View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarBank@NUS

RESOURCE OPTIMIZATION FOR MULTI-ANTENNA
COGNITIVE RADIO NETWORKS

ZHANG LAN

NATIONAL UNIVERSITY OF SINGAPORE
2009


https://core.ac.uk/display/48627271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

RESOURCE OPTIMIZATION FOR MULTI-ANTENNA
COGNITIVE RADIO NETWORKS

ZHANG LAN
(M. Eng., University of Electronic Science and Technolog@uiha)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE
2009



Acknowledgement

First of all, I would like to express my sincere gratitude apgreciation to my advisors
Dr. Yan Xin and Dr. Ying-Chang Liang for their valuable gumt® and helpful tech-
nical support throughout my Ph.D course. Had it not beenteir tadvices, direction,
patience and encouragement, this thesis would certairnligenpossible.

I would like to thank Dr. Rui Zhang in Institute for InfocomneRearch A-STAR,
Prof. H. Vincent Poor in Princeton University, Prof. XiaodpWang in Columbia
University, and Prof. Shuguang Cui in Texas A&M Universitgth whom | have had
the good fortune to collaborate.

| would like to thank Dr. Xudong Chen for his help and suppawty thanks
also go to my colleagues in the ECHRIWireless Communications Laboratory at the
Department of Electrical and Computer Engineering andaresegroup in Institute for
Infocomm Research A-STAR for their friendship and help.

Finally, 1 would like to thank my family for their understaimgy and support. |

would like to thank my wife for her support and encouragement



Contents

Acknowledgement i
Contents ii
Summary Vil
List of Figures Xiv
List of Tables XV
List of Notations XVi
List of Abbreviations XVili
1 Introduction 1

1.1 Cognitive RadioModels . . . ... ... ... .. ... ... ...
1.1.1 The Opportunistic Spectrum Access Model . . . . ... ...
1.1.2 The Spectrum Sharing Model . . . . ... ... .......
1.1.3 TheOverlayModel . . .. .. ... .. .. ... .......

1.2 RelatedWork . . . . . .. .. ...
1.2.1 Resource Allocation for Multi-Antenna Systems . . ..... 7
1.2.2 Secrecy Communication Systems . . . ... ... ... ...

1.3 Motivationsand Challenges. . . . . .. .. .. .. ... .......



CONTENTS

1.4 Contributions and Organization of the Thesis . . . ... ...... . 10
2 Joint Beamforming and Power Allocation for CR SIMO-MAC 13
2.1 Introduction . . . . . . . ... 14
2.2 System Model and Problem Formulation . . . . .. .. .. ... .. 15
2.3 Sum-Rate Maximization Problem . . . . .. ... ... ....... 18
2.3.1 ASinglePUConstraint. . . . ... ... ........... 19
2.3.2 MultiplePUConstraints . . . .. ... ... .. ....... 23
2.4 SINR Balancing Problem . . . . ... ... ... ... ... .. .. 26
2.4.1 Solution to the Single Constraint Sub-Problem . . . ..... 29
2.4.2 Relationship Between the Multi-Constraint Problem Single-
Constraint Sub-Problems . . . . . . ... . ... ... .... 31
2.5 Numerical Examples . . . . . . .. ... .. o 39
2.5.1 Sum-Rate Performance . . . . . .. ... ... ... ..... 39
2.5.2 SINR Balancing Performance . . . ... ... ... ..... 44
2.6 Conclusions . . . . . ... 46
3 Transmit Optimization for CR MIMO-BC 48
3.1 Introduction . . . . . . . .. ... 48
3.2 System Model and Problem Formulation . . . . . ... .. ... .. 50
3.3 EquivalenceandDuality . . .. ... ... ... ... ... .. .. 52
3.3.1 An Equivalent MIMO-BC Capacity Computation Problem . 52
3.3.2 CRBC-MACDuality. . . .. .. ... .. .. ... . .... 53
3.4 Dual MAC Capacity Computation Problem . . . . .. .. ... ... 06
3.5 AComplete SolutiontaRa) . . . . ... ... .. ... ....... 65
3.6 Numerical Examples . . . .. .. .. ... ... .. .. .. ..., 70
3.7 Conclusions . . . . ... 74



CONTENTS

4 Robust Designs for CR MISO Channels 75
4.1 Introduction . . . . . . . .. 76
4.2 System Model and Problem Formulation . . . . .. ... ... ... 77
4.3 Properties of The Optimal Solution. . . . . . ... ... ...... 80
4.4 Second Order Cone Programming Solution . . . . ... ... ... 82
4.5 An Analytical Solution . . . . . ... ... . L oL 84

451 MeanFeedbackCase . . . ... ... ... ... ....... 85
4.5.2 The Analytical Method fol®1) . . . . . ... ... ..... 91
4.6 Numerical Examples . . . . . .. .. . .. ... .. . 0 . 94

4.6.1 Comparison of the Analytical Solution and the Solut@b-

tained by the SOCP Algorithm . . . . . . ... ... ..... 95
4.6.2 Effectiveness of the Interference Constraint . . . ...... . 95
4.6.3 The Activeness of the Constraints . . . . . .. ... ... .. 97
4.7 CoNnClusioNS . . . . . . . . 97
5 Applications of the CR Resource Allocation Solution 99
5.1 |Introduction . . . . . . . . ... 100
5.2 System Model and Problem Formulation . . . . .. .. ... ... 101
521 CRMISOTransmission . . . ... .. .. .......... 103
5.2.2 Secrecy MISOChannel . . . ... ... ... ... ...... 104
5.3 Relationship Between Secrecy Capacity and Spectrumin§r@apacity 105
531 MainResults . . ... ... .. . ... 105
5.3.2 Algorithms . . . . .. .. ... ... .. 107
5.4 Multi-Antenna Secrecy Receiver . . . . . . . ... ... ... .. 110
5.5 Multi-Antenna Eavesdropper Receiver . . . . . . ... ... ..... 112
5.,5.1 CapacityLowerBound . . . . ... ... .. .. ....... 113
5.5.2 CapacityUpperBound . . . .. ... ... .......... 114



CONTENTS

5.6 Numerical Examples . . . . . . . . .. ... ... 0o 114

5.6.1 MISO Secrecy Capacity with Two Single-Antenna Eaxasd

5.6.2 MIMO Secrecy Channel with One Single-Antenna Eavagaerll7
5.6.3 MISO Secrecy Capacity with One Multi-antenna Eavesoer 117

5.7 Conclusions . . . . . . . .. 118
6 Conclusions and Future Work 120
6.1 Conclusions . . . . . . . .. 120
6.2 FutureWork . . . . . . . 122
6.2.1 Resource Allocation in Fading CR Channels . . . . .. .. 221

6.2.2 Optimization for CR Beamforming with Completely Innfaet

CSl . e 122
6.2.3 Upper Layer Issues for CR Networks . . . . ... ... ... 123
A Appendices to Chapter 2 124
Al ProofofLemma2.1. .. ... ... . . ... ... ... 124
A2 ProofofLemma2.2. .. ... ... . . . .. ... ... 125
A3 ProofofLemma2.3. ... ... . .. .. ... 125
A4 LemmaAlandlItsProof. . ... ... ... ... ... ..., . 126
A5 ProofofLemma2.4. .. ... . . ... ... 127
A.6 ProofofLemma25. ... ... .. .. . ... ... 128
A.7 ProofofLemma2.6. ... ... ... . . ... ... 128
A.8 ProofofLemma2.7. ... ... . .. .. ... 129
B Appendices to Chapter 3 130
B.1 ProofofLemma3.l. .. ... ... ... . ... ... ... . ..., 130
B.2 ProofofLemma3.2. .. ... ... ... .. ... ... 130

Vi



CONTENTS

C Appendices to Chapter 4 132
C.1 ProofofLemmad.l. .. . . ... . . .. ... 132
C.2 ProofofLemmad.2 . . ... ... . ... ... 133
C.3 ProofofLemmad4.3 . ... ... ... ... ... 134
C.4 ProofofLemmad.d . . ... ... ... 135
C.5 ProofofLemmad5. .. .. ... .. .. . ... 136
C.6 Proofof Theorem4.1 . . . . . .. . . . ... ... ... . ...... 137

D Appendices to Chapter 5 138
D.1 Proofof Theorem5.1 . . . . ... .. ... ... .. .. ....... 138
D.2 Proofof Theorem5.2 . . . . . . . . ... . ... ... . ....... 138
D.3 Proofof Theorem5.3 . . . . . .. . ... ... . ... ........ 139
D.4 Proofof Theorem5.4 . . . . . . . . ... ... ... .. ....... 145
D.5 Proofof Theorem5.5 . . .. ... ... ... ... ... ....... 145
D.6 ProofofLemma5.1. .. ... ... ... .. ... .. ... .. ... 146

Bibliography 159

List of Publications 162

Vil



Summary

One of the fundamental challenges faced by the wireless conoation industry is
how to meet rapidly growing demands for wireless serviced @pplications with
limited radio spectrum. Cognitive radio (CR) is a promissgution to tackle this
challenge by introducing the secondary (unlicensed) usavpportunistically or con-
currently access the spectrum allocated to primary (ledphsisers. However, such
spectrum access by secondary users (SUs) needs to avoidgcdesimental interfer-
ence to the primary users (PUs). There are two popular CR Isiatke opportunistic
spectrum access (OSA) model and spectrum sharing (SS) modsh opportunistic
spectrum access model, the SUs are allowed to access theuspenly if the PUs
are detected to be inactive. In a spectrum sharing modeEtleare allowed to co-
exist with the PUs, subject to the constraint, namely therfatence power constraint,
which defines the maximum tolerable interference power filoenSUs to the PUs.

This thesis studies a number of topics in multi-antenna Civorés under the
spectrum sharing model. First, we study the resource opaitoin problems for three
different multi-antenna CR channels, including the CR k&rigput multiple-output
multiple access channels (SIMO-MAC), the CR multiple-inpwltiple-output broad-
cast channels (MIMO-BC), and the CR multiple-input singleput (MISO) channels.
Then, we apply the solution of the resource allocation moliior CR MIMO channels
to solve the capacity computation problem for secrecy MIM@rmels.

Specifically, for the CR SIMO-MAC, we first consider the job@amforming and

viii
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power allocation for the sum rate maximization problem sabjo transmit and inter-
ference power constraints. A capped multi-level wateinfillalgorithm is proposed to
obtain the optimal power allocation. Secondly, we consillersignal-to-interference-
plus-noise ratio (SINR) balancing problem, in which the imial ratio of the achiev-
able SINRs relative to the target SINRs of the users is madahi It is proved that
the linear power constraints can be completely decoupleditlaus a high-efficiency
algorithm is proposed to solve the corresponding problem.

For the CR MIMO-BC, we focus on determining the optimal traitscovariance
matrix to achieve the entire capacity region. Conventigntde MIMO-BC is subject
to a single sum power constraint, and the correspondingcig@omputation prob-
lem can be transformed into that of a dual MIMO-MAC by using ttonventional
BC-MAC duality. This duality, however, cannot be appliedite CR case due to the
existence of the extra interference power constraints.afalle this difficulty, a gener-
alized BC-MAC duality is proposed for the MIMO-BC with mydte linear constraints.
By exploiting the new duality, a subgradient based algaorith developed.

For the CR MISO channels, we consider a robust design prqlbwere the chan-
nel state information (CSI) of the channel from the SU traittemto the PU is assumed
to be partially known by the SU. Our design objective is tced®iine the transmit co-
variance matrix that maximizes the rate of the SU while therference power con-
straint is satisfied for all possible channel realizatiofisis problem is formulated as
a semi-infinite programming (SIP) problem. Two solutiomsluding a closed-form
solution and a second order cone programming (SOCP) bakdtbapare proposed.

Finally, we apply the resource allocation solution for tHe RIMO channels to
solve the capacity computation problem for secrecy MIMOneieds. By exploiting
the relationship between these two channels, the capawmpugtation problem for
secrecy MIMO channels is transformed to a sequence of amion problems for

CR MIMO channels, through which several efficient algorithane proposed.
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Chapter 1

Introduction

Traditional spectrum regulation is based primarily on taemmand-and-control strat-
egy that assigns users to prescribed frequency bands, stndtsethe potential users to
dynamically access the allocated radio spectrum. In a tgquinlished by the Federal
Communications Committee (FCC) [1], it has been shown tlsegrificant amount of
the licensed radio spectrum is unused for 90% of time in theedrStates. Similar
observations have been made in other countries [2]. Thik Spectrum allocation
policy, together with the rapid deployment of various waisd services, leads to in-
creasing scarcity and congestion in the radio spectrum.nifieg Radio (CR) that
allows the secondary (unlicensed) users to opportunisti@aconcurrently access the
licensed spectrum, show a great potential to improve thetgpa utilization [3, 4].

This thesis investigates the resource optimization probl®r three multi-antenna
based CR channels, including the CR single-input multqalggut multiple access
channels (SIMO-MAC), CR multiple-input multiple-outputdadcast channels (MIMO-
BC), and CR multiple-input multiple-output (MISO) chanseind applies the resource
allocation results of CR MIMO channels to solve the capamityputation problem for
secrecy MIMO channels. In this chapter, we briefly introdtieerecent development

and challenges of CR research, provide overviews on resallacation for multi-
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antenna systems and secrecy communication systems, asghpthe contributions

and organization of this thesis.

1.1 Cognitive Radio Models

According to the definition in [4], CR is an intelligent wieds communication system
that is aware of its surrounding environment, adapts itsstrassion to the electromag-
netic environment, and improves the utilization efficien€yhe radio spectrum. When
a CR is operating in a spectrum allocated to a primary usey, (e CR is also called
the secondary user (SU). According to the capability of theiis obtaining its sur-
rounding spectrum environment, the CR models can be cledifio three categories:
the opportunistic spectrum access model, the spectrunmghaodel, and the overlay
model. In the opportunistic spectrum access model, the SUhslowest capability
in understanding its radio spectrum environment, i.e.ait only detect whether the
PU is on or off. If the SU finds that the spectrum is unoccupigdhe PU, then the
SU can access this spectrum; otherwise, it cannot. In spacharing model, the SU
regulates its transmission power such that the causedargace power at the PU is
lower than one threshold. In this case, the SU can accespdorsm even if the PU
is active. In overlay model, the SU is assumed to heapeiori knowledge of the PU’s
messages. With that, the SU transmitter is able to send gess$a its own receiver
and, at the same time, compensate for the resultant irkaederto the PU by assisting

the PU transmission.

1.1.1 The Opportunistic Spectrum Access Model

In opportunistic spectrum access model, the SUs are alléavedcess the spectrum

only ifitis not being used by the PUs as shown in Fig. 1.1. Téepoint in this model
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is to accurately detect the existence of the PUs, and theepsdo detect the PU’s ac-
tivity is termed aspectrum sensingpectrum sensing is one of the most fundamental
elements in a CR due to its crucial role in discovering spectopportunities. There

| A

R

Time Time

Frequency
n o
c

Frequency

Figure 1.1: The opportunistic spectrum access model: This &llowed to access the
spectrum only if the PU is inactive. The shadowed area dsrb&espectrum occupied
by the PU. The area with dash line denotes the spectrum wioighl de utilized by

the SU.

are several well-known conventional spectrum sensingrigtgos, including the en-
ergy detection [5], matched filter [6—9], and feature detecfl0, 11]. Recently, there
are several new algorithms proposed for CR spectrum sersieh as the eigenvalue
based algorithm [12, 13] and the covariance based algofitdyi5]. These spectrum
sensing algorithms usually rely on the local observatidresssingle SU. However, us-
ing the observations from a single SU might result im@den terminal problenil6],
with which the detection for PU may fail due to the shadowifg.efficient approach,
which is termed as cooperative spectrum sensing [16—2@ have several SUs to co-
operate with each other for detecting the presence of théffé SUs span a distance
that is larger than the correlation distance of the shadgwading, it is unlikely that
all of them are under a deep shadow simultaneously. Thugetative sensing has
better PU detection performance with the cost of additiapa&rations and overhead

traffic.
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In order to protect the PUs, from medium access perspeetaa medium access
control frame needs to have one sensing slot to sense theadetiVgy and one data
transmission slot for SU transmission in case the spectsufound to be available.
The longer duration of the sensing slot, the better perfoceaf the PU detection,
and thus the better protection to PUs. However, the longesiisg slot leads to the
shorter transmission time, and thus the lower SU throughiphe tradeoff between the

sensing time and the SU throughput was studied in [21].

1.1.2 The Spectrum Sharing Model

Figure 1.2: The spectrum sharing model: the SU can sharathe spectrum with the
PU provided that its interference power at PU is lower thanrashold. SU-Tx, SU-
Rx, PU-Tx and PU-Rx denote the SU transmitter, the SU recetive PU transmitter
and the PU receiver, respectively. Within the regirthe interference power caused

by the SU is larger than the interference power threshold.

In spectrum sharing model, the SU is allowed to transmit &aneously with the

PU provided that the interferences from the SU to the PU watlcause the resultant
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performance loss of PU to an unacceptable level. As showiginl2, the SU should
regulate its transmission power such that the caused enggrée at the PU is lower
than a threshold, which is called interference power cairgt{22—24]. To achieve
this power constraint, the SU may also need to have the chatate information

(CSI) of the channel from the SU transmitter to the PU regeive

To enable the spectrum sharing, dynamic resource alloc@gzomes crucial,
whereby the transmit power, bit-rate, bandwidth, and arddream of the CR need
to be dynamically adjusted based upon the CSI availableeaCR transmitter. A
lot of existing studies for spectrum sharing model focust@resource allocation to
optimize the performance of the SU networks [25-28].

For the single-antenna spectrum sharing CR fading charthelpower allocation
problem to achieve the ergodic/outage capacity has bedredtun [29] under the aver-
age/peak interference power constraint, and in [30,31¢utiee combined interference
power and transmit power constraints. It has been shown2ntft the average in-
terference power constraint is superior over the peakfar@mnce power constraint in
terms of maximizing the achievable ergodic capacities ¢t i) and SU.

In the past decade, multi-antenna communication systewesrbaeived consider-
able attention due to their capability to achieve many désérfunctions, including the
interference suppression for multi-user transmissio$, (Bie capacity gain without
bandwidth expansion [34], and the diversity gain via sp@oe-coding [35]. In ad-
dition to achieve the above functions, in CR networks, rrautiiennas can be utilized
to suppress the interference to the PU. Transmit optinaadtr a single secondary
MIMO/MISO link in a CR network under interference power ctragt is considered
in [36]. Multi-antennas were exploited at the secondamygnaitter to optimally trade-
off between throughput maximization and interference @ance. However, the role
of multi-antennas in multi-user CR systems is not compjetieiderstood yet. More-

over, it is unclear how to fully exploit the spatial degreé$reedom provided by the



1.1 Cognitive Radio Models

PU transmitter PU receiver
—_——
PU messageQ NN /,’?Q
| ~ N . P
| ~ -
| \\\ P
\ ~ < . P -
' Genie PEG

SU message ] ]
SU transmitter SU receiver

Figure 1.3: The overlay model: the SU transmitter &gsiori knowledge of the PU’s

messagde.

multi-antenna SUs.

1.1.3 The Overlay Model

In overlay CR model, the SU is assumed to have perfect a fnorviedge on the mes-
sage being transmitted by the PU, which is illustrated in Rig. Thus, the SU can
allocate part of its power for secondary transmission aedéit to assist the primary
transmission. Most of the studies on the overlay CR modebased on information
theory [37-43]. Complex coding schemes that including eoafve coding, collabo-
rative coding, and dirty paper coding, have been develop@uprove the achievable
rate of the CR channel. Moreover, the power allocation noito achieve the capacity
of overlay CR MIMO channel has been studied in [44]. The psmgabpower alloca-

tion scheme therein has been proved to be optimal undeircedaditions. In [45],

recent results for overlay CR have been summarized from famniration-theoretic

perspective.
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1.2 Related Work

The topics of this thesis focus on the resource optimizgtomulti-antenna CR sys-
tems and its application in secrecy transmission problefus.the sake of better il-
lustration, we provide a brief overview on the resourcectmn for multi-antenna

systems and the secrecy communication systems.

1.2.1 Resource Allocation for Multi-Antenna Systems

Most of the existing resource allocation problems for maiitenna systems, including
MIMO-MAC, MIMO-BC, and MISO channels, are formulated as ioization prob-
lems [46]. By applying certain powerful optimization topsich as the convex opti-
mization techniques, high-efficiency algorithms are depetl. One important class of
resource allocation problems for multi-antenna systerts @esign the optimal trans-
mit strategy, e.g., determining the transmit covarianc&imao achieve the capacity
region for corresponding channels. In [47], the sum capamimputation problem
for MIMO-MAC, which is also called sum rate maximization ptem, was explored.
The objective of the problem is to design the optimal trangmwvariance matrices to
achieve the sum capacity of the MIMO-MAC. By applying the gsin--Kuhn-Tucker
(KKT) conditions of the problem, a high-efficiency algonth which is called itera-
tive water-filling (IWF) algorithm, was developed. In [48he sum rate maximization
problem for MIMO-BC with a single transmit power constramss studied. By ex-
ploiting the relationship between BC and MAC, the problemloa transformed into an
equivalent MIMO-MAC sum rate maximization problem, whicnde solved by IWF.
In [49], the transmit optimization problem for a MISO chahwas studied, where the
transmitter is assumed to have imperfect CSI. The objedfitkis problem is to de-
termine the optimal transmit covariance matrix such thattverage transmission rate

of the MISO channel is maximized. Moreover, another clasgeesburce allocation
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problems is studies from an signal processing perspedie52]. The objective is
to find the transmit/receive vectors and the transmit poaeMiSO-BC/SIMO-MAC

with Signal-to-Interference-plus-Noise Ratio (SINR) straint or transmit power con-
straint. These problems, which are called BC/MAC beamfogproblem, can be
transformed into the second order cone programming (SO@)lgms [50], and

solved by efficient interior point algorithm [53].

1.2.2 Secrecy Communication Systems

Due to the broadcast nature of the wireless communicatistesys, the wireless trans-
mission is particularly susceptible to eavesdropping. deéersecurity and privacy
have now become a critical factor in designing a wirelessroamication system. In
1975, Wyner introduced a secrecy transmission model in dngsirgal work [54] on
information-theoretic secrecy. In this model, the secteaysmitter sends confidential
messages to a legitimate receiver subject to the requirethanthe messages can-
not be decoded by an eavesdropper. The information-theateidy of the secrecy
transmission problem has been continued and extended tpattzer channel models,
including BC [55-58], MAC [59-61], and interference chalsn@C) [62, 63]. Very
recently, the secrecy capacity of the MIMO channel has beanacterized by Khisti
and Wornell [64], and Oggier and Hassibi [65]. In their sks]ithe secrecy MIMO
channel with a single eavesdropper having multiple antemves transformed into a
degraded MIMO-BC, whose capacity is an upper bound on theesgcapacity. It
was shown in [64, 65] that this capacity upper bound is indegd for the Gaussian
noise case, i.e., the exact secrecy capacity. Howevegdhigputable secrecy capacity
cannot be extended to the general case of multiple eavgsehpIn [66], Liu and
Shammai also derived the MIMO secrecy capacity by using lia@icel enhancement

technique [67]. However, no computable characterizatidh@secrecy capacity was
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provided in [66]. Itis still unclear how to compute the sexgreapacity of the channels

with multiple eavesdroppers.

1.3 Motivations and Challenges

Many of the resource allocation problems for the convemti@@mmunication sys-
tems can be formulated as convex optimization problems4d&0]. Compared to
those conventional systems, the spectrum sharing base@@Rniks experience extra
interference power constraints. Although the interfeeepower constraint is a linear
constraint, and does not change the convexity of the refatalolems, many existing
high-efficiency algorithms cannot be applied to CR caseddaltlee presence of the ex-
tra constraint. For example, in the CR SIMO-MAC, although ¢tbrresponding power
allocation problem is a convex optimization problem, thevamtional water-filling
algorithm is not applicable. Moreover, for MIMO-BC, the e@mtional transmit opti-
mization depends on the conventional BC-MAC duality. Hogrethis duality is not
applicable to the CR MIMO-BC, where the transmitter is sabfe both the transmit
power constraint and the interference power constrairfici&ft algorithms need to be
designed to handle the difficulties caused by the extrafaremce power constraint.
In the exiting literature [36,68], it is usually assumedttiine CSI of all the chan-
nels in CR networks are perfectly known by the SU transmittawever, unlike the
conventional wireless communication systems, it is diffibar the SU to obtain the
accurate CSI of the channel from the SU transmitter to the iRXd the loose cooper-
ation between them. A more practical scenario needs to bsdened for the spectrum
sharing based CR networks. A straightforward problem is tdesign the optimal
transmission strategies for the SU transmitter when ontifgd& Sl is available.
Finally, in a secrecy transmission system, the transmtegquired to send its

confidential messages to legitimate destinations whil@ikgeother eavesdroppers as



1.4 Contributions and Organization of the Thesis

ignorant of this information as possible. One possiblaatpafor the secrecy transmit-
ter is to regulate its transmission power such that the vedgaower at eavesdroppers
is low enough. While it is easy to observe that there is a anityl between the secrecy
transmission and spectrum sharing based CR transmissonath of them need to
regulate their transmission power, explicit descriptionthe relationship of these two
transmissions is needed. Moreover, it would be interegtirigvestigate how we can
utilize the results of the resource allocation problem fmctrum sharing CR networks

to solve the related problems for the secrecy transmissions

1.4 Contributions and Organization of the Thesis

The main contributions of this thesis are to develop newnogation algorithms for
spectrum sharing based CR networks and apply the relaiphstween secrecy trans-
mission and CR transmission to solve the capacity commuitgdroblem for secrecy
channels.

In Chapter 2, we consider two joint beamforming and powercallion problems
for the CR SIMO-MAC. The first problem focuses on determinting optimal power
allocation and the receive beamforming vectors to maxintizesum rate of the chan-
nel. A capped multi-level water-filling algorithm is propasby exploiting the special
structure of the CR SIMO-MAC channel. The second problero determine the op-
timal power allocation and the receive beamforming vectah that the target SINR
of different users is met in a fair manner, which is termech@s3INR balancing prob-
lem. We prove that the linear power constraints in the SINRrxang problem can be
completely decoupled, and thus the problem can be handiedgh solving multiple
single-constraint sub-problems. Therefore, the commurtat complexity is reduced
significantly.

In Chapter 3, we consider the transmit optimization probterachieve the ca-

10
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pacity region of the CR MIMO-BC, which is called the capa@gmputation problem.
Traditional MIMO-BC capacity computation problem can béved by solving a dual
MIMO-MAC problem via a BC-MAC duality. However, the convémial BC-MAC
duality can only be applied to the case where the transmigtsubject to a single
sum power constraint. In CR MIMO-BC, the transmitter is natyosubject to the
sum power constraint, but also to the interference powestcaimt. Thus, the conven-
tional BC-MAC duality cannot be applied. To handle this difity, we propose a new
generalized BC-MAC duality, and apply it to solve the capacomputation problem
for the CR MIMO-BC with multiple linear constraints. Thissudt generalizes all the
existing BC-MAC duality results as its special cases. Meegowe propose a subgra-
dient based algorithm, which is shown to be able to converydhé globally optimal
solution.

In Chapter 4, we consider a robust design problem for a CR Mig&hnel. We
assume that the CSI of the channel from the SU transmitteng¢oPU is partially
known at the SU, due to the loose cooperation between the 8tharPU. With the
uncertainty of the channel, our design objective is to deitee the transmit covari-
ance matrix that maximizes the rate of the SU while guaramget@at the interference
power constraint is satisfied for all the possible chanraizations. This problem is
formulated as a semi-infinite programming (SIP) problemeBploiting its properties,
this problem is first transformed into the SOCP problem, argblved via a standard
interior point algorithm. Then, an analytical solution vihuch reduced complexity
is developed from a geometric perspective.

