spectrum Sharing Model

Figure 1.2: The spectrum sharing model: the SU can share the same spectrum with the

PU provided that its interference power at PU is lower than a threshold. SU-Tx, SU-

Rx, PU-Tx and PU-Rx denote the SU transmitter, the SU receiver, the PU transmitter

and the PU receiver, respectively. Within the regionS, the interference power caused

by the SU is larger than the interference power threshold.

In spectrum sharing model, the SU is allowed to transmit simultaneously with the

PU provided that the interferences from the SU to the PU will not cause the resultant

4



1.1 Cognitive Radio Models

performance loss of PU to an unacceptable level. As shown in Fig. 1.2, the SU should

regulate its transmission power such that the caused interference at the PU is lower

than a threshold, which is called interference power constraint [22–24]. To achieve

this power constraint, the SU may also need to have the channel state information

(CSI) of the channel from the SU transmitter to the PU receiver.

To enable the spectrum sharing, dynamic resource allocation becomes crucial,

whereby the transmit power, bit-rate, bandwidth, and antenna beam of the CR need

to be dynamically adjusted based upon the CSI available at the CR transmitter. A

lot of existing studies for spectrum sharing model focus on the resource allocation to

optimize the performance of the SU networks [25–28].

For the single-antenna spectrum sharing CR fading channels, the power allocation

problem to achieve the ergodic/outage capacity has been studied in [29] under the aver-

age/peak interference power constraint, and in [30,31] under the combined interference

power and transmit power constraints. It has been shown in [32] that the average in-

terference power constraint is superior over the peak interference power constraint in

terms of maximizing the achievable ergodic capacities of both PU and SU.

In the past decade, multi-antenna communication systems have received consider-

able attention due to their capability to achieve many desirable functions, including the

interference suppression for multi-user transmissions [33], the capacity gain without

bandwidth expansion [34], and the diversity gain via space-time coding [35]. In ad-

dition to achieve the above functions, in CR networks, multi-antennas can be utilized

to suppress the interference to the PU. Transmit optimization for a single secondary

MIMO/MISO link in a CR network under interference power constraint is considered

in [36]. Multi-antennas were exploited at the secondary transmitter to optimally trade-

off between throughput maximization and interference avoidance. However, the role

of multi-antennas in multi-user CR systems is not completely understood yet. More-

over, it is unclear how to fully exploit the spatial degrees of freedom provided by the
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Genie

PU message

SU message

PU receiver

SU receiver

PU transmitter

SU transmitter

Figure 1.3: The overlay model: the SU transmitter hasa priori knowledge of the PU’s

message.

multi-antenna SUs.

1.1.3 The Overlay Model

In overlay CR model, the SU is assumed to have perfect a prioriknowledge on the mes-

sage being transmitted by the PU, which is illustrated in Fig. 1.3. Thus, the SU can

allocate part of its power for secondary transmission and the rest to assist the primary

transmission. Most of the studies on the overlay CR model arebased on information

theory [37–43]. Complex coding schemes that including cooperative coding, collabo-

rative coding, and dirty paper coding, have been developed to improve the achievable

rate of the CR channel. Moreover, the power allocation problem to achieve the capacity

of overlay CR MIMO channel has been studied in [44]. The proposed power alloca-

tion scheme therein has been proved to be optimal under certain conditions. In [45],

recent results for overlay CR have been summarized from an information-theoretic

perspective.
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1.2 Related Work

The topics of this thesis focus on the resource optimizationfor multi-antenna CR sys-

tems and its application in secrecy transmission problems.For the sake of better il-

lustration, we provide a brief overview on the resource allocation for multi-antenna

systems and the secrecy communication systems.

1.2.1 Resource Allocation for Multi-Antenna Systems

Most of the existing resource allocation problems for multi-antenna systems, including

MIMO-MAC, MIMO-BC, and MISO channels, are formulated as optimization prob-

lems [46]. By applying certain powerful optimization tools, such as the convex opti-

mization techniques, high-efficiency algorithms are developed. One important class of

resource allocation problems for multi-antenna systems isto design the optimal trans-

mit strategy, e.g., determining the transmit covariance matrix, to achieve the capacity

region for corresponding channels. In [47], the sum capacity computation problem

for MIMO-MAC, which is also called sum rate maximization problem, was explored.

The objective of the problem is to design the optimal transmit covariance matrices to

achieve the sum capacity of the MIMO-MAC. By applying the Karush-Kuhn-Tucker

(KKT) conditions of the problem, a high-efficiency algorithm, which is called itera-

tive water-filling (IWF) algorithm, was developed. In [48],the sum rate maximization

problem for MIMO-BC with a single transmit power constraintwas studied. By ex-

ploiting the relationship between BC and MAC, the problem can be transformed into an

equivalent MIMO-MAC sum rate maximization problem, which can be solved by IWF.

In [49], the transmit optimization problem for a MISO channel was studied, where the

transmitter is assumed to have imperfect CSI. The objectiveof this problem is to de-

termine the optimal transmit covariance matrix such that the average transmission rate

of the MISO channel is maximized. Moreover, another class ofresource allocation
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problems is studies from an signal processing perspective [50–52]. The objective is

to find the transmit/receive vectors and the transmit power for MISO-BC/SIMO-MAC

with Signal-to-Interference-plus-Noise Ratio (SINR) constraint or transmit power con-

straint. These problems, which are called BC/MAC beamforming problem, can be

transformed into the second order cone programming (SOCP) problems [50], and

solved by efficient interior point algorithm [53].

1.2.2 Secrecy Communication Systems

Due to the broadcast nature of the wireless communication systems, the wireless trans-

mission is particularly susceptible to eavesdropping. Hence, security and privacy

have now become a critical factor in designing a wireless communication system. In

1975, Wyner introduced a secrecy transmission model in his seminal work [54] on

information-theoretic secrecy. In this model, the secrecytransmitter sends confidential

messages to a legitimate receiver subject to the requirement that the messages can-

not be decoded by an eavesdropper. The information-theoretic study of the secrecy

transmission problem has been continued and extended to many other channel models,

including BC [55–58], MAC [59–61], and interference channels (IC) [62, 63]. Very

recently, the secrecy capacity of the MIMO channel has been characterized by Khisti

and Wornell [64], and Oggier and Hassibi [65]. In their studies, the secrecy MIMO

channel with a single eavesdropper having multiple antennas was transformed into a

degraded MIMO-BC, whose capacity is an upper bound on the secrecy capacity. It

was shown in [64, 65] that this capacity upper bound is indeedtight for the Gaussian

noise case, i.e., the exact secrecy capacity. However, thiscomputable secrecy capacity

cannot be extended to the general case of multiple eavesdroppers. In [66], Liu and

Shammai also derived the MIMO secrecy capacity by using the channel enhancement

technique [67]. However, no computable characterization of the secrecy capacity was
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provided in [66]. It is still unclear how to compute the secrecy capacity of the channels

with multiple eavesdroppers.

1.3 Motivations and Challenges

Many of the resource allocation problems for the conventional communication sys-

tems can be formulated as convex optimization problems [46,47, 50]. Compared to

those conventional systems, the spectrum sharing based CR networks experience extra

interference power constraints. Although the interference power constraint is a linear

constraint, and does not change the convexity of the relatedproblems, many existing

high-efficiency algorithms cannot be applied to CR cases dueto the presence of the ex-

tra constraint. For example, in the CR SIMO-MAC, although the corresponding power

allocation problem is a convex optimization problem, the conventional water-filling

algorithm is not applicable. Moreover, for MIMO-BC, the conventional transmit opti-

mization depends on the conventional BC-MAC duality. However, this duality is not

applicable to the CR MIMO-BC, where the transmitter is subject to both the transmit

power constraint and the interference power constraint. Efficient algorithms need to be

designed to handle the difficulties caused by the extra interference power constraint.

In the exiting literature [36,68], it is usually assumed that the CSI of all the chan-

nels in CR networks are perfectly known by the SU transmitter. However, unlike the

conventional wireless communication systems, it is difficult for the SU to obtain the

accurate CSI of the channel from the SU transmitter to the PU due to the loose cooper-

ation between them. A more practical scenario needs to be considered for the spectrum

sharing based CR networks. A straightforward problem is howto design the optimal

transmission strategies for the SU transmitter when only partial CSI is available.

Finally, in a secrecy transmission system, the transmitteris required to send its

confidential messages to legitimate destinations while keeping other eavesdroppers as
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ignorant of this information as possible. One possible strategy for the secrecy transmit-

ter is to regulate its transmission power such that the received power at eavesdroppers

is low enough. While it is easy to observe that there is a similarity between the secrecy

transmission and spectrum sharing based CR transmission, i.e., both of them need to

regulate their transmission power, explicit description for the relationship of these two

transmissions is needed. Moreover, it would be interestingto investigate how we can

utilize the results of the resource allocation problem for spectrum sharing CR networks

to solve the related problems for the secrecy transmissions.

1.4 Contributions and Organization of the Thesis

The main contributions of this thesis are to develop new optimization algorithms for

spectrum sharing based CR networks and apply the relationship between secrecy trans-

mission and CR transmission to solve the capacity computation problem for secrecy

channels.

In Chapter 2, we consider two joint beamforming and power allocation problems

for the CR SIMO-MAC. The first problem focuses on determiningthe optimal power

allocation and the receive beamforming vectors to maximizethe sum rate of the chan-

nel. A capped multi-level water-filling algorithm is proposed by exploiting the special

structure of the CR SIMO-MAC channel. The second problem is to determine the op-

timal power allocation and the receive beamforming vectorssuch that the target SINR

of different users is met in a fair manner, which is termed as the SINR balancing prob-

lem. We prove that the linear power constraints in the SINR balancing problem can be

completely decoupled, and thus the problem can be handled through solving multiple

single-constraint sub-problems. Therefore, the computational complexity is reduced

significantly.

In Chapter 3, we consider the transmit optimization problemto achieve the ca-
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pacity region of the CR MIMO-BC, which is called the capacitycomputation problem.

Traditional MIMO-BC capacity computation problem can be solved by solving a dual

MIMO-MAC problem via a BC-MAC duality. However, the conventional BC-MAC

duality can only be applied to the case where the transmitteris subject to a single

sum power constraint. In CR MIMO-BC, the transmitter is not only subject to the

sum power constraint, but also to the interference power constraint. Thus, the conven-

tional BC-MAC duality cannot be applied. To handle this difficulty, we propose a new

generalized BC-MAC duality, and apply it to solve the capacity computation problem

for the CR MIMO-BC with multiple linear constraints. This result generalizes all the

existing BC-MAC duality results as its special cases. Moreover, we propose a subgra-

dient based algorithm, which is shown to be able to converge to the globally optimal

solution.

In Chapter 4, we consider a robust design problem for a CR MISOchannel. We

assume that the CSI of the channel from the SU transmitter to the PU is partially

known at the SU, due to the loose cooperation between the SU and the PU. With the

uncertainty of the channel, our design objective is to determine the transmit covari-

ance matrix that maximizes the rate of the SU while guaranteeing that the interference

power constraint is satisfied for all the possible channel realizations. This problem is

formulated as a semi-infinite programming (SIP) problem. Byexploiting its properties,

this problem is first transformed into the SOCP problem, and is solved via a standard

interior point algorithm. Then, an analytical solution with much reduced complexity

is developed from a geometric perspective.

In Chapter 5, we study the achievable rates for the MIMO secrecy channel with

multiple single-/multi-antenna eavesdroppers. According to [64–66], by assuming

Gaussian input, the achievable secrecy rate can be maximized via optimizing over

the transmit covariance matrix of the secrecy user to maximize the minimum differ-

ence between the mutual information of the secrecy channel and those of the channels

11
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from the secrecy transmitter to different eavesdroppers. It can thus be shown that the

resulting secrecy rate maximization problem is a non-convex max-min optimization

problem, which is difficult to solve via existing methods. Toaddress this problem,

we consider an auxiliary CR channel with multiple PUs bearing the same channel re-

sponses as those eavesdroppers in the secrecy channel in Chapter 5. We then establish

a relationship between this auxiliary CR channel and the secrecy channel by proving

that the optimal transmit covariance matrix for the secrecychannel is the same as that

for the CR channel with properly selected IT constraints forthe PUs. Thereby, find-

ing the optimal complex transmit covariance matrix for the secrecy channel becomes

equivalent to searching over a set of real IT constraints in the auxiliary CR channel,

thus substantially reducing the computational complexity. Based on this relationship,

we transform the non-convex secrecy rate maximization problem into a sequence of

convex CR spectrum sharing capacity computation problems,under various setups of

the secrecy channel. For the case of multiple-input single-output (MISO) or MIMO

secrecy channel with single-antenna eavesdroppers, we propose efficient algorithms to

compute the maximum achievable secrecy rate, while for the case with multi-antenna

eavesdropper receivers, we obtain various new bounds on theachievable secrecy rate.

Finally, we summarize and conclude our work in Chapter 6, anddiscuss a few

interesting questions and directions for further research.
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Chapter 2

Joint Beamforming and Power

Allocation for CR SIMO-MAC

In this chapter, we consider a spectrum sharing based CR SIMO-MAC network. Sub-

ject to interference power constraints for the PUs as well astransmit power constraints

for the SUs, two optimization problems involving a joint beamforming and power allo-

cation for the CR SIMO-MAC are considered: the sum-rate maximization problem and

the SINR balancing problem. For the sum-rate maximization problem, zero-forcing

based decision feedback equalizers (ZF-DFE) are used to decouple the SIMO-MAC,

and a capped multi-level (CML) water-filling algorithm is proposed to maximize the

achievable sum-rate of the SUs for the single PU case. For theSINR balancing prob-

lem, it is shown that, using linear minimum mean-square-error (MMSE) receivers,

each of the interference constraints and transmit power constraints can be completely

decoupled, and thus the multi-constraint optimization problem can be solved through

multiple single-constraint sub-problems.
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2.1 Introduction

Conventionally, to improve the spectral efficiency and reliability of MAC, multi-antennas

are often deployed at the base station (BS) [69], [51]. On theother hand, single-antenna

mobile users are quite common due to the size and cost limitations of mobile termi-

nals. We simply term this setting as SIMO-MAC. It is well known that the minimum

mean-square-error based decision feedback equalizer (MMSE-DFE) is a sum-rate ca-

pacity achieving scheme for the SIMO-MAC [70]. Additionally, it was shown in [71]

that the ZF-DFE is asymptotically optimal in both low and high signal-to-noise ratio

(SNR) regimes.

For SIMO-MAC systems, given the SINR targets for each user, asum-power

minimization problem has been studied in [52] using linear MMSE receivers. Joint

beamforming and power allocation algorithms have been proposed under the assump-

tion that there exists a feasible solution for the prescribed SINRs. A related problem

of [33] has been studied, i.e., the SINR balancing problem, in which the minimal ra-

tio of the achievable SINRs relative to the target SINRs of the users in the system is

maximized under a sum-power constraint. When the ratio is greater than or equal to

one, the power minimization problem has been considered forthe given SINR targets.

Through introducing SINR balancing, the work in [72] is ableto justify the feasibil-

ity to achieve the SINR targets. In [72] and [73], the power allocation vector for a

given beamforming matrix was derived using a single-step solution instead of iterative

schemes as in [52] and [33]. Moreover, the SINR balancing problem has been studied

using MMSE-DFE receivers in [74].

In this chapter, we consider a spectrum sharing based CR SIMO-MAC network.

Two sets of constraints are considered: interference powerconstraints, and transmit

power constraints. Based on these constraints, we study twooptimization problems

for the SUs: the sum-rate maximization problem and the SINR balancing problem.
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For the sum-rate maximization problem, a ZF-DFE is used to decouple the subchan-

nels associated with each SU. We propose a CML water filling algorithm to maximize

the sum-rate under the individual transmit power constraint and the interference con-

straint for a single PU. We also propose a power allocation scheme, called recursive

decoupled power allocation algorithm, for the case where multiple PUs exist. For the

SINR balancing problem, linear MMSE receivers are considered. It is proven that the

multi-constraint optimization problem can be completely decomposed into multiple

single-constraint optimization problems. Therefore, theglobally optimal solution to

the multi-constraint problem can be obtained through computing the solutions to the

decomposed sub-problems.

The rest of the chapter is organized as follows. In Section 2.2, we present the sig-

nal model for CR SIMO-MAC and formulate two optimization problems. In Section

2.3, the sum-rate maximization problem is studied, for which a recursive decoupled

power allocation algorithm is proposed. In Section 2.4, we consider the SINR bal-

ancing problem, and propose a decoupled multi-constraint power allocation algorithm.

Numerical examples are given in Section 2.5. Finally, Section 2.6 concludes this chap-

ter.

2.2 System Model and Problem Formulation

Consider a CR SIMO-MAC withK SUs operating in a spectrum allocated toN PUs

each with a single transmit antenna and a single receive antenna. The SUs, as shown

in Fig. 2.1, communicate with the same BS equipped withNr receive antennas. The

transmit-receive signal model from the SUs to the BS can be represented as:

y = Hx + Ȟx̌ + z,
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Figure 2.1: The system model for CR SIMO-MAC. There areK SUs andN PUs. The

BS hasNr receive antennas. Each SU is equipped with a single transmitantenna.

wherey denotes theNr × 1 received signal vector,H = [h1, · · · , hK ] denotes the

Nr ×K channel matrix withhi being the channel responses from theith SU (SUi) to

the BS,x is theK × 1 transmit signal vector whoseith entry,xi, denotes the signal

transmitted from SUi, Ȟ = [ȟ1, · · · , ȟN ] denotes theNr × N channel matrix where

ȟn is the channel response from thenth PU (PUn)’s transmitter to the BS,̌x is the

N × 1 transmit signal vector from the PUs1, andz is the Gaussian noise vector whose

entries are assumed to be independent Gaussian random variables (RVs) with mean

zero and varianceσ2.

Furthermore, we assume that the transmit power,pi, of SUi, is subject to a transmit

powerP̄i, i.e.,pi ≤ P̄i, i = 1, · · · , K. Let gn,i be the power gain between SUi to PUn.

The interference power received by PUn from all SUs is characterized bygT
np, where

gn = [gn,1, · · · , gn,K]T andp := [p1, · · · , pK ]T . DefiningG = [g1, . . . , gN ]T 2. In this

chapter, the proposed algorithms are performed at the BS of the CR SIMO MAC, and it

is assumed that the BS has perfect CSI. To do so, the SUs need tobe “cognitive users”

1It will be clear in the following that the influence of the PU transmission can be viewed as noise for

SU.
2Throughout this thesis, we assume ablock fadingchannel model, i.e., the channel matricesH, Ȟ,

andG are fixed during each transmission block and change independently from one block to another

according to the ergodic random processes.
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which are aware of the environment [3]. In practice, certaincooperation in terms

of parameter feedback between the PUs and the SUs may be required. To achieve

that, the protocol for SUs can be designed as follows: every frame contains sensing

sub-frame and data transmission sub-frame. During the sensing sub-frame, all SUs

remain quiet, and thus the BS can measure the effect from the PU and background

noise. During the first portion of the data transmission sub-frame, the SUs can transmit

training sequences to the BS as well as to the PUs so that the BScan estimate the

channel matrixH, and the PUs can measure the matrixG. After that, the PUs will

feedback the matrixG to the BS so that further processing can be carried out.

As discussed in Chapter 1, in spectrum sharing based CR networks, to guarantee

the quality of service (QoS) of the PU, the SU transmitter should regulate its transmis-

sion power such that the caused interference at the PU is lower than certain threshold.

On the other hand, with ensured QoS of the PUs, power allocation in a CR network

should be appropriately determined to optimize the performance metrics of the SUs,

which can be reflected through the parameters such as the sum-rate or SINR.

Motivated by the considerations described above, we formulate the designs of CR

SIMO-MAC into two optimization problems. The first problem of our interest is to

maximize the sum-rate of the SUs subject to individual transmit power constraints, as

well as the interference power constraints. This problem istermed as thesum-rate

maximizationproblem, which, mathematically, can be formulated as

max
U ,p

∑

i

ri (2.1)

subject to:pi ≤ P̄i, i = 1, 2, ..., K,

gT
np ≤ Γn, n = 1, · · · , N, (2.2)

whereU is defined as[u1, . . . , uK ] with ui denoting the receive beamforming vec-

tor for SUi, andri is the information rate of SUi, andΓn represents the interference

power threshold for PUn. The expression of information rateri depends on the receiver
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employed by the BS, and it will be discussed in Section 2.3.

In the preceding formulation, the fairness in QoS for SUs in the CR SIMO-MAC

is not taken into account. Since each user’s QoS is related toits SINR, ensuring the

QoS of each SU can be realized through pre-setting the SINR targets. The output SINR

of SUi after applying beamforming to the received signal vector isgiven by [52], [72]

SINRi(ui, p) =
piu

H
i Riui

uH
i (
∑

k 6=i pkRk + σ2INr
+
∑N

n=1 p̌nŘn)ui

, (2.3)

wherep̌n is the transmit power of PUn, Ri = hih
H
i for i = 1, · · · , K, andŘn =

ȟnȟ
H
n for n = 1, · · · , N .

Mathematically, the SINR balancing problem for a CR SIMO-MAC can be for-

mulated as

max
U ,p

min
1≤i≤K

SINRi(ui, p)

γi
, (2.4)

subject to:pi ≤ P̄i, i = 1, 2, ..., K,

gT
np ≤ Γn, n = 1, · · · , N, (2.5)

whereγi is the preset SINR target for SUi. Similar to [72], the objective function (2.4)

is to find a power allocation such that all SUs can achieve their target SINRs in a fair

manner.

2.3 Sum-Rate Maximization Problem

In this section, we study the sum-rate maximization problemusing a ZF-DFE at the

BS. We further assumeNr ≥ K. Applying the QR decomposition to the channel ma-

trix H of SUs, and definingM as the rank ofH, we can writeH = QR, where

Q = [q1, · · · , qM ] ∈ CNr×M has orthogonal columns andR ∈ CM×K is an upper

triangular matrix withrm,k denoting its(m, k)th entry. Using equalizerQH to the
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2.3 Sum-Rate Maximization Problem

received signal and using successive interference cancellation, the channel is decom-

posed asM independent sub-channels, each associated with one SU. This receiver can

also be viewed as receive beamforming in the sense that the beamforming vectors are

determined by the QR decomposition of the channel matrixH. Thus, we only need

to determine the power allocation vector that maximizes thesum-rate. In this case,

assuming Gaussian signal inputs, we rewrite (2.1) and (2.2)as

max
p

K∑

i=1

log

(
1 +

pidi

σ2
i

)
(2.6)

subject to:pi ≤ P̄i, i = 1, 2, ..., K,

gT
np ≤ Γn, n = 1, 2, . . . , N, (2.7)

wheredi = |ri,i|2, andσ2
i = σ2 +

∑N
n=1 p̌nq

H
i Řnqi is the interference-plus-noise

power after receive beamformingqi is applied. Eq. (2.6) defines the sum rate achieved

through the ZF-DFE based receiver. In the above, we formulate the problem for the

general case ofK sub-channels. However, ifM < K, we can choosedi = 0 and

pi = 0 for i = M + 1, · · · , K.

If the power constraints in (2.7) are replaced by a single total power constraint,
∑K

i=1 pi ≤ Pmax, then the optimal power allocation achieving the maximum sum-rate

is described bythe conventional water-filling principle[75]:

pi =

[
µ− σ2

i

di

]+

, i = 1, · · · , K, (2.8)

where[x]+ := max(x, 0), andµ is the water level for which the power constraint is

satisfied with equality. In the following, we will derive thepower allocation policies

for CR SIMO-MAC.

2.3.1 A Single PU Constraint

Instead of tackling problem (2.6) under multiple interference constraints described by

(2.7), we first consider a relatively simple scenario where only one PU is present. In
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this case, as described in (2.7), there are one interferenceconstraint andK transmit

power constraints. The solution to the general problem withmultiple PUs will be

discussed in Section 2.3.2. For notional simplicity, we write the interference power

threshold for the PU asΓ, and the power gain from SUi to this PU asgi for i =

1, · · · , K.

The Lagrange function of (2.6) and (2.7) withN = 1 is given by

L(p, λ,ν1, · · · , νK) =
K∑

i=1

log
(
1 +

pidi

σ2
i

)
+ λ
(
Γ−

K∑

i=1

gipi

)
+

K∑

i=1

νi(P̄i − pi),

whereλ and νi, i = 1, ..., K, are Lagrange multipliers. The Karush-Kuhn-Tucker

(KKT) conditions are listed as:

(
σ2

i d
−1
i + pi

)−1 − λgi − νi = 0, (2.9)

λ

(
Γ−

K∑

i=1

gipi

)
= 0, (2.10)

νi(P̄i − pi) = 0, (2.11)

whereλ ≥ 0 andνi ≥ 0 for i = 1, · · · , K. According to (2.9), the power allocation

for SUi is given by

pi =

[
1

λgi + νi

− σ2
i

di

]+

, i = 1, · · · , K. (2.12)

The parametersλ andνis can be obtained through substituting (2.12) into (2.10) and

(2.11). Eq. (2.12) resembles the conventional water-filling solution shown in (2.8).

However, the key difference is that the conventional water-filling principle indicates

that all users use the same water level,µ, while the solution in (2.12) suggests that

the water level can be different for different SUs. Specifically, for SUi, its water level

is determined bywi = 1/(λgi). DefineT as1/λ. Because the parameterT is the

same for all SUs, andgi quantifies the power gain from SUi to the PU, the SU causing

stronger interference to the PU has a lower water level, and vice versa.
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Eq. (2.12) involves(K + 1) Lagrange multipliers, and thus computing (2.12)

becomes more complex as compared to the conventional water filling which only has a

single Lagrange multiplier. Fortunately, sincepi ≤ P̄i, the powers allocated to each SU

are upper-bounded by their transmit power constraints. Therefore, the power allocation

scheme is called capped multi-level (CML) water-filling.

In the following theorem, we show that it is unnecessary to calculate the Lagrange

multipliersνis.

Theorem 2.1 For the sum-rate maximization problem(2.6) with K transmit power

constraints and a single interference constraint, the optimal power allocation for SUi can

be computed as

pi =






P̄i, if (λgi)
−1 − σ2

i d
−1
i ≥ P̄i,

0, if (λgi)
−1 − σ2

i d
−1
i ≤ 0,

(λgi)
−1 − σ2

i d
−1
i , otherwise.

