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Summary

This thesis focuses on some issues of control of constrained robots. The control

objectives are to make the position of the robot and the constraint force achieve

their desired values in various situations which were not studied sufficiently in the

past. These situations include that the constraint is in motion, that the dynamics of

the constraint is unknown as well as that of the robot, and that the robot’s joints are

flexible while the joint stiffness is unknown. The issue of position/force tracking of

constrained robot with impedance control is also addressed. The controller design

for keeping the contact between the end effector of the robot and the constraint is

also studied.

In the study of constrained robot control, the motion of the constraint object is

usually neglected. However, in many industrial applications, such as assembling or

machining mechanical parts, the constraint (mechanical part) is required to move

with respect to not only the world coordinates but also the end effectors of the

robotic arms. In this thesis, the dynamic model of constrained robot system when

the constraint is in motion is set up. A model-based adaptive controller and a

model-free neural network controller are developed. Both controllers guarantee the

asymptotic tracking of the position of the constraint object to its desired trajectory

and the boundedness of constraint force tracking error. Asymptotic convergence of

the constraint force to its desired value can also be achieved under certain condi-

tions.

Impedance control is aimed to make the dynamic impedance between the robot and
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the environment follow a desired one. In this thesis, adaptive, robust or neural net-

work based control approaches are used to provide the traditional impedance con-

trol scheme with position/force tracking capabilities. The varying desired impedance

is adaptively tuned with the robot position tracking errors. The controllers guar-

antee the convergence of position tracking errors and the boundedness of force

tracking errors. The convergence of force error to zero can also be achieved under

some conditions.

The thesis also addresses the explicit force control of a constrained robot consider-

ing the dynamics of the constraint. The constraint is modeled as a chain of multiple

mass-spring-damper (CMMSD) units which describes the constraint’s dynamic be-

haviors during contact and noncontact motions. Considering the difficulties in

obtaining the dynamic model and the internal states of the constraint, a model

reference adaptive controller (MRAC) and an adaptive backstepping controller are

designed to control the constraint force. The proposed controllers are independent

of system parameters and guarantee the asymptotic convergence of the force to its

desired value and the boundedness of all the closed-loop signals.

Though maintaining the contact between the robot end effector and the constraint

is essential to many controllers developed for constrained robots, how to achieve

it is not addressed explicitly in the literature. In this thesis, the unidirectionality

of the contact force for maintaining the contact is explicitly included in modeling

and control of a constrained robot system. A fuzzy tuning mechanism is developed

to adjust the impedance between the robot and the constraint according to the

contact situations. A unidirectional force controller is developed based on a set of

fuzzy rules and the nonlinear feedback technique.

The thesis also addresses the issue of adaptive position/force control of uncertain

constrained flexible joint robots. The controller is designed without the assump-

tion of sufficient large joint stiffness used in many singular perturbation based

controllers. The controller design relies on the feedback of joint state variables,

and avoids noisy joint torque feedback. The traditional singular perturbation ap-

proach for free flexible joint robots is also extended to control constrained flexible

joint robot with sufficiently large joint stiffness. By properly defining the fast and

viii
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the slow variables with the robot position and the constraint force tracking errors,

a boundary layer system and a quasi-steady-state system are established and are

made exponentially stable with the controller developed. Both controllers achieve

the robot position tracking and the boundedness of constraint force tracking errors.

ix
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Chapter 1

Introduction

This thesis focuses on some issues of control of constrained robots. The control

objectives are to make the position of the robot and the constraint force achieve

their desired values. Various controllers are developed considering the following

situations which were not sufficiently covered in the past:

1. the constraint is in motion;

2. the constraint dynamics is taken into account in the controller design;

3. both the dynamic model of the robot and that of the constraint are unknown;

4. the joints of the constrained robot are flexible and the joint stiffness is un-

known.

The issue of position/force tracking of constrained robot with impedance control is

addressed. The controller design for keeping the contact between the end effector

of the robot and the constraint is also studied.

In this chapter, the background and the previous work of constrained robot control

are examined. In the later part of the chapter, the motivation and the organization

of the thesis are presented.

1



1.1 Background and Previous Work

1.1 Background and Previous Work

The control of constrained robotic manipulators has been studied extensively in

the last two decades. There are mainly three different control approaches, namely

hybrid position/force control [1][2][3], impedance control [4][5][6] and constrained

robot control [7][8][9]. These different control approaches are also combined in some

applications [10]. In hybrid position/force control scheme, the robot’s workspace is

divided into two subspaces orthogonal to each other, among which, one is for posi-

tion control and the other is for force control. With a so-called “selection matrix”,

the control action is switched between these two subspaces. The selection matrix

requires accurate modeling of the robot, the environment and the contact between

the robot and the environment. The robustness of the controller is compromised

by discontinuity resulted from switching of the control actions. In constrained robot

control scheme, the constraint is assumed to be ideally rigid and the end effector of

the robot is kept on the constraint surface. Through a nonlinear transformation,

the dynamics of the constrained robot system is described by a set of differential

and algebraic equations. The differential equations describe an unconstrained robot

motion along the constraint manifold, and the algebraic equation describes the rela-

tionship between the constraint force and the system dynamics. Both the force and

the position are explicitly controlled with nonlinear feedback control scheme. In

impedance control scheme, the interaction between the robot and the environment

is modeled as a general impedance. Instead of accurate tracking of robot position

or constraint force, the objective of the controller is to achieve a desired generalized

dynamic impedance between the robot and the constraint. Most impedance control

schemes are based on model-based nonlinear feedback control which requires exact

dynamic models of the robot and the constraint. Most controllers developed are

for the robots with serial links. Recently these controllers are also extended to the

parallel robots where closed kinematic chains exist [11].

Nonlinear feedback control, or computed torque control is the foundation of most

control approaches for constrained robots. It contains a feed forward loop for com-

pensating the nonlinear robot dynamics, and a servo compensator to make the

2



1.1 Background and Previous Work

controlled variables (position of the robot, constraint force or impedance) converge

to their desired values. Traditional nonlinear feedback control needs accurate mod-

eling of the robot and the constraint environment. To deal with system uncertain-

ties, adaptive control [12][13][14][15][16][17][18], robust control [19][20][21][22][23],

neural network control [24][26] and their combinations are used in the controller

design. The property that the dynamics of the robot is linear with respect to a set

of robot parameters, or in another word, the robot dynamics can be expressed in a

linear-in-parameters (LIP) form, is essential for designing the parameter adaptation

laws in the adaptive control scheme. Robust control approach, mostly sliding mode

control, is designed for compensating the dynamic modeling errors and external

noises. The switching surface is a function of the tracking errors of the controlled

variables (position, force or impedance). By making the closed loop system evolve

along the switching surface, the tracking of the controlled variables to their desired

values is also achieved. Neural network control is a model free control approach

in which the dynamic model of the robot is approximated by a multi-layer neural

network. The weights of the neural network are tuned with the tracking errors of

the controlled variables.

Most controllers for the constrained robotic manipulators are designed with one or

more than one of the followings assumptions:

1. the constraint surface is rigid;

2. the constraint is stationary and the dynamic models of the constraint and

the contact are ignored;

3. the end-effector of the robot is always on the surface of the constraint surface;

4. the links/joints of the robot are rigid, or their stiffness are known.

These assumptions are restrictive in some applications where the constraint surface

may be flexible, the constraint is in motion or the contact between the robot and

the constraint is not always maintained. The joints or the links of the robot can

be flexible and their stiffness can take any values.

3



1.1 Background and Previous Work

In the past years, some control approaches have been developed with less restrictive

assumptions. One area attracting much attention is the controller design when the

constraint is not necessarily rigid. In this case, the constraint’s dynamic behav-

ior under the contact should be taken into consideration in the controller design.

In [27], the constraint surface is modeled as a first order damper and spring sys-

tem. With the assumption that the stiffness and damping ratio of the constraint

are sufficiently large, a singular perturbation approach is applied to regulate the

displacement of the constraint surface and the constraint force. In [28], the con-

straint is modeled as a general spring of an unknown stiffness. The constraint force

is accommodated by adjusting the desired constraint displacement. In [29], the

constraint is modeled as a second order mass-spring-damper system. The track-

ing of the constraint force is achieved by scaling down the desired displacement

adaptively. A common feature of these approaches is that the constraint force is

indirectly controlled through the modification of the displacement of the constraint

surface.

A more comprehensive dynamic model of a constraint is proposed in [30]. In this

model, the motion of the constraint is divided into three stages: constrained mo-

tion (rigid contacts), compliant motion (compliant contact) and collision (transition

between the constrained motion and the free motion of the robot). A singular per-

turbation approach is used to analyze and simulate the force response with different

constraint parameters. With the same constraint model, the theory of generalized

dynamic system (GDS) is applied to develop discontinuous force/position con-

trollers [8][32][33]. Different control actions are activated in different constraint

motion stages determined by the internal states and the parameters of the con-

straint which though are difficult to measure in practical applications. A more

complicated case where multiple rigid bodies make contacts each other is discussed

in [34].

Another key assumption of the controller design for constrained robots is that the

constraint is stationary with respect to the world coordinate. In some applications,

the motion of the constraint with respect to the world coordinate and its relative

motion with respect to the end effector of the manipulator are both required. A

4



1.1 Background and Previous Work

typical example is that one robotic arm performs assembling or machining task on

a work piece held tightly by another robotic arm. In some machining processes

such as deburring, grinding and polishing, the motion of the part with respect to

the robotic manipulators is needed to expand the operational space of the robot

and increase the efficiency of the work [38]. For this reason, it is important to

investigate the control of constrained robot when the constraint is in motion.

In many researches in constrained robot control, it has been assumed that the end

effector of the robotic manipulator is kept on the constraint surface all the time.

How to keep this contact has been neglected by most researchers so far. As pointed

out in [39], the force control schemes developed with the assumption that the end

effector of the robotic manipulator always keeps contact with the environment are

not effective when the contact is lost. Some researchers have tried to model the

transition from non-contact into contact and vice-versa [32][40] and some . Most

models established for analyzing the behaviors of the contact ate too complicated

to be used in the dynamic control synthesis. Model-free approaches such as fuzzy

control or neural network control [60][61] should be effective alternatives to solve

this problem.

Regarding the requirement of keeping the contact between the end effector of the

robotic manipulator and the constraint, impedance control is an exception as it

takes care of both unconstrained and constrained motion of the robot. Under

impedance control, the robot position tracking can only be achieved during its

motion in free space. The position and force are indirectly controlled during the

robot’s constrained motion. This feature makes it very appealing in applications

where the stable impedance relation between the constraint and the robot is im-

portant. Most impedance controllers are designed with the model-based computed

torque method which requires exact dynamic models of the robot and the con-

straint. To handle uncertainties, adaptive control, robust control or neural net-

work control approaches are introduced into the impedance control scheme. In

[15], the concept of target-impedance reference trajectories (TIRT) is proposed. A

TIRT is solved from the desired impedance model under the desired constraint

force. The dynamic parameters of the system are updated adaptively with the

5



1.1 Background and Previous Work

error between the actual robot trajectory and the TIRT. The desired impedance

is achieved indirectly by making this error asymptotically stable. In [21], a sliding

model control approach is developed. The switching function is defined with the so

called impedance error — an error between the actual impedance and the desired

impedance. The traditional sliding model control approach is used to make the

impedance error asymptotically stable. In [22], the results in [21] is extended to a

more general second order impedance model. The constraint force tracking errors

are also considered in the definition of the switching function. In [24], a neural

network based adaptive impedance control approach is proposed. The weights of

the neural network are tuned with the error between the robot trajectory and the

TIRT. In [25], an impedance control scheme with a programmable impedance is

developed for an one-degree-of-freedom elastic joint robot. The uncertainties of

the constraint is not considered in the above adaptive/robust impedance control

schemes.

There are a few impedance control approaches dealing with the robot’s position

tracking and force tracking with impedance control [5][39][41]. In [5], direct control

of position or force is achieved with a PI adaptive control law in which the robot’s

desired trajectory varies with the force tracking errors and environment parameter

estimation errors. In [39], a so-called parallel control scheme is proposed. In this

control scheme, the impedance control action is projected along two directions,

one along the normal and the other along the tangent at the contact point on

the constraint surface. The control actions along these two directions are force

control and position control respectively. This control scheme relies on the accurate

modeling of the controlled system and the assumption of zero stiffness along the

tangent of the constraint surface. In [41], a model reference adaptive control law is

proposed in which the position (force) tracking is achieved by updating the desired

impedance with position (force) tracking errors. These adaptive control schemes

require the exact dynamic modeling of the robot and the constraint.

Flexibilities of the joints of constrained robot pose another challenge for the con-

troller design. The control of flexible joint robotic manipulators has been studied

extensively in the last decades, though mostly in the area of free flexible joint
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robots. With singular perturbation (SP) analysis, controllers developed for rigid

robotic manipulators can be extended for the robots of weak joint flexibilities (the

joint stiffness is sufficiently large) [64][81][82][83][84][96]. Feedback linearization

method is also used in the controller design, but it requires exact dynamic model-

ing of the robot and the measurements of its joint accelerations and jerks [86][87].

To deal with uncertainties of robotic systems, many adaptive control schemes

[88][89][90] are developed from the pioneering work on adaptive control of rigid

robotic manipulators in [13]. The controller design requires joint acceleration feed-

back, filtering of system dynamics and the calculation of the inverse inertia matrix

of the robot. The controller is complex in structure and is computationally in-

tensive. Treating a flexible joint robotic manipulator as a cascading system, joint

torque feedback and backstepping approaches are also applied in the controller

design [91][92]. The measurement of joint torques and their noisy derivatives are

required in the design of the above controllers.

Compared with those for free flexible joint robots, much fewer research results are

reported on controlling constrained flexible joint robotic manipulators and most of

which are on the robot systems with known parameters and weak joint flexibility

[93][94]. In [95], a Cartesian-space robot model is used to develop the position

control and the force control along certain curvilinear directions as proposed in [16].

The joint torque and its up to 2nd order derivatives are needed in the controller

design. In [96], a Cartesian impedance control of flexible joint robots is developed

based on joint torque feedback. With computed torque control, the joint dynamics

and the link dynamics are decoupled and the desired impedance is achieved. The

controller requires an exact knowledge of the system dynamics and the noisy joint

torque feedback.

1.2 Motivations and Contributions of the Thesis

As discussed above, many idealistic assumptions are made for modeling and con-

trolling constrained robotic manipulators. The typical assumptions include that

the constraint is stationary, the constraint and the robot joints are rigid and the

7
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end effector of the manipulator is always kept on the constraint surface. The robot

position or constraint force tracking with impedance control and how to make the

constraint force unidirectional during the constrained motion are some issues which

are worth further investigation.

The first issue studied in the thesis is the constrained robot control when the con-

straint is in motion. The system dynamic model is firstly established by assuming

that the constraint is held and manipulated by one robotic manipulator and the

end effector of the another robotic manipulator moves on the constraint surface.

The properties of the dynamic model are then explored. Due to the complex sys-

tem configuration and its uncertainties, both model-based adaptive controller and

model free neural network controller are developed.

Another focus of the thesis is the position/force control of a constrained robot

with impedance control. Though impedance control can handle constrained and

unconstrained motions of the robot, how to achieve robot position or force tracking

during the robot’s constrained motion is still challenging problem. In this thesis,

various control approaches such as robust, adaptive or neural network control are

used to solve this problem.

As a departure from many controllers developed, the dynamic model of the con-

straint under the contact is treated as equally as that of the robot dynamics for

the explicit force control of constrained robots. We model the contact between the

end effector of the robot and the constraint as a chain of multiple mass - spring-

damper units (CMMSD) which is more general than many other models proposed

in the past. Applying the adaptive output feedback force controllers for a general

CMMSD system – one based on model reference adaptive control (MRAC) and

another based on backstepping control, the explicit force tracking is achieved with-

out the knowledge of the dynamic models of the robot and the constraint and the

internal states of the constraint.

A fuzzy control approach is applied to make the constraint force unidirectional

in a constrained robot system. Though there are many models developed for the

contacts between the rigid bodies [34][97][98], they are too complicated to be used

8
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for design a controller to achieve the unidirectionality of the constraint force. The

controller design can be made simpler by observing how a person keeps his finger

on an object with a force. What he does is to press his finger roughly along the

normal vector “penetrating” the constraint surface at the contact point and to

adjust the gesture of his hand to make the force felt at a reasonable level. From

this observation and analyzing the relation between the constraint force and the

parameters of the impedance between the robot and the constraint, some rules are

derived and used in the development of a unidirectional force controller.

The adaptive position/force control for an uncertain constrained robot with flexible

joints is very general as both the joint stiffness and the motor inertia are assumed

to be unknown in addition to the robot inertia parameters. It mainly relies on

the feedbacks of joint state variables (joint positions and velocities) and avoids

noisy joint torque feedback. The singular perturbation approach in controlling free

flexible joint robots is also extended to the positing/force control of constrained

flexible joint robots. In this case, both the force and position signals are used to

define slow and fast variables of the controlled system.

In summary, the following are the main contributions of the thesis:

1. Modeling and control of the robotic manipulator constrained by a moving ob-

ject; model-based adaptive and model-free neural network control approached

are developed respectively;

2. Development of robust, adaptive and neural network impedance control con-

sidering the uncertainties of the system; the controller achieves the robot’s

position tracking and the boundedness of constraint force tracking error;

3. Development of an explicit force controller for constrained robotic manipu-

lators by taking the dynamics of the constraint and the contact into consid-

eration; the contact between the end effector and the constraint is modeled

as a chained multiple mass-spring-damper system (CMMSD) and adaptive

output feedback control methods are applied;

4. Development of a fuzzy controller to make the constraint force unidirectional
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essential for keeping the contact between the robot’s end effector and the

constraint;

5. Development of adaptive position/force controllers for an uncertain con-

strained robot with flexible joints; the traditional singular perturbation ap-

proach is also extended to control the constrained flexible joint robots.

1.3 Outlines of the Thesis

The thesis contains seven chapters. The introduction of the thesis is given in

Chapter 1. Chapter 2 covers the modeling and control of a robotic manipulator

constrained by a moving object. Chapter 3 focuses on the position/force control

of a constrained robot with robust adaptive and neural network based impedance

control. Chapter 4 is on the explicit force control of a constrained robot by taking

the dynamic model of the constraint into consideration. Chapter 5 is on the fuzzy

unidirectional force control for a constrained robot. Chapter 6 is dedicated to the

robust adaptive or singular perturbation based position/force control of constrained

flexible joint robot. The conclusion and the future research are given in Chapter 7.

10



Chapter 2

Control of a Robot Constrained

by a Moving Object

In this chapter, we investigate position and force control for a robotic manipulator

constrained by an object which is held and manipulated by another robotic ma-

nipulator. It is required that the object follows a planned motion trajectory in the

work space and the end-effector of the constrained robotic manipulator follows a

planned trajectory on the object with a desired force.

The chapter is organized as follows. In Section 2.1, the kinematics and dynamic

models of the robotic system are presented. In Section 2.2, a model-based adaptive

controller is presented first, then it is extended to a model-free neural network based

adaptive controller in Section 2.3. Both controllers are designed to control the

positions of the constraint object and the robots’ end-effectors, and the constraint

forces asymptotically. In Section 2.4, simulation studies are used to show the

effectiveness of the controllers. The conclusion is given in Section 2.5.

2.1 Kinematics and Force Model

The system under study is schematically shown in Figure 2.1. The object is held

tightly and is moved as required in space by the end effector of manipulator 2. The
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Figure 2.1: The Robot Constrained by a Moving Object

end effector of manipulator 1 follows a trajectory on the surface of the object, and

exerts a certain force on it at the same time.

The following notations are used to describe the system in Figure 1:

Oc : the contact point between the end effector of manipulator 1

and the object;

Oo : the mass center of the object;

Oh : the point where the end effector of manipulator 2 holds the object;

OXY Z : the world coordinates;

OcXcYcZc : the frame fixed with the tool of manipulator 1 with its origin at the

contact point Oc;

OoXoYoZo : the frame fixed with the object with its origin at the mass center Oo;

OhXhYhZh : the frame fixed with the end-effector or hand of manipulator 2

with its origin at point Oh;
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2.1 Kinematics and Force Model

xc : the position vector of Oc, the origin of frame OcXcYcZc;

θc : the orientation vector of frame OcXcYcZc

xo : the position vector of Oo, the origin of frame OoXoYoZo;

θo : the orientation vector of frame OoXoYoZo;

xh : the position vector of Oh, the origin of frame OhXhYhZh;

θh : the orientation vector of frame OhXhYhZh;

xho : the position vector of Oh, the origin of frame OhXhYhZh

expressed in OoXoYoZo;

θho : the orientation vector of frame OhXhYhZh

expressed in OoXoYoZo;

xco : the position vector of Oc, the origin of frame OcXcYhZc

expressed in OoXoYoZo;

θco : the orientation vector of frame OcXcYcZc

expressed in OoXoYoZo;

rc = [xT
c θT

c ]T : the vector describing the posture of frame OcXcYcZc;

ro = [xT
o θT

o ]T : the vector describing the posture of frame OoXoYoZo;

rh = [xT
h θT

h ]T : the vector describing the posture of frame OhXhYhZh;

rho = [xT
ho θT

ho]
T ∈ R6 : the vector describing the posture of frame OhXhYhZh

expressed in OoXoYoZo ;

rco = [xT
co θT

co]
T ∈ R6 : the vector describing the posture of frame OcXcYcZc

expressed in OoXoYoZo ;

q1 ∈ Rn1 : the joint variables of manipulator 1;

q2 ∈ Rn2 : the joint variables of manipulator 2; and

Φ(rco) = 0 : the trajectory expressed in the object frame OoXoYoZo

The closed kinematic relationships of the system are given by the following equa-

tions

xc = xo + Ro(θo)xco (2.1)

xh = xo + Ro(θo)xho (2.2)

Rc = Ro(θo)Rco(θco) (2.3)

Rh = Ro(θo) (2.4)

where Ro(θo) ∈ R3×3 and Rco(θco) ∈ R3×3 are the rotation matrices of θo and θco
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respectively; Rc ∈ R3×3 and Rh ∈ R3×3 given above are the rotation matrices of

frames OcXcYcZc and OhXhYhZh with respect to the world coordinate respectively.

Differentiating the above equations with respect to time t and considering the fact

that the object is held by manipulator 2 tightly (accordingly, ẋho = 0 and ωho = 0),

we have

ẋc = ẋo + Ro(θo)ẋco − S(Ro(θo)xco)ωo (2.5)

ẋh = ẋo − S(Ro(θo)xho)ωo (2.6)

ωc = ωo + Ro(θo)ωco (2.7)

ωh = ωo (2.8)

with

S(u) :=

⎡
⎢⎢⎢⎣

0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎥⎥⎥⎦

for a given vector u = [u1 u2 u3]
T .

Define vc = [ẋT
c ωT

c ]T , vh = [ẋT
h ωT

h ]T , vo = [ẋT
o ωT

o ]T , vco = [ẋT
co ωT

co]
T and

vho = [ẋT
ho ωT

ho]
T . From equations (2.5) to (2.8), the following velocity relations

are established

vc = Avo + RAvco (2.9)

vh = Bvo (2.10)

where

RA =

⎡
⎣ Ro(θo) 0

0 Ro(θo)

⎤
⎦

A =

⎡
⎣ I3×3 −S(Ro(θo)xco)

0 I3×3

⎤
⎦

B =

⎡
⎣ I3×3 −S(Ro(θo)xho)

0 I3×3

⎤
⎦

and I3×3 is an identity matrix of dimension 3. In this thesis, In×n will be used to

represent an identify matrix of dimension n × n.
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Assume that the end-effector of manipulator 1 follows the trajectory Φ(rco) = 0 in

the object coordinates. The contact force fc and the resulting force fo are given by

fc = ncλ (2.11)

fo = −AT fc = −AT ncλ (2.12)

nc = RA(∂Φ/∂rco)
T /‖(∂Φ/∂rco)

T‖ (2.13)

where λ is a Lagrange multiplier related to the magnitude of the force.

2.2 Dynamic Modeling

To obtain the dynamic model of manipulator 2, the constraint object is treated

as a part of the end-effector. The dynamic models of manipulators 1 and 2 are

described by the following equations

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = τ1 + JT
1 (q1)fc = τ1 + JT

1 (q1)ncλ (2.14)

M2(q2)q̈2 + C2(q2, q̇2)q̇2 + G2(q2) = τ2 + JT
2 (q2)fo = τ2 − JT

2 (q2)A
T ncλ(2.15)

where Mi(qi) is the inertia matrix, Ci(qi, q̇i) is the coriolis and centrifugal force

matrix, Gi(qi) is the gravitational force, τi are the joint torques and Ji(qi) is the

Jacobian matrix (i = 1, 2).

Combining equations (2.14) and (2.15) gives the following dynamic equation

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + JT (q)ncλ (2.16)

where

M(q) =

⎡
⎣ M1(q1) 0

0 M2(q2)

⎤
⎦ , C(q, q̇) =

⎡
⎣ C1(q1 q̇1) 0

0 C2(q2 q̇2)

⎤
⎦

G(q) =

⎡
⎣ G1(q1)

G2(q2)

⎤
⎦ , q =

⎡
⎣ q1

q2

⎤
⎦ , τ =

⎡
⎣ τ1

τ2

⎤
⎦ , J(q) = [J1(q1) − AJ2(q2)]

Assume a set of independent n coordinates q1 = [q1
1 . . . q1

n]T are chosen from the

joint variables q, such that q is the function of q1, i.e.,

q = q(q1) (2.17)
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Differentiating equation (2.17) with respect to time t, we have

q̇ = L(q1)q̇1 (2.18)

q̈ = L(q1)q̈1 + L̇(q1)q̇1 (2.19)

where L(q1) = ∂q/∂q1. It is obvious that L(q1) is of full column rank.

Substituting equations (2.18) and (2.19) into equation (2.16), we obtain the follow-

ing reduced order dynamic model of the system

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = τ + J1T (q1)ncλ (2.20)

where

M1(q1) = M(q1)L(q1)

C1(q1, q̇1) = M(q1)L̇(q1) + C(q1, q̇1)L(q1)

G1(q1) = G(q(q1))

J1(q1) = J(q(q1))

To facilitate controller design, the structural properties of dynamic model (2.20)

are listed as follows.

Property 2.1 The terms L(q1), J1(q1) and nc satisfy the relationship:

LT (q1)J1T (q1)nc = 0

Property 2.2 The term ML(q1)
∆
= LT (q1)M1(q1) is symmetric positive definite

(s.p.d), and bounded upper and below.

