

STRUCTURE ANALYSIS OF NEURAL NETWORKS

DING SHENQIANG

NATIONAL UNIVERSITY OF SINGAPORE

2004

D
IN

G
 S

H
E

N
Q

IA
N

G

20
04

ST

R
U

C
T

U
R

E
 A

N
A

L
Y

SI
S

O
F

N
E

U
R

A
L

 N
E

T
W

O
R

K
S

STRUCTURE ANANLYSIS OF NEURAL NETWORKS

DING SHENQIANG
(B. Eng, University Of Science and Technology of China)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2004

i

Acknowledgements

I would like to express my most sincere appreciation to my supervisor, Dr. Xiang

Cheng, for his good guidance, support and encouragement. His stimulating advice

benefits me in overcoming obstacles on my research path.

I am also grateful to the Center for Intelligent Control (CIC), as well as the Control

and Simulation Lab, Department of Electrical and Computer Engineering, National

University of Singapore, which provides the research facilities to conduct the research

work. I also wish to acknowledge National University of Singapore (NUS) for the

financial support provided throughout my research work.

Thanks to many of my friends in Control and Simulation Lab, who have made

contributions in various ways to my research and life here in the past two years.

Finally, special thanks to my wife Sun Yu, for her love and patience.

ii

Table of Contents

Acknowledgements.. i

Table of Contents .. ii

Summary .. iv

List of Figures .. vi

List of Tables ...viii

Chapter 1 Introduction .. 1

1.1 Artificial Neural Networks ... 1

1.2 Statement of the Structure Analysis Problem of Neural Networks 4

1.3 Thesis Outline ... 8

Chapter 2 Architecture Selection of Multi-layer Perceptron .. 9

2.1 Introduction... 9

2.2 Geometrical Interpretation of MLP .. 11

2.3 Selection of Number of Hidden Neurons for Three-layered MLP 21

2.4 Advantage Offered by Four-layered MLP.. 36

2.5 Conclusions... 48

Chapter 3 Overfitting Problem of MLP .. 50

3.1 Overfitting Problem Overview ... 50

3.2 Comparative Study of Available Methods.. 54

3.2.1 Model Selection ... 54

3.2.2 Early Stopping ... 54

3.2.3 Regularization Methods ... 55

iii

3.3 Conclusions... 60

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network.................. 61

4.1 Introduction to Radial Basis Function Network ... 61

4.1.1 Two-stage Training of Radial Basis Function Networks..................... 63

4.1.2 One-stage Supervised Training of Radial Basis Function Networks... 65

4.1.3 Difference Comparing to Multilayer Perceptron 67

4.2 MLP with Additional Second Order Inputs .. 67

4.3 Comparative Study.. 70

4.3.1 Experimental Setup.. 70

4.3.2 Experimental Results ... 71

4.4 Conclusions... 83

Chapter 5 Conclusions and Future Works .. 85

5.1 Conclusions... 85

5.2 Future works ... 89

References... 91

List of Publications ... 100

iv

Summary

This work seeks to conduct structure analysis of artificial neural networks, especially

feedforward neural networks such as multilayer perceptrons (MLP) and radial basis

function networks (RBFN).

 First of all, a brief introduction of artificial neural networks is given; the background

and the necessity of the structure analysis problem are also stated. Then a geometrical

interpretation of multilayer perceptron based on the geometrical meaning of the

weights of a single hidden neuron is presented. This interpretation will be first

suggested for the case when the activation function of the hidden neuron is piecewise-

linear function and then is extended naturally to the case of sigmoid activation

functions. Following this, a general guideline for selecting the number of hidden

neurons for three-layered (with one hidden layer) MLP is proposed based upon the

geometrical interpretation. The effectiveness of this guideline is illustrated by a couple

of simulation examples. Subsequently, the attention is shifted to the controversial issue

of whether four-layered (with two hidden layers) MLP is superior to the three-layer

MLP. With the aid of the geometrical interpretation and also through careful

examination of the various contradictory results reported in the literature, it is be

demonstrated that in many cases four-layered MLP is slightly more efficient than

three-layered MLP in terms of the minimal number of parameters required for

approximating the target function, and for a certain class of problems the four-layered

MLP outperforms three-layered MLP significantly.

v

After that, the overfitting problem of MLP is examined, a comparative study is carried

out on various alleviating methods and the reasons behind these methods are reviewed

based on the geometrical interpretation. In particular, the popular regularization

methods are studied in detail. Not only the reason why regularization methods are

effective to alleviate the over-fitting can be simply explained by the geometrical

interpretation, but also a potential problem with regularization is predicted and

verified.

Afterward, another popular feedforward neural network, radial basis function network,

is visited. A special additional input, which is the sum of the squares of the other

inputs, is added to the standard multilayer perceptron, so that the multilayer perceptron

works similarly to the radial basis function network with localized response. Specially,

we will show a three-layered multilayer perceptron with exponential activation

function and this kind of additional input is naturally a generalized radial basis

function network and multilayer perceptron can be trained using the well-developed

training strategies of multilayer perceptrons. Then a comparative study is conducted

between multilayer perceptrons, multilayer perceptrons with additional inputs and

radial basis function networks trained by various methods.

Finally, a conclusion of the whole thesis is presented and the direction of future

research is also pointed.

vi

List of Figures

Fig. 1.1. A nonlinear model of a single neuron ANN.. 3

Fig. 1.2. General structure of a feedforward ANN .. 3

Fig. 1.3. A simple one-dimensional function approximation problem.................. 4

Fig. 2.1. Piecewise linear activation function .. 12

Fig. 2.2. Weighted piecewise linear function .. 13

Fig. 2.3. Overlapping of basic building-blocks.. 18

Fig. 2.4. Sigmoid activation function... 20

Fig. 2.5. Two-dimensional building-block .. 21

Fig. 2.6. A simple one-dimensional example .. 23

Fig. 2.7. The noisy one-dimensional example ... 24

Fig. 2.8. A complicated one-dimensional example.. 26

Fig. 2.9. Approximation of Gaussian function .. 28

Fig. 2.10. Piecewise planes needed to construct the basic shape.......................... 30

Fig. 2.11. A more complicated two-dimensional example 31

Fig. 2.12. Flowchart of the simplified EPNET ... 34

Fig. 2.13. Approximating hill and valley with a 2-4-2-1 MLP............................. 39

Fig. 2.14. Approximating hill and valley with a 2-5-1 network 41

Fig. 2.15. The modified hill and valley example .. 43

Fig. 2.16. The outputs of the neurons in the second hidden layer for the 2-4-2-1

MLP .. 45

vii

Fig. 2.17. The outputs of the neurons in the second hidden layer with different

initialization .. 46

Fig. 3.1. Example of over-fitting problem .. 52

Fig. 3.2. Early stopping for overcoming over-fitting problem 55

Fig. 3.3. Bayesian regularization for overcoming over-fitting problem............... 58

Fig. 3.4. A simple example where Bayesian regularization fails.......................... 59

Fig. 4.1. Three-layered structure of radial basis function network....................... 62

Fig. 4.2. Structure of CBP network... 68

Fig. 4.3. Approximation with 50 hidden neurons ... 73

Fig. 4.4. The approximation error of ECBP network ... 76

Fig. 4.5. The two-spiral problem .. 77

Fig. 4.6. Approximation results for the two-spiral problem 79

Fig. 4.7. The training and test data of the simple linear separation problem........ 80

Fig. 4.8. The classification problem of two Gaussian distributions...................... 82

Fig. 4.9. The classification results for the two Gaussian distributions 82

viii

List of Tables

Table 2.1. Significantly different performances of 1-3-1 and 1-50-1 MLPs 25

Table 2.2. Performance comparison of EPNET with different initial populations

... 33

Table 4.1. The minimum number of hidden neurons needed for simulation 4.1.. 71

Table 4.2. The minimum number of hidden neurons needed for simulation 4.3.. 74

Table 4.3. The minimum number of hidden neurons needed for simulation 4.4.. 75

Table 4.4. The minimum number of hidden neurons needed for simulation 4.5.. 76

Table 4.5. The minimum number of hidden neurons needed for simulation 4.6.. 78

Table 4.6. The minimum number of hidden neurons needed for simulation 4.7.. 80

Chapter 1

Introduction

1.1 Artificial Neural Networks

Artificial neural networks (usually shorten as “neural networks”) are originally

motivated from the biological neural networks such as the brain and human nervous

system. The first artificial neural network is called perceptron, which is developed by

Rosenblatt (1959) from the biological neuron model by McCulloch and Pitts (1943).

Despite originating from the biological system, artificial neural networks are widely

used as problem-solving algorithms rather than in developing them as accurate

representations of the human nervous system (Ripley 1994). However, the artificial

neural networks still emulate biological neural networks in following main aspects:

1. Each basic unit of the artificial neural networks is a simplified version of the

biological neuron.

2. Each basic unit is connected to a massive network in parallel.

3. Each basic unit has an activation function.

4. Learning of the network is done by adjust the connections (weights) between the

basic units.

Chapter 1 Introduction

2

There is still no formal definition of artificial neural networks, one recent definition

was given by Haykin (1999): A neural network is a massively parallel distributed

processor made up of simple processing units, which has a natural propensity for

storing experiential knowledge and making it available for use. It resembles the brain

in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Interneuron connection strengths, known as synaptic weights are used to store the

acquired knowledge.

Fig 1.1 gives a mathematic model of a simplest artificial neural network with only one

basic unit. Three essential elements are noted: the connection weights, summation

operator and the activation function. Another term bias adjusts the value of the

summation. We may describe the model with equation (1.1), where mxxx ,,, 21 are

the input signals; mwww ,,, 21 are the connection weights; b is the bias; and)(⋅ϕ is

the activation function. When outside signals are feed to the neural network; the inputs

first go through the connection weights which lead to weighted inputs, then the

summation operator effects, and finally the weighted summation of the inputs and bias

are sent to the activation function to give the final output.

)(
1

bxwy
m

i
iiout += ∑

=

ϕ (1.1)

Chapter 1 Introduction

3

∑

mx

1x

2x

1w

mw

2w

b

Inputs:

Bias:
Weights:

+1

Activation
function:

)(⋅ϕ Output:

outy

Summation

Fig. 1.1. A nonlinear model of a single neuron ANN

Normally, the artificial neural network contains many of this kind of basic units

distributed in different layers. A more general structure of artificial neural network is

provided in Fig. 1.2.

Biases

Inputs
Output
layer

Hidden
layers

Biases

Fig. 1.2. General structure of a feedforward ANN

Chapter 1 Introduction

4

Please note that some neural networks do have reverse (feedback) signal flow like

recurrent neural networks. In this thesis, feedforward neural networks such as

multilayer perceptron and radial basis function neural networks are studied.

1.2 Statement of the Structure Analysis Problem of Neural Networks

Although neural networks are used widely and successfully in many application areas,

how to select the structure of specified neural networks is still a very essential problem.

For example, if the multilayer perceptron network is chosen, then the practitioner still

faces many problems to decide the structure of multilayer perceptron to be used. Such

as given the following function approximation example as shown in Figure 1.3, how

many hidden layers to use and how many neurons to choose for each hidden layer?

Fig. 1.3. A simple one-dimensional function approximation problem

Unfortunately, there is no foolproof recipe at the present time, and the designer has to

make seemingly arbitrary choices regarding the number of hidden layers and neurons.

The common practice is just regarding the multilayer perceptron as a sort of magic

Chapter 1 Introduction

5

black box and choosing a sufficiently large number of neurons such that it can solve

the practical problem in hand. Designing and training a neural network and making it

work seem more of an art than a science. Without a deep understanding of the design

parameters, some people still feel uneasy to use the multilayer perceptron even though

the neural networks have already proven to be very effective in a wide spectrum of

applications, in particular the function approximation and pattern recognition

problems.

Traditionally, the main focus regarding the architecture selection of MLP has been

centered upon the growing and pruning techniques. (Mozer and Smolensky 1989;

Karnin 1990; LeCun et al. 1990; Weigend et al. 1991; Hassibi et al. 1992; Reed 1993;

Hush 1997). In network growing techniques, we often start with a small network to

solve the problem at hand and add additional neurons or layers only if the current

network is unable to meet the criterion. For network pruning, which is to choose a

network larger than necessary at first, and then remove the redundant part. More

efforts were put on the pruning techniques in the literature; the pruning techniques

mainly include sensitivity calculation methods and regularization methods (Reed 1993).

The sensitivity calculation methods usually estimate the “sensitivity” of each neuron or

connection and delete those with less sensitivity or less importance (Mozer and

Smolensky 1989; Karnin 1990; Reed 1993). The regularization methods incorporate an

additional term in the standard error cost function. This additional penalty term is a

complexity penalty, which is usually a function of the weights (Plaut et al. 1986;

Chauvin 1989; Ji et al. 1990; Weigend et al. 1991; Nowlan et al. 1992; Moody and

Rögnvaldsson 1997). One attractive advantage of the regularization methods is that the

training and pruning are done simultaneously which will lead to a more optimal

Chapter 1 Introduction

6

solution. However for the pruning algorithms, when to stop the pruning procedure or

how to choose the regularization parameter is still a problem.

Recently, lots of attention has also been drawn on applying evolutionary algorithms to

evolve both the parameters and architectures of the artificial neural networks

(Alpaydim 1994; Jasic and Poh 1995; Sarkar and Yegnanarayana 1997; Castillo 2000).

Such kind of hybrid algorithms is commonly referred to in the literature as

evolutionary artificial neural networks (EANN); for a detailed survey see (Yao 1999).

