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Summary

Transmission Control Protocol (TCP) is probably the most widely used and mature trans-

port protocol today for Internet access. However, TCP was originally designed for wired

networks, so some assumptions based on the properties of wired networks not hold for

the currently widely-deployed wireless networks any more. In fact, many problems

have arisen in recent years for TCP over wireless links. Some of the main problems

include spurious timeouts, congestion losses, etc. In the thesis, we propose a new ap-

proach, Eifel-I, for enhancing TCP’s robustness in the presence of these problems. Our

main focus is on dealing with spurious timeouts. In conjunction with Eifel-I, we also

suggest some enhancements to the TCP retransmission timer and to non-SACK TCPs’

ability in handling multiple packet losses. Experiment results show that in situations like

wireless networks where packet losses and variable delays frequently occur or co-occur,

Eifel-I can deliver consistent performance improvement because it is capable of effi-

ciently coping with both variable delays and packet losses. In all the scenarios we have

experimented in, Eifel-I is always better than or at least the same as the other related

approaches. In certain cases, it can achieve up to 40% improvement over the original

TCP, and more than 20% improvement over approaches like DSACK, Eifel and F-RTO.

Keywords: Transmission Control Protocol, Wireless, TCP Timestamp, Retransmission,

Timeout, Packet Loss
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Chapter 1

Introduction

Transmission Control Protocol (TCP) [41] has been in use for more than two decades

since its standardization, and it still remains the most widely used transport protocol

today for Internet applications such as the World Wide Web (WWW), file transfer, email,

etc. Its congestion control algorithms [4] are essential for the stability of the Internet,

and they have a strong effect on TCP performance. During the past years, a great deal of

work has been devoted to the research and development of TCP, to enable it to cope with

new challenging circumstances that were not anticipated when it was initially designed.

One of the main challenges in recent years is the increasing deployment of wireless

networks or wireless Internet access.

1.1 Motivation of Research

TCP algorithms were mostly developed empirically and were based on assumptions that

hold in wired networks but not necessarily in wireless ones. As we all know, TCP has

been tuned well for traditional networks made up of wired links and stationary hosts.

However, it does not work well with the current cellular wireless networks such as

GPRS, UMTS, etc., which are becoming more and more popular. In fact, many problems

have arisen in recent years for TCP over wireless links.

1
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1.1.1 Spurious Timeouts

One of the main causes for TCP’s bad performance over wireless links is the large de-

lay variations that frequently occur over wireless links, which can trigger problems like

spurious timeouts [32]. A delay spike is a sudden increase in the latency of the com-

munication path. 2.5G/3G wireless links are likely to experience delay spikes exceeding

the typical RTT by several times due to reasons like link layer retransmission, handover,

resource allocation, bandwidth oscillation, etc. Delay variation occurs quite often be-

cause of these reasons, so it has led the spurious timeout problem to be a more serious

concern which needs to be handled properly. Another related problem is spurious fast

retransmits. It is mainly caused by packet reorderings due to link layer retransmission.

However, as packet reordering is currently disabled in 2.5G/3G wireless systems, spuri-

ous fast retransmit is not a main concern at the moment.

Spurious timeouts can cause suboptimal TCP performance by falsely triggering the

go-back-N timeout retransmission and unnecessarily reducing the TCP transmission

speed, so some enhancement is needed for TCP to alleviate the sacrificed performance.

Generally speaking, the possible solutions for this can roughly be divided into two cat-

egories. One alternative is to avoid the spurious retransmission in the first place. This

can be achieved by changing the algorithm used for the RTO calculation. Different con-

stants and granularities applied to the standard TCP retransmission timer [39] have been

studied [3]. A totally new set of algorithms for adapting the retransmission timer has

also been suggested, as in [34]. However in our opinion, such kind of algorithms may

not work well for the various network environments.

Another way to mitigate the performance penalty is to avoid the problems caused

by spurious timeouts by changing the TCP sender’s behavior thereafter. A number of

algorithms have been proposed in this category during the past few years:

The Eifel algorithm [32] suggests that the TCP sender includes extra information

in every packet sent and the receiver echoes it back in the corresponding ACK. With

the information in the ACK, the sender can eliminate the retransmission ambiguity and

detect spurious retransmissions. It can be used for solving both the spurious timeout
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and the spurious fast retransmit problem. A key feature of this algorithm is that it is

able to detect, upon the first acceptable ACK that arrives during loss recovery, whether

a retransmission is spurious. It is crucial to be able to avoid the go-back-N retransmis-

sion. Currently, the Eifel algorithm uses the TCP Timestamp option [29] as the piece

of extra information for distinguishing original transmits from retransmits, in order to

disambiguate unnecessary retransmissions from real loss events.

Unlike Eifel, the Duplicate SACK (DSACK) [18] based enhancement [7] [8] [51]

relies on the TCP receiver to indicate whether it receives a packet that has arrived ear-

lier. The receiver can pass this information to the sender through the first SACK block,

i.e., the DSACK block in the TCP header. This alternative has its benefits over the Eifel

algorithm because the SACK option [35] is more widely deployed than the Timestamp

option, and the SACK blocks are appended to TCP headers only when necessary. How-

ever, when a spurious retransmission occurs, the first ACK carrying the DSACK block

only arrives at the sender after loss recovery has already terminated. Thus, this DSACK-

based approach cannot avoid the unnecessary go-back-N retransmission.

Forward RTO Recovery (F-RTO) [45] is a new algorithm for a TCP sender to only

recover after a spurious timeout. Unlike the two algorithms presented above, it does not

require the use of any TCP options or additional bits in the TCP header. It uses a set of

heuristic rules for detecting spurious timeouts.

These algorithms are different from each other in how they detect a spurious retrans-

mission, but they may share the same response algorithm for undoing the changes of

congestion control parameters made after a spurious retransmission. In addition, some

also try to avoid future spurious retransmissions by adapting either the retransmission

timer for a spurious timeout or dupthresh for a spurious fast retransmit. These adap-

tation algorithms in fact pick the idea of avoiding spurious retransmissions in the first

place. But the adaptation can only be done after some (at least one) spurious retrans-

missions have occurred. The DSACK-based algorithm and the Eifel algorithm may use

the same approach to adapt dupthresh. Because the Eifel algorithm currently uses the

TCP Timestamp option in its implementation, it has the advantage of sampling every ac-
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knowledged packet for RTT measurement, including retransmitted packets. F-RTO TCP

and DSACK TCP cannot use retransmits in the RTT sampling and neither can common

TCP implementations as they are prohibited from doing by Karn’s algorithm [30]. Col-

lecting more RTT samples may enable the TCP sender to come out with a better RTO

estimation for adapting network changes and avoiding future spurious retransmissions.

We will discuss the topic of retransmission timer adaptation in more detail in Chapter 4.

1.1.2 Packet Loss

Another main impairment to TCP is packet losses over wireless links. Due to the in-

trinsic properties of radio interface, wireless links were originally characterised as a

transmission media with high non-congestion loss. As TCP congestion control algo-

rithms (refer to Section 3.1.2) infer packet losses as indicating network congestion, such

non-congestion losses can incorrectly trigger TCP congestion control and lead to trans-

mission rate reduction in TCP-based applications. However, current 2.5G/3G wireless

systems are heavily protected by link layer retransmission, so packet losses due to error

or corruption are now very low over these wireless links. Other than corruption-based

losses, packet losses in current wireless networks are mostly due to congestion at the

bottleneck wireless nodes during handovers or mobility management. A number of al-

gorithms have also been proposed in this category, such as Indirect-TCP [9], the Snoop

protocol [6], Cumulative Explicit Transport Error Notification (CETEN) [16], etc. How-

ever, these algorithms are mainly aimed at corruption-based losses. As link layer en-

hancements for reducing wireless link losses including ARQ and FEC are already part

of the 2.5G/3G wireless systems, these schemes for TCP only provide overlapped func-

tions that can introduce little performance improvements. For example, Snoop TCP is

reported [47] to not work well over GPRS because high delay over the GPRS radio

interface can trigger duplicate retransmissions in the Snoop agent.
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1.2 Objectives of Research

The spurious timeout problem has become a big concern for TCP in recent years, mainly

because the wide deployment of wireless links introduces frequently-occurring delay

spikes. Besides a reduction in the TCP sender’s transmission rate, a spurious timeout also

results in the unnecessary retransmission of the last window of packets. As pointed out

in [22], the amount of data sent over wireless links should be minimized because battery

power consumption and radio resource usage are often as important as download time

for mobile users and operators. So in a wireless environment, it may be more desirable to

avoid unnecessary go-back-N retransmission rather than undo unnecessary sending rate

reduction. In this sense, spurious timeouts are much more troublesome than spurious fast

retransmits. Avoiding unnecessary transmission rate reduction becomes more important

as the capacity (bandwidth-delay product - BDP) of wireless links increases, such as in

the UMTS network.

As packet loss over wireless links are mainly due to congestion, it adheres to the

basic assumption of TCP. So current TCP implementation should be able to cope with it

to some extent. Although some explicit mechanism may still be needed for mitigating the

impairment due to multiple congestion losses, congestion is less serious than spurious

timeouts. So our main focus in this thesis will be on the spurious timeout problem. In

the meantime, we will also try to solve the problems caused by congestion losses over

wireless links.

Before devising our own solution, it is good practice to analyze the pros and cons of

the existing algorithms:

� Although the DSACK-based algorithm is based on the well deployed TCP SACK

option [35], it has a major drawback: it can only come into use after the unnec-

essary go-back-N retransmission has been done. As avoiding unnecessary trans-

mission is even more important than recovering sending rate reduction in wireless

environments, it is essential for the new approach to be able to avoid the go-back-N

retransmission.
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� F-RTO works only in detecting spurious timeouts. It is efficient because it can

avoid the go-back-N retransmission. But it is only a heuristic approach that can

be confused by network pathologies like reordering or duplication of key packets,

and so it may not always be effective. Although the behavior of packet reordering

is currently prohibited, it may be re-enabled later to allow for better performance

of real-time applications. So it is still crucial for the new approach to have the

ability to handle spurious fast retransmits.

� Compared with the above two algorithms, the basic Eifel algorithm is both effec-

tive and efficient in detecting spurious retransmissions (including spurious time-

outs and spurious fast retransmits). Results in [22] show its ability in improving

TCP performance over a GPRS link, but its current implementation introduces a

12-byte timestamp for each packet. The timestamp overhead is a considerably

high cost for low-speed wireless links. It also prevents the use of other TCP op-

tions and the use of current TCP/IP header compression schemes [28] [14], which

are very useful for slow links. However, the timestamping ability can lead to a

more up-to-the-minute RTT timing, which may benefit RTO estimation.

In conclusion, although the existing algorithms can effectively detect spurious retrans-

mits and do some recovery, each of them also suffers from some weaknesses. In order

to achieve optimal TCP performance, especially over wireless links, we want to devise a

new and more superior approach to fixing the spurious retransmission problem. Ideally,

this approach would keep the advantages of the existing approaches while eliminating

their problems. In developing our approach, we keep the basic idea of the Eifel algo-

rithm but work out a better way to realise it. The following is some considerations for

our proposal:

� First of all, Eifel currently suffers a lot from the use of timestamps as extra infor-

mation. Hence, we need to find a piece of extra information that would introduce

as little overhead as possible.

� Second, the new approach should retain the strengths of the current approach, such
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as its early detection and its robustness against ACK losses.

� Third, the new approach should enable the use of current TCP/IP header compres-

sion schemes that have been proved to be useful over low-speed links.

� Fourth, [3] pointed out that the current standard TCP retransmission timer defined

in RFC2988 [39] adapts fairly slow to changes in network conditions. This is

because retransmits are not allowed by Karn’s algorithm [30] to be used in RTT

sampling. With the use of timestamps, the current Eifel approach solves this slow

adaptation problem, and provides the possibility for a better RTO estimator to

avoid future spurious timeouts. Our new approach should also try to retain this

property.

� Fifith, if possible, our approach should cover the packet loss problem as well.

1.3 Contributions of Thesis

With the above considerations in mind, we propose Eifel-I, which introduces the selec-

tive use of timestamps in implementing the Eifel algorithm. The new approach uses

timestamps only for retransmits and their corresponding ACKs. This “use-on-demand”

idea comes from the usage pattern of SACK blocks in the TCP SACK option [35]. Since

the retransmits only form a relatively small part of total transmitted packets, the 12-

byte timestamp overhead can generally be avoided most of the time and the compression

schemes can now be used. Moreover, by retaining the timestamps in retransmits and their

ACKs, we also keep the TCP sender’s ability to sample retransmits for RTT measure.

The following is a list of our contributions:

� We propose a new approach for solving spurious retransmissions by improving

on the existing Eifel algorithm [32]. Our approach retains the advantages of the

existing approach while avoids its overheads and problems which are caused by

the persistent use of timestamps.
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� In conjunction with the new detection approach, we also develope a simple yet

effective enhancement to the current TCP retransmission timer. According to our

simulation results, after incurring the first spurious timeout, the enhanced retrans-

mission timer can avoid most subsequent spurious timeouts. In fact, those future

spurious timeouts never happen at all. The advantage of our enhancement comes

from its fast and stable adaptation to changing delays in the network.

� With Eifel-I, we also work out a new method to greatly improve the ability of

non-Sack TCPs (e.g., TCP Reno, NewReno, etc.) to recover from multiple packet

losses. It enables the TCP sender to avoid unnecessary fast retransmits if the DU-

PACKs are triggered by duplicate packets, and to efficiently recover lost packets

through fast retransmit and fast recovery instead of waiting for a timeout.

� We evaluate Eifel-I with the original TCP and other approaches such as DSACK,

Eifel, F-RTO by using simulation. We provide extensive experiment results and

detailed discussions of Eifel-I’s improvements in various circumstances. From the

results, we find that in situations like wireless networks where packet losses and

variable delays frequently occur or co-occur, Eifel-I can deliver consistent perfor-

mance improvement because it is capable of efficiently coping with both variable

delays and packet losses. In all the scenarios we have experimented (regardless

of the TCP flavor used, or the number of concurrent connections, etc.), Eifel-I is

consistently better than or on par with the other approaches. In certain cases, it

can achieve up to 40% improvement over the original TCP, and more than 20%

improvement over the approaches like DSACK, Eifel and F-RTO.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide an overview of

wireless networks, including GPRS and 3G UMTS. In Chapter 3, we first briefly look

at the basic concepts and algorithms of TCP, list the distinct wireless link characteristics

and discuss their possible impairments on TCP performance, and then look in more
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detail at the existing algorithms aimed at avoiding those impairments and improving TCP

performance. Our main focus is on spurious timeouts and congestion losses. We discuss

in detail our proposal for solving spurious timeouts and the other related enhancements

for TCP in Chapter 4. We then briefly introduce the NS-2 network simulator [37] which

we use as base simulator in our experiments, and describe our work on implementing

Eifel-I and other approaches in the simulator in Chapter 5. We present and analyze our

simulation results in Chapter 6. We conclude and outline our future work in Chapter 7.



Chapter 2

Overview of Cellular Mobile Radio

Systems

During the first half of the last century, the transmission of human voice through the tele-

phone was the dominant means of communication next to telegraphy. However, radio-

supported mobile communication has since grown in importance in the last few decades,

and particularly in the last few years due to the rapidly-increasing demand for wireless

Internet access and technical advances in transmission and switching technology. In

contrast to wireline networks, mobile radio networks allow geographically unrestricted

communication to take place anywhere, especially where it is not economical or possible

to install cabling.

There are a number of wireless links deployed for different purposes [49]:

� Public cellular mobile radio systems extend the telephone service of wireline net-

works to mobile users.

� Wireless Local Area Networks (WLANs) take into account the growing demand

to avoid the cabling of workstation computers. Compared with cellular systems,

WLANs work within a limited distance.

� Satellite radio systems provide global communication and accessibility, which are

mostly made possible with a fixed GEO satellite.

10
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Among them, public cellular mobile radio systems have become most commonly

used. They are usually known as 2G/3G wireless networks. In this thesis, we will focus

on the widely-deployed cellular wireless links.

Second-generation (2G) wireless networks, especially the Global System for Mobile

Communication (GSM), were once a step up in technology evolution and have gained

spectacular growth in the last few decades. Currently, the extension of GSM – General

Packet Radio Service (GPRS) – is widely deployed in the market. However, 2G wire-

less networks have primarily been designed for voice communication, and data services

are essentially an add-on to these networks. Driven by the increasingly pervasive In-

ternet access and the widespread use of mobile technologies, the next generation (3G)

wireless networks have requirements for both radio access networks and core networks,

including higher data rates, enhanced support for packet data, etc. The Universal Mobile

Telecommuncation System (UMTS) [26] [38] is the main cellular wireless architecture

developed to meet the 3G requirements.

As background to the discussion about TCP over Wireless later in the thesis, here we

provide a detailed overview on the currently-domaint GPRS network, focusing on the

parts essential to this thesis. We will also briefly look at future UMTS technology.

2.1 GPRS: General Packet Radio Service

In the evolution of GSM towards 3G systems, the integration of GPRS has been an im-

portant milestone. It is a new bearer service for GSM that greatly improves and simplifies

wireless access to packet data networks, e.g., to the Internet. It applies a packet radio

principle to transfer user data packets in a more efficient way between mobile stations

(MSs) and external packet data networks (PDNs).

GPRS has been standardized by the European Telecommunications Standards Insti-

tute (ETSI) as part of the GSM Phase 2+ development. It represents the first implementa-

tion of packet switching within GSM, which is essentially a circuit-switched technology.
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Figure 2.1: GPRS system architecture

2.1.1 System Architecture

The GPRS system architecture is illustrated in Fig. 2.1 [11]. A mobile station is denoted

as MS. A cell is formed by the radio area coverage of a base transceiver station (BTS).

Several BTSs together are controlled by one base station controller (BSC). The BTS and

BSC together form the base station subsystem (BSS). Compared with a GSM network,

there’s no change in the BSS of a GPRS network.

A traditional GSM network contains the mobile switching center (MSC) for traffic

routing, as well as databases like the home/visited location register (HLR/VLR), the

authentication center (AUC), and the equipment identity register (EIR) for call control

and network management. However, it does not provide sufficient functionality to realize

a packet data service. To enable packet switching over the existing GSM network, two

new elements are introduced into the GPRS core network:

� Gateway GPRS Support Node (GGSN) serves as the interface towards external

PDN or other Public Land Mobile Network (PLMN). Here, packet switching func-

tions are fulfilled, e.g., the evaluation of Packet Data Network (PDP) addresses and

routing to MSs via the SGSN.

� Serving GPRS Support Node (SGSN) represents the GPRS switching center by
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Figure 2.2: GPRS radio interface

analogy to the MSC. It is responsible for routing inside the radio network and for

mobility and resource management. It also provides authentication and encryption

for GPRS subscribers.

In general, there is a many-to-many relationship between SGSNs and GGSNs. All GSNs

are connected via an IP-based GPRS backbone network. Within this backbone, they en-

capsulate PDN packets and transmit (or tunnel) them using the GPRS Tunneling Protocol

(GTP).

2.1.2 Radio Interface

In managing radio resources, GPRS adopts the same combination of Frequency Division

Multiple Access (FDMA) and Time Division Multiple Access (TDMA) as GSM. (Details

on FDMA and TDMA may be found in Appendix A.1.1).
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Coding Code Uncoded Coded Punc- Data rate
scheme rate payload bits tured 1 TS 2 TS 4 TS 8 TS

(bit) (bit) bits (kbits/s)
CS-1 1/2 181 456 0 9.05 18.1 36.2 72.4
CS-2 2/3 268 588 132 13.4 26.8 53.6 107.2
CS-3 3/4 312 676 220 15.6 31.2 62.4 124.8
CS-4 1 428 456 0 21.4 42.8 84.6 171.2

Table 2.1: Coding schemes of GPRS

Channel Concept

As shown in Fig. 2.2, two frequency ranges 45 MHz apart are reserved for the uplink

(890 – 915 MHz) transfer from the MS and the downlink (935 – 960 MHz) transfer from

the BTS. Each 25 MHz width is divided into 124 single carrier channels of 200 kHz

width. A certain number of these frequency channels is allocated to a BTS, i.e., to a cell.

Each frequency channel carries eight TDMA channels, or eight time slots (TS). The

eight TSs form a TDMA frame. Each frame has a duration of 4.615 ms. Thus one slot

takes 0.577 ms, and is able to carry a data burst of 148 bits, which is 8.25 bit shorter in

duration to realize a guard time between data bursts in order to avoid overlapping. The

148-bit burst contains two data pieces of 57-bit each and some tail and control bits. The

recurrence of one particular time slot defines a physical channel.

In traditional GSM, a channel is allocated to a particular user for the entire call period

(even if no data is transmitted). With packet-switching introduced in GPRS, channels are

only allocated when data packets are sent or received, and released immediately after the

transmission. So multiple users can share one physical channel. For bursty traffic like

Internet access, this leads to much more efficient resource usage [49]. Moreover, the

channel allocation in GPRS also allows multislot operation on a single TDMA frame by

a MS. This results in a very flexible channel allocation.

To offer higher data rates (per timeslot), GPRS introduces three new coding schemes

(CS-2 to CS-4). All four schemes are listed in Table 2.1 [47]. Coding in GPRS is always

done for a single RLC/MAC 1 radio block which always has a coded length of 456

bits. Since each data burst in one TS can transfer (57*2=) 114 data bits, the radio block
1RLC/MAC stands for Radio Link Control/Medium Access Control. They are introduced in Section

2.1.3.
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Group Channel Name Direction Function
PCCCH PRACH Packet Random Access Channel UL random access

PPCH Packet Paging Channel DL paging
PAGCH Packet Access Grant Channel DL access grant
PNCH Packet Notification Channel DL multicast

PBCCH PBCCH Packet Broadcast Control Channel DL broadcast
PDTCH PDTCH Packet Data Traffic Channel UL/DL data
PDCCH PACCH Packet Associated Control Channel UL/DL associated control

PTCCH Packet Timing Advance Control Channel UL/DL timing advance

Table 2.2: GPRS logical channels (UL: uplink; DL: downlink)

is always interleaved over four normal bursts. The pre-coded payload length depends

on the coding scheme and varies from 181 to 428 bits. These coding schemes trade

off transmission errors for data throughput. CS-1 to CS3 use the same convolutional

code but different puncturing level, which leads to different code rates and thus different

protection quality. CS-4 has no coding at all. Thus CS-1 has the lowest user data rate

but the best error protection.

Table 2.1 also shows the achievable user data rates for a number of multislot combi-

nations. Note that uplink and downlink are allocated separately (unlike GSM’s symmet-

ric allocation), which efficiently supports asymmetric data traffic (e.g., FTP download-

ing, Internet surfing, etc.) [47].

Logical Channels

GPRS defines a number of logical packet data channels (PDCH) that can be mapped onto

GPRS physical PDCHs. Table 2.2 lists the GPRS logical PDCHs and their functions

[11]. A detailed description of the channels may be found in Appendix A.2.

Logical to Physical Channel Mapping

The GPRS radio interface protocol refers to the physical and the RLC/MAC layer of

the GPRS protocol architecture (see next section). The mapping principles include a

master-slave concept and the capacity-on-demand principle [47]:

� The master-slave concept is related to logical channel assignment onto physical

channels. The control channels are mapped only to a single physical PDCH lo-
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cated on a single timeslot acting as master. The other PDCHs (on the other times-

lots) for user data act as slaves.

� The allocation of PDCHs is based on the capacity-on-demand principle. Since ra-

dio resources are shared by both packet-switched (GPRS) data and circuit-switched

(GSM) data and speech, there have to be some strategies on how to distribute the

resources. The distribution (or allocation) depends on the current traffic load, the

priority of the service, and the multislot class. It means that GPRS does not require

fixed allocated PDCHs. Capacity assignment for packet data transmission can be

done according to actual demand. For example, physical channels not currently

in use by conventional GSM can be allocated as PDCHs to increase the quality of

service (QoS) for GPRS; when there is resource demand for services with higher

priority (like voice traffic), PDCHs can be de-allocated [11].

