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Summary

Many maxillofacial surgery applications as well as forensic medicine often require an accurate

knowledge of the teeth 3D shape. However, this information may not be available if the tooth is

broken or when we are working with a dental cast. Furthermore, current methods of generating

3D images, such as computer tomography (CT) imaging, are radiologically invasive and not

always justified. In these cases, an alternative method is necessary to approximate the shape.

Herein, we describe a method to generate the 3D representation of a tooth using partial in-

formation about its shape (e.g., the crown or the root only). The informationrequired consists of

a cloud of points representing the available part. Data information can be obtained, for instance,

by segmenting a dental cast. The shape is then defined using a statistical model that is constituted

of a mean shape and a set of modes. A statistical model is necessary for each kind of tooth: this

study was conducted using upper right second premolars (single rootedteeth). To that end, a set

of 22 teeth was digitized using a micro-CT scanner and used throughout this research.

The reconstruction was then performed defining the optimal registration between the mean

shape and the specimens to reconstruct and optimizing the statistical model parameters. This

method allows us to generate the global shape fast, thanks to the small number of parameters

to adjust, and requires little or no interaction from the user. Furthermore, byconstraining the

possible deformations of the statistical model, we can prevent the final shape instance to vary too

much from the typical shape of the reconstructed tooth.

Different experiments were conducted to investigate the validity of the method. Leave-one-

v



Summary

out tests were performed to test the capacity of this approach to reconstruct a tooth shape given

partial information. Other tests were realized using patient’s data, adding feature points or inves-

tigating the influence of parameters such as the number of modes or the densityof the tooth to

reconstruct.

During these experiments, we found that the shape reconstruction process produced satisfac-

tory results when we generated the tooth using crown information: the shapeof the teeth (original

tooth and its reconstructed version) were similar, as well as their height. Themethod proposed

gave only a coarse approximation of the tooth shape when dealing with root information, but

could be slightly improved by the introduction of feature points.
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Glossary

Buccal Lateral surfaces of side teeth, opposite to the tongue.

Distal Surface of a tooth in contact with another one, closer to the back of the mouth.

Endodontics A dental specialty concerned with the maintenance of the dental pulp in a state of

health and the treatment of the pulp cavity (pulp chamber and pulp canal).

ICP Iterative Closest Point Algorithm (Chapter5).

Malocclusion Poor positioning or inappropriate contact between the teeth on closure.

Mesial Surface of a tooth in contact with another one, closer to the center of the mouth.

Occlusal The chewing or grinding surface of the premolar and molar teeth.

Orthodontics The dental specialty and practice of preventing and correcting irregularities of the

teeth, as by the use of braces.

Pantomogram A panoramic radiographic record of the maxillary and mandibular dental arches

and their associated structures, obtained by a pantomograph.

PCA Principal Component Analysis (Chapter4).

PDM Point Distribution Model (Chapter4).

Pose estimationProcess of determining the position and orientation of an object with respectto

a coordinate system.
vii



Glossary

Registration Process of defining the correct alignment between two elements of identicalor

different modalities (Chapter2).

Root canal Channel used by the blood vessels and nerves to reach the pulp cavity.
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Chapter 1

Introduction

1.1 Motivation

Having an accurate knowledge of the 3D shape of a tooth and the position ofthe tooth root is very

important in most maxillofacial surgery applications, endodontic procedures, malocclusion prob-

lems, and treatment simulations. Currently, the shape of a tooth in the mouth is represented in

two-dimension by an x-ray film. As teeth are 3D structures with complex shapes, an accurate 3D

representation of teeth shape is vital in facilitating clinical treatment. For example, orthodontists

try to reposition the teeth of a patient in case of malocclusion using usually brackets1 attached to

them and connected by an arch wire. In this case, the exact location, orientation and shape of the

teeth are necessary to plan appropriate movements during the treatment. Having a good knowl-

edge of the shape of a given tooth is also extremely helpful to create implants of good quality.

Dental implants are metal anchors that act as tooth root substitutes. They can be inserted into the

jawbone when teeth are missing and then fused with the bone. They have been used very suc-

cessfully for the past 20 years and dentistry has come to rely on them for solving problems that

were formerly insolvable. Their utility is not only aesthetic. Indeed, without the root, the bone

around the missing tooth would gradually recede. Currently, the shape of an implant is usually

1Small attachments that are bonded directly to the tooth surface using a special adhesive.
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Chapter 1 - Introduction

defined using an x-ray of the missing tooth area to get an approximate shapeof the implant using

the neighboring teeth.

3D information about the tooth shape is unfortunately not always available.Table1.1summa-

rizes the most common medical imaging modalities. Computer tomography (CT) is an efficient

way of generating 3D objects than can be used in some of the above-mentioned cases. However,

CT imaging of dental patients is not always possible and is radiologically invasive. Rather than

working with CT data, orthodontists regularly work with dental casts, also known as study mod-

els (Fig1.1). Plaster-like materials are used to impress both upper and lower arches to create a

replica of the patient’s set of teeth. The mould that is obtained is then used to create the dental

cast. These models, whose creation is totally safe for the patient, are used toprepare treatment

plans and to make accurate measurements. However, they only provide information about the

crowns of the teeth, but no information about the roots, which are hidden under the gum.

Figure 1.1: Dental cast.

2



Chapter 1 - Introduction

Table 1.1: Most common imaging modalities in the medical field.

Modality X-raya Ultrasound Computed Magnetic Nuclear Video
(US) Tomography Resonance Medicine

(CT) Imaging Imagingb

(MRI) (NMI)

Dimension 2D 2D / 2.5D 2.5D 2.5D 2D 2D
(intern use)
2D/2.5D
(extern use)

Radiations Low No Yes (1 to 10
mSv)

No ≤ 1
2 the

radiation
dose usually
used in CT.

No

Resolution Very good
resolution.

Low
penetration,
poor resolu-
tion, distor-
tion, noise.

Excellent
resolution.

Similar to
CT.

Poor spatial
resolution.

Intern: Poor
resolution,
invasive and
difficult to
manipulate.
Extern: good
resolution,
easy to use.

Cost Traditional,
cheap,
widely
available.

Cheap, easy
to use.

Expensive,
slow.

Very
expensive,
complex,
slow.

Very
expensive
and time-
consuming.

Cheap.

Use Excellent for
bones and
metal.
Fluoroscopy
for intraop-
erative
navigation.

Obstetric
use, scan-
ning of
organs as
liver,
kidneys or
thyroid
gland.

Image a
wide variety
of body
structures
and internal
organs
(sinus and
brain stud-
ies, abdomi-
nal organs).

Excellent
resolution
for soft
tissue,
skeleton,
joint, spine,
brain and
head.

Used for
anatomic
and
functional
information.

Intern:
laparoscopy,
endoscopy.
Extern: e.g.,
tooth crown
or tongue.

aFilm x-ray, digital x-ray, fluoroscopy, digital subtraction angiography(DSA)
bPositron emission tomography (PET), single photon emission tomography(SPECT)

Information concerning teeth shapes are also required in forensic medicine, e.g., for identifi-

cation purposes [1]. Indeed, teeth are the most durable portion of the body and have the abilityto

resist erosion, deterioration and fire. They must be exposed to a temperature of over 500◦C to be

reduced to ashes and demonstrate a variety of form and varied conditionsof wear, trauma, dis-

ease, and professional manipulation. However, only fragments of teeth are sometimes available,

3



Chapter 1 - Introduction

and the missing part needs to be obtained by guesswork.

Therefore, to overcome the lack of original 3D data, alternative methods are necessary to

define the tooth shape when the information is simply missing, or to avoid using radiologically

invasive methods that are not absolutely justified.

1.2 Aim of the thesis

The different cases presented in section1.1 require a good knowledge of the 3D representation

of teeth. The aim of this research is to develop a method that allows orthodontists to define the

3D shape of a tooth using only partial information (e.g., points corresponding to the crown area),

and without the use of x-rays, CT or MRI (magnetic resonance imaging). Here are some possible

applications:

• Implant creation: Using the crown of the corresponding mirror tooth could help us deter-

mine the shape of the missing tooth and thus create an implant of higher quality.

• Forensic medicine: We may only have fragments of a tooth at our disposal (person iden-

tification using for example fragments found at a crash site, in criminal investigations or

after an attack). Given the crown or root only, we could try defining the tooth shape using

all the a priori knowledge for the tooth to be reconstructed.

• Tooth fitting on a dental cast: we could try to fit a model onto the dental cast teeth to get

root information (Fig1.2).

Different methods allow orthodontists to get highly accurate crown models: the more wide-

spread method consists in a surface scanning of the dental casts. Another possibility lies in direct

imaging methods using an intra-oral camera [2] (OraScanner from OraMetrix GmbH, ALVC1600

from Digital Doc). The major advantages of intra-oral camera are that they are non-radiative and

highly accurate. Once a three-dimensional crown model has been built using any one of these
4



Chapter 1 - Introduction

Figure 1.2: The blue tooth (top left hand corner) is fitted on the dental castin order to define the
position of the root.

possibilities, we still need a method to reconstruct the missing part of the tooth.

The approach presented here is based on the use of a statistical model (aspecial form of a

deformable model). For a given kind of tooth, we need to create this model using a set of teeth

belonging to the same family. Its possible deformations (called modes of deformations) have to

represent the possible deformations of all the teeth belonging to the same family. After aligning

the patient’s tooth with the model (using translations and/or rotations) and adjusting the different

parameters of this model, we hope to determine the shape of the tooth.

This method will allow us to generate the tooth rapidly due to the small number of parameters,

and requires little or no interaction from the user. Furthermore, by constraining the possible

deformations of the statistical model, we can prevent the final shape instance to vary too much

from the typical shape of the reconstructed tooth.

5



Chapter 1 - Introduction

1.3 Organization of the thesis

The outline of this thesis is as follows:

Chapter 2 - After an introduction on the notion of registration, we present a short review to

highlight the different methods currently used in the registration area and underline their

advantages and drawbacks with respect to the method proposed here.

Chapter 3 - We briefly describe the equipment and software used to construct the specimens,

and the method of extracting the different elements for the reconstruction.

Chapter 4 - We define the notion of deformable model that is the central element of this re-

search: we focus on the theoretical aspects as well as the properties ofthe model created.

Chapter 5 - We describe the algorithm to retrieve the shape of a tooth: two different approaches

are introduced here to optimize the parameters of our model.

Chapter 6 - We present the different experiments that were conducted. A criterion is first de-

fined to judge of the quality of this method, and the results are summarized (reconstruction

using either the root or the crown only). The results are then discussed.

Chapter 7 - We present concluding remarks, their implications as well as suggestions for future

work.

Appendices - In the appendices, the reader will find detailed information about the algorithms

used in the implementation of our method: Levenberg-Marquardt algorithm (AppendixA),

octree-spline decomposition (AppendixB) and Kd-Tree decomposition (AppendixC), as

well as numerical results of the experiments conducted (AppendixD).

6



Chapter 2

Literature survey

2.1 Definitions of important terms

In this research, we aim at deforming a model, called the mean shape, into a target model (the

patient’s data). The nature of the transformation will be explained in Chapter4. At this point, we

first introduce the notion of registration as well as its major characteristics. Given two coordinate

systems, RefA and RefB and sets of pointsXA = {xA1, . . . , xAN} andXB = {xB1, . . . , xBN} associ-

ated with homologous features in the two coordinate systems, the general goal of registration is

to determine the geometrical transformationT such thatXA = XB. In other words, we wish to

align points in one view of an object with the corresponding points in another view of another

object [3]. Since the two features are usually not perfectly identical, we try to obtain atransfor-

mationT that minimizes the distance between the two features; the distance function can be the

maximum of minimum distances between the points, the root mean squared sum of minimum

distances or any other appropriate metric.

2.1.1 Rigid-body transformation

An image coordinate transformation is calledrigid when only translations and rotations are al-

lowed. A general rigid-body transformation can be expressed as combination of two transforma-
7



Chapter 2 - Literature survey

tions, a rotationRAB and a translationtAB, i.e.,

xBi = RABxAi + tAB (2.1)

Consequently, rigid-body registration typically seeks the values ofRAB andtAB that minimize

min
RAB,tAB

N
∑

i=1

‖xBi − (RABxAi + tAB)‖2 (2.2)

given 3D correspondencesxAi andxBi .

A possibility is to use an orthonormal matrix representation, which can be viewed as a map-

ping reference from frame A to frame B once the translation between their origins has been com-

pensated for. To represent rotations, quaternions1 and dual quaternions2 are also widespread.

Contrary to methods that employ orthonormal matrices and quaternions, whichfirst determine

the optimal orientation and then use this solution to obtain the translation, the dual quaternion

technique solves for both relative orientation and position by minimizing a cost function.

2.1.2 Nonrigid-body transformation

When the deformation between the two objects is noticeable (on account of factors, other than

noise or distortion), we need to apply anonrigid-bodytransformation. The first and simplest class

of functions corresponds to affine3 transformation. Contrary to Eq.2.1, the affine transformation

does not respect angles and lengths. Another formulation consists of mapping surface A to

surface B thanks to a global polynomial function. A transformation is called global if it applies

to the entire image and local if subsections of the image each have their own transformations.