One essential feature of EANN is the combination of the two distinct forms of

adaptation, i.e., learning and evolution, which makes the hybrid systems adapt to the

environment more efficiently. However, one major drawback of EANN is that its

adaptation speed is usually very slow due to its nature of population and random

search. In all these approaches discussed above, any a priori information regarding the

geometrical shape of the target function is generally not exploited to aid the

architecture design of multilayer perceptron. Thus how to simplify the task of

architecture selection using this geometrical information is a very interesting and

challenging problem.

The overfitting problem of neural networks is also essential, because in most cases

what we focused is how the neural networks act with the unseen inputs, which is called

generalization performance. Normally, we take for granted it is the size of the neural

networks that dominate the generalization performance. However, Bartlett (1997)

stated that the size of the weights is more important that the size of the network for

generalization performance. So that a deep insight on how the structure of neural

networks influences the generalization performance is desirable.

Chapter 1 Introduction

7

Radial basis function network is another very popular feedforward neural network.

There is normally only one hidden layer in the structure, so choosing the number of

hidden layers is not a problem for radial basis function network. But it still faces the

problem of deciding the number of hidden neurons. Moreover, the radial basis function

network has another problem of deciding the locations and the spreads of the basis

functions. There are various methods to determine the locations and spreads of the

basis functions, which are usually separated from the calculation of the output weights.

One stage supervised training algorithms to decide all the parameters simultaneously

are also available. However, the supervised training of radial basis function networks

is immature comparing the well developed training algorithms for multilayer

perceptrons. Thus, a comparative study of these available methods is also attractive.

The local responses of multilayer perceptrons with a certain class of additional inputs

or normalized inputs are reported in the literatures (Casasent 1992; Maruyama et al.

1992; Sarajedini and Hecht-Nielsen 1992; Ridella et al. 1997). The connection

between the different structured multilayer perceptrons and radial basis function

networks is also a very interesting problem. A multilayer perceptron with additional

second order inputs, which is the sum of the square of other inputs, can approximate a

radial basis function arbitrarily. At the same time, another question rises: can such a

multilayer perceptron represent a radial basis function network exactly? If the answer

is positive, how does it perform comparing to the standard multilayer perceptron and

radial basis function networks?

Chapter 1 Introduction

8

1.3 Thesis Outline

This thesis consists of five chapters.

Chapter 2 presents a geometrical interpretation of multilayer perceptron based on the

geometrical meaning of the weights of a single hidden neuron, discusses the selection

of the hidden neurons in three-layered multilayer perceptrons, and analyze the

advantages offered by four-layered multilayer perceptrons.

Chapter 3 gives an overview of the overfitting problem, a comparative study is carried

out on various alleviating methods for this problem and the reasons behind these

methods are reviewed based upon the geometrical interpretation in Chapter 2.

In Chapter 4, another popular feedforward neural network, radial basis function

network, is visited. A special additional input, which is the sum of the squares of the

other inputs, is added to the standard multilayer perceptron, so that the multilayer

perceptron works similarly to the radial basis function network with localized response.

Specially, we will show a three-layered multilayer perceptron with exponential

activation function and this kind of additional input is naturally a generalized radial

basis function network and multilayer perceptron, which can by trained with the well

developed training strategies of multilayer perceptrons. Then a comparative study is

conducted between multilayer perceptrons, multilayer perceptrons with additional

inputs and radial basis function networks trained by various methods.

Chapter 5 concludes the whole thesis and points out the direction of future research.

Chapter 2

Architecture Selection of Multi-layer Perceptron

2.1 Introduction

As mentioned in the previous chapter, every practitioner of the multilayer perceptron

(MLP) faces the same architecture selection problem: how many hidden layers to use

and how many neurons to choose for each hidden layer? The common practice is still

based on a trial and error method, which choosing the number of neurons manually

until the network can solve the practical problem in hand. Traditionally, the main focus

regarding the architecture selection of MLP has been centered upon the growing and

pruning techniques (LeCun et al. 1990; Weigend et al. 1991; Hassibi et al. 1992; Hush

1997). Recently, evolutionary artificial neural networks (EANN) (Alpaydim 1994;

Jasic and Poh 1995; Sarkar and Yegnanarayana 1997; Yao 1999; Castillo 2000) are

alternative methods concerning the architecture selection problem. However, the

adaptation speed of EANN is usually very slow due to its nature of population and

random search.

In previous approaches, any a priori information regarding the geometrical shape of the

target function is generally not exploited to aid the architecture design of MLP. In

contrast to them, it will be demonstrated in this chapter that it is the geometrical

information that will simplify the task of architecture selection significantly. We wish

Chapter 2 Architecture Selection of Multilayer Perceptron

10

to suggest some general guidelines for selecting the architecture of the MLP, i.e., the

number of hidden layers as well as the number of hidden neurons, provided that the

basic geometrical shape of the target function is known in advance, or can be perceived

from the training data. These guidelines will be based upon the geometrical

interpretation of the weights, the biases, and the number of hidden neurons and layers,

which will be given in the next section of this Chapter.

It will be shown that the architecture designed from these guidelines is usually very

close to the minimal architecture needed for approximating the target function

satisfactorily, and in many cases it is the minimal architecture itself. As we know,

searching for a minimal or sub-minimal structure of the MLP for a given target

function is very critical not only for the obvious reason that the least amount of

computation would be required by the minimal structured MLP, but also for a much

deeper reason that the minimal structured MLP would provide the best generalization

in most of the cases. It is well known that neural networks can easily fall into the trap

of “over-fitting”, and supplying a minimal structure is the best medicine to alleviate

this problem.

In the next section, the geometrical interpretation of the MLP will be presented. This

interpretation will be first suggested for the case when the activation function of the

hidden neuron is piecewise-linear function and then is extended naturally to the case of

sigmoid activation functions. Following this, a general guideline for selecting the

number of hidden neurons for three-layered (with one hidden layer) MLP will be

proposed based upon the geometrical interpretation. The effectiveness of this guideline

will be illustrated by a couple of simulation examples. Finally we will turn our

Chapter 2 Architecture Selection of Multilayer Perceptron

11

attention to the controversial issue of whether four-layered (with two hidden layers)

MLP is superior to the three-layer MLP. With the aid of the geometrical interpretation

and also through carefully examining the various contradictory results reported in the

literature, it will be demonstrated that in many cases four-layered MLP is slightly more

efficient than three-layered MLP in terms of the minimal number of parameters

required for approximating the target function, and for a certain class of problems the

four-layered MLP outperforms three-layered MLP significantly.

2.2 Geometrical Interpretation of MLP

Consider a three-layered 1-N-1 MLP, with one input neuron, N hidden neurons and

one output neuron. The activation function for the hidden neuron is the piecewise-

linear function described by









−≤
<<−+

≥
=

5.0,0
5.05.0,5.0

5.0,1
)(

v
vv

v
vϕ (2.1)

 and plotted in Figure 2.1.

Chapter 2 Architecture Selection of Multilayer Perceptron

12

0.5-0.5-1 1 v

1

0.5

0

)(vϕ

Fig. 2.1. Piecewise linear activation function.

Let the weights connecting the input neuron to the hidden neurons be denoted as

)1(
iw (N,1,i …=), the weights connecting the hidden neurons to the output neuron be

)2(
iw , the biases for the hidden neurons be)1(

ib , and the bias for the output neuron be

)2(b . The activation function in the output neuron is the identity function such that the

output y of the MLP with the input x feeding into the network is

)2()1()1(

1

)2()()(bbxwwxy ii

N

i
i ++=∑

=

ϕ (2.2)

It is evident that)(xy is just superposition of N piecewise-linear functions plus the bias.

From (2.1) we know that each piecewise-linear function in (2.2) is described by









−≤+
<+<−++

≥+
=+

5.0,0
5.05.0),5.0(

5.0,
)(

)1()1(

)1()1()1()1()2(

)1()1()2(

)1()1()2(

ii

iiiii

iii

iii

bxw
bxwbxww

bxww
bxww ϕ (2.3)

Chapter 2 Architecture Selection of Multilayer Perceptron

13

In the case of 0)1(>iw , we have















−
−

≤

−<<−
−

++

−≥

=+

)1(

)1(

)1(

)1(

)1(

)1()1(

)1(

)1(
)1()1()2(

)1(

)1(

)1(
)2(

)1()1()2(

5.0,0

5.05.0),5.0(

5.0,

)(

i

i

i

i

i

ii

i

i
iii

i

i

i
i

iii

w
b

w
x

w
b

w
x

w
b

w
bxww

w
b

w
xw

bxww ϕ (2.4)

The graph for this weighted piecewise linear function is plotted in Figure 2.2.

)2(
iwHeight:

Width:)1(/1 iw

)0,5.0()1(

)1(

)1(
i

i

i w
b

w
−

−
Starting Point:

),5.0()2(
)1(

)1(

)1(i
i

i

i

w
w
b

w
−Ending Point:

Slope:)2()1(
ii ww

x

y

Fig. 2.2. Weighted piecewise linear function.

This piece-wise linear function has the same geometrical shape as that of (2.1),

comprising two pieces of flat lines at the two ends and one piece of line segment in the

Chapter 2 Architecture Selection of Multilayer Perceptron

14

middle. Any finite piece of line segment can be completely specified by its width (span

in the horizontal axis), height (span in the vertical axis), and position (starting point,

center, or ending point). And it is obvious from equation (2.4) and Figure 2.2 that the

width of the middle line segment is)1(

1

iw
, the height is)2(

iw , the slope is therefore

)2()1(
ii ww , and the starting point is (

)1(

)1(

)1(

5.0

i

i

i w
b

w
−

− ,0). Once this middle line segment is

specified the whole piecewise line is then completely determined. From above

discussion it is natural to suggest the following geometrical interpretation for the three-

layered MLP with piecewise-linear activation functions.

1) The number of hidden neurons corresponds to the number of piecewise lines

that are available for approximating the target function. These piecewise lines

act as the basic building-blocks for constructing functions.

2) The weights connecting the input neuron to the hidden neurons completely

determine the widths of the middle line segments of those basic building-

blocks. By adjusting these weights, the widths of the basic elements can be

changed to arbitrary values.

3) The weights connecting the hidden neurons to the output neuron completely

decide the heights of the middle line segments of those basic building-blocks.

The heights can be modified to any values by adjusting these weights. Note that

negative height implies negative slope of the middle line segment of basic

building-blocks.

4) The biases in the hidden neuron govern the positions of the middle line

segments of those basic building-blocks. By adjusting the values of these

biases, the positions of the building-blocks can be located arbitrarily.

Chapter 2 Architecture Selection of Multilayer Perceptron

15

5) The bias in the output neuron provides an offset term to the final value of the

function.

Using the fact that the widths, the heights, and the positions of the middle line

segments of the basic building-blocks can be adjusted arbitrarily, we are ready to state

and prove Theorem 2.1 as follows.

Theorem 2.1: Let)(xf be any piecewise linear function defined in any finite domain,

∞<≤≤<∞− bxa , there exists at least one three-layered MLP, denoted as)(xNN ,

with piecewise linear activation functions for the hidden neurons that can represent

)(xf exactly, i.e.,)()(xfxNN = for all],[bax∈ .

The proof of Theorem 2.1 is quite straightforward by directly constructing one MLP

that can achieve the objective.

Proof: Let)(xf be any piecewise linear function consisting of arbitrary number N of

line segments. Each line segment is completely determined by its two end points.

Denote the end points of the thi line segment as))(,(11 −− ii xfx and))(,(ii xfx ,

where ax =0 , and bxN = . The width and height of the thi line segment are then

1−− ii xx and)()(1−− ii xfxf respectively.

Let’s construct the three-layered MLP as follows. Let the number of the hidden

neurons be N , the same as the number of the piecewise lines in)(xf . Each of the

hidden neuron will then provide one piecewise line, whose width, height, and starting

Chapter 2 Architecture Selection of Multilayer Perceptron

16

point can be arbitrarily adjusted by the weights and biases. One natural way of

choosing the weights and biases is to make the middle line segment provided by the

thi neuron match the thi line segment in)(xf . Therefore, the parameters of the MLP

can be calculated as follows.

To match the width, we set

1)1(

1
−−= ii

i

xx
w

, N,1,i …= (2.5)

To match the height, we set

)()(1
)2(

−−= iii xfxfw , N,1,i …= (2.6)

To match the position, we set

1)1(

)1(

)1(

5.0
−=−

−
i

i

i

i

x
w
b

w
, N,1,i …= (2.7)

To match the final value of)(xf , we need to provide the offset term as

)()(0
)2(afxfb == (2.8)

The parameters of the three-layered MLP are completely determined by equations

(2.5) to (2.8). Because of the special property of the activation function that the lines

are all flat (with zero slope) except the middle segment, the contribution to the slope of

the line segment in the interval],[1 ii xx − comes only from the middle line segment

provided by the thi neuron. From (2.5) and (2.6), it is obvious that the slope of the each

line segment of MLP matches that of)(xf . All we need to show now is that the output

Chapter 2 Architecture Selection of Multilayer Perceptron

17

value of MLP at the starting point for each line segment matches that of)(xf , then the

proof will be complete.

At the initial point 0xx = , all the contributions from the hidden neurons are zero, and

the output value of the MLP is just the bias)2(b ,

)2(
0)(bxNN = (2.9)

At point 1xx = , which is the end point of the line segment provided by the first

neuron, the output value of the first neuron is)2(
1w while the output values of all other

neurons are zero, therefore we have

)2()2(
11)(bwxNN += (2.10)

Similar argument leads to

)2()2()2(
1)(bwwxNN ii +++= , N,1,2,i …= (2.11)

From equation (2.6) and (2.8), it follows immediately that

)()(ii xfxNN = , N,,10i …= (2.12)

This completes the proof of Theorem 2.1.

