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Summary

Soft computing is an emerging approach to computing which parallels the remark-

able ability of the human mind to reason and learn in an environment of uncertainty

and imprecision. (Lotfi A. Zadeh, 1992 [1])

There are a variety of real world problems such as Pattern Recognition, Image

processing, Voice recognition, Data mining etc. for which, normal computing tech-

niques are either inadequate or very tedious to apply. Soft computing techniques

have been developed to fill this gap and have gained increasing popularity in the

recent years. Leading examples of popular soft computing techniques are fuzzy

systems, rough sets, neural networks, genetic algorithms, simulated annealing etc.

In addition to solving such real world problems, soft computing techniques are also

gaining acceptance in areas such as Control Systems, IP routing systems etc. where

the regular computing techniques were considered to be the de-facto standard.

In this thesis, basic ideas regarding Fuzzy systems, Rough Sets and Genetic

algorithms are introduced, followed by the research work available in the literature.

Then, the author’s contribution on Pattern Classification based upon Rough set

techniques, fuzzy systems and genetic algorithms are described. First, a classifier

ix



Summary x

based on a combination of rough sets and NNR technique is proposed, which

performs better than NNR technique alone. This is followed by a fuzzy classifier

based on Pittsburgh approach genetic algorithm, in combination with the grade

of certainty (CF). The classifier performs better than a Pittsburgh approach fuzzy

classifier without Grade of certainty. It is also compared with a Michigan approach

fuzzy classifier which neither tunes the membership functions nor minimizes the

number of fuzzy rules. Finally, a new classifier based on fuzzy lower and upper

approximations and a boosting technique is proposed, which makes use of the

Plausibility factor (PF). Further, the Plausibility factor (PF) is compared with

the grade of certainty to prove its efficacy. The performance of the classifiers are

illustrated on well known test problems. In the final part, possible future directions

for further research is discussed.
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Chapter 1
Introduction

Soft computing, an innovative approach to construct computationally intelligent

systems, has recently gained popularity and wide spread use. It is being real-

ized that complex real world problems require intelligent systems that combine

knowledge, techniques and methodologies from various sources. These intelligent

systems are supposed to possess human-like expertise within a specific domain and

the ability to adapt and learn in changing environments. To achieve this complex

goal, a single computing paradigm or solution is not sufficient.

Soft computing is a wide ranging term encompassing such varied techniques

as fuzzy systems, rough sets, neural networks, genetic algorithms, simulated an-

nealing, DNA computing, Quantum computing, Membrane computing etc. While

some of these techniques are still in the nascent stage, the rest of them have found

wide spread use in the area of Pattern recognition, Classification, Image process-

ing, Voice recognition, Data mining etc. Each of these methodologies have their

own strength. The seamless integration of these methodologies to create intelligent

systems, forms the core of soft computing. This thesis concentrates on the area of

rough set techniques, fuzzy systems and genetic algorithms and their application

to pattern recognition and classification.

1
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The problem of finding models that describe or classify measurement data is

encountered in many situations. This task falls into the extensive category of

empirical modelling, which, broadly speaking, can be said to be the science of

constructing models that describe or classify measurements. Such models may

take on a wide variety of forms according to the model construction scheme used.

The choice of modelling scheme bears both to the nature of the pattern recognition

problem, as well as to the purpose of the modelling task. The purpose of developing

such models may be twofold: In some instances, the goal may be to gain insight

into the problem at hand by analyzing the constructed model, i.e., the structure

of the model is itself of interest. In other applications, the transparency and

explainability features of the model is of secondary importance, and the main

objective is to construct a classifier of some sort that classifies arbitrary objects

well. A knowledge-based approach for constructing empirical models based on

labelled data, is to inductively infer a set of general rules that produce the desired

class. This is an instance of an activity that is collectively referred to as knowledge

discovery in databases (KDD), or, sometimes, data mining. The term machine

learning is often used as a common label for many of the techniques involved in

learning from examples. Soft computing techniques have been extensively studied

for constructing such empirical models for pattern recognition and classification

problems.

The aim of this work is to analyze and develop advanced and reliable techniques

for pattern classification, based on techniques such as rough sets, fuzzy sets and

evolutionary computation.

In Chapter 2, a general overview of rough sets, fuzzy inference systems and

genetic algorithms are provided, along with a survey of the application of these

techniques for pattern recognition and classification in literature. In Chapter 3,

a rough set classifier and its integration with statistical methods is discussed. A
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genetic algorithm based heuristic fuzzy classifier is discussed in Chapter 4. Chapter

5 analyzes a new classification technique based on the integration of rough sets and

fuzzy sets, which is combined with a boosting enhanced genetic algorithm. Finally,

Chapter 6 provides possible directions for future research.



Chapter 2
General Overview of Rough sets, Fuzzy

systems and Genetic Algorithms

This chapter provides a brief introduction to the three techniques: Rough sets,

Fuzzy systems and Genetic Algorithms. The strength of each of these techniques

is highlighted and their potential area of application is discussed.

2.1 Rough Set

The notion of rough set was proposed by Pawlak [3, 4] in early ’80s. Rough set

theory was developed for classificatory analysis of data tables to discover relation-

ships in data. Though it appears similar to statistics in that it deals with data

relationships, it is entirely different: instead of employing probability to express

vagueness of data, it uses set theory for this purpose.

The idea of rough set consists of the approximation of a set by a pair of sets,

called the lower and the upper approximation of this set [3]. The rough set concept

overlaps with many other mathematical ideas developed to deal with imprecision

and vagueness, in particular with Fuzzy Set theory [5] and theory of evidence [6].

4



2.1 Rough Set 5

Interesting comparison of rough sets and fuzzy sets has been published by

Dubois and Prade [7], [8]. The authors propose that fuzzy and rough sets aim at

different purposes in modelling uncertainty, namely vagueness for fuzzy sets and

coarseness for rough sets, in order to get a more accurate account of imperfect infor-

mation. Further, lower and upper approximations of a fuzzy set are defined when

the universe of discourse is coarsened by means of an equivalence relation. The

equivalence relation is turned into a fuzzy similarity relation for a more expressive

modelling of coarseness and its properties are studied.

Discussion of the relationship between rough sets and the evidence theory can

be found in Grzymala-Busse [9] and Skowron [10], which are however, outside the

scope of this thesis.

2.1.1 Knowledge Representation System

In Rough set theory, knowledge is considered as the ability to classify objects and

indiscernibility relationship forms the basis of this classification. In this context,

data is represented as a Knowledge Representation System S which is a single

two-dimensional table. Formally,

S = (U,A) (2.1)

where U is a non-empty finite set of objects or Universe of Discourse and A is a

non-empty finite set of attributes.

Each attribute a ∈ A can be viewed as a function that maps elements of U into

a set Va. The set Va is called the value set of attribute a.

a : U → Va (2.2)
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Discernibility Matrix:

Skowron [11] represents knowledge in the form of a discernibility matrix which

enables easy computation of core, reducts and other rough set concepts. A dis-

cernibility matrix of a Knowledge Representation System S = (U,A) with U =

x1, x2, ..., xn denoted as M(S), is a nxn matrix defined as:

(cij) = a ∈ A : a(xi) 6= a(xj) for i, j = 1, 2, ..., n. (2.3)

Thus cij is the set of all attributes which discern objects xi and xj

In rough set terminology, a reduct of knowledge is defined as its essential part,

which suffices to define all basic concepts occurring in the considered knowledge,

whereas the core can be interpreted as the set of the most characteristic part of

the knowledge, which cannot be eliminated when reducing the knowledge. In other

words, core is the most important part of a reduct and is included in every reduct.

Thus, the core can now be defined as the set of all single element entries of the

discernibility matrix,

CORE(A) = a ∈ A : cij = (a) for some i, j. (2.4)

It can be easily seen that B ⊆ A is the reduct of A, if B is minimal subset of

A such that,

B ∩ c 6= ∅ for any nonempty entry c (c 6= ∅) in M(S). (2.5)

Conceptually, this means that a reduct is the minimal subset of attributes that

discerns all objects discernible by the whole set of attributes.

With every subset of attributes B ⊆ A, rough set theory associates a binary

relation IND(B) called an indiscernibility relation and defined as:

IND(B) = (x, y) ∈ U2 : for every a ∈ B, a(x) = a(y) (2.6)
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In other words, IND(B) is an equivalence relation and

IND(B) =
⋂

a∈B

IND(a) (2.7)

A discernibility matrix MA defines a binary relation RA ⊆ U2. The relation RA

is called an indiscernibility relation with respect to A, and expresses which pairs of

objects cannot be discerned between, with respect to A. In other words, IND(B)

is an equivalence relation and

xRAy ⇔ MA(x, y) = ∅ (2.8)

The indiscernibility set of an object x ∈ U is denoted RA(x) and consists of

those objects that stand in relation to object x by RA.

RA(x) = y ∈ U |xRAy (2.9)

If RA is an equivalence relation, then the indiscernibility sets are called equiv-

alence classes. Equivalence relations induce a partition of the universe, meaning

that all equivalence classes are disjoint and their union equals the full universe U.

Vice versa, a partition also induces an equivalence relation.

Lower and Upper Approximations:

The basic idea behind rough sets is to construct approximations of sets using the

binary relation RA. The indiscernibility sets RA(x) form basic building blocks from

which subsets X ⊆ U can be assembled. If X cannot be defined in a crisp manner

using attributes A, then X is considered as a Rough Set and is defined through

lower and upper approximations AX and AX, defined below:

AX = x ∈ U |RA(x) ⊆ X (2.10)

AX = x ∈ U |RA(x) ∩X 6= ∅ (2.11)
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The lower approximation consists of those objects that certainly belong to X

whereas the upper approximation consists of the objects that possibly belong to X.

In fact, the upper approximation includes the lower approximation. The boundary

region is defined as the difference between the upper and the lower approximation,

and consists of the objects that cannot be decisively assigned as being either a mem-

ber or non-member of X. The outside region is defined as the complement of the

upper approximation, and consists of the objects that are definite non-members. A

rough set is any subset X ⊆ U defined through its lower and upper approximations.

Rough Membership Functions:

The rough membership function [12] is a function µ2
X : U → [0, 1] that, when

applied to object x, quantifies the degree of relative overlap between the set X and

the indiscernibility set to which x belongs. The rough membership function can

be interpreted as a frequency-based estimate of Pr(x ∈ X|x,A), the conditional

probability that object x belongs to set X, given knowledge of the information

signature of x with respect to attributes A.

µ2
X(x) =

| RA(x) ∩X |
| RA(x) | (2.12)

2.1.2 Decision Systems

It often happens that each entry or object in an information system has some kind

of label associated with it. For instance, in a medical database, each object may

represent a patient that may have a known disease status or treatment outcome. It

is typically desirable to incorporate this label into the rough set analysis. An im-

portant subclass of information systems are therefore decision systems, also called

decision tables.
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A decision system is any information system S of the form below, where d /∈ A

is a distinguished attribute called the decision attribute. The elements of A are

called condition attributes.

S = (U,A ∪ d) (2.13)

Since a decision system is a special kind of Knowledge Representation System,

the mathematical machinery developed in Section 2.1.1 is applicable also to decision

systems. The decision systems can be utilized to arrive at reducts, which can serve

as rules, in a classifier.

2.1.3 Review of rough set techniques in the literature

Rough set theory is suitable for problems that can be formulated as classification

tasks, and has gained significant scientific interest as a framework for data mining

and KDD [13, 14]. One of the main processes involved in solving classification

tasks is the induction of decision rules.

Problems of inducing decision rules have been extensively investigated in many

fields, particularly in the machine learning domain [15, 16]. Rough set theory

(RST) can also be applied to different stages of rule development and data pro-

cessing. However, one aspect that distinguishes RST from typical machine learning

systems is that, the RST does not correct or aggregate the inconsistency in the

input data [17]. The lower and upper approximation are applied to describe the

inconsistency and consequently, certain and approximate rules are induced.

Procedures of derivation of decision rules from decision tables were presented

by Grzymala-Busse [18], Skowron [19], Slowinski and Stefanowski [20], Stefanowski

and Vanderpooten [21] and Ziarko [22]. More advanced rule induction methods

have been studied in Bazan (1998) for comparing the dynamic and non-dynamic

methods of induction rules from decision tables. Grzymala-Busse and Zou [23]
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and Stefanowski [24] carried out work in this area with the focus on the induction

rules from inconsistent decision tables. Lin [25], Lin and Yao [26] studied the rule

induction from very large databases combined with database technologies.

Learning from Examples using Rough Set (LERS) is a rule induction system

developed by Grzymala-Busse [18, 27]. There are two different approaches for rule

induction in this system, which are computing sufficient rule set using machine

learning approach and computing all rules by a knowledge acquisition approach.

In both approaches, the user has an additional choice between local and global

algorithms. Among these options, Learning from Examples Module, Version 2

(LEM2), which is a local algorithm using the machine learning approach, is most

widely used in practice. Stefanowski [28] proposed a modified LEM2 algorithm

to handle directly, continuous attributes and discretize them inside the learning

algorithm while creating elementary conditions. This algorithm extracts better

sets of decision rules than LEM2.

Bazan et al. [29] engaged in market data analysis with the aid of the Rough

Set Expert System (RSES) (Bazan and Szczuka [30]). The rule induction system

of this software is based on Boolean Reasoning and dynamic reducts [31]. Besides

all the basic operations of the RST, this software also provides the discretization

algorithms and template generation algorithms.

The Variable Precision Rough Set Model (VPRSM) was proposed by Ziarko

[22] as a derivative of the basic RST. This model broadened the deterministic

data dependencies, which is the foundation of basic RST, to non-deterministic

relationships. Ziarko et al. [22, 32] proposed a VPRSM model which has been

developed into a commercial software- DataLogic - was applied to extract trading

rules.

Rough classifier, developed by Lenarcik and Piasta [33] and Rough Data Models

introduced by Kowalcrzyk [34] are two approaches that avoid the use of reducts.
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Both approaches are focussed on finding a relatively simple partition of the at-

tribute space and then drawing some conclusions from the structure of this par-

tition. Two systems that are representative of these approaches are ProbRough

(Lenarcik and Piasta, [35]) and TRANCE (Kowalcrzyk, [34]).

ROSETTA system [13] is a comprehensive set of software components for

discernibility-based data analysis. It is a generic rough set based system capa-

ble of handling various rough set algorithms along a user friendly GUI. The source

code for this system is available in the public domain.

Exhaustive lists of known rough set based software systems are compiled by

Polkowski and Skowron [36] and by Komorowski et al. [37].

2.2 Fuzzy Inference Systems

Since their introduction in the late sixties, fuzzy sets have been adopted to map

real numbers to symbolic labels. Elements of a universe of discourse belong to a

fuzzy set for a certain event, according to the so called membership function that

defines it. The relationship between the fuzzy sets for a given universe of discourse,

is provided by a fuzzy if-then rule. These if-then rule statements are used to for-

mulate the conditional statements that comprise fuzzy logic. A single fuzzy if-then

rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (uni-

verses of discourse) X and Y, respectively. The if-part of the rule x is A is called

the antecedent or premise, while the then-part of the rule y is B is called the con-

sequent or conclusion. An example of such a rule might be
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If pressure is high, then volume is small

Note that high is represented as a number between 0 and 1, and so the an-

tecedent is an interpretation that returns a single number between 0 and 1. On

the other hand, small is represented as a fuzzy set, and so the consequent is an

assignment that assigns the entire fuzzy set B to the output variable y.