In GPRS, multiplexing on the radio interface is based on RLC/MAC packets. The

various logical packet data channels are multiplexed onto physical channels using a

cyclically recurring multiframe structure. More information on the multiframe struc-

ture may be found in Appendix A.2.2.

2.1.3 Protocol Stack

The GPRS protocol architecture follows the ISO/OSI model. It provides transmission

of user data (see Fig. 2.3 [11]) and its associated signaling, e.g., for flow control, error

detection, and error correction. Here, we only focus on protocol layers for packet data

transmission.

GPRS Backbone: SGSN – GGSN

As mentioned earlier, packets are encapsulated within the GPRS backbone network.

The GPRS Tunneling Protocol (GTP) [49] tunnels the encapsulated packets between the

GPRS support nodes (GSNs). GTP is defined both between GSNs within one PLMN

(Gn interface) and between GSNs of different PLMNs (Gp interface).
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Figure 2.3: GPRS protocol stack

GTP packets carry the user’s IP or X.25 packets. Below GTP, standard protocols like

TCP or UDP are employed to transport GTP packets within the backbone network. IP is

employed in the network layer to route packets through the backbone. Ethernet, ISDN,

or ATM-based protocols may be used below IP.

Between SGSN and BSS

The Subnetwork Dependent Convergence Protocol (SNDCP) [47] is used to transfer

data packets between SGSN and MS. Its main functions include: multiplexing of several

network connections onto one virtual connection of the underlying LLC layer; com-

pression/decompression of user data and redundant protocol control information (e.g.,

TCP/IP header compression [28]); segmentation and reassembly of network layer pack-

ets, if any packet is longer than the maximum payload size for an LLC frame.

Logical Link Control (LLC) [49] is part of the data link layer, responsible for the

transportation of data packets between MS and SGSN. It provides a highly reliable log-
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ical link independent of the underlying radio interface protocol. The essential functions

are flow control and error protection (with ARQ and FEC mechanisms). More infor-

mation on error protection in radio channels may be found in Appendix A.1.2. Other

functions include: provision of one or more logical connections per user; sequence con-

trol and in-order delivery; ciphering and deciphering of the information field. There are

two transfer modes [47]:

� In unacknowledged mode, neither error recovery nor reordering of packets is in-

cluded. However, a checksum can detect errors, and packets in error are discarded.

� In acknowledged mode, packets are transmitted with sequence numbers, and error

recovery and retransmission of packets in error are provided. The maximum num-

ber of outstanding packets is between 2 and 16, depending on the required quality

of service (see Section 2.1.4). The maximum number of retransmission is set to 3,

and after this number of tries, the recovery is left to the upper layer.

Each LLC packet [47] consists of: a 1-byte address field; a variable-length control field

with a maximum of 36 bytes; an information field (or payload) ranging from 140 to 1520

bytes (defaults to be 1503 bytes); at end, a frame check sequence (FCS) of 3 bytes.

The BSS – SGSN Interface

Base Station Subsystem GPRS Protocol (BSSGP) delivers routing and QoS-related in-

formation between BSS and SGSN. The underlying Network Service (NS) protocol is

based on the ATM Frame Relay protocol.

Data Link Layer over the Air Interface

Data Link Layer at the mobile Um interface can be divided in two sublayers: the Radio

Link Control (RLC) layer and the Medium Access Control (MAC) layer [49] (see Fig.

2.3).

The main purpose of RLC is to establish a reliable logical link between MS and

BSS. This includes segmentation and reassembly of LLC frames into RLC data blocks
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(depending on the available coding schemes as listed in 2.1), and retransmission of un-

correctable errors by Automatic Repeat reQuest (ARQ). There are two possible modes:

the acknowledged mode provides reliable data transmissions by using a selective ARQ

protocol; the unacknowledged mode does not issue retransmission for error packets and

is mainly for real-time services.

The MAC layer is responsible for providing efficient multiplexing of data and control

signalling on uplink/downlink over the shared radio channels. It employs algorithms for

contention resolution, multiuser multiplexing, and scheduling and prioritizing based on

the negotiated QoS.

A RLC/MAC block consists of a 1-byte MAC header, a variable-length RLC header

(2-3bytes), an information field and some spare bits. As mentioned before, the RLC/MAC

radio block is the basic unit for GPRS channel coding. So the size of each block is con-

stant for a specific coding scheme (see Table 2.1).

2.1.4 Quality of Service

Quality of Service (QoS) requirements of typical mobile packet data applications (e.g.,

web browsing, email transfer, etc.) are very diverse. Support of different QoS classes,

which can be specified for each individual session, is therefore an important feature.

GPRS allows defining QoS profiles using parameters like service precedence, reliability,

delay and throughput [47] [49].

� Service precedence is the priority of a service in relation to another service. There

exist three levels of priority: high, normal and low.

� Reliability indicates the transmission characteristics required by an application.

Three reliability classes are defined, which guarantee certain maximum values for

the probability of loss, duplication, mis-sequencing and corruption (an undetected

error) of packets.

� Delay parameters define maximum values for the mean delay and the 95-percentile

delay. The latter is the maximum delay guaranteed in 95 percent of all transfers.
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� The throughput specifies the maximum/peak bit rate and the mean bit rate.

(Detailed information on the QoS classes may be found in Appendix A.2.2).

Using these QoS classes, QoS profiles can be negotiated between the mobile user and

the network for each session, depending on the QoS demand and the current available

resources.

2.1.5 Mobility Management

In this section, we will briefly discuss the complexity involved in handling the mobility

of a wireless terminal. A more detailed description of GPRS mobility handling may be

found in [15].

Before an MS starts to use any packet data service over a GPRS network, it must

register with an SGSN of the network. The network checks if the user is authorized,

copies the user profile from the HLR to the SGSN, and assigns a packet temporary

mobile subscriber identity (P-TMSI) to the user. This procedure is called GPRS attach.

The disconnection from the GPRS network is called GPRS detach. It can be initiated by

the mobile station or by the network (SGSN or HLR).

After a successful GPRS attach procedure, the MS is permitted to use the mobile

GPRS service. However, it needs to establish a session with the GPRS network before it

can exchange packets with an external packet data network (PDN). In particular, a virtual

connection has to be set up with that PDN. This virtual connection is called a GPRS PDP

Context. The PDP Context activation and management is supported by GPRS Session

Management [49].

GPRS’s Mobility Management (MM) comes into function when the MS is on the

move and roams between cells covered by different BTS. In order for the GPRS network

to keep track of the current location of the moving MS, a number of mobility man-

agement procedures need to be executed, and databases for mobility management are

updated accordingly in SGSN, GGSN, and/or HLR to track the MS’s location. Loca-

tion management consists of two levels: GGSN and HLR track an MS up to its serving
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SGSN while SGSN keeps track of an MS at the routing area 2 or cell level depending on

its mobility management state.

GPRS has its own set of mobility management signalling for different types of RA

updates. During an RA update operation, downlink and uplink data transmission is

momentarily interrupted. The latency of packet delivery is increased due to these inter-

ruptions. In addition, packets could be misrouted prior to RA update completion, and

this results in packet loss.

(More information on GPRS MM and a detailed illustration of the three RA update

scenarios may be found in Appendix A.2.4.)

2.2 UMTS: Universal Mobile Telecommunication Sys-

tem

The Universal Mobile Telecommunication System (UMTS) [26] is the 3G mobile ra-

dio system promoted by ETSI. It is currently under standardization by the 3rd Genera-

tion Partnership Project, (3GPP). 3GPP released its first version of the specifications for

UMTS in 1999, referred to as Release 99, which mainly introduced the new WCDMA-

based radio access network. Further releases include Release 4 in 2001, which specifies

minor corrections and enhancements for efficient IP support enabling provision of ser-

vices through an all-IP core network; in 2002, Release 5 introduced a new subsystem

called the IP multimedia subsystem (IMS) and also enhanced WCDMA radio technology

with high-speed downlink packet access, which can achieve up to 10Mbps on the down-

link; Release 6 and following releases can even support high data rates up to 20Mbps.

The essential UMTS technologies are covered in releases up to Release 5, which will

also be the prevalent versions deployed in the next few years [26], so our subsequent

elaborations will mostly be based on them.



CHAPTER 2. OVERVIEW OF CELLULAR MOBILE RADIO SYSTEMS 22

Figure 2.4: UMTS network architecture

2.2.1 System Architecture

Fig. 2.4 illustrates the overall architecture of a UMTS network. Conceptually, the UMTS

network has four parts: user equipment (UE), radio access network (RAN), core network

(CN) and external networks.

With the vision of building a mobile system that is accessible from anywhere at any

time via different devices, UMTS’s network architecture allows for a clear separation of

RAN from CN [38]. This enables different types of RANs to be used independently of

CN. In CN, packet core improvements have been made to enable the user of a common

CN with any access technology. Compared with its predecessors like GPRS, UMTS’s

improvements have been made mostly in CN and RAN.

2One or more cells form a routing area (RA), and an RA is always served by just one SGSN.
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Core Network

The UMTS core network presented in Fig. 2.4 is essentially the same as the existing

GSM Phase 2+ (i.e., GPRS) core network. However, as we will see later, it moves all

radio-related functionality into the RAN for access independence. The GPRS architec-

ture has been introduced in Section 2.1, so here we only focus on the changes of UMTS

from GPRS.

CN incorporates both the circuit-switched (CS) GSM and the packet-switched (PS)

GPRS core network, and maintains a clear separation between the two. When communi-

cating with the old BSS radio access, the existing A or Gb interfaces are used; however,

the new UTRAN is connected to CN via the new Iu interface, which has Iu-CS and Iu-PS

for either CS or PS traffic. Header compression is required to improve bandwidth usage

over the air interface. In GPRS the compression resides in the SGSN, whereas UMTS

moves it into the radio network controller (RNC). Thus, the UMTS SGSN knows noth-

ing about the compression or other access-specific low-bandwidth optimization. This

may slightly increase the transmission capacity between SGSN and RNC due to the full

headers used.

UTRAN: UMTS Terrestrial Radio Access Network

UMTS differs from GPRS mostly in the new principles used for air interface transmis-

sion. A completely new radio interface is specified based on W-CDMA, which should

provide data rates up to 2Mbps.

W-CDMA stands for Wideband Code Division Multiple Access 3. For a CDMA

system, the sender and receiver should agree on using certain codes for signal transfor-

mation and communication. In a W-CDMA system, the sender and receiver use a digital

code that can spread narrowband input signals into wideband (as the name indicates)

through transformation [38]. Two duplex modes exist [47]:

� Frequency Division Duplex (FDD) is the mainstream mode for UTRAN. In this

mode, the base station and the mobile station transmit on different radio frequen-
3A brief introduction of different multiple access methods is provided in Appendix A.1.1.
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Figure 2.5: UMTS Terrestrial Radio Access Network

cies, so the downlink and uplink frequency bands are allocated separately and in

pair.

� Time Division Duplex (TDD) The base station and the mobile station transmit

alternatively on the same radio frequency.

The radio access network, which is based on the new radio interface, is called UMTS

Terrestrial Radio Access Network (UTRAN). Referring to Fig. 2.5 [26], the two new net-

work elements in UTRAN are: Radio Network Controller (RNC) and Node B. UTRAN

is subdivided into individual radio network systems (RNSs), where each RNS is con-

trolled by an RNC. The RNC is connected to a set of Node B elements, each of which

can serve one or several cells.

The RNC performs the same functions as the GSM BSC, providing central control

for the RNS elements (RNC and Node Bs). As noted in Fig. 2.6 [26], the functions of
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Figure 2.6: Functions of UTRAN elements

RNC are:

� Radio Resource Management (RRM) through the Iur interface, eliminating the

burden from the Core Network.

� Protocol exchanges between the Iur, Iub and Iu (CS or PS) interfaces. User data

transmissions (CS, PS or multimedia) are multiplexed via these interfaces between

CN and UE.

� Centralised Operation and Maintenance of the entire RNS.

Node B is the physical unit for radio transmission/reception with cells. A single Node

B can support both FDD and TDD modes, and it can be co-located with a GSM BTS to

reduce implementation costs. Node B connects with the UE via the W-CDMA Uu radio

interface and with the RNC via the Iub ATM-based interface. The main task of Node B

is the conversion of data to/from the Uu radio interface, including channel coding and

interleaving, rate adaptation, etc. on the air interface. It also measures the quality and
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Figure 2.7: Functions of UMTS UE

strength of the connection and transmits related data to the RNC as for handover and

macro-diversity signal combining.

The UE, a new synonym in UMTS for the mobile station, is the counterpart to the

various network elements in many functions and procedures (Fig. 2.7 [26]). Every UE

has a primary connection to a RNS via a Node B, called the Serving RNS (S-RNS). If

required, a second RNC can support additional connection to the UE. This second RNC

is the Drift RNC (D-RNS). The communication between S-RNC and D-RNC, via the

Iub interface, typically occurs during an inter-RNC handover, or a soft handover. The

D-RNC then becomes the new S-RNC for the UE. The D-RNC may also be involved in

macro-diversity signal combining and splitting. So, a UE can only have one S-RNC at a

time, but may communicate with either zero, one or more D-RNCs at any given time.

2.2.2 Protocol Stack

The entire protocol architecture is divided into a control plane and a user plane. Actual

data transfer is done within the user plane, so we only describe the user plane protocols

here. We also restrict the overview to packet-switched data transmission modes.
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Figure 2.8: UMTS user plane protocol architecture

The user plane of the UMTS protocol architecture is given in Fig. 2.8 [38]. It features

few changes from the user plane of GPRS (Fig. 2.3), especially in the CN.

As in GPRS, GTP is used again to tunnel network layer packets between 3G-SGSN

and 3G-GGSN. The underlying transport tunnel is UDP/IP, and the lower data link (L2)

and physical layer (L1) can be any type of transport technology (ATM, IP-based, etc.).

Protocols in UTRAN

Since 3G-SGSN eliminates the burden of any radio-related functions, it does not need

radio protocol layers (i.e., LLC and SNDCP) any more [38]. So the GPRS tunneling

protocol (GTP) can further extend to RNC through 3G-SGSN. Below GTP, UDP/IP is

applied as the transport layer. 3G-SGSN is physically connected to RNC using ATM, so

in between ATM Adaptation Layer 5 (AAL5) is used for segmenting the IP packet into

ATM cells.

The Packet Data Convergence Protocol (PDCP) [47] is the interface from the UTRAN

protocols to the network layer protocol. It provides protocol transparency to the applica-

tion protocols (such as IPv4, IPv6, PPP, etc.) over the radio interface. So new protocols

can be supported in the future without changes to the radio interface. This is unlike

SNDCP, which also provides IP payload compression and so is limited to use with IP.
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PDCP only provides IP header compression based on the standard schemes defined in

[14]. It then passes the packet down to RLC/MAC. The RLC/MAC layer essentially

provides the same functions as in GPRS, with changes to fit with the new radio access

network. A comprehensive introduction of these channels may be found in [49].

2.2.3 Quality of Service

Release 99 defines serveral more QoS parameters with finer grained properties in order

to meet the requirements on different levels of service for applications, such as delivery

order, residual bit error ratio, allocation/retention priority, etc. [49]. Additionally, UMTS

defines four distinct traffic classes [47], with different parameters specifying their QoS

requirements: conversational, streaming, interactive and background. Delay-sensitive

services like telephony and telnet belong to the conversational class, while for traffic in

the background class no time contraints are specified and it only requires data integrity.

The streaming class has a one-way delay limit of less than 10 seconds and is mainly for

audio/video streaming and applications like FTP. In the interactive class, data is trans-

ferred in a request-response pattern. It is used for voice messaging or web-browsing

which requires a shorter delay than applications in the streaming class. For all the traffic

classes, the maximum bit rate is 2 Mbit/s, which is limited by the radio interface. More

information on UMTS QoS may be found in [47].

2.3 Summary

In this chapter, we have provided a detailed description on certain aspects of GPRS,

which are related to the discussions in the following chapters. We have also paid some

attention to the new 3G UMTS system.

In the next chapter, we will first give an overview of the basic concepts and algo-

rithms of TCP. We will then look at the problems related to the use of TCP over the

wireless links that we have introduced in this chapter. We will also discuss the current

works on solving these problems.
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TCP and Its Behavior over Wireless

Links

The Transmission Control Protocol (TCP) is a widely used transport protocol designed

for reliable delivery of data across various network paths. According to some recent

experimental measurements [10], about 90% of the overall IP traffic is carried by TCP,

making it by far the most widespread transport protocol. As Internet access through

wireless networks takes off, TCP also becomes a natural choice for use over wireless

links. Moreover, because of the current dominant usage of TCP in the ordinary network-

ing and Internet access, the compatibility concern with existing systems also demands

usage of TCP in wireless Internet access [47].

However, TCP algorithms were mostly developed empirically and were based on

assumptions that hold in wired networks but not necessarily in wireless networks. In

fact, many problems have arisen in recent years for TCP over wireless links.

In the following sections, we will first provide a brief description of the fundamen-

tal concepts and algorithms of TCP. Then, we will identify the main problems of TCP

caused by the distinct characteristics of wireless links. We will also have an overview of

the existing works on handling those identified problems.

29
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3.1 Basics of TCP

The original specification [41] of TCP dates back to 1981. Many enhancements have

since been made over the years, but the basic protocol concepts and assumptions under-

lying its reliability are still valid and remain unchanged. A comprehensive description

of TCP may be found in [46]. The follow-on modifications are explained in detail in

the corresponding Request For Comments (RFC), such as TCP Congestion Control in

RFC2581 [4], TCP NewReno in RFC2582 [17], TCP Selective Acknowledgment in

RFC2018 [35], etc.

TCP provides a connection-oriented, reliable service. It achieves reliability by doing

the following [46]:

� The data passed down from the upper layer is divided into what TCP considers

the best sized chunks to send. The unit of each chunk of data handed over to IP is

called a packet.

� To inform the other end about the correctly transmitted packets, TCP sends ac-

knowledgments (ACKs). The acknowledgments may not be sent immediately but

delayed a fraction of a second.

� When TCP sends a packet, it initiates a timer. If the sender does not receive

an acknowledgment for the packet when the timer expires, it will retransmit the

packet.

� TCP includes a checksum of its header and data in each packet. This is an end-

to-end checksum for detecting any modification of the data in transit. If a packet

arrives with an invalid checksum, a TCP receiver discards it without any acknowl-

edgment, but expects the sender to timeout and retransmit.

� TCP packets are transmitted as IP datagrams. Since IP datagrams can arrive out

of order, so do TCP packets. A TCP receiver is responsible for re-sequencing the

data packets if needed, and then pass the reordered packets to the upper layer.

� A TCP receiver discards duplicate TCP packets.
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� TCP also provides flow control to adapt its transmission rate to the available ca-

pacity of the connection and the buffer spaces at both ends. This prevents a fast

host from overloading a slower host.

3.1.1 TCP Transmission and Acknowledgment

Each TCP packet contains a header and a data portion. A standard TCP header has a

normal size of 20 bytes, unless options are present. Basically, it consists of the source

and destination port number identifying the sending and receiving application at each

end host; a sequence number specifying the first byte of data the packet represents; an

acknowledgment number if valid, indicating the next sequence number that the sender

of the acknowledgment expects to receive; six flag bits, among which the ACK flag is

used to indicate the validity of the acknowledgment number and the SYN flag is for

synchronizing sequence numbers to initiate a connection; a window size advertising the

number of bytes that the sender of the packet is willing to accept; a checksum covering

the whole packet (header and data), etc. If the header also includes certain TCP options,

such as Timestamp, or Selective Acknowledgment etc., it may be extended by another

20 bytes at the most. If TCP uses IP as the underlying network layer, a TCP packet will

be encapsulated by IP with a 20-byte IP header.

The TCP acknowledgment number is a cumulative value. Cumulative means that the

number always acknowledges the sequence number of the highest in-order piece of data

that has arrived at the receiver side. If a packet that arrives is the one it expects, a TCP

receiver generates a positive acknowledgment (ACK) with a sequence number of one

plus that of the packet just arrived, i.e., the next sequence of data the receiver is willing

to receive. If the incoming packet is either below (a duplicate) or above (an out-of-order

packet) the packet it is waiting for, the receiver responds with a duplicate acknowledg-

ment (DUPACK) with the same sequence number as the last sent ACK. Without the

SACK option [35] (which was added into TCP at a later time), the receiver has no way

to inform the sender which (out-of-order) packet has been received corrrectly. There is

also no means for a TCP receiver to negatively acknowledge an error packet (such as a
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packet that has checksum error and is thus dropped by the receiver).

TCP can handle a full-duplex connection where data can be flowing in each direction,

independent of the other direction. But it is possible that at the time a TCP end receives

data, it may not have any data to send back, so a pure acknowledgment packet is returned.

Such a packet contains only the TCP and IP header, an overhead without any useful data.

So, normally a TCP receiver does not respond with an ACK immediately after it receives

a packet. Instead, it delays the ACK, hoping to have data going in the same direction

as the ACK, so that the ACK can be sent along (or piggybacked) with the data. This is

called Delayed Acknowledgment. Most implementations of TCP use a 200ms delay –

that is, TCP will delay an ACK up to 200ms to see if there is data to send with the ACK.

As TCP is a connection-oriented protocol, the two applications using TCP must es-

tablish a TCP connection with each other before they can exchange data. A three-way

handshake is used for connection establishment. It determines unique initial values for

the sequence and acknowledgment number as follows: the requesting host sends a packet

with its own sequence number and with the SYN flag set; the receiving host knows the

acknowledgment number to send, so it responds with a packet containing both its se-

quence number and the acknowledgment number and with the SYN and ACK flag set.

The requesting host then gets to know the receiving host’s sequence number, and it sends

another packet with only the ACK flag set, acknowledging the number. The successful

transmission of these three packets completes the three-way handshake. This process

may also negotiate the use of some TCP options, such as the Timestamp option.

3.1.2 TCP Flow and Congestion Control

The basic form of TCP flow control is a sliding window protocol. It allows a TCP sender

to transmit multiple packets before it stops and waits for an ACK. The packets that can

be sent out at one time forms a window, or a send window. The protocol is visualized in

Fig 3.1 [46].

In the figure, there are 11 packets. Packets 1, 2, 3 have been transmitted by the sender

and also acknowledged by the receiver. The send window currently covers six packets.
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Figure 3.1: Visualization of TCP sliding window

The first three packets (packets 4, 5, 6) have been sent but not acknowledged yet. Now,

the sender can still send three more packets (packets 7, 8, 9). As packets at the left edge

of the send window are acknowledged by the receiver, the send window slides to the

right.

The size of the send window is determined by the minimum of the advertised window

and the congestion window. The advertised window is advertised by the recevier to the

sender, indicating the amount of available buffer space at the receiver. While the adver-

tised window is flow control imposed by the receiver, the congestion window (cwnd) is

flow control imposed by the sender (cwnd is closely related to TCP congestion control,

which we will introduce in the next few sub-sections).

In addition to the sliding window protocol, TCP acknowledgments also provide some

basic flow control. In the stable state, the spacing of the ACKs arriving at the sender

determines the spacing of the outgoing data packets. Since the receiver can only generate

ACKs when packets arrive, the spacing of the ACKs at the sender identifies the packet

arrival rate at the receiver, which is limited by the bandwidth of the bottleneck in the

connection. This is called the ack- or self-clocking behavior of TCP.