Comment 2.1: The weights and biases constructed by equations (2.5) to (2.8) are just

one set of parameters that can make the MLP represent the given target function. There

are other possible sets of parameters that can achieve the same objective. For instance,

for purpose of simplicity we let 0)1(>iw in all our discussions so far. Without this

Chapter 2 Architecture Selection of Multilayer Perceptron

18

constraint, the sign of the slope of piecewise line is determined by)2()1(
ii ww , and

consequently there are many other combinations of the building-blocks that can

construct the same piecewise linear function exactly. This implies that the global

minimum may not be unique in many cases.

Comment 2.2: In the proof given, N hidden neurons are used to approximate the

function consisting of N piecewise line segments, and the domain of the middle line

segment for each basic building-block does not overlap with each other. If some

domains of the middle line segments overlap, then it is possible for 1-N-1 MLP to

approximate functions comprising more than N piecewise line segments. But then the

slopes around these overlapping regions are related, and cannot be arbitrary. A couple

of such examples are plotted in Figure 2.3, where solid line is the combination of two

basic building-blocks, which are plotted with dash-dotted and dashed lines

respectively.

Fig. 2.3. Overlapping of basic building-blocks.

Comment 2.3: Since any bounded continuous function can be approximated arbitrarily

closely by piecewise linear function, Theorem 2.1 simply implies that any bounded

Chapter 2 Architecture Selection of Multilayer Perceptron

19

continuous function can be approximated arbitrarily closely by MLP, which is the

well-known universal approximation property of the MLP proven in (Hornik et al.

1989; Cybenko 1989; Funahashi; 1989). Although the proof is given only for the case

of piecewise-linear activation functions, the geometrical nature of the proof presented

in this Chapter makes this nice property of MLP much more transparent than other

approaches.

Comment 2.4: The geometrical shape of the sigmoid activation function is very similar

to the piecewise-linear activation function, except the neighborhood of the two end

points are all smoothed out as shown in Figure 2.4. Therefore the previous geometrical

interpretation of the MLP can be applied very closely to the case when sigmoid

activation functions are used. Further, since the sigmoid function smoothes out the

non-smooth end points, the MLP with sigmoid activation functions is more efficient to

approximate smooth functions.

Chapter 2 Architecture Selection of Multilayer Perceptron

20

Fig. 2.4. Sigmoid activation function.

Comment 2.5: When the input space is high dimensional, then each hidden neuron

provides a piecewise hyperplane as the basic building-block that consists of two flat

hyperplanes and one piece of hyperplane in the middle. The position and width of the

middle hyperplane can be adjusted by the weights connecting the input layer to the

hidden layer and the biases in the hidden layer, while the height can be altered by the

weights connecting the hidden layer to the output layer. A two-dimensional example of

such building-blocks is shown in Figure 2.5 where sigmoid activation functions are

used.

Chapter 2 Architecture Selection of Multilayer Perceptron

21

Fig. 2.5. Two-dimensional building-block.

2.3. Selection of Number of Hidden Neurons for Three-layered MLP

Based upon previous discussion regarding the geometrical meaning of the number of

hidden neurons, the weights and the biases, we suggest a simple guideline for choosing

the number of hidden neurons for the three-layered MLP as follows.

Guideline One: Estimate the minimal number of line segments (or hyperplanes in high

dimensional cases) that can construct the basic geometrical shape of the target

function, and use this number as the first trial for the number of hidden neurons of the

three-layered MLP.

We have tested this guideline with extensive simulation studies. In all of the cases

studied, this minimal number of line segments is either very close to the minimal

number of hidden neurons needed for satisfactory performance, or is the minimal

Chapter 2 Architecture Selection of Multilayer Perceptron

22

number itself in many cases. Some of the simulation examples will be discussed below

to illuminate the effectiveness of this guideline. All the simulations have been

conducted using the neural network toolbox of MATLAB. The activation function for

the hidden neurons is hyperbolic tangent function (called “tansig” in MATLAB), and

that for the output neurons is the identity function (called “purelin” in MATLAB) in

most cases. Batch training is adopted and the Levenberg-Marquardt algorithm

(Marquardt 1963; Mor 1977) (called “trainlm” in MATLAB) is used as the training

algorithm. The Nguyen-Widrow method (Nguyen and Widrow 1990) is utilized to

initialize the weights of the each layer of the MLPs.

Comment 2.6: The selection of the activation function and training algorithm is

another interesting issue which was investigated by other papers (Hush and Salas 1988;

Mennon et al. 1996; Amri 1998). We will not delve into this issue here. We choose

“tansig” and “trainlm” just by simple trial and error studies.

Simulation 2.1: The target function is chosen as:

xxxxf 4.03.0)(23 −+= ,]1,1[−∈x (2.13)

The training set consists of 21 points, which are chosen by uniformly partitioning the

domain [-1, 1] with grid size of 0.1. And the test set comprises 100 points uniformly

randomly sampled from the same domain. Following Guideline One, the least number

of line segments to construct the basic geometrical shape of)(xf is obviously three,

therefore 1-3-1 is tried first. It turns out that 1-3-1 is indeed the minimal sized MLP to

approximate)(xf satisfactorily. After only 12 epochs, the mean square error (MSE)

of the training set decreases to 61009.2 −× , and the test error (MSE) is 61027.1 −× . The

Chapter 2 Architecture Selection of Multilayer Perceptron

23

result is shown in Figure 2.6, where the dotted line is the target function, and the dash-

dotted line is the output of the MLP, which almost coincide with each other exactly.

Fig. 2.6. A simple one-dimensional example.

Comment 2.7: It is obvious that such good approximation result cannot be achieved

using three pieces of pure line segments. The smoothing property of the sigmoid

function plays an important role in smoothing out the edges.

Simulation 2.2: Assume the samples of the target function in Simulation One are

corrupted by noises uniformly distributed in [-0.05, 0.05]. Both 1-3-1 and 1-50-1 are

used to learn the same set of training data, and the test set contains 100 points

uniformly randomly selected in [-1, 1]. The results are shown in Table 2.1 and are

plotted in Figure 2.7.

Chapter 2 Architecture Selection of Multilayer Perceptron

24

(a) Approximation by 1-3-1

(b) Approximation by 1-50-1

Fig. 2.7. The noisy one-dimensional example.

Chapter 2 Architecture Selection of Multilayer Perceptron

25

TABLE 2.1

Significantly different performance of 1-3-1 and 1-50-1 MLPs

MLPs Epochs
Training

error(MSE)
Test error(MSE)

1-3-1 100 41065.5 −× 41061.3 −×

1-50-1 2 101031.1 −× 29.0

Comment 2.8: The purpose of this simulation example is to show the necessity of

searching for minimal architecture. It is evident that 1-3-1 MLP has the best

generalization capability, which approximates the ideal target function closely even

though the training data is corrupted. In contrast to this, the 1-50-1 MLP falls badly

into the trap of “over-fitting” with only 2 epochs.

Simulation 2.3: We intend to approximate a more complicated function as follows,

xx
x

xy +−
+

−=)4cos(1.0
2

2)sin(5.0 3
3 ππ , 6.11 ≤≤− x (2.14)

The training set contains 131 points, which are chosen by uniformly dividing the

domain [-1, 1.6] with grid size of 0.02. The test set includes 200 points randomly

selected within the same domain. It is observed that at least nine line segments are

needed to construct the basic shape of the target function, and hence 1-9-1 is decided

to be the first trial. After 223 epochs, the mean square training error and test error are

61099.9 −× and 61087.8 −× respectively, and the bound of test error is 0.01.

Chapter 2 Architecture Selection of Multilayer Perceptron

26

Fig. 2.8. A complicated one dimensional example.

Comment 2.9: Smaller sized MLP such as 1-8-1 and 1-7-1 are also tested to solve this

problem. Both of them are able to provide good approximations except in the small

neighborhood around 0=x where the error bound is bigger than 0.01 (but smaller

than 0.04). The reader is referred back to Comment 2.2 for understanding the

possibility that the minimal number of the hidden neurons (building-blocks) may be

smaller than the number of line segments for a given target function. In this example, if

we consider approximation with error bound of 0.04 as satisfactory, then the minimal

structure would be 1-7-1 instead of 1-9-1.

Simulation 2.4: We move on to consider a simple two-dimensional example, a

Gaussian function described by

Chapter 2 Architecture Selection of Multilayer Perceptron

27

)
2

exp(
2
5),(

22 yxyxf +
−=

π
,]4,4[, −∈yx (2.15)

The training set comprises 289 points, which are chosen by uniformly partitioning the

domain]4,4[, −∈yx with grid size of 0.5. The test set contains 1000 points randomly

sampled from the same domain. It is apparent that at least 3 piecewise planes are

needed to construct the basic geometrical shape of the Gaussian function: a hill

surrounded by flat plane. Therefore, from our guideline a 2-3-1 MLP is first tried to

approximate this function. After 1000 epochs, the training error (MSE) decreases to

51058.8 −× , and the test error (MSE) is 51056.8 −× . The result is reasonably good as

shown in Figure 2.9, if we consider the error bound of about 0.07 to be acceptable.

Comment 2.10: It is worth noting that the activation function used for the output

neuron in Simulation Four is not the identity function, but the logistic function (called

“logsig” in MATLAB). Since the sigmoid function has the property of flattening

things outside of its focused domain, it is possible to approximate a function within a

certain region while keeping other areas flat, which is very suitable for the type of

Gaussian hill problem. Without this flattening property, it would be difficult to

improve the approximation at one point without worsening other parts. That is why the

size of the three-layered MLP has to be increased to around 2-20-1 to achieve similar

error bound if the identity activation function is used in the output neuron.

Chapter 2 Architecture Selection of Multilayer Perceptron

28

(a) Training data

(b) Output of the Neural Network

(c) Approximation error

Fig. 2.9. Approximation of Gaussian function.

Chapter 2 Architecture Selection of Multilayer Perceptron

29

Simulation 2.5: We consider a more complicated two-dimensional example as

follows,

)16.016.0sin(05.01.0),(2222 yxyxyxf ++−= ,]5.4,5.4[, −∈yx (2.16)

The training set composes of 100 points, by uniformly partitioning the

domain]5.4,5.4[, −∈yx with grid size of 1.0. The test set contains 1000 points

randomly chosen from the same domain. In order to apply our guideline, we have to

estimate the least number of piecewise planes to construct the basic shape of this target

function. It appears that at least three pieces of planes are needed to construct the

valley in the middle, six pieces of planes to approximate the downhills outside the

valley, and additional four pieces of planes to approximate the little uphills at the four

corners, which are shown in Figure 2.10. The total number of piecewise planes is then

estimated to be 13, hence a 2-13-1 MLP is first tried to approximate this function.

After 5000 epochs, the training error (MSE) decreases to 0.0009 and the test error

(MSE) is 0.0018. The approximation result is quite well with error bound of 0.15, as

shown in Figure 2.11.

Chapter 2 Architecture Selection of Multilayer Perceptron

30

Fig. 2.10. Piecewise planes needed to construct the basic shape.

Chapter 2 Architecture Selection of Multilayer Perceptron

31

(a) Output of the Neural Network

(b) Approximation error

Fig. 2.11.A more complicated two-dimensional example.

Chapter 2 Architecture Selection of Multilayer Perceptron

32

It is observed that the local minimum problem is quite severe for this simulation

example. Approximately only one out of ten trials with different initial weights may

achieve error bound of 0.15.

To alleviate this local minimum problem, as well as to further decrease the error bound

of the test set, evolutionary artificial neural networks (EANNs) are applied to this

example. One of the popular EANN systems, EPNET (Yao and Liu 1997; Riessen et al.

1997), is adopted to solve the approximation problem for the function (2.16) with the

same training set and test set mentioned before. Here, the EPNET is simplified by

removing the connection removal and addition operators, due to the fact that only

fully-connected three-layered MLPs are used. The flowchart is given in Figure 2.12,

which is a simplified version of the flowchart in (Riessen et al. 1997).

The reader is referred to (Yao and Liu 1997; Riessen et al. 1997) for detailed description

of the EPNET algorithm. The following comments are in order as follows to explain

some of the blocks in the flowchart:

a) “MBP training” refers to training with the Levenberg-Marquardt algorithm

(trainlm).

b) “MRS” refers to the modified random search algorithm, and the reader is referred

to (Solis and Wets 1981) for further details.

c) “Selection” is done by randomly choosing one individual out of the population

with probabilities associated with the performance ranks, where the higher

probabilities are assigned to the individuals with worse performances. This is in

Chapter 2 Architecture Selection of Multilayer Perceptron

33

order to improve the performance of the whole population rather than improving a

single MLP as suggested in (Yao and Liu 1997; Riessen et al. 1997).

d) “Successful” means the validation error bound has been reduced substantially, for

instance, by at least 10% in our simulations. The validation set contains 1000

random samples uniformly distributed in the domain of]5.4,5.4[]5.4,5.4[−×− .

e) “The performance goal” is set as 0.1 for the validation error bound. Once the goal

is met, the evolutionary process will stop, and the best candidate (with the lowest

error bound) will be selected to approximate the target function.

The size of the population is 10, and the initialization of the population can be done in

different ways. Since 2-13-1 has already been estimated by Guideline One to be good

candidate for the structure of MLP, it is natural to initialize the population with the

same structures of 2-13-1. It is shown in Table 2.2 that after only 69 generations one of

the MLPs achieves the performance goal of error bound of 0.1. If the population for

the first generation is chosen without this guideline, for instance, initialized with 2-5-1

MLPs, or 2-20-1 MLPs, or a set of different structured MLPs in which the numbers of

hidden neurons are randomly selected in the range of [5,30], as suggested in (Yao and

Liu 1997), the convergence speed is usually much slower as shown in Table 2.2.