In Chapter 5, we study the achievable rates for the MIMO sgccbannel with
multiple single-/multi-antenna eavesdroppers. Accardio [64—66], by assuming
Gaussian input, the achievable secrecy rate can be maximiaeoptimizing over
the transmit covariance matrix of the secrecy user to madrthhe minimum differ-

ence between the mutual information of the secrecy chamuetheose of the channels

11
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from the secrecy transmitter to different eavesdroppérsan thus be shown that the
resulting secrecy rate maximization problem is a non-comaax-min optimization
problem, which is difficult to solve via existing methods. dddress this problem,
we consider an auxiliary CR channel with multiple PUs beaathre same channel re-
sponses as those eavesdroppers in the secrecy channebireChaNe then establish
a relationship between this auxiliary CR channel and theesgachannel by proving
that the optimal transmit covariance matrix for the secr@@nnel is the same as that
for the CR channel with properly selected IT constraintstifier PUs. Thereby, find-
ing the optimal complex transmit covariance matrix for tkerscy channel becomes
equivalent to searching over a set of real IT constrainthénauxiliary CR channel,
thus substantially reducing the computational complex@gsed on this relationship,
we transform the non-convex secrecy rate maximizationlprobnto a sequence of
convex CR spectrum sharing capacity computation problemsgr various setups of
the secrecy channel. For the case of multiple-input singkput (MISO) or MIMO
secrecy channel with single-antenna eavesdroppers, wesgeefficient algorithms to
compute the maximum achievable secrecy rate, while fordlse with multi-antenna
eavesdropper receivers, we obtain various new bounds @acthevable secrecy rate.
Finally, we summarize and conclude our work in Chapter 6, @disduss a few

interesting questions and directions for further research

12
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Chapter 2

Joint Beamforming and Power

Allocation for CR SIMO-MAC

In this chapter, we consider a spectrum sharing based CR S\MO network. Sub-
ject to interference power constraints for the PUs as welaamsmit power constraints
for the SUs, two optimization problems involving a joint b&farming and power allo-
cation for the CR SIMO-MAC are considered: the sum-rate méation problem and
the SINR balancing problem. For the sum-rate maximizati@iblem, zero-forcing
based decision feedback equalizers (ZF-DFE) are used tupkcthe SIMO-MAC,
and a capped multi-level (CML) water-filling algorithm isgmosed to maximize the
achievable sum-rate of the SUs for the single PU case. F@IthBR balancing prob-
lem, it is shown that, using linear minimum mean-squarerefMMSE) receivers,
each of the interference constraints and transmit powestcants can be completely
decoupled, and thus the multi-constraint optimizatiorbpgm can be solved through

multiple single-constraint sub-problems.
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2.1 Introduction

Conventionally, to improve the spectral efficiency andaeility of MAC, multi-antennas
are often deployed at the base station (BS) [69], [51]. Omther hand, single-antenna
mobile users are quite common due to the size and cost lionieabf mobile termi-
nals. We simply term this setting as SIMO-MAC. It is well knowhat the minimum
mean-square-error based decision feedback equalizer (DFE) is a sum-rate ca-
pacity achieving scheme for the SIMO-MAC [70]. Additionaglit was shown in [71]
that the ZF-DFE is asymptotically optimal in both low andthgjgnal-to-noise ratio
(SNR) regimes.

For SIMO-MAC systems, given the SINR targets for each useura-power
minimization problem has been studied in [52] using lineaviSE receivers. Joint
beamforming and power allocation algorithms have beengseg under the assump-
tion that there exists a feasible solution for the prescriBENRs. A related problem
of [33] has been studied, i.e., the SINR balancing problemyhich the minimal ra-
tio of the achievable SINRs relative to the target SINRs efters in the system is
maximized under a sum-power constraint. When the ratioeatgr than or equal to
one, the power minimization problem has been considerethégiven SINR targets.
Through introducing SINR balancing, the work in [72] is abdgustify the feasibil-
ity to achieve the SINR targets. In [72] and [73], the powdoadtion vector for a
given beamforming matrix was derived using a single-stéytiem instead of iterative
schemes as in [52] and [33]. Moreover, the SINR balancinglpro has been studied
using MMSE-DFE receivers in [74].

In this chapter, we consider a spectrum sharing based CR S\MO network.
Two sets of constraints are considered: interference powaestraints, and transmit
power constraints. Based on these constraints, we studypptmization problems

for the SUs: the sum-rate maximization problem and the SldRHzing problem.
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For the sum-rate maximization problem, a ZF-DFE is used twdgle the subchan-
nels associated with each SU. We propose a CML water filliggrghm to maximize
the sum-rate under the individual transmit power constramal the interference con-
straint for a single PU. We also propose a power allocatitrerse, called recursive
decoupled power allocation algorithm, for the case wherkiphei PUs exist. For the
SINR balancing problem, linear MMSE receivers are congidelt is proven that the
multi-constraint optimization problem can be completegcomposed into multiple
single-constraint optimization problems. Therefore, ghabally optimal solution to
the multi-constraint problem can be obtained through cdmguhe solutions to the
decomposed sub-problems.

The rest of the chapter is organized as follows. In Secti@nwe present the sig-
nal model for CR SIMO-MAC and formulate two optimization ptems. In Section
2.3, the sum-rate maximization problem is studied, for Whacrecursive decoupled
power allocation algorithm is proposed. In Section 2.4, wasider the SINR bal-
ancing problem, and propose a decoupled multi-constrainepallocation algorithm.
Numerical examples are given in Section 2.5. Finally, $&c?.6 concludes this chap-

ter.

2.2 System Model and Problem Formulation

Consider a CR SIMO-MAC with SUs operating in a spectrum allocated\fdPUs
each with a single transmit antenna and a single receiveaatelhe SUs, as shown
in Fig. 2.1, communicate with the same BS equipped Withreceive antennas. The

transmit-receive signal model from the SUs to the BS can preesented as:

y=Hx+ H& + z,
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Figure 2.1: The system model for CR SIMO-MAC. There &r&Us andV PUs. The

BS hasN, receive antennas. Each SU is equipped with a single traasmahna.

wherey denotes theV, x 1 received signal vectod = [h4, - - , hx] denotes the
N, x K channel matrix withh; being the channel responses from ttieSU (SU) to
the BS,x is the K x 1 transmit signal vector whosgh entry,z;, denotes the signal
transmitted from SY H = [ﬁl, e ,sz] denotes theV, x N channel matrix where
h,, is the channel response from théh PU (PU,)’s transmitter to the BSg is the

N x 1 transmit signal vector from the PYsandz is the Gaussian noise vector whose
entries are assumed to be independent Gaussian randorblesrfRVs) with mean
zero and variance?.

Furthermore, we assume that the transmit poweaof SU,, is subject to a transmit
powerP,, i.e.,p; < P,,i=1,---, K. Letg,, be the power gain between $to PU,.
The interference power received by Pflom all SUs is characterized by p, where
9, = [gn1s- - gnx]" andp := [p1,-- -, px|T. DefiningG = [g,,...,gy|72 Inthis
chapter, the proposed algorithms are performed at the B&@&@R SIMO MAC, and it

is assumed that the BS has perfect CSI. To do so, the SUs nbed¢ognitive users”

L1t will be clear in the following that the influence of the Platismission can be viewed as noise for

Su.
2Throughout this thesis, we assumblack fadingchannel model, i.e., the channel matridds H,

and G are fixed during each transmission block and change indepg¢iydrom one block to another

according to the ergodic random processes.
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which are aware of the environment [3]. In practice, cert@operation in terms
of parameter feedback between the PUs and the SUs may beecquio achieve
that, the protocol for SUs can be designed as follows: evenryé contains sensing
sub-frame and data transmission sub-frame. During tharggssb-frame, all SUs
remain quiet, and thus the BS can measure the effect fromthan® background
noise. During the first portion of the data transmissiongahie, the SUs can transmit
training sequences to the BS as well as to the PUs so that theaB®stimate the
channel matrixH, and the PUs can measure the matx After that, the PUs will
feedback the matri% to the BS so that further processing can be carried out.

As discussed in Chapter 1, in spectrum sharing based CR retwo guarantee
the quality of service (QoS) of the PU, the SU transmittersdthoegulate its transmis-
sion power such that the caused interference at the PU is e certain threshold.
On the other hand, with ensured QoS of the PUs, power altwtati a CR network
should be appropriately determined to optimize the peréoree metrics of the SUs,
which can be reflected through the parameters such as theataror SINR.

Motivated by the considerations described above, we farteuhe designs of CR
SIMO-MAC into two optimization problems. The first problerh@ur interest is to
maximize the sum-rate of the SUs subject to individual tnaihpower constraints, as
well as the interference power constraints. This probleteisied as thesum-rate

maximizatiorproblem, which, mathematically, can be formulated as
maxz T (2-1)
subjectto:p; < P, i=1,2,... K,
ggpgf‘n, n=1---,N, (2.2)

whereU is defined asu,, ..., ux]| with u; denoting the receive beamforming vec-
tor for SU,, andr; is the information rate of S}JandI", represents the interference

power threshold for P}J The expression of information ratedepends on the receiver
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employed by the BS, and it will be discussed in Section 2.3.

In the preceding formulation, the fairness in QoS for SUsism€R SIMO-MAC
is not taken into account. Since each user’s QoS is relatéd 8INR, ensuring the
QoS of each SU can be realized through pre-setting the SiigRtsa The output SINR
of SU; after applying beamforming to the received signal vectgiven by [52], [72]

piuZHRiui
uﬁ(Zk;éi peRy + 0y, + Zgzl ann)ui

SINR;(u;, p) = : (2.3)

wherep, is the transmit power of Py R; = h;hY fori = 1,--- K, andR,, =
h,hforn=1,--- N.
Mathematically, the SINR balancing problem for a CR SIMO-®l&an be for-

mulated as

max min w , (2.4)

U.p 1<i<K Yi
subjectto:p; < P, i=1,2,..., K,

gngrna n:177N7 (25)

wherev; is the preset SINR target for SUSimilar to [72], the objective function (2.4)
is to find a power allocation such that all SUs can achieve theget SINRS in a fair

mannetr.

2.3 Sum-Rate Maximization Problem

In this section, we study the sum-rate maximization problesimg a ZF-DFE at the
BS. We further assum®&, > K. Applying the QR decomposition to the channel ma-
trix H of SUs, and defining// as the rank ofHf, we can writeH = QR, where
Q = [qy, - ,q,] € CY*M has orthogonal columns and € CM*¥ is an upper

triangular matrix withr,, , denoting its(m, k)th entry. Using equalize@” to the
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received signal and using successive interference catioel] the channel is decom-
posed as\/ independent sub-channels, each associated with one S&Jedaiiver can

also be viewed as receive beamforming in the sense that #refbeming vectors are

determined by the QR decomposition of the channel md#ixThus, we only need

to determine the power allocation vector that maximizessima-rate. In this case,
assuming Gaussian signal inputs, we rewrite (2.1) and £3.2)

K
pid;

1 1 2.6

m}z)ixg og(—l—a_Q) (2.6)

i=1 v

subjectto:p; < P, i=1,2,..., K,
gngrn7 n:]‘727"'7N7 (2'7)

whered; = |r;;)?, ande? = o + Eivzlﬁan{ani is the interference-plus-noise

power after receive beamformirg is applied. Eq. (2.6) defines the sum rate achieved
through the ZF-DFE based receiver. In the above, we forrautet problem for the
general case o sub-channels. However, ¥ < K, we can chooséd; = 0 and
p;=0fori=M+1,--- K.

If the power constraints in (2.7) are replaced by a singlal jpbwer constraint,
Zfil p; < Puax, then the optimal power allocation achieving the maximum-sate

is described byhe conventional water-filling principlgZ5]:

021"

where[z]" := max(x,0), andy is the water level for which the power constraint is
satisfied with equality. In the following, we will derive thpower allocation policies

for CR SIMO-MAC.

2.3.1 A Single PU Constraint

Instead of tackling problem (2.6) under multiple interfeze constraints described by

(2.7), we first consider a relatively simple scenario wherly one PU is present. In
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this case, as described in (2.7), there are one interferemtgtraint ands” transmit
power constraints. The solution to the general problem witlitiple PUs will be
discussed in Section 2.3.2. For notional simplicity, wetevthe interference power
threshold for the PU a¥, and the power gain from SUo this PU asg; for i =
1, K.
The Lagrange function of (2.6) and (2.7) with = 1 is given by
K

K K
L(p, Ay, - 7IJK) = Zlog (1 + pl;lz) + )\<1" — Zgipi) + Zyz(pz —pi),
i=1 1=1

o
v =1

where\ andv;, i = 1,..., K, are Lagrange multipliers. The Karush-Kuhn-Tucker

(KKT) conditions are listed as:

(o7d;" +]9z')_1 —Agi —v; =0, (2.9)
K
A (r — Zgz-pz) —0, (2.10)
=1
whereX > 0 andy; > Ofori = 1,---, K. According to (2.9), the power allocation
for SU; is given by
1 o217
;= — i=1,---, K. 212
P [)\gi + v di:| ' ( )

The parametera andy;s can be obtained through substituting (2.12) into (2.1@) an
(2.11). Eqg. (2.12) resembles the conventional water-gjlsolution shown in (2.8).
However, the key difference is that the conventional wélieng principle indicates
that all users use the same water leyelwhile the solution in (2.12) suggests that
the water level can be different for different SUs. Spedilijcéor SU;, its water level

is determined byw; = 1/(\g;). DefineT as1/\. Because the parametéris the
same for all SUs, ang quantifies the power gain from Stb the PU, the SU causing

stronger interference to the PU has a lower water level, &oelversa.
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Eqg. (2.12) involve§ K + 1) Lagrange multipliers, and thus computing (2.12)
becomes more complex as compared to the conventional waiey Which only has a
single Lagrange multiplier. Fortunately, singe< P;, the powers allocated to each SU
are upper-bounded by their transmit power constraintsrefboee, the power allocation
scheme is called capped multi-level (CML) water-filling.

In the following theorem, we show that it is unnecessary toutate the Lagrange

multipliersy;s.

Theorem 2.1 For the sum-rate maximization problefB.6) with K transmit power
constraints and a single interference constraint, themptipower allocation for Skican

be computed as

P, if (\gi) ™' — o7d; ' > P,
pi = 0, if (\g;)~! —o2d;' <0,
(Agi))~! — o2d; otherwise

Proof : First, we will show that under conditiop\g;)~* — o2d;* > P, the
power allocation for SU is p;, = FP,. We will prove it by contradiction. Suppose
thatp, # P, i.e.,0 < p, < P, sincep; < P,. The complementary slackness con-
dition (2.11) implies that;, = 0. Substitutingy; = 0 into (2.12), we can obtain
pi = (\g;) "' —o2d; ' > P;, which contradicts the assumption that p; < P,. Hence,
pi = By, if (\g;)™! — (¢2)d;' > P,. For the other two caseg\g;)~! — o2d; ' < P,
From (2.11),y; = 0. Therefore, (2.12) becomes conventional water-filling] &re

results follow immediately. |

Example 2.1 In Fig. 2.2 we provide an example of power allocation resufisng the
CML water-filling algorithm. All SUs have the same transnutvyer, and the same
power gain to the PU, except that the power gain of, 8.5 times those of the other

SUs. It is seen that the allocated powers for;8JSUg are limited by their transmit
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watercap |\p, [ water level= ﬁ

2 7, | i

2
dl 0—_4 2
ds 9 | dr
O'g ds

ds
SU, SU, SU; SU; SU; SUs SU,

Figure 2.2: An example of power allocation results using Chter filling algorithm.
All seven SUs have the same transmit power and same powereyaiept that SWs
power gain isl.5 times the power gain for others. The shadowed area for edeh su

channel denotes the power allocated to the corresponding SU

powers, while the sub-channel for $ld too weak such that no power is allocated to
this user. The other sub-channels share the same water, kexetpt that Shas a

slightly lower level, due to its stronger interference te fU.

In the CML water-filling algorithm, it is crucial to deternenthe 7T-parameter
1/X in order to determine water-level for each SU. Let us dempte g;(c?/d; +
P), i = 1,2,---,K. Itis clear thatt; in fact defines the maximurit-parameter
which SU can support due to its transmit power constraint. We theeroatl SUs
ast; <ty < --- < tg. Next, we define the variablg as the interference power
introduced by the SUs to the PU when the SUs with intlex j use their transmit
powers, while th&-parameter for the other SUs is set tothd.e.,
J - K tj O_ig +
fi= ;%Pi +i:JZ+19i [; - E} .
Based on these definitions, one can conclude that f, < --- < fg, and fx

corresponds to the case when all SUs use their transmit powkus, for a give, if
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I' > fg, all SUs can be allocated with their transmit power. Othsewif we can find
an indexi, which satisfies the conditiofy, <I' < f; 41, then, for the SUs with index

k < iy, the transmit poweP;, will be allocated, while for the SUs with index > i,

the transmit powers will be less than their transmit pow€&herefore, the interference
power introduced by the SUs with indéx< i, can be removed because the powers

allocated to these SUs are already known, and the poweaéibocproblem becomes

K
d;p;
max Z log (1 + 7) (2.13)
J=io+1 J
K 10 -
subjectto: Y g;p; <T =Y giFy. (2.14)
Jj=io+1 k=1

If I' < f1, theT-parameter for all SUs will not reach the lowegtand thug, in (2.14)
is set to be zero. The power allocation solution to (2.13)anrfd.14) can be derived

through modifying the conventional water filling formula.

2.3.2 Multiple PU Constraints

We now consider the scenario with multiple PUs. We start withtwo-PU case, for

which the optimization problem is formulated as follows:

K pid;
1 1 11
Hl}é)iXZ og( + 2

i=1 v

) (2.15)

K K
subject to: Zgl,ipi <TIy, and 292,4% < Ty, (2.16)

i=1 i=1

Pi < R, 7/: 1,2,...,K.

Obviously, for anyk, if Efil gr.iP; < Ty, then thekth interference power constraint
becomes redundant and can be removed. Without loss of digyyemasume that no
interference constraint is redundant. In a general caseg tise KKT approach to

solve the above problem will encounter the difficulty in detming (K + 2) Lagrange
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2.3 Sum-Rate Maximization Problem

multipliers. In the following, we decouple the original ptem into the following two

sub-problems:

1. Sub-problem 1 (SP1):

K pid;
1 1 Aad'A
m}z)mxz og( + P )

i=1 v

K
subjectto:» gipi <y, pi < P, i=1.2,.. K.
i=1

2. Sub-problem 2 (SP2):

K pid;
1 1 1
m}z)mxz og( + > )

i=1

K
subjectto:» " gaipi <To, pi < P i=1,2,.. K.

i=1
Clearly, each sub-problem can be solved through the CML#lieg algorithm pro-
posed in Section 2.3.1. LgtY be the optimal power allocation vector for SP1, where
p§1> denotes itsth entry, angp® is the optimal power allocation vector corresponding
to SP2, Wher@)f.?) denotes itsth entry. The following lemmas describe the relation-
ship between the globally optimal solution and the optinsdéisons,p") andp®, to

the sub-problems. We assume tp&t £ p®.

Lemma 2.1 The two inequalitiesy"~ | g,p!" < I'y and 3%, g,.p* < Iy, cannot

be satisfied simultaneously.

Lemma 2.2 If S5 ¢, p® < I}, thenp® is the globally optimal solution. Similarly,

if S5 go.p" < Ty, thenp(V is the globally optimal solution.

)

Lemma 2.3 If the two inequalitiesti1 ggﬂ-pgl) > I'y and Zfilgl,ipf-z) > I'y, are

satisfied simultaneously, then the globally optimal povester must simultaneously

satisfy the interference constraints given(2116)with equality.
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2.3 Sum-Rate Maximization Problem

The proofs can be found in Appendices A.1, A.2, and A.3, retbpey. For
Lemma 2.3, according to the KKT conditions and the Lagrangetion, the power

allocation formula can be written as

1 217
= - =  =1..... K 2.17
MG+ Xogo; + v di| ! U ( )

Di
where)\;, )\, andy;s are the Lagrange multipliers. Similar to Theorem 2.1,esthe

transmission powers are upper bounded by the transmit gower do not need to

compute eachy;, and the power allocation formula (2.17) can be simplified as

P; if (A1gri + Aogoi) ™t —02d; ' > P,

i = (Mg, 202.i) (2.18)
[()\191,1' + Aogoi) Tt — dei_lr , otherwise

fori = 1,---, K. The parametera, and A, can be obtained by substituting of

(2.18) into the following complementary slackness coodt

K

A <F1 — Zgl,ipi> =0,
i=1
K

A2 <F2 — 292,2‘pi> =0,
i1

Using Lemmas 1, 2, and 3, a recursive decoupled power aibocatgorithm,
RDPA-2, for the two-PU case is shown in Table 2.1. It startthwhe sub-problems
with one interference power constraint aidtransmit power constraints, and tests
each solution in a sequential manner. After obtaining a peeetor for a sub-problem,
the algorithm checks whether it satisfies the other interfee power constraint. If the
answer is yes, then exit; otherwise, continue. If neitheheftwo solutions is globally
optimal, then solve the original two-constraint problenobgain the optimal solution.

Finally, let us examine the case with (V > 2) PUs. When theV constraints
hold with equality simultaneously, similar to (2.18), thgtismal power allocation for
Sy, is given by

Py it (SN Aga) ™ — 02dt > P,

pi = N - . (2.19)
[(anl AnGn,i) "t — J?di‘l] . otherwise
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2.4 SINR Balancing Problem

Table 2.1: Recursive Decoupled Power Allocation AlgorittemTwo PUs (RDPA-2).

RDPA-2 Algorithm

1. For SP1, use CML water-filling to deriyg!). If p!) satisfies
SP2’s constraint, then exit; otherwise, continue.

2. For SP2, use CML water-filling to deriye?. If p(? satisfies
SP1’s constraint, then exit; otherwise, continue.

3. Use (2.18) to compute the optimal power vector.

where)\,, is the Lagrange multiplier for the interference power coaiat of the PU).
Extending the idea of the search procedure for RDPA-2, argéned algorithm,
RDPA-N, is proposed to derive the optimal power allocationthe N-PU case. This
algorithm is detailed in Table 2.2. As we can see, it starth vamoving noneffective
interference power constraints. Suppose that enlffective interference constraints
remain. Same as the RDPA-2 algorithm, the RDPA-N algoritkemnts with the sub-
problems with a single constraint. When reaching to the gade: constraints, the
algorithm selects out of them constraints, and there a€¢ combinations. For each
combination, the solution to the sub-problem is used to khawether this solution
also satisfies the othém — i) constraints. If yes, the solution is globally optimal, and
exit; otherwise, continue. The worse case scenario in tefrmemplexity occurs when

them constraints hold with equality simultaneously.

2.4 SINR Balancing Problem

Fairness is an important metric to evaluate the networkoperdnce, and therefore it
often needs to be considered in the network design. Motiviayethis, we consider

the SINR balancing problem formulated in Section 2.2. W €irsfy the expressions
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2.4 SINR Balancing Problem

Table 2.2: Recursive Decoupled Power Allocation Algorittum/N PUs (RDPA-N).

RDPA-N Algorithm

1. Initialization:i < 0, m < N, and the interference constraints form
the constraint set (CS)
2. repeat
1—1+1
If Z,f:l gMPk < I;, remove PUs interference constraint from the CS,
and setn «— m — 1
3.untili =N
4. Initialization:i < 0
5. repeat
i—i+1,j<0
From them constraints, form-constraint CS§,§), k=1,---,C".
repeat
Jje—J+1
For CSS}“, use RDPA: algorithm to compute the optimal power vecjor
Check whethep satisfies the othdrm — i) constraints,
if yes, exit; otherwise, continue.
until j = C*,
6. untili =m—1

7. Use (2.19) by settingy = m to obtain the optimal power allocation.
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2.4 SINR Balancing Problem

of transmit power and interference power constraints deg@im (2.5) using the single

expressiogip < PU, 1 =1,--- N + K, where

4
€y, lzl?”'aK7

g = and
9K l:K+177K+N7

P(l)— plv l:]-v"'va

Fl—K) l:K+177K+N7

\

with e; defining thelth column ofI ;. Thus, (2.4) and (2.5) can be rewritten as

max min M (2.20)
Up lsisK Vi
subjectto:g/p < PV, 1 =1,--- N+ K. (2.21)

In the above problemy, > K is not required. To obtain an insight on how to solve
(2.20) subject to (2.21), we first consider the case with twostraints which are,
without loss of generality, due to the interference powarst@ints from two PUs.

The above problem becomes

max min w (2.22)
U.p sisK Vi
K K

subject to: Zgl,ipi <TI'jand 292,2'2% <Th,.
i=1 1=1

Following the similar arguments in Section 2.3.2, we decosethis two-constraint

optimization problem into the following two single-coratit sub-problems:

e Sub-Problem 3 (SP3): The SINR balancing problem with th¢ iinterference

constraint is described as

max min SRZ—(UZ’p) (2.23)
Upisisk 4,
K
subject to: Zgupi <T,. (2.24)

i=1
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2.4 SINR Balancing Problem

e Sub-Problem 4 (SP4): The SINR balancing problem with thersg@mterference

constraint is described as

SINR;(u;, p)

max min (2.25)
U p I<isK Vi
K
subject to: >~ gaip; < I'a. (2.26)

i=1
The SINR balancing problem under a single sum-power canstnas investi-
gated in [72]. In the following, we develop a similar methodsblve the single inter-
ference constraint problem, and derive the optimal satubio(2.20) under (2.21) by

examining its relationship with the optimal solutions ta3Sihd SP4.

2.4.1 Solution to the Single Constraint Sub-Problem

Without loss of generality, we consider SP3. Similar to tiidFSbalancing problem
under the sum power constraint [72], an iterative algoriteradopted to obtain the
optimal power allocation and beamforming matrix. In ea@nation, two steps are
involved. In the first step, the beamforming matkixis fixed, and the optimal power
vectorp is identified. In the second step, we fix the updated powermovegtand find

the corresponding optimal beamforming matix One key property for the iterative
algorithm is that, for a given beamforming matiix, the optimal power vector must

satisfy the following two necessary conditions:

INR; (u;
SINRi(ui,p) _ Cy(U,Ty), fori=1,--- K, (2.27)
Vi
and
K
S gpi =T (2.28)
i=1

Alternatively speaking, the optimal power allocation Ieéalthe balanced SINR for all
SUs, and it satisfies the constraint (2.24) with equality(U,T';) in (2.27) is called

the balanced SINR level for the SUs, for the given beamfogmiatrixU .
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2.4 SINR Balancing Problem

The first step in each iteration is to determine the optimalgrallocationp for a
fixed beamforming matrik/. Let D = diag((v, /(v Riu,)), - - -, (i /(ui Rguk))).

According the definition of SINRu;, p) in (2.3), (2.27) can be rewritten as

—— p=DY(U)p+ Dq, 2.29
CKU’FI)p (U)p + Dq (2.29)

whereq = [UZIK+QP} 15 with Qp:diag{(zgz1 Pl R, - -,ZivzlﬁnuanuK)},
and
H .
uy Riug, k # 1,

[ (U)ir =
0, k=i.
Moreover, (2.28) can be rewritten as
! _ ! D" (U)p + Lo'D (2.30)
Cl(U,Fl) Flgl p Flgl q7 .

whereg, = [g11,..,91.5)". EQs. (2.30) and (2.29) can be merged into a matrix

eigenvector equation:

1 b b
Cl(U7 Fl) 1 1

We define matrix®, (U, T';) as

DYT(U) Dgq
‘I)1<U, Fl) - ) ) 5
91 DY"(U) rg{Dgqg

and defingp = [p”, 1]. It has been shown in [51] that, for a givén, the optimal
power allocation corresponds to the unique positive eigetor of matrix®, (U, T';).

We next consider the second step in each iteration. For teralocation vector
p determined in the first step, using the MMSE criterion, thénkpbeamforming
vectoru,; for SU; can be updated as:

N
N1
u; = %(Zkak + 0Ty, + Zﬁan) h;,
k#i n=1

30



2.4 SINR Balancing Problem

whereq; is chosen such thél,||? = 1, andi = 1,--- , K. In [72], the convergence of
the iterative algorithm has been proved under the sum-powmstraint, wherg, =
15, andI'; = P,... Itis straightforward to prove the convergence of the tieea

algorithm for the case whegg # 1x.

2.4.2 Relationship Between the Multi-Constraint Problem ad Single-

Constraint Sub-Problems

In this subsection, we will show that the two-constraintippeon (2.22) can be com-
pletely decoupled into two single-constraint sub-proldenthe main results are as

follows:

Theorem 2.2 Between the optimal solutions to the two decoupled singtestcaint
sub-problems, SP3 and SP4, there is one and only one soli&ins the globally

optimal solution to the two-constraint problgi2.22)

To prove the above theorem, we start with considering thepcoation of the
optimal power allocation for a given beamforming matrix.viNihe sub-problems SP3

and SP4 can be transformed as:

e Sub-Problem 3’ (SP3’): For a given beamforming matvixthe SINR balancing

problem with the first interference constraint is descriasd

. SINR;(u;, p)
max mm ——
P 1<i<K Vi
K
subject to: Zgl,ipi <T,.
i=1

e Sub-Problem 4’ (SP4’): For a given beamforming matvixthe SINR balancing
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problem with the second interference constraint is deedrds

max mim ——————
P 1<i<K Vi

K
subject to: Zgz,-pi <Ty.
=1

T
For a given beamforming matri/, suppose thgp() = [ m... ,p%)] andp® =
T
[pf), . pf,?} are the optimal power vectors for SP3’ and SP4’, respegtiveld

C1(U,T';) andCy, (U, T'y) are the corresponding balanced SINR levels. We next ex-
amine the relationship betwegf!) andp®. Fig. 2.3 depicts the so-calledimissible
power allocation region in which the two interference poweenstraints are both sat-
isfied. In this figure, the interference power constrainesdepicted as the two slant
lines. 0 and () represent the optimal power allocation vectors for eachpsoblem.
The solutions to the two sub-problems yield four possiblalsimations displaying on

the corresponding sub-figures of Fig. 2.3.

e Fig. 2.3 (a) shows that the optimal solutign!, for SP3’ satisfies the interfer-
ence constraint of SP4’, and that the optimal solutjg?, for SP4’ satisfies the

interference power constraint of SP3'.

e Fig. 2.3 (b) shows that the optimal solutigi?, for SP4’ satisfies the interfer-
ence power constraint of SP3’, but the optimal solutjf,, for SP3’ does not

satisfy the interference constraint of SP4.

e Fig. 2.3 (c) shows that the optimal solutigst)”, for SP3’ satisfies the interfer-
ence constraint of SP4’, but the optimal solutipf?), for SP4’ does not satisfy

the interference constraint of SP3'.

e Fig. 2.3 (d) shows that the optimal solutigst!, for SP3’ does not satisfy the
interference constraint of SP4’, and that the optimal sofyp®, for SP4’ does

not satisfy the interference power constraint of SP3’ eithe
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2.4 SINR Balancing Problem

Figure 2.3: The relationship between the optimal soluttoritke single constraint sub-
problems, SP3’ and SP4’. The solid slant line representmtbgerence constraint for
PU,, and the dash slant line represents the constraint far RIJ), denoted by,

indicates the optimal power allocation for SP3(?, denoted by, represents the

optimal power allocation for SP4’.
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The following lemmas are used to describe the relationséiwéenp™ andp®.