Slow Start

When a TCP connection is just established, the TCP sender has no idea about the speed at

which it can inject its data packets into the network. It probes for the available bandwith,

using an algorithm called slow start. The algorithm operates by observing that the rate

at which new packets should be injected into the network is the rate at which the ACKs

are returned by the other end.
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At the start, the sender initializes cwnd to one packet 1. Then, each time ACK is

received, the sender increases cwnd by one. Being limited by the initial value of cwnd,

the sender first transmits one packet. When the ACK for this packet is received, it in-

crements cwnd from one to two. Now, it can send two packets immediately. When each

of the two packets is acknowledged, it further increments cwnd to four. As transmission

continues, cwnd will be eight, sixteen, and so on. As visualized in Fig. 3.2, this is an

exponential increase.

Slow start cannot continue forever as the network has limited resource and can only

support a bandwidth up to a certain level. So, slow start should be terminated at some

later time. We will talk about its termination and other follow-on actions soon.

Congestion

TCP is designed for reliable links. One important assumption it makes is that the packet

loss caused by damage is very small (much less than 1%), therefore the loss of a packet

signals congestion somewhere in the network between sender and receiver. There are

two indications of packet loss: an expiry of the retransmission timer and the receipt of

duplicate ACKs.

Retransmission Timeout

As mentioned in the section “TCP Transmission and Acknowledgment”, there is no way

for TCP to tell the other end about the missing or out-of-order packet. So, to ensure

reliability, every outgoing packet is secured by a timer started at the transmission time.

If the ACK for a packet is not received when the timer expires, the sender transmits the

packet again. This is a retransmission timeout. The length of timeout determines how

long a TCP sender should wait before retransmitting a packet. It can largely affect TCP

performance. If it is too high, loss recovery will be delayed; if it is too low, unnecessary

retransmissions occur.

The computation of retransmission timeout (RTO) should relate to the round-trip

1The size of the packet is Maximum Segment Size (MSS) in bytes. Although the congestion window
is counted in bytes, it is always a multiple of MSS. So we usually refer to its size in units of packets.



CHAPTER 3. TCP AND ITS BEHAVIOR OVER WIRELESS LINKS 35

times (RTTs) of packets, which reflect the current network propagation and transmission

delay. The standard TCP retransmission timer is defined in RFC2988 [39]. It computes

the RTO value as follows:

It first sets to an initial value. Then when the first RTT measurement is made, it is

re-initialized as:
���������	������

���
�������������	������

�������
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The timeout value is then computed with each subsequent RTT measurement as:
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RTTnew is the new RTT measurement. SRTT is the smoothed RTT estimator, with a

smoothing factor
5

(=1/8). RTTVAR is the smoothed RTT variation estimator, with a

smoothing factor
8

(=1/4).
5

and
8

are also called the estimation gains.
/

is the dif-

ference between the new measured value, RTTnew, and the current estimation, SRTT.

SRTT and RTTVAR are updated every time the sender completes a new RTT measure-

ment, and then they are used to calculate the next RTO value. G is the clock granularity,

which is operating system dependent. In common TCP implementations, its value is 0.5

second. k is the variation weight, whose value is 4.

This is an adaptive timer where the value of RTO is changed gradually based on

measured RTTs. However, RTT measurement cannot be taken during retransmissions,

prohibited by Karn’s Algorithm [30]. This is due to the retransmission ambiguity prob-

lem where a TCP sender cannot differentiate the ACK of an originally-transmitted packet

from the ACK of the packet’s retransmit. Moreover, after a timeout, the RTO is doubled

so that the sender has to wait for a longer time before the next timeout. This doubling is

called the exponential backoff. Before the retransmitted packet is acknowledged, every

time a subsequent timeout occurs, the RTO is backed off again. This exponential backoff
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Figure 3.2: Visualization of slow start and congestion avoidance

can provide stability for the protocol.

Congestion Avoidance

Slow start initiates the data transmission of a TCP connection. But at some point, the

limit of the network, or more precisely, the limit of an intermediate router is reached,

and packets are dropped. This is why timeout occurs. To deal with it, TCP introduces

another algorithm called congestion avoidance.

In order to determine whether slow start or congestion avoidance should be used to

control data transmission, TCP needs cwnd and another variable called the slow start

threshold or ssthresh. In the beginning, ssthresh is set to an initial value. This initial

value may be arbitrarily high, but as we will see, it will be reduced if congestion oc-

curs. Usually, it is set to be the size of the receiver’s advertised window. As slow start

controls the transmission, cwnd is incremented exponentially, and it will either reach the

predefined ssthresh or overload the network capacity.

In the first case, once cwnd is higher than ssthresh, congestion avoidance starts to

take over control. Then, instead of being incremented by one on each incoming ACK,

the increasing rate of cwnd slows down to one packet per RTT, or roughly 1/cwnd per
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ACK. This is an additive increase (starting from RTT 4 in Fig. 3.2), compared to slow

start’s exponential increase.

But before reaching ssthresh, if cwnd is incremented to a value that cannot be sup-

ported by the available network resources, congestion occurs and packets are dropped

at intermediate routers. At the sender, its timer goes off, indicating that it has reached

the upper limit of the network, and needs to slow down. The sender stores one half

of the current send window size (and at least two packets) in ssthresh. Additionally,

it sets cwnd back to one packet and starts retransmitting. This is called the go-back-N

retransmission, as the sender retransmits all the unacknowledged packets starting from

the oldest one. The sender needs again to probe the network for the available capac-

ity. Later, when the retransmitted packet is acknowledged by the receiver, the sender

increases cwnd. However, depending on the current values of cwnd and ssthresh, it may

follow slow start or congestion avoidance’s increasing rule.

Fast Retransmit and Fast Recovery

A TCP receiver is required to generate an immediate DUPACK when an out-of-order

packet is received. This DUPACK is aimed at letting the sender know that a packet has

been received out of order, and to tell it what sequence number is expected. In addition,

the receiver should also send an immediate ACK when the incoming packet fills in all

or part of a gap in the sequence space of the recevier buffer. These DUPACKs can

provide more timely information to the sender, which enables it to use the fast retransmit

algorithm to detect and repair loss and to avoid a long wait before a retransmission

timeout.

Since the sender does not know whether a DUPACK is caused by a dropped packet

or a reordering of packets, it is assumed that if there is just a reordering of packets, there

will be only one or two DUPACKs before the reordered packet arrives and triggers a new

ACK. So, the fast retransmit algorithm uses the arrival of three consecutive DUPACKs

(i.e., four identical ACKs without the arrival of any other intervening packets) as an indi-

cation of packet loss. After receiving three DUPACKs, the sender immediately performs
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a fast retransmit of the oldest unacknowledged packet.

Following the fast retransmit, another algorithm called fast recovery takes control of

the new data transmission until a non-duplicate ACK arrives. In addition to indicating

packet loss, the arrival of DUPACKs also reveals that some packets have left the network

(it is these packets that trigger the DUPACKs). The network resources previously occu-

pied by those packets can now be used. Moreover, the ACK-clocking is preversed. So,

it is reasonable and meaningful for the TCP sender to continue transmitting new data.

The arrival of DUPACKs is a less severe signal of congestion than a timeout, since

there are still packets/DUPACKs flowing in the network. So fast retransmit and fast

recovery together can implement a more efficient loss recovery than the slow-start re-

transmission after a timeout: upon receiving the third DUPACK, ssthresh is set to half

of cwnd. cwnd is then set to be ssthresh plus 3*MSS (as three DUPACK have arrived),

and is incremented by one per subsequent DUPACK, which indicates the left of a packet

from the network. If allowed by the new value of cwnd and the receiver’s advertised

window, the sender can transmit new packets. When the first non-duplicate ACK after

the retransmit arrives, cwnd is reset back to ssthresh. Then, from now on the sender exits

fast recovery and directly enters congestion avoidance.

Slowstart, congestion avoidance, fast retransmit and fast recovery form the founda-

tion of TCP congestion control. A more detailed description of them may be found in

[4]. The most widely used TCP version today is TCP Reno 2, which implements all the

four algorithms. An important modification of it is TCP NewReno [17], where TCP is

allowed to respond to partial acknowledgments 3 with retransmits while remaining in

fast recovery. This can improve TCP performance during multiple packet losses in a

single window.

2It is named according to its first implementation in the Berkeley Software Distribution, BSD Unix.
3When multiple packets are dropped in a window, the ACK for the retransmitted packet will acknowl-

edge some but not all of the packets transmitted before the fast retransmit. This ACK is known as a partical
acknowledgment.



CHAPTER 3. TCP AND ITS BEHAVIOR OVER WIRELESS LINKS 39

3.2 TCP over Wireless Links

In the previous section, we have briefly discussed the basic concepts and algorithms of

TCP. We have also noted that as TCP was originally developed for wired networks, some

of its design assumptions could be violated in wireless links.

3.2.1 Wireless Link Characteristics

Here, we will first look at the link characteristics of 2.5G/3G wireless systems.

Latency

The latency of 2.5G/3G links is high compared with wired networks. This is mostly

due to the limited transmission capacity in radio access networks and the extensive pro-

cessing required at the physical layer of these links for FEC (refer to Appendix A.1.2),

interleaving, etc. Local retransmissions on the link layer can also introduce extra delays.

Typically, the RTT of a TCP packet flowing through one such link can vary from a few

hundred milliseconds (ms) to one second.

Bandwidth and Bandwidth Asymmetry

Referring to Table 2.1 in Section 2.1.2, the theoretical maximum data rate over a GPRS

link is 171.2 kbps. However, since a mobile terminal is seldom allocated all the eight

timeslots, data rates in 2.5G GPRS networks are normally between 10 to 40 kbps in

downlink and 10 to 20 kbps in uplink [27]. In the initial 3G systems, such as En-

hanced Data Rates for GSM Evolution (EDGE) [49] and UMTS, higher data rates can

be achieved: up to 384 kbps in downlink and around 64 kbps in uplink. With further

improvements, UMTS may reach an even higher data rate of up to several Mbps (as

suggested in its latest releases).

2.5G/3G systems usually run asymmetric uplink and downlink data rates. Asym-

metry is inherited in these wide-area wireless system. This is because mobile terminals

often have to contend with each other to gain access to the shared up-channel. Uplink is
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also limited by the battery power consumption of a terminal. As discussed in previous

sections, the performance of TCP relies on feedback in the form of cumulative ACKs

from the receiver to ensure reliability. In addition, TCP is ACK-clocked, relying on the

timely arrival of ACKs, to make steady progress and to fully utilize the available band-

width of the path. Any limitation or disruption in the feedback path could potentially

impair the performance of forward TCP transmission. However, in reality, bandwidth

asymmetry does not exceed three to six times [24]. For Internet applications such as

web access, FTP, etc., downlink is the main data traffic path and uplink usually contains

only ACKs acknowledging the arrival of data at mobile terminals. A pure acknowledg-

ment containing only the TCP/IP header (or even with options) can be no more than

100 bytes while a TCP/IP data packet usually ranges from several hundreds to one thou-

sand and a half bytes. In addition, delayed acknowledgment, if used by the receiver, can

further reduce the amount of ACK traffic along uplink. So, bandwidth asymmetry in

2.5G/3G links can be tolerated by TCP without the need for any explicit ACK control

techniques such as ACK filtering [5].

Error Losses and Corruption

Due to the intrinsic properties of radio interface, wireless links were originally char-

acterised as a transmission media with high non-congestion loss. As TCP congestion

control algorithms (refer to Section 3.1.2) infer packet losses as indication of network

congestion, such non-congestion losses can incorrectly trigger TCP congestion control

and lead to transmission rate reduction in TCP-based applications. However, in cur-

rent 2.5G and the coming 3G systems, error losses are not a main concern any more

because these systems have already incorporated error protection mechanisms like FEC

and ARQ into their link layers. We have discussed the background information on link

layer protocols in the previous chapter, along with detailed explanation of different error

protections in Appendix A.1.2. We will discuss the interaction between wireless link

layer retransmissions and TCP shortly.
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Delay and Bandwidth Variation

A sudden increase in the latency of the communication path is called a delay spike.

2.5G/3G links are likely to experience delay spikes exceeding the typical RTT by sev-

eral times [27] due to reasons like: link layer retransmission, handovers (see later), or

arrival of high priority traffic on shared channels. TCP uses its retransmission timer for

congestion control and loss recovery. The timer is set according to the measured path

RTTs, and its value is gradually adapted with the change in RTTs. When facing abrupt

delay variations over wireless links, the timer expires and incorrectly triggers retrans-

mission timeout, which leads to unnecessary retransmission and a reduced transmission

rate.

Because radio resource is dynamically allocated in 2.5G/3G systems, according to

actual demand, an MS may experience bandwidth variation or bandwidth oscillation

from time to time due to radio channel scheduling. Bandwidth variation also happens

when an MS moves from a fast/slow network into a slow/fast one. When bandwidth

varies from high to low, the packet transmission times (along with packet RTTs) increase

suddenly, and the low RTO value previously adapted causes spurious timeouts. Periods

of low bandwidth can also result in congestion [21]. Bandwidth variation from low to

high could result in underutilization of the link.

Larger delay and bandwidth variations can also cause bursty ACK arrivals (also

called ACK compression [13]). Since TCP uses ACK-clocking to control packet send-

ing, bursty ACK arrival leads to the release of a burst of packets. When the packet burst

arrives at the bottleneck link with bandwidth or delay burst, multiple packet losses could

result.

Handovers

Handovers can happen within a single cellular network at different mobility management

levels, or among different networks such as when an MS moves from a GPRS network

into a UMTS network in a process called a intersystem handover. Some have been

illustrated in Section 2.1.5 with typical scenarios.



CHAPTER 3. TCP AND ITS BEHAVIOR OVER WIRELESS LINKS 42

Handovers can cause delay and/or bandwidth variations which trigger spurious time-

outs on the TCP layer. Furthermore, as shown in the GPRS MM scenarios, during an

inter-SGSN handover, the old SGSN bufferring the unacknowledged data may run out

of buffer space before the handover is completed. T unacknowledged data would then

be dropped, and TCP (at the upper layer) would need to recover the packet losses.

On-demand Resource Allocation

Wireless channels are dynamically allocated to mobile terminals based on their actual

needs. Resource allocation involves the communication of control signals between dif-

ferent wireless network nodes. Due to the high latency over wireless links, resource

allocation is forced to introduce an additional delay.

Packet Reordering

Packet reorderings may happen during link layer retransmissions. Significant reorder-

ings can incorrectly trigger TCP congestion control and retransmission. Currently, packet

reordering is disabled in 2.5G/3G wireless links, so at the moment, it is not a major con-

cern. However, out-of-order delivery of packets may be beneficial for unreliable real-

time applications by decreasing delays. Thus if TCP can be made considerably more

robust to reordering with an acceptable cost, future development of wireless technolo-

gies may enable packet reorderings to provide better services for real-time services [21].

Regarding the problems caused by wireless links into existing TCP implementations,

we cannot force TCP to completely adapt to wireless characteristics, or accept TCP

as it is and require future wireless systems to match the design assumptions of TCP.

Intuitively, there should be an interplay or compromise from both sides, depending on

the characteristics of each problem.

3.2.2 Interactions between TCP and Link Layer Retransmission

TCP was designed for reliable links and it assumes low non-congestion loss over the

underlying links. So high packet corruption in old wireless links could incorrectly trig-
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ger TCP congestion control and degrade TCP performance. In the current and future

wireless systems, this problem has been greatly mitigated by the employment of several

error protection mechanisms in the wireless link layers (see Chapter 2).

GPRS has both a FEC and a ARQ capability in its LLC layer between mobile termi-

nals (MS) and the SGSN. Retransmission protection comes into effect during handovers

(as in the scenarios in Appendix A.2.4) where the SGSN keeps the unacknowledged

frames and re-routes them to the new MS or SGSN during a cell change. The lower

RLC layer is introduced mainly for providing a reliable link between MS and BSS. It also

includes a selective ARQ mechanism for transmitting error blocks. UMTS W-CDMA

incorporates FEC and ARQ mechanisms similar to those of GPRS. These link layer FEC

and ARQ can ensure a much more reliable wireless transmission with a negligibly small

probability of undetected error, and a low level of loss for the upper-layer traffic [27].

As verified in some study [48], when the packet loss rate over wireless links is one-order

of magnitude lower than the one in wired networks, TCP performance is essentially not

affected by the wireless impairment. In addition, as link layer retransmission is done

locally and in small units, it is generally more efficient than TCP retransmission.

Link layer retransmission needs to take a certain amount of time, so instead of packet

losses, TCP will experience a delay jitter during the transmission, which may trigger spu-

rious timeouts. Link layer retransmission may also introduce packet reorderings at the

transport layer (TCP). However, packet reordering is generally not allowed in the cur-

rent systems. For example, UMTS RLC explicitly preserves the order of packet delivery

[27]. Moreover, 2.5G/3G systems generally employ the higher-performance selective

ARQ, so competition between two retransmissions at different layers (link layer and

TCP) is no longer a serious problem [47].

However, packet losses can still happen over current wireless links due to handovers,

though not error/corruption. This kind of packet losses is caused by buffer overflow at

the SGSN, and is therefore congestion loss.
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3.2.3 Proposed Solutions in TCP

Instead of fixing the problems by improving wireless technologies (as the case of link

layer retransmission), a lot of work has also focused on adapting TCP to wireless links.

Among them, quite a number of the proposed schemes are aimed at improving TCP

performance in the presence of frequent packet losses in wireless links. In Indirect-

TCP [9], a TCP connection is split into two independent connections, one over the fixed

network and the other over the wireless link. The second connection can recover from

losses over wireless links quickly. In the Snoop protocol [6], the network layer at the

base station is modified so that packets can be cached at the base station and local retrans-

mission can be performed only in the wireless link. Cumulative Explicit Transport Error

Notification (CETEN) [16] tries to mitigate the impact of corruption-based loss by not

attempting to derive the cause of specific packet losses but using aggregate information

from the network to ensure TCP’s long-term average sender rate. As link layer enhance-

ments for reducing wireless link losses including ARQ and FEC are already part of the

2.5G/3G wireless systems, these schemes for TCP only provide overlapping functions

that introduce little performance improvements. For example, Snoop TCP is reported

[47] to not work well over GPRS because high delay over the GPRS radio interface can

trigger duplicate retransmissions in the Snoop agent.

There have also been works that examine the impact of wireless link delay or band-

width variations on TCP performance [32], [8], [45], [13], [50]. As we have discussed

above, these variations cause TCP performance degradation due to spurious timeouts and

multiple packet losses at the congested router buffer. The spurious timeout problem is

a common consequence shared by several wireless characteristics, including handover,

resource allocation, link layer retransmission, etc. It is the main problem that TCP is

posed with by current wireless systems. In our opinion, it is worth looking at this prob-

lem in more detail. We will also try to mitigate the damage of multiple packet losses in

TCP.
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3.3 Spurious Retransmission

Spurious retransmission [32] refers to the case that TCP’s congestion control and loss

recovery algorithms are falsely triggered when in fact there are no genuine packet losses

at all. As the four intertwined TCP congestion control algorithms (which have been

discussed in Section 3.1) provide two basic mechanisms for packet loss detection and

recovery: timeout retransmission and DUPACK-based retransmission (as discussed in

Section 3.1.2), there are two kinds of spurious retransmissions.

Because of the frequent wireless link variations due to various causes, spurious time-

out is a common phenomenon in TCP connections spanning wireless links. spurious fast

retransmit is less frequent where it is mostly caused by packet reorderings due to link

layer retransmissions. Packet reordering is deliberately restrained in current 2.5G/3G

systems but with the possibility of being re-enabled later (see previous section). As

far as we know, there is no numerial measurement capturing the occurrence of packet

reorderings in wireless links either. Therefore we will turn our focus in the following

sections on spurious timeouts. We also pay some attention to spurious fast retransmits.

3.3.1 Problem Formulation

Spurious Timeout

As presented in Section 3.1.2, RTO is a prediction of the upper limit of RTTs seen in the

current connection. In common TCP implementations, an adaptive retransmission timer

[39] accounts for RTT variation. A spurious timeout occurs when the delay in the data

and/or the ACK path suddenly increases to the extent that it exceeds the RTO that has

been determined a priori. The spurious timeout would not have occurred had the TCP

sender waited longer.

Fig. 3.3 shows the time sequence 4 and the corresponding changes in congestion

control state when a spurious timeout occurs. Both figures are generated using TCP

Reno sender agent in the NS-2 network simulator [37]. We will elaborate on NS-2 in
4In Fig. 3.3(a) and subsequent time-sequence plots in the thesis, all the sequence numbers of rcv data

are reduced or shifted down by some units (usually by 5 or 10) for a clearer presentation.
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Figure 3.3: A spurious timeout

Chapter 5.

Spurious timeouts affect TCP performance severely as follows: when a spurious

timeout occurs (at the 7th second in Fig. 3.3(a)), the TCP sender has to assume that all

the outstanding packets are lost and will then retransmit them unnecessarily. Ludwig and

Katz pointed out in [32] that the fundamental cause for this go-back-N retransmission

is the retransmission ambiguity problem (introduced in Section 3.1.2). Shortly after

the timeout, ACKs for the delayed, original transmits arrive at the sender one at a time

(starting from the 10th second in Fig. 3.3(a)). But the sender can only assume that they

are in response to the retransmits and the unnecessary retransmission continues until all

the preassumed lost packets have been retransmitted (from the 10th to the 12th second in

Fig. 3.3(a)). From the plot of rcv data, we can see that all the packets, both the original

packets and their retransmits, are in fact correctly received.

The unnecessary go-back-N retransmission may cause another problem: the receiver

generates a DUPACK for every packet received more than once, and DUPACKs arriving

at the sender would incorrectly trigger a fast retransmit (at the 15th second in Fig. 3.3(a)).

Note that this fast retransmit can be avoided if either bugfix [17] or SACK [35] is enabled.

In response to the timeout, the TCP sender also reduces cwnd and ssthresh. As

shown in Fig. 3.3(b), the default initial values for cwnd and ssthresh in NS-2 are 0 and

20 respectively. From time 0, as packets are transmitted correctly, cwnd increases expo-

nentially. When the timeout occurs around the 8th second, ssthresh is reduced to 7 (at
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the 8th second in Fig. 3.3(b)) – half of the current value of cwnd, which is 14. When

the first non-duplicate ACK after the timeout arrives at the 10th second, cwnd is set to

1. This is the standard slow start and congestion avoidance process (see Section 3.1.2).

With the fast retransmit at the 15th second, cwnd and ssthresh are further reduced to 4

(at the 15th second in Fig. 3.3(b)). These congestion control reductions are totally un-

necessary since there is in fact no congestion loss at all. This leads to an underutilization

of the available network capacity and thus largely degrade TCP performance.

Assuming that none of the outstanding packets and their corresponding ACKs were

lost, the packets would get retransmitted unnecessarily. While original transmits are

probably queuing at and draining from the bottleneck link, retransmits are being sent in

slow start. Thus, for each packet that leaves the network and that belongs to the original

flight, two duplicate retransmits are injected into the network in response (assuming the

receiver generates one ACK per packet). If the bottleneck queue size is limited, this

aggressive sender behavior aggravates the problem and may lead to real packet losses

due to congestion.

Spurious Fast Retransmit

Link layer retransmission may cause out-of-order data delivery to the upper layer, i.e.,

the IP layer. IP is a connectionless protocol, which does not guarantee in-order delivery

of packets. So, the reordering packets are pushed up further to the transport layer. In

response to each reordering packet, a TCP receiver generates a DUPACK. In such a so-

called packet reordering event, the number of reordering packets that arrive before the

in-sequence packet is the reordering length. If the reordering length is equal to or greater

than three, and at least three of the resulting DUPACKs arrive at the sender, a spurious

fast retransmit will be triggered.

