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Abstract 

Segmenting and tracking objects in video sequences is important in vision-based 

application areas, but the task could be difficult due to the potential variability such 

as object occlusions and illumination variations. In this thesis, three techniques of 

segmenting and tracking objects in image sequences are developed based on 

graphical probabilistic models (or graphical models), especially Bayesian networks 

and Markov random fields. First, this thesis presents a unified framework for video 

segmentation based on graphical models. Second, this work develops a dynamic 

hidden Markov random field (DHMRF) model for foreground object and moving 

shadow segmentation. Third, this thesis proposes a switching hypothesized 

measurements (SHM) model for multi-object tracking. By means of graphical 

models, the techniques deal with object segmentation and tracking from relatively 

comprehensive and general viewpoints, and thus can be universally employed in 

various application areas. Experimental results show that the proposed approaches 

robustly deal with the potential variability and accurately segment and track objects 

in video sequences. 
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Summary 

Object segmentation and tracking are employed in various application areas 

including visual surveillance, human-computer interaction, video coding, and 

performance analysis. However, to effectively and efficiently segment and track 

objects of interest in video sequences could be difficult due to the potential 

variability in complex scenes such as object occlusions, illumination variations, and 

cluttered environments. Fortunately, graphical probabilistic models provide a natural 

tool for handling uncertainty and complexity with a general formalism for compact 

representation of joint probability distribution. In this thesis, techniques of 

segmenting and tracking objects in image sequences are developed to deal with the 

potential variability in visual processes based on graphical models, especially 

Bayesian networks and Markov random fields. 

Firstly, this thesis presents a unified framework for spatio-temporal segmentation of 

video sequences. Motion information among successive frames, boundary 

information from intensity segmentation, and spatial connectivity of object 

segmentation are unified in the video segmentation process using graphical models. 

A Bayesian network is presented to model interactions among the motion vector 

field, the intensity segmentation field, and the video segmentation field. The notion 

of Markov Random field is used to encourage the formation of continuous regions. 

Given consecutive frames, the conditional joint probability density of the three fields 

is maximized in an iterative way. To effectively utilize boundary information from 

intensity segmentation, distance transformation is employed in local optimization. 

Moreover, the proposed video segmentation approach can be viewed as a 

compromise between previous motion based approach and region merging approach. 
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Secondly, this work develops a dynamic hidden Markov random field (DHMRF) 

model for foreground object and moving shadow segmentation in indoor video 

scenes monitored by fixed camera. Given an image sequence, temporal dependencies 

of consecutive segmentation fields and spatial dependencies within each 

segmentation field are unified in the novel dynamic probabilistic model that 

combines the hidden Markov model and the Markov random field. An efficient 

approximate filtering algorithm is derived for the DHMRF model to recursively 

estimate the segmentation field from the history of observed images. The foreground 

and shadow segmentation method integrates both intensity and edge information. In 

addition, models of background, shadow, and edge information are updated 

adaptively for nonstationary background processes. The proposed approach can 

robustly handle shadow and camouflage in nonstationary background scenes and 

accurately detect foreground and shadow even in monocular grayscale sequences. 

Thirdly, this thesis proposes a switching hypothesized measurements (SHM) model 

supporting multimodal probability distributions and applies the model to deal with 

object occlusions and appearance changes when tracking multiple objects jointly. For 

a set of occlusion hypotheses, a frame is measured once under each hypothesis, 

resulting in a set of measurements at each time instant. The dynamic model switches 

among hypothesized measurements during the propagation. A computationally 

efficient SHM filter is derived for online joint object tracking. Both occlusion 

relationships and states of the objects are recursively estimated from the history of 

hypothesized measurements. The reference image is updated adaptively to deal with 

appearance changes of the objects. Moreover, the SHM model is generally applicable 

to various dynamic processes with multiple alternative measurement methods. 
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By means of graphical models, the proposed techniques handle object segmentation 

and tracking from relatively comprehensive and general viewpoints, and thus can be 

utilized in diverse application areas. Experimental results show that the proposed 

approaches robustly handle the potential variability such as object occlusions and 

illumination changes and accurately segment and track objects in video sequences. 
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Chapter 1 

Introduction 

1.1 Motivation 

With the significant enhancement of machine computation power in recent years, in 

computer vision community there is a growing interest in segmenting and tracking 

objects in video sequences. The technique is useful in a wide spectrum of application 

areas including visual surveillance, human-computer interaction, video coding, and 

performance analysis. 

In automatic visual surveillance systems, usually imaging sensors are mounted 

around a given site (e.g. airport, highway, supermarket, or park) for security or 

safety. Objects of interest in video scenes are tracked over time and monitored for 

specific purposes. A typical example is the car park monitoring, where the 

surveillance system detects car and people to estimate whether there is any crime 

such as car stealing to be committed in video scenes. 

Vision based human-computer interaction builds convenient and natural interfaces 

for users through live video inputs. Users’ actions or even their expressions in video 

data are captured and recognized by machines to provide controlling functionalities. 

The technique can be employed to develop game interfaces, control remote 

instruments, and construct virtual reality. 

Modern video coding standards such as MPEG-4 focus on content-based 

manipulation of video data. In object-based compression schemes, video frames are 

decomposed into independently moving objects or coherent regions rather than into 
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fixed square blocks. The coherence of video segmentation helps improve the 

efficiency in video coding and allow object-oriented functionalities for further 

analysis. For example, in a videoconference, the system can detect and track faces in 

video scenes, then preserve more details for faces than for the background in coding. 

Another application domain is performance analysis, which involves detailed 

tracking and analyzing human motion in video streams. The technique can be utilized 

to diagnose orthopedic patients in clinical studies and to help athletes enhance their 

performance in competitive sports. 

In such applications, the ability to segment and track objects of interest is one of the 

key issues in the design and analysis of the vision system. However, usually real 

visual environments are very complex for machines to understand the structure in the 

scene. Effective and efficient object segmentation and tracking in image sequences 

could be difficult due to the potential variability such as partial or full occlusions of 

objects, appearance changes caused by illumination variations, as well as distractions 

from cluttered environments. 

Fortunately, graphical probabilistic models (or graphical models) provide a natural 

tool for handling uncertainty and complexity through a general formalism for 

compact representation of joint probability distribution [33]. In particular, Bayesian 

networks and Markov random fields attract more and more attention in the design 

and analysis of machine intelligent systems [14], and they are playing an increasingly 

important role in many application areas including video analysis [12]. The 

introduction of Bayesian networks and Markov random fields can be found in [30] 

[37]. 
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In this thesis, probabilistic approaches of object segmentation and tracking in video 

sequences based on graphical models are studied to deal with the potential variability 

in visual processes. 

1.2 Organization 

The rest chapters of the thesis are arranged as follows. 

Chapter 2 gives a brief review of sate-of-the-art research on segmenting and tracking 

objects in video sequences. Section 2.1 surveys current work on video segmentation, 

Section 2.2 covers existing work on foreground segmentation by background 

subtraction, and Section 2.3 describes current research on multi-object tracking. 

Chapter 3 develops a graphical model based approach for video segmentation. 

Section 3.1 introduces our technique and the related work. Section 3.2 presents the 

formulation of the approach. Section 3.3 proposes the optimization scheme. Section 

3.4 discusses the experimental results. 

Chapter 4 presents a dynamic hidden Markov random field (DHMRF) model for 

foreground object and moving shadow segmentation. Section 4.1 introduces our 

technique and the related work. Section 4.2 proposes the DHMRF model and derives 

its filtering algorithm. Section 4.3 presents the foreground and shadow detection 

method. Section 4.4 describes the implementation details. Section 4.5 discusses the 

experimental results. 

Chapter 5 proposes a switching hypothesized measurements (SHM) model for joint 

multi-object tracking. Section 5.1 introduces our technique and the related work. 

Section 5.2 presents the formulation of the SHM model. Section 5.3 proposes the 

measurement process for joint region tracking. Section 5.4 derives the filtering 
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algorithm. Section 5.5 describes the implementation details. Section 5.6 discusses the 

experimental results. 

Chapter 6 concludes our work. Section 6.1 summarizes the proposed techniques. 

Section 6.2 suggests the future research. 

1.3 Contributions 

As for the main contribution in this thesis, three novel techniques for segmenting and 

tracking objects in video sequences have been developed by means of graphical 

models to deal with the potential variability in visual environments. 

Chapter 3 proposes a unified framework for spatio-temporal segmentation of video 

sequences based on graphical models [71]. Motion information among successive 

frames, boundary information from intensity segmentation, and spatial connectivity 

of object segmentation are unified in the video segmentation process using graphical 

models. A Bayesian network is presented to model interactions among the motion 

vector field, the intensity segmentation field, and the video segmentation field. 

Markov random field and distance transformation are employed to encourage the 

formation of continuous regions. In addition, the proposed video segmentation 

approach can be viewed as a compromise between previous motion based approach 

and region merging approach. 

Chapter 4 presents a dynamic hidden Markov random field (DHMRF) model for 

foreground object segmentation by background subtraction and shadow removal 

[67]. Given a video sequence, temporal dependencies of consecutive segmentation 

fields and spatial dependencies within each segmentation field are unified in the 

novel dynamic probabilistic model that combines the hidden Markov model and the 
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Markov random field. An efficient approximate filtering algorithm is derived for the 

DHMRF model to recursively estimate the segmentation field from the history of 

observed images. The proposed approach can robustly handle shadow and 

camouflage in nonstationary background scenes and accurately detect foreground 

and shadow even in monocular grayscale sequences. 

Chapter 5 proposes a switching hypothesized measurements (SHM) model 

supporting multimodal probability distributions and applies the SHM model to deal 

with visual occlusions and appearance changes when tracking multiple objects [68]. 

An efficient approximate SHM filter is derived for online joint object tracking. 

Moreover, the SHM model is generally applicable to various dynamic processes with 

multiple alternative measurement methods. 

By means of graphical models, the techniques are developed from relatively 

comprehensive and general viewpoints, and thus can be employed to deal with object 

segmentation and tracking in diverse application areas. Experimental results tested 

on public video sequences show that the proposed approaches robustly handle the 

potential variability such as partial or full occlusions and illumination or appearance 

changes as well as accurately segment and track objects in video sequences. 
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Chapter 2 

Object Segmentation and Tracking: A Review 

2.1 Video segmentation 

Given a video sequence, it is important for a system to segment independently 

moving objects composing the scene in many applications including human-

computer interaction and object-based video coding. One essential issue in the design 

of such systems is the strategy to extract and couple motion information and intensity 

information during the video segmentation process. 

Motion information is one fundamental element used for segmentation of video 

sequences. A moving object is characterized by coherent motion over its support 

region. The scene can be segmented into a set of regions, such that pixel movements 

within each region are consistent with a motion model (or a parametric 

transformation) [66]. Examples of motion models are the translational model (two 

parameters), the affine model (six parameters), and the perspective model (eight 

parameters). Furthermore, spatial constraint could be imposed on the segmented 

region where the motion is assumed to be smooth or follow a parametric 

transformation. In the work of [9] [59] [65], the motion information and 

segmentation are simultaneously estimated. Moreover, layered approaches have been 

proposed to represent multiple moving objects in the scene with a collection of layers 

[31] [32] [62]. Typically, the expectation maximization (EM) algorithm is employed 

to learn the multiple layers in the image sequence. 
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On the other hand, intensity segmentation provides important hints of object 

boundaries. Methods that combine an initial intensity segmentation with motion 

information have been proposed [19] [41] [46] [64]. A set of regions with small 

intensity variation is given by intensity segmentation (or oversegmentation) of the 

current frame. Objects are then formed by merging together regions with coherent 

motion. The region merging approaches have two disadvantages. Firstly, the 

intensity segmentation remains unchanged so that motion information has no 

influence upon the segmentation during the entire process. Secondly, even an 

oversegmentation sometimes cannot keep all the object edges, and the boundary 

information lost in the initial intensity segmentation cannot be recovered later. Since 

motion information and intensity information should interact throughout the 

segmentation process, to utilize only motion estimation or fix intensity segmentation 

will degrade the performance of video segmentation. From this point of view, it is 

relatively comprehensive to simultaneously estimate the motion vector field, the 

intensity segmentation field, and the object segmentation field. 

