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Summary

Adaptive designs have been proposed for ethical concerns, their characteristics,

especially in statistics, are widely investigated in the literature. In this thesis, we

investigate adaptive designs which direct the trials to an optimal dose level by using

Generalized Friedman’s Urn Model (GFU), considering the patients’ effect on the

probability of success for each dose. A generalized linear model(GLM) is employed

with consideration of the patients’ covariates and the dose levels simultaneously.

The limiting properties of the Maximum Likelihood Estimation(MLE), especially

its Central Limit Theorem (CLT) are established in the circumstance that the

response variables are dependent. The asymptotic properties of Urn composition

and allocation proportion are investigated. Simulations are conducted to verify

these properties.

Key Words: Adaptive Design; Generalized Friedman’s Urn Model; Generalized

Linear Model; Maximum Likelihood Estimation; Urn Composition
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Chapter 1

Introduction

1.1 Adaptive Designs

In any sequential medical experiment on a cohort of human beings, there is

an ethical imperative to provide the best possible medical care for the individual

patient. This ethical imperative may be compromised if a traditional randomiza-

tion scheme involving 50-50 allocation is used as accruing evidence to favor one

treatment over the other.

A case in point is reported by Conner et al. (1994) to evaluate the hypothesis

that the antiviral therapy AZT reduced the risk of maternal-to-infant HIV trans-

mission. A traditional randomization scheme was used to obtain equal allocation

to both AZT and placebo, resulting in 239 pregnant women receiving AZT and 238
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receiving placebo. The endpoint was whether the newborn infant was HIV-negative

or HIV-positive. The results of the trial were compelling: at the conclusion of the

trial, 60 newborns were HIV-positive in the placebo group and only 20 newborns

were HIV-positive in the AZT group. Three times as many infants on placebo have

received a death sentence by the transmission of HIV from their mothers. If they

had been given AZT, one could presume that many would have been saved. Given

the seriousness of the outcome of this study, it is reasonable to argue that 50-50

allocation was unethical. As accruing information favoring the AZT arm became

available, allocation probabilities should have been shifted from 50-50 allocation

proportional to the weight of evidence for AZT. Designs which attempt to do this

are called adaptive designs, response-adaptive designs or response-driven designs.

Adaptive design in clinical trials are schemes for patient allocation to treat-

ment, the goal of which is to place more patients on the better treatment based

on patient responses already accrued in the trials. For example, if there are two

treatments A and B, then when a patient is ready to be allocated to a treatment,

if treatment A appears to be more successful than treatment B, that patient would

have a greater than 50% chance of being allocated to treatment A. Adaptive designs

are attractive because they satisfy an ethical imperative of caring for the individual

patient in a group experiment, while allowing for the same group inference.

In statistics, sequential design is a subfield of experimental design which deals

with the appropriate sequential selection of design points. When design points are
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sequentially selected according to outcomes at previously selected design points,

such designs are called adaptive. Since future design point selection can rely on

information previously accrued, they can target an objective more accurately than

if design points are selected in the absence of information.

1.2 Urn Model

In adaptive designs, the allocation rules of patients in the trials are primary

concerns. The ethics of clinical trials not only need to derive information about

the effectiveness of the treatments, but to benefit the health of patients as well.

Urn models have been one technique(among many) used to incorporate accruing

data into the sequential design.

1.2.1 Play-the-Winner Rule

From the perspective of ethics, Zelen (1969) firstly explored the design meth-

ods to place more patients on the better treatment and proposed out the original

design called Play-the-Winner Rule. From then on, allocating patients sequen-

tially in clinical trials has been extensively explored in theoretical fields. In Zelen’s

formulation there are two treatments (say, A and B), patients enter the trial se-

quentially and are allocated to treatment A or B, and the trial outcome is success
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or failure depends only on the treatment given. A success on a particular treat-

ment generated a future trial on the same treatment assigned to the next patient.

A failure on a treatment generates a future trial on the alternate treatment. When

there exists delayed responses, i.e. the result of the treatment can not be obtained

until the next patient enters the trials, allocation is determined by tossing a fair

coin. In Play-the-Winner Rule, the allocation scheme is not random but determin-

istic, which may bias the trial in various ways. For example, if the experimenter

is in favor of treatment A and he knows or guesses which treatment will be the

next assignment, then he may introduce bias into the trial through the selection of

patients, this kind of bias is called selection bias. On the other hand, it does not

take the case of the delayed responses into consideration. However, this design can

be seen as a raw urn model implicitly and widened the researchers’ horizon to the

randomized urn models later on.

1.2.2 Randomized Play-the-Winner Rule

Wei and Durham (1978) propose the Randomized Play-the-Winner (RPW)

rule which keeps the spirit of the Play-the-winner rule in that it assigns more

patients to the better treatment. But this rule has the advantages that it is not

deterministic and is less vulnerable to experimental bias, it allows delayed response

by the patients. The formulation of the RPW rule is as follows: Assume there are

two treatments(say, A and B), with dichotomous response(success or failure). We
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start with u balls of each type in the urn. When a patient is ready for random-

ization, a ball is drawn and replaced, and the appropriate treatment is assigned.

If the response of the patient is a success, an additional β balls of the same type

are added to the urn and an additional α balls of the opposite type are added to

the urn. If the response was a failure, then an additional α balls of the same type

are added to the urn and additional β balls of the opposite type are added to the

urn. Wei and Durham compared the RPW with the traditional equal-allocation

rule and found that the latter can involve selection bias. The above RPW can be

denoted as RPW(u, α, β). Compared to the Play-the-Winner rule, RPW is a true

randomized urn model, which allows the delayed responses and take advantage of

randomization strategy.

1.2.3 Generalized Friedman’s Urn Model

A very important class of adaptive designs is one based on the generalized

Friedman’s urn (GFU) model (Athreya and Karlin (1968)), which has wide appli-

cations in clinical trials, bioassay and psychophysics.

Adaptive designs using the GFU model can be formulated as follows. As-

sume, initially, an urn contains K types of balls, denoted by Y0 = (Y01, ...Y0K),

respectively representing K treatments in a clinical trial, where Y0k denotes the

number of balls of type k, k = 1, ..., K. These treatments are to be sequentially
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assigned in n consecutive stages. At stage i, i = 1, ..., n, a ball is drawn from the

urn with replacement. If a ball of type k is drawn at the i-th stage, then the

treatment k is assigned to the patient i, k = 1, ..., K; i = 1, ..., n. Let ξ(i) de-

note a random variable associated with the i-th stage of the clinical trial, which

may include measurements on the i-th patient and the outcome of the treatment

at the i-th stage. Then additional Dk, q(i) balls of type q are added to the urn,

q = 1, ..., K, where Dk, q(i) is a function of ξ(i). This procedure is repeated to

the n-th stage. After n stages and generations, the urn composition is denoted

by the vector Yn = (Yn1, ..., YnK), where Ynk represents the number of type k

balls in the urn. Furthermore, we define Di = 〈〈Dk, q(i), k, q = 1, ..., K〉〉 and

Hi = 〈〈E(Dk, q(i)), k, q = 1, ..., K〉〉, i = 1, ..., n.(sometimes, the conditional ex-

pectation). The matrices Di’s are called adding rules and Hi’s are the generating

matrices.

We call the GFU model homogeneous if Hi = H for all i = 1, ..., n. For a

homogeneous GFU model, under the assumptions (i) Pr{Dk, q = 0, q = 1, ..., K} =

0 for every k = 1, ..., K and H is positive regular(i.e. Hm has positive entries for

some m > 0),Athreya and Karlin (1968) and Athreya and Ney (1972) prove the

following results for the Generalized Friedman’s Urn model:

Nnk

n

a.s.→ vk (1.1)

Ynk∑K
q=1 Ynq

a.s.→ vk (1.2)

where Nnk is the number of patients allocated to the k-th treatment after n stages.
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v = (v1, ...vK) is the left eigenvector of the largest eigenvalue λ of H. Let λ1 denote

the eigenvalue of the second largest real part, with corresponding right eigenvector

η. Furthermore, under additional assumption that λ > 2Re(λ1), Athreya and

Karlin (1968) show that

n−
1
2 Ynη

′ → N(0, σ2) (1.3)

where σ2 is constant.