Lemma 2.4 For a given beamforming matri&/, it is infeasible that the two inequal-
ities S5 goipt” > Ty and K g9 > T, hold simultaneously. In other words,

the case illustrated in Fig. 2.3 (d) can never happen.

Lemma 2.5 For a given beamforming matri&/, if p(!) does not satisfy the inter-
ference constraint for SP4’, i.e} X, g..p!" > T, then we have?, (U, T;) >

Cy(U,T'y). Similarly, if p does not satisfy the interference constraint for SP3’, i.e.

Zfil g172-p(2) > I'y, then we have), (U, T'y) < Co(U, T'y).

i

Lemma 2.6 For a given beamforming matri&/, it is infeasible that the two inequal-
ities S5 goipt” < Ty and oK | g9 < T; hold simultaneously. In other words,

the case for Fig. 2.3 (a) can never happen.

The proofs can be found in Appendices A.5, A.6, and A.7, rethpay. Lemmas
2.4 and 2.6 state that the cases shown in Fig. 2.3 (a) and BddRare not feasible.
Thus, the relationship betwegn! andp(® can only be the case described in either
Fig. 2.3 (b) or Fig. 2.3 (c). Lemma 2.4 is an important propeavhich helps to
decouple the two constraints completely.

Based on the relationship between the solutions of SP3’ &4d, #/e proceed to
analyze the relationship between the optimal solutionsR# &1d SP4. Assume that
pS, UW, andCél)(Fl) are the optimal power vector, the beamforming matrix, and
the balanced SINR level for SP3, respectively, aid, U, andC{?(I';) are the
optimal power vector, the beamforming matrix, and the baaSINR level for SP4,

respectively. We have the following lemma.

Lemma 2.7 The two inequalitieSQ;Fpgl) < Ty andg{pf) < I'y, cannot be satisfied

simultaneously.
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The proof can be found in Appendix A.8. We are now ready to jpi@the proof
for Theorem 2.2.

Proof of Theorem 2.2Suppose thal/ andp are the globally optimal beamform-
ing matrix and the power allocation vector, respectivahg @ is the optimal balanced
SINR. First, we show that at least one solutipﬁ,) orpgz), is globally optimal solu-
tion. We next prove that it is impossible that bqnfﬁ) andpgz) are the optimal solutions
of (2.22).

For the fixed beamforming matri&, we solve the single-constraint power allo-
cation problems of SP3’ and SP4’ separately. &t andp® be the optimal power
vectors. According to Lemmas 2.4, 2.5, and 2.6, there is omeepvector satisfying
the two constraints. Without loss of generality, suppomiﬁfil gQ,ZﬁEl) < I'y, and
p is the optimal power allocation for SP3’ for the fix&l

On the other hand, for the fixed power vecggt), if there exists another beam-
forming matrixU which can further optimize the SINR through MMSE, then it con
tradicts with the fact thal/ is the optimal solution. Thereforg,= p(*) is the globally
optimal solution.

We next consider sub-problem SP3. Sii¢eorresponds to the optimal MMSE
solution for the fixed power vectgr"), andp') is the optimal power vector for SP3’
under a fixedJ, U andp® are the optimal beamforming matrix and power allocation
vector for SP3, i.ep) = pi’) andU = UV, according to Theorem 2 in [72]. Since
there is a unique solution for SP3 [7¢},” = p() = p arrives, which means that the
globally optimal solutions arp!” andU (",

Finally, according to Lemma 2.7, there is only one solutiohaf the two solu-
tions, pgl) andpff), satisfying the two constraints. |

Theorem 2.2 suggests that the two-constraint SINR balgngioblem (2.22)
can be decoupled to two single-constraint sub-problemssé&single-constraint sub-

problems can be solved through the iterative algorithmutised in Section 2.4.1. Be-
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tween the two solutions to the sub-problems, there is oneoahydone solution that
can satisfy the other constraint as well, and thus this olus the globally optimal
solution.

Using induction method, we can extend Theorem 2.2 to solv&tNR balancing

problem (2.20) with( N + K') constraints in (2.21).

Theorem 2.3 The (N + K)-constraint SINR balancing problem can be decoupled
into (N + K) single-constraint sub-problems. Among thé¥e+ K) solutions of the
sub-problems, there is one and only one solution that sesisfii other(N + K — 1)
constraints, and this is the optimal solution to {é + K')-constraint SINR balancing

problem.

Theorem 2.3 indicates that there is only one dominant caimsirThus, the opti-
mal solution of the original NV 4 K)-constraint problem can be found from the optimal
solutions of thg NV + K) single-constraint sub-problems. If an optimization peobl
with multiple constraints has such a property, we say thatntilti-constraint opti-
mization problem can beompletely decoupledNote that in the SINR balancing prob-
lem the interference power constraints and transmit powestcaints can be equally
treated. This property can greatly reduce the computdticoraplexity since find-
ing an optimal solution for &V + K')-constraint problem is usually highly complex
while finding the optimal solution to each single-constraubproblem is much easier.
Based on Theorem 2.3, we develop a decoupled multiple4@nspower allocation
algorithm (DMCPA) to solve (2.20). This algorithm is de&allin Table 2.3. Note
that the search of an optimal solution can be implementedseqgaential manner. It
implies that, when a solution to a sub-problem is derivedonlg need check whether
this solution also satisfies all otheNV + K — 1) constraints. If yes, this solution is
the globally optimal solution and exit; otherwise, congro search the solutions for

other sub-problems. The average complexity in searchindVis- K)/2 times the
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Table 2.3: Decoupled Multiple-Constraint Power Allocatidlgorithm (DMCPA).

DMCPA Algorithm

1. Initialization:i < 0
2. repeat
1—1+1
For sub-problem, find the optimal beamforming matrif(” and
power vectop!”.
Check whethep!” satisfies the othgtV + K — 1) constraints,
if yes, exit; otherwise, continue.

3.untili =N+ K

complexity for solving the single constraint sub-problem.

Example 2.2 We provide an example to illustrate the convergence behafithe
power vectors for the SINR balancing problem. We simulagectise wherdy =
N, = 2 under two interference power constraints. The threshoddgrfterference
constraints['; andI',, are fixed a$) dB and 0.8 dB, respectively, and the power gain
vectors from the SUs to the PUs ay¢ = [2, 2] andg, = [0.8, 2.4], respectively. The
convergence behavior of the algorithm and the power vectotugion for the SINR
balancing problem are illustrated in Fig. 2.4. In this figueach point represents a
power allocation vector in an iterative step, and the arr@presents the direction of
the power allocation evolution. Since each power allogatector satisfies a con-
straint with equality, i.e., the vector is on the line copesding to a constraint, the
arrow also locates on the corresponding line. It can be otbsdrfrom the figure that
each sub-problem converges in a few iterative steps. Mergthere is only one solu-

tion satisfying the other constraint. This matches welhwiheorem 2.2.
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Figure 2.4: Two sample results show the convergence behakmower vectors for
SUs using the DMCPA algorithn(.) represents a power vector of an iterative step in
solving SP3, and it satisfies P¥interference constrainfl represents a power vector
of an iterative step in solving SP4, and it satisfies, Blihterference constraint. The

arrows represent the directions of the power vector evaruti
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2.5 Numerical Examples

Numerical examples are presented in this section to ewathatperformance of the
proposed algorithms. In the examples, for simplicity, weuase that all SUs are at
the same distancé,, to the BS, and the same distantéé),, to PU,. We also denote
by lé") the distance from PUJto the BS. When there is only one PU, we will drop off
the superscripts and use notatidasndl;. Suppose that the same path loss model
can be used to describe the transmissions from the SUs toSten& to the PUs, and
from the PUs to the BS, and the path loss exponefitihe elements of matrikl are
assumed to be circularly symmetric complex Gaussian (CFG)with mean zero
and variancedl. By doing so, the power considered in this chapter is defirsetha
average received power at each receive antenna of the BS, Ajhean be modelled
ash,, = (ll/lén))zan wherea,, is aN, x 1 vector whose elements are CSCG RVs with
mean zero and variance 1, and the power gain factor from thedStite PU, can be
modelled agy,,; = (zl/z;m)ﬂan,iw, whereq,, ; is also modelled as CSCG with mean
zero and variance 1. The noise power is set td band the power and interference
power are defined in dB relative to the noise power. For aksase choosé = 0 dB
and ignore the interference from the PUs to the BS of the Sklesa it is specifically
stated. When evaluating different schemes, we consid@etiermance of the average
achievable sum-rate and average maximum SINR for CR SIMCEMAlculated over

2000 block fading channels.

2.5.1 Sum-Rate Performance

We first consider the case with a single PU, and chéosech thatP, = 20 dB for each
SU. Fig. 2.5 shows the average achievable sum-rate witlecesp the value of, /I,
for different combinations of{ and V... It is seen that when the ratig//; is smaller

than a threshold, the sum-rate increases as the ratio gggedhis is due to the fact
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Figure 2.5: Achievable sum-rate vs the ratid0fl; using the CML water filling algo-

rithm for different numbers of andN,.: one PU and®, = 20 dB.

that the interference constraint becomes less tight asihad¥es away from the SUs.
However, when, /[, reaches a certain threshold (called turning point), the-gata
will not further increase. This is because the transmit pa@estraint is the dominant
constraint affecting the achievable sum-rate in the casdhie PU is far away from the
SUs. Furthermore, when the number of SU increases, théargace increases for a
given distance, and thus the required distance for turnimgt nappening increases.

We next evaluate the effect of the interference from the Pthemchievable sum-
rate of the CR SIMO-MAC. Again, we consider a single PU. Fig. shows the average
achievable sum-rate with respect to various nunibef SUs whenV, = 6, l5/l; = 4,
andp; = 10 dB. The distances from PU to the BS are chosehds = 5,4 and3,
respectively. As can be seen, wh&hincreases, the achievable sum-rate increases.
Furthermore, when the PU moves further away from the BS, tieeteof the PU’s
interference on the achievable sum-rate decreases.

We then consider the scenario when the feedback métris imperfect. In this
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Figure 2.6: Effect of PU interference on the achievable sata-of the CR SIMO-

MAC: one PU,l,/I; = 4, N, = 6, P, = 20 dB andp, = 10 dB.

example, when the estimated mat€ikis modelled, the estimated fading coefficient
&, is different from its exact value,, ; by a CSCG RW/,, ;, whereg,, ; isa CSCG RV
with mean zero and variance 1. We chooése 0.1. When the estimated matrix is
imperfect, the interference received at the PU may exceepréset threshold, and thus
we use outage probability to define how frequently this caggpbns. Furthermore,
in order to reduce this outage probability, we propose asbbasign method which
chooses a smaller interference power threshold in the ithiges as compared to the
exact threshold the PU can tolerate.

Fig.2.7 shows the achievable sum-rate verisyg for the case with perfeds
and the cases with estimatégd and various interference power threshéldised in
robust algorithm design. It is seen that if the PU is far awaynfthe BS {,/l; > 6),
the achievable sum-rate is almost not affected by the ettrearors inG even if the
interference power threshold is set toZdo#B lower than the target. However, when the

PU is closer to the BS, the achievable sum-rate will decriédise interference power
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Figure 2.7: Achievable sum-rate vs the ratidofl, for perfect and estimated matrix
G: one PU,N, = K = 6 and P, = 20 dB. Robust design with 1 dB and 2 dB margins

are also considered.

threshold is set to be lower than the target. In Fig.2.8, vt thle outage probability
for the case whet,/l; = 5. It is seen that the outage probability can be as high as
20% if the algorithm uses the exact targetdB) as the algorithm input; however, if we
use the robust design withdB margin, the outage probability drops beloW.

Fig. 2.9 shows the average achievable sum-rate versusritapswer, ranging
from 0 dB to 30 dB, for K = N, = 4 and different values df,//;. It can be seen that
in low transmit power constraint region, average sum-rateeases as the transmit
power increases, due to transmit power constraint donsrae final result. In the
case where the transmit power is very high, the interfereotestraint is dominant,
and therefore the sum-rate does not further increase withaiease of the transmit
power.

In Fig. 2.10, we consider the two-PU case whéfe= N, = 3 and P, = 20

dB. In this examplell” /I; ranges from 0.1 to 4.6, an§f’ /i, is fixed as 3. It can be
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Figure 2.8: Outage probability for interference power ta Bk PU/,/l; = 5, N, =
K =6andP, = 20 dB.
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Figure 2.9: Achievable sum-rate vs transmit power usingahk water filling algo-

rithm for differently/l;: one PU ands’ = N, = 4.
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Figure 2.10: Achievable sum-rate vs the ratidé@f/ll under different constraints: two

PUs,K = N, = 3,18 /i, = 3and P, = 20 dB.

observed from Fig. 2.10 that the achievable sum-rate uh@dnterference constraint
for PU, is a straight line, which can be explained by the fact 'lélétis a constant.
We also observe that the sum-rate increaség)d& increases under the interference
constraint for PY. This is because the constraint becomes less tight v(é%ém}l
increases. Moreover, the achievable sum-rate under twatreants is always less than
or equal to the achievable sum-rate under a single constiiis is also reasonable,
since the feasible region of two constraints is a subseteofehsible region of a single

constraint.

2.5.2 SINR Balancing Performance

We now evaluate the performance of the proposed DMCPA uh@esum-power and
interference power constraints. For comparison, the naetii¢72] is also simulated
for the case where a single sum-power constraint is coresideiVe choosdy =

N, = 3, and set the target SINRs,, - - - , vk, for SUs as 1. By doing so, we seek to
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Figure 2.11: Maximum achievable SINR versus the sum-powerguthe DMCPA

algorithm: one PU an& = N, = 3.

maximize the minimal SINR among all the SUs, and thus all SiUlshave the same
achievable SINR.

Fig. 2.11 illustrates the maximum achievable SINR undemglsisum-power
constraint, as well as those with an additional interfeegpawer constraint for differ-
entvalues of,/[;. It can been seen that when the PU is close to the SUs, the maxim
achievable SINR in dB almost linearly increases with the-gower in dB. When the
sum-power reaches a large value, the achievable SINR ssgudae to the existence
of the interference constraint, which does not allow thegmaission power to further
increase. Obviously, when the distance changes figilh = 2 to ly/l; = 4, the
sum-power associated with the turning point also increases

Finally, we consider the case with two PUs, where the diﬁaﬁé, between Py
and the SUs is half the distand€’, between PYand the SUs. Fig. 2.12 shows the
maximum achievable SINRs under each individual const(@intlB transmit power

constraint, and dB interference power constraint for each PU), as well asuha

45



2.6 Conclusions

ey
o

35 o AT
@ _a-"
S 30 A~
_-
@ ’k
Z 25 hd -
) A _-G
@ -7 -0
o R P - e e i
> -, B~
Q . -
S 15 a _®
c 7/ -
’ &
E 0L~ S
7
g 5 /g — B - transmit power constraint
, - © = interference constraint for primary user 1
oy~ — A —interference constraint for primary user 2]
T + achievable SINR
-5

[N
=
o
N

25 3 35 4 4.5 5 5.5

O,
Figure 2.12: Maximum achievable SINR versus the ratitﬁlé)fll using the DMCPA
algorithm: two PUsK = N, = 3, 1) = 21" and P, = 20 dB.

der all constraints. If only the transmit power constramtonsidered, the maximum
achievable SINR is arouritl) dB. This implies that the linear MMSE receiver used at
the BS can suppress the strong interference from the other Bi¢ achievable SINR
associated with the interference constraint fop B higher than that with the interfer-
ence constraint for P{) since PY is further away from the SUs. Finally, for a fixed
distance, as we can see, the achievable SINR is just the mmmivalue of the three

SINRs achieved under each individual constraint.

2.6 Conclusions

In this chapter, we have studied the problem of joint beamilog and power allocation
for CR SIMO-MAC. Two optimization problems have been forated: the sum-rate
maximization problem and SINR balancing problem, both uritbde transmit power

constraints as well as interference power constraints.ti@sum-rate maximization
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2.6 Conclusions

problem, ZF-DFE is used to decouple the SIMO-MAC, and a cdppelti-level water-
filling algorithm was proposed to maximize the achievabl@sate of the SUs when
a single PU is present. When multiple PUs exist, a recursaeeapled power alloca-
tion algorithm was proposed to derive the optimal powercaltmn solution. For the
SINR balancing problem, it was shown that, using linear MM8&€Eeivers, each of the
interference constraints and transmit power constraemsbe completely decoupled,
and thus the multi-constraint optimization problem can dgesd through finding the
solutions to each single-constraint sub-problems. Nurakexamples were presented

to compare the performances of different schemes.
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Chapter 3

Transmit Optimization for CR

MIMO-BC

This chapter studies the capacity computation problemdecsum sharing based CR
MIMO-BC. By establishing a new BC-MAC duality, the problemtransformed into
an equivalent capacity computation for the dual MIMO-MACoidover, we develop
an efficient subgradient based iterative algorithm to stiteeequivalent problem and
show that the developed algorithm converges to a globaliynab solution. This new
BC-MAC duality can be extended to solve the capacity contmrigproblem for the

MIMO-BC with multiple linear constraints.

3.1 Introduction

In MIMO-BC, the BS equipped with multiple transmit antenrsnds independent
messages to each of multiple users, which are equipped wiltiphe receive antennas.
In the past decade, a great deal of research has been foausled characterization
of optimal transmission schemes for MIMO-BC [33,52, 77-8Dlie to the coupled

structure of the transmitted signals, the optimizatiorbpgms associated with the BC
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3.1 Introduction

are usually non-convex. The key technique used to overchimdifficulty is to trans-
form the BC problem into a convex MAC problem via a so-called-BAC duality
relationship. Under a single sum power constraint, the dgpeegion (or SINR re-
gion) of a BC is identical to that of a dual MAC under the samma gwwwer constraint.
This property is called the conventional BC-MAC duality [33, 81, 82], which was
first observed by Rashid-Rarrokét al. [33]. However, the conventional BC-MAC
duality is not applicable only to the case with multiple powenstraints. To solve
this problem, a novel minimax BC-MAC duality is developed &3], where the new
equivalent MAC problem has a minimax formulation. Althougle minimax duality
results can handle the BC problem with per-antenna powestnts [79], only inte-
rior point algorithms can be applied to solve this minimasigem, and high-efficiency
algorithms, such as the iterative water-filling algoriti ], cannot be applied.

In this chapter, we consider the capacity computation goldbr spectrum shar-
ing based CR MIMO-BC, in which the BS is subject to the trartguiver constraint
as well as the interference power constraint. As discusbetea the conventional
BC-MAC duality cannot be applied to MIMO-BC with multiplenear constraints. To
handle this difficulty, we propose a generalized BC-MAC dyaksult that can solve
MIMO-BC problems with multiple linear constraints. Moresya subgradient based
algorithm is developed to solve the capacity computatiabiem for CR MIMO-BC.

The rest of the chapter is organized as follows. In SectigntBe system model of
the CR MIMO-BC is introduced, and the capacity computatiambpem is formulated.
In Section 3.3, we transform the capacity computation itgeeguivalent form, and
introduce the general MAC-BC duality between a MIMO-BC atgldual MIMO-
MAC. Section 3.4 presents an primal dual method basediitertt solve the capacity
computation problem for the dual MIMO-MAC. Section 3.5 deps the complete
algorithm to solve the capacity computation problem for CRM@-BC. Section 3.6

provides several numerical examples. Finally, Sectiorc8ri€ludes the chapter.
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BS H1—>$ SU,
Y
- . .Y
Y
Ly
" J SUx

Figure 3.1: The system model for CR MIMO-BC. There &&Us and one PUs. The
BS hasN; transmit antennas, each SU is equipped wWthreceive antennas, and the

PU is equipped with a single receive antenna.

3.2 System Model and Problem Formulation

Consider a spectrum sharing based CR MIMO-BC, where the Bupped withV,
transmit antennas and there d&eSUs with NV, receive antennas. The CR MIMO-
BC, as shown in Fig. 3.1, share the same spectrum with a sitiglequipped with
one transmit antenfha The transmit-receive signal model from the BS to itheSU

denoted by Siyfori = 1,..., K, can be expressed as
Y, = H,x + Zi (31)

wherey, is the N, x 1 received signal vecto#l; is the N, x N; channel matrix from
the BS to the S «x is the N; x 1 transmitted signal vector, ang} is the NV, x 1
Gaussian noise vector with entries being independenticigiytdistributed RVs with
means zero and variance$. Considerg as theN, x 1 channel gain vector between
the transmitters of the BS and the PU. We further assumeHhdor i = 1,..., K,

and g remain constant during a transmission block and changeérdiently from

We consider a single PU case in the rest of this chapter foresoance of description. The results
derived for the single PU case can be readily extended tcathewith multiple PUs, which is discussed

in Remark 3.4.
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3.2 System Model and Problem Formulation

block to block, andH; for i = 1,..., K, andg are perfectly known to the BS and
SU;. To acquire channel matriceld; and channel vectog at the BS of the SUs,
transmission protocols need to be carefully designed tarpurate certain cooperation
in terms of parameter feedback between the PU and the BS. Agganple, the BS
need transmit pilot symbols to allow the SUs and PU to obtespective estimates of
channel matrice$f; and channel vectay. Such estimates are needed to be fed back
to the BS via feedback channels.

We next consider the weighted sum rate maximization proi@nCcR MIMO-
BC, which is also called capacity computation probleMathematically, the problem
is formulated as

Main Problem (Pa): max > wp? (3.2)
{S? HE S?ZO i=1

K K
subjectto: » g"SPg <T, and ) "tr(S?) < P,

i=1 =1
wherer? is the rate achieved by SU; is the weight of SY, S° = E[zz] denotes
the NV, x N, transmit covariance matrix for SLJS? > (O indicates thaSE’ is a semidef-
inite matrix, I denotes the interference threshold of the PU, Andenotes the sum
power constraint at the BS. Compared with the capacity caatiom problem under
a non-CR setting, the key difference is that in addition t® $hhm power constraint,
an interference constraint is applied to the SUs in the CR WHBIC, i.e., the total

received interference powdr ", g” S at the PU is below the threshold

Remark 3.1 It has long been observed that the optimal sum rate for MIMOvBth a
single sum power constraint is equal to the optimal sum réate@dual MIMO-MAC

with the same sum power constraint [48,52, 82]. We simpimtiris property as the

2t is worth to note that any boundary point of the capacityiorg of the MIMO-MAC and the
MIMO-BC can be expressed as a weighted sum rate for a cettaine of weights [46] [84]. Thus, by

varying the weights of the SUs ifP@), the entire capacity region of the CR MIMO-BC can be obtdine
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3.3 Equivalence and Duality

conventional BC-MAC duality. However, the conventionat®&C duality can only
be applied to the case with a single sum power constraint(eweéapplicable to an ar-
bitrary linear power constraint). Hence, the additionatenference power constraint
in (Pa) makes the existing duality cannot be applied. In this chiapte proposed a

new BC-MAC duality result which generalizes the previogsilts as special cases.

3.3 Equivalence and Duality

Evidently, the MIMO-BC capacity computation problem undéther a non-CR or
a CR setting is a non-convex optimization problem and isdaiiffito solve directly.

Under a single sum power constraint, the capacity computagroblem for MIMO-

BC can be transformed to its dual MIMO-MAC problem, which @egex and can
be solved in an efficient manner [77]. In the CR setting, thebf@m Pa) has not

only a sum power constraint but also an interference canstrdhe imposed mul-
tiple constraints render difficulty to formulate an effidignsolvable dual problem.
To overcome the difficulty, we first transform this multi-strained capacity compu-
tation problem Pa) into its equivalent problem which has a single constraiithw
multiple auxiliary variables, and next develop a dualityvieen a MIMO-BC and a

dual MIMO-MAC in the case where the multiple auxiliary vdrias are fixed.

3.3.1 An Equivalent MIMO-BC Capacity Computation Problem

In the following, by exploiting Theorem 4 in [85], we present equivalent form of

(Pa)

Theorem 3.1 Problem Pa) shares the same optimal solution with

K

Equivalent Problem (Pb) : min max w;r? 3.3
q (BB 0 5 2 3
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K

K
subjecttoig, (Y g S%g —T) +q.(D_tr(SP) — P) <0, (3.4)

i=1 i=1
wheregq, and ¢, are the auxiliary dual variables for the respective integfece con-

straint and sum power constraint.

Finding an efficiently solvable dual problem faP®) directly is still difficult.
However, as we show later, whenandg, are fixed as constantd?p) reduces to a

simplified form, which we can solve by applying the followidgality result.

3.3.2 CR BC-MAC Duality

For fixedq; andq,, (Pb) reduces to the following form

K

CR MIMO-BC Problem (Pc): max > w? (3.5)
(SHE,: 8720 5

K K
subjectto:q, Y _g"”SPg +q. > tr(SY) < P,

=1 =1
(3.6)
whereP := ¢,I'+¢, P. Sinceg, andg, are fixed,P is a constant inic). The constraint
(3.6) is not a single sum power constraint, and thus the guadsult established in
[77] is not applicable toRc). Therefore, we formulate the following new dual MAC

problem.

Theorem 3.2 The dual MAC problem ofc) is

K
CR MIMO-MAC Problem (Pd) : max Z w;r" (3.7)

m m

K
subjectto: » "tr(SMo® < P, (3.8)
=1

wherer" is the rate achieved by thth user of the dual MAC, an8?" is the transmit

covariance matrix of théh user, and the noise covariance at the B&gg" + ¢, I v, .
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Figure 3.2: The system models fd?¢) and d), whereq; andg, are constant, and

R, = ggT.

Remark 3.2 According to Theorem 3.2, for fixegandg,, the optimal weighted sum
rate of the dual MAC is equal to the optimal weighted sum rdtéhe primal BC.
From the formulation perspective, this duality result istggimilar to the conventional
duality in [52] [82] [48]. However, as shown in Fig. 3.2, onkihg needs to highlightis
that the noise covariance matrix of the dual MAC is a functibtihe auxiliary variable
q; andg,, instead of the identity matrix [48]. This difference corfresn the constraint
(3.6), which is not a sum power constraint as in [48]. Note that when= 0, the
duality result reduces to the conventional BC-MAC dualitj4i8]. Compared with the

minimax duality in [79], our duality result has a simpler foat.

As illustrated in Fig. 3.2, Theorem 3.2 describes a capadtygputation problem
for a dual MIMO-MAC. To prove this theorem, we first examine tielation between
the SINR regions of the MIMO-BC and the dual MIMO-MAC. Basetlthis relation,
we will show that the achievable rate regions of the MIMO-B@ éhe dual MIMO-
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3.3 Equivalence and Duality

MAC are the same.

In the sequel, we first describe the definition of the SINR fer MIMO-BC. It
has been shown in [67] that the dirty paper coding (DPC) [8&] capacity achieving
scheme. Each set of the transmit covariance matrix detexdiyp DPC scheme defines
a set of transmit and receive beamforming vectors, and eaiclofthese transmit and
receive beamforming vectors forms a data stream. In a bearirfg perspective, the
BS transmitter havey, x K beamformersy, ;, fori =1,--- , K,andj=1,--- | N,.

Therefore, the transmit signal can be represented as

wherez; ; is a scalar representing the data stream transmitted ibéaisiformer, and
E[z7;] = p;; denotes the power allocated to this beamformer. Af, $he receive
beamformer corresponding i ; is denoted by, ;. The transmit beamformaex; ;
and the powep; ; can be obtained via the eigenvalue decompositiofi.e., S? =
UfPZ-UZ-, whereU ; is a unitary matrix, andP; is a diagonal matrix. The transmit
beamformen, ; is thejth column ofU;, andp; ; is the jth diagonal entry of?;. With

these notations, we express the Sﬂ}lﬂs

pijlul H v, 4|

SINRY, = — < = :
! D ki1 2aim1 pkvl|“kH,leH'Ui7j|2 + Ez:rjﬂpi,lmfzﬂﬁvaﬂz + 0?2

(3.9)

It can be observed from (3.9) that the DPC scheme is applikis. CEn be interpreted

as follows. The signal from SUs first encoded with the signals from other SUs being
treated as interference. The signal fromy$&hext encoded by using the DPC scheme.
Signals from the other SUs will be encoded sequentially immal@ manner. For the
data streams within SUthe data stream 1 is also encoded first while the other data
streams are treated as the interference. The data streaem@dded next. In a similar

manner, the other data streams will be sequentially encodad encoding order is
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assumed to be arbitrary at this moment, and the optimal emgadider Pb) will be
discussed in Section 3.4.