Property 2.3 Define CL(q1, q̇1) = LT (q1)C1(q1, q̇1), then NL = ṀL(q1)−2CL(q1, q̇1)

is skew-symmetric if Ci(qi, q̇i)(i = 1, 2) is in the Christoffel form, i.e., xT NLx =

0, ∀x ∈ Rn.

Property 2.4 The dynamics described by equation (2.20) is linear in parameters,

i.e.,

M1(q1)χ̈ + C1(q1, q̇1)χ̇ + G1(q1) = ΨP (2.21)

where P ∈ Rl are the parameters of interest, Ψ = Ψ(q1, q̇1, χ̇, χ̈) ∈ Rn×l is

the regressor matrix, and χ̇, χ̈ ∈ Rn.
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Properties 2.2, 2.3 and 2.4 can be easily derived from the properties of the

dynamic model of a single robot ([13]). The proof of Property 2.1 can be found

in Appendix A.

2.3 Controller Design

In this section, the model-based adaptive controller is developed for the case when

the system parameters are unknown, followed by the model-free neural network

based adaptive controller in which there is no need for the derivation of the known

regressor Ψ(∗).

Let rod(t) be the desired trajectory of the object, rcod(t) be the desired trajectory

on the object and λd(t) be the desired constraint force. The first control objective is

to drive the manipulators such that ro(t) and rco(t) track their desired trajectories

rod(t) and rcod(t) respectively, accordingly it is only necessary to make q1(t) track

the desired trajectory q1
d(t) since q1(t) completely determines ro(t) and rco(t). The

second objective is to make λ(t) to track its desired trajectory λd(t).

In practice, the parameters of the system are usually unknown. Let P̂ be the

estimates of parameters P , and P̃ = P − P̂ . Define the following variables for the

ease of discussion

e1 = q1
d − q1 (2.22)

eλ = λd − λ (2.23)

r1 = ė1 + Kee
1 (2.24)

q̇1
r = q̇1

d + Kee
1 (2.25)

where constant Ke ∈ Rn×n is positive definite. It is obvious that

r1 = q̇1
r − q̇1 (2.26)
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2.3.1 Model-based Adaptive Control

For dynamic system (2.20), consider the following controller

τ = ΨrP̂ − J1T (q1)nc(λd + kλ

∫ t

0
eλ(τ)dτ) + L−T (q1)Kr1 (2.27)

where constants kλ ∈ R and K ∈ Rn×n are all positive definite, and

Ψr = Ψ(q1, q̇1, q̇1
r , q̈

1
r)

Applying control law (2.27) to dynamic system (2.20), the closed-loop dynamics

are obtained

M1(q1)q̈1+C1(q1, q̇1)q̇1+G1(q1) = ΨrP̂−J1T (q1)nc(eλ+kλ

∫ t

0
eλ(τ)dτ)+L−T (q1)Kr1

(2.28)

From Property 2.4, we know that

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = Ψ0P (2.29)

where

Ψ0 = Ψ(q1, q̇1, q̇1, q̈1) (2.30)

Combining equations (2.28) and (2.29) leads to

J1T (q1)nc(eλ + kλ

∫ t

0
eλ(τ)dτ) = L−T (q1)Kr1 − ΨrP̃ + (Ψr − Ψ0)P (2.31)

Pre-multiplying both sides of equation (2.28) by LT (q1) and using Property 2.1,

we have

ML(q1)q̈1 + CL(q1, q̇1)q̇1 + GL(q1) = LT (q1)ΨrP̂ + Kr1 (2.32)

Pre-multiplying equation (2.21) by LT (q1) and noting the change of variables, we

have

ML(q1)q̈1
r + CL(q1, q̇1)q̇1

r + GL(q1) = LT (q1)ΨrP (2.33)

By subtracting equation (2.32) from equation (2.33) and using equation (2.26), it

yields

ML(q1)ṙ1 + CL(q1, q̇1)r1 + Kr1 = LT (q1)ΨrP̃ (2.34)
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Note that equation (2.34) describes the dynamic behavior of the tracking errors r1,

whereas equation (2.31) describes the behavior of the force tracking error eλ. It

is obvious that r1 is mainly affected by the parameter estimation errors P̃ ; while

the force error eλ is affected by both P̃ and the term Ψr − Ψ0 resulted from the

tracking errors e1. For the convergence of the tracking errors e1 and eλ, we have

the following theorem.

Theorem 2.3.1 For the closed-loop dynamic system (2.32), if the parameters are

updated by
˙̂
P = ΓΨT

r L(q1)r1 (2.35)

where Γ is a constant positive definite matrix, then e1 → 0 and eλ is bounded as

t → ∞, and all the closed loop signals are bounded.

Proof:

Choose the following Lyapunov function candidate

V =
1

2
r1T ML(q1)r1 +

1

2
P̃ T Γ−1P̃ (2.36)

Differentiating equation (2.36) with respect to time t gives rise to

V̇ = r1T ML(q1)ṙ1 +
1

2
r1T ṀL(q1)r1 + P̃ T Γ−1 ˙̃P (2.37)

From Property 2.3, we have

V̇ = r1T (ML(q1)ṙ1 + CL(q1, q̇1)r1) + P̃ T Γ−1 ˙̃P (2.38)

From equation (2.34), we obtain

V̇ = P̃ T Γ−1(ΓΨT
r L(q1)r1 − ˙̂

P ) − r1T Kr1 (2.39)

where the fact that ˙̃P = − ˙̂
P has been used.

Substituting the adaptation law (2.35) into the above equation leads to

V̇ = −r1T Kr1 (2.40)
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As K > 0, V̇ ≤ 0, thus r1 ∈ Ln
2 . From the definition of r1 in equation (2.24),

e1 → 0, q1(t) → q1
d(t) as t → ∞, and ė1 ∈ Ln

2 . From the closed kinematics (2.17),

we can conclude that q → qd when t → ∞. Obviously the same conclusion cannot

be made for P̃ , but it is bounded in the sense of Lyapunov stability.

Because e1 → 0, ė1 ∈ Ln
2 and P̃ is bounded, it can be concluded that ṙ1 ∈ Ln

∞ from

equation (2.34). It has been proven that r1 ∈ Ln
2 , thus r1 → 0 as t → ∞. From

the definition of r1 in equation (2.24), we have ė1 → 0, e1 → 0 as t → ∞.

Because r1 → 0, e1 → 0, ė1 → 0 and P̃ is bounded when t → ∞, from the

definitions of q̇1
r , r, Ψr and Ψ0, we can conclude that the right hand side of equation

(2.31) is bounded, thus eλ is bounded and its size can be adjusted by choosing a

proper gain matrix kλ. The integral of the force error is for reducing its static error.

Q.E.D.

Controller (2.27) and adaptation law (2.35) guarantee e1 → 0, but they can only

make the force error eλ bounded. Before proceeding on a way to make eλ converge

to zero, the following definitions and lemmas in [47] can be used and are reproduced

below for the completeness of the presentation.

Definition 1 [47] Almost Everywhere Uniform Continuity (a.e.u.c): A function

f(t) : R+ → Rn is said to be uniformly continuous almost everywhere iff for

any given t0 and any given ε there exist δ(ε) such that

‖f(t) − f(t0)‖ ≤ ε for all t ∈ [t0, t0 + δ] or t ∈ [t0 − δ, t0] (2.41)

Definition 2 [47]Persistent Excitation: A matrix function W (t) : R+ → Rm×n(m ≤
n) is said to be persistently exciting (P.E.) iff there exist a δ > 0 and an α > 0

such that for all t ∈ R+ we have
∫ t+δ

t
W T (τ)W (τ)dτ ≥ αI (2.42)

Lemma 2.3.1 [47] Let f(t) : R+ → Rn be a uniformly continuous almost every-

where (u.c.a.e) function. Then for any p0 > 0,

lim
t→∞ f(t) = 0 iff lim

t→∞

∫ t+p

t
f(τ)dτ = 0 for all 0 < p < p0 (2.43)
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Now we are ready to present the following theorem about the convergence of eλ.

Theorem 2.3.2 For the closed loop system consisting of dynamic model (2.20),

control law (2.27) and adaptation law (2.35), if

1. q̈1
d is uniformly continuous almost everywhere (u.c.a.e.), and

2. ΨLd = LT (q1
d)Ψ(q1

d, q̇
1
d, q̇

1
d, q̈

1
d) is persistently exciting,

then eλ → 0 as t → ∞.

Proof:

For clarity, define the following terms

ΨLr = LT (q1)Ψ(q1, q̇1, q̇1
r , q̈

1
r)

f(t) = ΨLrP̃ (t)

f1(t) = ML(q1)ṙ1(t)

f2(t) = CL(q1, q̇1)r1(t) + Kr1(t)

Taking the same approach as in [47], equation (2.34)is rewritten as

f1(t) + f2(t) = f(t) (2.44)

Integrating both sides of equation (2.44) in the interval [t, t + p] (0 ≤ p ≤ p0), it

follows that ∫ t+p

t
f1(τ)dτ +

∫ t+p

t
f2(τ)dτ =

∫ t+p

t
f(τ)dτ (2.45)

and
∫ t+p

t
f1(τ)dτ =

∫ t+p

t
ML(q1)(τ)ṙ1(τ)dτ (2.46)

∫ t+p

t
f2(τ)dτ =

∫ t+p

t
[CL(q1, q̇1)r1(τ) + Kr1(τ)]dτ (2.47)

By expanding the integral
∫ t+p
t f1(τ)dτ , we have

∫ t+p

t
f1(τ)dτ = ML(q1)(t + p)r1(t + p) − ML(q1)(t)r1(t) −

∫ t+p

t
ṀL(q1)(τ)r1(τ)dτ

(2.48)
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which leads to

‖
∫ t+p

t
f1(τ)dτ‖ ≤ sup

q1

‖ML(q1)‖(‖r1(t + p)‖ + ‖r1(t)‖)

+ p0( sup
t≤τ≤t+p

)‖ṀL(q1)(τ)‖‖r1(τ)‖) (2.49)

Note that ṀL(q1)(t) can be written as

ṀL(q1)(τ) =
n∑

i=1

∂ML(q1
i )

∂q1
i

(τ)q̇1
i (2.50)

As proved in Theorem 2.3.1, r1 → 0, e1 → 0 and ė1 → 0 when t → ∞, thus

ṀL(q1)(τ) is bounded. In addition, sup
q1

‖ML(q1)‖ is bounded from Property 2.1.

Therefore

lim
t→∞

∫ t+p

t
f1(τ)dτ = 0 (2.51)

From Lemma 2.3.1, we have

lim
t→∞ f1(t) = 0 (2.52)

From the fact that r1 → 0 when t → ∞, it is obvious that

lim
t→∞ f2(t) = 0 (2.53)

From equation (2.52) and (2.53), we have

lim
t→∞ f(t) = lim

t→∞(f1(t) + f2(t)) = lim
t→∞ ΨLrP̃ (t) = 0 (2.54)

Consider the following inequality

‖ΨLdP̃‖ ≤ ‖ΨLd − ΨLr‖‖P̃‖ + ‖ΨLrP̃‖ (2.55)

For r1 → 0 when t → ∞, and q̇1
r = q̇1

d + Kee
1, q̈1

r = q̈1
d + Keė

1, we have

lim
t→∞ ‖ΨLr − ΨLd‖ = 0 (2.56)

From equations (2.54) — (2.56), we conclude that

ΨLdP̃ → 0 when t → ∞
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Let Q(t, t + δ) =
∫ t+δ
t ΨT

Ld(τ)ΨLd(τ)dτ . Since ΨLd is persistent exciting, then for

some δ > 0 and all t, we have

Q(t, t + δ) ≥ αI > 0 (2.57)

From adaptation law (2.35) and the integration by parts, we obtain,

P̃ T (t)Q(t, t + δ)P̃ (t) = −2
∫ t+δ

t
P̃ T (τ)Q(τ, τ + δ)ΓΨLrr

1(τ)dτ

+
∫ t+δ

t
P̃ T (τ)ΨT

Ld(τ)ΨLd(τ)P̃ (τ)dτ

From equation (2.57) and the fact that r1 → 0 when t → ∞ proven in Theorem

2.3.1, we can see that the right-hand side of the above equation converges to zero

as t → ∞. Since Q(t, t + δ) ≥ αI > 0, then it can be concluded that P̃ → 0 as

t → ∞.

It has been proven that r1 → 0, e1 → 0 and ė1 → 0 as t → ∞ in Theorem 2.3.1.

With P̃ → 0, we can conclude that Ψr − Ψ0 → 0 as t → ∞. Thus, from equation

(2.31), we have

J1T (q1)nc(eλ + kλ

∫ t

0
eλ(τ)dτ) → 0 (2.58)

As J1T (q1) is of full column rank, we conclude that

eλ + kλ

∫ t

0
eλ(τ)dτ → 0 (2.59)

which leads to eλ(τ) → 0 as t → ∞ for kλ > 0.

Q.E.D.

Remark 2.3.1 The condition for the convergence of force is more stringent than

those for the convergence of position. It requires that the trajectory q1
d be planned

such that q̈1
d and LT (q1

d)Ψ(q1
d, q̇

1
d, q̇

1
d, q̈

1
d) meet the conditions listed in Theorem

2.3.2.

Remark 2.3.2 The above model-based adaptive controller relies on accurate dy-

namic modeling of the system. The calculation of regressor matrix Ψ is very time

consuming. To eliminate the need for dynamic modeling, a model-free adaptive

neural network controller is presented in the next section.
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2.3.2 Neural Network Based Controller

It is well known that the Gaussian radial-basis function (RBF) neural network can

be used to approximate any smooth function [66]. For a given smooth function

F (x) : Rn → Rm, there exist optimal parameters wji ∈ R such that

F̂j(x) =
l∑

i=1

wjiai(x) = wT
j a(x) (j = 1, 2, . . . m) (2.60)

F̂ (x) = [F̂1(x) F̂2(x)...F̂m(x)]T (2.61)

F (x) = F̂ (x) + ε(x) (2.62)

where ε(x) is the minimum approximation error and ai(x) (i = 1, 2, . . . l) are the

Gaussian functions defined as

ai(x) = exp(
−(x − µi)

T (x − µi)

σ2
) (2.63)

with µi ∈ Rn being the centers of the functions, and σ2 ∈ R being the variance.

Equation (2.60) can be expressed in a matrix form as follows

F̂ (x) = W T a(x) (2.64)

where W = [w1 w2 . . . wm]T .

The above RBF neural network is schematically shown in Figure 2.2. It has an

input layer, a hidden layer and an output layer. In the hidden layer, each node

contains a Gaussian function ai(x). Note that only the connections between the

hidden layer and the output layer are weighted by wji.

Consider the reduced dynamic model (2.20) and let m1
kj(q

1) and c1
kj(q

1, q̇1) denote

the kjth element of matrices M1(q1) and C1(q1, q̇1), respectively, and g1
k(q

1) be

the kth element of G1(q1). Let M1(q1), C1(q1, q̇1) and G1(q1) be approximated by

the following RBF neural networks [24]:

m1
kj(q

1) = θT
kjξkj(q

1) + εmkj(q
1) (2.65)

c1
kj(q

1, q̇1) = αT
kjζkj(z) + εckj(z) (2.66)

g1
k(q

1) = βT
k ηk + εgk(q

1) (2.67)
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Figure 2.2: RBF neural network

where z = [(q1)T (q̇1)T ]T ∈ R2n, ξkj(q
1) ∈ RlMkj , ζkj(z) ∈ RlCkj and ηk(q

1) ∈ RlGk

are the vectors of Gaussian functions defined in equation (2.63); θkj ∈ RlMkj , αkj ∈
RlCkj and βk ∈ RlGk are the vectors of optimal weights of the neural network which

make the modeling errors εmkj(q
1), εckj(z) and εgk(q

1) be minimum. To simplify

the above algebraic expressions of neural networks, we adopt the notation of GL

matrix [24] in the following discussion. A GL matrix is normally expressed in a

form {∗} to differentiate it from a normal matrix [∗]. The unique characteristics of

the GL matrices are that the transposes and the product of the matrices are done

“locally”. For example, given two GL matrices {Θ}, {Ξ(q1)} and a normal square

matrix Γk such that

{Θ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θ11 θ12 · · · θ1n

θ21 θ22 · · · θ2n

...
...

. . .
...

θn1 θn2 · · · θnn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{θ1}
{θ2}

...

{θn}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
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{Ξ(q1)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ11(q
1) ξ12(q

1) · · · ξ1n(q1)

ξ21(q
1) ξ22(q

1) · · · ξ2n(q1)
...

...
. . .

...

ξn1(q
1) ξn2(q

1) · · · ξnn(q1)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ξ1}
{ξ2}

...

{ξn}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Γk = ΓT
k = [γk1 γk2 · · · γkn]

we have

{Θ}T =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θT
11 θT

12 · · · θT
1n

θT
21 θT

22 · · · θT
2n

...
...

. . .
...

θT
n1 θT

n2 · · · θT
nn

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

{Θ}T • {Ξ(q1)} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θT
11ξ11(q

1) θT
12ξ12(q

1) · · · θT
1nξ1n(q1)

θT
21ξ21(q

1) θT
22ξ22(q

1) · · · θT
2nξ2n(q1)

...
...

. . .
...

θT
n1ξn1(q

1) θT
n2ξn2(q

1) · · · θT
nnξnn(q1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Γk • {ξk} = {Γk} • {ξk} := [γk1ξk1 γk2ξk2 · · · γknξkn]

where {∗} • {∗} represents the multiplication of two GL matrices and [∗] • {∗}
represents the multiplication of a square matrix with a GL matrix of compatible

dimension. Note that their products are all normal matrices.

Let αkj and ζkj be the kjth elements of GL matrices {A} and {Z(z)} respectively;

βk and ηk be the kth elements of the GL matrices {B} and {H(q1)} respectively.

By using these GL matrices defined, equations (2.65) – (2.67) can be rewritten as

follows

M1(q1) = [{Θ}T • {Ξ(q1)}] + EM(q1) (2.68)

C1(q1, q̇1) = [{A}T • {Z(z)}] + EC(z) (2.69)

G1(q1) = [{B}T • {H(q1)}] + EG(q1) (2.70)

where EM(q1), EC(z) and EG(q1) are matrices with εmkj(q
1), εckj(z) and εgk(q

1)

being their elements respectively.
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Let the estimates of Θ, A and B be Θ̂, Â and B̂ respectively. The neural network

estimates of M1(q1), C1(q1, q̇1) and G1(q1) are expressed as follows

M̂1
nn(q1) = [{Θ̂}T • {Ξ(q1)}] (2.71)

Ĉ1
nn(q1, q̇1) = [{Â}T • {Z(z)}] (2.72)

Ĝ1
nn(q1) = [{B̂}T • {H(q1)}] (2.73)

Consider the following neural network based controller

τ = M̂1
nn(q1)q̈1

r + Ĉ1
nn(q1, q̇1)q̇1

r + Ĝ1
nn(q1) − J1T (q1)nc(λd + kλ

∫ t

0
eλdt)

+ L−T (q1)(Kr1 + Kssgn(r1)) (2.74)

where the control parameters kλ, K and Ks are all positive definite.

Applying the control law (2.74) to the dynamic system (2.20), we have

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = M̂1
nn(q1)q̈1

r + Ĉ1
nn(q1, q̇1)q̇1

r + Ĝ1
nn(q1)

−J1T (q1)nc(eλ + kλ

∫ t

0
eλdt) + L−T (q1)(Kr1 + Kssgn(r1)) (2.75)

Multiplying both sides of equation (2.75) by LT (q1) and making use of Property

2.1, we have

LT (q1)(M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1))

= LT (q1)(M̂1
nn(q1)q̈1

r + Ĉ1
nn(q1, q̇1)q̇1

r + Ĝ1(q1)) + LT (q1)(Kr1 + Kssgn(r1))(2.76)

Substituting equations (2.68) —(2.73) into equation (2.76), it follows that

LT (q1)(M1(q1)ṙ1 + C1(q1, q̇1)r1) + Kr1 + Kssgn(r1)

= LT ([{Θ̃}T • {Ξ(q1)}]q̈1
r + [{Ã}T • {Z(z)}]q̇1

r + [{B̃} • {H(q1)}]) + LT (q1)E(2.77)

where

E = LT (q1)(EM(q1)q̈1
r + EC(q1, q̇1)q̇1

r + EG(q1)) (2.78)

and (∗̃) = (∗) − (∗̂).

Equation (2.77) describes the dynamic behavior of the tracking errors r1 under the

proposed controller. The right hand side of the equation is a function of neural
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network estimations. The dynamic behavior of the force variable λ is described in

equation (2.75), which is directly affected by the error r1.

For the convergence of r1, e1 and the boundedness of eλ, we have the following

theorem

Theorem 2.3.3 For the closed-loop dynamic system (2.77) with Ks > ‖E‖, if

the terms M1(q1), C1(q1, q̇1) and G(q1) are approximated by the neural networks

(2.71), (2.72) and (2.73) respectively with the weight matrices being updated as

˙̂
θk = Γk • {ξk(q

1)}q̈1
r(L(q1)r1)k (2.79)

˙̂αk = Qk • {ζk(z)}q̇1
r(L(q1)r1)k (2.80)

˙̂
βk = Ukηk(q

1)(L(q1)r1)k (2.81)

where Γk = ΓT
k > 0, Qk = QT

k > 0 and Uk = UT
k > 0, and θ̂k, α̂k, β̂k, ξk(q

1),

ζk(z), and ηk(q
1) represents the kth column vector of the corresponding matrices

{Θ̂}, {Â} , {B̂}, {Ξ(q1)}, {Z(z)} and {H(q1)} respectively, then θ̂k, α̂k, β̂k ∈ L∞,

e1 ∈ Ln
2 ∩ Ln

∞, e1, ė1 → 0 and eλ is bounded when t → ∞.

Proof:

Choose a Lyapunov function

V =
1

2
r1T ML(q1)r1 +

1

2

n∑
k=1

(θ̃
T

k Γ−1
k θ̃k + α̃T

k Q−1
k α̃k + β̃

T

k U−1
k β̃k) (2.82)

where θ̃k = θk − θ̂k, α̃k = αk − α̂k and β̃k = βk − β̂k.

Differentiating equation (2.82), and noting that ˙̃θk = − ˙̂
θk, ˙̃αk = − ˙̂αk and ˙̃βk =

− ˙̂
βk, we have

V̇ = r1T ML(q1)ṙ1 +
1

2
r1T ṀL(q1)r1 −

n∑
k=1

(θ̃
T

k Γ−1
k

˙̂
θk − α̃T

k Q−1
k

˙̂αk + β̃
T

k U−1
k

˙̂
βk) (2.83)

From equations (2.79), (2.80) and (2.81) and Property 2.3, it follows that

V̇ = r1T ML(q1)ṙ1 + r1T CL(q1 q̇1)r1 −
n∑

k=1

{θ̃k}T • {ξk(q
1)}q̈1

r(L(q1)r1)k

−
n∑

k=1

{α̃k}T • {ζk(z)}q̇1
r(L(q1)r1)k −

n∑
k=1

β̃
T

k ηk(q
1))(L(q1)r1)k (2.84)

28



2.3 Controller Design

From the definition of the product of GL matrices, we have

n∑
k=1

{θ̃k}T • {ξk(q
1)}q̈1

r(L(q1)r1)k = r1T LT (q1)[{Θ̃}T • {Ξ(q1)}]q̈1
r (2.85)

n∑
k=1

{α̃k}T • {ζk(z)}q̇1
r(L(q1)r1)k = r1T LT (q1)[{Ã}T • {Z(z)}]q̇1

r (2.86)

n∑
k=1

β̃
T

k ηk(q
1)(L(q1)r1)k = r1T LT (q1)[{B̃} • {H(q1)}] (2.87)

Substituting equations (2.85) – (2.87) into equation (2.84), we have

V̇ = r1T LT (q1)(M1(q1)ṙ1 + C1(q1 q̇1)r1)

−r1T LT (q1)([{Θ̃}T • {Ξ(q1)}]q̈1
r + [{Ã}T • {Z(z)}]q̇1

r + [{B̃} • {H(q1)}]) (2.88)

From equation (2.77), we have

V̇ = −r1T Kr1 − (r1T Kssgn(r1) − r1T E) (2.89)

As K > 0 and Ks > ‖E‖, thus

V̇ ≤ −r1T Kr1 ≤ 0 (2.90)

As V > 0 and V̇ ≤ 0, V ∈ L∞. From the definition of V , it follows that r1 ∈ Ln
2

and θk, αk , βk ∈ L∞. From the definition of r1 in equation (2.24), e1 → 0,

q1(t) → q1
d(t) as t → ∞, and ė1 ∈ Ln

2 . From the closed kinematics (2.17), we can

conclude that q → qd when t → ∞.

Because e1 → 0, ė1 ∈ Ln
2 and θk, αk , βk ∈ L∞ as proved above, E ∈ L∞ from its

definition (2.78). From equation (2.77), ṙ1 ∈ Ln
∞. It has been proven that r1 ∈ Ln

2 ,

thus r1 → 0 as t → ∞. From the definition of r1 in equation (2.24), we have

ė1 → 0, e1 → 0 as t → ∞. Based on the above conclusions, it is obvious that eλ is

bounded from equation (2.75).

Q.E.D

Remark 2.3.3 The above neural network controller is called model free for it does

not need the regressor matrix Ψ which relies on the accurate modeling of the robot

dynamics.
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Remark 2.3.4 The controller can only guarantee the boundedness of the force er-

ror eλ. More stringent conditions are required to make it converge to zero including

that q̈1
d must be uniformly continuous almost everywhere as discussed in Theorem

2.3.2.

Remark 2.3.5 The weights of the neural networks are updated on-line by the po-

sition tracking errors. The time-consuming off-line training of neural networks are

thus not required.

Remark 2.3.6 The chattering caused by the sign function sgn(r1) is inevitable.

Many effective methods are available to diminish the chattering, one of which is to

introduce a boundary layer into the controller as suggested in [13][24].

Remark 2.3.7 Both the model-based controller (2.27) and the neural network con-

troller (2.74) neglect the dynamics of the actuators of the robot and use the joint

torques as the inputs. For better control performance at high operational speed, the

actuator dynamics have to be taken into consideration [19][65]

2.4 Simulation

The system used for simulation is schematically shown in Figure 2.3. The rectan-

gular object is held rigidly by manipulator 2 which has only one degree of freedom

and moves in the horizontal plane. The end effector of manipulator 1 of two degrees

of freedom is to track a specified trajectory on the object.