Wei (1979) first noted that the RPW rule could be formulated as a GFU model.

Let pi be the probability of success on treatment i = A,B,and qi = 1 − pi. The

RPW rule is a Generalized Friedman’s Urn with K = 2; the adding rule is given

by:

D =




ξAβ + (1− ξA)α ξAα + (1− ξA)β

ξBα + (1− ξB)β ξBβ + (1− ξB)α




where ξi(i = A,B) = 1 or 0 represents success or failure of treatment i.

H =




βpA + αqA αpA + βqA

αpB + βqB βpB + αqB




where H is a constant matrix and the maximal eigenvalue is simply the row sum

λ = α + β.

Thus, from (1.1) and (1.2), we can obtain results on the proportion of patients

allocated to treatment A as
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NnA

n

a.s.→ vA =
αpB + βqB

α(pA + pB) + β(qA + qB)
(1.4)

and the urn composition of type A balls as

YnA

YnA + YnB

a.s.→ vA =
αpB + βqB

α(pA + pB) + β(qA + qB)
(1.5)

We note that (1.4) is increasing in β/α and tends to
qB

qA + qB

as β/α → ∞.

Therefore, if β is large with respect to α, we force the trial to put more patients

on the better treatment. But if β/α is too large, the RPW(u, α, β) becomes rather

deterministic and may allow unwanted bias in the trial.

1.2.4 Generalizations of GFU Model

Several generalizations of GFU model have been made in recent years. Among

them, the first principal one involves allowing the ball selected not to be replaced

or allowing some balls to be removed from the urn. Smythe (1996) defined the

Extended Pólya Urn model (EPU) with

K∑
q=1

E(Dk, q) = c > 0, k = 1, ..., K (1.6)

namely, adding an expected constant total number of balls at each stage, but the

type k ball drawn does not have to be replaced, and in fact, additional type k balls

can be removed from the urn, subjected to (1.6) and a restriction is that one cannot

remove more balls of a certain type than are present in the urn (i.e., H is tenable).
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For the EPU, Smythe (1996) established the asymptotic normality of Yn and Nn

under the assumptions: (i) for each nonprincipal eigenvalues λj, λ > 2 Re(λj);

(ii) all eigenvalues are simple, and no two distinct complex eigenvalues have the

same real part, except for conjugate pairs; and (iii) the eigenvectors are linearly

independent, where Nn = (Nn1, ..., NnK) and Nnk is the number of times a ball of

type k drawn in the first n trials.

The second major generalization of the GFU model is the introduction of a

nonhomogeneous generating matrix, Hn, where the expected number of balls added

to the urn changes across draws. This is the model investigated by Bai and Hu

(1999), they assume there is a positive regular matrix H such that

∞∑
n=1

n−1||Hn −H||∞ < ∞ (1.7)

In this case, the limiting results given in (1.1) and (1.2) remain hold.

From the above introduction of adaptive designs, the GFU model has been

playing a significant role in that it can skew the probabilities to favor the treatment

that has been the most effective thus far in the trial, thus making the randomization

strategy more attractive to physicians than traditional allocations.

We are interested in designs that provide information about dose that max-

imizes the probability of success, i.e. the optimal dose, while treating very few

subjects at dosages that have high risks of failure. The aim of this thesis research

is to find an optimal dose level for clinical trials through adaptive design using GFU
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scheme with consideration of the patients’ covariates. In the past literature, the

patient’s covariate, which actually having effect on the performance of the treat-

ment assigned to the patient, have not been taken into consideration. In Chapter

2, a generalized linear model is proposed with consideration of the patients’ covari-

ates and the dose levels simultaneously. The Maximum Likelihood Estimation is

used to estimate parameters. The asymptotic properties of the MLE,including the

law of large numbers and central limit theorem (CLT) are investigated. A theo-

rem regarding Urn composition is proved. In Chapter 3, a series of simulation is

conducted to verify the above results and to select the optimal dose in the circum-

stance involving patients’ covariates. Some discussions and conclusions are given

in Chapter 4.
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Chapter 2

The New Model

2.1 Introduction to The New Model

Previously, the adaptive designs have not considered the patients’ covarients.

In those adaptive designs, the performance of treatments is equal for all patients.

However, in fact, the effectiveness of treatments should strongly relate to the pa-

tients’ covariates such as disease history, physical fitness, which will have great

effects on the performance of treatments. Here, we are going to take patients’

covariates and treatments (or dosage, dose level) into account simultaneously and

propose a generalized linear model based on GFU, which can assign more patients

to the better treatment only for their specific covariates.

Our model can be described as follows: suppose there are K dose levels denoted
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as d1, d2, ..., dK . Let Xi for i = 1, ..., n be the i-th patient’s covariate, Zi be the dose

level randomly chosen from the K dose levels with certain probabilities. Also, for

k = 1, ..., K, let Iki = 1 if Zi = dk, and Iki = 0 otherwise. Assume that patient’s

response is dichotomous. Let Yi = 1 if the i-th patient’s response is a success,

0 otherwise. Define pi = Pr(Yi = 1|Zi, Xi) for i = 1, ..., n be the probability of

success of the i-th patient. Consider the following logistic model:

logitpi = α + βZi + γZ2
i + λXi i = 1, ..., n (2.1)

Define the allocation function: Fk, i(x), k = 1, ..., K for the i-th stage. We

assume that

Fk, 0 ≡ 1, k = 1, ..., K

We also assume that the response can be obtained before the next patient

enters the trials, i.e. there is no possibility of delayed response. After the response

of the i-th patient is obtained, we update the allocation function according to the

following equations:

Fk, i(x) = Fk, i−1(x) + [YiIk, i + (K − 1)−1(1− Yi)(1− Ik, i)]f(x, xi) (2.2)

where f(a, b) is a decreasing function of |a− b| (a,b are symmetric in f). We also

assume that Ea, b[(f(a, b))2] < ∞. The updating rule implies that if the response

of the (i − 1)-th patient is successful, then we tend to allocate the i-th patient to

the same treatment if one has the covariate value near xi−1. Here adding a function
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f(x, xi) to the previous function Fk, i−1(x) can increase the weight of possibility of

allocating the i-th patient with the covariate near to the last covariate xi−1 to the

more successful dosage.

By(2.2),we have

Pr(Ik, i = 1) =
Fk, i−1(xi)∑K
l=1 Fl, i−1(xi)

where Ik, i = 1 if the i-th patient was allocated to dose k, 0 otherwise.

This new model can be seen as an urn model. Suppose an urn with K types

of balls. At the i-th stage, the urn composition (F1, i(x), ..., FK, i(x)) is a vector

of functions of x. When the new patient enters the trial, then one’s covariate xi+1

is measured, we plug xi+1 into the functions, thus we can get a vector with fixed

values: (F1, i(xi+1), ..., FK, i(xi+1)) for i = 1, ..., n. If the i-th response is successful

on treatment k, then another f(x, xi) number of type k balls will be added to the

urn, otherwise, (K−1)−1f(x, xi) number of balls will be added to every other type.

2.2 The Likelihood and Asymptotic Properties

of MLE

The Maximum Likelihood Estimation (MLE) can be used to estimate the pa-

rameters in (2.1). Let Y n = {Y1, ..., Yn} be the response history, Zn = {Z1, ..., Zn}

be the history of design point (treatment) assignment, Xn = {X1, ..., Xn} be the
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history of subjects’(patient) covariates.