Generally, the order of these functions does not exceed 5.

1A quaternion can be viewed as a number composed of a real part and three imaginary parts, or as a 3D-vector in
IR3 and a scalar in IR.

2A dual quaternion is simply a pair of quaternions.
3If a transformation maps parallel lines onto parallel lines, it is calledaffine.

8
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A Cartesian formulation of the coefficients of a global polynomial transformation is:







































































xA =
∑

i, j,k

ai jk xi
Ayi

Azi
A

yA =
∑

i, j,k

bi jk xi
Ayi

Azi
A

zA =
∑

i, j,k

ci jk xi
Ayi

Azi
A

(2.3)

whereai jk , bi jk andci jk are the coefficients to be determined.

To realize a more general mapping, another possibility consists of using piecewise polyno-

mial functions, or splines, to interpolate or approximate the motion between the twoimages. The

approximation can be highly accurate when the number of points is very high and/or when the

noise is significant. If this is not the case, we can interpolate (the transformation has to match ex-

actly for the control points). Two widespread interpolation schemes are thethin-plate spline4 and

the B-spline5. The first is useful when points are sparse and give better results fordeformation

over a 2D rather than over a 3D domain. The second is very useful in the context of smoothing

and least-squares spline approximation.

2.2 2D/3D Registration Schemes

Registration processes are not only limited to 2D/2D or 3D/3D correspondences, but can also be

used with objects of different modalities.

Encisoet al. [4] propose a 3D reconstruction based on 2D patient radiographs. Usingthin-

plate splines, they aim at producing a “best fit” patient-specific 3D geometricpolygonal mesh of

a tooth. The user needs to define manually a series of landmarks both on the patient’s x-ray and

on a 2D view of the deformable model (the landmarks need to be located on the contour of both

images). Thin-plate splines are then used to minimize a bending energy. Lapeer and Prager [5]

4The thin-plate spline is the two-dimensional analog of the cubic spline in one dimension. Thin-plate splines are
used for surface interpolation over scattered data. They can be interpreted as a linear combination of a plane with a
smooth surface.

5A B-spline is a generalization of the Bézier curve.
9
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propose a similar scheme using not one but two or more orthogonal atlas images to reconstruct a

newborn skull. They aim at warping an adult skull into the newborn skull by defining landmarks

on the two skulls and then minimizing a bending energy based on a thin-plate splinefunction.

These methods are simple and easy to use and allow retrieving the third dimensionthat is

missing. However, they only exploit 2D data. Although interesting for specimens in good con-

dition, its extension to broken teeth does not seem possible. Indeed, for the method to work,

the user needs to place the landmarks such that they represent globally theentire shape of the

specimen, and not only a small part of it (e.g., crown or root). Furthermore, these methods do not

exploit the possible shape variations of a given specimen, and a 2D correspondence (sufficient

for some applications) does not necessarily imply a 3D one.

2.3 Common Deformable Models

A popularND/ND registration scheme (N = 2 or 3) consists in warping a first volume (called

a deformable model) into a second one. We present below different methods currently used to

realize this kind of warping.

The notion ofactive contour model(also calledsnake) was introduced by Kass, Witkin,

and Terzopoulos in [6]. It is an energy minimizing spline; the snake’s energy depends on both its

shape and its location within an image (2D or 3D). The energy function is a weighted combination

of internal and external forces:

Esnake=

∫ 1

0
(Einternv(s) + Eimagev(s) + Econstraintv(s)) ds (2.4)

whereEintern ≡ internal spline energy,Eimage measures the attraction of the snake toward the

image features,Econstraint measures the external constraints andv(s) represents the parametric

form of the target. Snakes are very powerful tools for image segmentation. However, since they

can take any shape, they could lead to objects far from those expected. In the case of partial

10
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forms (broken teeth, partial knowledge about the shape), they would beof little use and could

lead to unexpected forms.

Another popular deformable scheme is based onfinite elements(FE). An extension to 3D

images was realized by Cohen and Cohen [7]. Similar to snakes, this method is an energy min-

imization procedure. The finite element method is applied to elements (usually triangular) that

minimize a surface energy function. In their article, Cohenet al. propose a way of minimizing

the energy of 3D balloons. 3D balloons are surface FE models. Applying the Euler-Lagrange

equation to the surface and applying finite differences in space leads to an equation of the type

AV = F (2.5)

whereA is the stiffness matrix, andV andF are respectively the vectors of positions and forces

at the nodes of the 3D mesh. The different FE matching processes differ essentially in the energy

function used to compare the different bodies as well as the matching criterion selected (for

example minimization of the sum of the squared differences).

Free-form deformationis considered as a volumic deformation. First introduced by Seder-

berg and Parry [8], this technique involves the trivariate tensor product Bernstein polynomial.

The model to deform is first enclosed in a bounding box. A local coordinate system (s, t, u) cen-

tered atX0 is then superimposed on this bounding box and a grid of control pointsPi jk defined

(with 0 ≤ i ≤ l, 0 ≤ j ≤ m, 0 ≤ k ≤ n) by

Pi jk = X0 +
i
l

s+
j

m
t +

k
n

u (2.6)

The deformations applied to the model enclosed are linked to the displacement of the points

Pi jk . Moving the points deforms the bounding box and consequently the model. Any point X

belonging to the box is transformed toX f f d after computing its local coordinates in the system

(s, t, u) and applying the deformation function (trivariate tensor product Bernstein polynomial).

11
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The coefficients of the Bernstein polynomial are the control pointsPi jk . This method has the

advantage of being applicable either globally or locally (respecting some continuity conditions)

and to produce smooth surfaces, though it can lead rapidly to a high numberof coefficients

((l + 1)(m+ 1)(n+ 1)).

2.4 A statistical approach

The methods described in Sections2.2 and2.3 have proven to be powerful tools to reconstruct

3D shapes using sparse data. However, they all require a good knowledge of the target global

shape. The major advantage of the technique we propose to use (method introduced by Fleuteet

al. [9]) is to offer the possibility to reconstruct an object given only partial information about its

shape.

This method allows us to exploit the possible deformations of the target, contrary to the

above mentioned methods. We use astatistical model(presented in Chapter4) whose variations

are based on the variations observed on a set of teeth belonging to the samefamily. The global

idea of this method is to first align the two models using a manual or automatic rigid registration.

Once the volumes are aligned, we can vary the statistical model parameters to warp the mean

shape into the target. The parameters are determined by minimizing the sum of squared distances

between the statistical model and the target.

The efficiency of this algorithm is due partly to the small number of parameters to optimize,

as explained in Chapter4. Furthermore, by constraining the parameters of the statistical model,

we can prevent the reconstructed specimen to vary too much from the average shape, that would

be impossible using one of the deformable schemes from Section2.3. The main drawback is the

amount of data necessary as well as the time required to construct such a model. However, this

model needs to be built only once.

Fleuteet al.’s method intends to reconstruct the upper part of a tibia during anterior cruciate

12
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ligament reconstruction (ACL) surgery. The extension of this method to teethcan be improved

by bringing simple modifications during the reconstruction:

• The data used during this research had a much higher resolution that thoseused by Fleuteet

al.. This difference had major implications on the definition of the modes of deformation as well

as the evaluation of the function to minimize.

• The original objective function to minimize was also modify to allow us to use more powerful

optimization tools for the matching and to better avoid local minima during the minimization

process.

• Sub-models of the statistical model (crown or root) were also created to speed up the computa-

tion and improves the quality of the results.

• Finally, feature points were introduced for a better control of the reconstruction during shape

recovery using root information.

Other minor modifications were added to get a reconstruction as fast as possible, despite the

higher resolution of the models to reconstruct.

13
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Preparatory work: Data collection

3.1 Teeth collection

3.1.1 The human dentition

In order to create a statistical model, we need a set of teeth of the same kind. Due to the time

required to built 3D models and the large number of specimens necessary, itwas decided to test

the method on a single type of tooth. Upper right second premolars were chosen (see Figure3.1).

Canines, incisors and premolars are single-rooted teeth; consequently,the matching process is

easier than for molars, which can have two, three or four roots.

The selected teeth had to be complete (i.e., they should include the root and have no cavities)

and present little or no sign of decay. Furthermore, the set of teeth shouldaccount for, as far as

possible, as much of the variability we can have among upper right second premolars. Twenty-

two teeth were collected, with heights varying from 18 mm to 24 mm.

14
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Figure 3.1: Adult dental set: the entire dentition is divided into into four quadrants, each quadrant
containing 8 teeth.

3.1.2 Scanning equipment

Each tooth of the set was scanned at a resolution of 35µm with a SkyScan-1076 (Figure3.2).

The specifications of the SkyScan-1076 micro-CT system are listed in Table3.1.

The contour of every tooth was obtained manually on each CT slice using a commercial soft-

ware (AnalyzeR©). The construction of the deformable model requires to have the outer surface

of the tooth only. An automated boundary detection would be less accurate and would let ap-

pear the root canal. For each slice, the boundaries are detected using aregion growing method

controlled by the user, who can choose the number of boundaries per slice and set the gray level

limit separating the inside from the outside of the volume. Figure3.3shows, on the left, 3 slices

obtained from micro-CT with the contours extracted in red. These contoursare used to recon-

struct the 3D surface (represented on the right). The blue lines indicate the position of the slices

on the 3D surface.

The reconstructed tooth models had up to 72,000 points and 150,000 triangles. To simplify

15
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Figure 3.2: SkyScan-1076 high-resolution in-vivo micro-CT system.

Table 3.1: Specifications of SkyScan-1076 micro-CT system.
SYSTEM SkyScan 1076 In-vivo scanner

Maximum object size 68 mm or 35 mm diameter, 200 mm length

X-ray source 20-100 kV, 10 W,< 5 µm spot size (@4W), air cooled sealed type

X-ray detector 10 Megapixel (4000 x 2300 x 12 bit) cooled digital x-ray camera
with fibre-optic coupling to scintillator

Reconstruction arrays 1000 x 1000 to 8000 x 8000 cross-section format (isotropic grid),
9 µm / 18µm / 35µm pixel size in any place of the scanning area.

Detail detectability 9-14µm (contrast dependent)

Scanning system Source-detector pair rotation with 0.02 deg. min. step size,
50µm object positioning accuracy with 400 mm travel,
50 mm camera positioning with 1µm accuracy,
<10 microns overall stability during scanning

subsequent processing, a decimation process using VTK was applied to reduce the resolution to

105µm1.

1The reader can find useful information about decimation using VTK in “The Mesh Decimation Using VTK” from
Michael Knapp,
http://www.cg.tuwien.ac.at/courses/Seminar/SS2002/Knapp_paper.pdf and [10] or on the VTK website
http://public.kitware.com/VTK/.
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1 2 3
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3

Figure 3.3: Micro-CT slices and the corresponding tooth after reconstruction.

3.2 Point to point correspondence

The creation of the deformable model requires a one to one correspondence between the digitized

teeth. After reconstruction, each specimen is in the form of an unorganized cloud of points

associated with a triangular mesh. To be able to construct a mean shape, oneneeds to know the

relation between the points of the different specimens. A tooth that is representative of the kind

of teeth used in this study is defined as the generic model. The digitized model ofthis tooth (a 3D

triangular mesh ofM points) is then deformed to match every other tooth collected. It means the

ith point of a model A can now be associated with theith point of a second model B (for example

the points representing the extremity of the root).

This approach [11]2 requires a manual rigid registration process to align each training tooth

with the generic one. In addition to the rotation and translation of the target, a scaling can be per-

formed if necessary. Then, the two volumes are enclosed in a bounding box and the generic model

is used as a deformable model. A non-rigid registration using free-form deformation (FFD) (as

described in Section2.3) and splines is performed to deform the generic model to warp each

specimen. Figure3.4a shows the generic tooth model. Figure3.4b shows one exemple of the 3D

2The software used was made available by the TIMC-GMCAO laboratory (“Techniques de l’Imagerie, de la Mo-
délisation et de la Cognition - Gestes Médico-Chirurgicaux Assistés par ordinateur”), 38706 La Tronche, France,
http://www-timc.imag.fr/gmcao/.
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tooth models reconstructed from microtomography and Figure3.4c represents the same tooth be-

fore and after the non-rigid registration. Iterating the process 2 or 3 times can improve the results

(the values of the FFD’s control points are stored after each iteration andused as initial values

at the beginning of the next iteration). Each final model (i.e., after matching)is composed ofM

points (M ≈ 16,000) and can be represented by a vectorm = (x0, y0, z0, . . . , xM−1, yM−1, zM−1).

For the different specimens, the mean distance and the maximum distance between the surface of

the 3D tooth models reconstructed from microtomography and the surface ofthe generic model

after matching vary as summarized in Table3.2. On average, the mean distance equals 0.12 mm

and the maximum mean distance 1.07 mm (0.24 mm and 1.71 mm for the specimen in Fig.3.4).

