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SUMMARY 

 
A modular controller was developed to evaluate performance of robust locomotion 

control algorithms. An NUS developed quadruped was used as the testbed for this 

project. A low level controller was developed as two modules, the hardware interface 

and the fuzzy controller, which is attachable to any high level controller. Two high 

level controllers were developed - the behaviour-based and Central Pattern Generator 

(CPG) controllers. The behaviour-based controller is a modular controller based on 

interaction between various modules. Basic modules were developed to provide basic 

motion. Other modules were implemented to improve the controller’s robustness. The 

CPG controller is based on the animal spinal system’s coordination of locomotion. 

Pribe, Grossberg and Cohen’s Oscillator Model for CPG were implemented. The 

algorithms used in the behaviour-based controller were integrated to this controller to 

provide gait stability. Both static and dynamic gait patterns were simulated with online 

gait change. 
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Chapter 1  
1 INTRODUCTION 

INTRODUCTION 

1.1 Legged Locomotion 

Legged robots have been around for quite a while. They are considered mobile robots 

and are used in the area where wheeled robots find difficulty in moving. Many 

researchers marvel at how animals and insects move and try to model their actions and 

style of movements. What looks easy at first glance is not always as easy as it seems. 

The way that a cockroach moves differs from the way that a preying mantis moves. 

The speed at which they move is also different. The idea of studying these creatures is 

really to achieve what they have achieved in terms of efficient walking.  

 

1.2 Diversity in Nature 

God seems to have a sense of humour when he created all creatures big and small. All 

creatures have different forms and mechanisms that aid it in its environment. All 

animals and insects have different type of sensors that work differently to aid them in 

their task. The creature’s position in the food chain determines the way that it moves. 

Therefore, the walking mechanism for animals is different; all with different leg 

structures with different lengths, placed differently, serving various purposes. Nature 

has definitely provided us with a multitude of solutions to problems. It is up to us to 

decide which solution is the most viable for robot design. Spiders, cockroaches and 
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various insects have been models used for legged robot design. Extracting information 

from the observation of these insects has given us much insight on gait and structure. 

This knowledge is tested on machines to correlate the findings. More can be gained as 

the research in this field matures. As more is understood about legged locomotion, 

autonomous robots can be developed that will take over human tasks. This is the goal 

of legged robot research.  

 

1.3  Insights in Legged Robotics 

The study of animals have given us insight on how walking is achieved. At this point 

in time, our understanding of biological walking is still shallow. There are not many 

legged robots that can achieve autonomous locomotion for long periods of time. 

Recovery is a major problem for legged robots. If the robot becomes unstable, there 

must be a way to recover, like a cockroach’s ability to flip itself over once it overturns.  

A lack of this capability reduces autonomy of robots as instability is unavoidable in the 

real world.   

 

1.4 The NUS Quadruped 

A quadruped was built in 1998 by Cheong Choon Ghee [Cheong 1998]. Different 

controllers were built for this robot to develop a working walking gait. Over the years, 

sensors were added to the robot to improve the stability and flexibility of the controller 

[Atienza 2001]. All work done in this project is based on this robot. A detailed 

description of the quadruped is presented in Chapter 3. 
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1.5 Goals 

 
Building a robust robotic system is developing a system that is able to operate 

withstanding conditions or changes in the environment.  This can be built into various 

aspects of the robot system, both in terms of hardware and software. This thesis 

focuses on incorporating robust algorithms into a legged robot controller. Various 

biologically inspired controllers are available but two intriguing controllers looked at 

in this project are the Behaviour-based controller and the Central Pattern Generator 

(CPG). The first controller is a high level controller that mimics behaviour interactions 

whereas the second controller is a low level controller that looks at the locomotion 

generating mechanism in the spinal system of animals.  

 

Software design was also taken into consideration in this thesis. It is important to build 

a software structure that can be further developed. Important targets for the software 

design are: 

1) modularity, 

2) structure that help further development, 

3) real-time for control purposes, and 

4) Windows interface for user friendliness. 

Taking into consideration the various requirements for the controller, the Windows 

operating system was chosen as the platform for the development. Since real-time is a 

requirement for this controller, Venturcom’s RTX [RTX User], a real-time extension 

of Windows NT/2000, was used. Development of the controller was done in 
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Microsoft’s Visual C++ as RTX provides ample support for this development 

platform.  

1.6 Outline of Thesis 

Chapter Two gives an overview of legged locomotion research. Research in this area 

has provided vast information about legged locomotion, controller design and legged 

robot design. An overview of the NUS quadruped, the project goals and the low level 

controller are presented in Chapter Three. Chapter Four explains the structure of the 

controller program developed. Chapter Five and Six explain the implementation of two 

controllers developed for this robot, the behaviour-based controller and the CPG 

respectively. A comparison of these two controllers is done in Chapter Seven and 

finally, Chapter Eight provides conclusions. 
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Chapter 2  
2 LEGGED ROBOTS 

LEGGED ROBOTS 

2.1 Introduction 

Legged robotic is a form of mobile robotics that has its application in specific areas. It 

is important to understand the various hardware design and control methods before we 

dwell into developing the robust controller. This chapter gives an overview of the 

various ways of hardware and software design considerations which provides the 

groundwork for the development of this thesis. 

 

2.2 Motivation 

Today, most mobile robots are either wheeled or tracked vehicles. This is because they 

have the advantage of speed and stability in a designed and controlled environment. 

Since most factory floors have flat and smooth surfaces, it is easier to manoeuvre such 

types of robots. Therefore, wheeled or tracked robots have the advantage over other 

forms of mobile robots in this aspect.  

 

It has been estimated that more than half of the Earth is inaccessible to wheeled 

devices. The area of legged robotics research focuses on this problem. The drive 

towards legged robotics research is that of taking on tasks that wheeled robots cannot 

execute due to its inability to overcome irregular terrain. Research has shown that 

legged robots are not only effective when moving but can also isolate their bodies from 
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terrain irregularities, avoid undesirable footholds, regulate stability and achieve energy 

efficiency.  

 

In the industry and applications, the potential use of legged robots has extended to 

areas where there is a need for walking on the non-flat surfaces, climbing of walls and 

ceilings, and to perform ground-to-wall transition movements. The applications of 

these uses are: 

1) wall climbing in ship hulls, nuclear plants [Briones 1994] and oil plants; 

2) interplanetary exploration [Krotkov 1992]; 

3) minefield clearance [Nomani 2002]; 

4) bomb disposal; 

5) surveillance of hazardous or dangerous environment such as volcano craters 

[Bares 1999] and chemical plants, and  

6) climbing/crawling inside pipes.  

 

2.3  Advantage over Wheeled Robots 

The following is a list of the advantages of legged robots over wheeled robots. 

- Walking removes the energy wasted due to the slipping of the wheels. It also 

removes slip error during navigation.  

- Since there is less contact with the ground, there is less harm done to the 

environment.  

- The posture of the robot is not dependent on the contour of the ground it stands on. 

By adjusting the length of the legs, the body is able to maintain its posture 



Chapter 2 – Legged Robots 
   
 

 
Page 7  

whatever the contour of the terrain it is on. This allows the robot to be able to 

climb steps and slopes easily.  

- As legged robots can handle frontal, backward and sideward motion, it can move 

without having to turn the body of the robot.  

- The problem of overcoming obstacles is simplified as the robot is able to step over 

and step onto obstacles. 

 

2.4 Classification of Legged Robot Research 

Legged robot research can be classified into two areas. Firstly, biologically inspired 

robots where legged robots are built to study the gait ([Cruse 1991], [Beer 1998]), 

nervous system and the different areas of insects and animals. Secondly, legged robots 

are used to deal with locomotion where wheel robots cannot handle. These two areas 

are not researched as separate entities, as working with biological systems allow 

understanding of how creatures and insects handle the different terrain. This acquired 

knowledge gives engineers vital data that they can employ to optimize their robot 

designs. 

 

2.4.1  Engineered Robots 

The first form of legged robotic research aims towards problem solving. The 

engineering techniques of robot building and control are explored. These robots are 

usually simple in design to study the different aspects of locomotion from an 

engineer’s point of view. For example, a wall climbing robot [Nagakubo 1994] climbs 
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a vertical surface and hence a low center of gravity for stability and suction cups on its 

feet for climbing. 

 

2.4.2 Biologically Inspired Robots 

Every biological system has evolved over time and works for the task it performs in its 

environment. Every creature on this earth is equipped with the skills and anatomy to 

survive in its environment. The first approach takes the understanding of joint 

movement, muscle activity and the neurological system to aid the development of a 

biologically efficient robotic system. The main issue in this approach is the degree of 

realism necessary for the robot to perform its task.  The second approach takes the 

reverse approach where robots are used to model animal. Simulations cannot fully 

characterize the dynamic relationships as with an actual robot. Thus robots give a 

clearer picture of the physics involved in legged locomotion. However, it is difficult to 

match the physical properties of the robot with the animal reducing the reliability of 

the data obtained from observing the robot. 

 

In terms of control architecture, nature has provided three design procedures that can 

be used to develop legged locomotion controllers, namely that of evolution, 

development and learning. The first two determine the role of the controller and the 

last fine-tunes the controller for adaptation to the environment. The study in the area of 

evolution has led to the development of various evolutionary control architectures 

(using neural networks), or different forms of genetic algorithms/programming, or a 

combination of the two [Kodjabachian 1995]. Neuroscientists and biologists use these 
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robots as an avenue to verify their theories benefiting both the neuroscientist and the 

engineer.  

 

Therefore, the use of robots to study animal locomotion is gaining popularity. They 

include the study of cockroaches [Nelson 1997], stick insects [Cruse 1991] and other 

forms of insects. Not only does this help in developing better robotic systems, but also 

a further understanding of how animal locomotion is produced.  

 

2.5 Legged Robot Control 

Designing and building a legged robot controller is a daunting task. There are many 

methods for legged robot control but all can be categorized into either of two methods: 

planner-based control and reactive control. 

 

2.5.1 Planner-based approach 

The planner-based approach plans the action of the robot according to a centralised 

world model [Mat'aric 1992]. Sensory information verifies the known world model, 

which in turn generates a sequence of actions that the robot performs. This method 

requires the model to be accurate, i.e. the model of the environment has to be 

developed for the robot to be able to locate itself. This means that the robot’s 

movement is analytically modelled, accurately planned and strictly controlled. 
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2.5.2 Reactive approach 

The other extreme of control is the reactive approach. This form of control is 

implemented as a collection of condition-action pairs [Mat'aric 1992]. The conditions 

are sensor dependent - once a sensor is triggered, the corresponding action pair will be 

activated. It requires knowledge of the control environment to design the condition-

action pairs. 

 

This model has minimal internal states and works on looking up the correct action 

based on the appropriate set of sensor readings.  This form of control has high 

efficiency due to minimal computation. The controller is thus able to react at the pace 

of the environment. However, there are no predictive components and therefore it 

lacks in the area of run-time flexibility since is has little representational power.  

 

Biological systems provide evidence for these sense and act reflexes that are 

decentralised from the supervisory controller (the brain). This method of control 

allows the movement of the robot to emerge from a set of specified rules, or from 

interaction between different control processes.  

 

2.5.3 A Hybrid Approach – Reactive and Planner-based 

It has been found that planning alone without adaptation is not sufficient for robots to 

walk robustly on natural terrain. Unpredictable events occur commonly in the natural 
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environment. These include events such as obstacles, unexpected holes, and slipping of 

the foot. These situations have to be handled for robust walking.  

 

Therefore, the integration of the above mentioned two approaches has recently gained 

wide acceptance in controller development of some legged robots [Mat'aric 1997]. 

This is an approach that combines deliberative reasoning and behaviour type reaction. 

This means that predictable events are handled by planned actions whereas the reactive 

behaviour handles unpredictable events. This truly represents the construction of the 

control present in animals, thus providing an approach that would capture the essence 

of animal legged locomotion.  

 

In designing a controller, the higher level planner module can provide guidance of the 

robot, and optimization of performance, whereas the lower level reactive approach 

handles the unforeseen circumstances that need to be addressed immediately. 

 

2.6  The Science of Walking 

Creatures, man and animal alike have been walking the earth since the creation of land. 

Different animals possess different number of legs and different types of limbs. 

Different creatures have different forms of locomotion to suit its natural habitat’s 

terrain. Locomotion, although an age-old art, still has a sense of mystery, as human has 

just started to comprehend how it works. 
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Before looking into the different aspects of locomotion, this section shows us how 

different machines and animals are. This is crucial to understanding the limitations of 

machines and ways to improve the design of the robot. 

- Engineering materials are stronger than biological ones, but are rarely strong in 

both compression and tension. 

- Biological processes can produce complex shapes and composite material 

whereas in engineering all parts are kept as simple as possible due to 

availability and ease of manufacturing. 

- Muscles and load sensing to remove stress from the bone but these are not 

present in robots.  

- Robots can stop consuming energy upon remaining in a static position and do 

not experience fatigue.  

- Robots are heavier but are able to pull or push better than muscles. Linear and 

angular motion and actuation is more achievable with motors.  

- Position and velocity control of rapid accelerated coupled masses for robots are 

not as developed. 

 

2.6.1  Walking Considerations 

In this section we consider the important factors in walking. Walking involves 

coordination of limbs, joints and the body. The goals of walking can be divided into 

two main categories – moving to the desired foot position, and maintaining foot 

stability. These two goals can be further split into the following sub-categories. 
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1) Foot placement – Foot placement has to do with the location and maintaining 

stability. The location of the foot depends upon the goal of the robot. Stability 

requires that the robot ensure that the foot is securely placed on the ground to 

prevent slippage before moving the other legs. 

2) Walking method – The locomotion of a mechanism by support and propulsion that 

comes from the coordinated motions of its joints and limbs. 

3) Weight support – The robot must be able to support its own weight while walking, 

without which the robot will not be able to carry out locomotion. 

4) Avoiding obstacles – There are two ways for obstacle avoidance in walking. First 

the option of walking over the obstacle, and secondly seeking an alternative path. 

Obstacle Avoidance for dynamic walking is difficult as the recovery of the robot 

depends of how fast and how timely the system can react.  

5) Height adjustment – Legged robots can adjust their heights and therefore a 

mechanism is required to ensure that there is always posture stability of the system. 

These points are used as guidelines to the design of a robust controller.  

 

2.6.2 Static and Dynamic Legged Locomotion 

There are two types of locomotion – static walking and dynamic walking. Static 

walking maintains static equilibrium throughout robot locomotion. This is achieved by 

ensuring the robot is supported by at least three points of contact at all times. 

Therefore, robots that perform static walking must have four legs or more.  
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Dynamic walking is legged locomotion where instability is allowed – not requiring at 

least three legs are on the ground. The robot can continue moving as long as the robot 

does not fall over. There can be periods where all the legs are not on the ground. 

Robots with four legs or less usually perform dynamic walking. Robot with four legs 

can perform dynamic walking like the gait during a horse’s gallop. Biped can perform 

gaits like running. Stability in dynamic walking is the ability to obtain a stable cycle 

instead of a stable position.  

 

2.6.3 Free Gaits versus Fixed Gaits 

Free gait provides the freedom for the legs to move freely at any point in time to 

provide the support and propulsion for the legs. A fixed gait on the other hand, is a 

periodic gait of which the action taken by each leg is governed by a sequence of events 

that cannot be altered during a move. Therefore fixed gait controllers do not require 

online planning of movement. Fixed periodic gaits are stable and fast on smooth 

terrain, but not as efficient on uneven terrain. Free gaits are more suitable for uneven 

terrain. A method for developing free gait is needed. Free gaits are generated based on 

the situation, taking into account the manoeuvrability and stability of the gait. A free 

gait is an unplanned gait where there is no rule set for the order of leg movement. Free 

gaits are aperiodic, irregular and not often seen in the real world. Its main concern is 

stability and is usually applied when moving in dense obstacle fields. Gaits that fall 

between these two extremes can make use of the advantages of the two methods – the 

computational efficiency of the fixed gait and the freedom to act of the free gait.  
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Planning a gait include optimisation of movement, speed control and finding the most 

stable gait among the gaits available for the number of legs the robot has. A good gait 

generator has the ability to switch between gaits depending on the terrain it is on, as a 

measure of the stability compromised due to a change in speed. Since a periodic gait is 

more stable and efficient gait, the robot should always degenerate to a periodic gait 

once it traversing on flat terrain. The gait must be able to adapt to terrain conditions 

and switch to an aperiodic free gait when the need requires. 

 

2.7 Robust Structural Design 

The aim of this section is to show the various steps that can be taken to ensure 

robustness of the robot in terms of the design of the robot. Simplicity is the first step 

towards building a robust robot as simple design means less chance for error. Only the 

required actuation and sensing components are added.  