TABLE 2.2

Performance comparison of EPNET with different initial populations

Structures of the
initial population

Generations
needed to meet

the goal

The error bounds of the
best network

The structures of
the best network

2-13-1 69 0.0946 2-15-1
2-5-1 365 0.0988 2-17-1

2-20-1 216 0.0944 2-16-1
Mixed structures 229 0.0913 2-15-1

Chapter 2 Architecture Selection of Multilayer Perceptron

34

Population
creation

Initialization

Partial MBP training for 200
epochs

Rank by validation error bounds/
Selection

Partial MBP training for 200
epochs

Successful?

Repalce old by new

Partial MRS training for
200 steps

Successful?

Hidden node deletion and
partial MBP training for

400 epochs

Better than the worst?

Hidden node addition and
partial MBP training for

200 epochs

Better than the worst?

Replace the worst by new

Is the performance goal met?

Replace the worst with the
fine-tuned parent

Stop

Begin

Entire Population

Entire Population

Single parent

Yes No

Yes

Yes

Yes

No

No

No

YesNo

Selection

Mutation

Replacement

Fine-tuned parent

Fig. 2.12. Flowchart of the simplified EPNET.

Chapter 2 Architecture Selection of Multilayer Perceptron

35

Comment 2.11: The number of generations needed to achieve the performance goal,

and the structures of the best candidate may differ with different experiments, and the

results reported in Table II is from one set of experiments out of five. It is interesting

to note that the final structure of the best candidate usually converges to a narrow

range from 2-15-1 to 2-17-1 regardless of the structures of the initial population, which

is indeed not far from our initial estimation of 2-13-1. Therefore, it is not surprising

that the EPNET with initial population of 2-13-1 MLPs always converges faster than

other approaches although the number of generations to evolve varies with different

sets of simulation studies.

Comment 2.12: It also has to be stressed that the performance goal of 0.1 error bound

can be hardly achieved by training a 2-15-1, or 2-16-1 MLP solely with standard BP or

modified BP due to the local minimum problem. The combination of evolutionary

algorithm and neural networks (EANN) indeed proves to be more efficient as seen

from our simulation studies, and our proposed guideline can be used to generate the

initial population of the EANNs, which can speed up the evolution process

significantly.

Comment 2.13: It is noticed that the difficulty in estimating the least number of

hyperplane pieces to construct the basic geometrical shape of the target function

increases with the complexity of the target function. In particular, when the dimension

is much higher than 2 as in many cases of pattern recognition problems, it is almost

impossible to determine the basic geometrical shape of the target function. Hence

Guideline One can be hardly applied to very high dimensional problems unless a priori

information regarding the geometrical shapes of the target functions are known by

Chapter 2 Architecture Selection of Multilayer Perceptron

36

other means. Either pruning and growing techniques (LeCun et al. 1990; Weigend et

al. 1991; Hassibi et al. 1992; Hush 1997) or EANNs (Alpaydim 1994; Jasic and Poh

1995; Sarkar and Yegnanarayana 1997; Yao and Liu 1997; Yao 1999; Riessen et al.

1997; Castillo 2000) are then recommended to deal with such problems where

geometrical information is hardly known.

2.4 Advantage Offered by Four-layered MLP

Whether adding another hidden layer to the three-layered MLP is more effective

remains a controversial issue in the literature. While some published results (Chester

1990; Sontag 1992; Tamura and Tateishi 1997) suggest that four-layered MLP is

superior to three-layered MLP from various points of views, other results (Villiers and

Barnard 1992) claim that four-layered networks are more prone to fall into bad local

minima, but that three- and four-layered MLPs perform similarly in all other respects.

In this section, we will try to clarify the issues raised in the literature, and provide a

few guidelines regarding the choice of one or two hidden layers by applying the

geometrical interpretations in section 2.2.

One simple interpretation of four-layered MLP is just regarding it as a linear

combination of multiple three-layered MLPs by observing that the final output of the

four layered MLP is nothing but linear combination of the outputs of the hidden

neurons in the second hidden layer, which themselves are simply the outputs of three-

layered MLPs. Thus, the task of approximating a target function is essentially

decomposed into tasks of approximating sub-functions with these three-layered MLPs.

Since all of them share the same hidden neurons but with different output neurons,

Chapter 2 Architecture Selection of Multilayer Perceptron

37

these three-layered MLPs share the same weights connecting the input layers to the

first hidden layers; but with different weights connecting the first hidden layers to the

“output” neurons (the neurons in the second hidden layer of the four-layered MLP).

According to the geometrical interpretation discussed before, it is apparent that the

corresponding basic building-blocks of these three-layered MLPs share the same

widths and positions, but with different heights and slope.

One obvious advantage gained by decomposing the target function into several sub-

functions is that the total number of the parameters of the four-layered MLP may be

smaller than that of three-layered MLP. Because the number of the hidden neurons in

the first hidden layer can be decreased substantially if the target function is

decomposed into sub-functions with simpler geometrical shapes and hence need less

number of the building-blocks to construct.

Simulation 2.6: Consider the approximation problem in Simulation 2.3, the training set

and the test set remain the same as those of Simulation 2.3. Several four-layered MLPs

are tested and it is found that 1-3-3-1 MLP with 22 parameters can achieve similar

performance as that of 1-9-1 MLP consisting of 28 parameters. After 447 epochs, the

training error (MSE) reaches 51003.2 −× , the test error (MSE) is 51038.1 −× and the error

bound of the test set is about 0.01. Due to the local minimum problem, it is hard to get

a good result by only one trial, and the success rate is about one out of twenty, which is

much less than the 90% success rate of 1-9-1 MLP.

Simulation 2.7: We also revisit the two-dimensional problem in Simulation 2.5 with

the training data set and test data. A 2-4-5-1 MLP is searched out to approximate the

function satisfactorily. The total number of the parameters of this four-layered MLP is

Chapter 2 Architecture Selection of Multilayer Perceptron

38

43, while the total number of the parameters for the former 2-13-1 network is 53. After

1241 epochs, the training error (MSE) decreases to 51098.9 −× , the test error (MSE) is

41009.1 −× and the test error bound is about 0.05.

From above two simulation examples, it is clear that four-layered MLP is more

efficient than three-layered MLP in terms of the number of parameters needed to

achieve similar performance. However, the difference between the numbers of the

parameters usually is not very large, and the three-layered MLP may be more

appealing considering the fact that four-layered MLP may be more prone to local

minima traps because of its more complicate structure as pointed out in (Villiers and

Barnard 1992). But there are certain situations that four-layered MLP is distinctively

better than three-layered MLP as shown below.

Simulation 2.8: Consider an example (Sarle 2002) made of a Gaussian hill and a

Gaussian valley as follows,

))2(exp(4))2()2(exp(3),(2222 yxyxyxf −+−−−−−−= ,]4,4[, −∈yx (2.17)

The training set consists of 1681 points, which are sampled by uniformly partitioning

the domain]4,4[, −∈yx with grid size of 0.2. The test set comprises 1000 points

randomly chosen from the same domain. A 2-4-2-1 network is used to approximate it

quite well as shown in Figure 2.13. The training error (MSE) is reduced to 51097.9 −×

after 102 epochs, the test error (MSE) is 51092.8 −× and the error bound is about 0.05.

However, if three-layered MLP is used, then the minimal size has to be around 2-30-1

to achieve similar performance. The total number of parameters of 2-4-2-1 is only 25,

while that of 2-30-1 is 121, which is much higher. Why does four-layered MLP

outperform three-layered MLP so dramatically for this problem? Before we reveal the

answer to this question, let’s consider another related hill and valley example.

Chapter 2 Architecture Selection of Multilayer Perceptron

39

(a) Output of the Neural Network

(b) Approximation error

Fig. 2.13. Approximating hill and valley with a 2-4-2-1 MLP.

Chapter 2 Architecture Selection of Multilayer Perceptron

40

Simulation 2.9: It is still a hill and valley problem as described below and shown in

Figure 2.14,







−∈−∈+−+−−−−−−

−∈∈−−+−−−−−−
=

]4,4[),0,4[,1))2(exp(8.0))2()2(exp(6.0
]4,4[],4,0[,1))2(exp(8.0))2()2(exp(6.0

),(
2222

2222

yxyxyx
yxyxyx

yxf (2.18)

The training set consists of 6561 points, which are chosen by uniformly partitioning

the domain]4,4[, −∈yx with grid size of 0.1. The test set composes of 2500 points

randomly chosen from the same domain. At first glance of the geometrical shape of

this function, it appears more complicated than the previous example because of the

jump in the planes, and a larger sized MLP would be expected to approximate it

satisfactorily. However, a stunningly simple 2-5-1 three-layered MLP with hyperbolic

tangent function as the activation function for the output neuron can approximate it

astonishingly well with training error (MSE) of 51084.1 −× and test error (MSE) of

51085.1 −× after only 200 epochs. And the test error bound is even less than 0.03, as

shown in Figure 2.14.

Chapter 2 Architecture Selection of Multilayer Perceptron

41

(a) Output of the Neural Network

(b) Approximation error

Fig. 2.14. Approximating hill and valley by a 2-5-1 network.

Chapter 2 Architecture Selection of Multilayer Perceptron

42

After careful analysis of these two examples, it is finally realized that the essential

difference between these two examples is the location of the flat areas. The flat

regions in Simulation 2.8 lie in the middle, while those in Simulation 2.9 are located

on the top as well as at the bottom. It is noticed previously in the Gaussian function

example (Simulation 2.4) that the sigmoid function has the nice property of flattening

things outside its focused domain, but the flat levels must be located either on the top

or at the bottom, dictated by its geometrical shape. Therefore it is much easier to

approximate the function in Simulation 2.9 with three-layered MLP than the function

in Simulation 2.8. To verify this explanation, we increase the height of the hill as well

as the depth of the valley in Simulation 2.9 such that they are higher or lower than the

two flat planes, then it becomes very difficult to approximate with three-layered MLP,

as shown in the following simulation.

Simulation 2.10: We slightly change the approximation problem in Simulation Nine as

follows.







−∈−∈+−+−−−−−−

−∈∈−−+−−−−−−
=

]4,4[),0,4[,1))2(exp(4.2))2()2(exp(3.2
]4,4[],4,0[,1))2(exp(4.2))2()2(exp(3.2

),(
2222

2222

yxyxyx
yxyxyx

yxf (2.19)

The difference between this example and Simulation Nine is that the two flat planes

are no longer present at the top or the bottom any more. The sampling points of

training set and test set are the same as those in Simulation Nine. The number of

hidden neurons has to be increased from 5 to around 35 for the three-layered MLP,

while a simple 2-5-2-1 MLP can approximate it quite well if four-layered MLP is used.

After 1000 epochs, the training error (MSE) goes to 51033.6 −× , the MSE and error

bound of test set are 51042.6 −× and 0.06 respectively. The result is plotted in Figure

2.15.

Chapter 2 Architecture Selection of Multilayer Perceptron

43

(a) Output of the Neural Network

(b) Approximation Error

Fig. 2.15. The modified hill and valley example.

Chapter 2 Architecture Selection of Multilayer Perceptron

44

From above discussion the reason why a simple 2-4-2-1 four layered MLP can

approximate hill and valley very well should be also clear now. As we discussed

before, the four-layered MLP has the capability of decomposing the task of

approximating one target function into tasks of approximating sub-functions. If the

target function with flat regions in the middle as in the case of Simulation 2.8 and 2.10

can be decomposed into linear combination of sub-functions with flat areas on the top

or at the bottom, then this target function can be approximated satisfactorily by a four-

layered MLP because each of the sub-function can be well approximated by a three-

layered MLP now. To validate this explanation, the outputs of the hidden neurons in

the second hidden layer of the 2-4-2-1 network in Simulation 2.8 are plotted out in

Figure 2.16, which are interestingly in the shape of a hill with flat areas around. It is

apparent that these two sub-functions which are constructed by three-layered MLPs

can easily combine into a shape consisting of a hill and a valley by subtraction.

Comment 2.14: The way of decomposing the target function by the four-layered MLP

is not unique and largely depends upon the initialization of the weights. For instance,

the shapes of the outputs of the hidden neurons are totally different from those of

Figure 2.16, as shown in Figure 2.17, when different initial weights are used.

However, both of them share the common feature that the flat areas are all located at

the bottom, which can be easily approximated by three-layered MLPs.

Chapter 2 Architecture Selection of Multilayer Perceptron

45

(a) Output of the first hidden neuron

(b) Output of the second hidden neuron

Fig. 2.16. The outputs of the neurons in the second hidden layer for the 2-4-2-1 MLP.

Chapter 2 Architecture Selection of Multilayer Perceptron

46

(a) Output of the first hidden neuron

(b) Output of the second hidden neuron

Fig. 2.17. The outputs of the neurons in the second hidden layer with different initialization.

Chapter 2 Architecture Selection of Multilayer Perceptron

47

In summary, we have following two guidelines regarding the choice of one or two

hidden layers to use.

Guideline Two: Four-layered MLP may be considered for purpose of decreasing the

total number of the parameters. However, it may increase the risk of falling into local

minima in the mean time.

Guideline Three: If there are flat surfaces located in the middle of the graph of the

target function, then four-layered MLP should be used instead of three-layered MLP.

Comment 2.15: The Gaussian hill and valley example is the most well known

example (Sarle 2002) to show the advantage of using two hidden layers over using one

hidden layer. However, very little explanation has been provided except Chester

suggested an interpretation in (Chester 1990), which was not well founded.