Table3.2shows that the matching process leads globally to satisfactory results. However, when

the form of the generic model is far from those of the target (e.g., the rootis highly curved or the

tooth is much bigger), some discrepancies can appear.
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(a) Generic Tooth (b) Original Tooth (c) Tooth after matching

Figure 3.4: Generic model and elastic registration onto a tooth exemplar.

Table 3.2: Precision of the point to point correspondence.
Specimen Mean dist. (mm) Max dist. (mm)

1 0.14 1.21
2 0.15 1.18
3 0.09 0.63
4 0.09 1.07
5 0.22 2.61
6 0.24 1.71
7 0.15 1.22
8 0.07 0.55
9 0.13 0.98
10 0.12 0.81
11 0.14 0.58
12 0.08 0.91
13 0.08 0.75
14 0.06 0.55
15 0.08 0.82
16 0.08 0.96
17 0.08 0.71
18 0.10 0.67
19 0.07 1.53
20 0.07 1.23
21 0.10 1.02
22 0.26 1.86
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3.3 Extraction of the crown/root of a tooth

In order to validate the methods, different reconstructions were made using either the root or

crown of the specimens collected. The crown and root of the mean shapesneed also to be

defined to create sub-statistical models. To specify the crown or the root region of a tooth, the

user needs to translate and rotate a plane that represents the limit between thecrown and the root

areas. Figure3.5 shows the GUI designed to realize the extraction and Figure3.6 the results

obtained for a given tooth.

Figure 3.5: Interface used to define the crown or the root of a tooth. Controls on the right side
of the GUI allow the user to translate and/or rotate a plane, invert its positive side and choose the
elements to visualize as well as the number of views.

Figure 3.6: From the left to the right: a 3D image of a tooth, its crown and its rootas defined
using the program described above.
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Deformable Models

4.1 Theoretical aspects

Different types of deformable models were presented in Chapter2. However, they do not exploit

the possible deformations of the model studied. The model used in this research was introduced

by Cooteset al. [12]. Known as the Point Distribution Model (PDM), it describes the average

shape and the characteristic shape variations of a set of examples. Its definition derives directly

from principal component analysis (PCA).

4.1.1 Introduction to principal component analysis

PCA [13], also known as the Hotteling transform and empirical orthogonal functions, is a widespread

method used to reduce the dimensionality of a set of features or to identify newmeaningful un-

derlying variables. Originally introduced by Pearson [14], this method is nowadays used in a

wide range of areas such as climatology, psychometrics or computer science. The central idea of

PCA is to describe the variations of a set of multivariate data in terms of uncorrelated variables,

each of which being a particular linear combination of the original variables.These new variables

are derived in decreasing order of importance such that the first principal component accounts

for as much as possible of the variation in the original data. When the first components account
21
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for most of the variation, they can be used to represent the original data with minor loss of in-

formation, thus providing a reduction in the dimensionality of the data and facilitating further

processing.

Consider a cloud of pointsX = {x0, . . . , xN} wherexi ∈ IRp (0 ≤ i ≤ N). In IRp, we are

looking for an affine subspaceSa of dimensionq < p that minimizes the inertiaI of the cloud of

pointsX (using the usual norm):
I =

N−1
∑

i=0

‖xi − x̂i‖2 (4.1)

Geometrically, we wish to find the bestq-dimensional projection of the data. In this subspace,

we are looking for an originmor as well as an orthonormal canonical basise1, . . . ,eq. mor is

chosen such that it corresponds to the centroid of the cloud of points, i.e.,

mor =
1
N

N−1
∑

i=0

xi = E(x) (4.2)

For a given specimenx, the first and second componentsy1 andy2 are a linear combination of

the original variables, i.e.,

y1 =

p
∑

i=1

ei
1xi = e′1x (4.3)

y2 =

p
∑

i=1

ei
2xi = e′2x (4.4)

Since we are looking for directions of projection, the vectorse1 ande2 are considered as unit

vectors.e1 has to be chosen such thaty1 accounts for the maximum variance.e2 should have the

greatest variance, subject to the fact thate1 ande2 are uncorrelated, i.e.,






































e′2e2 = 1

e′2e1 = 0

(4.5)

Similarly, the jth principal component, defined by

y j = e′jx (4.6)
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has to have the greatest variance, subject to






































e′jej = 1

e′jei = 0 (∀ 0 < i < j)

(4.7)

Consequently, to find the coefficients defining the first principal component, the elements ofe1

must be chosen to maximize the variance ofy1, subject to the normalization constrainte′1e1 = 1 .

Var(y1) = Var(e′1x)

= E[(eT
1 (x − E(x))2]

= eT
1 E[(x − E(x))(x − E(x))T ]eT

1

= eT
1 S e1

(4.8)

with S the covariance matrix of the setX. Introducing the Lagrange multiplierl1, maximizing

Eq.4.8subject toe′1e1 = 1 is equivalent to finding the maximum of

L(e1, l1) = Var(y1) + l1(1− e′1e1)

= eT
1 S e1 + l1(1− e′1e1)

(4.9)

Taking the derivative with respect toe1 and equalizing to zero, we getSe1 = l1e1, thus (l1,e1) is

a couple (eigenvalue, eigenvector) ofS.

Var(y1) = eT
1 S e1

= l1e′1e1

= l1

(4.10)

If the eigenvalues ofS areλ1, . . . , λp in decreasing order,l1 correspond toλ1. Similarly, it can

be shown that theith components correspond to theith eigenvector. The total variance of thep

principal components will equal the total variance of the original variablesso that

p
∑

i=1

λi = trace (S) (4.11)
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and thejth component accounts for a proportion

t =
λi

trace (S)
(4.12)

Rather than computing the principal components using the variance-covariance matrix, they are

usually extracted using the autocorrelation matrixRac given by

Rac =
1

N − 1

N−1
∑

i=0

(xi −mor)(xi −mor)
T (4.13)

This is equivalent to extracting the eigenvectors after standardising every variable to have unit

variance and allows to work with data of different nature and different range of variation.

Figure4.1 illustrates a case wherep = 2. The red dots represent the setX and the green dot

the centroidmor. To reduce the dimensionality from 2 to 1, the optimum projection corresponds

to the orthogonal projection onto the blue line, with direction given bye1.
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Figure 4.1: Example of dimensionality reduction using a PCA.

4.1.2 Statistical model of Cooteset al.

In Cootes’ approach, the shape and deformations of a generic object are expressed statistically

by formulating the shape as a vector representing a set of points that describe the object. The

different specimens are considered as vectors of dimensionM and their points asM variables.

This shape and its deformations (expressed with a training set, indicative ofthe object deforma-

tions) are learnt through statistical analysis. The PCA is used to detect relationships between the
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variables. The first element of the statistical model corresponds to the meanshapem̄ of the set of

teeth, defined bȳm = 1
N

∑N−1
i=0 mi , with N the number of specimens andmi the specimens of the

training set. The second element corresponds to the different modes of variations. These modes

symbolize the ways in which the points tend to move together. They are the eigenvectorsei of

the covariance matrixRac as defined above.

Given the high resolution of the 3D models used, a direct estimation of the eigenvectors of

Rac is totally impossible. Instead of working in the variable (tooth points) space IR3×M (dimension

3 × M), the eigenvectors are defined in the training sample space IRN (dimensionN ≪ 3 ×

M). Simple mathematical considerations [15] give us an immediate correspondence between the

eigenvectors and eigenvalues in these two spaces. The eigenvalues in IR3×M and IRN are identical,

and if (λα,uα) is a couple (eigenvector, associated eigenvalue) in IR3×M, then (λα, vα) is also a

couple (eigenvector, associated eigenvalue) in IR3×N where

vα =
1
√
λα

Xuα (4.14)

and the rows of the matrixX correspond to the tooth points (N × 3M matrix).

The proportion of the total variance explained by each vector is proportional to the corre-

sponding eigenvalues (Eq.4.12). Consequently, the eigenvectorsei associated with the maximum

eigenvaluesλi correspond to the major deformation modes.

Any shape belonging to the training set can be approximated as a sum of the mean model and

a linear combination of the firstNpc modes, i.e.,

m = m̄ +
Npc
∑

i=1

ωiei (4.15)

whereωi are the weights associated with the eigenvectorsei . By constraining everyωi such that

− Kmin,i × λi ≤ ωi ≤ Kmax,i × λi (4.16)

with Kmin,i andKmax,i some constants determined from the variations observed among the sample,
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we can limit the deviations from the mean model.

4.2 Properties of the defined model

4.2.1 Creation of the statistical model

A deformable model representative of an upper right second premolar was built using the 22

teeth of the training set. Table4.1 summarizes the results obtained for the different modes of

deformation.

• Figure4.2represents the eigenvalues of the autocorrelation matrix in decreasing order. The

first eigenvalue is associated with the first mode, the second eigenvalue withthe second and

so on.

• Figure4.3 gives the percentage of variability explained by each of the first eight modes

independently. The first mode alone explains nearly 50% of the variability observed in the

test set, while the modes of degree equal or higher to 9 represent no morethan 1% of the

variability.

• Figure4.4shows the cumulative percentage of variability given the number of components.

Seven components can explain 96% of the variability, whereas thirteen components explain

more than 99% of the variability between the different samples.

Three different approaches are commonly used to determine the number of components toselect:

1. The first rule consists in fixing the percentage of variance the modes have to explain, e.g.,

95% or 99%. This would represent a number of components equal to 7 or 13 repectively.

2. The second rule excludes the components that account for a percentage of the variance

smaller than a given limit, e.g., 1%. This would exludes the modes higher than 9.
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3. The last method consists in plotting the eigenvaluesλi as a function ofi (Figure4.2) and

selecting the number of components as the value corresponding to an “elbow” in the rep-

resentation. In this later case, the number of components could be fixed equal to 4 (first

“elbow”) or 10 (second “elbow”).

These different approaches would lead to a number of components quite different. Consequently,

rather than fixing definitely the number of components, we decided to realize the reconstruction

tests with a number of components lying between 7 and 13. Increasing the number of modes

above 13 would introduce noise in the reconstruction, but hardly any useful information about

tooth shape.

Table 4.1: Eigenvalues of the training set’s autocorrelation matrix and the corresponding amount
of variance accounted for.

Mode Eigenvalues % total Cumulative Cumulative
variance eigenvalues % of variance

1 1.831e+08 48.59 1.831e+08 48.59
2 8.053e+07 21.38 2.636e+08 69.97
3 4.490e+07 11.92 3.085e+08 81.89
4 1.981e+07 5.26 3.283e+08 87.15
5 1.552e+07 4.12 3.438e+08 91.27
6 9.590e+06 2.55 3.534e+08 93.81
7 7.134e+06 1.89 3.606e+08 95.71
8 4.210e+06 1.12 3.648e+08 96.82
9 3.202e+06 .85 3.680e+08 97.67
10 1.917e+06 .51 3.699e+08 98.18
11 1.287e+06 .34 3.712e+08 98.52
12 1.150e+06 .31 3.723e+08 98.83
13 1.036e+06 .27 3.734e+08 99.10
14 6.747e+05 .18 3.740e+08 99.28
15 6.628e+05 .18 3.747e+08 99.46
16 5.323e+05 .14 3.752e+08 99.60
17 4.690e+05 .12 3.757e+08 99.73
18 3.861e+05 .10 3.761e+08 99.83
19 2.584e+05 .07 3.763e+08 99.90
20 2.326e+05 .06 3.766e+08 99.96
21 1.563e+05 .04 3.767e+08 100.00
22 7.250e-09 .00 3.767e+08 100.00
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Figure 4.2: Eigenvalues of the training set’s autocorrelation matrix.
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Figure 4.4: Cumulative percentage of variability given the number of modes.

4.2.2 Influence of the modes

To constrain the statistical model deformations, we need to define the value ofthe constants in

Equation4.16. For each specimenk, the coefficientsyk
i (1 ≤ i ≤ 13) of the decomposition were

computed (see Eq.4.6). Table4.2 indicates, for each modei, the minimum and the maximum

value of
yi

k

λi
. Based on this table, the constantKmin,1 was set to 0.3 andKmax,1 to 0.8. For the

modes superior or equal to 2 , the constantKmin,i andKmax,i (2 ≤ i ≤ 13) were both set equal to

0.55.

Figures4.5 to 4.8 show the influence on the first four modes of the decomposition. In each

figure, the mesial, buccal and occlusal views are represented. The tooth in the middle represents

the mean shape. Teeth on both sides represent the extreme variations than can be induced by a

given mode. The tooth on the left shows the new shape when theith mode is added weighted by

a coefficient−Kmin,i × λi (1 ≤ i ≤ 4), whereas the tooth on the right shows the new shape when

the ith mode is added weighted by a coefficientKmax,i × λi .

The first mode has a huge influence on the size of the teeth and also the global shape of the

root. The second mode has a much smaller influence on the tooth height. However, this mode will
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Table 4.2: Maximum and minimum values of the modes weights for the training set’s specimen.