To explore the relation of the SINR regions of the dual MAC dind BC, we
formulate the following optimization problem

K K
: H ab b
min G g’ S’g + qu tr(S?) — P
{S? B S?ZO ZZ:; ;

(3.10)
subjectto: SINR; > ~; ;,

wherey; ; denotes the SINR threshold of i data stream within the Sibr the BC.

Note that the objective function in (3.10) is a function ajrel covariance matrices

and the constraints are SINR constraints for the CR MIMO-BC.

It has been shown in [79] and [50] that then-conveXBC sum power minimiza-
tion problem under the SINR constraints can be solved effilyievia its dual MAC
problem, which is a convex optimization problem. By follogia similar line of
thinking, the problem in (3.10) can be efficiently solved itadual MAC problem.
Similar to the primal MIMO-BC, the dual MIMO-MAC depicted irig. 3.2 consists
of K users each witlv, transmit antennas, and one BS withreceive antennas. By
transposing the channel matrix and interchanging the iapdtoutput signals, we ob-

tain the dual MIMO-MAC from the primal MIMO-BC. For the covance matrices

S of the dual MIMO-MAC, we apply the eigenvalue decomposition
N,
S;n = VZAZVf{ = Z qi,j'vi,j'vf;, (311)
j=1

wherew;, ; is the jth column ofV';, andg; ; is the jth diagonal entry ofA;. For user
i, v, j is the transmit beamforming vector of thith data stream, the power allocated
to the jth data stream equadg;, and the receive beamforming vector of tih data

stream at the BS i, ;. The SINR of the dual MIMO-MAC is given by

g lut  H v, 4|2

ull <ZZ;11 e QR,lHkHUk,lvngk +3) qz‘,le{’lJi,zvleH-Rw)um
(3.12)

SINR", =
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whereR,, .= ¢.R, + q,Iy, is the noise covariance matrix of the MIMO-MAC with
R, := gg'. In the dual MIMO-MAC, R,, depends o, andg, defined in (3.10)
whereas the noise covariance matrix in the primal MIMO-B@nddentity matrix. It
can be observed from (3.12) that the successive interferearecelation (SIC) scheme
is used in this dual MIMO-MAC, and the decoding order is theerse encoding order
of the primal BC. The signal from Syis first decoded with the signals from other
users being treated as interference. After decoded at thinBSignals from SiJ will
be subtracted from the received signal. The signal fromy SUs next decoded, and
so on. Again, the data streams within a SU can be decoded ouastal manner.

For the dual MIMO-MAC, we consider the following minimizat problem sim-

ilar to the problem (3.10)

min tr(SMo* — P
{STHE . 8T>0 ; (S7)

subject to: SINR; > v, ;.

(3.13)

The following theorem describes the relation between tbhblpms (3.10) and (3.13).

Theorem 3.3 For fixedg, andg,, the MIMO-MAC problen(3.13)is dual to the MIMO-
BC problem(3.10)

Proof : The constraints in (3.10) can be rewritten as

pl]‘“’zyH ’UZJP - al 2 H 2
> E E pkl\ule v; |+ E pll\u”H v | +0?. (3.14)
Vig k=i+1 I=1 I=j+1

Thus, the Lagrange function of the problem (3.10) is
Li(S%, ..., 8% X))

K K pijlull H v; ;|2
:thgHS?g+quZtr(Sb —P— ZZ)\”< J ”__ J
Z:]. Z:]. Zvj

=1 j=1

K N,

- Z Zpk7l\u£levi7j|2 — Z pi7l|uf§HZH'v,-7j\2 — 0'2) (315)

k=i+1 I=1 I=j+1

57



3.3 Equivalence and Duality

K N, K N,
S et P30 Y (R
=1 j=1 i=1 j=1 Vi
i—1 N,

—ZZ)\lekvklvlek—Z)\”H ’U”’U”H R )’LLZJ, (316)

k=1 =1 =1
where)\, ; is the Lagrangian multiplier. Eq. (3.16) is obtained by gpy the eigen-

value decomposition t8® and rearranging the terms in (3.15). The optimal objective

value of (3.10) is

max_min Li(SP, ..., 8% \ij). (3.17)
Aij S°..8h
On the other hand, the Lagrange function of the problem {3s13
K N, K N,
. 7 i H V; jV; H
Lo(ST,.. . S5 =YY aot =P =33 6, ”( S T

i=1 j=1 =1 j=1 Vig
i—1 N,

-3 aHY 'vkl'ulek—Zq”H v ol H — Ry ug,  (3.18)
k=1 =1

whereJ; ; is the Lagrangian multiplier. Eq. (3.18) is also obtainedapyplying eigen-

value decomposition t87". The optimal objective value of (3.13) is

rgileTrﬂnS;}LQ(S’f‘, oo SR 0i5). (3.19)
Note that if we choose; ; = \; ;, 4, ; = p;;, and the same beamforming vectors
u; ; andwv; ; for both problems, (3.16) and (3.18) become identical. Tingsins that
the optimal solutions of (3.17) and (3.19) are the same. |
Theorem 3.3 implies that under the SINR constraints, thélpros (3.10) and
(3.13) can achieve the same objective value, which is aiflmmoff the transmit covari-
ance matrices. On the other hand, under the correspondirgiramts on the signal
covariance matrix, the achievable SINR regions of the MIRO-and its dual MIMO-
MAC are the same. Mathematically, we define the respectineaable SINR regions

for the primal MIMO-BC and the dual MIMO-MAC as follows.

Definition 3.1 A SINR vectoty = (v11,..., 7N, - - -» VK.N, ) IS said to be achievable

for the primal BC if and only if there exists a setS, . . . , S% such thay, >°~ | g7 S°g
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+qu > 1, tr(SP) — P < C for a constantC' and the corresponding SINR> ; ;. An

achievable BC SINR region denoted®By., is a set containing all the BC achievable

-

Definition 3.2 A SINR vectoty = (v11,..., 7N, - - -» VK.N, ) IS Said to be achievable
for the dual MAC if and only if there exists a setSF, . . ., S’ such thafy |, tr(S™) o>
— P < Cfor a constantC' and the corresponding SINR> ; ;. An achievable MAC

SINR region denoted B\ 4¢, is a set containing all the MAC achievabje

In the following corollary, we will showRy 4c = Rec.

Corollary 3.1 For fixedq; and¢,, and a constant’, the MIMO-BC under the con-
straintg, >~ | g7S%q + ¢, 3.8 tr(S8?) — P < C and the dual MIMO-MAC under

the constrainf_*  tr(SMo? — P < C achieve the same SINR region.

Proof : For anyy € Ruac, by Definition 3.2, there exists a set 8f",..., S%
such that>_"  tr(S™¢? — P < C and the corresponding SINR > «,;. It can
be readily concluded from Theorem 3.3 that there exists afs&}, . . ., S% such that
@i, 9" S%g+q, S8, tr(S?) — P < C and the corresponding SINR> -, ;. This
impliesy € Rgc. Since« is an arbitrary element iRyac, we haveRyac C Rac.
In a similar manner, we hav@g- C Rumac. The proof follows. [ |

We are now in the position to prove Theorem 3.2.

Proof of Theorem 3.2According to Corollary 3.1, it” = 0, then under the con-
straintg, > | g SPg+q, S, tr(SP) < Pfor the BC and the constraidt -, tr(ST)o?
< P for the dual MAC, the two channels have the same SINR regimteShe achiev-
able rates of userin the MIMO-MAC and the MIMO-BC are”]* = Zj&l log(1 +
SINR,) andr} = Z;.V;‘l log(1 + SINR’L?J), the rate regions of the two channels are the

same. Therefore, Theorem 3.2 follows. [ |
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3.4 Dual MAC Capacity Computation Problem

Note that due to the additional interference constraiRty)(cannot be solved
by using the established duality result in [82] and [48], ihieth only a single sum
power constraint was considered. Our duality result in Teéen3.2 can be thought
as an extension of the duality results in [82] [48] to a muUgtiiinear constraint case.
Moreover, as will be shown in the following section, our diyatesult formulates a

MIMO-MAC problem (Pd), which can be efficiently solved.

3.4 Dual MAC Capacity Computation Problem

In this section, we propose an efficient algorithm to soRd). With the SIC scheme,

the achievable rate of tHeh user in the dual MIMO-MAC is given by

k
. R, + Y H;STHY
R, + 3,2 H;STHY|

rp =lo

(3.20)

For the MIMO-MAC, theequallyweighted sum rate maximization is irrespective of
the decoding order. However, in general the weighted suenmetximization in the
MIMO-MAC is affected by the decoding order. We thus need tosider the optimal
decoding order of the SIC for the dual MIMO-MAC, and furthered to consider the
corresponding optimal encoding order of the DPC for the phHBC.

Let 7 be the optimal decoding order, which is a permutation on thénsex set
{1,---, K}. It follows from [84] that the optimal user decoding ordefor (Pd) is
the order such that(;y > wr@2) > -+ > wrk) is satisfied. The following lemma

presents the optimal decoding order of the SIC for the dagausts within a SU.
Lemma 3.1 The optimal data stream decoding order for a particular S@risitrary.

The proof can be found in Appendix B.1. Due to the duality lestwthe MIMO-
BC and the MIMO-MAC, for Pc), the optimal encoding order for the DPC is the

reverse ofr. Because of the arbitrary encoding order for the data stesithin a SU,
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3.4 Dual MAC Capacity Computation Problem

if we choose a different encoding order for the BC, the MAEBIO mapping algorithm
can give different results which yield the same objectie@aHence, the matri$®
achieving the optimal objective value are not unique. Withass of generality, we
assumeuv; > w» > - - - > wy for notational convenience.
According to (3.20), the objective function dP@) can be rewritten as
K i
F(ST, -+ SR) =) Ailog|Ry + > H;STHY|, (3.21)
i=1 j=1
whereA; := w; —w;,1, andwg 1 := 0. Clearly, Pd) is a convex problem, which can
be solved through standard convex optimization softwackgges directly. However,
the standard convex optimization software does not exjieispecial structure of the
problem, and thus is computationally expensive. In thefeihg, we develop a primal
dual method based algorithm [87] to solve this problem.
We next rewrite Pd) as
K
{S?}gfg?zo f(ST ..., 8T) subject to:;tr(S?‘) < P. (3.22)
Recall that the positive semi-definitenessSitis equivalent to the positiveness of the
eigenvalues oBT", i.e.,q; ; > 0. Correspondingly, the Lagrange function is

)

K

K
L(ST, -+, ST N 0,) = f(ST, -+ SR) = A(D_tr(ST) = P) + > 650,
i=1 i=1 j=1
(3.23)
where X andd; ; are Lagrangian multipliers. According to the KKT conditsoof

(3.22), we have

Of (ST, 8™ S
f - ©) _\ Iy, Y ) (3.24)
7 7j=1
K
AN (ST — P) =0, (3.25)
=1
5:54is =0, (3.26)
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3.4 Dual MAC Capacity Computation Problem

whereE,; ; := dq; ;/0S}". Notice that it is not necessary to compute the actual value
of §,; and E, ;, because i, ; # 0, theng; ; = 0. Thus, the semi-definite constraint
turns intog; ; = [¢;;]7. Thus, we can assundg; = 0.
The dual objective function of (3.22) is
g(\) = 5" gngZOL(ST, e ST, (3.27)
Because the problem (3.22) is convex, it is equivalent tadfaHewing minimization

problem
mAin g(\) subjectto: A > 0. (3.28)

We outline the algorithm to solve the problem (3.28). We d®an initialA and
compute the value af(\) (3.27), and then updateaccording to the descent direction
of g(\). The process repeats until the algorithm converges.

It is easy to observe that all the users share the sgrard thus\ can be viewed
as a water level in the water filling principle [47]. Onges fixed, the unique optimal
set{ST,...,S%} can be obtained through the gradient ascent algorithm. ¢h ea
iterative stepS!" is updated sequentially according to its gradient directib(3.23).
Denote byST'(n) the matrixST" at thenth iteration step. The gradient of each step is

determined by

8f(Sr1n(n>7 e 75?]—1(n)7 S;n(n - 1)? SRR ST((” T 1))
ISMn —1)

VinL = — My, (3.29)
Thus,S"(n) can be updated according to

S™(n) = |S™(n — 1) + V') L} '
1 1 S;C” ’

wheret is the step size, and the notatipd]* is defined agA]* := >~ [\;]Tv;v]

with \; andwv; being thejth eigenvalue and the corresponding eigenvectod ok-
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3.4 Dual MAC Capacity Computation Problem

spectively. The gradient in (3.29) can be readily computed a

of (ST,
98T

s &
IS =N A (HGF(ST, - SR HYY (3.30)
j=k

where F;(ST, .- | S%) := R, + >._, H?S"H,. We next need to determine the
optimal\. Since the Lagrange functiaii\) is convex oven, the optimal\ can be ob-
tained through the one-dimensional search. However, Isegdd) is not necessarily
differentiable, the gradient algorithm cannot be appli&idernatively, the subgradient
method can be used to find the optimal solution. In each iteratep,) is updated

according to the subgradient direction.

Lemma 3.2 The subgradient af()\) is P — S tr(S™), where > 0, and ST, i =

1,..., K, are the corresponding optimal covariance matrices for adix in (3.27)

The proof can be found in Appendix B.2. Lemma 3.2 indicates the value of\
should increase, ifgfil tr(S™) > P, and vice versa. We now present our DIPA
algorithm for solving Pd) in table 3.1. The following theorem shows the convergence

property of the DIPA algorithm.

Theorem 3.4 The DIPA algorithm converges to an optimal set of the MAC drait

covariance matrices.

Proof : The DIPA algorithm consists of the inner and outer loops. ifiner loop is

to computeST" fori = 1,--- , K. In each iterative step of the inner loop, we update
S™ by fixing otherSBn with j # 4, and compute the corresponding gradient. The inner
loop uses the gradient ascent algorithm, which convergésetoptimal value due to
its nondecreasing property and the convexity of the objedtinction. The outer loop

is to compute the optimal Lagrangian multiplieiin (3.28). Due to the convexity of
the dual objective function [53], there is a unigu@chieving the optimal solution in
(3.28). Hence, one dimensional line bisection search Blisfuaranteed to converge

to its optimal solution. |
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3.4 Dual MAC Capacity Computation Problem

Table 3.1: Decoupled Iterative Power Allocation (DIPA) Alghm.

DIPA Algorithm

1. Initialize A\, and A s
2. repeat
A= (Amin + Amax) /2
repeat, initializeST(0),--- , S%(0),n =1
fori=1,--- K,
SM(n) = [P — 1)+ 9],
end for,
n«—n+1,
until ST for k = 1,--- | K converge, i.e.|,|Vf§L§nL||2 < ¢ for a small preset.
if S8 tr(S™) > P, then\y = A, elseif S5 tr(S™) < P, thenay, = A;

3. until [ Ain — Amax| < €
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3.5 A Complete Solution to Pa)

Remark 3.3 In the previous work on the sum rate maximization [47, 77, #83 co-
variance matrix of each user is the same as the single usegriling covariance
matrix in a point-to-point link with multiuser interfereadeing treated as noise [34].
However, for the weighted sum rate maximization problem ojtimal solution does
not possess a water-filling structure. Thus, our DIPA algori does not obey the
water-filling principle. In Section 3.6, Example 1 compaieswater-filling algorithm

with the DIPA algorithm.

In the dual MIMO-MAC, according to (3.11), the transmit bdarming vec-
tors v, ; can be obtained by the eigenvalue decomposition. The qumnelng re-
ceive beamforming vector at the B&, ;, is obtained by using the MMSE algorithm.
Throughout the proof of Theorem 3.3, we can see that wherathe sptimal solutions
are achieved the primal BC and the dual MAC share the samefbeaing vectorsu, ;
andv; ;, and achieve the same SINR region, i.e., S?NR SINI{{}. Based on this ob-
servation, we can compute the power allocated to the BC lwamtfg directionu, ,
pi,;» and obtain the signal covariance mat&, = >, p; ju; jul’. The MAC-to-BC
covariance matrix mapping allows us to obtain the optimalddariance matrices for

(Pc) by solving Pd).

3.5 A Complete Solution to Pa)

We are now ready to present a complete algorithm to s@Ng).(The Lagrangian dual

objective function of Pb) can be rewritten as follows

K
b
9(q1, qu) = max w;ry, (3.31)
{S7}E,:87>0 ;

1=
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3.5 A Complete Solution to Pa)

where the maximization is subject to the constrai®_" | g7 S%g —T') +q. (38,

tr(S?) — P) < 0. (Pb) is equivalent to the following problem
min g(q:, ¢.), Subjectto:q, > 0 andg, > 0.
qt,qu

Applying the BC-MAC duality in Section 3.3.2 and the DIPA aighm in Section
3.4,49(q, q,) can be obtained. The remaining task is to determine the aptinand
qu- Sinceg(q:, q.) 1S not necessarily differentiable, we search the optigand g,
through the subgradient algorithm; that is, in each iteeastep, we update the vector

l¢:, ,) according to the subgradient directisn= [sy, 2| of g(q:, qu)-

Lemma 3.3 The subgradient of(q;, ¢,) is [I' — S~ g7 8%, P — S5 tr(S?)],
whereq; > 0,¢q, > 0, and S? .1 =1,..., K, are the corresponding optimal covari-

ance matrices for the proble(B.31)

The proof of Lemma 3.3 is similar to that of Lemma 3.2, and isttad here. It has
been shown in [88] that with a constant step size, the subgraalgorithm converges

to a value that is within a small range of the optimal value, i.
lim | — g < e and lim [¢{" — gi| <, (3.32)

whereg; andg denote the optimal values, arqff) and q&") denote the values of
andgq, at thenth step of the subgradient algorithm, respectively. Thiglies that the
subgradient method finds arsuboptimal point within a finite number of steps. The
numbere is a decreasing function of the step size.

We next describe the algorithm to solNl) in table 3.2. As a summary, the flow
chart of the SIPA algorithm is depicted in Fig. 3.3. We showat the SIPA algorithm

converges to the optimal solution d?4) in the following theorem.

Theorem 3.5 The SIPA algorithm converges to the globally optimal solutf (Pa).
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3.5 A Complete Solution to Pa)

Table 3.2: Subgradient Iterative Power Allocation (SIPAydyithm.

SIPA Algorithm

1. Initialization: ¢\, ¢, n = 1;

2. repeat
Find the optimal solution of the dual MAPd) through the DIPA
algorithm;
Find the solution of the BC problem (3.31) through the MAGBRG mapping;
Updateq™ andq!" through a subgradient algorithgfi ™" = ¢\ + t(>°X
g'8Pg —T), andg{"™ = ¢{" + t(32X, tr(SP) — P), wheret denotes
the step size of the subgradient algorithm;
n<+—n+1;
3. Stop whergi™ (Y1, gSPg — I')| < e and|g” (X1, tr(S?) — P)| < c are

satisfied simultaneously,

LN
5?,1(1) Mapping Szb,(l) Subgradient qt@),qq(f)
o peA T
S??(g) WS?,@) Subgradient qt(3)7q£3)

PRI
S?j(n) Subgradient (n) (n)

Sz(n q; "5 qu

Figure 3.3: The flow chart for the SIPA algorithm, wheﬁ‘%(n) and S}, denote the

transmit covariance matrices of Sfdr the BC and MAC at theith step, respectively.
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3.5 A Complete Solution to Pa)

Proof : The Lagrange function offa) is given by

L(SP,... 8% A M) ZW W ZgHsbg ) i
- 3. 33)
and the Lagrange function aPp) is given by
K K K
LS S ) = D = A (D0 0788 T) (Y tr(5?) -
) - - (3.34)

Let G, G., \, andS; be the optimal values df; (S, ..., 8% X, ¢, q.), when the

algorithm converges. We thus have

OL. (8%, ..., 8% N . qu)
85? {S?}f{:vS‘@tJL

=0,

(K, 9789 — T)| = 0, and|g, (3., tr(S;) — P)| = 0. This means tha$, is a
locally optimal solution.
According to (3.33), if we select; = A\g;, \» = A\, andS; = S;, then);, Ao,
andS; satisfy the KKT conditions offPa) and thus are the locally optimal variables.
Suppose that there exists an optimal set,of\,, andS; such that.(S, . .., Sk,
A1, A2) > L(S1,..., 8k, A, Xo). Clearly, this optimal set of;, \,, andS; satisfy the
KKT conditions of (Pa). In the sequel, we will derive a contradiction.

First, we can write

L(S1, - Sk, X)) > L(S1, -+, Sk, A, A). (3.35)

Suppose that the inequality (3.35) does not hold, €S, - , Sk, A1, o) <
L(S1,---, Sk, A, \s). Then, according to the BC-MAC duality in Section 3.3.2, an
objective value of Pd) which is larger tharl.(S, - - - , Sk, A1, \2), can be found for
the fixedg, andg,. However, from Theorem 3.4, the DIPA algorithm converges th

optimal solution. It is a contradiction.
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3.5 A Complete Solution to Pa)

Secondly, according to the KKT conditions dt4), we have

K K
M(D g8 —T) =0,M(> tr(S) - P) =0. (3.36)
i=1 i=1

We thus can write:

A

L(Slv"' 7SK75\175\2) 2 L(S’lv 7SK75\175\2)' (337)

Combining (3.37) and (3.35), we have

L(Sy, -, Sk, M\, Aa) > L(S4, -, Sk, A 5\2) (3.38)
This contradicts with our previous assumption. Hence tlefis complete. |

Remark 3.4 The algorithm can be extended to the multiple PU case in th@fimg
manner. Assume that there alePUs. (Pb) becomes
K
min max > wgr?,

qt,jZOHuZO{S?}{(:l: SEZO i—1

. (3.39)

N K
subjectto: Y " q.; (> g’ SPg; —Tuj) +qu( D _tr(S)) —P) <0,
j=1 i=1

=1

whereg;, ; is the auxiliary variable for thejth PU, g, is the channel response from
the BS to thejth PU, andI’, ; is the interference threshold of thigh PU. The role
of auxiliary variablesg, ; is similar to that ofg, in the single PU case. It is thus
straightforward to modify the SIPA algorithm to solve thelgem for the multiple
PU case. Moreover, it should be noted that the multiple fietence constraints of
the problem(3.39) can be transformed to the per-antenna power constraint$ py9
settingg;, j = 1,--- , NV, to be thejth column of the identity matrix. Not limited by
the sum rate maximization problem with interference povearstraints, the method
proposed in this chapter can be easily applied to solve thasmitter optimization
problem (e.g. beamforming optimization) for MIMO-BC withltiple arbitrary linear

power constraints.
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3.6 Numerical Examples

3.6 Numerical Examples

In this section, we provide the numerical examples to shavetffiectiveness of the
proposed algorithm. In the examples, for simplicity, weuass that the BS is at the
same distancé,, to all SUs, and the same distanéé),, to PU,. In the single PU case,
we will drop the superscript and simply use notatiorSuppose that the same path loss
model can be used to describe the transmissions from the 88 &lUs and to the PUs,
and the path loss exponent is 4. The elements of m&riare assumed to be CSCG
RVs with mean zero and variance 1, apndan be modeled ag = (I, /1,)*a,,, where

a, i1s aN; x 1 vector whose elements are CSCG RVs with mean zero and varianc
1. The noise covariance matrix at the BS is assumed to be ¢inditigimatrix, and the
sum power and interference power are defined in dB relatitlestmoise power, and

is chosen to bé dB. For all cases, we choose= [,, except for explicitly stated.

In Fig. 3.4, we examine the validity of the DIPA algorithm. tims example,
we choosek = 1 (a single SU case)y, = 4, N, = 4, andP = 10 dB. It is well
known that the optimal transmit covariance matrix can baioled through the water-
filling principle [34]. As can be observed from Fig. 3.4, inveel iterations, the
DIPA algorithm converges to the optimal solution obtaingdibing the water-filling
principle.

In Fig. 3.5, we show the convergence property of the DIPA rligon. In this
example, we choos& = 20 and P = 10 dB. It can be observed from this figure that
the algorithm converges to the optimal solution within sel/geration steps.

In Figs. 3.6 and 3.7, we consider a CR MIMO-BC with= 5, N, = 5, N, = 3,
and P = 13 dB. In this example, the SUs with, = 5 andw; =1, i = 2,..., K are
assumed to share the same spectrum band with two PUs. FigloBs&he weighted
sum rate versus the number of iterations of the SIPA algoriitr step sizes = 0.1

andt = 0.01. As can be seen from the figure, the step size affects the aycand
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10

Achievable rate (bps/Hz)

1r —<&— DIPA algorithm ~
—6— water—filling algorithm

0 2 4 6 8 10 12 14 16
Iteration step

Figure 3.4: Comparison of the optimal achievable ratesinbtbby the DIPA and the

water-filling algorithm in a MIMO channel; = N, = 4, K = 1 and P=10 dB).

Sum-rate (bps/Hz)

0 4 6 8 10 12 14 16
Iteration step

Figure 3.5: Convergence behavior of the DIPA algorithin-£ 20 and P = 10 dB).
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step size is 0.1
step size is 0.01 | |

=
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=
o
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Weighted sum rate (bps/Hz)
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© ol

8.5}

0 2‘0 4‘0 66 86 160 120
Iteration step
Figure 3.6: Convergence behavior of the SIPA algoritivp £ 5, K = 5, N, = 3,

wy = b, andw; = 1, for i # 1).

convergence speed of the algorithm. Fig. 3.7 plots the sunepat the BS and the
interference power at the PUs versus the number of itemtidincan be seen from
the figure that the sum power and the interference power appro P = 13 dB
and’ = 0 dB respectively when the SIPA algorithm converges. Thisliespthat
the sum power and interference constraints are satisfigdagitalities when the SIPA
algorithm converges.

Fig. 3.8 plots the achievable sum rates versus the sum powlee single PU case
and the case with no PU. We chodse= 5, N, = 5, andN,, = 3. As can be seen from
Fig. 3.8, in the low sum power regime, the achievable suminatee case with no PU
is quite close to the one in the single PU case while in the &igh power regime, the
achievable sum rate in the case with no PU is much higher th@ore in the single
PU case. This is because the additional constraint redheedegrees of freedom of

the system.
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Figure 3.7: The convergence behavior of the sum power at $harél the interference
at the PU for the SIPA algorithm\; = 5, K = 5, N, = 3, w; = 5, andw; = 1 with
i # 1).

N
N

—O— one PU exists 2
- & -no PU exists 4

N
(=]
T

=

[ee]
T
AY

= = =
N i o
T T T
\
<«
\

Sum-rate (bps/Hz)
=
o

0 5 10 15 20
Sum Power (dB)

Figure 3.8: Achievable sum rates versus sum power in théesild case and the case

withno PU (V; = 5, K =5, N, = 3).
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3.7 Conclusions

In this chapter, we have developed a new BC-MAC duality tesudlich can be viewed
as an extension of existing duality results developed uedber a sum power con-
straint or per-antenna power constraints. Exploiting thuality result, we have pro-
posed an efficient algorithm to solve the capacity companagiroblem for the CR
MIMO-BC. Furthermore, we have shown that the proposed dlgorconverges to the

globally optimal solution.
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Chapter 4

Robust Designs for CR MISO

Channels

In Chapter 2 and Chapter 3, it is assumed that the CSI of thegBRomnks is perfectly
known at the SU transmitter (SU-Tx). However, due to the éoasoperation between
the SU and the PU, it is more practical to assume that onlygha@sI is available
at the SU-Tx. This chapter considers a spectrum sharingdb@®eMISO channel,
in which the SU has multiple transmit antennas and a singleive antenna and the
PU has a single receive antenna. With the partial CSI andstpbed transmit power
constraint, our design objective is to determine the transovariance matrix that
maximizes the rate of the SU while keeping the interferermegn to the PU below
a threshold for all the possible channel realizations witlim uncertainty set. This
problem is first transformed into the second order cone jragring (SOCP) problem
and then solved via a standard interior point algorithm. tNar analytical solution
with much reduced complexity is developed from a geometisjpective. It is shown

that both algorithms obtain the same optimal solution.

75



4.1 Introduction

4.1 Introduction

In non-CR settings, the study of multi-antenna systems paitiial CSI has received
considerable attention in the past decade [49, 89]. Spaltyfiche paper [49] con-
sidered the case in which the receiver has perfect CSI butréimsmitter has only
partial CSI (mean feedback or covariance feedback). It wasgal in [49] that the op-
timal transmission directions are the same as those of gemeectors of the channel
covariance matrix. However, the optimal power allocatioluson was not given in
an analytical form. A universal optimality condition fordmaforming was explored
in [90], and quantized feedback was studied in [91].

In CR settings, power allocation strategies have been dpedifor MAC [68] and
for point-to-point MIMO channels [36]. Particularly, thelation developed in [36] can
be viewed as cognitive beamforming since the SU-Tx formsisn beam direction
with awareness of its interference to the PU. A closed-forethod has been provided
for CR MISO channel in [36]. However, both papers [68] and E&umed that perfect
CSI of the link from the SU-Tx to the PU is available at the SkI-T

In this chapter, we consider a spectrum sharing based CR Mh@@nel, in which
the SU network is a MISO channel and the PU is equipped witnglesireceive an-
tenna. We assume that the CSI of the SU link is perfectly knatnthe SU-Tx. How-
ever, owing to loose cooperation between the SU and the RYtlemean and covari-
ance of the channel between the SU-Tx and the PU is availatiie 8U-Tx. With this
partial CSl, our design objective is, for a given transmit/poconstraint, to determine
the transmit covariance matrix that maximizes the rate efSkJ while keeping the
interference power to the PU below a threshold for all thesfids channel realizations
within an uncertainty set. We term this design problem tteisbcognitive beamform-
ing design problem. This problem is formulated as a semmiigfiporogramming (SIP)

problem, and solved by two methods proposed in this chapter.
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SU-Rx

Y

Figure 4.1: The system model for CR MISO channel. There a¥eamtenna SU-TX,

a single antenna SU-Rx, and a single antenna PU.