The likelihood can be written as:

Ln(θ) = Ln{Y n, Zn, Xn, θ}

We assume that:

(1)the response depends on the selected design point, the subjects’ covariates,

and some parameter vector θ (suppose θ is a vector of dimension s);

(2)future design points are selected according to some function of the data from

the response history, design point assignment history and subjects’ covariates, but

independent of θ;

(3)subjects’ covariates are independent.

Consequently, the likelihood can be expressed as follows:

Ln(θ) = Ln{Y n, Zn, Xn; θ}

= L {Yn|Y n−1, Zn, Xn; θ}L{Zn|Y n−1, Zn−1, Xn; θ}

L {Xn|Y n−1, Zn−1, Xn−1; θ}Ln−1(θ)

= L {Yn|Zn, Xn; θ}L {Zn|Y n−1, Zn−1, Xn}L {Xn}Ln−1(θ)

The term L {Zn|Y n−1, Zn−1, Xn} is just the allocation function and is ancillary to

the likelihood as is the probability distribution of the covariates. Unwinding the
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recursion we can obtain:

Ln(θ) ∝
n∏

i=1

L {Yi|Zi, Xi; θ}

=
n∏

i=1

K∏

k=1

[
Ei−1(Ik, i)

]Ik, ip
YiIk, i

i q
(1−Yi)Ik, i

i

=
n∏

i=1

( K∏

k=1

[
Ei−1(Ik, i)

]Ik, i
)
p
P

k YiIk, i

i q
P

k(1−Yi)Ik, i

i

∝
n∏

i=1

p
P

k YiIk, i

i q
P

k(1−Yi)Ik, i

i

=
n∏

i=1

pYi
i q1−Yi

i (2.3)

By equating the derivative of the log-likelihood with respect to θ to equal 0,

we can obtain the maximum likelihood estimator for θ, we denote this estimator

as θ̂n.

It should be noted that Y1, ...Yn are dependent random variables due to the

sequential design. Consequently, it is necessary to use martingale theory to prove

the usual asymptotic properties of maximum likelihood estimators. Ln(θ) ≡

Ln{y1, ..., yn; θ} is the joint density of Y1, ..., Yn, and let

∂logLn(θ)

∂θa

=
n∑

i=1

∂

∂θa

{logLi(θ)− logLi−1(θ)} ≡
n∑

i=1

∂

∂θa

Ui(θ)

where L0 = 1, a = 1, ..., s.

In Appendix 1, a theorem of the limiting results of MLE is proved for the

general stochastic process by imposing a certain regularity conditions.
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Consider the generalized linear model in the exponential family:

f(yi) = exp

{
yiηi − a(ηi) + b(yi)

φ

}

where ηi = h(wT
i θ) (Nelder and Wedderburn,1972). With this model,

E(yi|wi) = a
′
(ηi); V ar(yi|wi) = a

′′
(ηi)φ.

For the moment, assume that the scale parameter φ is fixed. Liking to the

notation used in the previous sections, θ = (α β γ λ)T , wi = (1 zi z2
i xi)

T are 4× 1

vectors. And we have:

∂Ui(θ)

∂θa

=
1

φ
{yi − a

′
(ηi)}h′(wT

i θ)wai (2.4)

Theorem 1 Under the following conditions:

1

nφ

n∑
i=1

Ei−1

(
[h
′
(wT

i θ)]2waiwbia
′′
(ηi)

)
P→ γab (as n →∞), a, b = 1, ..., 4, (2.5)

where Γ = (γab) is nonsingular,

1

n3/2φ

n∑
i=1

Ei−1

(
[h
′
(wT

i θ)]3w3
aia

′′′(ηi)
)

P→ 0 (as n →∞), (2.6)

1

n2φ

n∑
i=1

[h
′′
(wT

i θ)]2w2
aiw

2
bia

′′(ηi)
P→ 0 (as n →∞), (2.7)

the solution θ̂n to the score function

n∑
i=1

∂Ui(θ)

∂θa

= 0 (2.8)

is consistent for θ, and n1/2(θ̂ − θ) → N(0, Γ−1).
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The theorem results directly from conditions(A1)-(A5) of Appendix 1. (A1)

and (A2) are standard regularity conditions that apply to exponential families.

Condition (2.5) derives from (A3).

Note that

Ei−1

(
{h′(wT

i θ)}2waiwbi{yi − a′(ηi)}2|xi, zi

)

= Ei−1E{h′(wT
i θ)}2waiwbiE

(
{yi − a′(ηi)}2|xi, zi

)

= Ei−1

(
{h′(wT

i θ)}2waiwbia
′′(ηi)

)

Then the left-hand side of (A3) can be written as

n−1

n∑
i=1

1

φ2
Ei−1

(
{h′(wT

i θ)}2waiwbi{yi − a′(ηi)}2
)

which then can be written as the left-hand side of (2.5). Condition (2.6) implies

condition (A4) with δ = 1, and conditions (2.5) and (2.7), together with (A4),

implies (A6).

Let h(t) = t, a(η) = log(1 + eη), and φ = 1. Then h
′
= 1, h′′ = 0, and (2.7) is

automatically satisfied. Condition (2.6) reduces to show that

1

n3/2

n∑
i=1

Ei−1

(
w3

ai

eηi(1− eηi)

(1 + eηi)3

)
P→ 0 (as n →∞)

and this follows since the summands are bounded in i. Condition (2.5) establishes

the variance-covariance structure via

1

n

n∑
i=1

Ei−1

(
waiwbipi(1− pi)

)
P→ γab (as n →∞) (2.9)
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2.3 Asymptotic properties of Urn composition

The asymptotic property of Urn composition is a main concern when investi-

gating statistically the Urn model.

From the model stated in Section 2.1, we have:

K∑

k=1

Fk, n(x) = K +
n∑

i=1

f(x, xi)

Let g(x) is the expectation of f(x, xi) with respect to Xi. Because X1, ..., Xn

are i.i.d. random variables, from the Law of Large Numbers, we have:

∑n
i=1 f(x, xi)

n

a.s.→ g(x) (as n →∞)

then, as n →∞:

∑K
k=1 Fk, n(x)

n
= K/n + n−1

n∑
i=1

f(x, xi)
a.s.→ g(x) (2.10)

and

Ex

[∑K
k=1 Fk, n(x)

n

]
→ Exg(x) ≡ g (2.11)

Denote Ak, i ≡ [YiIk, i + (K − 1)−1(1 − Yi)(1 − Ik, i)]f(x, xi) and let Fn ≡

σ{Y n, Xn+1, Zn} be the σ−field after n stages.Then,

Fk, n(x) = 1 +
n∑

i=1

[YiIk, i + (K − 1)−1(1− Yi)(1− Ik, i)]f(x, xi)

= 1 +
n∑

i=1

Ak, i

= 1 +
n∑

i=1

E
(
Ak, i

∣∣Fi−1

)
+

n∑
i=1

[
Ak, i − E

(
Ak, i

∣∣Fi−1

)]

18



where
{
Ak, i − E

(
Ak, i

∣∣Fi−1

)
,Fi, i = 1, ..., n

}
is a martingale difference because:

E
[
Ak, i − E

(
Ak, i

∣∣Fi−1

)∣∣Fi−1

]
= 0

Let pki = 1 − qki be the probability of success if the i-th patient is allocated

to the k-th treatment.

n∑
i=1

E
[
Ak, i

∣∣Fi−1

]
=

∑
i

f(x, xi)

[
pkiFk, i−1(xi)∑K

l=1 Fl, i−1(xi)
+ (K − 1)−1

∑
l 6=k qliFl, i−1(xi)∑K
l=1 Fl, i−1(xi)

]

=
n∑

i=1

f(x, xi)
[(K − 1)pki − qki]Fk, i−1(xi) +

∑K
l=1 qliFl,ı−1(xi)

(K − 1)[K +
∑i−1

j f(xi, xj)]

= f(x, x1)
Kpk1 +

∑K
l=1 ql1 − 1

K(K − 1)

+
n∑

i=1

f(x, xi)
[Kpki − 1]Fk, i−1(xi) +

∑K
l=1 qliFl, i−1(xi)

(K − 1)[K +
∑i−1

j f(xi, xj)]

= δ0 +
n∑

i=2

f(x, xi)
[Kpki − 1]Fk, i−1(xi) +

∑
l qliFl, i−1(xi)

(K − 1)[K + (i− 1)g(xi)]
+ δ1n

where

δ0 ≡ f(x, xi)
Kpk1 +

∑K
l=1 ql1 − 1

K(K − 1)

and

δ1n ≡
n∑

i=1

(K − 1)−1f(x, xi)
{

[Kpki − 1]Fk, i−1(xi) +
∑

l

qliFl, i−1(xi)
}

·
{

1

K +
∑i−1

j=1 f(xi, xj)
− 1

K + (i− 1)g(xi)

}

note that both δ0, and δ1n are related to k.