2.2 Foreground segmentation 

When the video sequence is captured using a fixed camera, background subtraction is 

a commonly used technique to segment moving objects. The background model is 

constructed from observed images and foreground objects are identified if they differ 

significantly from the background. However, accurate foreground segmentation 

could be difficult due to the potential variability such as moving shadows cast by 

foreground objects, illumination or object changes in the background, and 

camouflage (i.e. similarity between appearances of foreground objects and the 

background) [6] [49] [72]. Besides local measurements such as depth and 
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chromaticity [22] [25] [28] [39], constraints in temporal and spatial information from 

the video scene are very important to deal with the potential variability during the 

segmentation process. 

Temporal or dynamic information is a fundamental element to handle the evolution 

of the scene. The background model can be adaptively updated from the recent 

history of observed images to handle nonstationary background processes (e.g. 

illumination changes). In addition, once a foreground point is detected, it will 

probably continue being in the foreground for some time. Linear prediction of 

background changes from recent observations can be performed by Kalman filter 

[36] or Wiener filter [63] to deal with dynamics in background processes. In the W4 

system [24], a bimodal background model is built for each site from order statistics 

of recent observed values. In [15], the pixel intensity is modeled by a mixture of 

three Gaussians (for moving object, shadow, and background respectively), and an 

incremental EM algorithm is used to learn the pixel model. In [57], the recent history 

of a pixel is modeled by a mixture of (usually three to five) Gaussians for 

nonstationary background processes. In [13], nonparametric kernel density 

estimation is employed for adaptive and robust background modeling. Moreover, a 

hidden Markov model (HMM) is used to impose the temporal continuity constraint 

on foreground and shadow detection for traffic surveillance [52]. A dynamical 

framework of topology free HMM capable of dealing with sudden or gradient 

illumination changes is also proposed in [58]. 

Spatial information is another essential element to understand the structure of the 

scene. Spatial variation information such as gradient (or edge) feature helps improve 

the reliability of structure change detection. In addition, contiguous points are likely 
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to belong to the same background or foreground region. [29] classifies foreground 

versus background by adaptive fusion of color and edge information using 

confidence maps. [56] assumes that static edges in the background remain under 

shadow and that penumbras exist at the boundary of shadows. In [54], spatial 

cooccurrence of image variations at neighboring blocks is employed to improve the 

detection sensitivity of background subtraction. Moreover, spatial smooth constraint 

is imposed on moving object and shadow detection by propagating neighborhood 

information [40]. In [45], spatial interaction constraint is modeled by the Markov 

random field (MRF). In [34], a three dimensional MRF model called spatio-temporal 

MRF involving two successive video frames is also proposed for occlusion robust 

segmentation of traffic images. 

To robustly deal with the potential variability including shadow and camouflage for 

foreground segmentation, it will be relatively comprehensive to unify various 

temporal and spatial constraints in video sequences during the segmentation process. 

2.3 Multi-object tracking 

Multi-object tracking is important in application areas such as visual surveillance and 

human-machine interaction. Given a sequence of video frames containing the objects 

that are represented with a parametric motion model, the model parameters are 

required to be estimated in successive frames. Visual tracking could be difficult due 

to the potential variability such as partial or full occlusions of objects, appearance 

changes caused by variation of object poses or illumination conditions, as well as 

distractions from background clutter. 
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The variability in visual environments usually results in a multimodal state space 

probability distribution. Thus, one principle challenge for visual tracking is to 

develop an accurate and effective model representation. The Kalman filter [7] [43], a 

classical choice in early tracking work, is limited to representing unimodal 

probability distributions. Joint probabilistic data association (JPDA) [3] and multiple 

hypothesis tracking (MHT) [11] techniques are able to represent multimodal 

distributions by constructing data association hypotheses. A measurement in the 

video frame may either belong to a target or be a false alarm. The multiple 

hypotheses arise when there are more than one target and many measurements in the 

scene. Dynamic Bayesian networks (DBN) [20], especially switching linear dynamic 

systems (SLDS) [47] [48] and their equivalents [21] [35] [42] [55] have been used to 

track dynamic processes. The state of a complex dynamic system is represented with 

a set of linear models controlled by a switching variable. Moreover, Monte Carlo 

methods such as the Condensation algorithm [27] [38] support multimodal 

probability densities with sample based representation. By saving only the peaks of 

the probability density, relatively fewer samples are required in the work of [8]. 

On the other hand, measurements are not readily available from video frames in 

visual tracking. Even an accurate tracking model may have a poor performance if the 

measurements are too noisy. Thus, the measurement process is another essential 

issue in visual tracking to deal with the potential variability. Parametric models can 

be used to describe appearance changes of target regions [23]. In the work of [16] 

and [17], adaptive or virtual snakes are used to resolve the occlusion. A joint 

measurement process for tracking multiple objects is described in [51]. Moreover, 

layered approach [32] [60] is an efficient way to represent multiple moving objects 
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during visual tracking, where each moving object is characterized by a coherent 

motion model over its support region. 

To robustly handle the potential variability including occlusions during multi-object 

tracking, it will be relatively comprehensive to develop a multimodal model together 

with an occlusion adaptive measurement process. 

 11



Chapter 3 

A Graphical Model Based Approach of Video Segmentation 

3.1 Introduction 

This chapter presents a probabilistic framework of video segmentation in which 

spatial (or motion) information and temporal (or intensity) information act on each 

other during the segmentation process. A Bayesian network is proposed to model the 

interactions among the motion vector field, the intensity segmentation field, and the 

video (or object) segmentation field. The notion of Markov random field (MRF) is 

employed to boost spatial connectivity of segmented regions. A three-frame 

approach is adopted to deal with occlusions. The segmentation criterion is the 

maximum a posteriori (MAP) estimate of the three fields given consecutive video 

frames. To perform the optimization, we propose a procedure that minimizes the 

corresponding objective functions in an iterative way. Distance transformation is 

employed in local optimization to effectively couple the boundary information from 

intensity segmentation. Experiments show that our technique is robust and generates 

spatio-temporally consistent segmentation results. Theoretically, the proposed video 

segmentation approach can be viewed as a compromise between motion based 

approach and region merging approach. 

Our method is closely related to the work of Chang et al. [9] and Patras et al. [46]. 

Both approaches simultaneously estimate the motion vector field and the video 

segmentation field using a MAP-MRF algorithm. The method proposed by Chang et 

al. adopts a two-frame approach and does not use the constraint from the intensity 
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segmentation field during the video segmentation process. Although the algorithm 

has successfully identified multiple moving objects in the scene, the object 

boundaries are inaccurate in their experimental results. The method of Patras et al. 

employs an initial intensity segmentation and adopts a three-frame approach to deal 

with occlusions. However, the method retains the disadvantage of region merging 

approaches. The boundary information neglected by the initial intensity segmentation 

field could no longer be recovered by the motion vector field, and the temporal 

information could not act on the spatial information. In order to overcome the above 

problems, the proposed algorithm simultaneously estimates the three fields to form 

spatio-temporally coherent results. The interrelationships among the three fields and 

successive video frames are described by a Bayesian network model, in which spatial 

information and temporal information interact on each other. In our approach, 

regions in the intensity segmentation can either merge or split according to the 

motion information. Hence boundary information lost in the intensity segmentation 

field can be recovered by the motion vector field. 

The rest of the chapter is arranged as follows: Section 3.2 presents the formulation of 

our approach. Section 3.3 proposes the optimization scheme. Section 3.4 discusses 

the experimental results. 

3.2 Method 

3.2.1 Model representation 

For an image sequence, assume that the intensity remains constant along a motion 

trajectory. Ignoring both illumination variations and occlusions, it may be stated as 

))(()( 1 xdxx kkk yy −= − ,                      (3.1) 
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where yk(x) is the pixel intensity within the kth video frame at site x, with k ∈ N, x ∈ 

X, and X is the spatial domain of each video frame. dk(x) is the motion vector from 

frame k–1 to frame k. The entire motion vector field is expressed compactly as dk. 

Since the video data is contaminated with certain level of noise in the image 

acquisition process, an observation model is required for the sequence. Assume that 

independent and identically distributed (i. i. d.) Gaussian noise corrupts each pixel, 

thus the observation model for the kth frame becomes 

)()()( xxx kkk nyg += ,                       (3.2) 

where gk(x) is the observed image intensity at site x, and nk(x) is the independent 

zero-mean additive noise with variance . 2
nσ

In our work, video segmentation refers to grouping pixels that belong to 

independently moving objects in the scene. To deal with occlusions, we assume that 

each site x in the current frame gk cannot be occluded in both the previous frame gk–1 

and the next frame gk+1. Thus a three-frame method is adopted for object 

segmentation. Given consecutive frames of the observed video sequence, gk–1, gk, and 

gk+1, we wish to estimate the joint conditional probability distribution of the motion 

vector field dk, the intensity segmentation field sk, and the object (or video) 

segmentation field zk. Using the Bayes’ rule, we know 

),,|,,( 11 +− kkkkkk gggzsp d  

),,(
),,,,,(

11

11

+−

+−=
kkk

kkkkkk
gggp

gggzsp d ,                    (3.3) 
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where p(dk, sk, zk | gk, gk–1, gk+1) is the posterior probability density function (pdf) of 

the three fields, and the denominator on the right side is constant with respect to the 

unknowns. 

The interrelationships among dk, sk, zk, gk, gk–1, gk+1 are modeled using the Bayesian 

network shown in Figure 3.1. Motion estimation establishes the pixel correspondence 

among the three consecutive frames. The intensity segmentation field provides a set 

of regions with relatively small intensity variation in the current frame. In order to 

identify independently moving objects in the scene, these regions are encouraged to 

group into segments with coherent motion. Meanwhile, if multiple motion models 

coexist within one region, the region may split into several segments. Thus according 

to the motion vector field, regions in the intensity segmentation field can either 

merge or split to form spatio-temporally coherent segments. Moreover, spatial 

connectivity should be encouraged during the video segmentation process. 

 

Figure 3.1 Bayesian network model for video segmentation. 

The conditional independence relationships implied by the Bayesian network allow 

us to represent the joint distribution more compactly. Using the chain rule [30], the 

joint probability density can be factorized as 
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Hence, the maximum a posteriori (MAP) estimate of the three fields becomes 
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3.2.2 Spatio-temporal constraints 

The conditional probability density p(gk–1, gk+1 | gk, dk) shows how well the motion 

estimation fits the given consecutive frames. Assuming that the probability is 

completely specified by the random field of displaced frame difference (DFD) [61], 

the video observation model can be employed to compute p(gk–1, gk+1 | dk, gk). We 

can define the backward DFD  and forward DFD )(xb
ke )(xf

ke  at site x as 

)(xb
ke ))(()( 1 xdxx kkk gg −−= −  

))(()( 1 xdxx kkk nn −−= − ,                     (3.6a) 

)(xf
ke ))(()( 1 xdxx kkk gg +−= +  

))(()( 1 xdxx kkk nn +−= + .                     (3.6b) 

The vector Tf
k

b
k ee ))(),(( xx

(b
ke

 is denoted as ek(x). With the i. i. d. Gaussian noise 

assumption, we know that ek(x) is of zero mean bivariate normal distribution. The 

correlation coefficient of  and )x )(xf
ke  is 
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Assuming conditional independence among spatially distinct observations, the 

probability density can be factorized as 
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where Σe is the covariance matrix for each site x, and the correlation coefficient ρ has 

been computed in (3.7). 