Mode Minimum Maximum
1 −0.6304 0.2394
2 −0.4914 0.3850
3 −0.3719 0.4139
4 −0.4669 0.3591
5 −0.3804 0.3715
6 −0.4995 0.3606
7 −0.3494 0.5171
8 −0.3232 0.3801
9 −0.4454 0.3633
10 −0.3719 0.4139
11 −0.4669 0.3591
12 −0.3804 0.3715
13 −0.4995 0.3606

have a great impact on the width of the root. The other modes have different influences, more or

less similar, that cannot always be simply described. These constraints willhelp avoiding getting

shapes that do not respect the statistical shape variations during the reconstruction.
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Figure 4.5: Influence of the first mode of decomposition on the mean shape.

m̄ − Kmin,1e1 Mean Shape m̄ + Kmax,1e1

Mesial

Buccal

Occlusal

m̄ − Kmin,2e2 Mean Shape m̄ + Kmax,2e2

Mesial

Buccal

Occlusal

Figure 4.6: Influence of the second mode of decomposition on the mean shape.
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m̄ − Kmin,3e3 Mean Shape m̄ + Kmax,3e3

Mesial

Buccal

Occlusal

Figure 4.7: Influence of the third mode of decomposition on the mean shape.

m̄ − Kmin,4e4 Mean Shape m̄ + Kmax,4e4

Mesial

Buccal

Occlusal

Figure 4.8: Influence of the fourth mode of decomposition on the mean shape.
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4.3 Definition of crown/root parameters

To reconstruct a tooth, one could try to deform the entire model to match the shape. However, the

computation time would be quite high. If the fragments available correspond neither to the entire

(or nearly entire) crown nor to the entire root, deforming the global model isthe only possibility

to recover the tooth shape. Except for forensic medicine, the specimen to reconstruct is usually

of one of these two forms: either a root only or a crown only (e.g., dental cast or patient’s tooth

digitized using an intra-oral camera). That is why after defining the statistical model, two other

statistical models were derived, one for the root, the other for the crown,in order to exploit this

complementary information.

• The crown (or the root) of the mean shape was extracted using the method introduced

Section3.3.

• New modes of deformation (vectorsei) were also determined using the points of the mean

shape belonging to the crown (or the root).
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Registration process

Once the statistical model has been defined, the patient’s tooth shape is inferred by computing

the optimal rigid and elastic transformations of the mean model, as described by Fleuteet al.[9].

We aim at matching the patient’s crown (or root) with the crown (or root) of themean shape by

determining the contribution of the different modes of the statistical model. The crown (or root)

shape variations with respect to the mean model are then used to infer the root shape.

5.1 Rigid Registration

In order to reconstruct the target tooth, an intermediary step is included before the final deforma-

tion. A rigid registration (see Section2.1.1) is performed to align the mean shape with the target

(the target is considered as fixed). Although not compulsory, this step can greatly decrease the

running time of the reconstruction and improve the final results.

A manual rigid registration (optional) can be performed (the user can rotateand/or translate

the mean shape through an interface). If the poses of the two teeth are radically different, this

step becomes crucial. The Iterative Closest Point (ICP) algorithm is then used to perform the

best possible alignment between the two models. This algorithm was introducedby Chen and

Medioni[16] and Besl and McKay[17]. This method has the advantage of being very fast as long
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as the process to find the nearest points from one volume to the other is effective. However,

local minima can be an issue, which makes the manual rigid registration compulsory when the

orientations of the two volumes are highly different.

Principle of the ICP algorithm:

Given two sets of 3D points,VM = {m1, . . . ,mM} considered as fixed andVD = {d1, . . . ,dD},

we want to find the optimal rigid registration consisting of a rotationRICP and a translationT ICP

which minimizes the following cost function:

E(RICP,T ICP) =
M
∑

i=1

D
∑

j=1

wi j ‖mi − (RICPd j + T ICP)‖2 (5.1)

wherewi j = 1 if the ith point of VM and the jth point of VD are corresponding points, and 0

otherwise.

The ICP algorithm calculates the optimal rotation and translation iteratively. At each stepk

of the algorithm, the set of closest points is computed and thenRk
ICP andTk

ICP are determined.

That leads to a new setVD calledVDk after each transformation. A quaternion based-algorithm

is used to perform the solid registration. The rotation is represented using aquaternionqR =

[q0,q1,q2,q3]t, whereq0 ≥ 0 andq2
0 + q2

1 + q2
2 + q2

3 = 1. The corresponding 3× 3 rotation matrix

RICP is generated according to the following scheme:

RICP =





















































q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
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1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
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1 − q2
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(5.2)

The translation is represented by a vectorqT = [q4,q5,q6]. Both the rotation and the translation

can be summarized by a single vectorq = [qR |qT ]. To determineYk, the set of nearest neighbors

of every point ofVDk to VM at stepk, we opted for the use of a Kd-tree (described in AppendixC)

with d = 3. A Kd-tree is a data structure commonly used for searching in a space of dimension

d. Its particular hierarchy gives a fast access to the nearest neighborof every point ofVDk to VM.
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To computeqk, the quaternion at stepk, we first defineQ(ΣDM):

Q(ΣDM) =































trace(ΣDM) ∆t

∆ ΣDM + Σ
t
DM − trace(ΣDM)I3































(5.3)

with µD andµM the “centers of mass” of the setsVDk andVM,

ΣDM the cross-covariance matrix is given by

ΣDM =
1
D

D
∑

i=1

[(di − µD)(mi − µM)t] (5.4)

A = ΣDM − Σt
DM and∆ = [A23,A31,A12]t.

qk
R = [qk

0,q
k
1,q

k
2,q

k
3]t is the unit eigenvector corresponding to the maximum eigenvalue of

Q(ΣDM) andqk
T = µM − Rk

ICPµD. The algorithm terminates when the change in mean-square

error (Eq.5.1) falls below a preset threshold. The assumption is that the correspondence is

correct during the last iteration.

OnceRICP andT ICP have been calculated, the transformation is inverted in order to move

the deformable model toward the target1.

Figure5.1represents the first four steps during the rigid registration of a tooth root (red cloud

of points) with the mean shape (green and white 3D meshes, where the white mesh represents

the initial position of the mean shape and the green one represents the mean shape after rotation

and translation). The top left image shows the first iteration of the ICP algorithm and the bottom

right image the fourth one (last iteration).

5.2 Elastic Registration: Optimizing the Modes’ Weights

Once the two volumes have a similar position and a similar orientation, the statistical model is

used to reconstruct the tooth. The deformable model used here corresponds either to the global

model or to one of the two partial models (crown or root) if applicable. Duringthe elastic

1Moving the mean shape directly toward the target would also be possible. However, the density of the mean shape
is (normally) much higher than those of the target and this would slow down the registration process. Both registration
schemes lead to similar results
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Figure 5.1: Automatic rigid registration using the ICP algorithm.

registration, the values of the different modes as well as the parameters of the rigid registration

are optimized in order to warp the mean shape onto the target.

The optimum parameters can be computed through the minimization of a merit functionE

to measure the goodness-of-fit. The merit function used here (Equation5.5) is the simple mean-

squared distance2 between the crowns (or roots) of the two volumes:

E(p) =
Mpdm−1
∑

i=0

min(‖d j −mi‖2)1≤ j≤K

with m = R(m̄ +
Npc
∑

l=1

ωl el) + T

(5.5)

wherep is a vector representing the different parameters to adjust,Mpdm the number of points

of the PDM, K the number of points of the target tooth,d the vector representing the target

(dimension 3× K), T a translation vector,R a rotation matrix, andel the principal components

obtained in Section4.2.1(Npc corresponds to the number of principal components selected).

We need to estimate the six components that define the rigid-body transformationbetween

the two volumes (3 parameters forT and 3 parameters forR) as well as the optimum weights

2Euclidean distance
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for the Npc principal components, i.e., we have to solve an optimization problem having only

6+ Npc parameters. As mentioned in Section4.2.2, the number of modes to consider belongs to

the range 7 to 13, leading to a number of parameters to optimize between 13 and 20.

5.2.1 Choice of the optimization scheme

The problem at hand corresponds to the constraint minimization of a non-linear function. Differ-

ent schemes were envisaged to realize the optimization [18].

Descent algorithms Steepest descent algorithms (SDA) are extremely simple to implement.

However, they are both unstable and inefficient, due to the slow rate of convergence. Con-

sequently, they are never used alone for complex optimization problems.

Simulated annealing algorithms (SAA) SDA as well as the other methods described below

only accept the direction of minimization if it leads to a decrease of the objectivefunc-

tion E. On the contrary, SAA accept changes leading to a decrease with a probability

P = exp(−Ek+1−Ek
T ). The parameterT is called temperature, by analogy with the annealing

process of metals and glass. Its value is decreased progressively. A high temperature will

lead to higher chance of moving to an uphill position. The higher the number ofitera-

tions, the smaller the probability to choose a direction increasing the objective function.

Consequently, SAA’s major advantage is to avoid deep minima. However, this method can

become quite slow or inefficient if the initial value ofT is not chosen properly. The search

process varies between the different SAA, and can take the form of a random walk. This

method is usually used when we have little information about the function’s properties

such as continuity and derivability.

Newton’s method Newton’s method is based on a second order Taylor series expansion ofthe

function to minimize about the current pointxk. This leads to a parabolic approximation

of the function atxk. Finding the minimum of this parabola is then straightforward. The
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process is repeated upon convergence. Although very powerful, this method requires the

Hessian matrix to be positive definite. Furthermore, the computation and the inversion

of the Hessian matrix is extremely time-consuming. The Gauss-Newton method is an

extension of Newton’s method that approximates the Hessian to speed up the algorithm.

These algorithms work fast near the optimal solution, but poorly far from itor when the

Hessian is ill-conditioned, and can lead to local minima.

Levenberg-Marquardt algorithm The Levenberg-Marquardt method (described in AppendixA)

can be considered as a cross between the Gauss-Newton and the steepest descent algo-

rithms. The continuous switch between these two schemes leads to an algorithm that is

both robust and efficient, and particularly suited for least mean squares minimization.

Contrary to Fleuteet al.[9], we chose to perform the optimization ofE(p) using the Levenberg-

Marquardt algorithm. Similar to other gradient methods, e.g., conjugate gradient algorithm and

Newton-Gauss algorithm, the Levenberg-Marquardt algorithm can lead tolocal minima. To get

round this difficulty, the modes are progressively added. Since the original pose is close to the

optimal one and no prior information exists about the weight values, all the parameters are set

to zero, and the first optimization is done. After each adding, the optimizing process is iterated,

keeping the values computed before as the initial parameters. To compute the minimum distances

(and consequently the gradient), two different options were tested, with and without the use of a

precomputed distance map.

As mentioned before, the modes coefficientωi are all constrained in the range [−Kmin,i × λi ,

+Kmax,i × λi ]. No constraint is added for the translation vector components. The rotationangles

around every axis of the coordinate system are limited to[−3◦,+3◦].
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5.2.2 Optimization using a distance map

Computation of the distances

Computing the minimum distances is the most computationally expensive part of the minimiza-

tion. Here, distances were approximated using an octree-spline distance map (described in Ap-

pendixB). The distance map is computed using the points of the target. Since the mean shape is

deformed after each deformation, computing the distances on the mean shapeis impossible. Our

objective function is slightly different from those introduced in Equation5.5. Indeed, the sum-

mation is not realized over the target’s points, but over the mean shape. Theoctree comprises 6

levels of decomposition. The size of the terminal octants depends on the size of the target, those

of the mean shape as well as the relative position of the two volumes (since the final octants’ size

corresponds to1
64 times the size of the original bounding box enclosing the two volumes). Since

the pose is nearly optimal at the beginning of the minimization, each terminal octanthas a size

inferior to 400µm. Due to the resolution of the initial data (after decimation, the teeth of the

training set have a resolution of 105µm), this resolution seems to be the most appropriate.

Computation of the gradient

To compute the partial derivatives with respect to every component, we use Ridder’s method of

polynomial extrapolation [19]. Let us consider the derivative of a functionf at x (x scalar).

f ′(x) = lim
h→0

f (x+ h) − f (x)
h

(5.6)

Taking anh small enough to compute this derivative could lead to an inaccurate result due to the

fact that a computer cannot store most numbers with total accuracy and inevitably introduced an

approximation. Instead of taking a fixed value forh, Ridder tries to extrapolatef ′(x) whenh→ 0.

Polynomial extrapolations of higher and higher order are produced, witha value ofh smaller and

smaller. The termination criterion is reached when either the estimated error is less than a preset
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error tolerance, the error estimate is significantly worse than the one previously obtained or the

maximum order is reached. Ridder’s method derives directly from the Richardson extrapolation

(the general idea of this method was first published by Bulirsch in [20]). Though this method

leads to excellent results, its main drawback is the large number of function evaluations.

5.2.3 Optimization without distance map

Computation of the distances

For each point of the target, its closest point on the mean shape after modification by the actual

parameters is determined, giving immediately the minimum distance. The set of closest points

is computed using Kd-trees (AppendixC), a method that was already used during the ICP-based

rigid registration. It was decided to look for the closest points of the target,since its density is

supposed to be much lower than those of the mean shape. Consequently, thissecond method

requires constructing a new Kd-tree3 after each iteration of the Levenberg-Marquardt algorithm.