Take expectation of
n∑

i=1

E
[
Ak, i

∣∣Fi−1

]
with respect to X, here, we denote

∫

x

·

19



as the expectation with respect to X. we obtain:

∫

x

n∑
i=1

E
[
Ak, i

∣∣Fi−1

]

=

∫

x

δ0 +

∫

x

δ1n +

∫

x

n∑
i=2

f(x, xi)
(Kpki − 1)Fk, i−1(xi) +

∑
l qliFl, i−1(xi)

(K − 1)[K + (i− 1)g(xi)]

= g(x1)
Kpk1 +

∑
l qli − 1

K(K − 1)
+

n∑
i=2

g(xi)
(Kpki − 1)Fk, i−1(xi) +

∑
l qliFl, i−1(xi)

(K − 1)[K + (i− 1)g(xi)]

+
n∑

i=1

g(xi)

K − 1

{
[Kpki − 1]Fk, i−1(xi) +

∑

l

qliFl, i−1(xi)
}

·
{

1

K +
∑i−1

j=1 f(xi, xj)
− 1

K + (i− 1)g(xi)

}

≡ ∆0 + ∆n + ∆1n

where ∆0, ∆n, ∆1n denote the above three corresponding terms.

Then,

∫

x

Fk, n(x) = 1 +

∫

x

n∑
i=1

E
(
Ak, i

∣∣∣Fi−1

)
+

∫

x

n∑
i=1

[
Ak, i − E

(
Ak, i

∣∣Fi−1

)]

= 1 + ∆0 + ∆n + ∆1n + ∆2n

where

∆2n ≡
∫

x

n∑
i=1

[
Ak, i − E

(
Ak, i

∣∣Fi−1

)]

The term

∆n =
n∑

i=1

g(xi)

(K − 1)[K + (i− 1)g(xi)]
[(Kpki − 1)Fk, i−1(xi) +

∑

l

qliFl, i−1(xi)]
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=
n∑

i=2

1

(K − 1)(i− 1)
[(Kpki − 1)Fk, i−1(xi) +

∑

l

qliFk, i−1(xi)]

−
n∑

i=1

K

(K − 1)(i− 1)[K + (i− 1)g(xi)]
[(Kpki − 1)Fk, i−1(xi) +

∑

l

qliFl, i−1(xi)]

≡ R1n −R2n

where R1n, R2n denote the above two corresponding terms.

Let Rn ≡ ∆1n + ∆2n −R2n, then:

∫

x

Fk, n(x) = 1 + ∆0 + R1n −R2n + ∆1n + ∆2n

= 1 + ∆0 + R1n + Rn

= 1 + ∆0 + ER1n + (R1n − ER1n) + Rn

where the expectation is with respect to Xi.

Suppose Cov[f(xi, xj), pi

∣∣Fi−1] = 0 for k = 1, ...K, j < i, then

Cov[Fk, i−1(xi), Kpi − 1]

= E
[
Cov(Fk, i−1(xi), Kpi − 1)

∣∣∣Fi−1

]

= E

[ i−1∑
j=1

K
(
YjIk, j + (K − 1)−1(1− Yj)(1− Ik, j)

)
Cov[f(xi, xj), pi

∣∣Fi−1]

]

= 0
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Thus,

ER1n =

∫

xi

R1n

=
n∑

i=2

1

(K − 1)(i− 1)

[ ∫

xi

Fk, i−1(xi) ·
∫

xi

(Kpki − 1) +
∑

l

∫

xi

Fl, i−1(xi) ·
∫

xi

qli

]

+
n∑

i=2

1

(K − 1)(i− 1)

{
Cov[Fk, i−1(xi), Kpki − 1] +

∑

l

Cov[Fl, i−1(xi), qli]
}

=
n∑

i=2

1

(K − 1)(i− 1)

[ ∫

xi

Fk, i−1(xi) ·
∫

xi

(Kpki − 1) +
∑

l

∫

xi

Fl, i−1(xi) ·
∫

xi

qli

]

Denote Wn ≡ (R1n − ER1n) + Rn, then,

∫

x

Fk, n

= 1 + ∆0 + Wn

+
n∑

i=2

1

(K − 1)(i− 1)

[ ∫

xi

Fk, i−1(xi) ·
∫

xi

(Kpki − 1) +
∑

l

∫

xi

Fl, i−1(xi) ·
∫

xi

qli

]

Denote ∆Wn ≡ Wn −Wn−1, therefore

∫

x

Fk, n −
∫

x

Fk, n−1

=
1

(K − 1)(n− 1)

[ ∫

xn

Fk, n−1(xn) ·
∫

xn

(Kpkn − 1) +
K∑

l=1

∫

xn

Fl, n−1(xn) ·
∫

xn

qln

]
+ ∆Wn
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Let Pk ≡
∫

xi

pki = 1−Qk, Write the above as a vector, we obtain:




∫

x

F1, n −
∫

x

F1, n−1

∫

x

F2, n −
∫

x

F2, n−1

· · ·

· · ·

· · ·
∫

x

FK, n −
∫

x

FK, n−1




=
1

(K − 1)(n− 1)




(K − 1)P1 Q2 · · · QK

Q1 (K − 1)P2 · · · QK

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q1 Q2 · · · (K − 1)PK




·




∫

xn

F1, n−1(xn)

∫

xn

F2, n−1(xn)

· · ·

· · ·

· · ·
∫

xn

FK, n−1(xn)




+ ∆Wn
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Denote

H ≡




(K − 1)P1 Q2 · · · QK

Q1 (K − 1)P2 · · · QK

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q1 Q2 · · · (K − 1)PK




/
(K − 1) (2.12)

and

Fn ≡




∫

x

F1, n

∫

x

F2, n

· · ·

· · ·

· · ·
∫

x

FK, n




then we have

Fn = (I +
1

n− 1
H)Fn−1 + ∆Wn (2.13)

Assumption 1 Suppose that H is of non-negative entries and H
′
(transpose of

H)has the Jordan form decomposition

T−1H
′
T = J =




λ0 0 · · · 0

0 J1 · · · 0

. . . . . . . . . . . . . . .

0 0 · · · Jr




with Jt =




λt 1 0 · · · 0

0 λt 1 · · · 0

. . . . . . . . . . . . . . . . . . .

0 0 · · · λt 1

0 0 0 · · · λt



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where λ0 = 1 is the unique maximum eigenvalue of H. Moreover, we assume

that the elements of the eigenvector v = (v1, ..., vK)T associated with the positive

maximal eigenvalue λ0 are nonnegative and satisfy
K∑

k=1

vk = 1.

Theorem 2 As n →∞, we have the following asymptotic property:

Fk, n(x)/n
a.s.→ g(x)vk

And the Urn Composition:

Fk, n(x)∑K
l=1 Fl, n(x)

a.s.→ vk (2.14)

Moreover, the proportion of patients allocated to a dose level has the following

result:

n−1

n∑
i=1

Ik, i
a.s.→ vk (2.15)

for k = 1, ..., K.

See Appendix 2 for the Proof.