 

The second factor to consider is autonomy. Design of the robot, both hardware and 

software has to be considered. The battery lifespan must be sufficient for the robot to 

complete its task. The robot must be lightweight to reduce the amount of energy 

required to move the robot.  

 

Most animals have evolved to achieve optimal locomotion in its own terrain. The only 

problem is that nature does not always produce the best design for robotic locomotion. 

Most legged robots mimic animals in structure. A good design is important when it 

comes to any robot. A good design would mean,  
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1) simple control, 

2) reduced dynamic effects, 

3) increased stability, 

4) good strength to weight ratio, 

5) self contained power, 

6) self contained computational power, 

7) ease of movement, and  

8) low cost. 

Although most designs of robots mimic biological systems, mechanical design 

improvements are often added to increase the efficiency of the robot. This is task 

dependent, as robots built for different purposes require different features. Cheong 

[Cheong 1998] did a survey of the different legged robot designs. The survey of the 

available robots has shown that there are many methods used for the different 

components of a legged robot.  

 

2.7.1 Leg Structure  

Five types of leg structures are used widely: 

1) Pantograph based,  

2) Translation style,  

3) One-link leg with rotational joints,  

4) Three-link insect type leg, and  

5) Two-link leg. 
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The type of movement will dictate the leg design used. A legged robot that is built for 

wall climbing differs from a robot built to run. Different factors have to be taken into 

consideration. Certain questions have to be answered, such as “What is the use of the 

knee in legged locomotion?”, “Should the knee joint bend inwards like birds or 

outwards like animals?”, “Are we dealing with static or dynamic locomotion?”, etc.. 

Answers to these questions affect the decisions made in the selection of leg design.  

 

Planer robots are easy to control as there are fewer complications involved. These 

robots are used to study the movement in a certain plane, i.e., two-dimensional. There 

must be at least three degrees of freedom per leg for the robot to be suitable for various 

terrains to maintain its posture during locomotion as the ground is a three dimensional 

entity.  

 

2.7.2 Leg Configurations 

The number of legs for statically stable walking robots must not be less than four.   

Many quadrupeds have been built, as they require the minimum number of leg 

required for static walking. They can also perform dynamic gaits like galloping and 

trotting. This not only simplifies leg design but also reduces the weight of the robot. 

 

The speed of the robot reduces as more legs are added to the robot. Additional legs are 

added for redundancy in case there are damaged ones. But more joints have to be 

controlled if more legs are added. Sensing of the different feet increases in complexity 

as well. 



Chapter 2 – Legged Robots 
   
 

 
Page 18  

2.7.3 Types of Joint Movement 

 
 

 

 

 

 

 

 

 

 

Figure 2.1 – (a) Cartesian implementation is an example of a translational joint. (b) Pneumatic 

actuators are examples of telescoping joint. (c) Single axis pantograph joint example.  

 
There are many forms of actuation that are used for joint motion. Linear actuation is 

easy to implement as control of translational joints (Figure 2.1a) can be solved using 

easy kinematics. Another type of actuators that are linear in motion are the rectilinear 

actuators, such as telescoping joints (Figure 2.1b) and sliding joints. A method of 

linear actuator with amplification is implementing actuation with the pantograph joint 

(Figure 2.1c). The control for a pantograph leg is simple as a distance covered by a 

motor in a certain direction causes a proportional movement of the foot in that 

direction.  

 

Rotary actuation is the other more commonly used method. This method likes animal 

joint movement and, therefore, is used to emulate animal joint motion.  

actuated

Amplified 
motion

(a) (b) 

(c) 
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2.7.4 Actuation Method 

Electricity (as in electric motors), hydraulics and pneumatic are the common types of 

actuation medium used for robotics.  

 

Electric motors can be used to actuate the joint in a linear or rotational motion. This 

form of power is clean but the problem is that the motors must produce high torque. 

This problem can be solved by using gear reduction which slows down the motion but 

increases the torque produced. But there are trade-offs when gear reduction is 

employed. It increases the apparent output inertia, which not only increases the 

impedance of the output but also greatly reduces the gear’s tolerance to shock.  

 

Gear friction in the motors is highly non-linear and time varying. This reduces the 

fidelity of the forces transmitted to the output of the actuator. The Massachusetts 

Institute of Technology (MIT) developed an actuator to alleviate the problem [Pratt 

1995]. The solution is to place a spring between the output of gear reduction and the 

load. The force output of the motor can be controlled with this added elasticity and an 

added feedback loop. This elasticity and feedback reduces the rigidity of the motion 

thus gives a “softness” in actuation like human touch. 

  

Hydraulics allows for robust velocity control with a very high specific force/torque and 

force/torque density, thereby not requiring gears. Hydraulic systems use fluid for 

transmission of power; hence they have high stiffness (due to the incompressibility of 

the fluid) and do not require brakes for holding position. The problem with hydraulics 
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is that it is messy due to fluid leakage and a pump has to be connected to the robot. 

The pump is noisy and power inefficient.  

 

Pneumatics is cheap and easy to install. One of the problems of pneumatics is that air 

is compressible and cannot be treated as rigid. A pump is required for the compressed 

air, which might be a problem in terms of mobility and noise.  

 

Actuators can be placed either at the joints where the actuation is taking place or 

placed away from the joint where the joints are actuated by a system of pulleys and 

wires. Most legged robots have actuators at their joint. An example of a robot with the 

actuator away from the joint is the Spring Flamingo built by Jerry Pratt of MIT [Pratt 

1998]. The actuators are located at the upper body of the robot with power transmitted 

to the joint via cable wires. This design reduces the weight at the legs and therefore 

reduces the inertia at the legs.  

 

2.7.5 Leg Disposition 

Mammals walk differently from reptiles. Mammals have legs under their body whereas 

reptiles have legs on their sides. The advantages and disadvantages are discussed in 

[Cheong 1998]. The NUS quadruped has a wide base like a reptile and, therefore, more 

stable. The CG is low as well, which makes it easy for the body to be lowered to 

ground.  
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2.7.6 Foot Design 

Foot design is important as the stability of the robot on uneven terrain depends on the 

foot of the robot. The foot of the robot must be able to have a grip on the ground. The 

traction on the foot is important to locomotion as slip is reduced. 

 

The foot design must provide for adequate traction either by friction or digging into the 

ground. The foot must provide a degree of shock absorption like the sole of human 

feet. The shape of the foot is determined by the task of the robot. If the robot needs to 

climb walls or hang from bars, sucker pads and claws can be added to the robot. 

 

Selecting the shape of the base area of the robot determines how load distribution is 

handled. The contact surface determines the stability of the robot. The feet of the NUS 

quadruped were designed with these points in mind.  

 

2.7.7 Joint Design 

There are two types of joints that are used in legged robots, either an active joint or a 

passive joint. The passive joint has a holding brake whereas the active joint uses an 

actuator. Animals have passive joints with active control using muscles and tendons.   

 

2.7.8 Energy Losses  

Though legged locomotion is efficient as compared to other forms of locomotion, there 

are still energy losses due to the system inefficiencies. As mobile robots require a self-
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contained power source, power consumption is an important issue. These are some 

areas where energy losses are evident. 

1) Power wasted in supporting the weight of the robot. This is important for 

muscle like actuators that dissipate energy when at rest.  

2) Too many actuators. 

3) Oscillating limbs (e.g., waste of energy when the center of gravity moves up 

and down during locomotion). 

 

2.7.9 Shock Absorption 

A degree of compliance is required for a smooth ride. This elevates the shock that is 

subjected to the actuators as the foot lands on the foot.  

 

2.8 Incorporating Intelligence 

Usually a legged robot is designed to perform tasks such as data collection or moving 

equipment. The robot must first be able to perform robust walking before it is able to 

perform the above tasks. The inability of the robot to perform stable legged locomotion 

renders it useless for the tasks. 

 

Intelligence gives a robot the ability to act and react. Intelligence in legged robots is 

the ability to avoid obstacles, to understand the situation and plan ahead to recover. 

These various algorithms make up the brain of the robotic system.  
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Intelligence is feedback to the system based on sensory information and the robot state 

information. It can either affect the system by modifying the current output or affecting 

the system with a new set of output. Over the years many algorithms have been 

developed to incorporate intelligence into robot controllers ([Brooks 1989] , [Krotkov 

1992], [Hillel 1992]).  

 

Integration of the different algorithms is possible but the effort of implementing such 

systems might not be practical, e.g. high computing power requirement [Ijspeert 1999], 

extensive training required, etc.. As numerous algorithms have been developed in the 

field of legged robotics, the aim of this work is to integrate a set of suitable algorithms 

to develop the robot controller. 

 

2.9 Summary 

An understanding of the different aspects in this field is required before the controller 

is developed. This chapter first introduces legged robotics and its uses. Other issues 

that are dealt with include the art of walking, structural design, and gait control. This 

knowledge will be used in the next few chapters in the development of the controller. 
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Chapter 3 
3  THE NUS QUADRUPED AND CURRENT GOALS 

THE NUS QUADRUPED AND CURRENT  
GOALS 

3.1 Introduction 

The first step taken in developing the controller is to understand the existing system 

and set the goals to be achieved. Hence in this chapter, the NUS quadruped is 

introduced. The motion kinematics and hardware is discussed in the first half of this 

chapter. Whereas, the goals and guidelines for developing the robust controller are 

developed in the second half of this chapter.  

3.2 Past Work 

 
Figure 3.1 - The NUS Quadruped 
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The NUS Quadruped was designed and built by Cheong Choon Ghee [Cheong 1998]. 

It is a quadruped based on a pantograph leg design driven by linear actuation in each 

axes (Figure 3.1). The controller of the robot is a PC. The power supply and motor 

amplifiers of the robot are not onboard. 

 

Since some equipment are not onboard, the robot has a four-metre long “umbilical” 

cable that links all sensors and encoders signals to the computer and power to the 

motors and sensors. The PC has Digital Input/Output cards, encoder counter cards, 

motor drives and Digital/Analog Cards that communicate with the robot. The block 

diagram of the robot system is shown in Figure 3.2. The top part of the figure shows 

the equipment that is not onboard.  

 
Figure 3.2 – Block Diagram of Robot Setup 

Another graduate student, Rowel Atienza, continued with the quadruped, where he 

built a high level controller for the robot to walk on both even and uneven terrain 
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[Atienza 2001]. The controller was also able to keep the stable posture of the body. It 

was based on Brooks’ Subsumption architecture [Brooks 1986], a behaviour-based 

approach. A group of sensors were added to the robot as behaviour-based controllers 

depend on sensory feedback to work efficiently. Proximity sensors and force sensors 

were added to all the feet of the robot to facilitate his work. A circuit was designed to 

transfer sensor data from the robot to the computer via the long “umbilical” cable. A 

low-level fuzzy controller was developed to move the different joints of the robot. The 

robot was able to perform simple walking, climbing steps and clearing obstacles. 

 

Cheong’s work [Cheong 1998] includes the design considerations of building the NUS 

quadruped. Whereas Atienza’s thesis [Atienza 1998] contains information about the 

sensors added to the robot. The circuit diagram and robot design CAD drawings can be 

found in both Atienza's [Atienza 1998] and Cheong's [Cheong 1998] theses.  

 

3.2.1 Hardware Design 

This is a brief description of the hardware used and the design considerations of the 

robot to gain a better insight of both the structural and actuation design of the NUS 

quadruped.  
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3.2.1.1 Leg and Foot Design 

Simple Joint Control 

No complicated kinematics and inverse kinematics calculations are required as the 

robot uses the pantograph leg for actuation (Figure 3.3). Every foot is actuated in all 

three axes with servomotor through a ball screw. The pantograph design leg movement 

to servo motor movement ratio is four to one. 

 

 

Figure 3.3 – The pantograph leg design 

There are a total of twelve motors onboard, three motors for each leg controlling the 

three different axes. Since the three axes are controlled individually, motion in the X, 

Y and Z axes are decoupled, which reduces the complexity of control. 

Y axis
X axis

Z axis
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Foot Design 

The foot has a round base and swivels around one axis with one degree of freedom. 

The swivel allows the robot to adapt to the terrain it is stepping on. The foot swivels in 

the x-direction (left-right direction) of the robot (Figure 3.4). The orientation of the 

foot with respect to the ground does not change when the leg moves.  

 

 

 

 

 

 

 

Figure 3.4 –X-direction swivel of the foot 

3.2.1.2  Sensors 

Humans use their sense of touch and sight to navigate and a balancing mechanism to 

maintain posture and stability. Robots, like humans require a set of senses to achieve 

stable walking. Different senses work differently to obtain information about the 

environment and the current state of the robot. A clearer picture of the environment 

helps in the analysis of the situation and therefore ensures more deterministic 

reactions. Sensors are crucial to the adaptability and stability of the robot. 
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Figure 3.5 – Sensors used on the foot of the robot 

There are two types of sensors in use as shown in Figure 3.5. There are eight proximity 

sensors around the foot and a force sensor. All four feet have the similar 

configurations.  

 

Proximity Sensors 

 
Figure 3.6 – Position of proximity sensor on foot 

Each foot of the robot has a set of 8 infrared sensors spread over equal angles around it 

(Figure 3.6). These proximity sensors are used to detect obstacles around the robot. 

The direction of the encountered obstacle can be determined by noting the triggered 

sensors. It informs the robot about objects in the vicinity. It detects objects up to 3 

centimetres away.  
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Force Sensors 

PRESSURE
SENSOR RUBBER

TUBE

RUBBER
TUBE PRESSURE

 

Figure 3.7 – A cross-section of the force sensor 

Each foot is equipped with a pressure sensor that is placed at the bottom of the foot 

[Atienza 1998]. A cross-section of this sensor is shown in Figure 3.7. A sealed rubber 

tube if filled with water and sealed at both ends with a pressure sensor on one end 

inside the tube. The pressure acting on the water-filled tube triggers the pressure 

sensor. The robot will stop moving its foot down once the force generated due to the 

contact reach a threshold. It serves to maintain the posture of the robot, ensuring that 

the body of the robot is always parallel to the ground, unaffected by the contours of the 

terrain. A detailed description of the sensor is found in [Atienza 1998]. 

 

3.3 Aspects of a Robust Walking Controller 

A good set of guidelines is important in the development of controllers. A set of 

guidelines is listed in this section for the development of controllers for legged robots.  

 

The main objective of this project is to develop a robust walking robot controller. 

Robustness in robotics control is the ability to handle or react to unexpected events or 
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disturbances. In the field of robotics, there are two aspects to robustness. The first 

implies that the robot can cope effectively with unexpected changes in the environment 

or surroundings and secondly, cope with damages. It is difficult to cover both aspects 

within the timeframe set for this project. Therefore this project deals with only the first 

aspect. 

 

Another important purpose of a robot is to take over tasks that humans perform. The 

robot must be able to perform these tasks autonomously. It not only encompasses 

ensuring the task is performed properly but it should have the ability to modify the 

behaviour of the robot if the task is incorrectly performed. Mobile robots require both 

robustness and autonomy to work as their task requires movement, which involves 

many uncertainties requiring immediate action. 

 

Robustness is the main focus of this thesis but other goals are included to improve the 

software and structure of the controller. The other goals include modularity, reactivity, 

adaptation, and expandability. 

 

3.3.1 Walking Planning  

Walking can be achieved by deliberately planning the gait (offline planning), without 

the ability to change the gait pattern while the gait is being generated. This reduces the 

flexibility of the controller of the robot but is simple to implement. This kind of 

walking does not take into consideration the various problems encountered during 
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walking. It ensures stability of the gait but sacrifices flexibility. Different offline gaits 

have been implemented by studying the gait pattern of animals.  

 

Deliberate planning also prevents the robot from changing its gait when it encounters 

an obstacle as the gait has been planned and cannot be changed. This is unlike animals 

where the gait changes according to the terrain and obstacles it comes across. An 

improvement to this would be to execute the planned gait and modify the existing gait 

if an unforeseeable event occurs. 

 

A way to avoid planning is to respond to situations reflexively. Therefore, it requires 

gait control to be online, and real-time planning. Gait planning takes into consideration 

what the robot senses, and therefore, is able to react to different situations.  Speed is 

compromised, as the controller needs to process sensory data, and create the gait while 

the robot is moving. However, the robot has the ability to react autonomously to any 

unforeseen circumstances and to act by foreseeing the consequence of certain actions.  

 

The second part of walking planning involves stability control. When considering 

static walking, the robot must be stable at all times. Steps taken by the robot must be 

checked to ensure that every move that the robot makes does not cause instability. 

Planning in advance can help to avoid all stances that are statically unstable.  

 



Chapter 3 – The NUS Quadruped and Current Goals 
   
 

 
Page 33  

3.3.2 Reactivity 

A reaction is a response due to a stimulus. Reactivity in a system plays an important 

role in autonomy and stability of the system. A quick and sure response to an event 

ensures that the system maintains its stability regardless of the disturbances or events 

that occur.  