Computation of the gradient

Contrary to the previous case, a closed-form expression for the gradient of E(p) becomes avail-

able. We first introduceEi(p):

Ei(p) = min(‖d j −mi‖)1≤ j≤K (5.7)

ThenE(p) =
∑Mpdm−1

i=0 Ei(p) and∇E(p) =
∑Mpdm−1

i=0 ∇Ei(p). We also introduceT = {Tx,Ty,Tz}

andθx, θy, θz the rotation angles around~x, ~y,~z respectively4. Finally, we define the setI such that

I ( j) is the closest point’s index of theith target point.

Derivatives with respect to the modes weights:

δEi

δωs
= 2







































m̄ +
Npc
∑

k=1

ωkekI (i)



















T

+ (T − di)
T R





















· ekI (i) · di (5.8)

3Kd-Tree: construction time:O(dMpdm ln Mpdm), with d the space dimension, hered = 3.
4The rotation matrix corresponds to the productRzRyRx, whereRi is the rotation around~i.
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Derivatives with respect to the translation vector’s components:

δEi

δTx
= (A1,0,0)Tdi ,

δEi

δTy
= (0,A2,0)Tdi and

δEi

δTz
= (0,0,A3)Tdi

with A = 2



















T + R
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(5.9)

Derivatives with respect to the rotation angles:

δEi

δθa
=
δg
δθa

with g = 2(T − di)
T R



















m̄ +
Npc
∑

k=1

ωkekI (i)



















and a ∈ {x, y, z}
(5.10)

Deriving a closed-form expression for theδEi
δθa

is then straightforward.

Equations5.8, 5.9 and5.10possess common factors. Consequently, the computation of the

partial derivatives with respect to all the parameters is extremely fast.

5.3 Generation of a 3D mesh

As mentioned before, the target is a simple cloud of points and the model a 3D mesh (obtained

using a marching cube algorithm [21]). However, contrary to Fleuteet al. [9], we do not use this

information during the optimization process (neither during the rigid registrationnor during the

solid one). Due to the high density of the mean shape, the distance from a point of the target to

the closest point on the mean shape gives an excellent approximation of thedistance from a point

of the target to the surface of the mean shape. Once the registration process is ended, the output

consists in a 3D mesh of high density (those of the deformable model, i.e., approximately 16,000

points).

5.4 Framework

Figure5.2 summarizes the entire process. The outline phase of the algorithm (construction of

the statistical model) was implemented in Matlab, except for extraction of the crowns or roots,
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Figure 5.2: Global tooth shape recovery process.

which was implemented in C++ (Figure3.5). The GUI shown in Figure5.1 was developed in

C++ in order to implement the inline phase of the reconstruction. It allows us to:

• Realize the registration of a specimen with the mean shape manually (rotation, translation)

and possibly scaling.

• Launch the reconstruction using either one of the two methods described above. The user

has the possibility to visualize the results step by step in order to observe every iteration

of the ICP algorithm or evaluate the effect of every component on the tooth shape, or to

launch the entire process.

• Manipulate the different objects of the scene (e.g., translation, rotation or zoom in and out).
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Experiments and Results

6.1 Experiments

6.1.1 Tests performed

Different experiments were conducted in order to investigate the performance and capabilities of

the method implemented. In this chapter, the two optimization processes defined in Chapter5

will be referred as methods KD and OD (the first method refers to the optimization using a kd-

tree decomposition (KD) and without distance map, the second method to the optimization using

an octree-spline (OD) distance map).

Influence of the number of modes:This test aims at choosing the optimal number of modes for

the reconstructions. As mentioned earlier, the number of modes can play an important part in the

quality of the reconstruction. An insufficient number of modes would limit the deformations of

our mean model and prevent it taking on the exact shape of the target, whereas a high number of

deformation modes would slow down the reconstruction and above all introduce a damageable

noise.

Leave-one-out test on the training set:The aim of this test is to validate the capabilities of the

method to reconstruct a tooth given its root or its crown. For each of theN teeth belonging to the
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training set, the following test is realized:

1. The PCA is first performed onN− 1 teeth (excluding toothTi) and a new statistical model

is defined (mean shape, modes for the entire tooth as well as partial statisticalmodels for

the root and the crown).

2. Ti ’s crown and root are extracted.

3. The new modes defined are used to reconstructTi given its crown (new modelTCi) and its

root (new modelTRi) .

4. The distance between the toothTi before (entire shape) and after the reconstruction (TCi

or TRi) is then calculated.

The statistical modelSM defined using the entire set cannot be used to reconstruct the teeth in

the leave-one-out test. Indeed, we aim at testing the generalization capacity of this method, i.e.,

its capacity to perform well on unseen targets. Consequently, testing the system withSM would

lead to overoptimistic results. A good generalization can occur only if the data set is sufficiently

rich. This test should allow us to determine the validity of the method and whether ornot the

specimens collected present sufficient variability in their size and shape.

Test using patient’s data: In this experiment, we investigate the potential of this method when

dealing with patient’s data.

Use of feature points:We then investigate the use of feature points to improve the results of the

reconstruction when we only have root information.

Influence of the target resolution on the results:The results presented in the leave-out-one

test section were obtained using a tooth whose resolution is similar to the resolution of the mean

shape. In this part, the effect of a decrease in the target resolution is studied.

Computation time: In this experiment, we present the differences observed in the computation

time between the two methods used (with or without distance map).
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Number of specimens necessary to build the statistical model:22 specimens were used during

this study. In this experiment, we evaluate experimentally the number of teeth necessary to get a

good knowledge of the variability among second upper right premolars.

6.1.2 Error measure

In order to check the validity of the reconstruction, we need to define an estimator to compare the

teeth with their reconstructed shapeTReci (= TCi or TRi). Though the Euclidean distance would

give a good approximation of the distance between the two volumes due to the high density of

TReci , it was decided to use the Hausdorff distance as described by Aspertet al. in [22]. The gain

in accuracy should be minor, but this metric is more appropriate for a comparison of 3D meshes.

Its advantages are to account for the shape of the volumes as well as theirrelative position.

The Hausdorff distance (HD)d(S,S′) between two surfacesS andS′ is given by

d(S,S′) = maxd(p,S′), p ∈ S

with d(p,S′) = min‖p− p′‖2, p′ ∈ S′
(6.1)

where‖ ‖2 denotes the Euclidean norm1 andp andp′ are points in IR3.

Since maximin functions are asymmetric, the symmetrical Hausdorff distanceds is used in-

stead of the simple HD.
ds(S,S′) = max [d(S,S′),d(S′,S)] (6.2)

We also introduce the mean distancedm and the root mean square error (RMS)drms between two

surfacesS andS′. The corresponding symmetric distances will be used later to compare the

teethTi with TReci .

dm(S,S′) = 1
|S|

"

p∈S

d(p,S′)dS (6.3)

drms(S,S′) =
√

√

√ 1
|S|

"

p∈S

d(p,S′)2dS (6.4)

1It could be any other metric.
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To test if the respective position of the two models is optimal, an iterative scheme from coarse

to fine resolution was used. The translation minimizing the distance between the twomodels

was first computed and then the optimal rotation. The coordinates of the translation vector are

represented as a point in a 3D grid whose points regularly spaced. The procedure is as follows:

1. The translation is applied to the reconstructed tooth.

2. The mean HD between the two volumes is computed. If this distance is smaller thanthe

previous one, the new value is stored.

3. Once all the points of the grid have been tested, the process is iterated using a new grid

centered on the optimal translation just defined.

Once the translation has been computed, the optimal rotation is then determined using the same

scheme. Figure6.1 illustrates the method’s framework (Nb_It represents the number of itera-

tions). The tests did not lead to a significant difference in the pose of the original models and the

reconstructed ones. Consequently, all the distances mentioned below correspond to a Hausdorff

distance estimation without supplementary solid registration.

6.2 Influence of the number of modes

The number of modes necessary for the reconstruction was determined bychoosing at random 3

teeth from the training test and reconstructing them using either the root or the crown. Then, the

symmetric Hausdorff distance was estimated. The reconstruction was done using method KD.

The method used to define the statistical models is similar to the leave-one-out method presented

in Section6.1.1.

As shown by Figure6.2and6.3, choosing the optimal number of modes is not obvious. For

the reconstruction using the crown, increasing the number of modes can either improve (tooth c),

deteriorate (tooth a) or even have no effect on the reconstruction (tooth b). The results obtained
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Update parameters
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No

Apply optimum translation
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Figure 6.1: Framework for the pose verification.

using the roots present different variations, but no global tendency either.

It was decided to set the number of modes equal to 7. Though this may not bethe optimal

choice for all the teeth, it can prevent the dramatic effects that are occasionally observed on the

tooth shape when it is greater than 8 (if the reconstruction is made using the root).

From this point on, all the reconstructions mentioned were performed usingseven modes of

deformation, unless otherwise mentioned.

6.3 Leave-one-out tests

The results presented here were obtained following the methodology introduced in Section6.1.1.
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Figure 6.2: Influence of the number of modes on the reconstruction using the crown only.
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Figure 6.3: Influence of the number of modes on the reconstruction using the root only.

6.3.1 Tooth reconstruction based on the crown only

TablesD.3 andD.4 present the results obtained for the leave-one-out tests using the crownonly.

For each specimen, the tables indicate the minimum distance to the tooth after reconstruction,

the maximum distance, the mean distance as well as the mean square error (RMS). Major results

are summarized in Figures6.4and6.6. Figures6.5and6.7show, from the top to the bottom, the

results obtained in the best case, the worst case and the general case.The gray mesh represents

the tooth after reconstruction and the red solid the original volume.
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Specimens
Figure 6.4: Minimum, mean, and maximum HD for each of the 22 specimens, duringthe leave-
one-out test based on crown information (method KD). Extrema are represented by the red dots
and mean values by the blue dots.

Figure 6.5: Examples of teeth reconstructed using crown information only (method KD). From
the top to the bottom, the teeth correspond to the specimens 20, 6 and 2.
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Specimens
Figure 6.6: Minimum, mean, and maximum HD for each of the 22 specimens, duringthe leave-
one-out test based on crown information (method OD). Extrema are represented by the red dots
and mean values by the blue dots.

Figure 6.7: Examples of teeth reconstructed using crown information only (method OD). From
the top to the bottom, the teeth correspond to the specimens 12, 6 and 2.
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6.3.2 Tooth reconstruction based on the root only

Figures6.8 and6.10present the results obtained for the leave-one-out tests using the root only

(numerical results can be found in TablesD.3 andD.4). Figure6.9 and Figure6.11show, from

the top to the bottom, the results obtained in the best case, the worst case and the general case.

The gray mesh represents the tooth after reconstruction and the red solid the original volume.
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Figure 6.8: Minimum, mean, and maximum HD for each of the 22 specimens, duringthe leave-
one-out test based on root information (method KD). Extrema are represented by the red dots
and mean values by the blue dots.

Figure 6.9: Examples of teeth reconstructed using root information only (method KD). From the
top to the bottom, the teeth correspond to the specimens 17, 11 and 2.
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Figure 6.10: Minimum, mean, and maximum HD for each of the 22 specimens, during the leave-
one-out test based on root information (method OD). Extrema are represented by the red dots
and mean values by the blue dots.

Figure 6.11: Examples of teeth reconstructed using root information only (method OD). From
the top to the bottom, the teeth correspond to the specimens 5, 20 and 2.
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6.3.3 Discussion

Reconstruction using the crown

As shown by TablesD.1 andD.2, and Figures6.4to 6.7, the results are globally satisfactory. The

two methods lead globally to results of a similar quality, though the minimum, mean, maximum

and RMS Hausdorff distances between a given original specimen and its reconstructed shapecan

vary according to the method used. This is due to the multiple approximations realized when

using method OD.

For all the teeth in the test set, we have a perfect match between the crown ofthe original

teethTi andTCi ’s crown. Figure6.12shows the Hausdorff distance betweenTi andTCi for the

teeth of Figure6.5, represented onTCi . For the different teeth, the higher distances will usually

appear at the extremity of the root, and never near the crown. The small distances observed in

the crown area prove that the degrees of freedom of the reconstruction algorithm are sufficient

for the crowns of the mean shape and those ofTi to match and that no problem of local minimum

is encountered. On the contrary, the root of the reconstructed tooth is only an approximation of

the original root in agreement with the statistics built. Therefore, the results are limited by the

existence of a strong correlation between the different parameters describing the shape of a tooth

and in particular by the statistical possibility of retrieving the root parameters given only crown

information.
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Figure 6.12: Distribution of the Hausdorff distance on the reconstructed shapes (reconstruction
based on crown data). Distances are given in mm.
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Globally, this method gives a good approximation of the tooth height and those of the tooth

width. This proves that the model built gives a good knowledge about the variability among

upper right second premolars, and that crown information contains statistically root information.

However, one particular tooth in the training set lead to results far from those expected using

anyone of the two methods. Indeed, the reconstruction in based on a statistical representation.