Comment 2.16: Sontag (1992) proved that a certain class of “inverse” problems in

general can be solved by functions computable by four-layered MLPs, but not by the

functions computable by three-layered MLPs. However, the precise meaning of

“computable” defined in (Sontag 1992) is exact representation, not approximation.

Therefore his result does not imply the existence of functions that can be approximated

only by four layered MLPs, but not by three-layered MLPs, which is still consistent

with the universal approximation theorem.

Chapter 2 Architecture Selection of Multilayer Perceptron

48

2.5 Conclusions

A geometrical interpretation of MLPs is suggested in this Chapter, on the basis of the

special geometrical shape of the activation function. Basically, the hidden layer of the

three-layered MLP provides the basic building-blocks with shapes very close to the

piecewise lines (or piecewise hyperplanes in high dimensional cases). The widths,

heights and positions of these building blocks can be arbitrarily adjusted by the

weights and biases. The four-layered MLP is interpreted simply as linear combination

of multiple three-layered MLPs that have the same hidden neurons but with different

output neurons. The number of the neurons in the second hidden layer is then the

number of these three-layered MLPs which construct corresponding sub-functions that

would combine into an approximation of the target function.

Based upon this interpretation, three guidelines for selecting the architecture of the

MLP are then proposed. It is demonstrated by various simulation studies that these

guidelines are very effective for searching of the minimal structure of the MLP, which

is very critical in many application problems.

The suggested geometrical interpretation is not only useful to guide the design of

MLP, but also sheds light on some of the beautiful but somewhat mystic properties of

the MLP. For instance, the universal approximation property can now be readily

understood from the viewpoint of piecewise linear approximation as proven in

Theorem 1. And also it does not escape our notice that this geometrical interpretation

may provide a light to illuminate the advantage of MLP over other conventional linear

regression methods, shown by Barron (1992; 1993), that the MLP may be free of the

“curse of dimensionality”, since the number of the neurons of MLP needed for

Chapter 2 Architecture Selection of Multilayer Perceptron

49

approximating a target function depends only upon the basic geometrical shape of the

target function, not on the dimension of the input space.

While the geometrical interpretation is still valid with the dimension of the input space

increasing, the guidelines can be hardly applied to high dimensional problems because

the basic geometrical shapes of high dimensional target functions are very difficult to

determine. Consequently, how to extract the basic geometrical shape of a high

dimensional target function from the available training data would be a very interesting

and challenging problem.

Chapter 3

Overfitting Problem of MLP

3.1 Overfitting Problem Overview

Multilayer perceptron (MLP) has already proven to be very effective in a wide

spectrum of applications, in particular the function approximation and pattern

recognition problems. Like other nonlinear estimation methods MLP also suffers from

over-fitting. The best way to solve the over-fitting problem is to provide a sufficiently

large pool of training data. But in most of the practical problems, the number of

training data is limited and hence other methods such as model selection, early

stopping, weight decay, and Bayesian regularization etc. are more feasible when a

fixed amount of training data is given.

Model selection mainly focuses on the size of the neural network, i.e. the number of

weights, while most other approaches are related to the size of the weights, directly or

indirectly. They are actually the two aspects of the complexity of the networks.

Therefore it is of great interest to gain deeper insight into the functioning of the size of

the network and the size of weights in the context of the over-fitting problem.

Based on the geometrical interpretation presented in Chapter 2, how the number and

the size of the weights influence the over-fitting problem will then be clearly

Chapter 3 Overfitting Problem of MLP

51

explained. Various approaches of dealing with the over-fitting problem are examined

from the point of view of the new geometrical interpretation. In particular, the popular

regularization training algorithms are studied in details. Not only the reason why

regularization methods are very efficient to overcome the over-fitting can be simply

explained by the geometrical interpretation, but also a potential problem with

regularization is predicted and demonstrated.

Applying the geometrical interpretation, a brief overview of over-fitting and some

popular approaches to improve generalization will be discussed in this Chapter. An

example of over-fitting problem (Caruana et al. 2000) is illustrated in Figure 3.1,

which is a function approximation with a three-layered (one hidden layered) MLP. The

training dataset is created by





≤≤+−
<≤+−

=
πππ

π
2))(3cos(

0)cos(
xvx
xvx

y (3.5)

And the noise v is uniformly distributed within [–0.25,0.25]. The MLP is trained with

Levenberg-Marquardt algorithm using Neural Network toolbox of MATLAB. With 4

hidden neurons, the approximation is fairly good. When the number of hidden neurons

increases, significant over-fitting and poor generalization are observed. The output of

the MLP fits the training data perfectly when number of the hidden neurons reaches

100, but the interpolation between the training points is extremely poor.

Chapter 3 Overfitting Problem of MLP

52

(a) 1-4-1

(b) 1-10-1

(c) 1-100-1

Figure 3.1: Example of over-fitting problem

Chapter 3 Overfitting Problem of MLP

53

From above example, it is obvious that the degree of over-fitting increases with the

size of the neural network. However, Bartlett (1997) made a surprising observation

that for valid generalization, the size of the weights is more important that the size of

the network, which appears hardly to be true at first glance. But with the aid of the

geometrical interpretation, this astonishing observation can be plainly explained as

follows. Since the slope of each building-block is roughly proportional to)2()1(
ii ww , the

smaller the weights, the gentler the slope of each building-block and hence the

smoother the shape of the overall function.

In fact, most of the prevalent methods to prevent over-fitting are concerned either with

the size of the network or the size of the weights, which will be examined from this

new perspective of the geometrical interpretation.

Chapter 3 Overfitting Problem of MLP

54

3.2 Comparative Study of Available Methods

3.2.1 Model Selection

This approach focuses on the size of the network. Generally, a simple network will

give good generalization performance. Normally, the model selection procedure is

based on cross-validation to choose the optimal size using either pruning or growing

techniques, which is usually time-consuming. Instead, based upon the geometric

interpretation, some much simpler guidelines have already been proposed in Chapter 2.

Following the guidelines, obviously 4 hidden neurons are needed to approximate the

function given in the example, and indeed 1-4-1 network gives very good

generalization as seen from Figure 3.1. We have tested this guideline with extensive

simulation studies. In all of the cases studied, the estimated number of the hidden

neurons is either very close to the minimal number of hidden neurons needed for

satisfactory performance, or is the minimal number itself in many cases as shown in

Chapter 2.

3.2.2 Early Stopping

Early stopping is another popular method to overcome the over-fitting problem in the

training progress (Sarle 1995). The main idea is to stop training when the validation

error goes up. Figure 3.2 shows the results of using early stopping method in the

former example, in which no significant over-fitting is observed even when the number

of hidden units reaches 100. To apply early stopping successfully, it is critical to

choose very small random initial values for the weights (chosen within [-0.1, 0.1]

Chapter 3 Overfitting Problem of MLP

55

randomly in this example) and use a slow learning rate, which essentially prevents the

weights from evolving into large values. Confining the size of the weights to be small

is also a good remedy to alleviate the over-fitting problem as discussed before.

 1-100 –1

Figure 3.2: Early stopping for overcoming over-fitting problem

3.2.3 Regularization Methods

Conventionally, the training progress is to minimize the cost function DEF = ,

where DE is the summation of the squared errors. Regularization methods add a

penalty term to the cost function. Usually, the penalty term is a function of the weights,

which is called complexity penalty. Then the cost function becomes wD EEF λ+= ,

where wE is the complex penalty and λ is called regularization parameter.

Chapter 3 Overfitting Problem of MLP

56

Weight decay (Plaut et al. 1986) is the simplest one of the regularization approaches,

where wE is the summation of all the squared parameters including both weights and

biases, and weight elimination (Weigend et al. 1991) is actually a normalized version

of weight decay. Both of them work effectively in some applications, but they do not

work well all the times because they ignore the difference between the weights and the

biases, as well as the interaction between the weights in different layers. For instance,

from the geometrical interpretation, the biases are only related to the positions of the

basic building-blocks, not the shapes, and hence should not be included in the penalty

term.

A more recent regularization method proposed by Moody and Rögnvaldsson (1997)

work much better than the standard weight decay and weight elimination. In their

approach, for the case of one-dimensional map, the complexity penalty wE for the first

order local smoothing regularizer can be reduced to ∑
=

=
N

i
iiw wwE

1

2)1()2()(, which is

actually minimizing the slopes of the basic building-blocks from the point of view of

geometrical interpretation. Therefore its superior performance can be simply attributed

to its capability to distinguish the different roles played by the weights and the biases.

The choice of the regularization parameter λ also affects the performance of the

generalization significantly. MacKay’s Bayesian approach (MacKay 1992a; MacKay

1992b) to choose the regularization parameters is the most popular one. Using

Bayesian regularization, 1-10-1 MLP may achieve good generalization result for the

former example while it fails previously without regularization as shown in Figure 3.3.

It is worth noting that the Bayesian regularization may break down if the number of

Chapter 3 Overfitting Problem of MLP

57

data pairs N is small relative to the number of the free parameters k as pointed out by

MacKay. But the reason and how large N/k must be for reliable approximation is still

an open question (MacKay 1992b). Furthermore, this breaking down may also depend

upon the initialization of the parameters as observed from our simulation studies.

The regularization methods limit the size of the weights, which in turn restrict the

slopes of the building-blocks to be small and hence results in smooth approximation.

However, the strength of this approach is also its weakness. Based upon the

geometrical interpretation, the MLP may have difficulty in approximating functions

with significant high frequency components because the slopes of the building blocks

are confined to be small. To verify this prediction, a simulation example is

constructed as follows. A training dataset is created which contains 41 points

according to the function)10sin(2.0)sin(xxy ππ += . A MLP with 21 hidden neurons

(which follows the previous model selection guideline) is used to approximate this

function, and the initial weights are chosen randomly within [-1,1]. The results with

and without Bayesian regularization are shown in Figure 3.4, where unexpected

smooth solution can be seen when Bayesian regularization is used. Very interestingly,

Bayesian regularization indeed acts as a low-pass filter, and fails to capture the high

frequency component. Fortunately most of the high frequency signals result from

noises in reality, and the Bayesian regularization may give the desired approximation

by effectively filtering out the noise. But if the high frequency signals are useful

signals instead of noise, then regularization approach may not be the right choice, and

model selection method may be more proper.

Chapter 3 Overfitting Problem of MLP

58

(a) 1-10-1 without Bayesian regularization

(b)1-10-1 with Bayesian regularization

Figure 3.3: Bayesian regularization for overcoming over-fitting problem

Chapter 3 Overfitting Problem of MLP

59

(a) 1-21-1 with Bayesian regularization

(b) 1-21-1 without Bayesian regularization

Figure 3.4: A simple example where Bayesian regularization fails

Chapter 3 Overfitting Problem of MLP

60

3.3 Conclusions

Over-fitting is a critical issue for neural network applications. In order to gain deeper

insights in the functioning of the size of the network, as well as the size of the weights,

a geometrical interpretation in Chapter 2 is revisited. Based upon this interpretation,

the size of the weights directly decides the shape of the basic building-blocks, the

smaller the weights, the smoother the building-blocks. And the reason behind

Bartlett’s well-known observation that “for valid generalization, the size of the weights

is more important than the size of the network” is now crystal clear from the viewpoint

of this geometrical interpretation.

Various methods of preventing over-fitting are reviewed from this new perspective,

and all of them can be elegantly explained by the suggested geometrical interpretation.

A simple guideline for model selection is also suggested and applied successfully to

the given example.

Regularization has emerged as the most popular approach to overcome over-fitting

since no specific techniques are needed to select an optimal architecture and the

available data can be fully used. However, a potential problem with the regularization

method that it may fails to capture the high frequency characteristics of the function, is

illuminated by the geometrical interpretation.

Chapter 4

From Multilayer Perceptron to Radial Basis Function

Network

4.1. Introduction to Radial Basis Function Network

Radial Basis Function Network (RBFN) is another popular feedforward neural

network that is widely used in classification, regression and function approximation

problems. The main difference between the MLP is that the activations of the hidden

neurons of RBFN depend on the distance of an input vector from a prototype vector

whereas MLP calculate the inner product of the input vector and the weight vector.

Normally, radial basis function networks have three layers with different roles. The

input layer (sensors) connects the network to the environment. The hidden layer

performs the key nonlinear transformation from the input space to the high

dimensional hidden space in the network. The output layer gives a weighted linear

combination of the hidden neuron activations. The structure of radial basis function

network is shown in Figure 4.1. The kth output of the network should be:

∑
=

=
M

i
ikik XhwXf

1
)()((4.1)

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

62

where X is the input vector,)(Xhi is the ith basis function and kiw is the weight from

the ith basis function. The basis functions are normally multivariate Gaussian functions:

)
2

exp()(2

2

i

i
i

X
Xh

σ

µ−
−= (4.2)

where iµ is the center of the prototype vector, iσ is the spread of the Gaussian function

and 2
iX µ− is the squared Euclidean distance between the input vector and the

prototype vector.

#

#
#

#

Inputs
Output
layer

Basis
functions

Biases

Figure 4.1 Three-layered structure of radial basis function network

A very important and interesting property is that RBFN is naturally related to the

regularization network and some statistical concepts especially in classification areas.

Comparing to multilayer perceptron networks, these links make radial basis function

networks able to be trained by different and fast training methods (such as clustering

and EM methods). The training of RBFN is usually separated in to two stages.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

63

4.1.1 Two-stage Training of Radial Basis Function Networks

Although simultaneous adjustment of all the parameters of RBFN is also available, in

practice, the estimation of the parameters is often separated into two stages:

1. Determine the centers iµ and the relative spreads iσ .

2. Estimate the output weights based on the previously determined centers and

spreads.