P roof : First, we will show that under condition(λgi)
−1 − σ2

i d
−1
i ≥ P̄i, the

power allocation for SUi is pi = P̄i. We will prove it by contradiction. Suppose

that pi 6= P̄i, i.e., 0 ≤ pi < P̄i sincepi ≤ P̄i. The complementary slackness con-

dition (2.11) implies thatνi = 0. Substitutingνi = 0 into (2.12), we can obtain

pi = (λgi)
−1−σ2

i d
−1
i ≥ P̄i, which contradicts the assumption that0 ≤ pi < P̄i. Hence,

pi = P̄i, if (λgi)
−1 − (σ2

i )d
−1
i ≥ P̄i. For the other two cases,(λgi)

−1 − σ2
i d

−1
i < P̄i.

From (2.11),νi = 0. Therefore, (2.12) becomes conventional water-filling, and the

results follow immediately. �

Example 2.1 In Fig. 2.2 we provide an example of power allocation resultsusing the

CML water-filling algorithm. All SUs have the same transmit power, and the same

power gain to the PU, except that the power gain of SU4 is 1.5 times those of the other

SUs. It is seen that the allocated powers for SU5 & SU6 are limited by their transmit
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SU1 SU2 SU3 SU4 SU5 SU6 SU7

σ2

1

d1

σ2

2

d2 σ2

3

d3
σ2

4

d4

σ2

5

d5

σ2

6

d6

σ2

7

d7

P̄1

P̄2

P̄3

P̄4

P̄5

P̄6

P̄7

water level= 1
λgi

water cap

Figure 2.2: An example of power allocation results using CMLwater filling algorithm.

All seven SUs have the same transmit power and same power gain, except that SU4’s

power gain is1.5 times the power gain for others. The shadowed area for each sub-

channel denotes the power allocated to the corresponding SU.

powers, while the sub-channel for SU2 is too weak such that no power is allocated to

this user. The other sub-channels share the same water level, except that SU4 has a

slightly lower level, due to its stronger interference to the PU.

In the CML water-filling algorithm, it is crucial to determine theT -parameter

1/λ in order to determine water-level for each SU. Let us denoteti = gi(σ
2
i /di +

P̄i), i = 1, 2, · · · , K. It is clear thatti in fact defines the maximumT -parameter

which SUi can support due to its transmit power constraint. We then order all SUs

as t1 ≤ t2 ≤ · · · ≤ tK . Next, we define the variablefj as the interference power

introduced by the SUs to the PU when the SUs with indexi ≤ j use their transmit

powers, while theT -parameter for the other SUs is set to betj, i.e.,

fj =

j∑

i=1

giP̄i +
K∑

i=j+1

gi

[
tj
gi

− σ2
i

di

]+

.

Based on these definitions, one can conclude thatf1 ≤ f2 ≤ · · · ≤ fK , andfK

corresponds to the case when all SUs use their transmit powers. Thus, for a givenΓ, if
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Γ > fK , all SUs can be allocated with their transmit power. Otherwise, if we can find

an indexi0 which satisfies the conditionfi0 ≤ Γ ≤ fi0+1, then, for the SUs with index

k ≤ i0, the transmit power̄Pk will be allocated, while for the SUs with indexk > i0,

the transmit powers will be less than their transmit powers.Therefore, the interference

power introduced by the SUs with indexk ≤ i0 can be removed because the powers

allocated to these SUs are already known, and the power allocation problem becomes

max
p

K∑

j=i0+1

log

(
1 +

djpj

σ2
j

)
(2.13)

subject to:
K∑

j=i0+1

gjpj ≤ Γ−
i0∑

k=1

gkP̄k. (2.14)

If Γ ≤ f1, theT -parameter for all SUs will not reach the lowestt1, and thusi0 in (2.14)

is set to be zero. The power allocation solution to (2.13) under (2.14) can be derived

through modifying the conventional water filling formula.

2.3.2 Multiple PU Constraints

We now consider the scenario with multiple PUs. We start withthe two-PU case, for

which the optimization problem is formulated as follows:

max
p

K∑

i=1

log

(
1 +

pidi

σ2
i

)
(2.15)

subject to:
K∑

i=1

g1,ipi ≤ Γ1, and
K∑

i=1

g2,ipi ≤ Γ2, (2.16)

pi ≤ P̄i, i = 1, 2, ..., K.

Obviously, for anyk, if
∑K

i=1 gk,iP̄i ≤ Γk, then thekth interference power constraint

becomes redundant and can be removed. Without loss of generality, assume that no

interference constraint is redundant. In a general case, using the KKT approach to

solve the above problem will encounter the difficulty in determining(K +2) Lagrange
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multipliers. In the following, we decouple the original problem into the following two

sub-problems:

1. Sub-problem 1 (SP1):

max
p

K∑

i=1

log

(
1 +

pidi

σ2
i

)

subject to:
K∑

i=1

g1,ipi ≤ Γ1, pi ≤ P̄i, i = 1, 2, ..., K.

2. Sub-problem 2 (SP2):

max
p

K∑

i=1

log

(
1 +

pidi

σ2
i

)

subject to:
K∑

i=1

g2,ipi ≤ Γ2, pi ≤ P̄i, i = 1, 2, ..., K.

Clearly, each sub-problem can be solved through the CML water-filling algorithm pro-

posed in Section 2.3.1. Letp(1) be the optimal power allocation vector for SP1, where

p
(1)
i denotes itsith entry, andp(2) is the optimal power allocation vector corresponding

to SP2, wherep(2)
i denotes itsith entry. The following lemmas describe the relation-

ship between the globally optimal solution and the optimal solutions,p(1) andp(2), to

the sub-problems. We assume thatp(1) 6= p(2).

Lemma 2.1 The two inequalities,
∑K

i=1 g2,ip
(1)
i < Γ2 and

∑K
i=1 g1,ip

(2)
i < Γ1, cannot

be satisfied simultaneously.

Lemma 2.2 If
∑K

i=1 g1,ip
(2)
i ≤ Γ1, thenp(2) is the globally optimal solution. Similarly,

if
∑K

i=1 g2,ip
(1)
i ≤ Γ2, thenp(1) is the globally optimal solution.

Lemma 2.3 If the two inequalities,
∑K

i=1 g2,ip
(1)
i > Γ2 and

∑K
i=1 g1,ip

(2)
i > Γ1, are

satisfied simultaneously, then the globally optimal power vector must simultaneously

satisfy the interference constraints given in(2.16)with equality.
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The proofs can be found in Appendices A.1, A.2, and A.3, respectively. For

Lemma 2.3, according to the KKT conditions and the Lagrange function, the power

allocation formula can be written as

pi =

[
1

λ1g1,i + λ2g2,i + νi
− σ2

i

di

]+

, i = 1, ..., K, (2.17)

whereλ1, λ2, andνis are the Lagrange multipliers. Similar to Theorem 2.1, since the

transmission powers are upper bounded by the transmit powers, we do not need to

compute eachνi, and the power allocation formula (2.17) can be simplified as

pi =






P̄i, if (λ1g1,i + λ2g2,i)
−1 − σ2

i d
−1
i > P̄i,

[
(λ1g1,i + λ2g2,i)

−1 − σ2
i d

−1
i

]+
, otherwise.

(2.18)

for i = 1, · · · , K. The parametersλ1 andλ2 can be obtained by substitutingpi of

(2.18) into the following complementary slackness conditions:

λ1

(
Γ1 −

K∑

i=1

g1,ipi

)
= 0,

λ2

(
Γ2 −

K∑

i=1

g2,ipi

)
= 0,

Using Lemmas 1, 2, and 3, a recursive decoupled power allocation algorithm,

RDPA-2, for the two-PU case is shown in Table 2.1. It starts with the sub-problems

with one interference power constraint andK transmit power constraints, and tests

each solution in a sequential manner. After obtaining a power vector for a sub-problem,

the algorithm checks whether it satisfies the other interference power constraint. If the

answer is yes, then exit; otherwise, continue. If neither ofthe two solutions is globally

optimal, then solve the original two-constraint problem toobtain the optimal solution.

Finally, let us examine the case withN (N > 2) PUs. When theN constraints

hold with equality simultaneously, similar to (2.18), the optimal power allocation for

SUi is given by

pi =





P̄i, if (
∑N

n=1 λngn,i)
−1 − σ2

i d
−1
i > P̄i,

[
(
∑N

n=1 λngn,i)
−1 − σ2

i d
−1
i

]+
, otherwise.

(2.19)
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Table 2.1: Recursive Decoupled Power Allocation Algorithmfor Two PUs (RDPA-2).

RDPA-2 Algorithm

1. For SP1, use CML water-filling to derivep(1). If p(1) satisfies

SP2’s constraint, then exit; otherwise, continue.

2. For SP2, use CML water-filling to derivep(2). If p(2) satisfies

SP1’s constraint, then exit; otherwise, continue.

3. Use (2.18) to compute the optimal power vector.

whereλn is the Lagrange multiplier for the interference power constraint of the PUn.

Extending the idea of the search procedure for RDPA-2, a generalized algorithm,

RDPA-N, is proposed to derive the optimal power allocation for theN-PU case. This

algorithm is detailed in Table 2.2. As we can see, it starts with removing noneffective

interference power constraints. Suppose that onlym effective interference constraints

remain. Same as the RDPA-2 algorithm, the RDPA-N algorithm starts with the sub-

problems with a single constraint. When reaching to the casewith i constraints, the

algorithm selectsi out of them constraints, and there areCi
m combinations. For each

combination, the solution to the sub-problem is used to check whether this solution

also satisfies the other(m− i) constraints. If yes, the solution is globally optimal, and

exit; otherwise, continue. The worse case scenario in termsof complexity occurs when

them constraints hold with equality simultaneously.

2.4 SINR Balancing Problem

Fairness is an important metric to evaluate the network performance, and therefore it

often needs to be considered in the network design. Motivated by this, we consider

the SINR balancing problem formulated in Section 2.2. We first unify the expressions
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Table 2.2: Recursive Decoupled Power Allocation Algorithmfor N PUs (RDPA-N).

RDPA-N Algorithm

1. Initialization:i← 0, m← N , and theN interference constraints form

the constraint set (CS)

2. repeat

i← i + 1

If
∑K

k=1 gi,kP̄k ≤ Γi, remove PUi’s interference constraint from the CS,

and setm← m− 1

3. until i = N

4. Initialization:i← 0

5. repeat

i← i + 1, j ← 0

From them constraints, formi-constraint CSsS(i)
k , k = 1, · · · , Ci

m.

repeat

j ← j + 1

For CSS
(i)
j , use RDPA-i algorithm to compute the optimal power vectorp.

Check whetherp satisfies the other(m− i) constraints,

if yes, exit; otherwise, continue.

until j = Ci
m

6. until i = m− 1

7. Use (2.19) by settingN = m to obtain the optimal power allocation.
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of transmit power and interference power constraints depicted in (2.5) using the single

expressioñgT
l p ≤ P (l), l = 1, · · · , N + K, where

g̃l =





el, l = 1, · · · , K,

gl−K , l = K + 1, · · · , K + N,
and

P (l) =





P̄l, l = 1, · · · , K,

Γl−K , l = K + 1, · · · , K + N,

with el defining thelth column ofIM . Thus, (2.4) and (2.5) can be rewritten as

max
U ,p

min
1≤i≤K

SINRi(ui, p)

γi
(2.20)

subject to: g̃T
l p ≤ P (l), l = 1, · · · , N + K. (2.21)

In the above problem,Nr ≥ K is not required. To obtain an insight on how to solve

(2.20) subject to (2.21), we first consider the case with two constraints which are,

without loss of generality, due to the interference power constraints from two PUs.

The above problem becomes

max
U ,p

min
1≤i≤K

SINRi(ui, p)

γi

(2.22)

subject to:
K∑

i=1

g1,ipi ≤ Γ1 and
K∑

i=1

g2,ipi ≤ Γ2.

Following the similar arguments in Section 2.3.2, we decompose this two-constraint

optimization problem into the following two single-constraint sub-problems:

• Sub-Problem 3 (SP3): The SINR balancing problem with the first interference

constraint is described as

max
U ,p

min
1≤i≤K

SINRi(ui, p)

γi

(2.23)

subject to:
K∑

i=1

g1,ipi ≤ Γ1. (2.24)
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• Sub-Problem 4 (SP4): The SINR balancing problem with the second interference

constraint is described as

max
U ,p

min
1≤i≤K

SINRi(ui, p)

γi
(2.25)

subject to:
K∑

i=1

g2,ipi ≤ Γ2. (2.26)

The SINR balancing problem under a single sum-power constraint was investi-

gated in [72]. In the following, we develop a similar method to solve the single inter-

ference constraint problem, and derive the optimal solution of (2.20) under (2.21) by

examining its relationship with the optimal solutions to SP3 and SP4.

2.4.1 Solution to the Single Constraint Sub-Problem

Without loss of generality, we consider SP3. Similar to the SINR balancing problem

under the sum power constraint [72], an iterative algorithmis adopted to obtain the

optimal power allocation and beamforming matrix. In each iteration, two steps are

involved. In the first step, the beamforming matrixU is fixed, and the optimal power

vectorp is identified. In the second step, we fix the updated power vector p, and find

the corresponding optimal beamforming matrixU . One key property for the iterative

algorithm is that, for a given beamforming matrixU , the optimal power vector must

satisfy the following two necessary conditions:

SINRi(ui, p)

γi
= C1(U , Γ1), for i = 1, · · · , K, (2.27)

and

K∑

i=1

g1,ipi = Γ1. (2.28)

Alternatively speaking, the optimal power allocation leads to the balanced SINR for all

SUs, and it satisfies the constraint (2.24) with equality.C1(U , Γ1) in (2.27) is called

the balanced SINR level for the SUs, for the given beamforming matrixU .
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The first step in each iteration is to determine the optimal power allocationp for a

fixed beamforming matrixU . LetD = diag((γ1/(uH
1 R1u1)), · · · , (γK/(uH

KRKuK))).

According the definition of SINRi(ui, p) in (2.3), (2.27) can be rewritten as

1

C1(U , Γ1)
p = DΨ

T (U )p + Dq, (2.29)

whereq=
[
σ2IK +Qp

]
1K with Qp=diag{(∑N

n=1 p̌nuH
1 Řnu1,· · ·,

∑N
n=1p̌nuH

KŘnuK)},

and

[Ψ(U)]ik =






uH
k Riuk, k 6= i,

0, k = i.

Moreover, (2.28) can be rewritten as

1

C1(U , Γ1)
=

1

Γ1
gT

1 DΨ
T (U)p +

1

Γ1
gT

1 Dq, (2.30)

whereg1 = [g1,1, ..., g1,K]T . Eqs. (2.30) and (2.29) can be merged into a matrix

eigenvector equation:

1

C1(U , Γ1)




p

1


 = Φ1(U , Γ1)




p

1


 .

We define matrixΦ1(U , Γ1) as

Φ1(U , Γ1) =




DΨ
T (U) Dq

1
Γ1

gT
1 DΨ

T (U) 1
Γ1

gT
1 Dq


 ,

and definẽp = [pT , 1]T . It has been shown in [51] that, for a givenU , the optimal

power allocation corresponds to the unique positive eigenvector of matrixΦ1(U , Γ1).

We next consider the second step in each iteration. For the power allocation vector

p determined in the first step, using the MMSE criterion, the uplink beamforming

vectorui for SUi can be updated as:

ui = αi

(∑

k 6=i

pkRk + σ2INr
+

N∑

n=1

p̌nŘn

)−1

hi,
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whereαi is chosen such that||ui||2 = 1, andi = 1, · · · , K. In [72], the convergence of

the iterative algorithm has been proved under the sum-powerconstraint, whereg1 =

1K , andΓ1 = Pmax. It is straightforward to prove the convergence of the iterative

algorithm for the case whereg1 6= 1K .

2.4.2 Relationship Between the Multi-Constraint Problem and Single-

Constraint Sub-Problems

In this subsection, we will show that the two-constraint problem (2.22) can be com-

pletely decoupled into two single-constraint sub-problems. The main results are as

follows:

Theorem 2.2 Between the optimal solutions to the two decoupled single-constraint

sub-problems, SP3 and SP4, there is one and only one solutionthat is the globally

optimal solution to the two-constraint problem(2.22).

To prove the above theorem, we start with considering the computation of the

optimal power allocation for a given beamforming matrix. Now the sub-problems SP3

and SP4 can be transformed as:

• Sub-Problem 3’ (SP3’): For a given beamforming matrixU , the SINR balancing

problem with the first interference constraint is describedas

max
p

min
1≤i≤K

SINRi(ui, p)

γi

subject to:
K∑

i=1

g1,ipi ≤ Γ1.

• Sub-Problem 4’ (SP4’): For a given beamforming matrixU , the SINR balancing
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problem with the second interference constraint is described as

max
p

min
1≤i≤K

SINRi(ui, p)

γi

subject to:
K∑

i=1

g2,ipi ≤ Γ2.

For a given beamforming matrixU , suppose thatp(1) =
[
p

(1)
1 , · · · , p(1)

K

]T
andp(2) =

[
p

(2)
1 , · · · , p(2)

K

]T

are the optimal power vectors for SP3’ and SP4’, respectively, and

C1(U , Γ1) andC2(U , Γ2) are the corresponding balanced SINR levels. We next ex-

amine the relationship betweenp(1) andp(2). Fig. 2.3 depicts the so-calledadmissible

power allocation region in which the two interference powerconstraints are both sat-

isfied. In this figure, the interference power constraints are depicted as the two slant

lines. � and© represent the optimal power allocation vectors for each sub-problem.

The solutions to the two sub-problems yield four possible combinations displaying on

the corresponding sub-figures of Fig. 2.3.

• Fig. 2.3 (a) shows that the optimal solution,p(1), for SP3’ satisfies the interfer-

ence constraint of SP4’, and that the optimal solution,p(2), for SP4’ satisfies the

interference power constraint of SP3’.

• Fig. 2.3 (b) shows that the optimal solution,p(2), for SP4’ satisfies the interfer-

ence power constraint of SP3’, but the optimal solution,p(1), for SP3’ does not

satisfy the interference constraint of SP4.

• Fig. 2.3 (c) shows that the optimal solution,p(1), for SP3’ satisfies the interfer-

ence constraint of SP4’, but the optimal solution,p(2), for SP4’ does not satisfy

the interference constraint of SP3’.

• Fig. 2.3 (d) shows that the optimal solution,p(1), for SP3’ does not satisfy the

interference constraint of SP4’, and that the optimal solution,p(2), for SP4’ does

not satisfy the interference power constraint of SP3’ either.
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(a) (b)

(c) (d) p1p1

p1p1

p 2p 2

p 2p 2

p(1)

p(1)

p(1)

p(1)

p(2)

p(2)p(2)

p(2)

Figure 2.3: The relationship between the optimal solutionsto the single constraint sub-

problems, SP3’ and SP4’. The solid slant line represents theinterference constraint for

PU1, and the dash slant line represents the constraint for PU2. p(1), denoted by©,

indicates the optimal power allocation for SP3’.p(2), denoted by�, represents the

optimal power allocation for SP4’.
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The following lemmas are used to describe the relationship betweenp(1) andp(2).

Lemma 2.4 For a given beamforming matrixU , it is infeasible that the two inequal-

ities
∑K

i=1 g2,ip
(1)
i > Γ2 and

∑K
i=1 g1,ip

(2)
i > Γ1 hold simultaneously. In other words,

the case illustrated in Fig. 2.3 (d) can never happen.

Lemma 2.5 For a given beamforming matrixU , if p(1) does not satisfy the inter-

ference constraint for SP4’, i.e.,
∑K

i=1 g2,ip
(1)
i > Γ2, then we haveC1(U , Γ1) >

C2(U , Γ2). Similarly, if p(2) does not satisfy the interference constraint for SP3’, i.e.,
∑K

i=1 g1,ip
(2)
i > Γ1, then we haveC1(U , Γ1) < C2(U , Γ2).

Lemma 2.6 For a given beamforming matrixU , it is infeasible that the two inequal-

ities
∑K

i=1 g2,ip
(1)
i < Γ1 and

∑K
i=1 g1,ip

(2)
i < Γ1 hold simultaneously. In other words,

the case for Fig. 2.3 (a) can never happen.

The proofs can be found in Appendices A.5, A.6, and A.7, respectively. Lemmas

2.4 and 2.6 state that the cases shown in Fig. 2.3 (a) and Fig. 2.3 (d) are not feasible.

Thus, the relationship betweenp(1) andp(2) can only be the case described in either

Fig. 2.3 (b) or Fig. 2.3 (c). Lemma 2.4 is an important property which helps to

decouple the two constraints completely.

Based on the relationship between the solutions of SP3’ and SP4’, we proceed to

analyze the relationship between the optimal solutions of SP3 and SP4. Assume that

p
(1)
o , U (1)

o , andC
(1)
o (Γ1) are the optimal power vector, the beamforming matrix, and

the balanced SINR level for SP3, respectively, andp
(2)
o , U (2)

o , andC
(2)
o (Γ2) are the

optimal power vector, the beamforming matrix, and the balanced SINR level for SP4,

respectively. We have the following lemma.

Lemma 2.7 The two inequalities,gT
2 p

(1)
o < Γ2 andgT

1 p
(2)
o < Γ1, cannot be satisfied

simultaneously.
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The proof can be found in Appendix A.8. We are now ready to provide the proof

for Theorem 2.2.

Proof of Theorem 2.2:Suppose that̂U andp̂ are the globally optimal beamform-

ing matrix and the power allocation vector, respectively, and Ĉ is the optimal balanced

SINR. First, we show that at least one solution,p
(1)
o or p

(2)
o , is globally optimal solu-

tion. We next prove that it is impossible that bothp
(1)
o andp

(2)
o are the optimal solutions

of (2.22).

For the fixed beamforming matrix̂U , we solve the single-constraint power allo-

cation problems of SP3’ and SP4’ separately. Letp̂(1) andp̂(2) be the optimal power

vectors. According to Lemmas 2.4, 2.5, and 2.6, there is one power vector satisfying

the two constraints. Without loss of generality, suppose that
∑K

i=1 g2,ip̂
(1)
i ≤ Γ2, and

p̂(1) is the optimal power allocation for SP3’ for the fixed̂U .

On the other hand, for the fixed power vectorp̂(1), if there exists another beam-

forming matrixŨ which can further optimize the SINR through MMSE, then it con-

tradicts with the fact that̂U is the optimal solution. Therefore,p̂ = p̂(1) is the globally

optimal solution.

We next consider sub-problem SP3. SinceÛ corresponds to the optimal MMSE

solution for the fixed power vector̂p(1), andp̂(1) is the optimal power vector for SP3’

under a fixedÛ , Û andp̂(1) are the optimal beamforming matrix and power allocation

vector for SP3, i.e.,̂p(1) = p
(1)
o andÛ = U (1)

o , according to Theorem 2 in [72]. Since

there is a unique solution for SP3 [76],p
(1)
o = p̂(1) = p̂ arrives, which means that the

globally optimal solutions arep(1)
o andU (1)

o .

Finally, according to Lemma 2.7, there is only one solution out of the two solu-

tions,p(1)
o andp

(2)
o , satisfying the two constraints. �

Theorem 2.2 suggests that the two-constraint SINR balancing problem (2.22)

can be decoupled to two single-constraint sub-problems. These single-constraint sub-

problems can be solved through the iterative algorithm discussed in Section 2.4.1. Be-
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tween the two solutions to the sub-problems, there is one andonly one solution that

can satisfy the other constraint as well, and thus this solution is the globally optimal

solution.

Using induction method, we can extend Theorem 2.2 to solve the SINR balancing

problem (2.20) with(N + K) constraints in (2.21).

Theorem 2.3 The (N + K)-constraint SINR balancing problem can be decoupled

into (N + K) single-constraint sub-problems. Among these(N + K) solutions of the

sub-problems, there is one and only one solution that satisfies all other(N + K − 1)

constraints, and this is the optimal solution to the(N +K)-constraint SINR balancing

problem.

Theorem 2.3 indicates that there is only one dominant constraint. Thus, the opti-

mal solution of the original(N +K)-constraint problem can be found from the optimal

solutions of the(N + K) single-constraint sub-problems. If an optimization problem

with multiple constraints has such a property, we say that the multi-constraint opti-

mization problem can becompletely decoupled. Note that in the SINR balancing prob-

lem the interference power constraints and transmit power constraints can be equally

treated. This property can greatly reduce the computational complexity since find-

ing an optimal solution for a(N + K)-constraint problem is usually highly complex

while finding the optimal solution to each single-constraint subproblem is much easier.

Based on Theorem 2.3, we develop a decoupled multiple-constraint power allocation

algorithm (DMCPA) to solve (2.20). This algorithm is detailed in Table 2.3. Note

that the search of an optimal solution can be implemented in asequential manner. It

implies that, when a solution to a sub-problem is derived, weonly need check whether

this solution also satisfies all other(N + K − 1) constraints. If yes, this solution is

the globally optimal solution and exit; otherwise, continue to search the solutions for

other sub-problems. The average complexity in searching is(N + K)/2 times the
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2.4 SINR Balancing Problem

Table 2.3: Decoupled Multiple-Constraint Power Allocation Algorithm (DMCPA).

DMCPA Algorithm

1. Initialization:i← 0

2. repeat

i← i + 1

For sub-problemi, find the optimal beamforming matrixU (i)
o and

power vectorp(i)
o .

Check whetherp(i)
o satisfies the other(N + K − 1) constraints,

if yes, exit; otherwise, continue.

3. until i = N + K

complexity for solving the single constraint sub-problem.