 

In the area of walking, this involves maintaining stability in the event of obstacles, 

manoeuvring around uneven terrain, and the slipping of the feet. For autonomy, the 

robot must take into consideration these uncertainties and also to recover promptly if 

instability is detected. Once the robot falls over, it is impossible for it to recover 

without human intervention. 

 

There are various methods to implement a reactive system. One suggested method is 

observed in human reaction is “symbolic” association [Brooks 1994]. This is the act of 

associating a set of inputs from the environment to a set of actions. This can be done 

online since this method requires little computation. This method emulates the way 

that a human neural system works. Depending on our sensory inputs, the body 

responds with a set of actions without feedback from the brain. For example, when 

human hand comes into contact with a hot object, it instinctively reacts by moving 

quickly from the hot object. There is no signal from the brain that tells us to move our 

hands away.  
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One form of robot controllers that involves this mechanism of reaction is the 

behaviour-based control. This controller is implemented in this project and is described 

in detail in Chapter 4. This form of control integrates modular architecture control, and 

symbolic association with sensory inputs. The interaction between the different 

modules is able to achieve walking without precise gait planning.  

 

3.3.3 Anticipation 

The robot’s ability to anticipate has to do with predictive planning in order to prevent 

mistakes from happening. If the robot knows that there are many obstacles in the 

current path, the robot should work out another path, if possible, to reach the goal. This 

reduces the likelihood the robot might face problems.  

 

This is obvious in human behaviour. If a man sees a wall in front of him and a door on 

the right, human brain will tell him that the wall is an obstacle. The body simply 

cannot move forward to hit the wall. The mind re-plans the route by moving to the 

right to get through the door.  

 

Planning based on knowledge helps if the environment in which the robot moves in 

remains unchanged. The locations of all the obstacles are known and therefore the 

robot can easily manoeuvre within the space. This information can be acquired as the 

robot moves around.  
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Ability to anticipate can be thought of as the robot’s arsenal to combat instability in the 

system. By studying the movement of the robot and analysing the situations the robot 

might face, a set of solutions is mapped to a corresponding sensor data. As the robot’s 

arsenal or mapped pairs increases, the robot is able to react to almost all the situations 

that it might face, even those that were not perceived. As the pool of reaction pairs 

grow, the robot will be able to better deal with unstable situations.  

 

3.3.4 Adaptation 

Adaptability plays an important role in mobile robotics. Humans and animals adapt to 

their surrounding environment for survival. Animals develop different muscles 

depending on the type of terrain it has to overcome or the type of prey it hunts. 

Evolution occurs as the environment changes. Likewise, robots must have a certain 

degree of adaptation if it is to move robustly or autonomously.  

 

Adaptation requires sensing of the environment via various sensors such as ultrasonic, 

infra-red and limit switches. The more the robot knows the environment, the better it is 

able to adapt to the environment. Adaptation without knowledge of the environment is 

impossible as it is a process of knowing and changing to suit the environment.  

 

This can be observed with human beings. When clearing a rugged terrain, the first 

thing we do is to slow down and try to clear the different obstacles while assessing the 

situation. While the task of clearing is being performed, it adapts to the terrain. We 

find out about the hardness of the ground, the kind of objects we should and should not 
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be stepping on, and what to look out for when looking for the next foothold. As we get 

accustomed to the terrain, speed and efficiency increases. This is the human’s ability to 

adapt. 

 

In summary, with the above three aspects, the following guidelines for the controller 

were formed. The controller should have: 

1) the ability to react fast to sudden changes that cause instability to the system, 

2) the ability to change the course of action depending on what the robot can 

sense about far away objects or past experiences, and 

3) a stability control mechanism. 

All the above are only achievable if the robot is able to sense, feel and see the 

environment. The minimum requirement for a human to move around without aids is 

to feel and see the surrounding. Adequate sensors must be added to facilitate this need 

to know the environment. 

 

3.3.5  Errors in Sensing 

Imprecise sensing of the environment may lead to the wrong perception of the world 

model. If no corrective measures are taken, the robot might perform the wrong action. 

If the noise in the proximity sensor causes a false reading to occur, the software would 

react as if it detects an obstacle in its path. The inability for the actuators to perform 

will cause the controller to fail as well. 
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3.3.6  Errors in Control 

Precision in the movement improves the controllability of the robot. If the motor 

controller is not tuned properly, displacement error causes the robot to deviate from the 

goal. The accumulated error can be significant if the robot moves a substantial 

distance.  

 

3.3.7 Modularity 

Modular systems are useful in design of both software and hardware components. The 

following are the advantages of having a modular system. 

• It is easy to add modules to the existing controller without having knowledge of the 

other parts of the controller, since each module is treated as a black box. It allows a 

group of developers to build different parts of the controller, which are based on a 

standard module interface.  

• It is easy to debug, as the different parts of the robot controller are independent. 

• Modules can incrementally be added to the system, making improvements a step at 

a time. 

Building a modular system involves firstly dividing the entire system into sub-systems 

that can operate on their own. These sub-systems can be developed as independent 

modules each providing a set of inputs and outputs. The modules can interact with 

other modules which as a group can form a module on its own. The communications 

between the different modules play an important role in the integration of the entire 

system.  
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Modules are implemented at various levels. Some modules perform simple task such 

as move an axis forward. Other modules use these simple modules to perform a 

function such as moving the robot forward. Hence every module is a building block 

that can be used for further development of the system.  

 

A standard for each module is required for developers to understand how to develop a 

module and also how to use a module. Hence the following properties were defined:  

• A set of communication rules. Both the method and the content of the message 

packets have to be specified. 

• An internal structure with different actions/functions.  

• A set of registers for keeping track of the current status. 

 

3.3.8 Expandability 

Expandability of the system, in terms of software, is easy if the complexity of adding 

modules is reduced. Intelligence and functionality of the robot can be gradually 

developed as different components are incrementally added to the system.  

 

Hardware expansion and modularity are not dealt with in this thesis but worth a 

mention. Building a modular robot is not a new concept. It gives the designer the 

opportunity to change and upgrade the robot without having to make major 

modifications to the robot. An understanding of this system allows other developers to 

add other hardware components to the robot without the need to understand the robot’s 
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system as a whole. LEGO® MindstormsTM is an example of a modular robotic system; 

as is PolyBot [Yim 2000], a modular robot built by Mark Yim of Stanford University. 

 

3.4 Software Design Considerations 

The controller is implemented on a PC and, therefore, the software methods are 

important. This section deals with the different software requirements, design factors 

and the tools used.  

 

3.4.1 Modular Software Design 

Modularity can be developed in software using object-oriented development tools such 

as C++. Object-oriented has the following properties, namely class structure, 

inheritance, and abstraction. These properties are used to develop a software structure 

that incorporates expandability, modularity and reusability into the controller. The 

class structures of the controllers and how the different properties of classes will be 

developed as the implementations of the two controllers are explained in the 

subsequent chapters.  

 

3.4.2 Real-Time 

The timeliness and accuracy of the motor voltages sent to the motors and the sensor 

information read are crucial to the operation of the robot. A failure would cause the 

robot to go into an indeterminable state rendering the robot inoperable, hence, a 
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deterministic real-time system is required. In this section, the idea of real-time is 

introduced and a study of the current real-time solutions is presented concluding with 

the explanation of how the real-time system works. 

 

3.4.2.1 Real-Time Response 

Real-time response is one in which the correctness of the computations of the response 

not only depends upon the logical correctness of the computation of the response but 

also upon the time at which the response is produced.  

 

Response plays an important role in any system. An autonomous response must be 

correct and timely. Therefore, real-time must be incorporated in the robotic system to 

be able to perform effective evasive actions and to react to unpredictable situations. 

Moreover the amount of actuators and sensors used in this system require that no 

bottleneck compromise the performance of the system. 

 

3.4.2.2 Real time Requirements 

In addition to real-time response, there are a number of other software tools that real-

time systems provide: 

 A multi-threaded, preemptive scheduler with a large number of thread priorities. 

 Predictable thread synchronization mechanisms. 

 A system of priority inheritance. 

 Fast clocks and timers. 
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3.4.2.3 Real-Time Operating System Selection 

There are many factors to consider when selecting real-time operating systems. These 

include the tools available on the operating system, hardware compatibility of the 

operating system, and the price of the operating system. 

 

There are many real-time operating systems available which cater to the design 

requirement. There are some real-time operating systems that are variants of the UNIX 

platform and some extensions to currently available operating systems such as Linux 

and Microsoft Windows. These are the more popular operating systems and 

extensions: 

- QNX, 

- VxWorks(R), 

- Venturcom’s RTX, 

- Lynx’s LynxOS. 

 

Other then Venturcom’s RTX, The rest are UNIX-based operating systems. 

Venturcom’s RTX is a hard real-time extension to the Windows NT/2000 platform. 

Venturcom’s RTX was selected to develop the robot controller program as it works on 

the popular Windows platform. 
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Why Windows NT/2000? 

Windows NT and Windows 2000 are powerful operating systems used widely in 

industry today. It is used at all levels of the industrial hierarchy so as to provide a 

heterogeneous computing environment. Developing software on this platform allows 

easy access to the tools currently available in the current system. There need not be 

extra training for users to operate in a new operating system environment. Due to its 

popularity, many established tools are available on Windows NT/2000. This gives us 

the opportunity to use these tools to develop the robotic system. These tools include 

Microsoft’s Visual C++, and various C libraries provided for the Windows platform. 

The Win32 API in Visual C++ is flexible and contains many libraries with tools that 

can be used.  

 

What is lacking in Windows NT/2000? 

The Windows NT platform has been developed for general use and lack the tools 

required for real-time control. The lacking features include: 

- too few thread priorities, 

- non-deterministic scheduling decisions, and 

- priority inversion, particularly in interrupt processing. 

 

The programmer cannot take full control of the system in terms of priority and 

scheduling of threads, therefore deeming it unsuitable for deterministic control.  
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Hardware Access Control - Windows NT/2000 Hardware Abstraction Layer 

Hardware is not easily accessible in Windows NT based systems. This becomes a 

problem when control requires communication between devices connected to the PC. 

In Windows NT/2000, the hardware abstraction layer (HAL) is a layer of 

programming that allows interaction with a hardware device at a general or abstract 

level rather than at a detailed hardware level. The hardware abstraction layer can be 

called from either the operating system's kernel or from a device driver. In either case, 

the calling program can interact with the device in a more general way than it would 

otherwise.  

 

VenturCom’s Real-time Extension (RTX) 

RTX enables Windows developed application components to have deterministic and 

high-speed response times. It takes control of Windows NT/2000 to give the operating 

system its real-time capabilities by adding a real-time subsystem (RTSS) to Windows 

NT/2000. Figure 3.8 shows a schematic diagram of a Windows with RTX 

environment. 
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Figure 3.8 – An overview of how RTX works with Windows NT/2000 

Programs are written using Microsoft’s Visual C++ 6.0. RTX supports a set of Win32 

API (Application Programming Interface) functions, and provides its own set of 

functions known as RTAPI (Real-Time API). Consequently, user-friendly Win32 

programs can be easily developed with real-time capabilities by combining the two 

APIs. 

 

The RTSS also supports Inter-Process Communication (IPC) objects that can be 

manipulated by either RTSS or Win32 processes; this enables simple and standard 

communication and synchronization between real-time and non-real-time programs. 

Finally, the RTSS provides other time-critical services, such as clocks and timers and 

interrupt management, to the RTSS processes. 

 

Windows NT Kernel  
and Device Drivers 

RTSS Process or RTDLL 

 

RTX HAL Extension Windows NT HAL 

Win32  
Subsystem 

Win32 Process Win32 Process or 
DLL  

w/ RTAPI calls 
RTAPI W32

   RTX – RTSS(Real-time Subsystem) 



Chapter 3 – The NUS Quadruped and Current Goals 
   
 

 
Page 45  

The RTSS is able to 

 Preempt Windows NT/2000 anywhere, at least outside critical NT interrupt-

processing code. 

 Defer Windows NT/2000 interrupts and faults while running real-time tasks. 

 Process real-time interrupts while running real-time tasks. 

 

These tools are essential for developing a real-time program. Since RTX provides 

library functions for Visual C++, there is interaction between the various real-time 

processes and the user interfaces developed using Visual C++. Hence various software 

tools can be developed for use with the robot.  

 

3.5 Summary 

The quadruped used in this project is built based on the pantograph leg design, with 

sensors to guide it in its movement. These sensors include proximity sensors for 

obstacle detection and force sensors that trigger off when the foot of the robot touches 

the ground. Previously, a low-level controller was developed for motor control with a 

high-level controller to supervise control – the Behaviour-based controller. The design 

of the robot was analysed to assist in the development of the current controller.  

 

The goals of the current project were defined. The aim is to develop a robust controller 

for the robot with sound software methodology. The platform and software used for 
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the development of this controller were discussed along with the software 

requirements and design specification. Also included in this chapter is a brief mention 

of the software tools used – Venturcom’s RTX and Microsoft Visual C++. 
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Chapter 4 

4 CONTROL ARCHITECTURE AND HARDWARE CONTROLLER 

CONTROL ARCHITECTURE AND 
HARDWARE CONTROLLER 

4.1 Programs Developed 

The controller consists of two main parts – the global control and the hardware control. 

The hardware control directly communicates with the hardware and calculates the 

control output to the various motors. The hardware control requires deterministic and 

quick response to ensure the actuators and sensor reading are current. It forms the base 

of the entire robot controller. 

 

This chapter explains two components of hardware control – the RTX process that 

performs data acquisition on the hardware and the fuzzy controller used to calculate 

the output voltage to the motors.  
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4.2 Hardware Interface Program 

 

Figure 4.1 –The diagram shows the hardware interface program with 2 control loops. The motor 
control loop handles control of the different motors, and the sensor data acquisition loop collects 

sensor data used by the global controller. 
This program takes care of the communication between the hardware and the other 

programs. There are two loops in this program, the motor control loop and the sensor 

data acquisition loop (Figure 4.1). The first loop takes care of the motor and encoders 

required for motor control. The second loop collects data from the sensors which are 

not as critical as the motor control loop. This includes data from the proximity sensors 

and the force sensors. This is stored in shared memory where it is read by the global 

controller.  Both loops have a period of five milliseconds. All these timer processes 

have higher priority than the Windows processes and thus are not interrupted by 

Windows processes. Both timer processes have the same priority in this system (using 

the RTX real-time extension function). 
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4.3 Fuzzy Controller Program 

The hardware controller in this robot controls the individual motors of the robot. The 

dynamics involved in control of the motor requires a controller that changes to suit the 

environment accordingly.  

 

Dynamic control condition for the robot lifting up from the ground is different from 

when its leg is off the ground. The controller must take into consideration these 

factors. A PID controller does not work well when the control condition changes as the 

control environment is different for when the foot is on the ground and when it is not. 

 

 
Figure 4.2 – Velocity profile diagram 

The controller produces a velocity profile as show in Figure 4.2. The controller must 

be able to initially accelerate uniformly to a maximum velocity, maintain the 

maximum velocity until the joint moves close to desired position where the motor 

decelerates smoothly to a complete stop at the desired position without overshoot. 
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A colleague, Kong Yong Min, developed a fuzzy controller for his hexapod [Kong 

2003]. His controller was modified and was used for the quadruped. An explanation of 

the fuzzy controller is given in Appendix A. 

 

When humans walk, the distance travelled cannot be accurately measured by 

calculating the number of steps taken, especially if the terrain is uneven. Therefore, 

when a robot walks, there is no requirement that the distance travelled with each step is 

measured. The aim of walking is to move in the specified direction; hence, the error 

associated with the motors during walking is tolerable. Since legged locomotion does 

not require precision in the movement of the legs, the acceptable range for the axis 

positional error was set to ±2 mm. This value was selected based on the minimum 

stable condition for the fuzzy controller, and it is acceptable value for legged motion. 

Stable motion of the motors on the different legs were obtained. 

 

4.4 Global Control 

The global controller is the brain of the robot. This is the robot’s ability to move 

intelligently and also to work itself out of situations using the available sensory 

feedback and various algorithms. It acts above the hardware control to ensure the 

robustness and stability of robot’s gait. Two global controllers were developed in this 

project – the Behaviour-based controller and the Central Pattern Generator controller. 