The rest of this chapter is organized as follows. Sectiordéstribes the system
model for CR MISO channel, and the problem formulation of tbbust cognitive
beamforming design. Section 4.3 presents several imgdgammas that are used to
develop the algorithms. Two different algorithms, the SQf2Bed solution and the
analytical solution, are developed in Section 4.5 and 8eeati4, respectively. Section

4.6 presents numerical examples, and finally, Section Ahélades the chapter.

4.2 System Model and Problem Formulation

Consider a CR MISO channel, where the SU-Tx is equipped Witransmit antennas
and there are one SU receiver (SU-Rx) with a single receitenaa. The CR MISO
channel, as shown in Fig. 4.1, share the same spectrum witgla #U equipped with
one transmit antenna. The transmit-receive signal modei the SU-Tx to the SU-Rx
can be expressed as

y=hx +n, (4.1)
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4.2 System Model and Problem Formulation

wherey denotes the the received signalandh denote theV x 1 transmitted vector
and theN x 1 channel response vector from the SU-Tx to the SU-RX, resagt
andn is Gaussian noise with zero mean and unit variance. Suppeaséhie PU has
one receive antenna. The channel response from the SU-Tg U is denoted by an
N x 1 vectorg. Further, assume that the SU-Tx has perfect CSI for its omq lie.,
h is perfectly known at the SU-Tx. However, due to the loosepenation between
the SU and the PU, only the meag, ) and the covariance matridR) of g is assumed
to be available at the SU-Tx In previous work [49, 92—-94], imperfect CSI has been
considered in two extreme cases in a non-CR setting. One im#an feedback case,
i.e., R = oI, whereo? can be viewed as the variance of the estimation error; and the
other is the covariance feedback case, ggis a zero vector. In this chapter, we study
the case where the SU-Tx knows both the mean and covariagcmaet CR setting.
The objective of this chapter is to determine the optimaigrait covariance ma-
trix such that the information rate of the SU link is maxinmdzghile the QoS of the PU
is guaranteed under a robust design scenario, i.e., trentasieous interference power
for the PU should remain below a given threshold for allghia the uncertain region.

Mathematically, the problem is formulated as follows:
Robust design problem(P1) : rggox log(1 4+ h" Sh)
subject to: tr(S) < P, (4.2)
g"'Sg <T'for(g—go)"R™'(g —go) <,

where S = E[zx'] is the transmit covariance matri¥§ > 0 denotes thafS is a

positive semi-definite matrixP is the transmit power contraink, is the interference

1Due to the cognitive property, we assume that the SU canrotiteipilot signal from the PU, and
has the knowledge of the transmit power of the PU. Thus, the&ltetect the channel from the PU to
the SU. Moreover, since the SU shares the same spectrumhgifAll, based on the channel from the
PU to the SU, the statistics of the channel from the SU to the&tbe obtained [92]. Therefore, we

can assume that, and R are known to the SU.

78
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threshold of the PU, andis a positive constant. The parametecharacterizes the
uncertainty ofg at the SU. According to the definition of the uncertainty iB][9P1
belongs to a type of ellipsoid uncertainty problem, i.eg timcertain parameteyr is
confined in a range of an ellipsaid(¢), whereH () : {g|(g—g,)"R ' (g—g,) < €}.
Thus, the optimal solution of{1) can guarantee the interference power constraint for
all theg € H(e), and thus the robustnessBl is in theworst casesense [53], i.e., in
the worst case channel realization, the interference mnsshould also be satisfied.

If the primary transmission does not exist, then the interfee constraint is excluded,
and thus the problem reduces to a trivial beamforming probldence, we only focus

on the case where both PU and SU transmission exist.

Remark 4.1 An important observation is that the objective functioniri}] remains
invariant whenh undergoes an arbitrary phase rotation. Without loss of gatlity,
we assume, in the sequel, tHatand g, have the same phase, i.e.,{laf’g,} = 0.

H
Therefore, we can define the angle betwkeandg, asa := 300{%)-
0

Since P1) has a finite number of decision variab% and is subjected to an
infinite number of constraints with respect to the compatttse), (P1) is an SIP
problem [96]. One obvious approach for an SIP problem isaadform it into an
equivalent problem with finite constraints. However, thereo universal algorithm to
determine the finite constraints from the infinite constra@t such that the transformed
problem has the same solution as the original SIP problenthdrollowing section,
we first study several important properties Bfi(), which can be used to transform the

SIP problem into its equivalent finite constraint counterpa
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4.3 Properties of The Optimal Solution

The maximizationP1) is a convex optimization problem, and thus has a unique opti
mal solution. The following lemma presents a key propertthefoptimal solution of

(P1).
Lemma 4.1 The optimal covariance matri& for (P1) is a rank-1 matrix.

The proof can be found in Appendix C.1.

Remark 4.2 Lemma 4.1 indicates that beamforming is the optimal traesion strat-
egy for P1), and the optimal transmit covariance matrix can be expesssSqp, =
poptvoptvg{,t, wherepgp: is the optimal transmit power angl,; is the optimal beamform-
ing vector with||ve,|| = 1. Therefore, the ultimate objective d?{) is to determine

Popt and Vopt-

The following Lemma presents a closed-form solution for ptiroization prob-

lem, which will be used in the sequel.
Lemma 4.2 For the problem

mhangvaHg, subject to:(g — g,) "R (g — g,) < e, (4.3)
wherep, v, andg, are constant, the optimal solution is

[ €
Gmax= 9o + maRv,Wherea = 'UHQO/|'UH90|- (4.4)

The proof can be found in Appendix C.2. Based on Lemma 4.1 &mdrha 4.2,
a necessary and sufficient condition for the optimal sofutid (P1) is presented as

follows.
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Lemma 4.3 A necessary and sufficient condition {8k to be the globally optimal
solution of P1) is that there exists ag,,; such that

Sopt = arg néax log(1 + h' Sh), subjectto: tr(S) <p, 0<p< P, gé{pthopt <T,
7p

(4.5)

where

Gopt = Arg m}e:xgHSoptg, for (g —go)" R (g —go) < e. (4.6)
The proof can be found in Appendix C.3.

Remark 4.3 The vectolg,, is a key element foraly : (g — g,)" R '(g — go) < e,

in the sense that, for the optimal solution, the constrgﬁ‘é];Sgopt < I dominates the
whole interference constraints, i.e., all the other inéeehce constraints are inactive.
However,g,, can be viewed as an implicit variable for the probl¢h5), and the
optimal S and g, cannot be obtained separately. It is worth noting that thelytem
(4.5) has the same form as the problem discussed in [36], in whiehG8Il on the
link of the SU and the link between SU-Tx and PU are perfectbnk at the SU-TX.

However, unlike the problem in [36§,,, in (4.5)is an unknown variable.

In the following lemma, the optimal beamforming vecigy; is shown to lie in a

two-dimensional (2-D) space spanneddgyand the projection ok into the null space

of g,. Defineg,, = g,/llgol andg, = g./llg. |, whereg, = h—(gf{/h)g//- Hence,

we haveh = ay,, g,/ + bn,g, With s, by, € R.

Lemma 4.4 The optimal beamforming vectef, is of the forma,g,, + b,g, with

ay, b, € R.

The proof can be found in Appendix C.4.
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g,
A
L/p -~
VP h
Gopt\.
o R
X . u
9o Q//

Figure 4.2: The geometric explanation of Lemma 4.4. Thesdliis the projection of

g=1{9l(g —g,)"R (g — g,) = €} on the plane spanned lgy, andg, .

Remark 4.4 According to Lemma 4.4, we can search for the optimal beamifay
vectorvey 0N the 2-D space spanned by, and g, , which simplifies the search pro-
cess significantly. As depicted in Fig. 4.P1() is transformed into the problem of de-
termining the beamforming vectog, in the 2-D space and the corresponding power
popt- Combining Lemma 4.3 and Lemma 4.4, it is easy to concludgythdies in the

space spanned hy,, andg, .

4.4 Second Order Cone Programming Solution

In this section, we solve{1) via a standard interior point algorithm [46, 53, 97]. We
first transform the SIP problem into a finite constraint peoty] and further transform it
into a standard SOCP form, which can be solved by using aatdsdftware package
such as SeDuMi [98]. One key observation is thachiatheH(e) g’Sg <T,ie., the

worst case interference constraint of satisfied, then ttexfarence constraint d1

82



4.4 Second Order Cone Programming Solution

holds. Combining this observation with Lemma 4R 1{ can be transformed as:

Equivalent problem (P2): >(§T|1\aﬂ( X log(1 + ph"vv'’h)
p20,[|V]|=

4.7)
subjectto. p < P, max pgvvg <T.
het(e)
It is clear that maximizingog(1 + ph" vv h) is equivalent to maximizing,/ph" v|.
By definingw = ,/pv, the objective function can be rewritten s’ w|. Similarly,
the interference power can be expressefdsv|?. Thus, problenP2 can be further
transformed to
m£x|hH w|
(4.8)
subjectto |w| < VP, max |gfw| < VT.
hetr(e)
According to the definition of{(¢), we can rewrite the worst-case constraint in
(4.8) as
max |g"w| = max |[(go+g,)"w| < VT, (4.9)
he’H(g) hleHl(e)
whereg = g, + g,, the vectorg, is a variable, and{,(¢) : {g,|g"R 'g, < ¢}. By

applying the triangle inequality, the interference powaen be transformed as follows:
(g0 +91)"w| < |gi'w|+ g1 w| < |gg'w| + Vel|Qull, (4.10)

where@Q = A~'/2U with A andU being obtained by the eigenvalue decomposition
of R"'asR™! = UYAU. The last inequality in (4.10) is obtained by solving the
problem 1271{%) |gtw| (refer to Lemma 4.2). Moreover, since the arbitrary phase
rotation ofw does not change the value of the objective function or thestcamts,
according to Remark 4.1 and Lemma 4.4, we can assumethat andg, have the

same phase, i.e.,

Re{w”h} >0, Im{w"g,} =0, and Imw"”h} = 0. (4.11)
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Hence, the interference constraint can be transformedwuadsecond order cone in-

equalities as follows

Ve|Qul| + gf'w < VT, andv/e|| Qul| — gffw < VT. (4.12)
By combining (4.8), (4.12), with (4.11)P(1) is transformed into the standard SOCP
problem as follows
maxhw
w
subject to:|w|| < VP, Im{w'g,} =0, (4.13)

VellQul| + g¢'w < VT, Vel|Qu| — gflw < VT.
Since the parameters and g,, and the variablav in (4.13) have complex values,
we first convert them to its corresponding real-valued fonnoider to simplify the

solution. Definew := [Re{w}”, Im{w}T|", g, := [Re{g,}”,Im{g,}"]", g, =

) - Re{Q} —Im{Q}
[Re{h}", Im{h}T]", g, := [Im{g,}", —Re{g,}"]", andQ :=
Im{Q} Re{Q}
We then can rewrite the standard SOCP problem (4.13) as
maxg’w
w
subject to: ||w|| < VP, glw =0, (4.14)

Vel Q|| + gl < VT, Ve| Q|| — gl < VT.
Problem (4.14) can be solved by a standard interior poirgnarm SeDuMi [98],
which has a polynomial complexity. In the next section, weeligp an analytical
algorithm to solve P1), which reduces the complexity of the interior point based

algorithm substantially.

4.5 An Analytical Solution

In this section, we present a geometric approachPtb)( We begin by studying a

special case, the mean feedback case, Res o%I. Due to its special geometric
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structure, the mean feedback case problem can be solveathaex-form algorithm.
We next show thatlf1) can be transformed into an optimization problem similaht®
mean feedback case. Based on the closed-form solutioreddny the mean feedback
case, the analytical solution t®{) with a general form of a covariance matdk is

presented in Subsection 4.5.2.

45.1 Mean Feedback Case

Based on the observation in Lemma 4.1 and the definition ofrtban feedback, the

special case ofif1) with mean feedback can be written as follows.

Mean feedback problem P3): >gn”aﬂ( ) log(1 + ph*vv'’h)
p20,[|V||=

subjectto: p < P, (4.15)
pgoo’lg <T.for ||g — go|* <eo®.
ProblemP3 has two constraints, i.e., the transmit power constraidttha inter-

ference constraint. Similar to the idea in [68], the two-stoaint problem is decoupled

into two single-constraint subproblems:

Subproblem 1 SP1): >(ETI]\aT|( 1 log(1 + phfvvf h) (4.16)
p=0,]|V[|=

subject to: p<P. (4.17)

Subproblem 2 SP2): >(ETI]\aT|( 1 log(1 + ph"vv h) (4.18)
p=0,]|V[|=

subjectto:  pgfvvflg < T, for ||g — g,l|? < eo?. (4.19)

In the sequel, we present the algorithm to obtain the optpoalerp,,: and the
optimal beamforming vectaw,: for both subproblems in subsection 4.5.1.1, and de-

scribe the relationship between the subproblems and proBin subsection 4.5.1.2.
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45.1.1 Solution to subproblems

For SP1, the optimal power is constrained by the transmit power taimg, and thus
popt = P. Moreover, since there does not exist any constraints otvé¢aenforming
direction, it is obvious that the optimal beamforming dtrec is equal tah, i.e.,vqp =
h/||h||. Thus, the optimal covariance matt,y for SP1 is Phh' /||h|. In the
following, we focus on the solution t8P2.

SP2 has infinitely many interference constraints, and thus iSl&problem too.
By following a similar line of thinking as in Lemma 4.8P2 can be transformed into

an equivalent problem that has finite constraints as follows

Lemma 4.5 SP2 and the following optimization problem:

nﬂaﬂ( log(1 + ph"vvh), subject to: pgﬁ,t’v'ngOIOt <T, (4.20)
p>0,||V||=1

whereg, = g, + \/eov, have the same optimal solution.

The proof can be found in Appendix C.5. SinfsP2 can be viewed as a special

case ofP1 by settingP = oo, it is evident from Lemma 4.4 that the optimal solution

of problem (4.20) lies in the plane spanneddyy andg , i.e., the optimab found in
this 2-D space is also the globally optimal solution of thigioal problemSP2. We
next apply a geometric approach to search the optimal salutee., by restricting our
search space to a 2-D space. As shown in Fig. 4.3, we defina e lretweervy and

g, asp. Itis easy to observe that< a < 7/22. Sincew lies in a 2-D spacey can be
uniquely identified by the angle. Hence, we need only to search for the optimal angle
Bopt- By exploiting the relationship betweenv, andg, the two-variable optimization
problem (4.20) can be further transformed into an optinnzaproblem with a single

variables, which can be readily solved.

°Note that we can always replabeby —h without affecting the final result 8P2. Therefore, if
a > m/2, we can have a new equivalent problem by repladingith —h. The inequalityn < 7/2

holds for the new problem.
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~

g,
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L'/p " \/PVopt
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ﬁ N
« g1
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Figure 4.3: The geometric explanation of probl&8. The circle is the projection of

g = {glllg — golI> = ¢} on the plane spanned lgy, andg, .

By observing Fig. 4.3, the angle betwdeandv is 5—«, and hence the objective

function of (4.20) can be expressed as

max log(1 + phvv"h) = mﬁax log (1 + pllh||* cos?(3 — a)). (4.21)

[v]=1

Clearly, the maximum rate is achieved if the following funat

£(B) := pl|h||? cos?(6 — a) (4.22)

is maximized.
Moreover, it can be proved by contradiction that the intenfiee constraint is

satisfied with equality, i.eg{,Sgon = I'. Thus, we have

2
PGop0" Gope = D(go + Veov)Tvv' (g, + Veov) = p(|lgoll cos B + Veo)” =T.
(4.23)

Hence, the interference constraint is transformed into

I
(llgoll cos B + vea)*

p= (4.24)
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By substituting (4.24) into (4.22), we have
|R|]°T cos®(8 — a)

= p|lh||? cos®(f — a) = . 4.25
f(B) = pl|h]]” cos™(8 — ) (g0l cos(3) + Vo)’ (4.25)

Thus, the optimab,,: can be expressed as
Bopt = arg max f(/f) = arg max [RIT cos™(5 — a) (4.26)

(llgoll cos(8) + veo)*

The problem of (4.26) is a single variable optimization peof. It is easy to observe
that the feasible region fos is [, 7/2]. According to the sufficient and necessary
condition for the optimal solution of an optimization prebi, 5. lies either on the

border of the regiond or 7 /2) or on the point which satisfiesf (3)/05 = 0. Since
o) 2IRIPT cos(3 = a) (sina —sin(3 — a)vea/ligoll)

= , (4.27)
3
0B 1goll? (cos 8+ v/ea/llgoll)
we can obtain a locally optimal solutigh = sin™! (”gﬂ%) + « by solving the

equationdf(5)/06 = 0. In the case Wheﬂ{% > 1, f(0) is a non-decreasing
function. Hence, the optimat is 7/2, and we definef(5;) = —oo for this case.

Therefore, the globally optimal solution is

Bopt = arg max(f(a), f(7/2), f(B1))- (4.28)

The optimal powelp,,: can be further obtained by substitutingy: into (4.24).

According to the definition o and Lemma 4.4, we have
Vopt = CLUQ// + bvgj_u (429)

wherea, = cos(fopt) @andb, = sin(fFept). In summarySP2 can be solved by Algo-
rithm 1 as described in Table 4.1.
4.5.1.2 Optimal solution to problemP3

In the preceding subsection, we presented the optimalisn&ifor the two subprob-
lems. We now turn our attention to the relationship betwaeblemP3 and the sub-

problems, and present the complete algorithm to solve proBl3. Since the convex
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Table 4.1: The algorithm for SP2.

Algorithm 1

1. Computes,,: through (4.28),
2. Computepep: according to (4.24),
3. Computev,,; according to (4.29),

_ H
4. Sopt = PoptUoptUgpt-

optimization problemP3 has two constraints, the optimal solution can be classified
into three cases depending on the activeness of the constrdi) only the transmit
power constraint is active; 2) only the interference caistris active; and 3) both
constraints are active. Relying on this classification réhationship between the solu-

tions of problemP3 and the two subproblems is described as follows.

Theorem 4.1 If the optimal solutionS; of SP1 satisfies the constraint &P2, then
S is the optimal solution of problef3. If the optimal solutionS; of SP2 satisfies
the constraint oBP1, thenS, is the optimal solution of proble®3. Otherwise, the
optimal solution of probleni?3 simultaneously satisfies the transmit power constraint

andglfS g,y < I' with equality.
The proof can be found in Appendix C.6.

Remark 4.5 To apply Theorem 4.1, we need to test whetbieand S, satisfy both

constraints. The condition th&; satisfies the interference constraint is
Pni < T, wherePpy = mhanHslg, for ||g — gol|* < eo?, (4.30)

whereP,; can be obtained by applying Lemma 4.2. The condition $hatatisfies the

transmit power constraint is ¢S,) < P.
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Table 4.2: The algorithm for problei?3 in the case where two constraints are satisfied

simultaneously.

Algorithm 2

1. Compute3,,: through (4.33),
2. Based on (4.29), computgy,

_ p H
3- Sopt — onptvopt.

We next discuss the method for finding the solution in the calsere neither
S nor S, is the optimal solution of problen?3. Similarly to the method in the
preceding subsection, we solve this case from a geometsp@etive. According to
Theorem 4.1, in the case in which neittfgrnor S, is the feasible solution, the optimal

covarianceS,,; must satisfy both constraints with equality, i.e.,
_p H H _
Popt = I, andpoptgop{voptvoptgopt =TI (4.31)

Combining these two equalities, we have

P(llgoll cos(B) + Veo)” =T. (4.32)
Thus,
Bopt = arccos (—W). (4.33)

Based ong,,, we can obtain,, from (4.29). We summarize the procedure called
Algorithm 2, which solves the case where both constrairgsaative for problenP 3,
in Table 4.2. Furthermore, we are now ready to present th@kenalgorithm, namely
Algorithm 3, to solve probleni’3 in Table 4.3.

In Algorithm 3, we obtain the optimal solutions &P 1 andSP2 and the optimal
solution to the case where both constraints are active atgharAccording to Theorem
4.1, the final solution obtained in Algorithm 3 is thus theiogl solution of problem

P3.
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Table 4.3: The complete algorithm for probldn3.

Algorithm 3

1. Compute the optimal solutiosl, = Phh" /||h||? for SP1,

2. Compute the optimal solutia$l, for SP2 via Algorithm 1,

3. If S, satisfies the interference constraint, tt#&nis the optimal solution,

4. Elsif S, satisfies the transmit power constraint, tifgnis the optimal solution,

5. Otherwise compute the optimal solution via Algorithm 2.

4.5.2 The Analytical Method for (P1)

In the preceding subsection, the mean feedback proBl&m solved via a closed-form
algorithm. Unlike problen®3, (P1) has a non-identity-matrix covariance feedback.
To exploit the closed-form algorithm, we first transfori1() into a problem with the

mean feedback form as follows.
Equivalent problem (P4): max log(1 + pgZvvg,)
»,U

subject to: p||AY%o|?> < P, (4.34)
pg"ovtg < T, forllg — gl <e,

whereR™' = U"” AU obtained by eigen-decomposidij ™, g := AY?Ug, g, :=
A'2Ug,, g, := AY?Uh, andv := A~'/?Uv. By substituting these definitions
into (4.34), it can be observed that the achieved rates amstr@ints of both¥1) and
P4 are equivalent. Thus, the optimal solution®1 can be obtained by solving its
equivalent problenP4. Moreover, the optimal beamforming vectog,: of problem
P4 can be easily transformed into the optimal solutigp for (P1) by lettingvop: =
U" A'/2p4y. Note that it is not necessary that|| = 1in (4.34).

In the preceding subsection, decoupling the multiple cairgtproblem into sev-

eral single constraint subproblems facilitates the amabsd simplifies the process of
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solving the problem. For probleid4, it can also be decoupled into two subproblems

as follows.
Subproblem 3 SP3): max log(1 + pg“vv'g,) (4.35)
»,U
subject to: p||AY%p||> < P. (4.36)
Subproblem 4 S§P4): max log(1 + pg“vv'g,) (4.37)
»,U

subject to: pg”ovf’g <T'for g —g,l* <e  (4.38)

It is easy to observe th&P3 is equivalent taSP1, and the optimal transmit
covariance matrix o8P3 can be obtained in the same way as that§b¥1. More-
over,SP4 is the same aSP2, and thus it can be solved by Algorithm 1 discussed in
Subsection 4.5.1.1.

The relationship between problefd and subproblemSP3 andSP4 is similar
to the one betweel3 and corresponding subproblems as depicted in Theorem 4.1,
i.e., if either optimal solution 0§P3 or SP4 satisfies both constraints, then it is the
globally optimal solution; otherwise, the optimal solutisatisfies both constraints
with equalities. We hereafter need to consider only the gasehich the solutions
of both subproblems are not feasible for problPa. For this case, the two equality

constraints can be written as follows.
1/2 _H——H= I D)
|AY?p]| =1, and max (g"vv" g) = 5 for||g — g,l|” <e. (4.39)

Assume that the angle betwegp andw is 3, and thatp = ||o||. Similar to Lemma

4.4, the optimalb lies in a plane spanned byandg,, whereg = g,/|g,ll, 9, =

g./llg. |, andg, = g, — (g"g,)g. Thus, if we can determing andp from (4.39),

then the optimab can be identified by

v = p(cos(B)g + sin(3)g, ). (4.40)
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Table 4.4: The algorithm for problei?4 in the case where two constraints are satisfied

simultaneously.

Algorithm 4

1. Compute3 via (4.44), and compute via (4.40),
2. Based on the relationship betweeandv, computevqyy,

—_ p H
3- Sopt — onpt,vopt.

Based on the new variablgsandp, the constraints (4.39) can be transformed as

follows.
P A2 (cos(B)g +sin(Dg, )| = 1. (4.41)
and p( cos(3)]goll + Ve) = \/g (4.42)
According to (4.41), we have
p= (4.43)

1
| a2 (cos(B)g +sin(A)g,) ||

Substituting (4.43) into (4.42), we have

\/EHAW(COS@@ +sin(4)g.) H = cos(B)1goll + Ve. (4.44)

Hence, the optimab can be obtained by solving (4.44), angl; can be obtained by
substituting3 into (4.40). In summary, the procedure to solve the case iotwioth
constraints are active is listed as Algorithm 4 in Table #&éreover, we are now ready
to present the complete algorithm, namely Algorithm 5, fdwsg (P1) in Table 4.5.
In Algorithm 5, we obtain the optimal solutions 8?3 andSP4 and the optimal
solution to the case where both constraints are active atgharAccording to Theorem

4.1, the final result obtained in Algorithm 5 is thus the oglsolution of P1).
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Table 4.5: The complete algorithm fdP).

Algorithm 5

1. Compute the optimal solutiofi; = Phh' /||h||? for SP3,

2. Compute the optimal solutia$i, for SP4 via Algorithm 4,

3. If S; satisfies the interference constraint, thfenis the optimal solution,

4. Elsif S, satisfies the transmit power constraint, tifenis the optimal solution,

5. Otherwise compute the optimal solution through Algant.

Remark 4.6 The complexity of the interior point algorithm for the SOCPlgem
(4.14)is O(N*?log(2)), wheree denotes the error tolerance [53]. For Algorithm 5,
a maximum of)(log()) operations is needed to sol@.44) and the complexity for
each operation i€ (log(N?)). Hence, the computation complexity required for Algo-

rithm 5 isO(NN?log (%)), which is much less than that of the interior point algorithm

4.6 Numerical Examples

Numerical examples are provided in this section to evaltiaeperformance of the
proposed algorithms. In the examples, it is assumed thagrbiges of the channel
vectorsh and g, are modeled as independent CSCG RVs with zero mean and unit
variance. Moreover, we denote bythe distance between the SU-Tx and the SU-RX,
and byl, the distance between the SU-Tx and the PU. It is assumecdiaatne path
loss model is used to describe the transmissions from th&Sta-the SU-Rx and to

the PU, and the path loss exponent is chosen th Bdne noise power is chosen to be

1, and the transmit power and interference power are defing nelative to the noise

power. For all cases, we choose= 0 dB.
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4.6.1 Comparison of the Analytical Solution and the Solutia Ob-

tained by the SOCP Algorithm

In this example, we compare the two results obtained by alatdn'SOCP algorithm
(SeDuMi) and Algorithm 3. We consider the system with= 3, I,/l, = 2, and P
ranging from 3 dB to 10 dB. In Fig. 4.4, we can see that the teslitained by different
algorithms coincide. This is because both algorithms dater the optimal solution.
Compared with the SOCP algorithm solution, Algorithm 3 afdahe solution directly,
and thus it has lower complexity. In Fig. 4.5, we compare teresults obtained by
SeDuMi and Algorithm 5. We consider the system with= 3, P = 5 dB, andl, /I
ranging from 1 to 10. The covariance mat#ikis generated byR? R,, where each
element ofR, follows Gaussian distribution with zero mean and unit vac& From
Fig. 4.5, we can see that the results obtained by the twoitigts coincide again.
Moreover, we note that the achievable rate with 0.2 is always greater than or equal

to the rate withe = 0.3, since a largee corresponds to the stricter constraints.

4.6.2 Effectiveness of the Interference Constraint

In this example, we apply Algorithm 3 to solve probl&. In Fig. 4.6, we depict the
achievable rate versus the ratig/; under different transmit power constraints. The
increase of the ratif /I, corresponds the decrease of the interference power ciomistra
As shown in Fig. 4.6, with an increase bkfl;, the achievable rate increases due to
the lower interference constraint. Until the rafigl; reaches a certain value, the
achievable rate remains unchanged, since the transmitrmmmstraint dominates the

result, and the interference constraint becomes inactive.
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4.6.3 The Activeness of the Constraints

In this example, we compare the achieved ratedf) (with a single transmit power
constraint, a single interference constraint and bothtcaings. Here, we choosg =

3, e = 0.2, and generaté# in the same way as in the first numerical example. Fig. 4.7
plots three achievable rates for different constraintspeetively. It can be observed
from Fig. 4.7 that the rate under two constraints is alwags than or equal to the rate

under a single constraint. Obviously, this is due to thettaat extra constraints reduce
the degree of freedom of the transmitter.