Example 2.2 We provide an example to illustrate the convergence behavior of the

power vectors for the SINR balancing problem. We simulate the case whereK =

Nr = 2 under two interference power constraints. The thresholds for interference

constraints,Γ1 andΓ2, are fixed as0 dB and 0.8 dB, respectively, and the power gain

vectors from the SUs to the PUs areg1 = [2, 2] andg2 = [0.8, 2.4], respectively. The

convergence behavior of the algorithm and the power vector evolution for the SINR

balancing problem are illustrated in Fig. 2.4. In this figure, each point represents a

power allocation vector in an iterative step, and the arrow represents the direction of

the power allocation evolution. Since each power allocation vector satisfies a con-

straint with equality, i.e., the vector is on the line corresponding to a constraint, the

arrow also locates on the corresponding line. It can be observed from the figure that

each sub-problem converges in a few iterative steps. Moreover, there is only one solu-

tion satisfying the other constraint. This matches well with Theorem 2.2.
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Figure 2.4: Two sample results show the convergence behavior of power vectors for

SUs using the DMCPA algorithm.© represents a power vector of an iterative step in

solving SP3, and it satisfies PU1’s interference constraint.� represents a power vector

of an iterative step in solving SP4, and it satisfies PU2’s interference constraint. The

arrows represent the directions of the power vector evolution.
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2.5 Numerical Examples

Numerical examples are presented in this section to evaluate the performance of the

proposed algorithms. In the examples, for simplicity, we assume that all SUs are at

the same distance,l1, to the BS, and the same distance,l
(n)
2 , to PUn. We also denote

by l
(n)
3 the distance from PUn to the BS. When there is only one PU, we will drop off

the superscripts and use notationsl2 and l3. Suppose that the same path loss model

can be used to describe the transmissions from the SUs to the BS and to the PUs, and

from the PUs to the BS, and the path loss exponent is4. The elements of matrixH are

assumed to be circularly symmetric complex Gaussian (CSCG)RVs with mean zero

and variance1. By doing so, the power considered in this chapter is defined as the

average received power at each receive antenna of the BS. Thus, ȟn can be modelled

asȟn = (l1/l
(n)
3 )2an wherean is aNr×1 vector whose elements are CSCG RVs with

mean zero and variance 1, and the power gain factor from the SUi to the PUn can be

modelled asgn,i = (l1/l
(n)
2 )4|αn,i|2, whereαn,i is also modelled as CSCG with mean

zero and variance 1. The noise power is set to be1, and the power and interference

power are defined in dB relative to the noise power. For all cases, we chooseΓ = 0 dB

and ignore the interference from the PUs to the BS of the SUs, unless it is specifically

stated. When evaluating different schemes, we consider theperformance of the average

achievable sum-rate and average maximum SINR for CR SIMO-MAC calculated over

2000 block fading channels.

2.5.1 Sum-Rate Performance

We first consider the case with a single PU, and choosel1 such thatP̄i = 20 dB for each

SU. Fig. 2.5 shows the average achievable sum-rate with respect to the value ofl2/l1

for different combinations ofK andNr. It is seen that when the ratiol2/l1 is smaller

than a threshold, the sum-rate increases as the ratio increases. This is due to the fact
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Figure 2.5: Achievable sum-rate vs the ratio ofl2/l1 using the CML water filling algo-

rithm for different numbers ofK andNr: one PU and̄Pi = 20 dB.

that the interference constraint becomes less tight as the PU moves away from the SUs.

However, whenl2/l1 reaches a certain threshold (called turning point), the sum-rate

will not further increase. This is because the transmit power constraint is the dominant

constraint affecting the achievable sum-rate in the case that the PU is far away from the

SUs. Furthermore, when the number of SU increases, the interference increases for a

given distance, and thus the required distance for turning point happening increases.

We next evaluate the effect of the interference from the PU onthe achievable sum-

rate of the CR SIMO-MAC. Again, we consider a single PU. Fig. 2.6 shows the average

achievable sum-rate with respect to various numberK of SUs whenNr = 6, l2/l1 = 4,

and p̌1 = 10 dB. The distances from PU to the BS are chosen asl3/l1 = 5, 4 and3,

respectively. As can be seen, whenK increases, the achievable sum-rate increases.

Furthermore, when the PU moves further away from the BS, the effect of the PU’s

interference on the achievable sum-rate decreases.

We then consider the scenario when the feedback matrixG is imperfect. In this
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Figure 2.6: Effect of PU interference on the achievable sum-rate of the CR SIMO-

MAC: one PU,l2/l1 = 4, Nr = 6, P̄i = 20 dB andp̌1 = 10 dB.

example, when the estimated matrixG is modelled, the estimated fading coefficient

α̂n,i is different from its exact valueαn,i by a CSCG RVbβn,i, whereβn,i is a CSCG RV

with mean zero and variance 1. We chooseb = 0.1. When the estimated matrixG is

imperfect, the interference received at the PU may exceed the preset threshold, and thus

we use outage probability to define how frequently this case happens. Furthermore,

in order to reduce this outage probability, we propose a robust design method which

chooses a smaller interference power threshold in the algorithms as compared to the

exact threshold the PU can tolerate.

Fig.2.7 shows the achievable sum-rate versusl2/l1 for the case with perfectG

and the cases with estimatedG and various interference power thresholdΓ used in

robust algorithm design. It is seen that if the PU is far away from the BS (l2/l1 > 6),

the achievable sum-rate is almost not affected by the estimated errors inG even if the

interference power threshold is set to be2 dB lower than the target. However, when the

PU is closer to the BS, the achievable sum-rate will decreaseif the interference power
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Figure 2.7: Achievable sum-rate vs the ratio ofl2/l1 for perfect and estimated matrix

G: one PU,Nr = K = 6 andP̄i = 20 dB. Robust design with 1 dB and 2 dB margins

are also considered.

threshold is set to be lower than the target. In Fig.2.8, we plot the outage probability

for the case whenl2/l1 = 5. It is seen that the outage probability can be as high as

20% if the algorithm uses the exact target (0 dB) as the algorithm input; however, if we

use the robust design with2 dB margin, the outage probability drops below1%.

Fig. 2.9 shows the average achievable sum-rate versus transmit power, ranging

from 0 dB to 30 dB, for K = Nr = 4 and different values ofl2/l1. It can be seen that

in low transmit power constraint region, average sum-rate increases as the transmit

power increases, due to transmit power constraint dominates the final result. In the

case where the transmit power is very high, the interferenceconstraint is dominant,

and therefore the sum-rate does not further increase with anincrease of the transmit

power.

In Fig. 2.10, we consider the two-PU case whereK = Nr = 3 and P̄i = 20

dB. In this example,l(2)2 /l1 ranges from 0.1 to 4.6, andl(1)2 /l1 is fixed as 3. It can be
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observed from Fig. 2.10 that the achievable sum-rate under the interference constraint

for PU1 is a straight line, which can be explained by the fact thatl
(1)
2 is a constant.

We also observe that the sum-rate increases asl
(2)
2 /l1 increases under the interference

constraint for PU2. This is because the constraint becomes less tight whenl
(2)
2 /l1

increases. Moreover, the achievable sum-rate under two constraints is always less than

or equal to the achievable sum-rate under a single constraint. This is also reasonable,

since the feasible region of two constraints is a subset of the feasible region of a single

constraint.

2.5.2 SINR Balancing Performance

We now evaluate the performance of the proposed DMCPA under the sum-power and

interference power constraints. For comparison, the method of [72] is also simulated

for the case where a single sum-power constraint is considered. We chooseK =

Nr = 3, and set the target SINRs,γ1, · · · , γK , for SUs as 1. By doing so, we seek to
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Figure 2.11: Maximum achievable SINR versus the sum-power using the DMCPA

algorithm: one PU andK = Nr = 3.

maximize the minimal SINR among all the SUs, and thus all SUs will have the same

achievable SINR.

Fig. 2.11 illustrates the maximum achievable SINR under a single sum-power

constraint, as well as those with an additional interference power constraint for differ-

ent values ofl2/l1. It can been seen that when the PU is close to the SUs, the maximum

achievable SINR in dB almost linearly increases with the sum-power in dB. When the

sum-power reaches a large value, the achievable SINR saturates, due to the existence

of the interference constraint, which does not allow the transmission power to further

increase. Obviously, when the distance changes froml2/l1 = 2 to l2/l1 = 4, the

sum-power associated with the turning point also increases.

Finally, we consider the case with two PUs, where the distance, l(1)2 , between PU1

and the SUs is half the distance,l
(2)
2 , between PU2 and the SUs. Fig. 2.12 shows the

maximum achievable SINRs under each individual constraint(20 dB transmit power

constraint, and0 dB interference power constraint for each PU), as well as that un-
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(1)
2 /l1 using the DMCPA
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1 andP̄i = 20 dB.

der all constraints. If only the transmit power constraint is considered, the maximum

achievable SINR is around20 dB. This implies that the linear MMSE receiver used at

the BS can suppress the strong interference from the other SUs. The achievable SINR

associated with the interference constraint for PU2 is higher than that with the interfer-

ence constraint for PU1, since PU2 is further away from the SUs. Finally, for a fixed

distance, as we can see, the achievable SINR is just the minimum value of the three

SINRs achieved under each individual constraint.

2.6 Conclusions

In this chapter, we have studied the problem of joint beamforming and power allocation

for CR SIMO-MAC. Two optimization problems have been formulated: the sum-rate

maximization problem and SINR balancing problem, both under the transmit power

constraints as well as interference power constraints. Forthe sum-rate maximization
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problem, ZF-DFE is used to decouple the SIMO-MAC, and a capped multi-level water-

filling algorithm was proposed to maximize the achievable sum-rate of the SUs when

a single PU is present. When multiple PUs exist, a recursive decoupled power alloca-

tion algorithm was proposed to derive the optimal power allocation solution. For the

SINR balancing problem, it was shown that, using linear MMSEreceivers, each of the

interference constraints and transmit power constraints can be completely decoupled,

and thus the multi-constraint optimization problem can be solved through finding the

solutions to each single-constraint sub-problems. Numerical examples were presented

to compare the performances of different schemes.
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Chapter 3

Transmit Optimization for CR

MIMO-BC

This chapter studies the capacity computation problem for spectrum sharing based CR

MIMO-BC. By establishing a new BC-MAC duality, the problem is transformed into

an equivalent capacity computation for the dual MIMO-MAC. Moreover, we develop

an efficient subgradient based iterative algorithm to solvethe equivalent problem and

show that the developed algorithm converges to a globally optimal solution. This new

BC-MAC duality can be extended to solve the capacity computation problem for the

MIMO-BC with multiple linear constraints.

3.1 Introduction

In MIMO-BC, the BS equipped with multiple transmit antennassends independent

messages to each of multiple users, which are equipped with multiple receive antennas.

In the past decade, a great deal of research has been focused on the characterization

of optimal transmission schemes for MIMO-BC [33, 52, 77–80]. Due to the coupled

structure of the transmitted signals, the optimization problems associated with the BC
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are usually non-convex. The key technique used to overcome this difficulty is to trans-

form the BC problem into a convex MAC problem via a so-called BC-MAC duality

relationship. Under a single sum power constraint, the capacity region (or SINR re-

gion) of a BC is identical to that of a dual MAC under the same sum power constraint.

This property is called the conventional BC-MAC duality [33, 77, 81, 82], which was

first observed by Rashid-Rarrokhiet al. [33]. However, the conventional BC-MAC

duality is not applicable only to the case with multiple power constraints. To solve

this problem, a novel minimax BC-MAC duality is developed in[83], where the new

equivalent MAC problem has a minimax formulation. Althoughthe minimax duality

results can handle the BC problem with per-antenna power constraints [79], only inte-

rior point algorithms can be applied to solve this minimax problem, and high-efficiency

algorithms, such as the iterative water-filling algorithm [47], cannot be applied.

In this chapter, we consider the capacity computation problem for spectrum shar-

ing based CR MIMO-BC, in which the BS is subject to the transmit power constraint

as well as the interference power constraint. As discussed above, the conventional

BC-MAC duality cannot be applied to MIMO-BC with multiple linear constraints. To

handle this difficulty, we propose a generalized BC-MAC duality result that can solve

MIMO-BC problems with multiple linear constraints. Moreover, a subgradient based

algorithm is developed to solve the capacity computation problem for CR MIMO-BC.

The rest of the chapter is organized as follows. In Section 3.2, the system model of

the CR MIMO-BC is introduced, and the capacity computation problem is formulated.

In Section 3.3, we transform the capacity computation into its equivalent form, and

introduce the general MAC-BC duality between a MIMO-BC and its dual MIMO-

MAC. Section 3.4 presents an primal dual method based iterative to solve the capacity

computation problem for the dual MIMO-MAC. Section 3.5 develops the complete

algorithm to solve the capacity computation problem for CR MIMO-BC. Section 3.6

provides several numerical examples. Finally, Section 3.7concludes the chapter.
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Figure 3.1: The system model for CR MIMO-BC. There areK SUs and one PUs. The

BS hasNt transmit antennas, each SU is equipped withNr receive antennas, and the

PU is equipped with a single receive antenna.

3.2 System Model and Problem Formulation

Consider a spectrum sharing based CR MIMO-BC, where the BS isequipped withNt

transmit antennas and there areK SUs withNr receive antennas. The CR MIMO-

BC, as shown in Fig. 3.1, share the same spectrum with a singlePU equipped with

one transmit antenna1. The transmit-receive signal model from the BS to theith SU

denoted by SUi, for i = 1, . . . , K, can be expressed as

yi = H ix + zi, (3.1)

whereyi is theNr × 1 received signal vector,H i is theNr ×Nt channel matrix from

the BS to the SUi, x is theNt × 1 transmitted signal vector, andzi is theNr × 1

Gaussian noise vector with entries being independent identically distributed RVs with

means zero and variancesσ2. Considerg as theNt × 1 channel gain vector between

the transmitters of the BS and the PU. We further assume thatH i for i = 1, . . . , K,

andg remain constant during a transmission block and change independently from

1We consider a single PU case in the rest of this chapter for convenience of description. The results

derived for the single PU case can be readily extended to the case with multiple PUs, which is discussed

in Remark 3.4.
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3.2 System Model and Problem Formulation

block to block, andH i for i = 1, . . . , K, andg are perfectly known to the BS and

SUi. To acquire channel matricesH i and channel vectorg at the BS of the SUs,

transmission protocols need to be carefully designed to incorporate certain cooperation

in terms of parameter feedback between the PU and the BS. As anexample, the BS

need transmit pilot symbols to allow the SUs and PU to obtain respective estimates of

channel matricesH i and channel vectorg. Such estimates are needed to be fed back

to the BS via feedback channels.

We next consider the weighted sum rate maximization problemfor CR MIMO-

BC, which is also called capacity computation problem2. Mathematically, the problem

is formulated as

Main Problem (Pa) : max
{Sb

i}K
i=1

: S
b
i≥0

K∑

i=1

wir
b
i (3.2)

subject to:
K∑

i=1

gHSb
ig ≤ Γ, and

K∑

i=1

tr(Sb
i ) ≤ P̄,

whererb
i is the rate achieved by SUi, wi is the weight of SUi, Sb

i = E[xxH ] denotes

theNt×Nt transmit covariance matrix for SUi, Sb
i ≥ 0 indicates thatSb

i is a semidef-

inite matrix,Γ denotes the interference threshold of the PU, andP̄ denotes the sum

power constraint at the BS. Compared with the capacity computation problem under

a non-CR setting, the key difference is that in addition to the sum power constraint,

an interference constraint is applied to the SUs in the CR MIMO-BC, i.e., the total

received interference power
∑K

i=1 gHSb
ig at the PU is below the thresholdΓ.

Remark 3.1 It has long been observed that the optimal sum rate for MIMO-BC with a

single sum power constraint is equal to the optimal sum rate of the dual MIMO-MAC

with the same sum power constraint [48, 52, 82]. We simply term this property as the

2It is worth to note that any boundary point of the capacity regions of the MIMO-MAC and the

MIMO-BC can be expressed as a weighted sum rate for a certain choice of weights [46] [84]. Thus, by

varying the weights of the SUs in (Pa), the entire capacity region of the CR MIMO-BC can be obtained.
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3.3 Equivalence and Duality

conventional BC-MAC duality. However, the conventional BC-MAC duality can only

be applied to the case with a single sum power constraint (even not applicable to an ar-

bitrary linear power constraint). Hence, the additional interference power constraint

in (Pa) makes the existing duality cannot be applied. In this chapter, we proposed a

new BC-MAC duality result which generalizes the previous results as special cases.

3.3 Equivalence and Duality

Evidently, the MIMO-BC capacity computation problem undereither a non-CR or

a CR setting is a non-convex optimization problem and is difficult to solve directly.

Under a single sum power constraint, the capacity computation problem for MIMO-

BC can be transformed to its dual MIMO-MAC problem, which is convex and can

be solved in an efficient manner [77]. In the CR setting, the problem (Pa) has not

only a sum power constraint but also an interference constraint. The imposed mul-

tiple constraints render difficulty to formulate an efficiently solvable dual problem.

To overcome the difficulty, we first transform this multi-constrained capacity compu-

tation problem (Pa) into its equivalent problem which has a single constraint with

multiple auxiliary variables, and next develop a duality between a MIMO-BC and a

dual MIMO-MAC in the case where the multiple auxiliary variables are fixed.

3.3.1 An Equivalent MIMO-BC Capacity Computation Problem

In the following, by exploiting Theorem 4 in [85], we presentan equivalent form of

(Pa)

Theorem 3.1 Problem (Pa) shares the same optimal solution with

Equivalent Problem (Pb) : min
qt≥0, qu≥0

max
{Sb

i}K
i=1

: S
b
i≥0

K∑

i=1

wir
b
i (3.3)
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3.3 Equivalence and Duality

subject to:qt

( K∑

i=1

gHSb
i g − Γ

)
+ qu

( K∑

i=1

tr(Sb
i )− P̄

)
≤ 0, (3.4)

whereqt and qu are the auxiliary dual variables for the respective interference con-

straint and sum power constraint.

Finding an efficiently solvable dual problem for (Pb) directly is still difficult.

However, as we show later, whenqt andqu are fixed as constants, (Pb) reduces to a

simplified form, which we can solve by applying the followingduality result.

3.3.2 CR BC-MAC Duality

For fixedqt andqu, (Pb) reduces to the following form

CR MIMO-BC Problem (Pc) : max
{Sb

i}K
i=1

: S
b
i≥0

K∑

i=1

wir
b
i (3.5)

subject to:qt

K∑

i=1

gHSb
ig + qu

K∑

i=1

tr(Sb
i ) ≤ P,

(3.6)

whereP := qtΓ+quP̄ . Sinceqt andqu are fixed,P is a constant in (Pc). The constraint

(3.6) is not a single sum power constraint, and thus the duality result established in

[77] is not applicable to (Pc). Therefore, we formulate the following new dual MAC

problem.

Theorem 3.2 The dual MAC problem of (Pc) is

CR MIMO-MAC Problem (Pd) : max
{Sm

i }K
i=1

: S
m
i ≥0

K∑

i=1

wir
m
i (3.7)

subject to:
K∑

i=1

tr(Sm
i )σ2 ≤ P, (3.8)

whererm
i is the rate achieved by theith user of the dual MAC, andSm

i is the transmit

covariance matrix of theith user, and the noise covariance at the BS isqtggH + quINt
.
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Figure 3.2: The system models for (Pc) and (Pd), whereqt andqu are constant, and

Ro = gg†.

Remark 3.2 According to Theorem 3.2, for fixedqt andqu, the optimal weighted sum

rate of the dual MAC is equal to the optimal weighted sum rate of the primal BC.

From the formulation perspective, this duality result is quite similar to the conventional

duality in [52] [82] [48]. However, as shown in Fig. 3.2, one thing needs to highlight is

that the noise covariance matrix of the dual MAC is a functionof the auxiliary variable

qt andqu, instead of the identity matrix [48]. This difference comesfrom the constraint

(3.6), which is not a sum power constraint as in [48]. Note that whenqt = 0, the

duality result reduces to the conventional BC-MAC duality in [48]. Compared with the

minimax duality in [79], our duality result has a simpler format.

As illustrated in Fig. 3.2, Theorem 3.2 describes a capacitycomputation problem

for a dual MIMO-MAC. To prove this theorem, we first examine the relation between

the SINR regions of the MIMO-BC and the dual MIMO-MAC. Based on this relation,

we will show that the achievable rate regions of the MIMO-BC and the dual MIMO-

54



3.3 Equivalence and Duality

MAC are the same.

In the sequel, we first describe the definition of the SINR for the MIMO-BC. It

has been shown in [67] that the dirty paper coding (DPC) [86] is a capacity achieving

scheme. Each set of the transmit covariance matrix determined by DPC scheme defines

a set of transmit and receive beamforming vectors, and each pair of these transmit and

receive beamforming vectors forms a data stream. In a beamforming perspective, the

BS transmitter haveNt ×K beamformers,ui,j, for i = 1, · · · , K, andj = 1, · · · , Nt.

Therefore, the transmit signal can be represented as

x =
K∑

i=1

Nt∑

j=1

xi,jui,j,

wherexi,j is a scalar representing the data stream transmitted in thisbeamformer, and

E[x2
i,j ] = pi,j denotes the power allocated to this beamformer. At SUi, the receive

beamformer corresponding toui,j is denoted byvi,j. The transmit beamformerui,j

and the powerpi,j can be obtained via the eigenvalue decomposition ofSb
i , i.e.,Sb

i =

UH
i P iU i, whereU i is a unitary matrix, andP i is a diagonal matrix. The transmit

beamformerui,j is thejth column ofU i, andpi,j is thejth diagonal entry ofP i. With

these notations, we express the SINRb
i,j as

SINRb
i,j =

pi,j|uH
i,jH

H
i vi,j|2∑K

k=i+1

∑Nr

l=1 pk,l|uH
k,lH

H
i vi,j|2 +

∑Nr

l=j+1 pi,l|uH
i,lH

H
i vi,j|2 + σ2

. (3.9)

It can be observed from (3.9) that the DPC scheme is applied. This can be interpreted

as follows. The signal from SU1 is first encoded with the signals from other SUs being

treated as interference. The signal from SU2 is next encoded by using the DPC scheme.

Signals from the other SUs will be encoded sequentially in a similar manner. For the

data streams within SUi, the data stream 1 is also encoded first while the other data

streams are treated as the interference. The data stream 2 isencoded next. In a similar

manner, the other data streams will be sequentially encoded. The encoding order is
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3.3 Equivalence and Duality

assumed to be arbitrary at this moment, and the optimal encoding order (Pb) will be

discussed in Section 3.4.

To explore the relation of the SINR regions of the dual MAC andthe BC, we

formulate the following optimization problem

min
{Sb

i}K
i=1

: S
b
i≥0

qt

K∑

i=1

gHSb
i g + qu

K∑

i=1

tr(Sb
i )− P

subject to: SINRbi,j ≥ γi,j,

(3.10)

whereγi,j denotes the SINR threshold of thejth data stream within the SUi for the BC.

Note that the objective function in (3.10) is a function of signal covariance matrices

and the constraints are SINR constraints for the CR MIMO-BC.

It has been shown in [79] and [50] that thenon-convexBC sum power minimiza-

tion problem under the SINR constraints can be solved efficiently via its dual MAC

problem, which is a convex optimization problem. By following a similar line of

thinking, the problem in (3.10) can be efficiently solved viaits dual MAC problem.

Similar to the primal MIMO-BC, the dual MIMO-MAC depicted inFig. 3.2 consists

of K users each withNr transmit antennas, and one BS withNt receive antennas. By

transposing the channel matrix and interchanging the inputand output signals, we ob-

tain the dual MIMO-MAC from the primal MIMO-BC. For the covariance matrices

Sm
i of the dual MIMO-MAC, we apply the eigenvalue decomposition,

Sm
i = V iΛiV

H
i =

Nr∑

j=1

qi,jvi,jv
H
i,j , (3.11)

wherevi,j is thejth column ofV i, andqi,j is thejth diagonal entry ofΛi. For user

i, vi,j is the transmit beamforming vector of thejth data stream, the power allocated

to thejth data stream equalsqi,j, and the receive beamforming vector of thejth data

stream at the BS isui,j. The SINR of the dual MIMO-MAC is given by

SINRm
i,j =

qi,j|uH
i,jH

H
i vi,j|2

uH
i,j

(∑i−1
k=1

∑Nr

l=1 qk,lH
H
k vk,lv

H
k,lHk +

∑j−1
l=1 qi,lH

H
i vi,lv

H
i,lH i+Rw

)
ui,j

,

(3.12)
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3.3 Equivalence and Duality

whereRw := qtRo + quINt
is the noise covariance matrix of the MIMO-MAC with

Ro := ggH . In the dual MIMO-MAC,Rw depends onqt andqu defined in (3.10)

whereas the noise covariance matrix in the primal MIMO-BC isan identity matrix. It

can be observed from (3.12) that the successive interference cancelation (SIC) scheme

is used in this dual MIMO-MAC, and the decoding order is the reverse encoding order

of the primal BC. The signal from SUK is first decoded with the signals from other

users being treated as interference. After decoded at the BS, the signals from SUK will

be subtracted from the received signal. The signal from SUK−1 is next decoded, and

so on. Again, the data streams within a SU can be decoded in a sequential manner.

For the dual MIMO-MAC, we consider the following minimization problem sim-

ilar to the problem (3.10)

min
{Sm

i }K
i=1

: Sm
i ≥0

K∑

i=1

tr(Sm
i )σ2 − P

subject to: SINRmi,j ≥ γi,j.

(3.13)

The following theorem describes the relation between the problems (3.10) and (3.13).

Theorem 3.3 For fixedqt andqu, the MIMO-MAC problem(3.13)is dual to the MIMO-

BC problem(3.10).

Proof : The constraints in (3.10) can be rewritten as

pi,j|uH
i,jH

H
i vi,j |2

γi,j
≥

K∑

k=i+1

Nr∑

l=1

pk,l|uH
k,lH

H
i vi,j|2+

Nr∑

l=j+1

pi,l|uH
i,lH

H
i vi,j |2+σ2. (3.14)

Thus, the Lagrange function of the problem (3.10) is

L1(S
b
1, . . . , S

b
K , λi,j)

=qt

K∑

i=1

gHSb
i g + qu

K∑

i=1

tr(Sb
i )− P −

K∑

i=1

Nr∑

j=1

λi,j

(pi,j|uH
i,jH

H
i vi,j|2

γi,j

−
K∑

k=i+1

Nr∑

l=1

pk,l|uH
k,lH

H
i vi,j|2 −

Nr∑

l=j+1

pi,l|uH
i,lH

H
i vi,j |2 − σ2

)
(3.15)
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=

K∑

i=1

Nr∑

j=1

λi,jσ
2 − P −

K∑

i=1

Nr∑

j=1

pi,ju
H
i,j

(λi,jH
H
i vi,jv

H
i,jH i

γi,j

−
i−1∑

k=1

Nr∑

l=1

λk,lH
H
k vk,lv

H
k,lHk −

j−1∑

l=1

λi,lH
H
i vi,lv

H
i,lH i −Rw

)
ui,j, (3.16)

whereλi,j is the Lagrangian multiplier. Eq. (3.16) is obtained by applying the eigen-

value decomposition toSb
i and rearranging the terms in (3.15). The optimal objective

value of (3.10) is

max
λi,j

min
S

b
1,...,S

b
K

L1(S
b
1, . . . , S

b
K , λi,j). (3.17)

On the other hand, the Lagrange function of the problem (3.13) is

L2(S
m
1 , . . . , Sm

K , δi,j) =
K∑

i=1

Nr∑

j=1

qi,jσ
2 − P −

K∑

i=1

Nr∑

j=1

δi,ju
H
i,j

(qi,jH
H
i vi,jv

H
i,jH i

γi,j

−
i−1∑

k=1

Nr∑

l=1

qk,lH
H
k vk,lv

H
k,lHk −

j−1∑

l=1

qi,lH
H
i vi,lv

H
i,lH i −Rw

)
ui,j, (3.18)

whereδi,j is the Lagrangian multiplier. Eq. (3.18) is also obtained byapplying eigen-

value decomposition toSm
i . The optimal objective value of (3.13) is

max
δi,j

min
S

m
1 ,...,S

m
K

L2(S
m
1 , . . . , Sm

K , δi,j). (3.19)

Note that if we chooseqi,j = λi,j, δi,j = pi,j, and the same beamforming vectors

ui,j andvi,j for both problems, (3.16) and (3.18) become identical. Thismeans that

the optimal solutions of (3.17) and (3.19) are the same. �

Theorem 3.3 implies that under the SINR constraints, the problems (3.10) and

(3.13) can achieve the same objective value, which is a function of the transmit covari-

ance matrices. On the other hand, under the corresponding constraints on the signal

covariance matrix, the achievable SINR regions of the MIMO-BC and its dual MIMO-

MAC are the same. Mathematically, we define the respective achievable SINR regions

for the primal MIMO-BC and the dual MIMO-MAC as follows.