These controllers will be discussed in the following two chapters.  
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4.5 Summary 

The controller consists of three parts, the two hardware controllers (the hardware 

interface and the fuzzy controller), and the global controller. The hardware controller 

handles control of the motor based on the fuzzy controller. The results of the fuzzy 

controller achieved stable motion of the individual axes hence the development of the 

global controllers was possible. Two global controllers were developed in this project, 

the Behaviour-based controller and the Central Pattern Generator controller, which 

will be elaborated in the following two chapters.  
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CHAPTER 5 

5 BEHAVIOUR BASED APPROACH 

BEHAVIOUR BASED APPROACH 

5.1 Introduction 

There are many control methods for legged robotics that can be divided in two 

fundamental categories – planner-based control and reactive control. In the robotics 

field, researchers use variation of these two controllers to control legged locomotion. 

The behaviour-based controller, a hybrid of the two controllers, is presented in this 

chapter. This method of control was popularised by Brooks with his work on the 

Behavior Language [Brooks 1990]. The behaviour-based controller was first used as a 

controller for wheeled mobile robots [Brooks 1986] and has been modified for legged 

robot locomotion [Wettergreen 1995a]. 

 

The behaviour-based controller is an incremental module-based controller that uses a 

combination of simple modules to build a structure that achieves an overall goal. Each 

module independently is able to perform simple tasks. Different groups of modules, 

each perform unique task, integrate to form the control mechanism used for the 

quadruped.  
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5.2 Planner and Reactive Approach 

The behaviour-based controller is a hybrid between the planner approach and the 

reactive approach controller. A clear understanding of these two controllers will assist 

in the comprehension of the development of the behaviour-based controller.  

 

First, the planner-based approach plans the action of the robot according to a 

centralised world model, which is pre-programmed into the controller. Sensory 

information verifies the known world model, which in turn generates a sequence of 

actions that the robot performs [Mat’aric 1992]. This method requires the model to be 

accurate and the sensors to give precise information. 

 

The reactive approach has minimal internal states and works on looking up the correct 

action based on an appropriate set of conditions. These conditions are sensory 

information from the robot.   This form of control is computationally efficient. It has 

the ability to react to situations at the pace of the environment. There are no predictive 

components and therefore it lacks in the area of run-time flexibility since is has little 

representational power. This form of control cannot handle complex tasks as it has no 

memory capability. Knowledge of the control environment is required to design the 

condition-action pairs. 
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5.3 What is the Behaviour-based Approach? 

5.3.1 Properties of the Behaviour-based Approach 

5.3.1.1  As an Entity 

Each behaviour module can be viewed as an independent sense-plan-act element 

which achieves a sub-goal of the entire system, with their unique character. Each 

module acts as a reflex, which is a collection of rules that react according to the inputs 

from various sensors, including signal from other modules, the current state and goal 

of the robot. The module changes state either upon completion of task or on receiving 

signal from the various other modules. These signals are binary signals that either start 

or stop the module’s task. One guideline is to select modules that maximize sensory 

awareness and make small adjustment to the overall movement of the robot, thus 

increasing the precision of the task.  

 

The other property is that only required sensory information is piped directly into the 

modules, hence sensory information is task related. This reduces the amount of 

processing required by each module. There is no centralized controller that combines 

all sensory data to provide a global model of the environment for the system. 

 

5.3.1.2  As Part of the System 

The initial step taken in developing the behaviour-based controller is to breakdown the 

overall goal of the system into different manageable and observable sub-goals or 

behaviours. The development of this controller progresses from the bottom-up, i.e. a 
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collection of simple reactive rules are first developed and the combination forms the 

complex task modules of the system.  

 

There is no central mechanism that coordinates the different modules in the system. 

The interaction between the various independent components and their characteristics 

define the tasks in the system. The integration of the different sub-goals working 

together defines the role played by the system. The links define how the different 

modules interaction with each other and are between the modules are added when 

required. The integrity of the entire system must be maintained when planning the 

interaction between modules. 

 

As the system grows in size, the complexities involved in the communications may 

become insurmountable.  This complexity is reduced by minimizing the interaction 

between the various modules in the system. This is achieved as the modules obtain 

most of their information, either through the sensing of the environment, or from the 

robot’s current state and goals, which does not require communication with other 

modules. As such the communication packets between modules are kept as a simple 

binary signal.  

 

The behaviour-based controller is an incremental controller. The design of the 

controller starts with a group of modules that perform a simple single task. This group 

of modules can form a module of its own with its own inputs, outputs and 

characteristic. These simple combinations are termed as “black boxes” where its 

content is not important but the interface and overall ability of the function is. This 
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allows different developers to develop different black boxes and combine them to 

provide a complete controller by defining the interface between the various black 

boxes.  

 

5.3.2 Importance in Implementation 

As a behaviour-based system depends on interaction between the different behaviours, 

it is difficult to determine the action of the system. The coordination of all the 

behaviours and synthesizing of the results has always been a problem especially when 

the system increases in size. There are no rules or guidelines that help the user connect 

the different modules together. Therefore, various methods have been used to reduce 

the complexity of the network and increase predictability of the system so as to 

improve the performance of the controller. Brooks laid down the following guidelines 

to integrate behaviour-based system ([Brooks 1991a], [Flynn 1989]). 

 

• Coherence –There should not be conflicts between the many behaviours acting 

simultaneously. There should be coherence in action and goal of the system as 

a whole to an observer. 

• Salience – Active behaviours should react to situations that the system is 

currently facing and not be concerned with things that are not happening.  

• Adequacy – The selection method should ensure that the long term goals of the 

system are met no matter what happens. The controller might face situations 

where it digresses from the goal. It must realise the error and bring the robot 

back in track.  
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The next section gives an overview of the different implementations of the behaviour-

based approach. 

 

5.3.3 Relationship between Behaviours 

One problem with behaviour-based approach is the coordination of the different 

modules where there are conflicts in the interest of the different modules. There are 

various methods used to overcome this problem. These methods are known as Action 

Selection Mechanisms (ASMs) which can be divided into two groups, known as 

arbitration and command fusion. Arbitration methods are suitable for behaviour 

selection which include methods such as Discrete Event Systems [Koŝecká 1993], the 

Subsumption architecture [Brooks 1991a], and activation networks [Maes 1989]. 

Command fusion is suitable for coordinating the activities between various 

simultaneously active modules. These include the potential-fields methods [Arkin 

1989], multiple objective action selection [Pirjanian 2000] and Payton-Roseblatt 

voting approach [Rosenblatt 1997]. 

 

5.3.3.1  Priority based 

Since many behaviour modules act independently, there might be conflicts within the 

system. A priority-based mechanism allows high importance behaviours to take 

precedence over lower priority behaviours.  

 

For example, the avoidance behaviour should have a higher priority than normal 

walking behaviour. If the robot continues walking with the obstacle in front of it, it 
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would cause damage to the robot. The robot must stop immediately to assess the 

situation before making another move. This method ensures that the relevant 

behaviours take precedence immediately. 

 

5.3.3.2 Hierarchical based  

This method is an organisational method where the behaviour modules are spilt into 

self-contained functioning groups or layers. These layers can be considered as single 

modules each with its set of inputs and outputs that connects either to other layers or 

other modules in the system. Each layer can perform more complex tasks but provide 

the same structure as an individual module on its own. This provides a systematic 

method to organise the complex structure of this controller. 

 

Connecting and coordinating four layers that each move a single leg can move four 

legged robots. Other modules that perform obstacle avoidance, navigation and clearing 

obstacles can be added which supersedes the previous four modules to take control of 

the robot as required. A more robust and autonomous system can be built by 

combining these different layers.  

 

5.3.3.3  Other Methods 

On top of those mentioned, other methods to improve controllability and stability of 

behaviour-based controllers include: 

- parameterization [Likhachev 2002] to guide the behaviour, 

- summation of the weighted sum of the output of behaviours [Arkin 1989a], 
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- decision making prioritized based on environmental stimuli (sensors) and task 

at hand [Xu 1997], 

- using neural networks [Al-Jumaily 1999], fuzzy logic, reinforcement 

techniques [Digney 1993] and genetic algorithms, 

- selectively enabling and disabling the behaviours,  

- filtering the inputs and outputs to change the response, and  

- enabling them to learn to improve performance [Maes 1990].  

 

5.4 Various Approaches 

A major part of the author’s work is based on the following two implementation of the 

behaviour-based approach – Brooks’ Subsumption Architecture and Wettergreen’s 

work on behaviour-based controllers.  

 

5.4.1 Brooks’ Subsumption Architecture 

Brooks R. has done extensive work on behaviour-based controllers ([Brooks 1991], 

[Brooks 1991a]). In his work, Brooks designed a behaviour-based robot controller for 

a mobile wheel robot, which was later implemented on various robots.  

 

The behaviour-based approach is an integration of the planner-based and reactive-

based approach. Unlike the planner-based approach, the behaviour-based approach 

works with a map of conditions to actions. Although this is a property of reactive 

systems, it differs in that the behaviour-based controllers use different forms of 
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internal representations and performs computation within the modules to determine the 

correct action. This is a modification made to the reactive approach. Another distinct 

property of the behaviour-based system is its distributed nature where it consists of 

parallel running interconnected modules executing independently.  

Figure 5.1 – An example of Brook’s behaviour-based controller represented [Brooks 1989]. The 

various tasks (FSMs) are represented as modules with interactions between the tasks are denoted 

by the arrows.  

 
Brooks’ controller uses a layered control system, which he coined “the Subsumption 

Architecture”. Each basic unit of the controller is a module based on finite state 

machines augmented by internal registers and timers. The controller is made up of 

layers of these modules (Figure 5.1). Each layer of the controller consists of a group of 

module where different layers are built to perform different tasks. The inputs to these 

systems are sensory signals that tie directly to reflex action performed by the robot. 

Different layers can subsume the behaviour of other layers by suppressing their output.  
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The aim is to build a network of modules that forms an abstraction of a specified task. 

Once these task-specific layers are created, they can be treated as modules of their own 

- a black box with a specific task, and its own set of inputs and outputs. The system 

improves in capability as more independent task oriented layers are added. A robot 

controller can be developed by combining and connecting the different layers and the 

individual modules.  

 

Subsuming layers can be useful at times but may not work all the time. Some task 

requires that the lower layer and higher layer subsume each other but this is not 

possible with the hierarchy in place. A multi-layer architecture is not suited for this 

case.  

5.4.2 Wettergreen’s Work on Behaviour based Control  

Wettergreen’s work [Wettergreen 1995] surveys the field of behaviour-based 

controllers. He implemented a behaviour-based controller for an exploration legged 

robot. He expanded on Brooks’ work to develop controllers for statically-stable 

walking robots.  

 

 
Figure 5.2 - A block diagram of a typical behaviour. 
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Figure 5.3- Typical module with binary inputs and outputs 

A behaviour module can be thought of as a simple feedback control loop as shown in 

Figure 5.2 with a set of different registers and properties as shown in Figure 5.3. The 

individual module has the following properties:  

1) Each module performs a unique task. Each has a set of binary input and output 

signal lines that transmit or receive inhibitory or exhibitory signals. These 

signals are asynchronous messages that are not tied to any clock. Only inhibit 

and exhibit signals are communicated to the other modules.  

2) All behaviours share a standard module structure. The modules are structured 

where functions are executed upon receiving a signal from other modules or 

changes in sensor data. There are two action functions in each module, an 

inhibit function and an exhibit function, which acts depending on the signal 

received.  

3) Every behaviour module is independent of each other.  

4) There are two ways to cause as action in the behaviour, either by a change of 

state of the behaviour or a signal sent to the behaviour. 

5) There are arbitration mechanisms to take care of conflicting modules as well. 
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Wettergreen produced a series of behaviours to construct a walking gait controller for 

a few legged robots. The controller was used to control a hexapod for exploration of 

volcano craters. It was able to autonomously traverse through the rugged terrain. It was 

capable of clearing obstacles and manoeuvring itself to avoid them. It was also able to 

maintain stability by shifting all legs and was able to perform different gaits depending 

on the situation, changing them on the fly. 

 

Wettergreen observed the walking control system for animals. It is a combination of 

pattern behaviour and reflexive coordination. Reflexive action is the feedback 

mechanism with information obtained from various sensors in the system. All animals 

and insects have a neural architecture in a single layer. This can therefore get chaotic 

when there are so many neurons in the system. The way to deal with this problem is to 

place groups of neurons in a multi-level architecture. Thus Wettergreen developed his 

controller in multiple layers, similar to Brooks’ Subsumption architecture.  

 

5.5 Advantages and Disadvantages 

Since the behaviour-based system is a hybrid reactive system, it responds rapidly to 

environmental changes. Therefore, it is robust in the real world. It also requires less 

demanding computation. Another advantage of the behaviour-based approach is its 

modular structure. The modules are created separately since each module can operate 

independently of the other modules. By combining different behaviours, new 

behaviours with different functionalities are created. There is no need to be concerned 

with sequence of events with the behaviour-based approach. As long as all sense and 
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react pairs are defined properly, the behaviour modules will take care of the movement 

or reaction of the system.  

 

The behaviour-based approach faces difficulties in system modularity, state 

representation and integration of world model. Certain tasks such as transportation, 

cleaning and assisting disabled people require knowledge of the environment. This is 

not present in the behaviour-based approach. Another disadvantage of the behaviour-

based approach is that the complexity of the system increases as the structure of the 

system grows in size. This is not a desirable trait in control. Brooks solved this 

problem by splitting the different task into different layers. By doing so, new modules 

are created and the amount of connections between these new modules reduces as they 

are hidden from the modules outside the group. Lastly, the behaviour-based controller 

relies on the precision of the sensor reading, actuation, computation and other reading 

from the system which might cause problems as there are various shortcomings 

associated with the devices used. 

 

5.6 Proposed Approach 

A modified form of the architecture for the behaviour-based controller based on 

Wettergreen’s and Brooks’ work was developed in this thesis.  
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5.6.1 General Properties 

 

Figure 5.4 –An example of the Behaviour based Controller. 
 

Similar the all behaviour-based controller, the design of the controller starts with a 

basic module that performs a simple task. Once a group of simple modules are 

constructed, the combination and connection of various modules together form 

complex task modules (Figure 5.4). 

 

Brooks’ behaviour-based model does not permit communication of state data between 

modules. This is resolved using a blackboard model which will be explained later. A 

module can query about the properties of other modules. Only information required by 

all the modules is shared. This information include the current state, and the 

inhibit/exhibit status of the modules. 
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5.6.2 Properties of a Module 

 
Figure 5.5 - A diagram of a typical module in this system 

Each module has its own character – it has its own set of states and actions. Actions 

are mapped to the different states in the module. Changes in a state occur either due to 

a completion of a task, or a signal from another module. A typical module is shown in 

Figure 5.5. 

 

5.6.3  Message Passing 

A group of modules is not only defined by the combination of their individual traits, 

but also by the way they are connected. Content of the messages passed between 

modules are kept as minimal as possible. Therefore, message packets contained only 

three parameters, the first two to identify the sender and receiver, whereas the last 

parameter is the inhibit/exhibit binary signal. An exhibit signal wakes the module from 

its suspended state, starting the mapped task. An inhibit signal stops the receiving 

module from continuing with its current task and goes into IDLE state. 
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The Raise Leg module is used as an example to demonstrate how message passing 

works. During the static walking, a quadruped can only raise one leg at a time. 

Therefore, whenever one of the Raise Leg modules is exhibited, it inhibits all other 

Raise Leg modules, to prevent the robot from falling over. Similarly, the legs should 

not move individually when it is on the ground. The Forward Leg module can only be 

exhibited by the Raise Leg module. Therefore, the inhibition of the Raise Leg 

module prevents the Forward Leg module from being exhibited. Message passing is 

state dependable. All modules are programmed with a set of signals to transmit to 

other modules.  

 

5.6.4  State Dependency 

This system is considered a state-driven or state-dependent system. The activation of 

actions of the module happens only when the state changes. Every module has a set of 

unique states. Each action is specific to individual modules depending on its task. The 

initial state of all modules is the IDLE state. The only way for the system to change to 

another state is for it to be triggered by an external signal or a sensor or a completion 

of an action. An inhibit signal from other module will immediately change the 

module’s state to IDLE. An exhibit signal will cause a module to change its state to 

ACTIVE. This rule always applies unless there are special circumstances. 

 

There are four states defined in the Forward Leg module – ACTIVE, MOVING, 

IDLE, and DONE. An exhibit signal from another module changes the state of the 

Forward Leg module. Upon receiving the exhibit signal, it changes from the IDLE 
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state to the ACTIVE state. In the ACTIVE state, the module sets the destination for the 

respective motors to move the leg forward and changes state to the MOVING state. 

The ACTIVE states allow for exhibiting or inhibiting other modules and coordination 

between the different modules. The module remains in the MOVING state until all 

motors move to their respective goals before switching to the DONE state. Once in the 

DONE state the module performs sends a command to stop all the motors from 

running and send out the respective signals to other modules before proceeding back to 

the IDLE state.  