The term p(gk | sk) shows how well the intensity segmentation fits the scene. 

Assuming Gaussian distribution for each segmented region in the current frame, the 

conditional probability density could be factorized as 

∏
∈
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∝ exp[ ,                      (3.9a) ]))((|∑
∈

−
Xx

x xk
sg sU

))((| xx k
sg sU 2

)( ))(( xx
kskg µ−= ,                   (3.9b) 

where sk(x) = l assigns site x to region l, µl is the intensity mean within region l, and 

 is the variance for each region. 2
ησ

The pdf p(sk) represents the prior probability of the intensity segmentation. To 

encourage the formation of continuous regions, we model the density p(sk) by a 

Markov random field [18]. That is, if Nx is the neighborhood of a pixel at x, then the 

conditional distribution of a single variable at site x depends only on the variables 

within its neighborhood Nx. According to the Hammersley-Clifford theorem, the 

density is given by a Gibbs distribution with the following form. 

)( ksp ∝ exp[ ,                 (3.10) ])|)((∑
∈

∈−
Cc

k
s

c csV xx

where C is the set of all cliques c, and V  is the clique potential function. A clique is 

a set of pixels that are neighbors of each other, and the potential function V  

depends only on the points within clique c. 

s
c

s
c

Spatial constraint can be imposed by the following two-pixel clique potential. 

))(),(( yx kk
s

c ssV  

∝U  ))(),((, yxyx kk
s ss

= ))]()((1[
||||

1
2 yx

yx kk ss −−
−

δ ,                   (3.11) 
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where  is the Kronecker delta function, and ||⋅|| denotes the 

Euclidean distance. Thus two neighboring pixels are more likely to belong to the 

same class than to different classes. The constraint becomes strong with the decrease 

of the distance between the neighboring sites. 



 =

=
otherwise,0

0if,1
)(

x
xδ

The term p(dk | zk) is the conditional probability density of the motion vector field 

given the video segmentation field. To boost spatial connectivity, it is modeled by a 

Gibbs distribution with the following potential function. 

)|)(),((|
kkk

z
c zV ydxdd  

∝U  ))(),(),(),((|
, yxydxdd
yx kkkk
z zz

2
2 ||)()(||))()((

||||
1 ydxdyx
yx kkkk zz −−

−
= δ .             (3.12) 

The pairwise smoothness constraint of the motion vectors is imposed only when the 

two neighboring pixels share the same video segmentation label. It encourages one 

region to split into several segments when different motion models coexist. Hence 

 can viewed as the region splitting force. zU |
,

d
yx

The last term p(zk | sk) represents the posterior probability density of the video 

segmentation field when the intensity segmentation field is given. The density is 

modeled by a Gibbs distribution with the following potential function. 

)|)(),((|
kkk

sz
c szzV yx  
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, yxyxyx kkkk
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The first term on the right side encourages the spatial connectivity of video 

segmentation, while the second term encourages two neighboring pixels to share the 

same video segmentation label when they are within one region of the intensity 

segmentation field. Therefore U  encourages intensity segmentation regions to 

group altogether and can be viewed as the region merging force. The parameter α 

controls the strength of the constraint imposed by intensity segmentation. 

sz|
,yx

The interactions in the Bayesian network are modeled by the above spatio-temporal 

constraints. Combining these pdf terms, the MAP estimation criterion becomes 
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where the parameters λ1, λ2, λ3, and λ4 control the contribution of individual terms. 

3.2.3 Notes on the Bayesian network model 

In our model, the video segmentation is affected by both spatial information and 

temporal information. It should be noted that the direction of the links in the 

Bayesian network model does not mean that the influence between the cause and 

consequence is just one-way. 
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Figure 3.2 Simplified Bayesian network model for video segmentation. 

The current video frame could be thought as the cause of the next frame. For an 

image sequence, both the original sequence and the one in the reverse sequence order 

are understandable from the viewpoint of segmentation. Thus, the current frame 

could also be viewed as the cause of the previous frame (in the reversed sequence). 

In our model, gk is the cause of both the next frame gk+1 and the previous frame gk–1. 

The motion vector field establishes the correspondence between the current frame 

and its two neighboring frames. When frame gk+1 and frame gk–1 are separated (as 

shown in Figure 3.2), the interrelationship seems clearer at the first glance. However, 

from the structure of the Bayesian network, we know that in this case, 
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Comparing with (3.8), the correlation coefficient of e  and e  is zero in 

(3.15). The Bayesian network in Figure 3.2 neglects the interaction between the 

forward DFD and the backward DFD. Therefore, the Bayesian network model in 

Figure 3.2 is just a simplification of the original model. 

)(xb
k )(xf

k

In (3.13), when the parameter α becomes zero, the constraint from the intensity 

segmentation disappears so that our method degenerates into motion based approach. 

Meanwhile, when α becomes infinity, boundaries in the video segmentation field 

must come from the intensity segmentation field, and our technique turns into region 

merging approach. Therefore, the interactive approach can be viewed as a 

compromise between motion based approach and region merging approach. 

3.3 MAP estimation 

3.3.1 Iterative estimation 

Obviously, there is no simple method of directly minimizing (3.14) with respect to 

all unknowns. We propose an optimization strategy iterating over the following two 

steps. 

Firstly, we update dk and sk given the estimate of the video segmentation field zk. 

From the structure of the proposed Bayesian network, we can see that dk and sk are 

conditionally independent when video segmentation field zk and the three successive 

frames are given. The joint estimation can be factorized as 

)ˆ,ˆ( kk sd )ˆ,,,|,(maxarg 11
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kkkkkk
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Using the chain rule, the MAP estimate becomes 
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Secondly, we update zk given the estimate of the motion field dk and the intensity 

segmentation field sk. 

kẑ )ˆ,ˆ,,,|(maxarg 11 kkkkkk
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sgggzp
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z

szp
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z

szpzp
k

d= .                    (3.18) 

 

Figure 3.3 The 24-pixel neighborhood. 

In our work, the 24-point neighborhood system (the fifth order neighbor system, see 

Figure 3.3) is used, and potentials are defined only on two-point cliques. Using the 

terms in (3.14), the Bayesian MAP estimates in (3.17) and (3.18) can be obtained by 

minimizing the following objective functions. 
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where Nx is the neighborhood of the pixel at x. 

3.3.2 Local optimization 

In general, the objective functions are nonconvex and do not have a unique 

minimum. The iterated conditional modes (ICM) algorithm is used to arrive at a sub-

optimal estimate of each objective function [4]. The ICM algorithm employs the 

greedy strategy in iterative minimization. Given the observed data and other 

estimated labels, the segmentation label is sequentially updated by locally 

minimizing the objective function at each site. 

To effectively employ boundary hints supplied by spatial information in the local 

optimization, distance transformation [5] is performed on the intensity segmentation 

field. Each pixel x in the distance transformed image has a value dx(sk) representing 

the distance between the pixel and the nearest boundary pixel in sk. Here a boundary 
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pixel x has at least one point y within its neighborhood where sk(y) is not the same as 

sk(x). The term U  in (3.19c) is replaced by sz|
,yx
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where . The term θ helps to give a penalty on the pixel closer to 

the boundary in the intensity segmentation field if the two neighboring pixels within 

an intensity segmentation region do not share the same video segmentation label. It 

should be noted that U  does not destroy the symmetry of the two-pixel clique 

potential in MRF [69]. U  is associated with the objective function (3.19c) and the 

optimization algorithm. The optimization algorithm updates the label by locally 

minimizing the objective function at each site. A two-point potential is accounted on 

both sites. U  is equivalent to U  for the objective function because the total 

penalty for the entire field is the same. U  is symmetric and it complies with the 

definition of MRF. The difference between them occurs in the local minimization of 

the optimization process. We prefer the form of (3.20) since in our experiments, the 

boundary information are more accurately estimated by giving all the penalty to the 

site near the boundary instead of evenly allocating the penalty for both sites in local 

optimization (see Section 3.4). 
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Similarly in (3.19b), U  could be replaced by sz|
,yx
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Comparing with (3.13), the first term in (3.13) is ignored in (3.21) since it is constant 

when the video segmentation field is given. 

Thus, we obtain the actual local objective functions that are sequentially optimized at 

each site. 
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3.3.3 Initialization and parameters 

The intensity segmentation field is initialized using a generalized K-means clustering 

algorithm to include the spatial constraint. Each cluster is characterized by a constant 

intensity, and the spatial constraints are performed by the two-point clique potential 

in (3.11). The initialization algorithm is actually a simplification of the adaptive 

clustering algorithm proposed by Papps [44]. The initial motion vector field is 
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obtained by the MAP estimation with pairwise smoothness constraint [61]. Wang 

and Adelson [66] have proposed a procedure for initialization of the video 

segmentation field. Given the initial motion estimates, the current frame is divided 

into small blocks and an affine transformation is computed for each block. A set of 

motion models is known by adaptively clustering the affine parameters. Then video 

segmentation labels are assigned in a way that minimizes the motion distortion. In 

our work, the video segmentation field is initialized by combining this procedure 

with the spatial constraint on the assignment of regions. The parameter α is manually 

determined to control the constraint imposed by intensity segmentation. Given the 

initial estimates of the three fields, we employ the idea of parameter selection 

proposed by Chang et al. [9]. The parameters (λ1, λ2, λ3, and λ4) are determined by 

equalizing the contributions of the terms in (3.14). Details can be found in the 

references. 

3.4 Results and discussion 

The results tested on the “flower garden” sequence and the “table tennis” sequence 

are shown in Figure 3.4-5. We assume that there are four objects in the video 

segmentation field. 

 

     (a)           (b)           (c) 
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     (d)           (e)           (f) 

 

     (g)           (h)           (i) 

  

     (j)           (k)           (l) 

 

     (m)           (n)           (o) 

Figure 3.4 Segmentation results of the “flower garden” sequence. (a)-(c) Three 

consecutive frames of the sequence. (d) The motion vector field. (e) The four-level 

intensity segmentation field, (f) the corresponding distance transformed image and 
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(g)-(j) video segmentation results. (k) The three-level intensity segmentation field 

and (l)-(o) the corresponding video segmentation results. 

The motion vector field, intensity segmentation field, and the video segmentation 

field are recovered using the proposed technique for both sequences. The spatial 

connectivity is clearly exhibited in the estimation results. From the motion vector 

fields shown in Figure 3.4d and 3.5d, we can see that motion occlusions are 

successfully overcome. The results of the four-level intensity segmentation are 

depicted in Figure 3.4e and 3.5e, where an area with constant intensity represents an 

intensity segment. Figure 3.4f and 3.5f are the corresponding distance transformed 

images. Darker gray levels are used to represent the pixels with smaller distance 

values. In Figure 3.4g-j and 3.5g-j, we represent the video segmentation results 

obtained by our approach. In the “flower garden” sequence, the edge information is 

preserved well in intensity segmentation field (see Figure 3.4e). The algorithm is 

capable of distinguishing the different objects in the scene by successfully grouping 

the small regions that are spatio-temporally coherent. While in the “table tennis” 

sequence, the boundary information lost in Figure 3.5e (boundary information may 

be lost even in an oversegmentation, e.g., the boundary between the body and the left 

arm) is recovered according to the information from the motion vector field. 

However, boundaries are detected more accurately when both spatial and temporal 

features are matched (e.g., the tree in Figure 3.4i and the body in Figure 3.5g). The 

segmentation algorithm is robust even at the largely homogeneous areas (e.g., the sky 

in Figure 3.4j and table in Figure 3.5j), where there is little motion information. 

Figure 3.4l-o and 3.5l-o show the video segmentation results with three-level and 

six-level intensity segmentation for the “flower garden” sequence and the “table 

tennis” sequence respectively. Comparing with the video segmentation results shown 
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in Figure 3.4g-j and 3.5g-j, it can be seen that our method is robust to achieve spatio-

temporally coherent results without strong requirement of intensity segmentation. 