These results accord with those in the usual GFU model.
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Chapter 3

Simulation Results

To verify the asymptotic results obtained is Chapter 2 and help with selection

of optimal dose, a series of simulations are conducted. R language is used to

conduct these simulations. A typical source code can be found in Appendix 3.

3.1 Algorithm

The algorithm can be described as the following procedures:

1 Set K=10 dose levels, they are dk = k/10, k = 1, ..., 10. Generate a sequence

of random variables Xi, i = 1, ..., n from a standard normal distribution or uniform

distribution over (0,1), then set some values for the parameters in (2.1).
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2 For the first trial, we allocate the patient to a certain dose level with equal

probability, i.e. Pr(Z1 = dk) = 0.1, k = 1, ..., K. In the following trials, for the

i-th patient, we plug the patient’s covariate Xi into the allocation function, then

generate the allocation function Ik, i, k = 1, ..., K with probabilities Pr(Ik, i = 1) =

Fk, i−1(xi)∑K
j=1 Fj, i−1(xi)

, k = 1, ..., K. The allocation function Fk, i(x), k = 1, ..., K is given

by (2.2).

3 By the logistic regression model, we can obtain the response of each patient:Yi(i =

1, ..., n) = 1 or 0 represents success or failure of patient i. Yi is generated with prob-

abilities Pr(Yi = 1) = pk, i if dose k is assigned to patient i.

4 According to (2.3), we can obtained MLE for the parameters the same as in

i.i.d case using the generated n responses. A circle is finished till now.

5 In order to investigate the asymptotic properties of MLE, we conduct N

circles to obtain N parameter estimations.

6 To investigate the asymptotic properties of Urn composition and select of

optimal dose, one circle with very large n is chosen.
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3.2 Simulation Results

3.2.1 Asymptotics of Maximum Likelihood Estimation (MLE)

Our investigations of normality will concentrate on the behavior of observa-

tions in one or two dimensions. As might be expected, it can be proved difficult

to construct a ”good” overall test of joint normality in more than two dimensions

because many aspects may be wrong. To some extent, we must pay a price for

concentrating on univariate and/or bivariate examinations of normality: We can

never be sure that we have not missed some feature that is revealed only in higher

dimensions. For convenience, we only check one dimension asymptotic behavior of

MLE. In R language, Shapiro-Wilk (1965) test is provided to test one dimension

normality. In Table 3.1-Table 3.4, we set α = −0.5, β = 10, γ = −10, λ = 2 (in

2.1), and let f(a, b) =
1

1 + |a− b| or f(a, b) =
1

1 + |a− b|2 and Xi’s be from Stan-

dard Normal Distribution or Uniform Distribution over (0,1). Let n = 500 and

N = 100. In these 4 cases, the performances of MLEs are good.The tests are not

significant as n is large(>200). A more detailed simulation results are presented in

Table 3.5 and Table 3.6.
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Table 3.1: f(a, b) =
1

1 + |a− b| , n = 500, N = 100, X ∼ N(0, 1).

Parameter True Value Mean Variance p-value
α -0.5 -0.49 0.301 0.18
β 10 10.16 4.537 0.37
γ -10 -10.26 3.597 0.64
λ 2 2.03 0.045 0.57

Table 3.2: f(a, b) =
1

1 + |a− b|2 , n = 500, N = 100, X ∼ N(0, 1).

Parameter True Value Mean Variance p-value
α -0.5 -0.55 0.238 0.31
β 10 10.18 3.865 0.42
γ -10 -10.15 3.049 0.53
λ 2 1.98 3.044 0.77

Table 3.3: f(a, b) =
1

1 + |a− b| , n = 500, N = 100, X ∼ U(0, 1).

Parameter True Value Mean Variance p-value
α -0.5 -0.62 0.368 0.67
β 10 10.24 5.806 0.24
γ -10 -10.20 4.549 0.20
λ 2 2.08 0.283 0.68

Table 3.4: f(a, b) =
1

1 + |a− b|2 , n = 500, N = 100, X ∼ U(0, 1).

Parameter True Value Mean Variance p-value
α -0.5 -0.58 0.363 0.70
β 10 10.33 6.040 0.80
γ -10 -10.28 4.750 0.46
λ 2 2.06 0.282 0.47
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Table 3.5: Comparisons on Different Situations-1,X ∼ N(0, 1).
Parameter TrueValue Mean VAR p-value

Case 1-1 n=200 N=100
α -0.5 -0.44 0.764 -2.950 2.457 -0.027 0.36
β 10 10.13 2.950 14.195 12.815 0.407 0.42
γ -10 -10.24 2.457 -12.815 12.092 -0.395 0.23
λ 2 2.08 -0.027 0.407 -0.395 0.111 0.78

Case 1-2 n=200 N=400
α -0.5 -0.54 0.557 -2.208 1.801 -0.011 0.75
β 10 10.35 -2.208 11.198 -10.020 0.316 0.22
γ -10 -10.39 1.801 -10.020 9.416 -0.334 0.12
λ 2 2.082 -0.011 0.316 -0.334 0.107 0.04

Case 1-3 n=500 N=100
α -0.5 -0.49 0.304 -1.042 0.783 0.020 0.18
β 10 10.16 -1.042 4.537 -3.888 0.031 0.37
γ -10 -10.26 0.783 -3.888 3.597 -0.064 0.64
λ 2 2.02 0.020 0.031 -0.064 0.045 0.57

Case 1-4 n=500 N=400
α -0.5 -0.48 0.245 -0.945 0.763 0.005 0.43
β 10 10.04 -0.945 4.479 -3.921 0.063 0.68
γ -10 -10.07 0.763 -3.921 3.594 -0.069 0.77
λ 2 2.04 0.005 0.063 -0.069 0.037 0.12

Case 1-5 n=1000 N=100
α -0.5 -0.54 0.127 -0.534 0.458 -0.008 0.75
β 10 10.11 -0.534 2.652 -2.395 0.074 0.27
γ -10 -10.10 0.458 -2.395 2.238 -0.072 0.34
λ 2 2.01 -0.008 0.074 -0.072 0.021 0.09

Case 1-6 n=1000 N=400
α -0.5 -0.51 0.099 -0.396 0.330 0.000 0.78
β 10 10.05 -0.396 2.009 -1.823 0.045 0.19
γ -10 -10.04 0.330 -1.823 1.730 -0.046 0.11
λ 2 2.01 0.000 0.045 -0.046 0.018 0.14
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Table 3.6: Comparisons on Different Situations-2,X ∼ U(0, 1).
Parameter TrueValue Mean VAR p-value

Case 2-1 n=200 N=100
α 1 1.17 0.902 -3.232 2.579 0.052 0.085
β 8 7.82 -3.232 16.500 -14.686 -0.022 0.396
γ -8 -7.85 2.579 -14.686 13.772 0.033 0.457
λ 1 1.031 0.052 -0.022 0.033 0.105 0.996

Case 2-2 n=200 N=400
α 1 1.00 0.934 -3.459 2.736 0.029 0.001
β 8 8.436 -3.459 16.475 -14.251 0.093 0.660
γ -8 -8.449 2.736 -14.251 12.878 -0.100 0.539
λ 1 1.03 0.029 0.093 -0.100 0.076 0.030

Case 2-3 n=500 N=100
α 1 1.05 0.289 -1.060 0.867 0.029 0.809
β 8 8.00 -1.060 5.425 -4.893 -0.040 0.760
γ -8 -8.04 0.867 -4.893 4.626 0.038 0.975
λ 1 1.04 0.029 -0.040 0.038 0.031 0.070

Case 2-4 n=500 N=400
α 1 0.97 0.306 -1.164 0.915 0.001 0.57
β 8 8.39 -1.164 5.735 -4.956 0.092 0.44
γ -8 -8.39 0.915 -4.956 4.491 -0.089 0.41
λ 1 1.03 0.001 0.092 -0.089 0.029 0.25