Definition 3.1 A SINR vectorγ = (γ1,1, . . . , γ1,Nt
, . . . , γK,Nt

) is said to be achievable

for the primal BC if and only if there exists a set ofSb
1, . . . , S

b
K such thatqt

∑K
i=1 gHSb

i g
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+ qu

∑K
i=1 tr(Sb

i )−P ≤ C for a constantC and the corresponding SINRb
i,j ≥ γi,j. An

achievable BC SINR region denoted byRBC , is a set containing all the BC achievable

γ.

Definition 3.2 A SINR vectorγ = (γ1,1, . . . , γ1,Nt
, . . . , γK,Nt

) is said to be achievable

for the dual MAC if and only if there exists a set ofSm
1 , . . . , Sm

K such that
∑K

i=1 tr(Sm
i )σ2

− P ≤ C for a constantC and the corresponding SINRm
i,j ≥ γi,j. An achievable MAC

SINR region denoted byRMAC , is a set containing all the MAC achievableγ.

In the following corollary, we will showRMAC = RBC .

Corollary 3.1 For fixedqt and qu, and a constantC, the MIMO-BC under the con-

straint qt

∑K
i=1 gHSb

ig + qu

∑K
i=1 tr(Sb

i ) − P ≤ C and the dual MIMO-MAC under

the constraint
∑K

i=1 tr(Sm
i )σ2 − P ≤ C achieve the same SINR region.

Proof : For anyγ ∈ RMAC , by Definition 3.2, there exists a set ofSm
1 , . . . , Sm

K

such that
∑K

i=1 tr(Sm
i )σ2 − P ≤ C and the corresponding SINRm

i,j ≥ γi,j. It can

be readily concluded from Theorem 3.3 that there exists a setof Sb
1, . . . , S

b
K such that

qt

∑K
i=1 gHSb

i g+qu

∑K
i=1 tr(Sb

i )−P ≤ C and the corresponding SINRb
i,j ≥ γi,j. This

impliesγ ∈ RBC . Sinceγ is an arbitrary element inRMAC , we haveRMAC ⊆ RBC .

In a similar manner, we haveRBC ⊆ RMAC . The proof follows. �

We are now in the position to prove Theorem 3.2.

Proof of Theorem 3.2:According to Corollary 3.1, ifC = 0, then under the con-

straintqt

∑K
i=1 gHSb

i g+qu

∑K
i=1 tr(Sb

i ) ≤ P for the BC and the constraint
∑K

i=1 tr(Sm
i )σ2

≤ P for the dual MAC, the two channels have the same SINR region. Since the achiev-

able rates of useri in the MIMO-MAC and the MIMO-BC arerm
i =

∑Nr

j=1 log(1 +

SINRm
i,j) andrb

i =
∑Nr

j=1 log(1 + SINRb
i,j), the rate regions of the two channels are the

same. Therefore, Theorem 3.2 follows. �
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3.4 Dual MAC Capacity Computation Problem

Note that due to the additional interference constraint, (Pb) cannot be solved

by using the established duality result in [82] and [48], in which only a single sum

power constraint was considered. Our duality result in Theorem 3.2 can be thought

as an extension of the duality results in [82] [48] to a multiple linear constraint case.

Moreover, as will be shown in the following section, our duality result formulates a

MIMO-MAC problem (Pd), which can be efficiently solved.

3.4 Dual MAC Capacity Computation Problem

In this section, we propose an efficient algorithm to solve (Pd). With the SIC scheme,

the achievable rate of thekth user in the dual MIMO-MAC is given by

rm
k = log

|Rw +
∑k

j=1 HjS
m
j HH

j |
|Rw +

∑k−1
j=1 HjS

m
j HH

j |
. (3.20)

For the MIMO-MAC, theequallyweighted sum rate maximization is irrespective of

the decoding order. However, in general the weighted sum rate maximization in the

MIMO-MAC is affected by the decoding order. We thus need to consider the optimal

decoding order of the SIC for the dual MIMO-MAC, and further need to consider the

corresponding optimal encoding order of the DPC for the primal BC.

Let π be the optimal decoding order, which is a permutation on the SU index set

{1, · · · , K}. It follows from [84] that the optimal user decoding orderπ for (Pd) is

the order such thatwπ(1) ≥ wπ(2) ≥ · · · ≥ wπ(K) is satisfied. The following lemma

presents the optimal decoding order of the SIC for the data streams within a SU.

Lemma 3.1 The optimal data stream decoding order for a particular SU isarbitrary.

The proof can be found in Appendix B.1. Due to the duality between the MIMO-

BC and the MIMO-MAC, for (Pc), the optimal encoding order for the DPC is the

reverse ofπ. Because of the arbitrary encoding order for the data streams within a SU,
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3.4 Dual MAC Capacity Computation Problem

if we choose a different encoding order for the BC, the MAC-to-BC mapping algorithm

can give different results which yield the same objective value. Hence, the matrixSb
i

achieving the optimal objective value are not unique. With no loss of generality, we

assumew1 ≥ w2 ≥ · · · ≥ wK for notational convenience.

According to (3.20), the objective function of (Pd) can be rewritten as

f(Sm
1 , · · · , Sm

K) :=
K∑

i=1

∆i log |Rw +
i∑

j=1

HjS
m
j HH

j |, (3.21)

where∆i := wi−wi+1, andwK+1 := 0. Clearly, (Pd) is a convex problem, which can

be solved through standard convex optimization software packages directly. However,

the standard convex optimization software does not exploitthe special structure of the

problem, and thus is computationally expensive. In the following, we develop a primal

dual method based algorithm [87] to solve this problem.

We next rewrite (Pd) as

max
{Sm

i }K
i=1

: S
m
i ≥0

f(Sm
1 , · · · , Sm

K) subject to:
K∑

i=1

tr(Sm
i ) ≤ P. (3.22)

Recall that the positive semi-definiteness ofSm
i is equivalent to the positiveness of the

eigenvalues ofSm
i , i.e.,qi,j ≥ 0. Correspondingly, the Lagrange function is

L(Sm
1 , · · · , Sm

K , λ, δi,j) = f(Sm
1 , · · · , Sm

K)− λ
( K∑

i=1

tr(Sm
i )− P

)
+

K∑

i=1

Mi∑

j=1

δi,jqi,j ,

(3.23)

whereλ and δi,j are Lagrangian multipliers. According to the KKT conditions of

(3.22), we have

∂f(Sm
1 , · · · , Sm

K)

∂Sm
i

− λINr
+

Mi∑

j=1

δi,jEi,j = 0, (3.24)

λ
( K∑

i=1

tr(Sm
i )− P

)
= 0, (3.25)

δi,jqi,j = 0, (3.26)
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3.4 Dual MAC Capacity Computation Problem

whereEi,j := ∂qi,j/∂Sm
i . Notice that it is not necessary to compute the actual value

of δi,j andEi,j, because ifδi,j 6= 0, thenqi,j = 0. Thus, the semi-definite constraint

turns intoqi,j = [qi,j]
+. Thus, we can assumeδi,j = 0.

The dual objective function of (3.22) is

g(λ) = max
{Sm

i }K
i=1

: S
m
i ≥0

L(Sm
1 , · · · , Sm

K , λ). (3.27)

Because the problem (3.22) is convex, it is equivalent to thefollowing minimization

problem

min
λ

g(λ) subject to:λ ≥ 0. (3.28)

We outline the algorithm to solve the problem (3.28). We choose an initialλ and

compute the value ofg(λ) (3.27), and then updateλ according to the descent direction

of g(λ). The process repeats until the algorithm converges.

It is easy to observe that all the users share the sameλ, and thusλ can be viewed

as a water level in the water filling principle [47]. Onceλ is fixed, the unique optimal

set {Sm
1 , . . . , Sm

K} can be obtained through the gradient ascent algorithm. In each

iterative step,Sm
i is updated sequentially according to its gradient direction of (3.23).

Denote bySm
i (n) the matrixSm

i at thenth iteration step. The gradient of each step is

determined by

∇(n)

S
m

i

L :=
∂f
(
Sm

1 (n), · · · , Sm
i−1(n), Sm

i (n− 1), . . . , Sm
K(n− 1)

)

∂Sm
i (n− 1)

− λINr
. (3.29)

Thus,Sm
i (n) can be updated according to

Sm
i (n) =

[
Sm

i (n− 1) + t∇(n)

S
m

k

L
]+

,

wheret is the step size, and the notation[A]+ is defined as[A]+ :=
∑

j [λj]
+vjv

H
j

with λj andvj being thejth eigenvalue and the corresponding eigenvector ofA re-
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3.4 Dual MAC Capacity Computation Problem

spectively. The gradient in (3.29) can be readily computed as

∂f(Sm
1 , · · · , Sm

K)

∂Sm
k

=
K∑

j=k

∆j

(
HkF j(S

m
1 , · · · , Sm

K)−1HH
k

)
, (3.30)

whereF j(S
m
1 , · · · , Sm

K) := Rw +
∑j

i=1 HH
i Sm

i H i. We next need to determine the

optimalλ. Since the Lagrange functiong(λ) is convex overλ, the optimalλ can be ob-

tained through the one-dimensional search. However, becauseg(λ) is not necessarily

differentiable, the gradient algorithm cannot be applied.Alternatively, the subgradient

method can be used to find the optimal solution. In each iterative step,λ is updated

according to the subgradient direction.

Lemma 3.2 The subgradient ofg(λ) is P −∑K
i=1 tr(Sm

i ), whereλ ≥ 0, andSm
i , i =

1, . . . , K, are the corresponding optimal covariance matrices for a fixedλ in (3.27).

The proof can be found in Appendix B.2. Lemma 3.2 indicates that the value ofλ

should increase, if
∑K

i=1 tr(Sm
i ) > P , and vice versa. We now present our DIPA

algorithm for solving (Pd) in table 3.1. The following theorem shows the convergence

property of the DIPA algorithm.

Theorem 3.4 The DIPA algorithm converges to an optimal set of the MAC transmit

covariance matrices.

Proof : The DIPA algorithm consists of the inner and outer loops. Theinner loop is

to computeSm
i for i = 1, · · · , K. In each iterative step of the inner loop, we update

Sm
i by fixing otherSm

j with j 6= i, and compute the corresponding gradient. The inner

loop uses the gradient ascent algorithm, which converges tothe optimal value due to

its nondecreasing property and the convexity of the objective function. The outer loop

is to compute the optimal Lagrangian multiplierλ in (3.28). Due to the convexity of

the dual objective function [53], there is a uniqueλ achieving the optimal solution in

(3.28). Hence, one dimensional line bisection search [47,78] is guaranteed to converge

to its optimal solution. �

63



3.4 Dual MAC Capacity Computation Problem

Table 3.1: Decoupled Iterative Power Allocation (DIPA) Algorithm.

DIPA Algorithm

1. Initializeλmin andλmax;

2. repeat

λ = (λmin + λmax)/2

repeat, initializeSm
1 (0), · · · , Sm

K(0), n = 1

for i = 1, · · · , K,

Sm
i (n) =

[
Sm

i (n− 1) + t∇(n)
Qm

i
L
]+

,

end for,

n← n + 1,

until Sm
k for k = 1, · · · , K converge, i.e.,‖∇(n)

Sm

i

L‖2 ≤ ǫ̂ for a small preset̂ǫ.

if
∑K

i=1 tr(Sm
i ) > P , thenλmin = λ, elseif

∑K
i=1 tr(Sm

i ) < P , thenλmax = λ;

3. until |λmin − λmax| ≤ ǫ
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3.5 A Complete Solution to (Pa)

Remark 3.3 In the previous work on the sum rate maximization [47, 77, 78], the co-

variance matrix of each user is the same as the single user water-filling covariance

matrix in a point-to-point link with multiuser interference being treated as noise [34].

However, for the weighted sum rate maximization problem, the optimal solution does

not possess a water-filling structure. Thus, our DIPA algorithm does not obey the

water-filling principle. In Section 3.6, Example 1 comparesthe water-filling algorithm

with the DIPA algorithm.

In the dual MIMO-MAC, according to (3.11), the transmit beamforming vec-

tors vi,j can be obtained by the eigenvalue decomposition. The corresponding re-

ceive beamforming vector at the BS,ui,j, is obtained by using the MMSE algorithm.

Throughout the proof of Theorem 3.3, we can see that when the same optimal solutions

are achieved the primal BC and the dual MAC share the same beamforming vectorsui,j

andvi,j, and achieve the same SINR region, i.e., SINRb
i,j = SINRm

i,j. Based on this ob-

servation, we can compute the power allocated to the BC beamforming directionui,j,

pi,j, and obtain the signal covariance matrix,Sb
i =

∑Nr

j=1 pi,jui,ju
H
i,j. The MAC-to-BC

covariance matrix mapping allows us to obtain the optimal BCcovariance matrices for

(Pc) by solving (Pd).

3.5 A Complete Solution to (Pa)

We are now ready to present a complete algorithm to solve (Pb). The Lagrangian dual

objective function of (Pb) can be rewritten as follows

g(qt, qu) = max
{Sb

i}K
i=1

:S
b
i≥0

K∑

i=1

wir
b
i , (3.31)
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where the maximization is subject to the constraintqt

(∑K
i=1 gHSb

ig−Γ
)
+ qu

(∑K
i=1

tr(Sb
i )− P̄

)
≤ 0. (Pb) is equivalent to the following problem

min
qt,qu

g(qt, qu), subject to:qt ≥ 0 andqu ≥ 0.

Applying the BC-MAC duality in Section 3.3.2 and the DIPA algorithm in Section

3.4, g(qt, qu) can be obtained. The remaining task is to determine the optimal qt and

qu. Sinceg(qt, qu) is not necessarily differentiable, we search the optimalqt andqu

through the subgradient algorithm; that is, in each iterative step, we update the vector

[qt, qu] according to the subgradient directions = [s1, s2] of g(qt, qu).

Lemma 3.3 The subgradient ofg(qt, qu) is
[
Γ − ∑K

i=1 gHSb
ig, P̄ − ∑K

i=1 tr(Sb
i )
]
,

whereqt ≥ 0, qu ≥ 0, andSb
i , i = 1, . . . , K, are the corresponding optimal covari-

ance matrices for the problem(3.31).

The proof of Lemma 3.3 is similar to that of Lemma 3.2, and is omitted here. It has

been shown in [88] that with a constant step size, the subgradient algorithm converges

to a value that is within a small range of the optimal value, i.e.,

lim
n→∞

|q(n)
t − q∗t | < ǫ, and, lim

n→∞
|q(n)

u − q∗u| < ǫ, (3.32)

whereq∗t andq∗u denote the optimal values, andq(n)
t andq

(n)
u denote the values ofqt

andqu at thenth step of the subgradient algorithm, respectively. This implies that the

subgradient method finds anǫ-suboptimal point within a finite number of steps. The

numberǫ is a decreasing function of the step size.

We next describe the algorithm to solve (Pb) in table 3.2. As a summary, the flow

chart of the SIPA algorithm is depicted in Fig. 3.3. We shows that the SIPA algorithm

converges to the optimal solution of (Pa) in the following theorem.

Theorem 3.5 The SIPA algorithm converges to the globally optimal solution of (Pa).
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3.5 A Complete Solution to (Pa)

Table 3.2: Subgradient Iterative Power Allocation (SIPA) Algorithm.

SIPA Algorithm

1. Initialization:q(1)
t , q

(1)
u , n = 1;

2. repeat

Find the optimal solution of the dual MAC (Pd) through the DIPA

algorithm;

Find the solution of the BC problem (3.31) through the MAC-to-BC mapping;

Updateq(n)
t andq

(n)
u through a subgradient algorithmq(n+1)

t = q
(n)
t + t(

∑K
i=1

g†Sb
ig − Γ), andq

(n+1)
u = q

(n)
u + t(

∑K
i=1 tr(Sb

i )− P̄ ), wheret denotes

the step size of the subgradient algorithm;

n← n + 1;

3. Stop when|q(n)
t (
∑K

i=1 g†Sb
i g − Γ)| ≤ ǫ and|q(n)

u (
∑K

i=1 tr(Sb
i )− P̄ )| ≤ ǫ are

satisfied simultaneously,

SubgradientMapping

Mapping
Subgradient

DIPA

DIPA

Subgradient
DIPA

q
(1)
t , q

(1)
u

q
(2)
t , q

(2)
u

q
(n)
t , q

(n)
uq

(n)
t , q

(n)
u

q
(3)
t , q

(3)
u

Sm
i,(1)

Sm
i,(2)

Sm
i,(n)

Sb
i,(1)

Sb
i,(2)

Sb
i,(n)

··
· ··
·

··
·

Figure 3.3: The flow chart for the SIPA algorithm, whereSb
i,(n) andSn

i,(n) denote the

transmit covariance matrices of SUi for the BC and MAC at thenth step, respectively.
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3.5 A Complete Solution to (Pa)

Proof : The Lagrange function of (Pa) is given by

L(Sb
1, . . . , S

b
K , λ1, λ2) =

K∑

i=1

wir
b
i − λ1

( K∑

i=1

gHSb
i g − Γ

)
− λ2

( K∑

i=1

tr(Sb
i )− P̄

)
,

(3.33)

and the Lagrange function of (Pb) is given by

L1(S
b
1, . . . , S

b
K , λ, qt, qu) =

K∑

i=1

wir
b
i −λ

(
qt

( K∑

i=1

gHSb
i g−Γ

)
−qu

( K∑

i=1

tr(Sb
i )− P̄

))
.

(3.34)

Let q̄t, q̄u, λ̄, andS̄i be the optimal values ofL1(S
b
1, . . . , S

b
K , λ, qt, qu), when the

algorithm converges. We thus have

∂L1(S
b
1, . . . , S

b
K , λ, qt, qu)

∂Sb
i

∣∣∣
{ ¯S

b

i}K
i=1

,λ̄,q̄t,q̄u

= 0,

|q̄t(
∑K

i=1 gHS̄ig − Γ)| = 0, and|q̄u(
∑K

i=1 tr(S̄i) − P̄ )| = 0. This means that̄Si is a

locally optimal solution.

According to (3.33), if we select̃λ1 = λ̄q̄t, λ̃2 = λ̄q̄u, andS̃i = S̄i, thenλ̃1, λ̃2,

andS̃i satisfy the KKT conditions of (Pa) and thus are the locally optimal variables.

Suppose that there exists an optimal set ofλ̂1, λ̂2, andŜi such thatL(Ŝ1, . . . , ŜK ,

λ̂1, λ̂2) > L(S̃1, . . . , S̃K , λ̃1, λ̃2). Clearly, this optimal set of̂λ1, λ̂2, andŜi satisfy the

KKT conditions of (Pa). In the sequel, we will derive a contradiction.

First, we can write

L(S̃1, · · · , S̃K , λ̃1, λ̃2) ≥ L(Ŝ1, · · · , ŜK , λ̃1, λ̃2). (3.35)

Suppose that the inequality (3.35) does not hold, i.e.,L(S̃1, · · · , S̃K , λ̃1, λ̃2) <

L(Ŝ1, · · · , ŜK , λ̃1, λ̃2). Then, according to the BC-MAC duality in Section 3.3.2, an

objective value of (Pd) which is larger thanL(S̃1, · · · , S̃K , λ̃1, λ̃2), can be found for

the fixedq̄t and q̄u. However, from Theorem 3.4, the DIPA algorithm converges the

optimal solution. It is a contradiction.
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3.5 A Complete Solution to (Pa)

Secondly, according to the KKT conditions of (Pa), we have

λ̂1

( K∑

i=1

gHŜb
ig − Γ

)
= 0, λ̂2

( K∑

i=1

tr(Ŝb
i )− P̄

)
= 0. (3.36)

We thus can write:

L(Ŝ1, · · · , ŜK , λ̃1, λ̃2) ≥ L(Ŝ1, · · · , ŜK , λ̂1, λ̂2). (3.37)

Combining (3.37) and (3.35), we have

L(S̃1, · · · , S̃K , λ̃1, λ̃2) ≥ L(Ŝ1, · · · , ŜK , λ̂1, λ̂2). (3.38)

This contradicts with our previous assumption. Hence the proof is complete. �

Remark 3.4 The algorithm can be extended to the multiple PU case in the following

manner. Assume that there areN PUs. (Pb) becomes

min
qt,j≥0,qu≥0

max
{Sb

i}K
i=1

: S
b
i≥0

K∑

i=1

wir
b
i ,

subject to:
N∑

j=1

qt,j

( K∑

i=1

gH
j Sb

i gj − Γt,j

)
+ qu

( K∑

i=1

tr(Sb
i )− P̄

)
≤ 0,

(3.39)

whereqt,j is the auxiliary variable for thejth PU, gj is the channel response from

the BS to thejth PU, andΓt,j is the interference threshold of thejth PU. The role

of auxiliary variablesqt,j is similar to that ofqt in the single PU case. It is thus

straightforward to modify the SIPA algorithm to solve the problem for the multiple

PU case. Moreover, it should be noted that the multiple interference constraints of

the problem(3.39)can be transformed to the per-antenna power constraints [79] by

settinggj, j = 1, · · · , Nt, to be thejth column of the identity matrix. Not limited by

the sum rate maximization problem with interference power constraints, the method

proposed in this chapter can be easily applied to solve the transmitter optimization

problem (e.g. beamforming optimization) for MIMO-BC with multiple arbitrary linear

power constraints.
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3.6 Numerical Examples

In this section, we provide the numerical examples to show the effectiveness of the

proposed algorithm. In the examples, for simplicity, we assume that the BS is at the

same distance,l1, to all SUs, and the same distance,l
(n)
2 , to PUn. In the single PU case,

we will drop the superscript and simply use notationl2. Suppose that the same path loss

model can be used to describe the transmissions from the BS tothe SUs and to the PUs,

and the path loss exponent is 4. The elements of matrixH are assumed to be CSCG

RVs with mean zero and variance 1, andg can be modeled asg = (l1/l2)
2an, where

an is a Nt × 1 vector whose elements are CSCG RVs with mean zero and variance

1. The noise covariance matrix at the BS is assumed to be the identity matrix, and the

sum power and interference power are defined in dB relative tothe noise power, andΓ

is chosen to be0 dB. For all cases, we choosel1 = l2, except for explicitly stated.

In Fig. 3.4, we examine the validity of the DIPA algorithm. Inthis example,

we chooseK = 1 (a single SU case),Nt = 4, Nr = 4, andP̄ = 10 dB. It is well

known that the optimal transmit covariance matrix can be obtained through the water-

filling principle [34]. As can be observed from Fig. 3.4, in several iterations, the

DIPA algorithm converges to the optimal solution obtained by using the water-filling

principle.

In Fig. 3.5, we show the convergence property of the DIPA algorithm. In this

example, we chooseK = 20 andP̄ = 10 dB. It can be observed from this figure that

the algorithm converges to the optimal solution within several iteration steps.

In Figs. 3.6 and 3.7, we consider a CR MIMO-BC withK = 5, Nt = 5, Nr = 3,

andP̄ = 13 dB. In this example, the SUs withw1 = 5 andwi = 1, i = 2, . . . , K are

assumed to share the same spectrum band with two PUs. Fig. 3.6plots the weighted

sum rate versus the number of iterations of the SIPA algorithm for step sizest = 0.1

andt = 0.01. As can be seen from the figure, the step size affects the accuracy and
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Figure 3.4: Comparison of the optimal achievable rates obtained by the DIPA and the

water-filling algorithm in a MIMO channel (Nt = Nr = 4, K = 1 andP̄=10 dB).
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Figure 3.5: Convergence behavior of the DIPA algorithm (K = 20 andP̄ = 10 dB).
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Figure 3.6: Convergence behavior of the SIPA algorithm (Nt = 5, K = 5, Nr = 3,

w1 = 5, andwi = 1, for i 6= 1).

convergence speed of the algorithm. Fig. 3.7 plots the sum power at the BS and the

interference power at the PUs versus the number of iterations. It can be seen from

the figure that the sum power and the interference power approach toP̄ = 13 dB

andΓ = 0 dB respectively when the SIPA algorithm converges. This implies that

the sum power and interference constraints are satisfied with equalities when the SIPA

algorithm converges.