 

5.6.5 Loops 

There are two loops running in each module. The first being the continuous loop which 

runs at intervals, like the timer in Brooks’ Subsumption Architecture. The other is a 

triggered loop that reacts upon receiving a message.  

 

The period for the continuous loop is set to one millisecond. The module will behave 

according to the current state of the module. The continuous loop can also be tasked to 

check for a change in sensor reading or to complete an action required by the module.  

 
void behaviorCtsProcess(){ 
 while(true){ 
  executeCtsFunction(); // contains functions that are  

    //active depending on the state 
 } 
} 

Listing 5.1 – Continuous loop function structure. There is no wait function as the loop executes 
continuously. 
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void pendonMessageQueueForExhibitOrInhibit(message){ 
 WaitForMessage(); 

registryUpdate(message); //updates the registry either with  
 // inhibit or exhibit signal 

      behaviourTriggeredProcess(message); 

Listing 5.2 – Triggered loop function structure. This function waits for an event before updating 
the registry and performing an action. 

 

The triggered loop is the event-triggered loop. It is triggered by a signal from another 

module. There are two functions in this behaviourTriggeredProcess function, 

one activated by inhibiting signals and the other by exhibiting signals. The function, 

behaviorCtsProcess, in the continuous loop acts upon changes in state. This 

function contains state-action pairs, where an action occurs depending on the state of 

the module. The state mechanism is explained in the next section.  

 

5.6.6 State Table 

Another feature of the behaviour module is that it contains a state table. A state table 

contains four parameters: the inhibit/exhibit signal received, the current state, the 

previous state and the resulting state. The module keeps track of its current state and its 

previous state. When a module receives an inhibit/exhibit signal, the module checks 

the signal with the current state and previous state. If the data matches an entry in the 

table, the module changes to the corresponding next state in the table. Table 5.1 shows 

an example of a state table, the Raise Leg state table. 

 

Every time a change of state occurs, the modules check the state table and act 

accordingly. Upon receiving the inhibit signal, the Raise Leg module changes state to 
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STOP without considering the previous and current state. If the current state is START 

and the state completes its task, it will switch state to MOVING. As can be seen, there 

are two conditions for a state change; upon completion of task within a state or upon 

receiving an inhibit/exhibit signal. 

 
Inhibit/Exhibit Previous State Current State Next State 

Inhibit X X STOP 
Exhibit X X START 

X X STOP DONE 
X X START MOVING 
X X MOVING DONE 
X X DONE IDLE 

X – don’t care state 
 

Table 5.1 - State table for the Raise Leg module. 

 

5.6.7 Inhibit/Exhibit Table 

The inhibit/exhibit table has a list of states and with the set of inhibit/exhibit signals to 

be sent out. A set of inhibit/exhibit signals is sent out to other modules listed in the 

table depending on the current state of the module. The module looks up the 

inhibit/exhibit table for the signal to send out to the respective module. A mapping 

table is constructed in the program for each inhibit/exhibit table. This table can be 

constructed manually using an addInhibitRef function (Listing 5.3). This function is 

initialised in the constructor of the module class. 

BackLeg1_Module:: BackLeg1_Module:: (){ // constructor of Back Leg 1  
    //Module 

… 
addInhibitRef(FORWARD_LEG_1,INHIBIT); // Inhibit Forward Leg 1 Module  
addInhibitRef(AVOID_LEG_1,EXHIBIT); // Exhibit Avoid Leg 1 Module  
… 
} 

Listing 5.3 – Adding inhibit and exhibit signal to the module. 
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Referring to Table 5.2, if the current state of the Lower Leg module is START, inhibit 

signals will be sent to both the Raise Leg module and the Forward Leg module. 

Once the Lower Leg module completes its move (DONE state), the Raise Leg 

module of the next leg is exhibited. 

 
Current State Inhibit Signal to be Sent Exhibit Signal to be Sent

IDLE   
START RAISELEG, FORWARDLEG  

MOVING   
DONE  RAISELEG(next leg) 

   
 

Table 5.2 – Inhibit/exhibit table for the Lower Leg module 

 

5.6.8 Blackboard model 

The behaviour-based architecture is highly distributed, with each module performing a 

specific task. Therefore sharing of system states and knowledge has been inconvenient. 

The Blackboard model serves the purpose of keeping a set of module data of the entire 

system. It ensures an up-to-date database of information for other modules to access. 

This was implemented in [Xu 1997]. The blackboard model consists of the following 

three components shown in Figure 5.6. 
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Figure 5.6 – The blackboard model 

The blackboard serves the purpose of keeping a set of data used for problem solving. 

Data communication only happens through the blackboard. 

The knowledge sources are independent modules that produce change in the data kept 

in the blackboard. These are the behaviour modules used in the behaviour-based 

controller.  

The control lines monitor the changes in the blackboard and decide on the next action 

to be taken. 

 

This is a modification of the behaviour-based concept. Every behaviour should act 

independently without the knowledge of the actions taken by the other behaviours. 

Certain problems may arise due to the lack of information about other modules. The 

blackboard model acts as an information server for the entire modular system in 

methodical fashion. This centralized system makes it easy to incorporate different data 

communication processes but information transfer is controlled to prevent total 
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transparency within modules. Modules only require information crucial to 

performance.  

 

In this current system, the blackboard model displays the following two information – 

the current state of the module, and the inhibit/exhibit status of the modules. The 

controller is able to coordinate the various modules that are using common resources.  

 

5.7 Global Control Program 

Figure 5.7 shows the structure of the behaviour-based controller program. Since the 

Hardware Interface and Fuzzy Controller have been explained in the previous chapter, 

this section will deal only with the behaviour-based controller. Both the Fuzzy 

Controller and the Behaviour-based Controller send and receive data from the 

Hardware Interface module and they act independently of each other. 
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Figure 5.7 – Block diagram of the behaviour-based controller program. 

The behaviour-based controller consist three major different parts, each defined as a 

C++ class. The classes are as follows: 

1) Motor class – contains functions that move the different motors (axes) of the 

robot.  

2) Sensor class – contains functions that retrieve information from the different 

sensors on the robot. These include the force sensors, proximity sensors and the 

encoders. This module allows code to be added easily for new sensors that are 

added to the system.  

3) FSM class – this is the base class that all the created modules inherit. It 

contains the different mechanism functions of a module, all of which has been 

explained in the mechanism of behaviour-based controller, such as the two 

loops, the message passing mechanism, the state table, the inhibit/exhibit table 

and the different registry values. A schema and method to create different C++ 
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classes for FSMs for use with the developed program is shown in the Appendix 

B. 

4) Blackboard class – a pool of resources, explained in the Blackboard model 

section, for all Finite State Machines (FSMs) to retrieve data from.  

Note that in the program the modules are known as FSMs. The following introduces 

the various algorithm used to improve the robustness of the controller.  

 

5.7.1 Centre of Gravity (CG) Testing in the Controller 

Modules to move individual legs were developed, and running the combination of 

these modules forms the gait of the robot. There are many combinations for motion 

sequencing and a few combinations with different connections between the various 

modules were tested. Since a quadruped’s static walking gait is rather fixed, the order 

of movement was fixed in the first trial. The leg avoided obstacle by moving back a 

little and then up and forward. If there was no way to clear the obstacle, the robot 

would drop the foot and move the robot to the side before attempting to move forward 

again.  

 

The second version of the behaviour-based controller differs from the first version in 

terms of order of leg selection. During static walking, the centre of gravity (CG) must 

fall within the triangle formed by the three legs that support the move.  
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Figure 5.8 – CG test criterion 

The new gait selection used a lookup table to find the next foot to move. A lookup 

table was formed containing the order of the leg movement for gaits used in the first 

version. The program checks the lookup table to get the next leg to move. Then it 

checks the CG before the foot is raised. The CG is fixed at the centre of the robot 

body, so as to simplify calculation.  If the CG test is successful, that foot can be raised. 

If the CG test is unsuccessful, the program refers to the lookup table to obtain the next 

leg to move. The CG test criterion is shown in Figure 5.8. This process continues until 

all four legs move forward or it is not possible to move any more legs. The latter 

means the move is a failure. This can occur when a previously moved foot lowers 

before the specified position due to an obstacle. This disrupts the support stance of the 

robot causing failure of the gait. If all four legs successfully move forward, the body 

then advances forward to complete the move. This is a check and move approach. 

There are no measures taken when a move is not possible.  
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Figure 5.9 – Shifting the body so that the CG test is successful 

The following describes a method used to solve the CG instability problem. During 

certain moves, the body of the robot has to shift either left or right of the move for the 

CG to fall within the stability triangle as shown in Figure 5.9. This method has been 

employed in both the walk left and walk right algorithm as the CG shifts from left to 

right with respect to the direction of move for the robot to complete the move. It was 

found that the body shifting is not required for the forward and backward move 

although movement in the left and right direction was found to be more stable.  

 

5.7.2 Modules Available  

A number of different modules were developed to achieve robust walking. The 

different modules developed will be explained briefly in this section. 
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The primary task of the robot controller is to coordinate walking in all directions. To 

walk the robot must raise its leg, move the leg and lower the leg. Therefore naturally 

the first modules to be developed are the Raise Leg, Forward Leg and Lower Leg 

modules. The robot was able to perform static walking using a simple gait pattern with 

the coordination of these modules. During static walking, at least three feet must be on 

the ground at any point in time. Therefore, only one leg can be lifted up at a time. This 

means that the Raise Leg module must inhibit the other Raise Leg module, to 

prevent multiple legs lifting. The order in which the legs move is programmed into the 

different module. This order is stored in the list that is access by the Lower Leg 

modules. Therefore the Lower Leg module will exhibit the next Raise Leg module 

according to the gait list. After all four legs have moved, the body of the robot has to 

move forward to complete the move. An Advance Frame module is added to move 

the body to complete the gait.  

 

Other modules were added to aid the robot in moving. Basic movement modules have 

been added. They include: 

• Move left/right/forward/back: Based on the gait list, the module moves the 

robot in the respective direction. It supervises the various Raise Leg, Move 

Leg and Lower Leg modules to complete the gait. 

• Turn left/right: Turns the robot in the left/right direction x degrees around the 

centre of the robot.  

 

Figure 5.10 shows module relationship activity for forward movement. The leg is first 

raised, then moved forward and finally lowered to complete the move. Every move is 
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exhibited by the move before. Once the move is completed, the next Raise Leg 

module is exhibited. Note that the Avoid Leg module is exhibited by the Forward 

Leg module to avoid obstacles the leg encounters.  

RAISELEG

FORWARDLEG

LOWERLEG

AVOIDLEG

EXHIBIT/INHIBIT

TIME

TIME

TIME

TIME

HIGH - EXHIBIT
LOW - INHIBIT

 
Figure 5.10 – Timeline of a typical Forward Leg move 

These following modules were added to adjust the foot of the robot if it is sensed that 

the move is not possible. This improves the adaptability and hence the robustness of 

the robot controller.  

• Avoid: When a Move module is called, the Avoid module is activated as 

well to monitor the proximity sensors on that particular feet, i.e. there is an 

obstacle in front. If a proximity sensor is triggered, the movement stops and 

the Avoid Shift module is exhibited. 

• Avoid Shift: This module tries to clear the obstacle by shifting the leg back 

a little, lifting the leg up and forward again before exhibiting the respective 

Move module. If the Move module detects an obstacle again, the procedure 

is repeated.  
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• Relocate Leg: During Lower Leg, the force sensors on the foot finds 

foothold on the ground. If the robot does not find a foothold, the leg will be 

lifted and moved in a reversed and sequential order to find a foothold.  

These algorithms will be explained in the following section. 

 

5.7.3 Various Algorithms Towards Robust Walking 

The algorithms developed help the robot clear a number of difficult situations. The 

controller deals with two situations – first with obstacles in front and secondly with 

holes in the path of the robot since there are two types of sensors that deal with these 

forms of obstacle clearing. The Avoid Leg module deals with the first situation 

whereas the Relocate Leg module deals with the next situations.  

 

5.7.4  Avoidance Mechanism 

The avoidance mechanism handles obstacles that the robot detects in the direction of 

motion. It is a repeated three step process. A description of this mechanism in cats – 

the placing reaction can be found in [McMahon 1984]. A blindfolded cat will lift its 

foot if it detects an object on the dorsum (top part) of the foot (Figure 5.11). The robot 

action of this move is shown in Figure 5.12. 
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Figure 5.11 – The Placing Reaction 

When a foot is moving forward or any direction in the horizontal plane, the Avoid 

module is activated to receive signal from the proximity sensors. If an obstacle is 

detected, the Avoid module exhibits the Avoid Shift module that conducts the three 

step algorithm to move the foot to clear the obstacle. 

 

Figure 5.12 – The Avoid Shift algorithm in action 

The three steps involve the foot moving back a short distance, then up and then it tries 

to move forward to clear the obstacle as shown in Figure 5.12. This action is repeated 

until either the obstacle is cleared or a threshold distance is reached, i.e. the obstacle 

cannot be cleared. If the obstacle cannot be cleared, an alternative action must be 
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taken. The robot switches the direction of move. Figure 5.13 shows the sequence of 

events for a forward leg movement. In the figure the Avoid module is activated by all 

Move Leg modules before the move starts. During the move, an obstacle is 

encountered and the obstacle is cleared by the Avoid Shift module. 

AVOIDLEG

AVOIDSHIFT

EXHIBIT/INHIBIT

TIME

TIME

FORWARDLEG TIME

Encounter
ObstacleHIGH - EXHIBIT

LOW - INHIBIT

 
Figure 5.13 – The sequence of events for the Avoid module 

5.7.4.1  Relocate Leg 

This algorithm allows the robot to deal with situations like potholes and irregularity of 

the ground. This movement is similar to when the stick insect moves its foot around to 

find foothold.  

 

During the Lower Leg module, the pressure sensor on the foot detects contact and 

stops moving down when the pressure sensor is activated. A threshold distance in the 

z-axis is set upon which if the pressure sensor is not activated, the alternative action 

starts upon which the Lower Leg module exhibits the Relocate Leg module.  
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Figure 5.14 – The Relocate Leg Algorithm 

The role of the Relocate Leg module is to find a foothold for the foot in the vicinity 

of the target destination of the foot. The algorithm is shown in Figure 5.14. Assuming 

that the foot is always at the extreme end (either left or right), the algorithm starts by 

moving the foot in the other extreme direction where it lowers the foot to test the 

foothold. If it fails to find a foothold, the foot moves a distance behind and tries to 

probe in both extremes. This test is repeated until either the foot finds a foothold or the 

foot moves back to the original position.  

 

This algorithm requires the coordination between three modules – the Lower Leg, the 

Step Back and the Relocate Leg module.  The Lower Leg module was modified to 

take into consideration the algorithm. It counts the number of time the Lower Leg 

module is exhibited in the WAIT state. If the occurrence is an odd number, the 

Relocate Leg module is exhibited otherwise the Step Back module is exhibited. The 

flowcharts of the three modules are shown in Figure 5.15. The timeline is shown in 

Figure 5.16. The time for each action and between each action are variables and can 

change depending on the situation.  



Chapter 5 – Behaviour Based Approach 
   
 

Page 84  

StepBack
Module

Exhibit
LowerLeg

Raise Leg

Move Foot
1/4 step back

RelocateLeg
Module

Check Motor
Posn

Exhibit
LowerLeg

Raise Leg

Move Foot
to Extreme

Fail to
find foothold find foothold

Odd
number

Even
number

LowerLeg
Module

Exhibit
RelocateLeg

Lower Foot

Goto
WAIT State

Goto
DONE State

Check
Number of
Occurance

Exhibit
StepBack

 

Figure 5.15 - Flowcharts of the three modules involved in the relocate leg algorithm 
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Figure 5.16 – Timeline of the Relocate Leg module 
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5.8 Observations and Results 

The behaviour-based controller performs stable sustained static walking gaits. At 

present, the robot does not have navigation capabilities or the ability to move to 

specific goal. The robot is able to move without human intervention once the direction 

of move is specified. The robot was able to clear obstacles in its path, executing both 

the Avoid Leg and Relocate Leg modules.   

In this project the following goals have been achieved:  

1) a modular control system was created, 

2) a schema for creating behaviour modules was created, and 

3) a simple robust behaviour-based controller with some avoidance mechanisms 

was built. 

 

In the early stages of development, a basic group of modules were created to produce 

simple walking without sensing. Once simple walking was achieved, various modules 

were created from walking in various directions, and turning the robot. In the initial 

stage, the gait of the robot was fixed and no checks were conducted to ensure the 

stability of the robot. The CG test function and the Gait selection function improved 

the autonomy and flexibility of the controller. Since motion stability is under 

assessment, time taken to move forward is not a major concern.  Hence, the robot has 

ample time to check and adjust to ensure the stability of the robot is always 

maintained. Figure 5.17 and 5.18 show the encoder counts of the different axes of the 

robot for a move right behaviour. The robot was able to perform this stable gait for a 

prolonged period of time even with disturbance in the system. 
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Figure 5.17 – Z–axis encoder readings for 4 legs for walk right gait 
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Figure 5.18 - Movement of X axis motors as the robot walks right 
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The robot performed the relocate leg move when the force sensor was not triggered. 