In general, the input to an if-then rule is the current value for the input variable

(in this case, pressure) and the output is an entire fuzzy set (in this case, small).

This set is usually defuzzified, assigning one value to the output. Interpreting an

if-then rule involves distinct parts: first evaluating the antecedent (which involves

fuzzifying the input and applying any necessary fuzzy operators) and second ap-

plying that result to the consequent (known as implication). This entire process

of formulating the mapping from a given input to an output using fuzzy logic is

termed as Fuzzy Inference.

Fuzzy inference systems have been successfully applied in fields such as auto-

matic control, data classification, decision analysis, expert systems, and computer

vision. Because of its multidisciplinary nature, fuzzy inference systems are asso-

ciated with a number of names, such as fuzzy-rule-based systems, fuzzy expert

systems, fuzzy modeling, fuzzy associative memory, fuzzy logic controllers, and

simply fuzzy systems.

In the case of Pattern classification problems, this fuzzy inference model is

slightly modified. For pattern classification, the output is a class instead of a fuzzy

set. It is of the form,

If near-vision is good and far-vision is poor, patient is myopic.



2.2 Fuzzy Inference Systems 13

In this case, the defuzzification process is ignored and the output class is de-

cided based on the fuzzified inputs and the fuzzy operators in the fuzzy inference

engine. Figure 2.1 shows the structure of a fuzzy rule based system, used in pat-

tern classification. The Knowledge base of the fuzzy rule based system comprises of

three components: definition of the scaling factors, definition of, the membership

functions of the fuzzy sets utilized in the rule base and a rule base constituted by

a collection of fuzzy rules.

Scaling

Functions

Fuzzy

Rules

Membership

Functions

Knowledge Base

Input

Scaling
Fuzzification

Inference

Engine

Output

Class

Figure 2.1: Fuzzy Rule Based System for Pattern Classification

2.2.1 Review of fuzzy techniques in the literature

Some of the approaches in fuzzy inferencing and rule generation are outlined here.

In the fuzzy classification rule described by Ishibuchi et al. [38], the partitioning

is uniform, i.e., the regions continue to be split until a sufficiently high certainty

of the rule, generated by each region, is achieved. Ishibuchi et al. extended this

work later [39] by using an idea of sequential partitioning of the feature space into

fuzzy subspaces until a predetermined stopping criterion is satisfied and studied

its application for solving various pattern classification problems.
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Wang and Mendel [40] developed a slightly different method for creating a fuzzy

rule base, made up of a combination of rules generated from numerical examples

and linguistic rules supplied by human experts. The input and output domain

spaces are divided into a number of linguistic subspaces. Human intervention is

sought to assign degrees to the rules and conflicts are resolved by selecting those

rules yielding the maximum of a computed measure corresponding to each linguistic

subspace.

Rovatti and Guerrieri [41] attempted to identify the correct rule structure of a

fuzzy system when the target input-output behavior is sampled at random points.

The assumption that a rule can either be included or excluded from the rule set is

relaxed, and degrees of membership are exploited to achieve good approximation

results. Defuzzification methodologies are then used to extract well-behaving crisp

rule sets. Symbolic minimization is carried out to obtain a compact structure that

captures the high-level characteristics of the target behavior. For other details, one

may refer to standard literature [42, 43, 44].

While the fuzzy inference system can classify inputs based on existing rule

base with easily comprehensible rules, it doesn’t have the ability to learn rules

from samples. The rules have to be either provided by an expert, or it has be to

generated by a separate learning system. Considerable research has been conducted

to incorporate learning capabilities to fuzzy systems. Two of the most successful

approaches have been, the hybridization attempts made in the framework of soft

computing, where different techniques such as neural and evolutionary, provide

fuzzy systems with learning capabilities. Neuro-fuzzy systems are one of the most

visible directions of that effort [45, 46, 47]. A different approach to hybridization

lead to genetic fuzzy systems [48, 49, 50, 51, 52].
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2.3 Genetic Algorithms

Genetic Algorithms (GA) are general purpose stochastic, global search algorithms

that use principles inspired by natural genetics to evolve solutions for problems.

They have been proven to provide robust search capabilities in complex spaces

[53, 54]. GAs have had a great measure of success in search and optimization

problems. The main reason for their success is their ability to adapt information

accumulated about an initially unknown search space, in order to bias subsequent

searches into useful subspaces. GAs differ substantially from more traditional

search and optimization methods. The five most significant differences are:

1. GAs search a population of points in parallel, not a single point.

2. GAs do not require derivative information or other auxiliary knowledge; only

the objective function and corresponding fitness levels influence the directions

of search.

3. GAs use probabilistic transition rules, not deterministic ones.

4. GAs work on an encoding of the parameter set rather than the parameter

set itself (except in where real-valued individuals are used).

5. GAs provides a number of potential solutions to a given problem and the

choice of final solution is left to the user. This makes GA a very power-

ful tool, for problems such as scheduling, to identify alternative solutions

simultaneously.

A GA begins with a randomly generated population of chromosomes and ad-

vances towards better chromosomes by applying genetic operators. The population

evolves into a better one, thereby narrowing the search space, in a form of natural

selection. There are many possible variations to the basic GA, which is outlined

as follows:
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1. Create an initial population;

2. Evaluate fitness of each chromosome in population;

3. Based on fitness, select chromosomes for reproduction;

4. Apply the genetic operations, crossover and mutation on selected chromo-

somes, to form new chromosomes;

5. Replace a part of the current population with newly generated chromosomes;

6. Terminate GA if stopping condition is satisfied, else return to step 2.

Though GAs are search algorithms and not learning systems, they have been

used to augment fuzzy systems with learning capabilities. Three of the major

approaches which have been successfully applied to fuzzy systems are, the Michigan

approach, the Pittsburgh approach and the Iterative Rule Learning approach.

2.3.1 Michigan Approach

In this approach, each chromosome is an individual rule and the entire population

represents the rule base. Figure 2.2 illustrates the organization of a fuzzy system

based on Michigan approach. This approach is very efficient and is not as com-

putationally intensive as the Pittsburgh approach. However, it does not directly

optimize the fuzzy rule base. Even if the selected fuzzy rules are good, this ap-

proach may not provide a good fuzzy classification system. Hence, to ensure the

evolution of a cohesive and accurate fuzzy classifier, a Credit Assignment System

for the individual fuzzy rules is needed. This approach is applied in [55, 56, 57, 58]

to generate fuzzy if-then rules, mainly in the domain of control and function ap-

proximation problems. Ishibuchi et al. [38, 59, 60, 61] proposed Michigan based

methods to design fuzzy systems in the domain of pattern classification.
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Figure 2.2: Genetic Fuzzy System based on Michigan Approach

2.3.2 Pittsburgh Approach

In this approach, each chromosome encodes a whole fuzzy rule base, including the

rules, definitions of the membership functions and optionally, any other parameter

of the fuzzy system. This approach is computationally intensive, time consum-

ing and is not as good as Michigan approach in selecting individual fuzzy rules.

However, it evolves the entire fuzzy rule base, which results is very good fuzzy clas-

sifiers. Figure 2.3 provides the organization of a fuzzy system based on Pittsburgh

approach. This approach has been applied by Hwang et al. [62], Thrift et al. [63],

Karr et al. [64], Hamaifar et al. [65] and Takagi el al. [66], Shi et al. [2].

2.3.3 Iterative Rule Learning Approach

An interesting discussion about the problems generated by the use of these ap-

proaches can be seen in [67]. In the recent literature, a new learning model based
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on GAs called Iterative Rule Learning approach is gaining popularity. In this ap-

proach, the GA provides a partial solution to the problem of learning and attempts

to reduce the search space for the possible solutions. This model has been used in

papers such as [68, 69, 70, 49, 71].

In order to obtain a set of rules which will be a true solution to the problem,

the GA is placed in an iterative scheme to the following [67]:

1. Use a GA to obtain a rule for the system

2. Incorporate the rule into the final set of rules

3. Penalize this rule by reducing its weight in the decision system

4. If the set of obtained rules is sufficient to represent the examples in the

training set, then it is returned as the solution set.

This approach obtains a rule in each step and the iteration process obtains the

complete set of rules.

2.3.4 Review of genetic fuzzy techniques in the literature

Much research has been conducted for integrating fuzzy systems with genetic al-

gorithms. A fuzzy model, containing a large number of IF-THEN rules, is liable

to encounter the risk of overfitting and, hence, poor generalization. The strong

searching capacity of GAs has been utilized in fuzzy-genetic hybridization to cir-

cumvent this problem by [72] a) determining membership functions with a fixed

number of fuzzy rules [64, 73]; b) finding fuzzy rules with known membership func-

tions [63]; and c) finding both membership functions and fuzzy rules simultaneously

[72, 65, 59].

Ishibuchi et al. [59] selected a small number of significant fuzzy IF-THEN rules

to construct a compact and efficient fuzzy classification system. GAs are used to
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solve this combinatorial optimization problem, with an objective function for simul-

taneously maximizing the number of correctly classified patterns and minimizing

the number of fuzzy rules.

Wang and Yen [72] have designed a hybrid algorithm that uses GAs for ex-

tracting important fuzzy rules from a given rulebase to construct a parsimonious

fuzzy model with a high generalization ability. The parameters of the model are

estimated using the Kalman filter.

Bonissone et al. [74] applied evolutionary techniques to tune a fuzzy decision

system. The fuzzy system automatically classifies the risk of an insurance appli-

cation, which in turn determines the premium to be paid by the applicant. The

evolutionary algorithm tunes decision thresholds and internal parameters of the

fuzzy decision system in order to optimizes the coverage and relative and absolute

accuracy of the decision process. Maintenance of automated decision systems is

critical, as the decision guidelines as well as the distribution of applicants and their

profiles changes over time.

In [75], Damousis et al. presented a fuzzy expert system that forecasts the wind

speed for power generation in wind farms. The TSK fuzzy model is optimized by a

GA that adapts the input fuzzy membership functions and the gain factors in the

rule conclusion. The training procedure minimizes the error between forecast and

actual wind speeds in the training set. The accuracy of the model was evaluated

with real wind data obtained from groups of wind stations located in two different

regions.
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Figure 2.3: Genetic Fuzzy System based on Pittsburgh Approach



Chapter 3
Handling of continuous attributes and

application of statistical methods in

Rough classifiers

3.1 Overview

This section provides a procedure for handling continuous attributes in rough clas-

sifiers. This approach makes use of the Rough Set Knowledge Representation

System, namely decision tables. While this section concentrates on continuous at-

tributes alone, the approach can apply for a mixture of discrete and continuous at-

tributes as well. It further shows how various statistical techniques are applied with

rough set theory, to handle imprecision and vagueness in data. While probabilistic

rough classifier techniques can be used where probability values are available, this

section further outlines methods for handling imprecision where probabilities are

unknown.

21
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3.2 Introduction

Decision Table as defined by Z.Pawlak [4] is a way for representing knowledge as

conditional attributes and decisions corresponding to them. A formal definition

for decision tables is provided by Z.Pawlak [4]. Let K = (U,A) be a knowledge

representation system and let C, D ⊂ A where C is the conditional attribute subset

and D is the decision attribute subset. The 4-tuple denoted by T=(U,A,C,D) is

called the decision table. Such decision table works well for representing discrete

attributes, but not suitable for continuous-valued attributes.

While many researchers [76, 77, 78] have developed Rough Classifiers based

on Z.Pawlak’s Rough Set theory [3, 4] the problem of classification exceeds the

basic concepts of rough set theory. Statistical techniques will further enhance

classification based on rough set theory. The decision tables help in identification of

imprecision or vagueness in the data. After identifying the imprecision, application

of statistical techniques will help in further classifying the imprecise data.

The procedure for representation of continuous data in decision tables is demon-

strated using Iris flower data. The iris flower data (SAS Institute, 1988) were

originally published by Fisher (1936) for examples in discriminant analysis and

cluster analysis. Four parameters, including sepal length, sepal width, petal length

and petal width, are measured in meters on fifty iris specimens from each of three

species, Iris setosa, Iris versicolor, and Iris virginica. The dataset is given in full,

in Kendall and Stuart (1983) [79].

3.3 Discretization Of Continuous Data

Each of the four attributes for the three flowers fall in a range, shown in Table 3.1.

To represent this continuous data in a decision table for forming decision rules,

it has to be discretized.
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Table 3.1: Attributes of Iris Flower

Flower Type Sepal Length Petal Length Sepal Width Petal Width

Setosa 0-0.416 0.125-1 0-0.153 0-0.208

Versicolor 0.165-0.749 0-0.584 0.337-0.694 0.376-0.667

Virginica 0.165-1 0.082-0.749 0.51-1 0.541-1

One way to discretize it, is to split the continuous data into ranges and assign

integers to the ranges. Granularity of the splitting can play an important role in

generating the classification rules.

Each attribute is a scale on which the individual flowers have ranges. Some of

these ranges are unique to each flower, while the other are shared. For example, the

sepal length range from 0 - 0.165 is unique to Setosa alone, while the range 0.166

- 0.416 is shared by all the flowers. Similarly, the range 0.417 - 0.749 is shared

by Versicolor and Virginica whereas, the range 0.750 - 1 is unique to Virginica.

Based on this technique of identifying the unique and shared ranges of attributes,

table 3.2 shows a possible way to split the continuous data into discrete values.

The above discretization, considers the entire region of an attribute and splits

it into smaller regions based on the limits of the individual flower species. This

technique has the advantage of clearly de-marking the regions having imprecise

data (i.e. data which cannot be clearly classified into one of the three species) and

regions having precise data. The entire dataset has been taken into consideration

for arriving at these ranges.
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Table 3.2: Discretization of Attributes

Sepal Length Petal Length Sepal Width Petal Width

0 - 0.165 : 1 0 - 0.082 : 1 0 - 0.153 : 1 0 - 0.208 : 1

0.166 - 0.416 : 2 0.083 - 0.125 : 2 0.154 - 0.337 : 2 0.209 - 0.376 : 2

0.417 - 0.749 : 3 0.126 - 0.584 : 3 0.338 - 0.51 : 3 0.377 - 0.541 : 3

0.750 - 1 : 4 0.585 - 0.749 : 4 0.52 - 0.694 : 4 0.542 - 0.677 : 4

0.750 - 1 : 5 0.695 - 1 : 5 0.668 - 1 : 5

3.4 Decision Table Formation

Once the ranges have been identified and the range numbers are assigned to them,

the decision tables can be built. For each record in the data set, replace individual

attribute values with the range numbers, of the range in which the values are

occurring. Assign a serial number for each record in the data set, so as to revert

back to the original values of the attributes at a later stage.

Now that a Decision Table as defined by Z.Pawlak[4] is available, basic rough

set concepts are applied to it. The species Setosa has unique attribute values (and

hence unique range numbers) for Sepal Width and Petal Width, which clearly

classifies it from the other species without any overlap.