Both these two stages can be solved quickly using batch mode methods. Although this

kind of separation may lead to a sub-optimal solution as compared to the simultaneous

training of the whole network, the difference of final performance is not that large.

Actually, in many situations, it even can provide better solutions considering the finite

training data and computational resource.

In the first stage, only the part of the training information is used. The centers and

spreads can be determined without the target (label) information. So the learning is

unsupervised at first. Once the centers and spreads are set, supervised learning will be

conducted to calculate the output weights.

Random Selection of Centers

The most convenient and fast way is to choose fixed parameters for the basis functions.

The locations of the centers may be simply randomly chosen from the training data set,

sometimes, even the whole training data set. This is considered to be a “sensible”

approach, since the training data are distributed in a representative manner for the

problem at hand (Lowe 1989). Specifically, a radial basis function centered at iµ is

defined as:

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

64

)exp()(2

2
max

2
ii X

d
nXH µµ −−=− , ni ,,2,1 …= (4.3)

Where n is the number of centers and maxd is the largest distance between the chosen

center vectors. Then the spread (standard deviation) of all the Gaussian basis functions

is:

n
d

2
max=σ (4.4)

So that each individual radial basis function will not be too steep or too flat. Small

spread can lead to less smooth functions. Another empirical method of choosing the

spreads is to set the spread to be 1.5 to 2 times of the average distance to L nearest

neighbors (Ghosh and Nag, 2000). Once the location of centers and the spreads are

determined, the network can be treated as a single-layer network with linear output

neurons. So that least-squares solution can be applied to get the weights:

DHW T += (4.5)

where D is the target vector in the training set, +H is the pseudo-inverse of the basis

function matrix H . This kind of random selection of centers seems somehow rough,

but it is often used because such ad hoc procedure is very fast (Bishop 1995). And it

actually works satisfactorily in many practical issues.

Clustering Algorithms

A more suitable approach is to choose the centers using clustering algorithms, which

can separate the given training points into subsets. Then the location of the centers can

be obtained by calculating the geometric mean of the points in the subsets. There are

many of such clustering algorithms. Among all, self-organized learning or K-means

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

65

clustering algorithm (Mcqueen 1967; Duda and Hart 1973, Moody and Darken 1989;

Kohonen 1990) is widely used. The K-means algorithm partitions the training data

points into K subsets jS by minimizing criterion with the clusters:

2

1
∑∑
= ∈

−=
K

i Sn
i

n

i

XJ µ (4.6)

where iµ is the center of the ith subset (iN is the number of points in the ith subset):

∑
∈

=
iSn

n

i
i X

N
1µ (4.7)

The partition of the data set is normally at random at first. Then the centers for each of

the subsets are calculated using equation 4.6. After that, each data point is reassigned

to the nearest center calculated. This procedure is iterated until there is no further

change in the partition. Although the above clustering procedure is a batch one,

sequential clustering is also available (Haykin 1999). Similar spreads determination

and output weights linear least-squared solution can be applied after the location of

centers is settled down.

4.1.2 One-stage Supervised Training of Radial Basis Function Networks

Radial basis function network is a specific feedforward neural network. It can also be

trained in a similar way to the multilayer perceptron. The first step is also to define the

cost function, which is usually the sum-squared error.

∑∑
= =

=
N

j

O

k
k jeE

1 1

2)(
2
1

，where)()()(jdjyje kkk −= (4.9)

Hence, the error gradient for linear output weights and bias:

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

66

∑∑
= =

−
−=

∂
∂ N

j

O

k i

ij
kj

ki n

nX
ne

nw
nE

1 1
2

2

)
)(2

)(
exp()(

)(
)(

σ

µ
 (4.10)

∑∑
= =

=
∂
∂ N

j

O

k
kj

j

ne
nb
nE

1 1

)(
)(
)((4.11)

The error gradient for the location and spread of the centers:

)(
))((

)
)(2
)(

exp()(
)(
)(

2
1 1

2

2

n
nX

n
nX

wne
n
nE

i

i
N

j

O

k i

i
kikj

i σ
µ

σ
µ

µ
−−

−=
∂
∂ ∑∑

= =

 (4.12)

)(
)(

)
)(2
)(

exp()(
)(
)(

3

2

1
2

2

1 n
nX

n
nX

wne
n
nE

i

i
N

j i

i
ki

O

k
kj

i σ
µ

σ
µ

σ
−−

−=
∂
∂ ∑∑

= =

 (4.13)

Where)(nekj is the error signal of the kth output neuron respect to the jth training point

at time n . Actually the gradient learning has an effect similar to a clustering effect

(Poggio and Girosi, 1990). After the error gradients are ready, we can easily update

these parameters with a set of learning rates lη for different parameters. Like the

supervised training of multilayer perceptron, the choice of the learning rate is also a

problem. When the learning rate is too small, the convergence speed will be very slow;

when the learning rate is too large, the learning procedure maybe unstable. To alleviate

the influence of the chose of learning rate, adaptive learning rate with momentum is

adopted in the later simulation studies. The NETtalk experiment (Wettschereck and

Dietterich 1992) indicated the generalization performance of the supervised trained

RBFN is better than those by two-stage trained ones. However, supervised training is

computationally expensive comparing to two-stage training.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

67

4.1.3 Difference Comparing to Multilayer Perceptron

Radial basis function network and multilayer perceptron are widely used, since they

are both universal approximators. However, there are important differences between

these two kinds of neural networks:

1. The hidden units of MLP compute the weighted linear summations of the inputs,

where the hidden units of RBFN calculate the distance between the input vector

and the prototype vectors (i.e. the centers).

2. The respond of RBFN is localized and the network can be adjusted locally with

the new inputs.

3. The MLP can have a complex structure with many layers whereas the RBFN

normally has only one hidden layer.

4. The parameters of MLP are usually adjusted simultaneously at one time; whereas

the training of RBFN is mostly separated to two stages.

4.2. MLP with Additional Second Order Inputs

Although there are major differences between the multilayer perceptron and the radial

basis function networks, they do have connection between each other. Maruyama,

Girosi and Poggio have reported that for normalized inputs, multilayer perceptron

network can always simulate a Gaussian radial basis function network (Maruyama et al.

1992). Wilensky and Manukian (1992) also proposed the Projection Neural Network

where two different transformations from an N-dimensional input to the N+1

dimensional transformed input space were introduced, and resulted in localized

reponses. All the dimensions should be recalculated in the both transformations.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

68

Wilamowski and Jaeger (1996; 1997) also raised a simple transformation of input

patterns onto a hypershpere in augmented space, and the efficiency of this method is

also experimentally verified. Omohundro (1989) also mentioned a MLP with

additional input which is the sum of the squares of other inputs may have localized

responses like RBFNs. This kind of additional input increases the input dimension by

one, which actually transforms the input to a hyperbolic surface. Casasent Networks

(Casasent 1992; Sarajedini 1992) are the practical approaches of this concept, which

allows either MLP or RBFNs, or combinations of these two. A more recent report is

given by Ridella et al. (1997), the proposed circular backpropagation (CBP) network is

also a MLP with additional input which is the sum of the squares of the original inputs.

The structure of CBP network is given in Figure 4.2.

Biases

#

#

#

#"

Inputs
Output
layer

Hidden
layers

Biases

1x

2x

nx

22
2

2
1 nxxx +++ "

Fig. 4.2. Structure of CBP network

It is clear from Figure 4.2 that the CBP network will become a standard MLP if the

weights connected to the additional input are set to zero. The three-layered CBP

network (with only one hidden layer) can also approximate a RBFN with same hidden

neurons. At the unit level, the CBP model can be described in the following form:

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

69

∑∑
=

+
=

++=
d

i
id

d

i
ii xwxwbwxh

1

2
1

1
),((4.14)

It is possible to obtain another form by simple algebraic transformations:

)()(2 θ+−= cxgxh (4.15)

where 1+= dwg which decides the spread of the Gaussian like function,

12/ +−= dii wwc are the centers of these Gaussian like function, and

)
4

(1
1 1

2

1
∑
= ++

−=
d

i d

i

d w
w

b
w

θ works like a bias for the Gaussian like function. The

activation function for CBP is sigmoidal:

he
h −+

=
1

1)(ϕ (4.16)

Let 2' cxgh −= , multiply it by an arbitrary constant which can be taken from the

output weights:

11 '
'

)'(+
=

+
= +− θ

θ

θϕ gh

g
h

gh ee
kee

e
kk (4.17)

We can choose k and gθ that let
1' +θ

θ

gh

g

ee
ke arbitrarily close to 1 (Ridella et al. 1997), and

then the CBP network can approximate the relevant RBFN if the remaining parts of the

output weights are identical to those of the RBFN. Similarly, a three-layered CBP

network with hyperbolic tangent function can also approximate a relevant RBFN with

same number of hidden neurons. If exponential activation function heh −=)(ϕ is

selected in the CBP network, then this exponential CBP (ECBP) network is naturally a

RBFN. Since the output of the exponential neuron becomes:

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

70

θθϕ gcxgcxg eeeh −−−+−− ⋅==
22))(()((4.18)

The term θge− can be easily absorbed in the output weights. In the RBFNs the spreads

of the Gaussian functions are always positive, but in the ECBP network the spread

1+= dwg can be negative. So that, the ECBP network is actually a generalized version

of the RBFN.

4.3. Comparative Study

To illuminate the effectiveness of the CBP network and the proposed ECBP network, a

lot of simulation studies are carried out. Various training methods of RBFNs are also

examined. The performances are compared together with multiplayer perception

networks.

4.3.1. Simulational Setup

All of the simulation studies are conducted in MATLAB and based on the NETLAB

toolbox and the Neural Network toolbox of MATLAB. All the networks have only one

hidden layer and the activation functions for the output neurons are all identical

functions (called “purelin” in MATLAB). The following are the detail settings of the

networks to be compared:

1. MLP: The Levenberg-Marquardt algorithm (Marquardt 1963, Mor 1977) is used;

the activation functions in the hidden layers are all hyperbolic tangent function

(called “tansig”) and the Nguyen-Widrow method (Nguyen and Widrow 1990) is

utilized to initialize the weights of the each layer of the MLPs.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

71

2. CBP: The same settings as those of MLP are adopted.

3. ECBP: Same settings as those of MLP are used except the activation function

used in the hidden layer is exponential function.

4. RBFN 1: The centers are randomly chosen from the training samples following

the method mentioned in section 4.1.1. Least Square method is selected to

calculate the output weights of the network.

5. RBFN 2: k-means clustering method is adopted here, and the spread is the same as

that of RBFN-1.

6. S-RBFN: A one-stage supervised learning algorithm with momentum and

adaptive learning rate is selected to training the RBFN.

The maximum iterations for supervised networks (MLP, CBP, ECBP and S-RBFN)

are fixed at 10000, and the maximum iterations for the clustering algorithm are 1000,

unless specified. Each result in the tables is the optimal one from ten trials. Those did

not achieve the performance goal within specified epochs were marked with “Failed”.

4.3.2. Simulational Results

Simulation 4.1: Consider the approximation problem in Simulation 3.1 with the same

training and test data sets. Table 4.1 gives the results of the minimum number of

hidden neurons needed to reach the test goal, which is set at 0.0001.

TABLE 4.1

The minimum number of hidden neurons needed for simulation 4.1

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

3 2 2 5 5 3

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

72

Comment 4.1: From Table 4.1, we can see that fewer number of hidden neurons is

needed for supervised training. We also noted that for CBP and ECBP networks, a

network with only 2 hidden neurons is sufficient for satisfactory approximation. That

is maybe because of the additional input weights incorporated in the CBP and ECBP

networks. The total number of free parameters for MLP with 3 hidden neurons is 10,

and those for CBP and ECBP with 2 hidden neurons are already 9. The clustering

method does not work very efficiently compared to S-RBFN which adjusts the centers,

spreads and weights at the same time.

Simulation 4.2: The noisy approximation problem in simulation 3.2 is revisited here,

and the result is shown in Figure 4.3. With the minimum structure, all the networks

generalize well. But when the number of hidden neurons is increased to 50, the RBFNs

(except for the clustering method, since the number of centers exceeds the number of

training data) and the ECBP network still result in good generalization performance.

But the CBP and MLP trained with Levenberg-Marquardt algorithm result in

“overfitting”.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

73

(a) Approximation by ECBP

(b) Approximation by CBP

Fig. 4.3. Approximation with 50 hidden neurons

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

74

Comment 4.2: The difference of generalization performance between CBP and ECBP

comes from the difference of the activation functions. The hyperbolic tangent function

is more efficient than the exponential function. Hence, it is more prone to overfitting

problem (Caruana et al. 2000).

Simulation 4.3: The more complicated one-dimensional example in simulation 3.3 is

reconsidered here. The training and test sets remain the same. Table 4.2 gives the

results of the minimum number of hidden neurons to reach the error bound 0.025.

TABLE 4.2

The minimum number of hidden neurons needed for simulation 4.3

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

9 6 6 41 41 Failed

Comment 4.3: Again, CBP and ECBP give the best approximation results considering

the number of hidden neurons, even the total number of free parameters. The minimum

number of the parameters of MLP is 28, those for CBP and ECBP is 25. All the RBFN

networks do not give good approximation performance, which is related to the near

linear part in the middle of the function to be approximated, since RBFN networks are

very inefficient in approximating linear or constant function. The failure of S-RBFN

maybe attributed to either slow convergence rate of the learning algorithm or local

minima problem.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

75

Simulation 4.4: Consider the two-dimensional example in Simulation 3.5 with the

same training set and test set. The minimum numbers of hidden neurons to reach the

error bound 0.15 are given in Table 4.3.