Spurious fast retransmits affect TCP performance in that the TCP sender incorrectly

retransmits the oldest outstanding packet and reduces its sending rate by half, following

the fast retransmit and fast recovery algorithms. Fig. 3.4 illustrates the consequences of

a spurious fast retransmit. In order to trigger a spurious fast retransmit in the simulated
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Figure 3.4: A spurious fast retransmit

connection, we use a tool called hiccup available in NS-2 [42], which can cause a packet

reordering event with a predefined reordering length. (A more detailed description of

hiccup will be given in Section 4.2.) In this example, the reordering length is 5. Packet

7 is queued by hiccup while the succeeding five packets are let through. Then the single

packet in queue is sent. In Fig. 3.4(a), we can see five DUPACKs generated by the re-

ceiver arriving at the sender and triggering the spurious fast retransmit at the 4th second.

In the meantime, the sender halves its load and enters congestion avoidance as shown in

Fig. 3.4(b).

Retransmission ambiguity is again the essential reason behind spurious fast retrans-

mits: on receipt of the first non-duplicate ACK after a series of DUPACKs, the sender

must interpret this ACK as having been triggered by the fast-retransmitted packet but in

fact it was triggered by the reordered original packet.

Note that throughout the thesis, we use the term spurious retransmission when it

does not make a difference whether it is a spurious timeout or a spurious fast retransmit.

3.3.2 Related Works on Spurious Retransmission

Both spurious timeouts and spurious fast retransmits will cause suboptimal TCP perfor-

mance because of the following symptoms:

� The TCP sender unnecessarily adjusts the TCP congestion control parameters and
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reduces its sending rate.

� After a spurious timeout, the TCP sender often retransmits several packets un-

necessarily because after the first retransmit, the ACKs for the original transmits

appear at the sender one at a time, triggering further retransmits. Often a full TCP

window is retransmitted quite unnecessarily.

No known way can effectively prevent such unnecessary retransmissions from hap-

pening in the first place. However, we can do some recovery after a retransmission to

reduce its toll on TCP performance. In the area of fixing spurious retransmissions, there

are three categories of mechanisms:

� Mechanisms for detecting spurious retransmissions

� Mechanisms for undoing needless changes to TCP congestion control state from

values saved before the retransmissions

� Mechanisms for making TCP more tolerant to variable delays or packet reorder-

ings such that future spurious retransmissions can be avoided

While the first category deals with detection, the second and the third categories re-

sponds to the spurious retransmissions. Several algorithms for TCP have been proposed

for handling spurious retransmissions, and they include at least the first two categories

of mechanisms. Different algorithms may have different means of detecting spurious

retransmissions, but they may use the same mechanism for restoring the congestion con-

trol state. Some of the algorithms also incorporate mechanisms for adapting either the

TCP retransmission timer or the value of dupthresh.

Here, we will give an overview of three such algorithms: the DSACK-based algo-

rithm, the Eifel algorithm and the F-RTO algorithm, and we will investigate the pros and

cons of each algorithm in detail.

The DSACK-based Algorithm

The TCP Selective Acknowledgment (SACK) option [35] is used for acknowledging

out-of-sequence data not covered by TCP’s cumulative acknowledgment field. Duplicate
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Figure 3.5: A spurious timeout using TCP SACK with DSACK

SACK (DSACK) [18] is an extension to SACK, specifying the use of the SACK option

for acknowledging duplicate packets. In RFC2883 [18], the suggestion is that when

duplicate packets are received, the first block of the SACK option can be used to report

the sequence numbers of the packet that triggered the ACK.

Duplicate packets can be caused either by a spurious retransmit sent by the TCP

sender or by some quirk in the network that causes packet duplication. Paxson shows

in [40] that packet duplication by the network is exceedingly rare. A DSACK block

therefore has a high probability of reporting a spurious retransmission. To ensure the

correctness of the detection, the TCP sender can verify that the packet reported as arriv-

ing multiple times has actually been retransmitted.

Once the sender detects a spurious retransmission by using the DSACK information,

it can restore the reduced congestion control parameters (cwnd and ssthresh) from values

saved before the retransmission. In case of a spurious fast retransmit, the sender can also

adjust dupthresh to prevent such unnecessary fast retransmit in the future. [7] discussed

several possible ways for adapting the value of dupthresh. However, this DSACK-based

approach has no way to adapt the retransmission timer after a spurious timeout.

Plots of the time-sequence and the corresponding congestion control changes in Fig.

3.5 show how a DSACK-enabled TCP handles a spurious timeout. The plots are gener-

ated from simulation traces using NS-2 [37]. We will discuss in greater detail NS-2, the

implementation of DSACK detection and response in NS-2, and the experiment settings
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in Chapters 5 and 6.

Because the first ACK carrying a DSACK block arrives at the sender only after loss

recovery has already terminated, this approach cannot avoid the go-back-N retransmis-

sion. In Fig. 3.5(a), the sender sends this series of retransmits from the 10th to the

14th second. In fact, before the 14th second, Fig. 3.5(a) is the same as Fig. 3.3(a),

which shows a common TCP without any detection of spurious timeouts. However, as

Fig. 3.5(a) shows TCP SACK, the spurious fast retransmit which would be triggered by

the series of DUPACKs with TCP Reno is avoided. When receiving the ACK with the

DSACK block, the sender detects the unnecessary timeout and restores the congestion

control state. We can see that the transmission rate, i.e., the slope of snd data, in Fig.

3.5(a) after the retransmission is much faster than its counterpart of the common TCP in

Fig. 3.3(a). By the 25th second, more than 10 (70 minus 56) packets have been transmit-

ted. The restoration can also be seen in Fig. 3.5(b) after the 15th second, where ssthresh

is set back to 20 and cwnd is set back to 14.

A single DSACK notification is sent in one ACK for each duplicate packet that ar-

rives. Because DSACKs are only sent once, this DSACK-based approach is quite vul-

nerable to ACK losses. That is, if an ACK containing DSACK information is dropped

or corrupted by the network, the information about that particular packet is lost and the

sender will never detect the spurious retransmission.

The Eifel Algorithm

The Eifel algorithm [32] suggests that the TCP sender includes some extra information

in every packet sent, indicating whether the packet is transmitted for the first time, or

whether it is a retransmit. When the information is echoed back in the ACK, the sender

is able to eliminate retransmission ambiguity (see Section 3.1.2). It can then determine

whether the original packet has arrived at the receiver and declare the retransmission ei-

ther genuine or spurious. Based on this knowledge, the sender can either continue in the

conventional way assuming a real packet loss, or revert the congestion control reductions

and continue with new data. The latter alternative is likely to be the correct action to take
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Figure 3.6: A spurious timeout with Eifel

when the original packet is acknowledged after the retransmission, indicating a spurious

retransmission.

Currently, the Eifel algorithm uses the TCP Timestamp option [29] as the piece of

extra information. It works as follows:

Given that timestamps are enabled for a connection, the TCP sender always stores

the timestamp of the first retransmit sent at the beginning of a retransmission (caused

by either a timeout or DUPACKs. Once the first acceptable ACK that acknowledges the

retransmit arrives, the sender compares the value of the echoed timestamp in the ACK

with the stored value. If the echoed timestamp is smaller than the stored one, the sender

can determine that the retransmission is spurious. In response, as the sender detects it

upon the first acceptable ACK, it can avoid the subsequent go-back-N retransmission.

Because timestamps are present in all the packets and ACKs, the sender is also able

to adapt the conservativeness of the retransmission timer for avoiding future spurious

timeouts. Likewise, it adapts dupthresh in response to a spurious fast retransmit. In

both cases, the algorithm also restores the congestion control state. So the penalty of

a spurious timeout or fast retransmit is reduced to just a single unnecessary retransmit.

However, the exact way for congestion control state restoration, retransmission timer

adaptation or dupthresh adaptation may vary.

Fig. 3.6 shows how the algorithm works. (Information about the implementation

of the Eifel algorithm in NS-2 will be given in Section 5.2, and the experiment settings
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will be listed in Chapter 6.) In Fig. 3.6(a), by detecting the spurious timeout upon the

first acceptable ACK, the TCP sender starts to transmit from the next unsent packet.

Comparing with the common TCP in Fig. 3.3(a) and TCP with DSACK in Fig. 3.5(a),

TCP with Eifel avoids the series of unnecessary retransmits and the consequent fast

retransmit. It also transmits the maximum number of packets by the 25th second. In

the corresponding congestion control changes in Fig. 3.6(b), the sender resets cwnd and

ssthresh to their previous values, allowing it to utilize more bandwidth. By the 25th

second, cwnd has reached 22 while in Fig. 3.3(b) and Fig. 3.5(a), cwnd is only 8 and 21

respectively at that point.

One advantage of the current implementation is that the detection is quite robust

against ACK losses as there is a window worth of ACKs all carrying timestamps that are

smaller than the stored value, so the arrival of any one of them would be sufficient to help

the sender make the correct decision. Another advantage is that with the timestamp in

every packet, the sender is able to get RTT measurements for all acknowledged packets,

even for retransmits, allowing a more up-to-the-time RTO estimation.

F-RTO: Forward RTO Recovery

Forward RTO Recovery (F-RTO) [45] is a proposal for only addressing spurious time-

outs by modifying the TCP sender. It does not require the use of any TCP options;

instead, it uses a set of heuristic rules for detecting spurious timeouts. It works as fol-

lows:

When a timeout occurs, the F-RTO sender retransmits the oldest outstanding packet

normally. But deviating from normal timeout recovery, it then tries to transmit new, pre-

viously unsent data for the first ACK that arrives after the timeout given that the ACK

acknowledges new data. If the second ACK that arrives after the timeout also advances

the window, the sender can declare the timeout spurious, exit timeout recovery, and re-

store its congestion control state. However, if either of the two ACKs is a DUPACK,

there would be no sufficient evidence of a spurious timeout. Therefore, the sender re-

transmits the unacknowledged packets in slow-start in a manner similar to traditional
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Figure 3.7: A spurious timeout with F-RTO

TCP implementations.

The plots in Fig. 3.7 show how F-RTO handles a spurious timeout. In Fig. 3.7(a),

upon the receipt of the first ACK (just after the 10th second), the sender responds with

two unsent packets. When the second ACK arrives (at the 11th second), the sender

detects the spurious timeout and exits timeout recovery. In Fig. 3.7(b), we can see the

difference between F-RTO and Eifel clearly. The congestion control state is restored at

a later time in response to the second ACK.

After detecting a spurious timeout, F-RTO cannot make any active attempt in adapt-

ing the conservativeness of the TCP retransmission timer. However, it has a side-effect

on RTT measurement. With F-RTO, the TCP sender avoids most retransmits in the

go-back-N retransmission, and is able to take RTT samples on the delayed packets. If

normal timeout recovery is used, without timestamps, this would not be possible due to

retransmission ambiguity. As a result, the estimated RTO value is likely to have a more

accurate and larger values with F-RTO than with normal TCP. However, because F-RTO

does not solve the retransmission ambiguity problem, it still suffers from the problem

as normal TCP does when a genuine timeout occurs – neither of them would be able to

sample the retransmits because of Karn’s Algorithm (see Section 3.1.2).

Moreover, F-RTO does not always make the right detection [44]. For example, if

packet reordering or packet duplication occurs in the packet that has triggered the spu-

rious timeout, F-RTO may not detect it as spurious. Additionally, if a spurious timeout
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occurs during fast recovery, F-RTO often cannot detect it. In such cases, F-RTO sim-

ply follows standard TCP behavior. In [44], a SACK-enhanced version of F-RTO is

specified. This enhanced version is able to detect spurious timeouts in most cases when

packet reordering or packet duplication is present, or when the TCP sender is under

loss recovery. Its difference from the basic F-RTO algorithm is that the sender may de-

clare a timeout spurious even when DUPACKs follow the timeout, if the SACK blocks

acknowledge new data that has not been transmitted after a timeout.

Comparison of the Three Algorithms

The three algorithms presented above work differently in handling either spurious time-

outs or both spurious timeouts and spurious fast retransmits. Here, we attempt a com-

prehensive comparison of DSACK, Eifel and F-RTO:

� First of all, DSACK and Eifel can handle both spurious timeouts and spurious fast

retransmits while F-RTO is only capable of fixing problems caused by spurious

timeouts.

� As mentioned before, the root cause for spurious retransmissions is retransmission

ambiguity. So, in order to detect such retransmissions, it is essential to eliminate

the ambiguity at the very beginning. DSACK uses the DSACK block to inform

the sender about a duplicate packet arriving at the receiver. When the ACK ac-

knowledging the first arrival (at the receiver) of a packet arrives, DSACK cannot

tell whether it is in response to the original packet or its retransmit. When the

ACK triggered by the duplicate arrival arrives later, DSACK knows that the re-

transmission is spurious. But DSACK can never differentiate an original ACK

from the ACK of the retransmit. Retransmission ambiguity is still there. F-RTO

is a heuristic approach, which does not eliminate the ambiguity either. Among

the three algorithms, only Eifel gets rid of retransmission ambiguity as it has extra

information in every ACK just for the purpose.

� Since DSACK still suffers from retransmission ambiguity as we have just ex-
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plained, it cannot avoid the unnecessary go-back-N retransmission. Eifel and

F-RTO are able to have early detection upon the first one or two ACKs after a

spurious timeout, so they can avoid the retransmission.

� In principle, the loss of the unnecessary retransmits during spurious retransmis-

sions should also be taken as a congestion signal. When a spurious retransmit

arrives at the receiver, as either Eifel or F-RTO does not change the receiver, the

receiver just generates a DUPACK for the duplicate packet. So the sender has

no way of knowing exactly which packet has triggered this DUPACK, and it can

hardly detect the loss of the packet. As a DSACK block is generated for every du-

plicate packet, DSACK is able to explicitly inform the sender about which packet

has arrived more than once. However, DSACK’s detection would again be affected

by the loss of the ACK with the DSACK block.

� F-RTO is only a heuristic approach. As we have mentioned in the previous section,

it may not detect a spurious timeout in certain cases. DSACK or Eifel has no such

concern.

� DSACK is vulnerable to ACK losses as each duplicate packet is reported only

once. Eifel is quite robust because it has a window of ACKs for detection. Like-

wise, F-RTO is also more robust than DSACK. However, because F-RTO needs

two ACKs for detection, it is slightly more prone to ACK losses than Eifel.

� As SACK blocks are appended to TCP headers only when necessary, DSACK

introduces less overheads than the persistently-used timestamps in Eifel. F-RTO

has no such overhead.

� In response to a spurious timeout, DSACK can do nothing in adapting the TCP

retransmission timer; F-RTO has some effect on the timer as it can take RTT sam-

ples in the presence of spurious timeouts; Eifel can sample every acknowledged

packet as it uses timestamps. This allows it the flexibility of more choices [23] in

timer adaption.
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� In response to spurious fast retransmits, Eifel and DSACK can take same approach

in adjusting dupthresh. Some possibilities have been discussed in [7].

� The way to restore the congestion control state is independent of how the detection

is made, so the three algorithms can take the same means in restoration. The most

intuitive way is full restoration by setting the values of cwnd and ssthresh back

to their values before the retransmission. Another way that has been found to

be efficient is to set both variables to the previous cwnd value. Then the sender

directly gets into congestion avoidance rather than the aggressive slow start. Some

other possibilities have also been suggested in [23].

From the comparison above, we can see that each algorithm has its own advantages

but also suffers from certain weaknesses. No one has definite superiority over the other

two.

3.4 Multiple Packet Losses

All three algorithms discussed above focus solely spurious retransmissions. They do not

fix other wireless-related problems, such as multiple packet losses due to link variations

or handovers.

[13] proposed a network-based solution, called ACK regulator, which can help avoid

multiple packet losses in TCP. It achieves this by implementing a regulator at the RNC

in the 3G network, at the layer just above RLC, which needs to maintain a per-TCP-

flow queue in order to regulate the flow of ACKs in uplink back to the TCP sender.

By regulating ACK flows, it can reduce the burstiness of ACK arrivals at the sender so

that they will not trigger multiple packet losses at the bottleneck any more. However,

as the regulator maintains a queue for ACKs and controls the transmission of ACKs in

the RNC amid the TCP connection between the mobile node and the remote host in a

wired network, it breaks the end-to-end semantics of TCP connection. ACKs could be

kept in the queue for an amount of time. As TCP depends on the ACK feedback for

data transmission and flow/congestion control, this artificial delay of ACKs may impair
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TCP performance in certain cases. For example, if the acknowledgments are DUPACKs

indicating a fast retransmit, the delay can cause the TCP retransmission timer to expire

before the DUPACKs arrive.

To fix the packet burst in response to an ACK burst, TCP can have a threshold to limit

the maximum number of packets sent in a burst. Moreover, the delay or bandwidth vari-

ation which tiggers bursty ACKs ususally also triggers a spurious timeout at the sender

waiting for the ACKs. Upon receiving the ACKs, with any of the detection algorithms

presented in the previous section, the sender would detect the spurious timeout and re-

store its congestion control state. By using a non-aggressive restoration, the sender can

also avoid packet burstiness. In our opinion, it is better to let TCP handle the problem

rather than to introduce some extra agent in-between which may negatively affect the

TCP end-to-end semantics.

At the time bursty ACKs arrive, the wireless link mostly has changed from a good to a

poor condition. In such a case, packet loss would eventully happen as the current network

capacity could not support the sender’s previously-probed transmission speed any more.

So instead of avoiding multiple packet losses, it is more meaningful to improve TCP’s

ability to recover from such packet losses efficiently.

Changing from a fast to a slow cell normally is handled well by TCP due to the self-

clocking property. However, a sudden increase in RTT in this case can cause a spurious

TCP timeout. In addition, a large TCP window used in the fast cell can create congestion

resulting in overbuffering in the slow celling.

3.5 Summary

In this chapter, we have first provided a brief introduction of TCP concepts and algo-

rithms. We have looked at the characteristics of wireless links and discussed their im-

pacts on TCP performance. We have also done a more detail study of one major issue

– spurious retransmissions, and also examined the existing works for solving problems

caused by spurious retransmissions. Lastly, we have discussed another problem – multi-

ple packet losses, and considered related works on the problem.
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In the next chapter, we will propose a new approach for handling spurious retrans-

missions by improving on the existing approaches. Our proposal also enables TCP to

have an RTO estimation in the presence of retransmits and a more efficient recovery

from multiple packet losses.



Chapter 4

Eifel-I: the Improved Eifel Algorithm

In Chapter 3, we have looked at the existing approachs for handling spurious timeouts,

which are frequently seen over wireless links. While they can avoid the problems caused

by spurious timeouts to some extent, they also suffer from their own weaknesses. More-

over, none of them makes any attempt to solve another wireless-related problem: multi-

ple packet losses, which usually co-occurs with spurious timeouts.

In this chapter, we propose a new approach for handling spurious retransmisssions

by modifying the Eifel algorithm. With the modification, our proposal can also improve

TCP’s RTO estimation in the presence of retransmits and enhance TCP’s capability in

recovering from multiple packet losses.

In the following sections, we first look at the problems of the current Eifel algorithm.

Then we describe our basic proposal and other related enhancement to TCP in detail.

4.1 Limitation of the Timestamp Option

Among the three algorithms we discussed in Section 3.3.2, only Eifel eliminates the re-

transmission ambiguity problem, and effectively detects spurious retransmissions. How-

ever, as its operation requires the use of timestamps, it works rather inefficiently. In [45],

experiment results show that F-RTO can achieve slightly more improvement than Eifel.

Here, we will look the problematic issues of Eifel introduced by the use of timestamps:

First, the TCP Timestamp option and its padding in the TCP header increase the size

60
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of each TCP packet by 12 bytes [29]. For a Maximum Transmission Unit (MTU) [46] of

1500 bytes, the overhead is 0.8%. However, for a small MTU of 296 bytes, the overhead

is actually 4%. In addition, not all packets carry the maximum payload, which results

in an even larger relative overhead. For example, in the acknowledgment path, since the

main traffic is along downlink, the uplink traffic mostly consists of pure ACKs. A pure

acknowledgment packet, without any data or options and consisting of only the TCP

and IP headers is 40 bytes. Then, including a 12-byte timestamp in every ACK would

introduce a 30% overhead. This is a very high percentage. Given that sudden delays are

often a problem on wireless links with low bandwidth, the increase in the TCP header

overhead by including timestamps would make the communication less efficient. In

the other way, as the MTU for a connection is fixed, the presence of timestamps also

leads to more transmissions as each packet can now hold less data. Note that avoiding

unnecessary transmissions is often more important than improving throughput over slow

wireless links due to terminal energy and bandwidth savings.

Second, using the Timestamp option also reduces the available space for other TCP

options, mainly the SACK option [35], since there are only 40 bytes for the TCP options

field. For example, in the presence of timestamps, the number of SACK blocks that

can be held by each TCP packet is reduced by 1. Without the information in the last

missing SACK block, the sender may unnecessarily retransmit a series of packets. As

minimizing unnecessary traffic is important for wireless links, it is desirable to avoid

such unnecessary retransmits. If a more efficient SACK representation is used, as has

been suggested in [43], the space occupied by the timestamp may not allow more SACK

blocks. This can result in even more wasteful retransmits.

Lastly, current TCP/IP header compression schemes are limited in their handling of

TCP options. Both schemes transmit only the difference from the previous header in

order to reduce the large header overhead. For RFC1144 [28], a change in the options

effectively disables TCP/IP header compression altogether and such header is always

sent uncompressed. For RFC2507 [14], any change in the options renders the entire

field uncompressible (leaving the TCP/IP header itself compressible, however). This is
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Figure 4.1: Packet-framing in GPRS protocol stack

the case when using the Timestamp option. This option is used in both the data and

the ACK path for every packet, and its value typically changes from one packet to the

next. The compression schemes can compress the header into just a few (3-5) bytes,

and they have been shown to have significant improvement over slow links [49]. So

the overhead caused by disabling header compression may overcome the improvement

that TCP can gain by using timestamps for avoiding spurious timeouts. Even though the

Robust Header Compression (ROHC) working group is developing new specifications

to remedy this problem, those mechanisms are not yet fully developed nor deployed, and

may not be generally justifiable.

TCP/IP Header Overhead

The overhead introduced because of the use of timestamps is closely related to the

TCP/IP header. We deem that it is necessary for us to examine the relation of the TCP/IP

header overhead to the overall protocol overhead in wireless links in more detail.

In Section 2.1.3, we have presented the GPRS protocol stack. Regarding the part

over the radio interface between an MS and the BSS, the packet encapsulation process

from TCP down to RLC/MAC is shown in Fig. 4.1 [47]. When a data packet is passed

down through the protocol stack, each layer will prepend its own header (and sometimes

also add a trailer), consisting of some control or sequencing information.

For a small data packet with no segmentation at any intermediate layer, without

TCP/IP header compression, the total protocol overhead will be between 52 and 56
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Coding Scheme RLC data block Number of RLC blocks generated
(bytes) from an 1510-byte LLC frame

CS-1 22 72
CS-2 32 7/8 50
CS-3 38 3/8 41
CS-4 52 7/8 30

Table 4.1: RLC data block size for the four GPRS coding schemes. No MAC header is
included here.

bytes; with TCP/IP head compression 1, the overhead can be reduced to between 14

and 20 bytes (approximately 70% reduction). The maximum LLC payload size is 1520

bytes (see Section 2.1.3). The RLC data block also has its size limit depending on the

coding scheme used. We show the four coding schemes with their corresponding RLC

block size in Table. 4.1. So for a data packet to be small enough that no segmentation

would be triggered at any layer, its encapsulated unit down to RLC should be no more

than the upper limit of RLC blocks. Such a packet can only be a pure TCP acknowledg-

ment, which can possibly fit an RLC block of CS-4. In this case, employing the TCP/IP

header compression can result in significant overhead saving.