  

     (a)           (b)           (c) 

   

     (d)           (e)           (f) 

 

     (g)           (h)           (i) 

 

     (j)           (k)           (l) 
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     (m)           (n)           (o) 

Figure 3.5 Segmentation results of the “table tennis” sequence. (a)-(c) Three 

consecutive frames of the sequence. (d) The motion vector field. (e) The four-level 

intensity segmentation field, (f) the corresponding distance transformed image and 

(g)-(j) video segmentation results. (k) The six-level intensity segmentation field and 

(l)-(o) the corresponding video segmentation results. 

Figure 3.6 shows part of the video segmentation results using (3.13) in local 

objective functions instead of (3.21) and (3.22) for the two sequences. Comparing 

with the segmented results in Figure 3.4 and 3.5, it can be seen that the utilization of 

distance transformation in local optimization has greatly improves the boundary 

accuracy of video segmentation. 

 

     (a)           (b)           (c) 

Figure 3.6 The video segmentation results without using distance transformation in 

local optimization for (a) the “flower garden” sequence and (b) (c) the “table tennis” 

sequence. 
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To test the robustness of the algorithm, Figure 3.7-8 show the video segmentation 

results by the proposed method for the “coastguard” sequence and the “sign” 

sequence, respectively. In Figure 3.7-8, it is assumed that there are three objects in 

the scene. The motion vector field and the intensity segmentation field for the “sign” 

sequence are also shown in Figure 3.8. The experimental results exhibit satisfactory 

spatio-temporal coherence. 

 

     (a)           (b) 

 

     (c)           (d) 

Figure 3.7 Segmentation results of the “coastguard” sequence. (a) One frame of the 

sequence. (b)-(d) The video segmentation results. 

 

     (a)           (b)           (c) 
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     (d)           (e)           (f) 

Figure 3.8 Segmentation results of the “sign” sequence. (a) One frame of the 

sequence. (b) The motion vector field. (c) The four-level intensity segmentation 

field. (d)-(f) The video segmentation results. 

The intensity segmentation constraint helps generate accurate boundaries in spatio-

temporally coherent areas. Since sometimes one area of similar intensity may belong 

to different objects, the intensity segmentation constraint is weakened when the 

motion information within one intensity segmentation region is incoherent. This is 

why boundaries lost in the intensity segmentation can be recovered by the motion 

information in our work. As a compromise, the boundary is not anticipated to be 

accurate in the incoherent area because the intensity segmentation constraint is weak 

there. Moreover, the incoherence of spatio-temporal information may be caused by 

the boundary information loss in the intensity segmentation field or the estimation 

error in the motion vector field. In the worst case, our algorithm will fail in the area 

where the boundary is lost in intensity segmentation, and the motion is erroneously 

estimated at the same time (e.g. the segmentation error for the part of the right hand 

in Figure 3.8e). Hence our approach may not consistently produce accurate edges in 

the entire video segmentation field. However, the approach has an advantage in 

application areas where it is important to discover areas with different motions (such 
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as in human machine interaction and video indexing). Therefore, the new approach is 

complementary to region merging methods in this aspect. 

In this chapter, we have proposed a unified framework for video segmentation based 

on graphical models. The spatio-temporal consistency of segmentation is expressed 

in terms of interactions among the motion field, the intensity segmentation field, and 

the video segmentation field. The solution is obtained by the MAP estimate, and an 

optimization procedure that iteratively maximizes the conditional probability density 

of the three fields is proposed. There are three main contributions within the chapter. 

The first is building a Bayesian network based framework that combines both the 

spatial and temporal information in the video segmentation process. The second is 

formulating the spatio-temporal constraints by utilizing Markov random fields, 

distance transformation, and multivariate normal distribution. The third is 

theoretically making a compromise between motion based approach and region 

merging approach. The approach deals with video segmentation from a relatively 

comprehensive and general viewpoint, and thus can be universally applied. Our 

method exhibits good robustness and spatio-temporal coherence. 
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Chapter 4 

A Dynamic Hidden Markov Random Field Model for 

Foreground Segmentation 

4.1 Introduction 

A probabilistic model of spatial and temporal constraints in video sequences, the 

dynamic hidden Markov random field (DHMRF) model, is proposed in this chapter 

for segmenting indoor foreground objects by background subtraction and shadow 

removal. Spatial and temporal dependencies in the segmentation process are unified 

in the dynamic probabilistic model (DHMRF) that combines the Markov random 

field (MRF) and the hidden Markov model (HMM). A computationally efficient 

approximate filtering algorithm is derived for the DHMRF model to recursively 

estimate the segmentation field. Each pixel in the scene is classified as foreground, 

shadow, or background from the history of video images. The foreground 

segmentation method integrates both intensity and edge features, and it adaptively 

updates the models of background, shadow, and edge information. Experimental 

results show that the proposed approach robustly handles shadow and camouflage in 

nonstationary background scenes and improves the accuracy of foreground detection 

in monocular video sequences. 

As to the related work, Paragios and Ramesh use the MRF model to combine 

different types of features and incorporate spatial constraints for subway monitoring 

[45]. The method detects changes between the background and the current image, 

and it does not utilize the previous images. In our approach, the foreground is 
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estimated from the history of all observed images. Rittscher et al. use both HMM and 

MRF for foreground and shadow segmentation [52]. In their work, each site (or 

block) is modeled by a single HMM independent of the neighboring sites (or blocks). 

The HMM and the MRF are employed in two different processes to impose temporal 

and spatial contextual constraints respectively. In our work, the state of a single site 

is influenced by its neighboring sites, meanwhile spatial and temporal constraints are 

unified in a dynamic model. Mikic et al. model the pixel color change under shadow 

by a diagonal matrix for traffic scenes [40]. In their approach the variance under 

shadow is assumed to be smaller than the variance in the background for the same 

site, which sometimes is not valid for indoor environments. For the background 

updating process, the Gaussian mixture method by Stauffer and Grimson [57] is 

slightly modified in our work to employ the estimation by the DHMRF filtering 

algorithm. 

The rest of the chapter is arranged as follows: Section 4.2 proposes the DHMRF 

model and derives its filtering algorithm. Section 4.3 presents the foreground and 

shadow detection method. Section 4.4 describes the implementation details. Section 

4.5 discusses the experimental results. 

4.2 Dynamic hidden Markov random field 

Given an image sequence {gk}, the segmentation label for a point x within the kth 

image is denoted by sk(x). Label sk(x) ∈ {1, 2, …, L} assigns the point x to one of L 

(L equals 3 in this work, see Section 4.3) classes at time k. Here k ∈ N, x ∈ X, and X 

is the spatial domain of the video scene. The entire label field is expressed compactly 

as sk. Spatial and temporal constraints in the segmentation process can be imposed 

through a dynamic model of statistical dependencies of neighboring sites. 
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4.2.1 DHMRF model 

Given the observed data up to time k, the posterior probability distribution of the 

segmentation field sk is modeled by a Markov random field [18] to formulate spatial 

dependencies. In the MRF model, if Nx is the neighborhood of a site x, then the 

conditional distribution of a single label at x depends only on the labels within its 

neighborhood Nx. According to the Hammersley-Clifford theorem, the probability is 

given by a Gibbs distribution that has the following form. 

)|( :1 kk gsp ∝ exp[ ,                (4.1) ])|)(( :1∑
∈

−
Cc

kkc gcsV

where g1:k denotes {g1, g2, …, gk}, C is the set of all cliques c, Vc is the clique 

potential function, and sk(c) denotes {sk(x) | x ∈ c}. A clique is a set of pixels that are 

neighbors of each other, and the potential function Vc depends only on the points 

within clique c. 

Only one-pixel and two-pixel cliques are used in our work. The one-pixel potential 

Vx(sk(x) | g1:k) reflects the information (or constraint) from the observation for a 

single site, and the two-pixel potential imposes the spatial constraint to form 

contiguous regions. To simplify the computation, the pairwise constraint is assumed 

to be independent of the observed images. Hence the two-point potential is written as 

Vx,y(sk(x), sk(y)). The posterior distribution at time k becomes 
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Spatial connectivity constraint can be imposed by the following two-pixel potential. 
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where 1 ≤ i, j ≤ L, ||⋅|| denotes the Euclidian distance, and δ(⋅) is the Kronecker delta 

function. Thus two neighboring pixels are more likely to belong to the same class 

than to different classes. The spatial constraint becomes strong with decreasing 

distance between the neighboring sites. 

The dynamic or temporal dependencies of consecutive segmentation fields are 

formulated by a hidden Markov model [50]. In the HMM, image gk is the kth 

observation, and segmentation field sk is the hidden state at time k. Therefore the 

state transition model p(sk+1 | sk) and the observation (or likelihood) model p(gk | sk) 

for the HMM should be built for the entire scene. 

The label field state transition probability p(sk+1 | sk) is modeled by a Markov random 

field defined on one-pixel and two-pixel cliques as well. 
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where Mx designates the set of sites in the kth image that impact on site x in the 

(k+1)th image. The one-pixel potential Vx(sk+1(x) | sk(Mx)) models the label state 

transition for a single site, and the two-pixel potential Vx,y(sk+1(x), sk+1(y)) imposes 

the pairwise spatial constraint. It should be noted that Mx is not equivalent to the 

neighborhood Nx. Mx and Nx may have different sizes. x ∉ Nx while x ∈ Mx (e.g. see 

Figure 4.1). To distinguish them, Nx is called the spatial neighborhood, and Mx the 

temporal neighborhood. 
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(a)     (b) 

Figure 4.1 Illustration of spatial neighborhood and temporal neighborhood. (a) The 

8-pixel spatial neighborhood. (b) The 25-pixel temporal neighborhood. 

Assuming conditional independence between spatially distinct observations, the 

observation model p(gk | sk) is factorized as 

)|( kk sgp ∏
∈

=
Xx

xxo ))(|)(( kk sp ,                  (4.5) 

where ok(x) is the observation for site x that consists of locally measured information 

such as intensity and gradient features (see Section 4.3.2). 

By (4.2), (4.4), and (4.5), spatial and temporal dependencies in the segmentation 

process are unified in a dynamic model that combines the MRF and the HMM. 

Therefore it is called the dynamic hidden Markov random field (DHMRF) model. 

4.2.2 DHMRF filter 

From a Bayesian perspective, the filtering algorithm is to recursively update the 

posterior distribution of the segmentation field. Given the potentials of the 

distribution p(sk | g1:k), the posterior p(sk+1 | g1:k+1) at time k+1 can be efficiently 

approximated by a Markov random field with the following potential functions (see 

Appendix A). 

)|)(( 1:11 ++ = kk gisV xx  
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where 1 ≤ i, j ≤ L, |⋅| denotes the size (number of points) of the set, αi|j is the potential 

of state transition (from j to i) that imposes the temporal continuity constraint on 

segmentation label, λk and β weight the constraint from previous observations and 

the constraint of spatial connectivity respectively. The parameters are initialized and 

determined in Section 4.4.2. In the one-pixel potential (4.6a), the first term reflects 

the information from previously observed images for a single site x, which is 

affected by its temporal neighborhood Mx. The second term in (4.6a) reflects the 

information from the current observation. The two-pixel potential (4.6b) imposes the 

constraint from the spatial neighborhood. 

4.3 Foreground and shadow segmentation 

Given the video sequence, each pixel in the scene is to be classified as background, 

shadow, or foreground. For a site x in the kth frame, the segmentation label sk(x) 

equals 1 for a background pixel, 2 for shadow, and 3 for foreground. Here static 

shadows are considered to be part of the background. 