Hence, only the other two species, Versicolor and Virginica are considered. The

duplicate records are removed so that, only the unique rules are available. It is

observed that, out of 100 records (for Versicolor and Virginica alone) available in

the original table, a set of 10 unique rules for Virginica and 16 unique rules for

Versicolor are formed. There is an overlap of 2 rules occurring in both Versicolor

and Virginica. These overlapping rules define the region where data is imprecise.

All other regions have clearly defined rules and hence clearly defined classifiability.

The imprecise region is considered separately. The granularity of the range can
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be made smaller to have finer classifiability. Each of the range numbers of the

four attributes in this region can be further subdivided into smaller ranges and the

whole procedure can be repeated in this region.

A few iterations like this give a tolerable error range boundary. More data at

this stage, will give a better idea about this technique. Statistical techniques are

applied to further classify the imprecise data at this stage.

3.5 Statistical Techniques

The formation of the decision table has facilitated the identification of the im-

precise region in the data. Statistical techniques provide one way to handle this

imprecision.

The basic statistical technique used is the Bayes decision theory. A classifier is

implemented which has a set of discriminant functions gi(x), i = 1, 2.., c where c

corresponds to the total number of classes. For the case of Iris flower c is equal to

3. The classifier assigns feature vector x to class ωi if gi(x) > gj(x) for all j 6= i.

The function is set as gi(x) = P (ωi|x). The a-posteriori probability P (ωi|x) is

calculated as,

P (ωi|x) =
P (x|ωi) ∗ P (ωi)

P (x)
(3.1)

where P (x|ωi) is the class conditional probability and P (ωi) is the a-priori

probability. P (x), calculated as
c∑

i=1
P (x|ωi) ∗ P (ωi), is the probability of the feature

vector and basically acts as the weight for making the probabilities add upto 1.

Readers may refer to [80] for a detailed analysis of the Bayes decision theory.

In the case of decision tables, the feature vector x corresponds to each row in

the decision table. The classifier is used to classify the imprecise data based on

the a-posteriori probabilities. However, we need to calculate the a-posteriori prob-

abilities first in order to use this classifier. We need the values of class conditional



3.6 Parametric Techniques 26

probability as well as the a-priori probability to calculate the a-posteriori probabil-

ities. Since the a-priori probability is simply the probability of observing a sample

from one particular class out of all possible classes, the a-priori probabilities can be

usually calculated without many problems. But the class conditional probabilities

which are the probabilities of observing a sample from one particular class, having

a particular feature, out of all possible classes, are not so easy to estimate, mainly

due to lack of samples to cater to all possible cases and also due to problems caused

by dimensionality of the feature vector which may be very large. One way to han-

dle this is to estimate the parameters of the underlying distribution. For example,

if P (x|ωi) is a multivariate Normal Density with mean µi and covariance Σi, then

the problem is to estimate µi, Σi. The statistical techniques used to estimate these

parameters are called Parametric Techniques. If the underlying density functions

are unknown, we can use Statistical Nonparametric methods for estimation of the

probability values.

3.6 Parametric Techniques

We can use various techniques like Maximum Likelihood, Bayesian Parameter Es-

timation (Maximum a-posteriori estimator) etc. to calculate the parameters of the

underlying probability density functions.

Maximum Likelihood views the parameters as quantities whose values are fixed

but unknown. The best estimate of their value is the one, which maximizes the

probability of obtaining the samples actually observed. A detailed analysis of the

Maximum Likelihood method and Bayesian Parametric Estimation methods are

given in [80]. If θ is the parameter vector (which consists of parameters µj, Σj for

a normal density case), then the p - component vector θ can be estimated from the
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set of p equations given by

∇θl =
n∑

k=1

∇θ ln p(xk|θ) = 0 (3.2)

However, care must be taken with regard to the θ calculated from the above

equations. It can represent a global maximum, a local maximum or even a mini-

mum. If all solutions are found, we can be sure that the value of θ obtained is the

global optimum.

While Maximum Likelihood considers the parameter vector θ to be fixed, Bayesian

Parametric estimation method treats θ as a random variable. The training data is

used to convert a distribution on this variable to a-posterior probability density.

Given set of samples D, feature vector x and class ωi where i = 1, 2, .., c, we

obtain the desired class conditional probability p(x|D) by integrating the joint

density function p(x, θ|D) over θ like this :

p(x|D) =
∫

p (x, θ|D) dθ (3.3)

By Bayesian rule, the equation can be rewritten as

p(x|D) =
∫

p (x|θ) p (θ|D) dθ (3.4)

The Bayesian technique is a Maximum a-posteriori estimator (MAP). MAP

estimators have a drawback. If we use an arbitrary nonlinear transformation of

the parameter space, say for dimensionality reduction, the density will change and

the MAP solution will no longer be appropriate.

These techniques perform well if we know the underlying probability distribu-

tion. However, there are many cases where the underlying distribution is unknown.

We need to use nonparametric statistical techniques to handle such cases.
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3.7 Nonparametric Techniques

Many cases exist where the underlying density function of the dataset is unknown.

All of the classical parametric densities are unimodal while many practical problems

involve multimodal densities. Nonparametric techniques can be used in such cases.

The nonparametric techniques fall under three streams:

• Nonparametric Estimation of density function p(x|ωi): Generalization of

multi dimensional histogram approach comes under this category.

• Direct non-parametric estimation of the a-posteriori probability P (ωi|x): Re-

lated to Nearest Neighbor rule which bypass probability estimation and di-

rectly get into decision functions.

• Transforming the feature space: Usually estimation in transformed space is

easier to handle. These are the discriminant analysis techniques.

In particular we will look at Nearest Neighbor rule, which can be used for direct

estimation of a-posteriori probabilities. A detailed treatment of all these techniques

can be found in [80].

The Nearest Neighbor technique is used to estimate a-posteriori probabilities

P (ωi|x) from a set of n labeled samples as follows. If a cell of volume V is placed

around x which captures k samples, ki of which are labeled ωi, then the joint

probability p(x, ωi) is given by,

pn(x, ωi) =
(ki/n)

V
(3.5)

Thus a reasonable estimate of P (ωi|x) from Bayes rule is given by,

Pn(ωi|x) =
pn(x, ωi)

c∑
i=1

pn(x, ωi)
(3.6)

So,

Pn(ωi|x) = ki/k (3.7)
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The a-posteriori probability is merely the fraction of samples within the cells

labeled as ωi. If the cell volume can become arbitrarily small and yet contain an

arbitrarily large number of samples, then the probabilities can be calculated with

virtual certainty and obtain optimum performance. This is the theoretical basis

behind Nearest Neighbor technique.

In practice, the Nearest Neighbor rule is applied as follows. Let Dn = {x1, . . . ,xn}
denote a set of n labeled samples and let x′ ∈ Dn be the sample nearest to x. Then,

according to Nearest Neighbor rule, x is assigned the same class as x′. It has been

proven that the error rate of Nearest Neighbor Rule is lower bounded by the Bayes

error rate, which is the optimal error rate. On the upper side it is bounded by

twice the Bayes error rate. However, it can also be shown that the convergence

can be arbitrarily slow and the error rate need not even decrease monotonically.

An extension of the Nearest Neighbor Rule is the k-Nearest Neighbor rule. This

rule classifies x by assigning it the same class as that one which is most frequently

represented among the k nearest samples. As k increases, the upper bounds of

error get progressively closer to the lower bound, which is the Bayes rate. As k

goes to infinity, the two bounds meet and the k-Nearest Neighbor rule becomes

optimal.

A large value of k provides a reliable estimate of the probability. On the other

hand, the k nearest neighbors should be as close to x as possible to provide the

closest approximation to P (ωi|x ). Hence we need to choose a compromise value for

k. In this case, the k-Nearest Neighbor Rule becomes optimal when n approaches

infinity.

The Nearest Neighbor classifier relies on the distance function to identify the

nearest neighbors. While Euclidean distance can be used as the distance mea-

sure, it does have some disadvantages. Scaling the coordinates of the attribute

space can change the distance relationships computed by Euclidean metric. Other
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transformations such as overall rotation would also not be well accommodated by

Euclidean distance. An example of this is given in [80] for handwriting classifica-

tion. The same reference proposes the construction of a tangent vector for each

transformation as a solution.

Other Nonparametric classifiers such as Probabilistic Neural Networks and

Fuzzy Classifiers are available as well. However they cannot be strictly classified

as statistical techniques. Interested readers may refer to [80] for more details on

these classifiers. Statistical techniques like Fisher’s Linear Discriminant functions

and Minimum Squared error methods can be used to reduce dimensionality of the

attribute space. However, rough set theory itself provides techniques for dimen-

sionality reduction by formation of reducts and hence these statistical techniques

have not been explored in this chapter. Since rough sets basically deal with labeled

samples, unsupervised statistical classification techniques like clustering are also

not explored in this paper.

So far, we have been concentrating on techniques for estimating the class con-

ditional and a-posteriori probabilities. However, in many practical situations we

need to consider the cost of decision making in addition to the probabilities. It

may be more costly to make one kind of classification error than the other. So we

need to build a classifier based on the minimization of the misclassification cost in

addition to the a-posteriori probabilities.

In our classifier, instead of having the discriminant function as gi(x) = P (ωi|x),

we modify it to include a cost component also. Let λij be the loss incurred in clas-

sifying the sample as ωi when the true state of nature is ωj. Then, the conditional

risk for making classification as ωi (denoted as αi) for the sample with feature

vector x is given by the equation,

R (αi|x) =
c∑

j=1

λijP (ωi|x) (3.8)
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Then gi(x) is given as,

gi(x) = −R (αi|x) (3.9)

This representation of gi(x) helps us in selecting the action αi for which the

overall risk is the minimum. The resulting minimum overall risk is called the Bayes

Risk (R*).

To minimize the probability of error, we can introduce the following costs (called

symmetric loss function) in the above equation,

λij = 0 for i = j (3.10)

λij = 1 for i 6= j

This assigns no loss for a correct decision and unit loss for all errors, thereby

making all errors equally costly. Then the risk is nothing but the average proba-

bility of error because the above equations lead to

R (αi|x) = 1− P (ωi|x) (3.11)

A procedure for construction of a rule inductive classifier is given in Lin et al.

[81]. It makes use of the above mentioned loss functions for building a classifier.

Lin et al. [81] also makes use of kernel based and frequency based estimators for

approximating the probabilistic structure of the data.

3.8 Illustrative Example and discussion

As an example we have combined the Nearest Neighbor Technique (NNR) with

the presented Rough Set discretization technique and applied it on a thyroid gland

classification dataset. The thyroid dataset provided by Garavan Institute, Sydney,

Australia was obtained from the UCI Repository of Machine Learning Databases



3.8 Illustrative Example and discussion 32

and Domain Theories. The dataset consists of 3 classes, 215 instances, 5 attributes

without any missing values.

The 3 classes were split equally into training and test sets. The discretization

technique specified in Section 3.3 is applied on the training set and a decision table

is formed with the unique rules derived from the training set.

The test set is also discretized. The discretized test records are classified using

the decision table. The test set is found to contain 19 records for normal (class1),

8 records for hyper thyroid (class2), 6 records for hypo thyroid (class 3), which are

unique and available only in the test set.

Since these unique records are nothing but new classification rules which did

not occur in the training set, the decision table cannot be used for classifying them.

So, the Nearest Neighbor (NNR) method is used for classifying these records. The

results which give the number of records classified, misclassified, unclassified are

as follows:

Table 3.3: Normal(Class1), 75 Training set,75 Test set

Rough set NNR Rough set + NNR

Classified 49 73 74

Misclassified 0 2 1

Unclassified 26 0 0

Average Time in millisec 160 1200 520

As can be seen from the results, there is a slight improvement for class1, when

this method is employed. However, the biggest benefit is the speed of classification.

Using rough sets, the classification is just a table lookup procedure. And NNR is

used only for unclassified cases. Using NNR alone is much slower as the distance has

to be calculated for each test record and the nearest neighbor has to be identified.
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Table 3.4: Hyper (Class2), 17 Training set, 18 Test set

Rough set NNR Rough set + NNR

Classified 7 16 16

Misclassified 1 2 2

Unclassified 10 0 0

Average Time in millisec 40 340 250

Table 3.5: Hypo (Class3), 15 Training set, 15 Test set

Rough set NNR Rough set + NNR

Classified 4 11 11

Misclassified 3 4 4

Unclassified 8 0 0

Average Time in millisec 40 330 250
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The rough + NNR classifier can be made into a learning classifier which will further

speed up the classification as well as the accuracy. In the learning classifier, any

new rule encountered will be added to the decision table. This can classify similar

future records and NNR need not be employed for these similar records.

The proposed classifier performs well with a good time response, on datasets

which have a good representation of samples. However, if the dataset consists of

a large number of unknown samples whose attribute ranges were not represented

in the dataset, then the classifier is forced to rely on the NNR technique rather

than the rough set technique for classification, resulting in degradation of time

performance.

3.9 Summary

The presented classifier combines features of Knowledge Representation System

based on rough set theory with statistical approximation of dataset’s probabilis-

tic structure. While the procedure has been proposed for handling continuous

attributes, it can work equally well with a mixture of continuous and discrete at-

tributes. Various statistical techniques are outlined for the estimation of the prob-

abilistic structure when the underlying probability density functions are known as

well as when they are unknown. A statistical classifier using discriminant functions

is proposed, which further builds on the outcome of the rough classifier.

A statistical technique for incorporating costs in decision making is also out-

lined. A particular form of the classifier uses symmetric loss functions for mini-

mizing the error probability.

Finally an illustrative example is shown, which combines the rough classifier

with the Nearest Neighbor Method to speed up the classification process.



Chapter 4
Genetic Algorithm Based Heuristic Fuzzy

Pattern Classifier

4.1 Overview

A fuzzy classification technique for multidimensional pattern classification prob-

lems with continuous and discrete attributes is discussed in this section. The

proposed method combines the best characteristics of the Pittsburgh based tech-

nique by Shi et al. [2] and the Michigan based technique by Ishibuchi et al.[60].

The proposed approach has three main objectives: to minimize the number of

misclassifications, to minimize the number of fuzzy if-then rules required for clas-

sification and to remove unnecessary attributes from the fuzzy if-then rules. The

objectives are accomplished by evolving the membership function shapes of the an-

tecedent attributes and the fuzzy rule set including the number of rules involved,

using a genetic algorithm(GA). The performance of this algorithm is illustrated on

three well known real world test problems. The results are compared with previ-

ously documented results. Directions for further improvement of this approach are

discussed.

35
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4.2 Introduction

4.2.1 Fuzzy Pattern Classification: Background

Lately, a large number of commercial and industrial fuzzy systems have been suc-

cessfully developed. Fuzzy systems are being employed in wide ranging areas from

consumer electronic products, automotive and subway systems to cement kiln con-

trol and chemical injection control in water purification plants. The most successful

domain is the area of fuzzy control systems. In most existing applications, domain

experts generate the fuzzy rules.

With increase in the number of input variables, it becomes difficult for a do-

main expert to define a complete set of fuzzy rules for optimum performance. This

has greater significance in the area of fuzzy pattern classification, where high di-

mensionality of classification problems lead to an explosion of rules. While there

are other techniques such as Neural networks, statistical methods etc., for pattern

classification, the use of linguistic variables and the ease in interpretation of fuzzy

if-then rules make fuzzy classification systems an attractive alternative.