If the data packet delivered to TCP is of a larger size, segmentation may occur at

IP, SNDCP, and/or RLC/MAC. [47] illustrates that as the data packet on top of TCP in-

creases and more LLC and RLC/MAC header overheads are introduced, the difference

between the two cases, with and without TCP/IP header compression diminishes. How-

ever, we think that the assumption of the data packet increasing freely to any large size

is unrealistic. Referring to [46], TCP always tries to avoid fragmentation and it is nearly

impossible for an application to force TCP to send packets large enough to require IP

fragmentation. In the Internet, most hosts stay within an Ethernet-based network, which

has an MTU of 1500 bytes. Minus the 40-byte TCP/IP header, a larger data packet is

usually limited to be no more than 1460 bytes. Prepended with the SNDCP header, the

size of the data payload received by LLC roughly equals to its default payload size, 1503

bytes, and with LLC header and trailer, the resulting LLC frame is 1510 bytes. We list

the number of RLC blocks resulting from this frame, depending on the coding scheme

used, also in Table. 4.1. So the total protocol overhead can ranges from 110 to 270 bytes.
1Suppose the size of a compressed TCP/IP header is 4 bytes.
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Using a compressed TCP/IP header, we can still get a 10 to 30% reduction in protocol

overhead. In a full size TCP/IP packet of 1500 bytes, the saving of using a compressed

header is nearly 3%.

The TCP Timestamp option was originally defined in RFC1323 [29]. It is used in con-

junction with window scaling to prevent wrapping of the TCP sequence number space

on very high speed links. It is also used to improve TCP RTT estimation by providing

unambiguous round-trip timing for each acknowledged packet. However, sampling ev-

ery packet for RTT estimation does not have much of an impact on RTO calculation [3].

The bandwidth of wireless networks currently ranges from tens of kbps to a few Mbps.

For our discussion, we will take 10Mbps (1.25Mbps) as a maximum. Since the TCP se-

quence number is 32 bits, the time needed for the wrap-around of the sequence number

space is:
�?>A@B�C�BD�EF��G��	-H��DJIKD<L�MJ�<NPOJ

QRM����TS?UWVX
ZY\[B�JM

. This duration is much larger than

the two-minute Maximum Segment Lifetime (MSL) assumed by the TCP specification

[41], so there is no worry about sequence number wrapping over wireless links. As sug-

gested in RFC1323: “For low-speed networks, it might be a performance optimization

to NOT use these mechanisms.” A study by Mark Allman [2] on the deployment of TCP

options also noted that the percentage of hosts in the Internet connecting to a web server

during a one-and-a-half-year period using timestamps is only around 1% to 1.5%.

We therefore conclude: although the Timestamp option is already a proposed stan-

dard, it is in fact not widely deployed in the Internet. In high-speed networks with a

bandwidth of up to a number of gigabits per second, we may see more use of times-

tamps. However, in low-speed wireless environments, its originally proposed function-

alities, such as Round-Trip Time Measurement (RTTM) and Protect Against Wrapped

Sequence Numbers (PAWS) [29] are of no use. So timestamps are not a good choice in

Eifel for eliminating retransmission ambiguity.

The basic Eifel algorithm requires some kind of extra information to be included in

TCP headers for eliminating retransmission ambiguity. Timestamps fulfill most require-
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ments of being the extra information. Its major drawback is the overhead caused by the

persistent use of timestamps. To avoid the overhead presented above while still keeping

the ability in timing retransmits, we propose using timestamps only for retransmits and

their corresponding ACKs. In the following sections, we look at how this alternative

approach works in detail, and compare it with Eifel and other related approaches. We

will refer to our proposed approach as Eifel-I during the discussion.

4.2 Selective Use of Timestamps in Eifel-I

To eliminate retransmission ambiguity, we still make use of timestamps as the piece of

extra information. In the original specification of the Timestamp option [29], once a

connection is initialized to use timestamps, it requires the TCP sender to place a times-

tamp in every outgoing packet and the receiver to echo a timestamp back in every ACK

throughout the whole life of the connection. As discussed above, this persistent use of

timestamps in all packets and ACKs can impair TCP performance over wireless links.

To avoid the problems just discussed, Eifel-I modifies the option to allow selective use

of timestamps. This “use-on-demand” idea is enlightened by the usage pattern of SACK

blocks in the TCP SACK option [35].

In Eifel-I, most of the time, the TCP sender does not include any timestamp in the

header of each outgoing packet. The sender only adds timestamps into retransmitted

packets. On the other side, the receiver only echoes a timestamp in the ACK in response

to an incoming packet with a timestamp in its header. Note that here we only focus on

the modified use of timestamps in one direction. Since the option is used independently

in each direction, it can be similarly applied to the bi-directional case.

This selective use of timestamps requires changes in both the TCP sender and re-

ceiver. The modification at the sender is straightforward: the sender only needs to take

note whether the next outgoing packet is an original packet or a retransmit. If the packet

is a retransmit, the sender takes the current value of the timestamp clock and writes it

into the header of the packet. Similarly, at the receiver, only a few changes are required:

the receiver needs to take care of which timestamp to echo when incoming packets are
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not in their sending sequence or when Delayed Acknowledgment [46] is enabled [29].

The receiver’s behavior can be fully illustrated by the following three cases:

An original transmit: When the original transmit of a packet arrives, the receiver can

just behave as if the Timestamp option is not enabled. Since the incoming packet

has no timestamp in its header, the receiver does not need to echo any value either.

A genuine retransmit: When a packet which first arrives at the receiver has a times-

tamp, it is supposed to be a genuine retransmit. The receiver reacts as if the

Timestamp option is enabled according to its original specification in RFC1323.

A spurious retransmit: If the spurious retransmit of a packet successfully arrives at the

receiver after the original transmit, it is a duplicate of the original packet that has

already arrived. So the receiver generates a DUPACK which echoes the timestamp

contained in this retransmit. As mentioned earlier in Section 3.1, a TCP receiver

sends out a DUPACK immediately after the receipt of a duplicate packet, so there

is no worry about delayed acknowledgment. A very rare case is that the spurious

retransmit of a packet arrives before the original transmit due to severe reordering

in the network. In this case, the receiver would take the retransmit as a genuine

one, and when the original transmit arrives later, the receiver just generates a DU-

PACK for it without any timestamp.

Retransmission ambiguities can then be easily removed. To detect spurious retrans-

missions, the TCP sender only needs to check for any timestamp in the first acceptable

ACK during loss recovery. If a timestamp is present in the header of this ACK, then the

ACK is triggered by a retransmit, and the retransmission is not spurious; otherwise, the

ACK is triggered by an original transmit, and a spurious retransmit has been sent.

The comparison of Eifel-I with other approaches with respect to their capabilities in

handling spurious retransmissions is presented in Table. 4.2. As Eifel-I follows the ba-

sic algorithm of Eifel, it eliminates retransmission ambiguity and is able to handle both

spurious timeouts and spurious fast retransmits. It can detect spurious retransmissions

early enough to avoid the go-back-N retransmissions. As there is a window of ACKs
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Eifel-I DSACK Eifel F-RTO
Handle both spurious timeouts and Yes Yes Yes
spurious fast retransmits
Eliminate retransmission ambiguity Yes Yes
Avoid the go-back-N retransmission Yes Yes Yes
Robust against ACK losses Yes Yes Yes
Always make a correct detection Yes Yes Yes
Can detect the loss of spurious Yes Yes
retransmits
No overhead Yes Yes Yes
More space for other TCP options Yes Yes
Use of TCP/IP header compression Yes Yes Yes
Measure RTTs of retransmits Yes Yes

Table 4.2: Comparison of Eifel-I and other approaches

for original packets containing no timestamps, Eifel-I is very robust against ACK losses.

During a spurious retransmission, only a single unnecessary retransmit would be sent

out. Other packets before or after it are all original ones with no timestamps. As this

retransmit arrives as a duplicate packet, an immediate timestamped ACK will be gener-

ated. So the arrival of a timestamped ACK later indicates the successful transmission of

the retransmit while the non-arrival of this ACK until the ACKs of its following window

of packets have arrived signals the loss of the packet or its ACK. Since retransmits form a

relatively small part of the total transmitted packets of a connection, the timestamp over-

head introduced by these packets can be considered negligible. Avoiding timestamps

also saves more TCP option space for other options. Moreover, since the TCP options

field is rarely changed by timestamps in retransmits, the TCP/IP header compression

schemes [28] [14] can be used with Eifel-I. Lastly, the use of timestamps in retransmits

also allows TCP to collect RTT samples from retransmits, which was prohibited by com-

mon TCP implementations. In summary, Eifel-I captures all the advantages of the other

approaches.

In certain cases, Eifel-I is more accurate in detection than Eifel. As with the corner

case of timeout due to loss of all ACKs discussed in [33], if all ACKs for the window of

original transmits are lost while the oldest outstanding packet arrived at the receiver, the

retransmit arrives as a duplicate. Although all the data packets have correctly arrived,
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the sender should take this as a genuine timeout as there have been quite a number of

losses along the ACK path. In response to duplicate packets, RFC1323 requires that the

timestamp of the last packet that arrives in-order should be echoed. Then the timestamp

carried by the ACK for the retransmit, which is also the first acceptable ACK that arrives

at the sender during loss recovery, is commonly smaller than the timestamp carried by

the retransmit. Consequently, Eifel misinterprets such a timeout as being spurious. Eifel

can only detect that the ACK is triggered by the retransmit, if either the receiver echoes

the timestamp of the duplicate packet as in some TCP implementation that does not

follow RFC1323 strictly, or the DSACK enhancement [18] is enabled in the connection.

However, Eifel-I can easily figure out that the ACK is triggered by the retransmit, since

this ACK contains a timestamp. Essentially, Eifel-I is accurate in its detection because

it uses the existence of timestamps for detection while Eifel on the basis of comparing

timestamp values. In fact, it is this property of Eifel-I that enables a TCP sender to detect

the loss of the unnecessary retransmit after a spurious retransmission.

A drawback of Eifel-I is that it needs a few changes at both the TCP sender and

receiver. However we think that as long as the advantages gained with the use of Eifel-I

are significant enough to justify its usability, the small drawback is tolerable.

4.2.1 Negotiating the Use of Eifel-I

In Section 3.1.1, we have briefly described the three-way handshake for TCP connection

establishment. The use of the original TCP Timestamp option is also negotiated during

the handshake: the initiating TCP end may send the initial SYN packet with a timestamp;

at the other end, if the receiving TCP receives the timestamped initial SYN, it can include

timestamps in all its subsequent outgoing packets.

The selective use of timestamps could be similiarly negotiated with slight modifica-

tion. Here we present one possible negotiation process.

Eifel-I is aimed at improving TCP performance over wireless links. As the TCP

on an MS knows that it is behind a wireless network, we can let it initiate the use of

selective timestamp, i.e., Eifel-I. In current wireless networks, the common scenario is
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that a wireless link is used as a last-hop link to a host and the host deploys the wireless

link to connect to the rest of the Internet. The main traffic flow is from a fixed host in

the Internet to the mobile host, where the mobile requires data from the fixed host, such

as web browsing, FTP, etc.

When the TCP on the MS initiates the connection, it can send the initial SYN packet

with a special timestamp value such as 0. If the other host is Eifel-I enabled, it will know

that the initiating end is requesting the use of Eifel-I. Then in its SYN and ACK packet, it

acknowledges that special value and also includes a special value as its own timestamp.

After the SYN and ACK packet arrives at the MS, TCPs at both hosts can use Eifel-I

now. If the receiving host is not Eifel-I enabled, it will send a normal timestamp as its

own and the TCP on the MS will abort the use of Eifel-I.

We have described one method for negotiating the use of selective timestamps or

Eifel-I. Others are also possible for catering to other network scenarios, such as where

neither of two end hosts is a mobile one but the connection between them involves some

wireless links.

We have so far explained the detection mechanism of Eifel-I. In the next section, we

will discuss the response mechanisms that work with Eifel-I’s detection mechanism,

including an improvement on TCP RTT estimation.

4.3 Responses to Spurious Retransmissions

When a spurious retransmission is detected, a response algorithm generally needs to per-

form three tasks in recovery. First, if it is a spurious timeout and the detection is made

during the go-back-N retransmission, the TCP sender stops the unnecessary retrans-

mission and continues from the next unsent packet. Second, it restores the congestion

control state from values saved before the retransmission. Lastly, the sender can try to

avoid future spurious retransmissions by adapting either the retransmission timer for a
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spurious timeout or dupthresh for a spurious fast retransmit.

The first task is straightforward. As we have mentioned in Section 3.3, the second

task is independent of how the detection is made. So Eifel-I can also take any of the

restoration methods [23] that have been proposed. In Chapter 6, we will discuss fur-

ther the various restoration methods based on our experiment results. How the value of

dupthresh is adjusted after a spurious fast retransmit is not affected by Eifel-I’s detection

method, either. Therefore, in our discussion of the response mechanism, we will focus

on the adaptation of the TCP retransmission timer.

4.3.1 Adapting the TCP Retransmission Timer

In Section 3.1.2, we have explained how TCP computes each RTO value. RTO is com-

puted from RTT estimations in the current connection, where the RTT estimator is grad-

ually changed with each incoming RTT sample. However, [3] has pointed out that the

timer adapts fairly slowly to changes in network conditions. The TCP sender takes one

RTT measurement at a time, so SRTT and RTTVAR are updated by new RTT sam-

ples only once per RTT. But according to Karn’s algorithm [30], RTT samples must not

be made using retransmitted packets because of the retransmission ambiguity problem.

So any time a retransmission occurs, without the Timestamp option, the sender cannot

safely measure RTTs for those retransmits, and thus will take a long time to adapt its

RTT estimates in order to improve its broken RTO estimation.

With timestamps, Eifel removes retransmission ambiguity. Since each acknowledged

packet can be used for RTT sampling now, it is able to solve the slow adaptation problem.

However, the definition of the RFC2988 timer has been based on the premise of one RTT

measurement at a time, and the estimation gains and variation weight used in calculations

have been tuned to this particular case. Then, when RTT samples are being taken at a

much higher rate – one per packet – these parameters fail to perform well. Fig. 4.2(a)

and 4.2(b) show how the RTO dynamics change with Eifel when a delay spike occurs

during either the slow start phase or the congestion avoidance phase.

� In Fig. 4.2(a), during slow start, the values of RTT samples are small because
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Figure 4.2: RTO Dynamics when a delay spike occurs – Eifel

the packets transmitted incur less queuing time compared with those transmitted

during congestion avoidance. A delay spike occurs from the 5th to the 10th sec-

ond. After the 10th second, the TCP sender starts to get RTT samples from the

ACKs of delayed packets. As we can see, the value of RTT suddenly increases. At

the meantime, SRTT gradually increases because of the smoothing function pre-

sented at the beginning of this subsection. RTTVAR first increases, but then de-

creases (down to 0 from the 19th second) as SRTT approaches RTT. As the value

of RTTVAR is amplified by four times when computing RTO, its change domi-

nates the change of RTO. So RTO first increases to a considerably large value, and

then decreases to the level of the current RTT value.

� In Fig. 4.2(b), during congestion avoidance, the values of RTT, SRTT, RTTVAR

and RTO have similar changing patterns as their counterparts during slow start.

However, after the increase just following the delay spike, the value of RTO shows

a second sudden increase. During slow start, after the spurious timeout, the TCP

sender will restore its transmission rate and keep on sending packets at an expo-

nential rate. As there will be more packets being injected into the network, the

queuing time for packets increases and RTT will increase quickly to a level com-

parable to the previous delay. So the change in RTTVAR is small (about 3 seconds

at the 16th second in Fig. 4.2(a)) when the ACKs of the new packets sent after
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the timeout start to arrive at the sender. However, during congestion avoidance,

RTT is quite stable. So after the window of delayed packets, RTT will return to its

usual level (after the 60th second). As the value of SRTT has already increased to

the level of delayed RTTs, this drop-back in RTT will introduce a sudden increase

in RTTVAR (6 seconds at the 61st second in Fig. 4.2(b)). Consequently, it leads

to a second large increase in RTO.

During congestion avoidance, TCP with Eifel will always have such two consecutive

increases after a spurious timeout. It may also have a similar double-increase during

slow start if the delay spike is much larger than the RTTs from the new packets sent after

the spurious timeout. The reason that there is only one increase in RTO in Fig. 4.2(a) is

that the delay is not very large. In both cases, after the one or two increases, RTO quickly

decreases to the level of RTTs. The reason is that the values of estimator gains are too

high for the one-per-packet sampling rate. This causes SRTT and RTTVAR to decay

very quickly. Thus, RTO eventually collapses into RTT, and then it cannot maintain at a

reasonable level for avoiding future delay spikes. So Eifel performs poorly in avoiding

future spurious timeouts, as shown in Fig. 4.4.

Ludwig and Sklower [34] have proposed a new TCP retransmission timer which

makes the values of estimation gains and variation weight being dynamically adjusted

by the rate at which the RTT is sampled. It is supposed to work better with the one-

sample-per-packet case. However, this timer is not yet fully developed nor evaluated. It

has also been shown that there is little help by taking more samples using the Timestamp

option in RTO estimation [3]. As the RFC2988 timer is the current de facto standard

and is widely deployed, we choose to improve it rather than to develop a totally new and

uncertain one.

In conjunction with Eifel-I detection, we propose a simple yet effective modifica-

tion to the RFC2988 timer for quick adaptation to changing network conditions, more

specifically, the highly variable delay spikes. The modified timer is still based on one

measurement per RTT. It ensures that the RTT estimator is always able to get an RTT

sample, even with retransmits. In the absence of retransmissions, the RTT samples can
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Figure 4.3: RTO dynamics when a delay spike occurs – Eifel-I

be taken as normal. In the presence of retransmissions, in case of a spurious retransmis-

sion, as retransmission ambiguity has been removed, the TCP sender can be sure that the

ACK for the packet, whose RTT is being sampled, is triggered by the original transmit

and then this RTT sample can be safely taken. This is similar to F-RTO’s side-effect

on the TCP retransmission timer in Section 2.3. In case of a genuine retransmission,

since the ACK for the retransmit contains the echoed timestamp, the RTT sample can be

computed using this timestamp.

The changes in RTO dynamics with Eifel-I’s modified timer are shown in Fig. 4.3.

During slow start in Fig. 4.3(a), similar to Fig. 4.2(a), after the spurious timeout during

from 5th to the 10th second, the TCP sender is able to get the RTT value from the delayed

packet that is being sampled. So its RTO can increase to a reasonably large value. Then

with the sampled packets in the subsequent windows of packets, RTO increases with the

increases of SRTT and RTTVAR. Since the values of SRTT and RTTVAR are updated

once per window, RTO is also changing at this rate. This stable RTO value enables the

sender to avoid future spurious timeouts. During congestion avoidance in Fig. 4.3(b),

although the delay spike occurs, there is no timeout. This can be seen from the values

of the backoff counter. If a timeout has ever happened, the counter would be set to 2.

However, in Fig. 4.3(b), it remains at 1 all the time. The timeout is avoided because of

the timer adaptation done earlier after the spurious timeout in Fig. 4.3(a). After taking

the delayed sample, RTT drops back to its usual level (after the 61st second). However,
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Figure 4.4: In the presence of delays – Eifel
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Figure 4.5: In the presence of delays –
Eifel-I

since RTTVAR decreases once per window, RTO also decreases at the same rate. So

RTO can remain at a reasonably high level for avoiding the next delay spike. Also note

that Eifel-I’s timer adaptation is less aggressive than Eifel’s. After getting the delayed

samples, the RTO value adjusted by Eifel reaches nearly 40 seconds (at the 55th and the

61st second in Fig. 4.2(a)), while Eifel-I’s adapted RTO value is about 27 seconds (from

the 55th to the 60th second in Fig. 4.3(a)). Getting an RTO value that is too large may

lead TCP with Eifel to suffer from a long wait before timeout recovery when real packet

losses occur.

With our proposed modification, the new retransmission timer can take samples from

retransmits and make in-time adaptation when delay spikes occur. At the same time, as

we keep the premise of one sample per window, the parameters used in the original

RFC2988 timer still work well. The adapted SRTT and RTTVAR will not decay ab-

normally fast after spurious timeouts, so the new timer can have better performance in

avoiding future spurious timeouts. In Fig. 4.4, a TCP with Eifel detects spurious time-

outs caused by delay spikes and avoids the go-back-N retransmissions; in Fig. 4.5, after

detecting the first spurious timeout, a TCP with Eifel-I can avoid the other timeouts later

because of its superior timer adaptation. In fact, the figures in Fig. 4.2 are generated

from the same set of simulation traces as Fig. 4.4, and the two delay spikes shown in

Fig. 4.2(a) and 4.2(b) correspond to the first two in Fig. 4.4. So do Fig. 4.3 and 4.5.

One may say that the retransmission timer adaptation by Eifel-I is still slower than

Eifel’s, since a TCP sender with Eifel can adjust its RTO-related variables when it gets
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the ACK for the first packet in the delayed window while a sender with Eifel-I can only

do that when the ACK for the packet in the delayed window, which is currently being

sampled, arrives. However, since a TCP sender usually sends out up to a window of

packets at one time, getting the information about what network condition this window

has encountered from just one of its packets should be enough. Moreover, keeping the

sampling rate of RTT and the updating rate of RTO the same as the rate at which the

TCP sender injects each window of packets is also more rational than at the rate of once

per packet. Preliminary experiment results in Fig. 4.4 and 4.5 also show the strength

of our modification in avoiding future timeouts. So we take this reasonable adaptation

speed of our modification as an advantage over Eifel, rather than a weakness. In Chapter

5, we will show more experiment results in verifying the capability of our improvement

in the retransmission timer.

To further adapt the conservativeness of the TCP retransmission timer, the TCP

sender may also use mechanisms like resetting the retransmission timer once getting

the first delayed RTT sample after a spurious timeout, resetting the backoff counter only

on a genuine timeout, etc. [23]. However, adapting a too conservative RTO value may

also cause the sender to suffer excessively from waiting for genuine retransmission time-

outs. In order to achieve acceptable performance in other networks, such as where packet

losses may frequently occur, we should also prevent the retransmission timer from being

too conservative. Here we do not pay attention to these mechanisms any more. In Chap-

ter 6, we will discuss these mechanisms and the long timeout wait problem based on the

simulation results.

4.4 Avoiding Multiple Fast Retransmits

As discussed in the previous sections, with the selective use of timestamps, the Eifel-I

algorithm can easily distinguish between ACKs triggered by originally-transmitted pack-

ets from ACKs of retransmits (each of which contains a timestamp). This capability also

enables TCP to solve another existing problem, especially for non-SACK TCPs (i.e.,

TCP without SACK, such as TCP Reno, Newreno, etc.).
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4.4.1 The Multiple Fast Retransmits Problem

Because of the cumulative nature of acknowledged sequence numbers in TCP acknowl-

edgments, without selective acknowledgments or timestamps, a DUPACK cannot pro-

vide any information to identify the packet (or packets) at the receiver side that has

triggered the DUPACK. Then, when it receives a DUPACK, a TCP sender is unable to

decide whether the DUPACK results from a lost or reordered packet, or results from its

own unnecessary retransmits that have already arrived at the receiver. (In Section 3.1,

we have discussed TCP Acknowledgments in some detail.)