The robot could move the leg back as described to find a foothold. The controller was 

able to coordinate between the different modules. The motion of the robot was not 

affected by the algorithm. This is aligned with the module independency property of 

the behaviour-based controller. 

 

The controller’s avoid shift algorithm was able to try and clear the obstacle. When the 

foot is in the raise leg position, the z-axis distance to threshold is small. Therefore, the 

controller cannot move the foot up too much. Hence, the algorithm is called a few 

times before threshold is reached.   

 

The algorithms were useful in clearing the various obstacles and difficulties that the 

robot faced while moving autonomously in an unknown and uneven terrain. As the 

controller is an incremental modular controller, various modules can be easily added 

for improvement.  

 

5.9 Summary 

The behaviour-based approach is a hybrid controller that is based on both the planner 

based controller and the reactive based controller. It has the computational efficiency 

of the reactive based approach while maintaining some perks of planner based 

approach.  
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The concept of a behaviour-based controller was explained. It has the following 

properties, 

1) each behaviour is an independent sense-plan-act module, 

2) all behaviours work in parallel to achieve a common goal, and 

3) a combination of these modules and their connections defines the system. 

 

There are various problems associated with simultaneously active modules. Firstly, 

there might be conflicts as the different modules share common resources and control 

the same actuators. Therefore, a method to resolve these differences is required. 

Various methods were introduced which included Brooks’ Subsumption Architecture. 

Brooks’ method was selected to solve those conflicts. 

 

The behaviour-based approach is a modular based system and, therefore, encounters 

problems with system states and information sharing. Problems arise due to the lack of 

knowledge of the system module states. The blackboard model is a method 

implemented to coordinate sharing of information between the various modules in the 

system. 

 

Lastly, the behaviour-based controller was implemented for simple robust walking. 

This controller is based on Brooks’ Subsumption Architecture and Wettergreen’s 

research on behaviour-based controllers. Various modules were developed and the 

interaction between these modules managed to achieve robust walking. Various 

functions were included to improve the autonomy and flexibility of the controller. 

Three algorithms were also developed to improve the robustness of the controller. 
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Chapter 6 

6 CENTRAL PATTERN GENERATOR 

CENTRAL PATTERN GENERATOR 

6.1  Introduction  

In the field of robotics, there has always been a fascination with biological systems. 

Evolution has created creatures that adapt to its environment and terrain perfectly. It is 

amazing how legged creature locomotion can be so agile and efficient. Hence, the 

curiosity of man [Farquharson] has led to the study of these biological locomotion 

systems and the development of biologically inspired robots.  

 

Biologically-inspired robotics aims to study both the biomechanics and 

neurophysiology of the animals and apply these findings to robotic systems. Research 

in this area is achieved by studying both vertebrate and invertebrate with relatively 

simple neural constructs to comprehend their various biological mechanisms. A 

number of robot controllers were built based on these simple neural systems. The aim 

of these studies is to achieve controllers that require simple communication with 

minimal computation. These controllers have even been implemented in simple analog 

VLSI models. 

 

There are many areas that can be explored in the biological aspect but locomotion is 

specifically dealt with in this project. Grillner found that there is a mechanism within 

the spinal system of animals that controls locomotion without connections to the brain 
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[Grillner 1975]. This system was referred as the Central Pattern Generator (CPG). The 

CPG generates pattern signals required for muscular control at the limbs to produce 

legged locomotion. This finding led to research in locomotion, which aims to create a 

stable sustainable pattern generating system that adheres to the CPG model. In this 

project, a CPG controller is developed as a locomotion controller for the NUS 

quadruped. 

 

6.2 Central Pattern Generators in Legged Animals 

6.2.1 The Neurological System – Studying Pattern Generation 

A motor program is “a set of muscle commands that are structured before a movement 

begins and can be sent to the muscle with the correct timing so the entire sequence is 

carried out in the absence of peripheral feedback” ([Keele 1968]). There are many 

examples of these biological pattern generators in biological systems that are common 

to most animals. Other systems include the respiratory system, the chewing system, 

and even the escape behaviour of preys in the wild [Pearson 1993]. Locomotion in 

animals is a form of a pattern generator that controls motor action. An interest in this 

study has sparked off the research in the mechanics and behaviour of the locomotion 

system in legged creatures. 
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6.2.2 CPG - Neural Studies on Legged Locomotion 

 
Figure 6.1 – The locomotion neural system of a six legged animal [Grillner 1975] 

Experiments were conducted on cats where their spinal cords were severed from their 

brains [Grillner 1975] to investigate the fact that locomotion is not the responsibility of 

the brain. These finding showed that these cats were able to generate a walking gait 

with avoidance and reaction mechanism without information from their brains. This 

led to the hypothesis that there exists a mechanism within the spinal neural system that 

coordinates locomotion in legged animals. The spinal cord generates signals that 

coordinate muscle action that produces locomotion. This mechanism is known as the 

CPG. 

 

The neural system for legged locomotion is shown in Figure 6.1. The smallest unit of 

the system consists of a joint, the extensor and flexor muscles. The α motor neuron 
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carries signal from the brain to the muscles. Each muscle receives control signals from 

the α motor neuron at the spinal cord (Figure 6.2). All this activity is independent of 

the brain, i.e. walking is autonomously generated by the neural system in the spinal 

cord.  

 
Figure 6.2 –The spinal/CPG connections with muscles1. 

Studies on the CPG have shown that it is a complex system of neural networks that 

makes the system difficult to model. Most of the connections found within the network 

were found to be inhibitory. But implementations of CPG controller showed that CPG 

models do not require such complicated networks to be realised.  

 

6.3 Various CPG Control Approaches 

Over the years, this idea has been adopted into implementing controllers for legged 

robots. The idea is to produce a periodic signal in a controlled manner, which is in turn 

used for producing the gait pattern. Most CPG controllers control the gait by 

modifying the gait parameters. The stability of the gait can be improved by feedback 

                                                           
1 http://thalamus.wustl.edu/course/spinal.html 
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from the sensory system. Hence, the robot is able to react and change both the speed of 

locomotion and the type of gait. 

 

There are many methods of implementing the CPG. These include using, 

- coupled non-linear oscillatory equations that is based on neurological system, 

- mathematical models ([Venkataraman 1996]), 

- fuzzy-like rules to achieve this oscillatory movement, or 

- neural networks and/or evolutionary methods ([Cruse 1994], [Ijspeert 2001], 

[Kodjabachian 1995]). 

 

Sensory-Motor Integration 

Locomotion requires information including auditory, visual, and other environmental 

information. Both the motor and sensory systems work together to provide motor 

information for effective and efficient movement. The study on animal’s motor and 

sensory system has surfaced some intriguing facts. It is crucial that the two systems 

work together. This integration work with the CPG controller will be elaborated in the 

following sections. 
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6.3.1 Cruse’s Rule Based Approach 

 
Figure 6.3 – Circuit diagram of the movement of a single leg [Cruse 1991]. 

Cruse [Cruse 1991] modelled the stick insect to obtain its gait. Using the biological 

data obtained from the stick insect, he studied the mechanism that coordinates the 

movement of different legs in order to produce a walking gait. The results of his 

research showed that a single central pacemaker does not produce the coordination 

between the legs. Instead, each leg has a local controller and the gait emerges out of 

the interaction of these local controllers according to a set of simple rules.  

 

Figure 6.3 shows a circuit model of the local leg controller. There are two states for 

each leg in legged motion, the return stroke and the power stroke. The return stroke 

involves moving the leg from the anterior extreme position (AEP) to the posterior 

extreme position (PEP), while the foot is on the ground. And the power stroke moves 

in the opposite direction with the foot off the ground. Hence, the return stroke is the 

action that moves the body forward. The different leg positions are shown in Figure 

6.4. 
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There are two parts to the circuit, the first decides on which of the two states the leg is 

to be and the second consists of a velocity feedback system. The first part of the circuit 

takes into account the current load and position of the leg before making its decision.  

 

 
Figure 6.4 – The Cyclic movement of a leg [Cruse 1991]. 

 

Cruse used a set of rules to implement the CPG. The activation of individual legs is 

dependent on a set of rules. There are two classes of these rules: one being the 

ipsilateral (same side) leg relationships and the other being contralateral (opposite 

side) leg relationships. There are a total of six simple relationship rules, which are 

presented in Figure 6.5. 
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Figure 6.5 – Cruse’s rules relationship between legs for a six legged robot [Cruse 1991]. 

Cruse implemented this set of rules in a neural network ([Cruse 1995], [Cruse 1998]). 

In his implementation, each leg was controlled by a local sub-network. Each of these 

control sub-networks consists of three subnets. The first generates the return stroke 

while the other generates the power. The last subnet controls the previous two subnets 

to ensure the leg perform the correct action. The gait emerges from the interaction 

between the different control sub-networks of the different legs. The interaction 

between the different legs is governed by the rules shown in Figure 6.5. 

 

6.3.2 Neural Networks and Genetic Algorithm 

Since the CPG is a biological controller, it is only natural that it is a biologically-

derived system. Neural network and genetic algorithm fit this bill perfectly. Neural 

networks have been used to produce CPG controllers ([Srinivasan 1992], [Chiel 1999], 

[Beer 1999], [Astma 1999]). Robust control can be attained with neural network CPG 

controllers ([Hillel 1992], [Kimura 2000]). Genetic algorithms were integrated to allow 
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systems to evolve over time. Genetic algorithm has been used in many cases for 

optimising solutions. It is used together with neural networks for find optimum number 

of neurons and their connections. The lamprey’s evolution approach [Ijspeert 1999] in 

the next section will show this work involved in CPG models. 

 

6.3.2.1  Evolution Approach Using Neural Network 

Ijspeert and Kodjabachians’ study on the lamprey has led to the development of an 

evolutionary approach to neural network to solve the CPG problem [Ijspeert 1999]. 

This method uses a genetic programming algorithm to evolve developmental programs 

which encode a growing dynamic neural network. It uses a genetic programming 

approach with a developmental encoding known as Simple Geometry Oriented 

Cellular Encoding (SGOCE). This architecture evolves to control high level 

characteristics like the speed of locomotion and a change in direction. The aim of this 

approach is to obtain an automatic generation of a control mechanism for locomotion. 

This controller imitates the natural process of evolution, allowing the neural network 

to create its own synaptic connections and the amount of neuron in the network in a 

systematic way. 

 

This method uses a control structure similar to Cruse’s method. Each limp is controlled 

by a local controller. The coordination of all the controllers determines the gait of the 

system in control. This method has been used as a controller for a virtual six legged 

insect with behaviours such as ‘gradient following’ and ‘obstacle avoidance’.  
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Genetic programming has always been used for optimisation of neural networks. This 

evolution system gives this implementation the ability to achieve its specified task 

without having to tune the controller. The only problem with this method is that it 

takes a while to create the neural network (e.g., approximately 450 CPU hours on an 

Ultra 1 Model 140s SUN station).  

 

6.3.2.2  Coupled Neural Pattern Generators 

The last method discussed here uses coupled neural oscillators to implement the CPG. 

Through carefully selected parameters and coefficient of the networks, the system is 

able to exhibit a signal pattern. Studies in oscillatory control include Barnes’ work on 

pulse coupled relaxation oscillators [Barnes 1998] and J.S. Bay and H Hemamis’ work 

on van der Pol oscillators [Bay 1987]. The aim of these experiments is to obtain a 

stable pattern of oscillation, which can be used to model the CPG of legged animals. 

The van der Pol oscillators are used to develop a controller for this project. 

 

Coupled van der Pol Oscillators 

This model mimics the neurological system of animals. The control outputs either 

expand or contract the different muscles that are involved in gait generation. Similar to 

most neural oscillatory models, this model has a group of oscillators that are coupled 

together. Bay and Hemami found that the simulated output of the system is able to 

produce a human walking gait [Bay 1987].  
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This is a network of neurons built with sets of neurons grouped to become individual 

oscillators. Each oscillator obeys a set of van der Pol equations for manipulation of 

data. Every oscillator has a set of parameters – phase, frequency and amplitude. Hence, 

modification of these parameters allows the alteration of gait and its speed. 

From the simulation of the model with various sets of parameters, the results show that 

oscillation for various gaits is achievable. Variations in the gait are obtained by, 

i. modifying the amplitude of the signal (i.e., contraction and expansion of 

muscles as with animals),  

ii. modifying frequency for faster and slower gait,  

iii. shifting phase between legs from 0 to 180 degrees for transitions between 

gaits, 

iv. using travelling waves as seen in the motion of fishes, and 

v. having the ability to inhibit other oscillators in the network from generating 

motion.  

 

Pribe, Grossberg and Cohen’s Oscillator Mode 

This CPG model uses physiological mechanisms, such as nerve cell models that obey 

Hodgkins-Huxley type equations ([Grossberg 1997], [Grossberg 1997a]). A neural 

network is used to create the model since the model is to be neurologically based. Gait 

patterns are generated from the interaction between neurons and the control of the 

parameters that control the interaction and the input to the system.  

 

Yamanishi (1980) has conducted a bimanual finger tapping experiment to find out how 

rapidly joint combinations are bounded to rhythmic patterns. A human subject is asked 

to tap keys in time to visual cues across ten relative phases from 0 degree to 360 
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degrees. During this experiment, the phase difference between the visual cue and the 

human tapping is measured. The standard deviation of the error for locomotion is 

lowest when the phase relationship is either near in-phase or pure anti-phase. This 

means the oscillatory behaviour of the human is biased in favour of in-phase and anti-

phase relationship. 

 

Therefore, this in-phase and anti-phase relationships are applied to the inter-limb 

relationship of the robot. This has produced various stable gaits in simulation.  

 
Figure 6.6 - Two channel oscillator of the CPG developed for the robot [Grossberg 1997]. 

Building the CPG oscillator 

The CPG model is a modified version of the Ellias-Grossberg oscillator model. This is 

a neural model (also known as a cell) where two neurons are used, an excitatory 

neuron and an inhibitory neuron. Since legged locomotion can only happen with even 

number of legs, two cells (one cell per leg) are shown in the Figure 6.6. Each cell can 
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be referred to as ‘a channel’. The neurons obey Hodgkin-Huxley type equations where 

excitatory signals operate faster than the inhibitory signal in a recurrent on-centre off-

surround anatomy. Unlike the typical Ellias-Grossberg model where only the 

excitatory signals are coupled to the membrane equation, in this case, both inhibitory 

and excitatory signals are coupled to the membrane equation. The majority of the 

connections are inhibitory connections as these signals govern the characteristics of the 

cell. 

 

Equations for the Neurons 

The CPG model obeys the following Hodgkin-Huxley equations, 

∑+−+−+−=
j

jijiiiiii ygDxCIxfxBAxx
dt
d )()(])()[(  (6.1)  
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Comparing the above equations with the actual Hodgkin-Huxley equations, it can be 

seen that Equations (6.1) and (6.2) can be rewritten into the following Huxley-Hodgkin 

notation into Equations (6.5) and (6.6) respectively, 
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Represent Equation (6.1) represented as in Equation 
(6.5) 

Variable voltage V = xi 
Constant saturation voltages VP = 0, 

V+ = B, and 
V- = -C 

Conductances gP = A, 
g+ = f(xi), and 
g- = )( iij ygD  

Table 6.1 – Comparison of Equation (6.1) and Equation (6.4) 

 ])()[( iiii yxxy
dt
d

−= βα  (6.6) 

 where ++= ][1)( ii xxα  and 
)][1(

][
)( +

+

+
=

i

i
i x

x
xβ  

In equation (6.1), f(xi) acts as the fast excitatory conductance, and g(xi) as the slow 

inhibitory conductance. xi measures the activity of the excitatory neuron ,and yi the 

activity of the inhibitory inter-neuron. yi controls a slow inhibitory intracellular 

conductance rather than a separate inhibitory inter-neuron. Both the inhibitory and 

excitatory signals are rectified sigmoid (shown in equation (6.5)).  
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Figure 6.7 – Inhibitory strength diagram for four cells representing four legs 

 

Inhibitory term Inhibitory Strength Representation 

D0 Self-inhibitory 

D1 Front-Front, Rear-Rear 

D2 Front-Rear and Rear-Front ipsilateral 

D3 Front-Rear and Rear-Front contralateral 

Table 6.2 – Inhibitory strength representation 

The excitatory signal excites itself but the inhibitory signal acts on all cells depending 

on the strength Dij. The list of all the inhibitory strength is shown in Table 6.2 and a 

schematic diagram is shown in Figure 6.7. Ii is the input signal to the system. Equation 

(6.6) shows that the conductance yi is controlled by )( ixα  and approaches an 
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asymptote )( ixβ . The two terms are dependent on the variable voltage term, xi. (B - xi) 

and (C + xi) in equation (6.1) are shunting terms and (1 – yi) is a shunting term in 

equation (6.2) that is not present in the original Ellias-Grossberg’s set of equations. 