4.3.1 Local observation 

In order to segment the foreground, the system should first model the background 

and shadow information. Edge information also helps improve the reliability of 

detection. 
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Since indoor environments are relatively stable compared to outdoor scenes, we 

assume that each pixel in the background is of Gaussian distribution. At time k, 

)()()( ,, xxx kbkbk nb += µ ,                      (4.7) 

where random variable bk(x) is the intensity of a pixel x within the background, 

µb,k(x) is the intensity mean, and nb,k(x) is independent zero-mean Gaussian noise 

with variance  at time k. Intensity means and variances in the background can 

be estimated from previous images (see Section 4.4.1). 

)(2
, xkbσ

Given the intensity of a background point, we use a linear model to describe the 

change of intensity for the same point when shadowed in the video frame. At time k, 

)()()( , xxx kskk nabg += , if sk(x) = 2,                 (4.8) 

where the coefficient a ∈ [0,1], and ns,k(x) is independent zero-mean Gaussian noise 

with variance  at time k. The shadow noise n)(2
, xksσ s,k(x) models the deviation from 

the simple linear approximation in real visual environments, especially when the 

entire background scene is not flat. Since it is difficult to compute  

individually for every site x in the scene, we assume that  equals , 

and that the shadow noise is independent of the background noise. Thus the intensity 

of a shadowed point is of Gaussian distribution with the following mean and 

variance. 
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Parameters a and ρ are manually determined. Their values depend on the visual 

environment, usually 0.5 ≤ a < 1 and 0.5 ≤ ρ ≤ 1.5 in indoor scenes. 

The edge model is built by applying an edge operator to the scene. For a site x, 

denote xl and xr as its two horizontally neighboring (left and right) points, xu and xd 

its two vertically neighboring (up and down) points. At time k, the image edge vector 

eg,k(x) is denoted by ( , where  is the 

horizontal difference, and  is the vertical difference. The 

entire image edge field is expressed as e

Tv
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h
kg ee ))(),( ,, xx
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kg gge xxx −=

)d() kg x−

g,k. 

Similarly, we can model the edge information for the background. At time k, the 

background edge vector eb,k(x) for a site x is denoted by , where 

 and e  are the horizontal difference 

and the vertical difference respectively. It can be known from the background model 

that e
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b,k(x) is of bivariate normal distribution. According to the independent 

background noise assumption, the corresponding mean µe,k(x) and covariance matrix 

Σe,k(x) of the distribution can be calculated from the intensity means and variances of 

the four neighboring points. 
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The edge model can be used to detect structure changes in the scene as edge features 

appear, vanish, or rotate. Although other edge operators such as the Sobel operator 
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can be applied as well, we use the above operator with a diagonal covariance matrix 

to simplify the computation. 

4.3.2 Likelihood model 

Since the image edge field eg,k is totally determined by the image gk, the observation 

(or likelihood) model p(gk | sk) can be written as p(gk, eg,k | sk). Then the factorization 

of the likelihood in (4.5) becomes 

)|( kk sgp )|,( , kkgk sgp e=  

∏
∈
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xxex ))(|)(),(( , kkgk sgp ,                    (4.11) 

where ok(x) in (4.5) is replaced by (gk(x), eg,k(x)) to integrate both intensity and edge 

features. Given the segmentation label, we assume that the image intensity and image 

edge are conditionally independent on each other at each site. Hence the local 

likelihood can be factorized as the product of intensity likelihood and edge 

likelihood. 

))(|)(),(( , xxex kkgk sgp  

))(|)(())(|)(( , xxexx kkgkk spsgp= .                 (4.12) 

When site x is in the background, the intensity likelihood can be calculated using the 

background model. 

)1)(|)(( =xx kk sgp ))(),();(( 2
,, xxx kbkbkgN σµ= ,            (4.13) 

where N(z; m, Σ) is a Gaussian distribution with argument z, mean m, and 

covariance Σ. 
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When site x is shadowed, the probability density can be calculated by the shadow 

model. 

)2)(|)(( =xx kk sgp  

))()(),();(( 2
,
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When site x is in the foreground, the background has no influence on the pixel 

intensity information. Uniform distribution is assumed for the foreground pixel 

intensity. The conditional probability density becomes 

)3)(|)(( =xx kk sgp
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1
y

= .                    (4.15) 

Here [0, ymax] is the intensity range for a point in the scene. 

For each point x, denote the set of its four nearest neighboring points by 

. Considering the spatial connectivity of the scene, we assume 

that the four neighboring points have the same segmentation label as x. Thus the 

edge likelihood is approximated by 

},,,{ durlN xxxxx =′

))(|)(( , jsp kkg =xxe ≈ ))(|)(( , jNsp kkg =′xxe .            (4.16) 

Similarly, when the area xN ′  is in the background, the probability density can be 

computed by the edge model. 

)1)(|)(( , =′xxe Nsp kkg  

))(),();(( ,,, xΣxµxe ee kkkgN= .                    (4.17) 

When the area  is shadowed, the edge likelihood can be computed using the 

models in Section 4.3.1. 

xN ′
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When the area  belongs to the foreground, we assume that the point intensity 

within the foreground is independent and identically distributed (i. i. d.). From 

(4.15), it can be known that 

xN ′
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4.3.3 Segmentation algorithm 

Substitute (gk+1(x), eg,k+1(x)) for ok+1(x) in (4.6a) and combine the likelihood model in 

Section 4.3.2, then the one-pixel potential function for the segmentation field at time 

k+1 can be updated by the DHMRF filter. 
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where 1 ≤ i, j ≤ 3. Meanwhile the two-pixel potential Vx,y(sk+1(x), sk+1(y)) can be 

calculated using (4.6b). 

At time k+1, the MAP (maximum a posteriori) estimate of the segmentation field is 

computed as 
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4.4 Implementation 

4.4.1 Background updating 

For stationary background scenes, the intensity mean and variance of each 

background point can be estimated from a sequence of background images recorded 

at the beginning. 

For nonstationary background scenes, the background updating process is based on 

the idea of Stauffer and Grimson [57]. The recent history of each pixel is modeled by 

a mixture of Gaussians. As parameters of the mixture model change, the Gaussian 

distribution that has the highest ratio of weight over variance is chosen as the 

background model. After the segmentation of an image, each pixel is checked to 

match the existing Gaussian distributions. For a matched Gaussian, its weight 

increases and the corresponding mean and variance are updated utilizing the pixel 

value. For unmatched distributions, the means and variances remain the same, while 

the weights should be renormalized. If none of the distributions match the pixel 

value, the distribution of the lowest weight is replaced with a Gaussian with the pixel 

value as its mean, initially low weight and high variance. 

The main difference between the Gaussian mixture method and our approach in 

background updating is the definition of match. In [57], a Gaussian is matched if the 

pixel value is within 2.5 standard deviations of the distribution. In our work, if the 
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point is classified as background by the segmentation algorithm (DHMRF filtering), 

then the Gaussian corresponding to the background model is matched, otherwise a 

Gaussian is matched if the value is within 2.5 standard deviations of the distribution. 

Thus the estimation by the DHMRF filter is employed in the updating process. Each 

time after background updating, the models of shadow and edge information can be 

updated by (4.9) and (4.10). 

4.4.2 Parameters and optimization 

In the one-pixel potential function (4.20), the potential of state transition is expressed 

as αi|j ∝ (1 – δ(i – j)), so that segmentation labels for the same site are likely to 

remain the same at consecutive time instants. To balance the influence of the terms in 

(4.20), we assume that 
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Hence λk and αi|j are estimated as 
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The parameters γ and β in (4.6b) are manually determined to reflect the importance 

of observed information and spatial connectivity respectively. Initially, the one-pixel 

potential 
3

))(( 0
γ

== js xxV  for all x and j, and λ0 = 1. 
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At each time, the MAP estimate is obtained by minimizing the objective function in 

(4.21). The objective function is nonconvex and does not have a unique minimum. 

Obviously, there is no simple method of performing the optimization. To arrive at a 

sub-optimal estimate, we use a local technique known as iterated conditional modes 

(ICM) [4]. The ICM algorithm employs the greedy strategy in iterative minimization. 

Initially, segmentation labels are set by maximizing the likelihood. Given the 

observed data and estimated labels of the latest iterative step, segmentation labels are 

sequentially updated by locally minimizing the objective function at each site. 

4.5 Results and discussion 

The proposed approach has been tested on monocular grayscale video sequences 

captured in different indoor environments. (For color images, they are first converted 

into grayscale ones.) Figure 4.2-3 show the segmentation results of two sequences 

with stationary background scenes, and Figure 4.4-5 show the segmentation results 

of two sequences with nonstationary background scenes. In Figure 4.4-5, our 

technique is compared to the Gaussian mixture (GM) method [57] and the method 

used in the W4 system [24]. Unless otherwise stated, the segmentation results by our 

method are obtained using the 24-pixel spatial neighborhood and the 81-pixel 

temporal neighborhood. 
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   (a)       (b)       (c) 

Figure 4.2 Segmentation results of the “aerobic” sequence. (a) Two frames of the 

sequence. (b) Segmentation results by simple background subtraction. (c) 

Segmentation results by the proposed method. 

  

     (a.1)          (a.2) 

  

     (b.1)         (b.2) 

   

     (c.1)          (c.2)          (c.3) 
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Figure 4.3 Segmentation results of the “room” sequence. (a) Two frames of the 

sequence. (b) Segmentation results by the proposed method. (c) Information of 

background, shadow, and foreground from previous frames for (a.2). 

Figure 4.2 shows the segmentation results for two frames of the “aerobic” sequence 

using simple background subtraction and the proposed method. The gray regions in 

Figure 4.2c represent moving cast shadows. Compared to simple background 

subtraction, the proposed approach greatly improves the accuracy of foreground 

detection. The moving cast shadows attached to the woman in Figure 4.2b are 

exactly removed from the foreground in Figure 4.2c. The flickering pixels in the 

background and camouflage regions at the woman’s neck and legs are erroneously 

detected in Figure 4.2b, while these problems are overcome by the proposed method. 

Figure 4.3 shows the segmentation results for two frames of the “room” sequence by 

the proposed method. Moving shadows cast at different locations of the wall and the 

floor are discriminated from the man in Figure 4.3b. When shadows are cast on 

multiple planes in the background scene, the noise term in the shadow model (4.8) 

ameliorates the linear approximation of intensity change under shadow. Figure 4.3c 

shows the information from previous video frames (the first term in the one-pixel 

potential function (4.20)) for the second image. The bright gray levels indicate high 

prior probability for the corresponding class (background, shadow, and foreground). 

It can be seen that previous observations enhance the confidence of foreground and 

shadow segmentation. 
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     (a.1)          (b.1)          (c.1) 

  

     (d.1)         (e.1)  

   

     (a.2)          (b.2)          (c.2) 

  

     (d.2)         (e.2)  

Figure 4.4 Segmentation results of the “laboratory” sequence. (a) Two frames of the 

sequence. (b) Segmentation results by GM. (c) Segmentation results by W4. (d) 

Segmentation results by the proposed method using the 4-pixel spatial neighborhood 
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and the 9-pixel temporal neighborhood. (e) Segmentation results by the proposed 

method using the 24-pixel spatial neighborhood and the 81-pixel temporal 

neighborhood. 

   

     (a.1)          (b.1)          (c.1) 

  

     (d.1)         (e.1)  

   

     (a.2)          (b.2)          (c.2) 

  

     (d.2)         (e.2)  
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Figure 4.5 Segmentation results of another “laboratory” sequence. (a) Two frames of 

the sequence. (b) Segmentation results by GM. (c) Segmentation results by W4. (d) 

Segmentation results by the proposed method without using edge information. (e) 

Segmentation results by the proposed method. 