Consequently, outliers will lead to erroneous results. For most teeth, thereexists a correlation

between the height and width of the tooth, and the size of the crown (parameters such as shape

or width). When this correlation is not respected, the method fails. In the case of specimen 6,

the crown is extremely large compared to its height: this leads to a reconstructedmodel that is

much higher than the original one (Figures6.5and6.7, middle tooth). The only way to be totally

sure that this correlation is respected would to compare the output of the reconstruction with a

2D view of the tooth as shown in Section6.4. If any consideration, such as the external aspect

of the tooth or the comparison with an x-ray, makes us think to this correlation does not exist,

we would have to use a method where the length and width of the tooth could be introduced as

criteria. These criteria would be considered as constraints during the optimization process but

they might considerably slow down the reconstruction.

Reconstruction using the root

As shown by TablesD.3 andD.4, and Figures6.8to 6.11, the results are far from being reliable.

The Hausdorff distances between the original teeth and their reconstructed versions using root

information are smaller than those obtained during the reconstructions using crown information,

but are higher with respect to the part to infer, i.e., crown in the first caseand root in the second

case.

Figure 6.13 shows the Hausdorff distance betweenTi and TRi , represented on the recon-

structed tooth, for two different specimens. We notice that even the roots of the target and the

mean shape do not always match correctly (cf. tooth on the left).
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Figure 6.13: Distribution of the Hausdorff distance on the reconstructed shapes (reconstruction
based on root data). Distances are given in mm.

The major problems comes from the root shape. Its simplicity makes the matching process

more difficult. Indeed, as shown in Figure6.14, when one tries to minimize the distance between

the crown and the mean shape by summing over the root’s points, the optimization process may

lead to satisfactory results if the target (root only) is bigger than the mean shape (root only). In

this case,A will matchC andB will matchD. On the contrary, if the root is smaller, the matching

will not work: C will match E instead ofA, andD will match F instead ofB. Consequently, the

root of the reconstructed tooth will be much higher than the original model. One possibility to

avoid this problem is the use of feature points on both the target and the mean shape.

Figure 6.14: Process of matching two roots. The black tooth represents themean shape and the
red tooth the target.
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The root brings less information about the tooth global shape than the crown. This lack

of information prevents us from inferring the crown shape correctly. Increasing the number of

deformation modes usually leads to a higher accuracy, but can also bring too much variability

into the reconstruction.

6.4 Reconstruction using patient’s data

Another test was then realized using real data. Though the test realized above is realistic in

forensic medicine, data used by orthodontists usually present losses at the interstices as shown

by Figure6.15, whatever the segmentation method used to extract the teeth crown.

A study model was digitized using a laser scanner Cyberware Rapid 3D Digitizer Model

3030R-HIREZ. The upper right second premolar was then extracted using Kondoet al.’s method

of segmentation [23] (Figure6.16a) and the 3D shape of the tooth obtained (Figure6.16b). De-

spite the important loss of information introduced by the segmentation, the reconstruction leads

to an excellent match between the original crown and those of the computed tooth. The recon-

structed tooth was then combined with the orthopantomogram of the same patient (Figure6.16c)

to test the validity of the shape reconstruction. As shown in Figure6.16d, the method proposed

leads to a very good estimation of the tooth shape and size.

Figure 6.15: The segmentation of teeth from a dental cast affects the crown shape: some informa-
tion is lost on the buccal view (left image) and distal view (right image) of the crown extracted.
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(a)

(b)

(c)

(d)

Figure 6.16: Process of fitting a tooth on a dental cast. (a) Crown of the tooth after segmentation.
(b) Tooth after reconstruction (gray surface) and original crown (blue surface). (d) Patient’s OPG.
(d) X-ray of the patient’s tooth matched with the tooth reconstructed (blue).

59



Chapter 6 - Experiments and Results

6.5 Reconstruction using feature points

In order to improve the reconstruction results using root information, a testwas performed using

feature points on both the mean shape and the target. Figure6.17shows their location. The left

image, which corresponds to the projection of the mesial view of a root, represents the position

on the 3 feature pointsF1, F2 andF3 for a given tooth. The right image represents a cross-section

of the root parallel to the occlusal view and the exact location ofF2 andF3.

F2 F3

F1

F2 F3

Figure 6.17: Location of the feature points for a reconstruction using root information.

These feature points are automatically defined for the two teeth (F1t, F2t andF3t for the target

andF1m, F2m andF3m for the mean shape after deformation). In order to enforce the correspond-

ing feature points to match, a penalty term is added to the objective function. Equation5.5 is

modified such that it becomes

E(p) =
Mpdm−1
∑

i=0

min(‖d j −mi‖2)1≤ j≤K +W
3
∑

j=1

‖F jt − F jm(p)‖2 (6.5)

The weightW in Equation6.5has to be chosen such that it penalizes the objective function when

the feature points are far apart without minimizing too much the influence of the first term (i.e.,

the influence of the other points of the target).

Figure6.18shows the effect of adding feature points on the reconstruction. The first three

teeth images show the result of the reconstruction without the use of featurepoints. The three

images below represent the result of the reconstruction using feature points in the same conditions

as previously (same number of modes, same algorithm) with a weightW = 150.
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Figure 6.18: Effect of adding feature points on the reconstruction.

The use of features points ensures a better correspondence betweenthe roots of the two teeth

(original tooth and reconstructed one). This leads to a better determination of the crown shape.

The different experiments carried out showed a slight improvement in the shape determination

(the influence is more or less important among the specimens). However, using feature points is

not always sufficient to get a good approximation of the tooth shape. As mentioned earlier, the

root brings little information about the tooth shape, and the reconstructed tooth may be a poor

approximation of the original tooth. We can also notice that the use of featurepoints has nearly

no impact on the reconstruction time.

6.6 Influence of the number of specimens used to define the statisti-
cal model

As mentioned previously, 22 specimens were used to build the statistical model. In this

experiment, we evaluate the influence of the number of specimens used on thereconstruction.

Different leave-one-out tests (using crown information) were made using a numberN of

specimens between 2 and 22. For each value ofN, p groups were constituted randomly (the value

of p as a function ofN can be found in Table6.1). The mean of the mean Hausdorff distance
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was then evaluated for each value ofN and can be visualized in Figure6.19. All the experiments

were made using the same algorithm (method KD) and 7 modes of deformations except for the

tests involving a number of teethN strictly inferior to 8, where the maximum number of modes

available was used2. More than 10 teeth seem necessary to get a good precision during the

reconstruction. In other words, 10 specimens give a good knowledge about the variability among

the kind of tooth tested. However, the variance observed among the resultsdecreases slowly

whenN increases, leading to more predictable results for a higher value ofN. Combining these

two informations, 12 teeth would appear to be sufficient.

Table 6.1: Number of tests realized given the number of specimensN.

Number or teeth per group (N) 2 4 6 8 10 12 14 16 18 20 22
Number of groups (p) 12 10 8 6 5 4 3 3 3 2 1

2 6 10 14 18 22
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Figure 6.19: Influence of the number of specimens used to build the statisticalmodel.

6.7 Computation time

The computation time for the two methods is now compared (using a Pentium IV 2.4 GHz). It in-

cludes the entire registration process, i.e., both the rigid and the elastic registrations. Figure6.20

2Given a set ofN specimens, each statistical model is built using a set ofN−1 specimens during the leave-one-out
method. The modes of deformation correspond to the eigenvectors of the (N−1)×(N−1) set’s autocorrelation matrix.
Consequently, onlyN − 1 modes can be defined.
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shows the computation time measured during the leave-one-out test. For the reconstruction using

the crown or the root, method KD is much faster than method OD. The reconstruction involving

the crown takes on average only 26.3 seconds for method KD, against 259 seconds for method

OD, and 9.6 seconds when dealing with root information against 51.8 seconds for method OD.

Though the distance map allows accessing the minimum distances very quickly, method OD is

greatly penalized by the computation time of the gradient. Furthermore, method ODis more

affected by an increase in the density of the statistical model than method KD.

Table 6.2 gives the average complexity of the elastic registration for the two algorithms.

The average complexities were either obtained by direct estimation or found inthe litterature

[24][25]. However, comparing the computation time for the two methods based on the complex-

ity only is impossible due to the high number of iterations introduced during some steps, e.g., the

computation of the gradient for method OD. When using method KD, the computations related

to the Levenberg-Marquardt algorithm represent a high proportion ofthe computation time. On

the contrary, the slower steps in method OD correspond to the computation of thedistance map

and those of the gradient, and the computations related to the Levenberg-Marquardt algorithm

represent only a minor percentage of the total computation time. This makes method OD more

sensible to an increase in the number of points of the statistical model and thoseof the target.

Table 6.2: Average complexity of the elastic registration for the two algorithms.

Method KD Method OD
Prior to the optimization process.

Precomputed distance map O(Mpdmlog Mpdm)
For every iteration of the iteration process.

Kd-tree decomposition O(K logK)
Gradient computations from O(MpdmlogK) to

O(MpdmK)
O(K log Mpdm)

Distance estimations from O(MpdmlogK) to
O(MpdmK)

O(K log Mpdm)

Levenberg-Marquardt algorithm
(other computations)

O(1) O(1)

Application of the transformation O(K) O(K)

63



Chapter 6 - Experiments and Results

5 10 15 20
0

50

100

150

200

250

300

Specimen

C
om

pu
ta

tio
n 

tim
e 

in
 s

ec
on

ds

Method I (crown)
Method II (crown)
Method II (root)
Method I (root)

Figure 6.20: Computation time of the two methods.

6.8 Effect of the target’s density on the reconstruction

All the results presented above involve specimens whose resolution is closeto the resolution

of the statistical model. However, such a precision is not always available.In order to study

the influence of the density, the crown of a specimen was decimated leading to new specimens

S0, . . . ,S5 having a number of points varying from 2,500 to 16,000. Each of these specimens was

used to reconstruct the original tooth with method KD. Figure6.21shows the Hausdorff distance

between the original tooth and its reconstructions based onS0, . . . ,S5.
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Figure 6.21: Influence of the density on the reconstruction accuracy.

64



Chapter 6 - Experiments and Results

Decreasing the density of the target does not seem to have a real influence on the results in

the range studied. As long has the cloud of points gives a good information about the global form

of the crown, the quality of the output is not really affected. Similar results were observed using

other specimens.

6.9 Summary

The different tests realized helped us determining the optimal number of modes necessary to

perform the reconstructions (Section6.2) as well as the minimum number of specimens required

to built a statistical model for the kind of tooth tested (Section6.6). 12 specimens would appear

to be sufficient and increasing the number of specimens further may not improve the results.

Leave-one-out tests (Section6.3) proved that the statistical model built gives us a good

knowledge about the variability among upper right second premolars and that both methods

investigated lead globally to similar results, when using either crown or root information.

The approach proposed proved to be efficient to reconstruct a tooth given crown information

(Section6.3.1), even if information about the crown shape is lost due to the segmentation process

when using patients’ dental casts (Section6.4) or when the density of the patients’ teeth are much

lower than those of the specimens used (Section6.8).

When using root information, the system failed to retrieve the teeth correct shape (Sec-

tion 6.3.2). The variability observed among the results obtained makes this method unsuitable

for shape recovery. However, the introduction of feature points (Section 6.5) can slightly im-

proves the reconstruction. The performance of this method is still limited by the poor amount of

information given by the root.

Finally, Section6.7showed the superiority of method KD over method OD. Though the two

methods lead to results of a similar quality, method KD is much faster than method OD. Though

using a distance map decreases the time necessary to compute the smallest distances from a point
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of a volume A to the closest point of a volume B, method OD is greatly penalized bythe amount

of time necessary to compute the gradients.
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Conclusion

We have presented a method to reconstruct a tooth using partial information about its shape, and

without the use of x-rays, CT or MRI. The only necessary information consists in a simple cloud

of points. The method consists in two majors phases: we first need to define astatistical model

(mean shape+ modes of deformation) to represent the kind of tooth we want to reconstruct

(this model is built only once using a set of specimens). During the second phase, the mean

shape is first aligned with the target using an Iterative Closest Point Algorithm, and the modes

of the deformable model are optimized to match the target. The aim is to exploit the whole prior

information available for a given tooth and minimize the interaction with the user.

The different experiments conducted showed us that this method was suitable for tooth shape

recovery when we have only crown information at our disposal. The reconstructed tooth gives

us a good approximation of the width and height of the target as long as its shape respects the

statistical variations. However, with only root information, the system fails to retrieve the correct

shape. This problem is due to the particular topology of the root and to the shortage of informa-

tion provided by the tooth. Using feature points on the root of the mean shapeand those of the

target can slightly improve the reconstruction process. The two methods that were tested (with

and without the use of a distance map to compute the distances) lead to a similar precision but
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the first one proved to be much faster. To finish with, the density of the inputdid not seem to

have a major impact on the reconstruction.

A few improvements could be brought to this method. The quality of the method depends

highly on the PDM’s definition. To define its modes, we first need to find a point to point

correspondence between a tooth considered as a generic model and allthe other teeth of the

set (T0, . . . ,TN). However, the method lets appear some discrepancies when the form of the

generic model is far from those ofTi . In this case, we lose some information aboutTi ’s shape. A

more accurate method could give a better knowledge of the statistical variations among the teeth

of a given type, leading to more accurate modes of deformation.