 

The gait has a tendency of switching from an anti-phase relationship to an in-phase 

relationship as the oscillating frequency increases. The oscillatory signal is dependent 

on the input signal. A change in the inhibitory cross-coupling strengths Dij together 

with an increase in the self-inhibitory strength Dii affects the system phase relationship 

as well. 

 

A signal is used to not only activate the gait but trigger gait transition by modification 

of the amplitude and the phase difference of the signal. By generating different in-

phase and anti-phase signals between the different neurons (i.e. legs), different gaits at 

different speed can be achieved. Altering the input I signal with the different parameter 

in various ranges, and modulation of the inhibitory signals allows alteration of the gait 

online. Therefore the controller is able to switch quickly between gaits. 

 

6.4 Advantages and Disadvantages 

Man marvel at the beauty of animals running around in the wild. Different animals 

walk with different gait, each with its own style. Wettergreen states that animals 

evolve to a locomotion that suits their need but may not necessarily be efficient 

[Wettergreen 1995]. Animals are able to fall down, roll over, trip, and get up again. 

But the mechanism and electronics on the robot are delicate and will damage if the 
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robot falls over. Therefore animals do not necessarily make the best models for legged 

robots. Although the robot lacks the mobility and agility of the animal, it can achieve 

more efficient movement. Robots still lack the computational and sensory processing 

capability of animals. Therefore direct adaptation of animal features to a robotic 

system is not likely to work.  

 

The neurological systems of simple creatures are still impossible to fully comprehend. 

At this point in time, it is still impossible to say the neural networks that replicate the 

networks of creatures are accurate and perform the same way as the actual thing. Beer 

found that extensive revisions on the basic walking network are needed to coordinate 

stopping, starting, and turning [Beer 1998]. Simple tasks as such require fine tuning 

over 500 parameters by trial and error.  

 

Animals use CPG to produce rhythmic gait motion. This may be a problem for robots 

as these systems are difficult to tune and verify. Tuning by entrainment requires human 

guidance and interaction in teaching/tuning. It offers the best hope for robots, and this 

is also the method by which animals learn how to walk.  It also has been shown that 

CPG controllers cannot produce consistent slow gaits, while animals can. Therefore 

there are a lot of problems associated with developing a robotic system based on 

biological systems.  

 

The advantage of implementing a naturally inspired system like the CPG controller 

does outweigh the mentioned disadvantages, as this is a nature-inspired controller, 

evolved and optimized to perform locomotion of any sort. At this point in time, 
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engineered robots can never outperform an animal in handling natural terrain. If a 

successful CPG controller is implemented with an adequate robotic body structure, it 

will bring forth the reality of an animal-like robot. The disadvantages can be treated as 

mountains that have yet to be conquered.  

 

6.5 Proposed Approach 

There are various methods used to develop the CPG controller, each having its 

advantages. But the neural model developed by Pribe, Grossberg and Cohen was 

chosen for the development of our CPG controller. This method generates a pattern 

that can be modified by changing the various parameters used. This signal is passed to 

an interpreter that generates the corresponding motor command. The signal generated 

is meant for muscle-like actuators. This means that the output signals are binary 

representing either the expansion or contraction of muscles. This expansion and 

contraction of muscles move the different joints thereby performing locomotion. Since 

the NUS quadruped does not have muscle-like actuators, the binary signal represents 

the two strokes, the return stroke and the power stroke.  

 

6.5.1 Oscillator Signal Generator Model 

The Pribe, Grossberg and Cohen’s CPG model is used in the development of the CPG 

controller. This model is used to produce oscillatory signals for gait generation. 

Movement of each leg is divided into two phases, the power stroke and the return 

stroke. The power stroke moves the feet from the anterior position to the posterior 
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position while the foot is on the ground. On the other hand, the return stroke moves the 

feet from the posterior position to the anterior position while the foot is above the 

ground.  Figure 6.4 shows a cycle from power stroke to return stroke.  

 

The model for the four-legged robot is the four channel neural simulator shown in 

Figure 6.8. Each channel represents a leg and has an excitatory and an inhibitory 

neuron. All equations are described in the section above (Equations for the Neurons). 

All excitatory neurons are inhibited by all inhibitory neurons in the model and are 

gated by the cross-coupling and self-inhibitory strength, Dij and Dii respectively. 

Modulation of the gait is obtained from changing the parameters of the equations used 

(as described in the section above, Equations for the Neurons) and the parameters of 

the inputs. Each gait is identified by its own set of parameters, with the values of the 

parameters obtained from observing the simulations.  

 

The outputs from the Y-neurons are the inhibitory signal and used as feedback signal, 

while the outputs from all X-neurons are excitatory signals and are used as signal to 

the four legs for gait generation.  
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Figure 6.8 –A four legged neuron model of the CPG. 

 
Inhibitory term Inhibitory Strength Representation 
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D1 0.255 
D2 0.3 
D3 0.3 
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6.5.2 Runga-Kutta Method for solving ODEs 

As a note, the Huxley-Hodgkins equations used in the oscillatory generator are a set of 

nonlinear Ordinary Differential Equations (ODEs). These equations have to be solved 

by an approximation method since there is no other method that solves these equations 

trivially so as to reduce the computational time and effort. Therefore, these ODEs are 

solved using a fourth-order Runga-Kutta method. This method can be found in most 

mathematical textbooks available. The C functions used to solve the equations are 

obtained from this program – “Numerical Recipes in C” [Numerical Recipe]. 

6.6 The CPG Program  

 
Figure 6.9 – Block diagram of entire CPG controller program 

This program is developed reusing the two low-level control modules developed for 

the behaviour-based controller. And both the hardware interface and fuzzy controller 

part of the program are reused in the CPG controller. The block diagram of the 
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controller is shown in Figure 6.9 and is a similar program structure with the behaviour-

based controller replaced.  

 

The CPG controller is divided into two modules. The first module generates the 

rhythmic signal (Signal Generator) while the other translates this signal to motor 

commands (Motor Command Interpreter). The Pseudo Code is shown in Listing 6.1. 

he signal is generated using the Pribe, Grossberg and Cohen’s CPG model. The Motor 

Command Interpreter receives signal, interprets it and passes the information to the 

low level controller.  

Signal Generator: 

Input parameters, step function; 
Calculate Derivatives using Runga-Kutta 

 Obtain gait signal for Four Legs 
 Stored gait signal in Circular Buffer 
Motor Command Interpreter: 

 Input gait signal; 
 Generate joint motion command 

Listing 6.1 – Pseudo code for Signal Generator and Motor Command Interpreter.  

 
Figure 6.10 – Block diagram of CPG controller 
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The Signal Generator generates the oscillatory signal obtained from the solution to the 

Hodgkins-Huxley equations. The signal generated is stored in a buffer to prevent 

discontinuity in the signal fed to the motor. This buffer data is then fed to the second 

part of the program, the Motor Command Interpreter, which in turn transforms the 

signal to movement of the legs. This is shown in Figure 6.10. Since data is written at 

the start of the buffer and read at the end of the buffer, there is delay in transmission of 

data from the signal generator to the motor command interpreter. The Motor 

Command Interpreter reads from the signal buffer and executes either the return stroke 

or the power stroke accordingly to the respective leg. This delay is proportional to the 

size of the buffer. Hence the size of the buffer is small.  

 

6.6.1 Circular Buffer 

 
The buffer used is a circular buffer, which gets written by the Signal Generator, and 

read by the Motor Command Interpreter. There is a “stop-write” feature that stops 

writing when the buffer is full. A term is removed from the buffer whenever a read 

occurs. This will in turn cause the Signal Generator to write the next term into the 

buffer. Since signal generation writes at a higher rate than the reading of the Motor 

Command Interpreter, the “stop-write” feature of the buffer prevents the buffer from 

overflowing. The data moves at the pace of the slower of the reader and writer, which 

in this case is the Motor Command Interpreter. 

 

The CPG controller is able to perform both static and dynamic walking. Changes in 

gaits are possible on the fly by altering the parameters online. These changes can be 
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altered using the user interface provided. Sets of parameter, representing different 

gaits, are recorded which can be recalled when that particular gait is needed. Similarly 

these can be called using buttons provided on the user interface.  

 

Stability requirements for dynamic and static locomotion are different (refer to Section 

2.5.2). Therefore, different algorithms are required for dynamic and static gaits. And 

since static stability is only an issue with static gait, precautionary functions are 

included to ensure static stability before moving a leg. These functions are also present 

in the behaviour-based controller.  

 

The program is written in such a way that a move has to be completed before the next 

move can carry on. Each move can consist of movement of more than one leg 

depending on the signal generated. The buffer reader ensures that each move is 

completed before it accepts the next move.  

 
The robust algorithm used is the same algorithm used in the behaviour-based 

controller. The avoidance mechanism and the foot placement mechanism are reused in 

this controller. Since the program does not allow overriding moves, there is no time 

constraint on each move, allowing it to perform other tasks during a move.  

 

6.7 Results 

The results of two gaits are shown here. The first is a gait for static walking while the 

second gait is a simulation of dynamic walking. It is mentioned previously that a high 

in the signal represents the return stroke and a low represents a power stroke. The 
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interpretation of the signal is altered for the static gait (first set of results). The high 

signal triggers the leg to start its move, which moves the foot from the back position to 

the forward position. This gives the robot time to run the various precautionary 

algorithms during the move. The next leg is signalled to move once the leg has 

completed its task and the body advances forward once all four feet have completed 

the move forward. This set of signal can be applied to different robots depending on 

the strokes defined for different robots.  

 
 

 

 

 

 

 

 

Figure 6.11 – Leg number convention. 

Figure 6.11 shows the numbering convention for the legs of the robot, where leg 1 and 

leg 4 are the front legs, and leg 2 and leg 3 are the hind legs. Figure 6.12 and Figure 

6.13 shows the signal for all four legs for a static gait. This is a gait pattern where leg 

one moves first, followed by legs four, two and lastly three. The sequence of leg 

movement can be changed by altering the parameter of the equations. The robot is able 

to perform a prolonged walking gait. Since the robot completed moving a leg before it 

moved other legs, the gait generated is stable and the robot is able to run the different 

checks to prevent instability. 
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Figure 6.12 – Static gait diagram of the trigger signal produced by the CPG controller  

 
Figure 6.13 – Split signal diagram for static gait. 
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Figure 6.14Figure 6.14 and Figure 6.15 show a simulation of dynamic walking, with 

first movement by leg one and three, followed by two and four. This is a simulation of 

the equations, as dynamic walking cannot be implemented on the quadruped, due to 

the robot’s mechanical design constraints. The speed of motion of the legs cannot 

produce a stable dynamic gait. The signal is fed to the robot while the robot is 

suspended to observe the movement. As a dynamic gait does not require checks for 

stability, the signal is fed directly to the robot. The signal interpretation of the dynamic 

gait is set to execute the return stroke on receiving a high signal and executing the 

power stroke on the low signal. The controller is able to sustain the gait over a long 

period of time. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6.14 – Simulated trot gait for a quadruped. 
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Figure 6.15 – Split signal diagram for simulated trot gait for a quadruped 

 

6.8 Summary 

The CPG controller is derived from studies of the spinal system of animals. There 

exists a system away from the brain that coordinates legged locomotion of animals. 

This system generates a pattern that coordinates the movement between the different 

legs of the animals. Different research groups have developed different methods of 

achieving the CPG. In this thesis, the controller is developed using a group of 

differential equations that mimic biological systems.  

 

The controller consists of two parts, one generating the pattern signal and the other 

interpreting the signal for motor movement. Changes in the signal can be made by 
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altering different parameters. This controller is able to produce both static and dynamic 

gait signals but only static walking was possible. Different sets of parameters can 

produce the different gaits, while changes in the gait can happen online using the 

interface provided.  

 

The same low level controller is used for this controller. The robot is able to perform 

online change in gait when the parameters are altered online. Two versions of the CPG 

controller is developed, one to cater for static walking while the other for dynamic 

walking. The controller produces simple static walking and the dynamic walking gait 

is tested on the robot while it is suspended. Both static and dynamic gaits are stable 

and sustainable. 
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Chapter 7 

7 FUTURE RECOMMENDATIONS 

FUTURE RECOMMENDATIONS 

7.1 Merging the Two Approaches 

This project uses two methods to develop a robust walking controller - the CPG 

method and the behaviour-based approach. The advantages and disadvantages of these 

methods have been presented in their respective chapters. Since the two controllers 

achieve legged locomotion differently, both having their own advantages, thus 

combining the two approaches may provide a better solution. But both have their 

distinct characteristic, and there are problems involved in combining the two 

approaches. This chapter aims to combine the two approaches and develop a controller 

that takes the advantages of the two controllers and remove the disadvantages. The 

various methods that can be employed to the integration are presented. 

 

7.1.1 The Advantages of the Two Approaches  

These two approaches are results of the studies on biological systems. Humans have 

yet to comprehend how biological systems work, but in the world of artificial 

intelligence and engineering, various theories and algorithms have been coined to 

obtain the results evident in biological systems. Biological systems are 

1) fast to react (fast reflexes), 

2) able to adapt to the environment well, 

3) fast learner, and 
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4) able to handle changes in the environment quickly. 

The two controllers are two biologically inspired controller mimicking different parts 

of the biological system - one based on the pattern generators present in the spinal 

system, the other based on reasoning and action.  

 

The behaviour-based controller is an incremental modular controller with interacting 

modules to provide the control required. This is an advantage as it allows the 

developer to add different features to the controller. However, the structure of the 

behaviour-based system is larger and the overhead is greater than that of the CPG. It 

used more resources as the number of modules required to perform simple locomotion 

is large, hence the interactions between the modules are higher as well. 

 

On the other hand, the CPG uses signals generated from a pattern generator to control 

the different legs to produce locomotion. The CPG controller is a simple low-level 

locomotion controller. This controller is not a modular controller and therefore adding 

algorithms to the controller is difficult. The advantage of the CPG controller is its 

ability to change the gait online by changing the parameters of the system. Dynamic 

walking can even be achieved using this controller. Crucially, this method has very 

little overhead and is an efficient method of producing legged locomotion.  

 

7.1.2 Solving their differences 

The CPG controller controls the movement of the legs within the spinal system. On the 

other hand, the behaviour-based controller works like the brain of the system. 
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Therefore if a combined controller is implemented, the CPG should be used for the 

low level control while the behaviour-based controller acts as the high level controller. 

This model is a representation of how the human locomotion system works. The 

human spinal system produces rhythmic signals, which is modulated by brain signals 

to produce robust locomotion. Therefore, the behaviour-based controller plays the role 

of the observer, sensing peculiarities in the environment.  

 

7.1.3 Various Implementations 

7.1.3.1 Behaviour-based Modulated CPG Controller 

 

Figure 7.1 – Behaviour-based controller modulates the CPG controller by altering the CPG 
parameters. 

This first method uses the behaviour-based controller to modulate the parameters in the 

CPG controller (Figure 7.1). The CPG controller acts as a low level controller. The 
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behaviour-based controller now relinquishes control of all the joints and instead 

modifies the parameters of the CPG. The CPG controller will take full control over the 

joint movements. With the combined controller, the CPG works normally when there 

are no obstacles or problems in locomotion. The behaviour-based controller sends 

corrective signals to the CPG controller when it senses error in the locomotion.   

 

The behaviour-based controller changes the gait pattern and controls the speed of the 

locomotion by modifying the parameters of the CPG controller. The behaviour-based 

controller is not able to obtain the same reaction time as before as it does not have 

control over low level commands of the robot. More parameters are required for the 

behaviour-based controller to have better control over the CPG controller. 

 

Since there are many parameter in the CPG controller, modulation of these signals is 

difficult. Different sensors may be used to trigger changes in the different parameters 

but many trials have to be conducted before the parameters changes for the various 

sensors can be found. Secondly, the parameters control the speed and type of gait but 

not the actions of the robot. With the different difficulties faced, the control 

mechanism of the behaviour-based control becomes complicated. 
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7.1.3.2 A CPG Module within the Behaviour-based Controller 

 

Figure 7.2 – The CPG controller is a module within the behaviour-based controller.  

With this method, the CPG is added to the behaviour-based controller as a module. 