Figure 4.4 shows the segmentation results using GM, W4, and the proposed method 

for two frames of the “laboratory” sequence with background object change. The 

open cabinet in the second image is classified as background in Figure 4.4b-e by all 

the methods after a period of background updating. Figure 4.4d and 4.4e show the 

influence of neighborhood size. The camouflage regions and flickering areas in 

Figure 4.4d are corrected in Figure 4.4e by increasing spatio-temporal contextual 

constraints when the noise in the scene is heavy. 

Figure 4.5 shows the segmentation results by GM, W4, and the proposed method for 

two frames of another “laboratory” sequence with background illumination change. 

The illumination change in the second image caused by switching off part of the light 

is updated for the background in Figure 4.5b-e by all the methods. Figure 4.5d and 

4.5e show that the integration of edge information helps locate structure changes of 

the scene and improves the reliability of foreground detection. 

Table 4.1 Quantitative evaluation of foreground segmentation results. 

 false negative false positive 

GM 3.0% 3.5% 

W4 5.2% 2.7% 

proposed 3.3% 0.9% 
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The results are also evaluated quantitatively in terms of false negative rate (the 

portion of foreground pixels that are misclassified as non-foreground) and false 

positive rate (the portion of non-foreground pixels that are misclassified as 

foreground) by comparing to the manually segmented ground-truth foreground 

images. Before quantitative comparison, the segmentation results by the two other 

methods are smoothed to remove small erroneously detected areas. The average error 

rates for ten frames of the two laboratory sequences (five frames with different 

foreground object positions for each sequence) are summarized in Table 4.1. The 

moving shadows cast on the floor, wall, and table result in an increase of falsely 

detected foreground pixels (false positive) in Figure 4.4b-c and 4.5b-c. With an 

explicit shadow model, it is relatively easy for our approach to know which part of 

the pixel intensity distribution is likely to be produced by shadows. Moreover, both 

spatial and temporal constraints are employed in our approach. Hence the false 

positive rate is reduced by the proposed method with a tradeoff in relatively high 

computation load. On the other hand, in indoor scenes the intensity variance of a 

point under shadow is usually greater than the variance of the same site in the 

background. Since the pixel intensity distribution of the foreground is assumed to be 

uniform, foreground regions darker than the background tend to be misclassified 

when the intensity variances under shadow are excessively large. This effect makes 

part of the man’s arms erroneously detected as shadow in the first image of Figure 

4.4e, and the false negative rate of our approach higher than that of the Gaussian 

mixture method. 

There are two main contributions in this chapter. First, we have proposed a dynamic 

hidden Markov random field (DHMRF) model that combines the HMM and the 

MRF for video sequences. Second, we have derived an efficient approximate 
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DHMRF filtering algorithm and applied it to moving object and cast shadow 

detection in indoor scenes. The DHMRF model unifies the constraints of spatial 

connectivity and temporal continuity in the segmentation process. Objects and 

shadows usually form contiguous regions, and a point is likely to have the same 

segmentation label in consecutive frames. Two other kinds of spatial and temporal 

information are employed in our approach as well. The spatial gradient (or edge) 

information is integrated to help detect structure changes in the scene, and the recent 

history of observed images is used to adaptively update the models of background, 

shadow, and edge information. The proposed approach does not require range or 

color data and performs robust foreground segmentation. Experimental results show 

that our method accurately distinguishes moving objects from their cast shadows in 

nonstationary background scenes. 
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Chapter 5 

Multi-object Tracking with Switching Hypothesized 

Measurements 

5.1 Introduction 

The idea of hypothesized measurements, which results in a switching hypothesized 

measurements (SHM) model that differs from previous state space models, is 

proposed in this chapter. The ability to support multimodality makes the model 

suitable for handling the potential variability in visual tracking. At each time instant, 

the approach acquires a set of hypothesized measurements for different occlusion 

hypotheses rather than uses a uniform measurement process. A computationally 

efficient filtering algorithm is derived for tracking multiple objects jointly. Both 

occlusion relationships and states of the objects are estimated from the history of 

hypothesized measurements. The proposed method helps prevent distractions from 

background clutter. When there is a high confidence in nonocclusion, the reference 

regions can be adaptively updated to deal with object appearance changes. Moreover, 

the SHM model is generally applicable to dynamic processes with multiple 

alternative measurement methods. 

As to the related work, Ghahramani and Hinton introduced a dynamic Bayesian 

network framework for learning and inference in switching state space models [21]. 

Pavlovic et al. proposed a switching linear dynamic system (SLDS) approach for 

human motion analysis [47]. A switching model framework for the Condensation 

algorithm is also proposed by Isard and Blake [26]. In their work, the switching 
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variable determines which dynamic model is in effect at each time instant. Rather 

than switches among a set of models, the SHM approach switches among a set of 

known hypothesized measurements. The joint probabilistic data association 

algorithm [3] can be cast in the framework of SLDS as well. Moreover, in our model 

each measurement component corresponds to one and only one given target region 

(see section 5.3). Rasmussen and Hager describe a joint measurement process 

enumerating all possible occlusion relationships [51]. The measurement with respect 

to the most possible occlusion relationship is determined using the information from 

the current frame. The corresponding measurement is then plugged into a Kalman 

tracker. In our approach, the estimation is based on the history of all the 

(hypothesized) measurements. In the work of Galvin et al. [17], two virtual snakes, a 

background and a foreground snake for each object, are generated to resolve the 

occlusion when two objects intersect. Their manner parallels to the case of acquiring 

measurements under a set of two hypotheses in our method. 

The remainder of the chapter is arranged as follows: Section 5.2 presents the 

formulation of the SHM model. Section 5.3 proposes the measurement process for 

joint region tracking. Section 5.4 derives the filtering algorithm. Section 5.5 

describes the implementation details. Section 5.6 discusses the experimental results. 

5.2 Model 

5.2.1 Generative SHM model 

To model a dynamic system with state space representation, consider the evolution of 

a hidden state sequence {zk} (k ∈ N), given by 

zk+1 = fk(zk, nk),                          (5.1) 
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where is a state transition function, and {nznz RRRf nnn
k →×: k} is a process noise 

sequence. The objective of online tracking is to recursively estimate zk from a 

measurement sequence. In a complex system with dynamic mode control, there 

exists a mode or switching state sequence {sk}, with sk ∈ {1, 2, …, L} (L ∈ N). The 

switching state sk determines which mode is in effect at time k. Usually the sequence 

{sk} is modeled as an unobserved discrete first order Markov process. 

Specifically, the mode switching is associated with the measurement process in our 

work. The notion of a uniform measurement is extended to a set of L hypothesized 

measurements yk = (yk,1, yk,2, … , yk,L) [70]. Each yk,j (1 ≤ j ≤ L) is called a 

hypothesized measurement since it is obtained by assuming that the switching state sk 

is j at time k. For the measurement under the jth hypothesis, 

yk,j = hk,j(sk, zk, vk,j),                        (5.2) 

where  is the measurement function, and vyvz RRRNh nnn
jk →××:, k,j is the 

measurement noise under the jth hypothesis. To make the model computationally 

efficient, we assume that the hypothesized measurements are conditionally 

independent on each other when both the hidden state zk and the switching state sk 

are given. This switching hypothesized measurements (SHM) model can be 

represented by a dynamic Bayesian network shown in Figure 5.1. 
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Figure 5.1 Bayesian network representation of the SHM model. 

5.2.2 Example of hypothesized measurements 

To illustrate the idea of hypothesized measurements in the SHM model, a simple 

example of the measurement process for jointly tracking a rectangle and a circle is 

studied in this section. The two objects translationally move in an image sequence 

{gk}. 

    

    (a)        (b)        (c)        (d) 

Figure 5.2 Illustration of hypothesized measurements. (a) (b) Two frames of the 

“rectangle and circle” sequence under different occlusion relationships. (c) Masked 

image under the first occlusion hypothesis. (d) Masked image under the second 

occlusion hypothesis. 

When measuring the centroids of these two objects from the kth frame gk, two 

occlusion relationship hypotheses (hypotheses corresponding to the rectangle being 
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in front of the circle and the circle being in front of the rectangle, see Figure 5.2a and 

5.2b) should be considered. The switching state sk is introduced to describe the depth 

ordering at time k. sk equals 1 if the rectangle is in front of the circle, and 2 if the 

circle is in front of the rectangle. The hypothesized measurement yk,j (1≤ j ≤ 2) is 

written as , where  is the measurement of the rectangle centroid, 

and  is the measurement of the circle centroid under the jth hypothesis. 

T
jkjk ),( )2(

,
)1(
, yy )1(

, jky

)2(
, jky

Under the hypothesis of sk = 1, i.e. the circle is occluded by the rectangle at time k, 

the rectangle should be measured first to acquire . Then the observed rectangle is 

masked in the image (see Figure 5.2c). The occluded area of the circle is ignored and 

only the visible region is matched normally to get y . Thus, the occlusion will not 

affect the measurement result. Similarly, under the hypothesis of s

)1(
1,ky

(
k

)2
1,

k = 2, i.e. the 

rectangle is occluded by the circle, the circle should be matched first to get , 

then the masked image (see Figure 5.2d) is used to measure . 

)2(
2,ky

)1(
2,ky

Given the occlusion relationship sk at time k, the hypothesized measurement yk,j for j 

≠ sk may bias the true value since the measurement is obtained under a false 

hypothesis. Unfortunately, whether the rectangle occludes the circle or the circle 

occludes the rectangle is not given before hand. So it is not known whether yk,1 or yk,2 

is the proper measurement for frame gk. To handle this uncertainty, the occlusion 

relationship could be estimated from the history of all the hypothesized 

measurements. 

Moreover, it is obvious that both hypothesized measurements support the condition 

of nonocclusion since different depth orderings of nonoverlapping objects are 
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visually equivalent. The values of p(sk = 1) and p(sk = 2) should be equal in the case 

of  nonocclusion. 

5.2.3 Linear SHM model for joint tracking 

For joint tracking of M (M ∈ N) objects in the scene, the switching state sk represents 

the occlusion relationship (or depth ordering) at time k, sk ∈ {1, …, L}. The number 

of all occlusion relationship hypotheses is L = M!. The switching state transition 

probability is given as 

p(sk+1 = i | sk = j) = αi,j, with∑
i

ji,α = 1.                (5.3) 

The hidden state zk is denoted as ( , with (1 ≤ m ≤ M) being 

the state of the mth object (e.g. position and velocity) at time k. For a linear process 

with Gaussian noise, the hidden state transition function is 

TM
kkk ),,, )()2()1( zzz K )(m

kz

zk+1 = Fzk + n, 

p(zk+1 | zk) = N(zk+1; Fzk, Q),                     (5.4) 

where F is the state transition matrix, n is a zero-mean Gaussian noise with 

covariance matrix Q, and N(z; m, Σ) is a Gaussian density with argument z, mean m, 

and covariance Σ. 

Given the switching state sk at time k, the corresponding hypothesized measurement 

 could be considered as a proper measurement centering on the true value, 

while every other y

ksk ,y

k,j for j ≠ sk is an improper measurement generated under a wrong 

assumption. The improper measurement should be weakly influenced by the hidden 

state zk and have a large variance. To simplify the computation, we assume a normal 
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distribution for a proper measurement and a uniform distribution for an improper 

measurement. The measurement function is simplified as 

yk,j =  


 =+

otherwise, ,

, if ,,

w

vHz kjkk sj

p(yk,j | sk, zk) =              (5.5) 


 =

otherwise, ,constant a

, if ),,;( ,, kjkkjk sjN RHzy

where H is the measurement matrix and vk,j is a zero-mean Gaussian noise with 

covariance matrix Rk,j. w is a uniformly distributed noise, whose density is a small 

positive constant. For the measurement of M objects (e.g. translation), yk,j is denoted 

as , and vTM
jkjkjk ),,,( )(

,
)2(

,
)1(
, yyy K k,j is written as . TM

jkjkjk ),,,( )(
,

)2(
,

)1(
, vvv K

Combining with the conditional independence among the hypothesized 

measurements, we know that 

p(yk | sk = j, zk) = p(yk,1, yk,2, …, yk,L | sk = j, zk) 

=∏  =
l

kklk jsp ),|( , zy

= p(yk,j | sk = j, zk)  ∏
≠

=
jl

kklk jsp ),|( , zy

∝ N(yk,j; Hzk, Rk,j).                        (5.6) 

5.3 Measurement 

Multiple, occluding objects are modeled using layer representation. Layers are 

indexed by m = 1, 2 , …, M, with layer 1 being the layer that is closest to the camera 

and layer m being behind layer 1, 2, …, m–1. There is one object in each layer. Each 
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depth ordering permutation is tagged with an index j (1 ≤ j ≤ L). For the example in 

section 5.2.2, it is known that M = 2 and L = 2. 