The algorithm could be accelerated by using a more powerful algorithm when realizing the

automatic rigid registration [26]. Improved Kd-trees could also speed up the elastic registration

process [27] when using method KD.

The method describes above supposed that only information about either the crown or root is

known. When supplementary information is available, such as x-ray of the tooth to reconstruct

when dealing with patient’s data, we could try to integrate this information in orderto tune the

parameters of the reconstructed model more precisely.

So far, the method described was developed using only second upper-right premolars. How-

ever, it could easily be extended to all single-rooted teeth. Furthermore, generating a new PDM

per tooth is not absolutely necessary: mirror teeth can be reconstructed using the same training

set, since the mirror PDM could be created using the mirror view of the mean shape and those

of the different modes. Teeth whose shapes differ only in size (e.g., first and second premolar)

could also use the same data base (simple scaling of the mean shape and different modes of the

PDM).
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The Levenberg-Marquardt algorithm

Suppose that we are fitting 3× N data points (~xi , ~yi) (N represents the number of points in a 3D

dimensional space). The relation between the two setsX = {~x0, . . . , ~xN} andY = {~y0, . . . , ~yN} is

given by a functiony such thaty(~x) = y(~x;~a).

A.1 Function approximation

Given a functionf , scalar, that depends on different real variables represented by the vector~a,

in a coordinate system centered at~x0, we can approximatef at~x near~x0 using the Taylor series

expansion about~x:

f (~x) = f (~x0) +
∑

i

∂ f
∂xi

(~x0)xi +
1
2

∑

i, j

∂2 f
∂xi∂x j

(~x0)xi x j + . . .

≈ c− ~b · ~x + 1
2
~x H ~x

(A.1)

wherec ≡ f (~x0), ~b ≡ −∇ f (~x0), andHi j =
∂2 f
∂xi∂x j

(~x0) are the components of the Hessian matrixH

of f at~x0.

If the approximation in Eq.A.1 is exact1, we can compute the gradient off directly:

∇ f = H ~x − b (A.2)

1in this case, the functionf is said to be quadratic
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and the gradient will be zero (extremum of the function) when~x satisfies:H ~x = b.

If Eq. A.1 is only an approximation off , (A.2) gives a direct formula to converge toward a

minimum of f :

~xmin = ~x0 − H−1∇ f (~x0) (A.3)

However, (A.1) can be a bad approximation. In this case, we can move toward the minimum

iteratively (steepest descent minimization):

~x1 = ~x0 − Constant× ∇ f (~x0) (A.4)

A.2 Gradient and Hessian ofχ2

Suppose the function model to be fitted is given byy = y(~x, ~a) (we want to adjust the parameters

~a = {a1,a2, . . . ,aM} of the function). Theχ2 merit function is just the sum of the distances

between the points of the two setsX andY:

χ2(~a) =
N
∑

i=1

[

yi − y(xi , ~a)
]2 (A.5)

χ2 is a form non necessarily quadratic, defined on the vectorial space of the parameters to adjust

(space of dimensionM).

Deriving (A.5) with respect to the components of~a, we can easily express the gradient com-

ponents:

∂χ2

∂ak
= −2

N
∑

i=1

[

(yi − y(xi , ~a))
∂y(xi , ~a)
∂ak

]

(A.6)

Taking an additional partial derivatives, we get the components of the Hessian matrix:

∂2χ2

∂ak∂al
= 2

N
∑

i=1

[

∂y(xi , ~a)
∂ak

∂y(xi , ~a)
∂al

]

(A.7)

It is conventional to use the following notations in order to simplify the equations: βk ≡ −1
2
∂χ2

∂ak

andαkl ≡ 1
2
∂2χ2

∂ak∂al
(this is equivalent to:~β = −1

2∇χ2 and [α] = 1
2H). With these notations and

taking δ~a = ~amin − ~a0 (δ~a is the incrementation to realize on the initial set of parameters~a0 in
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the initial convergence scheme (A.3)), the minimization of a function considered as quadratic is

equivalent to the resolution a linear system:

[α] δ~a = ~β (A.8)

However, when we are far from the quadratic form, the steepest descent is simply:

δ~a = Constant× ~β (A.9)

A.3 Levenberg-Marquardt strategy

Levenberg and Marquardt proposed an efficient and ingenious method to switch continuously

between the inverse-Hessian method and the steepest descent scheme. This second method can

be used at the beginning of the minimization (when we are still far from the solution) and is

progressively replaced by the inverse-Hessian method when we come closer to the minimum.

We can briefly summarize the Levenberg-Marquardt method as a strategy tofind the mini-

mum ofχ2 uniting the two schemes (A.8) and (A.9) at best, thanks to two major ideas. The first

idea consists in modifying the steepest descent algorithm (A.9) by replacing the stepsize (Con-

stant) by a vector whose components are judiciously chosen. We can interpret this choice as a

scaling, for every parameter, of the stepsize taken in the direction ofχ2 minimum. We realize this

choice by noticing that the constant of proportionality between a partial derivative with respect

to ak and a finite difference inak has naturally the dimension ofa2
k. Furthermore, we postulate

that a magnitude order of this constant can be given by a component of thematrix [α]. Since the

only component of [α] dependent ofak that has the required dimension is1αkk
, (A.9) has to be

replaced by:
δal =

1
λall
βl (A.10)

whereλ is a factor> 1 allowing to reduct globally (and not component by component) the

stepsize when it becomes too big (as in the steepest descent method). The second idea consists

in setting [α]′ = [α] +λId, with Id the identity matrixM×M. The two schemes (A.8) and (A.10)
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can replaced by a single formula: we need to find the stepsizeδ~a such that:

[α]′δ~a = ~β (A.11)

Note: (λ→ ∞)⇒ (EqA.11⇔ EqA.10) (λ→ 0)⇒ (EqA.11⇔ EqA.8)

For more information about the implementation of the Levenberg-Marquardt algorithm, the

reader can refer to : “Numerical Recipes in C++”[ 19].
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Computing a distance map

As mentioned in Chapter4, we aim at deforming a mean model to match a target. However,

to realize the minimization process, we need, for each point of the target, to beable to find the

closest point on the deformable model. To do so, one method consists in usinga distance map

(based on an octree decomposition) as defined by Szeliski and Lavallée in[28].

B.1 The octree-spline decomposition

B.1.1 The octree decomposition

The two volumes (target and deformable model) are enclosed in a cubic bounding box and a

classical octree decomposition is realized, based on the points of the patient’s tooth, denoted

asS.

The bounding box is then iteratively decomposed into smaller cubes (octants)until the maximum

number of levels is reached (inversely proportional to the resolution of thedecomposition). Each

octant can be either white, gray or black. It is considered as white if no point of the volume

is enclosed in it, gray if at least one point of the volume is enclosed in the octant but its level

is strictly inferior to the maximum level, and black in the last case (octant non emptybut the

maximum number of levels has been reached). If an octant is either white or black, no further
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subdivision is done, as shown in FigureB.1. Otherwise, it is subdivided into 8 children of

length half those of the current octant. FigureB.2 shows the example of an octree decomposition

realized on a tooth root using a resolution equal to 3.

Root

0

00 01 02 03 04 05 06 07

1 2 3 4
5

50 51 52 53 54 55 56 57

6 7

Figure B.1: Tree Representation.

Figure B.2: Example of octree decomposition applied on a tooth root (red cloud of points) us-
ing 3 levels of decomposition. The two figures show the same decomposition from a different
viewpoint.

B.1.2 Computation of the distance map

The simplest distance map consists of a uniform division of the space. However, this would lead

to a huge amount of distances to compute and store. Furthermore, a higher accuracy is usually

required near the surface rather than far from it. The octree decomposition is an efficient and
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easy way to satisfy this last criterion while minimizing the amount of memory necessary.

1. The first step of the distance map computation corresponds to the octree decomposition

defined in SectionB.1.1.

2. Octants lying near the surface of the target are then refined when necessary. Indeed, due

to the nature of the decomposition, a huge number of empty nodes can be present near

the surface, which is in contradiction with the aim of the octree decomposition (having a

higher accuracy near the surface). To realize this refinement, the octree is visited using a

post-order traversal and the neighbors of every node are computed using Bhattacharya’s

method (see SectionB.2).

3. For each corner of the terminal octants, the minimum distance to the patient’s tooth is

computed and stored. The octree is traversed in a bottom-up fashion, and the minimum

distances computed for every terminal nodes. Simple geometrical considerations are made

to avoid useless computations. After determination of the distances for a given octant,

these distances are reported to the octant’s neighbors. Once all the distances have been

computed, they are reported to the terminal nodes parents.

4. At the end, the distance between a new point and the enclosed volume will be computed

using a trilinear interpolation (Eq.B.1). Without further modifications, discontinuities

(cracks) could appear on the contact surfaces between two terminal octants (either edge

or face). Though these discontinuities do not represent a real problem if we only need

the distances, they could have a negative impact when trying to compute the gradient. To

eliminate these cracks, the octree is traversed using in a top-down breadth-first fashion.

For every octant traversed of sizes1, we defined its edge and face neighbors. If one of

its cornerc lies on the edgee or the facef of an octant of sizes2 such thats2 > s1, the

distance stored forc is replaced by the linear (edge neighbor) or bilinear (face neighbor)
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interpolation one or f . Tables defining the edges and faces to check for a given octant

were defined to minimize the number of tests to realize.

5. Given a new pointP, calculating the minimum distanced(P) from P to S only requires

to find the octantO the points belongs to (using a simple top-down traversal). The local

normalized coordinates (u, v,w) of P with respect to the octant are used to realize a trilinear

interpolation over the 8 corners of this octant.

d(P) =
1
∑

i=0

1
∑

j=0

1
∑

k=0

bi(u) b j(v) bk(w) di jk (B.1)

wheredi jk are the distances stored forO’s 8 corners andbl(t) = δl t + (1− δl t) (δ being the

Kronecker symbol).

B.2 Finding the neighbors of an octant

This method allows us to obtain a good approximation of the required distances.The major

difficulty lies in the neighbor finding, required during steps2, 3 and4. An efficient method is

crucial since its represents a major part of the computation time. One way of doing so in described

by Bhattacharya in [29]. During the octree’s construction, all the octants are given a specific index

a1a2 . . . am wherem represents the level, andai ∈ (000,001,010,011,101,110,111),1 ≤ i ≤ m

(the value ofai depends on the octant position with respect to its parent).

Each octantO has at most 6 face neighbors, 12 edge neighbors and 8 vertex neighbors. To

retrieve the neighbors, we just need to retrieve their index. Two tables aredefined for each case

(face, edge or vertex neighbor):

• the first one allows us determining if the neighbor for a chosen direction belongs or not to

the same parent.

• the second one gives us the last valueam of the neighbor index.

If the neighbor belongs to the same node, we just need to modifyam to get the neighbor’s index.
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Otherwise, we have to change the last three bits and iterate the process withO’s parent (octant of

indexa1a2 . . .am−1).
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Kd-Tree Decomposition

To speed up the determination of the nearest neighbors, we can prestructure the data by creating

a Kd-Tree. This tree is built only once. Then we can determine the nearest neighborsusing the

special structure of the tree to limit the number of distance computations.

C.1 Structure and building of a Kd-tree

A Kd-tree is a binary tree used to represent data of dimensiond (in our exampled = 3). Each

node of the binary tree represents a subset of the data recordsS = {xi | i = 1, . . . ,n} and a par-

titioning of that subset. Each non-terminal node has two children that represent the two subsets

defined by the partitioning. The terminal nodes represent mutually exclusive small subsets of

that records. A Kd-tree divides the space into a collection of hyperrectangles that correspond to

the terminal nodes (Fig.C.1and Fig.C.2present a 2D space subdivision as well as the possible

structure of the corresponding Kd-Tree).

To build a Kd-Tree, we consider that all the points belongs to a hyperrectangle of infinite di-

mension. At each step of the construction (for every node), we need to define a directiondi along

which to split the space as well as a pivot (a point belonging to our subset). The hyperrectangle

will be divided into a left hyperrectangle and a right hyperrectangle. Points of the node subset
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0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

A

B

C
D

E

F G

Figure C.1: An example of space subdivision in dimension 2 using a Kd-Tree(d = 2): the red
dots represent points in a 2D space and the blue lines delimit the borders between the different
subspaces.

D = {4,4}

B = {3,2}

A = {1.5,1} C = {1,4}

E = {5.2,3.5}

F = {5,1}

G= {7,1}

Figure C.2: Example of a Kd-Tree decomposition (d = 2). The nodes refer to FigureC.1.

(pivot excluded) whoseith coordinate is smaller than theith coordinate of the pivot are classified

as belonging to the right hyperrectangle and the others to the left one. A question remains: how

can we determine the splitting direction as well as the pivot? Different possibilities exist and we

chose the following that gives more square regions (increasing the speed of the nearest neighbor

search) and gives a tree reasonably balanced:

• The direction is chosen such that it maximizes the range of thexi ’s.

• The pivot is chosen such that it is in the middle of the most spread dimension.

More information about Kd-trees can be found in Bentley’s article [30].