Hence, it is important to have automated techniques, for the generation of fuzzy

rules from numerical data, to construct Fuzzy Systems. There are many existing

techniques such as c-means clustering, fuzzy c-means clustering [40, 42, 82] etc.

These techniques however, result in rules which are independent of the member-

ship functions, due to which the resultant fuzzy system may not be an optimal

one, especially for complex systems with large number of input variables. One

way to improve the performance of fuzzy systems is to select suitable membership

functions and to fine tune them further.
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4.2.2 Fuzzy Pattern Classification: Existing Approaches

In the design of fuzzy pattern classifier, the number of classified patterns and the

number of fuzzy rules are two important performance indicators. Choice of fuzzy

partitions, membership functions, fuzzification and defuzzification methods etc.,

are all important parameters in deciding the performance of a fuzzy system. The

automatic generation of a fuzzy system from numerical data can be considered as

an optimization or search process.

Genetic algorithms (GA) are one of the best known global search techniques,

for exploring the operating space using available performance measures. GAs are

capable of finding near optimal solutions in complex search spaces. Given some

performance criteria, the solutions for a fuzzy pattern classification problem form

a hyper-surface in space. Due to infinitely large, non-differentiable, complex, noisy

and multimodal nature of this hyper-surface, GAs are especially well suited to

search this surface when compared with other conventional methods [2].

Recently many alternative approaches [83, 84, 85, 40] based on Genetic Algo-

rithms have been proposed for evolving fuzzy systems. Carse el al. [86] provides a

survey of genetic algorithm based techniques for generating fuzzy if-then rules and

tuning the membership functions.

Most of these approaches encode rules into chromosomes and utilize GA to

adjust the rules or membership functions. Hwang [62] and Thrift [63] use fixed

membership functions while encoding all rules in the chromosomes. The fuzzy

membership functions are tuned indirectly in [64], by adjusting the critical points

that represent the membership functions. Hamaifar [65] and Takagi el al. [66] tune

membership functions and simultaneously evolve rule sets. Triangular membership

functions are used and all possible rules are encoded in a chromosome. Though

membership functions and rule sets are evolved simultaneously, these methods

have some drawbacks. Since all possible rules are encoded, the computational
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efficiency as well as interpretability of the rules associated with fuzzy logic are

lost. It is difficult to apply these techniques for classification of patterns having

high dimensionality. As most applications do not require all possible rules, only a

portion of the rules need to be encoded and evolved.

In fact, it is highly difficult to know before-hand, as to how many rules are

required to describe a fuzzy system. It is better to encode the number of rules,

along with the rules and membership functions. Inoue et al. [87] and Shimojima

et al. [88] encoded the membership functions and the effectiveness information

of each rule. Fitness functions used in [88] encouraged minimizing the number of

rules.

Shi et al. [2] proposed a technique to evolve conventional fuzzy systems using

GA. The number of rules along with the membership functions and rule set are

encoded in a chromosome. A combination of linear (triangular, left-triangular

etc.) and nonlinear (Gaussian, Sigmoid etc.) functions are used as membership

functions. The parameters of the GA are determined dynamically using a fuzzy

system. GA is used to tune the membership functions and the rule set to minimize

misclassifications. The number of rules are also evolved to minimize the number

of fuzzy if-then rules.

The above mentioned methods for generating fuzzy if-then rules and tuning

membership functions can be categorized as Pittsburgh approach (Fig. 2.3). In

this approach, each chromosome encodes a rule base. The performance of the rule

base is used as the chromosome’s fitness value. Hence, the genetic search for finding

rule sets with high fitness value is equivalent to search for fuzzy systems with high

performance. GA optimizes the entire fuzzy system, rather than individual fuzzy if-

then rules. There is an alternative approach to generate fuzzy if-then rules through

GA: the Michigan approach.

In the Michigan approach (Fig. 2.2), each chromosome encodes a single rule and



4.2 Introduction 39

the rule set is represented by the entire population. The performance of each rule

decides its fitness value as opposed to that of the entire rule base as in Pittsburgh

approach. GA optimizes individual rules, rather than the entire fuzzy system.

The performance of a fuzzy classification system depends on the choice of fuzzy

partitions. For certain applications, fine partitioning is required for some parts

of the pattern space and coarse partitioning for others. To cope with this dif-

ficulty, Ishibuchi et al. [38] introduced the concept of distributed fuzzy if-then

rules. They encoded all the fuzzy if-then rules corresponding to several different

fuzzy partitions into a tri value string set {-1, 0, 1}, and applied GA to remove

the unnecessary rules. As every possible rule for each subspace is coded into a

chromosome, the length of the chromosome becomes very large for problems with

high dimensionality.

Ishibuchi et al.[60] utilized “don’t care” value for attributes, to simplify and

reduce the number of fuzzy if-then rules for high dimensional pattern classifica-

tion problems. Triangular membership functions are used with homogeneous fuzzy

partitioning and the fuzzy if-then rules are generated heuristically. The authors

proposed the use of a heuristic modifier to conventional fuzzy rules termed as

Certainty Factor. The Certainty Factor facilitates the generation of classification

boundaries without modifying the membership functions. The membership func-

tions are fixed a-priori and the GA is used to tune only the rule set.

4.2.3 Proposed Approach

In this work, a GA based fuzzy classification system is discussed. In the proposed

system, the membership function shapes and the fuzzy rule set, along with the

number of rules are evolved using the Pittsburgh approach based Genetic Algo-

rithm. While the proposed approach can evolve different membership function

types, only the Gaussian membership functions are used. The fuzzy system adopts
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some characteristics of the approach mentioned in [60] and utilizes “don’t care”

values for attributes to remove unwanted attributes. The proposed system makes

use of an encoding scheme similar to that proposed in Shi et al. [2] with some

modifications.

In Ishibuchi’s et al. [60] proposal, the Michigan approach based fuzzy system

neither tunes the membership functions nor minimizes the number of fuzzy if-

then rules. Shi’s et al. [2] proposal based on Pittsburgh approach, makes use of

conventional fuzzy if-then rules. Since conventional fuzzy rules are utilized without

Grade of certainty (CF) which provides better convergence due to the modification

of classification boundaries, the generation of fuzzy rules takes a longer time.

The current proposal based on Pittsburgh approach, combines the best features

of these two proposals by utilizing fuzzy rules with Grade of certainty, while tuning

the membership functions and minimizing the number of fuzzy if-then rules. The

effectiveness of the system in convergence speed and in producing a compact, easily

comprehensible rule set, is demonstrated with several well known real-world test

problems.

The rest of the chapter is organized as follows : In section 4.3, the structure

of the fuzzy system for pattern classification is described. In section 4.4, the fuzzy

system design by genetic algorithm is outlined. In section 4.5, the performance of

the proposed approach is illustrated with the test problems. In section 4.6, direc-

tions for further improvement of this approach are provided. Finally, section 4.7

concludes the Chapter.
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4.3 Fuzzy System Structure

4.3.1 Fuzzy if-then rules

The proposed approach makes use of fuzzy if-then rules of the form

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CF = CFj,

for j = 1, 2, . . . , c, (4.1)

where,

Rj Label of the jth fuzzy if-then rule

Aj1,. . . ,Ajn Antecedent fuzzy sets

Cj Consequent class

CFj Grade of certainty of rule Rj.

Gaussian membership functions are utilized in this work. The grade of certainty

CFj of a rule rule Rj, indicates as to how uniquely the rule classifies samples of

class Cj. The heuristic method proposed by Ishibuchi et al.[38] to determine the

class label Cj and the grade of certainty CFj from given training patterns, is used

in this work.

4.3.2 Fuzzy Reasoning

Consider K fuzzy if-then rules generated from the training patterns. An input

vector x = (x1, x2, . . . , xn) is classified by the single winner rule Rj′ that has the

maximum product of compatibility and certainty grade:

µj′(x) · CFj′ = max{µj(x) · CFj | j = 1, 2, . . . , K}, (4.2)
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where, µj(x) is the compatibility of the input vector x = (x1, x2, . . . , xn) with

the fuzzy if-then rule Rj, which is defined by the product operator as follows:

µj(x) = µj1(x1) · µj2(x2) · · ·µjn(xn), (4.3)

where, µji(xi) is the membership function of the antecedent fuzzy set Aji defined

for the i-th attribute ai. The rule Rj′ is specified by (4.2) as the single winner rule

for the outlined fuzzy reasoning procedure. The input vector x is classified as the

class label Cj′ of the single winner rule Rj′ specified by (4.2).

4.4 Fuzzy System Design By Genetic Algorithm

The basic idea of a GA is to maintain a population of chromosomes, which repre-

sents candidate solutions to the problem. The population evolves over time through

a process of competition and controlled variation. Each chromosome in the popu-

lation has an associated fitness. Based on the fitness values, new chromosomes are

generated using genetic operators such as crossover and mutation.

4.4.1 Coding of Fuzzy If-Then Rule

In the proposed approach, only the antecedent fuzzy sets are encoded in chromo-

somes. The number of fuzzy sets or linguistic variables for each attribute axis is

pre-specified. Each linguistic variable is associated with a Gaussian membership

function. Definition of the Gaussian membership function utilized in this chapter

is as follows.

fGaussian(x) = e−0.5y2

where y =
8(x− x1)

x2 − x1

− 4 (4.4)

The membership function is completely determined by two values: the start point

x1 and the end point x2. In order to have homogeneous chromosomes, integers are
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chosen to represent x1 and x2. Let [r1, r2] be the dynamic range of variable x and

let x consist of n fuzzy sets. If the fuzzy memberships functions are uniformly

distributed over the range with half-way overlap as shown in Fig. 4.1, then the

center point ci(i = 1, · · · , n) of the ith membership function is located at

ci = r1 + i ∗ step i = 1, · · · , n, where step =
r2 − r1

n + 1
(4.5)

The start point xi
1 of the ith membership function is constrained to vary only

between ci−1 and ci. The end point xi
2 is similarly constrained to vary only between

ci and ci+1. Let an integer s (s = 0, · · · , 10, indicating actual divisions on attribute axis)

be used to represent xi
1 and xi

2. Then xi
1 and xi

2 can be calculated as:

xi
1 = i ∗ step− step ∗ (10 + s)

2 ∗ 10
+ r1 (4.6)

xi
2 = i ∗ step +

step ∗ (10 + s)

2 ∗ 10
+ r1, i = 1, · · · , n. (4.7)

The number of fuzzy if-then rules needed to design a high performance fuzzy

system, cannot be known a-priori. Hence, the number of fuzzy rules is also encoded

as a constraint in the chromosome. Consider an example fuzzy system consisting

of four attributes. Each attribute is split into three fuzzy sets. The maximum

number of rules be set to twenty. A sample chromosome is then encoded as,

b1b2b3 · · · b104b105 (4.8)

The detailed encoding schema is outlined in Table 4.1.

4.4.2 Initial Population and Fitness Function

The population strength is decided in order to provide a sufficient genetic pool

base. Initial population is randomly generated, while ensuring that individual bits
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Figure 4.1: Uniformly distributed membership functions
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Table 4.1: Encoding of chromosomes

b1 Number of fuzzy rules ranging from 1

to 20

b2, b3 Start and End points of the first fuzzy

set, of the first attribute. Values can

range between 0 and 10
...

...

b24, b25 Start and End points of the third

fuzzy set, of the fourth attribute. Val-

ues can range between 0 and 10

b26 Linguistic variable for the first at-

tribute of the first fuzzy rule. Values

can range from 0 to 3. The absence of

this attribute or in other words, the

“don’t care” value of this attribute,

is represented by 0. The values 1 to

3, represent the linguistic variables of

the corresponding fuzzy sets, of this

attribute

b27, b28, b29 Remaining three attributes of the first

fuzzy rule
...

...

b102, b103, b104, b105 The linguistic variables for the four

attributes of the twentieth rule
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in the chromosomes are within the respective ranges (Table 4.1).

The cost of misclassification is assumed uniform across the classes. The fitness

function is determined by the performance of the fuzzy system. The performance

of the classification system is dependant on two important factors: the number of

misclassifications and the number of fuzzy if-then rules. Hence, the fitness function

is encoded as the sum of the number of misclassifications and the number of fuzzy

rules. The lower the fitness value, the better is the performance of the fuzzy

classification system.

4.4.3 Selection for reproduction

One of the commonly used techniques is the “Roulette Wheel” selection method.

In this technique, each chromosome is allocated a sector on a “Roulette Wheel”,

proportionate to its fitness value compared to other chromosomes. A chromosome

is selected by choosing a random number (considered as the pointer of “Roulette

Wheel”) across all sectors of the “Roulette Wheel”. The higher the fitness of a

chromosome, the bigger is the sector allocated to it and better is the probability

of the chromosome being selected.

The Stochastic Universal Sampling (SUS), which is a derivative of the roulette

wheel method, is employed for selection in this work. Instead of the single pointer

used in the roulette wheel method, SUS uses N equally spaced pointers, where N

is the number of selections required. Since multiple selections are completed in a

single attempt, SUS is a simpler algorithm with a lesser time complexity.

4.4.4 Genetic Operators

Crossover and Mutation are two important operators in GA which play a critical

role in the exploration of search space and the convergence of GA.
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Crossover Operator The crossover operator facilitates the exchange of “ge-

netic” material to form “child” chromosomes from selected “parent” chromosomes.

Uniform Crossover method is employed in this work. A crossover mask with the

same length as of the chromosomes, is created at random. The mask bits are bi-

nary valued. The mask bits indicate as to which parent contributes to the offspring

and with which bits. Table 4.2 illustrates Uniform Crossover. The first child C1 is

produced by taking a bit from P1 if the corresponding mask bit is 1, or from P2 if

the corresponding mask bit is 0. Child C2 is formed in a similar fashion, but by

using the inverse of the mask.

Table 4.2: Uniform Crossover

P1 = 0 2 4 6 8

P2 = 1 3 5 7 9

Mask = 0 0 1 1 0

C1 = 1 3 4 6 9

C2 = 0 2 5 7 8

Mutation Operator As illustrated in Table 4.1, the chromosomes use integer

encoding. Each bit in the chromosome has an integer range according to the

parameter it represents in the fuzzy system. For example, s1 which represents the

number of rules considered in the fuzzy system, has an integer range from 1 to 20.

If a bit is chosen for mutation as per the mutation rate which is fixed at 0.01, it

is incremented or decremented by 1 within its range. If the selected bit has the
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lower limit of its range as the value, it is incremented by 1. However, if it has the

upper limit of its range as the value, it is decremented by 1. For all others values,

the bit is mutated with an equal 50% chance to get incremented or decremented.

4.4.5 Re-insertion of chromosomes

Once a new population is generated, the fitness of the new population is evaluated.

In the commonly used elitist strategy, a percentage of the population comprising of

the fittest individuals, is allowed to propagate through the subsequent generations.

It is however noticed that some of the child chromosomes, despite having a lesser

fitness compared to the parent chromosomes, still replace fitter parents in the

elitist strategy. Hence a modification is proposed in the current approach where

the subsequent generations are formed from fittest individuals, selected from a

combined parent and child pool.

4.4.6 Termination of GA

The GA is terminated once the specified fitness value for the chromosomes is

reached, or the specified number of generations is completed.