Case 2-5 n=1000 N=100
α 1 1.02 0.143 -0.527 0.409 0.002 0.25
β 8 7.92 -0.527 2.752 -2.357 0.053 0.09
γ -8 -7.92 0.409 -2.357 2.110 -0.050 0.20
λ 1 1.00 0.002 0.053 -0.050 0.013 0.75

Case 2-6 n=1000 N=400
α 1 1.01 0.181 -0.675 0.531 0.002 0.83
β 8 7.97 -0.675 3.218 -2.77 0.036 0.23
γ -8 -7.96 0.531 -2.773 2.501 -0.034 0.30
λ 1 1.01 0.002 0.036 -0.034 0.014 0.50
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3.2.2 Asymptotics of Urn Composition and Allocation Pro-

portion

By theorem 2,we know that the Urn composition converge to an eigenvector

described in Assumption 1. Table-3.7 gives the result as α = −0.5, β = 10, γ =

−10, λ = 2, f(a, b) =
1

1 + |a− b| , X ∼ N(0, 1):

Table 3.7: Urn composition and allocation proportion Convergence, n=20,000

Dose Level Eigenvector vk
Fk, n(x)∑K
j=1 Fj, n(x)

n−1

n∑
i=1

Ik, i g(x)vk Fk, n(x)/n

0.1 0.0700 0.0713 0.074 0.0336 0.0343
0.2 0.0885 0.0956 0.087 0.0425 0.0460
0.3 0.1079 0.0917 0.101 0.0518 0.0441
0.4 0.1309 0.1280 0.123 0.0629 0.0616
0.5 0.1423 0.1345 0.135 0.0684 0.0647
0.6 0.1299 0.1311 0.124 0.0624 0.0630
0.7 0.1117 0.1142 0.114 0.0537 0.0549
0.8 0.0948 0.1081 0.108 0.0455 0.0520
0.9 0.0718 0.0745 0.076 0.0345 0.0358
1.0 0.0520 0.0507 0.055 0.0249 0.0244

From the above table, we can find that, for a random generated value x (for

convenience, the last patient’s covariate is used), both of the Urn composition and

allocation proportion near to v as n is very large. We can also see that dose level

0.5 is the optimal dose with its highest Urn composition and allocation proportion,

thus, make more patients be allocated to the optimal dose.
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3.2.3 Selection of Optimal Dose

The patients’ covariates may have, in certain extent, positive or negative effects

on the probability of success of the dose level assigned to this patient. If the

coefficient λ in the GLM is relatively great, the effects on the probabilities of success

will adverse the selection of optimal dose, because of the randomness of the patients’

covariates. Let n be very large(>1,000), this randomness can be counteracted if

each dose is drawn enough times. Taking average of the probabilities of success for

each dose over the number of patients allocated to, we obtain an approximation

of the probability of success for each dose. Table-3.8 is an example in which we

use: α = −0.5, β = 10, γ = −10, λ = 2, f(a, b) =
1

1 + |a− b| , X ∼ N(0, 1), n =

20, 000. The probabilities of success for each dose when taking patients’ covariates

into account, still favor the optimal dose we prescribed when not considering the

patients’ effects. Also, the number of times of allocation has the same trend with

the probabilities of success and shows that this model can actually take the patients’

effects into account and give an ethical concern. The probabilities of success for

each dose when taking patients’ covariates into account have, on average, the same

trend as without patients’ effect. This can be seen more clearly in Figure-3.1, where

the solid line is the probabilities of success without effect of patients’ covariates and

the dots are the probabilities of success with effect of patients’ covariates.
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Table 3.8: The effect of patients on the dose probability success.

DoseLevel 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prob.ofSucc. 0.559 0.651 0.714 0.764 0.783 0.762 0.724 0.674 0.570 0.406
No. of Alloc. 1481 1749 2024 2467 2702 2477 2279 2179 1527 1115

Figure 3.1: The Effect of Patients’ Covariates on Dose Selection
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Chapter 4

Conclusions and Discussions

The main results of this assay are the asymptotic properties of Urn compo-

sition and allocation proportion in the circumstance of considering the patients’

covariates’ effects on the adding rule and the probability of success for each dose.

The ethic imperative are given consideration without affecting the statistical in-

ference of the model. As a result, this model places more patients to the optimal

dose and lowers the patients’s exposition to dose level with high risks of failure.

In our model, the generating matrix is in fact f(x, xi)H
′
. If we think that f(x, xi)

is associated with a weight to increase the probabilities of the allocating the i-th

patient with the covariate near to the last covariate xi−1 to the more successful

dosage, then H
′
plays a role as a ”generating matrix” as is in the GFU model. The

asymptotic properties of Urn composition and allocation proportion are related to

the unit eigenvector of the maximal eigenvalue of H, as is in the usual GFU case

without considering the patients’ covariates.
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Appendix 1

Let Fn be the σ-field generated by the stochastic process through stage n

(Fn ≡ σ{Y n, Xn, Zn},in this thesis, denoting Fn ≡ σ{Y n, Xn+1, Zn} is suitable),

and define the conditional expectation of · with respect to Fn to be En(·) and the

conditional variance to be V arn(·). We will suppose there exists an open subset

Ω0 of the parameter space Ω containing the true parameter.

We impose the following regularity conditions on the likelihood:

(A1)

∫
Ln(y1, ..., yn; θ)dyn can be partially differentiated twice with respect to θ

under the integral sign and the first partials have finite moments of order 2 + δ for

some δ > 0.

(A2) For almost all y1, ..., yn, Ln(θ) admits all third partial derivatives, and the

absolute values of the third partials (with respect to θa, θb, θc) are bounded by a

function Mn(y1, ..., yn) for all θ ∈ Ω0. We assume Mabc ≡ sup
n

Mn(y1, ..., yn) is

integrable.
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(A3) For a = 1, ..., s, b = 1, ..., s ,

n−1

n∑
i=1

Ei−1{ ∂

∂θa

Ui(θ)
∂

∂θb

Ui(θ)} P→ γab(θ) (as n →∞)

where γab(θ) is a nonrandom function of θ, for all θ ∈ Ω0.

(A4) For some δ > 0 and a = 1, ..., s,

n−(1+δ/2)

n∑
i=1

Ei−1{ ∂

∂θa

Ui(θ)}2+δ P→ 0, (as n →∞)

for all θ ∈ Ω0.

(A5) For a = 1, ..., s, b = 1, ..., s,

n−1

n∑
i=1

∂2

∂θa∂θb

Ui(θ)
P→ −γab(θ) (as n →∞)

for all θ ∈ Ω0, where γab(θ) is defined in (A3).

Define Γ(θ) to be an s × s matrix with elements γab(θ), where the γab’s are

defined in the condition (A3). Let θ̂n ≡ (θ̂1n, ..., θ̂sn) be a MLE for θ. We have the

following theorem:

Theorem 3 If conditions(A1)-(A5) are satisfied, then a consistent MLE θ̂n exists

and the vector n1/2(θ̂n − θ) is asymptotically multivariate normal with mean zero

and variance-covariance matrix [Γ(θ)]−1, provided the inverse exists.

Proof: Let Ln(θ) ≡ logLn(θ) =
n∑

i=1

Ui(θ) be the log-likelihood, Suppose θ0 is the

true parameter,using Taylor’s Expansion, we have:

0 = L′n(θ̂n) = L′n(θ0) + L′′n(θ1)(θ̂n − θ0)
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where L′n is a s× 1 vector and L′′n is a s× s matrix, θ1 is a vector among two balls

with radii ||θ0|| and ||θ̂n||.