TABLE 4.3

The minimum number of hidden neurons needed for simulation 4.4

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

13 6 6 Failed Failed Failed

Comment 4.4: The total number of parameters of the minimum structure of CBP and

ECBP is 25, and that for MLP is 40. So that CBP and ECBP is very efficient in terms

of the number of parameters. Moreover, the CBP can even reach an error bound less

than 0.04, which is hard even for EANNs (see Simulation 2.5 in Chapter 2). All of the

RBFNs failed because of the severe “overfitting” problem for this particular case.

Simulation 4.5: We revisit the Gaussian hill and valley problem in Simulation 3.3. The

training and test sets are still the same. The clustering method does not work well since

the training data partition the input space uniformly. The target error bound set for

approximation is 0.05, which is quiet strict. If the centers of the RBFN are chosen

randomly from the training data, the number of the centers should be about 100 to

achieve approximation goal. If the training is continued beyond the targeted error

bound, after 5000 epochs, the approximation error bound can be reduced to about

5105 −× for CBP networks and 10105.1 −× for supervised training. For ECBP networks,

as shown in Figure 4.4, the error bound can be even reduced to 15104 −× after

amazingly 63 epochs. Since the training data is uniformly distributed, the performance

of RBFN-1 and RBFN-2 is much worse than S-RBFN.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

76

TABLE 4.4

The minimum number of hidden neurons needed for simulation 4.5

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

30 2 2 93 92 2

Fig. 4.4: The approximation error of ECBP network

Comment 4.5: If an additional hidden layer is added to the MLP, a simpler 2-4-2-1

network can be searched out to meet the requirement of error bound, which is still

much more complex than the structures of CBP, ECBP and Supervise RBFN. The

input weights of ECBP are [-4.0000 -4.0000 1.0000; 4.0000 0.0000 1.0000]. Since the

centers of the equivalent RBFN network should be 12/ +−= dii wwc and the

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

77

spread 1+= dwg , the centers are (2, 2) and (-2, 0) and the spreads are both 1, which is

exactly the centers and spreads for the original Gaussian hill and valley. This fact

inspires the idea partially trained ECBP network may be used to initialize the centers

of the RBFNs. Since this kind of supervised training has an effect similar to the

clustering procedure. Since this supervised training seems to be more efficient when

the training data do not naturally appear in groups or clusters, we can expect this

method of initializing RBFNs to be efficient in these cases. We can also expect that the

total time of training maybe shorter than that of S-RBFN.

Simulation 4.6: we consider the classical two-spiral problem (Lang 1989; Fahlmann

1989), the training set is shown in Figure 4.5. Table 4.5 gives the minimum number of

hidden neurons of those networks to achieve zero misclassification.

Fig. 4.5. The two-spiral problem

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

78

TABLE 4.5

The minimum number of hidden neurons needed for simulation 4.6

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

29 8 42 130 98 Failed

Comment 4.6: Ridella et al. (1997) mentioned that a RBFN with 42 hidden neurons

can solve the two-spiral problem with considerable optimization efforts, but no details

are given. In the above simulation studies, no specific optimization effort is added, so

that most of RBFNs failed to give the correct classification. Theoretically, an RBFN

with randomly selected centers can solve this problem with 97 (half of the total

training points) hidden neurons, but it is almost impossible to select all these 97

centers in on class. Hence, about 130 centers are needed to correctly classify these two

classes. In Figure 4.6, very interestingly, all the decision boundaries are smooth except

that for MLP. That is because the decision boundary for a single neuron in MLP is

linear and global, and the others are circular and localized.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

79

(a) MLP with 29 HN (b) CBP with 8 HN

 (c) ECBP with 42 HN

(d) RBFN1 with 130 HN (e) RBFN-2 with 98 HN

Fig 4.6. Approximation results for the two-spiral problem

Simulation 4.7: Here, we go to a simple linear separation problem, where the line

1=x separates the input space to two classes. . The training data comprises 1000

points randomly selected from the input space. And the test data set consists 676 points,

which are sampled by uniformly partitioning the input space by grid size 06.01.0 × .

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

80

The training and test data sets are shown in Figure 4.7. Table 4.6 shows the minimum

number of hidden neurons needed for the different networks to achieve zero

misclassification.

(a) Training data (b) Test data

Fig. 4.7. The training and test data of the simple linear separation problem

TABLE 4.6

The minimum number of hidden neurons needed for simulation 4.7

MLP CBP ECBP RBFN 1 RBFN 2 S-RBFN

1 1 2 5 7 10

Comment 4.7: We can see that the MLP works best since the decision boundary of

MLP is naturally linear which is very suitable for this problem. The CBP network also

works very efficiently as it can represent a MLP exactly. However since the structure

is more complex than the standard MLP, the performance of CBP network is not as

good as that of MLP. Theoretically, the ECBP network can also be reduced to a MLP

if the weights connecting to the additional input are set to zero. But the exponential

transfer function is not as efficient as the hyperbolic tangent function and ECBP is

more close to RBFNs, so that more hidden neurons are needed for ECBP. The RBFNs

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

81

are also able to solve this linear separation problem with zero error. However more

hidden neurons are needed for their localize response. No advantage of the clustering

method is observed, since the training data is randomly chosen from the input space.

Simulation 4.8: This is a two dimensional classification problem of two classes of

Gaussian distributions 1C and 2C . The conditional probability density functions for the

two classes are:

)
2

1exp(
2

1)|(2
12

1
2
1

1 µ
σπσ

−−= XCXf (4.17)

)
2

1exp(
2

1)|(2
22

2
2
2

2 µ
σπσ

−−= XCXf (4.18)

Where the mean vectors 1µ , 2µ are [0;0] and [2;2], the variance for the two classes 2
1σ

and 2
2σ are 1 and 4 respectively. The training data set consists 500 points from each

distribution as shown in Figure 4.8. The classification results are shown in Figure 4.9.

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

82

Fig. 4.8. The classification problem of two Gaussian distribution

Fig. 4.9. The classification results for the two Gaussian distributions

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

83

Comment 4.8: From Figure 4.9 we can see both the CBP and ECBP networks

outperform MLP and RBFN networks significantly. Supervised one-stage trained

RBFN network also has better performance than the other algorithm in terms of

classification accuracy. Again, the clustering algorithm does not perform better than

other algorithms even comparing to the simple random selection centers method.

4.4. Conclusions

A brief introduction of radial basis function networks is given in this chapter. The

various two-stage training methods of radial basis function networks, as well as the

one-stage supervised training, are investigated. The difference between the MLP and

RBFNs is also discussed.

MLPs with additional second order inputs, which can produce localize response fields,

are introduced, especially the circular backpropagation (CBP) network by by Ridella et

al. (1997). The CBP network can be reduced to a standard MLP if the weights

connecting to the additional input are set to zero. The CBP also can approximate a

RBFN arbitrarily.

After a careful study of the CBP network, a modified CBP network (ECBP) is

proposed. The ECBP network replaced the sigmoidal activation function in the hidden

layer with exponential function heh −=)(ϕ . Then the ECBP network becomes naturally a

generalized version of RBFNs, which can represent a RBFN easily. Since the CBP and

ECBP are actually special cases of multilayer perceptron networks, the fast training

Chapter 4 From Multilayer Perceptron to Radial Basis Function Network

84

strategies such as Levenberg-Marquardt algorithm (Marquardt 1963; Mor 1977) of

MLP can be easily implemented in these networks.

Because the natural connection between the ECBP and RBFN networks, we also can

see the possibility of initializing RBFN networks with partially trained ECBP networks,

as an alternative solution to determine the centers. The ECBP network is more prone to

local minima problem compared to the CBP networks, since the exponential activation

function is unbounded and not as efficient as the sigmoidal functions.

 Comparative studies have been conducted between the MLP, CBP, ECBP and

RBFN networks. In the comparative studies, the CBP and ECBP outperform the MLP

and RBFNs for most of the cases of the approximation and classification problems.

It is interesting to note that the clustering method of RBFN networks do not work

efficiently as expected comparing to the simple method of random selection of the

centers, especially when there are no obvious groups or clusters in the training data set.

It appears that there is really no need to do any clustering for RBFN and simply using

random selection, or replacing RBFN with CBP or ECBP would achieve better

performance. Although there do exist some examples in the literature (Chen et al. 1993,

Su and Chou 2001), where the clustering methods have very satisfactory performances,

it remains to be seen whether it is indeed superior in terms of accuracy to other

approaches for these problems since no comparative studies were reported.

Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, the structure selection and analysis problem of neural networks is

carefully examined, especially for those feedforward neural networks such as

multilayer perceptron and radial basis function networks.

First of all, a geometrical interpretation of MLPs is suggested based on the special

geometrical shape of the activation function. The basic building blocks provided by the

hidden layer of the three-layered MLP are very close to the piecewise lines (or

piecewise hyperplanes in high dimensional cases). We can set the widths, heights and

positions of these building blocks arbitrarily by adjusting the weights and biases. The

four-layered MLP is interpreted simply as linear combination of multiple three-layered

MLPs that have the same hidden neurons but with different output neurons. The

number of the neurons in the second hidden layer is then the number of these three-

layered MLPs that construct corresponding sub-functions that would combine into an

approximation of the target function.

Three guidelines for selecting the architecture of the multilayer perceptron are

proposed based on this geometrical interpretation. It is demonstrated by numerous

Chapter 5 Conclusions and Future Works

86

simulation studies that these guidelines are very effective for searching of the minimal

structure of the MLP, which is very critical in many application problems. For easy

reference, these guidelines are summarized here again as follows.

Guideline One: Choose the first trial for the number of the hidden neurons of the three-

layered MLP as the minimal number of line segments (or hyperplanes in high

dimensional cases) that can approximate the basic geometrical shape of the target

function which is given a priori or may be perceived from the training data. This

number can also be used to generate the initial population for EANN or the starting

point for growing and pruning the neural networks, which may speed up the learning

process substantially.

Guideline Two: Four-layered MLP may be considered for purpose of decreasing the

total number of the parameters.

Guideline Three: If there are flat surfaces located in the middle of the graph of the

target function, then four-layered MLP should be used instead of three-layered MLP.

The suggested geometrical interpretation is also useful to explain somewhat mystic

properties of the MLP. For instance, the universal approximation property can now be

readily understood from the viewpoint of piecewise linear approximation as proven in

Theorem 2.1. At the same time, this geometrical interpretation may provide a light to

illuminate the advantage of MLP over other conventional linear regression methods,

shown by Barron (1992; 1993), that the MLP may be free of the “curse of

dimensionality”, since the number of the neurons of MLP needed for approximating a

Chapter 5 Conclusions and Future Works

87

target function depends only upon the basic geometrical shape of the target function,

not on the dimension of the input space.

Over-fitting problem is a critical issue for neural network applications. In order to gain

deeper insights in the functioning of the size of the network, as well as the size of the

weights, based upon the geometrical interpretation of MLP, the size of the weights

directly decides the shape of the basic building-blocks, the smaller the weights, the

smoother the building-blocks. And the reason behind Bartlett’s well-known

observation that “for valid generalization, the size of the weights is more important

than the size of the network” is now crystal clear from the viewpoint of this

geometrical interpretation. Various methods of preventing over-fitting are reviewed

from this new perspective, and all of them can be elegantly explained by the suggested

geometrical interpretation. Regularization has emerged as the most popular approach

to overcome over-fitting since no specific techniques are needed to select an optimal

architecture and the available data can be fully used. However, a potential problem

with the regularization method that it may fails to capture the high frequency

characteristics of the function, is illuminated by the geometrical interpretation.

The structure analysis problem is unsurprisingly extended to the radial basis function

networks, because of the similarity to the multilayer perceptron networks. The various

two-stage training methods of radial basis function networks, as well as the one-stage

supervised training, are investigated. The difference between the MLP and radial basis

function networks is also discussed. Then the connection between MLP and RBF

network is visited. The MLP with additional special second order inputs can produce

localize response fields (Casesant 1992; Ridella 1997). The recent result is given by

Chapter 5 Conclusions and Future Works

88

Ridella etc. for their circular backpropagation (CBP) network. The CBP network can

be reduced to a standard MLP if the weights connecting to the additional input are set

to zero, and also can approximate a radial basis function network arbitrarily. After a

careful study of the CBP network, a modified CBP network (ECBP) is proposed. The

ECBP network replaced the sigmoidal activation function in the hidden layer with

exponential function heh −=)(ϕ . Then the ECBP network becomes naturally a

generalized version of radial basis function networks, which can represent a radial

basis function network easily, as shown in equation (4.16). Since the CBP and ECBP

are actually special cases of multilayer perceptron networks, the mature training

strategies such as Levenberg-Marquardt algorithm (Marquardt 1963, Mor 1977) of MLP

can be easily implemented in these networks.

After that, comparative studies are conducted between the MLP, CBP, ECBP and RBF

networks. In the comparative studies, the CBP and ECBP outperform the MLP and

RBF networks in the most cases of the approximation and classification problems in

sense the size of the structure. And the clustering methods of RBF networks do not

work efficiently as expected considering that much more effort needed comparing to

the simple method of random selection of the centers, especially when there are no

obvious groups or clusters in the training data set.

Chapter 5 Conclusions and Future Works

89

5.2 Future works

While the geometrical interpretation is still valid with the dimension of the input space

increasing, the guidelines can be hardly applied to high dimensional problems because

the basic geometrical shapes of high dimensional target functions are very difficult to

determine. Consequently, how to extract the basic geometrical shape of a high

dimensional target function from the available training data would be a very interesting

and challenging problem.