C.2 Nearest Neighbor Search

The algorithm used is described by Moore in [31]. We first need to determine to which leaf the

pointx to classify belongs. To do so, we need to travel down the tree using its particular structure.
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Once the leaf node has been determined, we can compute the distance between x and the the leaf

node pointln. However,ln is not necessarily the nearest neighbor, even if it may give a good

approximation. If a closer point exists, it must lie in a hypersphere of radius ‖ln − x‖1centered at

x. We need to go up to visit the parent’s node and check if it is possible or notto have a closer

solution in the parent’s other child. If no closer neighbor exists in the other child, we can move

up a further level. In the other case, we need to explore recursively theother child.

To check if a better solution exists, we need to have a method to determine if a hypersphere

hscentered atx with radiusr intersects or not a hyperrectanglehr. To do so, we representhr by

two arrays: one for the maximum coordinates, the other one for the minimum coordinates. We

define the vertexp = (p1, p2, . . . , pd) of hr that is closer tox as:

pi =



















































hrmin
i if ti ≤ hrmin

i

ti if hrmin
i < ti < hrmax

i

hrmax
i if ti ≥ hrmin

i

hs intersectshr if and only if ‖p − x‖ ≤ r

The algorithm is summarized below:nearest≡ nearest point to the targetx anddist ≡ the

distance betweenx andnearest.

NearestNeighbor(Node kd, Target x, Hypperectangle hr, float max_dist)

If kd is empty, dist= ∞ and exit.

s :=splitting direction and pivot :=node’s representative point.

Cut hr into two hyperrectangles hr_le f t and hr_right.

If (x ∈ hr_le f t)

nearer_kd := kd_le f t_child and nearer_hr := hr_le f t

f urther_kd := kd_right_child and f urther_hr := hr_right

else

1denotes the Euclidean distance
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nearer_kd := kd_right_child and nearer_hr := hr_right

f urther_kd := kd_le f t_child and f urther_hr := hr_le f t

Recursively, call NearestNeighbor(nearer_kd, x, nearer_hr, max_dist) and

nearestand dist

max_dist := min(max_dist,dist)

If the hypersphere of radius max_dist centered at x intersects f urther_kd

If ‖pivot − x‖ < dist

nearest:= value and class of the node’s representative point.

dist := ‖pivot − x‖

max_dist := dist

Recursively, call NearestNeighbor( f urther_kd, x, f urther_hr, max_dist)

and store the results in temp_nearest and temp_dist.

If temp_dist< dist, nearest:= temp_nearest and dist := temp_dist.
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Leave-one-out tests: numerical results

Table D.1: Leave-one-out test on the specimens’ set using the crowns only (method KD).

Hausdorff distances
Specimen Distances Percentage of the tooth height

Min Max Mean RMS Min Max Mean RMS
1 1.3e-5 2.56 0.28 0.49 6.1e-5 12.48 0.39 2.39
2 2.4e-6 2.63 0.37 0.54 1.1e-5 12.65 1.78 2.60
3 1.8e-5 1.91 0.30 0.45 5.6e-5 9.77 1.56 2.30
4 1.1e-4 2.05 0.23 0.38 5.6e-4 10.57 1.19 1.98
5 6.1e-6 2.80 0.51 0.77 3.0e-5 13.96 2.56 3.85
6 3.5e-6 5.30 0.40 0.86 1.9e-5 28.19 2.13 4.49
7 7.0e-6 1.90 0.21 0.34 3.5e-5 9.43 1.04 1.71
8 1.1e-5 2.07 0.23 0.40 5.3e-5 10.46 1.15 2.00
9 2.2e-5 1.70 0.23 0.33 1.3e-4 9.91 1.33 1.95
10 2.1e-5 2.24 0.29 0.46 1.2e-4 12.57 1.62 2.57
11 1.8e-5 2.97 0.22 0.43 1.0e-4 17.40 1.30 2.49
12 1.1e-5 1.84 0.26 0.40 5.1e-5 8.93 1.25 1.95
13 1.1e-5 3.25 0.39 0.70 5.1e-5 15.90 1.92 3.42
14 .1e-5 1.73 0.31 0.49 1.1e-4 8.87 1.57 2.53
15 1.1e-5 1.51 0.21 0.31 5.7e-5 8.21 1.17 1.71
16 2.6e-6 3.52 0.36 0.66 1.2e-5 16.64 1.68 3.12
17 3.1e-6 1.81 0.20 0.33 1.5e-5 9.03 1.01 1.65
18 3.5e-6 3.05 0.35 0.61 2.0e-5 17.05 1.98 3.41
19 7.0e-6 2.61 0.39 0.63 3.6e-5 13.46 2.03 3.26
20 1.1e-5 0.96 0.11 0.16 5.7e-5 5.07 0.56 0.84
21 2.6e-4 2.55 0.38 0.61 1.1e-3 11.23 1.65 2.67
22 1.9e-6 2.31 0.23 0.38 9.6e-6 12.02 1.22 1.96

Min 1.9e-6 0.96 0.11 0.16 9.6e-6 5.07 0.56 0.84
Max 2.6e-4 5.30 0.51 0.86 1.1e-3 28.19 2.56 4.59
Mean 2.6e-5 2.42 0.29 0.49 1.3e-4 12.44 1.50 2.50
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Table D.2: Leave-one-out test on the specimens’ set using the crowns only (method OD).

Hausdorff distances
Specimen Distances Percentage of the tooth height

Min Max Mean RMS Min Max Mean RMS
1 9.6e-6 1.63 0.29 0.42 4.7e-5 7.95 1.42 2.05
2 3.2e-5 2.55 0.41 0.57 1.5e-4 12.30 1.97 2.74
3 3.5e-5 2.65 0.49 0.74 1.8e-4 13.57 2.53 3.78
4 1.9e-6 1.76 0.27 0.41 1.0e-5 9.03 1.41 2.12
5 6.3e-8 2.83 0.47 0.72 3.1e-7 14.07 2.35 3.61
6 5.4e-6 4.95 0.48 0.97 2.9e-5 26.37 2.53 5.14
7 4.2e-6 2.32 0.21 0.36 2.1e-5 11.53 1.05 1.81
8 2.4e-5 1.55 0.23 0.34 1.2e-4 7.80 1.16 1.73
9 8.8e-6 1.55 0.21 0.31 5.1e-5 9.07 1.25 1.82
10 3.3e-5 1.96 0.35 0.54 1.9e-4 11.00 1.99 3.03
11 3.0e-5 2.49 0.22 0.40 1.7e-4 14.59 1.29 2.35
12 6.0e-6 1.41 0.21 0.32 2.9e-5 6.82 1.04 1.54
13 6.7e-6 3.09 0.44 0.74 3.3e-5 15.09 2.14 3.61
14 9.9e-6 2.64 0.44 0.73 5.1e-5 13.51 2.25 3.74
15 2.2e-5 2.02 0.20 0.46 1.2e-4 10.97 1.06 2.48
16 3.1e-6 3.73 0.36 0.66 1.4e-5 17.62 1.70 3.13
17 4.9e-6 1.76 0.21 0.34 2.5e-5 8.78 1.04 1.71
18 8.0e-6 2.46 0.30 0.47 4.5e-5 13.72 1.65 2.60
19 7.9e-6 2.69 0.42 0.69 4.1e-5 13.87 2.16 3.56
20 9.8e-7 1.47 0.23 0.34 5.1e-6 7.75 1.19 1.80
21 2.4e-5 2.72 0.53 0.76 1.1e-4 11.98 2.33 3.33
22 3.1e-5 3.26 0.34 0.60 1.6e-4 16.96 1.77 3.11

Min 6.3e-8 1.41 0.20 0.31 3.1e-7 6.82 1.04 1.54
Max 3.5e-5 4.95 0.53 0.97 1.9e-4 26.37 2.53 5.14
Mean 1.4e-5 2.43 0.33 0.54 7.3e-5 12.47 1.70 2.76
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Table D.3: Leave-one-out test on the specimens’ set using the roots only(method KD).

Hausdorff distances
Specimen Distances Percentage of the tooth height

Min Max Mean RMS Min Max Mean RMS
1 3.4e-5 1.60 0.33 0.44 1.7e-4 7.83 1.62 2.15
2 2.2e-5 1.87 0.42 0.55 1.1e-4 9.01 2.01 2.63
3 1.4e-5 1.56 0.43 0.55 7.0e-5 8.01 2.22 2.84
4 7.2e-6 1.20 0.25 0.34 3.7e-5 6.17 1.29 1.75
5 4.4e-6 2.56 0.49 0.65 2.2e-5 12.72 2.43 3.24
6 1.8e-5 1.51 0.50 0.61 9.7e-5 8.04 2.65 3.22
7 3.9e-5 2.02 0.42 0.57 2.0e-4 10.05 2.10 2.83
8 1.2e-5 1.05 0.28 0.36 5.8e-5 5.32 1.43 1.79
9 3.3e-5 1.96 0.36 0.53 1.9e-4 11.47 2.13 3.11
10 5.6e-5 1.34 0.26 0.34 3.2e-4 7.55 1.44 1.92
11 7.0e-6 2.64 0.54 0.78 4.1e-5 15.44 3.16 4.58
12 2.5e-5 1.65 0.26 0.38 1.2e-4 8.01 1.26 1.85
13 4.7e-5 2.52 0.53 0.74 2.3e-4 12.30 2.57 3.60
14 7.7e-5 2.12 0.69 0.87 3.9e-4 10.85 3.53 4.46
15 6.3e-6 1.92 0.34 0.49 3.4e-5 10.42 1.87 2.68
16 4.5e-5 1.97 0.50 0.63 2.1e-4 9.32 2.37 2.99
17 6.3e-5 0.94 0.17 0.22 3.1e-4 4.67 0.84 1.11
18 3.4e-5 1.84 0.28 0.37 1.9e-4 10.30 1.58 2.09
19 1.6e-5 1.14 0.27 0.34 8.3e-5 5.88 1.37 1.75
20 2.1e-5 0.90 0.20 0.26 1.1e-4 4.73 1.04 1.37
21 6.5e-6 2.16 0.24 0.44 2.9e-5 9.52 1.05 1.94
22 3.5e-5 1.84 0.45 0.60 1.8e-4 9.54 2.36 3.11

Min 4.4e-6 0.90 0.17 0.22 2.2e-5 4.67 0.84 1.11
Max 7.7e-5 2.64 0.69 0.87 3.9e-4 15.44 3.53 4.58
Mean 2.8e-5 1.74 0.37 0.50 1.5e-4 8.96 1.92 2.59
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Table D.4: Leave-one-out test on the specimens’ set using the roots only(method OD).

Hausdorff distances
Specimen Distances Percentage of the tooth height

Min Max Mean RMS Min Max Mean RMS
1 4.8e-5 3.20 0.81 1.08 2.3e-4 15.61 3.95 5.28
2 3.0e-5 2.12 0.50 0.65 1.5e-4 10.19 2.39 3.12
3 3.1e-5 1.76 0.41 0.54 1.6e-4 9.03 2.08 2.77
4 4.6e-6 1.64 0.30 0.44 2.4e-5 8.45 1.54 2.27
5 5.7e-5 2.41 0.46 0.64 2.8e-4 11.99 2.30 3.19
6 6.6e-6 3.16 0.94 1.18 3.5e-5 16.83 5.01 6.27
7 7.7e-6 3.34 0.70 1.06 3.8e-5 16.58 3.50 5.28
8 1.6e-5 1.66 0.31 0.46 7.8e-5 8.38 1.57 2.31
9 2.5e-5 1.47 0.21 0.29 1.5e-4 8.59 1.24 1.69
10 1.8e-5 1.72 0.32 0.46 1.0e-4 9.66 1.77 2.61
11 9.5e-6 1.42 0.49 0.59 5.6e-5 8.30 2.85 3.47
12 4.3e-5 1.79 0.38 0.54 2.1e-4 8.68 1.85 2.60
13 4.9e-5 2.31 0.36 0.55 2.4e-4 11.26 1.75 2.69
14 9.0e-6 2.23 0.39 0.59 4.6e-5 11.43 1.98 3.01
15 7.4e-6 1.18 0.18 0.26 4.0e-5 6.39 1.00 1.39
16 5.9e-5 3.64 0.74 1.11 2.8e-4 17.20 3.51 5.25
17 3.2e-5 1.57 0.23 0.35 1.6e-4 7.83 1.13 1.77
18 2.2e-5 1.21 0.22 0.29 1.2e-4 6.74 1.22 1.64
19 4.2e-5 1.89 0.44 0.62 2.2e-4 9.74 2.27 3.19
20 9.1e-6 3.31 0.86 1.21 4.8e-5 17.41 4.51 6.39
21 9.9e-6 2.01 0.26 0.44 4.4e-5 8.84 1.14 1.93
22 2.7e-5 1.90 0.37 0.51 1.4e-4 9.90 1.93 2.64

Min 4.6e-6 1.18 0.18 0.26 2.4e-5 6.39 1.00 1.39
Max 5.9e-5 3.64 0.94 1.21 2.8e-4 17.41 5.01 6.39
Mean 2.6e-5 2.13 0.45 0.63 1.3e-4 10.87 2.30 3.22
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