4.7 Conclusions

In this chapter, the robust cognitive beamforming desigilam has been investigated
for CR MISO channel, in which only partial CSI of the link frofime SU-Tx to the PU

is available at the SU-Tx. The problem can be formulated aSI&noptimization
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Capacity (bps/Hz)

Figure 4.7: Comparison of the rate under different constsaf (P1). (i) the maximal
rate subject to interference constraint and transmit paeastraint simultaneously;
(i) the maximal rate subject to a single transmit power ¢@mst; (iii) the maximal

rate subject to a single interference constraint.

problem. Two approaches have been proposed to obtain tireabolution of the
problem: one approach transforms the problem into a SOCHgm while the other
approach solves the problem analytically. Numerical eXampave been provided to

present a comparison of the two approaches as well as to stadsffectiveness and

activeness of imposed constraints.
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Chapter 5

Applications of the CR Resource

Allocation Solution

This chapter applies the solution of the resource allongpimblem for CR MIMO
channels to solve a capacity computation problem for sgdv#O channels. The
capacity computation for secrecy MIMO channel can be foatad as a non-convex
max-min problem, which cannot be solved efficiently by staddconvex optimization
techniques. To handle this difficulty, we explore the relasihip between the secrecy
MIMO channel and the recently developed CR MIMO channel.eBam this relation-
ship, we transform the non-convex secrecy rate maximiagtioblem into a sequence
of convex CR spectrum sharing capacity computation probJemder various setups
of the secrecy channel. For the case of the MISO secrecy ehwiith single-antenna
eavesdroppers, we propose efficient algorithms to competenaximum achievable
secrecy rate, while for the case with multi-antenna eawggulr receivers, we obtain

various new bounds on the achievable secrecy rate.
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5.1 Introduction

As discussed in Chapter 1, in a spectrum sharing CR netwitik§U is allowed to si-
multaneously transmit with the legal PU over the same spettprovided that the SU
to PU interference level is regulated subject to a certaeriarence power constraint.
In [36], the resource allocation problem for the CR MIMO chaehwas formulated
as a transmit rate maximization problem while keep the fatence power at the PU
lower than certain threshold. On the other hand, in a sedranogmission system, the
secrecy transmit is required to send confidential messaige legitimate destinations
while guaranteeing that the message cannot be decoded dayaathesdroppers. It is
worth noting that the system models of the secrecy MIMO ckband the CR MIMO
channel are fairly similar in the sense that the secrecy ahtt&hsmitters need to reg-
ulate the resultant signal power level at the eavesdroppkeP&, respectively, so as to
achieve the goals of confidential transmission and PU plioteaespectively.

In this chapter, we study the achievable rates for the MIM@reszy channel
with multiple single-/multi-antenna eavesdroppers. Adatg to [64, 65], by assum-
ing Gaussian input, the achievable secrecy rate can be nzedmia optimizing over
the transmit covariance matrix of the secrecy user to madrthhe minimum differ-
ence between the mutual information of the secrecy chamuethese of the channels
from the secrecy transmitter to different eavesdroppérsan thus be shown that the
resulting secrecy rate maximization problem is a non-comaax-min optimization
problem, which is difficult to solve via existing methods. dddress this problem, in
this chapter we consider an auxiliary CR channel with mldtpUs bearing the same
channel responses as those eavesdroppers in the secraogich&e then establish a
relationship between this auxiliary CR channel and theessrorhannel by proving that
the optimal transmit covariance matrix for the secrecy odlehis the same as that for

the CR channel with properly selected IT constraints forRbls. Thereby, finding the
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5.2 System Model and Problem Formulation

optimal complex transmit covariance matrix for the secrelegnnel becomes equiv-
alent to searching over a set of real IT constraints in theliaux CR channel, thus

substantially reducing the computational complexity. é&hen this relationship, we
transform the non-convex secrecy rate maximization probigo a sequence of con-
vex CR spectrum sharing capacity computation problemsegmuvatious setups of the
secrecy channel. For the case of MISO or MIMO secrecy chamitielsingle-antenna

eavesdroppers, we propose efficient algorithms to competenaximum achievable
secrecy rate, while for the case with multi-antenna eawgguir receivers, we obtain
various new bounds on the achievable secrecy rate.

The rest of this chapter is organized as follows. Sectiorpfe®ents the system
models and problem formulations for the CR transmissionthedsecrecy transmis-
sion. Section 5.3 describes the main theoretical resulsi®thapter on the relation-
ship between the secrecy achievable rate and the CR speshanmg capacity, and
develops an efficient algorithm to compute the maximum aelfike rate for the MISO
secrecy channel with single-antenna eavesdroppers.o8éc# and Section 5.5 then
extend the results to the cases of multi-antenna secrecearesdropper receivers,
respectively. Section 5.6 presents some numerical examipieally, Section 5.7 con-

cludes the chapter.

5.2 System Model and Problem Formulation

In this section, we present system models and problem fatiouks for the CR MIMO

channel and the secrecy MIMO channel.

101



5.2 System Model and Problem Formulation

SU-RX

SC-Rx

(b)

Figure 5.1: The system models: (a) the MISO CR channel wigingle-antenna PUs;

and (b) the MISO secrecy channel withsingle-antenna eavesdroppers.
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5.2.1 CR MISO Transmission

As shown in Fig. 5.1(a), we consider a MISO CR channel, whbeeeSU-Tx is
equipped withV transmit antennas, and the SU-RXx is equipped with a singkEve
antennas. The SU-Tx to SU-Rx channel is denoted by a 1 matrix h,. Moreover,
there arel{ single-antenna PU receivers denoted by,R&- 1, - - - , K, and the chan-
nel from SU-Tx to PYis denoted by théV x 1 vectorg,. The received signaj at

SU-Rx is expressed as
y=hlz + 2 (5.1)

where x is the transmit signal vector at SU-Tx, aaddenotes the noise vector at
SU-Rx. The entries of the noise vector are independent CSE§& AR zero mean
and covariance matriX. Since the SU shares the same spectrum with the PUs, there
are K interference power constraints imposed to the SU transonisexpressed as
Ellgfz?] < Ty,i = 1,---, K, wherel'; denotes the tolerable interference power
threshold for P

Consider the CR MIMO transmission problem, in which we deiae the op-
timal transmit covariance matrix for SU-Tx to maximize thetalrate subject to the
transmit power constraint and the interference power caimss for the/’ PUs. Math-

ematically, this problem can be formulated as [36]
(PA) : max log [T+ h!Sh,|
subject to: t(S) < P
g’8g, <T'y,i=1,--- K
wherex is CSCG distributed with zero means and a covariance matrnirigd byS =
E[zz"], and P denotes the transmit power constraiqPA) is termed as spectrum

sharing capacity computation problem. Note tRat a positive semi-definite matrix

such that(PA) is a convex problem and can be solved efficiently by the stahda
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5.2 System Model and Problem Formulation

interior point method [53].

5.2.2 Secrecy MISO Channel

As shown in Fig. 5.1(b), we consider a MISO secrecy channbEresthe secrecy
transmitter (SC-Tx) is equipped witN transmit antennas, and the secrecy receiver
(SC-RX) is equipped witld/ receive antennas. Moreover, there &fesingle-antenna
eavesdroppers. In accordance with the earlier introdud&OMCR channel, the chan-
nel response from SC-Tx to SC-Rx is denotediyy and the channel response from
SC-Tx to theith eavesdropper (EAis denoted by,,i = 1,--- , K. According to the
secrecy requirement, the transmitted mesd&gigom SC-Tx should not be decoded
by any of the eavesdroppers, i.8.(W|y;) > r, Vi, with y; denoting the received signal
at EA;, andr denoting the secrecy transmit rate. According to the resulf64, 65],

the secrecy capacity can be obtained by solving the follgwiptimization problem

QZHSQz>
o;

(PB) : mgx min log |I + h,Sh”| —log <1 +
subject to: t(S) < P

whereS denotes the transmit covariance matrix of SC-Tx, similahad of SU-Tx in
the CR case, and?’ denotes the variance of the zero-mean CSCG noise at(e4)
is termed as secrecy capacity computation problem.

We see thatPB) is a non-convex optimization problem since its objectivectu
tion is the difference between two concave functionsSoand thus not necessarily
concave. Existing methods in the literature [58, 64, 65,f60the MISO secrecy ca-
pacity computation is only applicable to the case of a sieghesdropper. However,
these methods cannot solve the case with multiple eaveseirs{PB) even for the

case where each eavesdropper has a single antenna.

Problem(PB) in the case of multi-antenna eavesdroppers will be studited In Section 5.5.
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5.3 Relationship Between Secrecy Capacity and Spectrum Stirag Capacity

Remark 5.1 According to Fig. 5.1, it is easy to observe that the systematsmf the
CR transmission and the secrecy transmission bear theagitgithat they both need
to control the received signal power levels at both PUs angesdroppers. However,
note that PA ) guarantees that the interference power at each PU reces/eeliow the
required threshold without considering the PU noise powsrile for (PB), through
the second term in the objective function, the confidengiatll at each eavesdropper
is not only related to the received signal power from SC-Ti,dlso related to the
noise power at eavesdroppers. Therefore, one immediatgtiqnas whether there
exists a relationship between these two systems such thatmaolve the non-convex
problem (PB) by transforming it into some form @PA) that is convex and thus
efficiently solvable. With this motivation, we first studg telationship between these

two problems, and then propose corresponding algorithnsotee(PB).

5.3 Relationship Between Secrecy Capacity and Spec-
trum Sharing Capacity

In this section, we present main theoretical results of tiepter on the relationship
between the secrecy capacity computation prob(@&B) and the spectrum sharing
capacity computation problePA). Based on such a relationship, we then propose
a new efficient algorithm to compute the MISO secrecy capawitih multiple single-

antenna eavesdroppers.

5.3.1 Main Results

Theorem 5.1 For a given(PB), there exists a set of interference power constraint
valuesI';,i = 1,--- , K, such that the resultingPA ) has the same solution as that of

(PB).

105



5.3 Relationship Between Secrecy Capacity and Spectrum Stirag Capacity

The proof can be found in Appendix D.1. Theorem 5.1 estabdishe relationship be-
tween(PA) and(PB). To further investigate this relationship, we define an karyi

function ofI';s as
g(I'y, -, Tg) = mgx I+ hfShS)

subject to: ttS) < P (5.2)
nggZ- <Iyi=1,---,K.

Note that the only difference between Problem (5.2) dP4) lies in their objective
functions: The former one does not involve a logarithmicction of matrix deter-
minant while the latter one does. As a result, Problem (%2join-convex since its
objective function is not concave ifi. Also note that Problem (5.2) is equivalent to
(PA) since they have the same optimal solution fr Therefore, although Prob-
lem (5.2) is non-convex, its optimal solution can be obtdiuwi solving the convex

counterpartPA).

Theorem 5.2 (PB) is equivalent to the following optimization problem:

. o Q(Fh T >FK)
pmax min Fi(Ty, -, Tre) o= 1+ /02

(5.3)
The proof can be found in Appendix D.2. Theorem 5.2 estabsighe relationship
between(PB) and the auxiliary functiog(I'y, - - - , ') that is related tgPA). The
equivalence between Problem (5.3) ditB) means that by solving the optimBJs
in Problem (5.3), we could solve an optimsilgiveng(I';,--- ,T'x) is an embedded
optimization problem ovesS inside Problem (5.3). Such an optimélis also the
solution for(PB), for which the explanation is given in Appendix D.2.

Problem (5.3) can be solved by utilizing an important propef g(I'y,--- , T'x)

described as follows:
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5.3 Relationship Between Secrecy Capacity and Spectrum Stirag Capacity

Theorem 5.3 The functiory(I'y, - - - , ') is @a concave function with respectlg,- - - ,
I'x, and
8 ... .
rYi<F17“' 7FK) = g( = : K) :Mgl)‘I—i_h'fS(l)h’sL =1 7K (54)

al’;

whereS™ anduf.l) are the optimal solution ofPA ) and the corresponding Lagrange
multiplier (the dual solution) with respect to thiéh interference power constraint,

respectively.

The proof can be found in Appendix D.3. Note that from Theo®) it follows
that the gradient of(T';,--- ,I'x) in (5.3) can be obtained by solvir@A) via the
Lagrange duality method, which completes the equivalerteden(PA) and(PB)

via the intermediate problem (5.3). At last, we have
Theorem 5.4 Problem(5.3)is a quasi-concave maximization problem.

The proof can be found in Appendix D.4. Theorem 5.4 suggbatdtroblem (5.3) can
be solved by utilizing convex optimization techniques,vigrich the details are given

in the next section.

5.3.2 Algorithms

In this subsection, we present a new algorithm to comput®Miis®© secrecy capacity
by exploiting the relationship between the secrecy trassion and the CR transmis-
sion, which was developed in the previous subsection. Afiogrto Theorems 5.2 and
5.4, (PB) is equivalent to the quasi-concave maximization probler8)(5Thus, we
instead study Problem (5.3) since it is easier to handle tRd3).

According to [53], a quasi-concave maximization problem loa reduced to solv-

ing a sequence of convex feasibility problems. Thus, Proklg.3) can be further
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5.3 Relationship Between Secrecy Capacity and Spectrum Stirag Capacity

transformed as

max t

B (5.5)
subjectto g(I'y,--- ,I'x) > t(1+1;/07),i=1,-- K.

Let¢t* be the optimal solution of Problem (5.5). Cleattyjs also the optimal value of

Problem (5.3). If the feasibility problem

max O

Pt (5.6)
subjectto: g(T'y,--- ,Tx) > t(1+T/o}),i=1,--- | K

for a givent is feasible, then it follows that > t. Conversely, if Problem (5.6) is
infeasible, ther* < ¢. Therefore, by assuming an interyal, ¢ | known to contain the
optimalt*, the optimal solution of Problem (5.5) can be found easily aibisection
search. Note that a suitable value faran be chosen agoo, - - - , 00) from (5.2).

We next solve the feasibility problem (5.6) by a similar nuethliscussed in [80].
It is worth noting that the feasibility problem (5.6) can bewed as an optimization

problem. The Lagrange function of Problem (5.6) can be amitis

K

Lo({m},Tr e+ Tie) = S w9y, - Ti) = t(1 +Tifo?))  (BT)

=1
where; is the non-negative dual variable for th#h constraint, andv;} denotes

v, -, Vk. The corresponding dual function is then defined as

K

fol{m}) = max > (s, Tae) = 41+ Tifo?) ). (5.8)

i=1
Due to its convexity, Problem (5.6) can be transformed itstequivalent dual problem

as

I{I}jl? fo{vi}) (5.9)

and the duality gap between the optimal values of Proble6) éhd Problem (5.9) is

zero if Problem (5.6) is feasible.
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Table 5.1: Algorithm for Problem (5.3).

Algorithm 1

1. Initialization: t™" = 0, tM* = ¢,
2. repeat
b S (¢min o gmax)
Solve the feasibility problem (5.6). If Problem (5.6) is$éde, t™" — ¢;
otherwise M « t.
Stop, whentma — ¢min < ¢

3. The optimal value of Problem (5.3) is takent&s.

Since it is known from Theorem 5.3 that functigi’y, - - - ,I'x) is concave with
respect to{I';,-- - , '}, Problem (5.8) can be solved via a gradient-based algorithm
According to Theorem 5.3, the gradient of functigi', - - - , ') can be obtained by
solving (PA). Furthermore, since functiofy({v;}) is convex with respect t¢v; },
Problem (5.9) can be solved by a subgradient-based alggrigbch as the ellipsoid
method [53]. Similar to Lemma 3.5 in [80], Problem (5.6) ieiasible if and only if
there exist{r;} such thatf,({r;}) < 0. Using this fact along with the subgradient-
based search ovdr;}, the feasibility problem (5.6) can be solved. To summarize,
the algorithm for Problem (5.3) with a target accuracy patam: is summarized as
Algorithm 1 in Table 5.1.

Since the number of iterations required for the bisecti@ndeovert is indepen-
dent of K, the overall complexity of Algorithm 1 for solving Problers.8) bears the
same order ovek as that for Problem (5.6), which 8(K*).

According to Theorem 5.1, we can find a set of paramelfgsssuch that the
corresponding problerfPA ) has the same solution as that{ ®B). Since the optimal

solution of(PA) is known to be a rank-one matrix [68], so is the optimal solufior
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(PB). Thus, we obtain the following corollary.
Corollary 5.1 The optimal solution for ProblefPB) is a rank-one matrix.

It should be pointed out that there in fact exists an alt@reanethod to solve
(PB), without resorting to the relationship between the sectemmysmission and the

CR transmission. We present this method as follows. Sinddarheorem 5.4, we

e _ 1+h"Sh, . . . .
prove that the functior;(.S) := 19759 is quasi-concave with respect $in
the following theorem.

Theorem 5.5 F}(S) is a quasi-concave function for=1, ..., K.

The proof can be found in Appendix D.5.

Therefore,(PB) can be transformed into the following equivalent problem

max t
St
subject to: t(S) < P (5.10)
hSh;
1+ h7Sh, 2t<1+ i f )Zzl K
O

2

wheret is a positive variable. For the fixedall the constraints in the above problem
are linear matrix inequalities ove¥, and thus the corresponding feasibility problem
(similarly defined as Problem (5.6)) can be viewed as a safiiite programming
(SDP) feasibility problem. Correspondingly, the optimalue oft can be obtained
by a bisection search. However, without resorting to theesscand CR transmission
relationship, it would be difficult to prove that the optimednsmit covariance matrix

obtained above in (5.10) should be rank-one.

5.4 Multi-Antenna Secrecy Receiver

In this section, we extend our results for the MISO secre@nokl to the case where

the secrecy receiver is equipped with antennas) > 1. In such cases, the MIMO
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5.4 Multi-Antenna Secrecy Receiver

channel from SC-Tx to SC-Rx can be denoted by a M complex matrix,H ;. With-
out loss of generality, it is assumed that the receiver neéstor at SC-Rx is CSCG
distributed with zero means and an identity covariance ima8imilar to (PB), the
secrecy rate computation for the MIMO secrecy channel witiftipie single-antenna

eavesdroppers can be formulated as the following optimoizgiroblem [64—66]

H )
)

(PC): mSaxm_in log|[I + H?SH | — log (1 +
subject to: t(S) < P.

Similar to Theorems 5.1 and 5.2 in the case of MISO secrecyraait can
be shown (proof is omitted here for brevity) thH&C) is equivalent to the following

optimization problem

.o gy, Tk)
rlr,I.l.a,}ISK man Fi(Ty, o i) o= 1+4T;/0?

(5.11)
where g(I'y,--- ,T'x) is similarly defined ag(I'y,--- ,T'x) in (5.2), while the ob-
jective function for the maximization problem therein isgn for the MIMO case as
\I+HYSH,|. Notethay(';,--- ,T'x) for agiven set of';'s can be obtained by solv-
ing the corresponding CR MIMO channel capacity computgtiailem, which can be
similarly defined agPA ) for the MISO case and efficiently solvable via convex opti-
mization techniques [68]. Therefore, by taking the lodamitof min, E(Fl, o Tg)

in (5.11), for a given set off;'s, a corresponding lower bound on the MIMO secrecy
channel capacity is obtained. The remaining problem is tbdimd the set of optimal
I';’s that attain the secrecy rate, which is the maximum of aldbhievable capacity
lower bounds. This problem can be easily resolved when tinebeu of eavesdrop-
pers,K, is small, via a simple grid-based search obgs in R%. Note that whenk

is small, e.g.,K = 1, the grid-based search oviys is far more efficient than a di-

rect search ove$ in (PC). However, the complexity for such a grid-based searching

scheme increases exponentially with
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As for the MISO secrecy channel case, if similar results Tikeorems 5.3 and
5.4 can be shown for functiof(I'y, - - - , I'x) in the MIMO case, Problem (5.11) then
becomes a quasi-concave maximization problem and is tHualde by a similar al-
gorithm like Algorithm 1. As shown in Section 5.3, such anaaithm has only a
polynomial complexity overs. However, it is shown via the following example that
in generalg(T';,--- ,T'x) is not a concave function with respectligs. As a result,
Theorems 5.3 and 5.4 do not hold in general for the case oése®IMO channel
and thus efficient algorithms proposed for the MISO secréeynel cannot be applied

to the MIMO case.

Example 5.1 Consider a MIMO secrecy channel witi = N = 2, H, = I, and
two single-antenna eavesdroppers with channels from S&kx = [1 0] andh, =

[0 1]7, respectively. Now consider the auxiliary MIMO CR chanmelthis secrecy
channel, for which it can be easily shown that the funcgoh,, I';) is equal to(1 +
[')(1+Ty), with'y + Ty < P. Clearly, g(I';, I'2) is neither convex nor concave in

this case.

5.5 Multi-Antenna Eavesdropper Receiver

In this section, we extend our results for the MISO secreeyakl with single-antenna
eavesdroppers to the case with multi-antenna eavesdsoppée assume that each
eavesdropper is equipped witfy, receive antennas, and the channel from SC-Tx to
the ith eavesdropper receiver is denoted@®@yof size N. x N. Similar to(PB), the
MIMO secrecy capacity in the multi-antenna eavesdroppge can be obtained from

the following optimization problem [65]
(PE) : max min log [T +hSh,| —log|I + G;SGF| (5.12)

subject to: t(S) < P (5.13)
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5.5 Multi-Antenna Eavesdropper Receiver

where without loss of generality, we assume that the noiséiseaeavesdropper re-
ceivers are independent CSCG vectors each with zero medmadentity covariance
matrix. Note that unlike the single-antenna eavesdropgee evhere the IT constraint
I'; in the auxiliary CR channel uniquely determines the perfaltyhe secrecy rate due
to theith eavesdropper, there is no such a direct relationshipdestwhe IT constraints
and the secrecy rate in the case of multi-antenna eavessipyevertheless, we could
still derive new upper and lower bounds on the MISO secreiyirethe multi-antenna
eavesdropper case based on the relationship between theysgansmission and the

CR transmission, shown as follows.

5.5.1 Capacity Lower Bound

First, we have the following lemma that relates the constram the total receive sig-
nal power at theth eavesdropper, i.e.,(G”SG;) < I';, to an upper bound on the

resulting secrecy rate penaltyg | I + G SG,|, given as the second term in (5.12).

Lemma 5.1 Ifforanyi,i € {1,--- K}, tr(G;SG) <T;, we havgI + G;SGY| <

(1+ 5)E, whereL = min(N,, N).

The proof can be found in Appendix D.6. Similar to Theorem @m Lemma 5.1,

the following theorem holds:

Theorem 5.6 The optimal value of PE) is lower-bounded by that of the following

optimization problem

(5.14)
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where the functiog(I'y, - - - , ') is defined as
gy, Tk) = mSaX|I + hfShs|

subject to: t(S) < P (5.15)
tr(G,SGH) <Ty,i=1,--- K.
Problem (5.14) can be solved by the gradient-based metinaithsito Algorithm 1.

Accordingly, the lower bound on the MIMO secrecy capacitplgained. Note that

this capacity lower bound is tight wheWi, = 1 and thusl = 1.

5.5.2 Capacity Upper Bound

In the multi-antenna eavesdropper case, the signals egteivdifferent antennas of
each eavesdropper are jointly processed to decode theirgehtsecrecy message.
Therefore, a straightforward upper bound on the secrecgaigpin this case is ob-
tained by assuming that the signals at different antennasaci eavesdropper are
decoded independently. Suppose that is the jth column of the matrixG;, j =
1,---, N, then the upper bound on the secrecy capacity can be obtasned
gz{{jsgi,j>

2

max min log |T + h”Sh,| —log <1 +
S {ig} Tij (5.16)

subject to: t(S) < P.

The above problem is the same(&#B) with the number of single-antenna eavesdrop-

pers equal taV. K, and thus can be solved by Algorithm 1.

5.6 Numerical Examples

In this section, we provide several numerical examplesltstilate the effectiveness
of the proposed algorithms in computing the secrecy chacapgcity under different

system settings. For the examples on the MISO secrecy chaniseassumed that
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5.6 Numerical Examples

N = 4, while for the example of MIMO secrecy channel, it is assuithed)\/ = N =

4. The elements in the secrecy channel vectors/matrices laasmbose from SC-Tx
to eavesdroppers are generated from independent CSCGmarat@bles each with
zero mean and unit variance. Moreover, the noise power atesesdropper antenna
is chosen to be one, and the transmit power of the secrecsntitter, P, is defined in

dB relative to the noise power.

5.6.1 MISO Secrecy Capacity with Two Single-Antenna Eavesdp-

pers

In this example, we consider a secrecy MISO channel With= 2 single-antenna
eavesdroppers. Fig. 5.2 plots the secrecy capacity of basrel obtained by Algo-
rithm 1, where the transmit power ranges from 0 dB to 10 dB.&duer, a reference
achievable secrecy rate of this channel is obtained by thie&ed-Channel SVD (P-
SVD) algorithm in [36]. In this algorithm, the channél is projected into a space,
which is orthogonal tgy, andg,, and thus the secrecy signals cannot be received by
the eavesdroppers. It is easy to observe from Fig. 5.2 teasdbrecy rate obtained
by P-SVD is less than the secrecy capacity obtained by AlgoriL. Moreover, from
Theorem 5.4, it is known that the functidfi(I';, I's) is a quasi-concave function, and
thus the functiomnin,_, » F;(I';,I';) is also a quasi-concave function. In Fig. 5.3, we
plot the value of this function foP = 5 dB. It is observed that this function is indeed

guasi-concave.
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Figure 5.2: Comparison of the secrecy rate by Algorithm 1)(Add that by the P-
SVD algorithm for the MISO secrecy channel with= 4 and k' = 2 single-antenna

eavesdroppers.

Figure 5.3: lllustration of the functiomin,;_, » F;(I';,T's).
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Figure 5.4. Comparison of the secrecy capacity by Algorithand the secrecy rate

by the P-SVD algorithm fon/ = N = 4 and K = 1 single-antenna eavesdropper.

5.6.2 MIMO Secrecy Channel with One Single-Antenna Eavesaip-
per

In this example, we apply Algorithm 2 to compute the secremyacity of a MIMO
channel with one single-antenna eavesdropper. As showigin 34, the secrecy
capacity obtained by Algorithm 2 is larger than the achiévaecrecy rate obtained

by the P-SVD algorithm.

5.6.3 MISO Secrecy Capacity with One Multi-antenna Eavesdp-
per

In this example, by applying the methods discussed in Seéti, we show in Fig. 5.6
the lower and upper bounds on the MISO secrecy capacity wathgle eavesdropper
using N, = 2 receive antennas. From the capacity lower bound, we obtiEasible

transmit covariance matrix and thus a corresponding aahlesecrecy rate, shown in
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Secrecy rate (bps/Hz)

Transmit power

Figure 5.5: The value of the functiafi(I') for M = N = 4, K = 1 single-antenna

eavesdropper, and = 5 dB.

Fig. 5.6 and named as “Achievable Secrecy Rate”. Moreokierathievable secrecy

rate by the P-SVD algorithm is also shown for comparison.

5.7 Conclusions

In this chapter, we have investigated the relationship betwthe multi-antenna CR
transmission problem and the multi-antenna secrecy trissgm problem. By ex-

ploiting this relationship, we have transformed the nonvex secrecy capacity com-
putation problem into a quasi-convex optimization probliemthe MISO case, and
developed various algorithms to obtain the maximum achievseecrecy rate or new

upper/lower bounds for different cases of the multi-angesecrecy channel.
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Figure 5.6: Comparison of the lower and upper bounds on tbeesg rate and the
secrecy rate by the P-SVD algorithm for the MISO secrecy obhbwith N = 4, and

K =1 eavesdropper witV, = 2 receive antennas.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contributions of tiesis, and present some

suggestions for future work.

6.1 Conclusions

This thesis has investigated the resource optimizatiohlenoes for spectrum sharing
based CR SIMO-MAC, CR MIMO-BC, and CR MISO channels, and iggipihe re-
source allocation solution of CR MIMO channels to solve thparity computation
problem of secrecy MIMO channels.

In particular, for the CR SIMO-MAC, we have considered thensate maxi-
mization problem and SINR balancing problem. Unlike thevemtional SIMO-MAC,
the CR SIMO-MAC is not only subject to the transmit power dosists but also the
interference power constraints. To exploit the existirgpathms developed for con-
ventional MAC, the multi-constraint problem should be deposed into several sub-
problems with a single constraint. We have developed twordlgns to decompose
those constraints efficiently. These algorithms could dls@xtended to solve other

multi-constraint optimization problems.
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6.1 Conclusions

Secondly, we have considered the capacity computatiorngrofor the CR MIMO-
BC. Conventionally, the MIMO-BC capacity computation plerh is solved by trans-
forming it into an equivalent MIMO-MAC capacity computatiproblem via the BC-
MAC duality. However, this conventional BC-MAC duality camly be applied to
the case with a single sum power constraint, and it is notiegdge to the CR MIMO
BC case with multiple linear constraints. To handle thigiclifty, a new BC-MAC
duality has been proposed, which generalizes all the agi&C-MAC dualities as its
special cases. Moreover, this new duality result can beexgppb solve the case with
non-linear constraints [85] and the capacity computatiablem for the interference
channels with degraded message sets [40].

Thirdly, most of the existing CR studies assumed that thei€érfectly known
by the SU transmitter. However, in practical environmentyould be difficult for
the SU to obtain accurate CSI. In Chapter 4, we have consldeiscenario where
the CSI of the channel from the SU transmitter to the PU isigdgrtknown by the
SU. The CR performance optimization problem has thus beenulated as a robust
design problem where the interference power constrainildhoe satisfied even for
the worst-case channel realization. Similar to the metimof@7], the robust design
problem can be transformed into a SOCP problem, which caolkedby a standard
interior point algorithm. Based on its special geometniaure, the problem has been
further solved by a closed-form solution with lower compigtaal complexity.