The world coordinate is denoted by XOY , the object coordinate XoOoYo is at the

object mass center Oo, the length, the mass and the moment of inertia of each link

of manipulator 1 are denoted by di, mi and Ii (i = 1, 2) respectively. Let li (i = 1, 2)

be the distance of the mass center of each link from the respective joint. The mass

of manipulator 2 together with the object is M2. The joint variables for the two

manipulators are q1 = [θ1 θ2]
T and q2 = x respectively. Note that x is actually

a linear displacement of the object in the horizontal plane. The gravitational
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acceleration is denoted by g = 9.8m/s2. For simplicity, let ci = cos(θi), si = sin(θi),

cij = cos(θi + θj), and sij = sin(θi + θj). From Figure 2.3, the following position

vectors are derived

rc = [d1c1 + d2c12 + a d1s1 + d2s12]
T (2.91)

rco = [d1c1 + d2c12 − q2 + a d1s1 + d2s12 − b]T (2.92)

ro = [q2 b]T (2.93)

where rc and ro are described with respect to the world coordinates, while rco is

described with respect to the object frame.

The trajectory on the object is assumed to be a straight line with reference to the

object frame

Φ(rco) = xco − yco = 0 (2.94)

The inverse kinematic equations of manipulator 1 are given by

θ1 = arctan s1/c1 (2.95)

θ2 = arctan s2/c2 (2.96)

where

c2 = ((xc − a)2 + y2
c − d2

1 − d2
2)/2d1d2 (2.97)

s2 = ±
√

1 − c2
2 (2.98)

s1 = ((d1 + d2c2)yc − d2s2(xc − a))/((xc − a)2 + y2
c ) (2.99)

c1 = ((d1 + d2c2)yc + d2s2(xc − a))/((xc − a)2 + y2
c ) (2.100)

Choose q1 = [θ1 θ2]
T . It is obvious that

q1(q
1) = q1 (2.101)

q2(q
1) = d1(c1 − s1) + d2(c12 − s12) + a + b (2.102)

From the above equations, the following quantities are derived

A = Ro = I2×2, nco = nc =

⎡
⎣ 1/

√
2

−1/
√

2

⎤
⎦ , J2(q2) =

⎡
⎣ 1

0

⎤
⎦
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J1(q1) =

⎡
⎣ −d1s1 − d2s12 −d2s12

d1c1 + d2c12 d2c12

⎤
⎦

L(q1) =

⎡
⎢⎢⎢⎣

1 0

0 1

−d1(s1 + c1) − d2(s12 + c12) −d2(s12 + c12)

⎤
⎥⎥⎥⎦

L̇(q1) =

⎡
⎢⎢⎢⎣

0 0

0 0

d1(s1 − c1)θ̇1 + d2(s12 − c12)θ̇12 d2(s12 − c12)θ̇12

⎤
⎥⎥⎥⎦

It can be verified that LT (q1)J1T (q1)nc = 0 as stated in Property 2.1.

The dynamic model for manipulator 1 (two-link arm) is given by

M1(q1)q̈1 + C1(q1, q̇1)(q1, q̇1)q̇1 + G1(q1)(q1) = τ1 + JT
1 (q1)fc = τ1 + JT

1 (q1)ncλ

(2.103)

where

M1(q1) =

⎡
⎣ I1 + m1l

2
1 + I2 + m2(d

2
1 + l22 + 2d1l2c2) I2 + m2(l

2
2 + d1l2c2)

I2 + m2(l
2
2 + d1l2c2) I2 + m2l

2
2

⎤
⎦

C1(q1, q̇1) =

⎡
⎣ −m2d1l2s2θ̇2 −m2d1l2s2(θ̇1 + θ̇2)

m2d1l2s2θ̇1 0

⎤
⎦

G1(q
1) = [(m1l1 + m2d1)gc1 + m2l2gc12 m2l2gc12]

T

The dynamic model for manipulator 2 is as follows

M2q̈2 = τ2 − JT
2 (q2)A

T ncλ (2.104)

The reduced dynamic model is described by

M1(q1)q̈1 + C1(q1, q̇1)q̇1 + G1(q1) = τ + J1T (q1)ncλ (2.105)

with all the terms as defined in equation (2.20).

Define q1
r = [q1

r1 q1
r2]

T . The regressor matrix Ψ(q1, q̇1, q̇1
r q̈1

r) and the parameter
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vector P in equation (2.21) are as follows

Ψ(q1, q̇1, q̇1
r , q̈

1
r) =

⎡
⎢⎢⎢⎣

θ̈1 Ψ12 q̈1
r2 c1 c12 0 0

0 Ψ22 Ψ23 0 c12 0 0

0 0 0 0 0 Ψ36 Ψ37

⎤
⎥⎥⎥⎦

P = [p1 m2d1l2 I2 + m2l
2
2 (m1l1 + m2d1)g m2l2g M2d1 M2d2]

T

where

Ψ12 = 2c2q̈
1
r1 + c2q̈

1
r2 − s2(θ̇1 + θ̇2)q̇

1
r2 − s2θ̇2q̇

1
r1

Ψ22 = c2q̈
1
r1 + s2θ̇1q̇

1
r1

Ψ23 = q̈1
r1 + q̈1

r2

Ψ36 = (s1 − c1)θ̇1q̇
1
r1 − (s1 + c1)q̈

1
r1

Ψ37 = (s12 − c12)(θ̇1 + θ̇2)(q̇
1
r1 + q̇1

r2) − (s12 + c12)(q̈
1
r1 + q̈1

r2)

p1 = I1 + m1l
2
1 + I2 + m2(d

2
1 + l22)

Assume that the geometric parameters are d1 = d2 = 0.3m, l1 = l2 = 0.15m, a =

0.2 and b = 0.5m. The true values of the mass and inertia parameters are assumed

to be m1 = m2 = 0.1kg, M2 = 0.2kg, I1 = I2 = 0.3kgm2, which are unknown for

controller design. The true parameters are P = [0.6 0.04 0.3 0.44 0.15 0.06 0.06]T ,

while the initial estimates of parameters are P̂ (0) = [0.2 0.01 0.4 0.4 0.1 0.2 0.2]T .

The trajectory for the robot end effector to follow on the object is given by

xco = yco = − 1

12
cos(t + 2) (2.106)

The trajectory for the object to follow is given by

xo =
1

10
(1 − sin(4t + 12)) (2.107)

The desired force is λd = 2N . From equations (2.97) and (2.98), we can obtain the

desired q1
d, q̇1

d and q̈1
d which are required by the controller.

Note that the above two-link robot model is frequently used in the robotics liter-

ature. Its parameters (length of the link: 0.3m (2l1), mass of the link: 0.1kg and
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2.4 Simulation

0.2kg and the moment of inertia of the link: 0.3kgm2) are also within the ranges

of the popular choices [16][17][18].

The constraint surface specified by equation (2.94) is similar to those used in the

robotics literature where the constraint surfaces are defined in a form [16][17][18]:

ax + by + c = 0

The trajectories in equations (2.106) and (2.107) are the sine functions of time

which are normally used to describe the trajectories in the robot systems [16][17][18].

The parameters in the equations are chosen by considering the workspace of the

robot and the limits on its velocity and acceleration.

Simulation of the Adaptive Control Scheme

The gain matrices are chosen as Ke = diag[20] ∈ R2×2, K = diag[15] ∈ R2×2 and

kλ = 15. The adaptation gain matrix Γ in adaptation law (2.35) is chosen as

Γ = diag[15] ∈ R7×7. The position tracking performances of the object and the

force tracking performances are plotted in Figures 2.4 and 2.5 respectively. The

control torques for the manipulators are given in Figure 2.6. From the figures, it

can be seen that the position and force tracking errors approach to zero. The torque

of the robotic arms are also in the reasonable range. We can conclude that the

proposed adaptive controller effectively control the position and the force though

the true parameters are unknown.

Simulation of the Neural Network Control Scheme

Based on the planned trajectories, the range of the angular displacement q1 is

[−1.2, 1.7] rad and the range of the angular velocity q̇1 is [−1.0, 1.0] rad/sec.

The 2-dimensional input space for M̂nn(q1) and Ĝnn(q1) is spanned by q1 and the

4-dimensional input space for Ĉnn(q1, q̇1) is spanned by [q1 q̇1]T . The centers of

the RBF functions in the neural network are the crossing point of the grids evenly

distributed in the input spaces of M̂nn(q1), Ĝnn(q1) and Ĉnn(q1, q̇1) respectively
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2.5 Conclusion

[63]. In the simulation, a 120-node neural network with δ2 = 40 is used to estimate

each element of M1(q1), C1(q1, q̇1) and G1(q1) respectively. The controller gain

matrices are chosen as Ke = diag[20] ∈ R2×2, K = diag[15] ∈ R2×2 and kλ = 15.

The boundary layer is chosen as ‖∆‖ = 0.01. The updating of the weights of the

neural works are activated with Γkij = 0.1, Qkij = 0.2 and Ukij = 5.0, i = 120, k =

3, j = 2. The position tracking performances of the object and the force tracking

performances are plotted in Figures 2.7 and 2.8 respectively. The control torques

for the manipulators are given in Figure 2.9. The neural network approximation

performances are also shown from Figure 2.10 to Figure 2.12. From the simulation

results, it can be seen that under the proposed adaptive neural network controller,

the positions and the forces converge to their desired values and the torques are in

the reasonable ranges. While Ĝ1
nn almost converge to its true value G, M̂1

nn and Ĉ1
nn

do not converge to M and C respectively. The approximation errors are affected

by the persistent excitation condition. The overall performance of the controller is

satisfactory with the model of the system unknown.

Comparing the performance of the neural network based adaptive controller with

that of the model-based adaptive controller, there is not much difference in the ac-

curacy and the speed of position tracking. While the force error is bounded without

being convergent to zero in both controllers, the magnitudes of the fluctuations of

the force signals are bigger under neural network based adaptive control than those

under the model based adaptive controller, especially at the initial stage of con-

trol. The neural network based controller involves more matrix manipulations than

model-based adaptive controller and its computing efficiency is relatively lower.

2.5 Conclusion

In most control schemes for constrained robots, the constraint is assumed to be

motionless and its dynamics is neglected. In this chapter, a more general approach

is taken for dynamic modeling and control of a constrained robotic manipulator

where the constraint is treated to be in motion. In addition to the motion of
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Figure 2.3: Simulation example

the constraint with respect to the world coordinate, its relative motion with re-

spect to the manipulators is also taken into consideration The dynamic model of

such a system is established and its properties are discussed. Both model-based

and neural network based adaptive controllers are developed which guarantee the

asymptotic convergence of positions, and boundedness of the constraint force. The

condition for the convergence of the constraint force is also discussed. Among the

two controllers developed, the neural network based adaptive controller is model

free and is more suitable for the applications where the dynamic modeling is dif-

ficult. Simulation results are presented to verify the effectiveness of the proposed

controllers.
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Figure 2.4: Position tracking under adaptive control (Solid: rd(t); Dashed: r(t))
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Figure 2.6: Torques/forces of the manipulators under adaptive control (Solid and
Dashed: τ1; Dash dotted: τ2)
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Figure 2.7: Object position tracking under neural network control (Solid: rd(t);
Dashed: r(t))
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Figure 2.8: Constraint force tracking under neural network control (Solid: λd(t);
Dashed: λ(t))
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Figure 2.9: Torques/forces of the manipulators under neural network control (Solid
and Dashed: τ1; Dash dotted: τ2)
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Figure 2.10: The approximation of M1 (Solid: ‖M1‖; Dashed: ‖M̂1‖)
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Figure 2.12: The approximation of G1 (Solid: ‖G1‖; Dashed: ‖Ĝ1‖)
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Chapter 3

Robust Adaptive and NN Based

Impedance Control

Impedance control is one of the important control approaches for constrained

robots. It covers both constrained and unconstrained motion of the robot and

demonstrates good robustness to uncertainties and disturbances [4]. These ad-

vantages make it very useful to many practical applications such as grinding and

deburring mechanical parts. One of the challenges in applying impedance control

is that it cannot guarantee the tracking of the robot’s position and the constraint

force to their desired values as required by some applications.

In most impedance control schemes, the desired impedance is normally selected

without rigorous justification. In fact, the desired impedance for a given constraint

environment is difficult to be quantified, let alone for an uncertain constraint en-

vironment [25]. As the desired impedance describes a property of interactions

between the manipulators and the environments (inertia, damping and stiffness),

it should also reflect the uncertainty of the system. For example, the desired

impedance for grinding a soft workpiece should be different from that for grinding

a harder workpiece by the same robotic arm. The desired impedance may even be

different for different areas on the same workpiece.
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In this chapter, adaptive and robust adaptive impedance control schemes with po-

sition tracking capabilities are developed. Being different from most traditional

impedance control schemes, parameters of the desired impedance are varying and

are tuned adaptively. The proposed controller guarantees the asymptotic conver-

gence of the position tracking errors and the boundedness of the constraint force

tracking error.

The chapter is organized as follows. In Section 3.1, the dynamic model and

impedance model of a constrained robot is given. In Section 3.2, an adaptive

impedance control scheme is presented which guarantees the asymptotical stability

of the robot position and the boundedness of the constraint force error. In Section

3.3, the adaptive impedance control scheme in Section 3.2 is robustified to counter

the dynamic modeling errors and the external disturbances. In Section 3.4, a model

free neural network based adaptive impedance control approach is presented. In

Section 3.5, simulation studies are done to show the effectiveness of the proposed

controllers. The conclusion of the work in this chapter is given in Section 3.6.

3.1 Dynamic and Impedance Models

The dynamic model of a constrained manipulator in joint space is described by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + JT (q)f (3.1)

where q ∈ Rn are the joint displacements, q̇ ∈ Rn are the joint velocities, M(q) ∈
Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the coriolis and centrifugal force

matrix, G(q) ∈ Rn is the gravitational force, τ ∈ Rn are the joint torques, J(q) ∈
Rm×n is the Jacobian matrix and f ∈ Rm is the constraint force, n is the degree of

freedom of the robot and m is the dimension of the work space.

The dynamics model in task space is described by

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = J−T (q)τ + f (3.2)

where

Mr(q) = J−T (q)M(q)J−1(q)
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3.1 Dynamic and Impedance Models

Cr(q, q̇) = J−T (q)(M(q)J̇−1(q)+C(q, q̇)J−1(q))

Gr(q) = J−T (q)G(q)

It is easy to verify that the dynamic model (3.2) has the following properties.

Property 3.1 [15] The inertial matrix Mr is symmetric positive definite matrix,

provided that J is of full rank.

Property 3.2 [15] The matrix Ṁr − 2Cr is skew-symmetric given that the matrix

Ṁ − 2C is skew symmetric.

In traditional impedance control, the desired impedance is normally modeled as

[28]

fd − f = Mm(r̈d − r̈) + Dm(ṙd − ṙ) + Km(rd − r) (3.3)

where fd ∈ Rm is the desired constraint force, f ∈ Rm is the actual constraint

force, Mm ∈ Rm×m, Dm ∈ Rm×m and Km ∈ Rm×m are the constant inertia matrix,

damping matrix and the stiffness matrix respectively.

The environment is modeled as a general spring with the following displacement-

force relation

f = Ke(re − r) (3.4)

where Ke ∈ Rm×m is the stiffness matrix of the environment, re ∈ Rm is the rest

location where the contact force is null, and r ∈ Rm is the positional vector of the

contact point made by the end effector of the robot.

From equations (3.3) and (3.4), we have

ë + Aė + Be = c (3.5)

where

e = rd − r

A = M−1
m Dm

B = M−1
m (Km + Ke)

c = M−1
m (fd + Ke(rd − re))

44



3.2 Adaptive Impedance Control

Usually, it is assumed that Mm ∈ Rm×m, Dm ∈ Rm×m and Km ∈ Rm×m, Ke

and re are known constants. When the environment is uncertain in terms of its

shape, material and position etc., it would be more appropriate to assume that

these values are unknown. Accordingly, A, B and c in equation (3.5) are unknown.

Considering these uncertainties, an adaptive impedance controller is developed in

the next section.

3.2 Adaptive Impedance Control

The control objective is to make r convergent to their desired trajectories rd and

fd − f bounded. It is assumed that f can be measured on-line.

Consider the following controller

τ = JT (Mru0 + Crṙ + Gr − f) (3.6)

where

u0 = r̈d + Â(ṙd − ṙ) + B̂(rd − r) − ĉ

with Â, B̂ and ĉ being the estimates of uncertain parameters A, B and c respec-

tively.

Substituting τ into the dynamic model (3.2), we have

ë + Âė + B̂e = ĉ (3.7)

We will use the adaptive control approach in [5] for the controller development.

Suppose that the reference model of the position tracking error e is specified by

ëm + Amėm + Bmem = 0 (3.8)

where em and ėm are the state variables and Am and Bm are positive definite

diagonal matrices. Obviously em → 0 and ėm → 0 when t → ∞.

Subtracting equation (3.8) from equation (3.7), we have

ξ̈ + Amξ̇ + Bmξ = (Am − Â)ė + (Bm − B̂)e + ĉ (3.9)
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3.2 Adaptive Impedance Control

where ξ = e − em.

Defining x = [ξT ξ̇T ]T , equation (3.9) is re-written in a state space form

ẋ =

⎡
⎣ 0n×n In×n

−Bm −Am

⎤
⎦ x +

⎡
⎣ 0n×n 0n×n

Bm − B̂ Am − Â

⎤
⎦

⎡
⎣ e

ė

⎤
⎦ +

⎡
⎣ 0

ĉ

⎤
⎦ (3.10)

For the convergence of error e to zero, we have the following theorem.

Theorem 3.2.1 For the closed-loop dynamic system (3.10), e → 0 and ė → 0

when t → ∞ if the parameters are updated by

ĉ = ĉ(0)−Qc

∫ t

0
�(τ)dτ − Q∗

c� (3.11)

Â = Â(0)+Qa

∫ t

0
�(τ)ėT (τ)dτ+Q∗

a�ėT (3.12)

B̂ = B̂(0)+Qb

∫ t

0
�(τ)eT (τ)dτ+Q∗

b�eT (3.13)

where Qc, Q∗
c, Qa, Q∗

a, Qb, Q∗
b are all positive definite matrices, � is a vector

defined by

� = P T
1 ξ + P T

2 ξ̇ (3.14)

P1 and P2 are the sub-matrices from a symmetric positive matrix

P =

⎡
⎣ P0 P1

P1 P2

⎤
⎦ (3.15)

which satisfies the following Lyapunov equation

P

⎡
⎣ 0n×n In×n

−Bm −Am

⎤
⎦+

⎡
⎣ 0n×n −Bm

In×n −Am

⎤
⎦P =−Q (3.16)

with Q being a positive definite matrix.

Proof:

Let âi, b̂i, ami and bmi (i = 1, 2, . . . , n) be the column vectors of matrices Â, B̂,

Am and Bm respectively.
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Choose the following Lyapunov function candidate

V = xT Px + (ĉ − c∗)T Q0(ĉ − c∗) +
n∑

i=1

(âi − ami − a∗
i )

T Q1i(âi − ami − a∗
i )

+
n∑

i=1

(b̂i − bmi − b∗i )
T Q2i(b̂i − bmi − b∗i ) (3.17)

where Q0, Q1i and Q2i (i = 1, 2, . . . n) are positive definite matrices, and c∗, a∗
i

and b∗i are the vectors to be decided later.

Differentiating V with respect to time t and considering equation (3.16), we have

V̇ = −xT Qx + 2�T [(Bm − B̂)e + (Am − Â)ė] + 2
n∑

i=1

(âi − ami − a∗
i )

T Q1i( ˙̂ai − ȧ∗
i )

+ 2
n∑

i=1

(b̂i − bmi − b∗i )
T Q2i(

˙̂
bi − ḃ∗i ) + 2(ĉ − c∗)T Q0(˙̂c − ċ∗) + 2�T ĉ (3.18)

where the fact that ȧmi = ḃmi = 0 has been used.

Letting

˙̂c − ċ∗ = −Q−1
0 � (3.19)

˙̂ai − ȧ∗
i = Q−1

1i �ėi (3.20)

˙̂
bi − ḃ∗i = Q−1

2i �ei (3.21)

and substituting them into equation (3.18), we obtain

V̇ = −xT Qx + 2c∗T � − 2
n∑

i=1

a∗T
i �ėi − 2

n∑
i=1

b∗Ti �ei (3.22)

Letting

c∗ = −Q∗
c� (3.23)

a∗
i = Q∗

ai�ėi (3.24)

b∗i = Q∗
bi�ei (3.25)

where Q∗
c , Q∗

ai and Q∗
bi are all positive definite, and substituting them in equation

(3.22), we have

V̇ = −xT Qx − 2�T Q∗
c� − 2

n∑
i=1

(�ėi)
T Q∗

ai�ėi − 2
n∑

i=1

(�ei)
T Q∗

bi�ei

≤ −xT Qx < 0 (3.26)
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From equation (3.26), it can be concluded that the system (3.9) is stable and

x → 0 (e → em and ė → ėm) when t → ∞. Note that em → 0 and ėm → 0 when

t → ∞, and accordingly we have e → 0 and ė → 0 when t → ∞.

For simplicity in expression without losing generality, let Q1i = Q1, Q2i = Q2,

Q∗
ai = Qa and Qbi = Qb for i = 1, 2, . . . n.

From equations (3.19) to (3.25), we have the following adaptation laws

ĉ=ĉ(0)−Qc

∫ t

0
�(τ)dτ−Q∗

c� (3.27)

âi=âi(0)+Qa

∫ t

0
�(τ)ėi(τ)dτ+Q∗

a�ėi (3.28)

b̂i=b̂i(0)+Qb

∫ t

0
�(τ)ei(τ)dτ+Q∗

b�ei (3.29)

where Qc = Q−1
0 , Qa = Q−1

1 and Qb = Q−1
2 .

Re-writing equations (3.28) to (3.29) in matrix forms, we have

Â = Â(0) + Qa

∫ t

0
�(τ)ėT (τ)dτ + Q∗

a�ėT (3.30)

B̂ = B̂(0) + Qb

∫ t

0
�(τ)eT (τ)dτ + Q∗

b�eT (3.31)

Q. E. D

Following the Theorem 3.2.1, the complete adaptive impedance controller is then

given as

τ= JT [Mr(r̈d + Âė + B̂e − ĉ) + Crṙ + Gr − f ] (3.32)

From equations (3.4) and (3.5), we have

fd − f = Mmc − Kee (3.33)

As c is determined by fd, re, rd and Mm, it is bounded. The boundedness of c and

e → 0 leads to the boundedness of fd − f .

If Ke and re are known exactly and fd is planned as

fd = Ke(re − rd) (3.34)

we have c = 0 and (fd − f) → 0 from equation (3.33).
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Remark 3.2.1 An explicit force error loop is not included in the controller, but

the measurement of f is required. The controller can only make the force error to

be bounded if the exact model of the constraint is unknown.

Remark 3.2.2 The controller presented above can achieve position tracking and

the boundedness of the force tracking errors within the framework of impedance

control approach. Thus it keeps the advantages of impedance control such as the

abilities to accommodate both unconstrained and constrained motion and the good

robustness to disturbances.

3.3 Robust Adaptive Impedance Control

Adaptive impedance controller in Section 3.2 is designed without consideration of

the dynamic modeling errors and the external disturbances in the robot system. To

compensate these errors and disturbances, a robust adaptive impedance controller

is designed in this section.

Considering modeling errors and disturbances, the dynamics of the constrained

robot in task space (3.2) is re-written as

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = J−T (q)τ + f + f̃ (3.35)

where f̃ ∈ Rm is external disturbances. The definitions of other terms are the same

as those in equation (3.2), but their exact values are not known. Assume that their

estimates are M̂r(q), Ĉr(q, q̇) and Ĝ(r) respectively. The modeling errors and

external disturbances are assumed to be bounded such that

‖∆Mr(q)‖ = ‖Mr(q) − M̂r(q)‖ ≤ δM (3.36)

‖∆Cr(q, q̇)‖ = ‖Cr(q, q̇) − Ĉr(q, q̇)‖ ≤ δC (3.37)

‖∆Gr(q)‖ = ‖Gr(q) − Ĝ(r)‖ ≤ δG (3.38)

‖f̃‖ ≤ δf (3.39)

Consider the following dynamic compensator [22]

ż = −Dz + Kvė + Kpe − Kcĉ (3.40)
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3.3 Robust Adaptive Impedance Control

where e = rd − r, ė = ṙd − ṙ and D ∈ Rm×m is any negative definite matrix. The

matrices Kp ∈ Rm×m, Kv ∈ Rm×m and Kc ∈ Rm×m are to be determined later.

The output z of compensator (3.40) and the tracking errors e and ė are used to

form the following switching function

s(e, ė, z) = ė + K1e + K2z (3.41)

where K1 ∈ Rm×m and K2 ∈ Rm×m are constant positive definite matrices.

From equations (3.40) and (3.41), we have

ë+(K1+K2Kv−K2DK−1
2 )ė+K2(Kp −DK−1

2 K1)e = K2(Kcĉ−DK−1
2 s)+ ṡ (3.42)

If the design parameters in equation (3.40) are chosen such that

Kv = K−1
2 (Â + K2DK−1

2 − K1) (3.43)

Kp = K−1
2 B̂ + DK−1

2 K1 (3.44)

Kc = K−1
2 (3.45)

equation (3.42) becomes

ë + Âė + B̂e = ĉ + ṡ − K2DK−1
2 s (3.46)

Obviously if the state of the controlled system is kept in the sliding surface s = 0

asymptotically , the desired impedance (3.7) is achieved.

The position tracking and the boundedness of the force errors is another objective

of the controller. We still use the following reference model 3.8 which is reproduced

below for the completeness of the presentation.

ëm + Amėm + Bmem = 0 (3.47)

The robust adaptive impedance control law for achieving the above objectives is

presented in the following theorem.