4.5 Performance Evaluation And Discussion

Various data sets such as Iris data set, Wine data set etc. are commonly used for

performance evaluation in the literature. The performance of the proposed fuzzy

classification system is illustrated on the Iris, Wine and Glass data sets.

4.5.1 Performance Evaluation: Iris Data Set

The iris flower data set (SAS Institute, 1988) originally published by Fisher (1936)

for examples in discriminant analysis and cluster analysis, is available from the
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University of California, Irvine database by anonymous ftp [89]. The four attributes

associated with Iris flower: sepal length, sepal width, petal length and petal width,

are measured on Fifty iris specimens from each of three species, Iris setosa, Iris

versicolor, and Iris virginica. The attribute values are normalized in the range

[0,1]. The problem is to classify the specimens into three classes based on the four

attributes.

For the purpose of illustration, a crossover rate of 0.9 and a mutation rate of 0.1

are considered. The population size is fixed to 40 chromosomes. The GA is allowed

to run for a maximum of 50 generations. The number of newly created chromo-

somes in each generation is limited to 90% of the population. In each generation, a

new population is formed based on fitness value from a combined parent and child

pool. Fitness is considered as the sum of the number of misclassifications and the

number of fuzzy rules. The smaller the fitness value, the better is the performance

of the fuzzy classifier system.

To check the convergence speed rather than the generalization capability, all 150

patterns are used as training patterns. The experiment is conducted for 10 runs.

The number of generations taken to reach the specified number of misclassifications

within 50 generations is determined. The experiment is performed thrice, once

each with 3 fuzzy sets, 4 fuzzy sets and 5 fuzzy sets per attribute. The results

are provided in Tables 4.3 - 4.5. The right-most column of each table provides the

average number of generations and the average number of rules required, to reach

the number of misclassifications listed in the left-most column.
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Shi et al. [2] examined the performance of their system on the iris data set.

The results in Table 4.6 are reported in [2]. The entire fuzzy classification system

with 3 fuzzy sets per attribute is evolved along with the membership functions. A

fuzzy expert system is also used to adapt the crossover and mutation rates. The

system is evolved for a maximum of 1000 generations.

Table 4.6: Result reported by Shi et al. [2] for Iris Data Set

Misclassifications Average Generations

9 13.9

8 18.9

7 22.3

6 30.1

5 59.9

4 105.9

3 143.2

As per the results (Tables 4.3, 4.4 and 4.5), the proposed approach converges at

a faster rate compared to the method in [2], even with a single membership function

type (Gaussian) and without a fuzzy expert system to adapt the crossover and

mutation rates. In addition, the proposed method resulted in better performance

with one or two misclassifications while the best performance reported in [2] is

three misclassifications.

The results indicate that as the number of fuzzy sets per attribute increases, the

number of rules required is smaller. However, the number of iterations required for

GA to converge increases slightly. Though the number of fuzzy sets is increased,

the use of “don’t care” value for attributes reduced the complexity of the rules by

eliminating some of the attributes from the rules. The five rules for achieving a

single misclassification, in the case of five fuzzy sets ({tiny, small, medium, large,
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very large} and the “don’t care” value) per attribute are provided below. The at-

tributes with “don’t care” value have been removed from the rules:

1. If sepal length is tiny (Sigma = 0.030208, Mean = 0.1875), and petal length is

large (Sigma = 0.034375, Mean = 0.67083), and petal width is small (Sigma

= 0.038542, Mean = 0.3375), then classification is Setosa with CF = 1

2. If sepal length is medium (Sigma = 0.032292, Mean = 0.47917), and sepal

width is medium (Sigma = 0.032292, Mean = 0.52083), and petal width is

small (Sigma = 0.038542, Mean = 0.3375), then classification is Versicolor

with CF = 1

3. If sepal length is small (Sigma = 0.033333, Mean = 0.33333), and petal length

is tiny (Sigma = 0.030208, Mean = 0.1875), and sepal width is large (Sigma =

0.039583, Mean = 0.65833), and petal width is very large (Sigma = 0.023958,

Mean = 0.84583), then classification is Virginica with CF = 1

4. If sepal length is small (Sigma=0.033333, Mean=0.33333), and sepal width is

very large (Sigma=0.028125, Mean=0.8375), then classification is Virginica

with CF = 0.99932

5. If petal length is small (Sigma=0.029167, Mean=0.33333), and sepal width

is small (Sigma=0.034375, Mean=0.30417), and petal width is very large

(Sigma=0.023958, Mean=0.84583), then classification is Virginica with CF

= 1



4.5 Performance Evaluation And Discussion 55

4.5.2 Performance Evaluation: Wine Data Set

The Wine data set is obtained from the University Of California, Irvine database

[89]. It consists of 178 samples with 13 continuous attributes from 3 classes. Cor-

coran et al. [90] applied the wine data set to their GA evolved Machine learning

system, based on Pittsburgh approach. The test is repeated over ten trials. Each

trial is performed with 60 non-fuzzy if-then rules in each chromosome, 1500 chro-

mosomes in each population and 300 generations. All 178 samples are used as test

data and the following results are reported in [90]:

• Best classification rate: 100% with 60 rules in 300 generations / 1500

chromosomes in each population

• Average classification rate: 99.5% with 60 rules in 300 generations / 1500

chromosomes in each population

• Worst classification rate: 98.3% with 60 rules in 300 generations / 1500

chromosomes in each population

Ishibuchi et al. [60] applied the wine data set to their Michigan approach based

fuzzy classifier system. The data is normalized to the unit interval [0, 1]. Each

fuzzy if-then rule is encoded in a single chromosome. The trial is conducted for

1000 generations, with 60 chromosomes in each population. The following results

are reported in [60]:

• Best classification rate: 99.4% with 60 rules in 1000 generations / 60

chromosomes in each population
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• Average classification rate: 98.5% with 60 rules in 1000 generations / 60

chromosomes in each population

• Worst classification rate: 97.8% with 60 rules in 1000 generations / 60

chromosomes in each population

In an extension to their base work, Ishibuchi et al. [60] proposed a method to

learn the Grade of Certainty CF and they reported the following result:

• Average classification rate: 100% with 60 rules in 138 generations / 60

chromosomes in each population

The proposed fuzzy system is evaluated with the wine data set. The data is

normalized to the unit interval [0, 1]. A crossover rate of 0.9 and a mutation rate

of 0.1 are specified. The population size is fixed to 40 chromosomes. The GA is

allowed to run for a maximum of 100 generations. However, the GA is terminated

on reaching 100% classification rate. The number of newly created chromosomes

in each generation is limited to 90% of the population. In each generation, a new

population is formed based on fitness value from a combined parent and child pool.

Fitness is considered as the sum of the number of misclassifications and the number

of fuzzy rules. The smaller the fitness value, better is the performance of the fuzzy

classifier system.

To compare with the previously published results, all the 178 patterns are used

as training patterns. The experiment is conducted for 10 runs. The number of

generations needed to reach the specified number of misclassifications within 100

generations is determined. The experiment is performed thrice, once each with 3

fuzzy sets, 4 fuzzy sets and 5 fuzzy sets per attribute. The results are provided in
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Tables 4.7 - 4.9. The right-most column of each table provides the average number

of generations and the average number of rules required, to reach the number of

misclassifications listed in the left-most column.

The results with five fuzzy sets per attribute (Table 4.9) is considered for com-

parison with the published results. The results obtained are as follows:

• Best classification rate:

1. 100% with 4 rules in 50 generations / 40 chromosomes in each population

2. 100% with 3 rules in 77 generations / 40 chromosomes in each population

• Average classification rate: 99.7% with 6 rules in 55 generations / 40

chromosomes in each population

• Worst classification rate: 99.5% with 9 rules in 81 generations / 40 chro-

mosomes in each population

While the test conditions are not exactly the same as that of [90] and [60], it is

observed that the proposed system outperformed the approach in [90] and the base

Michigan method in [60]. While the average classification rate of 99.7% is slightly

inferior to the 100% average classification rate of the learning Grade of Certainty

method proposed by Ishibuchi et al. [60], the number of rules required as well as

the generations required are much lower than the Ishibuchi learning method.

While [90] and [60] retain the same number of fuzzy rules from the start of the

GA till its end (i.e 60 ), the proposed system started with a maximum of 10 fuzzy

if-then rules and reduced it to a minimum of 3 rules in the best performance case,

resulting in a very compact rule base. The 100% classification rate achieved with

only 3 fuzzy rules is superior to the 100% classification rate achieved with 5 rules,
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as reported by Ishibuchi et al. [91] using a multi-objective genetic algorithm. Four

of the ten runs conducted resulted in 100% classification rate, which indicates a

high convergence rate for the proposed system.

The use of “don’t care” value for attributes, simplifies the rules and makes the

rules more comprehensive by eliminating unnecessary attributes from the rule set.

This is especially effective for data sets with large number of attributes such as the

wine data set. The 3 rules obtained for best performance with the five fuzzy set

case ({tiny, small, medium, large, very large} and the “don’t care” value) are pro-

vided below. The attributes with the “don’t care” value are removed from the rules

1. If attrib1 is large (Sigma=0.022917, Mean=0.66667),

and attrib2 is medium (Sigma=0.030208, Mean=0.50417),

and attrib3 is medium (Sigma=0.032292, Mean=0.50417),

and attrib4 is tiny (Sigma=0.026042, Mean=0.17917),

and attrib6 is very large (Sigma=0.032292, Mean=0.8375),

and attrib7 is very large (Sigma=0.03125, Mean=0.875),

and attrib9 is medium (Sigma=0.040625, Mean=0.49583),

and attrib10 is small (Sigma=0.03125, Mean=0.31667),

and attrib12 is large (Sigma=0.030208, Mean=0.69583),

and attrib13 is very large (Sigma=0.032292, Mean=0.80417),

then classification is 1 with CF = 1

2. If attrib1 is tiny (Sigma=0.03125, Mean=0.16667),

and attrib2 is small (Sigma=0.0375, Mean=0.33333),

and attrib3 is tiny (Sigma=0.029167, Mean=0.15833),

and attrib5 is medium (Sigma=0.036458, Mean=0.50417),

and attrib7 is large (Sigma=0.036458, Mean=0.6625),
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and attrib10 is small (Sigma=0.03125, Mean=0.31667),

and attrib11 is very large (Sigma=0.036458, Mean=0.84583),

and attrib12 is very large (Sigma=0.033333, Mean=0.80833),

and attrib13 is tiny (Sigma=0.034375, Mean=0.17083),

then classification is 2 with CF = 1

3. If attrib1 is very large (Sigma=0.033333, Mean=0.8),

and attrib2 is tiny (Sigma=0.035417, Mean=0.14167),

and attrib4 is very large (Sigma=0.029167, Mean=0.80833),

and attrib5 is medium (Sigma=0.036458, Mean=0.50417),

and attrib6 is medium (Sigma=0.035417, Mean=0.525),

and attrib7 is tiny (Sigma=0.035417, Mean=0.15833),

and attrib8 is medium (Sigma=0.03125, Mean=0.45833),

and attrib10 is very large (Sigma=0.028125, Mean=0.8625),

and attrib12 is small (Sigma=0.025, Mean=0.35),

and attrib13 is tiny (Sigma=0.034375, Mean=0.17083),

then classification is 3 with CF = 1

It is observed from the average number of generations that as the number of

fuzzy sets increases, the convergence requires lesser number of generations. How-

ever, the lesser number of fuzzy sets reduces the complexity of the fuzzy system

with no appreciable increase in the number of misclassifications. Even with the

three fuzzy set case, the proposed system is able to achieve 100% classification in

three of the ten runs.
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4.5.3 Performance Evaluation: Glass Data Set

The Glass data set is available from University Of California, Irvine database. It

consists of 214 samples with 9 continuous attributes from 6 classes. In [92] Holte

analyzed the performance of the 1R algorithm and Quinlan’s C4 algorithm [93] on

sixteen data sets including the glass data set. Holte used a random sub-sampling

technique to evaluate performance of the algorithms on test data. Two thirds of

the given samples are used as training samples and the remaining one third are

used as test data. The data is randomly split and iterated 25 times. The following

results are reported in [92]

• Classification rate for test data by 1R: 53.8%

• Classification rate for test data by C4: 63.2%

Ishibuchi et al. [60] applied the glass data set with the same random sub-

sampling technique, to the Michigan approach based fuzzy classifier system. The

data is normalized to the unit interval [0, 1]. Each fuzzy if-then rule is encoded in

a single chromosome. The trial is conducted for 1000 generations with 100 chro-

mosomes in each population. Ishibuchi reported the following results:

• Classification rate for test data: 64.4% with 100 rules for 1000 generations

• Error rate for test data: 35.6% with 100 rules for 1000 generations

The proposed system is evaluated with the glass data set. The data is normal-

ized to the unit interval [0, 1]. A crossover rate of 0.9 and a mutation rate of 0.1



4.5 Performance Evaluation And Discussion 64

are specified. The population size is fixed to 40 chromosomes. The GA is allowed

to run for a maximum of 100 generations. The number of replaced chromosomes

in each rule is limited to 10% of the population. Each attribute is split into 3

fuzzy sets and can acquire a “don’t care” value during GA iterations. Fitness is

evaluated in the same way as it is done for Iris and wine data sets.

To compare with the previous published results, the same random sub-sampling

technique is used for splitting the samples into 2/3rd training data and 1/3rd test

data. The experiment is conducted for 10 trials. In each trial, the samples are

randomly split into training and test sets. The same training and test sets are

applied to the system for 5 runs, with each run consisting of 100 generations. This

is done to average the performance of the system for the pair of training and test

sets. The results are provided in Table 4.10.

Table 4.10: 3 fuzzy sets per attribute for Glass Data Set

Trial Classification rate Error rate Number of rules

1 64.8% 35.2% 12

2 64.8% 35.2% 14

3 64.8% 35.2% 15

4 73.2% 26.8% 15

5 73.2% 26.8% 13

6 69.0% 31.0% 12

7 64.8% 35.2% 13

8 67.6% 32.4% 12

9 64.8% 35.2% 12

10 73.2% 26.8% 13

Average 68% 34% 13
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By comparing these results with those obtained for 1R, C4 algorithms and the

Michigan approach, it is observed that the average performance of the proposed

fuzzy system is superior to the other systems. In three of the ten trials, the system

achieved a high performance of 73.2% classification rate which is better compared

with most of the other classification methods.

4.6 Further Improvements

The effect of training membership function types (rather than using only Gaussian

function) as well as utilizing a fuzzy system to adapt crossover and mutation rates

has to be explored.

Most of the techniques including the proposed classification system, keep the

number of fuzzy sets per attribute fixed throughout the GA run. The system can

be further improved to evolve the number of fuzzy sets per attribute, during the

GA run with an aim to obtain fewer fuzzy sets and lesser complexity of the fuzzy

if-then rule set.

The proposed system can be improved further by having a larger mutation

probability biased towards using “don’t care” value for attributes to reduce the

dimensionality of the system further.