Then

θ̂n − θ0 = −[L′′n(θ1)]
−1L′n(θ0) = −

[L′′n(θ1)

n

]−1L′n(θ0)

n
(4.1)

and

√
n(θ̂n − θ0) = −

[L′′n(θ1)

n

]−1L′n(θ0)√
n

(4.2)

From (A1), we have

Ei−1

[
U ′

i(θ)] =

∫
∂f(yi|Fi−1, θ)

∂θ
dyi =

∫ ( Li

Li−1

)′
dyi

=

∫
L ′

i Li−1 −L ′
i−1Li

L 2
i−1

dyi

=
1

Li−1

∫
L ′

i dyi −
L ′

i−1

L 2
i−1

∫
Lidyi

=
1

Li−1

∫
L ′

i dyi −
L ′

i−1

Li−1

= 0

Thus

{∂Ln(θ)

∂θa

=
n∑

i=1

∂Ui(θ)

∂θa

,Fn, n ≥ 1
}

is a martingale for a = 1, ..., s. Then, by WLLN, as n →∞:

L′n(θ)

n

P→ 0 (4.3)
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By(A3),(A4) and martingale CLT (Hall and Heyde,1980), we obtain

1√
n

L′n(θ) → N(0, Γ(θ)) (4.4)

for θ ∈ Ω0.

On the other hand, for each element of matrix L′′n(θ1), using Taylor’s Expansion:

1

n

∂2

∂θa∂θb

Ln(θ1) =
1

n

∂2

∂θa∂θb

Ln(θ0) +
1

n

∂3

∂θa∂θb∂θc

Ln(θ2)(θ1 − θ0) (4.5)

where θ2 is a vector among the two balls with radii ||θ0|| and ||θ1||.

By (A6)

1

n

∂2

∂θa∂θb

Ln(θ0)
P→ −γab(θ0)

By (A2)

1

n

∣∣∣∣
∂3

∂θa∂θb∂θc

Ln(θ2)

∣∣∣∣ ≤
1

n

n∑
i=1

Mi(Y1, ..., Yi) ≤ Mabc

Thus,
1

n

∂2

∂θa∂θb

Ln(θ1) is bounded in probability if we let ||θ1−θ0|| be less than some

constant. Therefore, in (4.4)

θ̂n − θ0
P→ 0 (4.6)

Considering the consistence of θ̂n, as n →∞, we have θ1 − θ0
P→ 0. Therefore, the

second item in (4.5) converges to 0 in probability. Then,

1

n

∂2

∂θa∂θb

Ln(θ1)
P→ −γab(θ0)
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Therefore,

√
n(θ̂n − θ0) = −

[L′′n(θ1)

n

]−1L′n(θ0)√
n

→ N(0, Γ(θ0)
−1)

The proof is complete.
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Appendix 2

Proof of Theorem 2:

By the assumption, we have

Fn =
(
I +

1

n− 1
H

)
· · ·

(
I +

1

i
H

)
Fi

+
n∑

j=i+1

(
I +

1

n− 1
H

)
· · ·

(
I +

1

j
H

)
∆Wj

= T
(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

i
J
′
)
T−1Fi

+
n∑

j=i+1

T
(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

j
J
′
)
T−1∆Wj
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We consider the elements of the matrix

(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

j
J
′
)

=




n−1∏

k=j

(
1 +

1

k

)
0 · · · 0

0
n−1∏

k=j

(
I + k−1J

′
1

)
· · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · ·
n−1∏

k=j

(
I + k−1J

′
r

)




By elementary calculus, we know that: as n > j →∞,

(
1 +

1

n− 1

)
· · ·

(
1 +

1

j

)
=

(n

j

)(
1 + o(1)

)

and the (h−k, h)-element of the block matrix
n−1∏

k=j

(
I+k−1J

′
t

)( j

n

)
has the estima-

tion

1

k!

( j

n

)1−Re(λt)

logk
(n

j

)
(1 + o(1)) ≤ 3

k!

(
k

e(1− |λt| − ε)

)k( j

n

)ε

(4.7)

where λt is the eigenvalue of Jt and 0 < ε < 1− |λt|. These imply that

(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

i
J
′
)( i

n

)
→




1 0 · · · 0

0 0 · · · 0

. . . . . . . . . . . .

0 0 · · · 0




= e
′
1e1 (4.8)

where e1 = (1, 0, ..., 0).
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∆Wk, j

=

[
(Kpkj − 1)Fk, j−1(xj) +

∑
l qljFl, j−1(xj)

(K − 1)(j − 1)
−

F k, j−1

∫
xj

(Kpkj − 1) +
∑

l F l, j−1

∫
xj

qlj

(K − 1)(j − 1)

]

− K

(K − 1)(j − 1)[K + (j − 1)g(xj)]
[(Kpkj − 1)Fk, j−1(xj) +

∑

l

qljFl, j−1(xj)]

+
g(xj)

K − 1

[
1

K +
∑j−1

u=1 f(xj, xu)
− 1

K + (j − 1)g(xj)

]
[(Kpkj − 1)Fk, j−1(xj) +

∑

l

qljFl, j−1(xj)]

+

∫

x

[
Ak, j − E(Ak, j

∣∣∣Fj−1)
]

We are going to show that as i →∞,

n−1

n∑
j=i+1

T
(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

j
J
′
)
T−1∆Wj

a.s.→ 0 (4.9)

Note that the first row of T−1 is (1, 1, ..., 1), as n > j →∞,

(n

j

)
T

(
I +

1

n− 1
J
′
)
· · ·

(
I +

1

j
J
′
)
T−1 → Te1

′e1T
−1

=




1

1

· · ·

1




(1, 1, ..., 1)

Thus,

e1T
−1 = (1, 1, ..., 1)∆Wj =

∑

k

∆Wk, j

Suppose f is bounded by 0 < m < f < M, (m,M are constants), then the

second term of ∆Wk, j has order O(j−1), the third term is bounded by the martin-
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gale
1

j − 1

j−1∑
u=1

[f(xj, xu) − g(xj)], then has order O(j−1/2). The summation of the

first term of ∆Wk, j under k,is
1

j − 1

j−1∑
u=1

[f(xj, xu) − g(xu)], has order O(j−c) for

some constant c > 0 under a certain assumption on g(x). The summation of the

last term under k, is 0.

Thus, (1, 1, ..., 1)∆Wj, k has order O(j−δ) for some δ > 0, therefore,

n−1

n∑
j=i+1

T
(
I+

1

n− 1
J
′
)
· · ·

(
I+

1

j
J
′
)
T−1∆Wj =

n∑
j=i+1

j−1




1

1

· · ·

1




(1+o(1))
∑

k

∆Wk, j

and (4.9) follows.

This leads to:

T−1Fn/n− e
′
1e1T

−1Fi/i → 0

as n > i → ∞. Since each element of T−1Fn/n is bounded, we conclude that

T−1Fn/n must converge to a limit, say z, satisfying z = e
′
1e1z. This implies that

z ∝ e
′
1. It follows that

Fn/n → CTe
′
1 = Cv

C is a constant.By(2.11),C = g.
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Therefore

Fk, n(x) = 1 + δ0 +
n∑

i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)Fk, i−1(xi)

i− 1
+

∑

l

qliFl, i−1(xi)

i− 1

]

−
n∑

i=2

Kf(x, xi)

[K + (i− 1)g(xi)]g(xi)

[
(Kpki − 1)Fk, i−1(xi)

i− 1
+

∑

l

qliFl i−1(xi)

i− 1

]

+ δ1n + δ2n (δ2n ≡
n∑

i=1

[
Ak, i − E

(
Ak, i

∣∣Fi−1

)]
)

= 1 + δ0 +
n∑

i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)g(xi)vk +

∑

l

qlig(xi)vl

]

+
n∑

i=1

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)

(Fk, i−1(xi)

i− 1
− g(xi)vk

)
+

∑

l

qli

(Fl, i−1(xi)

i− 1
− g(xi)vl

)]

−
n∑

i=2

Kf(x, xi)

[K + (i− 1)g(xi)]g(xi)

[
(Kpki − 1)Fk, i−1(xi)

i− 1
+

∑

l

qliFl, i−1(xi)

i− 1

]

+ δ1n + δ2n

Using the assumption about the covariance between f and pki, we have:

n−1

n∑
i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)g(xi)vk +

∑

l

qlig(xi)vl

]