Theorem 3.3.1 For the constrained robot system (3.35), the desired impedance

(3.7), position tracking and the boundedness of the force tracking errors can be

achieved through the following controller

τ= JT [M̂rr̈eq + Kss + d sgn(s) + Ĉrṙeq + Ĝr − f ] (3.48)
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3.3 Robust Adaptive Impedance Control

with an adaptively tuned impedance

ĉ = ĉ(0)−Qc

∫ t

0
�(τ)dτ − Q∗

c�

Â = Â(0)+Qa

∫ t

0
�(τ)ėT (τ)dτ+Q∗

a�ėT

B̂ = B̂(0)+Qb

∫ t

0
�(τ)eT (τ)dτ+Q∗

b�eT

where

ṙeq = ṙd + K1e + K2z (3.49)

r̈eq = r̈d + K1ė + K2ż (3.50)

d ≥ δM‖r̈eq‖ + δC‖ṙeq‖ + δG + δf (3.51)

Ks ∈ Rm×m is a constant positive definite matrix, sgn(s) is a sign function which

is -1 if s < 0 and 1 if s ≥ 0, Qc, Q∗
c, Qa, Q∗

a, Qb and Q∗
b are all positive definite

matrices and � is a vector defined by

� = P T
1 ξ + P T

2 ξ̇ (3.52)

with P1 and P2 being the sub-matrices from a symmetric positive matrix

P =

⎡
⎣ P0 P1

P1 P2

⎤
⎦ (3.53)

which satisfies the following Lyapunov equation

P

⎡
⎣ 0n×n In×n

−Bm −Am

⎤
⎦+

⎡
⎣ 0n×n −Bm

In×n −Am

⎤
⎦P =−Q (3.54)

where Q is a positive definite matrix.

Proof:

To prove the reaching of sliding mode defined in equation (3.41), choose a Lyapunov

function which is a positive definite function of s such that

V1(s) =
1

2
sT Mrs (3.55)

Note that Mr is positive definite as stated in Property 3.1.
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3.3 Robust Adaptive Impedance Control

Differentiating V1 with respect to time t and considering Property 3.2, we have

V̇1 = sT Mrṡ + sT Crs (3.56)

Considering s = ṙeq − ṙ and ṡ = r̈eq − r̈, equation (3.56) is re-written as

V̇1 = sT (Mrr̈eq + Crṙeq − Mrr̈ − Crṙ) (3.57)

Substituting control τ in equation (3.48) into system dynamics (3.2), it follows that

Mrr̈ + Crṙ + Gr = M̂rr̈eq + Kss + d sgn(s) + Ĉrṙeq + Ĝr + f̃ (3.58)

From equations (3.57) and (3.58), we have

V̇1 = sT (δMrr̈eq + δCrṙeq + δGr − f̃ − Kss − d sgn(s)) (3.59)

From equations (3.37) –(3.39) and (3.51), we have

V̇1 ≤ sT (δM‖r̈eq‖ + δC‖ṙeq‖ + δG + δf − f̃ − Kss − d sgn(s))

≤ −sT Kss ≤ 0 (3.60)

From the definition of V1 (3.55) and equation (3.60), it can be concluded that when

t → ∞, V1 → 0 and s → 0. After sliding surface s = 0 is reached asymptotically,

ṡ = 0. From equation (3.46), the desired impedance is achieved.

Following the same procedure as that in Theorem 3.2.1, we can also prove that

e → 0 and ė → 0 when t → ∞ and fd − f is bounded when the following adaptive

laws are applied

ĉ=ĉ(0)−Qc

∫ t

0
�(τ)dτ−Q∗

c� (3.61)

âi=âi(0)+Qa

∫ t

0
�(τ)ėi(τ)dτ+Q∗

a�ėi (3.62)

b̂i=b̂i(0)+Qb

∫ t

0
�(τ)ei(τ)dτ+Q∗

b�ei (3.63)

where Qc = Q−1
0 , Qa = Q−1

1 and Qb = Q−1
2 ,or in matrix forms

Â = Â(0) + Qa

∫ t

0
�(τ)ėT (τ)dτ + Q∗

a�ėT (3.64)

B̂ = B̂(0) + Qb

∫ t

0
�(τ)eT (τ)dτ + Q∗

b�eT (3.65)

Q. E. D
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3.4 Robust NN Adaptive Impedance Control

Remark 3.3.1 It is well known that the sign function in the controller cause chat-

tering which can be eliminated with the boundary layer approach [58]. In this ap-

proach, the sign function sgn(s) is replaced by s/∆ when s < ∆. ∆ is defined as a

boundary layer.

Remark 3.3.2 The dynamic modeling errors in the robot system can also be com-

pensated by other methods such as neural network control described in Chapter 2. In

this approach, Mr, Cr and Gr are approximated by adaptive tuned neural networks

and this is to be covered in the next section.

3.4 Robust NN Adaptive Impedance Control

In practice, the exact model of the robot dynamics is not known. To approximate

it, Gaussian radial-basis function (RBF) neural networks can be utilized as they

can approximate any smooth functions [66]. The effectiveness of this approxima-

tion approach has been shown in the control of a robot constrained by a moving

constraint in Chapter 2.

Denote the elements of Mr, Cr and Gr as mkj, ckj and gk (k = 1, 2 . . . m, j =

1, 2 . . . m) respectively. Their neural network approximations are represented by

mkj(q) = θT
MkjξMkj(q) + εMkj(q) (3.66)

ckj(q, q̇) = θT
CkjξCkj(z1) + εCkj(z1) (3.67)

gk(q) = θT
GkξGk(q) + εGk(q) (3.68)

where z1 = (q, q̇)T , εMkj(q), εCkj(z1) and εGk(q) are the approximation errors,

θMkj, θCkj and θGkj are the column vector of the neural network weights, ξMkj(q),

ξCkj(z1), and ξGk(q) are the vectors of the RBF Gaussian functions (activation

functions) of the form defined as

a(x) = exp(
−(x − µi)

T (x − µi)

σ2
) (3.69)

with µi being the centers of the functions, and σ2 ∈ R being the variance.
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3.4 Robust NN Adaptive Impedance Control

By using the notations of GL matrix [24] as done in Chapter 2, equations (3.66)

and equations (3.68) can be written in a compact form such that

Mr(q) = [{ΘM}T • {ΞM(q)}] + EM(q) (3.70)

Cr(q, q̇) = [{ΘC}T • {ΞC(z1)}] + EC(z1) (3.71)

Gr(q) = [{ΘG}T • {ΞG(q)}] + EG(q) (3.72)

where {ΘM}, {ΘC} and {ΘG} are GL matrices formed by θMkj, θCkj and θGk

respectively, {ΞM(q)}, {ΞC(z1)} and {ΞG(q)} are GL matrices formed by ξMkj, ξCkj

and ξGk respectively. EM(q), EC(z1) and EG(q) are the matrices of neural network

approximation errors with εMkj(q), εCkj(z1) and εGk(q) being their elements.

Let the estimates of Mr(q), Cr(q, q̇) and Gr(q) be M̂r(q), Ĉr(q, q̇) and Ĝr(q)

respectively. They are written as

M̂r(q) = [{Θ̂M}T • {ΞM(q)}] (3.73)

Ĉr(q, q̇) = [{Θ̂C}T • {ΞC(z1)}] (3.74)

Ĝr(q) = [{Θ̂G}T • {ΞG(q)}] (3.75)

which will be used for the development of the neural network based impedance

control.

Consider the following controller

u = M̂rr̈eq + Kss + d sgn(s) + Ĉrṙeq + Ĝr − f (3.76)

where s, sgn(s), ṙeq, r̈eq are defined in Theorem 3.3.1, Ks is a positive definite

matrix and d is a scalar constant to be determined later.

Substituting equation (3.76) into system dynamic equation (3.2) and considering

equations (3.70) –(3.75), we have the following error dynamics

Mrṡ + Crs − (EM r̈eq + EC ṙeq + EG) + Kss + d sgn(s)

= [{θ̃M • {ΞM}]r̈eq + [{θ̃C • {ΞC}]ṙeq + [{θ̃G • {ΞG}] (3.77)

where θ̃M = θM − θ̂M , θ̃C = θC − θ̂C and θ̃G = θG − θ̂G.

From the error dynamics in equation (3.77), we have the following theorem about

the performance of the closed-loop system under the control law (3.76).
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3.4 Robust NN Adaptive Impedance Control

Theorem 3.4.1 Under the neural network control law (3.76), the desired impedance

(3.7), the position tracking and the boundedness of the force errors can be achieved

if

d ≥ ‖EM(q)r̈eq + EC(z1)ṙeq + EG(q)‖ (3.78)

and the weights of the neural network and the parameters of the desired impedance

are tuned adaptively by

˙̂
θMkj = ΓMkjξMkj r̈eqjsk (3.79)

˙̂
θCkj = ΓCkjξCkj ṙeqjsk (3.80)

˙̂
θGk = ΓGkξGksk (3.81)

ĉ = ĉ(0) − Qc

∫ t

0
�(τ)dτ − Q∗

c� (3.82)

Â = Â(0) + Qa

∫ t

0
�(τ)ėT (τ)dτ+Q∗

a�ėT (3.83)

B̂ = B̂(0) + Qb

∫ t

0
�(τ)eT (τ)dτ+Q∗

b�eT (3.84)

where ΓMkj, ΓCkj ΓGk, Qc, Q∗
c, Qa, Q∗

a, Qb and Q∗
b are constant symmetric positive

definite matrices, sk is the kth element of s and reqj is the jth element of req, and

� is a vector defined by

� = P T
1 ξ + P T

2 ξ̇ (3.85)

with P1 and P2 being the sub-matrices from a symmetric positive matrix

P =

⎡
⎣ P0 P1

P1 P2

⎤
⎦ (3.86)

which satisfies the following Lyapunov equation

P

⎡
⎣ 0n×n In×n

−Bm −Am

⎤
⎦+

⎡
⎣ 0n×n −Bm

In×n −Am

⎤
⎦P =−Q < 0 (3.87)

Proof:

Choose the following Lyapunov function candidate

V1 =
1

2
sT Mrs +

1

2

m∑
k=1

m∑
j=1

(θ̃MkjΓ
−1
Mkj θ̃Mkj + θ̃CkjΓ

−1
Ckj θ̃Ckj) +

1

2

m∑
k=1

θ̃GkΓ
−1
Gkθ̃Gk(3.88)
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3.4 Robust NN Adaptive Impedance Control

where Mr is positive definite by Property 3.1, θ̃Mkj = θMkj − θ̂Mkj, θ̃Ckj =

θCkj − θ̂Ckj and θ̃Gk = θGk − θ̂Gk.

Differentiating V1 with respect to time t and considering Property 3.2, we have

V̇1 = sT Mrṡ + sT Crs +
m∑

k=1

m∑
j=1

(θ̃MkjΓ
−1
Mkj

˙̃θMkj + θ̃CkjΓ
−1
Ckj

˙̃θCkj) +
m∑

k=1

θ̃GkΓ
−1
Gk

˙̃θGk

(3.89)

From equations (3.77), (3.89), (3.79) – (3.81) and noting that

sT M̂rr̈eq =
m∑

k=1

m∑
j=1

θ̃T
MkjξMkj r̈eqjsk

sT Ĉrṙeq =
m∑

k=1

m∑
j=1

θ̃T
CkjξCkj ṙeqjsk

sT Ĝr =
m∑

k=1

θ̃T
GkξGksk

we have

V̇1 = −sT Kss − sT d sgn(s) + sT (EM r̈eq + EC ṙeq + EG) (3.90)

The fact that ˙̃θMkj = − ˙̂
θMkj,

˙̃θCkj = − ˙̂
θCkj and ˙̃θGk = − ˙̂

θGk is used in the above

derivations.

The selection of Ks and d make

V̇1 ≤ −sT Kss ≤ 0 (3.91)

From the definition of V1 (3.88), it can be concluded that when t → ∞, V1 → 0 and

s → 0. After sliding surface s = 0 is reached asymptotically, ṡ = 0. From equation

(3.46), the desired impedance is achieved. We can also conclude that θ̂Mkj, θ̂Ckj

and θ̂Gk are bounded.

As proved in Theorem 3.3.1, the robot position tracking and the boundedness

of the force tracking errors are achieved after the desired impedance is reached.

Q. E. D

Remark 3.4.1 The centers of the RBF functions in the neural network can be

selected in such a way that they are evenly distributed in the input space of q and

q̇.
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3.5 Simulation

3.5 Simulation

The simulation example is schematically shown in Figure 3.1. In the example, the

end effector of the manipulator moves along a part of the constraint surface and

exerts a force on it at the same time.

The length, inertia and the mass of each link of the manipulator are li = 0.3m,

Ii = 0.3kgm2 and mi = 0.1kg respectively (i = 1, 2). The mass center of each link

is assumed to be in the middle of the link. These parameters are the same as those

used in the simulation example in Chapter 2.

In Figure 3.1, oxy is the world coordinates. The constraint surface is described by

Φ(re) = xe − ye + 0.25 = 0 (3.92)

and the planned trajectory of the end effector is

Φ(rd) = xd − yd + 0.35 = 0 (3.93)

Their trajectories in the time domain are represented by

xd(t) = − 1

10
cos(2t)

yd(t) = 0.35 − 1

10
cos(2t)

xe(t) = 0.05 − 1

10
cos(2t)

ye(t) = 0.3 − 1

10
cos(2t)

Assume that the rest position of the constraint surface is the same as the constraint

surface (3.92). The planned force is set as fd = [fxd fyd]
T = [5 − 5]T . For the

simulation, the actual values of Ke is set as 150I2×2 and re is still described by

equation (3.92).

3.5.1 Simulation for Adaptive Impedance Control

In this case, the kinematic and the inertia parameters of the robot are known.

The control parameters are chosen as follows: Am = 20I2×2, Bm = 400I2×2, P1 =
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1.25I2×2, P2 = 6.56I2×2, Â(0) = 45I2×2, B̂(0) = 30I2×2, ĉ(0) = [1 1]T , Qa = Qb =

Qc = Qa∗ = 5I2×2 and Qb∗ = Qc∗ = 1.5I2×2.

The robot position tracking and the constraint force tracking performances are

plotted in Figures 3.2 and 3.3 respectively. The control torques for the manipulators

are given in Figure 3.4. It can be observed that under the proposed controller and

the adaptation law, the positions converge to their desired values and the force

errors are bounded. The control torques are in the reasonable ranges.

3.5.2 Simulation for Robust Adaptive Impedance control

In this case, the inertial parameters of the robot are unknown. Assume that the

estimated inertia and the mass of each link of the manipulator are Îi = 0.2kgm2

and m̂i = 0.05kg respectively (i = 1, 2). The modeling uncertainty bounds for the

dynamic terms are δM = 0.1, δC = 0.1, δG = 0.05 respectively and the bound

of external disturbance is δf = 0.1. The control parameters are chosen as follows:

D = −2I2×2,K1 = K2 = 2I2×2 and Ks = 4I2×2. The boundary layer is chosen as

∆ = 0.05. Other parameters: Am, Bm =, P1, P2, Â(0) =, B̂(0), ĉ(0), Qa, Qb, Qc,

Qa∗, Qb∗ and Qc∗ are the same as in Section 3.5.1.

The position tracking performances of the robot and the force tracking perfor-

mances are plotted in Figures 3.5 and 3.6 respectively. The control torques for

the manipulators are given in Figure 3.7. It can be seen that under the proposed

controller and the adaptation law, the positions converge to their desired values

and the force errors are bounded. The control torques are in the reasonable ranges.

It is noted that there are some chattering in torque and force signals, but they are

smoothed out in most of the time through boundary layer approach.

3.5.3 Simulation for Robust NN Adaptive Impedance control

The control parameters are chosen as follows: D = −5I2×2, K1 = K2 = 5I2×2,

Ks = 36I2×2. The boundary layer is chosen as ∆ = 0.05. ΓMkj = diag[8.0],

ΓCkj = diag[6.0] and ΓGk = diag[10.0]. The centers of RBF functions span evenly
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in the input space of q and q̇ and their variances are set to be 50. Am = 20I2×2,

Bm = 40I2×2, P1 = 0.625I2×2, P2 = 6.5I2×2, Â(0) = I2×2, B̂(0) = 110I2×2,

ĉ(0) = [−4 4]T , Qa = Qb = Qc = Q∗
a = 4I2×2 and Q∗

b = Q∗
c = 8I2×2.

The position of the robot and the constraint force are plotted in Figures 3.8 and

3.9 respectively. To show the impedance tracking performance, the response of

the switching function (s) is plotted in Figure 3.10. The control torques for the

manipulators are given in Figure 3.11. The neural network approximations to Mr,

Cr and Gr in terms of their norms (largest singular values) are plotted from Figure

3.12 to Figure 3.14. It can be seen that under the proposed controller, the position

of the robot converged to its desired trajectory and tracking errors of the constraint

force are bounded. The responses of the switching function and its derivatives

are stabilized around zero. The control torques are in the reasonable ranges and

parameter estimation are also bounded. Note that there are some chatterings in

the force response and the torque at the beginning of the simulation, but they are

almost smoothed out quickly due to the introduction of the boundary layer.

3.6 Conclusion

In this chapter, an adaptive, a robust adaptive and a neural network based ro-

bust adaptive control schemes are developed for position/force tracking of a con-

strained robot within the framework of impedance control. Compared with other

impedance controllers, the uniqueness of the controllers developed is that the de-

sired impedance is treated as time varying and is adapted with the robot position

tracking errors. The uncertainties of both the impedance and the robot dynamics

are considered in the controllers design, and this makes the controllers developed

more general than other control schemes. Under the proposed controllers, the posi-

tion of the robot converges to its desired trajectory and the constraint force error is

bounded. Extensive simulations are done to verify the effectiveness of the control

schemes.
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Figure 3.10: Response of the switching functions (s) under Neural Network based
Controller
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Figure 3.11: Joint Torques of the Robotic Manipulator under Neural Network based
Controller
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based Controller
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Figure 3.13: Comparison of ‖Cr‖ (dashed) and ‖Ĉr‖(solid) under Neural Network
based Controller
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based Controller
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Chapter 4

Explicit Force Control of a

Dynamically Constrained Robot

In most controllers for the constrained robots, constraint force is controlled indi-

rectly while the robot position is made to converge to its desired trajectory. In

those controllers, the constraint is assumed to be rigid or it is modeled as a simple

spring.

In this chapter, the direct or explicit force control is addressed for the applications

where the accurate constraint force is required. A more general dynamic model

of the constraint is used in the controller design. Considering that the internal

states of the constraint are not measurable, the adaptive output feedback control

approaches are adopted in the controller design.

The rest of the chapter is organized as follows. In Section 4.1, the dynamic model of

the constrained robot system is presented and some of its properties are discussed.

In Section 4.2, the developments of the force controllers with MRAC and backstep-

ping approaches are presented respectively. In Section 4.3, the simulation study is

done to verify and compare the effectiveness of the controllers. The conclusion is

given in Section 4.4.
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4.1 Dynamic Model

4.1 Dynamic Model

The dynamic model used for the controller design is taken from [30][32][33] and

is schematically shown in Figure 4.1. This model is selected because it covers

various phenomena occuring during the constrained motion of the robot – rigid

contact, compliant motion and collision [30]. It is more comprehensive than the

mass-spring or spring models used in many constrained robot control approaches

in describing the motion of the contact. It is assumed that the robot itself can be

controlled properly with its own position controller, and thus only the dynamics of

the robot’s end effector is considered together with that of the constraint.

For simplicity and without losing generality, it is assumed that the contact between

the robotic manipulator and the constraint is a point contact and the constraint

force acts along the normal of the constraint at the contact point. In Figure

4.1, the displacement of the constraint δ and the force f are measured along the

normal vector of the constraint. The constraint is divided into two parts: the

outer layer with large stiffness and the compliant layer with small stiffness. The

constants mc, kc and bc are the inertia, stiffness and damping ratio respectively of

the mass-spring-damping units in the compliant layer. The constants ks, ko and

bs are the stiffness and damping ratio in the outer layer. The variables x1 and x2

are the displacements of a spring (ko) and a mass unit (mc) respectively. All the

displacement are measured from the equilibrium points of the corresponding units.

The displacement δ is related to the joint position q of the robot through the

following forward kinematics of the robot:

δ = φ(q) (4.1)

and for the undeflected position of the constraint, φ(q) = 0.

Based on the classical Newton mechanics, the dynamic model of the constraint is

written as [30]

ẋ = Acx + Bcδ (4.2)

f = ks(δ − x2) + k0(δ − x1)
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= Ex + Dδ (4.3)

where

x = [x1 x2 x3]
T , x3 = ẋ2

Ac =

⎡
⎢⎢⎢⎣

−b−1
s ko 0 1

0 0 1

−m−1
c ko −m−1

c (ks + kc) −m−1
c bc

⎤
⎥⎥⎥⎦ , Bc =

⎡
⎢⎢⎢⎣

b−1
s ko

0

m−1
c (ko + ks)

⎤
⎥⎥⎥⎦

E = [−ko − ks 0], D = ko + ks

In the above state space representation of the environment, the constraint surface

displacement δ is taken as the input, and the force f is taken as the output. When

the contact loses (f = 0), the states x and δ continue to evolve in time. The

internal states of the environment x and the environment parameters are normally

difficult to obtain.

Remark 4.1.1 The dynamic constraint model represented by equations (4.2) and

(4.3) contains the constraint’s internal states x which are normally not measurable.

The parameter matrices Ac, Bc, E and D contain the parameters of the constraints

which are also unknown. As such, the adaptive output feedback approach should be

used for the force controller development.

From equations (4.2) and (4.3), the transfer function from input δ to output f is

derived as

H(s) =
F (s)

∆(s)
=

d3s
3 + d2s

2 + d1s + d0

s3 + l2s2 + l1s + l0
(4.4)

where d3 = ko +ks, d2 = b−1
s koks +m−1

c bc(ko +ks), d1 = m−1
c b−1

s bckoks +m−1
c kc(ko +

ks), d0 = m−1
c kckoks, l2 = b−1

s ko + m−1
c bc, l1 = m−1

c b−1
s bck0 + m−1

c (ks + ko) + m−1
c kc

and l0 = m−1
c b−1

s (ks + kc)ko.

Equation (4.4) represents a 3rd order dynamic system which is more comprehensive

than simple mass-spring or spring models used in many constrained robot control

approaches. To obtain δ in equation (4.4), a command displacement δc to the robot

position control system and its relation with δ should be established. As shown in

[28] and [31], δ is related to δc through the following transfer function

∆(s)

∆c(s)
=

k

ms2 + cs + k
(4.5)
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where m, k and c are the end effector mass, spring and damping parameters.

Obviously the dynamics of the end effector plays an important role in shaping the

relation between δ and δc.

From equations (4.4) and (4.5), we have

F (s)

∆c(s)
=

b3s
3 + b2s

2 + b1s + b0

s5 + a4s4 + a3s3 + a2s2 + a1s + a0

(4.6)

where bi = kdi/m (i = 0, . . . 3), a4 = (ml2 + c)/m, a3 = (ml1 + cl2 + k)/m,

a2 = (ml0 + cl1 + kl2)/m, a1 = (cl0 + kl1)/m and a0 = kl0/m

For the dynamic model in equation (4.6), we have the following lemma.

Lemma 4.1.1 The dynamic model in equation (4.6) is of minimum phase, or

b3s
3 + b2s

2 + b1s + b0 is Hurwitz.

Lemma 4.1.1 is important for the controller development. Its proof can be found

in Appendix B.

Remark 4.1.2 Equation (4.6) describes the relation between the constraint force

and the command displacement considering the dynamics of both the constraint and

the robot’s end effector. The coefficients of the equation are the functions of the

system parameters.

Remark 4.1.3 The dynamic model (4.6) is of minimum phase and thus its is

suitable for applying the backstepping method in the controller design.

Following the same step as in [48], the state space equations in observer canonical

form of the system model is

ẏ1 = y2 − a4y1 (4.7)

ẏi = yi+1 − a5−iy1 + b5−iδc (i = 2, 3, 4) (4.8)

ẏ5 = b0δc − a0y1 (4.9)

or equivalently

ẏ = Ay − ay1 + [0 bT ]T δc (4.10)

y1 = f = cT
1 y (4.11)
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where

A =

⎡
⎣ 04×1 I4×4

0 0

⎤
⎦

a = [a4 a3 a2 a1 a0]
T

b = [b3 b2 b1 b0]
T

I4×4 is an identity matrix of dimension 4, 04×1 is a zero matrix with dimension

4 × 1, c1 is a unit vector with the first element being 1 and the rest of elements

are 0. Generally, cj is a unit vector with the jth element being 1 and the rest of

elements are 0.

Equation (4.10) is rearranged as follows

ẏ = Ay + BT (y1, δc)θ (4.12)

where

BT (y1, δc) =

⎡
⎣

⎡
⎣ 01×4

I4×4

⎤
⎦ δc − y1I

5×5

⎤
⎦ ∈ R5×9

θ = [bT aT ]T ∈ R9

The system dynamics described in observer canonical form (4.10) is needed for the

design of the adaptive output feedback control.

4.2 Controller Design

In this section, an adaptive output feedback controller is developed to control the

constraint force modeled by equation (4.10). The control objective is to control

the constraint force f to reach its desired value fd through the control input δc –

the command displacement of the constraint.

The dynamic relation between the force and the command displacement (4.6) is

that of a typical linear minimum-phase system. For such a system, many meth-

ods can be found to develop an adaptive controller when the system parameters
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4.2 Controller Design

are unknown. In this chapter, the controller is designed based on adaptive back-

stepping [48] and MRAC approaches [49] which require only the input and output

measurements.

4.2.1 Adaptive Output Feedback Force Controller with Backstepping

In the following, the backstepping control approach in [48] is to be used for the

controller design. The estimation of the state y is first made through the following

observer [48]

ŷ = ξ + ΩT θ (4.13)

where

ξ̇ = A0ξ + λy1 (4.14)

Ω̇T = A0Ω
T + B(y1, δc)

T (4.15)

A0 = A − λcT
1 (4.16)

and λ ∈ R5 is selected to make A0 Hurwitze, or there exists P ∈ R5×5 and G ∈ R5×5

such that

PA0 + AT
0 P = −G < 0, P = P T > 0 (4.17)

Define the column vectors of ΩT as

ΩT = [v3 v2 v1 v0 η1 η2 . . . η5] (4.18)

where vi ∈ R5 (i = 1, . . . 4) and ηj ∈ R5 (j = 1, 2 . . . 5).

From equations (4.15) and (4.18) , we have

η̇i = A0ηi − ciy1 (4.19)

v̇i = A0vi + c5−iδc (4.20)

From equation (4.16), we have A5
0c5 = −λ, ηj = A0ηj+1 (j = 1, 2, 3, 4) and

ξ = A5
0η5 (4.21)

ηj = A5−j
0 η5 (4.22)
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4.2 Controller Design

It can be proven that if θ is known, we have

y = ŷ + ε = ξ + ΩT θ + ε (4.23)

ε̇ = A0ε (4.24)

and ε → 0 when t → ∞.