Fig. 3.8 plots the achievable sum rates versus the sum power in the single PU case

and the case with no PU. We chooseK = 5, Nt = 5, andNr = 3. As can be seen from

Fig. 3.8, in the low sum power regime, the achievable sum ratein the case with no PU

is quite close to the one in the single PU case while in the highsum power regime, the

achievable sum rate in the case with no PU is much higher than the one in the single

PU case. This is because the additional constraint reduces the degrees of freedom of

the system.
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with no PU (Nt = 5, K = 5, Nr = 3).
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3.7 Conclusions

In this chapter, we have developed a new BC-MAC duality result, which can be viewed

as an extension of existing duality results developed undereither a sum power con-

straint or per-antenna power constraints. Exploiting thisduality result, we have pro-

posed an efficient algorithm to solve the capacity computation problem for the CR

MIMO-BC. Furthermore, we have shown that the proposed algorithm converges to the

globally optimal solution.
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Chapter 4

Robust Designs for CR MISO

Channels

In Chapter 2 and Chapter 3, it is assumed that the CSI of the CR networks is perfectly

known at the SU transmitter (SU-Tx). However, due to the loose cooperation between

the SU and the PU, it is more practical to assume that only partial CSI is available

at the SU-Tx. This chapter considers a spectrum sharing based CR MISO channel,

in which the SU has multiple transmit antennas and a single receive antenna and the

PU has a single receive antenna. With the partial CSI and a prescribed transmit power

constraint, our design objective is to determine the transmit covariance matrix that

maximizes the rate of the SU while keeping the interference power to the PU below

a threshold for all the possible channel realizations within an uncertainty set. This

problem is first transformed into the second order cone programming (SOCP) problem

and then solved via a standard interior point algorithm. Next, an analytical solution

with much reduced complexity is developed from a geometric perspective. It is shown

that both algorithms obtain the same optimal solution.
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4.1 Introduction

In non-CR settings, the study of multi-antenna systems withpartial CSI has received

considerable attention in the past decade [49, 89]. Specifically, the paper [49] con-

sidered the case in which the receiver has perfect CSI but thetransmitter has only

partial CSI (mean feedback or covariance feedback). It was proved in [49] that the op-

timal transmission directions are the same as those of the eigenvectors of the channel

covariance matrix. However, the optimal power allocation solution was not given in

an analytical form. A universal optimality condition for beamforming was explored

in [90], and quantized feedback was studied in [91].

In CR settings, power allocation strategies have been developed for MAC [68] and

for point-to-point MIMO channels [36]. Particularly, the solution developed in [36] can

be viewed as cognitive beamforming since the SU-Tx forms itsmain beam direction

with awareness of its interference to the PU. A closed-form method has been provided

for CR MISO channel in [36]. However, both papers [68] and [36] assumed that perfect

CSI of the link from the SU-Tx to the PU is available at the SU-Tx.

In this chapter, we consider a spectrum sharing based CR MISOchannel, in which

the SU network is a MISO channel and the PU is equipped with a single receive an-

tenna. We assume that the CSI of the SU link is perfectly knownat the SU-Tx. How-

ever, owing to loose cooperation between the SU and the PU, only the mean and covari-

ance of the channel between the SU-Tx and the PU is available at the SU-Tx. With this

partial CSI, our design objective is, for a given transmit power constraint, to determine

the transmit covariance matrix that maximizes the rate of the SU while keeping the

interference power to the PU below a threshold for all the possible channel realizations

within an uncertainty set. We term this design problem the robust cognitive beamform-

ing design problem. This problem is formulated as a semi-infinite programming (SIP)

problem, and solved by two methods proposed in this chapter.
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...

h

g

PU

SU-Tx

SU-Rx

Figure 4.1: The system model for CR MISO channel. There are aN-antenna SU-Tx,

a single antenna SU-Rx, and a single antenna PU.

The rest of this chapter is organized as follows. Section 4.2describes the system

model for CR MISO channel, and the problem formulation of therobust cognitive

beamforming design. Section 4.3 presents several important lemmas that are used to

develop the algorithms. Two different algorithms, the SOCPbased solution and the

analytical solution, are developed in Section 4.5 and Section 4.4, respectively. Section

4.6 presents numerical examples, and finally, Section 4.7 concludes the chapter.

4.2 System Model and Problem Formulation

Consider a CR MISO channel, where the SU-Tx is equipped withN transmit antennas

and there are one SU receiver (SU-Rx) with a single receive antenna. The CR MISO

channel, as shown in Fig. 4.1, share the same spectrum with a single PU equipped with

one transmit antenna. The transmit-receive signal model from the SU-Tx to the SU-Rx

can be expressed as

y = hHx + n, (4.1)
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4.2 System Model and Problem Formulation

wherey denotes the the received signal,x andh denote theN × 1 transmitted vector

and theN × 1 channel response vector from the SU-Tx to the SU-Rx, respectively,

andn is Gaussian noise with zero mean and unit variance. Suppose that the PU has

one receive antenna. The channel response from the SU-Tx to the PU is denoted by an

N × 1 vectorg. Further, assume that the SU-Tx has perfect CSI for its own link, i.e.,

h is perfectly known at the SU-Tx. However, due to the loose cooperation between

the SU and the PU, only the mean (g0) and the covariance matrix (R) of g is assumed

to be available at the SU-Tx1. In previous work [49, 92–94], imperfect CSI has been

considered in two extreme cases in a non-CR setting. One is the mean feedback case,

i.e.,R = σ2I, whereσ2 can be viewed as the variance of the estimation error; and the

other is the covariance feedback case, i.e.,g0 is a zero vector. In this chapter, we study

the case where the SU-Tx knows both the mean and covariance ofg in a CR setting.

The objective of this chapter is to determine the optimal transmit covariance ma-

trix such that the information rate of the SU link is maximized while the QoS of the PU

is guaranteed under a robust design scenario, i.e., the instantaneous interference power

for the PU should remain below a given threshold for all theg in the uncertain region.

Mathematically, the problem is formulated as follows:

Robust design problem(P1) : max
S≥0

log(1 + hHSh)

subject to: tr(S) ≤ P̄,

gHSg ≤ Γ for (g − g0)
HR−1(g − g0) ≤ ǫ,

(4.2)

whereS = E[xxH ] is the transmit covariance matrix,S ≥ 0 denotes thatS is a

positive semi-definite matrix,̄P is the transmit power contraint,Γ is the interference

1Due to the cognitive property, we assume that the SU can obtain the pilot signal from the PU, and

has the knowledge of the transmit power of the PU. Thus, the SUcan detect the channel from the PU to

the SU. Moreover, since the SU shares the same spectrum with the PU, based on the channel from the

PU to the SU, the statistics of the channel from the SU to the PUcan be obtained [92]. Therefore, we

can assume thatg
0

andR are known to the SU.
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threshold of the PU, andǫ is a positive constant. The parameterǫ characterizes the

uncertainty ofg at the SU. According to the definition of the uncertainty in [95], P1

belongs to a type of ellipsoid uncertainty problem, i.e., the uncertain parameterg is

confined in a range of an ellipsoidH(ǫ), whereH(ǫ) : {g|(g−g0)
HR−1(g−g0) ≤ ǫ}.

Thus, the optimal solution of (P1) can guarantee the interference power constraint for

all theg ∈ H(ǫ), and thus the robustness ofP1 is in theworst casesense [53], i.e., in

the worst case channel realization, the interference constraint should also be satisfied.

If the primary transmission does not exist, then the interference constraint is excluded,

and thus the problem reduces to a trivial beamforming problem. Hence, we only focus

on the case where both PU and SU transmission exist.

Remark 4.1 An important observation is that the objective function in (P1) remains

invariant whenh undergoes an arbitrary phase rotation. Without loss of generality,

we assume, in the sequel, thath and g0 have the same phase, i.e., Im{hHg0} = 0.

Therefore, we can define the angle betweenh andg0 asα := acos
(

h
H
g

0

|hH ||g
0
|

)
.

Since (P1) has a finite number of decision variableS, and is subjected to an

infinite number of constraints with respect to the compact set H(ǫ), (P1) is an SIP

problem [96]. One obvious approach for an SIP problem is to transform it into an

equivalent problem with finite constraints. However, thereis no universal algorithm to

determine the finite constraints from the infinite constraint set such that the transformed

problem has the same solution as the original SIP problem. Inthe following section,

we first study several important properties of (P1), which can be used to transform the

SIP problem into its equivalent finite constraint counterpart.
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4.3 Properties of The Optimal Solution

The maximization (P1) is a convex optimization problem, and thus has a unique opti-

mal solution. The following lemma presents a key property ofthe optimal solution of

(P1).

Lemma 4.1 The optimal covariance matrixS for (P1) is a rank-1 matrix.

The proof can be found in Appendix C.1.

Remark 4.2 Lemma 4.1 indicates that beamforming is the optimal transmission strat-

egy for (P1), and the optimal transmit covariance matrix can be expressed asSopt =

poptvoptv
H
opt, wherepopt is the optimal transmit power andvopt is the optimal beamform-

ing vector with‖vopt‖ = 1. Therefore, the ultimate objective of (P1) is to determine

popt andvopt.

The following Lemma presents a closed-form solution for an optimization prob-

lem, which will be used in the sequel.

Lemma 4.2 For the problem

max
h

pgHvvHg, subject to:(g − g0)
HR−1(g − g0) ≤ ǫ, (4.3)

wherep, v, andg0 are constant, the optimal solution is

gmax = g0 +

√
ǫ

vHRv
αRv, whereα = vHg0/|vHg0|. (4.4)

The proof can be found in Appendix C.2. Based on Lemma 4.1 and Lemma 4.2,

a necessary and sufficient condition for the optimal solution of (P1) is presented as

follows.
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4.3 Properties of The Optimal Solution

Lemma 4.3 A necessary and sufficient condition forSopt to be the globally optimal

solution of (P1) is that there exists angopt such that

Sopt = arg max
S,p

log(1 + hHSh), subject to: tr(S) ≤ p, 0 ≤ p ≤ P̄, gH
optSgopt ≤ Γ,

(4.5)

where

gopt = arg max
h

gHSoptg, for (g − g0)
HR−1(g − g0) ≤ ǫ. (4.6)

The proof can be found in Appendix C.3.

Remark 4.3 The vectorgopt is a key element for allg : (g − g0)
HR−1(g − g0) ≤ ǫ,

in the sense that, for the optimal solution, the constraintgH
optSgopt ≤ Γ dominates the

whole interference constraints, i.e., all the other interference constraints are inactive.

However,gopt can be viewed as an implicit variable for the problem(4.5), and the

optimalS andgopt cannot be obtained separately. It is worth noting that the problem

(4.5) has the same form as the problem discussed in [36], in which the CSI on the

link of the SU and the link between SU-Tx and PU are perfectly known at the SU-Tx.

However, unlike the problem in [36],gopt in (4.5) is an unknown variable.

In the following lemma, the optimal beamforming vectorvopt is shown to lie in a

two-dimensional (2-D) space spanned byg0 and the projection ofh into the null space

of g0. Defineĝ// = g0/‖g0‖ andĝ⊥ = g⊥/‖g⊥‖, whereg⊥ = h−(ĝH
//h)ĝ//. Hence,

we haveh = ahs
ĝ// + bhs

ĝ⊥ with ahs
, bhs
∈ R.

Lemma 4.4 The optimal beamforming vectorvopt is of the formavĝ// + bvĝ⊥ with

av, bv ∈ R.

The proof can be found in Appendix C.4.
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g0 ĝ//

ĝ⊥

h

gopt

√
pv

α

√
Γ/p

Figure 4.2: The geometric explanation of Lemma 4.4. The ellipse is the projection of

g = {g|(g − g0)
HR−1(g − g0) = ǫ} on the plane spanned bŷg// andĝ⊥.

Remark 4.4 According to Lemma 4.4, we can search for the optimal beamforming

vectorvopt on the 2-D space spanned byĝ// and ĝ⊥, which simplifies the search pro-

cess significantly. As depicted in Fig. 4.2, (P1) is transformed into the problem of de-

termining the beamforming vectorvopt in the 2-D space and the corresponding power

popt. Combining Lemma 4.3 and Lemma 4.4, it is easy to conclude that gopt lies in the

space spanned bŷg// and ĝ⊥.

4.4 Second Order Cone Programming Solution

In this section, we solve (P1) via a standard interior point algorithm [46, 53, 97]. We

first transform the SIP problem into a finite constraint problem, and further transform it

into a standard SOCP form, which can be solved by using a standard software package

such as SeDuMi [98]. One key observation is that ifmaxh∈H(ǫ) gHSg ≤ Γ, i.e., the

worst case interference constraint of satisfied, then the interference constraint ofP1
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4.4 Second Order Cone Programming Solution

holds. Combining this observation with Lemma 4.1, (P1) can be transformed as:

Equivalent problem (P2): max
p≥0,‖v‖=1

log(1 + phHvvHh)

subject to: p ≤ P̄, max
h∈H(ǫ)

pgHvvHg ≤ Γ.

(4.7)

It is clear that maximizinglog(1 + phHvvHh) is equivalent to maximizing|√phHv|.

By definingw =
√

pv, the objective function can be rewritten as|hHw|. Similarly,

the interference power can be expressed as|gHw|2. Thus, problemP2 can be further

transformed to

max
w
|hHw|

subject to: ‖w‖ ≤
√

P, max
h∈H(ǫ)

|gHw| ≤
√

Γ.
(4.8)

According to the definition ofH(ǫ), we can rewrite the worst-case constraint in

(4.8) as

max
h∈H(ǫ)

|gHw| = max
h1∈H1(ǫ)

|(g0 + g1)
Hw| ≤

√
Γ, (4.9)

whereg = g0 + g1, the vectorg1 is a variable, andH1(ǫ) : {g1|gH
1 R−1g1 ≤ ǫ}. By

applying the triangle inequality, the interference power can be transformed as follows:

|(g0 + g1)
Hw| ≤ |gH

0 w|+ |gH
1 w| ≤ |gH

0 w|+√ǫ‖Qw‖, (4.10)

whereQ = ∆
−1/2U with ∆ andU being obtained by the eigenvalue decomposition

of R−1 asR−1 = UH
∆U . The last inequality in (4.10) is obtained by solving the

problem max
g

1
∈H1(ǫ)

|gH
1 w| (refer to Lemma 4.2). Moreover, since the arbitrary phase

rotation ofw does not change the value of the objective function or the constraints,

according to Remark 4.1 and Lemma 4.4, we can assume thatw, h, andg0 have the

same phase, i.e.,

Re{wHh} ≥ 0, Im{wHg0} = 0, and Im{wHh} = 0. (4.11)
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4.5 An Analytical Solution

Hence, the interference constraint can be transformed intotwo second order cone in-

equalities as follows

√
ǫ‖Qw‖+ gH

0 w ≤
√

Γ, and
√

ǫ‖Qw‖ − gH
0 w ≤

√
Γ. (4.12)

By combining (4.8), (4.12), with (4.11), (P1) is transformed into the standard SOCP

problem as follows

max
w

hHw

subject to:‖w‖ ≤
√

P, Im{wHg0} = 0,

√
ǫ‖Qw‖+ gH

0 w ≤
√

Γ,
√

ǫ‖Qw‖ − gH
0 w ≤

√
Γ.

(4.13)

Since the parametersh andg0, and the variablew in (4.13) have complex values,

we first convert them to its corresponding real-valued form in order to simplify the

solution. Definew̃ := [Re{w}T , Im{w}T ]T , g̃0 := [Re{g0}T , Im{g0}T ]T , g̃s :=

[Re{h}T , Im{h}T ]T , ǧ0 := [Im{g0}T ,−Re{g0}T ]T , andQ̃ :=




Re{Q} −Im{Q}

Im{Q} Re{Q}


 .

We then can rewrite the standard SOCP problem (4.13) as

max
w̃

g̃H
s w̃

subject to: ‖w̃‖ ≤
√

P , ǧH
0 w̃ = 0,

√
ǫ‖Q̃w̃‖+ g̃H

0 w̃ ≤
√

Γ,
√

ǫ‖Q̃w̃‖ − g̃H
0 w̃ ≤

√
Γ.

(4.14)

Problem (4.14) can be solved by a standard interior point program SeDuMi [98],

which has a polynomial complexity. In the next section, we develop an analytical

algorithm to solve (P1), which reduces the complexity of the interior point based

algorithm substantially.

4.5 An Analytical Solution

In this section, we present a geometric approach to (P1). We begin by studying a

special case, the mean feedback case, i.e.,R = σ2I. Due to its special geometric
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structure, the mean feedback case problem can be solved via aclosed-form algorithm.

We next show that (P1) can be transformed into an optimization problem similar tothe

mean feedback case. Based on the closed-form solution derived for the mean feedback

case, the analytical solution to (P1) with a general form of a covariance matrixR is

presented in Subsection 4.5.2.

4.5.1 Mean Feedback Case

Based on the observation in Lemma 4.1 and the definition of themean feedback, the

special case of (P1) with mean feedback can be written as follows.

Mean feedback problem (P3): max
p≥0,‖v‖=1

log(1 + phHvvHh)

subject to: p ≤ P̄,

pgHvvHg≤Γ, for ‖g − g0‖2≤ǫσ2.

(4.15)

ProblemP3 has two constraints, i.e., the transmit power constraint and the inter-

ference constraint. Similar to the idea in [68], the two-constraint problem is decoupled

into two single-constraint subproblems:

Subproblem 1 (SP1): max
p≥0,‖v‖=1

log(1 + phHvvHh) (4.16)

subject to: p ≤ P̄. (4.17)

Subproblem 2 (SP2): max
p≥0,‖v‖=1

log(1 + phHvvHh) (4.18)

subject to: pgHvvHg ≤ Γ, for ‖g − g0‖2 ≤ ǫσ2. (4.19)

In the sequel, we present the algorithm to obtain the optimalpowerpopt and the

optimal beamforming vectorvopt for both subproblems in subsection 4.5.1.1, and de-

scribe the relationship between the subproblems and problemP3 in subsection 4.5.1.2.
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4.5 An Analytical Solution

4.5.1.1 Solution to subproblems

ForSP1, the optimal power is constrained by the transmit power constraint, and thus

popt = P . Moreover, since there does not exist any constraints on thebeamforming

direction, it is obvious that the optimal beamforming direction is equal toh, i.e.,vopt =

h/‖h‖. Thus, the optimal covariance matrixSopt for SP1 is P̄hhH/‖h‖2. In the

following, we focus on the solution toSP2.

SP2 has infinitely many interference constraints, and thus is anSIP problem too.

By following a similar line of thinking as in Lemma 4.3,SP2 can be transformed into

an equivalent problem that has finite constraints as follows.

Lemma 4.5 SP2 and the following optimization problem:

max
p≥0,‖v‖=1

log(1 + phHvvHh), subject to: pgH
optvvHgopt ≤ Γ, (4.20)

wheregopt = g0 +
√

ǫσv, have the same optimal solution.

The proof can be found in Appendix C.5. SinceSP2 can be viewed as a special

case ofP1 by settingP̄ =∞, it is evident from Lemma 4.4 that the optimal solutionv

of problem (4.20) lies in the plane spanned byĝ// andĝ⊥, i.e., the optimalv found in

this 2-D space is also the globally optimal solution of the original problemSP2. We

next apply a geometric approach to search the optimal solution, i.e., by restricting our

search space to a 2-D space. As shown in Fig. 4.3, we define the angle betweenv and

g0 asβ. It is easy to observe that0 ≤ α ≤ π/22. Sincev lies in a 2-D space,v can be

uniquely identified by the angleβ. Hence, we need only to search for the optimal angle

βopt. By exploiting the relationship betweenp, v, andβ, the two-variable optimization

problem (4.20) can be further transformed into an optimization problem with a single

variableβ, which can be readily solved.

2Note that we can always replaceh by−h without affecting the final result ofSP2. Therefore, if

α ≥ π/2, we can have a new equivalent problem by replacingh with −h. The inequalityα ≤ π/2

holds for the new problem.
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g0

g1

h gopt

√
pvopt

β
α

√
Γ/p

ĝ//

ĝ⊥

Figure 4.3: The geometric explanation of problemP3. The circle is the projection of

g = {g|‖g − g0‖2 = ǫ} on the plane spanned bŷg// andĝ⊥.

By observing Fig. 4.3, the angle betweenh andv isβ−α, and hence the objective

function of (4.20) can be expressed as

max
‖v‖=1

log(1 + phHvvHh) = max
β

log
(
1 + p‖h‖2 cos2(β − α)

)
. (4.21)

Clearly, the maximum rate is achieved if the following function

f(β) := p‖h‖2 cos2(β − α) (4.22)

is maximized.

Moreover, it can be proved by contradiction that the interference constraint is

satisfied with equality, i.e.,gH
optSgopt = Γ. Thus, we have

pgH
optvvHgopt = p(g0 +

√
ǫσv)HvvH(g0 +

√
ǫσv) = p

(
‖g0‖ cosβ +

√
ǫσ
)2

= Γ.

(4.23)

Hence, the interference constraint is transformed into

p =
Γ

(
‖g0‖ cos β +

√
ǫσ
)2 . (4.24)

87



4.5 An Analytical Solution

By substituting (4.24) into (4.22), we have

f(β) = p‖h‖2 cos2(β − α) =
‖h‖2Γ cos2(β − α)
(
‖g0‖ cos(β) +

√
ǫσ
)2 . (4.25)

Thus, the optimalβopt can be expressed as

βopt = arg max f(β) = arg max
‖h‖2Γ cos2(β − α)
(
‖g0‖ cos(β) +

√
ǫσ
)2 . (4.26)

The problem of (4.26) is a single variable optimization problem. It is easy to observe

that the feasible region forβ is [α, π/2]. According to the sufficient and necessary

condition for the optimal solution of an optimization problem,βopt lies either on the

border of the region (α or π/2) or on the point which satisfies∂f(β)/∂β = 0. Since

∂f(β)

∂β
=

2‖h‖2Γ cos(β − α)
(

sin α− sin(β − α)
√

ǫσ/‖g0‖
)

‖g0‖2
(
cos β +

√
ǫσ/‖g0‖

)3 , (4.27)

we can obtain a locally optimal solutionβ1 = sin−1
(

‖g
0
‖ sin α√
ǫσ

)
+ α by solving the

equation∂f(β)/∂β = 0. In the case when‖g0
‖ sin α√
ǫσ

> 1, f(β) is a non-decreasing

function. Hence, the optimalβ is π/2, and we definef(β1) = −∞ for this case.

Therefore, the globally optimal solution is

βopt = arg max(f(α), f(π/2), f(β1)). (4.28)

The optimal powerpopt can be further obtained by substitutingβopt into (4.24).

According to the definition ofβ and Lemma 4.4, we have

vopt = avĝ// + bvĝ⊥, (4.29)

whereav = cos(βopt) andbv = sin(βopt). In summary,SP2 can be solved by Algo-

rithm 1 as described in Table 4.1.

4.5.1.2 Optimal solution to problemP3

In the preceding subsection, we presented the optimal solutions for the two subprob-

lems. We now turn our attention to the relationship between problemP3 and the sub-

problems, and present the complete algorithm to solve problemP3. Since the convex
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Table 4.1: The algorithm for SP2.

Algorithm 1

1. Computeβopt through (4.28),

2. Computepopt according to (4.24),

3. Computevopt according to (4.29),

4. Sopt = poptvoptv
H
opt.

optimization problemP3 has two constraints, the optimal solution can be classified

into three cases depending on the activeness of the constraints: 1) only the transmit

power constraint is active; 2) only the interference constraint is active; and 3) both

constraints are active. Relying on this classification, therelationship between the solu-

tions of problemP3 and the two subproblems is described as follows.

Theorem 4.1 If the optimal solutionS1 of SP1 satisfies the constraint ofSP2, then

S1 is the optimal solution of problemP3. If the optimal solutionS2 of SP2 satisfies

the constraint ofSP1, thenS2 is the optimal solution of problemP3. Otherwise, the

optimal solution of problemP3 simultaneously satisfies the transmit power constraint

andgH
optSgopt ≤ Γ with equality.

The proof can be found in Appendix C.6.

Remark 4.5 To apply Theorem 4.1, we need to test whetherS1 and S2 satisfy both

constraints. The condition thatS1 satisfies the interference constraint is

Pint ≤ Γ, wherePint = max
h

gHS1g, for ‖g − g0‖2 ≤ ǫσ2, (4.30)

wherePint can be obtained by applying Lemma 4.2. The condition thatS2 satisfies the

transmit power constraint is tr(S2) ≤ P̄ .
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Table 4.2: The algorithm for problemP3 in the case where two constraints are satisfied

simultaneously.

Algorithm 2

1. Computeβopt through (4.33),

2. Based on (4.29), computevopt,

3. Sopt = P̄voptv
H
opt.

We next discuss the method for finding the solution in the casewhere neither

S1 nor S2 is the optimal solution of problemP3. Similarly to the method in the

preceding subsection, we solve this case from a geometric perspective. According to

Theorem 4.1, in the case in which neitherS1 norS2 is the feasible solution, the optimal

covarianceSopt must satisfy both constraints with equality, i.e.,

popt = P̄, andpoptg
H
optvoptv

H
optgopt = Γ. (4.31)

Combining these two equalities, we have

P̄
(
‖g0‖ cos(β) +

√
ǫσ
)2

= Γ. (4.32)

Thus,

βopt = arccos
(√Γ/P −√ǫσ

‖g0‖
)
. (4.33)

Based onβopt, we can obtainvopt from (4.29). We summarize the procedure called

Algorithm 2, which solves the case where both constraints are active for problemP3,

in Table 4.2. Furthermore, we are now ready to present the complete algorithm, namely

Algorithm 3, to solve problemP3 in Table 4.3.

In Algorithm 3, we obtain the optimal solutions toSP1 andSP2 and the optimal

solution to the case where both constraints are active separately. According to Theorem

4.1, the final solution obtained in Algorithm 3 is thus the optimal solution of problem

P3.
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Table 4.3: The complete algorithm for problemP3.

Algorithm 3

1. Compute the optimal solutionS1 = P̄hhH/‖h‖2 for SP1,

2. Compute the optimal solutionS2 for SP2 via Algorithm 1,

3. If S1 satisfies the interference constraint, thenS1 is the optimal solution,

4. Elsif S2 satisfies the transmit power constraint, thenS2 is the optimal solution,

5. Otherwise compute the optimal solution via Algorithm 2.

4.5.2 The Analytical Method for (P1)

In the preceding subsection, the mean feedback problemP3 is solved via a closed-form

algorithm. Unlike problemP3, (P1) has a non-identity-matrix covariance feedback.

To exploit the closed-form algorithm, we first transform (P1) into a problem with the

mean feedback form as follows.

Equivalent problem (P4): max
p,v̄

log(1 + pḡH
s v̄v̄H ḡs)

subject to: p‖∆1/2v̄‖2 ≤ P̄,

pḡH v̄v̄H ḡ ≤ Γ, for ‖ḡ − ḡ0‖2 ≤ ǫ,

(4.34)

whereR−1 = UH
∆U obtained by eigen-decomposingR−1, ḡ := ∆

1/2Ug, ḡ0 :=

∆
1/2Ug0, ḡs := ∆

1/2Uh, and v̄ := ∆
−1/2Uv. By substituting these definitions

into (4.34), it can be observed that the achieved rates and constraints of both (P1) and

P4 are equivalent. Thus, the optimal solution ofP1 can be obtained by solving its

equivalent problemP4. Moreover, the optimal beamforming vectorv̄opt of problem

P4 can be easily transformed into the optimal solutionvopt for (P1) by lettingvopt =

UH
∆

1/2v̄opt. Note that it is not necessary that‖v̄‖ = 1 in (4.34).