Finally, we have investigated the relationship between@ReMIMO channel
and the secrecy MIMO channel. The two channels are simil#inensense that the
secrecy transmitter and SU transmitter need to regulatetdtant signal power level
at the eavesdropper and PU, so as to achieve the goals of emtididiransmission
and PU protection, respectively. The capacity computgpiailem for the secrecy
MIMO channel with multiple eavesdroppers is a non-conveiinogation problem,

which cannot be solved by the existing algorithms. By expigithis relationship, we
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have transformed the non-convex problem for secrecy MIM&hakls into a sequence
of transmit optimization problems of the associated CR MIl@nnels, which are

convex and easy to be solved.

6.2 Future Work

The following problems can be studied as future work.

6.2.1 Resource Allocation in Fading CR Channels

In Chapter 2 and Chapter 3, we considered the resource @tingaroblems for CR
SIMO-MAC and CR MIMO-BC with deterministic channel respess In wireless
environments, it could be more practical to consider thenfpdhannel models. Thus,
one future direction is to study the resource allocatioatsgies for corresponding
CR channels under fading scenarios, where ergodic or ogtagerate maximization

problems would be of interest.

6.2.2 Optimization for CR Beamforming with Completely Imper-

fect CSI

In Chapter 4, we considered the scenario, where the CSI aftthenel from the SU
transmitter to PU is partially known, but the CSI of the SUklis assumed to be
perfectly known by the SU transmitter. In practice, it woblel more reasonable to
assume that both the CSI of the SU link and the CSI of the chidnma the SU

transmitter to the PU are partially known. Under this setaupew robust optimization

problem could be formulated.
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6.2 Future Work

6.2.3 Upper Layer Issues for CR Networks

In addition to the aforementioned CR research, which mdadyses on the problems
related with physical layer, the studies for upper layetqrols are also important for
the realization of CR networks. Compared with the converaiavireless systems,
it would be a challenging issue in designing the protocalghsas medium access
control, for CR networks with the requirements of protegtihe PU transmission as
well as the performance optimization for the SU networksthdligh some research
work has been done in this area, there are still quite many mgsearch topics that have

not been addressed before. Further research efforts orefgiarch area are needed.
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A. Appendices to Chapter 2

Appendix A

Appendices to Chapter 2

A.1 Proofof Lemma 2.1

In the following proof,F} and F; denote the feasible regions of SP1 and SP2 respec-
tively. Moreover, RV represents the optimal sum rate corresponding to the power
vectorp™, and R® represents the optimal sum rate corresponding to the poseer v
tor p®. Note that (2.6) is a convex optimization problem, auid is the optimal power
vector for SP1. It means th&" > R(p), where R(p) denotes the sum rate under
the power vectop, p € F, andp # pO. If X g0 < Iy, thenp®@ e F,.
Therefore,RY) > R®). On the other hangy® is the optimal power vector for SP2.

It means thai?® > R(p), whereR(p) denotes the sum rate correspondingt@nd

p e Fy,andp # p?. If K gpl" < Ty, thenp) € F,. Therefore R® > R,

It is a contradiction. Therefore, it is impossible that b@ﬁl ggﬂ-pgl) < I'y and

Zfi 1 glﬂ-p(?) < I'y can be satisfied simultaneously.

7
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A.2 Proof of Lemma 2.2

A.2 Proof of Lemma 2.2

The Lagrange function of the optimization problem (2.15) ba written as

K K
L(p7)\7V17"', :Zlog 1+p2 ! +Z)\ < j_zgj,ipi>
i=1 i=1

K
+> v Pe = pr). (A.1)
k=1

where)\; is the Lagrange multiplier for thgth PU’s interference constraint, anglis
the Lagrange multiplier for theth transmit power constraint. Since the optimal point
must locate on the boundary, i.e., it satisfies at least oeef@mence constraint with

© _ 1, and

2

equality. If we assume that the optimal pojit’ satisfiesti 1 91,ip
Zfil g27,-p§0) < I'y, then, according to the complementary slackness conditiea 0,

(A.1) reduces to

K
Zlog Zpl +)\1 Fl Zgupz "‘ZVk(Pk_pk)u
=1 k=1

which corresponds to the Lagrange function of SP1, and teugptimal power alloca-

2 ~1,. Therefore,

2

tion isp(). According to Lemma 2.1, it is impossib}E " | g,.p
our assumption does not hold.

On the other hand, §°5, g,.p) = Ty, then,R® > R(p), whereR(p) denotes
the sum rate under the power vecfgrandp € F,. Because'? is optimal inF, and
pl9) € F,, itis impossible thap(®) # p3),

Similarly, the second part of the lemma can be proved.

A.3 Proof of Lemma 2.3

It is obvious that the optimal power vector is on the bound#rthe feasible region,
i.e., at least one interference constraint is satisfied agtmlity. If we assume that the

optimal solutionp(©) satisfiesy "  g,.p = T'y and>>X | g,:p!” < Ty, then by the

) - 7
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A.4 Lemma A.1 and Its Proof

complementary slackness condition,= 0, the Lagrange function (A.1) reduces to

Zlog 1+ Zpl —i—)\g Zgzzpz +ZVk Py — i),

which is the Lagrange function of SP2, and its optimal poveaterp® does not sat-

isfy 2% g1..p” < I'y. Similarly, we can prove that® does not satisfy " | g, .\ <

I's andZi:1 gLZ-p(O) = I'; simultaneously. Due to the fact tha®) must locate on the

i =

boundary, it must satisfy the two interference equalitisaitaneously.

A.4 Lemma A.1 and Its Proof

LemmaA.1 If A is a positive matrik, and e, is its maximum eigenvalue, there is

no vectorv such thatAv > e,,,v.

Proof : We prove it by contradiction. Suppose that there exists sovecsatisfying
the inequality

Av > €,,,0. (A.2)

The maximal eigenvalue of the positive matdxcan be expressed as [100]

TAy

o =R oy "9
Therefore,
TA TA
Emax > Min rAav_a v, (A.4)

>0 zTv aTv
wherea is the value ofr such that the equality holds. On the other hand, multiplying

both sides of (A.2) wﬂhm, we can derive

> €max- (A.5)

Combining (A.4) and (A.5), we reach a contradictian,, > en.... Therefore, the

assumption is wrong and the Lemma holds. |

1A positive matrix is a matrix whose entries are all positive.
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A.5 Proof of Lemma 2.4

A.5 Proof of Lemma 2.4

We prove it by contradiction. Suppose that*, g,.p\" > Ty and> % g, p® > Iy
can hold simultaneously, i.g7] p*) > I'; andg?p® > T';. Under the PYs interfer-
ence power constraint, singé" = [(p™")7, 1]7 is the eigenvector corresponding to

the maximum eigenvalueﬁrllix, of ®,(U,I'y), we have

(1) (1)
D
e P =&, (U,T,) . (A.6)

1 1

Similarly, for the sub-problem with the B4 interference power constraint, we define

DY (U) Dgq
®,(U,Ty) = 1 1 ; (A7)
r,9: DY (U) .95 Dq
9o = 912, - gr.2)F, andp®@ = [(p?)T, 17, which is the eigenvector corresponding

to the maximum eigenvalueﬁflix, of ®,(U, I'y):

2) 2)
D
@ P = ®,(U,T,) . (A.8)

1 1
Without loss of generality, we assumél, > ¢\1).. One observation from (A.6) and
(A.8) is that the firstK rows in®, (U, I';) and®,(U, ;) are the same. From the first

K rows of (A.8),p? can be represented as

@ DY (U)p® + Dq
P = @ '

€max

Using assumptiog?p® > I';, we have

T T (2) T
g1 DY (U)p'™ + g1 Dq
gip® - L2V 22) =21 (A.9)

€max

Therefore, replacing™ in (A.6) with p® yields

DYT(U Dgq p@ | | 2p® | v p?
©) 9L S, . (A10)
Fllg{D\I’T(U) %Q{Dq 1 €max 1
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A.6 Proof of Lemma 2.5

where (a) is due to (A.9), and (b) is due to the assumptioneﬁﬁ?at > .. Since
). is the maximal eigenvalue af, (U, T";), (A.10) contradicts to Lemma A.1. So

the assumption does not hold.

A.6 Proof of Lemma 2.5

Let (). ande?), be the maximum eigenvalues &f (U, T';) and®,(U,T';), respec-

tively. According to [51], we have

1 1
(1) — 2 — A
€rnax = , ande) = . A1
me oo, ) Cy(U,T'y) ( )

Now, for the first part of the lemma, if we assufigU,I';) < Cy(U,I'y), then from

(A.11) we have'tl, > 2. Replacingp® in (A.8) with p¥), we can derive

DY (U Dgq pM e p® pM
) > 1 > @ (A.12)
LgID¥"(U) LgiDgq 1 et 1

On the other hands'z), is the maximum eigenvalue @,(U,I';). Thus, (A.12) is

contradictory to Lemma A.1. Similarly, the second part & amma can be proved.

A.7 Proof of Lemma 2.6

In [51] and [72], it has been shown that for a fixedthere is a unique power allo-
cation vector and a unique balanced level which are optirffiakrefore, ifp® sat-
isfies the conditionzililgl,ipf.z) < Ty, thenp? is in the feasible region of SP3,
and thusC,(U,T,) < Cy(U,TI';). On the other hand, ip(!) satisfies the condition
S K gaipt" < Ty, thenp() is in the feasible region of SP4’, and thGs(U,T) <

Cy(U,T'y). Thus the two inequalities are contradictory to each othed, they cannot

be satisfied simultaneously.
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A.8 Proof of Lemma 2.7

Let C,(U?,T,) be the optimal balanced SINR level aptl) be the optimal power
vector for the fixed beamforming matri&/‘f) of SP3’, respectively. According to
Lemma 2.5, we have

CHUP,Ty) > CP(Ty). (A.13)

Since there is only one optimal balanced SINR levg! (I';) achieved by!" for SP3,

pM is not necessary to be the optimal power allocation for SR@ tlaus we have
CHUD Ty) < cW(Ty). (A.14)
Combining (A.13) and (A.14), we have
CP(Ty) < CV(Ty). (A.15)

Similarly, letC,(UV, T',) be the optimal balanced SINR level ap@ be the optimal
power vector for the fixed beamforming matliiél) of SP4’, respectively. According

to Lemma 2.5, we have

Co(UM,Ty) > C(TY). (A.16)

Since there is only one optimal balanced SINR levgl (I'y) achieved by)f) for SP4,

p? is not necessary to be the globally optimal power vector f4,%ind thus we have
Cy(UN,Ty) < C(Ty). (A.17)

Combining (A.16) and (A.17), we hawe " (I';) < C'?(T',), which contradicts to
(A.15).
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Appendix B

Appendices to Chapter 3

B.1 Proofof Lemma 3.1

According to previous discussions, the signal from each $Udivided into several
data streams. We now show that the optimal encoding ordenesfet data streams
are arbitrary. It is well known that the optimal objectivduea of the MAC equally
weighted sum rate problem can be achieved by adopting amyiogd[47] [77] [78];
that is, when all the users have the same weights, the opgimhation of the weighted
sum rate maximization problem is independent of the degpdider. Analogously,
the data streams within a SU share the same weight. Thush#@raar encoding order

of those data streams within a SU can achieve the optimatisolu |

B.2 Proof of Lemma 3.2

Let s be the subgradient @f(\). For a given\ > 0, the subgradient of ¢()\) satisfies
g(A) > g(\) + s(A — X), where) is any feasible value. Le§™, i = 1,..., K, be the

optimal covariance matrices in (3.27) for= A, andS™, i = 1, ..., K, be the optimal

7
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B.2 Proof of Lemma 3.2

covariance matrices in (3.27) far= \. We expresg(\) as

g(N) = _max, (f(ST.- . 8F) ~ A} t(ST) ~ P))

wheres :== P — Y tr(8™) is the subgradient of()\). This concludes the prool
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Appendix C

Appendices to Chapter 4

C.1 Proofof Lemmad4.l

(P1) involves infinitely many constraints. Denote the set ofv&ctonstraints by,
the cardinality of the se&f by K, and the channel response related toktieelement
of the setC by g,. According to the Karush-Kuhn-Tucker (KKT) conditions B,
we have:
K
h(1+h"Sh)"'h" + & = A+ 1g.g!, (C.1)
=1
tr(®S) = 0, (C.2)
where® is the dual variable associated with the constr&nt 0, and\ andy; are
the dual variables associated with the transmit power cainstand the interference
constraint, respectively. First, we assume that 0, and thus the rank of the right
hand side of (C.1) igV. Since the first term on the left hand side of (C.1) has rank one
we have

RanK®) > N — 1. (C.3)

Moreover, sinceS > 0 and® > 0, from (C.2) we have t®S) = tr(VZAV S) =
tr(AVSVH) = tr(AS) = 0, whereV AV is the eigenvalue decomposition of ma-
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C.2 Proof of Lemma 4.2

trix ®, andS := VSV, By applying eigenvalue decomposition £ we have
S = > 7;8;8F, wherer; is theith eigenvalue and; is the corresponding eigen-
vector. We next show Rafk) + RanK®) < N by contradiction. Suppose that
RankS) + RankK®) > N. Then, there exists an indg>such that thgth element of
s; and thejth diagonal element oA are non-zero simultaneously. Thus, it is impos-
sible that the equation(tA.S) = 0 holds. It follows that RankS) + Rank ®) < N.
Combining this with (C.3), we have Raf&) < 1.

Second, we assume that= 0 in (C.1). In this caseS must lie in the space
spanned by, i = 1,--- | K. Let the dimensionality of the space bé, where)M <
N even if K is an infinite large value. Therefor& and S are confined in a/-
dimension space. Thus, the reminder of the proof is the sarntesof the casg # 0,

and the proof is complete. |

C.2 Proofof Lemma4.2

The objective functiomg”vv!’ g is a convex function. The duality gap for a convex

maximization problem is zero. The Lagrange function is

L(g.\) = pg"vo"'g — \((g — 9)" R '(9 — go) — ¢), (c4)

oL _

where\ is the Lagrange multiplier. According to the KKT conditiome haveag =

2pvvfig —2AR'(g — g,) = 0. Thus,

p(vg)v = AR (g — g,). (C.5)

We haveg,... = g, + baRv, whereb € R, a € C, and|a| = 1. Since(g —
g R (g — g,) = ¢, we haveb = \/e/Vv Rv. Moreover, by observing (C.5),
we havea = tvflg = tv (g, + baRv) = tv'lg, + tbav Rv, wheret is a real
scalar such thatv?g| = 1. Thus, we haves’g,/|vfg,| = a. The proof follows

immediately. |
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C.3 Proof of Lemma 4.3

C.3 Proof of Lemma 4.3

First, we consider the sufficiency part of this lemma. We amsthat there exists a
covariance matrixSo, and ang,,, that satisfy the conditions (4.5) and (4.6) simul-
taneously. SinceS,; satisfies both the transmit power constraint and the inmemfee
constraint,S,p is a feasible solution fo{1). Moreover, if we assume that there exists
another solutiorS;, which results in a larger achievable rate for the SU linkentla
contradiction will be derived. Without loss of generalitye assume that the constraint
set, which consists of all the active interference constsdior S, is denoted byr .
We divide the sef into two types: one type i, € 7, and the other type ig,, ¢ 7.

Assume that’; andCq,; are the achievable rates for the covariance matii.es
and Sop, respectively. In the case @f,; € 7, we haveC, < Cop, sinceCop is
obtained with fewer constraints. SindeX) is a convex optimization problem that has
a unique optimal solutior§, is indeed the optimal solution. In the caseggf; ¢ 7,
we can observe th&f,; satisfies the constraints i, and S, satisfies the constraint
Jopt- According to the lemma in [68], this case does not exist.

We next proceed to prove the necessity part. SupposeSthats the optimal
solution of (P1). According to Lemma 4.1, we have,, = poptvoptvg{,t. Thus, P1) is

equivalent to

max log(1 + h" Sh)
S>0 (C.6)

subject to: tr(S) < popt, g7 Sg < T, for (g — go)" R ' (g — g,) < e.

According to Lemma 4.2, there is a unique

€
= s aR C.7
Gopt = 9o T 'U(I){ptR'Uopta Vopt, (C.7)

which is the optimal solution o;l maxg’Sg < T'. Thus, for problem (C.6), only
€H(e)

tr(S) < poprandgySgo, < I are active constraints. Thus, it is obvious that problem
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C.4 Proof of Lemma 4.4

(C.6) and problem (4.5) have the same optimal solution. Egtie proof is complete.

C.4 Proofof Lemma4.4

The proof of Lemma 4.4 is divided into two parts. The first psuto prove thawp is

in the form ofa,g,, + 5,9, , wherea, € C andj, € C. The second part is to prove
a, € Randg, € R. In the following proof, we assume thaf, € C are some proper
complex scalars.

According to Lemma 4.3, and Theorem 2 in [36], we have
Vopt = Q1gopt + 2. (C.8)
According to Lemma 4.2, we have
Gopt = 9o + @3Vopt = go + as(1gop + 2h) = gy + 103Gy + a2zh.  (C.9)

According to (C.9), it can be observed tlggt, can be expressed by the linear combi-
nation ofg, andh, where the coefficients are complex. Combining this witt8jCwve
havevy, = aug, + ash, wherea, € C andas; € C. Moreover, since botp, andh
can be expressed as a linear combinatiog ofindg |, we havevoy = g, + 5.9, -
Since rotating,,: does not affect the final result, we can assume R.

We next prove that, € R by contradiction. Atfirst, we assume thiat= a+jb ¢
R. Then we can find an equivaleit = v/a® + »? € R which is a better solution of
(P1) than3,. Assume thaboy = a,g,, + ﬂAle. It is clear that|vopi|| = ||vopt|, and

the interference caused by is
H » ~H € W NHa~ ~H € N
PG optVoptV =p(go + | =75 RVopt) " VoptVopi(Go + 1 | 57— @R Vopt
optVoptVoptd opt (90 oI Roropy opt) Vop opt( 0 ’U(%tR’Uopt opt)
(C.10)

~ ~ 2

'voptR'UOpt
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C.5 Proof of Lemma 4.5

which is equal to that ob,,.. However, the corresponding objective function with;
is
log(1 + ph" dopt rih)
= log(1 + plan @y, + bn.g.)" (g + Bog ) (@) + 5ug) " (an )y + br.g 1))
= log(1 + p(an, v, + b, Bo) (an, 4 by, B7)), (C.12)

and the objective value witbg is

log(1 —i—thvoptvé{pth)
= log(1 + p(an,g,, + thQL)H(%g// + g1 ) (g + ﬁvgJ_)H(ahsg// +bn,g1))

= log(1 + p(an, e + by, Bo) (an, v + bn, B,1))- (C.13)

According to (C.12) and (C.13), we can conclude thgf is a better solution.

The proof follows. |

C.5 Proofof Lemma4.5

Similar to the proof of Lemma 4.3, we can show that the problem

Sopt = arg HéaX log(1 + h" Sh) subject to: géf)thopt <T, (C.14)
7p

whereg,; = argmaxy, g Sopg, for (g — go)"R™"'(g — go) < e, is equivalent to
SP2.

SinceS,ptis arank-1 matrix, according to Lemma 4.2, we hgye = g,++/eov.
Combining this with (C.14), we hav§y = argmaxg log(1 + h"Sh)s.t.: (g, +
Veov)E S (g, + /eov) < T, which is equivalent to (4.20). The proof is compleli.
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C.6 Proof of Theorem 4.1

C.6 Proof of Theorem 4.1

Assume tha,; is the optimal solution for proble@®3. If S, satisfies the interference
constraint, ther$ is a feasible solution for probleif@3. The optimal rate achieved by
Sopt cannot be larger than that 8f;, since the constraint &P1 is a subset of problem
P3. Similarly, we can prove the second part of the Lemma. We ramug on the third
part of this lemma. For problei®3, at least one of iS) < P andg/,,Sgo, < I'is

an active constraint, since if neither of them is active, &g always find ar such
that Sop + €I is a feasible and better solution. Moreover, if onlySty < P is active,
then S, is the optimal solution, which contradicts wigfl,S1go, > T'. Similarly, it

is impossible that only[f,Sg,, < I is active. Therefore, both constraints are active

constraints. [ |
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Appendix D

Appendices to Chapter 5

D.1 Proof of Theorem 5.1

Theorem 5.1 can be proved by contradiction. For the fixedsuppose that the optimal
solution of(PB) is S,. Definel’; = g#S,g,,i = 1,..., K. If the optimal solution of
(PA) with T; = T, Vi, denoted byS,,, satisfiedog |T+h’ S,h,| > log |I+h" S,h,],
then S, is a better solution fofPB) than S, which contradicts the preassumption
that S, is the optimal solution of PB). Then there must blg(I + S hY) <
log(I + hS,h,), which means tha§, is also the optimal solution afPA), with

I =g"S,9;,i=1,..., K. Theorem 5.1 thus follows.

D.2 Proof of Theorem 5.2

It is easy to observe thaPB) can be re-expressed as

e iy LT BLSh)
max 1min
s i 1+gf8Sg;/o? (D.1)

subject to: t(S) < P.
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D.3 Proof of Theorem 5.3

Suppose thaF, is the optimal solution of Problem (D.1) arni#®B). DefineT, :=
I+ hfSth andl'; := g”#S,g.,i = 1,---, K, then the optimal objective value of
Problem (D.1) isf" = min(To/(l +Ty),--,T,/(1+ fK)>.

Suppose that the optimal soluti¢h, of Problem (5.2) withl; = T;, Vi, satisfies
(I + h*S,h,) > T,, thenS, is a better solution for Problem (D.1) tha, which
contradicts the preassumption ttatis the optimal solution of Problem (D.1). On the
other hand, suppose thiat hfS’Ohs < T,. Inthis caseS, is a better solution tha§,
for Problem (5.2), which contradicts the presumption tHaiis the optimal solution
of Problem (5.2). Therefore, we ha¥e = ¢(I'y,--- ,'x). Thus,F is achievable for
Problem (5.3) with the particular choice bf = I;, Vi.

Furthermore, suppose thass are the optimal solutions of Problem (5.3), and the
corresponding optimal objective valueis For Problem (5.2) with'; = T;, suppose
that the optimal solution i§. We can prove thaf’ < F by contradiction: IfF' > F,

S is a better solution for Problem (D.1) th&h, which contradicts the preassumption
that S, is the optimal solution of Problem (D.1). As such, we see fiia not only
achievable for Problem (5.3), but also the optimal value bem (5.3) with the
optimal solutions given a8 = S, andl’; = g”S,g,, Vi (Note thatS is a hidden
design variable for Problem (5.3).).

Theorem 5.2 thus follows.

D.3 Proof of Theorem 5.3

We first study several important properties of Problem (12} is known to be an
equivalent problem of PA). Considering PA) first, its Lagrangian function can be

written as

K
Li(S.\ {}) = log [T + hYShy| = A(S) - P) = 3" pilg!'Sg, —T,) (D.2)

i=1
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D.3 Proof of Theorem 5.3

where\ andy; are the non-negative Lagrange multipliers/dual variabl#is respect
to the transmit power constraint and the interference p@oastraint at PYJ respec-
tively. Since(PA) is a convex optimization problem, the Karush-Kuhn-Tuck&{T)
conditions [53] are both sufficient and necessary for a sniubd be optimal, and solv-
ing (PA) is equivalent to solving its dual problem

min max L, (S, \, {u;:}). D.3
in max Ly (S, (1) 03

On the other hand, the auxiliary problem (5.2) is non-cortigxto the fact that its
objective function is not concave. In general, the KKT catiotgis may not be sufficient
for a feasible solution to be optimal when we have a non-coopéimization problem.

However, we prove in the following lemma that this is not tesefor Problem (5.2).

Lemma D.1 With Problem(5.2), the KKT conditions are both sufficient and necessary

for a solution to be optimal.

Proof : The necessary part of Lemma D.1 is obvious even for a nonesonv
optimization problem [53]. The sufficient part of Lemma Dénde proved via con-

tradiction as follows. The Lagrangian of Problem (5.2) camitten as

K
Lo(S.5,{7i}) = |I + kI Sh.| = 6(tr(S) — P) = 3 7(g/'Sg,~T.)  (D.4)

i=1
whered and~; are the non-negative dual variables with respect to thesinérpower
constraint and the interference power constraint at, Ré$pectively. We first list the

KKT conditions of Problem (5.2) as follows:

K
hoh! =61+ vg.g! (D.5)
1=1
5(tr(S) — P) = 0 (D.6)
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D.3 Proof of Theorem 5.3

Suppose thas®, §©), andvi(o) are a set of primal and dual variables that satisfy the
above KKT conditions, and the corresponding optimal valieroblem (5.2) isC'(©),

The KKT conditions of(PA) are expressed as

K
(I +h?Sh)'hh =M+ 199! (D.8)
i=1
Atr(S) = P) =0 (D.9)
pi(gfSg, —T)=0,i=1,--- K. (D.10)

Suppose thas™, A1, andy\" are the optimal primal and dual variables that satisfy
the above KKT conditions, and the corresponding optimalealf (PA ) is C(Y). Note
that since(PA) is convex, the KKT conditions are both necessary and sufficie

If (D.5)-(D.7) are not sufficient such thaig(C©) # ™, i.e.,8© # W we

could choose

S — SO (D.11)
A=69/T+h7SOR (D.12)
,uiz%(o)/|I+hfS(0)hs|, i=1,--,K (D.13)

for (PA), which clearly also satisfy the KKT conditions ¢PA). Given the suffi-
ciency of the KKT conditions fofPA ), S is also optimal fof PA) based on (D.11)
such thatog(C(®) = ¢, which contradicts our assumption tag(C®) # CO).
Lemma D.1 thus follows. |
Essentially, it is due to the equivalence between the noweooProblem (5.2) and
the conveXPA) that Lemma D.1 holds. From Lemma D.1, it follows that the @yal

gap between Problem (5.2) and its dual problem, defined as
D = min msax Ly(S,0,{7:}), (D.14)

57{77;}

is zero, i.e.g(I'y, -+, I'x) = ming .y maxg Lo(S, 6, {7:}). As such, from (D.4) we
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D.3 Proof of Theorem 5.3

have

dg(I'y,--- . Tx) 0D (g

ar; =ap, =% =LK (D.15)

Combining (D.13) and (D.15), the latter part of Theorem BiBstfollows.

Now we prove the concavity of(I'y, -+ ,I'k). For the functiong(q), where
q := I, ,['g]" € RE, its concavity can be verified by considering an arbitrary
line given byg = = + tv, wherex € RE, v € R, t € Ry, andx + tv € RE [53].
In the sequel, we just need to prove that the functiGn+ tv) is concave with respect
tot. Moreover, if theith IT constraint is not active for Problem (5.2), we haye= 0
from the KKT condition such that the concavity holds. To exid the above trivial
case, we assume that &llIT constraints are active for Problem (5.2) in the following

Define

f2(57717‘ t 77K> = mS,aXLQ(Su(irYlf t 77K> (D16)

as the dual function of Problem (5.2). Lete the subgradient of(d, 71, -+, Vx)-

According to the definition of subgradient, the subgradarihe poinl{S, Ay VK]

satisfies

where[s, 71, - - - , Y| is another arbitrary feasible point.

Lemma D.2 The subgradiens of functionf,(d,~1,- -+ ,vx) at point [5, Ay VK]
is [P —tr(S), Ty —g"Sg,,--- ,I'x — gXSg,], whereS is the optimal solution of

Problem(D.16)at this point.

Proof : Let S be the optimal solution of Problem (D.16) with= § and
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D.3 Proof of Theorem 5.3

Y = %,i=1,---, K. Thus, we have

L6 AK) = F = 3(tr(S) — P) = 3 4u(g! Sg, — T)

K
+> (959, —T:)(3 = 7) (D.18)

wherer = |I 4+ h’Sh,| andi = |I + h Sh,|. According to (D.18), we have Lemma
D.2. ]

According to Lemma D.1, Problem (5.2) is equivalent to italdaroblem

min f2(57717“' 77K) (Dlg)
0,71, VK
where f5(d,71,- -+ ,7x) IS convex. We next consider Problem (5.2) with parameters
P,Ty,--- Ty, denoted as Problem I. Assume tigat), 6@, +" ... 4 are its pri-

mal and dual optimal solutions. Moreover, we have anothen faf Problem (5.2) with

parameters, I'; + tvy,--- ,I'x + tvg, denoted as Problem I, whetds a positive
constant and; is a real constant. Assume th&it?, 6 1% ... %) are the primal

and dual optimal solutions of Problem II. According to (D). 1@we can write the dual

function of Problem Il as

K
3 (6,7, vK) = max [T+ hSh,—6(tr(S) - P) - Z%—(nggi — I — tvy)

=1

(D.20)
To solve Problem I, we apply the subgradient-based algorib search the min-

imum of its dual functionfy (6,71, - - - , vk ) along the subgradient direction. Suppose
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D.3 Proof of Theorem 5.3

that we start from the poirit"), ~, ), cee,

K ]. Based on Lemma D.2, one valid subgradienfgb, v, - - - , yx) at this point is

[0,y + tvg — 9{15(1)917 o g+ tog — 9%5(1)91(]

:[O,tl}l,"' ,tUK], (D21)

where (D.21) is due to the KKT condition of Problemﬂg: —g; HgM) g; = 0 given

%(1) > 0, Vi. Moreover, according to (D.17), we have

f%é“,vq i) + (0P = 60417, 7)) - s, (D.23)
wheres (V) is the subgradient at the poiidt), 1{" - 4\V]. Sinceds® @ ... @
are the dual optimal solutions of Problem II, we hg{¢s?), ~; @) .. ,7K ) < fa W,
w, -+, 7i)). Combining this with (D.21) and (D.22), we have

K K
3 < 3ol 029
i=1 i=1
Thus,
K K
> 7P <> 4P, givent > 0. (D.25)

i=1 =1

Moreover, according to Lemma D.1 and (D.4), we have

otz L 1v) E:%w (D.26)

Note that~; is the Lagrange multiplier of Problem (5.2) with respecthe ith IT
constraint. With different IT threshold, i.e., differerdlue oft, ;s are not necessarily
the same, and thugs can be viewed as implicit functions af Combining (D.25)
with (D.26), it is easy to observ@’% decreases with the increasetddince the
derivative change overis given asy_~ %—(2)% - F %(l)vi <0, i.e., the second

order derivative of functio(x + tv) overt is negative on an arbitrary line + tv in

the feasible region. Thereforg(q) is concave. Theorem 5.3 thus follows.
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D.4 Proof of Theorem 5.4

The quasi-concavity is defined as follows [53]:

Definition D.1 A functionf : R¥ — R is calledquasi-concavé all its sublevel sets
Se = {x e domf|f(x) > a} (D.27)

for « € R, are convex sets.