From equations (4.12) and (4.23), we have

ẏ1 = cT
2 A5

0η5 + wT θ + cT
2 ε = cT

2 A5
0η5 + b3v3,2 + wT θ + cT

2 ε (4.25)

v̇3,2 = v3,3 − λ2v3,1 + δc (4.26)

where

w = [v3,2 v2,2 v1,2 v0,2 (ηT
5 AT

η − y1c
T
1 )]T (4.27)

w = [0 v2,2 v1,2 v0,2 (ηT
5 AT

η − y1c
T
1 )]T (4.28)

AT
η = [(A4

0)
T c2 (A3

0)
T c2 (A2

0)
T c2 c2] (4.29)

Equations (4.25) and (4.26) are in parameter strict feedback forms which are suit-

able for applying the backstepping approach in the controller design. In each step

(i) of backstepping, a stabilizing function αi and a tuning function τi are generated

and the control input δc appears in the last step.

Step 1. Define

z1 = y1 − y1d (4.30)

From equation (4.25), we have

ż1 = cT
2 A5

0η5 + wT (η5, y1)θ + cT
2 ε + b3v3,2

= b3α1 + cT
2 A5

0η5 + wT θ + b3z2 + ε2 (4.31)

where z2 = v3,2 − α1 and ε2 = cT
2 ε. α1 is called stabilizing function in this step.

To find the stabilizing function α1, it is first rewritten as

α1 = d̂α1 (4.32)

where d̂ is the estimate of 1/b3.
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4.2 Controller Design

Substitute equation (4.32) into equation (4.31), we have

ż1 = α1 + cT
2 A5

0η5 + wT θ − b3d̃α1 + b3z2 + ε2 (4.33)

If α1 is chosen such that

α1 = −h1z1 − cT
2 A5

0η5 − wT θ̂ (4.34)

equation (4.33) becomes

ż1 = −h1z1 + wT θ̃ − b3d̃α1 + b3z2 + ε2 (4.35)

where h1 > 0 is a control parameter and θ̂ is the estimate of parameters θ.

From equations (4.27), (4.28) and (4.32), we have

wT θ̃ + b3z2 = (w − d̂α1c1)
T θ̃ + cT

1 θ̂z2 (4.36)

Substituting equation (4.36) into equation (4.35), we have

ż1 = −h1z1 + (w − d̂α1c1)
T θ̃ − b3d̃α1 + cT

1 θ̂z2 + ε2 (4.37)

Consider the Lyapunov function

V1 =
1

2
z2
1 +

1

2
θ̃T Γ−1θ̃ +

b3

2γ
d̃2 +

1

2
εT Pε (4.38)

where Γ > 0, γ > 0 are the gain matrix and the gain respectively, and P is a

positive definite symmetric matrix defined in equation (4.17). Note that b3 > 0 by

definition.

Differentiating V1 with respect to time t and considering equation (4.37), we have

V̇1 = −h1z
2
1 + z1ε2 + cT

1 θ̂z1z2 − εT Gε − 1

γ
b3d̃(

˙̂
d + γα1z1)

+θ̃T Γ−1[Γ(w − d̂α1c1)z1 − ˙̂
θ] (4.39)

If

˙̂
d = −γα1z1 (4.40)

˙̂
θ = Γτ1, τ1 = (w − d̂α1c1)z1 (4.41)
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4.2 Controller Design

and z2 = 0 (v3,2 = α1), we have

V̇1 = −(h1 − 1)z2
1 − (z1 − ε2

2
)2 +

ε2
2

4
− εT Gε (4.42)

Letting h1 > 1 and G be in a diagonal form G = diag(gi) with gi > 0 and g2 > 1
4

(i = 1, 2, . . . 2n) and from equation (4.42), we have

V̇1 = −(h1 − 1)z2
1 − (z1 − ε2

2
)2 − (g2 − 1

4
)ε2

2 − Σ5
j=1, j �=2gjε

2
j ≤ 0 (4.43)

As v2 �= α1 (z2 �= 0) and
˙̂
θ �= Γτ1, it follows that

V̇1 ≤ −(h1 − 1)z2
1 + cT

1 θ̂z1z2 + θ̃T (τ1 − Γ−1 ˙̂
θ) (4.44)

Step 2. Differentiating z2 with respect to time t, we have

ż2 = v3,3 − λ2v3,1 + δc − d̂α̇1 − α1
˙̂
d (4.45)

= v3,3 + δc − λ2v3,1 − d̂α̇1 − α1
˙̂
d (4.46)

From equation (4.34), we have

α̇1 =
∂α1

∂η5

η̇5 +
∂α1

∂y1

ẏ1 +
∂α1

∂θ̂

˙̂
θ (4.47)

Substituting equation (4.47) into equation (4.45), we have

ż2 = δc + v3,3 − γ2(w
T θ̃ + ε2) − d̂

∂α1

∂θ̂

˙̂
θ − β2 (4.48)

where

γ2 = d̂
∂α1

∂y1

(4.49)

β2 =λ2v3,1 + d̂
∂α1

∂η5

(A0η5 − c5y1) − γα2
1z1 + γ2(c

T
2 A5

0η5 + wT θ̂) (4.50)

with all the signals being measurable.

Consider the following Lyapunov function

V2 = V1 +
1

2
z2
2 +

1

2
εT Pε (4.51)
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Differentiating V2 with respect to time t and considering equations (4.44 and (4.48),

we have

V̇2 ≤ −(h1 − 1)z2
1 + cT

1 θ̂z1z2 + θ̃T (τ1 − Γ−1 ˙̂
θ) + z2ż2 − εT Gε (4.52)

= (1 − h1)z
2
1 + θ̃T (τ1 − γ2wz2 − Γ−1 ˙̂

θ) (4.53)

+ z2(δc + v3,3 + cT
1 θ̂z1 − β2 − d̂

∂α1

∂θ̂

˙̂
θ) − γ2z2ε2 − εT Gε (4.54)

By selecting

˙̂
θ = Γτ2, τ2 = τ1 − γ2wz2 (4.55)

δc = −h2z2 − cT
1 θ̂z1 + β2 +

∂α1

∂θ̂
Γτ2 − v3,3, h2 > 1 (4.56)

and from equation (4.54), we have

V̇2 ≤ −(h1 − 1)z2
1 − (h2 − 1)z2

2 − (z2 +
γ2ε2

2
)2

−(g2 − γ2
2

4
)ε2

2 + Σ5
j=1, j �=2gjε

2
j < 0 (4.57)

where g2 is selected such that

g2 >
γ2

2

4
(4.58)

Note that the equation (4.56) defines the control input δc.

Substituting equations (4.55) and (4.56) in equation (4.48), we have

ż2 = −h2z2 − cT
1 θ̂z1 − γ2(w

T θ̃ + ε2) (4.59)

Combining equations (4.37) and (4.59), we have the following error system

ż = Wzz + Wθθ̃ − b3α1c1d̃ + Wεε2 (4.60)

where

Wz =

⎡
⎣ −h1 cT

1 θ̂

−cT
1 θ̂ −h2

⎤
⎦

Wε = [1 − γ2]
T

Wθ = Wεw
T − d̂αc1c

T
1
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Note that

Wz + W T
z = −2 diag[hi], i = 1, 2 . . . 2n (4.61)

The stability of the above error systems is established as V̇2 ≤ 0 under the control

law δc. It can be concluded that z, θ̃, d̃ and ε are all bounded. As the desired force

y1d is bounded, the output y1 is also bounded. From equation (4.20) and the fact

that the system dynamics (4.6) is of minimum phase, vi(i = 1, 2) are bounded.

Thus, all of the signals in the closed-loop system are bounded, z(t) → 0 ( i.e.,

y1 → y1d ) as t → ∞.

The results of the above discussion are summarized in the following theorem.

Theorem 4.2.1 For the constrained robot system modeled by equations (4.6) and

(4.5), the constraint force f approaches to its desired value fd when t → ∞ if the

command displacement of the constraint is given by equation (4.56) and the uncer-

tain parameters d̂ and θ̂ are tuned by adaptation laws (4.40) and (4.55) respectively.

The closed loop signals are also bounded.

Remark 4.2.1 The adaptive output feedback controller with backstepping is based

on the 3rd dynamic model (4.4) of the constraint. It is a special case of general

chain multiple mass spring damper (CMMSD) systems with any degrees of freedom

introduced in Appendix C. Though the controller in Appendix C is for position

control, it can be readily used for force control by replacing the position variable

with the force variable.

In addition to the adaptive output feedback controller with backstepping discussed

above, we will show that the same objective can also be achieved through model

reference adaptive control approach in the next section.
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4.2.2 MRAC Based Adaptive Output Feedback Force Controller

This controller is designed with the MRAC approach in [49]. The desired behavior

of the constraint force is specified by the following reference model

fm =
Bm

Am

fd (4.62)

where Bm = ω2, Am = p2 + 2ζωp + ω2, p = d/dt is the differential operator, fd is

the command input (desired constraint force) and fm(t) is the desired output of

the reference model. From the linear control theory, fm(t) → fd when ω and ζ are

selected properly.

The dynamic relation between the force and the command displacement (4.6) is

re-written as

f =
b3Bf

Af

δc (4.63)

where Bf = p3 +b2b
−1
3 p2 +b1b

−1
3 p+b0b

−1
3 and Af = p5 +a4p

4 +a3p
3 +a2p

2 +a1p+a0

Our task now is to find a control input δc such that the closed-loop system follows

the reference model (4.62). According to the poles placement procedure in [49],

the exact model following is achieved if δc satisfies

Prδc = Ptfd − Psf (4.64)

where Ps = s4p
4 + s3p

3 + s2p
2 + s1p + s0, Pt = t4p

4 + t3p
3 + t2p

2 + t1p + t0

and Pr = Pr1Bf = p4 + r3p
3 + r2p

2 + r1p + r0 and their coefficients si, ti and ri

(i = 0, 1, . . . 4) can be solved from the following equations

AfPr1 + b3Ps = PoAm (4.65)

Pt = PoBm/b3 (4.66)

given an pre-defined observer polynomial Po = p4 + o3s
3 + o2s

2 + o1s + o0.

Equation (4.65) is called Diophantine equation. Observer polynomial Po is selected

such that it is stable with a faster dynamic characteristic than that of Am. From

equations (4.64) and (4.65), the coefficients of Pr, Ps and Pt are derived such

that r0 = rb0, r1 = rb1b
−1
3 + b0,, r2 = rb2b

−1
3 , r3 = r + b2b

−1
3 , ti = (ω2/b3)oi,
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si = (ω2oi + 2ζωoi−1 + oi−2 − ai−1 − air)/b3 (i = 0, . . . 3), t4 = ω2/b3, s4 = (ω2 +

2ζωo3 + o2 − a3 − a4r)/b3 and r = o3 − a4 + 2ζω.

The control parameters ri, si and ti (i = 0, . . . 4) are the functions of the param-

eters of the system reference model and the observer polynomial. The parameter

adaptation laws are needed for their estimates as the system parameters a and b

are unknown.

From equations (4.62), (4.63) and (4.64), the error between the output of the

controlled loop and the reference model is obtained

e = f − fm =
b3

PoAm

(Prδc + Psf − Ptfd) (4.67)

To express e in a linear-in-parameter (LIP) form, re-arrange equation (4.67) such

that

e = b3(
1

P1

δc +
Pr − P2

Pf

δc +
Ps

Pf

f − Pt

Pf

fd) (4.68)

where Pf = P1P2, P1 = Am and P2 = Po. Obviously, Pr − P2 is a polynomial of p

with coefficients being r′3 = r3 − o3, r′2 = r2 − o2, r′1 = r1 − o1 and r′0 = r0 − o0.

Define a vector of the coefficients of the polynomials Pr − P2, Ps and Pt such that

θf = [r′3 . . . r′0 s4 . . . s0 t4 . . . t0]
T (4.69)

and another vector consisting of filtered input , output and the command inputs

such that

ϕ = [
p3

Pf

δc . . .
1

Pf

δc
p4

Pf

f . . .
1

Pf

f
−p4

Pf

fd . . .
−1

Pf

fd]
T (4.70)

With ϕ and θf defined above, the error e is expressed in a more compact form

e = b3(
1

P1

δc + ϕT θf ) (4.71)

Let θ̂f be the estimate of θf and define the output feedback control law as

δc = −θ̂T
f (P1ϕ) (4.72)

Substituting the control law (4.72) in the equation (4.71), we have

e = ε + b3η (4.73)
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where ε = b3ϕ
T θ̃f , η = −δc/P1 − ϕT θ̂f and θ̃f = θf − θ̂f .

It is obvious that ε (called augmented error) is linear in θ̃f and thus θ̂ can be tuned

adaptively through gradient approach [49] such that

˙̂
θf = γfϕε (4.74)

where γf > 0 is the adaptation gain. Note that the unknown parameter b3 is

absorbed in γf .

If b3 is unknown, the augmented error ε in equation (4.74) can be replaced by

prediction error

εp = e − b̂3(ϕ
T θ̂f +

1

P1

δc) (4.75)

where
˙̂
b3 = γf (ϕ

T θ̂f +
1

P1

δc)εp (4.76)

and θ̂ is now estimated through

˙̂
θf = γfϕεp (4.77)

Note that the adaptation law (4.74) is a special case of adaptation law (4.77) when

b3 is known.

Following the same procedure to prove the stability of general MRAC controllers

[49][50], it can be showed that under the controller (4.72) and adaptation laws

(4.76) and (4.77), f → fm asymptotically. As fm → fd, thus we can conclude

f → fd asymptotically. It can also be showed that the close loop signals are all

bounded.

The above results can be summarized in the following theorem.

Theorem 4.2.2 For the constrained robot system where the relation between the

displacement of the constraint surface and the command displacement is shaped by

equation (4.63) and with an assumption that its position can be well controlled by

the robot’s position controller, the constraint force f approaches to its desired value

fd when t → ∞ if the command displacement of the constraint is given by equation

(4.72) and the parameters b̂3 and θ̂f are tuned by adaptation laws (4.76) and (4.77).

The closed loop signals are also bounded.
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Note that the controller (4.72) and adaptation laws (4.76) and (4.77) require more

control parameters (the coefficients of the reference model (4.62), observer polyno-

mials Po and adaptation gains) than those required backstepping approach. Several

filters are also needed to filter the outputs, command inputs and the control inputs.

4.3 Simulation

For simulation, the true parameters of the end effector are selected as k = 10,

m = 20 and c = 0.5. The constraint parameters are selected as kc = 10 N/m,

bc = bs = 1.0 Ns/m, mc = 50 kg. The desired constraint force is set to be fd = 1N

and the initial values of the force is set to be 1.5 N.

The rest of the parameters varies based on different stiffness of the constraint

surface such that

Case 1: k0 = ks = 20. The stiffness of the out surface of the constraint is closer

to that of the compliant structure.

Case 2: k0 = ks = 50. The stiffness of the outer surface of the constraint is higher

than that of the compliant structure;

Case 3: k0 = ks = 80. The constrain surface is much stiffer than compliant

structure;

Case 4: k0 = ks = 20 (same as those of Case 1) and the adaptive tuning of the

parameters in backstepping approach is stopped.

Case 5: k0 = ks = 20 (same as those of Case 1) and the MRAC adaptive output

feedback controller is used.

Note that the values of the parameters k, m and c are chosen so that they make

the second order system (4.5) stable. The parameters of the constraint kc, bc, bs

and mc vary with the material and structure of the constraint [32]. Their values

in simulation are set for a constraint surface softer than that in [32] where kc and

bc can be up to 2000 N/m and 90 Ns/m respectively.
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From Case 1 to Case 3, the control parameters are chosen such that h1 = h2 = 2,

γ = 0.01 and Γ = diag(45, 60, 60, 60, 45, 45, 45, 45, 10). To make A0

positive definite, we choose λ = [12 5 15 2 4]T . The nominal parameter vectors

θ = [20 200.3 8 40 20.04 21.52 27.01 0.9 8]T , d = 0.05 and the initial value of θ̂ and

d̂ are set as 0.65θ and 0.65d.

Case 4 is used to study the results for the controller with backstepping when the

adaptation is activated or stopped by setting γ = 0 and Γ = diag[0] ∈ R9×9

respectively. The other control parameters are kept the same as those of Case 1 to

Case 3.

Case 5 is designed to study the performance of the MRAC adaptive output feedback

controller and to compare it with that of backstepping approach. The parameters

of the reference model are set as ζ = 0.7 and ω = 0.5. The observer polynomial Po is

specified by Po = p4+19p3+65p2+77p+30. The true values of the parameter θf are

θf = [−9.33 −68.1 −37.14 −43.8 3.2 5.38 5.43 1.63 0.5 0.012 0.24 0.81 0.96 0.38]T .

The initial values of θ̂f and b̂3 are set to be 0.65θ and 0.65b3 respectively. The

parameter adaptation gain is set as γf = 0.8.

After simulations, displacements and force responses for Cases 1, 2 and 3 are plotted

in Figures 4.2 and 4.3 respectively. The parameter adaptations in Case 1 are plotted

from Figure 4.4 to 4.6. The comparison of the performances of adaptive control

(Case 1) to non-adaptive control (Case 4) is also made and the simulation results

are plotted in Figures 4.7 and 4.8 respectively.

Studying the simulation results for Cases 1, 2 and 3 in Figures 4.2 and 4.3, it can

be seen that the constraint force is convergent in each case though the stiffness

of the constraint surface varies. The command displacement shows a surge at the

beginning, but becomes smooth within a small range quickly. Some fast and big

chattering of the force and command displacement appear in Cases 2 and 3 where

the stiffness of the constraint is big. The results of parameter estimations for Case

1 ( Figures 4.4 to 4.6 ) show that the parameters are convergent but are different

from their true values. This fact doesn’t affect the force tracking of the controller.

To make the parameter estimation’s error zero, more stringent conditions such as
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persistent excitations are needed [47]. As for Case 4 where the adaptation process

stops, the force response cannot be converged to the desired value while that of

adaptive control achieves a good force tracking as shown in Figure 4.8.

The simulation results for Case 5 are plotted from Figures 4.9 to 4.11. It can

be seen that the output force f converged to its desired values fd = 1 and the

estimated parameters are bounded (note only four parameters in the same scale

are shown to save the space). Compared with the results in Case 1, the force takes

a longer time to settle with a larger over shoot, but the frequency of its fluctuation

is much less.

4.4 Conclusion

In this chapter, two adaptive output feedback controllers have been presented to

achieve the explicit force control of robots with dynamic constraints whose param-

eters and internal states are unknown. While most explicit force control schemes

rely on a simple model of the contact (general spring), a very general and compre-

hensive dynamic model of the contact is used in this chapter which covers various

behaviors of the constraint such as rigid contact, compliant motion and collision

with the robot. Another advantage of the proposed controllers is that they require

the measurement of the output (force) only and does not need the knowledge of

system parameters and internal states of the constraint. The asymptotical stabil-

ity of the force error is guaranteed by the controllers. The simulations are used to

verify and compare the effectiveness of the control approaches.
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Chapter 5

Fuzzy Unidirectional Force

Control of Constrained Robots

This chapter studies how to keep the contact between the end effector of the robot

and the constraint surface during the robot’s constrained motion, a key assumption

for many constrained robot controllers.

Force control schemes developed on the assumption that the robot’s end effector

always keeps a contact with the constraint cannot handle the impact caused by

the lose of contact. It is difficult to model the robot’s state during the transition

from non-contact into contact and vice-versa. The models established with some

assumptions are also too complicated for the controller design [32][40]. Noting

the relation between the unidirectionality of the constraint force and the mainte-

nance of the contact of the robot’s end effector on the constraint surface, a fuzzy

unidirectional force control is developed based on the general impedance between

the robotic arm and the constraint. The simulation is carried out to verify the

effectiveness of the approach.

The chapter is organized as follows. In Section 5.1, the dynamic model of the

constrained robot is given. In Section 5.2, the impedance model of the robot and

environment is described and the fuzzy unidirectional force control scheme is de-

veloped. In Section 5.3, simulation studies are carried out to show the effectiveness
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5.1 Dynamic Model

of the proposed controller. In Section 5.4, the conclusion about the work in this

chapter is described.

5.1 Dynamic Model

As presented in Chapter 3, the dynamic model of a constrained robotic manipulator

in joint space is described by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + JT (q)f (5.1)

where q are the joint displacements, q̇ are the joint velocities, M(q) is the inertia

matrix, C(q, q̇) is the coriolis and centrifugal force matrix, G(q) is the gravitational

force, τ are the joint torques, J(q) is the Jacobian matrix and f is the contact

force.

Through the following kinematic relations between the Cartesian position r and

velocity ṙ of the end effector and joint position q and velocity q̇

r = φ(q) (5.2)

ṙ = J(q)q̇ (5.3)

the dynamic model (5.1) is expressed in workspace as

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = J−T (q)τ + f (5.4)

where

Mr(q) = J−T (q)M(q)J−1(q)

Cr(q, q̇) = J−T (q)(M(q)J̇−1(q) + C(q, q̇)J−1(q))

Gr(q) = J−T (q)G(q)

For clarity, the arguments of the terms will be dropped if there is no ambiguity in

the context of the discussion in the following.
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5.2 Controller Design

5.2 Controller Design

Our discussion begins with commonly-used impedance control scheme in which the

closed-loop dynamics is specified by a general impedance described by equation

(3.3) in Chapter 3. It is reproduced below for completeness in discussion.

fd − f = Mm(r̈d − r̈) + Dm(ṙd − ṙ) + Km(rd − r) (5.5)

where Mm ∈ Rm×m, Dm ∈ Rm×m and Km ∈ Rm×m are the constant inertia

matrix, damping matrix and the stiffness matrix respectively, fd ∈ Rm is the

desired constraint force and f ∈ Rm is the actual constraint force

If Mm, Dm and Km are taken as diagonal matrices: Mm = mmI l×l, Dm = dmI l×l,

Km = kmI l×l with mm, dm and km being constant scalars and l being the dimension

of work space, the resulted impedance is then re-written as

ef = mmër + dmėr + kmer (5.6)

where ef = fd − f , ër = r̈d − r̈, ėr = ṙd − ṙ, er = rd − r.

Considering the following controller

τ = JT [Mr(r̈d + m−1
m (dmėr + kmer + f − fd)) + Crṙ + Gr − f ] (5.7)

and substituting it into the dynamic model (5.4) and considering the properties

(Property 3.1 and Property 3.2 in Chapter 3) of the model, it is easy to verify

that the desired impedance (5.6) is achieved.

Obviously, the resulted impedance doesn’t guarantee that f is unidirectional, as

the force in a normal mass-spring-damper system can act in pushing or pulling

direction. In practice f should be acted along the normal pointing out of the

constraint surface at the contact point, or mathematically

f = fmn (5.8)

where n is the normal vector at he contact point on the constraint surface and

fm = ‖f‖ is the magnitude of the constraint force.
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Considering equation (5.8), the impedance model (3.3) is re-written as

fdmn − fmn = mmër + dmėr + kmer (5.9)

0 < fm < fmax (5.10)

where fdm = ‖fd‖ is the desired magnitude of the contact force and fmax is an

additional constant representing the maximum contact force allowed.

Projecting equation (5.9) along n by multiplying its both sides with nT and re-

arranging equation (5.10), we have

efm = mmnT ër + dmnT ėr + kmnT er (5.11)

efmin < efm < efmax (5.12)

where efm = fdm − fm, efmin = fdm − fmax and efmax = fd

Note that the equation (5.11) describes the behaviors of contact force along the

normal n and its relations with state tracking errors of the system. Equation (5.12)

specifies the condition to keep the contact between the end effector of the robot

and constraint surface.

By treating dm and km as the weights determining the contributions of ër, ėr

and er to the overall force difference respectively, they can be adjusted for the

realization of unidirectional force control. The trends of the changes in accelera-

tion/velocity/position errors and force errors can be used to determine how these

adjustments should be made. By observing equation (5.11), the following fuzzy

rules are thus derived to adjust dm and km.

Fuzzy Rules Set 1:

• IF nT ėr is positive and nT er is positive and efm − efmax is positive THEN dm

is small and km is small,

• IF nT ėr is positive and nT er is positive and efm − efmin is negative THEN dm

is big and km is big ,

• IF nT ėr is positive and nT er is negative and efm − efmax is positive THEN dm

is small and km is big ,

93



5.2 Controller Design

• IF nT ėr is positive and nT er is negative and efm − efmin is negative THEN dm

is big and km is small,

• IF nT ėr is negative and nT er is positive and efm − efmax is positive THEN dm

is big and km is small,

• IF nT ėr is negative and nT er is positive and efm − efmin is negative THEN dm

is small and km is big,

• IF nT ėr is negative and nT er is negative and efm − efmax is positive THEN

dm is big and km is big,

• IF nT ėr is negative and nT er is negative and efm − efmin is negative THEN

dm is small and km is small,

• IF efm − efmin is positive and efm − efmax is negative THEN dm is medium

and km is medium.

where positive, negative, big,small and constant are linguistic terms Following the

same methods in [61], the membership functions of their corresponding fuzzy sets

are selected as

µpositive(x) =
1

1 + e−kpx
(5.13)

µnegative(x) =
1

1 + eknx
(5.14)

µbig(y) = e−kb(y−db)
2

(5.15)

µsmall(y) = e−ks(y−ds)2 (5.16)

µmedium(y) = e−kmed(y−dmed)2 (5.17)

where x takes as ėr, er or ef , y takes dm or km, kp, kn, kb, ks, kmed, db, ds and dmed

are the positive constants determining the shapes of the membership functions.

Note that mm is not tuned due to the difficulty to obtain the acceleration feedback

in practice. Even though, the above fuzzy rules are still valid. mm can be set to

a small value to reduce the contribution to the overall control effort due to the

acceleration errors.
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How to choose parameters kp, kn, ks, kmed, kb, ds, dmed and db relies on the knowl-

edge about the constrained robot system and the experience of controlling robotic

manipulators. For example, the membership functions may introduce switching

behaviors into the controlled system and cause chattering if kp and kn are too big.

On the other hand, if they are too small the fuzzy adaptation might become less

responsive to the change of the states of the system.

Considering the fact that the effects of nT er and nT ėr on the contact force are

different, a new variable s is defined as the weighted combination of nT ėr and nT er

s = nT ėr + λnT er (5.18)

where λ > 0 is a constant. To assign a higher weights to nT er, we should choose

λ > 1.