In the preceding subsection, decoupling the multiple constraint problem into sev-

eral single constraint subproblems facilitates the analysis and simplifies the process of
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solving the problem. For problemP4, it can also be decoupled into two subproblems

as follows.

Subproblem 3 (SP3): max
p,v̄

log(1 + pḡH
s v̄v̄H ḡs) (4.35)

subject to: p‖∆1/2v̄‖2 ≤ P̄. (4.36)

Subproblem 4 (SP4): max
p,v̄

log(1 + pḡH
s v̄v̄H ḡs) (4.37)

subject to: pḡH v̄v̄H ḡ ≤ Γ for ‖ḡ − ḡ0‖2 ≤ ǫ. (4.38)

It is easy to observe thatSP3 is equivalent toSP1, and the optimal transmit

covariance matrix ofSP3 can be obtained in the same way as that forSP1. More-

over,SP4 is the same asSP2, and thus it can be solved by Algorithm 1 discussed in

Subsection 4.5.1.1.

The relationship between problemP4 and subproblemsSP3 andSP4 is similar

to the one betweenP3 and corresponding subproblems as depicted in Theorem 4.1,

i.e., if either optimal solution ofSP3 or SP4 satisfies both constraints, then it is the

globally optimal solution; otherwise, the optimal solution satisfies both constraints

with equalities. We hereafter need to consider only the casein which the solutions

of both subproblems are not feasible for problemP4. For this case, the two equality

constraints can be written as follows.

‖∆1/2v̄‖ = 1, and max
(
ḡH v̄v̄H ḡ

)
=

Γ

P̄
, for ‖ḡ − ḡ0‖2 ≤ ǫ. (4.39)

Assume that the angle betweenḡ0 andv̄ is β̄, and thatp̄ = ‖v̄‖. Similar to Lemma

4.4, the optimal̄v lies in a plane spanned bȳ̂g and ˆ̄g⊥, whereˆ̄g = ḡ0/‖ḡ0‖, ˆ̄g⊥ =

ḡ⊥/‖ḡ⊥‖, andḡ⊥ = ḡs − (ˆ̄gH ḡs)ˆ̄g. Thus, if we can determinēβ andp̄ from (4.39),

then the optimal̄v can be identified by

v̄ = p̄
(
cos(β̄)ˆ̄g + sin(β̄)ˆ̄g⊥

)
. (4.40)
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Table 4.4: The algorithm for problemP4 in the case where two constraints are satisfied

simultaneously.

Algorithm 4

1. Computēβ via (4.44), and computēv via (4.40),

2. Based on the relationship betweenv̄ andv, computevopt,

3. Sopt = P̄voptv
H
opt.

Based on the new variables̄β andp̄, the constraints (4.39) can be transformed as

follows.

p̄
∥∥∥∆1/2

(
cos(β̄)ˆ̄g + sin(β̄)ˆ̄g⊥

)∥∥∥ = 1, (4.41)

and, p̄
(
cos(β̄)‖ḡ0‖+

√
ǫ
)

=

√
Γ

P̄
. (4.42)

According to (4.41), we have

p̄ =
1∥∥∥∆1/2

(
cos(β̄)ˆ̄g + sin(β̄)ˆ̄g⊥

)∥∥∥
. (4.43)

Substituting (4.43) into (4.42), we have

√
Γ

P̄

∥∥∥∆1/2
(
cos(β̄)ˆ̄g + sin(β̄)ˆ̄g⊥

)∥∥∥ = cos(β̄)‖ḡ0‖+
√

ǫ. (4.44)

Hence, the optimal̄β can be obtained by solving (4.44), andv̄opt can be obtained by

substitutingβ̄ into (4.40). In summary, the procedure to solve the case in which both

constraints are active is listed as Algorithm 4 in Table 4.4.Moreover, we are now ready

to present the complete algorithm, namely Algorithm 5, for solving (P1) in Table 4.5.

In Algorithm 5, we obtain the optimal solutions toSP3 andSP4 and the optimal

solution to the case where both constraints are active separately. According to Theorem

4.1, the final result obtained in Algorithm 5 is thus the optimal solution of (P1).
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Table 4.5: The complete algorithm for (P1).

Algorithm 5

1. Compute the optimal solutionS3 = P̄hhH/‖h‖2 for SP3,

2. Compute the optimal solutionS4 for SP4 via Algorithm 4,

3. If S3 satisfies the interference constraint, thenS3 is the optimal solution,

4. Elsif S4 satisfies the transmit power constraint, thenS4 is the optimal solution,

5. Otherwise compute the optimal solution through Algorithm 4.

Remark 4.6 The complexity of the interior point algorithm for the SOCP problem

(4.14) isO(N3.5 log(1
ε
)), whereε denotes the error tolerance [53]. For Algorithm 5,

a maximum ofO(log(1
ε
)) operations is needed to solve(4.44), and the complexity for

each operation isO(log(N2)). Hence, the computation complexity required for Algo-

rithm 5 isO(N2 log(1
ε
)), which is much less than that of the interior point algorithm.

4.6 Numerical Examples

Numerical examples are provided in this section to evaluatethe performance of the

proposed algorithms. In the examples, it is assumed that theentries of the channel

vectorsh andg0 are modeled as independent CSCG RVs with zero mean and unit

variance. Moreover, we denote byl1 the distance between the SU-Tx and the SU-Rx,

and byl2 the distance between the SU-Tx and the PU. It is assumed that the same path

loss model is used to describe the transmissions from the SU-Tx to the SU-Rx and to

the PU, and the path loss exponent is chosen to be4. The noise power is chosen to be

1, and the transmit power and interference power are defined indB relative to the noise

power. For all cases, we chooseΓ = 0 dB.
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4.6.1 Comparison of the Analytical Solution and the Solution Ob-

tained by the SOCP Algorithm

In this example, we compare the two results obtained by a standard SOCP algorithm

(SeDuMi) and Algorithm 3. We consider the system withN = 3, l2/l1 = 2, andP̄

ranging from 3 dB to 10 dB. In Fig. 4.4, we can see that the results obtained by different

algorithms coincide. This is because both algorithms determine the optimal solution.

Compared with the SOCP algorithm solution, Algorithm 3 obtains the solution directly,

and thus it has lower complexity. In Fig. 4.5, we compare the two results obtained by

SeDuMi and Algorithm 5. We consider the system withN = 3, P̄ = 5 dB, andl2/l1

ranging from 1 to 10. The covariance matrixR is generated byRH
1 R1, where each

element ofR1 follows Gaussian distribution with zero mean and unit variance. From

Fig. 4.5, we can see that the results obtained by the two algorithms coincide again.

Moreover, we note that the achievable rate withǫ = 0.2 is always greater than or equal

to the rate withǫ = 0.3, since a largerǫ corresponds to the stricter constraints.

4.6.2 Effectiveness of the Interference Constraint

In this example, we apply Algorithm 3 to solve problemP3. In Fig. 4.6, we depict the

achievable rate versus the ratiol2/l1 under different transmit power constraints. The

increase of the ratiol2/l1 corresponds the decrease of the interference power constraint.

As shown in Fig. 4.6, with an increase ofl2/l1, the achievable rate increases due to

the lower interference constraint. Until the ratiol2/l1 reaches a certain value, the

achievable rate remains unchanged, since the transmit power constraint dominates the

result, and the interference constraint becomes inactive.
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Figure 4.6: Effect ofl2/l1 on the achievable rate of the CR network (ǫ = 1, N = 3).

(1) P̄ = 10 dB; (2)P̄ = 8 dB; (1)P̄ = 6 dB.

4.6.3 The Activeness of the Constraints

In this example, we compare the achieved rates of (P1) with a single transmit power

constraint, a single interference constraint and both constraints. Here, we chooseN =

3, ǫ = 0.2, and generateR in the same way as in the first numerical example. Fig. 4.7

plots three achievable rates for different constraints, respectively. It can be observed

from Fig. 4.7 that the rate under two constraints is always less than or equal to the rate

under a single constraint. Obviously, this is due to the factthat extra constraints reduce

the degree of freedom of the transmitter.

4.7 Conclusions

In this chapter, the robust cognitive beamforming design problem has been investigated

for CR MISO channel, in which only partial CSI of the link fromthe SU-Tx to the PU

is available at the SU-Tx. The problem can be formulated as anSIP optimization
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Figure 4.7: Comparison of the rate under different constraints of (P1). (i) the maximal

rate subject to interference constraint and transmit powerconstraint simultaneously;

(ii) the maximal rate subject to a single transmit power constraint; (iii) the maximal

rate subject to a single interference constraint.

problem. Two approaches have been proposed to obtain the optimal solution of the

problem: one approach transforms the problem into a SOCP problem, while the other

approach solves the problem analytically. Numerical examples have been provided to

present a comparison of the two approaches as well as to studythe effectiveness and

activeness of imposed constraints.

98



Chapter 5

Applications of the CR Resource

Allocation Solution

This chapter applies the solution of the resource allocation problem for CR MIMO

channels to solve a capacity computation problem for secrecy MIMO channels. The

capacity computation for secrecy MIMO channel can be formulated as a non-convex

max-min problem, which cannot be solved efficiently by standard convex optimization

techniques. To handle this difficulty, we explore the relationship between the secrecy

MIMO channel and the recently developed CR MIMO channel. Based on this relation-

ship, we transform the non-convex secrecy rate maximization problem into a sequence

of convex CR spectrum sharing capacity computation problems, under various setups

of the secrecy channel. For the case of the MISO secrecy channel with single-antenna

eavesdroppers, we propose efficient algorithms to compute the maximum achievable

secrecy rate, while for the case with multi-antenna eavesdropper receivers, we obtain

various new bounds on the achievable secrecy rate.
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5.1 Introduction

As discussed in Chapter 1, in a spectrum sharing CR networks,the SU is allowed to si-

multaneously transmit with the legal PU over the same spectrum, provided that the SU

to PU interference level is regulated subject to a certain interference power constraint.

In [36], the resource allocation problem for the CR MIMO channel was formulated

as a transmit rate maximization problem while keep the interference power at the PU

lower than certain threshold. On the other hand, in a secrecytransmission system, the

secrecy transmit is required to send confidential message toits legitimate destinations

while guaranteeing that the message cannot be decoded by other eavesdroppers. It is

worth noting that the system models of the secrecy MIMO channel and the CR MIMO

channel are fairly similar in the sense that the secrecy and SU transmitters need to reg-

ulate the resultant signal power level at the eavesdropper and PU, respectively, so as to

achieve the goals of confidential transmission and PU protection, respectively.

In this chapter, we study the achievable rates for the MIMO secrecy channel

with multiple single-/multi-antenna eavesdroppers. According to [64, 65], by assum-

ing Gaussian input, the achievable secrecy rate can be maximized via optimizing over

the transmit covariance matrix of the secrecy user to maximize the minimum differ-

ence between the mutual information of the secrecy channel and those of the channels

from the secrecy transmitter to different eavesdroppers. It can thus be shown that the

resulting secrecy rate maximization problem is a non-convex max-min optimization

problem, which is difficult to solve via existing methods. Toaddress this problem, in

this chapter we consider an auxiliary CR channel with multiple PUs bearing the same

channel responses as those eavesdroppers in the secrecy channel. We then establish a

relationship between this auxiliary CR channel and the secrecy channel by proving that

the optimal transmit covariance matrix for the secrecy channel is the same as that for

the CR channel with properly selected IT constraints for thePUs. Thereby, finding the
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5.2 System Model and Problem Formulation

optimal complex transmit covariance matrix for the secrecychannel becomes equiv-

alent to searching over a set of real IT constraints in the auxiliary CR channel, thus

substantially reducing the computational complexity. Based on this relationship, we

transform the non-convex secrecy rate maximization problem into a sequence of con-

vex CR spectrum sharing capacity computation problems, under various setups of the

secrecy channel. For the case of MISO or MIMO secrecy channelwith single-antenna

eavesdroppers, we propose efficient algorithms to compute the maximum achievable

secrecy rate, while for the case with multi-antenna eavesdropper receivers, we obtain

various new bounds on the achievable secrecy rate.

The rest of this chapter is organized as follows. Section 5.2presents the system

models and problem formulations for the CR transmission andthe secrecy transmis-

sion. Section 5.3 describes the main theoretical results ofthis chapter on the relation-

ship between the secrecy achievable rate and the CR spectrumsharing capacity, and

develops an efficient algorithm to compute the maximum achievable rate for the MISO

secrecy channel with single-antenna eavesdroppers. Section 5.4 and Section 5.5 then

extend the results to the cases of multi-antenna secrecy andeavesdropper receivers,

respectively. Section 5.6 presents some numerical examples. Finally, Section 5.7 con-

cludes the chapter.

5.2 System Model and Problem Formulation

In this section, we present system models and problem formulations for the CR MIMO

channel and the secrecy MIMO channel.

101



5.2 System Model and Problem Formulation

...

...

hs

g1

gK

PU1 PUK

SU-Tx

SU-Rx

(a)

...

...

hs

g1

gK

EA1 EAK

SC-Tx

SC-Rx

(b)

Figure 5.1: The system models: (a) the MISO CR channel withK single-antenna PUs;

and (b) the MISO secrecy channel withK single-antenna eavesdroppers.

102



5.2 System Model and Problem Formulation

5.2.1 CR MISO Transmission

As shown in Fig. 5.1(a), we consider a MISO CR channel, where the SU-Tx is

equipped withN transmit antennas, and the SU-Rx is equipped with a single receive

antennas. The SU-Tx to SU-Rx channel is denoted by aN × 1 matrix hs. Moreover,

there areK single-antenna PU receivers denoted by PUi, i = 1, · · · , K, and the chan-

nel from SU-Tx to PUi is denoted by theN × 1 vectorgi. The received signaly at

SU-Rx is expressed as

y = hH
s x + z (5.1)

wherex is the transmit signal vector at SU-Tx, andz denotes the noise vector at

SU-Rx. The entries of the noise vector are independent CSCG RVs of zero mean

and covariance matrixI. Since the SU shares the same spectrum with the PUs, there

areK interference power constraints imposed to the SU transmission, expressed as

E[|gH
i x|2] ≤ Γi, i = 1, · · · , K, whereΓi denotes the tolerable interference power

threshold for PUi.

Consider the CR MIMO transmission problem, in which we determine the op-

timal transmit covariance matrix for SU-Tx to maximize the data rate subject to the

transmit power constraint and the interference power constraints for theK PUs. Math-

ematically, this problem can be formulated as [36]

(PA) : max
S

log |I + hH
s Shs|

subject to: tr(S) ≤ P̄

gH
i Sgi ≤ Γi, i = 1, · · · , K

wherex is CSCG distributed with zero means and a covariance matrix denoted byS =

E[xxH ], andP̄ denotes the transmit power constraint.(PA) is termed as spectrum

sharing capacity computation problem. Note thatS is a positive semi-definite matrix

such that(PA) is a convex problem and can be solved efficiently by the standard
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5.2 System Model and Problem Formulation

interior point method [53].

5.2.2 Secrecy MISO Channel

As shown in Fig. 5.1(b), we consider a MISO secrecy channel, where the secrecy

transmitter (SC-Tx) is equipped withN transmit antennas, and the secrecy receiver

(SC-Rx) is equipped withM receive antennas. Moreover, there areK single-antenna

eavesdroppers. In accordance with the earlier introduced MISO CR channel, the chan-

nel response from SC-Tx to SC-Rx is denoted byhs, and the channel response from

SC-Tx to theith eavesdropper (EAi) is denoted bygi, i = 1, · · · , K. According to the

secrecy requirement, the transmitted messageW from SC-Tx should not be decoded

by any of the eavesdroppers, i.e.,H(W |yi) ≥ r, ∀i, with yi denoting the received signal

at EAi, andr denoting the secrecy transmit rate. According to the results in [64, 65],

the secrecy capacity can be obtained by solving the following optimization problem

(PB) : max
S

min
i

log |I + hsShH
s | − log

(
1 +

gH
i Sgi

σ2
i

)

subject to: tr(S) ≤ P̄

whereS denotes the transmit covariance matrix of SC-Tx, similar tothat of SU-Tx in

the CR case, andσ2
i denotes the variance of the zero-mean CSCG noise at EAi. (PB)

is termed as secrecy capacity computation problem.

We see that(PB) is a non-convex optimization problem since its objective func-

tion is the difference between two concave functions ofS and thus not necessarily

concave. Existing methods in the literature [58, 64, 65, 99]for the MISO secrecy ca-

pacity computation is only applicable to the case of a singleeavesdropper. However,

these methods cannot solve the case with multiple eavesdroppers(PB) even for the

case where each eavesdropper has a single antenna.1

1Problem(PB) in the case of multi-antenna eavesdroppers will be studied later in Section 5.5.
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Remark 5.1 According to Fig. 5.1, it is easy to observe that the system models of the

CR transmission and the secrecy transmission bear the similarity that they both need

to control the received signal power levels at both PUs and eavesdroppers. However,

note that(PA) guarantees that the interference power at each PU receiver is below the

required threshold without considering the PU noise power,while for (PB), through

the second term in the objective function, the confidential level at each eavesdropper

is not only related to the received signal power from SC-Tx, but also related to the

noise power at eavesdroppers. Therefore, one immediate question is whether there

exists a relationship between these two systems such that wecan solve the non-convex

problem(PB) by transforming it into some form of(PA) that is convex and thus

efficiently solvable. With this motivation, we first study the relationship between these

two problems, and then propose corresponding algorithms tosolve(PB).

5.3 Relationship Between Secrecy Capacity and Spec-

trum Sharing Capacity

In this section, we present main theoretical results of the chapter on the relationship

between the secrecy capacity computation problem(PB) and the spectrum sharing

capacity computation problem(PA). Based on such a relationship, we then propose

a new efficient algorithm to compute the MISO secrecy capacity with multiple single-

antenna eavesdroppers.

5.3.1 Main Results

Theorem 5.1 For a given(PB), there exists a set of interference power constraint

values,Γi, i = 1, · · · , K, such that the resulting(PA) has the same solution as that of

(PB).
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The proof can be found in Appendix D.1. Theorem 5.1 establishes the relationship be-

tween(PA) and(PB). To further investigate this relationship, we define an auxiliary

function ofΓis as

g(Γ1, · · · , ΓK) := max
S

(I + hH
s Shs)

subject to: tr(S) ≤ P̄

gH
i Sgi ≤ Γi, i = 1, · · · , K.

(5.2)

Note that the only difference between Problem (5.2) and(PA) lies in their objective

functions: The former one does not involve a logarithmic function of matrix deter-

minant while the latter one does. As a result, Problem (5.2) is non-convex since its

objective function is not concave inS. Also note that Problem (5.2) is equivalent to

(PA) since they have the same optimal solution forS. Therefore, although Prob-

lem (5.2) is non-convex, its optimal solution can be obtained via solving the convex

counterpart(PA).

Theorem 5.2 (PB) is equivalent to the following optimization problem:

max
Γ1,··· ,ΓK

min
i

Fi(Γ1, · · · , ΓK) :=
g(Γ1, · · · , ΓK)

1 + Γi/σ2
i

. (5.3)

The proof can be found in Appendix D.2. Theorem 5.2 establishes the relationship

between(PB) and the auxiliary functiong(Γ1, · · · , ΓK) that is related to(PA). The

equivalence between Problem (5.3) and(PB) means that by solving the optimalΓis

in Problem (5.3), we could solve an optimalS giveng(Γ1, · · · , ΓK) is an embedded

optimization problem overS inside Problem (5.3). Such an optimalS is also the

solution for(PB), for which the explanation is given in Appendix D.2.

Problem (5.3) can be solved by utilizing an important property of g(Γ1, · · · , ΓK)

described as follows:
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Theorem 5.3 The functiong(Γ1, · · · , ΓK) is a concave function with respect toΓ1,· · · ,

ΓK , and

γi(Γ1, · · · , ΓK) :=
∂g(Γ1, · · · , ΓK)

∂Γi
= µ

(1)
i |I + hH

s S(1)hs|, i = 1, · · · , K (5.4)

whereS(1) andµ
(1)
i are the optimal solution of(PA) and the corresponding Lagrange

multiplier (the dual solution) with respect to theith interference power constraint,

respectively.

The proof can be found in Appendix D.3. Note that from Theorem5.3, it follows

that the gradient ofg(Γ1, · · · , ΓK) in (5.3) can be obtained by solving(PA) via the

Lagrange duality method, which completes the equivalence between(PA) and(PB)

via the intermediate problem (5.3). At last, we have

Theorem 5.4 Problem(5.3) is a quasi-concave maximization problem.

The proof can be found in Appendix D.4. Theorem 5.4 suggests that Problem (5.3) can

be solved by utilizing convex optimization techniques, forwhich the details are given

in the next section.

5.3.2 Algorithms

In this subsection, we present a new algorithm to compute theMISO secrecy capacity

by exploiting the relationship between the secrecy transmission and the CR transmis-

sion, which was developed in the previous subsection. According to Theorems 5.2 and

5.4, (PB) is equivalent to the quasi-concave maximization problem (5.3). Thus, we

instead study Problem (5.3) since it is easier to handle than(PB).

According to [53], a quasi-concave maximization problem can be reduced to solv-

ing a sequence of convex feasibility problems. Thus, Problem (5.3) can be further
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transformed as

max
t,Γ1,··· ,ΓK

t

subject to: g(Γ1, · · · , ΓK) ≥ t(1 + Γi/σ
2
i ), i = 1, · · · , K.

(5.5)

Let t∗ be the optimal solution of Problem (5.5). Clearly,t∗ is also the optimal value of

Problem (5.3). If the feasibility problem

max
Γ1,··· ,ΓK

0

subject to: g(Γ1, · · · , ΓK) ≥ t(1 + Γi/σ
2
i ), i = 1, · · · , K

(5.6)

for a givent is feasible, then it follows thatt∗ ≥ t. Conversely, if Problem (5.6) is

infeasible, thent∗ < t. Therefore, by assuming an interval[ 0, t̄ ] known to contain the

optimal t∗, the optimal solution of Problem (5.5) can be found easily via a bisection

search. Note that a suitable value fort̄ can be chosen asg(∞, · · · ,∞) from (5.2).

We next solve the feasibility problem (5.6) by a similar method discussed in [80].

It is worth noting that the feasibility problem (5.6) can be viewed as an optimization

problem. The Lagrange function of Problem (5.6) can be written as

L0({νi}, Γ1, · · · , ΓK) =

K∑

i=1

νi

(
g(Γ1, · · · , ΓK)− t(1 + Γi/σ

2
i )
)

(5.7)

whereνi is the non-negative dual variable for theith constraint, and{νi} denotes

ν1, · · · , νK . The corresponding dual function is then defined as

f0({νi}) = max
Γ1,··· ,ΓK

K∑

i=1

νi

(
g(Γ1, · · · , ΓK)− t(1 + Γi/σ

2
i )
)
. (5.8)

Due to its convexity, Problem (5.6) can be transformed into its equivalent dual problem

as

min
{νi}

f0({νi}) (5.9)

and the duality gap between the optimal values of Problem (5.6) and Problem (5.9) is

zero if Problem (5.6) is feasible.
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Table 5.1: Algorithm for Problem (5.3).

Algorithm 1

1. Initialization:tmin = 0, tmax = t̄.

2. repeat

t← 1
2
(tmin + tmax).

Solve the feasibility problem (5.6). If Problem (5.6) is feasible,tmin← t;

otherwise,tmax← t.

Stop, whentmax− tmin ≤ ǫ.

3. The optimal value of Problem (5.3) is taken astmin.

Since it is known from Theorem 5.3 that functiong(Γ1, · · · , ΓK) is concave with

respect to{Γ1, · · · , ΓK}, Problem (5.8) can be solved via a gradient-based algorithm.

According to Theorem 5.3, the gradient of functiong(Γ1, · · · , ΓK) can be obtained by

solving (PA). Furthermore, since functionf0({νi}) is convex with respect to{νi},

Problem (5.9) can be solved by a subgradient-based algorithm, such as the ellipsoid

method [53]. Similar to Lemma 3.5 in [80], Problem (5.6) is infeasible if and only if

there exist{νi} such thatf0({νi}) < 0. Using this fact along with the subgradient-

based search over{νi}, the feasibility problem (5.6) can be solved. To summarize,

the algorithm for Problem (5.3) with a target accuracy parameterǫ is summarized as

Algorithm 1 in Table 5.1.

Since the number of iterations required for the bisection search overt is indepen-

dent ofK, the overall complexity of Algorithm 1 for solving Problem (5.3) bears the

same order overK as that for Problem (5.6), which isO(K4).

According to Theorem 5.1, we can find a set of parametersΓi’s such that the

corresponding problem(PA) has the same solution as that of(PB). Since the optimal

solution of(PA) is known to be a rank-one matrix [68], so is the optimal solution for
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(PB). Thus, we obtain the following corollary.

Corollary 5.1 The optimal solution for Problem(PB) is a rank-one matrix.

It should be pointed out that there in fact exists an alternative method to solve

(PB), without resorting to the relationship between the secrecytransmission and the

CR transmission. We present this method as follows. Similarto Theorem 5.4, we

prove that the function̂Fi(S) := 1+h
H

s Shs

1+(gH
i
Sg

i
)/σ2

i

is quasi-concave with respect toS in

the following theorem.

Theorem 5.5 F̂i(S) is a quasi-concave function fori = 1, . . . , K.

The proof can be found in Appendix D.5.

Therefore,(PB) can be transformed into the following equivalent problem

max
S, t

t

subject to: tr(S) ≤ P

1 + hH
s Shs ≥ t

(
1 +

hH
i Shi

σ2
i

)
, i = 1, · · · , K

(5.10)

wheret is a positive variable. For the fixedt, all the constraints in the above problem

are linear matrix inequalities overS, and thus the corresponding feasibility problem

(similarly defined as Problem (5.6)) can be viewed as a semi-definite programming

(SDP) feasibility problem. Correspondingly, the optimal value of t can be obtained

by a bisection search. However, without resorting to the secrecy and CR transmission

relationship, it would be difficult to prove that the optimaltransmit covariance matrix

obtained above in (5.10) should be rank-one.

5.4 Multi-Antenna Secrecy Receiver

In this section, we extend our results for the MISO secrecy channel to the case where

the secrecy receiver is equipped withM antennas,M > 1. In such cases, the MIMO
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channel from SC-Tx to SC-Rx can be denoted by aN×M complex matrix,Hs. With-

out loss of generality, it is assumed that the receiver noisevector at SC-Rx is CSCG

distributed with zero means and an identity covariance matrix. Similar to (PB), the

secrecy rate computation for the MIMO secrecy channel with multiple single-antenna

eavesdroppers can be formulated as the following optimization problem [64–66]

(PC) : max
S

min
i

log |I + HH
s SHs| − log

(
1 +

hH
i Shi

σ2
i

)

subject to: tr(S) ≤ P.