Currently, the initial population of the GA system is randomly generated. The

proposed system has improved performance by assigning the consequent part of

the rule, based on effectiveness of the antecedent part in classification of a partic-

ular class. The performance of the system can be improved further by selecting

the initial population, based on compatibility with training patterns rather than

randomly generating it.
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4.7 Conclusion

In this chapter, a GA based fuzzy system is proposed, in which the membership

function shapes and the fuzzy rule set, along with the number of rules in the

rule set are evolved using a Pittsburgh approach based Genetic Algorithm. While

the system is capable of evolving different membership function types, only the

Gaussian membership functions are used for simplicity. The fuzzy system makes

use of “don’t care” values for attributes to remove unwanted attributes from the

fuzzy rule set.

By computer simulations on real world test problems, the performance of the

system is examined. The simulation results demonstrate that the proposed fuzzy

classifier outperformed many other classification methods. It is concluded that

the proposed classification system is useful for a wide range of classification prob-

lems. Future directions for improving performance of the proposed system is also

discussed.



Chapter 5
Boosting based Fuzzy-Rough Set Pattern

Classifier

5.1 Overview

This chapter analyzes an algorithm that automatically evolves low dimensional-

ity fuzzy rules and corresponding membership functions for pattern classification,

based on the rough set concepts of fuzzy lower and upper approximations. The

proposed method transforms each quantitative value into a fuzzy set of linguistic

terms using membership functions and then calculates the fuzzy lower and upper

approximations. The membership functions are derived from cluster points gen-

erated by subtractive clustering technique. A certain rule set based on the fuzzy

lower approximation and a possible rule set based on fuzzy upper approximation

are generated. A genetic algorithm based on iterative rule learning is employed

in combination with a boosting technique, for generating the possible rule set in-

crementally by optimizing one fuzzy classifier rule at a time. The proposed fuzzy

if-then rules include a plausibility factor. The effect of the plausibility factor on

the learning of rules is studied. The validity of the proposed technique is tested on

67
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some well known data sets from the UCI repository.

5.2 Introduction

Machine learning from examples has been a prime area of research in recent years.

In this approach, learning is based on similarities between positive examples rep-

resenting a similar concept and dissimilarities between positive and negative ex-

amples representing differing concepts. Knowledge, in the form of rules is induced

by learning from training examples. One of the main problems faced in this ap-

proach is the uncertainty in the data. There are two main reasons for uncertainty:

incomplete evidence or conflicting evidence [94].

Z.Pawlak introduced rough set theory in the early eighties, as a new tool to deal

with uncertainty [3, 95, 4]. One of the advantages of rough set theory is that it does

not need additional knowledge about data such as prior probability in probabilistic

approach. Rough set theory is especially well suited for handling inconsistencies

[17]. It deals with inconsistencies by computing lower and upper approximations

of the concept under consideration. Based on these approximations, certain and

possible rules are induced. Many applications and extensions of the rough set

theory have been proposed, such as reasoning with incomplete information [96],

knowledge-base reduction [97], extensions for data mining [98], probabilistic rule

discovery [99] and variable precision extension [100]. Most of these previous studies

focus on the handling of discrete or binary valued data. However, real world

applications often involve continuous, quantitative data which presents a challenge

in designing sophisticated learning systems capable of handling different types of

data.

One way to handle continuous data is by partitioning the data into crisp or

discrete intervals. This process of discretization determines how coarsely the data

is split into intervals. Various approaches have been proposed in the literature
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for discretizing data in the context of rough set theory [101, 102, 103]. The crisp

discretization is achieved by generating a set of ‘cuts’ of attributes within the

dynamic ranges of the corresponding attributes. The positions of cuts are very

sensitive to the subsets of the information system, which are used to generate the

cuts, as well as to the methodology adopted. The position sensitivity of cuts may

adversely affect the classification accuracy. Moreover, a very large number of if-

then rules have to be derived from the crisp intervals, to cover the whole attribute

space and to make the classification system generic. Fuzzy discretization offers

solutions for tackling difficulties associated with continuous attributes.

Fuzzy set concepts are often used to represent continuous quantitative data ex-

pressed in linguistic terms and membership functions because of its simplicity and

similarity to human reasoning [104]. Fuzzy inference systems have been successfully

applied in fields such as automatic control, data classification, decision analysis,

expert systems, manufacturing, and computer vision [105]. Being multidisciplinary

nature, fuzzy inference systems are associated with a number of names, such as

fuzzy-rule-based systems, fuzzy expert systems, fuzzy modelling, fuzzy associative

memory, fuzzy logic controllers, and simply fuzzy systems.

Fuzzy set theory and rough set theory are considered complementary in that

they both deal with models of uncertainty: vagueness for fuzzy sets and indis-

cernibility for rough sets [8]. Combining the two theories provides the concepts of

lower and upper approximations of fuzzy sets by similarity relations. This chapter

proposes to partition data by fuzzy-discretization through fuzzy membership func-

tions. The fuzzy lower and upper approximations are calculated for the training

data set and fuzzy if-then rules are derived from these approximations. The rest

of this chapter is organized as follows. In Section 5.3, the integration of rough sets

and fuzzy sets is briefly reviewed. Section 5.4 highlights approaches in the existing
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literature which are similar to the proposed technique, for solving pattern classi-

fication problems. Section 5.5 describes the proposed technique by which fuzzy

if-then rules are derived, based on the fuzzy lower and upper approximations. In

Section 5.6, the plausibility factor is compared with the Certainty Grade from the

literature. The proposed algorithm is tested on some well known data sets and the

results are discussed in Section 5.7. Conclusions are provided in Section 5.8.

5.3 Integration of rough and fuzzy sets

5.3.1 Rough Set Theory

A rough set is an approximation of a vague concept by a pair of precise concepts,

called lower and upper approximations [4]. Objects belonging to the same category

characterized by the same attributes are not distinguishable and are said to be in-

discernible. Let I = (U,A) be an information system, where U is the universe of dis-

course and A is a non-empty finite set of features such that a : U → Va, ∀a ∈ A, Va

being the value set of feature a. In many applications, the outcome of classification

is known and represented by a special attribute set termed ‘decision attribute’ set.

Such information systems are known as ‘decision systems’. Consider a decision

system, A = C ∪D where C is a set of conditional attributes and D is a set of

decision attributes. With any P ⊆ A there associated is an equivalence relation

IND(P ):

IND(P ) = (x, y) ∈ U2|∀a ∈ P, a(x) = a(y). (5.1)

If (x, y) ∈ IND(P ), then x and y are indiscernible by features from P . The

equivalence classes of the P -indiscernibility relation are denoted by [x]P . For any

X ⊆ U , X can be approximated using only the information contained in P by

constructing the P-lower and P-upper approximations of X, denoted by PX and
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PX respectively,

PX = x|[x]P ⊆ X (5.2)

PX = x|[x]P ∩X 6= φ (5.3)

If P and Q are equivalence relations over U , then the positive region POSP (Q)

is defined as,

POSP (Q) =
⋃

x∈U/Q

PX. (5.4)

For pattern classification purposes, the positive region contains all the objects

of U that can be classified into the classes of U/Q using the knowledge in attribute

set P .

5.3.2 Fuzzy sets and Equivalence classes

Fuzzy set theory was first proposed by Zadeh in 1963 [5]. A Fuzzy set F is charac-

terized by a membership function µF (x) which defines degrees of set membership,

usually over the range [0, 1]. The concept of equivalence classes that form the basis

for rough set theory, can be extended to fuzzy set theory to form fuzzy equivalence

classes [8].

The concept of crisp equivalence classes can be extended by the inclusion of a

fuzzy similarity relation S on the universe, which determines the extent by which

two elements are similar in S. Using the fuzzy similarity relation, the fuzzy equiv-

alence class [x]S for objects close to x can be defined as µ[x]S(y) = µS(x, y). This

definition degenerates to the normal definition of equivalence classes when S is

non-fuzzy. The family of normal fuzzy sets produced by a fuzzy partitioning of the

universe of discourse, can play the role of fuzzy equivalence classes [8]. The fuzzy

P-lower and P-upper approximations are defined as [8]:
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µPX(Fi) = inf
x

max{1− µFi
(x), µX(x)} ∀i,

µPX(Fi) = sup
x

min{µFi
(x), µX(x)} ∀i, (5.5)

where Fi denotes a fuzzy equivalence class belonging to U/P . The crisp pos-

itive region in traditional rough set theory is defined as the union of the lower

approximations. By the extension principle, the membership of an object x ∈ U ,

belonging to the fuzzy positive region is defined by Eqn. 5.6.

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x). (5.6)

Hong et al. [106, 107] provides another definition for the fuzzy lower and upper

approximations. For an arbitrary subset X of the universe U and an arbitrary

subset B of the attribute set A, the fuzzy lower approximation B∗(X) and fuzzy

upper approximation B∗(X) for B on X are defined by Eqn. 5.7.

B∗(X) = {(Bk(x), µBk
(x))|x ∈ U,Bk(x) ⊆ X, 1 ≤ k ≤ |B(x)|},

B∗(X) = {(Bk(x), µBk
(x))|x ∈ U,B(x) ∩X 6= ∅, 1 ≤ k ≤ |B(x)|}. (5.7)

where Bk(x) is the kth partition in the set of partitions U/B induced by the

fuzzy equivalence relation based on the attribute subset B. µBk
(x) is the minimum

of all the membership values attained by the instances in the kth partition and is

defined as the membership value of the kth partition.

Hong et al. [106, 107] also define a plausibility factor for each partition Bk(x),

given by Eqn. 5.8.

p(Bk(x)) =

∑
x∈(Bk(x)∩Xl)

µBk
(x)

∑
x∈Bk(x)

µBk
(x)

(5.8)
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where Xl refers to the set of all instances belonging to the class Cl. As seen from

Eqn. 5.8, all the instances in the fuzzy lower approximation B∗(X) are classified

with a plausibility of 1, while the instances in the fuzzy upper approximation

B∗(X) are classified only with a partial certainty given by the plausibility factor.

Fuzzy equivalence classes and fuzzy lower and upper approximations have been

successfully applied for classification purposes in the literature. Hong et al. [106,

107] successfully applied fuzzy-rough hybridization for data-mining and expert sys-

tems by generating maximally general fuzzy rules. Shen et al. [108] integrated a

fuzzy inference system with the ‘QuickReduct’ algorithm, for generating fuzzy rules

for pattern classification. Roy et al. [109] proposed a fuzzy discretization technique

for improving the performance of rough set theoretic classifier.

Most of these techniques make use of pre-defined fuzzy membership functions

in the classifier development system. The current work proposes an algorithm that

automatically evolves low dimensionality fuzzy rules and corresponding member-

ship functions for pattern classification, directly from the training data set based

on fuzzy lower and upper approximations.

5.3.3 Fuzzy System Design By Genetic Algorithm

Genetic Algorithms (GAs) are random search algorithms inspired by natural ge-

netics to evolve solutions to problems [53, 54]. The basic idea is to maintain a

population of chromosomes, which represents candidate solutions to the problem.

The population evolves over time through a process of competition and controlled

variation. Each chromosome in the population has an associated fitness. Based on

the fitness values, new chromosomes are generated using genetic operators such as

crossover and mutation. The outline of a basic GA is as follows:

1. Create an initial population;
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2. Evaluate fitness of each chromosome in population;

3. Based on fitness, select chromosomes for reproduction;

4. Apply genetic operations, crossover and mutation on selected chromosomes,

to form new chromosomes;

5. Replace a part of the current population with newly generated chromosomes;

and,

6. Terminate GA if stopping condition is satisfied, else return to step 2.

GAs have long been associated with fuzzy inference systems for generating

fuzzy rules and training membership functions [2, 59, 61]. Three different ap-

proaches have been proposed for applying GA to learning processes, the Michigan,

the Pittsburgh and the Iterative Rule Learning (IRL) approaches. In Michigan

approach, the chromosomes correspond to classifier rules which are evolved as a

whole, whereas in the Pittsburgh approach each chromosome encodes a complete

set of classifiers. In the IRL approach, each chromosome represents only one rule,

but contrary to the Michigan approach, only the best individual is considered as

solution while discarding the rest of the chromosomes or rules. Since a single rule

provides only a partial solution, the GA is placed in an iterative scheme for gener-

ating a set of rules. In the iterative scheme, either the selected rules are penalized

or the classified samples are penalized, by way of reduced weights, to ensure that

the search for new rules is focussed on the unclassified samples.

A major problem in the Michigan approach is related to resolving the conflict

between the interests of individual rules and the collective classifier. This prob-

lem does not arise in the Pittsburgh approach since competition occurs between

complete rule sets rather than among individual rules. However, the Pittsburgh
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approach is much more computationally intensive due to the maintenance and eval-

uation of complete rule sets. The advantage of the IRL approach over the other

two approaches is that, it is computationally less intensive since it looks for only

one rule in each sequence of iteration. At the same time a cohesive classifier is

generated through the penalizing mechanism, thereby avoiding conflict between

individual rule and the whole classifier. The genetic algorithm employed in the

proposed method follows the IRL approach [67, 70].

5.4 Existing approaches

Traditionally, the rules in a fuzzy inference system are generated from expert knowl-

edge. If no expert knowledge is available, the usual approach is to identify and

train fuzzy membership functions so as to match data clusters in the training set.

Ishibushi et al. [60, 110] proved that it is possible to build effective classifiers

by making use of uniformly distributed membership functions irrespective of data

clusters, by training rule-weights. Nauck et al. [111] showed that it is not necessary

to use rule weights in fuzzy rule-based systems, as the learning of rule weights can

be equivalently replaced by the modification of antecedent or consequent member-

ship functions. Hence, a high performance fuzzy classifier can be evolved either by

modifying membership functions or rule weights. However, if the data clusters are

known beforehand, it is easier to design membership functions to suit them and de-

rive rule-weights from the training data itself, rather than modifying membership

functions or rule weights, to improve classifier performance. This can be achieved

by a suitable clustering technique. One such technique is the subtractive clustering

technique [112] which is a fast single pass algorithm for determining data clusters.

The subtractive clustering technique is attractive as it does not require a prede-

termination of the number of clusters. The subtractive clustering method assumes

that each data point is a potential cluster center and calculates a measure of the
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potential for each data point based on the density of the surrounding data points.

The algorithm selects the data point with the highest potential as the first cluster

center and then reduces the potential of data points near the first cluster center.

The algorithm then selects the data point with the highest remaining potential.

This process of acquiring a new cluster center and reducing the potential of sur-

rounding data points is repeated until the potentials of remaining data points fall

below a threshold. The subtractive clustering method is an extension of Yager’s

mountain clustering method [113].

Generally, it is much easier to generate a lot of inaccurate or ‘weak’ rules

that apply only to certain instances in a training data set, than generating a few

rules which are accurate or ‘strong’ rules, which classify almost all instances in

the data set. Boosting [114, 115] is a technique which aggregates multiple ‘weak’

rules or hypotheses invoked over different distributions of the training data into

a single composite classifier [116]. Schapire [117] came up with the first prov-

able polynomial-time boosting algorithm in 1989. The AdaBoost algorithm which

solved many of the practical difficulties of the earlier boosting algorithms, was

introduced in 1995 by Freund and Schapire [118].

The AdaBoost algorithm has undergone intense theoretical study and empirical

testing and various modifications has been proposed [119, 71]. It has been proven

to be successful in building good classifier systems. Hoffman [71] proposed a modi-

fication to the AdaBoost algorithm which employs a GA iteratively, for generating

individual fuzzy rules. This boosting scheme reduces the weights of training sam-

ples which are correctly classified by the newly generated rule. Hoffmann [71] and

Gonzalez et al. [120] proposed a number of fitness criteria such as covering degree,

frequency and penalization of negative samples.