With s being defined and letting km = λdm, the impedance model (5.11) is modified

as

efm = mmnT ër + dms (5.19)

With the assumption that the effect of acceleration to the force error is small after

assigning mm to a small value , we can now produce another set of fuzzy rules to

tune dm as follows.

Fuzzy Rules Set 2:

• IF s is positive and efm − efmax is positive THEN dm is small ,

• IF s is positive and efm − efmin is negative THEN dm is big,

• IF s is negative and efm − efmax is positive THEN dm is big,

• IF s is negative and efm − efmin is negative THEN dm is small,

• IF efm − efmin is positive and efm − efmax is negative THEN dm is medium.

where the linguistic variable and their membership function are the same as those

in Fuzzy Rules Set 1.
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Fuzzy Rules Set 2 has much less rules than that of Fuzzy Rules Set 1. By using

the singleton fuzzifier, product inference engine and center average defuzzifier, the

crisp dm is derived such that

dm = w1ds + w2db + w3dmed (5.20)

where

w1 = w−1[µpositive(s)µpositive(efm − efmax) + µnegative(s)µnegative(efm − efmin)]

w2 = w−1[µpositive(s)µnegative(efm − efmin) + µnegative(s)µpositive(efm − efmax)]

w3 = w−1[µpositive(efm − efmin)µnegative(efm − efmax)]

w = [µpositive(s) + µnegative(s)][µpositive(efm − efmax) + µnegative(efm − efmin)]

+µpositive(efm − efmin)µnegative(efm − efmax)

The controller is thus formed by combining equations (5.7) and (5.20) and is

schematically sketched in Fig. 5.1.

Remark 5.2.1 The stability of er and efm is also guaranteed by the controller.

This is due to the fact that the right hand side of equation (5.6) remains Hurwitz

for dm and km obtained through the fuzzy laws.

Fuzzy tuning of impedance model needs the knowledge of normal vector n which can

be estimated from information of the measured force [54]

5.3 Simulation

The system used for simulation is schematically shown in Fig. 5.2. The end effector

of the two-link manipulator moves along a circular constraint surface described by

(xd − 0.8)2 + (y + 0.4)2 = 0.09

in the world coordinates XOY .

The possibility of the robot end effector’s losing contact with a circular surface is

much higher than on a straight surface, thus the above circular constraint is very
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suitable to verify the effectiveness of the unidirectional force controller to keep the

end effector of the robot on the constraint.

The length, inertia and the mass of each link of the manipulator is li = 0.6m,

Ii = 0.3kgm2 and mi = 0.1kg respectively (i = 1, 2). The mass center of each

link is assumed to be in the middle of the link. The joint displacements of the

robot is q = [θ1 θ2]
T and the actual position of the end effector is r = [x y]T . The

parameters of the two-link robot used are the same as those of Chapter 2 except for

the link length which is made longer (0.6m) to cover the whole circular constraint

surface.

Considering the fact that the loss of the contact is normally caused by the external

disturbances, a disturbance f̃ with magnitude ‖f̃‖ = 2 is added to the system at

t = 2 second for the verification of the effectiveness of the proposed approach. The

disturbance last 0.06 seconds and during this period, the system dynamics becomes

Mr(q)r̈ + Cr(q, q̇)ṙ + Gr(q) = J−T (q)τ + f + f̃

The planned trajectory of the end effector of the manipulator is specified as

xd(t) = 0.8 − 0.3 sin t (5.21)

yd(t) = −0.4 + 0.3 cos t (5.22)

and the desired force along the normal of the constraint surface is set to be fdm =

10N . The maximum contact force is limited to fmax = 12N and the minimum

contact force is set to fmin = 1N .

The traditional impedance control without fuzzy adaptation is simulated first where

the desired impedance parameters are fixed as mm = 1.2, dm = 12 and km = 60.

The responses of position and force under the controller are plotted in Fig. 5.3 and

Fig. 5.4 respectively. The control torques for the manipulators are given in Fig.

5.5.

For the fuzzy impedance controller, the control parameters are chosen as mm = 1.2,

ds = 5, dmed = 15, db = 25, λ = 5 and kp = kn = 1. The responses of position and

force under the controller are plotted in Fig. 5.6 and Fig. 5.7 respectively. The
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control torques for the manipulators and the impedance parameter are shown in

Fig. 5.8 and Fig. 5.9 respectively.

From the simulation results, it can be seen that under the proposed controller,

the performances of position response and force response are better than those of

traditional impedance controller. The loss of contact of the end effector to the

constraint surface may happen for the traditional impedance controller (negative

force along the normal), whereas the contact is maintained under the proposed

fuzzy impedance controller as the force is always positive along the normal. The

control torques are also in the reasonable ranges.

5.4 Conclusion

The unidirectionality of the constraint force is required by the unilateral contact

between the robot and the constraint, and is the assumption used in most control

schemes for constrained robots. In this chapter, how to achieve the unidirection-

ality of the constraint force within a position/force control scheme is explicitly

addressed. A fuzzy unidirectional force control scheme is presented. The controller

aims at keeping the constraint force unidirectional necessary for maintaining the

contact between the robot end effector and the constraint surface. A fuzzy tuning

mechanism is developed to tune the control parameters. Theoretical analysis and

simulation results are provided to show the effectiveness of the proposed controller.
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Chapter 6

Position/Force Control of

Constrained Flexible Joint Robots

In this chapter, the position and force control of a constrained flexible joint robot

is tackled. One of the controllers is designed with robust adaptive control approach

in two steps. In the first step, a desired joint position is found to make a Lyapunov

function of link position tracking error and the constraint force tracking error non-

increasing. In the second step, the joint torque is derived to make the joint position

to track its trajectory obtained in the first step. The controller does not have any

limit on the joint flexibility. In addition, the joint stiffness and the motor inertia

are assumed to be unknown as well as the robot inertia parameters. It mainly

relies on the feedbacks of joint state variables (joint positions and velocities) and

thus avoids noisy joint torque feedback. As the joint torque feedback is not used in

the controller, the joint stiffness becomes an uncertain parameter scaling the con-

trol input. This new challenge to the controller design is solved with the method

presented in [99].

Another controller is designed with singular perturbation approach. The fast vari-

ables and the slow variables are defined by combing the constraint force and robot’s

position signals. The controller is developed by combining a motor feedback con-

troller with an exponentially stable controller for a quasi-steady-state system. It

relies on the joint state feedback and achieves the robot’s position tracking and the
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6.1 Dynamical Model and Properties

boundedness of the constraint force errors.

The chapter is organized as follows. In Section 6.1, the system dynamics and

problem formulation is described. In Section 6.2, the design of a robust adaptive

controller and its stability analysis are provided. Section 6.3 presents the controller

designed with singular perturbation approach. In Section 6.4, simulations are done

to verify the effectiveness of the controllers. The conclusion is given in Section 6.5.

6.1 Dynamical Model and Properties

Consider the dynamic model of a constrained flexible joint robot [93],

M(ql)q̈l + C(ql, q̇l)q̇l + G(ql) = Ksθ + f (6.1)

Jmq̈m + Ksθ = τm (6.2)

θ
∆
= qm − ql (6.3)

where ql ∈ Rn and qm ∈ Rn are the positions of the robot links and the motor

shafts respectively, M(ql) ∈ Rn×n is the inertia matrix of rigid links, C(ql, q̇l)

is the Coriolis and centrifugal force matrix, G(ql) is the gravitational force, Jm =

diag[jmi] ∈ Rn×n is the positive definite diagonal matrix of the moments of inertia

of the motors, Ks = diag[ksi] ∈ Rn×n is the positive definite diagonal matrix of the

joint stiffness, f ∈ Rn are the joint torques contributed by the constraint force and

τm ∈ Rn are the input torques of the motors. jmi and ksi (i = 1, 2 . . . n) are the

inertia and the stiffness of the ith joint. n is the degree of freedom of the robotic

manipulator.

Assuming that the holonomic and frictionless constraint surface is described by

Φ(ql) = 0 ∈ Rm (6.4)

where Φ(ql) is twice continuously differentiable [7].

Constraint force in the joint space, f , can then be expressed by

f = JT (ql)λ (6.5)

J(ql)
∆
=

∂Φ(ql)

∂ql

∈ Rm×n

105



6.1 Dynamical Model and Properties

where λ ∈ Rm is a generalized Lagrange multiplier representing the magnitude

of the constraint force [7]. m is the dimension of the constraint surface and it is

assumed that m < n.

Due to the constraint, m degrees of freedom of the robot are lost. Partitioning the

link position vector ql to q1
l ∈ Rn−m and q2

l ∈ Rm, we have

ql = [q1T
l q2T

l ]T (6.6)

and accordingly, the Jacobian J(ql) is decomposed as

J(ql) = [J1(ql) J2(ql)] (6.7)

J1(ql)
∆
=

∂Φ(ql)

∂q1
l

∈ Rm×n−m

J2(ql)
∆
=

∂Φ(ql)

∂q2
l

∈ Rm×m

As stated in [100], it is possible to have a partition such that J−1
2 (ql) exists and

q̇l = L(ql)q̇
1
l , L(q) =

⎡
⎣ I(n−m)×(n−m)

−J−1
2 (ql)J1(ql)

⎤
⎦ (6.8)

With the partition of the link position vector in equation (6.6), the position of

the robot can be uniquely determined by q1
l . The original dynamical model in

equations (6.1) and (6.2) is transformed to

M1(ql)q̈
1
l + C1(ql, q̇l)q̇

1
l + G1(ql) = Ksθ + JT (ql)λ (6.9)

Jmq̈m + Ksθ = τm (6.10)

where

M1(ql) = M(ql)L(ql) ∈ Rn×m

C1(ql, q̇l) = M(ql)L̇(ql) + C(ql, q̇l)L(ql) ∈ Rn×m

G1(ql) = G(ql) ∈ Rn

Define Ml(ql) = LT (ql)M
1(ql) ∈ Rm×m, Cl(ql, q̇l) = LT (ql)C

1(ql, q̇l) ∈ Rm×m and

Gl(ql) = LT (ql)G
1(ql) ∈ Rm. It can be proved that the dynamic models (6.1) and

(6.9) have the following properties.

106



6.1 Dynamical Model and Properties

Property 6.1 LT (ql)J
T (ql) = 0.

Property 6.2 M(ql), C(ql, q̇l), G(ql), M1(ql), C1(ql, q̇l), G1(ql), Ml(ql), Cl(ql, q̇l),

Gl(ql), L(ql) L̇(ql), and J(ql) are uniformly bounded and continuous if ql and

q̇l are uniformly bounded and continuous; M(ql) and Ml(ql) are symmetric

positive definite (s.p.d).

Property 6.3 Ṁ(ql) − 2C(ql, q̇l) and ṀL(ql) − 2CL(ql, q̇l) are skew-symmetric

if C(ql, q̇l) is in the Christoffel form, i.e., xT
1 (Ṁ(ql) − 2C(ql, q̇l))x1 = 0,

xT
2 (ṀL(ql) − 2CL(ql, q̇l))x2 = 0, ∀x1 ∈ Rn and x2 ∈ Rn−m.

Property 6.4 The robot link dynamics described by equation (6.1) is linear in

the robot link parameters, i.e. given an arbitrary vector χ ∈ Rn

M(ql)χ̇ + C(ql, q̇l)χ + G(ql) = Ψ(χ̇, χ, q̇l, ql)p (6.11)

where p ∈ Rl is a vector of the lumped parameters of interest, Ψ(χ̇, χ, q̇l, ql) ∈
Rn×l is a regressor matrix.

If the estimates of M(ql), C(ql, q̇l) and G(ql) are denoted by M̂(ql), Ĉ(ql, q̇l)

and Ĝ(ql), then

M̂(ql)χ̇ + Ĉ(ql, q̇l)χ + Ĝ(ql) = Ψ(χ̇, χ, q̇l, ql)p̂ (6.12)

where p̂ is the estimate of p.

Property 6.5 [99] If the regressor matrix Ψ(χ̇, χ, q̇l, ql) and the vector p in equa-

tion (6.11) are given in the following forms

Ψ(χ̇, χ, q̇l, ql) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψT
1 (χ̇, χ, q̇l, ql) 0 ... 0

0 ψT
2 (χ̇, χ, q̇l, ql) ... 0

... ... ... ....

0 0 ... ψT
n (χ̇, χ, q̇l, ql)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×l

p = [pT
1 pT

2 ...pT
n ]T ∈ Rl

then

KsΨ(χ̇, χ, q̇l, ql)p = Ψ(χ̇, χ, q̇l, ql)ps
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6.2 Robust and Adaptive Control Design

where

ps
∆
= [ks1p

T
1 ks2p

T
2 . . . ksnpT

n ]T = Λp ∈ Rl

Λ
∆
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

diag[ks1] 0 ... 0

0 diag[ks2] ... 0

... ... ... ...

0 0 ... diag[ksn]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rl×l

and ψi(χ̇, χ, q̇l, ql) ∈ Rni , pi ∈ Rni , diag[ksi] ∈ Rni×ni ,
∑n

i=1 ni = l, i =

1, 2, . . . n.

Assume that Ks and Jm are unknown and their estimates are denoted as K̂s, and Ĵm

respectively. Their estimate errors are defined as K̃s
∆
= Ks − K̂s and J̃m

∆
= Jm − Ĵm

respectively. For the controller design, the following assumptions are made for

these terms:

Assumption 6.1 Ks and Jm are unknown and bounded.

Assumption 6.2 K̃s and J̃m are bounded such that ‖K̃s‖ ≤ δK and ‖J̃m‖ ≤ δJ ,

where δK and δJ are known positive constants.

Assumption 6.3 ql(t), qm(t), q̇l(t), q̇m(t), q̈m and λ(t) are all measurable.

Assumption 6.4 The desired link position (qld(t)) and the constraint force (λd(t))

and their derivatives are bounded and continuously differentiable.

6.2 Robust and Adaptive Control Design

Let qld(t) be the desired trajectory of the link position and λd(t) be the desired

magnitude of the constraint force. The control objective is to find a driving torque

τm under which ql(t) tracks qld(t) and the error between λ(t) and λd(t) is bounded.

It is only necessary to make q1
l (t) track its desired trajectory q1

ld(t) since q1
l (t)

completely determines ql(t).
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6.2 Robust and Adaptive Control Design

From dynamic model represented by equations (6.9) and (6.10), the controller is

designed in two steps. In the first step, a desired value of θ: θd, is determined to

make q1
l (t) track q1

ld(t) and λd(t) − λ(t) is bounded. Then, the control input τm is

obtained to make θ to track θd in the second step.

Define the following variables related to the tracking errors of the link position and

the constraint force:

e1 ∆
= q1

ld − q1
l , eλ

∆
= λd − λ (6.13)

r1 ∆
= ė1 + Kee

1, q̇1
r

∆
= q̇1

ld + Kee
1 (6.14)

where Ke ∈ R(n−m)×(n−m) is a positive definite constant matrix.

With variables r1 and q1
r , the following variables are also defined:

σ
∆
= L(ql)r

1 + µ (6.15)

ν
∆
= L(ql)q̇

1
r + µ (6.16)

where µ is a variable introduced to compensate the force error eλ and it will be

determined later.

From equations (6.15) and (6.16), it is obvious that

r1 = q̇1
r − q̇1

l (6.17)

σ = ν − L(ql)q̇
1
l (6.18)

σ̇ = ν̇ − L(ql)q̈
1
l − L̇(ql)q̇

1
l (6.19)

As a preparation for designing the system parameters updating law, the following

vectors are also constructed with the elements of diagonal matrices Ks, K̂s and

K̂−1
s .

k−1
s

∆
= [k−1

s1 k−1
s2 . . . k−1

sn ]T (6.20)

k̂−1
s

∆
= [k̂−1

s1 k̂−1
s2 . . . k̂−1

sn ]T (6.21)

k̃−1
s = k−1

s − k̂−1
s (6.22)

ϕ1(Ks, K̂
−1
s )

∆
= Ksk̂

−1
s = [ks1k̃

−1
s1 ks2k̃

−1
s2 . . . ksnk̃

−1
sn ]T (6.23)
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6.2 Robust and Adaptive Control Design

where ksi is the stiffness of ith joint and k̂−1
si is the estimate of k−1

si .

Note that K̂−1
s and k̂−1

s here only serve as the estimates of K−1
s and k−1

s respectively.

They are NOT the inverses of K̂s and k̂s respectively.

Step 1. Determination of θd: the desired value of θ

In this step, θd, the desired value of θ, is obtained to make a Lyapunov function of

e1, eλ and the system parameter estimation errors nonincreasing.

Consider the following Lyapunov function

V1 =
1

2
σT M(ql)σ +

1

2
(p − p̂s)

T Γ1(p − p̂s) +
1

2
µT µ +

1

2
ϕT

1 (Ks, K̂
−1
s )Γ2ϕ1(Ks, K̂

−1
s )

(6.24)

where p̂s is the estimate of ps defined in Property 6.5, Γ1 ∈ Rl×l and Γ2 ∈ Rn×n

are positive definite diagonal matrices.

Differentiating V1 with respect to time t and considering Property 6.3 and Prop-

erty 6.5, we have

V̇1 = σT M(ql)σ̇ +
1

2
σT Ṁ(ql)σ − (p − p̂s)

T Γ1
˙̂ps + µT µ̇ + ϕT

1 (Ks, K̂
−1
s )Γ2ϕ̇1(Ks, K̂

−1
s )

= σT (M(ql)σ̇ + C(ql, q̇l)σ) − (p − p̂s)
T Γ1

˙̂ps

+µT µ̇ + ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) (6.25)

Substituting σ in equation (6.18) and σ̇ in equation (6.19) into equation (6.25), we

have

V̇1 = σT (M(ql)ν̇ + C(ql, q̇l)ν + G(ql) − M1(ql)q̈
1
l − C1(ql, q̇l)q̇

1
l − G1(ql))

−(p − p̂s)
T Γ1

˙̂ps + µT µ̇ + ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) (6.26)

Considering equation (6.9) and Property 6.4, equation (6.26) becomes

V̇1 = σT (Ψ(ν̇, ν, q̇l, ql)p − Ksθ−JT (ql)λ)) − (p − p̂s)
T Γ1

˙̂ps

+ µT µ̇ + ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) (6.27)

Our aim is to find θd to make V̇1 non-positive. Define the difference between θ and

θd as

z
∆
= θd − θ
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6.2 Robust and Adaptive Control Design

Equation (6.27) is re-written as

V̇1 = σT (Ψ(ν̇, ν, q̇l, ql)p − Ksθd − JT (ql)λ)) − (p − p̂s)
T Γ1

˙̂p + µT µ̇

+ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) + σT Ksz (6.28)

Letting

θd = Kσσ − K̂−1
s JT (ql)λd + Ψ(ν̇, ν, q̇l, ql)p̂ (6.29)

where Kσ ∈ Rn×n is positive definite and p̂ is the estimate of p, and substituting

it into equation (6.28), we have

V̇1 = σT (Ψ(ν̇, ν, q̇l, ql)p − KsΨ(ν̇, ν, q̇l, ql)p̂) − σT KsKσσ

+ σT KsK̂
−1
s JT (ql)λd − σT JT (ql)λ − (p − p̂s)

T Γ1
˙̂ps + µT µ̇

+ ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) + σT Ksz (6.30)

From the definition of σ in equation (6.15) and Property 6.1, it is obvious that

σT JT (ql)λ = µT JT (ql)λ

σT KsK̂
−1
s JT (ql)λd = µT JT (ql)λd − σT KsK̃

−1
s JT (ql)λd

Substituting the above terms into equation (6.30) and considering Property 6.5,

we have

V̇1 = (p − p̂s)
T (ΨT (ν̇, ν, q̇l, ql)σ − Γ1

˙̂ps) − σT KsKσσ + µT JT (ql)eλ

−σT KsK̃
−1
s JT (ql)λd + µT µ̇ + ϕT

1 (Ks, K̂
−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) + σT Ksz(6.31)

Letting µ evolve according to

µ̇ + Kµµ = −JT (ql)eλ (6.32)

where Ku ∈ Rn×n is a positive definite constant matrix, and substituting it into

equation (6.31), we have

V̇1 = (p − p̂s)
T (ΨT (ν̇, ν, q̇l, ql)σ − Γ1

˙̂ps) − σT KsK̃
−1
s JT (ql)λd

−σT KsKσσ − µT Kµµ + ϕT
1 (Ks, K̂

−1
s )Γ2ϕ̇1(Ks, K̂

−1
s ) + σT Ksz (6.33)

As both Ks and K̃−1
s are diagonal matrices, it is easy to verify that

σT KsK̃
−1
s JT (ql)λd = ϕT

1 (Ks, K̂
−1
s )ϕ2(σ, ql, λd) (6.34)
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6.2 Robust and Adaptive Control Design

where

ϕ2(σ, ql, λd)
∆
= [(JT (ql)λd)1σ1 (JT (ql)λd)2σ2 . . . (JT (ql)λd)nσn]T (6.35)

and (JT (ql)λd)i and σi are the ith elements of JT (ql)λd and σ respectively.

Substituting equation (6.34) into equation (6.33), we have

V̇1 = (p − p̂s)
T (ΨT (ν̇, ν, q̇l, ql)σ − Γ1

˙̂ps) − ϕT
1 (Ks, K̂

−1
s )(ϕ2(σ, ql, λd)

−Γ2ϕ̇1(Ks, K̂
−1
s )) + σT Ksz − µT Kµµ − σT KsKσσ (6.36)

Letting

˙̂ps = Γ−1
1 ΨT (ν̇, ν, q̇l, ql)σ (6.37)

ϕ̇1(Ks, K̂
−1
s ) = Γ−1

2 ϕ2(σ, ql, λd) (6.38)

and substituting them into equation (6.36), it follows that

V̇1 = σT Ksz − µT Kµµ − σT KsKσσ (6.39)

As Kµ and KsKσ are all positive definite, it follows that

V̇1 ≤ σT Ksz ≤ 0 (6.40)

when z = 0, that is, θ = θd.

From equation (6.37) and the definition of ps in Property 6.5, we have

˙̂p = ΓpΨ
T (ν̇, ν, q̇l, ql)σ (6.41)

where Γp
∆
= Λ−1Γ−1

1 .

From equation (6.38) and the definition of ϕ1(Ks, K̂
−1
s ) in equation (6.23), we have

˙̂
k
−1

s = −Γkϕ2(σ, ql, λd) (6.42)

where Γk
∆
= K−1

s Γ−1
2 .

Once the elements of k̂−1
s are determined through the adaptation law in equation

(6.42), they are then used to form the diagonal matrix K̂−1
s for the calculation of

θd in equation (6.29).
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Remark 6.2.1 The uncertain terms Λ and Ks are “absorbed” in the parameter

adaptation gains Γp and Γk respectively. Γp and Γk are always positive definite due

to the fact that Λ, Ks , Γ1 and Γ2 are positive definite.

Step 2. Determination of Input Torque: τm

In this step, the control input τm will be derived to make a Lyapunov function of

z, e1 and eλ non-increasing.

Defining a Lyapunov function

V2 = V1 +
1

2
zT Ksz =

1

2
σT M(ql)σ +

1

2
(p − p̂s)

T Γ1(p − p̂s)

+
1

2
µT µ + ϕT

1 (Ks, K̂
−1
s )Γ2ϕ1(Ks, K̂

−1
s ) +

1

2
zT Ksz (6.43)

and differentiating it with respect to time t, we have

V̇2 = V̇1 + żT Ksz (6.44)

With θd given in equation (6.29) and p̂ and k̂−1
s adaptively tuned in equations (6.41)

and (6.42) respectively, it has been shown that

V̇1 = σT Ksz − µT Kµµ − σT KsKσσ (6.45)

and, as a result,

V̇2 = (σ + ż)T Ksz − µT Kµµ − σT KsKσσ

= (σ + ż)T (Ksθd − Ksθ) − µT Kµµ − σT KsKσσ (6.46)

Solving Ksθ in equations (6.2) and substituting it into equation (6.46), we have

V̇2 = (σ + ż)T (Ksθd − τm + Jmq̈m) − µT Kµµ − σT KsKσσ (6.47)

Letting

τm = K̂sθd + Ĵmq̈m + kτsgn(σ + ż) (6.48)

kτ ≥ δK‖θd‖ + δJ‖q̈m‖ (6.49)
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6.2 Robust and Adaptive Control Design

where K̂s and Ĵm are the estimates of Ks and Jm respectively, and δK and δJ are

the bounds of K̃s and J̃m respectively. sgn(σ + ż) is a sign function applying on

σ+ ż element wise such that 1 is returned when an element of σ+ ż is non-negative

or −1 otherwise.

Substituting τm into equation (6.47), it turns out that

V̇2 = (σ + ż)T (K̃sθd + J̃mq̈m − kτsgn(σ + ż)) − µT Kµµ − σT KsKσσ (6.50)

Noting the definition of kτ , we have

(σ + ż)T (K̃sθd + J̃mq̈m − kτsgn(σ + ż)) ≤ 0 (6.51)

and

V̇2 ≤ −µT Kµµ − σT KsKσσ ≤ 0 (6.52)

As V̇2 ≤ 0, V2 is non-increasing. The uniform boundedness of σ, p − p̂s, µ,

ϕ1(Ks, K̂
−1
s ) and z are guaranteed. From the definition of σ in equation (6.15)

and Property 6.2, r1 is also uniformly bounded. From the definition of r1, the

uniform boundedness of r1 guarantees the uniform boundedness of e1 and ė1.

It is thus concluded that e1 → 0 or q1
l → q1

ld. As ql is uniquely determined by q1
l ,

it can be concluded that ql → qld.

To analyze the force tracking, Ψ(ν̇, ν, q̇l, ql)p̂ is expanded from Property 6.4,

Ψ(ν̇, ν, q̇l, ql)p̂ = M̂(ql)ν̇ + Ĉ(ql, q̇l)ν + Ĝ(ql) (6.53)

Substituting ν in equation (6.16) into equation (6.53) and considering equation

(6.32), we have

Ψ(ν̇, ν, q̇l, ql)p̂

= M̂1(ql)q̈
1
r + Ĉ1(ql, q̇l)q̇

1
r + Ĝ1(ql) − (M̂(ql)Kµ − Ĉ(ql, q̇l))µ − M̂(ql)J

T (ql)eλ(6.54)

and θd in equation (6.29) is re-written as

θd = Kσσ − K̂−1
s JT (ql)λd + M̂1(ql)q̈

1
r + Ĉ1(ql, q̇l)q̇

1
r + Ĝ1(ql)

− (M̂(ql)Kµ − Ĉ(ql, q̇l))µ − M̂(ql)J
T (ql)eλ (6.55)
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Noting that θ = θd − z and substituting it into equation (6.10), the following

closed-loop system dynamics is obtained

(KsM̂(ql) + I(n−m)×(n−m))eλ = M1(ql)ṙ
1 + C1(ql, q̇l)r

1 + KsK̃
−1
s JT (ql)λd −Ksz − β

(6.56)

where

β
∆
= (M(ql) − KsM̂

1(ql))q̈
1
r + (C(ql, q̇l) − KsĈ

1(ql, q̇l))q̇
1
r + G(ql) − KsĜ

1(ql)

and K̃−1
s = K−1

s − K̂−1
s .