Similar to Theorems 5.1 and 5.2 in the case of MISO secrecy channel, it can

be shown (proof is omitted here for brevity) that(PC) is equivalent to the following

optimization problem

max
Γ1,··· ,ΓK

min
i

F̂i(Γ1, · · · , ΓK) :=
ĝ(Γ1, · · · , ΓK)

1 + Γi/σ
2
i

(5.11)

where ĝ(Γ1, · · · , ΓK) is similarly defined asg(Γ1, · · · , ΓK) in (5.2), while the ob-

jective function for the maximization problem therein is given for the MIMO case as

|I+HH
s SHs|. Note that̂g(Γ1, · · · , ΓK) for a given set ofΓi’s can be obtained by solv-

ing the corresponding CR MIMO channel capacity computationproblem, which can be

similarly defined as(PA) for the MISO case and efficiently solvable via convex opti-

mization techniques [68]. Therefore, by taking the logarithm ofmini F̂i(Γ1, · · · , ΓK)

in (5.11), for a given set ofΓi’s, a corresponding lower bound on the MIMO secrecy

channel capacity is obtained. The remaining problem is thento find the set of optimal

Γi’s that attain the secrecy rate, which is the maximum of all the achievable capacity

lower bounds. This problem can be easily resolved when the number of eavesdrop-

pers,K, is small, via a simple grid-based search overΓi’s in RK
+ . Note that whenK

is small, e.g.,K = 1, the grid-based search overΓi’s is far more efficient than a di-

rect search overS in (PC). However, the complexity for such a grid-based searching

scheme increases exponentially withK.
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As for the MISO secrecy channel case, if similar results likeTheorems 5.3 and

5.4 can be shown for function̂g(Γ1, · · · , ΓK) in the MIMO case, Problem (5.11) then

becomes a quasi-concave maximization problem and is thus solvable by a similar al-

gorithm like Algorithm 1. As shown in Section 5.3, such an algorithm has only a

polynomial complexity overK. However, it is shown via the following example that

in general̂g(Γ1, · · · , ΓK) is not a concave function with respect toΓi’s. As a result,

Theorems 5.3 and 5.4 do not hold in general for the case of secrecy MIMO channel

and thus efficient algorithms proposed for the MISO secrecy channel cannot be applied

to the MIMO case.

Example 5.1 Consider a MIMO secrecy channel withM = N = 2, Hs = I, and

two single-antenna eavesdroppers with channels from SC-Txash1 = [1 0]T andh2 =

[0 1]T , respectively. Now consider the auxiliary MIMO CR channel for this secrecy

channel, for which it can be easily shown that the functionĝ(Γ1, Γ2) is equal to(1 +

Γ1)(1 + Γ2), with Γ1 + Γ2 ≤ P . Clearly, ĝ(Γ1, Γ2) is neither convex nor concave in

this case.

5.5 Multi-Antenna Eavesdropper Receiver

In this section, we extend our results for the MISO secrecy channel with single-antenna

eavesdroppers to the case with multi-antenna eavesdroppers. We assume that each

eavesdropper is equipped withNe receive antennas, and the channel from SC-Tx to

the ith eavesdropper receiver is denoted byGi of sizeNe × N . Similar to(PB), the

MIMO secrecy capacity in the multi-antenna eavesdropper case can be obtained from

the following optimization problem [65]

(PE) : max
S

min
i

log |I + hH
s Shs| − log |I + GiSGH

i | (5.12)

subject to: tr(S) ≤ P̄ (5.13)
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5.5 Multi-Antenna Eavesdropper Receiver

where without loss of generality, we assume that the noises at the eavesdropper re-

ceivers are independent CSCG vectors each with zero means and an identity covariance

matrix. Note that unlike the single-antenna eavesdropper case where the IT constraint

Γi in the auxiliary CR channel uniquely determines the penaltyfor the secrecy rate due

to theith eavesdropper, there is no such a direct relationship between the IT constraints

and the secrecy rate in the case of multi-antenna eavesdroppers. Nevertheless, we could

still derive new upper and lower bounds on the MISO secrecy rate in the multi-antenna

eavesdropper case based on the relationship between the secrecy transmission and the

CR transmission, shown as follows.

5.5.1 Capacity Lower Bound

First, we have the following lemma that relates the constraint on the total receive sig-

nal power at theith eavesdropper, i.e., tr(GH
i SGi) ≤ Γi, to an upper bound on the

resulting secrecy rate penalty,log |I + GH
i SGi|, given as the second term in (5.12).

Lemma 5.1 If for any i, i ∈ {1, · · · .K}, tr(GiSGH
i ) ≤ Γi, we have|I +GiSGH

i | ≤

(1 + Γi

L
)L, whereL = min(Ne, N).

The proof can be found in Appendix D.6. Similar to Theorem 5.2, from Lemma 5.1,

the following theorem holds:

Theorem 5.6 The optimal value of(PE) is lower-bounded by that of the following

optimization problem

max
Γ1,··· ,ΓK

min
i

F̃i(Γ1, · · · , ΓK) :=
g̃(Γ1, · · · , ΓK)
(
1 + Γi

L

)L
(5.14)
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where the functioñg(Γ1, · · · , ΓK) is defined as

g̃(Γ1, · · · , ΓK) := max
S
|I + hH

s Shs|

subject to: tr(S) ≤ P̄

tr(GiSGH
i ) ≤ Γi, i = 1, · · · , K.

(5.15)

Problem (5.14) can be solved by the gradient-based method similar to Algorithm 1.

Accordingly, the lower bound on the MIMO secrecy capacity isobtained. Note that

this capacity lower bound is tight whenNe = 1 and thusL = 1.

5.5.2 Capacity Upper Bound

In the multi-antenna eavesdropper case, the signals received at different antennas of

each eavesdropper are jointly processed to decode the contained secrecy message.

Therefore, a straightforward upper bound on the secrecy capacity in this case is ob-

tained by assuming that the signals at different antennas ofeach eavesdropper are

decoded independently. Suppose thatgi,j is the jth column of the matrixGi, j =

1, · · · , Ne, then the upper bound on the secrecy capacity can be obtainedas

max
S

min
{i,j}

log |I + hH
s Shs| − log

(
1 +

gH
i,jSgi,j

σ2
i,j

)

subject to: tr(S) ≤ P̄.

(5.16)

The above problem is the same as(PB) with the number of single-antenna eavesdrop-

pers equal toNeK, and thus can be solved by Algorithm 1.

5.6 Numerical Examples

In this section, we provide several numerical examples to illustrate the effectiveness

of the proposed algorithms in computing the secrecy channelcapacity under different

system settings. For the examples on the MISO secrecy channel, it is assumed that
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N = 4, while for the example of MIMO secrecy channel, it is assumedthatM = N =

4. The elements in the secrecy channel vectors/matrices as well as those from SC-Tx

to eavesdroppers are generated from independent CSCG random variables each with

zero mean and unit variance. Moreover, the noise power at each eavesdropper antenna

is chosen to be one, and the transmit power of the secrecy transmitter,P̄ , is defined in

dB relative to the noise power.

5.6.1 MISO Secrecy Capacity with Two Single-Antenna Eavesdrop-

pers

In this example, we consider a secrecy MISO channel withK = 2 single-antenna

eavesdroppers. Fig. 5.2 plots the secrecy capacity of this channel obtained by Algo-

rithm 1, where the transmit power ranges from 0 dB to 10 dB. Moreover, a reference

achievable secrecy rate of this channel is obtained by the Projected-Channel SVD (P-

SVD) algorithm in [36]. In this algorithm, the channelH is projected into a space,

which is orthogonal tog1 andg2, and thus the secrecy signals cannot be received by

the eavesdroppers. It is easy to observe from Fig. 5.2 that the secrecy rate obtained

by P-SVD is less than the secrecy capacity obtained by Algorithm 1. Moreover, from

Theorem 5.4, it is known that the functionFi(Γ1, Γ2) is a quasi-concave function, and

thus the functionmini=1,2 Fi(Γ1, Γ2) is also a quasi-concave function. In Fig. 5.3, we

plot the value of this function for̄P = 5 dB. It is observed that this function is indeed

quasi-concave.
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Figure 5.2: Comparison of the secrecy rate by Algorithm 1 (A1) and that by the P-

SVD algorithm for the MISO secrecy channel withN = 4 andK = 2 single-antenna

eavesdroppers.
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Figure 5.3: Illustration of the functionmini=1,2 Fi(Γ1, Γ2).
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Figure 5.4: Comparison of the secrecy capacity by Algorithm2 and the secrecy rate

by the P-SVD algorithm forM = N = 4 andK = 1 single-antenna eavesdropper.

5.6.2 MIMO Secrecy Channel with One Single-Antenna Eavesdrop-

per

In this example, we apply Algorithm 2 to compute the secrecy capacity of a MIMO

channel with one single-antenna eavesdropper. As shown in Fig. 5.4, the secrecy

capacity obtained by Algorithm 2 is larger than the achievable secrecy rate obtained

by the P-SVD algorithm.

5.6.3 MISO Secrecy Capacity with One Multi-antenna Eavesdrop-

per

In this example, by applying the methods discussed in Section 5.5, we show in Fig. 5.6

the lower and upper bounds on the MISO secrecy capacity with asingle eavesdropper

usingNe = 2 receive antennas. From the capacity lower bound, we obtain afeasible

transmit covariance matrix and thus a corresponding achievable secrecy rate, shown in
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Figure 5.5: The value of the functionF (Γ) for M = N = 4, K = 1 single-antenna

eavesdropper, and̄P = 5 dB.

Fig. 5.6 and named as “Achievable Secrecy Rate”. Moreover, the achievable secrecy

rate by the P-SVD algorithm is also shown for comparison.

5.7 Conclusions

In this chapter, we have investigated the relationship between the multi-antenna CR

transmission problem and the multi-antenna secrecy transmission problem. By ex-

ploiting this relationship, we have transformed the non-convex secrecy capacity com-

putation problem into a quasi-convex optimization problemfor the MISO case, and

developed various algorithms to obtain the maximum achievable secrecy rate or new

upper/lower bounds for different cases of the multi-antenna secrecy channel.
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Figure 5.6: Comparison of the lower and upper bounds on the secrecy rate and the

secrecy rate by the P-SVD algorithm for the MISO secrecy channel with N = 4, and

K = 1 eavesdropper withNe = 2 receive antennas.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contributions of thisthesis, and present some

suggestions for future work.

6.1 Conclusions

This thesis has investigated the resource optimization problems for spectrum sharing

based CR SIMO-MAC, CR MIMO-BC, and CR MISO channels, and applied the re-

source allocation solution of CR MIMO channels to solve the capacity computation

problem of secrecy MIMO channels.

In particular, for the CR SIMO-MAC, we have considered the sum rate maxi-

mization problem and SINR balancing problem. Unlike the conventional SIMO-MAC,

the CR SIMO-MAC is not only subject to the transmit power constraints but also the

interference power constraints. To exploit the existing algorithms developed for con-

ventional MAC, the multi-constraint problem should be decomposed into several sub-

problems with a single constraint. We have developed two algorithms to decompose

those constraints efficiently. These algorithms could alsobe extended to solve other

multi-constraint optimization problems.
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Secondly, we have considered the capacity computation problem for the CR MIMO-

BC. Conventionally, the MIMO-BC capacity computation problem is solved by trans-

forming it into an equivalent MIMO-MAC capacity computation problem via the BC-

MAC duality. However, this conventional BC-MAC duality canonly be applied to

the case with a single sum power constraint, and it is not applicable to the CR MIMO

BC case with multiple linear constraints. To handle this difficulty, a new BC-MAC

duality has been proposed, which generalizes all the existing BC-MAC dualities as its

special cases. Moreover, this new duality result can be applied to solve the case with

non-linear constraints [85] and the capacity computation problem for the interference

channels with degraded message sets [40].

Thirdly, most of the existing CR studies assumed that the CSIis perfectly known

by the SU transmitter. However, in practical environment, it would be difficult for

the SU to obtain accurate CSI. In Chapter 4, we have considered a scenario where

the CSI of the channel from the SU transmitter to the PU is partially known by the

SU. The CR performance optimization problem has thus been formulated as a robust

design problem where the interference power constraint should be satisfied even for

the worst-case channel realization. Similar to the method in [97], the robust design

problem can be transformed into a SOCP problem, which can be solved by a standard

interior point algorithm. Based on its special geometric structure, the problem has been

further solved by a closed-form solution with lower computational complexity.

Finally, we have investigated the relationship between theCR MIMO channel

and the secrecy MIMO channel. The two channels are similar inthe sense that the

secrecy transmitter and SU transmitter need to regulate theresultant signal power level

at the eavesdropper and PU, so as to achieve the goals of confidential transmission

and PU protection, respectively. The capacity computationproblem for the secrecy

MIMO channel with multiple eavesdroppers is a non-convex optimization problem,

which cannot be solved by the existing algorithms. By exploiting this relationship, we

121



6.2 Future Work

have transformed the non-convex problem for secrecy MIMO channels into a sequence

of transmit optimization problems of the associated CR MIMOchannels, which are

convex and easy to be solved.

6.2 Future Work

The following problems can be studied as future work.

6.2.1 Resource Allocation in Fading CR Channels

In Chapter 2 and Chapter 3, we considered the resource allocation problems for CR

SIMO-MAC and CR MIMO-BC with deterministic channel responses. In wireless

environments, it could be more practical to consider the fading channel models. Thus,

one future direction is to study the resource allocation strategies for corresponding

CR channels under fading scenarios, where ergodic or outagesum rate maximization

problems would be of interest.

6.2.2 Optimization for CR Beamforming with Completely Imper-

fect CSI

In Chapter 4, we considered the scenario, where the CSI of thechannel from the SU

transmitter to PU is partially known, but the CSI of the SU link is assumed to be

perfectly known by the SU transmitter. In practice, it wouldbe more reasonable to

assume that both the CSI of the SU link and the CSI of the channel from the SU

transmitter to the PU are partially known. Under this set-up, a new robust optimization

problem could be formulated.
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6.2.3 Upper Layer Issues for CR Networks

In addition to the aforementioned CR research, which mainlyfocuses on the problems

related with physical layer, the studies for upper layer protocols are also important for

the realization of CR networks. Compared with the conventional wireless systems,

it would be a challenging issue in designing the protocols, such as medium access

control, for CR networks with the requirements of protecting the PU transmission as

well as the performance optimization for the SU networks. Although some research

work has been done in this area, there are still quite many open research topics that have

not been addressed before. Further research efforts on thisresearch area are needed.
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Appendix A

Appendices to Chapter 2

A.1 Proof of Lemma 2.1

In the following proof,F1 andF2 denote the feasible regions of SP1 and SP2 respec-

tively. Moreover,R(1) represents the optimal sum rate corresponding to the power

vectorp(1), andR(2) represents the optimal sum rate corresponding to the power vec-

torp(2). Note that (2.6) is a convex optimization problem, andp(1) is the optimal power

vector for SP1. It means thatR(1) > R(p̃), whereR(p̃) denotes the sum rate under

the power vector̃p, p̃ ∈ F1, andp̃ 6= p(1). If
∑K

i=1 g1,ip
(2)
i < Γ1, thenp(2) ∈ F1.

Therefore,R(1) > R(2). On the other hand,p(2) is the optimal power vector for SP2.

It means thatR(2) > R(p̃), whereR(p̃) denotes the sum rate corresponding top̃, and

p̃ ∈ F2, andp̃ 6= p(2). If
∑K

i=1 g2,ip
(1)
i < Γ2, thenp(1) ∈ F2. Therefore,R(2) > R(1).

It is a contradiction. Therefore, it is impossible that both
∑K

i=1 g2,ip
(1)
i < Γ2 and

∑K
i=1 g1,ip

(2)
i < Γ1 can be satisfied simultaneously.
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A.2 Proof of Lemma 2.2

The Lagrange function of the optimization problem (2.15) can be written as

L(p, λ, ν1, · · · , νK) =

K∑

i=1

log
(
1 +

pidi

σ2
i

)
+

2∑

j=1

λj

(
Γj −

K∑

i=1

gj,ipi

)

+

K∑

k=1

νk(P̄k − pk), (A.1)

whereλj is the Lagrange multiplier for thejth PU’s interference constraint, andνk is

the Lagrange multiplier for thekth transmit power constraint. Since the optimal point

must locate on the boundary, i.e., it satisfies at least one interference constraint with

equality. If we assume that the optimal pointp(o) satisfies
∑K

i=1 g1,ip
(o)
i = Γ1 and

∑K
i=1 g2,ip

(o)
i < Γ2, then, according to the complementary slackness conditionλ2 = 0,

(A.1) reduces to

L(λ, µ) =

K∑

i=1

log
(
1 +

dipi

σ2
i

)
+ λ1

(
Γ1 −

K∑

i=1

g1,ipi

)
+

K∑

k=1

νk(P̄k − pk),

which corresponds to the Lagrange function of SP1, and thus its optimal power alloca-

tion is p(1). According to Lemma 2.1, it is impossible
∑K

i=1 g1,ip
(2)
i < Γ1. Therefore,

our assumption does not hold.

On the other hand, if
∑K

i=1 g2,ip
(o) = Γ2, then,R(2) ≥ R(p̃), whereR(p̃) denotes

the sum rate under the power vectorp̃, andp̃ ∈ F2. Becausep(2) is optimal inF2 and

p(o) ∈ F2, it is impossible thatp(o) 6= p(2).

Similarly, the second part of the lemma can be proved.

A.3 Proof of Lemma 2.3

It is obvious that the optimal power vector is on the boundaryof the feasible region,

i.e., at least one interference constraint is satisfied withequality. If we assume that the

optimal solutionp(o) satisfies
∑K

i=1 g2,ip
(o)
i = Γ2 and

∑K
i=1 g1,ip

(o)
i < Γ1, then by the
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complementary slackness condition,λ1 = 0, the Lagrange function (A.1) reduces to

L(λ, µ) =

K∑

i=1

log
(
1 +

dipi

σ2
i

)
+ λ2

(
P

(2)
th −

K∑

i=1

g2,ipi

)
+

K∑

k=1

νk(P̄k − pk),

which is the Lagrange function of SP2, and its optimal power vectorp(2) does not sat-

isfy
∑K

i=1 g1,ip
(2)
i < Γ1. Similarly, we can prove thatp(o) does not satisfy

∑K
i=1 g2,ip

(o)
i <

Γ2 and
∑K

i=1 g1,ip
(o)
i = Γ1 simultaneously. Due to the fact thatp(o) must locate on the

boundary, it must satisfy the two interference equalities simultaneously.

A.4 Lemma A.1 and Its Proof

Lemma A.1 If A is a positive matrix1, andǫmax is its maximum eigenvalue, there is

no vectorv such thatAv > ǫmaxv.

P roof : We prove it by contradiction. Suppose that there exists a vector v satisfying

the inequality

Av > ǫmaxv. (A.2)

The maximal eigenvalue of the positive matrixA can be expressed as [100]

ǫmax = min
x>0

max
y>0

xT Ay

xT y
. (A.3)

Therefore,

ǫmax ≥ min
x>0

xT Av

xT v
=

aT Av

aT v
, (A.4)

wherea is the value ofx such that the equality holds. On the other hand, multiplying

both sides of (A.2) withaT

aT v , we can derive

aT Av

aT v
> ǫmax. (A.5)

Combining (A.4) and (A.5), we reach a contradictionǫmax > ǫmax. Therefore, the

assumption is wrong and the Lemma holds. �

1A positive matrix is a matrix whose entries are all positive.
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A.5 Proof of Lemma 2.4

We prove it by contradiction. Suppose that
∑K

i=1 g2,ip
(1)
i > Γ2 and

∑K
i=1 g1,ip

(2)
i > Γ1

can hold simultaneously, i.e.,gT
2 p(1) > Γ2 andgT

1 p(2) > Γ1. Under the PU1’s interfer-

ence power constraint, sincẽp(1) = [(p(1))T , 1]T is the eigenvector corresponding to

the maximum eigenvalue,ǫ(1)
max, of Φ1(U , Γ1), we have

ǫ(1)
max




p(1)

1


 = Φ1(U , Γ1)




p(1)

1


 . (A.6)

Similarly, for the sub-problem with the PU2’s interference power constraint, we define

Φ2(U , Γ2) =




DΨ
T (U) Dq

1
Γ2

gT
2 DΨ

T (U) 1
Γ2

gT
2 Dq


 , (A.7)

g2 = [g1,2, ..., gK,2]
T , andp̃(2) = [(p(2))T , 1]T , which is the eigenvector corresponding

to the maximum eigenvalue,ǫ
(2)
max, of Φ2(U , Γ2):

ǫ(2)
max




p(2)

1


 = Φ2(U , Γ2)




p(2)

1


 . (A.8)

Without loss of generality, we assumeǫ
(2)
max ≥ ǫ

(1)
max. One observation from (A.6) and

(A.8) is that the firstK rows inΦ1(U , Γ1) andΦ2(U , Γ2) are the same. From the first

K rows of (A.8),p(2) can be represented as

p(2) =
DΨ

T (U)p(2) + Dq

ǫ
(2)
max

.

Using assumptiongT
1 p(2) > Γ1, we have

gT
1 p(2) =

gT
1 DΨ

T (U)p(2) + gT
1 Dq

ǫ
(2)
max

> Γ1. (A.9)

Therefore, replacingp(1) in (A.6) with p(2) yields



DΨ
T (U) Dq

1
Γ1

gT
1 DΨ

T (U) 1
Γ1

gT
1 Dq







p(2)

1




(a)
>




ǫ
(2)
maxp

(2)

ǫ
(2)
max




(b)

≥ ǫ(1)
max




p(2)

1


 , (A.10)
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where (a) is due to (A.9), and (b) is due to the assumption thatǫ
(2)
max ≥ ǫ

(1)
max. Since

ǫ
(1)
max is the maximal eigenvalue ofΦ1(U , Γ1), (A.10) contradicts to Lemma A.1. So

the assumption does not hold.

A.6 Proof of Lemma 2.5

Let ǫ(1)
max andǫ

(2)
max be the maximum eigenvalues ofΦ1(U , Γ1) andΦ2(U , Γ2), respec-

tively. According to [51], we have

ǫ(1)
max =

1

C1(U , Γ1)
, andǫ(2)

max =
1

C2(U , Γ2)
. (A.11)

Now, for the first part of the lemma, if we assumeC1(U , Γ1) ≤ C2(U , Γ2), then from

(A.11) we haveǫ(1)
max ≥ ǫ

(2)
max. Replacingp(2) in (A.8) with p(1), we can derive




DΨ
T (U) Dq

1
Γ2

gT
2 DΨ

T (U) 1
Γ2

gT
2 Dq







p(1)

1


>




ǫ
(1)
maxp

(1)

ǫ
(1)
max


 ≥ ǫ(2)

max




p(1)

1


 . (A.12)

On the other hand,ǫ(2)
max is the maximum eigenvalue ofΦ2(U , Γ2). Thus, (A.12) is

contradictory to Lemma A.1. Similarly, the second part of the lemma can be proved.

A.7 Proof of Lemma 2.6

In [51] and [72], it has been shown that for a fixedU there is a unique power allo-

cation vector and a unique balanced level which are optimal.Therefore, ifp(2) sat-

isfies the condition
∑K

i=1 g1,ip
(2)
i < Γ1, thenp(2) is in the feasible region of SP3’,

and thusC2(U , Γ2) < C1(U , Γ1). On the other hand, ifp(1) satisfies the condition
∑K

i=1 g2,ip
(1)
i < Γ2, thenp(1) is in the feasible region of SP4’, and thusC1(U , Γ1) <

C2(U , Γ2). Thus the two inequalities are contradictory to each other,and they cannot

be satisfied simultaneously.
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A.8 Proof of Lemma 2.7

A.8 Proof of Lemma 2.7

Let C1(U
(2)
o , Γ1) be the optimal balanced SINR level andp̄(1) be the optimal power

vector for the fixed beamforming matrixU (2)
o of SP3’, respectively. According to

Lemma 2.5, we have

C1(U
(2)
o , Γ1) > C(2)

o (Γ2). (A.13)

Since there is only one optimal balanced SINR levelC
(1)
o (Γ1) achieved byp(1)

o for SP3,

p̄(1) is not necessary to be the optimal power allocation for SP3, and thus we have

C1(U
(2)
o , Γ1) ≤ C(1)

o (Γ1). (A.14)

Combining (A.13) and (A.14), we have

C(2)
o (Γ2) < C(1)

o (Γ1). (A.15)

Similarly, letC2(U
(1)
o , Γ2) be the optimal balanced SINR level andp̄(2) be the optimal

power vector for the fixed beamforming matrixU (1)
o of SP4’, respectively. According

to Lemma 2.5, we have

C2(U
(1)
o , Γ2) > C(1)

o (Γ1). (A.16)

Since there is only one optimal balanced SINR levelC
(2)
o (Γ2) achieved byp(2)

o for SP4,

p̄(2) is not necessary to be the globally optimal power vector for SP4, and thus we have

C2(U
(1)
o , Γ2) ≤ C(2)

o (Γ2). (A.17)

Combining (A.16) and (A.17), we haveC(1)
o (Γ1) < C

(2)
o (Γ2), which contradicts to

(A.15).
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Appendix B

Appendices to Chapter 3

B.1 Proof of Lemma 3.1

According to previous discussions, the signal from each SU is divided into several

data streams. We now show that the optimal encoding order of these data streams

are arbitrary. It is well known that the optimal objective value of the MAC equally

weighted sum rate problem can be achieved by adopting any ordering [47] [77] [78];

that is, when all the users have the same weights, the optimalsolution of the weighted

sum rate maximization problem is independent of the decoding order. Analogously,

the data streams within a SU share the same weight. Thus, an arbitrary encoding order

of those data streams within a SU can achieve the optimal solution. �

B.2 Proof of Lemma 3.2

Let s be the subgradient ofg(λ̃). For a giveñλ ≥ 0, the subgradients of g(λ̃) satisfies

g(λ̌) ≥ g(λ̃) + s(λ̌− λ̃), whereλ̌ is any feasible value. LeťSm
i , i = 1, . . . , K, be the

optimal covariance matrices in (3.27) forλ = λ̌, andS̃m
i , i = 1, . . . , K, be the optimal
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B.2 Proof of Lemma 3.2

covariance matrices in (3.27) forλ = λ̃. We expressg(λ̌) as

g(λ̌) = max
S

m
1 ,··· ,Sm

K

(
f(Sm

1 , · · · , Sm
K)− λ̌(

K∑

i=1

tr(Sm
i )− P )

)

= f(Šm
1 , · · · , Šm

K)− λ̌
( K∑

i=1

tr(Šm
i )− P̄

)

≥ f(S̃m
1 , · · · , S̃m

K)− λ̌
( K∑

i=1

tr(S̃m
i )− P̄

)

= f(S̃m
1 , · · · , S̃m

K)−λ̃
( K∑

i=1

tr(S̃m
i )−P̄

)
+λ̃
( K∑

i=1

tr(S̃m
i )−P̄

)
−λ̌
( K∑

i=1

tr(S̃m
i )− P̄

)

= g(λ̃) +
(
P̄ −

K∑

i=1

tr(S̃m
i )
)
(λ̌− λ̃),

wheres := P −∑K
i=1 tr(S̃m

i ) is the subgradient ofg(λ̃). This concludes the proof.�
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Appendix C

Appendices to Chapter 4

C.1 Proof of Lemma 4.1

(P1) involves infinitely many constraints. Denote the set of active constraints byC,

the cardinality of the setC by K, and the channel response related to thekth element

of the setC by gk. According to the Karush-Kuhn-Tucker (KKT) conditions forP1,

we have:

h(1 + hHSh)−1hH + Φ = λI +

K∑

i=1

µigig
H
i , (C.1)

tr(ΦS) = 0, (C.2)

whereΦ is the dual variable associated with the constraintS ≥ 0, andλ andµi are

the dual variables associated with the transmit power constraint and the interference

constraint, respectively. First, we assume thatλ 6= 0, and thus the rank of the right

hand side of (C.1) isN . Since the first term on the left hand side of (C.1) has rank one,

we have

Rank(Φ) ≥ N − 1. (C.3)

Moreover, sinceS ≥ 0 andΦ ≥ 0, from (C.2) we have tr(ΦS) = tr(V H
ΛV S) =

tr(ΛV SV H) = tr(ΛS̃) = 0, whereV H
ΛV is the eigenvalue decomposition of ma-
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C.2 Proof of Lemma 4.2

trix Φ, and S̃ := V SV H . By applying eigenvalue decomposition tõS, we have

S̃ =
∑

i τisis
H
i , whereτi is the ith eigenvalue andsi is the corresponding eigen-

vector. We next show Rank(S) + Rank(Φ) ≤ N by contradiction. Suppose that

Rank(S) + Rank(Φ) > N . Then, there exists an indexj such that thejth element of

si and thejth diagonal element ofΛ are non-zero simultaneously. Thus, it is impos-

sible that the equation tr(ΛS̃) = 0 holds. It follows that Rank(S) + Rank(Φ) ≤ N .