After a retransmission timeout, DUPACKs may arrive which are triggered by either

unnecessary timeout retransmits or the loss of one or more retransmitted packets. Multi-

ple packet losses in a single window of data would always cause a timeout for non-SACK

TCPs. Since not all packets in the window have been dropped on the way, some packets

retransmitted during slow-start would be unnecessary for the receiver and trigger DU-

PACKs. In such a case, if the sender always responds to three or more DUPACKs with

a fast retransmit, the fast retransmit and fast recovery could be unnecessarily triggered

and thus result in unnecessary reduction of the congestion window. As multiple packet

losses usually trigger a fast retransmit before timeout, within the transmission of a sin-

gle window of data, fast retransmit and fast recovery algorithms would be executed more

than once [4]. This multiple fast retransmits problem was first identified for TCP Reno

and Tahoe in [19]. One typical scenario may occur as follows (Fig. 4.6(a) 2):

Multiple packet losses in a window first triggers a fast retransmit (after the 2nd sec-

ond), and then the retransmission timer expires. The timeout starts the go-back-N re-

transmission where all the remaining unacknowledged packets in the window are resent

(starting after the 3rd second). However, as we can see from rcv data, some packets in

the window have successfully arrived at the receiver, so the retransmits of these packets

arrive as duplicates and each triggers a DUPACK. In the example, there are three such

cases (at the 4.4th, 4.5th, and 4.8th second) where the sender unnecessarily retransmits

three (or more) packets. Fig. 4.6(b) verifies that this indeed leads to multiple reductions

2rcv data is shifted down by 5 units for illustration purpose.
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Figure 4.6: TCP Reno with unnecessary multiple fast retransmits

of the sender’s transmission rate.

With NewReno [17], the TCP sender remains in fast recovery until the retransmission

timer expires, or until all of the packets outstanding when fast retransmit started have

been acknowledged. Thus with NewReno, the problem of multiple fast retransmits from

a single window of data occurs only after a timeout, and the last two unnecessary fast

retransmits in Fig. 4.6(a) may be avoided.

4.4.2 BugFix in TCP NewReno

To further resolve the problem, a modification of TCP called bugfix has been proposed

with the introduction of TCP NewReno (RFC2582 [17]). When a retransmission timeout

occurs, the TCP sender records the highest sequence number transmitted so far in a

variable called “send high” (and exit fast recovery if applicable). Then when a fast

retransmit is to be triggered later, the sender checks to see if those DUPACKs triggering

this fast retransmit cover more than “send high”:

� If not, as the sender has just retransmitted those packets no more than “send high”,

it does not take the DUPACKs as an indication of a new congestion loss but an

indication of unnecessary retransmits (as illustrated in Fig. 4.6(a)). Thus, the

sender will not initiate the fast retransmit and fast recovery.

� Otherwise, it starts the fast retransmit as usual.
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Figure 4.7: TCP NewReno with a lost retransmitted-packet

This modification provides the avoidance of unnecessary multiple fast retransmits.

It achieves this by blindly ignoring all the incoming DUPACKs after a retransmission

timeout until retransmission recovery is completed. However, in case a retransmitted

packet corresponding to a lost packet in the original window is itself lost, it would have

been better for the sender to execute the fast retransmit. But for a non-SACK TCP

sender which has implemented bugfix, it would not infer a packet loss from the series

of DUPACKs, and as always, the retransmission timer is the backup mechanism for

recovering the packet loss in this case. A sample scenario is presented in Fig. 4.7(a).

The sender has to wait for a timeout retransmit in order to recover the previously lost

retransmit (in this case it is packet 48). This would definitely hurt TCP performance. So,

some explicit mechanisms may still be needed to resolve this problem.

4.4.3 The Eifel-I-based Solution

The fundamental cause of “multiple fast retransmits” is that a non-SACK TCP sender

has no way of knowing which packet(s) triggers the DUPACK(s). bugfix in NewReno

may avoid the problem, but at the cost of failing to detect a real retransmit loss if there

is and suffering from lengthy wait for timeout retransmission (such as the scenario illus-

trated in the previous section). This is because it still fails to eliminate the ambiguity in

DUPACKs.
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A non-SACK TCP sender with Eifel-I enabled can differentiate the ACKs in response

to retransmits from the ACKs of originally-transmitted packets by checking the existence

of timestamps echoed in ACKs. As shown in Fig. 4.6(a) or 4.7(a), at the time the go-

back-N retransmission starts (from the 3rd second), all ACKs for the original packets

in the window (no more than “send high”) have already arrived at the sender (from the

2nd to 2.5th second). So all the ACKs (or DUPACKs) that arrive later should contain

an echoed timestamp. As the transmission goes on, after finishing retransmitting all

the unacknowledged and presumably lost packets in the window, the sender continues

to send out new packets (roughly starts from the 4.5th second), each of which has a

sequence number more than “send high” and contains no timestamp. At the time, the

sender is sure that there can only be the retransmits of the old window and the new

packets above, and their corresponding ACKs flowing between the sender and receiver.

If the sender later receives a DUPACK acknowledging no more than “send high” but

without a timestamp, it knows that the DUPACK is triggered by a new packet which it

has sent out only once and thus can be taken as a strong indication of loss of retransmit-

ted packets in the network. Instead of waiting for a timeout retransmission, the sender

can initiate a fast retransmit immediately. But if the DUPACK does contain a times-

tamp, then it should be triggered by a retransmit. The sender will then ignore it just as

NewReno’s bugfix does.

By comparing the plots in Fig. 4.7, we can see that the solution based on Eifel-I has

two advantages:

� First, the TCP sender can recover the lost packet at an earlier time. In Fig. 4.7(b),

the lost retransmit is of sequence number 48 and the old window (with multiple

losses) covers packets of sequence number up to 51, so when the non-timestamped

DUPACK triggered by packet 52 arrives at around the 4.5th second, the sender can

start the fast retransmit immediately. The arrival of the new DUPACK should be

within one round-trip time, while a retransmission timeout is usually several times

of the average RTT. Thus if it were for a timeout retransmit, it would take a much

longer time. In this scenario, the timeout occurs nearly two and a half seconds
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later while the RTT of the DUPACK is no more than half a second.

� Second, the sender avoids the timeout and thus can keep transmission at a higher

rate. When a retransmission timeout starts, the congestion window is first reduced

to 2 and then incremented in slow-start up to half of its previous value, and after

that it gets incremented in congestion avoidance; if it is a fast retransmit, the con-

gestion window would have less reduction where it gets incremented directly from

half of its previous value and in congestion avoidance.

With both advantages, our proposed solution offers significant performance improve-

ment. As presented in Fig. 4.7, by the end of the 8th second, it can help the TCP sender

send about 35% more packets (118 packets) than NewReno’s bugfix (87 packets).

Further Improvement

After a retransmission timeout caused by multiple packet losses, the Eifel-I-based so-

lution can avoid unnecessary fast retransmits caused by duplicate retransmits, just as

NewReno’s bugfix. In addition, it handles recovery more efficiently if new loss indeed

occurs in the retransmitted packets. We will explain in the following paragraphs how

Eifel-I achieves more efficient loss recovery.

According to Section 5 in RFC2582 [17], if a fast retransmit is avoided by bugfix, the

TCP sender should not invoke fast recovery upon subsequent DUPACKs either. Thus, if

the DUPACKs arrive before any new packet has been sent out, the Eifel-I-based solution

may not be able to detect the retransmit loss and recover it in time.

To improve this, we propose that even through the TCP sender avoid the fast re-

transmit upon receiving the third DUPACK acknowledging no more than “send high”, it

should still follow Steps 3 & 4 in Section 3, RFC2581 [4]: for each additional DUPACK

received, a TCP sender should increment its cwnd by one packet, and transmit a new

packet if allowed by the new value of cwnd and the receiver’s advertised window. This

modification is consistent with the underlying concept for using fast recovery: since each

DUPACK indicates that a packet has left the network, the sender should keep the trans-

mission continuing and preserve the ACK clocking. Otherwise, the network resource
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Figure 4.8: The Eifel-I-based approach’s recovery upon a retransmit loss early in the
window

would be underutilized.

Following this new-packets-on-DUPACKs, there are only two possibilities:

� A non-duplicate ACK arrives soon (possibly after some more DUPACKs) if the

previous DUPACKs were triggered by duplicate retransmits. This ACK is in re-

sponse to a retransmit that has filled a gap in the receiver’s buffer. Since there is

no loss at all, the network has enough bandwidth to support the sender’s current

transmission rate. So in response to each packet left out of the network, it is safe

for the sender to inject one packet back.

� As the transmission continues upon incoming DUPACKs, the sender finishes send-

ing all the retransmits and starts to transmit new packets (above the old window)

into the networks. Later, a DUPACK caused by a new packet arrives, indicating

that there is a real loss. Thus, a fast retransmit is invoked. As the fast retransmit

will be initiated soon, there will not be many packets sent out before this retransmit

(no more than the size of the old window).

Also note that this modification only changes TCP’s behavior during retransmission re-

covery.

Referring to Fig. 4.8, with this further improvement, even if the loss happens early

in the retransmitted window, as the sender continues transmitting upon subsequent DU-
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PACKs, packets above “send high” will be sent out and the lost packet will be recovered

within one RTT.

The Eifel-I-based solution can therefore completely avoid the problems caused by

DUPACK ambiguity after a timeout retransmission, no matter if the problem is unnec-

essary multiple fast retransmits, or a long timeout retransmission triggered by retransmit

losses.

Related Works

While we were working on the Eifel-I-based approach outlined above for avoiding mul-

tiple fast retransmits, some other heuristics for solving the problem have been proposed

[20]:

One heuristic (ACK heuristic) is based on the amount of advancement of the cumula-

tive acknowledgment field. If a TCP sender has unnecessarily retransmitted at least three

consecutive packets during a previous timeout, there would be a jump by at least four

packets in the cumulative acknowledgment field. So each time the sender is to invoke a

fast retransmit, besides other condition checkings, it need also verify that the difference

between two consecutive acknownledgment numbers is at most three packets.

Another heuristic (timestamp heuristic) is based on the echoed timestamps when

the Timestamp option [29] is enabled. A TCP sender needs to store the timestamp of

the last ACK that has acknowledged one or more previously unacknowledged packets.

When receiving the third DUPACK, the sender checks if the incoming echoed timestamp

equals the stored timestamp. If so, the DUPACK indicates a lost packet.

Discussion and Comparison

As noted in the same paper [20], both heuristics have certain limitions in application.

For example, ACK heuristic is susceptible to ACK losses, as a small number of ACK

losses is sufficient for a more-than-three-packet jump in the cumulative sequence num-

ber; timestamp heuristic fails if certain TCP implementations do not follow RFC1323

or its revision closely. Moreover, before applying either heuristic, a TCP sender should
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check that the timeout is not spurious to avoid using ACKs generated in response to the

original but not retransmitted packets.

We also noticed that timestamp heuristic needs the timestamp of the last acknowl-

edged packet at the sender side. As the sender cannot know which would be the last

acknowledged packet (that would be acknowledged by the receiver) in advance, it has

to store the timestamps of all the unacknowledged packets. This requires extra storage

space in the sender’s TCP Control Block. If either the old congestion window is large or

the sender is concurrently supporting numerous connections, the required space would

be considerably large. Timestamp heuristic also introduces timestamp overhead in every

packet.

The original Eifel-I algorithm, as described in Section 4.2, aims to cope with spu-

rious timeouts. If a spurious timeout ever occurs, it will be handled by Eifel-I, and no

further unnecessary retransmits except the first timeout retransmit will be sent out. Thus,

only a real timeout can trigger the go-back-N retransmission. At the time new packets

beyond “send high” are sent, there should be no origingal ACKs for the old window left

except for very rare and severe reorderings. As a double-check, a TCP sender imple-

menting the Eifel-I-based approach needs to ensure that some new packets have really

been sent out before it uses the non-timestamp DUPACK for detecting retransmit losses.

Thus, whether the timeout is spurious is never a problem for the Eifel-I-based approach.

Moreover, compared with the two heuristics, our approach introduces no overhead while

being always able to make the correct decision.

In [20], the authors set up a three-state error model for evaluating ACK and times-

tamp heuristics by simulation. The initial state is loss-free. The second state is short and

serves to trigger a retransmission timeout. In the loss scenario all packets are dropped in

the second state. In the duplicate scenario the second state has a 50% loss rate and a fast

retransmitted packet is dropped. The third state lasts two seconds and has a 10% loss

rate. It causes a small number of retransmits to be dropped. The model is designed to

capture the two scenarios discussed earlier in this section. As far as we know, there is no

study showing whether such scenarios are common in the Internet. But they do happen,
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Figure 4.9: Comparison of different approaches for avoiding multiple fast retransmits

such as during a handover in wireless networks, and by using the two scenarios, we can

have some idea of the possible improvement we may get by using a certain approach

to explicitly fix the problems that follow a retransmission timeout. Here, we compare

NewReno TCP using bugfix, without using bugfix, with ACK heuristic, with timestamp

heuristic, and the Eifel-I-based approach.

In Fig. 4.9(a) & 4.9(b), the plots of TCP with/without bugfix, with ACK heuristic

and with timestamp heuristic are the same as those in [20]. In the duplicate scenario, the

performance of TCP with the Eifel-I-based approach is similar to that of TCP with either

bugfix, ACK or timestamp heuristic. Without bugfix, TCP suffers from unnecessary fast

retransmits because of duplicate timeout retransmits.

Fig. 4.9(b) shows the simulation results of the loss scenario. As expected, TCP with

bugfix falls below the others in performance because it needs to wait for a timeout to

retransmit the lost retransmit(s). TCP with the Eifel-I-based approach performs the best.

It achieves more than 10% improvement over TCP with either heuritic or without bugfix

and more than 230% improvement over TCP with bugfix. TCP with either heuristic

determines the loss of a retransmit packet upon receiving the third DUPACK and invokes

fast retransmit immediately. But TCP with the Eifel-I-based approach will wait until a

DUPACK triggered by a new packet comes before initiating the fast retransmit. If the

new DUPACK happens to be the third DUPACK, the three approaches produce the same

result. But mostly the new DUPACK will either be before or after the third DUPACK.
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Figure 4.10: Comparison of different approaches for avoiding multiple fast retransmits,
– delayed acknowledgment is enabled

If it is the fourth or any subsequent DUPACK, TCP with the Eifel-I-based approach will

keep transmitting and start the fast retransmit at a later time when the congestion window

has increased; if it is the first or the second DUPACK, the lost retransmit can only be

one of the last few packets in the retransmission window, and TCP with the Eifel-I-based

approach can start the fast retransmit earlier by saving the time for waiting the second

and/or the third DUPACK.

[20] only studied the scenarios when delayed acknowledgment is disabled. However,

as delayed acknowledgment possibly introduces some complexity in differentiating un-

necessary fast retransmits and real retransmit losses, we have experimented the same

scenarios with delayed acknowledgment enabled. The plots in Fig. 4.10 presents our

simulation results.

In the duplicate scenario (Fig. 4.10(a)), TCP with either bugfix, ACK heuristic or

the Eifel-I-based approach performs slightly better than TCP without bugfix or with

timestamp heuristic. This is because delayed acknowledgment reduces the number of

ACKs, and therefore the number of DUPACKs, arriving at the sender. There are then

fewer chances of triggering a fast retransmit. If a fast retransmit does get triggered,

ACK heuristic always works in the correct way. As explained earlier, with few ACKs

a more-than-three-packet jump in acknowledgment number is more likely to occur, so

ACK heuristic is biased to suppress a fast retransmit after receving three DUPACKs.
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In this scenario, this happens to be the right decision. As for timestamp heuristic, if

more than one packets arrive at the receiver before the delayed ACK is sent out, the

echoed timestamps will be different from the case when the ACK is not delayed, and it

may result in a fast retransmit being wrongly initiated. The timestamp included in every

packet also introduces extra overhead when transmitting the same amount of data. So

timestamp heuristic offers no improvement at all.

In the loss scenario (Fig. 4.10(b)), avoiding the fast retransmit is no longer correct,

so occasionally ACK heuristic needs to wait for a second timeout when a retransmit sent

after the first timeout is lost. As explained in the previous paragraph, timestamp heuris-

tic is more likely to invoke a fast retransmit even if it could make a wrong detection

with fewer ACKs. So most of the time, it can recover loss of retransmit before the re-

transmission timer expires. However, its timestamp overhead is still there pulling it from

performing better. So TCP with either heuristic only performs the same as without bug-

fix – up to 60% improvement over TCP with bugfix, which always suffers from waiting

for a second timeout. In the previous loss scenario without delayed acknowledgment,

we have mentioned that although a fast retransmit would be invoked eventually, TCP

with the Eifel-I-based approach can maintain the reduced congestion window at a higher

value. Thus, it can continue transmitting at a higher rate. In this scenario, it can achieve

more than 110% improvement over TCP with bugfix and more than 30% improvement

over TCP without bugfix or with either heuristic.

4.5 Summary

In this chapter, we have presented a detailed discussion on the proposed Eifel-I approach.

This new approach is based on the modified selective use of timestamps in TCP headers.

It avoids the problems caused by the persistent use of timestamps in the current Eifel

approach. In conjunction with Eifel-I, we have also suggested a simple modification

to the TCP retransmission timer for avoiding future spurious timeouts and an enhance-

ment to non-SACK TCPs (such as TCP Reno or NewReno) for avoiding multiple fast

retransmits. The modified retransmission timer is capable of getting RTT samples from
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both originally-transmitted packets and retransmitted packets. This capability enables

the timer to have a more responsive RTO estimation and avoid more future spurious

timeouts.



Chapter 5

Implementations

For a quick implementation and evaluation of Eifel-I and also to have a controllable and

repeatable environment with various TCP flavors (TCP Reno, NewReno and SACK), we

have chosen to use the NS-2 network simulator [37] for conducting our evaluation exper-

iments. In this chapter, we first present some background knowledge on the simulator.

We then briefly describe the implementations of Eifel-I, Eifel and some other approaches

in the simulator. The experiment results will be presented in the next chapter.

5.1 The NS-2 Network Simulator

NS-2 [37] is a public-domain, object-oriented, discrete-event simulator targeted at net-

working research. It is primarily used to simulate local and wide area networks. It

provides substantial support for the simulation of common Internet protocols (e.g., TCP,

UDP), routing, and multicast protocols over wired and wireless networks.

In the following subsections, we will present a brief overview of the basic simula-

tor, consider how a link is simulated, and describe in detail the various TCP modules

available in NS-2.

5.1.1 Overview of NS-2

In general, the simulator supports the following features:

88
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Figure 5.1: A simplified user’s view of NS-2

� Elements for network topology – nodes and point-to-point links

� Network protocols – TCP, UDP, etc.

� Traffic source behaviors – FTP, Telnet, Web, constant bit rate (CBR) and variable

bit rate (VBR).

� Router queue management mechanisms – drop-tail, random early detection (RED),

class-based queue (CBQ), and more.

� Routing – unicast, multicast and hierarchical.

� Basic mobility – ad hoc networks, mobile IP.

All these features are implemented in NS-2 as objects or modules.

As shown in Fig. 5.1, NS-2 is an object-oriented Tcl (OTcl) script interpreter that

is equipped with simulation event schedulers, network component object libraries, and

network setup module libraries. To set up and run a simulation network, a user should

write an OTcl script that initiates an event scheduler, set up the network topology using

the network objects and the helping modules in the library, and tell traffic sources when

to start and stop transmitting packets through the event scheduler. After the simulation

program is executed by the simulator, the simulator generates traces as simulation re-

sults. A user can use some analyzing tools to examine the trace files for an in-depth

understanding of the simulation, or choose to visualize the simulated network and the

transfer of packets by the Network Animator (NAM), which works in a pair with NS-2.
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Figure 5.2: The correspondence between OTcl and C++

NS-2 is not only written in OTcl but in C++ also. It uses a split-language program-

ming approach, and the objects in the simulation environment are mainly implemented

using a combination of OTcl and C++. A class hierarchy in C++ is called the compiled

hierarchy and a similar class hierarchy with the OTcl interpreter is the interpreted hierar-

chy. The interpreted hierarchy is for quick setup and configuration of simulations while

the compiled one is for fast simulation processing. As in Fig. 5.2, from a user’s per-

spective, there is a one-to-one correspondence of classes in both hierarchies. However,

in the figure, there are also some objects in C++ that do not need to be controlled by the

interpreter or internally used by another object. Hence, they do not need to be linked to

OTcl. Likewise, an object can be entirely implemented in OTcl.

5.1.2 A Link in NS-2

A link is a major compound component in NS-2, and is used for connecting two sim-

ulated nodes. There are two kinds of links: a simplex link that forms a unidirectional

connection from one node to another, and a duplex link that constructs a bi-directional

connection from two simplex links.

Packets passing through a simplex link go through several components as shown in

Fig. 5.3. The Queue is in fact the output queue of the starting node. However, it is

implemented as part of the simplex link in NS-2. Packets dequeued from the output
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Figure 5.3: The structure of a link in NS-2

queue are passed to the Delay object that simulates the link delay, and packets dropped

at the queue are sent to the Null Agent and are freed there. Finally, the TTL object

calculates Time To Live parameters for each packet received and updates the TTL field

of the packet. Then the packets get out of the link and reach the end node.

5.1.3 TCP Agents in NS-2

In this section, we briefly describe the various TCP modules available in NS-2. Referring

to Fig. 5.1, the TCP modules are in fact network component objects.

There are two types of TCP agents in NS-2: one-way agents and a two-way agent.

One-way agents are further subdivided into a set of TCP senders (which follow different

congestion control and error recovery mechanisms) and receivers or sinks. The two-

way agent is symmetric in that it represents both a sender and receiver. It is still under

development.

The simulator supports several versions of an abstracted TCP sender, such as TCP

Tahoe, TCP Reno, TCP NewReno [17], TCP SACK [35], and more that correspond to

the various flavors of real TCP implementations. However, these objects only attempt to

capture the essence of TCP congestion and error control behavior, but are not intended to

be faithful replicas of real-world TCP implementations. For example, they do segment

number and ACK number computations entirely in packet units; there is no SYN/FIN

connection establishment/teardown; and no data is ever transferred (e.g., no checksums
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or urgent data).

Each TCP sender object must pair with a corresponding TCP sink object. The TCP

sink is responsible for returning ACKs to its peer sender. It can generate one ACK per

packet received, less than once per packet to implement Delayed Acknowledgment [46],

or model a selective acknowledgment after the description of TCP SACK in RFC2108

[35] and its extension in RFC2883 [18].

The two-way TCP agent (FullTCP) is a new addition to the suite of TCP agents

supported in the simulator and is still under development. It is different from (and in-

compatible with) the other agents, although it does have some similarity in architecture

with the others. It differs from the one-way agents in the following ways:

� Connections may be established and torn down (SYN/FIN packets are exchanged)

� Bi-directional data transfer is supported

� Sequence numbers are in bytes rather than packets

Currently, FullTCP is only implemented with Reno congestion control.

5.2 Implementation of Eifel-I and Others

The NS-2 network simulator is regularly updated by a group of maintainers. The version

of NS-2 we have used is the ns2.1b9a all-in-one. The all-in-one is a package which

contains the required components and some optional components used in running NS-2.

For simulation purpose, we have implemented the proposed Eifel-I approach into

TCP Reno, NewReno, and SACK modules in ns2.1b9a. We have modified the Times-

tamp option to allow selective use of timestamps. In the existing TCP implementations,

the Timestamp option may be used independently in each direction. However, for sim-

plicity and efficiency, the timestamp for one direction and the timestamp for the other

direction are combined into a single TCP Timestamp option. In our modified Times-

tamp option, if one direction does not need timestamps, the part in the option for this

direction will always be set to 0, indicating that it is not in use. As mentioned in Section
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3.1, the option’s original functionalities are not needed for wireless links, so it is safe to

change to selective use. The implementation provides for both detection and response

to spurious timeouts and spurious fast retransmits. It provides several options for restor-

ing the congestion control state, and in response to a spurious timeout, it also provides

different options for adapting the retransmission timer. The default is to fully restore the

congestion control state and ensure the one-sample-per-window rate regardless of re-

transmits. Currently, the implementation responds in the same way, independent of the

number of consecutive timeouts. However, different responses depending on the number

of timeouts occurred can be easily added.

We used the implementation of Eifel for NS-2 by Andrei Gurtov [25]. This imple-

mentation also allows the use of different TCP flavors including Reno, NewReno, etc. It

provides both detection and response to only spurious timeouts in TCP using the Times-

tamp option.