In order to implement a GA based on IRL, three criteria are essential [67].

A criteria for selecting the best rule in each iteration, a criteria for penalizing
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classified samples and a termination criteria. Fitness functions are usually defined

in the GA to satisfy the first criteria. The classified samples can be removed as

in SLAVE [70] or the training samples can be assigned with reduced weights [71]

to satisfy the second criteria. Finally, the iteration can be terminated after all

training instances are classified.

The main idea behind boosting is to repeatedly apply a weak learning algo-

rithm on various distributions of training data and finally aggregate the individual

classifiers into a single classifier [71]. After each iteration, the distribution of train-

ing instances are changed by updating their weights based on the current classifier

error.

5.4.1 Grade of Certainty

Ishibuchi et al. [60, 110] employed a heuristic rule weight termed as Certainty

Grade, CF and defined fuzzy rules of the type given in Eqn. 5.9.

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CF = CFj,

for j = 1, 2, . . . , N, (5.9)

where,

Rj Label of the jth fuzzy if-then rule

Aj1,. . . ,Ajn Antecedent fuzzy sets

Cj Consequent class

CFj Certainty grade of rule Rj

N Number of rules.

The heuristic certainty grade CFj is computed as in Eqn. 5.10.
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CFj =
βClass Cj

(Rj)− β
c∑

k=1
βClass k(Rj)

, (5.10)

where,

β =

∑
k 6=Cj

βClass k(Rj)

(c− 1)
, (5.11)

and,

βClass k(Rj) =
∑

xp∈Class k

µj(xp). (5.12)

The effect of certainty grade on the fuzzy rule as a replacement for training of

membership functions has been studied extensively in [110].

5.5 Proposed approach

In this section, a new algorithm based on fuzzy lower and upper approximations is

proposed. The aim is to come up with a technique which is intuitive and computa-

tionally less intensive while automatically evolving a classifier from the training set,

based on a combination of fuzzy and rough set concepts, without compromising on

the classification ability.

Subtractive clustering is performed as a pre-processing step for obtaining the

initial membership functions. This provides a good starting point for the member-

ship functions since the subtractive clustering technique provides the data cluster

points where the data is most concentrated.

Fuzzy and rough sets aim at different purposes in modelling uncertainty, namely

vagueness for fuzzy sets and coarseness for rough sets. Fuzzy lower and upper ap-

proximations of a fuzzy set are defined, when the universe of discourse is coarsened

by means of an equivalence relation. Usage of the fuzzy lower and upper approxi-

mations provides a more accurate account of imperfect information.
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In the proposed classifier, the fuzzy lower and upper approximations are ob-

tained from the initial membership functions generated from subtractive clustering.

A set of certain rules is derived from the fuzzy lower approximation. Further, a

boosting technique is proposed to obtain a set of possible rules from the fuzzy

upper approximation, for classifying the misclassified and unclassified samples. A

new fitness measure is proposed to evaluate the possible fuzzy rules, based on four

objectives. The fuzzy possible rule set utilizes a modifier known as Plausibility fac-

tor (PF). The effect of this modifier in fuzzy classification is compared to another

similar modifier, the Grade of certainty (CF).

The technique proposed by Hong et al. [106, 107] utilizes the fuzzy upper

and lower approximations for generating maximally general fuzzy rules. However,

the fuzzy membership functions are not derived from the training samples and are

pre-defined, which necessitates some external means for generating the membership

functions.

The classifier proposed by Hoffman [71] obtains fuzzy rules from a boosting

technique based on IRL approach. However, this classifier does not rely on fuzzy

lower and upper approximations and modifiers such as plausibility factor. Hence,

the classifier does not differentiate between certain rules and possible rules.

The proposed technique overcomes these limitations by generating certain and

possible fuzzy rules directly from the training set. Also, the plausibility factor

helps in tuning the fuzzy rules without modification of membership functions.

This provides learning capabilities for the system, which can rely on membership

functions generated from data clusters, rather than identify and tune membership

functions from scratch.

5.5.1 Fuzzy if-then rules for classification

The proposed classifier utilizes fuzzy rules of the type given in Eqn. 5.13,



5.5 Proposed approach 80

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Y = cj with plausibility PFj, j = 1, 2, . . . , m (5.13)

where,

Rj Label of the jth fuzzy if-then rule

Aj1,. . . ,Ajn Antecedent fuzzy sets

cj Consequent class

PFj Plausibility Factor

The plausibility factor PFj is defined as the ratio of membership attained by

the instances belonging to consequent class cj, with the membership attained by

all instances in the fuzzy upper approximation of the partition formed by rule Rj,

as in Eqn. 5.14. This definition of plausibility factor is similar to Eqn. 5.8. It is

observed that the plausibility factor attains the maximum value of 1 for the fuzzy

lower approximation.

PFj =

∑
k|ck=cj

µRj
(xk)

∑
k

µRj
(xk)

, where k is the cardinality of training data (5.14)

In a fuzzy inference system, if a rule is activated, i.e if any of the attributes

attain a membership value greater than zero in the rule, the degree of support for

the rule is obtained by applying a fuzzy operator such as min or prod to the fuzzy

membership functions from the antecedent attributes as in Eqn. 5.15.

µRj
(xk) = µRj

({xk
1, . . . , x

k
n}) =

N
min
n=1

µAjn
(xk

n) (5.15)
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Each possible classification cj accumulates the degree of activation of fuzzy rules

Rj weighted by the plausibility factor PFj, with a matching consequent cj = CM .

The instance xk is classified according to the class label Cmax(x
k) by Eqn. 5.16

Cmax(x
k) = argmaxCm

∑

Rj/cj=Cm

PFj µRj
(xk) (5.16)

Generally, fuzzy rules are classified into two categories: approximate rules and

descriptive rules. In the case of approximate rules, each rule has its own definition

of fuzzy linguistic terms, whereas in descriptive rules, the fuzzy linguistic terms

refer to a commonly defined set of membership functions [49]. The two types of

fuzzy rules involve a trade-off between accuracy and comprehensibility. Usually,

the approximate rules tend to be more accurate while being less comprehensible

as compared to descriptive rules due to the difficulty in linguistic interpretation.

This proposed approach employs the more comprehensible descriptive rules, for

classification. Experimental studies indicate that the classifier is able to achieve

classification accuracy, comparable to well known classifier techniques in the liter-

ature.

5.5.2 Learning fuzzy if-then rules for classification

In the proposed method, subtractive clustering is performed as a preprocessing

step to obtain cluster points. A set of membership functions are generated from

these cluster points. The training data are fuzzified with the generated membership

functions and the fuzzy lower and upper approximations are obtained. A set of

certain rules are generated from the fuzzy lower approximations. Another set of

possible rules are generated from the fuzzy upper approximations by a boosting

enhanced genetic algorithm, for those training instances which are not classified

by the certain rule set. Each of these steps is considered as a stage as indicated in

Fig. 5.1. These steps are further explained in the following sections.
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Figure 5.2: Obtaining membership functions from cluster points

5.5.3 Stage1: Preprocessing step - Membership functions

from cluster points

In the proposed technique, the data clusters are determined from the training

data set by the subtractive clustering method for each consequent class and each

attribute, as a pre-processing step. Once the data clusters are identified for each

consequent class and attribute, membership functions are formed with the data

clusters as center points. For example, if a set of cluster points cp1 = {0.5, 0.7}
are obtained for attribute A1 ranging [0.1, 0.9] for class c1, then the triangular

membership functions for A1, for class c1 are obtained as in Fig. 5.2.

A set of membership functions {MFAi
} is obtained for each attribute per class

from the cluster points. This set of membership functions acts as the base for the

crisp sets generated in Stage2 and defines all the descriptive fuzzy if-then rules

generated in Stage3.
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5.5.4 Stage2: - Generation of certain rule set from mem-

bership functions

The set of membership functions {MFAi
} obtained in Stage1, serves as the starting

point for defining a crisp set of certain regions {MFL}. These crisp sets are formed

at data clusters so as to maximize the fuzzy lower limit approximations as shown

in Fig. 5.3.

Fig. 5.3(b) plots a sample distribution of data for a two attribute classification

case. Fig. 5.3(a) maps the data distribution on attribute A1 to one of the trian-

gular membership functions {MFA1}, obtained in Stage1 from the cluster points.

To obtain the fuzzy lower approximation, the triangular membership function is

considered as a singleton rule. The consequent class clj for this rule is identified by

determining the class Cmax that dominates among the training instances for the

attribute A1 by Eqn. 5.17.

Cmax(x
k
Ai

) = argmaxCm

∑

Rlj/clj=Cm

µRlj
(xk

Ai
) (5.17)

The maximum membership µu attained by instances belonging to other classes

is as per Eqn. 5.18.

µu = { max
k|ck 6=clj

(µAi
(xk

Ai
))} (5.18)

All the instances which have memberships greater than µu can be conclusively

identified as belonging to class clj. Attribute A1 values for all the instances be-

longing to class clj, which have a membership larger than µu, are obtained. The

attribute values obtained are sorted and the smallest A1 indicated as xL1 and the

largest A1 indicated as xL2 are identified. These values serve as the limits of a

crisp set as indicated in Fig. 5.3. Only instances belonging to class clj attain a

membership of 1, while instances from other classes attain a membership of 0.
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Figure 5.3: Obtaining crisp sets from cluster points
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Each crisp set serves as a singleton attribute rule with PF = 1. The set of all

such certain regions serves as the certain rule base and all instances which attain

a membership of 1 for the certain rule base, form a fuzzy lower approximation

for the partition induced by class clj. Some of the crisp sets classify only a small

number of samples, if the samples from various classes are well mixed. Such rules

are eliminated from the certain rule base and the few instances classified by them

are handled in Stage3.

This method of obtaining singleton attribute rules does not identify all core

knowledge as in a rough set reduct which is computationally NP-hard [121, 122].

However, it serves to generate concise rules for data pockets identified through the

singleton attributes, while being computationally very simple.

5.5.5 Stage3: - Generation of possible rule set from mem-

bership functions

The training instances which are not classified by the certain rule set in Stage

2, serve as the training data set for Stage 3. In this stage, possible rules are

generated based on fuzzy upper approximations derived from {MFAi
} through a

boosting enhanced GA.

Boosting enhanced genetic algorithm for learning if-then rules

The overall architecture of the proposed approach is depicted in Fig. 5.4. The

fuzzy rule chromosome population is created by the rule generator, from the set of

membership functions {MFAi
} obtained in Stage1. The genetic rule learner selects

the best rule from the population based on fitness, after employing the crossover

and mutation genetic operators. The generated rule is added to the rule base and

the weights of the training samples are adjusted by the boosting algorithm for the

current set of rules. These steps are iterated till the error rate converges, or the
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Figure 5.4: Boosting enhanced genetic fuzzy-rough classifier

maximum iteration count is reached. Each of these steps are explained in more

detail, in the following sections.

Rule generation and encoding of fuzzy if-then rules

Every chromosome in the population encodes a single fuzzy rule, with each of

the attributes [Ai, i = 1, . . . , t]T being represented by a membership function. The

membership function for each of the attributes Ai, is chosen at random from the set

{MFAi
} obtained in Stage1. Each of the triangular membership functions in the

set {MFAi
} is assigned an integer label. The triangular function for each attribute

is encoded in the chromosomes by its integer label. The rule is represented by an

integer valued vector a1, a2, . . . , at in the chromosome.

A specific fuzzy rule may involve most of the attributes. However, general
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fuzzy rules which are shorter, usually involve only a few of the attributes. To allow

for the generation of general rules in addition to specific rules, the chromosome

also encodes an additional bit string S = {s1, . . . , st}. Each of the bits (s1, . . . , st)

indicate the presence or absence of the respective attribute (A1, . . . , At) in the fuzzy

rule antecedent. When most of the bits in (s1, . . . , st) become zero indicating the

absence of respective attributes in the rule, it leads to the generation of a general

rule. In contrast, when most of the bits in (s1, . . . , st) become one indicating the

presence of respective attributes in the rule, it leads to the generation of a specific

rule. The consequent cj is obtained by determining the class Cmax that dominates

among the training instances covered by the rule antecedent as in Eqn. 5.19.

Cmax(x
k) = argmaxCm

∑

Rj/cj=Cm

µRj
(xk) (5.19)

The GA iterations are fast due to two reasons. The first reason is, the training

set has become comparatively smaller after Stage2. The second reason is, the chro-

mosome encodes only the integer labels of the membership functions, rather than

real valued attributes of the triangular membership functions for each attribute.

This reduces the length of the chromosome to one-third of that of a real valued

chromosome. For data sets with large dimensionality, this leads to considerable

increase in the speed of the iterations.

Fitness Criteria

The genetic rule learner evaluates each rule based on a fitness criteria. The pro-

posed fitness criteria is designed for optimizing four objectives based on the fuzzy

rough set perspective. Each objective is evaluated separately and finally aggre-

gated into a single scalar fitness value in the range [0, 1]. The weights wk assigned

to individual samples by the boosting algorithm, based on the relative difficulty in

classifying the sample, also forms a part in the fitness criteria.
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The first objective is to ensure that the rule covers positive samples with large

weights as compared to the negative samples. This is obtained by the weighted

plausibility factor fj1 as,

fj1 =

∑
k|ck=cj

wkµRj
(xk)

∑
k

wkµRj
(xk)

(5.20)

At the later stages of iteration, the weights of the unclassified samples tend to

be high. To ensure that the rule is generic rather than covering only large weighted

samples in the later stages, the plausibility factor defined in Eqn. 5.14 is utilized

as another objective fj2 .

fj2 =

∑
k|ck=cj

µRj
(xk)

∑
k

µRj
(xk)

(5.21)

The first two objectives indicate the relative aggregate membership attained

by the samples belonging to class cj. If there are a large number of samples from

class cj as compared to other classes in the training set, the objectives fj1 and fj2

do not ensure that the individual membership attained by samples belonging to cj

are large. The third measure fj3 maximizes the individual membership attained

by samples from class cj.

fj3 =

∑
k|ck=cj

µRj
(xk)

l =
∣∣∣µRj

(xk) > 0∀k|ck = cj

∣∣∣
(5.22)

The final objective fj4 is to maximize the number of positive samples l1 covered

as compared to the negative ones l2. This fitness value is normalized by the number

of samples l3 in the training set belonging to class cj.

l1 =
∣∣∣µRj

(xk) > 0 ∀ k|ck = cj

∣∣∣

l2 =
∣∣∣µRj

(xk) > 0 ∀ k|ck 6= cj

∣∣∣
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l3 =
∣∣∣k|ck = cj

∣∣∣

fj4 =





0 : l1 < l2

l1− l2
l3

(5.23)

The aggregate fitness fj of the rule is computed as the product of individual

measures as defined by Eqn. 5.24. The aggregate fitness is calculated as a product

rather than a sum because, the aggregate membership should become zero, when

one or more of the individual objective measures become zero.

fj =
∏

1≤i≤4

fji
(5.24)

Iterative Boosting and assignment of weights

In the current proposal based on IRL approach, the first criteria is satisfied by

the fitness defined in Eqn. 5.24. The training instances are assigned with weights,

which are reduced upon classification, to satisfy the second criteria. The iterations

are terminated when all the training instances are represented by at least one rule,

or when the maximum number of iterations are reached, whichever occurs first.