The ECBP network is naturally a radial basis function network when the weights

connecting to the additional input 1+dw are positive. In this case, the parameters of the

ECBP network are directly connected to a radial basis function network. So that we

also can see the possibility of initializing RBF networks with partially trained ECBP

networks. But the efficiency of this novel two-stage training algorithm of RBF

networks is still to be proved. Another relative problem to solve is that: how the ECBP

network works during the training procedure when the weights 1+dw are constrained to

positive?

Since the CBP and ECBP networks are actually still multilayer perceptron networks,

they may have additional hidden layers other than the number of hidden layers is

normally constrained to one in those RBF networks. An additional hidden layer maybe

helpful in the standard MLPs, as shown in Chapter 2, but the influence of this

additional hidden layer to CBP and ECBP networks are still to be examined.

Chapter 5 Conclusions and Future Works

90

The advantage of CBP and ECBP network in classification problems is mainly because

their sophisticated decision boundaries (either global or local) comparing to the

standard MLPs and RBF networks. The activation function in the hidden layer has a

great influence on the decision boundary. Details can be found in survey (Duch et al.

1999) on neural transfer functions. The CBP and ECBP networks are actually mixtures

of the inner product and distance based activation functions. Dorffner (1994) proposed

conic section activation functions as a unified framework for MLP and RBF networks,

where straight lines, circles and ellipses are special cases of conic sections. And these

conic section activation functions are also combinations of inner product and distance

based activation functions. This approach gives more freedom for the decision

boundaries in the classification problems. However, it also leads to more complex

nonlinear optimization problems that are more prone to local minima. Hence, the

evolutionary algorithms may be considered to solve these nonlinear optimization

problems in the training procedures.

References

Alpaydim, E., 1994, “GAL: Networks that grow when they learn and shrink when they

forget,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 8,

no. 1, pp. 391-414.

Amri, S., 1998, “Natural gradient works efficiently in learning,” Neural Computation,

vol. 10, no. 2, pp. 251-276.

Barron, A.R., 1992, “Neural net approximation,” in Proceedings of the Seventh Yale

Workshop on Adaptive and Learning Systems, pp. 69-72, New Haven, CT.: Yale

University.

Barron, A.R., 1993, “Universal approximation bounds for superpositions of a

sigmoidal function,” IEEE Transactions on Information Theory, vol. 39, pp. 930-945.

Bartlett, P. L., 1997, “For valid generalization, the size of the weights is more

important than the size of the network,” Advances in Neural Information Processing

Systems, vol. 9, pp.134-140, The MIT Press.

Bishop, C., 1995, “Neural Networks for Pattern Recognition,”, Oxford University

Press.

References

92

Caruana, R., Lawrence, S., and Giles, C. L., 2000, “Overfitting in Neural Networks:

Backpropagation, Conjugate Gradient, and Early Stopping,” Neural Information

Processing Systems, Denver, Colorado, Nov. 28-30, 2000.

Casasent, D. and E. Barnard, 1992, Adaptive clustering neural net for picewise

nonlinear discriminant surfaces, International Joint Conference on Neural Networks, I,

pp. 423-427.

Castillo, P.A., J. Carpio, J. J. Merelo, V. Rivas, G. Romero and A. Prieto, 2000,

“Evolving Multilayer Perceptrons,” Neural Processing Letters, vol. 12, no. 2, pp. 115-

127.

Chen, S., B. Mulgrew, and P. M. Grant, 1993, “A clustering technique for digital

communications channel equalization using radial basis function networks”, IEEE

Transactions on Neural Networks, Vol. 4, no. 4, pp. 570-579.

Chester, D.L., 1990, “Why two hidden layers are better than one,” International Joint

Conference on Neural Networks (IJCNN-90), Lawrence Erlbaum, vol. 1, pp. 265-268.

Cybenko, G., 1989, “Approximation by superpositions of sigmoidal function,” Math.,

Control, Signals, and Systems, vol. 2, pp. 303-314, 1989.

Duda, R. O., and P. E. Hart, 1973, Pattern Classification and Scene Analysis, New

York: Wiley.

References

93

Fahlmmann, S. E., and C. Lebiere,1989, “The cascade-correlation learning

architecture”, in Advances in Neural Information Processing Systems II, San Mateo,

CA: Morgan Kaufmann, pp. 524-532.

Funahashi, K., 1989, “On the approximate realization of continuous mappings by

neural networks,” Neural Networks, vol. 2, pp. 183-192.

Ghosh, J. and Nag, A, 2000, “An Overview of Radial Basis Function Networks,”

Radial Basis Function Neural Network Theory and Applications, R. J. Howlerr and L.

C. Jain (Eds), Physica-Verlag.

Hassibi, B., D. G. Stork and G. J. Wolff, 1992, “Optimal brain surgeon and general

network pruning,” in Proceedings of IEEE International Conference on Neural

Networks, vol. 1, pp. 293-299, San Francisco.

Haykin, S., 1999, “Neural networks: a comprehensive foundation,” Prentice Hall, New

Jersey, second edition.

Hornik, K., M. Stinchcombe and H. White, 1989, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, pp. 359-366.

Hush, D. R. and J. M. Salas, 1988, “Improving the learning rate of back-propagation

with the gradient reuse algorithm,” in Proceedings of IEEE International Conference

on Neural Networks, vol. 1, pp. 441-447, San Diego, CA.

References

94

Hush, D. R. 1997, “Learning from examples: From theory to practice,” Tutorial #4,

1997 International conference on Neural Networks, Houston, June, 1997.

Jasic, T. and H. Poh, 1995, “Artificial and real world mapping problems,” Lecture

Notes in Computer Science, vol. 930, pp. 239-245, Springer-Verlag.

Lang, K., and M. Witbrock, 1989, “Learning to tell two spirals apart”, in Proceedings

of Connectionist Models Summer School, pages 52--59. Morgan Kaufmann.

LeCun, Y., J. S. Denker and S. A. Solla, 1990, “Optimal brain damage,” Advances in

Neural Information Processing Systems, vol. 2, pp. 598-605, San Mateo, CA: Morgan

Kaufmann.

Lowe, D., 1989, “Adaptive radial basis function nonlinearities, and the problem for

generalization,” First IEE International Conference on Artificial Neural Networks,

pp.171-175, London.

MacKay, D.J.C., 1992a, “Bayesian Interpolation,” Neural Computation. Vol.4, pp.

415-447.

MacKay, D.J.C., 1992b, “A practical Bayesian framework for back-propagation

networks,” Neural Computation. Vol.4, pp. 448-472.

Marquardt, D. W., 1963, “Nonlinear modeling,” Journal of the Society for Industrial

and Applied Mathematics, vol. 11, pp. 431-441.

References

95

Maruyama, M., F. Girosi, and T. Poggio, 1992, “A connection between GRBF and

MLP”, A.I. Memo, No. 1291, MIT Artificial Intelligence Lab.

McCulloch, W.S. and W. Pitts, 1943, "A Logical Calculus of the Ideas Immanent in

Nervous Activity," Bulletin of Mathematical Biophysics, vol.5, pp.115-133.

Mennon, A., K. Mehrotra, C. K. Mohan and S. RanKa, 1996, “Characterization of a

class of sigmoid functions with applications to neural networks,” Neural Networks,

vol. 9, pp. 819-835.

Moody, J. and C. Darken, 1988, “Learning with localized receptive fields,” In

Touretzky et al. editors, Proceedings of the 1988 Connectionist Models Summer

School, San Mateo, CA, Morgan Kaufmann.

Moody, J.E. and T. Rögnvaldsson, 1997, “Smoothing regularizers for projective basis

function networks,” Advances in Neural Information Processing Systems, vol. 9, pp.

585-591.

Mor, J.J., 1977, “The Levenberg-Marquardt Algorithm: implementation and theory, in

numerical analysis,” G. A. Watson, ed., Lecture Notes in Mathematics, vol. 630,

Springer-Verlag, Berlin, pp. 105-116.

Nguyen, D. and B. Widrow, 1990, “Improving the learning speed of 2-layer neural

network by choosing initial values of the adaptive weights,” in Proceedings of

International Joint Conference on Neural Networks (IJCNN-90), vol. 3, pp. 21-26.

References

96

Omohundro, S. M., 1989, “Geometric learning algorithms,” Technical Report 89-041,

International Computer Science Institute, Berkeley, CA.

Plaut, D., S. Nowlan, and G. Hinton, 1986, “Experiments on learning by

backpropagation,” Technical Report CMU-CS-86-126, Carnegie Mellon University,

Pittsburg,PA.

Poggio, T., and F. Girosi, 1990, “Networks for approximation and learning”,

Proceedings of the IEEE, Vol. 78, pp 1481-1497.

Ridella, S., Rovetta, S. and Zunino, R., 1997, “Circular backpropagation networks for

classification”, IEEE Transactions on Neural Networks, vol.8, no. 1, pp. 84-97.

Riessen, G.A., Williams, G.J. and Yao, X., 1997, “PEPNet: parallel evolutionary

programming for constructing Artificial Neural Networks,” Proceedings of the 6th

International Conference, Evolutionary Programming, pp. 35-45.

Rosenblatt, F., 1959, "The Perceptron: A Probabilistic Model for Information Storage

and Organization in the Brain," Psychological Review 65, pp. 386-408.

Sarle, W.S., 1995, “Stopped Training and Other Remedies for Overfitting,”

Proceedings of the 27th Symposium on the Interface of Computing Science and

Statistics, pp. 352-360.

References

97

Sarle, W., 2002 “How many hidden layers should I use?,” Newsgroup:

comp.ai.neural-nets FAQ, Available at: ftp://ftp.sas.com/pub/neural/FAQ3.html#A_hl.

Sarajedini, A., and Hecht-Nielsen, R., 1992, “The best of both worlds: Casasent

networks integrate multilayer perceptrons and radial basis functions”, International

Joint Conference on Neural Networks, III, pp. 905-910.

Sarkar, M. and B. Yegnanarayana, 1997, “Evolutionary programming-based

probabilistic neural networks construction technique,” in Proceedings of International

Joint Conference on Neural Networks (IJCNN-97), Part 1, pp. 456-461.

Solis, F. and Wets, R.-B., 1981, “Minimization by random search techniques,”

Mathematics of Operation Research, vol. 6, no. 1, pp. 19-30.

Sontag, E.D., 1992, “Feedback stabilization using two-hidden-layer nets,” IEEE

Transactions on Neural Networks, vol. 3, pp. 981-990.

Su, M.C., and C.H.Chou, 2001, “A modified version of the k-means algorithm with a

distance based on cluster symmetry,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 23, No. 6, pp. 674-680.

Tamura, S. and Tateishi, M., 1997, “Capabilities of a four-layered feed-forward Neural

Network: four layers versus three,” IEEE Transactions on Neural Networks, vol. 8, no.

2, pp. 251-255.

References

98

Tarassenko, L. and S. Roberts, 1994, “Supervised and unsupervised learning in radial

basis function classifiers”, IEE Proceedings: Visual, Image and Signal Processing, vol.

141, pp. 210-216.

Villiers, J.D. and Barnard, E., 1992, “Backpropagation neural nets with one and two

hidden layers,” IEEE Transactions on Neural Networks, vol. 4, no. 1, pp. 136-141.

Weigend, A.S., D. E. Rumelhart and B. A. Huberman, 1991, “Generalization by

weight-elimination with application to forecasting,” Advances in Neural Information

Processing Systems, vol. 3, pp. 875-882, San Mateo, CA: Morgan Kaufmann.

Wettschereck, D., and T. Dietterich, 1992, “Improving the performance of radial basis

function networks by learning center locations,” Advances in Neural Information

Processing Systems, vol. 4, pp.1133-1140, San Mateo, CA: Morgan Kaufmanm.

Wilamowski, B. M. and Jaeger, R. C., 1996, “Implementation of RBF type networks

by MLP networks,” Proceedings of the IEEE International Conference on Neural

Networks (ICNN96), pp. 1670-1675.

Wilamowski, B. M. and Jaeger, R. C., 1997, “Implementation of RBF type networks

by sigmoidal feedforward neural networks,” Intelligent Engineering Systems Through

Artificial Neural Networks vol. 7, ed. C. H. Dagli and others, New York, pp. 183-188.

Wilensky, G. and N. Manukian, 1992, The projection neural networks, International

Joint Conference on Neural Networks, II, 358-367.

References

99

Yao, X. and Liu, Y., 1997, “A new evolutionary system for evolving artificial neural

networks,” IEEE Transactions on Neural Networks, vol. 8, pp. 694-713.

Yao, X., 1999, “Evolutionary artificial neural networks,” Proceedings of the IEEE,

vol. 87, no. 9, pp. 1423-1447.

List of Publications

The author has contributed to the following publications:

C. Xiang, S.Q. Ding and T.H. Lee, “Geometrical Interpretation and Architecture

Selection of MLP”, IEEE Transactions on Neural Networks (To appear as regular

paper).

S.Q. Ding and C. Xiang, “Overfitting problem: a new perspective from the geometrical

interpretation of MLP”, in Proceedings of the Third International Conference on

Hybrid Intelligent Systems, Melbourne, Australia, 14-17 December, 2003. A. Abraham

ed. al., Design and Application of Hybrid Intelligent Systems, IOS Press, pp. 50-57,

2003.

C. Xiang, S.Q. Ding and T.H. Lee, “Geometrical Interpretation of MLP with

Application to Architecture Selection”, the 2nd International Conference on

Computational Intelligence, Robotics and Autonomous Systems, Pan Pacific, Singapore

15-18 December, 2003.

S.Q. Ding and C. Xiang, “From Multilayer Perceptrons to Radial Basis Function

Networks: A Comparative Study”, 2004 IEEE Conference on Cybernetics and

Intelligent Systems (Accepted).