Multiplying both sides of equation (6.56) by J(ql)M
−1(ql) and noting that

J(ql)M(ql)M
1(ql) = J(ql)L(ql) = 0, we have

J(ql)M
−1(ql)(KsM̂(ql) + I(n−m)×(n−m))eλ

= J(ql)M
−1(ql)(C

1(ql, q̇l)r
1 + KsK̃

−1
s JT (ql)λd − Ksz − β) (6.57)

We can conclude that β is bounded as q̈1
r = q̇1

ld + Kee
1 and the other terms in

equation (6.2) are bounded.

With β and other terms in equation (6.57) being bounded and

the term J(ql)M
−1(ql)(KsM̂(ql)+I(n−m)×(n−m)) being non-singular, it is concluded

that eλ is bounded from equation (6.56).

Summarizing what discussed in Step 1 and Step 2, we have the following theorem.

Theorem 6.2.1 For a constrained flexible joint robotic manipulator modeled by

equations (6.1) and (6.2), the robot’s position ql converges to its desired value qld

and the force tracking error λd − λ is uniformly bounded if

τm = K̂sθd + Ĵmq̈m + kτsgn(σ + ż) (6.58)

kτ ≥ δK‖θd‖ + δJ‖q̈m‖ (6.59)

where

z = θd − θ

θd = Kσσ − K̂−1
s JT (ql)λd + Ψ(ν̇, ν, q̇l, ql)p̂
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θ = qm − ql

˙̂p = ΓpΨ
T (ν̇, ν, q̇l, ql)σ

˙̂
k
−1

s = −Γkϕ2(σ, ql, λd)

k̂−1
s = [k−1

s1 k−1
s2 . . . k−1

sn ]T

K̂−1
s = diag[k−1

si ], i = 1, 2, . . . n

σ = L(ql)r
1 + µ

ν = L(ql)q̇
1
r + µ

µ̇ + Kµµ = −JT (ql)eλ

r1 = ė1 + Kee
1

e1 = q1
ld − q1

l

eλ = λd − λ

q̇1
r = q̇1

ld + Kee
1

Kσ > 0, Γp > 0 and Γk > 0 are control parameters, K̂s and Ĵm are the estimates

of Ks and Jm respectively. Matrices Ψ(ν̇, ν, q̇l, ql), δK and δJ are defined in Prop-

erty 6.4 and Assumption 6.2 respectively, and ϕ2(σ, ql, λd) is defined in equation

(6.35). Kσ, Ke, Kµ, Γp and Γk are all positive definite.

Remark 6.2.2 To avoid the calculation of ż in equation (6.58), a new variable sz

is defined such that

sz =
∫ t

0
σdt + z (6.60)

Obviously

sgn(σ + ż) = sgn(ṡz) (6.61)

By comparing the value of sz in consecutive sampling times, the sign of ṡz or σ + ż

can be obtained. If sz is non-decreasing, the sign should be positive, or negative

otherwise.

Remark 6.2.3 It is well known that the sign function in the controller causes

chattering which can be eliminated with the boundary layer approach [58]. In this

approach, the sign function sgn(s) is replaced by s/∆ when ‖s‖ < ∆. ∆ > 0 is

defined as a boundary layer.
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Remark 6.2.4 When the joint stiffness reaches a sufficiently large value, the con-

trol system becomes sensitive to the variations of the signals in the control loops.

This will cause large fluctuations even divergency of the control variables. The sin-

gular perturbation based controller in [64] for free flexible joint robot can be extended

to solve this problem and it will be presented in the next section.

6.2.1 Controller Design – Singular Perturbation Approach

In this section, a singular perturbation based position/force controller for con-

strained robot is developed. It is an extension of the work on singular perturbation

based controller for free flexible joint robot in [64].

For the controller design, the desired motor position: qmd, velocity q̇md and ac-

celeration q̈md are needed. From equation (6.1) and Property 6.4, they can be

calculated by

qmd = K−1
s (Ψ(q̈ld, q̇ld, q̇ld, qld)p − fd) + qld (6.62)

q̇md = K−1
s (Ψ̇(q̈ld, q̇ld, q̇ld, qld)p − ḟd) + q̇ld (6.63)

q̈md = K−1
s (Ψ̈(q̈ld, q̇ld, q̇ld, qld)p − f̈d) + q̈ld (6.64)

where fd = JT (qld)λd. From Assumption 6.4, qmd, q̇md and q̈md are bounded and

continuous.

As p is unknown, it is impossible to obtain the exact values of qmd, q̇md and q̈md.

Their estimates q̂md, ˙̂qmd and ¨̂qmd are obtained through

q̂md = K−1
s (Ψ(q̈ld, q̇ld, q̇ld, qld)p̂ − fd) + qld (6.65)

˙̂qmd = K−1
s (Ψ̇(q̈ld, q̇ld, q̇ld, qld)p̂ − ḟd) + q̇ld (6.66)

¨̂qmd = K−1
s (Ψ̈(q̈ld, q̇ld, q̇ld, qld)p̂ − f̈d) + q̈ld (6.67)

Note that q̂md, ˙̂qmd and ¨̂qmd are independent each other, that is, there are no

differentiation or integration relations among them. Their estimation errors are

denoted by

q̃md = qmd − q̂md (6.68)
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˙̃qmd = q̇md − ˙̂qmd (6.69)

¨̃qmd = q̈md − ¨̂qmd (6.70)

The motor position and velocity tracking errors and their estimates are defined as

em = qmd − qm (6.71)

ėm = q̇md − q̇m (6.72)

êm = q̂md − qm (6.73)

˙̂em = ˙̂qmd − q̇m (6.74)

Obviously êm = em − q̃md.

For the controller design, the following variables related to the tracking errors of

the link position and the constraint force are also defined.

e
∆
= qld − ql, eλ

∆
= λd − λ (6.75)

r
∆
= ė + Kee, q̇r

∆
= q̇ld + Kee (6.76)

where Ke ∈ Rn×n is a positive definite constant matrix. Note that

r = q̇r − q̇l (6.77)

6.2.2 Quasi-steady-state and Boundary-layer Models

Consider the following control law

τm = τs + Jm(¨̂qmd + Kv
˙̂em + Kpêm) − JT (ql)eλ (6.78)

where τs is a slow-time-scale control to be decided later, Kv and Kp are positive

definite constant matrices.

Considering equations (6.71) and (6.73), the control law in equation (6.78) can be

rewritten as

τm = τs + Jm(q̈md + Kvėm + Kpem) + βp̃ − JT (ql)eλ (6.79)
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where

β = −JmK−1
s (Ψ̈(q̈ld, q̇ld, q̇ld, qld) + KvΨ̇(q̈ld, q̇ld, q̇ld, qld) + KpΨ(q̈ld, q̇ld, q̇ld, qld))

Define new variables z0 and z1 as follows

z0 = Ks(qmd − ql) (6.80)

z1 = Ksem + JT (ql)eλ (6.81)

Substituting τm (6.79) into equation (6.2) and noting that

Ksθ = Ks(qm − ql) = z0 − z1 − JT (ql)eλ

we have

z̈1 + Kvż1 + (Kp + KsJ
−1
m )z1 = KsJ

−1
m (z0 − τs − βp̃) (6.82)

With sufficiently large stiffness Ks and the control gains Kv and Kp, a very small

parameter ε → 0 can be defined such that

Kp + KsJ
−1
m =

K1

ε2
(6.83)

Kv =
K2

ε
(6.84)

where K1 and K2 are control parameters with limited magnitudes.

With the above definitions, equation (6.82) is written as

ε2z̈1 + εK2ż1 + K1z1 = (K1 − ε2Kp)(z0 − τs − βp̃) (6.85)

Noting that

Ksθ + f = Ksθ + JT (ql)λ = z0 − z1

the controlled system can then be described by

M(ql)q̈l + C(ql, q̇l)q̇l + G(ql) = z0 − z1 (6.86)

ε2z̈1 + εK2ż1 + K1z1 = (K1 − ε2Kp)(z0 − τs − βp̃) (6.87)

Equations (6.86) and (6.87) are in a standard singular perturbation form

ẋ = f1(t, x, y, ε), x ∈ R2(n−m)+m (6.88)

εẏ = f2(t, x, y, ε, τs), y ∈ R2n (6.89)

119



6.2 Robust and Adaptive Control Design

where x = [q1
l q̇1

l ], y = [z1 ż1] and f1 and f2 are well-defined functions.

By setting ε = 0 in equation (6.87), we get

z1 = z0 − τs − βp̃ (6.90)

where z1 and z0 are the values of z1 and z0 respectively when ε = 0.

Replacing z1 and z0 by z1 and z0 respectively in equation (6.86), we have the

following quasi-steady-state model

M(ql)q̈l + C(ql, q̇l)q̇l + G(ql) = z0 − z1 = τs + βp̃ (6.91)

Defining η = z1 − z1 and assuming that z1 is constant in a fast timescale τ = t
ε
, we

have the following boundary layer system model from equation (6.87)

d2η

dτ 2
+ K2

dη

dτ
+ K1(η + z1) = K1(z0 − τs − βp̃) (6.92)

Substituting equation (6.90) into equation (6.92), we have

d2η

dτ 2
+ K2

dη

dτ
+ K1η = 0 (6.93)

Obviously the boundary layer system in equation (6.93) is exponentially uniformly

stable given K1 > 0 and K2 > 0. According to Tychonov’s Theorem [57], if the

quasi-steady-state system (6.91) has a unique solution q1
l (t) for t ∈ [0, t1], then

there is ε∗ such that for all ε < ε∗

z1(t) = z1(t) + η(t/ε) + O(ε) (6.94)

ql(t) = q1
l + O(ε) (6.95)

which holds uniformly for t ∈ [0, t1] .

To make equations (6.94) and (6.95) valid for an infinite time interval, the quasi-

steady-state system (6.91) is required to be exponentially stable [57]. This is the

objective of the slow-timescale control τs to be developed in the next section.
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6.2.3 Slow-timescale Exponentially Stable Adaptive Controller

The slow-timescale exponentially stable adaptive controller to be developed in this

section is the extension of the results of [64] by considering the force tracking.

Define a stable and proper filter w(t) which has the following Laplace transform

w(s) =
α

s + α
(6.96)

where α is a positive constant.

Convoluting both sides of the link dynamic model (6.1) with w(t), we have

∫ t

0
w(t−s)(Ksθ +JT (ql)λ)ds =

∫ t

0
w(t−s)(M(ql)q̈l +C(ql, q̇l)q̇l +G(ql))ds (6.97)

It can be shown that

∫ t

0
w(t − s)(M(ql)q̈l + C(ql, q̇l)q̇l + G(ql))ds = W (ql, q̇l)p (6.98)

where

W (ql, q̇l) =
∫ t

0
w(t − s)Ψ(q̈l, q̇l, q̇l, ql)ds (6.99)

Denoting the left side of equation (6.97) as z(t) and considering equation (6.98),

equation (6.97) can be written in a compact form

z(t) = W (ql, q̇l)p (6.100)

and the estimates of p and z(t) are linked by

ẑ(t) = W (ql, q̇l)p̂ (6.101)

where p̂ and ẑ(t) are the estimates of p and z(t) respectively.

For the exponentially stable adaptive controller for the quasi-steady-state dynamic

system (6.91), we have the following theorem

Theorem 6.2.2 The quasi-steady-state dynamic system (6.91) is exponentially

stable given the following slow-time scale control and the parameter adaptation
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law:

τs = Ψ(q̈r, q̇r, q̇l, ql)p̂ + kcM̂(q)r (6.102)

˙̂p = Γ−1(ΨT
s r + γ1W

T (ql, q̇l)z̃) (6.103)

Γ̇ = −γ(t)Γ + 2γ2W
T (ql, q̇l)W (ql, q̇l) (6.104)

Ψs = Ψ(q̈r + kcr, q̇r, q̇l, ql) − β (6.105)

γ(t) = γ0(1 − ‖Γ−1‖/k0) (6.106)

where z̃ = z − ẑ, kc > 0 and γ1 > γ2 > 0 are control parameters. Γ > 0 is the

parameter adaptation gain matrix and γ(t) is the forgetting factor. The constants

γ0 > 0 and k0 > 0 are introduced to limit the magnitude of the parameter adaptation

gain and forgetting factor respectively.

Proof:

Consider a Lyapunov function candidate

V =
1

2
(rT M(ql)r + p̃T Γp̃) (6.107)

Differentiating V with respect to time t, we have

V̇ = rT M(ql)ṙ +
1

2
Ṁ(ql)r − p̃T Γ˙̂p +

1

2
p̃T Γ̇p̃ (6.108)

Note the fact that ˙̃p = − ˙̂p is used in the above derivation.

From Property 6.3, equation (6.108) is rewritten as

V̇ = rT M(ql)ṙ + C(ql, q̇l)r − p̃T Γ˙̂p +
1

2
p̃T Γ̇p̃ (6.109)

Substituting r = q̇r − q̇l into the above equation, we have

V̇ = rT (M(ql)q̈r + C(ql, q̇l)q̇r − M(ql)q̈l − C(ql, q̇l)q̇l) − p̃T Γ˙̂p +
1

2
p̃T Γ̇p̃

= rT (Ψ(q̈r, q̇r, q̇l, ql)p − M(ql)q̈l − C(ql, q̇l)q̇l − G(ql)) − p̃T Γ˙̃p +
1

2
p̃T Γ̇p̃ (6.110)

Note that Property 6.4 is used in the above derivation.

Substituting equation (6.91) into equation (6.110), it follows that

V̇ = rT (Ψ(q̈r, q̇r, q̇l, ql)p − τs − βp̃) − p̃T Γ˙̂p +
1

2
p̃T Γ̇p̃ (6.111)
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Substituting τs in equation (6.102) into equation (6.111), we have

V̇ = rT (Ψ(q̈r, q̇r, q̇l, ql)p̃ − kcM̂(ql)r − βp̃) − p̃T Γ˙̂p +
1

2
p̃T Γ̇p̃

= rT ((Ψ(q̈r, q̇r, q̇l, ql)p̃ + M̃(ql)kcr) − kcM(ql)r − βp̃) − p̃T Γ˙̂p +
1

2
p̃T Γ̇p̃(6.112)

Considering the definition of Ψs in equation (6.105), equation (6.112) is rewritten

as

V̇ = −kcr
T M(ql)r + rT Ψsp̃ − p̃T Γ˙̂p +

1

2
p̃T Γ̇p̃ (6.113)

Substituting ˙̂p in equation (6.103) into equation (6.113) and noting that z̃ =

W (ql, q̇l)p̃, we have

V̇ = −kcr
T M(ql)r + (γ2 − γ1)p̃

T W T (ql, q̇l)W (ql, q̇l) − 1

2
γ(t)p̃T Γp̃ (6.114)

As γ1 > γ2, it follows that

V̇ ≤ −kcr
T M(ql)r − 1

2
γ(t)p̃T Γp̃ ≤ −km(

1

2
rT M(ql)r +

1

2
p̃T Γp̃) = −kmV (6.115)

where km = min(2kc, η(t)) > 0.

As V̇ ≤ −kmV , V ≤ V (0)e−kmt. It means that r → 0 and p̃ → 0 exponentially.

From the definition of r, it can be concluded that e → 0 and ė → 0 exponentially.

Q. E. D

The parameter adaptation gain matrix Γ−1 is time varying and its behavior is

specified by equations (6.104) and (6.106) which were proposed in [101]. For its

boundedness, we have the following lemma.

Lemma 6.2.1 From equations (6.104) and (6.106), γ(t) ≥ 0 and Γ−1 ≤ k0I,

∀t > 0, where I is an identity matrix with a compatible dimension. If W (ql, q̇l) is

persistently exciting, then Γ−1 is uniformly upper and lower bounded.

The proof of Lemma 6.2.1 can be found in Appendix D.

Remark 6.2.5 Given the quasi-steady-state system (6.91) being exponentially sta-

ble as proven above, it is thus concluded that equations (6.94) and (6.95) are valid

for infinite time interval.
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Remark 6.2.6 The behavior of link position ql is clearly described by equation

(6.95), whereas that of the constraint force λ is included in z1 defined in equation

(6.81). To analyze the performance of the constraint force tracking, multiplying

both sides of equation (6.81) by LT (ql) and considering Property 6.1, we have

LT (ql)z1 = LT (ql)Ksem

From equation (6.2.6) and the fact that z1 is bounded and L(ql) is normally non-

singular, em is bounded. Now that z1 and em are all bounded and J(ql) is non-

singular in equation (6.94), it can be concluded that eλ is also bounded.

Remark 6.2.7 Link flexibility is not considered in the design of the above con-

trollers. The impact energy is reduced with the flexible links when the robot collides

with the constraint, but the position accuracy is reduced and the oscillation of the

robotic arm may be manifested [102]. It is well known that control of a flexible

link robot is tough if without some idealistic assumptions [103]. Though there are

some research results for the low degrees freedom flexible link robots based on lumped

masses method, the control of constrained flexible link robotic manipulators is still

an open problem partially due to the requirement of infinite-dimensional analysis in

the dynamic modeling [104]. The problem will become much tougher or intractable

if the flexibilities of the joints and the links of the robot are addressed at the same

time.

6.3 Simulation

The simulation example is the same as that schematically shown in Figure 3.1

in Chapter 3 except that the robot joints are flexible. For the completeness in

discussion, it is shown again in Figure 6.1. In this example, the end effector of a

flexible joint manipulator moves along a part of the constraint surface and exerts

a force on it at the same time. The length, inertia and the mass of each link of the

manipulator are li = 0.3m, Ii = 0.3kgm2 and mi = 0.1kg respectively (i = 1, 2).

The half of the link length is di = li
2

= 0.15m (i = 1, 2). The mass center of each

link is assumed to be in the middle of the link.
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In Figure 6.1, the world coordinates is denoted by oxy. The constraint surface is

described by

Φ(rd) = xd − yd + 0.25 = 0 (6.116)

It is planned that the end effector of the robot moves along the following trajectory

on the constraint surface

xd(t) = − 1

10
cos(2t)

yd(t) = 0.35 − 1

10
cos(2t)

while the magnitude of the constraint force is kept at λd = 2N .

Let the link position ql = [θ1 θ2]
T and its partitions are q1

l = θ1 and q2
l = θ2

respectively. The desired link positions qld = [θ1d θ2d]
T are obtained from xd(t) and

yd(t) such that

cos(θ2d(t)) =
x2

d(t) + y2
d(t) − d2

1 − d2
2

2d1d2

sin(θ2d(t)) = −
√

1 − cos2(θ2d(t))

cos(θ1d(t)) =
(d1 + d2 cos(θ2d(t))xd(t) + d2 sin(θ2d(t)yd(t)

x2
d(t) + y2

d(t)

sin(θ1d(t)) =
(d1 + d2 cos(θ2d(t)))yd(t) − d2 sin(θ2d(t)xd(t)

x2
d(t) + y2

d(t)

The Jacobians J(ql) and L(q1
l ) are derived as follows

J(ql) =

⎡
⎣ −d1 sin(θ1) − d2 sin(θ1 + θ2) −d2 sin(θ1 + θ2)

d1 cos(θ1) + d2 cos(θ1 + θ2) d2 cos(θ1 + θ2)

⎤
⎦ (6.117)

L(q1
l ) = [1 − 1 − d1(sin(θ1) + cos(θ1))

d2 sin(θ1 + θ2) cos(θ1 + θ2)
] (6.118)

The desired link velocity q̇ld is obtained through q̇ld = J(qld)[ẋd ẏd]
T .

Choosing the system parameter vector p as

p = [p1 p2 p3 p4 p5] (6.119)

where

p1 = I1 + m1l
2
1 + I2 + m2(d

2
1 + l22)
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p2 = m2d1l2

p3 = I2 + m2l
2
2

p4 = (m1l1 + m2d1)g

p5 = m2l2g

and g = 9.8m/s2 is the gravitational acceleration, the regressor matrix Ψ(ẋ, x, q̇l, ql)

for a given vector x = [x1 x2]
T is derived such that

Ψ(ẋ, x, q̇l, ql) =

⎡
⎣ Ψ11 Ψ12 Ψ13 Ψ14 Ψ15

Ψ21 Ψ22 Ψ23 Ψ24 Ψ25

⎤
⎦ (6.120)

where

Ψ11 = ẋ1

Ψ12 = 2 cos(θ2)ẋ1 + cos(θ2)ẋ2 − sin(θ2)(θ̇1 + θ̇2)x2 − sin(θ2)θ̇2x1

Ψ13 = ẋ2

Ψ14 = cos(θ1)

Ψ15 = cos(θ1 + θ2)

Ψ21 = 0

Ψ22 = cos(θ2)ẋ1 + sin(θ2)θ̇1x1

Ψ23 = ẋ2 + ẋ1

Ψ24 = 0

Ψ25 = cos(θ1 + θ2)

The parameter vector p and the regressor matrix Ψ used for the robust adaptive

controller in equation (6.58)(Theorem th:theoremFle) are expanded to one with

a higher dimension such that

p = [p1 p2 p3 p4 p5 p1 p2 p3 p4 p5]

and

Ψ(ẋ, x, q̇l, ql) =

⎡
⎣ Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 0 0 0 0 0

0 0 0 0 0 Ψ21 Ψ22 Ψ23 Ψ24 Ψ25

⎤
⎦
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where pi and Ψij are the same as those defined in equations (6.119) and (6.120)

respectively.

With the given physical parameters, it can be calculated that p1 = 0.6135, p2 =

0.0045, p3 = 0.30225, p4 = 0.441 and p5 = 0.147. For the simulation purpose, the

initial values of their estimates are set as p̂1(0) = 0.092, p̂2(0) = 0.0007, p̂3(0) =

0.045, p̂4(0) = 0.066 and p̂5(0) = 0.022. Assume that the robotic manipulator is

initially at rest with ql(0) = [2.85 − 1.77]T (rad), q̇l(0) = [0 0]T (rad/sec) and

λ(0) = 2.0N .

6.3.1 Simulation for Robust Adaptive Controller

Case 1: Robot with Strong Joint Flexibility

In this case, the joint stiffness are set as ks1 = ks2 = 10.0 Nm. The moments

of inertia of the motors are set as jm1 = jm2 = 0.5 Nms2. The estimates of

Jm and Ks are set to be K̂s = diag[8.0] ∈ R2×2 and Ĵm = diag[0.4] ∈ R2×2

respectively. The up bounds of the norms of K̃s and J̃m are selected as δK = 4

and δJ = 2 respectively. The control and the parameter adaptation gains are

chosen as Kσ = diag[1.0] ∈ R2×2, Ke = diag[3.5] ∈ R2×2, Kµ = diag[1.5] ∈ R2×2,

Γp = ΓK = diag[0.08] ∈ R2×2. The width of the boundary layer is chosen to be

∆ = 0.002.

The position and force tracking performances of the robot are plotted in Figures 6.2

and 6.3 respectively. The control torques are given in Figure 6.4. The performance

of parameter adaptations are plotted in Figure 6.5 and Figure 6.6. It can be seen

that under the proposed controller, the link positions of the robot converge to

their desired values and the force tracking error is bounded. The control torques

demonstrate a big fluctuation at the beginning of the simulation. It is gradually

reduced to a reasonable range after some time. The parameter estimations are also

stabilized and bounded. Due to the introduction of boundary layer, the torque and

force signals are quite smooth.

Case 2: Robot with Weak Joint Flexibility
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In this case, the joint stiffness are set to be bigger values: ks1 = ks2 = 50.0 Nm.

The other parameters of the controller remain the same as in the case when the

joint flexibility is strong. The simulation results are plotted from Figures 6.7 to

6.11. Though the position tracking is almost as good as that in the case when the

joint flexibility is strong, the responses of the constraint force and the control inputs

demonstrate bigger fluctuations. The magnitudes of the joint torques also increase.

Once Ks becomes very big(e.g Ks = diag[100.0] ∈ R2×2, it can be observed that

the responses of the control system become divergent.

6.3.2 Simulation for Singular Perturbation Based Controller

In this case, the joint stiffness and the moments of inertia of the motors are known.

Their values are selected as ks1 = ks2 = 300.0 Nm and jm1 = jm2 = 1.0 Nms2.

Note that the joint stiffness is very big. The control gains are chosen as Kp =

diag[80.0], Kv = diag[80.0] and kc = 1.50. For the parameter adaptations, we

choose γ0 = 1.0, γ1 = 7.0, γ2 = 2.0 and Γ(0) = diag[60.0]. The parameter α in the

filter w(s) is chosen as α = 5.0.

The position and force tracking performances of the robot are plotted in Figures

6.12 and 6.13 respectively. The control torques are given in Figure 6.14. The

parameter adaptations are plotted in Figure 6.15. It can be seen that under the

proposed controller, the link positions of the robot converge to their desired values

and the force tracking error is bounded. The control torque for each joint is in a

reasonable range. The parameter estimation are also stabilized and bounded after

some time.