In the current approach, all the training instances are assigned uniform weights

wk = 1 at the beginning of the iterations. After each iteration, the weights of

all the instances successfully classified by the selected rule are reduced by a fixed

quantity d = 0.2. The weights of all the misclassified instances are increased by

the same fixed quantity d = 0.2 as in Eqn. 5.25. The weights of the unclassified

instances remain unchanged. This ensures that the classified instances carry a

lesser weight than the misclassified and unclassified instances. The focus of the

next rule generation is more on the misclassified and unclassified instances.
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wk(t + 1) =





0 if classified and wk(t)− d < 0,

wk(t)− d if classified by selected rule,

wk(t) + d if misclassified by selected rule

(5.25)

Though the algorithm is designed to focus on the misclassified instances, some

of the best rules generated tend to classify instances already covered by the existing

rules. The new rule generated is not added to the rule base, if it does not cover

at least a few instances which are previously misclassified or unclassified and the

existing instance weights are not disturbed.

Once the final rule base is obtained, the classification of new instances is done

based on the single winner rule, which is activated based on the fuzzy lower ap-

proximation. If more than one rule is activated, the winner is determined by the

rule having the largest aggregate membership as in Eqn. 5.15. This allows for the

intuitive interpretation of the fuzzy rule base.

5.6 Effect of Plausibility factor on rule learning

and its comparison to Grade of certainty

While PF is a normalized measure of the membership of rule class, CF is a nor-

malized measure of the quantity by which the membership of rule class is larger

than the membership of other classes. It has been observed that the plausibility

factor PFj has a learning effect similar to the certainty grade CFj, though on a

restricted scale. This restriction is due to the fact that, while the value of CFj

can range from [0, 1], the value of PFj ranges only from [1/c, 1], where c is the

number of consequent classes. This is because, if PFj becomes less than 1/c for

class cj, it means that the rule classifies instances of some other class c′j with a

better aggregate membership. The rule generator would have assigned c′j as the
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consequent class for rule Rj, with the effect that PFj becomes greater than 1/c.

Consider a sample single dimensional, two class classification problem for which

CF and PF has been calculated as in Table. 5.1. For illustrative purposes, the

aggregate membership of Class 1, β1, has been maintained constant, while the

aggregate membership of Class 2, β2, has been varied over the range [0, 5].

Table 5.1: Sample Two class membership, PF and CF

∑
xp∈Class 1

µ1(xp)
∑

xp∈Class 2
µ2(xp) PF CF

5 0.0 1 1

5 0.5 0.91 0.82

5 1.0 0.83 0.67

5 1.5 0.77 0.54

5 2.0 0.71 0.43

5 2.5 0.67 0.33

5 3.0 0.63 0.25

5 3.5 0.59 0.18

5 4.0 0.56 0.11

5 4.5 0.53 0.05

5 5.0 0.50 0.00

Fig. 5.5(a) illustrates the variation of the PF1 and CF1 over the range of β2

for a constant β1. As observed, PF1 varies within a range [0.5, 1] while CF1 varies

within [0, 1]. Moreover, the change in CF1 is much more steeper then the change

in PF1 and both the changes are not linear. Fig. 5.5(b) illustrates the variation

of the PF as the number of consequent classes c increases. It is observed that

the range of learning for PF approaches that of CF as the number of consequent

classes increase.
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Figure 5.5: Variation of PF and CF
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Consider a set of sample rules for the same two class problem, where the single

attribute has been discretized into three fuzzy intervals defined by small, medium

and large as in Fig. 5.6(a).

If x is small, then Class 1

If x is medium, then Class 2

If x is large, then Class 1

If CF or PF is not used in the fuzzy rule, the classification boundaries for

optimal classification is obtained by modification of the membership functions as

in Fig. 5.6(b).

0.0 1.0

Class1 Class2 Class1

small medium large

0.0 1.0

Class1 Class2 Class1

small medium large

(a) (b)

Figure 5.6: Adjusting classification boundaries by membership function modifica-

tion

When CF or PF is used in the fuzzy rule, the classification boundaries get

adjusted by variation of the respective factors, while the membership function

shape, remains constant. This is illustrated in Fig. 5.7, where the dashed and

dotted lines indicate the product of the respective factors CF and PF with the

membership attained by samples for each fuzzy if-then rule.

Assume that a similar set of data exists for Class 2 as in Table. 5.1, with

the aggregate membership values reversed. Fig. 5.7(a) illustrates a case where
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aggregate membership of Class 2 is 5.0 while that of Class 1 is 1.0. The classification

boundary range assigned for Class 2 is larger for PF as compared to CF .

For case 2, where aggregate memberships are 5.0 and 2.5 respectively for Class 2

and Class 1, the classification boundaries are indicated in Fig. 5.7(b). In this case,

CF2 provides the same boundaries as that achieved by modifying the membership

function in Fig. 5.6(b), while PF2 continues to provide a larger boundary range.

It is impossible to achieve this boundary with PF2, as the PF2 value required is

0.33 which is less than 1/c = 0.5. While the boundary range assigned for Class 2

is larger for PF2 as compared to CF2, the right boundary values provided by CF2

has overshot the one provided by PF2.

Fig. 5.7(c) illustrates the case when CF and PF have attained their respective

lowest values of 0.0 and 0.5. In this case, though the fuzzy rule employing CF gets

activated for instances of Class 2, the final result provided by the CF weighted

membership shows that the rule is not active for Class 2 instances. This is indicative

that the rule can be removed from the final rule set. The fuzzy rule employing PF

returns a non-zero PF weighted membership, which is exactly half of the original

membership. In this case also, the rule can be safely removed from the final rule

set.

The range of learning induced by PF is the lowest for a two class problem.

However, as the number of classes c increases, the range of learning induced by

PF = [1/c, 1] approaches the range induced by CF . The range of learning while

employing PF is much better for a multi-class problem as compared to a two class

problem

In conclusion, while PF shows learning capabilities similar to CF , it does so

on a restricted range. However, PF has a meaning in terms of rough set, since

it measures the membership ratio of members belonging to the partition induced

by class cj, with the fuzzy upper approximation of rule Rj. The PF can only be
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derived from the properties of the training set and cannot be modified. However,

CF has been defined as a heuristic quantity and can be modified for improving

the performance of the rules, as has been done in [60]. However, performance

evaluation of the proposed technique indicate that the usage of PF in combination

with a certain and possible rule set can provide results comparable to well known

classifiers in the literature, if the approximate data clusters are known before hand.

5.7 Performance Evaluation and discussion

The performance of the proposed system is evaluated on some well known data

sets from the UCI database [89]. Two types of evaluation are performed on each

data set. In the first type, the entire data set is taken as the training set. In

the second type, predictive accuracy is measured by a ten-fold cross-validation

procedure [123]. In essence, the data set is divided into ten mutually exclusive and

exhaustive partitions. Then a classification algorithm is run ten times. Each time

a different partition is used as the test set and the other nine partitions are used

as the training set. The results of the ten runs (accuracy rate on the test set) are

then averaged and reported as the accuracy rate of the discovered rule set. The

attribute values are linearly normalized in the range [0,1] for all the data sets.

A crossover rate of 0.9 and a mutation rate of 0.1 are considered for the GA.

The GA is allowed to run for a maximum of 50 generations before selecting the

best rule. The number of newly created chromosomes in each generation is limited

to 90% of the population. In each generation, a new population is formed based

on the fitness value obtained from a combined parent and child pool. While the

rule generation can be invoked until all samples are classified, the error rate starts

converging after 20-25 rules. The rule generation is then stopped, though there are

misclassified instances.
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5.7.1 Performance Evaluation: Iris Data Set

The iris flower data set (SAS Institute, 1988) was originally published by Fisher

(1936) for examples in discriminant and cluster analysis. The four attributes as-

sociated with Iris flower: sepal length, sepal width, petal length and petal width,

are measured on Fifty iris specimens from each of three species: Iris setosa, Iris

versicolor, and Iris virginica. The problem is to classify the specimens into three

classes based on the four attributes.

Initially, the entire data set is used as the training set. It is observed that the

majority of the samples in the data set can be classified with the certain rule set.

Only the unclassified samples are used as training data, for the possible rule set.

The population size is fixed to 20 chromosomes. For comparison, the famous rule-

based machine learning algorithm C4.5 [124] and the statistical classifier Naive

Bayes have been applied to the data set. Shi et al. [2] proposed a Pittsburgh

approach based fuzzy learning system and reported performance of the system on

the Iris data set. Table. 5.2 compares the performance of the proposed fuzzy rough

classifier (FRC) technique with all the three classifier systems, when the entire data

set is taken as training data, over ten runs. The fuzzy rough classifier outperformed

the other three classifier techniques, though the best classification rate of 100% is

also achieved by C4.5 and Naive Bayes.

Table 5.2: Performance comparison for Iris

Algorithm Avg Accuracy % Best Accuracy %

FRC 98.7 100

C4.5 93.7 100

Naive Bayes 95.5 100

Pittsburgh Approach [2] 98.5 98.5
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5.7.2 Performance Evaluation: Wine Data Set

The wine data set consists of 178 samples from 3 classes with 13 continuous at-

tributes. The wine data set is known to be fully classifiable, in the literature.

However, the difficulty in classifying this data set is due to the relatively large

number of attributes. This data set has been chosen to observe the classification

ability of the proposed classifier for the large number of attributes. Ishibuchi et

al. [60] compared the performance of the CF based fuzzy classifier with the results

published by Corcoran et al. [90]. Table. 5.3 compares the performance of the pro-

posed classifier with that of Ishibuchi [60] and Corcoran [90]. The performance of

the fuzzy rough classifier is similar to that of the classifier with CF modification,

reported by Ishibuchi et al. [60].

Table 5.3: Performance comparison for Wine

Algorithm Avg Accuracy % Best Accuracy %

FRC 100 100

Ishibuchi without CF modification [60] 98.5 99.4

Ishibuchi with CF modification [60] 100 100

Corcoran [90] 99.5 100

5.7.3 Performance Evaluation: Glass Data Set

The glass data set consists of 214 samples with 9 continuous attributes spread over

6 classes. It is observed that the data pockets in this data set are well mixed and

very narrow. The proposed classifier generated around 14 certain rules of which

only 4 rules covered a large number of samples. The other certain rules covered

only 2 or 3 instances and are pruned from the data set. Hence, the number of

certain rules generated is very less as compared to the other two data sets.
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The CF based fuzzy classifier is compared by Ishibuchi et al. [60] with the

results published for 1R [92] and C4 [93] algorithms. In this comparison, 2/3 of

the data samples are used as training data with the rest being considered as test

data. The same testing technique is adopted and results are compared in Table. 5.4.

The performance is almost the same as that reported for CF based fuzzy classifier

[60] and C4 [93] algorithm.

Table 5.4: Performance comparison for Glass

Algorithm Avg Accuracy %

FRC 63.1

Ishibuchi [60] 64.4

1R [92] 53.8

C4 [93] 63.2

5.7.4 Performance Evaluation: Summary

In Table. 5.5, the performance comparison between the ‘test with entire data set’

and the ‘ten fold test’ is provided for all the data sets.

Fig. 5.8(a) shows a bar chart of the number of certain and possible rules, when

the entire data set is used for training and during the ten fold test. Fig. 5.8(b),

Fig. 5.8(c) and Fig. 5.8(d) show the relative percentage of the total classification

performed, by the certain and possible rules for each of the data sets, when the

training set comprises the entire data.

When the majority of the instances are well separated or at least form distinc-

tive data clusters as in the case of Iris and Wine data sets, more number of certain

rules are generated and the bulk of the classification is performed by the certain

rules. However, when the data clusters are very narrow as in the case of glass data
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Table 5.5: Comparison of training with entire data set and ten fold test

Data set Avg # cer-

tain rules

Avg # pos-

sible rules

Avg Accu-

racy %

Best Accu-

racy %

Training

with entire

data set

Iris 12 5 98.7 100

Ten Fold

Test

Iris 10 6 96.7 98.4

Training

with entire

data set

Wine 14 8 100 100

Ten Fold

Test

Wine 11 10 98.3 99.5

Training

with entire

data set

Glass 4 19 67.2 69.3

Ten Fold

Test

Glass 3 17 61.7 63.4
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Figure 5.8: Comparison of the performance by certain and possible rules
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set, only a few certain rules are obtained, with the classification being performed

mainly by the possible rule set. This shows that the classifier is able to handle

data which are clearly separable as well as inter-mixed, with a trade-off between

the certain and possible rule sets.

5.8 Conclusion

A classifier based on the concepts of fuzzy equivalence relation is proposed. A

certain rule set is generated based on the fuzzy lower approximation. A possible

rule set based on fuzzy upper approximation is generated by a boosting enhanced

genetic algorithm. The proposed fuzzy rules are weighted with a plausibility factor.

The effect of the plausibility factor in learning classification boundaries is studied

and compared with that of the heuristic certainty grade available in the literature.

The performance of the proposed classifier has been evaluated with some of the

well known data sets and compared with standard classification techniques.



Chapter 6
Future Directions

This chapter provides a brief outline of some of the open questions and possible

future directions for research.

• Reducts from rough sets provide an efficient way to extract the core knowl-

edge from a data set and result in a compact rule set. This rule set can be

used for pattern classification. However, these rules tend to be exact rules,

which have to be made more generic to cater to real world classification prob-

lems. Another potential area for improvement, is the formation of reduct for

continuous data. Chapter 3 outlined a technique for handling continuous at-

tributes by discretizing them. Fuzzy Systems are pretty good at representing

continuous attributes by membership functions. Additionally, the introduc-

tion of fuzzy logic in reducts, will make the resultant rule set more generic.

While Some research has already been done, there remains lot of scope for

improvement.

• While the reduct rule-based models have potential for offering traceable or

explainable classification, this approach is sometimes hampered by the size

of the rule set. Schemes to make large rule-based models more manageable

are clearly of interest to develop.

104
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• Real life problems often lack a complete data set and have missing attributes.

Many a times, records with missing attributes are rejected and the classifier

is developed with the rest of the data set. Rough set theory provides a way

to estimate dependency and the impact of missing attributes. More research

in this area of missing attributes is of importance to develop robust classifiers

for real world problems.

• A lot of research has been going on for integrating GAs with fuzzy systems.

Chapter 4 outlined a technique for improving the performance of a GA driven

fuzzy classifier. There remains scope for improvement in this technique as

has been outlined in that chapter. Particular attention will have to be given

to reduce the time and computational complexity of the Pittsburgh approach

which has been adopted. Performance can also be improved by the usage of

co-evolutionary algorithms for dimensionality reduction while evolving the

fuzzy system.

• While the performance of the proposed classifier in Chapter 5 is good, the

number of rules generated seems to be on the higher side as compared to

the purely fuzzy techniques (as opposed to rough set techniques) in the lit-

erature. This is mainly due to the fact that the certain rule set identifies

singleton attribute rules. If a simpler technique for obtaining certain rules

with multiple attributes can be integrated in Stage2, this will considerably

reduce the number of certain rules.
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