The DSACK extension is already available in this version of NS-2, so we only added

in the detection for whether the duplicate packet has been retransmitted before when an

ACK arrives containing a DSACK block, and the response of several options of conges-

tion control restoration. This implementation is contributed by Zhu Yingjie, to which we

add our slight modification.

To trigger spurious fast retransmits in our experiments, we patched NS-2 with a mod-

ule called hiccup [42]. The module allows for simulating delay spikes, packet reorder-

ings, and losses of packets. It is derived from the Queue class in NS-2 and it is inserted

into a Link before the Queue in Fig. 5.3. Although this module can introduce both packet

reorderings and delays, we only used it to generate reorderings. As the Queue in a Link

simulates the output queue of the sender, it is not reasonable to introduce a delay before

the packets ever enter the network. So to introduce delay spikes, we used another small

patch for the simulator [25]. This code is only for triggering delay spikes of arbitrary

length (e.g., a few seconds) for all queue types in NS-2. Compared to hiccup this code

has two benefits: it places delays after the Queue in Fig. 5.3 and it can be used in both

directions simultaneously. A remaining drawback is that it allows packets currently “in
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the air” to complete transmission after a delay spike begins.

Note that all the above implementations need modifications in both the background

C++ and the forefront OTcl codes.



Chapter 6

Experiments by Simulation

In this chapter, we present detailed simulation results on evaluating Eifel-I, generated

using the NS-2 simulator [37]. We include TCP with DSACK (TCPd), TCP with Eifel

(TCPe), TCP with F-RTO (TCPf), and the original TCP with no enhancements (TCPo)

for comparison with TCP with Eifel-I (TCPi).

6.1 General Settings for Experiments

The basic simulation topology used for all our experiments is shown in Fig. 6.1 1.
�Z]

, i =

1, ..., n, corresponds to the set of TCP source nodes sending packets to the set of TCP sink

nodes
�^]

, i = 1, ..., n. Each pair of
�0]

,
�^]

nodes forms a TCP connection. The BS (or

the RNC in UMTS terminology) is connected to the
�4]

nodes via a virtual node (VN).

The link between BS and VN is the simulated wireless link with independent uplink and

downlink bandwidth and a drop-tail queuing policy. The virtual node, VN, is included

for simulating the sharing of the wireless link among the mobile hosts,
�4]

. The latency

and bandwidth between
�0]

and BS is set to 3Mbps and 50 milliseconds (ms) respectively.

The set of
�Z]

represents the remote hosts in the Internet, which reach the mobile hosts via

BS. The latency and bandwidth between VN and
�_]

are 100Mbps and 1ms. The uplink

and downlink’s bandwidths and latencies are choosen from typical values of either GPRS

[24] or UMTS [49] networks. For example, to simulate a GPRS link, we have used

1This topology is similar to the ones in [13], [23], or [50]

95
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Figure 6.1: Simulation topology

350ms and 30kbps as the latency and bandwidth for downlink, and 350ms and 10kbps

for uplink; for a UMTS link, we have used 150ms and 384kbps for downlink and 150ms

and 64kbps for uplink. One-way TCP agents (TCP Reno, NewReno and SACK) with

delayed acknowledgments in NS-2 are used. The delayed ACK timer is implemented as

a heartbeat timer with 200ms granularity. To perform a simulation, a selected one-way

TCP sender agent is attached to the
�
]

node and its corresponding sink agent to the
�_]

node.

Our experiments are based on transferring bulk data by using the FTP agent. The

TCP maximum (advertised) window size is set at 500KB. Using such a large window

size ensures that TCP is never window limited in all the experiments. The TCP packet

size used is 1KB. This is the default value in the simulator. Except those explicitly

specified, the default settings for all parameters in NS-2 are used. We use both download

time and number of transmitted packets as the metrics for performance comparison. All

the values shown are averaged over 100 repetitions to ensure sound statistics.

6.2 A Single Spurious Timeout

In this section, we illustrate the different approaches’ behavior in the presence of a single

spurious timeout. The figures for the first three approaches are the same as the ones

presented in Section 3.3.2 for explaining each individual approach. They serve to verify

the implementation of the algorithms into NS-2.
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(b) DSACK: congestion control state
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(d) Eifel: congestion control state
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(f) F-RTO: congestion control state
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Figure 6.2: A spurious timeout
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As expected, DSACK cannot avoid the go-back-N retransmission and it only restores

cwnd and ssthresh after it receives the ACK containing the DSACK block. Eifel, F-

RTO and Eifel-I are quite similar in their time-sequence plots: there is no go-back-

N retransmission; the only penalty is one unnecessary retransmit. However, Eifel and

Eifel-I have the spurious timeout occurring at slightly different times, indicating their

difference in RTO estimation. As we have explained in Section 4.3.1, the one-RTT-

per-packet sampling rate in Eifel leads to largely fluctuating RTO values. The plots of

congestion control state also show F-RTO can make a decision only after the second

ACK has arrived.

6.3 Scenarios and Discussions

We now present our detailed studies on the effect of delays and packet losses simulated

using different distributions. Delays and losses can be caused by handovers, link layer

retransmissions, etc. We will examine various scenarios in the following sections.

Wireless link mechanisms such as link layer retransmissions and inter-system han-

dovers are complex and difficult to completely represent in a model. As suggested in

[21], if the purpose of the wireless link models is only for evaluating the effect of link-

level mechanisms on end-to-end transport protocols, simply changing link characteris-

tics and introducing losses and delays to traffic are often sufficient for understanding

transport protocol performance in the presence of the modeled wireless link. So in the

following evaluation, instead of fully implementing the wireless link layer into the sim-

ulator, we model the various link layer scenarios by introducing delays and losses based

on models that closely mimic the corresponding real-world scenarios. As mentioned be-

fore, because of the rather persistent link-layer error protection, 2.5G/3G wireless links

have a negligibly small error rate [27]. In GPRS LLC, the maximum number of retrans-

missions is set to 3 and in UMTS RLC, the number of retransmissions can be set to a

maximum value of up to 40. So in our simulations we assume a fully persistent link

layer protection; packet losses are then mostly due to congestion. Studies [48] [36] on

interactions between wireless link layer ARQ and TCP have shown that fully reliable
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ARQ protocols are the best choices from the TCP perspective. In fact, whereas a resid-

ual packet loss left over by not fully reliable TCP protocols may not degrade appreciably

TCP throughput performance as long as it is a fraction of the overall end-to-end TCP

packet loss, no apparent performance advantages (e.g., energy savings) come from lim-

iting the number of retransmission attempts at the wireless link layer. Thus, the use of a

fully persistent link layer retransmission is reasonable.

Over a GPRS link, the size of bulk data transferred is 500KB, and over a UMTS link,

the data size is 3MB. TCPo, TCPd, TCPe, TCPf and TCPi are all evaluated in the same

simulated network. The MTU is a fixed value for all of them. Since TCPo, TCPd, TCPf

and TCPi do not need the 12-byte timestamp, they can include 12-byte more data in each

TCP packet. We use the default TCP packet size in NS-2 (1000 bytes) for TCPe, making

the packet size for the others 1012 bytes. So, for a 500KB data transfer, TCPe needs to

send 500 original packets, while the others need only (500,000/1012=) 495 packets; for

a 3MB data transfer, TCPe needs to send 3000 original packets, and the others send just

(3,000,000/1012=) 2965 packets.

6.3.1 Variable Delays and Losses due to Handovers

According to measurements over real GPRS networks [24], variable delays caused by

handovers in a cellular network can be well modeled by two parameters: the interval

between the occurrence of delays and the length of each delay. In the evaluation, the in-

tervals are drawn from a uniform distribution between 20 and 140 seconds, with a length

uniformly distributed between 3 and 15 seconds. Experiments have been conducted

across different buffer sizes in the bottleneck wireless link.

Single Connection

Plots in Fig. 6.3 show how TCP Reno and Newreno with or without one of the ap-

proaches vary with different buffer sizes. As we have used a 500kB maximum window

size, for all TCP senders, their slow-start transmission will be terminated by multiple

packet losses in a single window due to congestion. This is because the congestion
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Figure 6.3: TCP Reno and Newreno during a handover with different buffer sizes
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window will overload the bottleneck buffer after a certain amount of time. After this

point, the senders enter the stationary congestion avoidance state with slow increase and

periodic decrease of cwnd caused by a single congestion loss.

A Reno sender with either Eifel or F-RTO (TCPe and TCPf) performs badly, com-

pared with Eifel-I (TCPi) in terms of download times. Referring to the discussion in

Section 4.4, Eifel-I can efficiently handle multiple packet losses in a single window us-

ing fast retransmit and recovery, thus avoiding the lengthy retransmission timeout. As

Eifel and F-RTO have no such capability, such multiple losses usually lead to timeout

no matter whether bugfix is enabled or not. For the original TCP (TCPo), a timeout

will often be triggered when bugfix is enabled while fast retransmit and recovery may

recover some losses when bugfix is disabled. The reason that TCPe and TCPf are worse

than TCPo in the case without bugfix is that: in the window with multiple losses, the first

one or two packets usually arrive at the receiver successfully, which leads either TCPe or

TCPf to detect the timeout as a spurious one and switch back to sending unsent packets

but not retransmitting lost packets. This further delays the recovery of lost packets in

the previous window and may also aggravate the problem by forcing the sender to wait

for another timeout. So although the number of packets transmitted by TCPo, TCPe

and TCPf are only slightly higher than TCPi, their download times can be much worse.

TCPi can achieve up to 10% improvement over TCPe and TCPf and 5% improvement

over TCPo.

As NewReno can recover multiple losses more efficiently than Reno, the inefficiency

in F-RTO’s loss recovery is lessened. TCPf generally performs similiarly as TCPi in

download times. Because both TCPf and TCPi are better than the original TCP (TCPo)

in handling spurious timeouts, and so perform slightly better than TCPo. TCPe performs

worse than TCPo most of the time. Similar to the plots in Fig. 4.2, during the slow-

start period, the RTO value calculated by Eifel shortly collapses to a small value, so

TCPe is prone to initiating a timeout during the multiple packet losses. It still suffers

from the problem of delayed loss recovery and a second timeout, as we have explained

in the last paragraph. In the plots of number of packets, we can see that: TCPi and
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Figure 6.4: TCP Sack during a handover with different buffer sizes

TCPf transmit fewer packets than TCPo by avoiding some future spurious timeouts, and

TCPi is better than TCPf in certain cases because it can also collect RTT samples during

retransmission (see the explanation of Eifel-I’s modified retransmission timer in Section

4.3). As illutrated in Section 4.3, with its over-aggressive RTO estimation, TCPe cannot

avoid future spurious timeouts and it also incurs with a timeout similar to TCPo, so it

often transmits more packets than TCPo.

Fig. 6.4 shows the results of TCP Sack with or without either Eifel, Eifel-I, F-RTO or

DSACK. TCP SACK can recover multiple packet losses efficiently, so it mitigates Eifel

and F-RTO’s inability in recovering packet losses. Refering to Fig. 6.5, when bugfix

is enabled, TCPo, TCPd, TCPe, and TCPf suffer from a single congestion loss after a

delay spike. It is because the packets delayed at the bottleneck link are prone to trigger

congestion loss and the congestion control restoration by Eifel, F-RTO and DSACK can

aggravate the level of congestion. As bugfix suppresses the fast retransmit, they have to

wait for the retransmission timer to expire before the loss packet is transmitted again. As
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Figure 6.5: A spurious timeout on a congested link - with bugfix

illustrated in Section 4.4, TCPi can determine that it is a real packet loss upon receiving

the ACK of the first packet in the next window. It can recover the loss with fast retransmit

and fast recovery, similar to the scenario presented in Fig. 4.8. After a spurious timeout,

although Eifel-I takes the same congestion control restoration as the other approaches, it

eliminates the impairment on TCP performance introduced by congestion losses caused

by the aggressive retoration at the same time. So it can keep the TCP sender transmitting

stably at a higher speed.

Comparing the plots in both Fig. 6.3 and 6.4 across different TCP flavors (Reno,

NewReno and Sack), TCP Sack senders can transmit the same amount of packets in

a shorter time than TCP NewReno, which further has a shorter download time than

TCP Reno. This verifies the correctness of our results as more advanced loss recovery

mechanisms like Sack and NewReno can handle packet losses more efficiently, and thus

have a shorter download time. Because Eifel-I has enhanced TCP Reno and NewReno’s

capability in handling multiple packet losses, its download times remain quite stable

around 170 seconds.

Compared with other approaches like DSACK, Eifel, F-RTO and the original TCP,

Eifel-I delivers robust performance across different buffer sizes. This property is very

important in the varying delay environment of a wireless system, since it is difficult to

size the system with an optimal buffer size, given that the capacity of the link also varies

over time.
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Multiple Connections

We have also done the same experiments using multiple connections. In the network

topology presented in Fig. 6.1, in addition to the TCP connection between
� @ and

� @ ,
we set up more connections between the other pairs of nodes, where all the pairs use

the same TCP sender and sink agents (Reno, NewReno or Sack). Each pair transmit

the same amount of bulk data during the same time period, so different pairs need to

compete for the shared, limited wireless link between BS and VN. During the transmis-

sion period, we trace the performance of the TCP connection between
� @ and

� @ . The

results of the two-concurrent-connection case are shown in Fig. 6.6 and 6.7, and the

results of the four-concurrent-connection case are shown in Fig. 6.8 and 6.9. Except that

the download times are roughly doubled or quadrupled compared with their correspond-

ing values in the single-connection case, the relative changing patterns and performance

improvement among the different approaches (DSACK, Eifel, Eifel-I, F-RTO, and the

original TCP) are quite similar. Compared with the single-connection case, the perfor-

mance degradation of a Reno sender with either Eifel or F-RTO is less severe because

the multiple packet losses are shared by the multiple concurrent connections. So the

impairment on each individual connection is lessened. However, the overall degradation

is still quite severe.

Interestingly, in the four-connection case, the download time of F-RTO is signifi-

cantly worse than the others. In certain cases, the best performing approach Eifel-I can

achieve more than 20% improvement over F-RTO. According to our observations, the

reason for F-RTO’s bad performance is because when it receives the first non-duplicate

packet after a timeout, it responds with two packets. As all the concurrent connections

would experience the delay and initiate a timeout around the same period, with more

connections, more packets are injected into the network in response to the first non-

duplicate ACKs. The aggressive transmitting behavior can lead to real congestion losses

at the bottleneck link, thus greatly hurting TCP performance.
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Figure 6.6: TCP Reno and Newreno during a handover with different buffer sizes – two
connections
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Figure 6.7: TCP Sack during a handover with different buffer sizes – two connections
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In conclusion, we want to highlight here that in all the scenarios (of different TCP fla-

vors, or different number of connections, etc.), TCPi is always better than or at least the

same as the other approaches. In certain cases, it can achieve 10% to 20% performance

improvement over the others. Its good performance is consistent and stable because it

can handle both variable delays and packet losses efficiently.

Papers evaluating approaches like Eifel [22] and F-RTO [45] adopt a small maximum

window size. In those evaluations, the enhanced TCP performs better than the original

TCP in facing handover delays. As Eifel-I is an improvement from Eifel, it should

have similar or even more improvement over the original TCP. However, as the results

presented in this section have shown, when the receiver has a larger window size, which

would not limit the transmission of the sender before congestion occurs in the bottleneck

link, the problems caused by multiple packet losses in a single window (before entering

congestion avoidance) would largely degrade the improvement that can be gained with

enhancements like Eifel or F-RTO. So without an efficient loss recovery mechanism,

they perform even worse than the original TCP. As Eifel-I is introduced with an efficent

loss recovery mechanism for non-Sack TCPs (see Section 4.4), it maintains its improve-

ment over the original TCP in both cases (a small or a large window size), and when

a large window size is used, it can perform much better than approaches like Eifel and

F-RTO.

6.3.2 Variable Delays due to Link Layer Retransmissions

In addition to handovers, another major cause of variable delays is link layer retransmis-

sion (LLR), which has been widely deployed in 2.5G/3G wireless networks. As noted

in several papers [45], [13], [21], the occurring pattern of delay jitters introduced by

LLR can be well captured by an exponential distribution, and a mean value of up to one

second appears to be reasonable. In this section, we evaluate the impact of delay jitters

generated using different means (0.3, 0.5, 0.7 and 0.9 second).
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Figure 6.8: TCP Reno and Newreno during a handover with different buffer sizes – four
connections
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Figure 6.9: TCP Sack during a handover with different buffer sizes – four connections
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Single Connection

Fig. 6.10 and 6.11 show the performance evaluation results of different TCP senders

in a GPRS network facing different levels of link layer packet losses and recovery. As

expected, the increase in the distribution’s mean value, which indicates the amount of

link layer packet retransmissions, leads to an increase in download time.

Similar to the results shown in the previous section, Eifel and F-RTO suffers from

multiple packet losses when working with a less loss-robust TCP such as TCP Reno.

In such cases, they perform worse than the original TCP. In contrast, Eifel-I achieves

at least the same download time as the original TCP while transmitting fewer packets

by avoiding some unnecessary retransmissions and future spurious timeouts. This is

possible as Eifel-I is capable of handling spurious retransmissions and recovering packet

losses efficiently.

We have also experimented with the impact of link layer retransmissions in a UMTS

network. The results are presented in Fig. 6.12 and 6.13. Over a UMTS network, the

original TCP performs the worst in terms of download time. This is because compared

with the GPRS link, the UMTS link has a smaller link latency and higher bandwidth, so

the average RTTs over UMTS are smaller than those over GPRS. This in turn leads to a

smaller RTO value estimated by TCP in UMTS. Therefor, in the presence of the same

delay variations, TCP senders over UMTS are more sensitive and initiate a spurious

timeout more frequently. In the other words, TCP with larger RTO values are generally

more robust against delay spikes. When multiple packet losses can be recovered more

efficiently (either through fast retransmit when bugfix is disabled, or with a more ad-

vanced loss recovery mechanism like Sack or NewReno), spurious timeouts become the

main impairment to the TCP connection’s performance. In these cases, TCPe and TCPf

perform better than TCPo. TCPi always performs the best with any TCP flavor, with

or without bugfix. In terms of download time and in certain cases, TCPi can achieve

up to 40% improvement over TCPo, more than 30% improvement over TCPd, and up

to 20% improvement over either TCPe and TCPf. TCPi and TCPf transmit the same

amount of packets most of the time, which is a smaller amount than the others. TCPo
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Figure 6.10: TCP Reno and Newreno in GPRS with LLR
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Figure 6.11: TCP Sack in GPRS with LLR
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or TCPd transmit more packets mainly because of the go-back-N retransmission. TCPe

also transmits more packets because of its RTO estimation, as explained in the previous

section.

Multiple Connections

We have also experimented the same LLR condition with multiple concurrent TCP con-

nections. Here, we present the results of the two-connection and four-connection scenar-

ios in Fig. 6.14 and 6.15, and Fig. 6.16 and 6.17, respectively. The changing pattern and

relative improvement among different approaches are similar to the single-connection

case, where Eifel-I maintains its good performance across different scenarios over the

other approaches.

As the bulk data transferred is the same, there is little change in the number of trans-

mitted packets. As expected, the download time should be doubled or quadrupled as the

number of connections do. However, comparing the corresponding time values across

cases with different connections, we find that the rate of increase in download time is less

than that in the number of connections. As more connections are introduced, the through-

put of the connection between
� @ and

� @ (the one we are monitoring) decreases, so the

average RTT collected on the connection increases. The delay jitters due to LLR are less

significant than the handover delays in the previous section. So all TCP senders become

more robust against such less-variable delays as RTTs increase in multiple-connection

cases. Compared with the single connection scenario, the connection being traced may

avoid initiating some spurious timeouts when facing the same delay variations, and thus

its performance can slightly improve. That is why the download time is not a direct

double or quradruple increase here. The handover delays are more significant to the

connection’s average RTTs, so the slightly-increased RTTs have no effect in the multi-

ple connection cases in the previous section.
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Figure 6.12: TCP Reno and Newreno in UMTS with LLR
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Figure 6.13: TCP Sack in UMTS with LLR
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Figure 6.14: TCP Reno and Newreno in UMTS with LLR – two connections
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Figure 6.15: TCP Sack in UMTS with LLR – two connections
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Figure 6.16: TCP Reno and Newreno in UMTS with LLR – four connections
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Figure 6.17: TCP Sack in UMTS with LLR – four connections
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6.4 Summary of Results

In this chapter, we have evaluated Eifel-I and other approaches in the presence of de-

lay spikes due to handovers. As we have used a large maximum window size, for all

TCP senders, their slow-start transmission gets terminated by multiple packet losses in

a single window due to congestion. This is because the congestion window overloads

the bottleneck buffer after a certain amount of time. After that point, the senders enter

the stationary congestion avoidance state with slow increase and periodic decrease of

cwnd caused by a single congestion loss. Approaches like Eifel and F-RTO are only

aimed at improving TCP’s robustness against spurious retransmission, so when encoun-

tering such multiple losses they usually go through a long waiting period for a timeout

retransmission and the degradation caused by this often exceeds the improvement gained

from avoiding spurious timeouts. Eifel’s aggressive timer adaptation can trigger retrans-

mission timeout prematurely. When packet losses also occur in the same transmission

window, this can lead to multiple timeouts. Eifel-I is able to recover multiple packet

losses efficiently by using fast retransmit and recovery. So it performs consistently bet-

ter than the others, including TCP with/without Eifel, F-RTO and DSACK. With a TCP

flavor containing more advanced loss recovery, the inefficiency in Eifel and F-RTO’s

loss recovery may lessen. But Eifel-I can still perform better than the others because its

stable RTT sampling from both original packets and retransmits. During the stationary

congestion avoidance phrase, cwnd is halved periodically by a single congestion loss.

When bugfix is enabled, TCP with/without Eifel, F-RTO or DSACK can only wait for a

lengthy timeout to retransmit the lost packet. Again, Eifel-I can recover the loss much

earlier through fast retransmit and fast recovery in such cases. Moreover, the perfor-

mance degradation introduced by a fast retransmit is much less than the degradation

that follows a timeout. With its enhanced loss recovery, Eifel-I also allows TCP more

efficient congestion control restoration after a spurious timeout. Compared with the oth-

ers, Eifel-I delivers robust performance improvement across different buffer sizes. This

property is very important in a varying delay wireless environment, since it is difficult to

size the system with an optimal buffer size, given that the capacity of the link also varies
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over time.

We have then evaluated the different approaches with varying levels of link layer

retransmission. For reasons similar to those that we have discussed, Eifel-I performs

consistently better than or at least the same as the other approaches in all cases.

For the two scenarios of handover and link layer retransmission, we have also ex-

perimented the cases with multiple concurrent connections. These cases show a similar

changing pattern and relative improvement among the different approaches. An interest-

ing phenomenon is that after a timeout, F-RTO responds to the first non-duplicate ACK

with two new packets. When multiple connections are competing for the wireless link

concurrently, this aggressive transmission may multiply and lead to congestion losses.

In summary, we conclude that in situations like wireless networks where packet

losses and variable delays frequently occur or co-occur, Eifel-I delivers consistently

good performance because it is capable of efficiently coping with both variable delays

and packet losses. In all the scenarios we have experimented in (regardless of the TCP

flavor used, or the number of concurrent connections, etc.), TCPi is always better than

or at least the same as the other approaches. In certain cases, it achieves up to 40% im-

provement over the original TCP, and more than 20% improvement over the approaches

like DSACK, Eifel and F-RTO.