= n−1

n∑
i=2

f(x, xi)

(K − 1)

[
(Kpki − 1)vk +

∑

l

qlivl

]

a.s.→ (K − 1)−1Exi
f(x, xi)

[
(Kpki − 1)vk +

∑

l

qlivl

]

= (K − 1)−1g(x)
[
(KPk − 1)vk +

∑

l

Qlvl

]

= g(x)vk

The term:

n∑
i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki− 1)

(Fk, i−1(xi)

i− 1
− g(xi)vk

)
+

∑

l

qli

(Fl, i−1(xi)

i− 1
− g(xi)vl

)]
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can be written as:

n∑
i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)

(Fk, i−1(xi)

i− 1
− F k, i−1

i− 1

)
+

∑

l

qli

(Fl, i−1(xi)

i− 1
− F l, i−1

i− 1

)]

+
n∑

i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)

(F k, i−1

i− 1
− gvk

)
+

∑

l

qli

(F l, i−1

i− 1
− gvl

)]

+
n∑

i=2

f(x, xi)

(K − 1)g(xi)

[
(Kpki − 1)

(
gvk − g(xi)vk

)
+

∑

l

qli

(
gvl − g(xi)vl

)]

Since
{Fk, i−1(xi)

i− 1
−F k, i−1

i− 1
, i = 2, ..., n

}
is a martingale difference, and

f(x, xi)

g(xi)

is bounded, the first term is therefore o(n), the second, by LLN, is o(n), the

third term is also o(n). n−1

n∑
i=2

Kf(x, xi)

[K + (i− 1)g(xi)]g(xi)

[(Kpki − 1)Fk, i−1(xi)

i− 1
+

∑

l

qliFl i−1(xi)

i− 1

]
is also converges to 0. δ1n/n, δ2n/n automatically converge to 0.

Therefore,

Fk, n(x)

n

a.s.→ g(x)vk

and

Fk, n(x)∑K
l=1 Fl, n(x)

a.s.→ vk

for k = 1, ..., K.

By Stolz Therorem,

n−1

n∑
i=1

Ik, i = n−1

n∑
i=1

Fk, i−1(xi)∑K
l=1 Fl, i−1(xi)

has the same limit as
Fk, n(xi)∑K
l=1 Fl, n(xi)

.

The proof is complete.
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Appendix 3

Simulation Source Code: A Typical Example

options(expressions=100000)

N<-400 #No. of Circles

n<-1000 #No.of Patients in Each Circle

a<--1/2 b<-10 c<--10 e<-2 #Set True Value for Parameters

A<-array(1,dim=c(n,4,N)) #Covariates Array

y<-array(0,dim=c(n,N)) #response array

res<-array(0,dim=c(N,4)) #parameter estimation

for(j in 1:N) {
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x<-rnorm(n,mean=0,sd=1) #X from Standard Normal Distribution

#x<-runif(n, min=0,max=1)

A[,4,j]<-x

I<-matrix(c(rep(0,10*n)),ncol=n,byrow=T) #Allcation Array

P<-I #Probability of Success Array

af<-function(k,i,z){ #Define Allocation Rule Function

if(i==0) aff<-1

else aff<-af(k,i-1,z)+(y[i,j]*I[k,i]+(1-y[i,j])*(1-I[k,i])/9)

/(1+(abs(z-x[i])))

return(aff)}

d<-c(rep(0,n)) # Dose Choice

d[1]<-sample(10,1)

A[1,2,j]<-d[1]/10

A[1,3,j]<-d[1]^2/100

I[d[1],1]<-1

P[d[1],1]<-exp(a+b*d[1]/10+c*d[1]^2/100+e*x[1])

/(1+exp(a+b*d[1]/10+c*d[1]^2/100+e*x[1]))

y[1,j]<-sample(0:1,1,T,c(1-P[d[1],1],P[d[1],1]))
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for(i in 2:n) { urn<-rep(0,10)

# f<-rep(1,10)

# for(l in 1:(i-1))

# {for(k in 1:10)

# {f[k]<-f[k]+(y[l,j]*I[k,l]+(1-y[l,j])*(1-I[k,l])/9)/(1+abs(x[i]-x[l]))}

#} # Simplify Allocation Proportional Function to Avoid Stack Flow

# urn<-f

urn<-af(1:10,i-1,x[i])

urn<-urn/sum(urn)

d[i]<-sample(1:10,1,T,urn)

I[d[i],i]<-1

P[d[i],i]<-exp(a+b*d[i]/10+c*d[i]^2/100+e*x[i])

/(1+exp(a+b*d[i]/10+c*d[i]^2/100+e*x[i]))

A[i,2,j]<-d[i]/10

A[i,3,j]<-d[i]^2/100

y[i,j]<-sample(0:1,1,T,c(1-P[d[i],i],P[d[i],i]))

}

49



par<-glm(formula=cbind(y[,j],1-y[,j])~A[,2,j]+A[,3,j]+A[,4,j]

,fam=binomial,maxit=100) #MLE

for(t in 1:4)

{

res[j,t]<-par$coefficients[t]

} }

###Maximum Likelihood Estimation######

me<-apply(res,2,mean)

me

var(res)

shapiro.test(res[,1]) #Normality TEST

shapiro.test(res[,2])

shapiro.test(res[,3])

shapiro.test(res[,4])

###finding optimal dose#####

w<-10000

y<-rep(0,w)
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a<--1/2 b<-10c<--10 e<-2

d<-c(rep(0,w)) I<-matrix(rep(0,10*w),ncol=w,byrow=T)

x<-rnorm(w,mean=0,sd=1) d[1]<-sample(10,1)

pro<-array(0,dim=c(w,2))

pro[1,1]<-exp(a+b*d[1]/10+c*d[1]^2/100+e*x[1])

/(1+exp(a+b*d[1]/10+c*d[1]^2/100+e*x[1]))

pro[1,2]<-d[1]

y[1]<-sample(0:1,1,T,c(1-pro[1,1],pro[1,1]))

for(i in 2:w) { urn<-rep(0,10) f<-rep(1,10)

for(j in 1:(i-1))

{for(k in 1:10)

{f[k]<-f[k]+(y[j]*I[k,j]+(1-y[j])*(1-I[k,j])/9)/(1+abs(x[i]-x[j]))}

}

urn<-f

urn<-urn/sum(urn)

d[i]<-sample(1:10,1,T,urn)
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I[d[i],i]<-1

pro[i,1]<-exp(a+b*d[i]/10+c*d[i]^2/100+e*x[i])

/(1+exp(a+b*d[i]/10+c*d[i]^2/100+e*x[i]))

pro[i,2]<-d[i]

y[i]<-sample(0:1,1,T,c(1-pro[i,1],pro[i,1]))

}

pp<-matrix(rep(0,30),ncol=10,byrow=T)

for (k in 1:10) {

for (i in 1:w) { if(pro[i,2]==k)

{pp[1,k]<-k/10 pp[2,k]<-pp[2,k]+pro[i,1] pp[3,k]<-pp[3,k]+1} }

pp[2,k]<-pp[2,k]/pp[3,k] }

pp

par(mfrow=c(1,1))

x1<-seq(0.1,1,0.05)

y1<-a+b*x1+c*x1^2

y1<-exp(y1)/(1+exp(y1))

plot(pp[1,],pp[2,],ylim=c(0.3,0.9))

lines(x1,y1)
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rr<-rep((1-pp[2,]),10)

h<-matrix(rr,ncol=10,byrow=T)

h<-h/9

diag(h)<-pp[2,]

g<-function(z)

{ga<-0 for(i in 1:w)

{ ga<-ga+1/(1+(abs(z-x[i]))) }

ga<-ga/w return(ga) }

ev<-eigen(h)$vectors[,1]/sum(eigen(h)$vectors[,1])

ev

f/sum(f)

f/(w-1)

ev*g(x[w])
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