According to Theorem 5.3,(T', - - - , ') is a concave function df;s. Therefore, the

a-sublevel set of;(I'y,- -+, I'k)

9 Tk)
Sa_{q‘ 1+FZ/O'Z2

= {q|g(T'y,--- ,Tk) > a(l+T;/0})} (D.29)

> al (D.28)

is a convex set for any, and thus the functiof;(T'y, - - - , ') is a quasi-concave func-
tion. Since the objective function of Problem (5.3) is th@mium of K" quasi-concave
functions,F;(T'y,--- ,T'x), ¢ = 1,--- | K, itis still quasi-concave [53]. Theorem 5.4

thus follows.

D.5 Proof of Theorem 5.5

Similar to the proof given in Appendix D.4, thesublevel set OE(S)

1+ hYSh,
1+ (g'Sg;)/o?

= {S|1 +hSh, > a(1 + (g;'Sg;)/0})}. (D.31)

S, = {8 > ) (D.30)

is a convex set. Thus;(S) is a quasi-concave function.
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D.6 Proof of Lemmab.1
We have
I+ G;SGY| = |T+UAU,| = |I+ Al (D.32)

whereG;SGY = U” AU, is the eigenvalue decomposition. SincgrSG) =
tr(A;), from tr(G; SGY) < T it follows that

tr(A;) <T. (D.33)
Combining (D.32) and (D.33) and denotifig= min(N,, V), we have

L

Iy
I +G;SGF| < [T+ =1 =(1+ L)L (D.34)

where the inequality is obtained by solving the followingiplem: maxa,)<r, |1 +

A;|. Lemma 5.1 thus follows.

146



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

Federal Communications Commission, “Spectrum polasktforce,”"Rep. ET

Docket pp. 1-135, Nov. 2002.

M. Islam, C. Koh, S. Oh, X. Qing, Y. Lai, C. Wang, Y.-C. LignB. Toh, F. Chin,
G. Tan, and W. Toh, “Spectrum survey in singapore: Occupamegsurements
and analyses,” iRroc. the Second Int. Conf. on Cognitive Radio Oriented Wire

less Networks and Comm. (CrownCo&ngapore, May 2008.

J. Mitola and G. Q. Maguire, “Cognitive radios: Makingfseare radios more

personal,TEEE Personal Commujwol. 6, no. 4, pp. 13-18, Aug. 1999.

S. Haykin, “Cognitive radio: Brain-empowered wirelessmmunications,”

IEEE J. Select. Areas Communwol. 23, no. 2, pp. 201-202, Feb. 2005.

D. Cabric, S. M. Mishra, and R. W. Brodersen, “Impleméiatiaissues in spec-
trum sensing for cognitive radios,” iRroc. Asilomar Conference on Signals,

Systems and ComputeBerkeley, CA, USA, Nov. 2004.

H. Tang, “Some physical layer issues of wide-band cagaitadio systems,”
in Proc. Int. Symp. on Dynamic Spec. Access Networks (DySmeit)more
Harbor, Maryland, USA, Nov. 2005.

147



BIBLIOGRAPHY

[7] A. Sahai and D. Cabric, “Spectrum sensing: fundameinaitd and practical
challenges,” irProc. Int. Symp. on Dynamic Spec. Access Networks (DySPAN)
Baltimore Harbor, Maryland, USA, Nov. 2005.

[8] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectriansing measure-
ments of pilot, energy, and collaborative detection,Proc. Military Comm.

Conf. (MILCOM) Washington, D.C., USA, Oct. 2006.

[9] H.-S. Chen, W. Gao, and D. G. Daut, “Signature based specsensing algo-
rithms for IEEE 802.22 WRAN,” iHEEE Intern. Conf. Comm. (ICC{lasgow,
Scotland, 19-23, June, 2007.

[10] S. Shankar, C. Cordeiro, and K. Challapali, “Spectrugilearadios: Utiliza-
tion and sensing architectures,” Rroc. Int. Symp. on Dynamic Spec. Access

Networks (DySPANBaltimore Harbor, Maryland, USA, Nov. 2005.

[11] A. Fehske, J. D. Gaeddert, and J. H. Reed, “A new apprtadignal classi-
fication using spectral correlation and neural networksPioc. Int. Symp. on
Dynamic Spec. Access Networks (DySEAd)timore Harbor, Maryland, USA,
Nov. 2005.

[12] Y. Zeng and Y.-C. Liang, “Maximum-minimum eigenvaluetdction for cog-
nitive radio,” in Proc. of IEEE Personal, Indoor and Mobile Radio Commun.

(PIMRC), Athens, Greece, Sept. 2007.

[13] ——, “Eigenvalue based spectrum sensing algorithmscfagnitive radio,”

IEEE Trans. Communaccepted for publication, 2008.

[14] ——, “Covariance based signal detections for cognitiadio,” in Proc. Int.
Symp. on Dynamic Spec. Access Networks (DySPBXlin, Ireland, Apr.
2007.

148



BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

——, “Spectrum sensing algorithms for cognitive radasbd on statistical co-

variances,1EEE Trans. Veh. Technpbkccepted for publication, 2008.

J. Unnikrishnan and V. V. Veeravalli, “Cooperative sy for primary detection
in cognitive radio,"IEEE J. Select. Topics in Signal Processingl. 2, no. 1, pp.
18-27, Feb. 2008.

G. Ganesan and Y. Li, “Cooperative spectrum sensingogniive radio net-
works,” in Proc. Int. Symp. on Dynamic Spec. Access Networks (DySPaN)
timore Harbor, Maryland, USA, Nov. 2005.

J. Zhao, H. Zheng, and G.-H. Yang, “Distributed coogdian in dynamic spec-
trum allocation networks,” irfProc. Int. Symp. on Dynamic Spec. Access Net-

works (DySPAN)Baltimore Harbor, Maryland, USA, Nov. 2005.

H. Kim and K. G. Shin, “Efficient discovery of spectrum mgtunities with
MAC-layer sensing in cognitive radio network$ZEE Trans. Mobile Comput.

vol. 7, no. 5, pp. 533-545, May 2008.

Z. Quan, S. Cui, and A. Sayed, “Optimal linear coopemafior spectrum sens-
ing in cognitive radio networks,IJEEE J. Select. Topics in Signal Processing

vol. 2, no. 1, pp. 28-40, Feb. 2008.

Y.-C. Liang, Y. Zeng, E. Peh, and A. Hoang, “Sensingatighput tradeoff for
cognitive radio networks,IEEE Trans. Wireless Communol. 7, no. 4, pp.

1326-1337, Apr. 2008.

M. Gastpar, “On capacity under receive and spatial specsharing con-

straints,”IEEE Trans. Inform. Theorwol. 53, no. 2, pp. 471-487, Feb. 2007.

149



BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Y. Xing, C. Mathur, M. Haleem, R. Chandramouli, and K.b®alakshmi, “Dy-
namic spectrum access with QoS and interference temperaturstraints,”

IEEE Trans. Mobile Compuytvol. 6, no. 4, pp. 423—-433, Apr. 2007.

G. Scutari, D. Palomar, and S. Barbarossa, “Cognitivi®1 radio,” IEEE Sig-

nal Processing Magvol. 25, no. 6, pp. 4659, Nov. 2008.

W. Wang and X. Liu, “List-coloring based channel alltioa for open-spectrum
wireless networks,” ifProc. of IEEE VTC-2005 FalDallas, Texas, Sept. 2005,
pp. 690-694.

H. Zheng and C. Peng, “Collaboration and fairness inasfymistic spectrum

access,” irProc. IEEE of ICC-2005Seoul, Korea, May 2005, pp. 3132-3136.

A. T. Hoang and Y.-C. Liang, “Maximizing spectrum ug#tion of cognitive
radio networks using channel allocation and power coffroRroc. IEEE VTC-

2006 Fall Montreal, Quebec, Canada, Sept. 2006, pp. 1-5.

F. Wang, M. Krunz, and S. Culi, “Price-based spectrumagament in cognitive
radio networks,TEEE J. Select. Topics in Signal Processingl. 2, no. 1, pp.
74-87, Feb. 2008.

A. Ghasemi and E. S. Sousa, “Fundamental limits of spattsharing in fading
environments,IEEE Trans. Wireless Communol. 6, no. 2, pp. 649-658, Feb.
2007.

X. Kang, Y.-C. Liang, A. Nallanathan, H. K. Garg, and Raahg, “Optimal
power allocation for fading channels in cognitive radiowatks: Ergodic ca-
pacity and outage capacityFEE Trans. Wireless Commuccepted for pub-

lication, July 2008.

150



BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Y. Chen, G. Yu, Z. Zhang, H. H. Chen, and P. Qiu, “On cogsitadio networks
with opportunistic power control strategies in fading chels,” IEEE Trans.

Wireless Communvol. 7, no. 7, pp. 2752-2761, July 2008.

R. Zhang, “On peak versus average interference powerstcaints for
protecting primary users in cognitive radio networks,” 80(JOnline].

Available: http://arxiv.org/abs/cs/0806.0676v2.

P. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, ‘fi$mit beamforming and
power control for cellular wireless system$ZEE J. Select. Areas Commun.

vol. 16, no. 8, pp. 1437-1449, Oct. 1998.

I. E. Telatar, “Capacity of multi-antenna Gaussianrutels,” European Trans.

on Telecommuyvol. 10, no. 6, pp. 585-595, Oct. 1999.

V. Tarokh, N. Seshadri, and A. R. Calderbank, “Spaogetcodes for high data
rate wireless communication: performance criterion andecoonstruction,”

IEEE Trans. Inform. Theorwol. 44, no. 2, pp. 744—-765, Mar. 1998.

R. Zhang and Y.-C. Liang, “Exploiting multi-antennas fopportunistic spec-
trum sharing in cognitive radio networksEEE J. Select. Topics in Signal Pro-

cessingvol. 2, no. 1, pp. 88-102, Feb. 2008.

N. Devroye, P. Mitranand, and V. Tarokh, “Achievabléesin cognitive radio
channels,”IEEE Trans. Inform. Theoryvol. 52, no. 5, pp. 1813-1827, May
2006.

I. Mari¢, A. Goldsmith, G. Kramer, and S. Shamai(ShitZ2On the capacity
of interference channels with one cooperating transnjiit@008. [Online].

Available: arXiv:0710.3375.

151



BIBLIOGRAPHY

[39] J. Jiang and Y. Xin, “On the achievable rate regions fdeiference channels
with degraded message set&EE Trans. Inform. Theoryol. 54, no. 10, pp.
4707-4712, Oct. 2008.

[40] W. Wu, S. Vishwanath, and A. Arapostathis, “Capacityaatlass of cognitive
radio channels: Interference channels with degraded messds, |EEE Trans.

Inform. Theoryvol. 53, no. 11, pp. 4391-4399, Nov. 2007.

[41] A. Jovicic and P. Viswanath, “Cognitive radio: An infoation-theoretic

perspective,” 2006. [Online]. Available: http://arxivgdabs/cs/0604107.

[42] |. Maric, R. Yates, and G. Kramer, “The strong interfeze channel with unidi-
rectional cooperation,” iProc. UCSD Workshop on Information Theory and its

Applications San Diego, CA, USA, Feb. 2006.

[43] S.H.Seyedmehdi, Y. Xin, and Y. Lian, “An achievablearatgion for the causal
cognitive radio,” inProc. of Allerton Conf. on Comm., Control, and Comp.

Monticello, IL, USA, 2007.

[44] S. Sridharan and S. Vishwanath, “On the capacity of asctd MIMO cognitive
radios,”IEEE J. Select. Topics in Signal Processiugl. 2, no. 1, pp. 103-117,
Feb. 2008.

[45] N. Devroye, M. Vu, and V. Tarokh, “Cognitive radio netvs: Information
theory limits, models and desigrnEEE Signal Processing Magvol. 25, no. 6,
pp. 12—-23, Nov. 2008.

[46] Z.-Q. Luo and W. Yu, “An introduction to convex optimizan for communica-
tions and signal processindBEE J. Select. Areas Commuwol. 24, no. 8, pp.

1426-1438, Aug. 2006.

152



BIBLIOGRAPHY

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative wafi@ling for Gaussian
vector multiple-access channel$ZEE Trans. Inform. Theorwol. 50, no. 1,

pp. 145-152, Jan. 2004.

S. Vishwanath, N. Jindal, and A. Goldsmith, “Dualitychéevable rates, and
sum-rate capacity of Gaussian MIMO broadcast chann@&gE Trans. Inform.

Theory vol. 49, no. 10, pp. 2658-2668, Oct. 2003.

E. Visotsky and U. Madhow, “Space-time transmit prdogdwith imperfect
feedback,”IEEE Trans. Inform. Theoryol. 47, no. 6, pp. 2632—-2639, Sept.
2001.

A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precodungconic optimization
for fixed MIMO receivers,” IEEE Trans. Signal Processingol. 54, no. 1, pp.
161-176, Jan. 2006.

W. Yang and G. Xu, “Optimal downlink power assignment mart antenna
systems,” inProc. IEEE Int. Conf. Acoust. Speech and Signal Proc. (IGASS
Seattle, Washington, USA, May 1998.

F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, fitadoptimal power con-
trol and beamforming in wireless networks using antennayartIEEE Trans.

Commun.vol. 46, no. 10, pp. 1313-1324, Oct. 1998.

S. Boyd and L. Vandenbergh€onvex Optimization Cambridge, UK: Cam-
bridge University Press, 2004.

A. Wyner, “The wire-tap chnnel Bell. Syst. Tech. Jvol. 54, no. 8, pp. 1355—
1387, Jan. 1975.

I. Csiszar and J. Korner, “Broadcast channels with ctarftial messagedEEE

Trans. Inform. Theoryol. 24, no. 5, pp. 339-348, May 1978.

153



BIBLIOGRAPHY

[56] Y. Liang, H. V. Poor, and S. Shamai(Shitz), “Secrecyamty region of fad-
ing broadcast channels,” laroc. of IEEE Int. Symp. Inf. Theory (ISITNlice,
France, June 2007.

[57] R. Liu, I. Mari¢, P. Spasojevi and R. D. Yates, “Discrete memoryless interfer-
ence and broadcast channels with confidential messagescgeate regions,”

IEEE Trans. Inform. Theorwol. 54, no. 6, pp. 2493 — 2507, June 2008.

[58] R. Liu and H. V. Poor, “Secrecy capacity region of a maltitenna gaussian
boradcast channel with confidential messages,” 2008. f@hliAvailable:

arXiv:0804.4195v1.

[59] Y. Liang and H. V. Poor, “Multiple access channels witn@idential messages,”

IEEE Trans. Inform. Theorwol. 54, no. 3, pp. 976-1002, Mar. 2008.

[60] ——, “Generalized multiple access channels with confidd messages,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT3eattle, Washington, July 2006.

[61] E. Tekin and A. Yener, “Achievable rates for the gengalissian multiple ac-
cess wiretap channel with collective secrecy,”Hroc. 44th Annual Allerton

Conf. Comm., Control, and ComJonticello, IL, Sept. 2006.

[62] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Diste memoryless interfer-
ence and broadcast channels with confidential messagescgeate regions,”

IEEE Trans. Inform. Theorwol. 54, no. 6, pp. 2493—-2507, June 2008.

[63] Y. Liang, A. Somekh-Baruch, H. V. Poor, S. Shamai(Shiénd S. Verdu, “Cog-
nitive interference channels with confidential messagesProc. of Allerton

Conf. on Comm., Control, and Comp. (AllertpMonticello, IL, 2007.

[64] A. Khistiand G. W. Wornell, “Secure transmission withuhiple antennas: The

misome wiretap channel,” 2007. [Online]. Available: arXiv08.4219v1

154



BIBLIOGRAPHY

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

F. Oggier and B. Hassibi, “The secrecy capacity of thenmiviretap channel,”

2007. [Online]. Available: arXiv:0710.1920v1

T. Liu and S. Shamai, “A note on the secrecy capacity ef thulti-antenna

wiretap channel,” 2007. [Online]. Available: arXiv:07 #0205

H. Weingarten, Y. Steinberg, and S. Shamai, “The cdpaegion of the Gaus-
sian multiple-input multiple-output broadcast channédEEE Trans. Inform.

Theory vol. 52, no. 9, pp. 3936-64, Sept. 2006.

L. Zhang, Y.-C. Liang, and Y. Xin, “Joint beamforming cGapower allocation
for multiple access channels in cognitive radio networksEE J. Select. Areas

Commun.vol. 26, no. 1, pp. 38-51, Jan. 2008.

D. Gerlach and A. Paulraj, “Adaptive transmitting amtea arrays with feed-

back,”|[EEE Signal Processing Lettergol. 1, no. 10, pp. 150-152, Oct. 1994.

M. K. Varanasi and T. Guess, “Optimal decision feedbachtiuser equalization
with successive decoding achieves the total capacity oGdwessian multiple
access channel,” iRProc. Asilomar Conf. Signals, Syst., Compionterey,

CA, Nov. 1997, pp. 1405-1409.

G. Caire and S. Shamai, “On the achievable throughpatot@iltiantenna Gaus-
sian broadcast channelEEE Trans. Inform. Theorywol. 49, pp. 1691-1706,
July 2003.

M. Schubert and H. Boche, “Solution of the multiuser adwk beamform-
ing problem with individual sinr constraintdEEE Transactions on Vehicular

Technologyvol. 53, pp. 18-28, Jan. 2004.

155



BIBLIOGRAPHY

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Y.-C. Liang, F. Chin, and K. J. R. Liu, “Downlink beamfaing for ds-cdma
mobile radio with multimedia servicedEEE Trans. Communvol. 49, no. 7,

pp. 1288-1298, July 2001.

M. Schubert and H. Boche, “Iterative multiuser uplimdadownlink beamform-
ing under SINR constraintslEEE Trans. Signal Processingol. 53, no. 7, pp.
2324-2334, July 2005.

T. M. Cover and J. A. Thomaglements of Information Theary New York:

John Wiley & Sons, 1994.

L. Zhang, Y.-C. Liang, and Y. Xin, “Optimal SINR balamgj for multiple access
channels in cognitive radio networks,” Proc. Military Comm. Conf. (MIL-

COM), Orlando, Florida, Oct. 2006, pp. 2575-2579.

N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A.dSolith, “Sum power
iterative water-filling for multi-antenna Gaussian broastcchannels, TEEE

Trans. Inform. Theoryol. 51, no. 4, pp. 1570-1580, Apr. 2005.

W. Yu, “Sum-capacity computation for the Gaussian wettroadcast channel
via dual decompositionJEEE Trans. Inform. Theorwol. 52, no. 2, pp. 754—
759, Feb. 2006.

W. Yu and T. Lan, “Transmitter optimization for the midintenna downlink
with per-antenna power constraint$£EE Trans. Signal Processingol. 55,

no. 6, pp. 2646—-2660, June 2007.

M. Mohseni, R. Zhang, and J. M. Cioffi, “Optimized tranission for fading
multiple-access and broadcast channels with multiplenswaig”|IEEE J. Select.

Areas Communvol. 24, no. 8, pp. 1627-1639, Aug. 2006.

156



BIBLIOGRAPHY

[81] D. Tse and P. Viswanath, “Downlink-uplink duality anflestive bandwidths,”

in Proc. IEEE Int. Symp. Inf. Theory (ISITDausanne, Switzerland, July 2002.

[82] P. Viswanath and D. N. C. Tse, “Sum capacity of the veGaussian broad-
cast channel and uplink-downlink duality£EE Trans. Inform. Theoryol. 49,

no. 8, pp. 1912-1921, Aug. 2003.

[83] W. Yu, “Uplink-downlink duality via minimax duality,’”IEEE Trans. Inform.
Theory vol. 52, no. 2, pp. 361-374, Feb. 2006.

[84] D. Tse and S. Hanly, “Multiaccess fading channels-p&blymatriod structure,
optimal resource allocation and throughtput capacitilsSEE Trans. Inform.

Theory vol. 44, no. 7, pp. 2796-2815, Nov. 1998.

[85] L. Zhang, R. Zhang, Y.-C. Liang, Y. Xin, and H. V. Poor, fiCGaussian
MIMO BC-MAC duality with multiple transmit covariance catnaints,” 2008.
[Online]. Available: arxiv.org/abs/0809.4101v1

[86] M. H. M. Costa, “Writing on dirty paper,JEEE Trans. Inform. Theorwol. 29,
no. 3, pp. 439-441, May 1983.

[87] D. G. LuenbergerQptimization by Vector Space MethodsNew York: John
Wiley, 1969.

[88] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methddz003. [Online].
Available: http://mit.edu/6.976/www/notes/subgmaethod.pdf.

[89] S. Zhou and G. B. Giannakis, “Optimal transmitter eifpgamforming and
space-time block coding based on channel mean feedbldkE Trans. Sig-

nal Processingvol. 50, no. 10, pp. 2599-2613, Oct. 2002.

157



BIBLIOGRAPHY

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

S. A. Jafar and A. J. Goldsmith, “Transmitter optimipatand optimality of
beamforming for multiple antenna systems with imperfeedfeack,” IEEE

Trans. Wireless Communvol. 3, no. 4, pp. 1165-1175, July 2004.

K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhan{On beamform-
ing with finite rate feedback in multiple antenna systerttSEE Trans. Inform.

Theory vol. 49, no. 10, pp. 2562-2579, Oct. 2003.

Y.-C. Liang and F. P. S. Chin, “Downlink channel covaita matrix (DCCM)
estimation and its applications in wireless DS-CDMA sysgntEEE J. Select.
Areas Communvol. 19, no. 2, pp. 222-232, Feb. 2001.

S. Srinivasa and S. A. Jafar, “The optimality of transb@amforming: a unified

view,” IEEE Trans. Inform. Theoryol. 53, no. 4, pp. 1558-1564, Apr. 2007.

E. Jorswieck and H. Boche, “Optimal transmission witiperfect channel state
information at the transmit antenna arraWireless Pers. Commuynvol. 27,

no. 1, pp. 33-56, Jan. 2003.

A. Ben-Tal and A. Nemirovski, “Selected topics in robasnvex optimization,”

Mathematical Programmingol. 1, no. 1, pp. 125-158, July 2007.

R. Reemtsen and J.-J. Ruckma8emi-Infinite Programming Boston: Kluwer

Academic Publishers, 1998.

S. Vorobyov, A. Gershman, and Z.-Q. Luo, “Robust adapbeamforming us-

ing worst-case performance optimization: A solution to signal mismatch

problem,” IEEE Trans. Signal Processingol. 51, no. 2, pp. 313-323, Feb.
2003.

J. F. Sturm, “Using sedumi 1.02, a MATLAB toolbox for apization over
symmetric cones,Optim. Meth. Softwvol. 11, pp. 625-653, 1999.

158



BIBLIOGRAPHY

[99] S. Shafiee and S. Ulukus, “Achievable rates in gaussi#®channels with
secrecy constraints,” iRroc. IEEE Int. Symp. Inf. Theory (ISITice, France,

June 2007.

[100] E. SenetaNon-Negative Matrices and Markov Chains Berlin, Germany:

Springer-Verlag, 1981.

159



List of Publications

Journal Papers

1. Lan Zhang, Ying-Chang Liang, and Yan Xin,“Joint beamforgnand power
allocation for multiple access channels in cognitive rateoworks,”|IEEE J. of

Select. Areas in Commuywol. 26, no. 1, pp. 38-51, Jan. 2008.

2. Lan Zhang, Yan Xin, Ying-Chang Liang, and H. Vincent P6Gggnitive multi-
ple access channels: optimal power allocation for weighted rate maximiza-

tion,” IEEE Trans. Communaccepted to publish, Oct. 2008.

3. Lan Zhang, Yan Xin, and Ying-Chang Liang,“Weighted suite ra@ptimization
for cognitive radio MIMO broadcast channel®2EE Trans. Wireless Commun.

accepted to publish, Feb. 20009.

4. Lan Zhang, Ying-Chang Liang, Yan Xin, and H. Vincent Pd&obust design
for MIMO based cognitive radio network with partial chanstdte information,”

submitted to IEEE Trans. Wireless Comm@@08.

5. Lan Zhang, Rui Zhang, Ying-Chang Liang, Yan Xin, and H.dént Poor, “On
the Gaussian MIMO BC-MAC duality with multiple transmit cavance con-

straints,’submitted to IEEE Trans. Inform. Theo2008.

6. Lan Zhang, Rui Zhang, Ying-Chang Liang, Yan Xin, and StauguCui, “On the

160



relationship between the multi-antenna secrecy commtiaicaand cognitive

radio communicationssubmitted to IEEE Trans. CommuBg009.

Conference Papers

1. Lan Zhang, Yan Xin, and Ying-Chang Liang, “Power allocatior multi-antenna
multiple access channels in cognitive radio networks'Rrac. of 41th Annual
Conf. on Inform. Sciences and Systems (CI&&sgow, Princeton University,

N.J., Mar. 2007.

2. Lan Zhang, Ying-Chang Liang, and Yan Xin, “Joint admisstontrol and power
allocation for cognitive radio networks”, iRroc. IEEE Int. Conf. Acoust.

Speech and Signal Proc. (ICAS$SHpnolulu, Hawaii, Apr. 2007.

3. Lan Zhang, Ying-Chang Liang, and Yan Xin, “Optimal SINR&arecing for mul-
tiple access channels in cognitive radio networks”Pioc. Military Comm.

Conf. (MILCOM) Orlando, FL., Oct. 2007.

4. Lan Zhang, Ying-Chang Liang, and Yan Xin, “Robust cogritbeamforming
with partial channel state information”, Proc. of 42th Annual Conf. on Inform.

Sciences and Systems (CISSasgow, N.J., Mar. 2008.

5. Lan Zhang, Yan Xin, and Ying-Chang Liang, “Optimal powdoeation for
multiple access channels in cognitive radio networks”Pioc. of Veh. Tech.

Conf. (VTC) Singapore, May 2008.

6. Lan Zhang, Ying-Chang Liang, and Yan Xin, “Optimal transsion covari-
ance matrix for cognitive radio system with partial chansteke information”,
in Proc. of The third Int. Conf. on Cognitive Radio Oriented &#ss Networks

and Commun. (CrownCom$ingapore, May 2008.

161



7.

10.

11.

Lan Zhang, Yan Xin, and Ying-Chang Liang, “Weighted sure i@ptimization
for cognitive radio MIMO broadcast channels”, Rroc. of IEEE Intern. Conf.

Commun. (ICC)Beijing, China, May 2008.

Lan Zhang, Yan Xin, and Ying-Chang Liang, “Robust designMISO based
cognitive radio networks with partial channel state infatian”, in Proc. of

IEEE Global Commun. Conf. (Globecomew Orleans, LA, USA, Nov. 2008.

Lan Zhang, Yan Xin, Ying-Chang Liang, and Xiaodong Wang ‘e achiev-
able rate regions for multi-antenna Gaussian cognitiveoretstnnel with confi-
dential messages”, acceptedimc. of 43th Annual Conf. on Inform. Sciences

and Systems (CISSaltimore, MD, Mar. 2009.

Lan Zhang, Rui Zhang, Ying-Chang Liang, Yan Xin, and Hndént Poor,

“On Gaussian MIMO BC-MAC duality with multiple transmit cakiance Con-

straints,” submitted to publish itEEEE Int. Symp. on Inform. Theory (IS|T)
Seoul, Korea, June 2009.

Lan Zhang, Rui Zhang, Ying-Chang Liang, Yan Xin, and Slarg Cui, “On the
relationship between the multi-antenna secrecy commtioicaand cognitive
radio communications,” submitted EBEE Int. Symp. on Inform. Theory (ISIT)

Seoul, Korea, June 2009.

162