Chapter 7

Conclusion and Future Work

7.1 Summary

Spurious retransmissions, especially spurious timeouts, have been identified as one of

the main causes for the performance degradation of TCP over wireless links. As wire-

less networks become increasingly popular, improving TCP’s ability in solving the prob-

lems caused by spurious retransmissions is also becoming a more urgent task. Several

algorithms have been proposed for making TCP more robust against spurious retransmis-

sions, such as DSACK, Eifel and F-RTO. They all have taken the way of first detecting

a spurious retransmission and then recovering by undoing the unnecessary transmission

rate reduction. Some may even be able to actively adapt the TCP sender after a spurious

retransmission so that future retransmissions can be avoided. All of them can improve

TCP performance to some extent. However, each of them also suffers from some weak-

nesses, preventing them from getting more improvement in their performance. Another

main cause of TCP’s bad performance over wireless links is packet losses due to han-

dovers or mobile management.

After carefully studying the weaknesses of the existing approaches, we have pro-

posed a new approach, Eifel-I, for handling both spurious timeouts and congestion

losses. In Chapter 1, the objectives in designing this new approach were laid down

as:

122
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� First, Eifel currently suffers heavily from the use of timestamps as the extra infor-

mation, so we need to find a piece of extra information that would introduce as

little overhead as possible.

� Second, the new approach should retain the strengths of the current approach, such

as its early detection and its robustness against ACK losses.

� Third, the new approach should enable the use of the current header compression

schemes which have proved to be useful over low-speed links.

� Fourth, [3] pointed out that the current standard TCP retransmission timer defined

in RFC2988 [39] adapts fairly slow to changes in network conditions. This is

because retransmits are not allowed by Karn’s algorithm [30] to be used in RTT

sampling. With the use of timestamps, the current Eifel approach solves this slow

adaptation problem, and provides the possibility for a better RTO estimator for

avoiding future spurious timeouts. Our new approach should also try to retain this

property.

� Fifth, if possible, our approach should cover the packet loss problem as well.

Eifel-I is based on the same idea as Eifel. It preserves the nice properties of the

current Eifel approach: it eliminates the retransmission ambiguity; it detects spurious

timeouts upon the first acceptable ACK that arrives during loss recovery, so avoiding the

go-back-N retransmission and restoring the congestion control state; and it is also quite

robust against ACK losses.

As it has its own way of the implementation, Eifel-I also introduces some new prop-

erties of its own, allowing it better performance:

First, Eifel-I’s selective use of timestamps avoids the 12-byte overhead most of the

time as retransmits only form a relatively small part of the total transmitted packets. The

saved space can be used by other TCP options. For example, if the space is used by

SACK [35], the TCP sender may avoid unnecessarily retransmitting a series of packets.

Removing timestamps in most of the packets also enables the use of current TCP/IP

header compression schemes [14] [28]. As these compression schemes can compress
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a 40-byte TCP/IP header to just 3 to 5 bytes, they can greatly reduce the total protocol

overhead incurred by each packet. This is especially useful for slow wireless links. Over

such links, the improvement of the Eifel algorithm comes mainly from avoiding some

unnecessary data delivery.

In adapting the TCP retransmission timer, Eifel-I can respond in time to chang-

ing network conditions and maintain the adapted RTO value at a reasonable level for

an amount of time. It is therefore more superior than other existing approaches like

DSACK, Eifel and F-RTO in avoiding future spurious timeouts.

With Eifel-I, a TCP sender can easily distinguish ACKs for original transmits from

ACKs for retransmits. In conjunction with this capability, we have also worked out

a new method that can greatly improve the ability of non-Sack TCP (e.g., TCP Reno,

NewReno, etc.) in recovering from multiple packet losses. It enables the TCP sender to

avoid unnecessary fast retransmits if the DUPACKs are triggered by duplicate packets,

and to efficiently recover lost packets through fast retransmit and fast recovery instead

of waiting for a timeout.

In Chapter 6, we have used simulation to evaluate Eifel-I against the original TCP

and other approaches, such as DSACK, Eifel and F-RTO. We have provided extensive

experiment results and discussed in detail Eifel-I’s improvements in various circum-

stances. From the results, we have found that in environments like wireless networks

where packet losses and variable delays frequently occur or co-occur, Eifel-I can deliver

consistent performance improvement over other approaches because it is capable of ef-

ficiently handling both variable delays and packet losses. In all the scenarios that we

have experimented in (regardless of the TCP flavor used, or the number of concurrent

connections, etc.), Eifel-I always performs better than or at least the same as the other

approaches. In certain cases, it achieves up to 40% improvement over the original TCP,

and more than 20% improvement over approaches like DSACK, Eifel and F-RTO.
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7.2 Future Work

Some other problems of the current TCP retransmission timer have been identified in

[34]. We plan to evaluate the possible ways to fix them by further extending our timer

adaptation.

In this thesis, we have mainly focused on dealing with spurious timeouts. In fact,

Eifel-I is also able to detect spurious fast retransmits. As packet reordering is disallowed

in current 2.5G/3G wireless networks, spurious fast retransmit is not a main concern

now. However, allowing out-of-order delivery can reap benefits like low delay time for

non-reliable real-time traffic. With more measurement data to guide the modeling of

reordering in wireless links, we can devote more effort in verifying Eifel-I’s ability in

handling spurious fast retransmits over wireless links.

In addition to spurious timeouts, wireless characteristics like bandwidth oscillation

and on-demand resource allocation may have some other effects on TCP. We plan to

study these characteristics, and verify Eifel-I’s behavior in the presence of them.

So far, we have verified Eifel-I by implementing it in the NS-2 network simulator

and running experiments by simulating the behavior of the wireless network. For more

realistic testings, we intend to implement Eifel-I in real TCP implementations in the

future.
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Appendix A. Cellular Wireless Systems

A.1 Cellular Wireless Fundamentals

In this section, we present some background information on mechanisms or techniques

that have commonly been deployed by various cellular wireless links.

A.1.1 Multiple Access

“Any scarce resource that is to be used simultaneously by more than one user needs to

be divided into subportions in order to prevent interference in each user’s usage of that

resource” [38].

In cellular mobile radio systems, that resource is the radio transmission media. Lack

of radio resource to support all users with the required bandwidths has for years been

the main problem of wireless links. In order to allow users to access the same radio

transmission medium simultaneously, the radio spectrum is divided into channels. This

simultaneous use of channels is called multiple access. The physical medium, i.e., the

radio spectrum, can be divided into individual channels based on a set of criteria. These

criteria depend on the technology used to make the distinction between channels.

The three primary technologies used in cellular wireless systems are:

� Frequency Division Multiple Access (FDMA). In FDMA, the radio spectrum is

divided into several frequency bands with a guard channel in between to prevent

interference. Each channel is a specific frequency, and each user is assigned a

channel for the duration of a call. However, since the channel may be in use

during the whole duration, this exclusive allocation may result in poor resource
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utilization.

� Time Division Multiple Access (TDMA). In TDMA, the channel is a time slot

on a specific frequency. Periodically, a frequency channel is allocated alternately

to different logical channnels, each of which is occupied by a different user.

� Code Division Multiple Access (CDMA). In CDMA, the channel is a unique

code, and each user is assigned a different code. The code is typically pseudo-

random in nature, which processes favourable correlation properties to ensure that

different physical channels are not confused with one another. Data packets in-

tended for a specific channel is modulated with that channel’s code.

A.1.2 Error Protection in Radio Channels

Due to reasons such as distance, speed and the radio signal shadowing of mobile stations

communicating with each other, environmental conditions, electromagnetic interference,

etc., the bit error ratio (BER) 1 in mobile radio communication can fluctuate consider-

ably over time. To help cope with the various error causes and provide a more reliable

communication medium, a number of error protection and error control methods have

been utilized for quite some time to detect and correct errors during the transmission of

a data signal.

Generally speaking, there are two categories of error control: error detection and

error correction. Error correction again comprises two categories: backward error cor-

rection (BEC) and forward error correction (FEC) [49]. In any case, an error control

method involves, unavoidably, the use of the available bandwidth to carry the extra re-

dundant bits for detecting and correcting errors.

Error Detection

Error detection focuses on the detection of errors only. Through error detection, it is

possible to establish whether a received packet is valid or not. However, data packets

1BER is the ratio of error bits to the total number of bits transmitted
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that are recognized as being incorrect cannot be corrected. This is due to the fact that

error detection uses a much fewer number of redundant bits than error correction codes.

Forward Error Correction (FEC)

FEC coding can improve data reliability by introducing a redundant data pattern prior to

the transmission of a data packet. As the sender adds enough redundancy to a packet, the

receiver is able to detect and correct a certain number of errors based on the redundancy

pattern. This method is more suitable for applications dealing with real time informa-

tion interchange or time sensitive communications. In contrast to the ARQ methods

described in the next sub-section, a reverse channel from the receiver to the sender is not

needed.

There are two code families that are suitable for forward error correction [49]:

� The linear block codes which are systematic codes, i.e., a certain number of redun-

dant bits are calculated from the packet to be protected and are transmitted with it.

The coded packet can thus be divided into a redundant and a non-redundant part.

� The convolutional codes which are non-systematic codes. In comparision with

block codes, convolutional codes have a memory, i.e., a bit in a packet which is

not only dependent on the actual data bit but on several preceding data bits.

Convolutional codes are very suitable for the correction of uncorrelated errors, but

are extremely sensitive when it comes to bursty distributed errors, which frequently oc-

cur in radio channels. Consequently, in mobile radio systems, convolutional codes are

almost exclusively used in combination with interleaving [47], a technique that is able

to let bursty errors appear as single-bit errors.

Error Handling By ARQ Protocols

Backward error correction is also known as Automatic Repeat reQuest (ARQ) [49]. Un-

like FEC, ARQ methods do not attempt to correct the corrupted packets at the receiver

and accept them. Instead, with the combination of an error detection method, they sim-

ply check for the correctness of an incoming packet, and if the packet is not recognized
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as correct, the receiver discards the packet and requests the sender to transmit the packet

again. This ARQ process is closely related to the flow control mechanism. Flow con-

trol limits the amount of information being sent so the receiver is not overwhelmed with

data, to avoid the loss of frames due to an inability to process incoming data.

In order for the receiver to ask the sender for retransmission, a reverse channel be-

tween the two ends is needed. The result of the error evaluation of each packet trans-

mitted back to the sender is call an acknowledgment. Data acknowledgment helps the

flow control process and provides the mechanism for indicating the status of the received

data. A positive acknowledgment (ACK) is sent when the packet received is correct; if it

is defective, then a negative acknowledgment is sent along with a retransmission request

for the defected data.

Three kinds of ARQ techniques can be used [49]:

� Send-and-Wait ARQ Protocol The sender transmits a packet and then waits for an

ACK from the receiver. During this period, no other packets can be transmitted

until a positive ACK is returned. If an error is encountered, the receiver will

request retransmission of the packet by issuing a NACK. As the method can only

deal with one packet at a time, the throughput is minimal, especially for links

with long propagation delays and with short data packets. So, this method is not

commonly used.

� Go-Back-N ARQ Protocol This ARQ method is also called the explicit reject (REJ)

or cumulative ARQ. With this method, the sender can transmit a series of packets

up to the window size controlled by flow control mechanisms. If an error is en-

countered at the receiver, it will explicitly reject (REJ) that packet and all succes-

sive ones, and then ask the sender to resend the packets again sequentially, starting

from the packet that was damaged. This method requires sufficient buffer at the

sender for storing all the unacknowledged packets, and it also wastes some band-

width because of the retransmission of packets which were not originally damaged

but yet discarded.
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� Selective-Reject ARQ Protocol As with REJ, the objective of the SREJ method

is to transmit packets between senders and receivers as continuously as possible.

With this method, if an error occurs in one packet in a sent series, the technique can

selectively point out which packet needs to be retransmitted by issuing an SREJ.

At the same time, the receiver needs to store all the packets after the damaged

one until the retransmit of that packet is correctly received. The drawback to this

method is that it requires an even larger buffer in order to sort and retransmit

packets out of order.

A.2 Some Details on GPRS

A.2.1 Logical Packet Data Channels

GPRS defines a number of packet data logical channels that can be mapped onto the

GPRS physical channels.

Packet Common Control Channel (PCCCH) comprises logical channels for com-

mon control signalling used for data packet:

� PRACH is used by MS to initiate uplink transfer for sending data, or signaling

information like paging responses.

� PPCH is used to page an MS prior to downlink packet transfer.

� PAGCH is used to inform an MS about the assignment of dedicated uplink or

downlink resources.

� PNCH is used for point-to-multi-point multicast (PTM-M) service. It is used to

send a PTM-M notification to a group of MSs prior to a PTM-M packet transfer.

Packet Broadcast Control Channel (PBCCH) broadcasts packet data specific sys-

tem information about a cell to all the GPRS-enabled MSs that are currently in that cell.

Packet Data Traffic Channel (PDTCH) is the bearer channel allocated for packet

data transfer. As illustrated in Fig. 2.2, this kind of channel is assigned separately
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Figure A-1: Multiframe structure with 52 TDMA frames

for uplink and downlink directions. In multislot operations, one MS may use multiple

PDTCHs in parallel for individual packet transfer.

Packet Dedicated Control Channel (PDCCH) is a control channel dedicated to a

particular MS. There are two types of channels under PDCCH:

� PACCH is used to convey signalling information related to a given MS, such as

ACK, power control information, etc. It can also carry resource assignment and

reassignment messages. A PACCH is associated with one or more PDTCHs cur-

rently assigned to an MS and shares resources with these PDTCHs.

� PTACH is used to synchronize the timing advance of an MS for uplink data trans-

mission.

A.2.2 Multiframe Structure

The GPRS multiframe structure is illustrated in (Fig. A-1 [11]), framing 52 TSs into one

multiframe. Each 52-multiframe represents one physical GPRS channel consisting of 12

radio blocks and one idle block, each block comprising four radio bursts distributed on

TSs with the same TS number in consecutive TDMA frames.

In Fig. A-1, each of the 52 vertical slices is one TDMA frame, so there exist alto-

gether 8 multiframes for each of the 8 TSs in a TDMA frame. Hence, in each multiframe,

the 52 timeslots are not consecutive in time but rather every

a`cb

TS (n = 0, 1, ..., 7) in a

TDMA frame.

The mapping of the various logical channels onto the radio blocks B0 – B11 of each

multiframe (i.e., each physical channel) can vary from block to block and is controlled

by parameters that are broadcasted on PBCCH.
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Precedence level Identifier To be served
1 High priority preferably before levels 2 and 3
2 Normal priority preferably before level 3
3 Low priority without preference

Table A-1: Precedence levels

Delay class 128 byte packet 1024 byte packet
Mean delay (s) 95% (s) Mean delay (s) 95% (s)

1 (predictive) 0.5 1.5 2 7
2 (predictive) 5 25 15 75
3 (predictive) 50 250 75 375
4 (best effort) unspecified

Table A-2: GPRS delay classes

A.2.3 QoS Parameters

A QoS profile defines the QoS within the range of the following service parameters [49]

[47]:

Precedence

Under normal circumstances the network should try to meet all profiles’ QoS agree-

ments. The precedence specifies the relative importance to keep the conditions even

under critical circumstances, e.g., momentarily high network load. The various prece-

dence levels are presented in Table A-1 [49].

Delay

The delay is defined as the end-to-end transfer time between two communicating MSs

or between an MS and the Gi interface at the GGSN. This includes all delays within

the GPRS network, e.g., the delay for request and assignment of radio resources and the

transit delay in the GPRS backbone network. Transfer delays outside the GPRS network,

e.g., in external transmit networks, are not taken into account.

Four delay classes are defined, each of which specifies the maximum allowed mean

delay and 95% delay allowed by the transfer of data through the GPRS network. The

95% delay is the maximum delay allowed in 95% of all data transfers. The network

operator has to provide for convenient resources on the air interface to be able to serve
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Reliability Probability for
class packet loss duplicate packet out of sequence corrupt data
1

D<dReRf D<dReRf D<dgeRf D<dgeRf
2

D<dRegh D<dReRi D<dgeRi D<dgeRj
3

D<dReRk D<dReRi D<dgeRi D<dgeRk

Table A-3: GPRS reliability classes in terms of residual error rates

the number of participants with a certain delay class expected within each cell [49].

Although there is no need for all delay classes to be available, at least best effort has to

be offered.

Reliability

Data services generally require a low residual bit error rate (BER). Erroneous data is

usually useless, while incorrectly received speech only leads to a worse perception. Re-

liability of data transmission is defined within the scope of the following cases:

� probability of loss of data

� probability of out-of-sequence data delivery

� probability of multiple delivery of data

� probability of erroneous data

The reliability classes are listed in Table A-3 [47].

The negotiated reliability classes subsequently specifies the requirements for each

layer’s services. As presented in Table A-4, the combination of different modes of op-

eration of the GPRS specific protocols GTP, LLC and RLC, explained in Section 2.1.3,

support the reliability requirements of various applications, e.g., Real-Time (RT) or Non

Real-Time (NRT).

Peak and Mean Throughput

User data throughput in a GPRS network is specified within the scope of a set of through-

put classes that characterize the expected bandwidth for a requested PDP context. It is

defined by the choice of peak and mean throughput classes. Both are measured at the Gi
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Reliability GTP LLC packet LLC data RLC block Traffic type
class mode mode mode mode security
1 ACK ACK PR ACK NRT traffic,

error sensitive,
loss sensitive

2 UNACK ACK PR ACK NRT traffic,
error sensitive,
slightly loss sensitive

3 UNACK UNACK UNPR ACK NRT traffic,
error sensitive,
not loss sensitive

4 UNACK UNACK UNPR UNACK RT traffic,
error sensitive
not loss sensitive

5 UNACK UNACK UNPR UNACK RT traffic,
not error sensitive,
not loss sensitive

(UN)ACK (Un)acknowledged
(UN)PR Protected/Unprotected

Table A-4: GPRS reliability classes with the corresponding protocol mode
combinations

and the radio interface. There is no guarantee that the peak throughput negotiated at the

beginning is ever reached. The peak throughput classes are presented in Table A-5 [47].

Note that the peak throughput classes are defined up to 2Mbit/s, while the GPRS raido

interface only supports a maximum of 171.2kbit/s user data rate. The higher classes are

already defined for EDGE 2 [49] and the 3G UMTS system (see Section 2.2).

However, mean throughput specifies the average rate data transmitted for a connec-
2Enhanced Data rates for GSM Evolution (EDGE introduces a new modulation scheme at the GSM

radio interface, which supports a maximum achievable bit rate of about 384kbit/s

Peak throughput classes Peak throughput
[byte/s] [kbit/s]

1 up to 1000 8
2 up to 2000 16
3 up to 4000 32
4 up to 8000 64
5 up to 16000 128
6 up to 32000 256
7 up to 64000 512
8 up to 128000 1024
9 up to 256000 2048

Table A-5: GPRS peak throughput classes
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Mean throughput classes Mean throughput
[byte/h] l [bit/s]

1 100 0.22
2 200 0.44
3 500 1.11
4 1000 2.2
5 2000 4.4
6 5000 11.1
7 10000 22.
8 20000 44.
9 50000 111.
10 100000 220.
11 200000 440.
12 500000 1110.
13 1000000 2200.
14 2000000 4400.
15 5000000 11100.
16 10000000 2200.
17 20000000 4400.
18 50000000 11100.
31 Best effort

Table A-6: GPRS mean throughput classes

tion, and it must be maintained during the lifetime of the connection. The mean through-

put may be limited by the network even if more resources were available. if best effort

has been agreed on as the throughput class, throughput is made available to an MS when

ever there are resources needed and at disposal. Table A-6 summarizes the classes of

mean throughput [49].

A.2.4 Mobility Management Scenarios

Before discussing the possible GPRS MM scenarios, we first consider an MS’s state.

Relating to GPRS MM, an MS can be in one of the following three states:

� Ready. When an MS is in this state, it can send or receive data, and it informs the

SGSN every time it changes cells. A timer monitors Ready state and upon expiry,

the MS is put in Standby state.

� Standby. A connected MS which is inactive is put in Standby state. In this state,

the location of the MS is only known at the RA level.

A-10



� Idle. An MS is not traceable when it is in Idle state, e.g., the MS is on power-off

mode. It needs to perform the attach procedure in order to be reachable.

Basically, there are three different types of MS location updates possible in GPRS

MM. To illustrate the update procedures, here, we consider the scenario of an MS on the

move while downloading a file from an Internet host. The network topology used in this

section is shown is Fig. A-2. At this point, we assume that the MS has established an

appropriate PDP Context and is currently in the cell covered by BTS1. So, as we can

see, the current downlink transmission path is: starts from the Host (through Internet)

to GGSN, then to SGSN1, BSC1 and BTS1, and finally arrives at the MS. As we will

explain later, as the MS moves, the BTS, BSC and SGSN on the transmission path, which

serve the MS, will also change dynamically to facilitate the location changes. However,

the GGSN remains as an anchor point, which effectively hides the mobility of the MS.

Cell Change

As the name implies, this applies only to an MS which has moved to another cell in the

same RA. As in Fig. A-2 [15], the MS is moving from BTS1 to BTS2 (arrow 1). At

a certain time, it identifies that BTS2 can offer better communication quality, so it will

camp on a channel controlled by BTS2. This procedure is known as a mobile originated

handover, which happens as the MS suddenly switches frequency channels and camps

on a new one. It is also known as cell reselection.

Referring Fig. A-2, since the new cell (BTS2) is still controlled by BSC1, both

BSC1 and SGSN1 will not know the movement of the MS until the MS makes an uplink

transmission. Then during the handover, all the downlink data packets will still be sent

to BTS1. With unknowledged LLC, these packets will be lost; on the other hand, the

packet transmitted in acknowledged LLC will be kept at SGSN1 as unknowledged and

will be retransmitted when the MS informs SGSN1 about its location change.

After the handover, when the MS gets to know the new cell ID and RA identity from

the broadcast control channel of the new cell, it will send out a special LLC frame in

the uplink (arrow 2). Then the cell change of the MS is recorded by SGSN1 and all the
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Figure A-2: Cell change – new cell in the same routing area

subsequent packets are forwarded to BTS2 (arrow 3).

Intra-SGSN RA Change

As the MS moves on (see Fig. A-3 [15]), it makes another handover, from BTS2 to BTS3

(arrow 1). In addition to a cell change, the routing area of the MS changes too. When

noticing about the RA change, the MS will send an RA Update (RAU) Request message

(arrow 2) to SGSN1. Since the new RA is still attached to the same SGSN (SGSN1), the

request is treated merely as a cell change and all the subsequent packets will be routed

to BSC2 and further to BTS3.

Inter-SGSN RA Change

When the MS further performs a handover from BTS3 to BTS4 (arrow 1) as in Fig. A-

4 [15], it again sends out an RAU Request message (arrow 2). When SGSN2 receives

the message, it informs SGSN1 about the movement of the MS (arrow 3-5) and SGSN1

stops transferring packets to the MS (3a). In acknowledged LLC, SGSN1 buffers all the

unknowledged packets. So it will forward these packets to SGSN2 (arrow 5a). New LLC

connections will be established between the MS and SGSN2. SGSN2 will also inform
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Figure A-3: Cell change – new cell in another RA handled by the same SGSN

GGSN (arrow 6 & 7) about receiving subsequent packets heading for the MS (arrow 8).

This series of communication among the affected BTS, BSC, SGSNs and GGSN

will take some time before the data packets can be routed to the MS again. If the RAU

Request from the MS is lost on the way to SGSN2 (e.g., due to bad radio conditions),

typically, another RAU Request would be transmitted after 15 seconds. Then, it would

take an even longer time for SGSN1 to identify that the MS has changed its RA.

Before SGSN1 gets to know that the MS has changed its RA, it would keep buffering

any new packets sent by GGSN and would periodically retransmit the buffered packets

that remain unacknowledged. And before the GGSN is informed of the change in the

MS’s RA, it would assume that the MS is reachable through SGSN1 and continue to

send new packets to SGSN1. In this case, SGSN1 would probably run out of buffer

space, and packet losses occur.
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Figure A-4: Cell change – new cell in another RA handled by another SGSN
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