Under each occlusion relationship hypothesis, the object in the front layer 1 should 

be measured first from the image gk at time k. Then the object in layer 2 can be 

matched from the masked image, and so on. At last the object in layer M can be 

measured. Thus occluded points are not matched when measuring the objects. 

Measurement results of nonoverlapping objects should be equivalent for different 

depth ordering permutations. During the measurement process, the motion of a point 

x within the target region is described by a parametric model d(θ, x), with d(0, x) = 

x. θ = (θ(1), θ(2), …, ) is a set of motion parameters. The dimension of the motion 

vector θ, i.e. n

)( θnθ

)),(
,

θnm
jk

θ, changes under different motion models (e.g. two for the translational 

model, six for the affine model, and eight for the perspective model). Under the jth 

hypothesis, the measurement for the mth object  is denoted as 

. Given the reference image g

)(
,
m

jky

,,,( )2,(
,

)1,(
,

m
jk

m
jk yyy K r (r < k), the measurement is 

based on minimizing the mean of squared intensity differences between the current 

image and the reference region. The mth object is located at area Dm in the reference 

image. For each measured ,  is the corresponding minimum squared 

difference mean. 
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The measurement noise for the mth object  is denoted as 

 under the jth hypothesis. From appendix B, it can be 

known that 
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where ei is the unit vector of dimension nθ with a non-zero element in the ith 

position. To reduce the computation, it is assumed that the components of the 

measurement noise are uncorrelated to each other. Thus the diagonal matrix Rk,j can 

be easily computed from (5.7). Moreover, it should be noted that other measurement 

approaches (e.g. the snake methods in [16] and [17]) are also applicable for the SHM 

model. 

5.4 Filtering 

From a Bayesian perspective, the online tracking problem is to recursively calculate 

the posterior state space distribution. Given the measurement data y1:k = {yi}1≤i≤k up 

to time k, the probability density function (pdf) p(sk, zk | y1:k) is expressed as 

p(sk = j, zk | y1:k) = p(sk = j | y1:k) p(zk | sk = j, y1:k) 

= βk,j N(zk; mk,j, Pk,j),                        (5.8) 

where p(sk = j | y1:k) is denoted as βk,j, with ∑
j

jk ,β = 1, and the pdf p(zk | sk = j, y1:k) 

is modeled as a normal distribution N(zk; mk,j, Pk,j) under each switching state 

hypothesis. Hence p(zk | y1:k) is a mixture of L Gaussians. 

At time k+1, the set of hypothesized measurements yk+1 becomes available, and it is 

used to update {βk,j, mk,j, Pk,j}1≤j≤L to {βk+1,i, mk+1,i, Pk+1,i}1≤i≤L. From appendix C, the 

filtering algorithm is 

βk+1,i = p(sk+1  = i | y1:k+1) 
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p(zk+1 | sk+1= i, y1:k+1) ≈ N(zk+1; mk+1,i, Pk+1,i),              (5.10) 
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It can be seen that the computation of the SHM filter is slightly more complex than 

the computation of multiple Kalman filters (or Gaussian sum filters [1]). 

5.5 Implementation 

When an object is totally (or mostly) occluded by the other objects at time k, no (or 

few) points of the target region will be matched. The corresponding squared 

difference mean is computed as  for the mth object under the jth hypothesis, 

where λ

)(
,11

m
jke −λ

1 (λ1 > 1) is a penalty term. The estimation is based on the result of time k–1 

when no visible region of the object is expected at time k. The penalty λ1 helps 

prevent interpreting an object as being completely occluded when there is image 

evidence for its visibility.  

Due to the variation of the object poses and illumination conditions, the reference 

image should be updated throughout the tracking process to deal with the object 

appearance changes. Frame gk can be used as the reference image when the following 

is satisfied. 

Ljk
j

2
,min λβ > , 

2
,

1max
λ

β
Ljk

j
< .                  (5.13) 

The value of λ2 is a little bit smaller than one. From (5.13), it is known that the 

update is with a high confidence in nonocclusion. 

The switching state transition probability is set as 
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where λ3 is a small positive value so that two successive switching states are more 

likely to be of the same label. The transition matrix F, covariance matrix Q, and 

measurement matrix H are defined in the same way as in a classical Kalman tracker 

with second order model [53]. The objects are assumed to be separated from each 

other in the initial image g0. At the beginning, the reference image is set as gr = g0. 

The target regions are detected from the initial image using an adaptive foreground 

detection method [57]. The initial β0,j, m0,j, and P0,j should be equal for different j 

because of nonocclusion. β0,j = p(s0 = j) = 
L
1 . According to the definition of the 

motion model d, the initial mean m0,j is set as a zero vector. The initial covariance 

matrix P0,j is set as diagonal with small variances since the initialization is assumed 

to be accurate. 

5.6 Results and discussion 

The proposed approach is tested on both synthetic data and realistic data. The 

parameter values are set as λ1 = 1.1, λ2 = 0.98, and λ3 = 0.1. 

    

   (a.1)        (a.2)        (a.3)        (a.4) 

   

–– rectangle
--- diamond
.... circle 

    (b)         (c)         (d) 
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Figure 5.3 Tracking results of the “three objects” sequence. (a) Four frames of the 

sequence. (b) True horizontal trajectories of the objects. (c) Tracking result of the 

SHM filter. (d) Tracking result of the Kalman filter. 

Figure 5.3 shows quantitatively the results of jointly tracking a rectangle, a diamond, 

and a circle under noisy background in a synthetic image sequence of 200 frames. 

The state of the tracker is the position, diameter, orientation, and the velocities of 

these parameters. Each measurement is a translation, scaling, and rotation. Figure 

5.3a shows the 10th, 70th, 90th, and 130th frame of the sequence. It could be seen 

that the circle is totally occluded in Figure 5.3a.3. Figure 5.3b shows the true 

horizontal trajectories of the three objects. Figure 5.3c and 5.3d demonstrate the 

tracking results of the SHM filter and the Kalman filter. Comparing with the Kalman 

filter, the tracking performance is greatly improved by our algorithm when heavy 

occlusions take place among the three objects. The objects are correctly tracked even 

when total occlusion occurs. 

Figure 5.4 shows the tracking of two hands as they cross twelve times in a realistic 

image sequence of 800 frames. The state of the tracker is the position and 

orientation, and the velocities of these parameters. Each measurement is a translation 

and rotation. Figure 5.4a shows the 30th, 65th, 165th, and 230th frame of the 

sequence. Appearance variation due to hand pose changes is obvious (see Figure 

5.4a.4). Figure 5.4b and 5.4c demonstrate the tracking efficacy of the SHM filter 

versus the Kalman filter. The SHM filter successfully tracks both hands under 

different occlusion relationships (the left hand being in the front or the right hand 

being in the front). In Figure 5.4b, one hand is drawn in black contour when the 

detected depth order indicates that it is in front of the other hand. The Kalman filter 
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has a similar performance when occlusions are not severe, but poor under heavy 

occlusions. In Figure 5.4c.4, the distraction from background clutter causes the 

Kalman tracker to fail. The posterior distributions for the vertical position of the 

occluded hand in Figure 5.4a.3 and 5.4a.4 are shown in Figure 5.4d and 5.4e. When 

the occlusion is not severe, measurements under the two hypotheses are similar, and 

the distribution is unimodal (see Figure 5.4d). Under heavy occlusions, the 

distribution becomes multimodal (see Figure 5.4e) because the two hypothesized 

measurements turn to be different. The measurement under true hypothesis matches 

the hand correctly, while the measurement under false hypothesis is distracted by 

background clutter. Figure 5.4f shows the probabilities of the first occlusion 

hypothesis (the left hand being in the front) over the first 300 frames. The 

probabilities for the four frames shown in Figure 5.4a are circled in Figure 5.4f. The 

probabilities of the two hypotheses are equal in the nonoverlapping cases, while the 

probability of the true hypothesis becomes dominant under occlusions. As a 

byproduct of the SHM filter, the quantitative information helps update reference 

regions correctly to deal with the object appearance changes. 

    

   (a.1)        (a.2)        (a.3)        (a.4) 

    

   (b.1)       (b.2)       (b.3)       (b.4) 
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   (c.1)        (c.2)        (c.3)        (c.4) 

 

    (d)        (e)         (f) 

Figure 5.4 Tracking results of the “crossing hands” sequence. (a) Four frames of the 

sequence. (b) Tracking results of the SHM filter. (c) Tracking results of the Kalman 

Filter. (d) (e) Posterior distributions of the left hand’s vertical position in (a.3) and 

(a.4). (f) Probabilities of the left hand being in the front over time. 

    

   (a.1)        (a.2)        (a.3)        (a.4) 

 

    (b)         (c) 

Figure 5.5 Tracking results of the “two pedestrians” sequence. (a) Results of 

tracking the four shanks of two persons. (b) Posterior distribution of the occluded 
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body’s horizontal position in (a.3). (c) Probabilities of the woman’s body being in the 

front over time. 

Figure 5.5 shows the results of jointly tracking the four shanks of a man and a 

woman as they cross in a sequence of 80 frames. There should be totally 4! = 24 

hypotheses if we directly apply the SHM filter. Two reasonable assumptions are 

made to prune less plausible hypotheses. Firstly, one’s legs cannot simultaneously 

occlude and be occluded by the other’s legs. Secondly, the occlusion relationship 

between the man and woman can be determined from their bodies. Thus, the whole 

tracking procedure is divided into three trackers. The first one tracks the two bodies 

of the walkers. According to the detected occlusion relationship, the two shanks of 

the person in the front are then tracked. At last, the shanks of the other person are 

tracked in the masked image. Figure 5.5a shows the tracking results for the 32nd, 

42nd, 46th, and 54th frame of the sequence (circles are marked on the man’s body 

and shanks, and rectangles are marked on the woman). The man’s right shank has 

been totally occluded when they cross. Figure 5.5b shows the posterior distribution 

for the horizontal position of the occluded body in Figure 5.5a.3. Figure 5.5c shows 

the probabilities of the woman’s body being in the front. The probabilities for the 

four frames in Figure 5.5a are circled. The number of occlusion relationship 

hypotheses grows nonlinearly with the increase of objects. To reduce the 

computation, less plausible hypotheses should be (progressively) pruned when the 

number of the objects for joint tracking is large. 

Under realistic environments, it is understandable that comparing with the other 

hypothesized measurements, the measurement under the true occlusion hypothesis 

usually shows more regularity and has a smaller variance. Thus, the true information 
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(the switching state and the hidden state) could be enhanced through the propagation. 

In addition, comparing with a uniform measurement process, the acquirement of 

multiple hypothesized measurements helps decrease the information loss (e.g. caused 

by background clutter) in complex visual environments before filtering. 