The simulation is also done when the adaptive slow-time-scale controlτs is not in-

cluded in the motor control input τm. The responses of the link position, constraint

force and the control torques are plotted from Figures 6.16 to 6.18. It can be seen

that the link position cannot converge to its desired trajectory and the constraint

force shows bigger tracking errors.
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Figure 6.1: Simulation Example

6.4 Conclusion

A robust adaptive controller and a singular perturbation based controller are devel-

oped to achieve position/force controller for an uncertain constrained flexible joint

robots (FJRs). The robust adaptive controller is developed for the constrained

robot with arbitrary unknown joint stiffness. This makes it more general than many

commonly used controllers which require that the stiffness of the robot joint is suffi-

ciently large. A singular perturbation based controller was the extension of the one

for free robots. By properly defining the fast and the slow variables with the posi-

tion and force tracking errors, a boundary layer system and the quasi-steady-state

system were established which are exponentially stable. Both controllers mainly

relied on the robot’s position, velocity and constraint force feedback. The position

tracking and the boundedness of force errors were achieved. The simulation study

was conducted to verify the effectiveness of the proposed approaches.
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Figure 6.2: Position Tracking when Ks = diag[10.0] (Solid: Desired position,
Dashed: Actual Position)
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Figure 6.3: Force Tracking when Ks = diag[10.0] (Solid: Desired force, Dashed:
Actual force)
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Figure 6.4: Joint Torques when Ks = diag[10.0] (Solid: Joint 1 torque, Dashed:
Joint 2 torque)
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Figure 6.5: Parameter Estimations (p̂1, p̂2, p̂3, p̂4 and p̂5) when Ks = diag[10.0]
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Figure 6.6: Parameter Estimations (k̂−1
s1 and k̂−1

s2 ) when Ks = diag[10.0]
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Figure 6.7: Position Tracking when Ks = diag[50.0] (Solid: Desired position,
Dashed: Actual Position)
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Figure 6.8: Force Tracking when Ks = diag[50.0] (Solid: Desired force, Dashed:
Actual force)
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Figure 6.9: Joint Torques when Ks = diag[50.0] (Solid: Joint 1 torque, Dashed:
Joint 2 torque)
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Figure 6.10: Parameter Estimations (p̂1, p̂2, p̂3, p̂4 and p̂5)when Ks = diag[50.0]
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Figure 6.11: Parameter Estimations (k̂−1
s1 and k̂−1

s2 ) when Ks = diag[50.0]
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Figure 6.12: Position tracking (Solid: desired position, Dashed: actual position)
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Figure 6.13: Force tracking (Solid:λd, Dashed: λ)
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Figure 6.14: Joint torques (Solid: τm1, Dashed: τm2)
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Figure 6.15: Parameter estimates
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Figure 6.16: Position tracking with only motor feedback control (Solid: desired
position, Dashed: actual position)
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Figure 6.17: Force tracking with only motor feedback control (Solid:λd, Dashed: λ
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Figure 6.18: Joint torques with only motor feedback control (Solid: τm1, Dashed:
τm2
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Chapter 7

Conclusions and Future Research

7.1 Conclusions

Position/force control of constrained robotic manipulators are addressed in the the-

sis. The controllers are designed considering various issues which were overlooked

or were not fully addressed in the past. These include that the constraint is in

motion, that the dynamics of the constraint affects the constrained robot system

and that the robot joints are flexible with unknown stiffness, to name a few. The

unidirectional force control and position/force tracking within impedance control

framework are also studied. Various control approaches such as nonlinear feedback,

adaptive control, robust control, fuzzy and neural network control are used for the

controller design. The effectiveness of the control approaches are verified by the

simulation results.

In Chapter 2, the system dynamic model of a robotic manipulator constrained by a

moving object is established and its properties are studied. A model based adaptive

controller and a model free neural network controller for position/force control of

the robot are developed.

In Chapter 3, robust adaptive and neural network based impedance control schemes

are developed for robot’s position/force tracking as well as regulation of the general

impedance between the robot and the constraint. The parameters of the desired
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impedance are tuned together with other parameters of the robot system. The

robot position tracking and the boundedness of the force tracking are achieved

with the controllers developed.

Chapter 4 is dedicated to the explicit force control of a constrained robot consider-

ing the dynamics of the contact between the robot’s end effector and the constraint.

The dynamic behavior of the contact is modeled as that of a general chained multi-

ple mass-spring-damper (CMMSD) system. A model reference and a backstepping

adaptive output feedback controllers are developed respectively.

Chapter 5 focuses on the unidirectional force control for keeping the contact be-

tween the end effector of a robot and the constraint. Several fuzzy rules are ex-

tracted from human being’s experience in making a contact on an object with

fingers and the robot’s impedance model. The controller is developed by combin-

ing the fuzzy control and the impedance control.

Chapter 6 is on the position/force control for a constrained flexible joint robot. The

controller developed is more general than other existing control approaches as the

stiffness of the joint is treated unknown without restriction on its magnitude. The

controller is developed using Lyapunov cascade design approach first, and then the

singular perturbation approach for free flexible joint robot is extended to control a

constrained flexible joint robot with large joint stiffness.
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7.2 Future Research

There are still some investigations that can be done to extend the work in the

thesis. For example,

1. The dynamic modeling of the collision between the end effector of the robot

and the constraint should be investigated for position/force control for a con-

strained robot.

Most controllers developed in the thesis did not take the collision between the

robot’s end effector and the constraint into consideration. The unidirectional

force controller developed in Chapter 5 is aimed to avoid such a collision

to happen. Though there are many models available for analyzing collision

behaviors in the area of multi-body mechanics, they are too complicated to be

suitable for controller synthesis. Further investigations can be made on using

or modifying those available collision models for the purpose of position/force

control design.

2. Integration of unidirectional force control with constrained robot control ap-

proaches.

The fuzzy unidirectional force control proposed in Chapter 5 is aimed at

keeping the contact between the end effector of the robot and the constraint.

It is developed within the framework of impedance control. Further studies

should be done in integrating it with constrained motion controllers where

the maintenance of the contact of the robot’s end effector on the constraint

is important.

3. Unified position/force control for constrained robots with arbitrary joint stiff-

ness.

Singular perturbation based position/force controllers are only applicable for

the robots with sufficiently large stiffness. The controller developed in Chap-

ter 6 does away with the assumption of large joint stiffness, but the responses

of position and constraint force are still sensitive to the change of joint stiff-

ness. Further researches should be done to unify various control approaches
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so that the consistent performance of the controlled system can be kept re-

gardless of joint stiffness. The effects of the force signals on the stability of

the overall controlled system should be investigated further.

4. Position/force control for constrained robots with flexible links.

The robots with flexible links is normally lighter than those built with rigid

heavy links. They can also accommodate the impact with the constraint

more easily than rigid link robots. There are many open problems about the

control of a constrained flexile link robot including the dynamic modeling,

system stability, position and force tracking accuracy etc. Considering the

range and depth of the issues concerned, it should be more appropriate to

address them in a separate thesis.

5. Implementation of the proposed controllers.

An obstacle for the implementation of the proposed controllers are intensive

computations involved in the control design. To cope with this problem, the

control algorithms should be made more computationally efficient together

with the design of the hardware of the control system.
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Appendix A

Proof of Property 2.1

Solving for vco from equation (2.9) yields

vco = R−1
A (vc − Avo) = RT

A(vc − Avo) (A.1)

From the kinematics of the robots, we have

vc = J1(q1)q̇1 (A.2)

vo = J2(q2)q̇2 (A.3)

Substituting equations (A.2) – (A.3) into equation (A.1) and noting equation (2.18),

we have

vco = RT
AJ1(q1)L(q1)q̇1 (A.4)

As vco and nco are orthogonal to each other, we have

nT
covco = 0 (A.5)

From equations (A.1)—(A.4), we obtain

nT
c J1(q1)L(q1)q̇1 = 0 (A.6)

As q̇1 are independent variables, the following equation holds

LT (q1)J1T (q1)nc = 0 (A.7)
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Appendix B

Proof of Lemma 4.1.1

For applying Routh’s stability criterion, the coefficients of the polynomial: b3s
3 +

b2s
2 + b1s + b0 are arranged in the following pattern:

s3 b3 b1

s2 b2 b0

s1 m1

s0 n1

(B.1)

where

m1 =
b2b1 − b3b0

b2

(B.2)

n1 = b0 (B.3)

By definition, b3 > 0, b2 > 0 and n1 = b0 > 0. To exam the sign of m1 by

substituting b2, b1, b3 and b0 in the equation (B.2), we have

m1 =
k2ks

m2mc

((k0kskc + kck
2
0)(

1

bs

− 1) + R1(a, b)) (B.4)

=
k2ks

m2mc

(kck
2
0(1 − 1

bs

) + k0ks(k0
bc

b2
s

− kc) + R2(a, b)) (B.5)

where Ri(a, b) > 0 (i = 1, 2) is a positive polynomial depending on the way the

terms are grouped.

From equation (B.4), m1 > 0 if bs < 1. If bs > 1, m1 is still positive from equation

(B.5). From Ruth’s stability criterion, b3s
3 + b2s

2 + b1s + b0 is Hurwitz and thus

the model (4.6) is of minimum phase.
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Appendix C

CMMSD Systems – Modeling and

Control

C.1 Dynamic Modeling and Problem Formulation

A chained multiple mass spring damper (CMMSD) system with n mass units is

schematically shown in Figure C.1, where mi is the mass, bi is the viscous coefficient

and qi is the displacement measured from the equilibrium position along the X axis

of the ith unit (i = 1, 2 . . . n). There are n−1 springs connecting all the mass units

with ki being the linear spring constant(i = 1, 2 . . . n−1). q1 is the only measurable

output of the system and u is the input force. According to Newton’s second law,

the system dynamic model is derived such that

m1q̈1 = −b1q̇1 + k1(q2 − q1) = −b1q̇1 − k1q1 + k1q2

m2q̈2 = −b2q̇2 − (k1 + k2)q2 + k1q1 + k2q3

miq̈i = −biq̇i − (ki−1 + ki)qi + ki−1qi−1 + kiqi+1

(i = 3, 4 . . . n − 1)

mnq̈n = −bnq̇n − kn−1qn + kn−1qn−1 + u

(C.1)

Define x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, . . ., x2i−1 = qi, x2i = q̇i, . . ., x2n−1 = qn,

x2n = q̇n, x = [x1 x2 . . . x2n]T ∈ R2n and cj is the jth column vector of identity

matrix I2n×2n.
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The original dynamic system (C.1) is transformed to the following state space

model

ẋ = Axx + bxu (C.2)

x1 = cT
1 x (C.3)

where

bx =m−1
n c2n

Ax =[AT
1 AT

2 AT
2i−1 AT

2i . . . A
T
2n−1 AT

2n]T

A1 =cT
2

A2 =−m−1
1 (k1c

T
1 + b1c

T
2 − k1c

T
3 )

A2i−1 =cT
2i

A2i =m−1
i (ki−1c

T
2i−3 − (ki−1 + ki)c

T
2i−1 − bic

T
2i) + m−1

i kic
T
2i+1 (i = 2, 3 . . . n − 1)

A2n−1 =cT
2n

A2n =m−1
n (kn−1c

T
2n−3 − kn−1c

T
2n−1 − bnc

T
2n)

Through Laplace transformation on state space model (C.2)–(C.3), we have

X1(s) = H2n(s)U(s) (C.4)

where X1(s) and U(s) are the Laplace transformation of x1 and u respectively, H2n

is the transfer function defined as

H2n(s) = cT
1 (sI − Ax)−1bx =

d2n

s2n + Σ2n−1
j=0 a2n,jsj

(C.5)

where

d2i =m−1
i d2i−2

a2i,j =a2i−2,j−2 + m−1
i bi(a2i−2,j−1 + σ(j − 2i + 1)) + m−1

i ki−1(a2i−2,j + σ(j − 2i + 2))

−d−1
2i−4d2i−2m

−1
i ki−1(a2i−4,j + σ(j − 2i + 4))

d2l =m−1
l kld2l−2

a2l,j = a2l−2,j−2 + m−1
l bl(a2l−2,j−1 + σ(j − 2l + 1)) + m−1

l (kl−1 + kl)(a2l−2,j + σ(j − 2l + 2))

−d−1
2l−4d2l−2m

−1
l kl−1(a2l−4,j + σ(j − 2l + 4))
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(l = 2, 3, . . . i − 1, j = 0, 1 2, . . . l − 1)

d2 =
k1

m1

, a2,0 =
k1

m1

, a2,1 =
b1

m1

Expressing the state space equations in observer canonical form for system (C.4),

we have

ẏ = Ay + B(y1, u)T θ (C.6)

y1 = x1 = cT
1 y (C.7)

where

ẏ1 = y2 − a2n,2n−1y1 (C.8)
...

...

ẏi = yi+1 − a2n,2n−iy1 (C.9)
...

...

ẏ2n = d2nu (C.10)

A =

⎡
⎢⎢⎢⎢⎣

0
... I2n−1

0 . . . 0

⎤
⎥⎥⎥⎥⎦

BT = [c2nu − I2n×2ny1]

θ = [d2n a2n,2n−1 a2n,2n−2 . . . a2n,1 a2n,0]
T

Note that the structure of the dynamic model (C.6) is the same as that presented

in [48], thus the methods of controller design in [48] can be applied for the CMMSD

system.

Assuming that only the state of the first unit (y1 and ẏ1) of the CMMSD system is

measurable, the control input u should be derived to regulate the output y1 to zero.

This is a typical adaptive output feedback control problem and the backstepping

control procedure in [48] can be used to tackle it.
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C.2 Adaptive Output Feedback Control

As a preparation for the controller design, the following filters are designed,

ξ̇ = A0ξ + λy1 (C.11)

Ω̇T = A0Ω
T + B(y1, u)T (C.12)

where ξ ∈ R2n and ΩT ∈ R2n×(2n+1) are the outputs of the filters and λ =

[λ1 λ2 . . . λ2n]T ∈ R2n are parameters chosen to make

A0 = A − λcT
1 ∈ R2n×2n (C.13)

PA0 + AT
0 P = −I2n×2n < 0 (C.14)

given P ∈ R2n×2n and S ∈ R2n×2n are symmetric positive definite.

To reduce the order of the filter’s, ΩT is decomposed such that

ΩT = [v Ω2] (C.15)

where v = [v1 v2 . . . v2n]T ∈ R2n, Ω2 = [η1 η2 . . . η2n] ∈ R2n×2n, and ηj ∈ R2n

(j = 1, 2 . . . 2n).

With v and Ω2 defined, we have

v̇ = A0v + c2nu (C.16)

Ω̇2 = A0Ω2 − I2ny1 (C.17)

Due to the special structure of A0 and from equations (C.11) and (C.17), we have

η̇2n = A0η2n − c2ny1 (C.18)

ηj = A2n−j
0 η2n (C.19)

ξ = A2n
0 η2n (C.20)

Let the unknown state y be estimated by

ŷ = ξ + ΩT θ (C.21)
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Accordingly, the state estimation error ε = [ε1 ε2 . . . εn]T = y − ŷ follows

ε̇ = A0ε (C.22)

Based on equations (C.14) and (C.22), the derivative of Vε = εT Pε with respect to

time t is given by

V̇ε = −‖ε‖2 (C.23)

From equations (C.20),(C.21), (C.6) and (C.12), we have

ẏ1 =cT
2 A2n

0 η2n+wTθ +ε2 =cT
2 A2n

0 η2n+d2nv2+wT θ+ε2 (C.24)

v̇2 =v3 − λ2v1 (C.25)

v̇i =vi+1 − λiv1 (i = 3, 4 . . . 2n − 1) (C.26)

v̇2n =−λ2nv1 + u (C.27)

where

w=[v2 ηT
2nA

T
η −y1c

T
1 ]T (C.28)

w=[0 ηT
2nAT

η −y1c
T
1 ]T (C.29)

Aη =[(A2n−1
0 )T c2 . . . AT

0 c2 c2]
T (C.30)

Equations (C.24) to (C.27) represent a transformed dynamic system with the mea-

surable v and y being its states. For controller design with backstepping method,

the following variables are also needed,

z1 = y1 (C.31)

zi = vi − αi−1 i ≥ 2 (C.32)

z = [z1 z2 . . . z2n]T (C.33)

where αi is the so called stabilization function to be determined.

The backstepping design involves 2n steps. In each step, a stabilizing function: αi,

and a tuning function: τi, are generated. The control input u is derived in the last

step 2n.
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C.2 Adaptive Output Feedback Control

Step 1. From equations (C.24), (C.31) and (C.32), we have

ż1=d2nα1 + cT
2 A2n

0 η2n + wT θ + d2nz2 + ε2 (C.34)

Letting

α1 = d̂α1 (C.35)

and substituting it into equation (C.34), we have

ż1=α1 + cT
2 A2n

0 η2n + wT θ−d2n(d̃α1 − z2) + ε2 (C.36)

where d̂ is the estimate of 1/d2n.

Consider a Lyapunov function candidate

V1 =
1

2
z2
1 +

1

2
θ̃T Γ−1θ̃ +

d2n

2γ
d̃2 + Vε (C.37)

where Γ > 0, γ > 0 are the gain matrix and gain respectively, and Vε is defined in

equation (C.23). Note that d2n > 0 by definition.

The derivative of V1 with respect to time t along the solution of (C.36) is rendered

as

V̇1 ≤ −ζ1z
2
1 + cT

1 θ̂z1z2 + θ̃T (τ1 − Γ−1 ˙̂
θ) (C.38)

by choosing

α1 = −(ζ1 +
1

2
)z1 − cT

2 A2n
0 η2n − wT θ̂ (C.39)

˙̂
d = −γα1z1 (C.40)

τ1 = w − d̂α1z1 (C.41)

where ζ1 > 0 is a control parameter and θ̂ is the estimate of parameters θ.

Step 2. From equations (C.25), (C.32) and (C.35), we have

ż2 =α2 + z3 − γ2(w
T θ̃ + ε2) − d̂

∂α1

∂θ̂

˙̂
θ − β2 (C.42)

γ2 = d̂
∂α1

∂y1

(C.43)

β2 =λ2v1 + d̂
∂α1

∂η2n

(A0η2n − c2ny1) − γα2
1z1 + γ2(c

T
2 A2n

0 η2n + wT θ̂) (C.44)
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C.2 Adaptive Output Feedback Control

Consider the following Lyapunov function candidate

V2 = V1 +
1

2
z2
2 + Vε (C.45)

Differentiating V2 with respect to time t along the solutions of (C.36) and (C.42),

we have

V̇2 ≤ −ζ1z
2
1+z2z3+θ̃T (τ2−Γ−1 ˙̂

θ)+z2(α2+cT
1 θ̂z1−β2−d̂

∂α1

∂θ̂

˙̂
θ)−γ2z2ε2−‖ε‖2 (C.46)

where τ2 = τ1 − γ2wz2 .

If we select

α2 = −(ζ2 +
γ2

2

4
)z2 − cT

1 θ̂z1 + β2 + d̂
∂α1

∂θ̂
Γτ2 (C.47)

where ζ2 > 0, it follow that

V̇2 ≤ −ζ1z
2
1 − ζ2z

2
2 + z2z3 + θ̃T (τ2 − Γ−1 ˙̂

θ) + z2d̂
∂α1

∂θ̂
(Γτ2 − ˙̂

θ) (C.48)

Step i (3 ≤ i ≤ 2n − 1) Assuming that stabilizing functions α1, α2, . . . αi−1 and

tuning functions τ1, τ2, . . . τi−1 are derived in previous steps. Choose a Lyapunov

function candidate such that

Vi = Vi−1 +
1

2
z2

i + Vε (C.49)

Following the same procedure as in previous steps, the derivate of Vi with respective

to time t is rendered as

V̇i ≤ −Σi
j=1ζjz

2
j + zizi+1 + θ̃T (τi − Γ−1 ˙̂

θ) + Σi
j=2zj

∂αj−1

∂θ̂
(Γτi − ˙̂

θ)

by selecting

αi = −(ζi+
γ2

i

4
)zi−zi−1 + βi+

∂αi−1

∂θ̂
Γτi−Σi−1

j=2zj
∂αj−1

∂θ̂
Γγiw

where ζi > 0 and

γi =
∂αi−1

∂y1

τi =τi−1 − γiwzi

βi =Σi−1
j=1

∂αi−1

∂vj

(vj+1 − λjv1) + γi(w
T θ̂ + cT

2 A2n
0 η2n)

+λiv1 +
∂αi−1

∂η2n

(A0η2n − c2ny1) − ∂αi−1

∂d̂
γα1z1
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C.2 Adaptive Output Feedback Control

Step 2n. At step 2n, the control input is determined in the same way as that used

to determine αi in the previous steps such that

u = α2n = −ζ2nz2n − z2n−1 + β2n +
∂α2n−1

∂θ̂
Γτ2n − Σ2n−1

j=2 zj
∂αj−1

∂θ̂
Γγ2nw, ζ2n > 0(C.50)

With control input u in equation (C.50), parameter updating laws for d̂ and θ̂ in

equations (C.40) and (C.56) respectively, and αi and
˙̂
θ−Γτi in each step, the close

loop system with state vector [z1 z2 . . . z2n]T is derived such that

ż1 =−(ζ1 +
1

4
)z1 + cT

1 θ̂z2 + ε2 + (w − d̂α1c1)
T θ̃ − d2nα1(η2n, y1, θ̂)d̃ (C.51)

ż2 =−cT
1 θ̂z1 − (ζ2 +

γ2
2

4
)z2 + z3 + d̂

∂α1

∂θ̂
Σ2n

j=3Γγjwzj− γ2(w
T θ̃ + ε2) (C.52)

żi =−Σi−2
j=2

∂αj−1

∂θ̂
Γγiwzj − (1 +

∂αi−2

∂θ̂
Γγiw)zi−1− (ζi +

γ2
i

4
)zi + zi+1

+
∂αi−1

∂θ̂
Σ2n

j=i+1Γγjwzj− γi(w
T θ̃ + ε2) 3 ≤ i ≤ 2n − 1 (C.53)

ż2n =−Σ2n−2
j=2

∂αj−1

∂θ̂
Γγ2nwzj−(1 +

∂α2n−2

∂θ̂
Γγ2nw)z2n−1

−(ζ2n +
γ2

2n

4
)z2n−γ2n(wT θ̃ + ε2) (C.54)

Choosing a Lyapunov function candidate

V2n = V2n−1 +
1

2
z2
2n + Vε =

1

2
zT z +

1

2
θ̃T Γ−1θ̃ +

d2n

2γ
d̃2 + 2nVε (C.55)

and differentiating it with respective to time t along the solutions of (C.51) to

(C.54), we have

V̇2n ≤ −Σ2n
j=1ζjz

2
j + θ̃T (τ2n − Γ−1 ˙̂

θ) + Σ2n
j=2zj

∂αj−1

∂θ̂
(Γτ2n − ˙̂

θ)

where τ2n = τ1 −Σ2n
j=2rjwzj and γ1 = −1 is a new constant introduced to keep the

consistency in expression.

Letting
˙̂
θ = Γτ2n (C.56)

It follows that

V̇2n ≤ −Σ2n
j=1ζjz

2
j ≤ 0
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C.2 Adaptive Output Feedback Control

From equation (C.2), V2n is non-increasing, θ̃, d̃ and ε are all bounded. Based on

LaSalle-Yoshizawa theorem [48], z → 0 when t → ∞. Obviously y1 → 0 when t →
∞. Q.E.D

The above results can be summarized in the following theorem.

Theorem C.2.1 For the chained multiple mass-spring-damper system (C.6) and

the re-constructed dynamic model represented by equations (C.24) to (C.27), the

regulation of the position y1 is achieved (y1 → 0 when t → ∞) under the control

law (C.50) and the parameter adaptation laws (C.40) and (C.56).

Remark C.2.1 The above design procedure is mostly the same as that in [48],

though there are some differences in selection of control parameters.

Remark C.2.2 The CMMSD system considered is assumed to be free of external

disturbances. To keep the robustness of the controlled system under the external dis-

turbances, various robustification approaches can be used, such as dead-zone modi-

fication or δ-modification [78][79], though the resulting controllers tend to be more

complicated. As pointed out in [78] and [80], the adaptive controller developed with

backstepping methods shows much higher degree of robustness than that of conven-

tional adaptive controller even in the absence of robustification mechanisms.

1q1−iq
iqnq

u 1
k2−ik

1−ik
i

k1−n
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i
bn

b
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Figure C.1: General Chained Multiple Mass Spring System
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Appendix D

Proof of Lemma 6.2.1

The proof of the boundedness of Γ−1 follows that in [64] and is produced below for

the completeness of the presentation.

Substituting the forgetting factor in equation (6.106) into equation (6.104), we have

Γ̇ = −γ0Γ +
γ0

k0

‖Γ−1‖Γ + 2γ2W
T W (D.1)

Solving Γ(t) from equation (D.1), it leads to

Γ(t) = Γ(0)e−γ0t +
∫ t

0
e−γ0(t−s)(

γ0

k0

‖Γ−1‖Γ + 2γ2W
T W )ds (D.2)

Noting that ‖Γ−1‖Γ > I where I is an identity matrix with the same dimension of

that of Γ, we have
∫ t

0
e−γ0(t−s) γ0

k0

‖Γ−1‖Γds ≤ k−1
0 I

∫ t

0
e−γ0(t−s)γ0ds ≤ k−1

0 I(1 − e−γ0t) (D.3)

From equations (D.2) and (D.3), we have

Γ(t) ≥ (Γ(0) − k−1
0 I)e−γ0t + k−1

0 I + 2
∫ t

0
e−γ0(t−s)γ2W

T W )ds (D.4)

As Γ−1(0) ≤ k0I, thus Γ(t) > 0 and

Γ(t) ≥ k−1
0 I, for γ2 > 0 (D.5)

which is equivalent to Γ−1(t) ≤ k0I or Γ−1(t) is bounded. As Γ−1(t) ≤ k0I, it

follows that γ(t) ≥ 0 from equation (6.106).
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If W (ql, q̇l) is persistently exciting, that is, for a positive constants T and α1

∫ t+T

t
W T (ql, q̇l)W (ql, q̇l)ds ≥ α1I, ∀t ≥ 0 (D.6)

it can be proved that Γ−1 is uniformly lower bounded.

From equations (D.4) and (D.6), it follows that given t ≥ δ

Γ(t) ≥ (k−1
0 + 2γ2e

−γ0δα1I (D.7)

Γ−1(t) ≤ k0(1 + 2k0α1γ2e
−γ0δ)I (D.8)

From the definition of γ(t) in equation (6.106), we have

γ(t) ≥ (1 + 2k0α1γ2e
−γ0δ)−1(2γ0k0α1γ2e

−γ0δ) (D.9)

and thus γ(t) is lower bounded.

From equation (D.1), Γ(t) can be written as

Γ(t) = Γ(0)exp(−
∫ t

0
γ(s)ds) + 2γ2

∫ t

0
exp(−

∫ t

s
γ(v)dv)W T (s)W (s)ds (D.10)

From equations (D.9) and (D.10), we have

Γ(t) ≤ Γ(0) + 2γ2 ∈t
0 e−γ1(t−s)W T (s)W (s)ds (D.11)

As the second term of the right-hand side of equation (D.11) is the output M of

the stable filter

Ṁ + γ1M = W T W (D.12)

and W is bounded, M is bounded. From equations (D.8) and (D.12), Γ−1(t) is

upper and lower bounded uniformly.
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