The CPG module takes over the control of basic locomotion, with the various 

parameters controlling the gait pattern (Figure 7.2). The various reaction modules, 

such as the Relocate Leg and the Avoid module, developed in the original behaviour-

based controller will still be used. These reaction modules take the role of subsuming 

the CPG module when various obstacles are encountered. These modules will rectify 

the situation before returning controller back to the CPG controller. 

 

The problem with this controller is that the coordination between the various modules 

is difficult as the gait is controlled by a single module. The behaviour-based controller 

requires that as long as a task can be spilt, it should be into various manageable 
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modules. If the module takes control of the entire locomotion, the flexibility of the 

controller degrades. 

 

The Avoid mechanism is only turned on when the leg is moving forward (after the leg 

is raised). The Relocate Leg mechanism is turned on when the leg is in the lower leg 

phase. These must be considered in the CPG module. Will the CPG module be in full 

control of all existing leg movement modules (Raise Leg, Forward Leg and Lower 

Leg)? This defeats the purpose of using the CPG controller. The goal is to develop a 

low level module that is subsumable by other modules, i.e. to stop the module in its 

path and allow it to carry on once the corrective action has been taken. But these 

corrective modules can only be turned during certain movements made by the CPG 

module. There must be coordination between the CPG module and the corrective 

modules, which increases the dependency the modules have on each other, and alters 

the rules used for the behaviour-based controller. As can be seen, the coordination 

between the various modules is difficult as the CPG module takes on too many roles of 

locomotion. 
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7.1.3.3 Parallel Integration Approach 

 
Figure 7.3 – Behaviour-based and CPG controller working in parallel. The central controller 

takes input from both controllers and decides on the action required. 

Another approach is for the two controllers to work parallel to each other (Figure 7.3). 

The two controllers both have low-level controller which sends their signal to a central 

controller. These signals can be either be an additive signal or a subtractive signal to 

the central controller. The central controller combines the two signals from the two 

controllers and decides on the correct action to take. There are no communications 

between the two controllers and therefore sensory feedback is important. The two 

individual controllers make decisions based on sensory feedback. The central 

controller can be implemented as a neural network based controller. 

 

The problem with this controller is that the two controllers require corrective action to 

be taken. Since it depends on the central controller to move the robot, the controllers 
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are at its mercy, to decide if the correct action is taken. This is the dilemma is similar 

to two person being tied together with one wanting to move left and the other wanting 

to move right. Both persons need to move in the respective directions to achieve its 

goal but only one can be satisfied.  

 

7.1.4 Summing Up the Combined Controller Approaches 

Integration of the two controllers has the following advantages.  

1) The CPG controller enhances the robustness of the behaviour-based controller.  

2) The CPG controller reduces the complexity and size of the behaviour-based 

controller.  

3) The behaviour-based controller’s modular approach makes it easy to add 

features to the CPG controller.  

 

The three different methods of integration have been explored but not implemented as 

the implementation is beyond the scope of this work and an area of future work. These 

methods capture the advantages of the two approaches but realise the conflicts between 

the two methods. The first implementation is a serial type of integration where the 

behaviour-based controller modulates the CPG controller only if there are changes in 

the environment. The second places the CPG mechanism within the behaviour-based 

controller, and lastly the third is a parallel approach where the two controllers run 

concurrently with a central process that integrates the signal from both controllers.  

 

It is difficult to combine these two controllers as they require quick reaction to work 

properly. Both controllers cannot take control over locomotion as they differ in the 

method of control. Since these two controllers are considered active reactive 
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controllers, they must react to changes detected in the environment. Since only one 

controller can take control over the joints, the other controller cannot be optimally 

utilised. 

 

7.2 Other Recommendations 

More autonomy can be developed by including a navigation system to the robotic 

system. Since there are no sensors onboard that gives an indication that the robot is 

instable, no form of recovery mechanism can be implemented. This can be achieved 

with an inclinometer.  

 

More features can be included as more sensors are added to the system. Since a 

modular-based system has been implemented, more modules can be included as more 

are invented. Other features such as landmark detection and representation can be 

included in the system at a later point in time. As the legs can be can quite wobbly 

when it is stationary, the robot will trip if it is pushed a little on the side. With the 

inclinometer, the tilt change in the robot’s body can be detected and the foot can be 

lowered to recover from this instability.  

 

7.2.1 Navigation Features 

The robot should build a world model using the various sensors available on the robot. 

The controller can use a set of parameters to obtain a rough 3D map of the 

environment. This would involve noting the height, various obstacles, door, and walls. 

This representation should not contain too much information to reduce processing 
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power required. Information that is relevant can guide the robot through the 

surrounding terrain to avoid obstacles encountered before, predicting the shortest 

passable route. This guidance not only produces effective locomotion but also avoids 

entrapment of the robot. Planning can speed the locomotion of the robot as the robot 

can choose the terrain it traverses through. 

 

7.2.2 Portability of Controller 

A modular software structure has been created. This modularity should be used to port 

the controller to other legged robots. The portability of the controller has to be 

improved. Building a module controller that suits all legged robots of any 

configuration as long as the actuators and sensor interface are defined properly.  

 

[Fujita 1999] is an example of a modular reconfigurable robot with software to 

suppose the different configuration of the robot. This work can pave the way for 

modular robotic work or modification of current work to be more modular. This allows 

different students to work using the same language with different configured robots. 

All legged robots should use a single platform of development as this allows students 

to work closely without having to switch between the different platforms they are 

working on. Students working on different robots are able to understand what the 

developer is trying to achieve with his robot.  
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7.2.3 Memory 

Humans and animals remember features in the environment and also methods in 

dealing with different situations. This ability is useful, much like learning in neural 

networks, as if the robot is left to move on its own, it should gain “experience” in 

clearing obstacles, and finding its way around the environment. The robot should have 

a memory where these details are stored. The way humans and robots perceive differ 

in the sense that humans think in very abstract terms whereas robots require specifics 

to associate objects.  

 

There are examples where the robot builds a three dimensional map of the 

environment as it moves around the area. There are also robots that learning to clear 

obstacles better as the robot practices clearing them. These different features can be 

integrated into the robotics system to improve the robot’s ability to survive in the real 

world.  

 

7.3 Conclusion  

Working on this project has given the author insight about the various aspects of 

legged locomotion, both in the engineering and biological sense. There are many areas 

that can be dealt with in terms of walking gait analysis, controller design and legged 

robot design. This project has explained the many factors that contribute towards the 

success of building a robust robot. But the robot controller is the objective and area of 

research in this project. 
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Although the robot has a set controllers that have been developed by previous 

researchers, the entire software controller has been redesigned. The system is ported to 

the Windows NT platform and hence many changes are necessary. A new controller is 

designed and developed to increase the portability and capacity of the robot controller 

software. 

 

The study of the various controllers developed for legged robots has led to the 

development of two types of controllers. The first controller is the behaviour-based 

controller based on Brooks’ Subsumption architecture. A set of basic modules are 

developed to perform basic locomotion. Modules that interact with sensors are added 

to improve the stability of walking.  Modules are developed to move in all directions 

and turn both left and right. Other modules are created to improve on the robustness of 

the controller. These modules include modules that handle situations where the robot is 

faced with an obstacle or a pothole. These modules are created depending on the 

sensors available to the robot.  

 

The second is the CPG controller that mimics the biological pattern generator, which 

produces locomotion in animals. This controller is effective in producing both static 

and dynamic gaits, with the gaits sustained over a long period of time.  

 

The two controllers, behaviour-based and CPG, achieved stable walking locomotion. 

The walking algorithm used included the ability to overcome obstacles, find foot 

placement and work out a gait on its own if the current gait failed.  In terms of 

robustness of the controller, the aim of this project is achieved.  
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In conclusion, humans and animals have walked the earth since creation and therefore 

the area of walking should not be considered foreign to us. Yet there seems to be a 

difference between knowing and application. There are more to consider when 

applying the knowledge. Researchers have made actuators and sensors that work like 

the human motor and sensory system, but looking at the current research in legged 

locomotion, there are not many robots that can achieve human-like or animal-like 

locomotion. The real challenge is to comprehend and apply the knowledge on 

machines. 

 

The popularity of legged robots is growing as commercial interest in this field grows. 

But to date there are no robots that can closely resemble an animal in terms of walking. 

It lacks the dexterity, agility, learning skills and recovery mechanism. Examples of 

legged robots available that are well-known to the public are Sony’s AIBO, Honda’s 

biped (Asimo) and various other mobile robots that do not come close to mimicking 

human and animals in terms of movement.  

 

Research in legged locomotion has great potential and a lot can be discovered as yet by 

researchers, as there are many areas to consider in terms of robustness of legged 

robots. This project has only touched the surface of this field. There is still much more 

to be done in terms of design, sensors, and algorithm.  

 

Even as the world watches in amazement at the wonders of technological advancement 

of legged robots, the hope is that this field will mature as more is learnt about legged 

locomotion and its application.  
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Modified Sugeno-type Controller 

The fuzzy controller is a Sugeno-type fuzzy controller [Jantzen 1998]. This method of 

inference is widely used, as it is computationally efficient and is able to handle 

different operating conditions of dynamic nonlinear systems.  

 

The Sugeno-type inference method [Jantzen 1998] uses output membership functions 

that are either linear or constants. Taking a two input one output system as an example, 

a typical rule is as follows, 

 If x1 is A and x2 is B then  

 k   )x*q  x*p (y 21 ++=  (A.1) 

where x1 and x2 are inputs, A and B are fuzzy sets, y is the output for a rule, p and q are 

calculated weight values and k is a constant. The output, y, to every rule is a crisp 

constant. The output is a weighted sum of the individual rule outputs divided by the 

total weight, 

 
∑
∑

=
i

ii

w

yw
Output  (A.2) 

The calculation is not computationally intensive as shown by the simple formula used. 

 

In this project, the term on the right of Equation (A.1) is modified to a simpler version. 

Instead of taking individual weighted sum, the equation has been changed to the 

following,  
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∑
∑

=
i

iji

W

VW

OutputModified _  (A.3) 

where the weight Wi is calculated based on Equation (A.4), which depends on the two 

inputs. Vij is a constant that depends on a lookup table that is a function of the two 

inputs. 

 )) weight(x),(xAND(weight  W 2i1ii =  (A.4) 

 
where weight(x) is the weight of  x obtained from a fuzzy membership function. 

and   ),min(),( BABAAND =  

Therefore, this equation gives the average of the weighted sum of the various 

memberships of the membership function.  

 

In this project, the two inputs are error (Error) and rate of change in error (dError), 

and the output is the motor voltage. Error is defined as the difference in the desired 

position and the current position of the motor. Change in error is defined as the rate of 

the change of error per unit second.  

 

Using the modified equation (Equation (A.3)) as the output of the controller, the 

voltage of the motor is calculated. Both weights in Equation (A.4) needed for the W 

term need fuzzy membership function. The two membership functions are shown in 

Figure A.1. 

 

The weight value (Error term) is obtained from the membership function from the top 

figure and the weight value (dError term) is obtained from the membership function in 
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the bottom figure. Constants a, b, c, d, a’, b’, c’, and d’ are used in the membership 

functions of the fuzzy controller. The controller is tuned by adjusting the values of 

these constants. There are overlaps in the triangles of the membership function to 

ensure a smooth transition between the points on the graph. 

 

 

Figure A.1 – Membership functions of Error and dError 

-a a b -b c -c -d d 

wt(Error) 

Error 

NM NS PS PM ZERO 

-a’ a’ b’ -b’ c’ -c’ -d’ d’ 

wt(dError) 

dError 

NM NS PS PM ZERO 

NM – Negative Medium 
NS – Negative Small 
PS – Positive Small 
PM – Positive Medium 
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  DError 

 NM NS Z PS PM 

NM NM NM NS NS NS 

NS NS NS NS Z Z 

Z Z Z Z PS PS 

PS Z Z PS PS PM 

 
 

Error 

PM PS PS PS PM PM 

Table A.1 – Lookup table for V value 

 represents the fuzzy rules used in the fuzzy controller. For example,  

 Rule 1 - If Error is Negative Medium and dError is Zero then Voltage = 

Negative Small 

or  

 Rule 2 - If Error is Positive Small and dError is Negative Small then Voltage 

= Zero 

All together 25 rules are used to obtain the voltage for the controller. The positive and 

negative values dictate the direction, which the motor moves. The V values used in 

Equation (A.3) are a set of crisp values that range from –0.8 to 0.8 volts. There are five 

values – Negative Medium, Negative Small, Zero, Positive Small and Positive 

Medium. These values are found in Table A.2.  
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Representation Value 

Negative Medium -0.8 

Negative Small -0.3 

Zero 0.0 

Positive Small 0.3 

Positive Medium 0.8 

Table A.2– Values of the voltage. 

The following is an explanation of how the lookup table was derived. Example rule 1 

states that if motor is far from the objective (i.e. Error = NM) and velocity is zero (i.e. 

dError = Zero), then slowly accelerate to maximum velocity (i.e. apply NS voltage) 

from the centre to the left of the table.  

 

For example rule 2 states that if motor is near the objective (i.e. Error = PS) and 

velocity is small (i.e. dError = NS), then set motor voltage to zero for the motor to 

decelerate (i.e. apply Zero voltage). 

 

Figure A.3 shows the method in which the different values of the table are chosen. If 

the motor is still and the error is increasing to a negative medium value, accelerate the 

motor to the max voltage. Once error reduces to a negative small value, decelerate the 

motor until error is zero. Since friction affects the motor’s movement, the voltage is 

not zero when error is zero. 
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Figure A.3 – Method to read the table using human reasoning 

 

Acceleration to max velocity 

deceleration 
to 

destination 
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Creating a Module in the Behaviour-based Controller 

This is a long process that the user has to go through to create a module in the 

behaviour-based controller. Note that a FSM is equivalent to module. 

Step 1: Declarations  

Things to place in 'definition.h'  

1) The FSM ID declaration. 

2) All FSM states declaration. 

3) Event Messages declaration. 

Things to place in 'include_fsm.h' 

Include the fsm’s header file into this file. 

Things to place in 'process.h' 

Declare the prototype of the 2 threads for the continuous loop and the triggered loop. 

Things to place in 'process.cpp' 

Declare the function for the 2 threads for the continuous loop and the triggered loop. 

These 2 loops will run concurrently. 
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Step 2: Create the different objects. 

Things to place in 'new_behave.cpp' 

1) Create new object of FSM in main function. 

2) Create the trigger event. 

3) Create the 2 threads for the triggered process and the continuous process for the 

module. 

Things to place in 'fsm.cpp' 

1) Declare extern hEvent declaration of the Event handle for the FSM. 

2) Add the Event created to the sendMessage() function in FSM class.  

Things to place in the newly created fsm file 'name_fsm.cpp' 

Copy an old FSM source file file to modify. 

1) Create Registry with the ID for the FSM and the initial state of the FSM.  

createRegistry(AVOID3, IDLE);  

2) Build the state table. Input to table include the exhibit/inhibit signal, previous, 

current and next state; 

ps_tbl = (STATE_TABLEPTR)malloc(sizeof(STATE_TABLE));  

ps_tbl = NULL;  

buildStateTable(&ps_tbl,INHIBIT,DONT_CARE,DONT_CARE,STOP);  

buildStateTable(&ps_tbl,EXHIBIT,DONT_CARE,DONT_CARE,START);  

3) Create inhibit/exhibit list. First declare a pointer to the inhibit/exhibit table. 

Create an inhibit state pointer to each term in the table for each state. Terms are 

added to the ref pointer which is in turn added to the inhibit/exhibit table. In the 

example below, START is the only state during which an inhibit/exhibit signal 

is sent out. START inhibits two other FSMs, i.e. RAISE_LEG2 and 
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FORWARD_LEG2.. After the inihibit ref pter is created, we add it to the 

inhibit/exhibit table.  

pi_tbl = NULL; //init inhibit/exhibit table pter 

INHIBIT_REFPTR pi_r_start; //state pter 

pi_r_start = (INHIBIT_REFPTR)malloc(sizeof(INHIBIT_REF));  

pi_r_start = NULL; //init inhibit/exhibit ref pter 

addInhibitRef(&pi_r_start,RAISE_LEG2,INHIBIT); //add inhibit 

term for START state 

addInhibitRef(&pi_r_start,FORWARD_LEG2,INHIBIT); //add inhibit 

term for START state  

addInhibitTable(&pi_tbl,START,pi_r_start); //add 

inhibit/exhibit ref to the table 

4) ALL pendonMessageQueueForExOrIn function are the same. The only 

difference is that that the event of every FSM is different.  

5) This is where all the FSMs' functions differ. Both executeTriggeredFunction 

and executeCtsFunction are custom written for all FSMs. Depending on the 

state, decide on the action taken by that particular FSM.  

Compile the module and the behaviour-based controller is updated. 
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