Combining this with (C.3), we have Rank(S) ≤ 1.

Second, we assume thatλ = 0 in (C.1). In this case,S must lie in the space

spanned bygi, i = 1, · · · , K. Let the dimensionality of the space beM , whereM ≤

N even if K is an infinite large value. Therefore,Φ and S are confined in aM-

dimension space. Thus, the reminder of the proof is the same as that of the caseλ 6= 0,

and the proof is complete. �

C.2 Proof of Lemma 4.2

The objective functionpgHvvHg is a convex function. The duality gap for a convex

maximization problem is zero. The Lagrange function is

L(g, λ) = pgHvvHg − λ
(
(g − g0)

HR−1(g − g0)− ǫ
)
, (C.4)

whereλ is the Lagrange multiplier. According to the KKT condition,we have∂L
∂g =

2pvvHg − 2λR−1(g − g0) = 0. Thus,

p(vHg)v = λR−1(g − g0). (C.5)

We havegmax = g0 + bαRv, whereb ∈ R, α ∈ C, and |α| = 1. Since(g −

g0)
HR−1(g − g0) = ǫ, we haveb =

√
ǫ/
√

vHRHv. Moreover, by observing (C.5),

we haveα = tvHg = tvH(g0 + bαRv) = tvHg0 + tbαvHRv, wheret is a real

scalar such that|tvHg| = 1. Thus, we havevHg0/|vHg0| = α. The proof follows

immediately. �
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C.3 Proof of Lemma 4.3

C.3 Proof of Lemma 4.3

First, we consider the sufficiency part of this lemma. We assume that there exists a

covariance matrixSopt and angopt that satisfy the conditions (4.5) and (4.6) simul-

taneously. SinceSopt satisfies both the transmit power constraint and the interference

constraint,Sopt is a feasible solution for (P1). Moreover, if we assume that there exists

another solutionSs, which results in a larger achievable rate for the SU link, then a

contradiction will be derived. Without loss of generality,we assume that the constraint

set, which consists of all the active interference constraints forSs, is denoted byT .

We divide the setT into two types: one type isgopt ∈ T , and the other type isgopt /∈ T .

Assume thatCs andCopt are the achievable rates for the covariance matricesSs

andSopt, respectively. In the case ofgopt ∈ T , we haveCs ≤ Copt, sinceCopt is

obtained with fewer constraints. Since (P1) is a convex optimization problem that has

a unique optimal solution,Sopt is indeed the optimal solution. In the case ofgopt /∈ T ,

we can observe thatSopt satisfies the constraints inT , andSs satisfies the constraint

gopt. According to the lemma in [68], this case does not exist.

We next proceed to prove the necessity part. Suppose thatSopt is the optimal

solution of (P1). According to Lemma 4.1, we haveSopt = poptvoptv
H
opt. Thus, (P1) is

equivalent to

max
S≥0

log(1 + hHSh)

subject to: tr(S) ≤ popt, gHSg ≤ Γ, for (g − g0)
HR−1(g − g0) ≤ ǫ.

(C.6)

According to Lemma 4.2, there is a unique

gopt = g0 +

√
ǫ

vH
optRvopt

αRvopt, (C.7)

which is the optimal solution of max
h∈H(ǫ)

gHSg ≤ Γ. Thus, for problem (C.6), only

tr(S) ≤ popt andgH
optSgopt ≤ Γ are active constraints. Thus, it is obvious that problem
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C.4 Proof of Lemma 4.4

(C.6) and problem (4.5) have the same optimal solution. Hence, the proof is complete.

�

C.4 Proof of Lemma 4.4

The proof of Lemma 4.4 is divided into two parts. The first partis to prove thatvopt is

in the form ofαvĝ// + βvĝ⊥, whereαv ∈ C andβv ∈ C. The second part is to prove

αv ∈ R andβv ∈ R. In the following proof, we assume thatαk ∈ C are some proper

complex scalars.

According to Lemma 4.3, and Theorem 2 in [36], we have

vopt = α1gopt + α2h. (C.8)

According to Lemma 4.2, we have

gopt = g0 + α3vopt = g0 + α3

(
α1gopt + α2h

)
= g0 + α1α3gopt + α2α3h. (C.9)

According to (C.9), it can be observed thatgopt can be expressed by the linear combi-

nation ofg0 andh, where the coefficients are complex. Combining this with (C.8), we

havevopt = α4g0 + α5h, whereα4 ∈ C andα5 ∈ C. Moreover, since bothg0 andh

can be expressed as a linear combination ofĝ// andĝ⊥, we havevopt = αvĝ// +βvĝ⊥.

Since rotatingvopt does not affect the final result, we can assumeαv ∈ R.

We next prove thatβv ∈ R by contradiction. At first, we assume thatβv = a+jb /∈

R. Then we can find an equivalentβ̂v =
√

a2 + b2 ∈ R which is a better solution of

(P1) thanβv. Assume that̂vopt = αvĝ// + β̂vĝ⊥. It is clear that‖v̂opt‖ = ‖vopt‖, and

the interference caused byv̂opt is

pgH
optv̂optv̂

H
optgopt =p(g0 +

√
ǫ

v̂H
optRv̂opt

αRv̂opt)
H v̂optv̂

H
opt(g0 +

√
ǫ

v̂H
optRv̂opt

αRv̂opt)

(C.10)

=p
(
αv‖g0‖+

√
ǫ

v̂H
optRv̂opt

αH v̂H
optRv̂opt

)2
, (C.11)
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C.5 Proof of Lemma 4.5

which is equal to that ofvopt. However, the corresponding objective function withv̂opt

is

log(1 + phH v̂optv̂
H
opth)

= log(1 + p(ahs
ĝ// + bhs

ĝ⊥)H(αvĝ// + β̂vĝ⊥)(αvĝ// + β̂vĝ⊥)H(ahs
ĝ// + bhs

ĝ⊥))

= log(1 + p(ahs
αv + bhs

β̂v)(ahs
αv + bhs

β̂H
v )), (C.12)

and the objective value withvopt is

log(1 + phHvoptv
H
opth)

= log(1 + p(ahs
ĝ// + bhs

ĝ⊥)H(αvĝ// + βvĝ⊥)(αvĝ// + βvĝ⊥)H(ahs
ĝ// + bhs

ĝ⊥))

= log(1 + p(ahs
αv + bhs

βv)(ahs
αv + bhs

βH
v )). (C.13)

According to (C.12) and (C.13), we can conclude thatv̂opt is a better solution.

The proof follows. �

C.5 Proof of Lemma 4.5

Similar to the proof of Lemma 4.3, we can show that the problem

Sopt = arg max
S,p

log(1 + hHSh) subject to: gH
optSgopt ≤ Γ, (C.14)

wheregopt = arg maxh gHSoptg, for (g − g0)
HR−1(g − g0) ≤ ǫ, is equivalent to

SP2.

SinceSopt is a rank-1 matrix, according to Lemma 4.2, we havegopt = g0+
√

ǫσv.

Combining this with (C.14), we haveSopt = arg maxS,p
log(1 + hHSh) s.t. : (g0 +

√
ǫσv)HS(g0 +

√
ǫσv) ≤ Γ, which is equivalent to (4.20). The proof is complete.�.
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C.6 Proof of Theorem 4.1

C.6 Proof of Theorem 4.1

Assume thatSopt is the optimal solution for problemP3. If S1 satisfies the interference

constraint, thenS1 is a feasible solution for problemP3. The optimal rate achieved by

Sopt cannot be larger than that ofS1, since the constraint ofSP1 is a subset of problem

P3. Similarly, we can prove the second part of the Lemma. We now focus on the third

part of this lemma. For problemP3, at least one of tr(S) ≤ P̄ andgH
optSgopt ≤ Γ is

an active constraint, since if neither of them is active, we can always find anǫ such

thatSopt + ǫI is a feasible and better solution. Moreover, if only tr(S) ≤ P̄ is active,

thenS1 is the optimal solution, which contradicts withgH
optS1gopt ≥ Γ. Similarly, it

is impossible that onlygH
optSgopt ≤ Γ is active. Therefore, both constraints are active

constraints. �
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Appendix D

Appendices to Chapter 5

D.1 Proof of Theorem 5.1

Theorem 5.1 can be proved by contradiction. For the fixedσis, suppose that the optimal

solution of(PB) is So. DefineΓ̄i = gH
i Sogi, i = 1, . . . , K. If the optimal solution of

(PA) with Γi = Γ̄i, ∀i, denoted bȳSo, satisfieslog |I+hH
s S̄ohs| > log |I+hH

s Sohs|,

then S̄o is a better solution for(PB) thanSo, which contradicts the preassumption

that So is the optimal solution of(PB). Then there must belog(I + hH
s S̄oh

H
s ) ≤

log(I + hH
s Sohs), which means thatSo is also the optimal solution of(PA), with

Γi = gH
i Sogi, i = 1, . . . , K. Theorem 5.1 thus follows.

D.2 Proof of Theorem 5.2

It is easy to observe that(PB) can be re-expressed as

max
S

min
i

(I + hH
s Shs)

1 + gH
i Sgi/σ

2
i

subject to: tr(S) ≤ P̄.

(D.1)

138



D.3 Proof of Theorem 5.3

Suppose thatSo is the optimal solution of Problem (D.1) and(PB). DefineTo :=

I + hH
s Sohs and Γ̄i := gH

i Sogi, i = 1, · · · , K, then the optimal objective value of

Problem (D.1) isF̄ = min
(
To/(1 + Γ̄1), · · · , To/(1 + Γ̄K)

)
.

Suppose that the optimal solution̄So of Problem (5.2) withΓi = Γ̄i, ∀i, satisfies

(I + hH
s S̄ohs) > To, thenS̄o is a better solution for Problem (D.1) thanSo, which

contradicts the preassumption thatSo is the optimal solution of Problem (D.1). On the

other hand, suppose that1+hH
s S̄ohs < To. In this case,So is a better solution than̄So

for Problem (5.2), which contradicts the presumption thatS̄o is the optimal solution

of Problem (5.2). Therefore, we haveTo = g(Γ̄1, · · · , Γ̄K). Thus,F̄ is achievable for

Problem (5.3) with the particular choice ofΓi = Γ̄i, ∀i.

Furthermore, suppose thatΓ̃is are the optimal solutions of Problem (5.3), and the

corresponding optimal objective value is̃F . For Problem (5.2) withΓi = Γ̃i, suppose

that the optimal solution is̃S. We can prove that̃F ≤ F̄ by contradiction: IfF̃ > F̄ ,

S̃ is a better solution for Problem (D.1) thanSo, which contradicts the preassumption

thatSo is the optimal solution of Problem (D.1). As such, we see thatF̄ is not only

achievable for Problem (5.3), but also the optimal value of Problem (5.3) with the

optimal solutions given as̃S = So and Γ̃i = gH
i Sogi, ∀i (Note thatS is a hidden

design variable for Problem (5.3).).

Theorem 5.2 thus follows.

D.3 Proof of Theorem 5.3

We first study several important properties of Problem (5.2)that is known to be an

equivalent problem of(PA). Considering(PA) first, its Lagrangian function can be

written as

L1(S, λ, {µi}) = log |I + hH
s Shs| − λ(tr(S)− P )−

K∑

i=1

µi(g
H
i Sgi − Γi) (D.2)
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D.3 Proof of Theorem 5.3

whereλ andµi are the non-negative Lagrange multipliers/dual variableswith respect

to the transmit power constraint and the interference powerconstraint at PUi, respec-

tively. Since(PA) is a convex optimization problem, the Karush-Kuhn-Tucker (KKT)

conditions [53] are both sufficient and necessary for a solution to be optimal, and solv-

ing (PA) is equivalent to solving its dual problem

min
λ,{µi}

max
S

L1(S, λ, {µi}). (D.3)

On the other hand, the auxiliary problem (5.2) is non-convexdue to the fact that its

objective function is not concave. In general, the KKT conditions may not be sufficient

for a feasible solution to be optimal when we have a non-convex optimization problem.

However, we prove in the following lemma that this is not the case for Problem (5.2).

Lemma D.1 With Problem(5.2), the KKT conditions are both sufficient and necessary

for a solution to be optimal.

Proof : The necessary part of Lemma D.1 is obvious even for a non-convex

optimization problem [53]. The sufficient part of Lemma D.1 can be proved via con-

tradiction as follows. The Lagrangian of Problem (5.2) can be written as

L2(S, δ, {γi}) = |I + hH
s Shs| − δ(tr(S)− P )−

K∑

i=1

γi(g
H
i Sgi − Γi) (D.4)

whereδ andγi are the non-negative dual variables with respect to the transmit power

constraint and the interference power constraint at PUi, respectively. We first list the

KKT conditions of Problem (5.2) as follows:

hsh
H
s = δI +

K∑

i=1

γigig
H
i (D.5)

δ(tr(S)− P ) = 0 (D.6)

γi(g
H
i Sgi − Γi) = 0, i = 1, · · · , K. (D.7)
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D.3 Proof of Theorem 5.3

Suppose thatS(0), δ(0), andγ
(0)
i are a set of primal and dual variables that satisfy the

above KKT conditions, and the corresponding optimal value of Problem (5.2) isC(0).

The KKT conditions of(PA) are expressed as

(I + hH
s Shs)

−1hsh
H
s = λI +

K∑

i=1

µigig
H
i (D.8)

λ(tr(S)− P ) = 0 (D.9)

µi(g
H
i Sgi − Γi) = 0, i = 1, · · · , K. (D.10)

Suppose thatS(1), λ(1), andµ
(1)
i are the optimal primal and dual variables that satisfy

the above KKT conditions, and the corresponding optimal value of(PA) is C(1). Note

that since(PA) is convex, the KKT conditions are both necessary and sufficient.

If (D.5)-(D.7) are not sufficient such thatlog(C(0)) 6= C(1), i.e.,S(0) 6= S(1), we

could choose

S = S(0) (D.11)

λ = δ(0)/|I + hH
s S(0)hs| (D.12)

µi = γ
(0)
i /|I + hH

s S(0)hs|, i = 1, · · · , K (D.13)

for (PA), which clearly also satisfy the KKT conditions of(PA). Given the suffi-

ciency of the KKT conditions for(PA), S(0) is also optimal for(PA) based on (D.11)

such thatlog(C(0)) = C(1), which contradicts our assumption thatlog(C(0)) 6= C(1).

Lemma D.1 thus follows. �

Essentially, it is due to the equivalence between the non-convex Problem (5.2) and

the convex(PA) that Lemma D.1 holds. From Lemma D.1, it follows that the duality

gap between Problem (5.2) and its dual problem, defined as

D = min
δ,{γi}

max
S

L2(S, δ, {γi}), (D.14)

is zero, i.e.,g(Γ1, · · · , ΓK) = minδ,{γi} maxS L2(S, δ, {γi}). As such, from (D.4) we
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D.3 Proof of Theorem 5.3

have

∂g(Γ1, · · · , ΓK)

∂Γi

=
∂D

∂Γi

= γ
(0)
i , i = 1, · · · , K. (D.15)

Combining (D.13) and (D.15), the latter part of Theorem 5.3 thus follows.

Now we prove the concavity ofg(Γ1, · · · , ΓK). For the functiong(q), where

q := [Γ1, · · · , ΓK ]T ∈ RK
+ , its concavity can be verified by considering an arbitrary

line given byq = x + tv, wherex ∈ RK
+ , v ∈ RK , t ∈ R+, andx + tv ∈ RK

+ [53].

In the sequel, we just need to prove that the functiong(x+ tv) is concave with respect

to t. Moreover, if theith IT constraint is not active for Problem (5.2), we haveγi = 0

from the KKT condition such that the concavity holds. To exclude the above trivial

case, we assume that allK IT constraints are active for Problem (5.2) in the following.

Define

f2(δ, γ1, · · · , γK) := max
S

L2(S, δ, γ1, · · · , γK) (D.16)

as the dual function of Problem (5.2). Lets be the subgradient off2(δ, γ1, · · · , γK).

According to the definition of subgradient, the subgradientat the point[δ̃, γ̃1, · · · , γ̃K ]

satisfies

f2(δ̄, γ̄1, · · · , γ̄K) ≥ f2(δ̃, γ̃1, · · · , γ̃K) + ([δ̄, γ̄1, · · · , γ̄K ]− [δ̃, γ̃1, · · · , γ̃K ]) · s,

(D.17)

where[δ̄, γ̄1, · · · , γ̄K] is another arbitrary feasible point.

Lemma D.2 The subgradients of functionf2(δ, γ1, · · · , γK) at point [δ̃, γ̃1, · · · , γ̃K ]

is [P − tr(S̃), Γ1 − gH
1 S̃g1, · · · , ΓK − gH

KS̃gK ], whereS̃ is the optimal solution of

Problem(D.16)at this point.

Proof : Let S̄ be the optimal solution of Problem (D.16) withδ = δ̄ and
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D.3 Proof of Theorem 5.3

γi = γ̄i, i = 1, · · · , K. Thus, we have

f2(δ̄, γ̄1, · · · , γ̄K) = r̄ − δ̄(tr(S̄)− P )−
K∑

i=1

γ̄i(g
H
i S̄gi − Γi)

≥ r̃ − δ̄(tr(S̃)− P )−
K∑

i=1

γ̄i(g
H
i S̃gi − Γi)

= r̃ − δ̃(tr(S̃)− P )−
K∑

i=1

γ̃i(g
H
i S̃gi − Γi) + δ̃(tr(S̃)− P )

+

K∑

i=1

γ̃i(g
H
i S̃gi − Γi)− δ̄(tr(S̃)− P )−

K∑

i=1

γ̄i(g
H
i S̃gi − Γi)

= f2(δ̃, γ̄1, · · · , γ̄K) + (tr(S̃)− P )(δ̃ − δ̄)

+
K∑

i=1

(gH
i S̃gi − Γi)(γ̃i − γ̄i) (D.18)

wherer̄ = |I +hH
s S̄hs| andr̃ = |I +hH

s S̃hs|. According to (D.18), we have Lemma

D.2. �

According to Lemma D.1, Problem (5.2) is equivalent to its dual problem

min
δ,γ1,··· ,γK

f2(δ, γ1, · · · , γK) (D.19)

wheref2(δ, γ1, · · · , γK) is convex. We next consider Problem (5.2) with parameters

P, Γ1, · · · , ΓK , denoted as Problem I. Assume thatS(1), δ(1), γ
(1)
1 , · · · , γ(1)

K are its pri-

mal and dual optimal solutions. Moreover, we have another form of Problem (5.2) with

parametersP, Γ1 + tv1, · · · , ΓK + tvK , denoted as Problem II, wheret is a positive

constant andvi is a real constant. Assume thatS(2), δ(2), γ
(2)
1 , · · · , γ(2)

K are the primal

and dual optimal solutions of Problem II. According to (D.16), we can write the dual

function of Problem II as

f II
2 (δ, γ1, · · · , γK) := max

S
|I + hH

s Shs| − δ
(
tr(S)− P

)
−

K∑

i=1

γi(g
H
i Sgi − Γi − tvi)

(D.20)

To solve Problem II, we apply the subgradient-based algorithm to search the min-

imum of its dual functionf II
2 (δ, γ1, · · · , γK) along the subgradient direction. Suppose
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that we start from the point[δ(1), γ
(1)
1 , · · · ,

γ
(1)
K ]. Based on Lemma D.2, one valid subgradient off2(δ, γ1, · · · , γK) at this point is

[0, Γ1 + tv1 − gH
1 S(1)g1, · · · , ΓK + tvK − gH

KS(1)gK ]

=[0, tv1, · · · , tvK ], (D.21)

where (D.21) is due to the KKT condition of Problem I:Γ
(1)
i − gH

i S(1)gi = 0 given

γ
(1)
i > 0, ∀i. Moreover, according to (D.17), we have

f II
2 (δ(2), γ

(2)
1 ,· · ·, γ(2)

K ) (D.22)

≥ f II
2 (δ(1), γ

(1)
1 ,· · ·, γ(1)

K ) + ([δ(2), γ
(2)
1 ,· · ·, γ(2)

K ]− [δ(1), γ
(1)
1 , · · · , γ(1)

K ]) · s(1), (D.23)

wheres(1) is the subgradient at the point[δ(1), γ
(1)
1 , · · · , γ(1)

K ]. Sinceδ(2), γ
(2)
1 , · · · , γ(2)

K

are the dual optimal solutions of Problem II, we havef II
2 (δ(2), γ

(2)
1 , · · · , γ(2)

K ) ≤ f II
2 (δ(1),

γ
(1)
1 , · · · , γ(1)

K ). Combining this with (D.21) and (D.22), we have

K∑

i=1

γ
(2)
i tvi ≤

K∑

i=1

γ
(1)
i tvi. (D.24)

Thus,

K∑

i=1

γ
(2)
i vi ≤

K∑

i=1

γ
(1)
i vi, givent > 0. (D.25)

Moreover, according to Lemma D.1 and (D.4), we have

∂g(x + tv)

∂t
=

K∑

i=1

γivi. (D.26)

Note thatγi is the Lagrange multiplier of Problem (5.2) with respect to the ith IT

constraint. With different IT threshold, i.e., different value oft, γis are not necessarily

the same, and thusγis can be viewed as implicit functions oft. Combining (D.25)

with (D.26), it is easy to observe∂g(x+tv)
∂t

decreases with the increase oft since the

derivative change overt is given as
∑K

i=1 γ
(2)
i vi −

∑K
i=1 γ

(1)
i vi ≤ 0, i.e., the second

order derivative of functiong(x + tv) overt is negative on an arbitrary linex + tv in

the feasible region. Therefore,g(q) is concave. Theorem 5.3 thus follows.
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D.4 Proof of Theorem 5.4

The quasi-concavity is defined as follows [53]:

Definition D.1 A functionf : RK →R is calledquasi-concaveif all its sublevel sets

Sα = {x ∈ domf |f(x) ≥ α} (D.27)

for α ∈ R, are convex sets.

According to Theorem 5.3,g(Γ1, · · · , ΓK) is a concave function ofΓis. Therefore, the

α-sublevel set ofFi(Γ1, · · · , ΓK)

Sα = {q|g(Γ1, · · · , ΓK)

1 + Γi/σ2
i

≥ α} (D.28)

= {q|g(Γ1, · · · , ΓK) ≥ α(1 + Γi/σ
2
i )} (D.29)

is a convex set for anyα, and thus the functionFi(Γ1, · · · , ΓK) is a quasi-concave func-

tion. Since the objective function of Problem (5.3) is the minimum ofK quasi-concave

functions,Fi(Γ1, · · · , ΓK), i = 1, · · · , K, it is still quasi-concave [53]. Theorem 5.4

thus follows.

D.5 Proof of Theorem 5.5

Similar to the proof given in Appendix D.4, theα-sublevel set of̂Fi(S)

Sα = {S| 1 + hH
s Shs

1 + (gH
i Sgi)/σ

2
i

≥ α} (D.30)

= {S|1 + hH
s Shs ≥ α(1 + (gH

i Sgi)/σ
2
i )}. (D.31)

is a convex set. Thus,̂Fi(S) is a quasi-concave function.
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D.6 Proof of Lemma 5.1

We have

|I + GiSGH
i | = |I + UH

i ΛiU i| = |I + Λi| (D.32)

whereGiSGH
i := UH

i ΛiU i is the eigenvalue decomposition. Since tr(GiSGH
i ) =

tr(Λi), from tr(GiSGH
i ) ≤ Γi it follows that

tr(Λi) ≤ Γi. (D.33)

Combining (D.32) and (D.33) and denotingL = min(Ne, N), we have

|I + GiSGH
i | ≤ |I +

Γi

L
I| = (1 +

Γi

L
)L (D.34)

where the inequality is obtained by solving the following problem: maxtr(Λi)≤Γi
|I +

Λi|. Lemma 5.1 thus follows.
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