This chapter makes two main contributions. First, we propose a switching 

hypothesized measurements model for multimodal state space representation of 

dynamic systems. Second, we describe a measurement process and derive an 

efficient filtering algorithm for joint region tracking in image sequences. Our 

approach reasons about the occlusion relationships explicitly. The occlusion 

relationships are quantitatively estimated throughout the propagation. The 

information can be used for reference update and further analysis. Moreover, 

experimental results show that our method helps handle appearance changes and 

distractions. The SHM model discusses the measurement switching in dynamic 

systems, which is complementary to the idea of model switching in [21] [26] [48]. 

Furthermore, from section 5.2.1 it can be known that the SHM model is generally 

applicable to describe various dynamic processes in which there are multiple 

alternative measurement methods. 
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Chapter 6 

Conclusion 

6.1 Summary 

In this thesis, probabilistic approaches of segmenting and tracking objects in image 

sequences based on graphical probabilistic models, especially Bayesian networks and 

Markov random fields, are studied to deal with the potential variability in visual 

scenes such as object occlusions, appearance changes, illumination variations, and 

cluttered environments. 

Firstly, this work proposes a unified framework for spatio-temporal segmentation of 

video sequences. Motion information among successive frames, boundary 

information from intensity segmentation, and spatial connectivity of object 

segmentation are unified in the video segmentation process using graphical models. 

A Bayesian network is presented to model interactions among the motion vector 

field, the intensity segmentation field, and the video segmentation field. The notion 

of Markov Random field is used to encourage the formation of continuous regions. 

Given consecutive frames, the conditional joint probability density of the three fields 

is maximized in an iterative way. To effectively utilize boundary information from 

intensity segmentation, distance transformation is employed in local objective 

functions. The proposed approach is robust and generates spatio-temporally coherent 

segmentation results. In addition, the proposed video segmentation approach can be 

viewed as a compromise between previous motion based approach and region 

merging approach. 
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Secondly, this thesis proposes a dynamic hidden Markov random field (DHMRF) 

model for foreground object and moving shadow segmentation in indoor video 

scenes monitored by a fixed camera. Given an image sequence, temporal 

dependencies of consecutive segmentation fields and spatial dependencies within 

each segmentation field are unified in the novel dynamic probabilistic model that 

combines the hidden Markov model and the Markov random field. An efficient 

approximate filtering algorithm is derived for the DHMRF model to recursively 

estimate the segmentation field from the history of observed images. The foreground 

and shadow segmentation method integrates both intensity and edge information. 

Moreover, models of background, shadow, and edge information are updated 

adaptively for nonstationary background processes. The proposed approach can 

accurately detect moving objects and their cast shadows even in monocular grayscale 

video sequences. 

Thirdly, this work proposes a switching hypothesized measurements (SHM) model 

supporting multimodal probability distributions and presents the application of the 

model in handling potential variability in visual environments when tracking 

multiple objects jointly. For a set of occlusion hypotheses, a frame is measured once 

under each hypothesis, resulting in a set of measurements at each time instant. The 

dynamic model switches among hypothesized measurements during the propagation. 

A computationally efficient SHM filter is derived for online joint object tracking. 

Both occlusion relationships and states of the objects are recursively estimated from 

the history of hypothesized measurements. The reference image is updated 

adaptively to deal with appearance changes of the objects. Moreover, the SHM 

model is generally applicable to various dynamic processes with multiple alternative 

measurement methods. 
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The proposed approaches deal with object segmentation and tracking from relatively 

comprehensive and general viewpoints, and each of them can be used individually in 

video analysis. Experimental results show that the approaches accurately segment 

and track objects, and the techniques robustly deal with the potential variability 

under real visual environments. 

6.2 Future work 

In the video segmentation method, the localization properties in image sequences are 

not considered to simplify the computation. More advanced segmentation techniques 

that account for both local information and spatio-temporal information could be 

adopted, but that requires computation load reduction through efficient optimization 

schemes [10] [37]. This could be our future research. Moreover, adaptive methods 

for automatic determination of the number of objects and strength of the spatio-

temporal constraints would be beneficial [2]. 

The SHM model studies the measurement switching in dynamic systems. It is 

complementary to the idea of model switching in [21]. Our future work is the 

effective combination of these two ideas, which may result in a more powerful 

approach for visual tracking. 

To make the proposed techniques practical in applications, it will be beneficial for 

our future study to explore more accurate and efficient approximate filtering 

algorithms of both the DHMRF model and the SHM model, as well as automatically 

determine all the parameters for the segmentation and tracking approaches. 
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Appendix A The DHMRF filtering algorithm 

At time k+1, image gk+1 is used to update the posterior distribution of the 

segmentation field via Bayes’ rule. 
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where . It should be noted that |Mxxx NMM ∪=′ y| is not a constant for y since 

boundary points in the scene have relatively smaller neighborhood sizes. Combining 

(4.4), (A.2), and (A.3), the probability p(sk+1 | g1:k) becomes 

)|( :11 kk gsp + ∝ ⋅− ∑ ∑
∈ ∈

++ ]))(),((
2
1

11,
Xx y

yx
x

yx
N

kk ssVexp[  

∑∏
∈

+ ′−−
ks

kkkk gMsWMssV
Xx

xxxx x )]|)(())(|)((exp[ :11 .        (A.4) 

 76



Accurate computation of (A.4) is intractable because all the possible assignments of 

field sk should be considered. Since the segmentation field tends to form contiguous 

regions, the potentials in (A.4) are approximated as 
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)|)(( :1 kk gMsW xx ′ ∝W )|)()(( :1 kkk gsMs xxx =′ .             (A.5) 

Here for a set M, sk(M) = j means that sk(y) = j for every point y in the set M. Thus 

the term in (A.4) becomes 

∑∏
∈

+ ′−−
ks

kkkk gMsWMssV ])|)(())(|)((exp[ :11
Xx

xxxx x  

−=′−≈ ∏ ∑
∈

+
Xx

xx x
j

kk jMssV ))(|)((exp[{ 1α )]}|)(( :1 kkk gjMsW =′xxλ ,    (A.6) 

where 1 ≤ j ≤ L, α′  and λk are the coefficients for the approximation of the potentials 

in (A.5). Compared to α′ , λk is assumed to be time varying for the approximation of 

 since the observed images g)|)(( :1 kk gMsW xx ′ 1:k increase with time k. Combining 

(4.5), (A.1), (A.4), and (A.6), the posterior probability distribution of the 

segmentation field at time k+1 is updated as 

)|( 1:11 ++ kk gsp ∝  )|()|( 11:11 +++ kkkk sgpgsp

∝ ]))(),((
2
1

11,∑ ∑
∈ ∈

++−
Xx y

yx
x

yx
N

kk ssVexp[ −=′−∏ ∑
∈

+
Xx

xx x
j

kk jMssV ))(|)((exp[{ 1α  

))(|)(()]}|)(( 11:1 xxoxx ++=′ kkkkk spgjMsWλ .             (A.7) 
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Denote αi|j as ))(|)(( 1 jMsisV kk ==′ + xx xα  and combine (4.3), (A.3), and (A.7), then 

the posterior distribution at time k+1 can be approximated by a Markov random field 

with the one-pixel and two-pixel potentials in (4.6). 
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Appendix B Hypothesized measurements for joint tracking 

Using the first order Taylor expansion and ignoring the high order terms, we have 

that 

||  |)),(()),((| vgvg kik ∝−+ xθdxeθd ,                (B.1) 

where v is a small random disturbance in the ith component of the motion vector θ. 

For the points within the mth object, 

]))),(()),(([( 2xθdxeθd kik gvgE −+ = c(m,i)E[v2],            (B.2) 

where x ∈ Dm, and c(m,i) is the proportional factor. c(m,i) can be learned from the 

reference frame by substituting r for k, 0 for θ, and fixing the variable v as 1 in (B.2). 

Since d(0, x) = x, 

c(m,i) =  ]))()),(([( 2xxed rir ggE −

≈ ∑
∈

−
mD

rir
m

gg
D x

xxed 2)]()),(([
||

1 .                  (B.3) 

From (B.3) we know that c(m,i) is computed as the mean of the squared intensity 

differences in the reference region. 

If the hidden state zk is given, the true value of the motion parameters can be 

considered as Hzk in our model. Denote ( as the true motion vector for the 

mth object. Assume that the intensity distribution remains constant along a motion 

trajectory,  should equal g

)() m
kHz

)),)((( )( xHzd m
kkg r(x) for a visible point of the mth object. 

Hence, variances of the measurement noise components can be estimated by 
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substituting for θ, and  for v in (B.2). Combing with (5.5) under the 

jth hypothesis, 

)()( m
kHz

]2

),(
,

im
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)(Hz m
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1
),( im E
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j
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Appendix C The SHM filtering algorithm 

Using Bayes’ rule, we know that 

p(sk+1, zk+1 | y1:k+1) 

=
)|(

1
:11 kkp yy +

p(yk+1 | sk+1, zk+1) p(sk+1, zk+1 | y1:k) 

∝p(yk+1 | sk+1, zk+1) p(sk+1, zk+1 | y1:k).                 (C.1) 

In principle, the filtering process has three stages: prediction, update, and collapsing. 

With the transition probabilities in (5.3) and (5.4), the predictive distribution for time 

k+1 is computed as 

p(sk+1 = i, zk+1 | y1:k) 

=∑∫ == ++
j

kkkk jsisp ),|,( 11 zz kkkk djsp zyz )|,( :1=  

=∑ ===+
j

kkkk jspjsisp )|()|( :11 y kkkkkk djspp zyzzz ),|()|( :11 =∫ +  

=  ∑ ∫ +
j

kjkjkkkkjkji dNN zPmzQFzz ),;(),;( ,,1,, βα

= .                (C.2) ∑ +++
j

jkkjkkkjkji N ),;( ,|1,|11,, Pmzβα

After receiving the measurement set yk+1 at time k+1, the posterior density is updated 

as follows, 

p(sk+1 = i, zk+1 | y1:k+1)  

∝ p(yk+1 | sk+1 = i, zk+1)p(sk+1 = i, zk+1 | y1:k) 
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∝ .     (C.3) ∑
j

jkji ,, βα ),;( ,11,1 ikkikN +++ RHzy ),;( ,|1,|11 jkkjkkkN +++ Pmz

If the covariances in Pk+1|k,j are small [1], the product in (C.3) can be approximated 

by 

),;(),;( ,|1,|11,11,1 jkkjkkkikkik NN ++++++ PmzRHzy  

≈ .         (C.4) ),;(),;( |,1|,11|,1,|1,1 jikjikkjikjkkik NN ++++++ PmzSHmy

The conditional probability of the switching state is updated as 

βk+1,i = p(sk+1 = i | y1:k+1)  

=  11:111 )|,( ++++∫ = kkkk disp zyz

∝ .              (C.5) ∑
j

jkji ,, βα ),;( |,1,|1,1 jikjkkikN +++ SHmy

Since = 1, (5.9) can be obtained by normalizing. From (C.3) – (C.5), the 

pdf p(z

∑ +
i

ik ,1β

k+1 | sk+1 = i, y1:k+1) becomes a mixture of L Gaussians. 

p(zk+1 | sk+1= i, y1:k+1) 

= ) .                 (C.6) ,;( |,1|,11|,1 jikjikk
j

jik N ++++∑ Pmzβ

It could be derived that 

p(zk+1 | sk+1=i, sk = j, y1:k+1)  

= ) .                     (C.7) ,;( |,1|,11 jikjikkN +++ Pmz

At time k, the distribution p(zk | y1:k) is represented as a mixture of L Gaussians, one 

for each hypothesis of sk. Then each Gaussian is propagated through state transition, 
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so that p(zk+1 | y1:k+1) will be a mixture of L2 Gaussians. The number of Gaussians 

grows exponentially with time. To deal with this problem, the mixture of Gaussians 

in (C.6) is collapsed to a single Gaussian in (5.10) using moment matching [42]. 

Collapsing is processed under each hypothesis of sk+1. Therefore, the possibility of 

each hypothesis will not be cast throughout the propagation. 
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